Sample records for thin films present

  1. Magnetic damping phenomena in ferromagnetic thin-films and multilayers

    NASA Astrophysics Data System (ADS)

    Azzawi, S.; Hindmarch, A. T.; Atkinson, D.

    2017-11-01

    Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.

  2. Synthesis and Characterization of Thin Film Lithium-Ion Batteries Using Polymer Electrolytes

    NASA Technical Reports Server (NTRS)

    Maranchi, Jeffrey P.; Kumta, Prashant N.; Hepp, Aloysius F.; Raffaelle, Ryne P.

    2002-01-01

    The present paper describes the integration of thin film electrodes with polymer electrolytes to form a complete thin film lithium-ion battery. Thin film batteries of the type, LiCoO2 [PAN, EC, PC, LiN(CF3SO2)2] SnO2 have been fabricated. The results of the synthesis and characterization studies will be presented and discussed.

  3. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    NASA Astrophysics Data System (ADS)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  4. Preparation methodologies and nano/microstructural evaluation of metal/semiconductor thin films.

    PubMed

    Chen, Zhiwen; Jiao, Zheng; Wu, Minghong; Shek, Chan-Hung; Wu, C M Lawrence; Lai, Joseph K L

    2012-01-01

    Metal/semiconductor thin films are a class of unique materials that are widespread technological applications, particularly in the field of microelectronic devices. Assessment strategies of fractal and tures are of fundamental importance in the development of nano/microdevices. This review presents the preparation methodologies and nano/microstructural evaluation of metal/semiconductor thin films including Au/Ge bilayer films and Pd-Ge alloy thin films, which show in the form of fractals and nanocrystals. Firstly, the extended version of Au/Ge thin films for the fractal crystallization of amorphous Ge and the formation of nanocrystals developed with improved micro- and nanostructured features are described in Section 2. Secondly, the nano/microstructural characteristics of Pd/Ge alloy thin films during annealing have been investigated in detail and described in Section 3. Finally, we will draw the conclusions from the present work as shown in Section 4. It is expected that the preparation methodologies developed and the knowledge of nano/microstructural evolution gained in metal/semiconductor thin films, including Au/Ge bilayer films and Pd-Ge alloy thin films, will provide an important fundamental basis underpinning further interdisciplinary research in these fields such as physics, chemistry, materials science, and nanoscience and nanotechnology, leading to promising exciting opportunities for future technological applications involving these thin films.

  5. Thermoelectric properties of epitaxial β-FeSi2 thin films grown on Si(111) substrates with various film qualities

    NASA Astrophysics Data System (ADS)

    Watanabe, Kentaro; Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Suzuki, Takeyuki; Fujita, Takeshi; Nakamura, Yoshiaki

    2017-05-01

    Si-based epitaxial β-FeSi2 thin films are attractive as materials for on-chip thermoelectric power generators. We investigated the structure, crystallinity, and thermoelectric properties of β-FeSi2 thin films epitaxially grown on Si(111) substrates by using three different techniques: conventional reactive deposition epitaxy followed by molecular beam epitaxy (RDE+MBE), solid phase epitaxy (SPE) based on codeposition of Fe and Si presented previously, and SPE followed by MBE (SPE+MBE) presented newly by this work. Their epitaxial growth temperatures were fixed at 530 °C for comparison. RDE+MBE thin films exhibited high crystalline quality, but rough surfaces and rugged β-FeSi2/Si(111) interfaces. On the other hand, SPE thin films showed flat surfaces and abrupt β-FeSi2/Si(111) interfaces but low crystallinity. We found that SPE+MBE thin films realized crystallinity higher than SPE thin films, and also had flatter surfaces and sharper interfaces than RDE+MBE thin films. In SPE+MBE thin film growth, due to the initial SPE process with low temperature codeposition, thermal interdiffusion of Fe and Si was suppressed, resulting in the surface flatness and abrupt interface. Second high temperature MBE process improved the crystallinity. We also investigated thermoelectric properties of these β-FeSi2 thin films. Structural factors affecting the thermoelectric properties of RDE+MBE, SPE, and SPE+MBE thin films were investigated.

  6. Miniature hybrid microwave IC's using a novel thin-film technology

    NASA Astrophysics Data System (ADS)

    Eda, Kazuo; Miwa, Tetsuji; Taguchi, Yutaka; Uwano, Tomoki

    1990-12-01

    A novel thin-film technology for miniature hybrid microwave ICs is presented. All passive components, such as resistors and capacitors, are fully integrated on ordinary alumina ceramic substrates using the thin-film technology with very high yield. The numbers of parts and wiring processes were significantly reduced. This technology was applied to the fabrication of Ku-band solid-state power amplifiers. This thin-film technology offers the following advantages: (1) a very high yield fabrication process of thin-film capacitor having excellent electrical characteristics in the gigahertz range (Q = 230 at 12 GHz) and reliability: (2) two kinds of thin-film resistors having different temperature coefficients of resistivity and a lift-off process to integrate them with thin-film capacitors; and (3) a matching method using the thin-film capacitor.

  7. Low-Cost Detection of Thin Film Stress during Fabrication

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center has developed a simple, cost-effective optical method for thin film stress measurements during growth and/or subsequent annealing processes. Stress arising in thin film fabrication presents production challenges for electronic devices, sensors, and optical coatings; it can lead to substrate distortion and deformation, impacting the performance of thin film products. NASA's technique measures in-situ stress using a simple, noncontact fiber optic probe in the thin film vacuum deposition chamber. This enables real-time monitoring of stress during the fabrication process and allows for efficient control of deposition process parameters. By modifying process parameters in real time during fabrication, thin film stress can be optimized or controlled, improving thin film product performance.

  8. Investigation of phase transition properties of ZrO2 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Davinder; Singh, Avtar; Kaur, Manpreet; Rana, Vikrant Singh; Kaur, Raminder

    2018-05-01

    This paper presents the synthesis of transparent thin films of zirconium oxide (ZrO2) deposited on glass substrates by sol-gel dip coating technique. Synthesized films were characterized for different annealing time and withdrawal speed. Change in crystallographic properties of thin films was investigated by using X-ray diffraction. Surface morphology of transparent thin films was estimated by using scanning electron microscope.

  9. Thin film-coated polymer webs

    DOEpatents

    Wenz, Robert P.; Weber, Michael F.; Arudi, Ravindra L.

    1992-02-04

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  10. Enhancement on crystallinity property of low annealed PbTiO3 thin films for metal-insulator-metal capacitor

    NASA Astrophysics Data System (ADS)

    Nurbaya, Z.; Wahid, M. H.; Rozana, M. D.; Alrokayan, S. A. H.; Khan, H. A.; Rusop, M.

    2018-05-01

    This study presents the investigation on crystallinity property of PbTiO3 thin films towards metal-insulator-metal capacitor device fabrication. The preparation of the thin films utilizes sol-gel spin coating method with low annealing temperature effect. Hence, structural and electrical characterization is brought to justify the thin films consistency.

  11. Thin film bismuth iron oxides useful for piezoelectric devices

    DOEpatents

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  12. Development of High Resistive and High Magnetization Soft Thin Film and Fabrication of Thin Film Inductors

    DTIC Science & Technology

    2004-11-01

    properties of Co- doped ZnO nanocluster films", .J. of Appl. Phys. in press, 2005 2. Presentations (contributed): Conference Contributions: 1) Y. Qiang...gigahertz band applications. The effects of substrates bias, sputter parameters, and seed-layer have thoroughly been investigated. The magnetic...Adequate properties of soft magnetic thin film were evaluated by an analytical calculation [1] to meet the requirement for gigahertz band thin-film

  13. Methods for fabricating thin film III-V compound solar cell

    DOEpatents

    Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve

    2011-08-09

    The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.

  14. Synthesis and characterization of lithium intercalation electrodes based on iron oxide thin films

    NASA Astrophysics Data System (ADS)

    Sarradin, J.; Guessous, A.; Ribes, M.

    Sputter-deposited iron oxide thin films are investigated as a possible negative electrode for rocking-chair microbatteries. Experimental conditions related to the manufacturing of amorphous thin films suitable to a large number of available intercalation sites are described. Structural and physical properties of the thin layer films are presented. The conductivities of the amorphous thin films were found to be very high compared with those of the respective crystalline forms. Regarding the electrochemical behaviour, Fe 2O 3-based thin films electrodes are able to store and reversibly exchange lithium ions. At a C/2 charge/discharge rate with 100% depth-of-discharge (DOD), the specific capacity of these amorphous thin film electrodes remains almost constant and close to 330 Ah/kg after more than 120 charge/discharge cycles.

  15. Subtractive Plasma-Assisted-Etch Process for Developing High Performance Nanocrystalline Zinc-Oxide Thin-Film-Transistors

    DTIC Science & Technology

    2015-03-26

    THIN - FILM - TRANSISTORS THESIS Thomas M. Donigan, First Lieutenant, USAF AFIT-ENG-MS-15-M-027 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR...DEVELOPING HIGH PERFORMANCE NANOCRYSTALLINE ZINC-OXIDE THIN - FILM - TRANSISTORS THESIS Presented to the Faculty Department of Electrical and...15-M-027 SUBTRACTIVE PLASMA-ASSISTED-ETCH PROCESS FOR DEVELOPING HIGH PERFORMANCE NANOCRYSTALLINE ZINC-OXIDE THIN - FILM - TRANSISTORS

  16. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOEpatents

    Schmitt, III, Jerome J.; Halpern, Bret L.

    1993-01-01

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.

  17. A Parametric Assessment of the Mission Applicability of Thin-film Solar Arrays

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.

    2002-01-01

    Results are presented from a parametric assessment of the applicability and spacecraft-level impacts of very lightweight thin-film solar arrays with relatively large deployed areas for representative space missions. The most and least attractive features of thin-film solar arrays are briefly discussed. A calculation is then presented illustrating that from a solar array alone mass perspective, larger arrays with less efficient but lighter thin-film solar cells can weigh less than smaller arrays with more efficient but heavier crystalline cells. However, a spacecraft-level systems assessment must take into account the additional mass associated with solar array deployed area: the propellant needed to desaturate the momentum accumulated from area-related disturbance torques and to perform aerodynamic drag makeup reboost. The results for such an assessment are presented for a representative low Earth orbit (LEO) mission, as a function of altitude and mission life, and a geostationary Earth orbit (GEO) mission. Discussion of the results includes a list of specific mission types most likely to benefit from using thin-film arrays. The presentation concludes with a list of issues to be addressed prior to use of thin-film solar arrays in space and the observation that with their unique characteristics, very lightweight arrays using efficient, thin film cells on flexible substrates may become the best array option for a subset of Earth orbiting and deep space missions.

  18. Chalcogenide phase-change thin films used as grayscale photolithography materials.

    PubMed

    Wang, Rui; Wei, Jingsong; Fan, Yongtao

    2014-03-10

    Chalcogenide phase-change thin films are used in many fields, such as optical information storage and solid-state memory. In this work, we present another application of chalcogenide phase-change thin films, i.e., as grayscale photolithgraphy materials. The grayscale patterns can be directly inscribed on the chalcogenide phase-change thin films by a single process through direct laser writing method. In grayscale photolithography, the laser pulse can induce the formation of bump structure, and the bump height and size can be precisely controlled by changing laser energy. Bumps with different height and size present different optical reflection and transmission spectra, leading to the different gray levels. For example, the continuous-tone grayscale images of lifelike bird and cat are successfully inscribed onto Sb(2)Te(3) chalcogenide phase-change thin films using a home-built laser direct writer, where the expression and appearance of the lifelike bird and cat are fully presented. This work provides a way to fabricate complicated grayscale patterns using laser-induced bump structures onto chalcogenide phase-change thin films, different from current techniques such as photolithography, electron beam lithography, and focused ion beam lithography. The ability to form grayscale patterns of chalcogenide phase-change thin films reveals many potential applications in high-resolution optical images for micro/nano image storage, microartworks, and grayscale photomasks.

  19. Development of nanostructured ZnO thin film via electrohydrodynamic atomization technique and its photoconductivity characteristics.

    PubMed

    Duraisamy, Navaneethan; Kwon, Ki Rin; Jo, Jeongdai; Choi, Kyung-Hyun

    2014-08-01

    This article presents the non-vacuum technique for the preparation of nanostructured zinc oxide (ZnO) thin film on glass substrate through electrohydrodynamic atomization (EHDA) technique. The detailed process parameters for achieving homogeneous ZnO thin films are clearly discussed. The crystallinity and surface morphology of ZnO thin film are investigated by X-ray diffraction and field emission scanning electron microscopy. The result shows that the deposited ZnO thin film is oriented in the wurtzite phase with void free surface morphology. The surface roughness of deposited ZnO thin film is found to be ~17.8 nm. The optical properties of nanostructured ZnO thin films show the average transmittance is about 90% in the visible region and the energy band gap is found to be 3.17 eV. The surface chemistry and purity of deposited ZnO thin films are analyzed by fourier transform infrared and X-ray photoelectron spectroscopy, conforming the presence of Zn-O in the deposited thin films without any organic moiety. The photocurrent measurement of nanostructured ZnO thin film is examined in the presence of UV light illumination with wavelength of 365 nm. These results suggest that the deposited nanostructured ZnO thin film through EHDA technique possess promising applications in the near future.

  20. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOEpatents

    Schmitt, J.J. III; Halpern, B.L.

    1993-10-26

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures. 5 figures.

  1. A thin film nitinol heart valve.

    PubMed

    Stepan, Lenka L; Levi, Daniel S; Carman, Gregory P

    2005-11-01

    In order to create a less thrombogenic heart valve with improved longevity, a prosthetic heart valve was developed using thin film nitinol (NiTi). A "butterfly" valve was constructed using a single, elliptical piece of thin film NiTi and a scaffold made from Teflon tubing and NiTi wire. Flow tests and pressure readings across the valve were performed in vitro in a pulsatile flow loop. Bio-corrosion experiments were conducted on untreated and passivated thin film nitinol. To determine the material's in vivo biocompatibility, thin film nitinol was implanted in pigs using stents covered with thin film NiTi. Flow rates and pressure tracings across the valve were comparable to those through a commercially available 19 mm Perimount Edwards tissue valve. No signs of corrosion were present on thin film nitinol samples after immersion in Hank's solution for one month. Finally, organ and tissue samples explanted from four pigs at 2, 3, 4, and 6 weeks after thin film NiTi implantation appeared without disease, and the thin film nitinol itself was without thrombus formation. Although long term testing is still necessary, thin film NiTi may be very well suited for use in artificial heart valves.

  2. Extending the 3ω method: thermal conductivity characterization of thin films.

    PubMed

    Bodenschatz, Nico; Liemert, André; Schnurr, Sebastian; Wiedwald, Ulf; Ziemann, Paul

    2013-08-01

    A lock-in technique for measurement of thermal conductivity and volumetric heat capacity of thin films is presented. The technique is based on the 3ω approach using electrical generation and detection of oscillatory heat along a thin metal strip. Thin films are deposited onto the backside of commercial silicon nitride membranes, forming a bilayer geometry with distinct thermal parameters. Stepwise comparison to an adapted heat diffusion model delivers these parameters for both layers. Highest sensitivity is found for metallic thin films.

  3. Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition.

    PubMed

    Yoo, Young Jin; Lee, Gil Ju; Jang, Kyung-In; Song, Young Min

    2017-08-29

    Ultra-thin film structures have been studied extensively for use as optical coatings, but performance and fabrication challenges remain.  We present an advanced method for fabricating ultra-thin color films with improved characteristics. The proposed process addresses several fabrication issues, including large area processing. Specifically, the protocol describes a process for fabricating ultra-thin color films using an electron beam evaporator for oblique angle deposition of germanium (Ge) and gold (Au) on silicon (Si) substrates.  Film porosity produced by the oblique angle deposition induces color changes in the ultra-thin film. The degree of color change depends on factors such as deposition angle and film thickness. Fabricated samples of the ultra-thin color films showed improved color tunability and color purity. In addition, the measured reflectance of the fabricated samples was converted into chromatic values and analyzed in terms of color. Our ultra-thin film fabricating method is expected to be used for various ultra-thin film applications such as flexible color electrodes, thin film solar cells, and optical filters. Also, the process developed here for analyzing the color of the fabricated samples is broadly useful for studying various color structures.

  4. Advances in Thin Film Thermocouple Durability Under High Temperature and Pressure Testing Conditions

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Fralick, Gustave C.; Taylor, Keith F.

    1999-01-01

    Thin film thermocouples for measuring material surface temperature have been previously demonstrated on several material systems and in various hostile test environments. A well-developed thin film fabrication procedure utilizing shadow masking for patterning the sensors elements had produced thin films with sufficient durability for applications in high temperature and pressure environments that exist in air-breathing and hydrogen-fueled burner rig and engine test facilities. However, while shadow masking had been a reliable method for specimens with flat and gently curved surfaces, it had not been consistently reliable for use on test components with sharp contours. This work reports on the feasibility of utilizing photolithography processing for patterning thin film thermocouples. Because this patterning process required changes in the thin film deposition process from that developed for shadow masking, the effect of these changes on thin film adherence during burner rig testing was evaluated. In addition to the results of changing the patterning method, the effects on thin film adherence of other processes used in the thin film fabrication procedure is also presented.

  5. Effects of air annealing on CdS quantum dots thin film grown at room temperature by CBD technique intended for photosensor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaikh, Shaheed U.; Desale, Dipalee J.; Siddiqui, Farha Y.

    2012-11-15

    Graphical abstract: The effect of different intensities (40, 60 100 and 200 W) of light on CdS quantum dots thin film annealed at 350 °C indicating enhancement in (a) photo-current and (b) photosensitivity. Highlights: ► The preparation of CdS nanodot thin film at room temperature by M-CBD technique. ► Study of air annealing on prepared CdS nanodots thin film. ► The optimized annealing temperature for CdS nanodot thin film is 350 °C. ► Modified CdS thin films can be used in photosensor application. -- Abstract: CdS quantum dots thin-films have been deposited onto the glass substrate at room temperature usingmore » modified chemical bath deposition technique. The prepared thin films were further annealed in air atmosphere at 150, 250 and 350 °C for 1 h and subsequently characterized by scanning electron microscopy, ultraviolet–visible spectroscopy, electrical resistivity and I–V system. The modifications observed in morphology and opto-electrical properties of the thin films are presented.« less

  6. Electrochemical detection of nitrite on poly(pyronin Y)/graphene nanocomposites modified ITO substrate

    NASA Astrophysics Data System (ADS)

    Şinoforoğlu, Mehmet; Dağcı, Kader; Alanyalıoğlu, Murat; Meral, Kadem

    2016-06-01

    The present study reports on an easy preparation of poly(pyronin Y)/graphene (poly(PyY)/graphene) nanocomposites thin films on indium tin oxide coated glass substrates (ITO). The thin films of poly(PyY)/graphene nanocomposites are prepared by a novel method consisting of three steps; (i) preparation of graphene oxide (GO) thin films on ITO by spin-coating method, (ii) self-assembly of PyY molecules from aqueous solution onto the GO thin film, (iii) surface-confined electropolymerization (SCEP) of the adsorbed PyY molecules on the GO thin film. The as-prepared poly(PyY)/graphene nanocomposites thin films are characterized by using electroanalytical and spectroscopic techniques. Afterwards, the graphene-based polymeric dye thin film on ITO is used as an electrode in an electrochemical cell. Its performance is tested for electrochemical detection of nitrite. Under optimized conditions, the electrocatalytical effect of the nanocomposites thin film through electrochemical oxidation of nitrite is better than that of GO coated ITO.

  7. Development of Thin Solar Cells for Space Applications at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dickman, John E.; Hepp, Aloysius; Banger, Kulbinder K.; Harris, Jerry D.; Jin, Michael H.

    2003-01-01

    NASA GRC Thin Film Solar Cell program is developing solar cell technologies for space applications which address two critical metrics: higher specific power (power per unit mass) and lower launch stowed volume. To be considered for space applications, an array using thin film solar cells must offer significantly higher specific power while reducing stowed volume compared to the present technologies being flown on space missions, namely crystalline solar cells. The NASA GRC program is developing single-source precursors and the requisite deposition hardware to grow high-efficiency, thin-film solar cells on polymer substrates at low deposition temperatures. Using low deposition temperatures enables the thin film solar cells to be grown on a variety of polymer substrates, many of which would not survive the high temperature processing currently used to fabricate thin film solar cells. The talk will present the latest results of this research program.

  8. Multilayer composites and manufacture of same

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi

    2006-02-07

    The present invention is directed towards a process of depositing multilayer thin films, disk-shaped targets for deposition of multilayer thin films by a pulsed laser or pulsed electron beam deposition process, where the disk-shaped targets include at least two segments with differing compositions, and a multilayer thin film structure having alternating layers of a first composition and a second composition, a pair of the alternating layers defining a bi-layer wherein the thin film structure includes at least 20 bi-layers per micron of thin film such that an individual bi-layer has a thickness of less than about 100 nanometers.

  9. Crystallization, fluoridation and some properties of apatite thin films prepared through rf-sputtering from CaO-P2O5 glasses.

    PubMed

    Yamashita, K; Matsuda, M; Arashi, T; Umegaki, T

    1998-07-01

    Using calcium phosphate glass targets with the CaO/P2O5 molar ratios of 1.50-0.50, much lower than the stoichiometric value of 3.3 for hydroxyapatite, thin films of stoichiometric hydroxy-, nonstoichiometric oxyhydroxy- and Ca-deficient oxyhydroxy-apatites were prepared on alumina ceramic substrates by rf-sputtering followed by post-annealing. Based on the present results, a phase diagram for CaO-P2O5 at low temperatures in the ambience of air was depicted for thin films. The ambient H2O vapor had an influence on the phase diagram: Tricalcium phosphate was changed to apatite in the presence of H2O vapor. Dense fluorohydroxyapatite thin films were prepared by fluoridation of those apatite thin films at a low temperature such as 200 degrees C. In the present report, some functional properties of thin films thus prepared were also shown.

  10. Oxide-based thin film transistors for flexible electronics

    NASA Astrophysics Data System (ADS)

    He, Yongli; Wang, Xiangyu; Gao, Ya; Hou, Yahui; Wan, Qing

    2018-01-01

    The continuous progress in thin film materials and devices has greatly promoted the development in the field of flexible electronics. As one of the most common thin film devices, thin film transistors (TFTs) are significant building blocks for flexible platforms. Flexible oxide-based TFTs are well compatible with flexible electronic systems due to low process temperature, high carrier mobility, and good uniformity. The present article is a review of the recent progress and major trends in the field of flexible oxide-based thin film transistors. First, an introduction of flexible electronics and flexible oxide-based thin film transistors is given. Next, we introduce oxide semiconductor materials and various flexible oxide-based TFTs classified by substrate materials including polymer plastics, paper sheets, metal foils, and flexible thin glass. Afterwards, applications of flexible oxide-based TFTs including bendable sensors, memories, circuits, and displays are presented. Finally, we give conclusions and a prospect for possible development trends. Project supported in part by the National Science Foundation for Distinguished Young Scholars of China (No. 61425020), in part by the National Natural Science Foundation of China (No. 11674162).

  11. Dewetting of thin films on flexible substrates via direct-write laser exposure

    NASA Astrophysics Data System (ADS)

    Ferrer, Anthony Jesus

    Microelectromechanical systems (MEMS) have enabled a wide variety of technologies both in the consumer space and in industrial/research areas. At the market level, such devices advance by the invention and innovation of production techniques. Additionally, there has been increased demand for flexible versions of such MEMS devices. Thin film patterning, represents a key technology for the realization of such flexible electronics. Patterns and methods that can be directly written into the thin film allow for design modification on the fly with the need for harsh chemicals and long etching steps. Laser-induced dewetting has the potential to create patterns in thin films at both the microscopic and nanoscopic level without wasting deposited material. This thesis presents the first demonstration of high-speed direct-write patterning of metallic thin films that uses a laser-induced dewetting phenomenon to prevent material loss. The ability to build film material with this technique is explored using various scanning geometries. Finally, demonstrations of direct-write dewetting of a variety of thin films will be presented with special consideration for high melting point metals deposited upon polymer substrates.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskowski, Lukasz, E-mail: lukasz.laskowski@kik.pcz.pl; Laskowska, Magdalena, E-mail: magdalena.laskowska@onet.pl; Jelonkiewicz, Jerzy, E-mail: jerzy.jelonkiewicz@kik.pcz.pl

    The SBA-15 silica thin films containing copper ions anchored inside channels via propyl phosphonate groups are investigated. Such materials were prepared in the form of thin films, with hexagonally arranged pores, laying rectilinear to the substrate surface. However, in the case of our thin films, their free standing form allowed for additional research possibilities, that are not obtainable for typical thin films on a substrate. The structural properties of the samples were investigated by X-ray reflectometry, atomic force microscopy (AFM) and transmission electron microscopy (TEM). The molecular structure was examined by Raman spectroscopy supported by numerical simulations. Magnetic measurements (SQUIDmore » magnetometry and EPR spectroscopy) showed weak antiferromagnetic interactions between active units inside silica channels. Consequently, the pores arrangement was determined and the process of copper ions anchoring by propyl phosphonate groups was verified in unambiguous way. Moreover, the type of interactions between magnetic atoms was determined. - Highlights: • Functionalized free-standing SBA-15 thin films were synthesized for a first time. • Thin films synthesis procedure was described in details. • Structural properties of the films were thoroughly investigated and presented. • Magnetic properties of the novel material was investigated and presented.« less

  13. Photochemical metal organic deposition of metal oxides

    NASA Astrophysics Data System (ADS)

    Law, Wai Lung (Simon)

    This thesis pertains to the study of the deposition of metal oxide thin films via the process of Photochemical Metal Organic Deposition (PMOD). In this process, an amorphous metal organic precursor thin film is subjected to irradiation under ambient conditions. Fragmentation of the metal precursor results from the photoreaction, leading to the formation of metal oxide thin films in the presence of oxygen. The advantage of PMOD lies in its ability to perform lithography of metal oxide thin film without the application of photoresist. The metal organic precursor can be imaged directly by photolysis through a lithography mask under ambient conditions. Thus the PMOD process provides an attractive alternative to the conventional VLSI fabrication process. Metal carboxylates and metal acetylacetonates complexes were used as the precursors for PMOD process in this thesis. Transition metal carboxylate and metal acetylacetonate complexes have shown previously that when deposited as amorphous thin films, they will undergo fragmentation upon photolysis, leading to the formation of metal oxide thin films under ambient conditions. In this thesis, the formation of main group metal oxides of aluminum, indium and tin, as well as the formation of rare-earth metal oxides of cerium and europium by PMOD from its corresponding metal organic precursor will be presented. The nature of the photoreactions as well as the properties of the thin films deposited by PMOD will be investigated. Doped metal oxide thin films can also be prepared using the PMOD process. By mixing the metal precursors prior to deposition in the desired ratio, precursor films containing more than one metal precursor can be obtained. Mixed metal oxide thin films corresponding to the original metal ratio, in the precursor mixture, can be obtained upon photolysis under ambient conditions. In this thesis, the properties of doped metal oxide thin films of europium doped aluminum oxide as well as tin doped indium oxide thin films will also be presented.

  14. Synthesis and characterization of Zn(O,OH)S and AgInS2 layers to be used in thin film solar cells

    NASA Astrophysics Data System (ADS)

    Vallejo, W.; Arredondo, C. A.; Gordillo, G.

    2010-11-01

    In this paper AgInS2 and Zn(O,OH)S thin films were synthesized and characterized. AgInS2 layers were grown by co-evaporation from metal precursors in a two-step process, and, Zn(O,OH)S thin films were deposited from chemical bath containing thiourea, zinc acetate, sodium citrate and ammonia. X-ray diffraction measurements indicated that AgInS2 thin films grown with chalcopyrite structure, and the as-grown Zn(O,OH)S thin films were polycrystalline. It was also found that the AgInS2 films presented p-type conductivity, a high absorption coefficient (greater than 104 cm-1) and energy band-gap Eg of about 1.95 eV, Zn(O,OH),S thin films presented Eg of about 3.89 eV. Morphological analysis showed that under this synthesis conditions Zn(O,OH),S thin films coated uniformly the absorber layer. Additionally, the Zn(O,OH)S kinetic growth on AgInS2 layer was studied also. Finally, the results suggest that these layers possibly could be used in one-junction solar cells and/or as top cell in a tandem solar cell.

  15. Melting Behavior of Al/Pb/Sn/Al Multilayered Thin Films

    NASA Astrophysics Data System (ADS)

    Khan, Patan Yousaf; Devi, M. Manolata; Biswas, Krishanu

    2015-09-01

    Metals or alloy nanoparticles (NPs) have been reported to exhibit superheating on melting when coated with higher melting point material or embedded in a matrix. This is due to the suppression of the heterogeneous nucleation of the melt at the epitaxial interface. For 2D thin films, this necessary condition is not feasible because even if a thin film is sandwiched between higher melting temperature materials with coherent interfaces, the heterogeneous nucleation of melt is possible at various detects. However, it has earlier been reported that 2D thin films of the pure metal sandwiched by other materials can exhibit superheating by suppression of melt growth. In order to probe this effect in case of alloy thin films, the present investigation has been carried out on Pb/Sn multilayers sandwiched between Al layers. The present study shows that such sandwiched thin films prepared by accumulative roll bonding process cause the formation of biphasic NPs in the intermixed region of Pb and Sn. Al layers undergo severe plastic deformation, leading to the generation of dislocations and sub-grain boundaries. DSC (differential canning calorimeter) thermograms of the films indicate superheating of 3 K to 6 K (or 3 °C to 6 °C). Theoretical analysis using currently available literatures has been carried out to justify the finding in the present investigation.

  16. Electro-optical properties of the metal oxide-carbon thin film system of CdO-LCC

    NASA Astrophysics Data System (ADS)

    Kokshina, A. V.; Smirnov, A. V.; Razina, A. G.

    2016-08-01

    This article presents the results of a study electrical and optical properties of the thin film system of CdO-LCC. Cadmium oxide films were obtained by method of thermal oxidation. CdO-LCC thin film system was produced by applying on a CdO film a linear chain carbon film in thickness of 100 nm using the ion-plasma method, after which the obtained system was annealed. The studies showed that the obtained CdO-LCC films are quite transparent in the visible region; it has polycrystalline structure, thickness around 300 nm, the band gap to 2.3 eV. The obtained thin film system has photosensitive properties.

  17. Infrared radiation of thin plastic films.

    NASA Technical Reports Server (NTRS)

    Tien, C. L.; Chan, C. K.; Cunnington, G. R.

    1972-01-01

    A combined analytical and experimental study is presented for infrared radiation characteristics of thin plastic films with and without a metal substrate. On the basis of the thin-film analysis, a simple analytical technique is developed for determining band-averaged optical constants of thin plastic films from spectral normal transmittance data for two different film thicknesses. Specifically, the band-averaged optical constants of polyethylene terephthalate and polyimide were obtained from transmittance measurements of films with thicknesses in the range of 0.25 to 3 mil. The spectral normal reflectance and total normal emittance of the film side of singly aluminized films are calculated by use of optical constants; the results compare favorably with measured values.

  18. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouro, J.; Gualdino, A.; Chu, V.

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three differentmore » types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.« less

  19. Resistivity behavior of optimized PbTiO3 thin films prepared by spin coating method

    NASA Astrophysics Data System (ADS)

    Nurbaya, Z.; Wahid, M. H.; Rozana, M. D.; Alrokayan, S. A. H.; Khan, H. A.; Rusop, M.

    2018-05-01

    Th is study presents the resistivity behavior of PbTiO3 thin films which were prepared towards metal-insulator-metal capacitor device fabrication. The PbTiO3 thin films were prepared through sol-gel spin coating method that involved various deposition parameters that is (1) different molar concentration of PbTiO3 solutions, (2) various additional PbAc-content in PbTiO3 solutions, and (3) various annealing temperature on PbTiO3 thin films. Hence, an electrical measurement of current versus voltage was done to determine the resistivity behavior of PbTiO3 thin films.

  20. Mathematical modelling of thin films growth and calculation of coefficients reflection, transmission and absorption waves

    NASA Astrophysics Data System (ADS)

    Istratov, A. V.; Gerke, M. N.

    2018-01-01

    Progress in nano- and microsystem technology is directly related to the development of thin-film technologies. At the present time, thin metal films can serve as the basis for the creation of new instruments for nanoelectronics. One of the important parameters of thin films affecting the characteristics of devices is their optical properties. That is why the island structures, whose optical properties, can change in a wide range depending on their morphology, are of increasing interest. However, despite the large amount of research conducted by scientists from different countries, many questions about the optimal production and use of thin films remain unresolved.

  1. AES study on the chemical composition of ferroelectric BaTiO3 thin films RF sputter-deposited on silicon

    NASA Technical Reports Server (NTRS)

    Dharmadhikari, V. S.; Grannemann, W. W.

    1983-01-01

    AES depth profiling data are presented for thin films of BaTiO3 deposited on silicon by RF sputtering. By profiling the sputtered BaTiO3/silicon structures, it was possible to study the chemical composition and the interface characteristics of thin films deposited on silicon at different substrate temperatures. All the films showed that external surface layers were present, up to a few tens of angstroms thick, the chemical composition of which differed from that of the main layer. The main layer had stable composition, whereas the intermediate film-substrate interface consisted of reduced TiO(2-x) oxides. The thickness of this intermediate layer was a function of substrate temperature. All the films showed an excess of barium at the interface. These results are important in the context of ferroelectric phenomena observed in BaTiO3 thin films.

  2. Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate

    PubMed Central

    2013-01-01

    Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques. PMID:23448090

  3. Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate.

    PubMed

    Wei, Xianqi; Zhao, Ranran; Shao, Minghui; Xu, Xijin; Huang, Jinzhao

    2013-02-28

    Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques.

  4. Self-Limited Growth in Pentacene Thin Films

    PubMed Central

    2017-01-01

    Pentacene is one of the most studied organic semiconducting materials. While many aspects of the film formation have already been identified in very thin films, this study provides new insight into the transition from the metastable thin-film phase to bulk phase polymorphs. This study focuses on the growth behavior of pentacene within thin films as a function of film thickness ranging from 20 to 300 nm. By employing various X-ray diffraction methods, combined with supporting atomic force microscopy investigations, one crystalline orientation for the thin-film phase is observed, while three differently tilted bulk phase orientations are found. First, bulk phase crystallites grow with their 00L planes parallel to the substrate surface; second, however, crystallites tilted by 0.75° with respect to the substrate are found, which clearly dominate the former in ratio; third, a different bulk phase polymorph with crystallites tilted by 21° is found. The transition from the thin-film phase to the bulk phase is rationalized by the nucleation of the latter at crystal facets of the thin-film-phase crystallites. This leads to a self-limiting growth of the thin-film phase and explains the thickness-dependent phase behavior observed in pentacene thin films, showing that a large amount of material is present in the bulk phase much earlier during the film growth than previously thought. PMID:28287698

  5. Self-Limited Growth in Pentacene Thin Films.

    PubMed

    Pachmajer, Stefan; Jones, Andrew O F; Truger, Magdalena; Röthel, Christian; Salzmann, Ingo; Werzer, Oliver; Resel, Roland

    2017-04-05

    Pentacene is one of the most studied organic semiconducting materials. While many aspects of the film formation have already been identified in very thin films, this study provides new insight into the transition from the metastable thin-film phase to bulk phase polymorphs. This study focuses on the growth behavior of pentacene within thin films as a function of film thickness ranging from 20 to 300 nm. By employing various X-ray diffraction methods, combined with supporting atomic force microscopy investigations, one crystalline orientation for the thin-film phase is observed, while three differently tilted bulk phase orientations are found. First, bulk phase crystallites grow with their 00L planes parallel to the substrate surface; second, however, crystallites tilted by 0.75° with respect to the substrate are found, which clearly dominate the former in ratio; third, a different bulk phase polymorph with crystallites tilted by 21° is found. The transition from the thin-film phase to the bulk phase is rationalized by the nucleation of the latter at crystal facets of the thin-film-phase crystallites. This leads to a self-limiting growth of the thin-film phase and explains the thickness-dependent phase behavior observed in pentacene thin films, showing that a large amount of material is present in the bulk phase much earlier during the film growth than previously thought.

  6. Studies of electronic and magnetic properties of LaVO3 thin film

    NASA Astrophysics Data System (ADS)

    Jana, Anupam; Karwal, Sharad; Choudhary, R. J.; Phase, D. M.

    2018-04-01

    We have investigated the electronic and magnetic properties of pulsed laser deposited Mott insulator LaVO3 (LVO) thin film. Structural characterization revels the single phase [00l] oriented LVO thin film. Enhancement of out of plane lattice parameter indicates the compressively strained LVO film. Electron spectroscopic studies demonstrate that vanadium is present in V3+ state. An energy dispersive X-ray spectroscopic study ensures the stoichiometric growth of the film. Very smooth surface is observed in scanning electron micrograph. Colour mapping for elemental distribution reflect the homogeneity of LVO film. The bifurcation between zero-field-cooled and Field-cooled curves clearly points towards the weak ferromagnetic phase presence in compressively strained LVO thin film. A finite value of coercivity at 300 K reflects the possibility of room temperature ferromagnetism of LVO thin film.

  7. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor); Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  8. Numerical simulations of electrohydrodynamic evolution of thin polymer films

    NASA Astrophysics Data System (ADS)

    Borglum, Joshua Christopher

    Recently developed needleless electrospinning and electrolithography are two successful techniques that have been utilized extensively for low-cost, scalable, and continuous nano-fabrication. Rational understanding of the electrohydrodynamic principles underneath these nano-manufacturing methods is crucial to fabrication of continuous nanofibers and patterned thin films. This research project is to formulate robust, high-efficiency finite-difference Fourier spectral methods to simulate the electrohydrodynamic evolution of thin polymer films. Two thin-film models were considered and refined. The first was based on reduced lubrication theory; the second further took into account the effect of solvent drying and dewetting of the substrate. Fast Fourier Transform (FFT) based spectral method was integrated into the finite-difference algorithms for fast, accurately solving the governing nonlinear partial differential equations. The present methods have been used to examine the dependencies of the evolving surface features of the thin films upon the model parameters. The present study can be used for fast, controllable nanofabrication.

  9. Memristive Properties of Thin Film Cuprous Oxide

    DTIC Science & Technology

    2011-03-01

    Equation Chapter 1 Section 1 MEMRISTIVE PROPERTIES OF THIN FILM CUPROUS OXIDE THESIS Brett C...Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this thesis are those of the...MEMRISTIVE PROPERTIES OF THIN FILM CUPROUS OXIDE THESIS Presented to the Faculty Department of Engineering Physics Graduate School of

  10. Annealing effect on the structural, morphological and electrical properties of TiO2/ZnO bilayer thin films

    NASA Astrophysics Data System (ADS)

    Khan, M. I.; Imran, S.; Shahnawaz; Saleem, Muhammad; Ur Rehman, Saif

    2018-03-01

    The effect of annealing temperature on the structural, morphological and electrical properties of TiO2/ZnO (TZ) thin films has been observed. Bilayer thin films of TiO2/ZnO are deposited on FTO glass substrate by spray pyrolysis method. After deposition, these films are annealed at 573 K, 723 K and 873 K. XRD shows that TiO2 is present in anatase phase only and ZnO is present in hexagonal phase. No other phases of TiO2 and ZnO are present. Also, there is no evidence of other compounds like Zn-Ti etc. It also shows that the average grain size of TiO2/ZnO films is increased by increasing annealing temperature. AFM (Atomic force microscope) showed that the average roughness of TiO2/ZnO films is decreased at temperature 573-723 K and then increased at 873 K. The calculated average sheet resistivity of thin films annealed at 573 K, 723 K and 873 K is 152.28 × 102, 75.29 × 102 and 63.34 × 102 ohm-m respectively. This decrease in sheet resistivity might be due to the increment of electron concentration with increasing thickness and the temperature of thin films.

  11. Modification of opto-electronic properties of ZnO by incorporating metallic tin for buffer layer in thin film solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deepu, D. R.; Jubimol, J.; Kartha, C. Sudha

    2015-06-24

    In this report, the effect of incorporation of metallic tin (Sn) on opto-electronic properties of ZnO thin films is presented. ZnO thin films were deposited through ‘automated chemical spray pyrolysis’ (CSP) technique; later different quantities of ‘Sn’ were evaporated on it and subsequently annealed. Vacuum annealing showed a positive effect on crystallinity of films. Creation of sub band gap levels due to ‘Sn’ diffusion was evident from the absorption and PL spectra. The tin incorporated films showed good photo response in visible region. Tin incorporated ZnO thin films seem to satisfy the desirable criteria for buffer layer in thin filmmore » solar cells.« less

  12. Synthesis of nanocrystalline ZnO thin films by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Kondkar, V.; Rukade, D.; Bhattacharyya, V.

    2018-05-01

    Nanocrystalline ZnO thin films have potential for applications in variety of optoelectronic devices. In the present study, nanocrystalline thin films of ZnO are grown on fused silica substrate using electron beam (e-beam) evaporation technique. Phase identification is carried out using Glancing angle X-ray diffraction (GAXRD) and Raman spectroscopy. Ultraviolet-Visible (UV-Vis) spectroscopic analysis is carried out to calculate energy band gap of the ZnO film. Surface morphology of the film is investigated using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). Highly quality nanocrystalline thin films of hexagonal wurtzite ZnO are synthesized using e-beam evaporation technique.

  13. Vectorial method used to monitor an evolving system: Titanium oxide thin films under UV illumination

    NASA Astrophysics Data System (ADS)

    Béchu, Solène; Humbert, Bernard; Fernandez, Vincent; Fairley, Neal; Richard-Plouet, Mireille

    2018-07-01

    Under in situ UV illumination, some materials present evolution of their opto-electronic properties that can be monitored by spectroscopy. We present here a mathematical method which can be applied to spectroscopic measurements when an evolving set of data is recorded: the vectorial method. The investigations and quantifications are performed by Infrared spectroscopy and XPS on organic-inorganic thin films prepared by sol-gel. The inorganic part of these hybrid thin films contains Ti oxide-network based whereas the organic part is composed of N,N-dimethylformamide and its hydrolysis products. Under UV illumination, those films exhibit intermediate bandgap behavior due to the photoreduction of Ti(IV) in Ti(III). The role of the solvent in the thin film is underlined during the process of photoreduction together with an understanding of the condensation of the Ti oxide-based network, as these evolutions are critical for the opto-electronic properties of those thin films.

  14. Structural and electrical properties of CZTS thin films by electrodeposition

    NASA Astrophysics Data System (ADS)

    Rao, M. C.; Basha, Sk. Shahenoor

    2018-06-01

    CZTS (Cu2ZnSnS4) thin films were coated on ITO glass substrates by single bath electrodeposition technique. The prepared films were subsequently characterized by XRD, SEM, FTIR, UV-visible spectroscopy and Raman studies. The thickness of the thin films was measured by wedge method. X-ray diffraction studies revealed the formation of polycrystalline phase. The morphological surface of the prepared thin films was examined by SEM and AFM and showed the presence of microcrystals on the surface of the samples. The elemental analysis and their compositional ratios present in the samples were confirmed by the energy dispersive X-ray analysis. Functional groups and the position of band structure involved in the materials were confirmed by FTIR. Optical absorption studies were performed on the prepared thin films in the wavelength ranging from 300 to 1000 nm and the energy bandgap values were found to be in the range from 1.39 to 1.60 eV. Raman spectral peak which was observed at 360 cm-1 correspond to kesterite phase, was formed due to the vibration of the molecules. Electrical measurements confirmed the nature of the thin film depending on the charge concentration present in the samples.

  15. Proceedings of the 8th International Symposium on Applications of Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Liu, M.; Safari, A.; Kingon, A.; Haertling, G.

    1993-02-01

    The eighth International Symposium on the Applications of Ferroelectrics was held in Greenville, SC, on August 30 to Sept 2, 1992. It was attended by approximately 260 scientists and engineers who presented nearly 200 oral and poster papers. The three plenary presentations covered ferroelectric materials which are currently moving into commercial exploitation or have strong potential to do so. These were (1) pyroelectric imaging, (2) ferroelectric materials integrated with silicon for use as micromotors and microsensors and (3) research activity in Japan on high permittivity materials for DRAM's. Invited papers covered such subjects as pyroelectric and electrooptic properties of thin films, photorefractive effects, ferroelectric polymers, piezoelectric transducers, processing of ferroelectrics, domain switching in ferroelectrics, thin film memories, thin film vacuum deposition techniques and the fabrication of chemically prepared PZT and PLZT thin films. The papers continued to reflect the large interest in ferroelectric thin films. It was encouraging that there have been substantial strides made in both the processing and understanding of the films in the last two years. It was equally clear, however, that much still remains to be done before reliable thin film devices will be available in the marketplace.

  16. Swift heavy ion induced modifications in optical and electrical properties of cadmium selenide thin films

    NASA Astrophysics Data System (ADS)

    Choudhary, Ritika; Chauhan, Rishi Pal

    2017-07-01

    The modification in various properties of thin films using high energetic ion beam is an exciting area of basic and applied research in semiconductors. In the present investigations, cadmium selenide (CdSe) thin films were deposited on ITO substrate using electrodeposition technique. To study the swift heavy ion (SHI) induced effects, the deposited thin films were irradiated with 120 MeV heavy Ag9+ ions using pelletron accelerator facility at IUAC, New Delhi, India. Structural phase transformation in CdSe thin film from metastable cubic phase to stable hexagonal phase was observed after irradiation leading to decrease in the band gap from 2.47 eV to 2.12 eV. The phase transformation was analyzed through X-ray diffraction patterns. During SHI irradiation, Generation of high temperature and pressure by thermal spike along the trajectory of incident ions in the thin films might be responsible for modification in the properties of thin films.[Figure not available: see fulltext.

  17. Rapid amplification/detection of nucleic acid targets utilizing a HDA/thin film biosensor.

    PubMed

    Jenison, Robert; Jaeckel, Heidi; Klonoski, Joshua; Latorra, David; Wiens, Jacinta

    2014-08-07

    Thin film biosensors exploit a flat, optically coated silicon-based surface whereupon formation of nucleic acid hybrids are enzymatically transduced in a molecular thin film that can be detected by the unaided human eye under white light. While the limit of sensitivity for detection of nucleic acid targets is at sub-attomole levels (60 000 copies) many clinical specimens containing bacterial pathogens have much lower levels of analyte present. Herein, we describe a platform, termed HDA/thin film biosensor, which performs helicase-dependant nucleic acid amplification on a thin film biosensor surface to improve the limit of sensitivity to 10 copies of the mecA gene present in methicillin-resistant strains of Staphylococcus. As double-stranded DNA is unwound by helicase it was either bound by solution-phase DNA primers to be copied by DNA polymerase or hybridized to surface immobilized probe on the thin film biosensor surface to be detected. Herein, we show that amplification reactions on the thin film biosensor are equivalent to in standard thin wall tubes, with detection at the limit of sensitivity of the assay occurring after 30 minutes of incubation time. Further we validate the approach by detecting the presence of the mecA gene in methicillin-resistant Staphylococcus aureus (MRSA) from positive blood culture aliquots with high specificity (signal/noise ratio of 105).

  18. Energy Migration in Organic Thin Films--From Excitons to Polarons

    NASA Astrophysics Data System (ADS)

    Mullenbach, Tyler K.

    The rise of organic photovoltaic devices (OPVs) and organic light-emitting devices has generated interest in the physics governing exciton and polaron dynamics in thin films. Energy transfer has been well studied in dilute solutions, but there are emergent properties in thin films and greater complications due to complex morphologies which must be better understood. Despite the intense interest in energy transport in thin films, experimental limitations have slowed discoveries. Here, a new perspective of OPV operation is presented where photovoltage, instead of photocurrent, plays the fundamental role. By exploiting this new vantage point the first method of measuring the diffusion length (LD) of dark (non-luminescent) excitons is developed, a novel photodetector is invented, and the ability to watch exciton arrival, in real-time, at the donor-acceptor heterojunction is presented. Using an enhanced understanding of exciton migration in thin films, paradigms for enhancing LD by molecular modifications are discovered, and the first exciton gate is experimentally and theoretically demonstrated. Generation of polarons from exciton dissociation represents a second phase of energy migration in OPVs that remains understudied. Current approaches are capable of measuring the rate of charge carrier recombination only at open-circuit. To enable a better understanding of polaron dynamics in thin films, two new approaches are presented which are capable of measuring both the charge carrier recombination and transit rates at any OPV operating voltage. These techniques pave the way for a more complete understanding of charge carrier kinetics in molecular thin films.

  19. Hybridization effects on wave packet dynamics in topological insulator thin films.

    PubMed

    Yar, Abdullah; Naeem, Muhammad; Khan, Safi Ullah; Sabeeh, Kashif

    2017-11-22

    Theoretical study of electron wave packet dynamics in topological insulator (TI) thin films is presented. We have investigated real space trajectories and spin dynamics of electron wave packets in TI thin films. Our focus is on the role of hybridization between the electronic states of the two surfaces. This allows us to access the crossover regime of a thick film with no hybridization to a thin film with finite hybridization. We show that the electron wave packet undergoes side-jump motion in addition to zitterbewegung. The oscillation frequency of zitterbewegung can be tuned by the strength of hybridization, which in turn can be tuned by the thickness of the film. We find that the spin expectations also exhibit zitterbewegung tunable by hybridization. We also show that it is possible to obtain persistent zitterbewegung, oscillations which do not decay, in both the real space trajectories as well as spin dynamics. The zitterbewegung oscillation frequency in TI thin films falls in a parameter regime where it might be possible to observe these effects using present day experimental techniques.

  20. Monitoring the layer-by-layer self-assembly of graphene and graphene oxide by spectroscopic ellipsometry.

    PubMed

    Zhou, Kai-Ge; Chang, Meng-Jie; Wang, Hang-Xing; Xie, Yu-Long; Zhang, Hao-Li

    2012-01-01

    Thin films of graphene oxide, graphene and copper (II) phthalocyanine dye have been successfully fabricated by electrostatic layer-by-layer (LbL) assembly approach. We present the first variable angle spectroscopic ellipsometry (VASE) investigation on these graphene-dye hybrid thin films. The thickness evaluation suggested that our LbL assembly process produces highly uniform and reproducible thin films. We demonstrate that the refractive indices of the graphene-dye thin films undergo dramatic variation in the range close to the absorption of the dyes. This investigation provides new insight to the optical properties of graphene containing thin films and shall help to establish an appropriate optical model for graphene-based hybrid materials.

  1. Nanocrystalline silicon thin films and grating structures for solar cells

    NASA Astrophysics Data System (ADS)

    Juneja, Sucheta; Sudhakar, Selvakumar; Khonina, Svetlana N.; Skidanov, Roman V.; Porfirevb, Alexey P.; Moissev, Oleg Y.; Kazanskiy, Nikolay L.; Kumar, Sushil

    2016-03-01

    Enhancement of optical absorption for achieving high efficiencies in thin film silicon solar cells is a challenge task. Herein, we present the use of grating structure for the enhancement of optical absorption. We have made grating structures and same can be integrated in hydrogenated micro/nanocrystalline silicon (μc/nc-Si: H) thin films based p-i-n solar cells. μc/nc-Si: H thin films were grown using plasma enhanced chemical vapor deposition method. Grating structures integrated with μc/nc-Si: H thin film solar cells may enhance the optical path length and reduce the reflection losses and its characteristics can be probed by spectroscopic and microscopic technique with control design and experiment.

  2. Review of the applications of x-ray refraction and the x-ray waveguide phenomenon to estimation of film structures.

    PubMed

    Hayashi, Kouichi

    2010-12-01

    Based on our previous work, I review the applications of x-ray refraction and the x-ray waveguide phenomenon to organic and inorganic thin films in the present paper. Under grazing incidence conditions, observations of refracted x-rays and guided x-rays due to the x-ray waveguide phenomenon provide information about thin film structures, and thus have potential as alternative methods to x-ray reflectivity. To date, we have measured the spectra of the refracted x-rays and guided x-rays from end faces of thin films using white incident x-ray beams, and utilized them for the determination of film density and thickness. Some of this work is summarized in the present paper. At the end of this paper, I describe our recent achievement in this field, namely the in situ measurement of guided x-rays during the film degradation process due to strong synchrotron radiation damage. Moreover, I discuss the perspective of the present technique from the viewpoint of micro-characterization and real-time estimation of thin films.

  3. Effect of aluminium doping on structural and optical properties of ZnO thin films by sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayaprasath, G.; Murugan, R.; Ravi, G., E-mail: raviganesa@rediffmail.com, E-mail: gravicrc@gmail.com

    2015-06-24

    We systematically investigated the structural, morphological and optical properties of 0.05 mol % Al doped ZnO (Al:ZnO) thin films deposited on glass substrates by sol-gel spin coating method. The influences of Al doping in ZnO thin films are characterized by Powder X-ray diffraction study. ZnO and Al:ZnO thin films have showed hexagonal wurtzite structure without any secondary phase in c-axis (002) orientation. The SEM images also proved the hexagonal rod like morphologies for both films. All the films exhibited transmittance of 70-80% in the visible range up to 800 nm and cut-off wavelength observed at ∼390 nm corresponding to the fundamental absorption ofmore » ZnO. The band gap of the ZnO thin films slightly widened with the Al doping. The photoluminescence properties have been studied for Al: ZnO thin films and the results are presented in detail.« less

  4. Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jingyu; Xiao, Yihan; Xu, Ting

    Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules withmore » a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. Lastly, the present studies opened a viable route to achieve designer functional composite thin films via kinetic control.« less

  5. Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jingyu; Xiao, Yihan; Xu, Ting

    Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules withmore » a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. The present studies opened a viable route to achieve designer functional composite thin films via kinetic control.« less

  6. Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control

    DOE PAGES

    Huang, Jingyu; Xiao, Yihan; Xu, Ting

    2017-02-20

    Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules withmore » a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. Lastly, the present studies opened a viable route to achieve designer functional composite thin films via kinetic control.« less

  7. Thermoelectric Properties of Al-Doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Saini, S.; Mele, P.; Honda, H.; Matsumoto, K.; Miyazaki, K.; Ichinose, A.

    2014-06-01

    We have prepared 2 % Al-doped ZnO (AZO) thin films on SrTiO3 substrates by a pulsed laser deposition technique at various deposition temperatures ( T dep = 300-600 °C). The thermoelectric properties of AZO thin films were studied in a low temperature range (300-600 K). Thin film deposited at 300 °C is fully c-axis-oriented and presents electrical conductivity 310 S/cm with Seebeck coefficient -65 μV/K and power factor 0.13 × 10-3 Wm-1 K-2 at 300 K. The performance of thin films increases with temperature. For instance, the power factor is enhanced up to 0.55 × 10-3 Wm-1 K-2 at 600 K, surpassing the best AZO film previously reported in the literature.

  8. Simulation of the optical coating deposition

    NASA Astrophysics Data System (ADS)

    Grigoriev, Fedor; Sulimov, Vladimir; Tikhonravov, Alexander

    2018-04-01

    A brief review of the mathematical methods of thin-film growth simulation and results of their applications is presented. Both full-atomistic and multi-scale approaches that were used in the studies of thin-film deposition are considered. The results of the structural parameter simulation including density profiles, roughness, porosity, point defect concentration, and others are discussed. The application of the quantum level methods to the simulation of the thin-film electronic and optical properties is considered. Special attention is paid to the simulation of the silicon dioxide thin films.

  9. Film and membrane-model thermodynamics of free thin liquid films.

    PubMed

    Radke, C J

    2015-07-01

    In spite of over 7 decades of effort, the thermodynamics of thin free liquid films (as in emulsions and foams) lacks clarity. Following a brief review of the meaning and measurement of thin-film forces (i.e., conjoining/disjoining pressures), we offer a consistent analysis of thin-film thermodynamics. By carefully defining film reversible work, two distinct thermodynamic formalisms emerge: a film model with two zero-volume membranes each of film tension γ(f) and a membrane model with a single zero-volume membrane of membrane tension 2γ(m). In both models, detailed thermodynamic analysis gives rise to thin-film Gibbs adsorption equations that allow calculation of film and membrane tensions from measurements of disjoining-pressure isotherms. A modified Young-Laplace equation arises in the film model to calculate film-thickness profiles from the film center to the surrounding bulk meniscus. No corresponding relation exists in the membrane model. Illustrative calculations of disjoining-pressure isotherms for water are presented using square-gradient theory. We report considerable deviations from Hamaker theory for films less than about 3 nm in thickness. Such thin films are considerably more attractive than in classical Hamaker theory. Available molecular simulations reinforce this finding. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Electronic Devices Based on Oxide Thin Films Fabricated by Fiber-to-Film Process.

    PubMed

    Meng, You; Liu, Ao; Guo, Zidong; Liu, Guoxia; Shin, Byoungchul; Noh, Yong-Young; Fortunato, Elvira; Martins, Rodrigo; Shan, Fukai

    2018-05-30

    Technical development for thin-film fabrication is essential for emerging metal-oxide (MO) electronics. Although impressive progress has been achieved in fabricating MO thin films, the challenges still remain. Here, we report a versatile and general thermal-induced nanomelting technique for fabricating MO thin films from the fiber networks, briefly called fiber-to-film (FTF) process. The high quality of the FTF-processed MO thin films was confirmed by various investigations. The FTF process is generally applicable to numerous technologically relevant MO thin films, including semiconducting thin films (e.g., In 2 O 3 , InZnO, and InZrZnO), conducting thin films (e.g., InSnO), and insulating thin films (e.g., AlO x ). By optimizing the fabrication process, In 2 O 3 /AlO x thin-film transistors (TFTs) were successfully integrated by fully FTF processes. High-performance TFT was achieved with an average mobility of ∼25 cm 2 /(Vs), an on/off current ratio of ∼10 7 , a threshold voltage of ∼1 V, and a device yield of 100%. As a proof of concept, one-transistor-driven pixel circuit was constructed, which exhibited high controllability over the light-emitting diodes. Logic gates based on fully FTF-processed In 2 O 3 /AlO x TFTs were further realized, which exhibited good dynamic logic responses and voltage amplification by a factor of ∼4. The FTF technique presented here offers great potential in large-area and low-cost manufacturing for flexible oxide electronics.

  11. Optical and electrical responses of magnetron-sputtered amorphous Nb-doped TiO2 thin films annealed at low temperature

    NASA Astrophysics Data System (ADS)

    Quynh, Luu Manh; Tien, Nguyen Thi; Thanh, Pham Van; Hieu, Nguyen Minh; Doanh, Sai Cong; Thuat, Nguyen Tran; Tuyen, Nguyen Viet; Luong, Nguyen Hoang; Hoang, Ngoc Lam Huong

    2018-03-01

    Nb-doped TiO2 (TNO) thin films were prepared by annealing at 300 °C for 30 min after a magnetron-sputter process. A laser-irradiated post-annealing Raman scattering analysis indirectly showed the possible formation of small size anatase TNO clusters within the thin film matrix Although the TNO thin films were not crystallized, oxygen vacancies were created by adding H2 into the sputter gas during the deposition process. This improved the conductivity and carrier concentration of the thin films. As the ratio of H2 in sputter gas is f(H2) = [H2/Ar+H2] = 10%, the carrier concentration of the amorphous TNO thin film reached 1022 (cm-3) with the resistivity being about 10-2 (Ω.cm). Even though a new methodology to decrease the fabrication temperature is not presented; this study demonstrates an efficient approach to shorten the annealing process, which ends prior to the crystallization of the thin films. Besides, in situ H2 addition into the sputter atmosphere is proven to be a good solution to enhance the electrical conductivity of semiconductor thin films like TNOs, despite the fact that they are not well crystallized.

  12. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    NASA Astrophysics Data System (ADS)

    Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.

    2014-04-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  13. Emittance Theory for Thin Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  14. Thin films composed of multiwalled carbon nanotubes, gold nanoparticles and myoglobin for humidity detection at room temperature.

    PubMed

    Qi, Zhi-mei; Wei, Mingdeng; Honma, Itaru; Zhou, Haoshen

    2007-02-02

    Optically transparent and electrically conductive nanocomposite thin films consisting of multiwalled carbon nanotubes (MWCNTs), gold nanoparticles (GNPs) and myoglobin molecules that glue GNPs and MWCNTs together are fabricated for the first time on glass substrates from aqueous solution. The nanocomposite thin film is capable of varying its resistance, impedance or optical transmittance at room temperature in response to changes in ambient humidity. The conductometric sensitivity to relative humidity (RH) of the nanocomposite thin film is compared with those of the pure and Mb-functionalized MWCNT layers. The pure MWCNT layer shows a small increase in its resistance with increasing RH due to the effect of p-type semiconducting nanotubes present in the film. In contrast, a four times higher sensitivity to RH is observed for both the nanocomposite and Mb-functionalized MWCNT thin films. The sensitivity enhancement is attributable to swelling of the thin films induced by water absorption in the presence of Mb molecules, which increases the inter-nanotube spacing and thereby causes a further increase of the film resistance. A humidity change as low as DeltaRH=0.3 % has been readily detected by conductometry using the nanocomposite thin film.

  15. Structural and Optical Properties of Cd 1- x Se x Thin Films Deposited by Electron Beam Evaporation Technique

    NASA Astrophysics Data System (ADS)

    Tripathi, Ravishankar Nath; Verma, Aneet Kumar; Rahul, Vishwakarma, S. R.

    2011-10-01

    Cadmium selenide (CdSe) thin films deposited by means of electron beam evaporation technique under high vacuum ˜10 -5 torr on ultrasonically cleaned glass substrate. Using stating materials of various compositions of cadmium and selenium using formula Cd 1- x Se x where x is orbitory constant having value 0.20≤ x ≤0.40 here we take less value of x for the creation of anion vacancy in thin films. In present work the structural properties have been studies using XRD technique and found that starting materials and thin films both are polycrystalline in nature having hexagonal structure. Here we study the effect of composition ratio Cd/Se in starting material and its prepared thin films on its grain size and lattice parameter. From the analysis of X-Ray diffractogram found that lattice parameter and grain size both are decreases with increasing Cd/Se ratio in thin films as well as in starting material the preferred orientation in thin films along (100) plane. The surface morphology was studied using SEM characterization and found that films are smooth and homogeneous. The films have been analysed for optical band gap and absorbed a direct band gap.

  16. Molecular dynamics simulations of disjoining pressure effects in ultra-thin water films on a metal surface

    NASA Astrophysics Data System (ADS)

    Hu, Han; Sun, Ying

    2013-11-01

    Disjoining pressure, the excess pressure in an ultra-thin liquid film as a result of van der Waals interactions, is important in lubrication, wetting, flow boiling, and thin film evaporation. The classic theory of disjoining pressure is developed for simple monoatomic liquids. However, real world applications often utilize water, a polar liquid, for which fundamental understanding of disjoining pressure is lacking. In the present study, molecular dynamics (MD) simulations are used to gain insights into the effect of disjoining pressure in a water thin film. Our MD models were firstly validated against Derjaguin's experiments on gold-gold interactions across a water film and then verified against disjoining pressure in an argon thin film using the Lennard-Jones potential. Next, a water thin film adsorbed on a gold surface was simulated to examine the change of vapor pressure with film thickness. The results agree well with the classic theory of disjoining pressure, which implies that the polar nature of water molecules does not play an important role. Finally, the effects of disjoining pressure on thin film evaporation in nanoporous membrane and on bubble nucleation are discussed.

  17. Study of the morphology of ZnS thin films deposited on different substrates via chemical bath deposition.

    PubMed

    Gómez-Gutiérrez, Claudia M; Luque, P A; Castro-Beltran, A; Vilchis-Nestor, A R; Lugo-Medina, Eder; Carrillo-Castillo, A; Quevedo-Lopez, M A; Olivas, A

    2015-01-01

    In this work, the influence of substrate on the morphology of ZnS thin films by chemical bath deposition is studied. The materials used were zinc acetate, tri-sodium citrate, thiourea, and ammonium hydroxide/ammonium chloride solution. The growth of ZnS thin films on different substrates showed a large variation on the surface, presenting a poor growth on SiO2 and HfO2 substrates. The thin films on ITO substrate presented a uniform and compact growth without pinholes. The optical properties showed a transmittance of about 85% in the visible range of 300-800 nm with band gap of 3.7 eV. © Wiley Periodicals, Inc.

  18. In-space fabrication of thin-film structures

    NASA Technical Reports Server (NTRS)

    Lippman, M. E.

    1972-01-01

    A conceptual study of physical vapor-deposition processes for in-space fabrication of thin-film structures is presented. Potential advantages of in-space fabrication are improved structural integrity and surface reflectivity of free-standing ultra-thin films and coatings. Free-standing thin-film structures can find use as photon propulsion devices (solar sails). Other applications of the concept involve free-standing shadow shields, or thermal control coatings of spacecraft surfaces. Use of expendables (such as booster and interstage structures) as source material for the physical vapor deposition process is considered. The practicability of producing thin, textured, aluminum films by physical vapor deposition and subsequent separation from a revolving substrate is demonstrated by laboratory experiments. Heating power requirement for the evaporation process is estimated for a specific mission.

  19. Tin-dioxide nanocrystals as Er3+ luminescence sensitizers: Formation of glass-ceramic thin films and their characterization

    NASA Astrophysics Data System (ADS)

    Zur, Lidia; Tran, Lam Thi Ngoc; Meneghetti, Marcello; Tran, Van Thi Thanh; Lukowiak, Anna; Chiasera, Alessandro; Zonta, Daniele; Ferrari, Maurizio; Righini, Giancarlo C.

    2017-01-01

    Silica-tin dioxide thin films doped with Er3+ ions were fabricated and investigated. Different parameters such as heat-treatment temperatures, molar concentrations of SnO2 as well as Er3+ ions concentration were changed in order to obtain the best properties of presented thin films. Using several techniques, thin films were characterized and proved to be crack-free, water-free and smooth after a heat-treatment at 1200 °C. Aiming to application in optics, the transparency of thin films was also evidenced by transmission spectra. Based on the photoluminescence measurements, the mechanism of energy transfer from SnO2 nanocrystals to Er3+ ions was examined and discussed.

  20. Effect of rapid thermal annealing on nanocrystalline TiO2 thin films synthesized by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Thakurdesai, Madhavi; Kanjilal, D.; Bhattacharyya, Varsha

    2012-08-01

    Irradiation by swift heavy ions (SHI) is unique tool to synthesize nanocrystalline thin films. We have reported transformation of 100 nm thick amorphous films into nanocrystalline film due to irradiation by 100 MeV Ag ion beam. Oblate shaped nanoparticles having anatase phase of TiO2 were formed on the surface of the irradiated films. In the present investigation, these films are annealed at 350 °C for 2 min in oxygen atmosphere by Rapid Thermal Annealing (RTA) method. During RTA processing, the temperature rises abruptly and this thermal instability is expected to alter surface morphology, structural and optical properties of nanocrystalline TiO2 thin films. Thus in the present work, effect of RTA on SHI induced nanocrystalline thin films of TiO2 is studied. The effect of RTA processing on the shape and size of TiO2 nanoparticles is studied by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Glancing Angle X-ray Diffraction (GAXRD) studies are carried to investigate structural changes induced by RTA processing. Optical characterization is carried out by UV-vis spectroscopy and photoluminescence (PL) spectroscopy. The changes observed in structural and optical properties of nanocrystalline TiO2 thin films after RTA processing are attributed to the annihilation of SHI induced defects.

  1. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  2. Theory and practical considerations of multilayer dielectric thin-film stacks in Ag-coated hollow waveguides.

    PubMed

    Bledt, Carlos M; Melzer, Jeffrey E; Harrington, James A

    2014-02-01

    This analysis explores the theory and design of dielectric multilayer reflection-enhancing thin film stacks based on high and low refractive index alternating layers of cadmium sulfide (CdS) and lead sulfide (PbS) on silver (Ag)-coated hollow glass waveguides (HGWs) for low loss transmission at midinfrared wavelengths. The fundamentals for determining propagation losses in such multilayer thin-film-coated Ag hollow waveguides is thoroughly discussed, and forms the basis for further theoretical analysis presented in this study. The effects on propagation loss resulting from several key parameters of these multilayer thin film stacks is further explored in order to bridge the gap between results predicted through calculation under ideal conditions and deviations from such ideal models that often arise in practice. In particular, the effects on loss due to the number of dielectric thin film layers deposited, deviation from ideal individual layer thicknesses, and surface roughness related scattering losses are presented and thoroughly investigated. Through such extensive theoretical analysis the level of understanding of the underlying loss mechanisms of multilayer thin-film Ag-coated HGWs is greatly advanced, considerably increasing the potential practical development of next-generation ultralow-loss mid-IR Ag/multilayer dielectric-coated HGWs.

  3. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  4. Study of Sb2S3 thin films deposited by SILAR method

    NASA Astrophysics Data System (ADS)

    Deshpande, M. P.; Chauhan, Krishna; Patel, Kiran N.; Rajput, Piyush; Bhoi, Hiteshkumar R.; Chaki, S. H.

    2018-05-01

    In the present work, we deposited Sb2S3 thin films on glass slide by successive ionic layer adsorption and reaction (SILAR) technique with different time cycles. From EDAX, we could observe that the films were non-stoichiometric and contained few elements from glass slide. X-ray diffraction has shown that these films are orthorhombic in structure from where we have calculated the lattice parameter and crystallize size. SEM images shows that SILAR synthesized Sb2S3 thin films are homogenous and well distributed indicating the formation of uniform thin films at lower concentration. The room temperature Raman spectra of Sb2S3 thin films showed sharp peaks at 250 cm‑1 and 300 cm‑1 for all cases. Room temperature photoluminescence emission spectrum shows broad bands over 430–480 nm range with strong blue emission peak centered at same wavelength of 460 nm (2.70 eV) for all cases.

  5. High-Aspect-Ratio Ridge Structures Induced by Plastic Deformation as a Novel Microfabrication Technique.

    PubMed

    Takei, Atsushi; Jin, Lihua; Fujita, Hiroyuki; Takei, A; Fujita, H; Jin, Lihua

    2016-09-14

    Wrinkles on thin film/elastomer bilayer systems provide functional surfaces. The aspect ratio of these wrinkles is critical to their functionality. Much effort has been dedicated to creating high-aspect-ratio structures on the surface of bilayer systems. A highly prestretched elastomer attached to a thin film has recently been shown to form a high-aspect-ratio structure, called a ridge structure, due to a large strain induced in the elastomer. However, the prestretch requirements of the elastomer during thin film attachment are not compatible with conventional thin film deposition methods, such as spin coating, dip coating, and chemical vapor deposition (CVD). Thus, the fabrication method is complex, and ridge structure formation is limited to planar surfaces. This paper presents a new and simple method for constructing ridge structures on a nonplanar surface using a plastic thin film/elastomer bilayer system. A plastic thin film is attached to a stress-free elastomer, and the resulting bilayer system is highly stretched one- or two-dimensionally. Upon the release of the stretch load, the deformation of the elastomer is reversible, while the plastically deformed thin film stays elongated. The combination of the length mismatch and the large strain induced in the elastomer generates ridge structures. The morphology of the plastic thin film/elastomer bilayer system is experimentally studied by varying the physical parameters, and the functionality and the applicability to a nonplanar surface are demonstrated. Finally, we simulate the effect of plasticity on morphology. This study presents a new technique for generating microscale high-aspect-ratio structures and its potential for functional surfaces.

  6. Thin-Film Solar Array Earth Orbit Mission Applicability Assessment

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Raffaelle, Ryne P.

    2002-01-01

    This is a preliminary assessment of the applicability and spacecraft-level impact of using very lightweight thin-film solar arrays with relatively large deployed areas for representative Earth orbiting missions. The most and least attractive features of thin-film solar arrays are briefly discussed. A simple calculation is then presented illustrating that from a solar array alone mass perspective, larger arrays with less efficient but lighter thin-film solar cells can weigh less than smaller arrays with more efficient but heavier crystalline cells. However, a proper spacecraft-level systems assessment must take into account the additional mass associated with solar array deployed area: the propellant needed to desaturate the momentum accumulated from area-related disturbance torques and to perform aerodynamic drag makeup reboost. The results for such an assessment are presented for a representative low Earth orbit (LEO) mission, as a function of altitude and mission life, and a geostationary Earth orbit (GEO) mission. Discussion of the results includes a list of specific mission types most likely to benefit from using thin-film arrays. NASA Glenn's low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is also briefly discussed to provide a perspective on one approach to achieving this enabling technology. The paper concludes with a list of issues to be addressed prior to use of thin-film solar arrays in space and the observation that with their unique characteristics, very lightweight arrays using efficient, thin-film cells on flexible substrates may become the best array option for a subset of Earth orbiting missions.

  7. Ferroelectric and piezoelectric thin films and their applications for integrated capacitors, piezoelectric ultrasound transducers and piezoelectric switches

    NASA Astrophysics Data System (ADS)

    Klee, M.; Boots, H.; Kumar, B.; van Heesch, C.; Mauczok, R.; Keur, W.; de Wild, M.; van Esch, H.; Roest, A. L.; Reimann, K.; van Leuken, L.; Wunnicke, O.; Zhao, J.; Schmitz, G.; Mienkina, M.; Mleczko, M.; Tiggelman, M.

    2010-02-01

    Ferroelectric and piezoelectric thin films are gaining more and more importance for the integration of high performance devices in small modules. High-K 'Integrated Discretes' devices have been developed, which are based on thin film ferroelectric capacitors integrated together with resistors and ESD protection diodes in a small Si-based chip-scale package. Making use of ferroelectric thin films with relative permittivity of 950-1600 and stacking processes of capacitors, extremely high capacitance densities of 20-520 nF/mm2, high breakdown voltages up to 140 V and lifetimes of more than 10 years at operating voltages of 5 V and 85°C are achieved. Thin film high-density capacitors play also an important role as tunable capacitors for applications such as tuneable matching circuits for RF sections of mobile phones. The performance of thin film tuneable capacitors at frequencies between 1 MHz and 1 GHz is investigated. Finally thin film piezoelectric ultrasound transducers, processed in Si- related processes, are attractive for medical imaging, since they enable large bandwidth (>100%), high frequency operation and have the potential to integrate electronics. With these piezoelectric thin film ultrasound transducers real time ultrasound images have been realized. Finally, piezoelectric thin films are used to manufacture galvanic MEMS switches. A model for the quasi-static mechanical behaviour is presented and compared with measurements.

  8. Carbon Nanotube Thin-Film Antennas.

    PubMed

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of <10 ohm/sq is needed to achieve a 10 dB return loss in the unbalanced antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.

  9. A fatigue test method for Pb(Zr,Ti)O3 thin films by using MEMS-based self-sensitive piezoelectric microcantilevers

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Maeda, R.; Itoh, T.

    2008-11-01

    In the present study, we propose a new method for the fatigue test of lead zirconate titanate (PZT) thin films for MEMS devices by using self-sensitive piezoelectric microcantilevers developed in our previous study. We have deposited PZT thin films on SOI wafers and fabricated the microcantilevers through the MEMS microfabrication process. In the self-sensitive piezoelectric microcantilevers, the PZT thin films are separated in order to act as an actuator and a sensor. The fatigue characteristic of the PZT thin films can be evaluated by measuring the output voltage of the sensor as a function of time. When a sine wave of 20 Vpp and a dc bias of 10 V were applied to the PZT thin films for an actuator, the output voltage of the sensor fell down after 107 fatigue cycles. We have also investigated the influence of amplitude of the actuation sine wave and dc bias on the fatigue of the PZT thin films by using the proposed fatigue test method.

  10. Synthesis of bimetallic nanostructures by nanosecond laser ablation of multicomponent thin films in water

    NASA Astrophysics Data System (ADS)

    Nikov, R. G.; Nedyalkov, N. N.; Atanasov, P. A.; Karashanova, D. B.

    2018-03-01

    The paper presents results on nanosecond laser ablation of thin films immersed in a liquid. The thin films were prepared by consecutive deposition of layers of different metals by thermal evaporation (first layer) and classical on-axis pulsed laser deposition (second layer); Ni/Au, Ag/Au and Ni/Ag thin films were thus deposited on glass substrates. The as-prepared films were then placed at the bottom of a glass vessel filled with double distilled water and irradiated by nanosecond laser pulses delivered by a Nd:YAG laser system at λ = 355 nm. This resulted in the formation of colloids of the thin films’ material. We also compared the processes of ablation of a bulk target and a thin film in the liquid by irradiating a Au target and a Au thin film by the same laser wavelength and fluence (λ = 355 nm, F = 5 J/cm2). The optical properties of the colloids were evaluated by optical transmittance measurements in the UV– VIS spectral range. Transmission electron microscopy was employed to estimate the particles’ size distribution.

  11. Low-temperature growth and electronic structures of ambipolar Yb-doped zinc tin oxide transparent thin films

    NASA Astrophysics Data System (ADS)

    Oh, Seol Hee; Ferblantier, Gerald; Park, Young Sang; Schmerber, Guy; Dinia, Aziz; Slaoui, Abdelilah; Jo, William

    2018-05-01

    The compositional dependence of the crystal structure, optical transmittance, and surface electric properties of the zinc tin oxide (Zn-Sn-O, shortened ZTO) thin films were investigated. ZTO thin films with different compositional ratios were fabricated on glass and p-silicon wafers using radio frequency magnetron sputtering. The binding energy of amorphous ZTO thin films was examined by a X-ray photoelectron spectroscopy. The optical transmittance over 70% in the visible region for all the ZTO films was observed. The optical band gap of the ZTO films was changed as a result of the competition between the Burstein-Moss effect and renormalization. An electron concentration in the films and surface work function distribution were measured by a Hall measurement and Kelvin probe force microscopy, respectively. The mobility of the n- and p-type ZTO thin films have more than 130 cm2/V s and 15 cm2/V s, respectively. We finally constructed the band structure which contains band gap, work function, and band edges such as valence band maximum and conduction band minimum of ZTO thin films. The present study results suggest that the ZTO thin film is competitive compared with the indium tin oxide, which is a representative material of the transparent conducting oxides, regarding optoelectronic devices applications.

  12. Effect of thickness on surface morphology, optical and humidity sensing properties of RF magnetron sputtered CCTO thin films

    NASA Astrophysics Data System (ADS)

    Ahmadipour, Mohsen; Ain, Mohd Fadzil; Ahmad, Zainal Arifin

    2016-11-01

    In this study, calcium copper titanate (CCTO) thin films were deposited on ITO substrates successfully by radio frequency (RF) magnetron sputtering method in argon atmosphere. The CCTO thin films present a polycrystalline, uniform and porous structure. The surface morphology, optical and humidity sensing properties of the synthesized CCTO thin films have been studied by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), UV-vis spectrophotometer and current-voltage (I-V) analysis. XRD and AFM confirmed that the intensity of peaks and pore size of CCTO thin films were enhanced by increasing the thin films. Tauc plot method was adopted to estimate the optical band gaps. The surface structure and energy band gaps of the deposited films were affected by film thickness. Energy band gap of the layers were 3.76 eV, 3.68 eV and 3.5 eV for 200 nm, 400 nm, and 600 nm CCTO thin films layer, respectively. The humidity sensing properties were measured by using direct current (DC) analysis method. The response times were 12 s, 22 s, and 35 s while the recovery times were 500 s, 600 s, and 650 s for 200 nm, 400 nm, and 600 nm CCTO thin films, respectively at humidity range of 30-90% relative humidity (RH).

  13. Temperature and Microstructural Effects on the Superconducting Properties of Niobium Thin Films

    DOE PAGES

    Beebe, Melissa R.; Valente-Feliciano, Anne -Marie; Beringer, Douglas B.; ...

    2016-11-23

    Here, superconducting thin films have a wide range of dc and RF applications, from detectors to superconducting radio frequency. Amongst the most used materials, niobium (Nb) has the highest critical temperature (TC) and highest lower critical field (HC1) of the elemental superconductors and can be deposited on a variety of substrates, making Nb thin films very appealing for such applications. Here, we present temperature-dependent dc studies on the critical temperature and critical fields of Nb thin films grown on copper and r-plane sapphire surfaces. Additionally, we correlate the dc superconducting properties of these films with their microstructure, which allows formore » the possibility of tailoring future films for a specific application.« less

  14. Inelastic deformation of plasma polymerised thin films facilitated by transient dense plasma focus irradiation

    NASA Astrophysics Data System (ADS)

    Grant, Daniel S.; Rawat, Rajdeep S.; Bazaka, Kateryna; Jacob, Mohan V.

    2017-09-01

    The high degree of crosslinking present in plasma polymerised thin films, coupled with their high molecular weight, imbues these films with properties similar to those of thermosetting polymers. For instance, such films tend to be relatively hard, insoluble, and to date have not exhibited plasticity when subjected to elevated temperatures. In this paper it is demonstrated that plasma polymers can, in fact, undergo plastic deformation in response to the application of extremely short-lived thermal treatment delivered by a dense plasma focus device, as evidenced by the evolution of bubble-like structures from the thin film. This finding suggests new avenues for texturing plasma thin films, and synthesising cavities that may find utility as thermal insulators or domains for material encapsulation.

  15. Scavenging of oxygen from SrTiO3 by metals and its implications for oxide thin film deposition

    NASA Astrophysics Data System (ADS)

    Posadas, Agham; Kormondy, Kristy; Guo, Wei; Ponath, Patrick; Kremer, Jacqueline; Hadamek, Tobias; Demkov, Alexander

    SrTiO3 is a widely used substrate for the growth of other functional oxide thin films. However, SrTiO3 loses oxygen very easily during oxide thin film deposition even under relatively high oxygen pressures. In some cases, there will be an interfacial layer of oxygen-deficient SrTiO3 formed at the interface with the deposited oxide film, depending on the metals present in the film. By depositing a variety of metals layer by layer and measuring the evolution of the core level spectra of both the deposited metal and SrTiO3 using x-ray photoelectron spectroscopy, we show that there are three distinct types of behavior that occur for thin metal films on SrTiO3. We discuss the implications of these types of behavior for the growth of complex oxide thin films on SrTiO3, and which oxide thin films are expected to produce an interfacial oxygen-deficient layer depending on their elemental constituents.

  16. Utility of Thin-Film Solar Cells on Flexible Substrates for Space Power

    NASA Technical Reports Server (NTRS)

    Dickman, J. E.; Hepp, A. F.; Morel, D. L.; Ferekides, C. S.; Tuttle, J. R.; Hoffman, D. J.; Dhere, N. G.

    2004-01-01

    The thin-film solar cell program at NASA GRC is developing solar cell technologies for space applications which address two critical metrics: specific power (power per unit mass) and launch stowed volume. To be competitive for many space applications, an array using thin film solar cells must significantly increase specific power while reducing stowed volume when compared to the present baseline technology utilizing crystalline solar cells. The NASA GRC program is developing two approaches. Since the vast majority of the mass of a thin film solar cell is in the substrate, a thin film solar cell on a very lightweight flexible substrate (polymer or metal films) is being developed as the first approach. The second approach is the development of multijunction thin film solar cells. Total cell efficiency can be increased by stacking multiple cells having bandgaps tuned to convert the spectrum passing through the upper cells to the lower cells. Once developed, the two approaches will be merged to yield a multijunction, thin film solar cell on a very lightweight, flexible substrate. The ultimate utility of such solar cells in space require the development of monolithic interconnections, lightweight array structures, and ultra-lightweight support and deployment techniques.

  17. Characteristics of Iron-Palladium alloy thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chiu, Y.-J.; Shen, C.-Y.; Chang, H.-W.; Jian, S.-R.

    2018-06-01

    The microstructural features, magnetic, nanomechanical properties and wettability behaviors of Iron-Palladium (FePd) alloy thin films are investigated by using X-ray diffraction (XRD), atomic force microscopy (AFM), vibrating sample magnetometer (VSM), nanoindentation and water contact angle (CA) techniques, respectively. The FePd alloy thin films were deposited on glass substrates using a magnetron sputtering system. The post-annealing processes of FePd alloy thin films were carried out at 400 °C and 750 °C and resulted in a significant increase of both the average grain size and surface roughness. The XRD analysis showed that FePd alloy thin films exhibited a predominant (1 1 1) orientation. The magnetic field dependence of magnetization of all FePd thin films are measured at room temperature showed the ferromagnetic characteristics. The nanoindentation with continuous stiffness measurement (CSM) is used to measure the hardness and Young's modulus of present films. The contact angle (θCA) increased with increasing surface roughness. The maximum θCA of 75° was achieved for the FePd alloy thin film after annealing at 750 °C and a surface roughness of 4.2 nm.

  18. Magnetic nanostructures.

    PubMed

    Bennemann, K

    2010-06-23

    Characteristic results of magnetism in small particles, thin films and tunnel junctions are presented. As a consequence of the reduced atomic coordination in small clusters and thin films the electronic states and density of states are modified. Thus, magnetic moments and magnetization are affected. Generally, in clusters and thin films magnetic anisotropy plays a special role. In tunnel junctions the interplay of magnetism, spin currents and superconductivity are of particular interest. In ring-like mesoscopic systems Aharonov-Bohm-induced currents are studied. Results are given for single transition metal clusters, cluster ensembles, thin films, mesoscopic structures and tunnel systems. © 2010 IOP Publishing Ltd

  19. A flammability study of thin plastic film materials

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1990-01-01

    The Materials Science Laboratory at the Kennedy Space Center presently conducts flammability tests on thin plastic film materials by using a small needle rake method. Flammability data from twenty-two thin plastic film materials were obtained and cross-checked by using three different testing methods: (1) the presently used small needle rake; (2) the newly developed large needle rake; and (3) the previously used frame. In order to better discern the melting-burning phenomenon of thin plastic film material, five additional specific experiments were performed. These experiments determined the following: (1) the heat sink effect of each testing method; (2) the effect of the burn angle on the burn length or melting/shrinkage length; (3) the temperature profile above the ignition source; (4) the melting point and the fire point of each material; and (5) the melting/burning profile of each material via infrared (IR) imaging. The results of these experimentations are presented.

  20. Formation and prevention of fractures in sol-gel-derived thin films.

    PubMed

    Kappert, Emiel J; Pavlenko, Denys; Malzbender, Jürgen; Nijmeijer, Arian; Benes, Nieck E; Tsai, Peichun Amy

    2015-02-07

    Sol-gel-derived thin films play an important role as the functional coatings for various applications that require crack-free films to fully function. However, the fast drying process of a standard sol-gel coating often induces mechanical stresses, which may fracture the thin films. An experimental study on the crack formation in sol-gel-derived silica and organosilica ultrathin (submicron) films is presented. The relationships among the crack density, inter-crack spacing, and film thickness were investigated by combining direct micrograph analysis with spectroscopic ellipsometry. It is found that silica thin films are more prone to fracturing than organosilica films and have a critical film thickness of 300 nm, above which the film fractures. In contrast, the organosilica films can be formed without cracks in the experimentally explored regime of film thickness up to at least 1250 nm. These results confirm that ultrathin organosilica coatings are a robust silica substitute for a wide range of applications.

  1. Development of Thin Film Thermocouples on Ceramic Materials for Advanced Propulsion System Applications

    NASA Technical Reports Server (NTRS)

    Holanda, R.

    1992-01-01

    Thin film thermocouples have been developed for use on metal parts in jet engines to 1000 c. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose of this work is to develop thin film thermocouples for use on ceramic materials. The new thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials tested are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high heating rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hours or more up to temperature of 1500 C depending on the stability of the particular ceramic substrate.

  2. Thin film thermocouples for high temperature measurement on ceramic materials

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond

    1992-01-01

    Thin film thermocouples have been developed for use on metal parts in jet engines to 1000 C. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose of this work is to develop thin film thermocouples for use on ceramic materials. The thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high-heating-rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hours or more up to temperatures of 1500 C depending on the stability of the particular ceramic substrate.

  3. Development of thin film thermocouples on ceramic materials for advanced propulsion system applications

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond

    1993-01-01

    Thin film thermocouples were developed for use on metal parts in jet engines to 1000 C. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose is to develop thin film thermocouples for use on ceramic materials. The new thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials tested are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high heating rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hr or more up to temperatures of 1500 C depending on the stability of the particular ceramic substrate.

  4. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    NASA Astrophysics Data System (ADS)

    Kaushik, Deepak Kumar; Kumar, K. Uday; Subrahmanyam, A.

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl˜1; kF is the Fermi wave vector and l is the electron mean free path) and degenerate semiconductors. The transport of charge carriers (electrons) in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known `metal-insulator transition' (MIT) which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC); this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann's expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  5. Surfactant mediated synthesis of bismuth selenide thin films for photoelectrochemical solar cell applications.

    PubMed

    Desai, Neha D; Khot, Kishorkumar V; Ghanwat, Vishvanath B; Kharade, Suvarta D; Bhosale, Popatrao N

    2018-03-15

    In the present report, nanostructured bismuth selenide (Bi 2 Se 3 ) thin films have been successfully deposited by using arrested precipitation technique (APT) at room temperature. The effect of three different surfactants on the optostructural, morphological, compositional and photoelectrochemical properties of Bi 2 Se 3 thin films were investigated. Optical absorption data indicates direct and allowed transition with a band gap energy varied from 1.4 eV to 1.8 eV. The X-ray diffraction pattern (XRD) revealed that Bi 2 Se 3 thin films are crystalline in nature and confirmed rhombohedral crystal structure. SEM micrographs shows morphological transition from interconnected mesh to nanospheres like and finally granular morphology. Surface topography of Bi 2 Se 3 thin films was determined by AFM. Compositional analysis of all samples was carried out by energy dispersive X-ray spectroscopy (EDS). Finally, all Bi 2 Se 3 thin films shows good PEC performance with highest photoconversion efficiency 1.47%. In order to study the stability of Bi 2 Se 3 thin films four cycles are repeated after gap of one week each. Further PEC performance of all Bi 2 Se 3 thin films are also supported by electrochemical impedance (EIS) measurement study. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. QCM gas sensor characterization of ALD-grown very thin TiO2 films

    NASA Astrophysics Data System (ADS)

    Boyadjiev, S.; Georgieva, V.; Vergov, L.; Szilágyi, I. M.

    2018-03-01

    The paper presents a technology for preparation and characterization of titanium dioxide (TiO2) thin films suitable for gas sensor applications. Applying atomic layer deposition (ALD), very thin TiO2 films were deposited on quartz resonators, and their gas sensing properties were studied using the quartz crystal microbalance (QCM) method. The TiO2 thin films were grown using Ti(iOPr)4 and water as precursors. The surface of the films was observed by scanning electron microscopy (SEM), coupled with energy dispersive X-ray analysis (EDX) used for a composition study. The research was focused on the gas-sensing properties of the films. Films of 10-nm thickness were deposited on quartz resonators with Au electrodes and the QCMs were used to build highly sensitive gas sensors, which were tested for detecting NO2. Although very thin, these ALD-grown TiO2 films were sensitive to NO2 already at room temperature and could register as low concentrations as 50 ppm, while the sorption was fully reversible, and the sensors could be fully recovered. With the technology presented, the manufacturing of gas sensors is simple, fast and cost-effective, and suitable for energy-effective portable equipment for real-time environmental monitoring of NO2.

  7. Evolution of structural distortion in BiFeO3 thin films probed by second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Jin, Kuijuan; Wang, Jiesu; Gu, Junxing; L03 Group in Institute of Physics, Chinese Academy of Sciences Team

    BiFeO3 thin films have drawn much attention due to its potential applications for novel magnetoelectric devices and fundamental physics in magnetoelectric coupling. However, the structural evolution of BiFeO3 films with thickness remains controversial. Here we use an optical second-harmonic generation technique to explore the phase-related symmetry evolution of BiFeO3 thin films with the variation of thickness. The crystalline structures for 60 and 180-nm-thick BiFeO3 thin films were characterized by high-resolution X-ray diffractometry reciprocal space mapping and the local piezoelectric response for 60-nm-thick BiFeO3 thin films was characterized by piezoresponse force microscopy. The present results show that the symmetry of BiFeO3 thin films with a thickness below 60 nm belongs to the point group 4mm. We conclude that the disappearance of fourfold rotational symmetry in SHG s-out pattern implies for the appearance of R-phase. The fact that the thinner the film is, the closer to 1 the tensor element ratio χ31/ χ15 tends, indicates an increase of symmetry with the decrease of thickness for BiFeO3 thin films. email: kjjin@iphy.ac.cn

  8. Biocompatibility and Surface Properties of TiO2 Thin Films Deposited by DC Magnetron Sputtering

    PubMed Central

    López-Huerta, Francisco; Cervantes, Blanca; González, Octavio; Hernández-Torres, Julián; García-González, Leandro; Vega, Rosario; Herrera-May, Agustín L.; Soto, Enrique

    2014-01-01

    We present the study of the biocompatibility and surface properties of titanium dioxide (TiO2) thin films deposited by direct current magnetron sputtering. These films are deposited on a quartz substrate at room temperature and annealed with different temperatures (100, 300, 500, 800 and 1100 °C). The biocompatibility of the TiO2 thin films is analyzed using primary cultures of dorsal root ganglion (DRG) of Wistar rats, whose neurons are incubated on the TiO2 thin films and on a control substrate during 18 to 24 h. These neurons are activated by electrical stimuli and its ionic currents and action potential activity recorded. Through X-ray diffraction (XRD), the surface of TiO2 thin films showed a good quality, homogeneity and roughness. The XRD results showed the anatase to rutile phase transition in TiO2 thin films at temperatures between 500 and 1100 °C. This phase had a grain size from 15 to 38 nm, which allowed a suitable structural and crystal phase stability of the TiO2 thin films for low and high temperature. The biocompatibility experiments of these films indicated that they were appropriated for culture of living neurons which displayed normal electrical behavior. PMID:28788667

  9. Evolution of structural distortion in BiFeO3 thin films probed by second-harmonic generation.

    PubMed

    Wang, Jie-Su; Jin, Kui-Juan; Guo, Hai-Zhong; Gu, Jun-Xing; Wan, Qian; He, Xu; Li, Xiao-Long; Xu, Xiu-Lai; Yang, Guo-Zhen

    2016-12-01

    BiFeO 3 thin films have drawn much attention due to its potential applications for novel magnetoelectric devices and fundamental physics in magnetoelectric coupling. However, the structural evolution of BiFeO 3 films with thickness remains controversial. Here we use an optical second-harmonic generation technique to explore the phase-related symmetry evolution of BiFeO 3 thin films with the variation of thickness. The crystalline structures for 60 and 180-nm-thick BiFeO 3 thin films were characterized by high-resolution X-ray diffractometry reciprocal space mapping and the local piezoelectric response for 60-nm-thick BiFeO 3 thin films was characterized by piezoresponse force microscopy. The present results show that the symmetry of BiFeO 3 thin films with a thickness below 60 nm belongs to the point group 4 mm. We conclude that the disappearance of fourfold rotational symmetry in SHG s-out pattern implies for the appearance of R-phase. The fact that the thinner the film is, the closer to 1 the tensor element ratio χ 31 /χ 15 tends, indicates an increase of symmetry with the decrease of thickness for BiFeO 3 thin films.

  10. Evolution of structural distortion in BiFeO3 thin films probed by second-harmonic generation

    PubMed Central

    Wang, Jie-su; Jin, Kui-juan; Guo, Hai-zhong; Gu, Jun-xing; Wan, Qian; He, Xu; Li, Xiao-long; Xu, Xiu-lai; Yang, Guo-zhen

    2016-01-01

    BiFeO3 thin films have drawn much attention due to its potential applications for novel magnetoelectric devices and fundamental physics in magnetoelectric coupling. However, the structural evolution of BiFeO3 films with thickness remains controversial. Here we use an optical second-harmonic generation technique to explore the phase-related symmetry evolution of BiFeO3 thin films with the variation of thickness. The crystalline structures for 60 and 180-nm-thick BiFeO3 thin films were characterized by high-resolution X-ray diffractometry reciprocal space mapping and the local piezoelectric response for 60-nm-thick BiFeO3 thin films was characterized by piezoresponse force microscopy. The present results show that the symmetry of BiFeO3 thin films with a thickness below 60 nm belongs to the point group 4 mm. We conclude that the disappearance of fourfold rotational symmetry in SHG s-out pattern implies for the appearance of R-phase. The fact that the thinner the film is, the closer to 1 the tensor element ratio χ31/χ15 tends, indicates an increase of symmetry with the decrease of thickness for BiFeO3 thin films. PMID:27905565

  11. Solution-Processed Cu2ZnSn(S,Se) 4 Thin-Film Solar Cells Using Elemental Cu, Zn, Sn, S, and Se Powders as Source.

    PubMed

    Guo, Jing; Pei, Yingli; Zhou, Zhengji; Zhou, Wenhui; Kou, Dongxing; Wu, Sixin

    2015-12-01

    Solution-processed approach for the deposition of Cu2ZnSn (S,Se)4 (CZTSSe) absorbing layer offers a route for fabricating thin film solar cell that is appealing because of simplified and low-cost manufacturing, large-area coverage, and better compatibility with flexible substrates. In this work, we present a simple solution-based approach for simultaneously dissolving the low-cost elemental Cu, Zn, Sn, S, and Se powder, forming a homogeneous CZTSSe precursor solution in a short time. Dense and compact kesterite CZTSSe thin film with high crystallinity and uniform composition was obtained by selenizing the low-temperature annealed spin-coated precursor film. Standard CZTSSe thin film solar cell based on the selenized CZTSSe thin film was fabricated and an efficiency of 6.4 % was achieved.

  12. Effect of copper and nickel doping on the optical and structural properties of ZnO

    NASA Astrophysics Data System (ADS)

    Muǧlu, G. Merhan; Sarıtaş, S.; ćakıcı, T.; Şakar, B.; Yıldırım, M.

    2017-02-01

    The present study is focused on the Cu doped ZnO and Ni doped ZnO dilute magnetic semiconductor thin films. ZnO:Cu and ZnO:Ni thin films were grown by Chemically Spray Pyrolysis (CSP) method on glass substrates. Optical analysis of the films was done spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. The structure, morphology, topology and elemental analysis of ZnO:Cu and ZnO:Ni dilute magnetic thin films were investigated by X-ray diffraction (XRD), Raman Analysis, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) techniques, respectively. Also The magnetic properties of the ZnO:Ni thin film was investigated by vibrating sample magnetometer (VSM) method. VSM measurements of ZnO:Ni thin film showed that the ferromagnetic behavior.

  13. Electrochemical Deposition of Lanthanum Telluride Thin Films and Nanowires

    NASA Astrophysics Data System (ADS)

    Chi, Su (Ike); Farias, Stephen; Cammarata, Robert

    2013-03-01

    Tellurium alloys are characterized by their high performance thermoelectric properties and recent research has shown nanostructured tellurium alloys display even greater performance than bulk equivalents. Increased thermoelectric efficiency of nanostructured materials have led to significant interests in developing thin film and nanowire structures. Here, we report on the first successful electrodeposition of lanthanum telluride thin films and nanowires. The electrodeposition of lanthanum telluride thin films is performed in ionic liquids at room temperature. The synthesis of nanowires involves electrodepositing lanthanum telluride arrays into anodic aluminum oxide (AAO) nanoporous membranes. These novel procedures can serve as an alternative means of simple, inexpensive and laboratory-environment friendly methods to synthesize nanostructured thermoelectric materials. The thermoelectric properties of thin films and nanowires will be presented to compare to current state-of-the-art thermoelectric materials. The morphologies and chemical compositions of the deposited films and nanowires are characterized using SEM and EDAX analysis.

  14. Electrically Tunable Integrated Thin-Film Magnetoelectric Resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Ghazaly, Amal; Evans, Joseph T.; Sato, Noriyuki

    Magnetoelectrics have attracted much attention for their ability to control magnetic behavior electrically and electrical behavior magnetically. This feature provides numerous benefits to electronic systems and can potentially serve as the bridge needed to integrate magnetic devices into mainstream electronics. This natural next step is pursued and thin-film integrated magnetoelectric devices are produced for radio-frequency (RF) electronics. The first fully integrated, thin-film magnetoelectric modulators for tunable RF electronics are presented. Moreover, these devices provide electric field control of magnetic permeability in order to change the phase velocity and resonance frequency of coplanar waveguides. During this study, the various thin-film materialmore » phenomena, trade-offs, and integration considerations for composite magnetoelectrics are analyzed and discussed. The fabricated devices achieve reversible tunability of the resonance frequency, characterized by a remarkable converse magnetoelectric coupling coefficient of up to 24 mG cm V -1 using just thin films. Based on this work, suggestions are given for additional optimizations of future designs that will maximize the thin-film magnetoelectric interactions.« less

  15. Electrically Tunable Integrated Thin-Film Magnetoelectric Resonators

    DOE PAGES

    El-Ghazaly, Amal; Evans, Joseph T.; Sato, Noriyuki; ...

    2017-06-14

    Magnetoelectrics have attracted much attention for their ability to control magnetic behavior electrically and electrical behavior magnetically. This feature provides numerous benefits to electronic systems and can potentially serve as the bridge needed to integrate magnetic devices into mainstream electronics. This natural next step is pursued and thin-film integrated magnetoelectric devices are produced for radio-frequency (RF) electronics. The first fully integrated, thin-film magnetoelectric modulators for tunable RF electronics are presented. Moreover, these devices provide electric field control of magnetic permeability in order to change the phase velocity and resonance frequency of coplanar waveguides. During this study, the various thin-film materialmore » phenomena, trade-offs, and integration considerations for composite magnetoelectrics are analyzed and discussed. The fabricated devices achieve reversible tunability of the resonance frequency, characterized by a remarkable converse magnetoelectric coupling coefficient of up to 24 mG cm V -1 using just thin films. Based on this work, suggestions are given for additional optimizations of future designs that will maximize the thin-film magnetoelectric interactions.« less

  16. A review of melt and vapor growth techniques for polydiacetylene thin films for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Shields, A.; Frazier, D. O.

    1988-01-01

    Methods for the growth of polydiacetylene thin films by melt and vapor growth and their subsequent polymerization are summarized. Films with random orientations were obtained when glass or quartz were used as substrates in the vapor growth process. Oriented polydiacetylene films were fabricated by the vapor deposition of diacetylene monomer onto oriented polydiacetylene on a glass substrate and its subsequent polymerization by UV light. A method for the growth of oriented thin films by a melt-shear growth process as well as a method of film growth by seeded recrstallization from the melt between glass plates, that may be applied to the growth of polydiacetylene films, are described. Moreover, a method is presented for the fabrication of single crystal thin films of polyacetylenes by irradiation of the surface of diacetylene single crystals to a depth between 100 and 2000 angstroms.

  17. Gas Permeation in Thin Glassy Polymer Films

    NASA Astrophysics Data System (ADS)

    Paul, Donald

    2011-03-01

    The development of asymmetric and composite membranes with very thin dense ``skins'' needed to achieve high gas fluxes enabled the commercial use of membranes for molecular level separations. It has been generally assumed that these thin skins, with thicknesses of the order of 100 nm, have the same permeation characteristics as films with thicknesses of 25 microns or more. Thick films are easily made in the laboratory and have been used extensively for measuring permeation characteristics to evaluate the potential of new polymers for membrane applications. There is now evidence that this assumption can be in very significant error, and use of thick film data to select membrane materials or predict performance should be done with caution. This presentation will summarize our work on preparing films of glassy polymers as thin as 20 nm and characterizing their behavior by gas permeation, ellipsometry and positron annihilation lifetime spectroscopy. Some of the most important polymers used commercially as gas separation membranes, i.e., Matrimid polyimide, polysulfone (PSF) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), have been made into well-defined thin films in our laboratories by spin casting techniques and their properties studied using the techniques we have developed. These thin films densify (or physically age) much faster than thicker films, and, as result, the permeability decreases, sometimes by several-fold over weeks or months for thin films. This means that the properties of these thin films can be very different from bulk films. The techniques, interpretations and implications of these observations will be discussed. In a broader sense, gas permeation measurements can be a powerful way of developing a better understanding of the effects of polymer chain confinement and/or surface mobility on the behavior of thin films.

  18. Study on aluminium-based single films.

    PubMed

    Vinod Kumar, G S; García-Moreno, F; Babcsán, N; Brothers, A H; Murty, B S; Banhart, J

    2007-12-28

    In the present paper the authors studied isolated metallic films made from the same material used for making metallic foams, and then characterised their properties. Metal films were made from a liquid aluminium alloy reinforced with ceramic particles of known concentration. Melts without such particles were also investigated. It is shown that stable films could not be made from Al-Si alloy having no particles, and just extremely thin and fragile films could be made from commercially-pure Al. In contrast, aluminium alloys containing particles such as SiC and TiB(2) allowed pulling thin, stable films, which did not rupture. Significant thinning of films was observed when the particle concentration in the melt decreased. By in situ X-ray monitoring of liquid films during pulling, film thickness and drainage effects within the liquid film could be studied. The morphology and microstructure of films was characterised after solidification. Our work shows that the question of how foams are stabilised can be studied using a simplified system such as a film, instead of having to deal with the multitude of different structural elements present in a foam.

  19. Thickness and microstructure effects in the optical and electrical properties of silver thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Guowen, E-mail: gding@intermolecular.com; Clavero, César; Schweigert, Daniel

    The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C), with a value of 59 ± 2 μΩ cm ⋅more » fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.« less

  20. Study on swift heavy ions induced modifications of Ag-ZnO nanocomposite thin film

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Singhal, R.; Siva Kumar, V. V.

    2017-03-01

    In the present work, swift heavy ion (SHI) irradiation induced modifications in structural and optical properties of Ag-ZnO nanocomposite thin films have been investigated. Ag-ZnO nanocomposite (NCs) thin films were synthesized by RF magnetron sputtering technique and irradiated with 100 MeV Ag7+ ions at three different fluences 3 × 1012, 1 × 1013 and 3 × 1013 ions/cm2. Rutherford Backscattering Spectrometry revealed Ag concentration to be ∼8.0 at.%, and measured thickness of the films was ∼55 nm. Structural properties of pristine and irradiated films have been analyzed by X-ray diffraction analysis and found that variation in crystallite size of the film with ion irradiation. X-ray photoelectron spectroscopy (XPS) indicates the formation of Ag-ZnO nanocomposite thin film with presence of Ag, Zn and O elements. Oxidation state of Ag and Zn also estimated by XPS analysis. Surface plasmon resonance (SPR) of Ag nanoparticle has appeared at ∼475 nm in the pristine thin film, which is blue shifted by ∼30 nm in film irradiated at fluence of 3 × 1012 ions/cm2 and completely disappeared in film irradiated at higher fluences, 1 × 1013 and 3 × 1013 ions/cm2. A marginal change in the optical band gap of Ag-ZnO nanocomposite thin film is also found with increasing ion fluence. Surface morphology of pristine and irradiated films have been studied using Atomic Force Microscopy (AFM). Raman and Photo-luminance (PL) spectra of nanocomposite thin films have been investigated to understand the ion induced modifications such as lattice defects and disordering in the nanocomposite thin film.

  1. Determination of diffusion coefficients in polypyrrole thin films using a current pulse relaxation method

    NASA Technical Reports Server (NTRS)

    Penner, Reginald M.; Vandyke, Leon S.; Martin, Charles R.

    1987-01-01

    The current pulse E sub oc relaxation method and its application to the determination of diffusion coefficients in electrochemically synthesized polypyrrole thin films is described. Diffusion coefficients for such films in Et4NBF4 and MeCN are determined for a series of submicron film thicknesses. Measurement of the double-layer capacitance, C sub dl, and the resistance, R sub u, of polypyrrole thin films as a function of potential obtained with the galvanostatic pulse method is reported. Measurements of the electrolyte concentration in reduced polypyrrole films are also presented to aid in the interpretation of the data.

  2. Homoepitaxial growth of β-Ga{sub 2}O{sub 3} thin films by low pressure chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafique, Subrina; Han, Lu; Zhao, Hongping, E-mail: hongping.zhao@case.edu

    2016-05-02

    This paper presents the homoepitaxial growth of phase pure (010) β-Ga{sub 2}O{sub 3} thin films on (010) β-Ga{sub 2}O{sub 3} substrate by low pressure chemical vapor deposition. The effects of growth temperature on the surface morphology and crystal quality of the thin films were systematically investigated. The thin films were synthesized using high purity metallic gallium (Ga) and oxygen (O{sub 2}) as precursors for gallium and oxygen, respectively. The surface morphology and structural properties of the thin films were characterized by atomic force microscopy, X-ray diffraction, and high resolution transmission electron microscopy. Material characterization indicates the growth temperature played anmore » important role in controlling both surface morphology and crystal quality of the β-Ga{sub 2}O{sub 3} thin films. The smallest root-mean-square surface roughness of ∼7 nm was for thin films grown at a temperature of 950 °C, whereas the highest growth rate (∼1.3 μm/h) with a fixed oxygen flow rate was obtained for the epitaxial layers grown at 850 °C.« less

  3. Recent progress of obliquely deposited thin films for industrial applications

    NASA Astrophysics Data System (ADS)

    Suzuki, Motofumi; Itoh, Tadayoshi; Taga, Yasunori

    1999-06-01

    More than 10 years ago, birefringent films of metal oxides were formed by oblique vapor deposition and investigated with a view of their application to optical retardation plates. The retardation function of the films was explained in terms of the birefringence caused by the characteristic anisotropic nanostructure inside the films. These films are now classified in the genre of the so-called sculptured thin films. However, the birefringent films thus prepared are not yet industrialized even now due to the crucial lack of the durability and the yield of products. In this review paper, we describe the present status of application process of the retardation films to the information systems such as compact disc and digital versatile disc devices with a special emphasis on the uniformity of retardation properties in a large area and the stability of the optical properties of the obliquely deposited thin films. Finally, further challenges for wide application of the obliquely deposited thin films are also discussed.

  4. A theoretical investigation of single-molecule fluorescence detection on thin metallic layers.

    PubMed

    Enderlein, J

    2000-04-01

    In the present paper, the excitation and detection of single-molecule fluorescence over thin metallic films is studied theoretically within the framework of classical electrodynamics. The model takes into account the specific conditions of surface plasmon-assisted optical excitation, fluorescence quenching by the metal film, and detection geometry. Extensive numerical results are presented for gold, silver, and aluminum films, showing the detectable fluorescence intensities and their dependence on film thickness and the fluorescent molecule's position under optimal excitation conditions.

  5. Enhanced photo response of mesoporous nanostructured CdS thin film via electrospray aerosol deposition technique

    NASA Astrophysics Data System (ADS)

    Logu, T.; Soundarrajan, P.; Sankarasubramanian, K.; Sethuraman, K.

    2018-04-01

    In this work, a high crystalline and mesoporous nanostructured cadmium sulfide (CdS) thin film was successfully grown on the FTO substrates using facile Electrospray Aerosol Deposition (ESAD) technique. The structural, optical, morphological and electrical properties of CdS thin film have been systematically examined. CdS thin film exhibits the hexagonal wurtzite crystal structure with polycrystalline nature. The optical band gap energy of the prepared film was estimated from the Tauc plot and is 2.43 eV. The SEM and AFM images show that the well-interconnected CdS nanoparticles gives mesoporous like morphology. The fine aerosol generated from the ESAD process induces the alteration in the surface morphological structure of deposited CdS film that consequences in enhanced electrical and photo-physical properties. The photoconductivity of the sample has been studied which demonstrates significant photo current. The present study predicts that mesoporous nanostructured CdS thin film would be given a special interest for optoelectronic applications.

  6. Structural and magnetic analysis of Cu, Co substituted NiFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Hakikat; Bala, Kanchan; Negi, N. S.

    2016-05-01

    In the present work we prepared NiFe2O4, Ni0.95Cu0.05Fe2O4 and Ni0.94Cu0.05Co0.01 Fe2O4 thin films by metallo-organic decomposition method (MOD) using spin coating technique. The thin films were analyzed by X-ray diffractometer (XRD) and Atomic force microscope (AFM) for structural studies. The XRD patterns confirmed the ferrite phase of thin films. From AFM, we analyzed surface morphology, calculated grain size (GS) and root mean square roughness (RMSR). Room temperature magnetic properties were investigated by vibrating sample magnetometer (VSM).

  7. Characterization of nanostructured VO2 thin films grown by magnetron controlled sputtering deposition and post annealing method.

    PubMed

    Chen, Sihai; Lai, Jianjun; Dai, Jun; Ma, Hong; Wang, Hongchen; Yi, Xinjian

    2009-12-21

    By magnetron controlled sputtering system, a new nanostructured metastable monoclinic phase VO2 (B) thin film has been fabricated. The testing result shows that this nanostructured VO2 (B) thin film has high temperature coefficient of resistance (TCR) of -7%/K. Scanning electron microscopy measurement shows that the average grain diameter of the VO2 (B) crystallite is between 100 and 250 nm. After post annealed, VO2 (B) crystallite is changed into monoclinic (M) phase VO2 (M) crystallite with the average grain diameter between 20 and 50 nm. A set up of testing the thin film switching time is established. The test result shows the switching time is about 50 ms. With the nanostructured VO2 (B) and VO2 (M) thin films, optical switches and high sensitivity detectors will be presented.

  8. Chemical vapor deposition of silicon, silicon dioxide, titanium and ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Chen, Feng

    Various silicon-based thin films (such as epitaxial, polycrystalline and amorphous silicon thin films, silicon dioxide thin films and silicon nitride thin films), titanium thin film and various ferroelectric thin films (such as BaTiO3 and PbTiO3 thin films) play critical roles in the manufacture of microelectronics circuits. For the past few years, there have been tremendous interests to search for cheap, safe and easy-to-use methods to develop those thin films with high quality and good step coverage. Silane is a critical chemical reagent widely used to deposit silicon-based thin films. Despite its wide use, silane is a dangerous material. It is pyrophoric, extremely flammable and may explode from heat, shock and/or friction. Because of the nature of silane, serious safety issues have been raised concerning the use, transportation, and storage of compressed gas cylinders of silane. Therefore it is desired to develop safer ways to deposit silicon-based films. In chapter III, I present the results of our research in the following fields: (1) Silane generator, (2) Substitutes of silane for deposition of silicon and silicon dioxide thin films, (3) Substitutes of silane for silicon dioxide thin film deposition. In chapter IV, hydropyridine is introduced as a new ligand for use in constructing precursors for chemical vapor deposition. Detachement of hydropyridine occurs by a low-temperature reaction leaving hydrogen in place of the hydropyridine ligands. Hydropyridine ligands can be attached to a variety of elements, including main group metals, such as aluminum and antimony, transition metals, such as titanium and tantalum, semiconductors such as silicon, and non-metals such as phosphorus and arsenic. In this study, hydropyridine-containing titanium compounds were synthesized and used as chemical vapor deposition precursors for deposition of titanium containing thin films. Some other titanium compounds were also studied for comparison. In chapter V, Chemical Vapor Depositions (CVD) of many oxide thin films including ferroelectric and high dielectric constant BaTiO3, SrTiO 3 and PbTiO3 films had been carried out under reduced pressure (30 torr--80 torr) using liquid precursors containing beta-diketone ligands. The relative reactivities of Ba(beta-diketonate)2, Sr(beta-diketonate) 2, Pb(beta-diketonate)2, Ti(beta-diketonate)3, TiO(beta-diketonate)2 and Ti(OiPr)2(beta-diketonate) 2 had been studied individually prior to the deposition of BaTiO 3, SrTiO3 and PbTiO3 thin films from the mixtures of corresponding precursors. By using multi-step deposition method, carbon free stoichiometric BaTiO3 thin films uniform in large area have been achieved.

  9. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOEpatents

    Liu, David K.

    1992-01-01

    Method and apparatus for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure.

  10. Tailoring and optimization of optical properties of CdO thin films for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Rajput, Jeevitesh K.; Pathak, Trilok K.; Kumar, V.; Swart, H. C.; Purohit, L. P.

    2018-04-01

    Cadmium oxide (CdO) thin films have been deposited onto glass substrates using different molar concentrations (0.2 M, 0.5 M and 0.8 M) of cadmium acetate precursor solutions using a sol-gel spin coating technique. The structural, morphological, optical and electrical results are presented. X-ray diffraction patterns indicated that the CdO films of different molarity have a stable cubic structure with a (111) preferred orientation at low molar concentration. Scanning electron microscopy images revealed that the films adopted a rectangular to cauliflower like morphology. The optical transmittance of the thin films was observed in the range 200-800 nm and it was found that the 0.2 M CdO thin films showed about 83% transmission in the visible region. The optical band gap energy of the thin films was found to vary from 2.10 to 3.30 eV with the increase in molar concentration of the solution. The electrical resistance of the 0.5 M thin film was found to be 1.56 kΩ. The oxygen sensing response was observed between 20-33% in the low temperature range (32-200 °C).

  11. Fabrication of Cu2SnS3 thin films by ethanol-ammonium solution process by doctor-blade technique

    NASA Astrophysics Data System (ADS)

    Wang, Yaguang; Li, Jianmin; Xue, Cong; Zhang, Yan; Jiang, Guoshun; Liu, Weifeng; Zhu, Changfei

    2017-11-01

    In the present study, a low-cost and simple method is applied to fabricate Cu2SnS3 (CTS) thin films. Namely CTS thin films are prepared by a doctor-blade method with a slurry dissolving the Cu2O and SnS powders obtained from CBD reaction solution into ethanol-ammonium solvents. Series of characterization methods including XRD, Raman spectra, SEM and UV-Vis analyses are introduced to investigate the phase structure, morphology and optical properties of CTS thin films. As a result, monoclinic CTS films have been obtained with the disappearance of binary phases CuS and SnS2 while increasing the annealing temperature and time, high quality monoclinic CTS thin films consisting of compact and large grains have been successfully prepared by this ethanol-ammonium method. Moreover, the secondary phase Cu2Sn3S7 is also observed during the annealing process. In addition, the post-annealed CTS film with a band-gap about 0.89 eV shows excellent absorbance between 400 and 1200 nm, which is proper for the bottom layer in multi-junction thin film solar cells.[Figure not available: see fulltext.

  12. A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jambure, S.B.; Patil, S.J.; Deshpande, A.R.

    2014-01-01

    Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z{sub 1}) and nanograins by SILAR (Z{sub 2}). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. Themore » X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10{sup 2} Ω cm) is lower than that of SILAR deposited films (10{sup 5} Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method.« less

  13. Disconnecting structure and dynamics in glassy thin films

    PubMed Central

    Sussman, Daniel M.; Cubuk, Ekin D.; Liu, Andrea J.

    2017-01-01

    Nanometrically thin glassy films depart strikingly from the behavior of their bulk counterparts. We investigate whether the dynamical differences between a bulk and thin film polymeric glass former can be understood by differences in local microscopic structure. Machine learning methods have shown that local structure can serve as the foundation for successful, predictive models of particle rearrangement dynamics in bulk systems. By contrast, in thin glassy films, we find that particles at the center of the film and those near the surface are structurally indistinguishable despite exhibiting very different dynamics. Next, we show that structure-independent processes, already present in bulk systems and demonstrably different from simple facilitated dynamics, are crucial for understanding glassy dynamics in thin films. Our analysis suggests a picture of glassy dynamics in which two dynamical processes coexist, with relative strengths that depend on the distance from an interface. One of these processes depends on local structure and is unchanged throughout most of the film, while the other is purely Arrhenius, does not depend on local structure, and is strongly enhanced near the free surface of a film. PMID:28928147

  14. A study for anticorrosion and tribological behaviors of thin/thick diamond-like carbon films in seawater

    NASA Astrophysics Data System (ADS)

    Ye, Yewei; Jia, Shujuan; Zhang, Dawei; Liu, Wei; Zhao, Haichao

    2018-03-01

    The thin and thick diamond-like carbon (DLC) films were prepared by unbalanced magnetron sputtering technique on 304L stainless steels and (100) silicon wafers. Microstructure, mechanical, corrosion and tribological properties were systematically investigated by SEM, Raman, nanoindenter, scratch tester, modulab electrochemical workstation and R-tec multifunctional tribological tester. Results showed that the adhesion force presented a descending trend with the growth in soaking time. The adhesion force of the thin DLC film with high residual compressive stress (‑3.72 GPa) was higher than that of the thick DLC film (‑2.96 GPa). During the corrosion test, the thick DLC film showed a higher impendence and a lower corrosion current density than the thin DLC film, which is attributed to the barrier action of large thickness. Compared to bare 304L substrate, the friction coefficients and wear rates of DLC films in seawater were obviously decreased. Meanwhile, the thin DLC film with ideal residual compressive stress, super adhesion force and good plastic deformation resistance revealed an excellent anti-wear ability in seawater.

  15. Fiber-Optic Temperature Sensor Using a Thin-Film Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn

    1997-01-01

    A fiber-optic temperature sensor was developed that is rugged, compact, stable, and can be inexpensively fabricated. This thin-film interferometric temperature sensor was shown to be capable of providing a +/- 2 C accuracy over the range of -55 to 275 C, throughout a 5000 hr operating life. A temperature-sensitive thin-film Fabry-Perot interferometer can be deposited directly onto the end of a multimode optical fiber. This batch-fabricatable sensor can be manufactured at a much lower cost than can a presently available sensor, which requires the mechanical attachment of a Fabry-Perot interferometer to a fiber. The principal disadvantage of the thin-film sensor is its inherent instability, due to the low processing temperatures that must be used to prevent degradation of the optical fiber's buffer coating. The design of the stable thin-film temperature sensor considered the potential sources of both short and long term drifts. The temperature- sensitive Fabry-Perot interferometer was a silicon film with a thickness of approx. 2 microns. A laser-annealing process was developed which crystallized the silicon film without damaging the optical fiber. The silicon film was encapsulated with a thin layer of Si3N4 over coated with aluminum. Crystallization of the silicon and its encapsulation with a highly stable, impermeable thin-film structure were essential steps in producing a sensor with the required long-term stability.

  16. Enhanced magneto-optical Kerr effect in rare earth substituted nanostructured cobalt ferrite thin film prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Avazpour, L.; Toroghinejad, M. R.; Shokrollahi, H.

    2016-11-01

    A series of rare-earth (RE)-doped nanocrystalline Cox RE(1-x) Fe2O4 (x = 0, 0.1, 0.2 and RE: Nd, Eu) thin films were prepared on silicon substrates by a sol-gel process, and the influences of different RE3+ ions on the microstructure, magnetism and polar magneto-optical Kerr effect of the deposited films were investigated. Also this research presents the optimization process of cobalt ferrite thin films deposited via spin coating, by studying their structural and morphological properties at different thicknesses (200, 350 nm) and various heat treatment temperatures 300-850 °C. Nanoparticulate polycrystalline thin film were formed with heat treatment above 400 °C but proper magnetic properties due to well crystallization of the film were achieved at about 650 °C. AFM results indicated that the deposited thin films were crack-free exhibiting a dense nanogranular structure. The root-mean square (RMS) roughness of the thin films was in the range of 0.2-3.2 nm. The results revealed that both of the magnetism and magneto optical Kerr (MOKE) spectra of Cox RE(1-x) Fe2O4 films could be mediated by doping with various RE ions. The Curie temperature of substituted samples was lower than pristine cobalt ferrite thin films. In MOKE spectra both dominant peaks were blue shifted with addition of RE ions. For low concentration dopant the inter-valence charge transfer related rotation was enhanced and for higher concentration dopant the crystal field rotation peak was enhanced. The MOKE enhancement for Eu3+ substituted samples was more than Nd3+ doped cobalt ferrite films. The enhanced MOKEs in nanocrystalline thin films might promise their applications for magneto-optical sensors in adopted wavelengths.

  17. Development of CIGS2 Thin Films on Ultralightweight Flexible Large Area Foil Sunstrates

    NASA Technical Reports Server (NTRS)

    Dhere, Neelkanth G.; Gade, Vivek S.; Kadam, Ankur A.; Jahagirdar, Anant H.; Kulkarni, Sachin S.; Bet, Sachin M.

    2005-01-01

    The development of thin film solar cells is aimed at reducing the costs for photovoltaic systems. Use of thin film technology and thin foil substrate such as 5-mil thick stainless steel foil or 1-mil thick Ti would result in considerable costs savings. Another important aspect is manufacturing cost. Current single crystal technology for space power can cost more than $ 300 per watt at the array level and weigh more than 1 kg/sq m equivalent to specific power of approx. 65 W/kg. Thin film material such as CuIn1-xGaxS2 (CIGS2), CuIn(1-x)Ga(x)Se(2-y)S(y) (CIGSS) or amorphous hydrogenated silicon (a-Si:H) may be able to reduce both the cost and mass per unit area by an order of magnitude. Manufacturing costs for solar arrays are an important consideration for total spacecraft budget. For a medium sized 5kW satellite for example, the array manufacturing cost alone may exceed $ 2 million. Moving to thin film technology could reduce this expense to less than $ 500K. Earlier publications have demonstrated the potential of achieving higher efficiencies from CIGSS thin film solar cells on 5-mil thick stainless steel foil as well as initial stages of facility augmentation for depositing thin film solar cells on larger (6 in x 4 in) substrates. This paper presents the developmental study of achieving stress free Mo coating; uniform coatings of Mo back contact and metallic precursors. The paper also presents the development of sol gel process, refurbishment of selenization/sulfurization furnace, chemical bath deposition (CBD) for n-type CdS and scrubber for detoxification of H2S and H2Se gases.

  18. Fabrication and electrochemical properties of insoluble fullerene-diamine adduct thin-films as buffer layer by alternate immersion process

    NASA Astrophysics Data System (ADS)

    Saito, Jo; Akiyama, Tsuyoshi; Suzuki, Atsushi; Oku, Takeo

    2017-01-01

    Insoluble fullerene-diamine adduct thin-films consisting of C60 and 1,2-diaminoethane were easily fabricated on an electrode by an alternate immersion process. Formation of the C60-diamine adduct films were confirmed using transmission absorption spectroscopy and atomic force microscopy. An inverted-type organic solar cells were fabricated by using the C60-diamine adduct film as the electron transport layer. The resultant photoelectric conversation performance of the solar cells suggested that photocurrent is generated via the photoexcitation of polythiophene. The result suggests that the present insoluble fullerene-diamine adduct films worked as buffer layer for organic thin-film solar cells.

  19. Co-based amorphous thin films on silicon with soft magnetic properties

    NASA Astrophysics Data System (ADS)

    Masood, Ansar; McCloskey, P.; Mathúna, Cian Ó.; Kulkarni, S.

    2018-05-01

    The present work investigates the emergence of multiple modes in the high-frequency permeability spectrum of Co-Zr-Ta-B amorphous thin films. Amorphous thin films of different thicknesses (t=100-530 nm) were deposited by DC magnetron sputtering. Their static and dynamic soft magnetic properties were investigated to explore the presence of multi-magnetic phases in the films. A two-phase magnetic behavior of the thicker films (≥333 nm) was revealed by the in-plane hysteresis loops. Multiple resonance peaks were observed in the high-frequency permeability spectrum of the thicker films. The thickness dependent multiple resonance peaks below the main ferromagnetic resonance (FMR) can be attributed to the two-phase magnetic behaviors of the films.

  20. Polymer-assisted aqueous deposition of metal oxide films

    DOEpatents

    Li, DeQuan [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM

    2003-07-08

    An organic solvent-free process for deposition of metal oxide thin films is presented. The process includes aqueous solutions of necessary metal precursors and an aqueous solution of a water-soluble polymer. After a coating operation, the resultant coating is fired at high temperatures to yield optical quality metal oxide thin films.

  1. Thin-Film Photovoltaic Solar Array Parametric Assessment

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Jacobs, Mark K.; Ponnusamy, Deva

    2000-01-01

    This paper summarizes a study that had the objective to develop a model and parametrically determine the circumstances for which lightweight thin-film photovoltaic solar arrays would be more beneficial, in terms of mass and cost, than arrays using high-efficiency crystalline solar cells. Previous studies considering arrays with near-term thin-film technology for Earth orbiting applications are briefly reviewed. The present study uses a parametric approach that evaluated the performance of lightweight thin-film arrays with cell efficiencies ranging from 5 to 20 percent. The model developed for this study is described in some detail. Similar mass and cost trends for each array option were found across eight missions of various power levels in locations ranging from Venus to Jupiter. The results for one specific mission, a main belt asteroid tour, indicate that only moderate thin-film cell efficiency (approx. 12 percent) is necessary to match the mass of arrays using crystalline cells with much greater efficiency (35 percent multi-junction GaAs based and 20 percent thin-silicon). Regarding cost, a 12 percent efficient thin-film array is projected to cost about half is much as a 4-junction GaAs array. While efficiency improvements beyond 12 percent did not significantly further improve the mass and cost benefits for thin-film arrays, higher efficiency will be needed to mitigate the spacecraft-level impacts associated with large deployed array areas. A low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is briefly described. The paper concludes with the observation that with the characteristics assumed for this study, ultra-lightweight arrays using efficient, thin-film cells on flexible substrates may become a leading alternative for a wide variety of space missions.

  2. Transparent Al+3 doped MgO thin films for functional applications

    NASA Astrophysics Data System (ADS)

    Maiti, Payel; Sekhar Das, Pradip; Bhattacharya, Manjima; Mukherjee, Smita; Saha, Biswajit; Mullick, Awadesh Kumar; Mukhopadhyay, Anoop Kumar

    2017-08-01

    The present work reports the utilization of a relatively simple, cost effective sol-gel technique based route to synthesize highly transparent, spin coated 4.1 at% Al+3 doped MgO thin films on quartz substrates. The films were characterized by XRD, XPS, Raman spectroscopy, and SIMS techniques. The microstructures were characterized by FESEM and TEM while the nanomechanical properties were assessed by the nanoindentation technique. Finally the optical transmittance was measured by UV-vis technique. The x-ray diffraction (XRD) study suggests the crystal facet (2 0 0) of MgO lattice to be distorted after incorporation of Al+3 into MgO lattice. From FESEM the doped films were found to have a dense microstructure with a crystallite size of about 20 nm as revealed by the TEM studies. Nanoindentation measurements indicated drastic increase of elastic modulus for the Al+3 doped MgO thin films by ~73% compared to that of the pristine MgO thin films along with retaining the nanohardness at ~8 GPa. The transmittance of Al+3 doped MgO thin films in the visible range was significantly higher (~99%) than that of pristine MgO (~90%) thin films. The films also had a relatively higher refractive index of about 1.45 as evaluated from the optical properties. The enhanced transmittance as well as the improved elastic modulus of Al+3 doped MgO thin films suggest its promising candidature in magnetic memory devices and as buffer layers of solar cells.

  3. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    DOE PAGES

    Si, W.; Zhang, C.; Wu, L.; ...

    2015-09-01

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF2 crystalline substrates respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk.more » With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.« less

  4. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Si, Weidong, E-mail: wds@bnl.gov, E-mail: qiangli@bnl.gov; Zhang, Cheng; Wu, Lijun

    2015-08-31

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF{sub 2} crystalline substrates, respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk. Withmore » large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.« less

  5. Organic ferroelectric evaporator with substrate cooling and in situ transport capabilities.

    PubMed

    Foreman, K; Labedz, C; Shearer, M; Adenwalla, S

    2014-04-01

    We report on the design, operation, and performance of a thermal evaporation chamber capable of evaporating organic thin films. Organic thin films are employed in a diverse range of devices and can provide insight into fundamental physical phenomena. However, growing organic thin films is often challenging and requires very specific deposition parameters. The chamber presented here is capable of cooling sample substrates to temperatures below 130 K and allows for the detachment of the sample from the cooling stage and in situ transport. This permits the use of multiple deposition techniques in separate, but connected, deposition chambers without breaking vacuum and therefore provides clean, well characterized interfaces between the organic thin film and any adjoining layers. We also demonstrate a successful thin film deposition of an organic material with a demanding set of deposition parameters, showcasing the success of this design.

  6. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review.

    PubMed

    Zhu, Tao; Chong, Meng Nan; Chan, Eng Seng

    2014-11-01

    The recent developments of nanostructured WO3 thin films synthesized through the electrochemical route of electrochemical anodization and cathodic electrodeposition for the application in photoelectrochemical (PEC) water splitting are reviewed. The key fundamental reaction mechanisms of electrochemical anodization and cathodic electrodeposition methods for synthesizing nanostructured WO3 thin films are explained. In addition, the effects of metal oxide precursors, electrode substrates, applied potentials and current densities, and annealing temperatures on size, composition, and thickness of the electrochemically synthesized nanostructured WO3 thin films are elucidated in detail. Finally, a summary is given for the general evaluation practices used to calculate the energy conversion efficiency of nanostructured WO3 thin films and a recommendation is provided to standardize the presentation of research results in the field to allow for easy comparison of reported PEC efficiencies in the near future. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Magnetic field dependence of the internal quality factor and noise performance of lumped-element kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Flanigan, D.; Johnson, B. R.; Abitbol, M. H.; Bryan, S.; Cantor, R.; Day, P.; Jones, G.; Mauskopf, P.; McCarrick, H.; Miller, A.; Zmuidzinas, J.

    2016-10-01

    We present a technique for increasing the internal quality factor of kinetic inductance detectors (KIDs) by nulling ambient magnetic fields with a properly applied magnetic field. The KIDs used in this study are made from thin-film aluminum, they are mounted inside a light-tight package made from bulk aluminum, and they are operated near 150 mK. Since the thin-film aluminum has a slightly elevated critical temperature (Tc = 1.4 K), it therefore transitions before the package (Tc = 1.2 K), which also serves as a magnetic shield. On cooldown, ambient magnetic fields as small as approximately 30 µT can produce vortices in the thin-film aluminum as it transitions because the bulk aluminum package has not yet transitioned and therefore is not yet shielding. These vortices become trapped inside the aluminum package below 1.2 K and ultimately produce low internal quality factors in the thin-film superconducting resonators. We show that by controlling the strength of the magnetic field present when the thin film transitions, we can control the internal quality factor of the resonators. We also compare the noise performance with and without vortices present, and find no evidence for excess noise beyond the increase in amplifier noise, which is expected with increasing loss.

  8. Topological Insulator State in Thin Bismuth Films Subjected to Plane Tensile Strain

    NASA Astrophysics Data System (ADS)

    Demidov, E. V.; Grabov, V. M.; Komarov, V. A.; Kablukova, N. S.; Krushel'nitskii, A. N.

    2018-03-01

    The results of experimental examination of galvanomagnetic properties of thin bismuth films subjected to plane tensile strain resulting from the difference in thermal expansion coefficients of the substrate material and bismuth are presented. The resistivity, the magnetoresistance, and the Hall coefficient were studied at temperatures ranging from 5 to 300 K in magnetic fields as strong as 0.65 T. Carrier densities were calculated. A considerable increase in carrier density in films thinner than 30 nm was observed. This suggests that surface states are more prominent in thin bismuth films on mica substrates, while the films themselves may exhibit the properties of a topological insulator.

  9. Superparamagnetic behavior of Fe70Dy30 granular thin film

    NASA Astrophysics Data System (ADS)

    Mekala, Laxman; Muhammed Shameem P., V.; Kumar, M. Senthil

    2018-04-01

    In the present study, the structural and magnetic properties of the Fe70Dy30 thin films are investigated. The Fe70Dy30 thin film with a thickness of 250 Å is fabricated using a dc magnetron sputtering system. Structural and temperature dependent magnetic properties indicate the granular nature of the film. The nonsaturation of the magnetization curves even at high fields of 50 kOe and the obtained very low coercivity in the temperature range 50 - 300 K reveal that films are superparamagnetic (SPM). The decreasing blocking temperature (Tb) with increasing an external magnetic field in temperature dependent magnetization curves are exposed qualitatively.

  10. Strain, temperature, and electric-field effects on the phase transition and piezoelectric responses of K0.5Na0.5NbO3 thin films

    NASA Astrophysics Data System (ADS)

    Zhou, Meng-Jun; Wang, Jian-Jun; Chen, Long-Qing; Nan, Ce-Wen

    2018-04-01

    A KNbO3-based solid solution system is environmentally friendly with good electromechanical performance. This work established the misfit strain-strain and temperature-strain phase diagrams for K0.5Na0.5NbO3 thin films and calculated the polarization switching, phase transition, and piezoelectric responses of K0.5Na0.5NbO3 thin films under various strains, temperatures, and electric fields. The results show that the piezoelectric coefficient d33 can be enhanced near the phase boundaries. For the ferroelectric phase with a nonzero out-of-plane polarization component, an optimal electric field is identified for maximizing d33, which is desired in applications such as thin-film piezoelectric micro-electromechanical systems, transducers for ultrasound medical imaging, and energy harvesting. The present results are expected to provide guidance for the future experimental study of KxNa1-xNbO3 thin films and the optimization of ferroelectric thin film-based devices.

  11. Effect of swift heavy ion irradiation on structural and opto-electrical properties of bi-layer CdS-Bi2S3 thin films prepared by solution growth technique at room temperature

    NASA Astrophysics Data System (ADS)

    Shaikh, Shaheed U.; Siddiqui, Farha Y.; Desale, Deepali J.; Ghule, Anil V.; Singh, Fouran; Kulriya, Pawan K.; Sharma, Ramphal

    2015-01-01

    CdS-Bi2S3 bi-layer thin films have been deposited by chemical bath deposition method on Indium Tin Oxide glass substrate at room temperature. The as-deposited thin films were annealed at 250 °C in an air atmosphere for 1 h. An air annealed thin film was irradiated using Au9+ ions with the energy of 120 MeV at fluence 5×1012 ions/cm2 using tandem pelletron accelerator. The irradiation induced modifications were studied using X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Raman spectroscopy, UV spectroscopy and I-V characteristics. XRD study reveals that the as-deposited thin films were nanocrystalline in nature. The decrease in crystallite size, increase in energy band gap and resistivity were observed after irradiation. Results are explained on the basis of energy deposited by the electronic loss after irradiation. The comparative results of as-deposited, air annealed and irradiated CdS-Bi2S3 bi-layer thin films are presented.

  12. Study on Evaluation Methods for Mechanical Properties of Organic Semiconductor Materials

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Yokoyama, T.; Utsumi, Y.; Kanematsu, H.; Masuda, T.

    2013-04-01

    This paper describes the evaluation method of the mechanical properties of the materials constituting organic semiconductor, and the test result of the relation between applied strain and the fracture of thin films. The final target of this work is the improvement of flexibility of organic light emitting diode(OLED), the tensile test of the thin films coated on flexible substrate is conducted, and the vulnerable parts of the constituent material of the OLED is quantitatively understood, further the guideline for designing OLED structure will be obtained. In the present paper, tensile test of an aluminium oxide thin films deposited on a poly-ethylene-tere-phtalate (PET) substrate was carried out under constant conditions, the following results were obtained:(1)Cracking of the aluminium oxide thin films was observed using an optical transparent formula microscope at more than 40 times magnification; (2)Cracking was initiated at a strain of about 3%; (3)the number of cracks increased proportional to the strain, and saturated at about 9% strain; (4)Organic thin films α-NPD caused the same cracking as oxide thin films.

  13. LPCVD homoepitaxy of Si doped β-Ga2O3 thin films on (010) and (001) substrates

    NASA Astrophysics Data System (ADS)

    Rafique, Subrina; Karim, Md Rezaul; Johnson, Jared M.; Hwang, Jinwoo; Zhao, Hongping

    2018-01-01

    This paper presents the homoepitaxy of Si-doped β-Ga2O3 thin films on semi-insulating (010) and (001) Ga2O3 substrates via low pressure chemical vapor deposition with a growth rate of ≥1 μm/h. Both high resolution scanning transmission electron microscopy and X-ray diffraction measurements demonstrated high crystalline quality homoepitaxial growth of these thin films. Atomic resolution STEM images of the as-grown β-Ga2O3 thin films on (010) and (001) substrates show high quality material without extended defects or dislocations. The charge carrier transport properties of the as-grown Si-doped β-Ga2O3 thin films were characterized by the temperature dependent Hall measurement using van der Pauw patterns. The room temperature carrier concentrations achieved for the (010) and (001) homoepitaxial thin films were ˜1.2 × 1018 cm-3 and ˜9.5 × 1017 cm-3 with mobilities of ˜72 cm2/V s and ˜42 cm2/V s, respectively.

  14. Synthesizing skyrmion bound pairs in Fe-Gd thin films

    DOE PAGES

    Lee, J. C. T.; Chess, J. J.; Montoya, S. A.; ...

    2016-07-11

    Here, we show that properly engineered amorphous Fe-Gd alloy thin films with perpendicular magnetic anisotropy exhibit bound pairs of like-polarity, opposite helicity skyrmions at room temperature. Magnetic mirror symmetry planes present in the stripe phase, instead of chiral exchange, determine the internal skyrmion structure and the net achirality of the skyrmion phase. Our study shows that stripe domain engineering in amorphous alloy thin films may enable the creation of skyrmion phases with technologically desirable properties.

  15. Advanced Catalysts for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R.; Whitacre, Jay; Valdez, T. I.

    2006-01-01

    This viewgraph presentation reviews the development of catalyst for Fuel Cells. The objectives of the project are to reduce the cost of stack components and reduce the amount of precious metal used in fuel cell construction. A rapid combinatorial screening technique based on multi-electrode thin film array has been developed and validated for identifying catalysts for oxygen reduction; focus shifted from methanol oxidation in FY05 to oxygen reduction in FY06. Multi-electrode arrays of thin film catalysts of Pt-Ni and Pt-Ni-Zr have been deposited. Pt-Ni and have been characterized electrochemically and structurally. Pt-Ni-Zr and Pt-Ni films show higher current density and onset potential compared to Pt. Electrocatalytic activity and onset potential are found to be strong function of the lattice constant. Thin film Pt(59)Ni(39)Zr(2) can provide 10 times the current density of thin film Pt. Thin film Pt(59)Ni(39)Zr(2) also shows 65mV higher onset potential than Pt.

  16. Perovskite phase thin films and method of making

    DOEpatents

    Boyle, Timothy J.; Rodriguez, Mark A.

    2000-01-01

    The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

  17. Optical and structural properties of cobalt-permalloy slanted columnar heterostructure thin films

    NASA Astrophysics Data System (ADS)

    Sekora, Derek; Briley, Chad; Schubert, Mathias; Schubert, Eva

    2017-11-01

    Optical and structural properties of sequential Co-column-NiFe-column slanted columnar heterostructure thin films with an Al2O3 passivation coating are reported. Electron-beam evaporated glancing angle deposition is utilized to deposit the sequential multiple-material slanted columnar heterostructure thin films. Mueller matrix generalized spectroscopic ellipsometry data is analyzed with a best-match model approach employing the anisotropic Bruggeman effective medium approximation formalism to determine bulk-like and anisotropic optical and structural properties of the individual Co and NiFe slanted columnar material sub-layers. Scanning electron microscopy is applied to image the Co-NiFe sequential growth properties and to verify the results of the ellipsometric analysis. Comparisons to single-material slanted columnar thin films and optically bulk solid thin films are presented and discussed. We find that the optical and structural properties of each material sub-layer of the sequential slanted columnar heterostructure film are distinct from each other and resemble those of their respective single-material counterparts.

  18. Dielectric and Raman spectroscopy of TlSe thin films

    NASA Astrophysics Data System (ADS)

    Ozel, Aysen E.; Deger, Deniz; Celik, Sefa; Yakut, Sahin; Karabak, Binnur; Akyüz, Sevim; Ulutas, Kemal

    2017-12-01

    In this report, the results of Dielectric and Raman spectroscopy of TlSe thin films are presented. The films were deposited in different thicknesses ranging from 290 Å to 3200 Å by thermal evaporation method. The relative permittivity (dielectric constant εr‧) and dielectric loss (εr″) of TlSe thin films were calculated by measuring capacitance (C) and dielectric loss factor (tan δ) in the frequencies ranging between 10-2 Hz-107 Hz and in the temperature ranging between 173 K and 433 K. In the given intervals, both the dielectric constant and the dielectric loss of TlSe thin films decrease with increasing frequency, but increase with increasing temperature. This behavior can be explained as multicomponent polarization in the structure. The ac conductivity obeys the ωs law when s (s < 1). The dielectric constant of TlSe thin films is determined from Dielectric and Raman spectroscopy measurements. The results obtained by two different methods are in agreement with each other.

  19. Thin PDMS Films Using Long Spin Times or Tert-Butyl Alcohol as a Solvent

    PubMed Central

    Koschwanez, John H.; Carlson, Robert H.; Meldrum, Deirdre R.

    2009-01-01

    Thin polydimethylsiloxane (PDMS) films are frequently used in “lab on a chip” devices as flexible membranes. The common solvent used to dilute the PDMS for thin films is hexane, but hexane can swell the underlying PDMS substrate. A better solvent would be one that dissolves uncured PDMS but doesn't swell the underlying substrate. Here, we present protocols and spin curves for two alternatives to hexane dilution: longer spin times and dilution in tert-butyl alcohol. The thickness of the PDMS membranes under different spin speeds, spin times, and PDMS concentrations was measured using an optical profilometer. The use of tert-butyl alcohol to spin thin PDMS films does not swell the underlying PDMS substrate, and we have used these films to construct multilayer PDMS devices. PMID:19238212

  20. Features of the rupture of free hanging liquid film under the action of a thermal load

    NASA Astrophysics Data System (ADS)

    Ovcharova, Alla S.

    2011-10-01

    We consider a deformation and a rupture of a thin liquid film which is hanging between two solid flat walls under the action of concentrated thermal load action. A two-dimensional model is applied to describe the motion of thin layers of viscous non-isothermal liquid under micro-gravity conditions. For flow simulation, two-dimensional Navier-Stokes equations are used. A computational analysis of the influence of thermal loads on the deformation and the rupture behavior of the thin freely hanging film is carried out. It is shown that the rupture of the thin film with generation of a droplet can occur under the thermal beam of specific width acting on the free surface of the film. The results of the model problem solutions are presented.

  1. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOEpatents

    Liu, D.K.

    1992-12-15

    Method and apparatus are described for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure. 7 figs.

  2. Surface diffusion in homoepitaxial SrTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Woo, Chang-Su; Chu, Kanghyun; Song, Jong-Hyun; Yang, Chan-Ho; Charm Lab Team; Nano Spintronics Lab Collaboration

    The development of growth techniques such as molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) has facilitated growths of complex oxide thin films at the atomic level .... Systematic studies on surface diffusion process of adatoms using theoretical and experimental methods allow us to understand growth mechanism enabling atomically flat thin film surface. In this presentation, we introduce the synthesis of homoepitaxial SrTiO3 thin films using a PLD equipped with reflection of high energy electron diffraction (RHEED). We determine the surface diffusion time as a function of growth temperature and extract the activation energy of diffusion on the surface by in-situ monitoring the RHEED intensity recovery during the film deposition. From the extracted experimental results, we discuss the microscopic mechanism of the diffusion process

  3. Barium ferrite thin-film recording media

    NASA Astrophysics Data System (ADS)

    Sui, Xiaoyu; Scherge, Matthias; Kryder, Mark H.; Snyder, John E.; Harris, Vincent G.; Koon, Norman C.

    1996-03-01

    Both longitudinal and perpendicular barium ferrite thin films are being pursued as overcoatless magnetic recording media. In this paper, prior research on thin-film Ba ferrite is reviewed and the most recent results are presented. Self-textured high-coercivity longitudinal Ba ferrite thin films have been achieved using conventional rf diode sputtering. Microstructural studies show that c-axis in-plane oriented grains have a characteristic acicular shape, while c-axis perpendicularly oriented grains have a platelet shape. Extended X-ray absorption fine structure (EXAFS) measurements indicate that the crystal orientations are predetermined by the structural anisotropy in the as-sputtered 'amorphous' state. Recording tests on 1500 Oe coercivity longitudinal Ba ferrite disks show performance comparable with that of a 1900 Oe Co alloy disk. To further improve the recording performance, both grain size and aspect ratio need to be reduced. Initial tribological tests indicate high hardness of Ba ferrite thin films. However, surface roughness needs to be reduced. For future ultrahigh-density contact recording, it is believed that perpendicular recording may be used. A thin Pt underlayer has been found to be capable of producing Ba ferrite thin films with excellent c-axis perpendicular orientation.

  4. Finite size effects in phase transformation kinetics in thin films and surface layers

    NASA Astrophysics Data System (ADS)

    Trofimov, Vladimir I.; Trofimov, Ilya V.; Kim, Jong-Il

    2004-02-01

    In studies of phase transformation kinetics in thin films, e.g. crystallization of amorphous films, until recent time is widely used familiar Kolmogorov-Johnson-Mehl-Avrami (KJMA) statistical model of crystallization despite it is applicable only to an infinite medium. In this paper a model of transformation kinetics in thin films based on a concept of the survival probability for randomly chosen point during transformation process is presented. Two model versions: volume induced transformation (VIT) when the second-phase grains nucleate over a whole film volume and surface induced transformation (SIT) when they form on an interface with two nucleation mode: instantaneous nucleation at transformation onset and continuous one during all the process are studied. At VIT-process due to the finite film thickness effects the transformation profile has a maximum in a film middle, whereas that of the grains population reaches a minimum inhere, the grains density is always higher than in a volume material, and the thinner film the slower it transforms. The transformation kinetics in a thin film obeys a generalized KJMA equation with parameters depending on a film thickness and in limiting cases of extremely thin and thick film it reduces to classical KJMA equation for 2D- and 3D-system, respectively.

  5. Evolution of the mechanical and tribological properties of DLC thin films doped with low-concentration hafnium on 316L steel

    NASA Astrophysics Data System (ADS)

    Qi, Meng; Xiao, Jianrong; Gong, Chenyang; Jiang, Aihua; Chen, Yong

    2018-01-01

    Low concentrations (<1 at%) of hafnium doped into diamond-like thin films (Hf-DLC) were deposited on 316L stainless steel and silicon (1 0 0) substrates by magnetron sputtering to attain superior mechanical and tribological properties. Ar and CH4 were used as source gases. The microstructure, chemical composition, and morphology of the Hf-DLC thin films in various concentrations were analyzed using x-ray diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy. Results showed that Hf species transferred from the particulate microstructure to Hf carbide phases, and the surface roughness increased monotonically with increasing Hf concentration. Moreover, the hardness and elastic modulus exhibited high values when the doped Hf concentration was 0.42 at%. Similarly, the tribological behaviors and wear life of Hf-DLC thin films had a low friction coefficient and excellent wear resistance at 0.42 at% Hf concentration. Therefore, 0.42 at% Hf is an optimal doping concentration to improve the mechanical and tribological properties of DLC thin films. Generally, the use of low-concentration Hf doping into DLC thin films is novel, and the present results provide guidance for the selection of suitable and effective concentration to optimize Hf-DLC thin films with superior performance.

  6. Characterization of PLD grown WO3 thin films for gas sensing

    NASA Astrophysics Data System (ADS)

    Boyadjiev, Stefan I.; Georgieva, Velichka; Stefan, Nicolaie; Stan, George E.; Mihailescu, Natalia; Visan, Anita; Mihailescu, Ion N.; Besleaga, Cristina; Szilágyi, Imre M.

    2017-09-01

    Tungsten trioxide (WO3) thin films were grown by pulsed laser deposition (PLD) with the aim to be applied in gas sensors. The films were studied by atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and profilometry. To study the gas sensing behavior of these WO3 films, they were deposited on quartz resonators and the quartz crystal microbalance (QCM) method was applied to analyze their gas sensitivity. Synthesis of tetragonal-WO3 films starting from a target with predominantly monoclinic WO3 phase was observed. The films deposited at 300 °C presented a surface topology favorable for the sorption properties, consisting of a film matrix with protruding craters/cavities. QCM prototype sensors with such films were tested for NO2 sensing. The PLD grown WO3 thin films show good sensitivity and fast reaction at room temperature, even in as-deposited state. With the presented technology, the manufacturing of QCM gas sensors is simple, fast and cost-effective, and it is also suitable for energy-effective portable equipment for on-line monitoring of environmental changes.

  7. Thin Film Delamination Using a High Power Pulsed Laser Materials Interaction

    NASA Astrophysics Data System (ADS)

    Sherman, Bradley

    Thin films attached to substrates are only effective while the film is adhered to the substrate. When the film begins to spall the whole system can fail, thus knowing the working strength of the film substrate system is important when designing structures. Surface acoustic waves (SAWs) are suitable for characterization of thin film mechanical properties due to the confinement of their energy within a shallow depth from a material surface. In this project, we study the feasibility of inducing dynamic interfacial failure in thin films using surface waves generated by a high power pulsed laser. Surface acoustic waves are modeled using a finite element numerical code, where the ablative interaction between the pulsed laser and the incident film is modeled using equivalent surface mechanical stresses. The numerical results are validated using experimental results from a laser ultrasonic setup. Once validated the normal film-substrate interfacial stress can be extracted from the numerical code and tends to be in the mega-Pascal range. This study uses pulsed laser generation to produce SAW in various metallic thin film/substrate systems. Each system varies in its response based on its dispersive relationship and as such requires individualized numerical modeling to match the experimental data. In addition to pulsed SAW excitation using an ablative source, a constrained thermo-mechanical load produced by the ablation of a metal film under a polymer layer is explored to generate larger dynamic mechanical stresses. These stresses are sufficient to delaminate the thin film in a manner similar to a peel test. However, since the loading is produced by a pulsed laser source, it occurs at a much faster rate, limiting the influence of slower damage modes that are present in quasi-static loading. This approach is explored to predict the interfacial fracture toughness of weak thin film interfaces.

  8. Depth profiling and morphological characterization of AlN thin films deposited on Si substrates using a reactive sputter magnetron

    NASA Astrophysics Data System (ADS)

    Macchi, Carlos; Bürgi, Juan; García Molleja, Javier; Mariazzi, Sebastiano; Piccoli, Mattia; Bemporad, Edoardo; Feugeas, Jorge; Sennen Brusa, Roberto; Somoza, Alberto

    2014-08-01

    It is well-known that the characteristics of aluminum nitride thin films mainly depend on their morphologies, the quality of the film-substrate interfaces and the open volume defects. A study of the depth profiling and morphological characterization of AlN thin films deposited on two types of Si substrates is presented. Thin films of thicknesses between 200 and 400 nm were deposited during two deposition times using a reactive sputter magnetron. These films were characterized by means of X-ray diffraction and imaging techniques (SEM and TEM). To analyze the composition of the films, energy dispersive X-ray spectroscopy was applied. Positron annihilation spectroscopy, specifically Doppler broadening spectroscopy, was used to gather information on the depth profiling of open volume defects inside the films and the AlN films-Si substrate interfaces. The results are interpreted in terms of the structural changes induced in the films as a consequence of changes in the deposition time (i.e., thicknesses) and of the orientation of the substrates.

  9. Thin-Film Phase Plates for Transmission Electron Microscopy Fabricated from Metallic Glasses.

    PubMed

    Dries, Manuel; Hettler, Simon; Schulze, Tina; Send, Winfried; Müller, Erich; Schneider, Reinhard; Gerthsen, Dagmar; Luo, Yuansu; Samwer, Konrad

    2016-10-01

    Thin-film phase plates (PPs) have become an interesting tool to enhance the contrast of weak-phase objects in transmission electron microscopy (TEM). The thin film usually consists of amorphous carbon, which suffers from quick degeneration under the intense electron-beam illumination. Recent investigations have focused on the search for alternative materials with an improved material stability. This work presents thin-film PPs fabricated from metallic glass alloys, which are characterized by a high electrical conductivity and an amorphous structure. Thin films of the zirconium-based alloy Zr65.0Al7.5Cu27.5 (ZAC) were fabricated and their phase-shifting properties were evaluated. The ZAC film was investigated by different TEM techniques, which reveal beneficial properties compared with amorphous carbon PPs. Particularly favorable is the small probability for inelastic plasmon scattering, which results from the combined effect of a moderate inelastic mean free path and a reduced film thickness due to a high mean inner potential. Small probability plasmon scattering improves contrast transfer at high spatial frequencies, which makes the ZAC alloy a promising material for PP fabrication.

  10. Nanoindentation data analysis of loading curve performed on DLC thin films: Effect of residual stress on the elasto-plastic properties

    NASA Astrophysics Data System (ADS)

    Ouchabane, M.; Dublanche-Tixier, Ch.; Dergham, D.

    2017-11-01

    The present work is a contribution to the understanding of the mechanical behavior of DLC thin films through nanoindentation tests. DLC films of different thicknesses deposited by the PECVD process on a silicon substrate contain high residual compressive stresses when they are very thin and the stresses become relatively low and more relaxed as the film thickens. These different levels of residual stress influence the values of hardness (H) and Young's modulus (E) obtained when probing the film-substrate system by nanoindentation. It is observed that the DLC layers exhibit different mechanical behaviors even when they are deposited under the same conditions. It is proposed that the compressive stress induces structural modifications resulting in modifying the elasto-plastic properties of each thin film-substrate system. Data analysis of the loading curve can provide information on the elasto-plastic properties of DLC thin films, particularly the stiffness (S) and Er2/H, as a function of residual compressive stresses. The structural changes induced by residual stresses were probed by using Raman spectroscopy and correlated to the mechanical properties.

  11. Nanostructured Gd3+-TiO2 surfaces for self-cleaning application

    NASA Astrophysics Data System (ADS)

    Saif, M.; El-Molla, S. A.; Aboul-Fotouh, S. M. K.; Ibrahim, M. M.; Ismail, L. F. M.; Dahn, Douglas C.

    2014-06-01

    Preparation of self-cleaning surfaces based on lanthanide modified titanium dioxide nanoparticles has rarely been reported. In the present work, gadolinium doped titanium dioxide thin films (x mol Gd3+-TiO2 where x = 0.000, 0.005, 0.008, 0.010, 0.020 and 0.030 mol) were synthesized by sol-gel method and deposited using doctor-blade method. These films were characterized by studying their structural, optical and electrical properties. Doping with gadolinium decreases the band gap energy and increase conductivity of thin films. The photo self-cleaning activity in term of quantitative determination of the active oxidative species (rad OH) produced on the thin film surfaces was evaluated using fluorescent probe method. The results show that, the highly active thin film is the 0.020 Gd3+-TiO2. The structural, morphology, optical, electrical and photoactivity properties of Gd3+-TiO2 thin films make it promising surfaces for self-cleaning application. Mineralization of commercial textile dye (Remazol Red RB-133, RR) and durability using 0.020Gd3+-TiO2 film surface was studied.

  12. Investigation of microstructure, micro-mechanical and optical properties of HfTiO{sub 4} thin films prepared by magnetron co-sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazur, Michal, E-mail: michal.mazur@pwr.edu.pl; Wojcieszak, Damian; Domaradzki, Jaroslaw

    2015-12-15

    Highlights: • HfTiO{sub 4} thin films were deposited by magnetron co-sputtering. • As-prepared and annealed at 800 °C thin films were nanocrystalline. • Optical properties and hardness were investigated in relation to thin films structure. • Hardness was 3-times higher in the case of as-deposited thin films. • HfTiO{sub 4} thin films are suitable for use as optical coatings with protective properties. - Abstract: Titania (TiO{sub 2}) and hafnium oxide (HfO{sub 2}) thin films are in the focus of interest to the microelectronics community from a dozen years. Because of their outstanding properties like, among the others, high stability, highmore » refractive index, high electric permittivity, they found applications in many optical and electronics domains. In this work discussion on the hardness, microstructure and optical properties of as-deposited and annealed HfTiO{sub 4} thin films has been presented. Deposited films were prepared using magnetron co-sputtering method. Performed investigations revealed that as-deposited coatings were nanocrystalline with HfTiO{sub 4} structure. Deposited films were built from crystallites of ca. 4–12 nm in size and after additional annealing an increase in crystallites size up to 16 nm was observed. Micro-mechanical properties, i.e., hardness and elastic modulus were determined using conventional load-controlled nanoindentation testing. the annealed films had 3-times lower hardness as-compared to as-deposited ones (∼9 GPa). Based on optical investigations real and imaginary components of refractive index were calculated, both for as-deposited and annealed thin films. The real refractive index component increased after annealing from 2.03 to 2.16, while extinction coefficient increased by an order from 10{sup −4} to 10{sup −3}. Structure modification was analyzed together with optical energy band-gap, Urbach energy and using Wemple–DiDomenico model.« less

  13. Correlation Between Material Properties of Ferroelectric Thin Films and Design Parameters for Microwave Device Applications: Modeling Examples and Experimental Verification

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; VanKeuls, Fred W.; Subramanyam, Guru; Mueller, Carl H.; Romanofsky, Robert R.; Rosado, Gerardo

    2000-01-01

    The application of thin ferroelectric films for frequency and phase agile components is the topic of interest of many research groups worldwide. Consequently, proof-of-concepts (POC) of different tunable microwave components using either (HTS, metal)/ferroelectric thin film/dielectric heterostructures or (thick, thin) film "flip-chip" technology have been reported. Either as ferroelectric thin film characterization tools or from the point of view of circuit implementation approach, both configurations have their respective advantages and limitations. However, we believe that because of the progress made so far using the heterostructure (i.e., multilayer) approach, and due to its intrinsic features such as planar configuration and monolithic integration, a study on the correlation of circuit geometry aspects and ferroelectric material properties could accelerate the insertion of this technology into working systems. In this paper, we will discuss our study performed on circuits based on microstrip lines at frequencies above 10 GHz, where the multilayer configuration offers greater ease of insertion due to circuit's size reduction. Modeled results of relevant circuit parameters such as the characteristic impedance, effective dielectric constant, and attenuation as a function of ferroelectric film's dielectric constant, tans, and thickness, will be presented for SrTiO3 and Ba(x)Sr(1-x)TiO3 ferroelectric films. A comparison between the modeled and experimental data for some of these parameters will be presented.

  14. Effects of ion irradiation on the mechanical properties of SiNa wO xC yH z sol-gel derived thin films

    NASA Astrophysics Data System (ADS)

    Lucca, D. A.; Qi, Y.; Harriman, T. A.; Prenzel, T.; Wang, Y. Q.; Nastasi, M.; Dong, J.; Mehner, A.

    2010-10-01

    A study of the effects of ion irradiation of hybrid organic/inorganic modified silicate thin films on their mechanical properties is presented. NaOH catalyzed SiNa wO xC yH z thin films were synthesized by sol-gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. After drying at 300 °C, the films were irradiated with 125 keV H + or 250 keV N 2+ at fluences ranging from 1 × 10 14 to 2.5 × 10 16 ions/cm 2. Nanoindentation was used to characterize the films. Changes in hardness and reduced elastic modulus were examined as a function of ion fluence and irradiating species. The resulting increases in hardness and reduced elastic modulus are compared to similarly processed acid catalyzed silicate thin films.

  15. Physical properties of high performance fluoride ion conductor BaSnF4 thin films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Patro, L. N.; Ravi Chandra Raju, N.; Meher, S. R.; Kamala Bharathi, K.

    2013-09-01

    This article presents the results on the growth and characterization of BaSnF4 thin films on glass substrates prepared by pulsed laser deposition technique. The structural results of BaSnF4 thin film carried out by glancing angle X-ray diffraction technique indicates the formation of the film with similar structure (tetragonal, P4/nmm) to the bulk target material. The absorption coefficient and band gap of the film is determined by suitable analysis of the transmittance spectra. The transport properties of the thin films are studied using impedance spectroscopy in the temperature range of 323-573 K. The frequency-dependent imaginary part of impedance plot shows that the conductivity relaxation is non-Debye in nature. The scaling behavior of the imaginary part of impedance at various frequencies indicates temperature-independent relaxation behavior.

  16. Electrochemical properties of thin films of V2O5 doped with TiO2

    NASA Astrophysics Data System (ADS)

    Moura, E. A.; Cholant, C. M.; Balboni, R. D. C.; Westphal, T. M.; Lemos, R. M. J.; Azevedo, C. F.; Gündel, A.; Flores, W. H.; Gomez, J. A.; Ely, F.; Pawlicka, A.; Avellaneda, C. O.

    2018-08-01

    The paper presents a systematic study of the electrochromic properties of thin films of V2O5:TiO2 for a possible utilization as counter-electrode in electrochromic devices. The V2O5:TiO2 thin films were prepared by the sol-gel process and deposited on a substrate of fluorine-tin oxide transparent electrode (FTO) using the dip coating technique and heat treatment at 350 °C for 30 min. The films were characterized by chronocoulometry, cyclic voltammetry (CV), UV-Vis, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), profilometry, and X-ray diffraction (XRD). The best results were obtained for the film of V2O5 with 7.5 mol% of TiO2, which presented highest ion storage capacity of ∼106 mC cm-2 and redox reversibility of 1. The diffusion of the Li+ ions into the thin films was modeled by solving Fick equations with appropriate boundary conditions for a plane sheet geometry. Besides that, these films showed optical modulation of 35% at 633 nm after coloration and bleaching. The XRD patterns revealed that the films have an orthorhombic crystal structure; the AFM and the profilometry confirmed roughness and thickness of 16.76 and 617 nm, respectively.

  17. The Gaertner L119 ellipsometer and its use in the measurement of thin films

    NASA Technical Reports Server (NTRS)

    Linkous, M.

    1973-01-01

    An introduction to the study of ellipsometry is presented, with special attention given to the Gaertner model L119 ellipsometer and the techniques of measuring thin films with this instrument. Values obtained from the ellipsometer are analyzed by a computer program for a determination of optical constants and thickness of the film.

  18. Multiscale Modeling for Linking Growth, Microstructure, and Properties of Inorganic Microporous Films

    NASA Technical Reports Server (NTRS)

    Vlachos, Dion G.

    2002-01-01

    The focus of this presentation is on multiscale modeling in order to link processing, microstructure, and properties of materials. Overview of problems we study includes: Growth mechanisms in chemical and physical vapor epitaxy; thin films of zeolites for separation and sensing; thin Pd films for hydrogen separation and pattern formation by self-regulation routes.

  19. Reflow dynamics of thin patterned viscous films

    NASA Astrophysics Data System (ADS)

    Leveder, T.; Landis, S.; Davoust, L.

    2008-01-01

    This letter presents a study of viscous smoothening dynamics of a nanopatterned thin film. Ultrathin film manufacturing processes appearing to be a key point of nanotechnology engineering and numerous studies have been recently led in order to exhibit driving parameters of this transient surface motion, focusing on time scale accuracy method. Based on nanomechanical analysis, this letter shows that controlled shape measurements provided much more detailed information about reflow mechanism. Control of reflow process of any complex surface shape, or measurement of material parameter as thin film viscosity, free surface energy, or even Hamaker constant are therefore possible.

  20. Advances in thin-film solar cells for lightweight space photovoltaic power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuIn Se2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuIn Se2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.

  1. Annealing of Solar Cells and Other Thin Film Devices

    NASA Technical Reports Server (NTRS)

    Escobar, Hector; Kuhlman, Franz; Dils, D. W.; Lush, G. B.; Mackey, Willie R. (Technical Monitor)

    2001-01-01

    Annealing is a key step in most semiconductor fabrication processes, especially for thin films where annealing enhances performance by healing defects and increasing grain sizes. We have employed a new annealing oven for the annealing of CdTe-based solar cells and have been using this system in an attempt to grow US on top of CdTe by annealing in the presence of H2S gas. Preliminary results of this process on CdTe solar cells and other thin-film devices will be presented.

  2. Counter-intuitive experimental evidence on the initiation of radical crack in ceramic thin films at the atomic scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Chunqiang, E-mail: chunqiang.zhuang@bjut.edu.cn; Li, Zhipeng; Lin, Songsheng

    2015-10-15

    The basic issue related to radial crack in ceramic thin films has received considerable attention due to the fact that the radial crack plays an important role in evaluating the toughness properties of ceramic materials. In this work, an atomic-scale new experimental evidence is clearly presented to reveal the counter-intuitive initiation, the nucleation and the propagation mechanism of the radial crack in Al-Cr-N ceramic thin films.

  3. Hybrid Co-deposition of Mixed-Valent Molybdenum-Germanium Oxides (MoxGeyOz): A Route to Tunable Optical Transmission (Postprint)

    DTIC Science & Technology

    2015-08-05

    to increased doping levels in indirect semiconductors [84]. The slope, and magnitude of the transmission curves continue to decrease alongside UL...periodically aluminium- doped zinc oxide thin films, Thin Solid Films 519 (2011) 2280–2286. [2] T. Minami, H. Nanto, S. Takata, Highly conductive and...transparent aluminum doped zinc oxide thin films prepared by RF magnetron sputtering, Jpn. J. Appl. Phys. 23 (1984) L280. [3] T. Minami, Present status of

  4. Electric field mediated breakdown of thin liquid films separating microscopic emulsion droplets

    NASA Astrophysics Data System (ADS)

    Mostowfi, Farshid; Khristov, Khristo; Czarnecki, Jan; Masliyah, Jacob; Bhattacharjee, Subir

    2007-04-01

    The authors present a microfluidic technique for electrically induced breakup of thin films formed between microscopic emulsion droplets. The method involves creating a stationary film at the intersection of two microchannels etched onto a glass substrate. After stabilizing the film, a ramped potential is applied across it. The electrical stresses developed at the film interfaces lead to its rupture above a threshold potential. The potential difference at which the film ruptures assesses the film stability. This approach is employed to demonstrate how surfactant (lecithin) adsorption imparts stability to an ultrathin oil film formed between two water droplets.

  5. Monitoring the thinning dynamics of soap films by phase shift interferometry. The case of perfluoropolyether surfactants.

    PubMed

    Gambi, Cecilia M C; Vannoni, Maurizio; Sordini, Andrea; Molesini, Giuseppe

    2014-02-01

    An interferometric method to monitor the thinning process of vertical soap films from a water solution of surfactant materials is reported. Raw data maps of optical path difference introduced by the film are obtained by conventional phase shift interferometry. Off-line re-processing of such raw data taking into account the layered structure of soap films leads to an accurate measurement of the geometrical thickness. As an example of data acquisition and processing, the measuring chain is demonstrated on perfluoropolyether surfactants; the section profile of vertical films is monitored from drawing to black film state, and quantitative data on the dynamics of the thinning process are presented. The interferometric method proves effective to the task, and lends itself to further investigate the physical properties of soap films.

  6. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.

    PubMed

    Rao, V Kesava; Radhakrishnan, T P

    2015-06-17

    Development of facile routes to the fabrication of thin film substrates with tunable surface enhanced Raman scattering (SERS) efficiency and identification of the optimal conditions for maximizing the enhancement factor (EF) are significant in terms of both fundamental and application aspects of SERS. In the present work, polymer thin films with embedded bimetallic nanoparticles of Ag-Au are fabricated by a simple two-stage protocol. Ag nanoparticles are formed in the first stage, by the in situ reduction of silver nitrate by the poly(vinyl alcohol) (PVA) film through mild thermal annealing, without any additional reducing agent. In the second stage, aqueous solutions of chloroauric acid spread on the Ag-PVA thin film under ambient conditions, lead to the galvanic displacement of Ag by Au in situ inside the film, and the formation of Ag-Au particles. Evolution of the morphology of the bimetallic nanoparticles into hollow cage structures and the distribution of Au on the nanoparticles are revealed through electron microscopy and energy dispersive X-ray spectroscopy. The localized surface plasmon resonance (LSPR) extinction of the nanocomposite thin film evolves with the Ag-Au composition; theoretical simulation of the extinction spectra provides insight into the observed trends. The Ag-Au-PVA thin films are found to be efficient substrates for SERS. The EF follows the variation of the LSPR extinction vis-à-vis the excitation laser wavelength, but with an offset, and the maximum SERS effect is obtained at very low Au content; experiments with Rhodamine 6G showed EFs on the order of 10(8) and a limit of detection of 0.6 pmol. The present study describes a facile and simple fabrication of a nanocomposite thin film that can be conveniently deployed in SERS investigations, and the utility of the bimetallic system to tune and maximize the EF.

  7. Ultra-wide bandgap beta-Ga2O3 for deep-UV solar blind photodetectors(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rafique, Subrina; Han, Lu; Zhao, Hongping

    2017-03-01

    Deep-ultraviolet (DUV) photodetectors based on wide bandgap (WB) semiconductor materials have attracted strong interest because of their broad applications in military surveillance, fire detection and ozone hole monitoring. Monoclinic β-Ga2O3 with ultra-wide bandgap of 4.9 eV is a promising candidate for such application because of its high optical transparency in UV and visible wavelength region, and excellent thermal and chemical stability at elevated temperatures. Synthesis of high qualityβ-Ga2O3 thin films is still at its early stage and knowledge on the origins of defects in this material is lacking. The conventional epitaxy methods used to grow β-Ga2O3 thin films such as molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD) still face great challenges such as limited growth rate and relatively high defects levels. In this work, we present the growth of β-Ga2O3 thin films on c-plane (0001) sapphire substrate by our recently developed low pressure chemical vapor deposition (LPCVD) method. The β-Ga2O3 thin films synthesized using high purity metallic gallium and oxygen as the source precursors and argon as carrier gas show controllable N-type doping and high carrier mobility. Metal-semiconductor-metal (MSM) photodetectors (PDs) were fabricated on the as-grown β-Ga2O3 thin films. Au/Ti thin films deposited by e-beam evaporation served as the contact metals. Optimization of the thin film growth conditions and the effects of thermal annealing on the performance of the PDs were investigated. The responsivity of devices under 250 nm UV light irradiation as well as dark light will be characterized and compared.

  8. Effect of crystallographic orientation on structural and mechanical behaviors of Ni-Ti thin films irradiated by Ag7+ ions

    NASA Astrophysics Data System (ADS)

    Kumar, Veeresh; Singhal, Rahul

    2018-04-01

    In the present study, thin films of Ni-Ti shape memory alloy have been grown on Si substrate by dc magnetron co-sputtering technique using separate sputter targets Ni and Ti. The prepared thin films have been irradiated by 100 MeV Ag7+ ions at three different fluences, which are 1 × 1012, 5 × 1012, and 1 × 1013 ions/cm2. The elemental composition and depth profile of pristine film have been investigated by Rutherford backscattering spectrometry. The changes in crystal orientation, surface morphology, and mechanical properties of Ni-Ti thin films before and after irradiation have been studied by X-ray diffraction, atomic force microscopy, field-emission scanning electron microscopy, and nanoindentation techniques, respectively. X-ray diffraction measurement has revealed the existence of both austenite and martensite phases in pristine film and the formation of precipitate on the surface of the film after irradiation at an optimized fluence of 1 × 1013 ions/cm2. Nanoindentation measurement has revealed improvement in mechanical properties of Ni-Ti thin films after ion irradiation via increasing hardness and Young modulus due to the formation of precipitate and ductile phase. The improvement in mechanical behavior could be explained in terms of precipitation hardening and structural change of Ni-Ti thin film after irradiation by Swift heavy ion irradiation.

  9. Bottom electrodes dependence of microstructures and dielectric properties of compositionally graded (Ba{sub 1-x}Sr{sub x})TiO{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Tianjin; Wang Jinzhao; Zhang Baishun

    2008-03-04

    Compositionally graded (Ba{sub 1-x}Sr{sub x})TiO{sub 3} (BST) thin films, with x decreasing from 0.3 to 0, were deposited on Pt/Ti/SiO{sub 2}/Si and Ru/SiO{sub 2}/Si substrates by radio frequency magnetron sputtering technology. The microstructure and dielectric properties of the graded BST thin films were investigated. It was found that the films on Ru electrode have better crystallization, and that RuO{sub 2} is present between the Ru bottom electrode and the graded BST thin films by X-ray diffraction and SEM analysis. Dielectric measurement reveals that the graded BST thin films deposited on Ru bottom electrode have higher dielectric constant and tunability. Themore » enhanced dielectric behavior is attributed to better crystallization as well as smaller space charge capacitance width and the formation of RuO{sub 2} that is more compatible with the BST films. The graded BST films on Ru electrode show higher leakage current due to lower barrier height and rougher surface of bottom electrode.« less

  10. Outline and comparison of the possible effects present in a metal-thin-film-insulator-semiconductor solar cell

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.

    1976-01-01

    The advantages possible with the insertion of a thin-film insulating or semi-insulating layer between a metal and a semiconductor to form the MIS photovoltaic device have been presented previously in the literature. This MIS configuration may be considered as a specific example of a more general class of photovoltaic devices: electrode-thin-film-insulator-semiconductor devices. Since the advantages of the configuration were pointed out, there has been considerable experimental interest in these photovoltaic devices. Because the previous analysis showed that the introduction of the insulator layer could produce several different but advantageous effects, this paper presents a further outline giving a comparison of these effects together with their ramifications.

  11. Micro-Machined Thin Film Sensor Arrays For The Detection Of H2, Containing Gases, And Method Of Making And Using The Same.

    DOEpatents

    DiMeo, Jr., Frank; Baum, Thomas H.

    2003-07-22

    The present invention provides a hydrogen sensor including a thin film sensor element formed by metal organic chemical vapor deposition (MOCVD) or physical vapor deposition (PVD), on a micro-hotplate structure. The thin film sensor element includes a film of a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered response characteristic, such as optical transmissivity, electrical conductance, electrical resistance, electrical capacitance, magneto resistance, photoconductivity, etc., relative to the response characteristic of the film in the absence of hydrogen. The hydrogen-interactive metal film may be overcoated with a thin film hydrogen-permeable barrier layer to protect the hydrogen-interactive film from deleterious interaction with non-hydrogen species. The hydrogen permeable barrier may comprise species to scavenge oxygen and other like species. The hydrogen sensor of the invention may be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently configured as a hand-held apparatus.

  12. Conformal self-assembled thin films for optical pH sensors

    NASA Astrophysics Data System (ADS)

    Topasna, Daniela M.; Topasna, Gregory A.; Liu, Minghanbo; Tseng, Ching-Hung

    2016-04-01

    Simple, reliable, lightweight, and inexpensive thin films based sensors are still in intense development and high demand in many applications such as biomedical, industrial, environmental, military, and consumer products. One important class of sensors is the optical pH sensor. In addition, conformal thin film based sensors extend the range of application for pH optical sensors. We present the results on the fabrication and characterization of optical pH sensing coatings made through ionic self-assembled technique. These thin films are based on the combination of a polyelectrolyte and water-soluble organic dye molecule Direct Yellow 4. A series of films was fabricated and characterized in order to determine the optimized parameters of the polymer and of the organic dye solutions. The optical pH responses of these films were also studied. The transparent films were immersed in solutions at various temperature and pH values. The films are stable when immersed in solutions with pH below 9.0 and temperatures below 90 °C and they maintain their performance after longer immersion times. We also demonstrate the functionality of these coatings as conformal films.

  13. Improving uniformity and nanostructure of solution-processed thin films using ultrasonic substrate vibration post treatment (SVPT).

    PubMed

    Wang, Qin; Eslamian, Morteza

    2016-04-01

    The main goal of this paper is to introduce a novel mechanical method herein terms as substrate vibration post treatment (SVPT) technique, powered by ultrasonic vibration imposed on the substrate to enhance the characteristics and functionality of spun-on thin films or thin films made by similar casting techniques, such as drop and dip coating. In this technique, the as-casted wet films are placed on a substrate vibrated by an ultrasonic transducer with controlled power and duration to improve the film characteristics, such as uniformity and nanostructure. The performance of this technique is examined on spun-on PSS thin films used in polymer and perovskite solar cells and unprecedented results are presented. We first explore the influence of the vibration duration time on the characteristics of the films made by pristine PSS solution, where it is found that the optimized vibration duration for the pristine PSS film is about 10s, resulting in significant increase in the film electrical conductivity and lowered thickness and roughness. In order to further test the generality and merit of the method, thin films made using PSS solution modified with various types of surfactants and cured by the SVPT are studied. The results show that the application of the SVPT method combined with surfactant modification leads to an impressive twelve-fold increase in the conductivity of the PSS thin films compared with that of the pristine non-vibrated PSS thin films. The sole effect of the SVPT is a four-fold increase in the conductivity of pristine PSS film compared with that of the non-vibrated film. This remarkable enhancement in conductivity is further explained by the AFM phase images of PSS films, showing that the ultrasonic energy could loosen the Coulomb forces between PEDOT and PSS chains, resulting in phase separation and localized reordering of the conducting PEDOT chains leading to an increase in the electrical conductivity of the film. Highly conductive PSS thin film is a viable candidate as electrodes in emerging solution-processed solar cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Characterizing Non-Uniformity of Performance of Thin-Film Solar Cells

    NASA Technical Reports Server (NTRS)

    Clark, Eric B. (Technical Monitor); Lush, Gregory B.

    2003-01-01

    Thin-film Solar Cells are being actively studied for terrestrial and space applications because of their potential to provide low-cost, lightweight, and flexible electric power system. Currently, thin-film solar cell performance is limited partially by the nonuniformity of performance that they typically exhibit. This nonuniformity of performance necessitates more detailed characterization techniques than the well-known macroscopic measurements such as current-voltage and efficiency. This project seeks to explore methods of characterization that take into account the spatial nonuniformity of thin-film solar cells. In this presentation we show results of electroluminescence images, short-circuit maps, and Kelvin Probe maps. All these mapping characterization and analysis tools show that the non-uniformities can correlated with device performance and efficiency.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesfaye, Meron; MacDonald, Andrew N.; Dudenas, Peter J.

    Local gas transport limitation attributed to the ionomer thin-film in the catalyst layer is a major deterrent to widespread commercialization of polymer-electrolyte fuel cells. So far functionality and limitations of these thin-films have been assumed identical in the anode and cathode. In this study, Nafion ionomer thin-films on platinum(Pt) support were exposed to H 2 and air as model schemes, mimicking anode and cathode catalyst layers. Findings indicate decreased swelling, increased densification of ionomer matrix, and increased humidity-induced aging rates in reducing environment, compared to oxidizing and inert environments. Observed phenomenon could be related to underlying Pt-gas interaction dictating Pt-ionomermore » behavior. Presented results could have significant implications about the disparate behavior of ionomer thin-film in anode and cathode catalyst layers.« less

  16. Structural and magnetic analysis of Cu, Co substituted NiFe{sub 2}O{sub 4} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Hakikat; Bala, Kanchan; Negi, N. S.

    2016-05-23

    In the present work we prepared NiFe{sub 2}O{sub 4}, Ni{sub 0.95}Cu{sub 0.05}Fe{sub 2}O{sub 4} and Ni{sub 0.94}Cu{sub 0.05}Co{sub 0.01} Fe{sub 2}O{sub 4} thin films by metallo-organic decomposition method (MOD) using spin coating technique. The thin films were analyzed by X-ray diffractometer (XRD) and Atomic force microscope (AFM) for structural studies. The XRD patterns confirmed the ferrite phase of thin films. From AFM, we analyzed surface morphology, calculated grain size (GS) and root mean square roughness (RMSR). Room temperature magnetic properties were investigated by vibrating sample magnetometer (VSM).

  17. Templated electrochemical deposition of zirconia thin films on "recordable CDs.".

    PubMed

    Yu, Hua-Zhong; Rowe, Aaron W; Waugh, Damien M

    2002-11-15

    In this paper, we describe a practical method of using gold films constructed from recordable compact disks (CD-Rs) as simple, inexpensive, and micropatterned conductive substrates for the fabrication of inorganic material microstructures. Extending from their application for the fabrication of self-assembled monolayers (SAMs) reported recently, bare and SAM-modified CD-R gold substrates have been used for template-directed electrodeposition of zirconia (ZrO2) thin films (i.e., the controlled formation of zirconia thin films on the different areas of the prefabricated, micrometer mountain-valley CD-R gold substrate surfaces). The present results demonstrate that the variation of the functional groups of the selected SAMs combined with electrodynamic control can be very successful to "customize" the formation and microstructure of functional inorganic thin films, which hold promise for modern technological applications.

  18. Drying Temperature Dependence of Sol-gel Spin Coated Bilayer Composite ZnO/TiO2 Thin Films for Extended Gate Field Effect Transistor pH Sensor

    NASA Astrophysics Data System (ADS)

    Rahman, R. A.; Zulkefle, M. A.; Yusoff, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.

    2018-03-01

    This study presents an investigation on zinc oxide (ZnO) and titanium dioxide (TiO2) bilayer film applied as the sensing membrane for extended-gate field effect transistor (EGFET) for pH sensing application. The influences of the drying temperatures on the pH sensing capability of ZnO/TiO2 were investigated. The sensing performance of the thin films were measured by connecting the thin film to a commercial MOSFET to form the extended gates. By varying the drying temperature, we found that the ZnO/TiO2 thin film dried at 150°C gave the highest sensitivity compared to other drying conditions, with the sensitivity value of 48.80 mV/pH.

  19. Sol-gel preparation of silica and titania thin films

    NASA Astrophysics Data System (ADS)

    Thoř, Tomáš; Václavík, Jan

    2016-11-01

    Thin films of silicon dioxide (SiO2) and titanium dioxide (TiO2) for application in precision optics prepared via the solgel route are being investigated in this paper. The sol-gel process presents a low cost approach, which is capable of tailoring thin films of various materials in optical grade quality. Both SiO2 and TiO2 are materials well known for their application in the field of anti-reflective and also highly reflective optical coatings. For precision optics purposes, thickness control and high quality of such coatings are of utmost importance. In this work, thin films were deposited on microscope glass slides substrates using the dip-coating technique from a solution based on alkoxide precursors of tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TIP) for SiO2 and TiO2, respectively. As-deposited films were studied using spectroscopic ellipsometry to determine their thickness and refractive index. Using a semi-empirical equation, a relationship between the coating speed and the heat-treated film thickness was described for both SiO2 and TiO2 thin films. This allows us to control the final heat-treated thin film thickness by simply adjusting the coating speed. Furthermore, films' surface was studied using the white-light interferometry. As-prepared films exhibited low surface roughness with the area roughness parameter Sq being on average of 0.799 nm and 0.33 nm for SiO2 and TiO2, respectively.

  20. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  1. Physical Vapor Deposition of Thin Films

    NASA Astrophysics Data System (ADS)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  2. Enhanced ultraviolet photo-response in Dy doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Singh, Ranveer; Pandey, Praveen C.

    2018-02-01

    In the present work, a Dy doped ZnO thin film deposited by the spin coating method has been studied for its potential application in a ZnO based UV detector. The investigations on the structural property and surface morphology of the thin film ensure that the prepared samples are crystalline and exhibit a hexagonal crystal structure of ZnO. A small change in crystallite size has been observed due to Dy doping in ZnO. AFM analysis ascertains the grain growth and smooth surface of the thin films. The Dy doped ZnO thin film exhibits a significant enhancement in UV region absorption as compared to the pure ZnO thin film, which suggests that Dy doped ZnO can be used as a UV detector. Under UV irradiation of wavelength 325 nm, the photocurrent value of Dy doped ZnO is 105.54 μA at 4.5 V, which is 31 times greater than that of the un-doped ZnO thin film (3.39 μA). The calculated value of responsivity is found to increase significantly due to the incorporation of Dy in the ZnO lattice. The observed higher value of photocurrent and responsivity could be attributed to the substitution of Dy in the ZnO lattice, which enhances the conductivity, electron mobility, and defects in ZnO and benefits the UV sensing property.

  3. Multilayer SnSb4-SbSe Thin Films for Phase Change Materials Possessing Ultrafast Phase Change Speed and Enhanced Stability.

    PubMed

    Liu, Ruirui; Zhou, Xiao; Zhai, Jiwei; Song, Jun; Wu, Pengzhi; Lai, Tianshu; Song, Sannian; Song, Zhitang

    2017-08-16

    A multilayer thin film, comprising two different phase change material (PCM) components alternatively deposited, provides an effective means to tune and leverage good properties of its components, promising a new route toward high-performance PCMs. The present study systematically investigated the SnSb 4 -SbSe multilayer thin film as a potential PCM, combining experiments and first-principles calculations, and demonstrated that these multilayer thin films exhibit good electrical resistivity, robust thermal stability, and superior phase change speed. In particular, the potential operating temperature for 10 years is shown to be 122.0 °C and the phase change speed reaches 5 ns in the device test. The good thermal stability of the multilayer thin film is shown to come from the formation of the Sb 2 Se 3 phase, whereas the fast phase change speed can be attributed to the formation of vacancies and a SbSe metastable phase. It is also demonstrated that the SbSe metastable phase contributes to further enhancing the electrical resistivity of the crystalline state and the thermal stability of the amorphous state, being vital to determining the properties of the multilayer SnSb 4 -SbSe thin film.

  4. Incorporation of N-doped TiO2 nanorods in regenerated cellulose thin films fabricated from recycled newspaper as a green portable photocatalyst.

    PubMed

    Mohamed, Mohamad Azuwa; Salleh, W N W; Jaafar, Juhana; Ismail, A F; Abd Mutalib, Muhazri; Jamil, Siti Munira

    2015-11-20

    In this work, an environmental friendly RC/N-TiO2 nanocomposite thin film was designed as a green portable photocatalyst by utilizing recycled newspaper as sustainable cellulose resource. Investigations on the influence of N-doped TiO2 nanorods incorporation on the structural and morphological properties of RC/N-TiO2 nanocomposite thin film are presented. The resulting nanocomposite thin film was characterized by FESEM, AFM, FTIR, UV-vis-NIR spectroscopy, and XPS analysis. The results suggested that there was a remarkable compatibility between cellulose and N-doped TiO2 nanorods anchored onto the surface of the RC/N-TiO2 nanocomposite thin film. Under UV and visible irradiation, the RC/N-TiO2 nanocomposite thin film showed remarkable photocatalytic activity for the degradation of methylene blue solution with degradation percentage of 96% and 78.8%, respectively. It is crucial to note that the resulting portable photocatalyst produced via an environmental and green technique in its fabrication process has good potential in the field of water and wastewater treatment application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A chemical bath deposition route to facet-controlled Ag{sub 3}PO{sub 4} thin films with improved visible light photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunjakar, Jayavant L.; Jo, Yun Kyung; Kim, In Young

    A facile, economic, and reproducible chemical bath deposition (CBD) method is developed for the fabrication of facet-controlled Ag{sub 3}PO{sub 4} thin films with enhanced visible light photocatalytic activity. The fine-control of bath temperature, precursor, complexing agent, substrate, and solution pH is fairly crucial in preparing the facet-selective thin film of Ag{sub 3}PO{sub 4} nanocrystal. The change of precursor from silver nitrate to silver acetate makes possible the tailoring of the crystal shape of Ag{sub 3}PO{sub 4} from cube to rhombic dodecahedron and also the bandgap tuning of the deposited films. The control of [Ag{sup +}]/[phosphate] ratio enables to maximize themore » loading amount of Ag{sub 3}PO{sub 4} crystals per the unit area of the deposited film. All the fabricated Ag{sub 3}PO{sub 4} thin films show high photocatalytic activity for visible light-induced degradation of organic molecules, which can be optimized by tailoring the crystal shape of the deposited crystals. This CBD method is also useful in preparing the facet-controlled hybrid film of Ag{sub 3}PO{sub 4}–ZnO photocatalyst. The present study clearly demonstrates the usefulness of the present CBD method for fabricating facet-controlled thin films of metal oxosalt and its nanohybrid. - Highlights: • The crystal facet of Ag{sub 3}PO{sub 4} films can be tuned by chemical bath deposition. • The crystal shape of Ag{sub 3}PO{sub 4} is tailorable from cube to rhombic dodecahedron. • Facet-tuned Ag{sub 3}PO{sub 4} film shows enhanced visible light photocatalyst activity.« less

  6. Two-dimensional models for the optical response of thin films

    NASA Astrophysics Data System (ADS)

    Li, Yilei; Heinz, Tony F.

    2018-04-01

    In this work, we present a systematic study of 2D optical models for the response of thin layers of material under excitation by normally incident light. The treatment, within the framework of classical optics, analyzes a thin film supported by a semi-infinite substrate, with both the thin layer and the substrate assumed to exhibit local, isotropic linear response. Starting from the conventional three-dimensional (3D) slab model of the system, we derive a two-dimensional (2D) sheet model for the thin film in which the optical response is described by a sheet optical conductivity. We develop criteria for the applicability of this 2D sheet model for a layer with an optical thickness far smaller than the wavelength of the light. We examine in detail atomically thin semi-metallic and semiconductor van-der-Waals layers and ultrathin metal films as representative examples. Excellent agreement of the 2D sheet model with the 3D slab model is demonstrated over a broad spectral range from the radio frequency limit to the near ultraviolet. A linearized version of system response for the 2D model is also presented for the case where the influence of the optically thin layer is sufficiently weak. Analytical expressions for the applicability and accuracy of the different optical models are derived, and the appropriateness of the linearized treatment for the materials is considered. We discuss the advantages, as well as limitations, of these models for the purpose of deducing the optical response function of the thin layer from experiment. We generalize the theory to take into account in-plane anisotropy, layered thin film structures, and more general substrates. Implications of the 2D model for the transmission of light by the thin film and for the implementation of half- and totally absorbing layers are discussed.

  7. Microstructure and ferroelectricity of BaTiO3 thin films on Si for integrated photonics

    NASA Astrophysics Data System (ADS)

    Kormondy, Kristy J.; Popoff, Youri; Sousa, Marilyne; Eltes, Felix; Caimi, Daniele; Rossell, Marta D.; Fiebig, Manfred; Hoffmann, Patrik; Marchiori, Chiara; Reinke, Michael; Trassin, Morgan; Demkov, Alexander A.; Fompeyrine, Jean; Abe, Stefan

    2017-02-01

    Significant progress has been made in integrating novel materials into silicon photonic structures in order to extend the functionality of photonic circuits. One of these promising optical materials is BaTiO3 or barium titanate (BTO) that exhibits a very large Pockels coefficient as required for high-speed light modulators. However, all previous demonstrations show a noticable reduction of the Pockels effect in BTO thin films deposited on silicon substrates compared to BTO bulk crystals. Here, we report on the strong dependence of the Pockels effect in BTO thin films on their microstructure, and provide guidelines on how to engineer thin films with strong electro-optic response. We employ several deposition methods such as molecular beam epitaxy and chemical vapor deposition to realize BTO thin films with different morphology and crystalline structure. While a linear electro-optic response is present even in porous, polycrystalline BTO thin films with an effective Pockels coefficient r eff = 6 pm V-1, it is maximized for dense, tetragonal, epitaxial BTO films (r eff = 140 pm V-1). By identifying the key structural predictors of electro-optic response in BTO/Si, we provide a roadmap to fully exploit the linear electro-optic effect in novel hybrid oxide/semiconductor nanophotonic devices.

  8. Thin film polarizer and color filter based on photo-polymerizable nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Mohammadimasoudi, Mohammad; Neyts, Kristiaan; Beeckman, Jeroen

    2015-03-01

    We present a method to fabricate a thin film color filter based on a mixture of photo-polymerizable liquid crystal and chiral dopant. A chiral nematic liquid crystal layer reflects light for a certain wavelength interval Δλ (= Δn.P) with the period and Δn the birefringence of the liquid crystal. The reflection band is determined by the chiral dopant concentration. The bandwidth is limited to 80nm and the reflectance is at most 50% for unpolarized incident light. The thin color filter is interesting for innovative applications like polarizer-free reflective displays, polarization-independent devices, stealth technologies, or smart switchable reflective windows to control solar light and heat. The reflected light has strong color saturation without absorption because of the sharp band edges. A thin film polarizer is developed by using a mixture of photo-polymerizable liquid crystal and color-neutral dye. The fabricated thin film absorbs light that is polarized parallel to the c axis of the LC. The obtained polarization ratio is 80% for a film of only 12 μm. The thin film polarizer and the color filter feature excellent film characteristics without domains and can be detached from the substrate which is useful for e.g. flexible substrates.

  9. Optical filters for linearly polarized light using sculptured nematic thin flim of TiO2

    NASA Astrophysics Data System (ADS)

    Muhammad, Zahir; Wali, Faiz; Rehman, Zia ur

    2018-05-01

    A study of optical filters using sculptured nematic thin films is presented in this article. A central 90◦ twist-defect between two sculptured nematic thin films (SNTFs) sections transmit light of same polarization state and reflect other in the spectral Bragg regime. The SNTFs reflect light of both linearly polarized states in the Bragg regime if the amplitude of modulation of vapor incident angle is increased. A twist-defect in a tilt-modulated sculptured nematic thin films as a result produces bandpass or ultra-narrow bandpass filter depending upon the thickness of the SNTFs. However, both the bandpass or/and ultra-narrow bandpass filters can make polarization-insensitive Bragg mirrors by the appropriate modulation of the tilted 2D nanostructures of a given sculptured nematic thin films. Moreover, it is also observed that the sculptured nematic thin films are very tolerant of the structural defects if the amplitude of modulating vapor incident angle of the structural nano-materials is sufficiently large. Similarly, we observed the affect of incident angles on Bragg filters.

  10. Epitaxial Growth of Oriented Metalloporphyrin Network Thin Film for Improved Selectivity of Volatile Organic Compounds.

    PubMed

    Li, De-Jing; Gu, Zhi-Gang; Vohra, Ismail; Kang, Yao; Zhu, Yong-Sheng; Zhang, Jian

    2017-05-01

    This study reports an oriented and homogenous cobalt-metalloporphyrin network (PIZA-1) thin film prepared by liquid phase epitaxial (LPE) method. The thickness of the obtained thin films can be well controlled, and their photocurrent properties can also be tuned by LPE cycles or the introduction of conductive guest molecules (tetracyanoquinodimethane and C 60 ) into the PIZA-1 pores. The study of quartz crystal microbalance adsorption confirms that the PIZA-1 thin film with [110]-orientation presents much higher selectivity of benzene over toluene and p-xylene than that of the PIZA-1 powder with mixed orientations. These results reveal that the selective adsorption of volatile organic compounds highly depends on the growth orientations of porphyrin-based metal-organic framework thin films. Furthermore, the work will provide a new perspective for developing important semiconductive sensing materials with improved selectivity of guest compounds. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Enhanced electrochemical performance of monoclinic WO3 thin film with redox additive aqueous electrolyte.

    PubMed

    Shinde, Pragati A; Lokhande, Vaibhav C; Chodankar, Nilesh R; Ji, Taeksoo; Kim, Jin Hyeok; Lokhande, Chandrakant D

    2016-12-01

    To achieve the highest electrochemical performance for supercapacitor, it is very essential to find out a suitable pair of an active electrode material and an electrolyte. In the present work, a simple approach is employed to enhance the supercapacitor performance of WO3 thin film. The WO3 thin film is prepared by a simple and cost effective chemical bath deposition method and its electrochemical performance is tested in conventional (H2SO4) and redox additive [H2SO4+hydroquinone (HQ)] electrolytes. Two-fold increment in electrochemical performance for WO3 thin film is observed in redox additive aqueous electrolyte compared to conventional electrolyte. WO3 thin film showed maximum specific capacitance of 725Fg(-1), energy density of 25.18Whkg(-1) at current density of 7mAcm(-2) with better cycling stability in redox electrolyte. This strategy provides the versatile way for designing the high performance energy storage devices. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Application of Thin-Film Thermocouples to Localized Heat Transfer Measurements

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Bruckner, R. J.; Smith, F. A.

    1995-01-01

    The paper describes a proof-of-concept experiment on thin-film thermocouples used for localized heat transfer measurements applicable to experiments on hot parts of turbine engines. The paper has three main parts. The first part describes the thin-film sensors and manufacturing procedures. Attention is paid to connections between thin-film thermocouples and lead wires, which has been a source of problems in the past. The second part addresses the test arrangement and facility used for the heat transfer measurements modeling the conditions for upcoming warm turbine tests at NASA LeRC. The paper stresses the advantages of a modular approach to the test rig design. Finally, we present the results of bulk and local heat flow rate measurements, as well as overall heat transfer coefficients obtained from measurements in a narrow passage with an aspect ratio of 11.8. The comparison of bulk and local heat flow rates confirms applicability of thin-film thermocouples to upcoming warm turbine tests.

  13. Cu(In,Ga)S2, Thin-Film Solar Cells Prepared by H2S Sulfurization of CuGa-In Precursor

    NASA Technical Reports Server (NTRS)

    Dhere, Neelkanth G.; Kulkarni, Shashank R.; Chavan, Sanjay S.; Ghongadi, Shantinath R.

    2005-01-01

    Thin-film CuInS2 solar cell is the leading candidate for space power because of bandgap near the optimum value for AM0 solar radiation outside the earth's atmosphere, excellent radiation hardness, and freedom from intrinsic degradation mechanisms unlike a-Si:H cells. Ultra-lightweight thin-film solar cells deposited on flexible polyimide plastic substrates such as Kapton(trademark), Upilex(trademark), and Apical(trademark) have a potential for achieving specific power of 1000 W/kg, while the state-of-art specific power of the present day solar cells is 66 W/kg. This paper describes the preparation of Cu-rich CuIn(sub 1-x)Ga(sub x)S(sub 2) (CIGS2) thin films and solar cells by a process of sulfurization of CuGa-In precursor similar to that being used for preparation of large-compact-grain CuIn(sub 1-x)Ga(sub x)Se2 thin films and efficient solar cells at FSEC PV Materials Lab.

  14. Thin film seeds for melt processing textured superconductors for practical applications

    DOEpatents

    Veal, Boyd W.; Paulikas, Arvydas; Balachandran, Uthamalingam; Zhong, Wei

    1999-01-01

    A method of fabricating bulk superconducting material such as RBa.sub.2 Cu.sub.3 O.sub.7-.delta. where R is La or Y comprising depositing a thin epitaxially oriented film of Nd or Sm (123) on an oxide substrate. The powder oxides of RBa.sub.2 Cu.sub.3 O.sub.7-.delta. or oxides and/or carbonates of R and Ba and Cu present in mole ratios to form RBa.sub.2 Cu.sub.3 O.sub.7-.delta., where R is Y or La are heated, in physical contact with the thin film of Nd or Sm (123) on the oxide substrate to a temperature sufficient to form a liquid phase in the oxide or carbonate mixture while maintaining the thin film solid to grow a large single domain 123 superconducting material. Then the material is cooled. The thin film is between 200 .ANG. and 2000 .ANG.. A construction prepared by the method is also disclosed.

  15. Thin film seeds for melt processing textured superconductors for practical applications

    DOEpatents

    Veal, B.W.; Paulikas, A.; Balachandran, U.; Zhong, W.

    1999-02-09

    A method of fabricating bulk superconducting material such as RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} where R is La or Y comprising depositing a thin epitaxially oriented film of Nd or Sm (123) on an oxide substrate is disclosed. The powder oxides of RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} or oxides and/or carbonates of R and Ba and Cu present in mole ratios to form RBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}, where R is Y or La are heated, in physical contact with the thin film of Nd or Sm (123) on the oxide substrate to a temperature sufficient to form a liquid phase in the oxide or carbonate mixture while maintaining the thin film solid to grow a large single domain 123 superconducting material. Then the material is cooled. The thin film is between 200 {angstrom} and 2000 {angstrom}. A construction prepared by the method is also disclosed.

  16. Step-by-step fabrication of a highly oriented crystalline three-dimensional pillared-layer-type metal-organic framework thin film confirmed by synchrotron X-ray diffraction.

    PubMed

    Otsubo, Kazuya; Haraguchi, Tomoyuki; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2012-06-13

    Fabrication of a crystalline ordered thin film based on the porous metal-organic frameworks (MOFs) is one of the practical applications of the future functional nanomaterials. Here, we report the creation of a highly oriented three-dimensional (3-D) porous pillared-layer-type MOF thin film on a metal substrate using a step-by-step approach based on liquid-phase epitaxy. Synchrotron X-ray diffraction (XRD) study clearly indicates that the thin film is crystalline and its orientation is highly controlled in both horizontal and vertical directions relative to the substrate. This report provides the first confirmation of details of not only the crystallinity but also the orientation of 3-D MOF thin film using synchrotron XRD. Moreover, we also demonstrate its guest adsorption/desorption behavior by using in situ XRD measurements. The results presented here would promise useful insights for fabrication of MOF-based nanodevices in the future.

  17. A Rapid Method for Deposition of Sn-Doped GaN Thin Films on Glass and Polyethylene Terephthalate Substrates

    NASA Astrophysics Data System (ADS)

    Pat, Suat; Özen, Soner; Korkmaz, Şadan

    2018-01-01

    We report the influence of Sn doping on microstructure, surface, and optical properties of GaN thin films deposited on glass and polyethylene terephthalate (PET) substrate. Sn-doped GaN thin films have been deposited by thermionic vacuum arc (TVA) at low temperature. TVA is a rapid deposition technology for thin film growth. Surface and optical properties of the thin films were presented. Grain size, height distribution, roughness values were determined. Grain sizes were calculated as 20 nm and 13 nm for glass and PET substrates, respectively. Nano crystalline forms were shown by field emission scanning electron microscopy. Optical band gap values were determined by optical methods and photoluminescence measurement. The optical band gap values of Sn doped GaN on glass and PET were determined to be approximately ˜3.40 eV and ˜3.47 eV, respectively. As a result, TVA is a rapid and low temperature deposition technology for the Sn doped GaN deposited on glass and PET substrate.

  18. Charge transport through exciton shelves in cadmium chalcogenide quantum dot-DNA nano-bioelectronic thin films

    NASA Astrophysics Data System (ADS)

    Goodman, Samuel M.; Noh, Hyunwoo; Singh, Vivek; Cha, Jennifer N.; Nagpal, Prashant

    2015-02-01

    Quantum dot (QD), or semiconductor nanocrystal, thin films are being explored for making solution-processable devices due to their size- and shape-tunable bandgap and discrete higher energy electronic states. While DNA has been extensively used for the self-assembly of nanocrystals, it has not been investigated for the simultaneous conduction of multiple energy charges or excitons via exciton shelves (ES) formed in QD-DNA nano-bioelectronic thin films. Here, we present studies on charge conduction through exciton shelves, which are formed via chemically coupled QDs and DNA, between electronic states of the QDs and the HOMO-LUMO levels in the complementary DNA nucleobases. While several challenges need to be addressed in optimizing the formation of devices using QD-DNA thin films, a higher charge collection efficiency for hot-carriers and our detailed investigations of charge transport mechanism in these thin films highlight their potential for applications in nano-bioelectronic devices and biological transducers.

  19. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    NASA Astrophysics Data System (ADS)

    Paliwal, Ayushi; Sharma, Savita; Tomar, Monika; Singh, Fouran; Gupta, Vinay

    2016-07-01

    Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO3 (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol-gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au9+ ions at a fluence of 1 × 1012 ions cm-2. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  20. Crystalline, Highly Oriented MOF Thin Film: the Fabrication and Application.

    PubMed

    Fu, Zhihua; Xu, Gang

    2017-05-01

    The thin film of metal-organic frameworks (MOFs) is a rapidly developing research area which has tremendous potential applications in many fields. One of the major challenges in this area is to fabricate MOF thin film with good crystallinity, high orientation and well-controlled thickness. In order to address this challenge, different appealing approaches have been studied intensively. Among various oriented MOF films, many efforts have also been devoted to developing novel properties and broad applications, such as in gas separator, thermoelectric, storage medium and photovoltaics. As a result, there has been a large demand for fundamental studies that can provide guidance and experimental data for further applications. In this account, we intend to present an overview of current synthetic methods for fabricating oriented crystalline MOF thin film and bring some updated applications. We give our perspective on the background, preparation and applications that led to the developments in this area and discuss the opportunities and challenges of using crystalline, highly oriented MOF thin film. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effect on the properties of ITO thin films in Gamma environment

    NASA Astrophysics Data System (ADS)

    Sofi, A. H.; Shah, M. A.; Asokan, K.

    2018-04-01

    The present study reports the effect of gamma irradiation of varying doses (0-200 kGy) on the physical properties of the indium tin oxide (ITO) thin films. The films were fabricated by thermal evaporation method using indium-tin (InSn) ingots followed by an oxidation in atmosphere at a temperature of 550 °C. X-ray diffraction analysis confirmed the body-centered cubic (BCC) structure corresponds to the ITO thin films, high phase purity and a variation in crystallite size between 30-44 nm. While the optical studies revealed an increase in transmission as well as variation in optical band gap, the electrical studies confirmed n-type semiconductive behavior of the thin films, increase in mobility and a decrease in resistivity from 2.33×10-2 - 9.31×10-4 Ωcm with the increase in gamma dose from 0-200 kGy. The gamma irradiation caused totally electronic excitation and resulted in this modifications. The degenerate electron gas model was considered when attempting to understand the prevalent scattering mechanism in gamma irradiated ITO thin films.

  2. Self-assembled micro-/nanostructured WO3 thin films by aqueous chemical growth and their applications in H2 and CO2 sensing

    NASA Astrophysics Data System (ADS)

    Sone, B. T.; Nkosi, S. S.; Nkosi, M. M.; Coetsee-Hugo, E.; Swart, H. C.; Maaza, M.

    2018-05-01

    Application of thin film technology is increasing in many areas such as energy production, energy saving, telecommunications, protective and smart coatings, etc. This increased application creates a need for simple, cost-effective methods for the synthesis of highly multifunctional metal oxide thin films. The technique of Aqueous Chemical Growth is presented in this paper as a simple inexpensive means of producing WO3 thin films that find applications in gas sensing, electrochromism and photocatalysis. We demonstrate, through this technique, that heterogeneous nucleation and growth of WO3 thin films on plain glass substrates takes place at low pHs and low temperatures (75-95 °C) without the use of surfactants and template directing methods. The substrates used needed no surface-modification. On the plain glass substrates (soda lime silicates) a variety of micro-nanostructures could be observed most important of which were nanoplatelets that acted as a basic building block for the self-assembly of more hierarchical 3-d microspheres and thin films. The dominant crystallographic structure observed through X-ray diffraction analysis was found to be hexagonal-WO3 and monoclinic WO3. The thin films produced showed a fair degree of porosity. Some of the thin films on glass showed ability to sense, unaided, H2 at 250 °C. Sensor responses were observed to be 1 - 2 orders of magnitude. The films also demonstrated potential to sense CO2 even though this could only be achieved using high concentrations of CO2 gas at temperatures of 300 °C and above. The sensor responses at 300 °C were estimated to be less than 1 order of magnitude.

  3. Thickness-dependence of optical constants for Ta2O5 ultrathin films

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Xu; Zheng, Yu-Xiang; Cai, Qing-Yuan; Lin, Wei; Wu, Kang-Ning; Mao, Peng-Hui; Zhang, Rong-Jun; Zhao, Hai-bin; Chen, Liang-Yao

    2012-09-01

    An effective method for determining the optical constants of Ta2O5 thin films deposited on crystal silicon (c-Si) using spectroscopic ellipsometry (SE) measurement with a two-film model (ambient-oxide-interlayer-substrate) was presented. Ta2O5 thin films with thickness range of 1-400 nm have been prepared by the electron beam evaporation (EBE) method. We find that the refractive indices of Ta2O5 ultrathin films less than 40 nm drop with the decreasing thickness, while the other ones are close to those of bulk Ta2O5. This phenomenon was due to the existence of an interfacial oxide region and the surface roughness of the film, which was confirmed by the measurement of atomic force microscopy (AFM). Optical properties of ultrathin film varying with the thickness are useful for the design and manufacture of nano-scaled thin-film devices.

  4. Plasma emission spectroscopy and its relation to the refractive index of silicon nitride thin films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sanginés, R.; Abundiz-Cisneros, N.; Hernández Utrera, O.; Diliegros-Godines, C.; Machorro-Mejía, R.

    2018-03-01

    In this work, we present a thorough study on the relation between the plasma emission and the change of the silicon nitride thin films refractive index. Thin films were grown by reactive magnetron direct current sputtering technique and deposited onto silicon wafers at different fluxes of Ar and N2 and at different working pressures. This procedure, at certain deposition parameters, produced poor quality films, i.e. films with refractive index other than pure Si3N4 films. The emission of the plasma was interrogated in real time by means of optical emission spectroscopy (OES) observing at the vicinity of the trget location. In addition, optical properties of the films were measured by in situ ellipsometric-spectroscopy and then correlated with OES observations. Changes in the film refractive index could be deduced from changes in plasma emission applying a principal component analysis.

  5. Surface Morphology of Vapor-Deposited Chitosan: Evidence of Solid-State Dewetting during the Formation of Biopolymer Films.

    PubMed

    Retamal, Maria Jose; Corrales, Tomas P; Cisternas, Marcelo A; Moraga, Nicolas H; Diaz, Diego I; Catalan, Rodrigo E; Seifert, Birger; Huber, Patrick; Volkmann, Ulrich G

    2016-03-14

    Chitosan is a useful and versatile biopolymer with several industrial and biological applications. Whereas its physical and physicochemical bulk properties have been explored quite intensively in the past, there is a lack of studies regarding the morphology and growth mechanisms of thin films of this biopolymer. Of particular interest for applications in bionanotechnology are ultrathin films with thicknesses under 500 Å. Here, we present a study of thin chitosan films prepared in a dry process using physical vapor deposition and in situ ellipsometric monitoring. The prepared films were analyzed with atomic force microscopy in order to correlate surface morphology with evaporation parameters. We find that the surface morphology of our final thin films depends on both the optical thickness, i.e., measured with ellipsometry, and the deposition rate. Our work shows that ultrathin biopolymer films can undergo dewetting during film formation, even in the absence of solvents and thermal annealing.

  6. Elastic Moduli of Nanoparticle-Polymer Composite Thin Films via Buckling on Elastomeric Substrates

    NASA Astrophysics Data System (ADS)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2011-03-01

    Polymeric thin films find applications in diverse areas such as coatings, barriers and packaging. The dispersion of nanoparticles into the films was proven to be an effective method to generate tunable properties, particularly mechanical strength. However, there are very few methods for mechanical characterization of the composite thin films with high accuracy. In this study, nanometric polystyrene and polyvinyl alcohol films with uniformly dispersed cobalt and Cloisite nanoparticles at varying concentrations were synthesized via flow-coating and then transferred to crosslinked polydimethylsiloxane (PDMS) flexible substrates. The technique of Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) was employed to determine the elastic moduli of the films, which were calculated from the buckling patterns generated by applying compressive stresses. Results on moduli of films as a function of the concentrations of nanoparticles and the thicknesses of the composite films will be presented. *Corresponding author: alamgir@uakron.edu

  7. Structural and Electromagnetic Properties of Ni-Mn-Ga Thin Films Deposited on Si Substrates

    NASA Astrophysics Data System (ADS)

    Pereira, M. J.; Lourenço, A. A. C. S.; Amaral, V. S.

    2014-07-01

    Ni2MnGa thin films raise great interest due to their properties, which provide them with strong potential for technological applications. Ni2MnGa thin films were prepared by r.f. sputtering deposition on Si substrates at low temperature (400 ºC). Film thicknesses in the range 10-120 nm were obtained. A study of the structural, magnetic and electrical properties of the films is presented. We find that the deposited films show some degree of crystallinity, with coexisting cubic and tetragonal structural phases, the first one being preponderant over the latter, particularly in the thinner films. The films possess soft magnetic properties and their coercivity is thickness dependent in the range 15-200 Oe at 300K. Electrical resistivity measurements signal the structural transition and suggest the occurrence of avalanche and return-point memory effects, in temperature cycling through the magnetic/structural transition range.

  8. Electronic structure of Fe1.08Te bulk crystals and epitaxial FeTe thin films on Bi2Te3

    NASA Astrophysics Data System (ADS)

    Arnold, Fabian; Warmuth, Jonas; Michiardi, Matteo; Fikáček, Jan; Bianchi, Marco; Hu, Jin; Mao, Zhiqiang; Miwa, Jill; Singh, Udai Raj; Bremholm, Martin; Wiesendanger, Roland; Honolka, Jan; Wehling, Tim; Wiebe, Jens; Hofmann, Philip

    2018-02-01

    The electronic structure of thin films of FeTe grown on Bi2Te3 is investigated using angle-resolved photoemission spectroscopy, scanning tunneling microscopy and first principles calculations. As a comparison, data from cleaved bulk Fe1.08Te taken under the same experimental conditions is also presented. Due to the substrate and thin film symmetry, FeTe thin films grow on Bi2Te3 in three domains, rotated by 0°, 120°, and 240°. This results in a superposition of photoemission intensity from the domains, complicating the analysis. However, by combining bulk and thin film data, it is possible to partly disentangle the contributions from three domains. We find a close similarity between thin film and bulk electronic structure and an overall good agreement with first principles calculations, assuming a p-doping shift of 65 meV for the bulk and a renormalization factor of around two. By tracking the change of substrate electronic structure upon film growth, we find indications of an electron transfer from the FeTe film to the substrate. No significant change of the film’s electronic structure or doping is observed when alkali atoms are dosed onto the surface. This is ascribed to the film’s high density of states at the Fermi energy. This behavior is also supported by the ab initio calculations.

  9. Characterization of ZnO:SnO{sub 2} (50:50) thin film deposited by RF magnetron sputtering technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cynthia, S. R.; Sanjeeviraja, C.; Ponmudi, S.

    2016-05-06

    Zinc oxide (ZnO) and tin oxide (SnO{sub 2}) thin films have attracted significant interest recently for use in optoelectronic application such as solar cells, flat panel displays, photonic devices, laser diodes and gas sensors because of their desirable electrical and optical properties and wide band gap. In the present study, thin films of ZnO:SnO{sub 2} (50:50) were deposited on pre-cleaned microscopic glass substrate by RF magnetron sputtering technique. The substrate temperature and RF power induced changes in structural, surface morphological, compositional and optical properties of the films have been studied.

  10. Thermoelectric studies of nanoporous thin films with adjusted pore-edge charges

    NASA Astrophysics Data System (ADS)

    Hao, Qing; Zhao, Hongbo; Xu, Dongchao

    2017-03-01

    In recent years, nanoporous thin films have been widely studied for thermoelectric applications. High thermoelectric performance is reported for nanoporous Si films, which is attributed to the dramatically reduced lattice thermal conductivity and bulk-like electrical properties. Porous materials can also be used in gas sensing applications by engineering the surface-trapped charges on pore edges. In this work, an analytical model is developed to explore the relationship between the thermoelectric properties and pore-edge charges in a periodic two-dimensional nanoporous material. The presented model can be widely used to analyze the measured electrical properties of general nanoporous thin films and two-dimensional materials.

  11. Reflective Coating for Lightweight X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, William W.; Windt, David; Hong, Mao-Ling; Saha, Timo; McClelland, Ryan; Sharpe, Marton; Dwivedi, Vivek H.

    2012-01-01

    X-ray reflective coating for next generation's lightweight, high resolution, optics for astronomy requires thin-film deposition that is precisely fine-tuned so that it will not distort the thin sub-mm substrates. Film of very low stress is required. Alternatively, mirror distortion can be cancelled by precisely balancing the deformation from multiple films. We will present results on metallic film deposition for the lightweight optics under development. These efforts include: low-stress deposition by magnetron sputtering and atomic layer deposition of the metals, balancing of gross deformation with two-layer depositions of opposite stresses and with depositions on both sides of the thin mirrors.

  12. Thin film transistors for flexible electronics: contacts, dielectrics and semiconductors.

    PubMed

    Quevedo-Lopez, M A; Wondmagegn, W T; Alshareef, H N; Ramirez-Bon, R; Gnade, B E

    2011-06-01

    The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed.

  13. Molecular dynamics simulations of Li transport between cathode crystals

    NASA Astrophysics Data System (ADS)

    Garofalini, S. H.

    The molecular dynamics (MD) computer simulation technique has been used to study the effect of an amorphous intergranular film (IGF) present in a polycrystalline cathode on Li transport. The solid electrolyte is a model lithium silicate glass while the cathode is a nanocrystalline vanadia with an amorphous V 2O 5 IGF separating the crystals. Thin (˜1 to a few nanometer thick) IGFs are known to be present in most polycrystalline oxide materials. However, the role of such a film on Li transport in oxide cathodes has not been addressed. Current scanning probe microscopy (SPM) studies have shown that the orientation of the layered nanocrystalline vanadia crystals near the cathode/solid electrolyte interface is not optimized for Li ion transport. While the precise structure of the material between the crystals has not been identified, initially it can be initially considered as likely to be a thin non-crystalline (amorphous) film. This is based on the ubiquitous presence of such a structure in other polycrystalline oxides. Also, and with more relevance to the materials used in thin film batteries, an amorphous film can be expected to form between nanocrystals that crystallized from an amorphous matrix, as would be the case in a deposited thin film cathode. Consistent with simulations of Li transport in amorphous vanadia, the current simulations show that Li ions diffuse more rapidly into the amorphous intergranular thin film than into the layered vanadia with the (0 0 1) planes parallel to the cathode/electrolyte interface.

  14. Demonstration of surface plasmons in metal island films and the effect of the surrounding medium--An undergraduate experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orfanides, P.; Buckner, T. F.; Buncick, M. C.

    2000-10-01

    We present a demonstration of the surface plasmon phenomenon as it occurs in thin metal island films. The metal films are deposited on glass microscope slides. The effect of the surface plasmon resonance may be observed visually on the slide without further apparatus. Heating the film changes the shape of the islands and therefore the resonant frequency of the surface plasmon and changes the color of the film. Placing the film in a dielectric medium changes the resonance condition for the surface plasmon again and changes the color again. We show this by coating the slides with commercially available liquidsmore » with different indices of refraction. We present a theoretical model that assumes the islands are oblate spheroids. There are enough details given so that the equations can be programed and the theoretical optical absorbance can be reproduced. We also present a modification to the theory so that the shift in resonant frequency can be calculated when the spheroids are immersed in the index fluids. We describe our apparatus for making thin films and our optical spectrometer system. We then present optical absorbance measurements of thin films of both Ag and Au in air and in two liquids with different indices of refraction. (c) 2000 American Association of Physics Teachers.« less

  15. Characterization of ion-assisted induced absorption in A-Si thin-films used for multivariate optical computing

    NASA Astrophysics Data System (ADS)

    Nayak, Aditya B.; Price, James M.; Dai, Bin; Perkins, David; Chen, Ding Ding; Jones, Christopher M.

    2015-06-01

    Multivariate optical computing (MOC), an optical sensing technique for analog calculation, allows direct and robust measurement of chemical and physical properties of complex fluid samples in high-pressure/high-temperature (HP/HT) downhole environments. The core of this MOC technology is the integrated computational element (ICE), an optical element with a wavelength-dependent transmission spectrum designed to allow the detector to respond sensitively and specifically to the analytes of interest. A key differentiator of this technology is it uses all of the information present in the broadband optical spectrum to determine the proportion of the analyte present in a complex fluid mixture. The detection methodology is photometric in nature; therefore, this technology does not require a spectrometer to measure and record a spectrum or a computer to perform calculations on the recorded optical spectrum. The integrated computational element is a thin-film optical element with a specific optical response function designed for each analyte. The optical response function is achieved by fabricating alternating layers of high-index (a-Si) and low-index (SiO2) thin films onto a transparent substrate (BK7 glass) using traditional thin-film manufacturing processes (e.g., ion-assisted e-beam vacuum deposition). A proprietary software and process are used to control the thickness and material properties, including the optical constants of the materials during deposition to achieve the desired optical response function. The ion-assisted deposition is useful for controlling the densification of the film, stoichiometry, and material optical constants as well as to achieve high deposition growth rates and moisture-stable films. However, the ion-source can induce undesirable absorption in the film; and subsequently, modify the optical constants of the material during the ramp-up and stabilization period of the e-gun and ion-source, respectively. This paper characterizes the unwanted absorption in the a-Si thin-film using advanced thin-film metrology methods, including spectroscopic ellipsometry and Fourier transform infrared (FTIR) spectroscopy. The resulting analysis identifies a fundamental mechanism contributing to this absorption and a method for minimizing and accounting for the unwanted absorption in the thin-film such that the exact optical response function can be achieved.

  16. Thin film solar cells: research in an industrial perspective.

    PubMed

    Edoff, Marika

    2012-01-01

    Electricity generation by photovoltaic conversion of sunlight is a technology in strong growth. The thin film technology is taking market share from the dominant silicon wafer technology. In this article, the market for photovoltaics is reviewed, the concept of photovoltaic solar energy conversion is discussed and more details are given about the present technological limitations of thin film solar cell technology. Special emphasis is given for solar cells which employ Cu(In,Ga)Se(2) and Cu(2)ZnSn(S,Se)(4) as the sunlight-absorbing layer.

  17. Photothermal measurement of absorption and scattering losses in thin films excited by surface plasmons.

    PubMed

    Domené, Esteban A; Balzarotti, Francisco; Bragas, Andrea V; Martínez, Oscar E

    2009-12-15

    We present a novel noncontact, photothermal technique, based on the focus error signal of a commercial CD pickup head that allows direct determination of absorption in thin films. Combined with extinction methods, this technique yields the scattering contribution to the losses. Surface plasmon polaritons are excited using the Kretschmann configuration in thin Au films of varying thickness. By measuring the extinction and absorption simultaneously, it is shown that dielectric constants and thickness retrieval leads to inconsistencies if the model does not account for scattering.

  18. Laser patterning of transparent polymers assisted by plasmon excitation.

    PubMed

    Elashnikov, R; Trelin, A; Otta, J; Fitl, P; Mares, D; Jerabek, V; Svorcik, V; Lyutakov, O

    2018-06-13

    Plasmon-assisted lithography of thin transparent polymer films, based on polymer mass-redistribution under plasmon excitation, is presented. The plasmon-supported structures were prepared by thermal annealing of thin Ag films sputtered on glass or glass/graphene substrates. Thin films of polymethylmethacrylate, polystyrene and polylactic acid were then spin-coated on the created plasmon-supported structures. Subsequent laser beam writing, at the wavelength corresponding to the position of plasmon absorption, leads to mass redistribution and patterning of the thin polymer films. The prepared structures were characterized using UV-Vis spectroscopy and confocal and AFM microscopy. The shape of the prepared structures was found to be strongly dependent on the substrate type. The mechanism leading to polymer patterning was examined and attributed to the plasmon-heating. The proposed method makes it possible to create different patterns in polymer films without the need for wet technological stages, powerful light sources or a change in the polymer optical properties.

  19. Scanning Angle Raman spectroscopy in polymer thin film characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Vy H.T.

    The focus of this thesis is the application of Raman spectroscopy for the characterization of thin polymer films. Chapter 1 provides background information and motivation, including the fundamentals of Raman spectroscopy for chemical analysis, scanning angle Raman scattering and scanning angle Raman scattering for applications in thin polymer film characterization. Chapter 2 represents a published manuscript that focuses on the application of scanning angle Raman spectroscopy for the analysis of submicron thin films with a description of methodology for measuring the film thickness and location of an interface between two polymer layers. Chapter 3 provides an outlook and future directionsmore » for the work outlined in this thesis. Appendix A, contains a published manuscript that outlines the use of Raman spectroscopy to aid in the synthesis of heterogeneous catalytic systems. Appendix B and C contain published manuscripts that set a foundation for the work presented in Chapter 2.« less

  20. Rapid fabrication of hierarchically structured supramolecular nanocomposite thin films in one minute

    DOEpatents

    Xu, Ting; Kao, Joseph

    2016-11-08

    Functional nanocomposites containing nanoparticles of different chemical compositions may exhibit new properties to meet demands for advanced technology. It is imperative to simultaneously achieve hierarchical structural control and to develop rapid, scalable fabrication to minimize degradation of nanoparticle properties and for compatibility with nanomanufacturing. The assembly kinetics of supramolecular nanocomposite in thin films is governed by the energetic cost arising from defects, the chain mobility, and the activation energy for inter-domain diffusion. By optimizing only one parameter, the solvent fraction in the film, the assembly kinetics can be precisely tailored to produce hierarchically structured thin films of supramolecular nanocomposites in approximately one minute. Moreover, the strong wavelength dependent optical anisotropy in the nanocomposite highlights their potential applications for light manipulation and information transmission. The present invention opens a new avenue in designing manufacture-friendly continuous processing for the fabrication of functional nanocomposite thin films.

  1. Synthesis of ZnO thin film by sol-gel spin coating technique for H2S gas sensing application

    NASA Astrophysics Data System (ADS)

    Nimbalkar, Amol R.; Patil, Maruti G.

    2017-12-01

    In this present work, zinc oxide (ZnO) thin film synthesized by a simple sol-gel spin coating technique. The structural, morphology, compositional, microstructural, optical, electrical and gas sensing properties of the film were studied by using XRD, FESEM, EDS, XPS, HRTEM, Raman, FTIR and UV-vis techniques. The ZnO thin film shows hexagonal wurtzite structure with a porous structured morphology. Gas sensing performance of synthesized ZnO thin film was tested initially for H2S gas at different operating temperatures as well as concentrations. The maximum gas response is achieved towards H2S gas at 300 °C operating temperature, at 100 ppm gas concentration as compared to other gases like CH3OH, Cl2, NH3, LPG, CH3COCH3, and C2H5OH with a good stability.

  2. Nanostructured PdO Thin Film from Langmuir-Blodgett Precursor for Room-Temperature H2 Gas Sensing.

    PubMed

    Choudhury, Sipra; Betty, C A; Bhattacharyya, Kaustava; Saxena, Vibha; Bhattacharya, Debarati

    2016-07-06

    Nanoparticulate thin films of PdO were prepared using the Langmuir-Blodgett (LB) technique by thermal decomposition of a multilayer film of octadecylamine (ODA)-chloropalladate complex. The stable complex formation of ODA with chloropalladate ions (present in subphase) at the air-water interface was confirmed by the surface pressure-area isotherm and Brewster angle microscopy. The formation of nanocrystalline PdO thin film after thermal decomposition of as-deposited LB film was confirmed by X-ray diffraction and Raman spectroscopy. Nanocrystalline PdO thin films were further characterized by using UV-vis and X-ray photoelectron spectroscopic (XPS) measurements. The XPS study revealed the presence of prominent Pd(2+) with a small quantity (18%) of reduced PdO (Pd(0)) in nanocrystalline PdO thin film. From the absorption spectroscopic measurement, the band gap energy of PdO was estimated to be 2 eV, which was very close to that obtained from specular reflectance measurements. Surface morphology studies of these films using atomic force microscopy and field-emission scanning electron microscopy indicated formation of nanoparticles of size 20-30 nm. These PdO film when employed as a chemiresistive sensor showed H2 sensitivity in the range of 30-4000 ppm at room temperature. In addition, PdO films showed photosensitivity with increase in current upon shining of visible light.

  3. Superconducting Thin Films for the Enhancement of Superconducting Radio Frequency Accelerator Cavities

    NASA Astrophysics Data System (ADS)

    Burton, Matthew C.

    Bulk niobium (Nb) superconducting radio frequency (SRF) cavities are currently the preferred method for acceleration of charged particles at accelerating facilities around the world. However, bulk Nb cavities have poor thermal conductance, impose material and design restrictions on other components of a particle accelerator, have low reproducibility and are approaching the fundamental material-dependent accelerating field limit of approximately 50MV/m. Since the SRF phenomena occurs at surfaces within a shallow depth of ˜1 microm, a proposed solution to this problem has been to utilize thin film technology to deposit superconducting thin films on the interior of cavities to engineer the active SRF surface in order to achieve cavities with enhanced properties and performance. Two proposed thin film applications for SRF cavities are: 1) Nb thin films coated on bulk cavities made of suitable castable metals (such as copper or aluminum) and 2) multilayer films designed to increase the accelerating gradient and performance of SRF cavities. While Nb thin films on copper (Cu) cavities have been attempted in the past using DC magnetron sputtering (DCMS), such cavities have never performed at the bulk Nb level. However, new energetic condensation techniques for film deposition, such as High Power Impulse Magnetron Sputtering (HiPIMS), offer the opportunity to create suitably thick Nb films with improved density, microstructure and adhesion compared to traditional DCMS. Clearly use of such novel technique requires fundamental studies to assess surface evolution and growth modes during deposition and resulting microstructure and surface morphology and the correlation with RF superconducting properties. Here we present detailed structure-property correlative research studies done on Nb/Cu thin films and NbN- and NbTiN-based multilayers made using HiPIMS and DCMS, respectively.

  4. Barium titanate nanocrystals and nanocrystal thin films: Synthesis, ferroelectricity, and dielectric properties

    NASA Astrophysics Data System (ADS)

    Huang, Limin; Chen, Zhuoying; Wilson, James D.; Banerjee, Sarbajit; Robinson, Richard D.; Herman, Irving P.; Laibowitz, Robert; O'Brien, Stephen

    2006-08-01

    Advanced applications for high k dielectric and ferroelectric materials in the electronics industry continues to demand an understanding of the underlying physics in decreasing dimensions into the nanoscale. We report the synthesis, processing, and electrical characterization of thin (<100nm thick) nanostructured thin films of barium titanate (BaTiO3) built from uniform nanoparticles (<20nm in diameter). We introduce a form of processing as a step toward the ability to prepare textured films based on assembly of nanoparticles. Essential to this approach is an understanding of the nanoparticle as a building block, combined with an ability to integrate them into thin films that have uniform and characteristic electrical properties. Our method offers a versatile means of preparing BaTiO3 nanocrystals, which can be used as a basis for micropatterned or continuous BaTiO3 nanocrystal thin films. We observe the BaTiO3 nanocrystals crystallize with evidence of tetragonality. We investigated the preparation of well-isolated BaTiO3 nanocrystals smaller than 10nm with control over aggregation and crystal densities on various substrates such as Si, Si /SiO2, Si3N4/Si, and Pt-coated Si substrates. BaTiO3 nanocrystal thin films were then prepared, resulting in films with a uniform nanocrystalline grain texture. Electric field dependent polarization measurements show spontaneous polarization and hysteresis, indicating ferroelectric behavior for the BaTiO3 nanocrystalline films with grain sizes in the range of 10-30nm. Dielectric measurements of the films show dielectic constants in the range of 85-90 over the 1KHz -100KHz, with low loss. We present nanocrystals as initial building blocks for the preparation of thin films which exhibit highly uniform nanostructured texture and grain sizes.

  5. Exploring substrate/ionomer interaction under oxidizing and reducing environments

    DOE PAGES

    Tesfaye, Meron; MacDonald, Andrew N.; Dudenas, Peter J.; ...

    2018-02-09

    Local gas transport limitation attributed to the ionomer thin-film in the catalyst layer is a major deterrent to widespread commercialization of polymer-electrolyte fuel cells. So far functionality and limitations of these thin-films have been assumed identical in the anode and cathode. In this study, Nafion ionomer thin-films on platinum(Pt) support were exposed to H 2 and air as model schemes, mimicking anode and cathode catalyst layers. Findings indicate decreased swelling, increased densification of ionomer matrix, and increased humidity-induced aging rates in reducing environment, compared to oxidizing and inert environments. Observed phenomenon could be related to underlying Pt-gas interaction dictating Pt-ionomermore » behavior. Presented results could have significant implications about the disparate behavior of ionomer thin-film in anode and cathode catalyst layers.« less

  6. Spray-coated carbon nanotube thin-film transistors with striped transport channels

    NASA Astrophysics Data System (ADS)

    Jeong, Minho; Lee, Kunhak; Choi, Eunsuk; Kim, Ahsung; Lee, Seung-Beck

    2012-12-01

    We present results for the transfer characteristics of carbon nanotube thin-film transistors (CNT-TFTs) that utilize single-walled carbon nanotube thin-films prepared by direct spray-coating on the substrate. By varying the number of spray-coatings (Nsp) and the concentration of nanotubes in solution (CNT), it was possible to control the conductivity of the spray-coated nanotube thin-film from 129 to 0.1 kΩ/□. Also, by introducing stripes into the channel of the CNT-TFT, and thereby reducing the number of metallic percolation paths between source and drain, it was possible to enhance the on/off current ratio 1000-fold, from 10 to 104, demonstrating that it may be possible to utilize spray-coating as a method to fabricate CNT-TFTs for large area switching array applications.

  7. High-mobility ambipolar ZnO-graphene hybrid thin film transistors.

    PubMed

    Song, Wooseok; Kwon, Soon Yeol; Myung, Sung; Jung, Min Wook; Kim, Seong Jun; Min, Bok Ki; Kang, Min-A; Kim, Sung Ho; Lim, Jongsun; An, Ki-Seok

    2014-02-11

    In order to combine advantages of ZnO thin film transistors (TFTs) with a high on-off ratio and graphene TFTs with extremely high carrier mobility, we present a facile methodology for fabricating ZnO thin film/graphene hybrid two-dimensional TFTs. Hybrid TFTs exhibited ambipolar behavior, an outstanding electron mobility of 329.7 ± 16.9 cm(2)/V·s, and a high on-off ratio of 10(5). The ambipolar behavior of the ZnO/graphene hybrid TFT with high electron mobility could be due to the superimposed density of states involving the donor states in the bandgap of ZnO thin films and the linear dispersion of monolayer graphene. We further established an applicable circuit model for understanding the improvement in carrier mobility of ZnO/graphene hybrid TFTs.

  8. Potential of thin-film solar cell module technology

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Ferber, R. R.; Costogue, E. N.

    1985-01-01

    During the past five years, thin-film cell technology has made remarkable progress as a potential alternative to crystalline silicon cell technology. The efficiency of a single-junction thin-film cell, which is the most promising for use in flat-plate modules, is now in the range of 11 percent with 1-sq cm cells consisting of amorphous silicon, CuInSe2 or CdTe materials. Cell efficiencies higher than 18 percent, suitable for 15 percent-efficient flat plate modules, would require a multijunction configuration such as the CdTe/CuInSe2 and tandem amorphous-silicon (a-Si) alloy cells. Assessments are presented of the technology status of thin-film-cell module research and the potential of achieving the higher efficiencies required for large-scale penetration into the photovoltaic (PV) energy market.

  9. Angular distribution of hybridization in sputtered carbon thin film

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wang, H.; Wei, Z. C.

    2017-08-01

    The sp3/sp2 ratio of sputtered carbon thin film depends on the ion bombardment process and tailors the physical properties of carbon thin film. In present work, we report the angular distribution of hybridization in magnetron sputtered carbon thin film for the first time. By x-ray photoelectron spectra analyses, it is found that the sp3/sp2 ratio increases linearly with increasing the deposition angle from 0 to 90 degree, which could be attributed to the enhancement of direct knocking-out of near-surface target atoms. In addition, we also derive the sp3/sp2 ratio by simulation on complex permittivity in terahertz frequency using a modified percolation approximation tunneling model. Those derived data consist with the results from x-ray photoelectron spectroscopy.

  10. Nanomagnetic behavior of fullerene thin films in Earth magnetic field in dark and under polarization light influences.

    PubMed

    Koruga, Djuro; Nikolić, Aleksandra; Mihajlović, Spomenko; Matija, Lidija

    2005-10-01

    In this paper magnetic fields intensity of C60 thin films of 60 nm and 100 nm thickness under the influence of polarization lights are presented. Two proton magnetometers were used for measurements. Significant change of magnetic field intensity in range from 2.5 nT to 12.3 nT is identified as a difference of dark and polarization lights of 60 nm and 100 nm thin films thickness, respectively. Specific power density of polarization light was 40 mW/cm2. Based on 200 measurement data average value of difference between magnetic intensity of C60 thin films, with 60 nm and 100 nm thickness, after influence of polarization light, were 3.9 nT and 9.9 nT respectively.

  11. Fabrication of high quality Cu2SnS3 thin film solar cell with 1.12% power conversion efficiency obtain by low cost environment friendly sol-gel technique

    NASA Astrophysics Data System (ADS)

    Chaudhari, J. J.; Joshi, U. S.

    2018-03-01

    Cu2SnS3 (CTS) is an emerging ternery chalcogenide material with great potential application in thin film solar cells. We present here high quality Cu2SnS3 thin films using a facile spin coating method. The as deposited films of CTS were sulphurized in a graphite box using tubular furnace at 520 °C for 60 min at the rate of 2.83 °C min-1 in argon atmosphere. X-ray diffraction (XRD) and Raman spectroscopy studies confirm tetragonal phase and absence of any secondary phase in sulphurized CTS thin films. X-ray photoelectron spectroscopy (XPS) demonstrates that Cu and Sn are in +1 and +4 oxidation state respectively. Surface morphology of CTS films were analyzed by field emission scanning electron microscope and atomic force microscope (AFM), which revealed a smooth surface with roughness (RMS) of 6.32 nm for sulphurized CTS film. Hall measurements confirmed p-type conductivity with hole concentartion of sulphurized CTS thin film is of 6.5348 × 1020 cm-3. UV-vis spectra revealed a direct energy band gap varies from 1.45 eV to 1.01 eV for as-deposited and sulphurized CTS thin film respectively. Such band gap values are optimum for semiconductor material as an absorber layer of thin film solar cell. The CTS thin film solar cell had following structure: SLG/FTO/ZnO/CTS/Al with short circuit current density of (Jsc) of 11.6 mA cm-2, open circuit voltage (Voc) of 0.276 V, active area of 0.16 cm2, fill factor (FF) of 35% and power conversion efficiency of 1.12% under AM 1.5 (100 mW cm-2) illumination in simulated standard test conditions.

  12. Experimental study of Pulsed Laser Deposited Cu2ZnSnS 4 (CZTS) thin films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Nandur, Abhishek S.

    Thin film solar cells are gaining momentum as a renewable energy source. Reduced material requirements (< 2 mum in total film thickness) coupled with fast, low-cost production processes make them an ideal alternative to Si (>15 mum in total thickness) solar cells. Among the various thin film solar absorbers that have been proposed, CZTS (Cu2ZnSnS4) has become the subject of intense interest because of its optimal band gap (1.45 eV), high absorption coefficient (104 cm--1 ) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since films are deposited under high vacuum with excellent stoichiometry transfer from the target. Defect-free, near-stoichiometric poly-crystalline CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of fabrication parameters such as laser energy density, deposition time, substrate temperature and sulfurization (annealing in sulfur) on the surface morphology, composition and optical absorption of the CZTS thin films were examined. The results show that the presence of secondary phases, present both in the bulk and on the surface, affected the electrical and optical properties of the CZTS thin films and the CZTS based TFSCs. After selectively etching away the secondary phases with DIW, HCl and KCN, it was observed that their removal improved the performance of CZTS based TFSCs. Optimal CZTS thin films exhibited an optical band gap of 1.54 eV with an absorption coefficient of 4x10 4cm-1 with a low volume of secondary phases. A TFSC fabricated with the best CZTS thin film obtained from the experimental study done in this thesis showed a conversion efficiency of 6.41% with Voc = 530 mV, Jsc= 27.5 mA/cm2 and a fill factor of 0.44.

  13. Note: Setup for chemical atmospheric control during in situ grazing incidence X-ray scattering of printed thin films

    DOE PAGES

    Pröller, Stephan; Moseguí González, Daniel; Zhu, Chenhuii; ...

    2017-06-01

    In order to tailor the assembling of polymers and organic molecules, a deeper understanding of the kinetics involved in thin film production is necessary. While post-production characterization only provides insight on the final film structure, more sophisticated experimental setups are needed to probe the structure formation processes in situ during deposition. The drying kinetics of a deposited organic thin film strongly influences the assembling process on the nanometer scale. Lastly, this work presents an experimental setup that enables fine control of the atmosphere composition surrounding the sample during slot die coating, while simultaneously probing the film formation kinetics using inmore » situ grazing incidence X-ray scattering and spectroscopy.« less

  14. Influence of vacuum annealing on the properties of Cu2SnS3 thin films using low cost ultrasonic spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Rahaman, Sabina; Sunil, M. Anantha; Shaik, Habibuddin; Ghosh, Kaustab

    2018-05-01

    Deposition of Cu2SnS3 (CTS) thin films is successfully carried out on soda lime glass substrate using low cost ultrasonic spray pyrolysis technique. Vacuum annealing of CTS films is carried out at different temperatures 350°C, 400°C and 450°C. The present work is to study the effect of annealing temperature on the crystal structure, surface morphology and optical properties of CTS thin films. Structural studies confirm the formation of CTS phase. Raman analysis is carried out to study presence of defects with annealing temperature. Optical studies confirm that film prepared at 450°C temperature is suitable as absorber material for photovoltaic applications.

  15. Monolithic microcircuit techniques and processes

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1972-01-01

    Brief discussions of the techniques used to make dielectric and metal thin film depositions for monolithic circuits are presented. Silicon nitride deposition and the properties of silicon nitride films are discussed. Deposition of dichlorosilane and thermally grown silicon dioxide are reported. The deposition and thermal densification of borosilicate, aluminosilicate, and phosphosilicate glasses are discussed. Metallization for monolithic circuits and the characteristics of thin films are also included.

  16. Perovskite CaCu3Ti4O12 thin films for capacitive applications: From the growth to the nanoscopic imaging of the permittivity

    NASA Astrophysics Data System (ADS)

    Fiorenza, P.; Lo Nigro, R.; Sciuto, A.; Delugas, P.; Raineri, V.; Toro, R. G.; Catalano, M. R.; Malandrino, G.

    2009-03-01

    The physical properties of CaCu3Ti4O12 (CCTO) thin films grown by metal organic chemical vapor deposition on LaAlO3 substrates have been investigated. The structural, compositional, and optical characteristics have been evaluated, and all the collected data demonstrated that in the obtained (001) epitaxial CCTO thin films, a low defect density is present. The electrical behavior of the deposited thin films has been studied from both micro- and nanoscopic points of view and compared with the properties reported in the literature. The electrical measurements on large area capacitors indicated that in the investigated work frequency range (102-106 Hz), the CCTO films possess dielectric constants close to the theoretically predicted "intrinsic" value and almost independent of the frequency. The nanoscopic dielectric investigation demonstrated that the deposited CCTO films possess n-type semiconducting nature and that a colossal extrinsic behavior can be locally achieved.

  17. Investigation of hydrogen concentration and hardness of ion irradiated organically modified silicate thin films

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Prenzel, T.; Harriman, T. A.; Wang, Y. Q.; Lucca, D. A.; Williams, D.; Nastasi, M.; Dong, J.; Mehner, A.

    2010-06-01

    A study of the effects of ion irradiation of organically modified silicate thin films on the loss of hydrogen and increase in hardness is presented. NaOH catalyzed SiNa wO xC yH z thin films were synthesized by sol-gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. After drying at 300 °C, the films were irradiated with 125 keV H + or 250 keV N 2+ at fluences ranging from 1 × 10 14 to 2.5 × 10 16 ions/cm 2. Elastic Recoil Detection (ERD) was used to investigate resulting hydrogen concentration as a function of ion fluence and irradiating species. Nanoindentation was used to measure the hardness of the irradiated films. FT-IR spectroscopy was also used to examine resulting changes in chemical bonding. The resulting hydrogen loss and increase in hardness are compared to similarly processed acid catalyzed silicate thin films.

  18. Structural and optical properties of Na-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Akcan, D.; Gungor, A.; Arda, L.

    2018-06-01

    Zn1-xNaxO (x = 0.0-0.05) solutions have been synthesized by the sol-gel technique using Zinc acetate dihydrate and Sodium acetate which were dissolved into solvent and chelating agent. Na-doped ZnO nanoparticles were obtained from solutions to find phase and crystal structure. Na-doped ZnO films have been deposited onto glass substrate by using sol-gel dip coating system. The effects of dopant concentration on the structure, morphology, and optical properties of Na-doped ZnO thin films deposited on glass substrate are investigated. Characterization of Zn1-xNaxO nanoparticles and thin films are examined using differential thermal analysis (DTA)/thermogravimetric analysis (TGA), Scanning electron microscope (SEM) and X-Ray diffractometer (XRD). Optical properties of Zn1-xNaxO thin films were obtained by using PG Instruments UV-Vis-NIR spectrophotometer in 190-1100 nm range. The structure, morphology, and optical properties of thin films are presented.

  19. Effects of Various Parameters on Structural and Optical Properties of CBD-Grown ZnS Thin Films: A Review

    NASA Astrophysics Data System (ADS)

    Sinha, Tarkeshwar; Lilhare, Devjyoti; Khare, Ayush

    2018-02-01

    Zinc sulfide (ZnS) thin films deposited by chemical bath deposition (CBD) technique have proved their capability in a wide area of applications including electroluminescent and display devices, solar cells, sensors, and field emitters. These semiconducting thin films have attracted a much attention from the scientific community for industrial and research purposes. In this article, we provide a comprehensive review on the effect of various parameters on various properties of CBD-grown ZnS films. In the first part, we discuss the historical background of ZnS, its basic properties, and the advantages of the CBD technique. Detailed discussions on the film growth, structural and optical properties of ZnS thin films affected by various parameters, such as bath temperature and concentration, deposition time, stirring speed, complexing agents, pH value, humidity in the environment, and annealing conditions, are also presented. In later sections, brief information about the recent studies and findings is also added to explore the scope of research work in this field.

  20. Modeling the mechanical properties of ultra-thin polymer films [Structural modeling of films of atomic scale thickness

    DOE PAGES

    Espinosa-Loza, Francisco; Stadermann, Michael; Aracne-Ruddle, Chantel; ...

    2017-11-16

    A modeling method to extract the mechanical properties of ultra-thin films (10–100 nm thick) from experimental data generated by indentation of freestanding circular films using a spherical indenter is presented. The relationship between the mechanical properties of the film and experimental parameters including load, and deflection are discussed in the context of a constitutive material model, test variables, and analytical approaches. As a result, elastic and plastic regimes are identified by comparison of finite element simulation and experimental data.

  1. Modeling the mechanical properties of ultra-thin polymer films [Structural modeling of films of atomic scale thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa-Loza, Francisco; Stadermann, Michael; Aracne-Ruddle, Chantel

    A modeling method to extract the mechanical properties of ultra-thin films (10–100 nm thick) from experimental data generated by indentation of freestanding circular films using a spherical indenter is presented. The relationship between the mechanical properties of the film and experimental parameters including load, and deflection are discussed in the context of a constitutive material model, test variables, and analytical approaches. As a result, elastic and plastic regimes are identified by comparison of finite element simulation and experimental data.

  2. Platinum thin film resistors as accurate and stable temperature sensors

    NASA Technical Reports Server (NTRS)

    Diehl, W.

    1984-01-01

    The measurement characteristics of thin-Pt-film temperature sensors fabricated using advanced methods are discussed. The limitations of wound-wire Pt temperature sensors and the history of Pt-film development are outlined, and the commonly used film-deposition, structuring, and trimming methods are presented in a table. The development of a family of sputtered film resistors is described in detail and illustrated with photographs of the different types. The most commonly used tolerances are reported as + or - 0.3 C + 0.5 percent of the temperature measured.

  3. Optical and morphological characterizations of pyronin dye-poly (vinyl alcohol) thin films formed on glass substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meral, Kadem, E-mail: kademm@atauni.edu.tr; Arik, Mustafa, E-mail: marik@tatauni.edu.tr; Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr

    Thin films of pyronin dye mixed with poly(vinyl alcohol) (PVA) on glass substrate were prepared by using spin-coating technique. The optical and morphological properties of the thin films were studied by UV-Vis., steady-state fluorescence spectroscopies and atomic force microscopy (AFM). The thin films on glass substrate were fabricated at various [PVA]/[dye] (P/D) ratios. Hence, the monomeric and H-aggregates thin films of pyronin dye mixed with PVA were formed as a function of the dye and PVA concentration. It was determined that while the monomeric thin films showed strong fluorescence, the formation of H-aggregates in the thin film caused to decreasingmore » the fluorescence intensity. AFM studies demonstrated that the morphology of the thin film was drastically varied with changing the optical property of the thin film such as monomeric and H-aggregates thin films.« less

  4. Thermal annealing induced structural and optical properties of Se{sub 72}Te{sub 25}In{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, H. P.; Dwivedi, D. K., E-mail: todkdwivedi@gmail.com; Shukla, Nitesh

    2016-05-06

    Thin films of a- Se{sub 72}Te{sub 25}In{sub 3} were prepared by vacuum evaporation technique in a base pressure of 10{sup -6} Torr on to well cleaned glass substrate. a-Se{sub 72}Te{sub 25}In{sub 3} thin films were annealed at different temperatures below their crystallization temperatures for 2h. The structural analysis of the films has been investigated using X-ray diffraction technique. The optical absorption spectra of these films were measured in the wavelength range 400-1100 nm in order to derive the absorption coefficient of these films. The optical band gap of as prepared and annealed films as a function of photon energy hasmore » been studied. It has been found that the optical band gap decreases with increasing annealing temperatures in the present system.« less

  5. Variation of microstructural and optical properties in SILAR grown ZnO thin films by thermal treatment.

    PubMed

    Valanarasu, S; Dhanasekaran, V; Chandramohan, R; Kulandaisamy, I; Sakthivelu, A; Mahalingam, T

    2013-08-01

    The influence of thermal treatment on the structural and morphological properties of the ZnO films deposited by double dip Successive ionic layer by adsorption reaction is presented. The effect of annealing temperature and time in air ambient is presented in detail. The deposited films were annealed from 200 to 400 degrees C in air and the structural properties were determined as a function of annealing temperature by XRD. The studies revealed that films were exhibiting preferential orientation along (002) plane. The other structural parameters like the crystallite size (D), micro strain (epsilon), dislocation density (delta) and stacking fault (alpha) of as-deposited and annealed ZnO films were evaluated and reported. The optical properties were also studied and the band gap of the ZnO thins films varied from 3.27 to 3.04 eV with the annealing temperature. SEM studies revealed that the hexagonal shaped grains with uniformly distributed morphology in annealed ZnO thin films. It has been envisaged using EDX analysis that the near stoichiometric composition of the film can be attained by thermal treatment during which microstructural changes do occur.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval-Paz, M.G., E-mail: myrnasandoval@udec.cl; Rodríguez, C.A.; Porcile-Saavedra, P.F.

    Copper (I) selenide thin films with orthorhombic and cubic structure were deposited on glass substrates by using the chemical bath deposition technique. The effects of the solution pH on the films growth and subsequently the structural, optical and electrical properties of the films were studied. Films with orthorhombic structure were obtained from baths wherein both metal complex and hydroxide coexist; while films with cubic structure were obtained from baths where the metal hydroxide there is no present. The structural modifications are accompanied by changes in bandgap energy, morphology and electrical resistivity of the films. - Graphical abstract: “Study of themore » crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution” by M. G. Sandoval-Paz, C. A. Rodríguez, P. F. Porcile-Saavedra, C. Trejo-Cruz. Display Omitted - Highlights: • Copper (I) selenide thin films were obtained by chemical bath deposition. • Orthorhombic to cubic phase change was induced by varying the reaction solution pH. • Orthorhombic phase is obtained mainly from a hydroxides cluster mechanism. • Cubic phase is obtained mainly from an ion by ion mechanism. • Structural, optical and electrical properties are presented as a function of pH.« less

  7. Growth and Etch Rate Study of Low Temperature Anodic Silicon Dioxide Thin Films

    PubMed Central

    Ashok, Akarapu; Pal, Prem

    2014-01-01

    Silicon dioxide (SiO2) thin films are most commonly used insulating films in the fabrication of silicon-based integrated circuits (ICs) and microelectromechanical systems (MEMS). Several techniques with different processing environments have been investigated to deposit silicon dioxide films at temperatures down to room temperature. Anodic oxidation of silicon is one of the low temperature processes to grow oxide films even below room temperature. In the present work, uniform silicon dioxide thin films are grown at room temperature by using anodic oxidation technique. Oxide films are synthesized in potentiostatic and potentiodynamic regimes at large applied voltages in order to investigate the effect of voltage, mechanical stirring of electrolyte, current density and the water percentage on growth rate, and the different properties of as-grown oxide films. Ellipsometry, FTIR, and SEM are employed to investigate various properties of the oxide films. A 5.25 Å/V growth rate is achieved in potentiostatic mode. In the case of potentiodynamic mode, 160 nm thickness is attained at 300 V. The oxide films developed in both modes are slightly silicon rich, uniform, and less porous. The present study is intended to inspect various properties which are considered for applications in MEMS and Microelectronics. PMID:24672287

  8. Room Temperature Tunable Multiferroic Properties in Sol-Gel-Derived Nanocrystalline Sr(Ti1−xFex)O3−δ Thin Films

    PubMed Central

    Wang, Yi-Guang; Liu, Qiu-Xiang; Jiang, Yan-Ping; Jiang, Li-Li

    2017-01-01

    Sr(Ti1−xFex)O3−δ (0 ≤ x ≤ 0.2) thin films were grown on Si(100) substrates with LaNiO3 buffer-layer by a sol-gel process. Influence of Fe substitution concentration on the structural, ferroelectric, and magnetic properties, as well as the leakage current behaviors of the Sr(Ti1−xFex)O3−δ thin films, were investigated by using the X-ray diffractometer (XRD), atomic force microscopy (AFM), the ferroelectric test system, and the vibrating sample magnetometer (VSM). After substituting a small amount of Ti ion with Fe, highly enhanced ferroelectric properties were obtained successfully in SrTi0.9Ti0.1O3−δ thin films, with a double remanent polarization (2Pr) of 1.56, 1.95, and 9.14 μC·cm−2, respectively, for the samples were annealed in air, oxygen, and nitrogen atmospheres. The leakage current densities of the Fe-doped SrTiO3 thin films are about 10−6–10−5 A·cm−2 at an applied electric field of 100 kV·cm−1, and the conduction mechanism of the thin film capacitors with various Fe concentrations has been analyzed. The ferromagnetic properties of the Sr(Ti1−xFex)O3−δ thin films have been investigated, which can be correlated to the mixed valence ions and the effects of the grain boundary. The present results revealed the multiferroic nature of the Sr(Ti1−xFex)O3−δ thin films. The effect of the annealing environment on the room temperature magnetic and ferroelectric properties of Sr(Ti0.9Fe0.1)O3−δ thin films were also discussed in detail. PMID:28885579

  9. Method for fabricating thin films of pyrolytic carbon

    DOEpatents

    Brassell, Gilbert W.; Lewis, Jr., John; Weber, Gary W.

    1982-01-01

    The present invention relates to a method for fabricating ultra-thin films of pyrolytic carbon. Pyrolytic carbon is vapor deposited onto a concave surface of a heated substrate to a total uniform thickness in the range of about 0.1 to 1.0 micrometer. The carbon film on the substrate is provided with a layer of adherent polymeric resin. The resulting composite film of pyrolytic carbon and polymeric resin is then easily separated from the substrate by shrinking the polymeric resin coating with thermally induced forces.

  10. Femtosecond timing measurement and control using ultrafast organic thin films

    NASA Astrophysics Data System (ADS)

    Naruse, Makoto; Mitsu, Hiroyuki; Furuki, Makoto; Iwasa, Izumi; Sato, Yasuhiro; Tatsuura, Satoshi; Tian, Minquan

    2003-12-01

    We show a femtosecond timing measurement and control technique using a squarylium dye J-aggregate film, which is an organic thin film that acts as an ultrafast two-dimensional optical switch. Optical pulse timing is directly mapped to space-domain position on the film, and the large area and ultrafast response offer a femtosecond-resolved, large dynamic range, real-time, multichannel timing measurement capability. A timing fluctuation (jitter, wander, and skew) reduction architecture is presented and experimentally demonstrated.

  11. Tunable thin-film optical filters for hyperspectral microscopy

    NASA Astrophysics Data System (ADS)

    Favreau, Peter F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2013-02-01

    Hyperspectral imaging was originally developed for use in remote sensing applications. More recently, it has been applied to biological imaging systems, such as fluorescence microscopes. The ability to distinguish molecules based on spectral differences has been especially advantageous for identifying fluorophores in highly autofluorescent tissues. A key component of hyperspectral imaging systems is wavelength filtering. Each filtering technology used for hyperspectral imaging has corresponding advantages and disadvantages. Recently, a new optical filtering technology has been developed that uses multi-layered thin-film optical filters that can be rotated, with respect to incident light, to control the center wavelength of the pass-band. Compared to the majority of tunable filter technologies, these filters have superior optical performance including greater than 90% transmission, steep spectral edges and high out-of-band blocking. Hence, tunable thin-film optical filters present optical characteristics that may make them well-suited for many biological spectral imaging applications. An array of tunable thin-film filters was implemented on an inverted fluorescence microscope (TE 2000, Nikon Instruments) to cover the full visible wavelength range. Images of a previously published model, GFP-expressing endothelial cells in the lung, were acquired using a charge-coupled device camera (Rolera EM-C2, Q-Imaging). This model sample presents fluorescently-labeled cells in a highly autofluorescent environment. Linear unmixing of hyperspectral images indicates that thin-film tunable filters provide equivalent spectral discrimination to our previous acousto-optic tunable filter-based approach, with increased signal-to-noise characteristics. Hence, tunable multi-layered thin film optical filters may provide greatly improved spectral filtering characteristics and therefore enable wider acceptance of hyperspectral widefield microscopy.

  12. Numerical Optimization of a Bifacial Bi-Glass Thin-Film a-Si:H Solar Cell for Higher Conversion Efficiency

    NASA Astrophysics Data System (ADS)

    Berrian, Djaber; Fathi, Mohamed; Kechouane, Mohamed

    2018-02-01

    Bifacial solar cells that maximize the energy output per a square meter have become a new fashion in the field of photovoltaic cells. However, the application of thin-film material on bifacial solar cells, viz., thin-film amorphous hydrogenated silicon ( a- Si:H), is extremely rare. Therefore, this paper presents the optimization and influence of the band gap, thickness and doping on the performance of a glass/glass thin-film a- Si:H ( n- i- p) bifacial solar cell, using a computer-aided simulation tool, Automat for simulation of hetero-structures (AFORS-HET). It is worth mentioning that the thickness and the band gap of the i-layer are the key parameters in achieving higher efficiency and hence it has to be handled carefully during the fabrication process. Furthermore, an efficient thin-film a- Si:H bifacial solar cell requires thinner and heavily doped n and p emitter layers. On the other hand, the band gap of the p-layer showed a dramatic reduction of the efficiency at 2.3 eV. Moreover, a high bifaciality factor of more than 92% is attained, and top efficiency of 10.9% is revealed under p side illumination. These optimizations demonstrate significant enhancements of the recent experimental work on thin-film a- Si:H bifacial solar cells and would also be useful for future experimental investigations on an efficient a- Si:H thin-film bifacial solar cell.

  13. A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries.

    PubMed

    Reyes Jiménez, Antonia; Klöpsch, Richard; Wagner, Ralf; Rodehorst, Uta C; Kolek, Martin; Nölle, Roman; Winter, Martin; Placke, Tobias

    2017-05-23

    The next generation of lithium ion batteries (LIBs) with increased energy density for large-scale applications, such as electric mobility, and also for small electronic devices, such as microbatteries and on-chip batteries, requires advanced electrode active materials with enhanced specific and volumetric capacities. In this regard, silicon as anode material has attracted much attention due to its high specific capacity. However, the enormous volume changes during lithiation/delithiation are still a main obstacle avoiding the broad commercial use of Si-based electrodes. In this work, Si-based thin film electrodes, prepared by magnetron sputtering, are studied. Herein, we present a sophisticated surface design and electrode structure modification by amorphous carbon layers to increase the mechanical integrity and, thus, the electrochemical performance. Therefore, the influence of amorphous C thin film layers, either deposited on top (C/Si) or incorporated between the amorphous Si thin film layers (Si/C/Si), was characterized according to their physical and electrochemical properties. The thin film electrodes were thoroughly studied by means of electrochemical impedance spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. We can show that the silicon thin film electrodes with an amorphous C layer showed a remarkably improved electrochemical performance in terms of capacity retention and Coulombic efficiency. The C layer is able to mitigate the mechanical stress during lithiation of the Si thin film by buffering the volume changes and to reduce the loss of active lithium during solid electrolyte interphase formation and cycling.

  14. Polycaprolactone thin films for retinal tissue engineering and drug delivery

    NASA Astrophysics Data System (ADS)

    Steedman, Mark Rory

    This dissertation focuses on the development of polycaprolactone thin films for retinal tissue engineering and drug delivery. We combined these thin films with techniques such as micro and nanofabrication to develop treatments for age-related macular degeneration (AMD), a disease that leads to the death of rod and cone photoreceptors. Current treatments are only able to slow or limit the progression of the disease, and photoreceptors cannot be regenerated or replaced by the body once lost. The first experiments presented focus on a potential treatment for AMD after photoreceptor death has occurred. We developed a polymer thin film scaffold technology to deliver retinal progenitor cells (RPCs) to the affected area of the eye. Earlier research showed that RPCs destined to become photoreceptors are capable of incorporating into a degenerated retina. In our experiments, we showed that RPC attachment to a micro-welled polycaprolactone (PCL) thin film surface enhanced the differentiation of these cells toward a photoreceptor fate. We then used our PCL thin films to develop a drug delivery device capable of sustained therapeutic release over a multi-month period that would maintain an effective concentration of the drug in the eye and eliminate the need for repeated intraocular injections. We first investigated the biocompatibility of PCL in the rabbit eye. We injected PCL thin films into the anterior chamber or vitreous cavity of rabbit eyes and monitored the animals for up to 6 months. We found that PCL thin films were well tolerated in the rabbit eye, showing no signs of chronic inflammation due to the implant. We then developed a multilayered thin film device containing a microporous membrane. We loaded these devices with lyophilized proteins and quantified drug elution for 10 weeks, finding that both bovine serum albumin and immunoglobulin G elute from these devices with zero order release kinetics. These experiments demonstrate that PCL is an extremely useful biomaterial that may be used to treat AMD in multiple ways. Through both tissue engineering and drug delivery techniques we have established that PCL thin films have the potential to revolutionize the treatment of AMD.

  15. Thin Film Solid Lubricant Development

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.

    1997-01-01

    Tribological coatings for high temperature sliding applications are addressed. A sputter-deposited bilayer coating of gold and chromium is investigated as a potential solid lubricant for protection of alumina substrates during sliding at high temperature. Evaluation of the tribological properties of alumina pins sliding against thin sputtered gold films on alumina substrates is presented.

  16. Study of metal/ZnO based thin film ultraviolet photodetectors: The effect of induced charges on the dynamics of photoconductivity relaxation

    NASA Astrophysics Data System (ADS)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay

    2010-02-01

    Ultraviolet photoconductivity relaxation in ZnO thin films deposited by rf magnetron sputtering are investigated. Effect of oxygen partial pressure in the reactive gas mixture and film thickness on the photoconductivity transients is studied. A different photodetector configuration comprising ZnO thin film with an ultrathin overlayer of metals like Cu, Al, Sn, Au, Cr, and Te was designed and tested. Photoresponse signal were found to be stronger (four to seven times) in these configurations than the pure ZnO thin films. Sn(30 nm)/ZnO sample exhibits highest responsivity of ˜8.57 kV/W whereas Te(20 nm)/ZnO structure presents highest sensitivity of ˜31.3×103 compared to unloaded ZnO thin film. Enhancement in the photoresponse of ZnO thin films is attributed to the change in surface conductivity due to induced charge carriers at the interface because of the difference in work function and oxygen affinity values of metal overlayer with the underlying semiconducting layer. Charge carrier transfer from the metal layer to ZnO creates a surplus of electrons at the interface; a fraction of which are captured by the defect centers (traps) at the surface whereas the remaining one represents free carriers in the conduction band and are responsible for the enhanced photoconductivity.

  17. Thin Film Ceramic Strain Sensor Development for High Temperature Environments

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M.; Laster, Kimala L.

    2008-01-01

    The need for sensors to operate in harsh environments is illustrated by the need for measurements in the turbine engine hot section. The degradation and damage that develops over time in hot section components can lead to catastrophic failure. At present, the degradation processes that occur in the harsh hot section environment are poorly characterized, which hinders development of more durable components, and since it is so difficult to model turbine blade temperatures, strains, etc, actual measurements are needed. The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in harsh environments. The effort at the NASA Glenn Research Center (GRC) to develop high temperature thin film ceramic static strain gauges for application in turbine engines is described, first in the fan and compressor modules, and then in the hot section. The near-term goal of this research effort was to identify candidate thin film ceramic sensor materials and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. A thorough literature search was conducted for ceramics that have the potential for application as high temperature thin film strain gauges chemically and physically compatible with the NASA GRCs microfabrication procedures and substrate materials. Test results are given for tantalum, titanium and zirconium-based nitride and oxynitride ceramic films.

  18. Structural and optoelectronic studies on Ag-CdS quantum dots

    NASA Astrophysics Data System (ADS)

    Ibrahim Mohammed S., M.; Gubari, Ghamdan M. M.; Huse, Nanasaheb P.; Dive, Avinash S.; Sharma, Ramphal

    2018-05-01

    In the present study, we have successfully deposited CdS quantum dot thin films and Ag doped CdS on a glass slide by simple and economical chemical bath deposition at room temperature. The X-ray diffraction method analysis reveals that CdS thin films exhibit hexagonal structure when compared with standard JCPDS data. The estimated average crystallite size of the quantum dots and resulted in the least crystallite size of ˜9 nm. a comparison between the optical and electrical properties of the films before and after doping Ag was made through measuring and analyzing the curves for UV and I-V. From UV absorption spectra we observed that the samples exhibited a band edge near ˜400 nm with a slight deviation with the presence of excitonic peak for both CdS and Ag doped CdS. The presence of excitonic peak may be referred to the formation of quantum dots. The calculated band gap energy of thin films was found to be 3.45 eV and 3.15 eV for both CdS and Ag doped CdS thin films respectively, where the optical absorption spectra of Ag doped CdS nanoparticles also exhibit shift with respect to that of CdS quantum dots thin films. The photosensitive of CdS thin films show an increase in photocurrent when Ag doped CdS.

  19. Integrating Epitaxial-Like Pb(Zr,Ti)O3 Thin-Film into Silicon for Next-Generation Ferroelectric Field-Effect Transistor

    PubMed Central

    Park, Jae Hyo; Kim, Hyung Yoon; Jang, Gil Su; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Kiaee, Zohreh; Joo, Seung Ki

    2016-01-01

    The development of ferroelectric random-access memory (FeRAM) technology with control of grain boundaries would result in a breakthrough for new nonvolatile memory devices. The excellent piezoelectric and electrical properties of bulk ferroelectrics are degraded when the ferroelectric is processed into thin films because the grain boundaries then form randomly. Controlling the nature of nucleation and growth are the keys to achieving a good crystalline thin-film. However, the sought after high-quality ferroelectric thin-film has so far been thought to be impossible to make, and research has been restricted to atomic-layer deposition which is extremely expensive and has poor reproducibility. Here we demonstrate a novel epitaxial-like growth technique to achieve extremely uniform and large rectangular-shaped grains in thin-film ferroelectrics by dividing the nucleation and growth phases. With this technique, it is possible to achieve 100-μm large uniform grains, even made available on Si, which is large enough to fabricate a field-effect transistor in each grain. The electrical and reliability test results, including endurance and retention test results, were superior to other FeRAMs reported so far and thus the results presented here constitute the first step toward the development of FeRAM using epitaxial-like ferroelectric thin-films. PMID:27005886

  20. Instability, rupture and fluctuations in thin liquid films: Theory and computations

    NASA Astrophysics Data System (ADS)

    Gvalani, Rishabh; Duran-Olivencia, Miguel; Kalliadasis, Serafim; Pavliotis, Grigorios

    2017-11-01

    Thin liquid films are ubiquitous in natural phenomena and technological applications. They are commonly studied via deterministic hydrodynamic equations, but thermal fluctuations often play a crucial role that still needs to be understood. An example of this is dewetting, which involves the rupture of a thin liquid film and the formation of droplets. Such a process is thermally activated and requires fluctuations to be taken into account self-consistently. Here we present an analytical and numerical study of a stochastic thin-film equation derived from first principles. We scrutinise the behaviour of the stochastic thin film equation in the limit of perfectly correlated noise along the wall-normal direction. We also perform Monte Carlo simulations of the stochastic equation by adopting a numerical scheme based on a spectral collocation method. The numerical scheme allows us to explore the fluctuating dynamics of the thin film and the behaviour of the system's free energy close to rupture. Finally, we also study the effect of the noise intensity on the rupture time, which is in good agreement with previous works. Imperial College London (ICL) President's PhD Scholarship; European Research Council Advanced Grant No. 247031; EPSRC Grants EP/L025159, EP/L020564, EP/P031587, EP/L024926, and EP/L016230/1.

  1. Structure and Ferroelectric Properties of High Tc BiScO3-PbTiO3 Epitaxial Thin Films.

    PubMed

    Wasa, Kiyotaka; Yoshida, Shinya; Hanzawa, Hiroaki; Adachi, Hideaki; Matsunaga, Toshiyuki; Tanaka, Shuji

    2016-10-01

    Piezoelectric ceramics of new composition with higher Curie temperature T c are extensively studied for better piezoelectric microelectromechanical systems (MEMS). Apart from the compositional research, enhanced T c could be achieved in a modified structure. We have considered that a designed laminated structure of Pb(Zr, Ti)O 3 (PZT)-based thin film, i.e., relaxed heteroepitaxial epitaxial thin film, is one of the promising modified structures to enhance T c . This structure exhibits an extraordinarily high T c , i.e., [Formula: see text] (bulk [Formula: see text]). In this paper, we have fabricated the designed laminated structure of high T c (1-x)BiScO 3 -xPbTiO 3 . T c of BS-0.8PT thin films was found to be extraordinarily high, i.e., [Formula: see text] (bulk T c , [Formula: see text]). Their ferroelectric performances were comparable to those of PZT-based thin films. The present BS-xPT thin films have a high potential for fabrication of high-temperature-stable piezoelectric MEMS. The mechanism of the enhanced T c is probably the presence of the mechanically stable interface to temperature in the laminated structure. We believe this designed laminated structure can extract fruitful properties of bulk ferroelectric ceramics.

  2. Effect of scanning speed on continuous wave laser scribing of metal thin films: theory and experiment

    NASA Astrophysics Data System (ADS)

    Shahbazi, AmirHossein; Koohian, Ata; Madanipour, Khosro

    2017-01-01

    In this paper continuous wave laser scribing of the metal thin films have been investigated theoretically and experimentally. A formulation is presented based on parameters like beam power, spot size, scanning speed and fluence thresholds. The role of speed on the transient temperature and tracks width is studied numerically. By using two frameworks of pulsed laser ablation of thin films and laser printing on paper, the relation between ablation width and scanning speed has been derived. Furthermore, various speeds of the focused 450 nm continuous laser diode with an elliptical beam spot applied to a 290 nm copper thin film coated on glass, experimentally. The beam power was 150 mW after spatial filtering. By fitting the theoretical formulation to the experimental data, the threshold fluence and energy were obtained to be 13.2 J mm-2 and 414~μ J respectively. An anticipated theoretical parameter named equilibrium~border was verified experimentally. It shows that in the scribing of the 290 nm copper thin film, at a distance where the intensity reaches about 1/e of its maximum value, the absorbed fluence on the surface is equal to zero. Therefore the application of continuous laser in metal thin film ablation has different mechanism from pulsed laser drilling and beam scanning in printers.

  3. PREFACE: Innovations in Thin Film Processing and Characterisation

    NASA Astrophysics Data System (ADS)

    Henrion, Gérard; Belmahi, Mohammed; Andrieu, Stéphane

    2010-07-01

    This special issue contains selected papers which were presented as invited or contributed communications at the 4th International Conference on Innovation in Thin Film Processing and Characterization (ITFPC'09) which was held on 17-20 November, 2009 in Nancy (France) Jointly organized by the French Vacuum Society and the Institut Jean Lamour-a joint research unit specialized in materials, metallurgy, nano-sciences, plasmas and surfaces-the ITFPC conferences aim at providing an open forum to discuss the progress and latest developments in thin film processing and engineering. Invited lectures aim particularly at providing overviews on scientific topics while contributed communications focus on particular cutting-edge aspects of thin film science and technology, including CVD, PVD and ion beam assisted processes. The 2009 conference was organized along the 6 main following topics: Thin films processing and surface engineering Numerical simulation and thin film characterization Protective applications of thin films Energy, environment and health applications of thin films Micro- and nano-patterning of thin films New properties and applications resulting from patterned thin films which were completed by a special half day session devoted to industry-supported innovation. 180 scientists from 20 worldwide countries attended the different sessions along with the 9 invited lectures and 130 contributions were given. Besides the outstanding scientific program, a half-day tutorial session preceded the conference. During the short courses, emphasis was laid on: Lithography for thin film patterning Mechanical properties of thin films Principles and applications of reactive sputtering processes. The French Vacuum Society granted financial aid to PhD students who applied for it in order to encourage the participation of young scientists. The 19 papers published in this volume were accepted for publication after peerreviewal as for regular papers. As chairmen of this conference, we gratefully acknowledge all referees for their valuable work sometimes with a rather short delay. We also express our gratitude to the international members of the scientific committee who actively contributed to ensure an attractive program in proposing invited speakers; it was a difficult task for them to select only 9 out of the large number of proposed recognized experts. Finally, ITFPC'09 would not have been successful without the strong involvement and implication of the local organizing committee and the support of our partners. They will all find here our sincere thanks. Gérard Henrion, Mohammed Belmahi and Stéphane Andrieu Co-chairmen of the ITFPC-09 Conference.

  4. PREFACE: INERA Workshop: Transition Metal Oxide Thin Films-functional Layers in "Smart windows" and Water Splitting Devices. Parallel session of the 18th International School on Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    2014-11-01

    The Special issue presents the papers for the INERA Workshop entitled "Transition Metal Oxides as Functional Layers in Smart windows and Water Splitting Devices", which was held in Varna, St. Konstantin and Elena, Bulgaria, from the 4th-6th September 2014. The Workshop is organized within the context of the INERA "Research and Innovation Capacity Strengthening of ISSP-BAS in Multifunctional Nanostructures", FP7 Project REGPOT 316309 program, European project of the Institute of Solid State Physics at the Bulgarian Academy of Sciences. There were 42 participants at the workshop, 16 from Sweden, Germany, Romania and Hungary, 11 invited lecturers, and 28 young participants. There were researchers present from prestigious European laboratories which are leaders in the field of transition metal oxide thin film technologies. The event contributed to training young researchers in innovative thin film technologies, as well as thin films characterization techniques. The topics of the Workshop cover the field of technology and investigation of thin oxide films as functional layers in "Smart windows" and "Water splitting" devices. The topics are related to the application of novel technologies for the preparation of transition metal oxide films and the modification of chromogenic properties towards the improvement of electrochromic and termochromic device parameters for possible industrial deployment. The Workshop addressed the following topics: Metal oxide films-functional layers in energy efficient devices; Photocatalysts and chemical sensing; Novel thin film technologies and applications; Methods of thin films characterizations; From the 37 abstracts sent, 21 manuscripts were written and later refereed. We appreciate the comments from all the referees, and we are grateful for their valuable contributions. Guest Editors: Assoc. Prof. Dr.Tatyana Ivanova Prof. DSc Kostadinka Gesheva Prof. DSc Hassan Chamatti Assoc. Prof. Dr. Georgi Popkirov Workshop Organizing Committee Prof.DSc Kostadinka Gesheva, Central Laboratory of Solar Energy and New Energy Sources, Bulgarian Academy of Sciences (CL SENES-BAS) - Chairperson Assoc. Prof. Dr Anna Szekeres - Institute of Solid State Physics- BAS Assoc. Prof Dr. Tatyana Ivanova - CL SENES -BAS Assist. Prof. Radostina Kamburova - ISSP-BAS

  5. Strain and Ni substitution induced ferromagnetism in LaCoO3 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Kumar, Vinod; Kumar, Rajesh; Kumar, Ravi

    2018-05-01

    We have grown epitaxial strained films of LaCoO3 and LaCo0.7Ni0.3O3 on LaAlO3 (100) substrate via pulsed laser deposition. Superconducting quantum interference device magnetization measurements show that, unlike its bulk counterpart, the ground state of the strained LaCoO3 on LAO is ferromagnetic. The saturation magnetization has been found increase strongly from a value of 118 emu/cm3 to 350 emu/ cm3 for Ni substituted thin film. Present study reveals that strain can stabilize FM order in these thin films down to low temperature, which can further be tuned to higher saturation magnetization with the Ni substitution.

  6. Superconducting YBa2Cu3O7- δ Thin Film Detectors for Picosecond THz Pulses

    NASA Astrophysics Data System (ADS)

    Probst, P.; Scheuring, A.; Hofherr, M.; Wünsch, S.; Il'in, K.; Semenov, A.; Hübers, H.-W.; Judin, V.; Müller, A.-S.; Hänisch, J.; Holzapfel, B.; Siegel, M.

    2012-06-01

    Ultra-fast THz detectors from superconducting YBa2Cu3O7- δ (YBCO) thin films were developed to monitor picosecond THz pulses. YBCO thin films were optimized by the introduction of CeO2 and PrBaCuO buffer layers. The transition temperature of 10 nm thick films reaches 79 K. A 15 nm thick YBCO microbridge (transition temperature—83 K, critical current density at 77 K—2.4 MA/cm2) embedded in a planar log-spiral antenna was used to detect pulsed THz radiation of the ANKA storage ring. First time resolved measurements of the multi-bunch filling pattern are presented.

  7. Optimization of high quality Cu2ZnSnS4 thin film by low cost and environment friendly sol-gel technique for thin film solar cells applications

    NASA Astrophysics Data System (ADS)

    Chaudhari, J. J.; Joshi, U. S.

    2018-05-01

    In this study kesterite Cu2ZnSnS4 (CZTS) thin films suitable for absorber layer in thin film solar cells (TFSCs) were successfully fabricated on glass substrate by sol-gel method. The effects of complexing agent on formation of CZTS thin films have been investigated. X-ray diffraction (XRD) analysis confirms formation of polycrystalline CZTS thin films with single phase kesterite structure. XRD and Raman spectroscopy analysis of CZTS thin films with optimized concentration of complexing agent confirmed formation of kesterite phase in CZTS thin films. The direct optical band gap energy of CZTS thin films is found to decrease from 1.82 to 1.50 eV with increase of concentration of complexing agent triethanolamine. Morphological analysis of CZTS thin films shows smooth, uniform and densely packed CZTS grains and increase in the grain size with increase of concentration of complexing agent. Hall measurements revealed that concentration of charge carrier increases and resistivity decreases in CZTS thin films as amount of complexing agent increases.

  8. Cadmium-free junction fabrication process for CuInSe.sub.2 thin film solar cells

    DOEpatents

    Ramanathan, Kannan V.; Contreras, Miguel A.; Bhattacharya, Raghu N.; Keane, James; Noufi, Rommel

    1999-01-01

    The present invention provides an economical, simple, dry and controllable semiconductor layer junction forming process to make cadmium free high efficiency photovoltaic cells having a first layer comprised primarily of copper indium diselenide having a thin doped copper indium diselenide n-type region, generated by thermal diffusion with a group II(b) element such as zinc, and a halide, such as chlorine, and a second layer comprised of a conventional zinc oxide bilayer. A photovoltaic device according the present invention includes a first thin film layer of semiconductor material formed primarily from copper indium diselenide. Doping of the copper indium diselenide with zinc chloride is accomplished using either a zinc chloride solution or a solid zinc chloride material. Thermal diffusion of zinc chloride into the copper indium diselenide upper region creates the thin n-type copper indium diselenide surface. A second thin film layer of semiconductor material comprising zinc oxide is then applied in two layers. The first layer comprises a thin layer of high resistivity zinc oxide. The second relatively thick layer of zinc oxide is doped to exhibit low resistivity.

  9. High-throughput combinatorial chemical bath deposition: The case of doping Cu (In, Ga) Se film with antimony

    NASA Astrophysics Data System (ADS)

    Yan, Zongkai; Zhang, Xiaokun; Li, Guang; Cui, Yuxing; Jiang, Zhaolian; Liu, Wen; Peng, Zhi; Xiang, Yong

    2018-01-01

    The conventional methods for designing and preparing thin film based on wet process remain a challenge due to disadvantages such as time-consuming and ineffective, which hinders the development of novel materials. Herein, we present a high-throughput combinatorial technique for continuous thin film preparation relied on chemical bath deposition (CBD). The method is ideally used to prepare high-throughput combinatorial material library with low decomposition temperatures and high water- or oxygen-sensitivity at relatively high-temperature. To check this system, a Cu(In, Ga)Se (CIGS) thin films library doped with 0-19.04 at.% of antimony (Sb) was taken as an example to evaluate the regulation of varying Sb doping concentration on the grain growth, structure, morphology and electrical properties of CIGS thin film systemically. Combined with the Energy Dispersive Spectrometer (EDS), X-ray Photoelectron Spectroscopy (XPS), automated X-ray Diffraction (XRD) for rapid screening and Localized Electrochemical Impedance Spectroscopy (LEIS), it was confirmed that this combinatorial high-throughput system could be used to identify the composition with the optimal grain orientation growth, microstructure and electrical properties systematically, through accurately monitoring the doping content and material composition. According to the characterization results, a Sb2Se3 quasi-liquid phase promoted CIGS film-growth model has been put forward. In addition to CIGS thin film reported here, the combinatorial CBD also could be applied to the high-throughput screening of other sulfide thin film material systems.

  10. Thin film cell development workshop report

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.

    1991-01-01

    The Thin Film Development Workshop provided an opportunity for those interested in space applications of thin film cells to debate several topics. The unique characteristics of thin film cells as well as a number of other issues were covered during the discussions. The potential of thin film cells, key research and development issues, manufacturing issues, radiation damage, substrates, and space qualification of thin film cells were discussed.

  11. Enhanced sensitivity for optical loss measurement in planar thin-films (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Hua-Kang

    2016-09-01

    An organic-inorganic hybrid material benefits from processing advantages of organics and high refractive indices of inorganics. We focus on a titanium oxide hydrate system combined with common bulk polymers. In particular, we target thin-film structures of a few microns in thickness. Traditional Beer-Lambert approaches for measuring optical losses can only provide an upper limit estimate. This sensitivity is highly limited when considering the low-losses required for mid-range optical applications, on the order of 0.1 cm-1. For intensity based measurements, improving the sensitivity requires an increase in the optical path length. Instead, a new sensitive technique suitable for simple planar thin films is required. A number of systems were modelled to measure optical losses in films of 1 micron thick. The presented techniques utilise evanescent waves and total internal reflection to increase optical path length through the material. It was found that a new way of using prism coupling provides the greatest improvement in sensitivity. In keeping the requirements on the material simple, this method for measuring loss is well suited to any future developments of new materials in thin-film structures.

  12. Composite polymeric film and method for its use in installing a very-thin polymeric film in a device

    DOEpatents

    Duchane, D.V.; Barthell, B.L.

    1982-04-26

    A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  13. Composite polymeric film and method for its use in installing a very thin polymeric film in a device

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1984-01-01

    A composite polymeric film and a method for its use in forming and installing a very thin (<10 .mu.m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectively dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to be successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  14. Unidirectional oxide hetero-interface thin-film diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon

    2015-10-05

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼10{sup 5} at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 10{sup 2} Hz < f < 10{sup 6} Hz, providing amore » high feasibility for practical applications.« less

  15. Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of Methylene blue

    NASA Astrophysics Data System (ADS)

    Velanganni, S.; Pravinraj, S.; Immanuel, P.; Thiruneelakandan, R.

    2018-04-01

    In the present manuscript, thin films of Zinc Oxide (ZnO) have been deposited on a FTO substrate using a simple successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) method. Cadmium Sulphide (CdS) nanoparticles are sensitized over ZnO thin films using SILAR method. The synthesized nanostructured CdS/ZnO heterojunction thin films was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), High resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy and Raman spectroscopy techniques. The band gap of CdS nanoparticles over ZnO nanostructure was found to be about 3.20 eV. The photocatalytic activities of the deposited CdS/ZnO thin films were evaluated by the degradation of methylene blue (MB) in an aqueous solution under sun light irradiation.

  16. High-mobility ambipolar ZnO-graphene hybrid thin film transistors

    PubMed Central

    Song, Wooseok; Kwon, Soon Yeol; Myung, Sung; Jung, Min Wook; Kim, Seong Jun; Min, Bok Ki; Kang, Min-A; Kim, Sung Ho; Lim, Jongsun; An, Ki-Seok

    2014-01-01

    In order to combine advantages of ZnO thin film transistors (TFTs) with a high on-off ratio and graphene TFTs with extremely high carrier mobility, we present a facile methodology for fabricating ZnO thin film/graphene hybrid two-dimensional TFTs. Hybrid TFTs exhibited ambipolar behavior, an outstanding electron mobility of 329.7 ± 16.9 cm2/V·s, and a high on-off ratio of 105. The ambipolar behavior of the ZnO/graphene hybrid TFT with high electron mobility could be due to the superimposed density of states involving the donor states in the bandgap of ZnO thin films and the linear dispersion of monolayer graphene. We further established an applicable circuit model for understanding the improvement in carrier mobility of ZnO/graphene hybrid TFTs. PMID:24513629

  17. Low Temperature Chemical Vapor Deposition Of Thin Film Magnets

    DOEpatents

    Miller, Joel S.; Pokhodnya, Kostyantyn I.

    2003-12-09

    A thin-film magnet formed from a gas-phase reaction of tetracyanoetheylene (TCNE) OR (TCNQ), 7,7,8,8-tetracyano-P-quinodimethane, and a vanadium-containing compound such as vanadium hexcarbonyl (V(CO).sub.6) and bis(benzene)vanalium (V(C.sub.6 H.sub.6).sub.2) and a process of forming a magnetic thin film upon at least one substrate by chemical vapor deposition (CVD) at a process temperature not exceeding approximately 90.degree. C. and in the absence of a solvent. The magnetic thin film is particularly suitable for being disposed upon rigid or flexible substrates at temperatures in the range of 40.degree. C. and 70.degree. C. The present invention exhibits air-stable characteristics and qualities and is particularly suitable for providing being disposed upon a wide variety of substrates.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Joshua, E-mail: joshuk7@uci.edu; Park, Sun-Jun; Nguyen, Thao

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. Themore » wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.« less

  19. The interaction of small particles and thin films of metals with gases. I - A brief review of the early stages of oxide formation

    NASA Technical Reports Server (NTRS)

    Poppa, H.

    1976-01-01

    Existing work on gas-solid reactions making use of thin film technologies is reviewed. The discussion concentrates on two major areas of gas-metal interactions: chemisorption and the early stages of oxidation of metals (characterized by a non-volatile reaction product) and catalytic surface reactions (featuring volatile reaction products). A brief survey of oxide formation on metals is presented. Here it is of importance to distinguish between reactions on continuous thin film substrates and reactions on particulate deposits. Small particle-gas interactions also affect the nucleation, growth and sintering processes of thin films. It is shown that various combinations of UHV and high resolution electron microscopy techniques, which include in situ experimentation, can provide the appropriate tools for studying angstrom particle chemistry.

  20. Mechanical design of thin-film diamond crystal mounting apparatus with optimized thermal contact and crystal strain for coherence preservation x-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Deming; Shvydko, Yury; Stoupin, Stanislav

    A method and mechanical design for a thin-film diamond crystal mounting apparatus for coherence preservation x-ray optics with optimized thermal contact and minimized crystal strain are provided. The novel thin-film diamond crystal mounting apparatus mounts a thin-film diamond crystal supported by a thick chemical vapor deposition (CVD) diamond film spacer with a thickness slightly thicker than the thin-film diamond crystal, and two groups of thin film thermal conductors, such as thin CVD diamond film thermal conductor groups separated by the thick CVD diamond spacer. The two groups of thin CVD film thermal conductors provide thermal conducting interface media with themore » thin-film diamond crystal. A piezoelectric actuator is integrated into a flexural clamping mechanism generating clamping force from zero to an optimal level.« less

  1. Single crystalline thin films as a novel class of electrocatalysts

    DOE PAGES

    Snyder, Joshua; Markovic, Nenad; Stamenkovic, Vojislav

    2013-01-01

    The ubiquitous use of single crystal metal electrodes has garnered invaluable insight into the relationship between surface atomic structure and functional electrochemical properties. But, the sensitivity of their electrochemical response to surface orientation and the amount of precious metal required can limit their use. We present here a generally applicable procedure for producing thin metal films with a large proportion of atomically flat (111) terraces without the use of an epitaxial template. Thermal annealing in a controlled atmosphere induces long-range ordering of magnetron sputtered thin metal films deposited on an amorphous substrate. The ordering transition in these thin metal filmsmore » yields characteristic (111) electrochemical signatures with minimal amount of material and provides an adequate replacement for oriented bulk single crystals. Our procedure can be generalized towards a novel class of practical multimetallic thin film based electrocatalysts with tunable near-surface compositional profile and morphology. Annealing of atomically corrugated sputtered thin film Pt-alloy catalysts yields an atomically smooth structure with highly crystalline, (111)-like ordered and Pt segregated surface that displays superior functional properties, bridging the gap between extended/bulk surfaces and nanoscale systems.« less

  2. Diamond Thin-Film Thermionic Generator

    NASA Astrophysics Data System (ADS)

    Clewell, J. M.; Ordonez, C. A.; Perez, J. M.

    1997-03-01

    Since the eighteen-hundreds scientists have sought to develop the highest thermal efficiency in heat engines such as thermionic generators. Modern research in the emerging diamond film industry has indicated the work functions of diamond thin-films can be much less than one electron volt, compelling fresh investigation into their capacity as thermionic generators and inviting new methodology for determining that efficiency. Our objective is to predict the efficiency of a low-work-function, degenerate semiconductor (diamond film) thermionic generator operated as a heat engine between two constant-temperature thermal reservoirs. Our presentation will focus on a theoretical model which predicts the efficiency of the system by employing a Monte Carlo computational technique from which we report results for the thermal efficiency and the thermionic current densities of diamond thin-films.

  3. Effect of thermal annealing on structure and optical band gap of amorphous Se{sub 72}Te{sub 25}Sb{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, D. K., E-mail: dwivedidkphys@rediffmail.com; Pathak, H. P., E-mail: dwivedidkphys@rediffmail.com; Shukla, Nitesh

    2014-04-24

    Thin films of a−Se{sub 72}Te{sub 25}Sb{sub 3} were prepared by vacuum evaporation technique in a base pressure of 10{sup −6} Torr on to well cleaned glass substrate. a−Se{sub 72}Te{sub 25}Sb{sub 3} thin films were annealed at different temperatures below their crystallization temperatures for 2h. The structural analysis of the films has been investigated using X-ray diffraction technique. The optical band gap of as prepared and annealed films as a function of photon energy in the wavelength range 400–1100 nm has been studied. It has been found that the optical band gap decreases with increasing annealing temperatures in the present system.

  4. Misfit layered Ca{sub 3}Co{sub 4}O{sub 9} as a high figure of merit p-type transparent conducting oxide film through solution processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksit, M.; Kolli, S. K.; Slauch, I. M.

    Ca{sub 3}Co{sub 4}O{sub 9} thin films synthesized through solution processing are shown to be high-performing, p-type transparent conducting oxides (TCOs). The synthesis method is a cost-effective and scalable process that consists of sol-gel chemistry, spin coating, and heat treatments. The process parameters can be varied to produce TCO thin films with sheet resistance as low as 5.7 kΩ/sq (ρ ≈ 57 mΩ cm) or with average visible range transparency as high as 67%. The most conductive Ca{sub 3}Co{sub 4}O{sub 9} TCO thin film has near infrared region optical transmission as high as 85%. The figure of merit (FOM) for the top-performing Ca{sub 3}Co{submore » 4}O{sub 9} thin film (151 MΩ{sup −1}) is higher than FOM values reported in the literature for all other solution processed, p-type TCO thin films and higher than most others prepared by physical vapor deposition and chemical vapor deposition. Transparent conductivity in misfit layered oxides presents new opportunities for TCO compositions.« less

  5. Qualitative and quantitative differentiation of gases using ZnO thin film gas sensors and pattern recognition analysis.

    PubMed

    Pati, Sumati; Maity, A; Banerji, P; Majumder, S B

    2014-04-07

    In the present work we have grown highly textured, ultra-thin, nano-crystalline zinc oxide thin films using a metal organic chemical vapor deposition technique and addressed their selectivity towards hydrogen, carbon dioxide and methane gas sensing. Structural and microstructural characteristics of the synthesized films were investigated utilizing X-ray diffraction and electron microscopy techniques respectively. Using a dynamic flow gas sensing measurement set up, the sensing characteristics of these films were investigated as a function of gas concentration (10-1660 ppm) and operating temperature (250-380 °C). ZnO thin film sensing elements were found to be sensitive to all of these gases. Thus at a sensor operating temperature of ~300 °C, the response% of the ZnO thin films were ~68, 59, and 52% for hydrogen, carbon monoxide and methane gases respectively. The data matrices extracted from first Fourier transform analyses (FFT) of the conductance transients were used as input parameters in a linear unsupervised principal component analysis (PCA) pattern recognition technique. We have demonstrated that FFT combined with PCA is an excellent tool for the differentiation of these reducing gases.

  6. Advanced platform for the in-plane ZT measurement of thin films

    NASA Astrophysics Data System (ADS)

    Linseis, V.; Völklein, F.; Reith, H.; Nielsch, K.; Woias, P.

    2018-01-01

    The characterization of nanostructured samples with at least one restricted dimension like thin films or nanowires is challenging, but important to understand their structure and transport mechanism, and to improve current industrial products and production processes. We report on the 2nd generation of a measurement chip, which allows for a simplified sample preparation process, and the measurement of samples deposited from the liquid phase using techniques like spin coating and drop casting. The new design enables us to apply much higher temperature gradients for the Seebeck coefficient measurement in a shorter time, without influencing the sample holder's temperature distribution. Furthermore, a two membrane correction method for the 3ω thermal conductivity measurement will be presented, which takes the heat loss due to radiation into account and increases the accuracy of the measurement results significantly. Errors caused by different sample compositions, varying sample geometries, and different heat profiles are avoided with the presented measurement method. As a showcase study displaying the validity and accuracy of our platform, we present temperature-dependent measurements of the thermoelectric properties of an 84 nm Bi87Sb13 thin film and a 15 μm PEDOT:PSS thin film.

  7. Effect of nitrogen doping on structural, morphological, optical and electrical properties of radio frequency magnetron sputtered zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Perumal, R.; Hassan, Z.

    2016-06-01

    Zinc oxide receives remarkable attention due to its several attractive physical properties. Zinc oxide thin films doped with nitrogen were grown by employing RF magnetron sputtering method at room temperature. Doping was accomplished in gaseous medium by mixing high purity nitrogen gas along with argon sputtering gas. Structural studies confirmed the high crystalline nature with c-axis oriented growth of the nitrogen doped zinc oxide thin films. The tensile strain was developed due to the incorporation of the nitrogen into the ZnO crystal lattice. Surface roughness of the grown films was found to be decreased with increasing doping level was identified through atomic force microscope analysis. The presenting phonon modes of each film were confirmed through FTIR spectral analysis. The increasing doping level leads towards red-shifting of the cut-off wavelength due to decrement of the band gap was identified through UV-vis spectroscopy. All the doped films exhibited p-type conductivity was ascertained using Hall measurements and the obtained results were presented.

  8. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition

    PubMed Central

    Liao, Yu-Kuang; Liu, Yung-Tsung; Hsieh, Dan-Hua; Shen, Tien-Lin; Hsieh, Ming-Yang; Tzou, An-Jye; Chen, Shih-Chen; Tsai, Yu-Lin; Lin, Wei-Sheng; Chan, Sheng-Wen; Shen, Yen-Ping; Cheng, Shun-Jen; Chen, Chyong-Hua; Wu, Kaung-Hsiung; Chen, Hao-Ming; Kuo, Shou-Yi; Charlton, Martin D. B.; Hsieh, Tung-Po; Kuo, Hao-Chung

    2017-01-01

    Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs) with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD) and chemical bath deposition (CBD) as used by the Cu(In,Ga)Se2 (CIGS) thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase. PMID:28383488

  9. Thermal-induced structural and optical investigations of Agsbnd ZnO nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Singhal, R.

    2018-07-01

    In the present paper, we have successfully synthesized Agsbnd ZnO nanocomposite thin films by RF-magnetron sputtering technique at room temperature. Systematic investigations of thermal-induced structural and optical modifications in Agsbnd ZnO thin films have been observed and described. The Agsbnd ZnO thin films were annealed at three different temperatures of 300 °C, 400 °C and 500 °C in vacuum to prevent the oxidation of Ag. The presence and formation of Ag nanoparticles were estimated by transmission electron microscopy. X-ray diffraction analysis revealed the structural information about the crystalline quality of ZnO. The crystallinity as well as the crystallite size of the films have been found to be improved with annealing temperatures. The estimated crystallite size was ∼15.8 nm for as-deposited film and 19.0 nm for the film at a higher temperature. The chemical composition and structural analysis of as-deposited film were carried out by X-ray photoelectron spectroscopy. A very sharp absorption band appeared at ∼540 nm for Ag NPs that is associated with the surface plasmon resonance band of Ag. A noticeable red shift of about ∼12 nm has been recorded for films annealed at 500 °C. Atomic force microscopy has been utilized to examine the surface morphology of the as-deposited and annealed films. The grain size was found to be increase with increasing annealing temperature, while no significant changes were observed in the roughness of Agsbnd ZnO thin films. Raman spectroscopy revealed lattice defects and disordering in the films after the thermal annealing.

  10. Phase equilibria in polymer-blend thin films

    NASA Astrophysics Data System (ADS)

    Clarke, Nigel; Souche, Mireille

    2010-03-01

    To describe equilibrium concentration profiles in thin films of polymer mixtures, we propose a Hamiltonian formulation of the Flory-Huggins-de Gennes theory describing a polymer blend thin film. We first focus on the case of 50:50 polymer blends confined between anti-symmetric walls. The different phases of the system and the transitions between them, including finite size effects, are systematically studied through their relation with the geometry of the Hamiltonian flow in phase space. This method provides an easy and efficient way, with strong graphical insight, to infer the qualitative physical behavior of polymer blend thin films. The addition of a further degree of freedom in the system, namely a solvent, may result in a chaotic behavior of the system, characterized by the existence of solutions with exponential sensitivity to initial conditions. Such solutions and there subsequent contribution to the out-of-equilibrium dynamics of the system are well described in Hamiltonian formalism. A fully consistent treatment of the Flory-Huggins-de Gennes theory of thin film polymer blend solutions, in the spirit of the Hamiltonian approach will be presented. 1. M. Souche and N. Clarke, J. Chem. Phys., submitted.

  11. Modeling solvent evaporation during thin film formation in phase separating polymer mixtures

    DOE PAGES

    Cummings, John; Lowengrub, John S.; Sumpter, Bobby G.; ...

    2018-02-09

    Preparation of thin films by dissolving polymers in a common solvent followed by evaporation of the solvent has become a routine processing procedure. However, modeling of thin film formation in an evaporating solvent has been challenging due to a need to simulate processes at multiple length and time scales. In this paper, we present a methodology based on the principles of linear non-equilibrium thermodynamics, which allows systematic study of various effects such as the changes in the solvent properties due to phase transformation from liquid to vapor and polymer thermodynamics resulting from such solvent transformations. The methodology allows for themore » derivation of evaporative flux and boundary conditions near each surface for simulations of systems close to the equilibrium. We apply it to study thin film microstructural evolution in phase segregating polymer blends dissolved in a common volatile solvent and deposited on a planar substrate. Finally, effects of the evaporation rates, interactions of the polymers with the underlying substrate and concentration dependent mobilities on the kinetics of thin film formation are studied.« less

  12. Modeling solvent evaporation during thin film formation in phase separating polymer mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummings, John; Lowengrub, John S.; Sumpter, Bobby G.

    Preparation of thin films by dissolving polymers in a common solvent followed by evaporation of the solvent has become a routine processing procedure. However, modeling of thin film formation in an evaporating solvent has been challenging due to a need to simulate processes at multiple length and time scales. In this paper, we present a methodology based on the principles of linear non-equilibrium thermodynamics, which allows systematic study of various effects such as the changes in the solvent properties due to phase transformation from liquid to vapor and polymer thermodynamics resulting from such solvent transformations. The methodology allows for themore » derivation of evaporative flux and boundary conditions near each surface for simulations of systems close to the equilibrium. We apply it to study thin film microstructural evolution in phase segregating polymer blends dissolved in a common volatile solvent and deposited on a planar substrate. Finally, effects of the evaporation rates, interactions of the polymers with the underlying substrate and concentration dependent mobilities on the kinetics of thin film formation are studied.« less

  13. Fast IR laser mapping ellipsometry for the study of functional organic thin films.

    PubMed

    Furchner, Andreas; Sun, Guoguang; Ketelsen, Helge; Rappich, Jörg; Hinrichs, Karsten

    2015-03-21

    Fast infrared mapping with sub-millimeter lateral resolution as well as time-resolved infrared studies of kinetic processes of functional organic thin films require a new generation of infrared ellipsometers. We present a novel laboratory-based infrared (IR) laser mapping ellipsometer, in which a laser is coupled to a variable-angle rotating analyzer ellipsometer. Compared to conventional Fourier-transform infrared (FT-IR) ellipsometers, the IR laser ellipsometer provides ten- to hundredfold shorter measurement times down to 80 ms per measured spot, as well as about tenfold increased lateral resolution of 120 μm, thus enabling mapping of small sample areas with thin-film sensitivity. The ellipsometer, equipped with a HeNe laser emitting at about 2949 cm(-1), was applied for the optical characterization of inhomogeneous poly(3-hexylthiophene) [P3HT] and poly(N-isopropylacrylamide) [PNIPAAm] organic thin films used for opto-electronics and bioapplications. With the constant development of tunable IR laser sources, laser-based infrared ellipsometry is a promising technique for fast in-depth mapping characterization of thin films and blends.

  14. Facile green synthesis of silver nanodendrite/cellulose acetate thin film electrodes for flexible supercapacitors.

    PubMed

    Devarayan, Kesavan; Park, Jiyoung; Kim, Hak-Yong; Kim, Byoung-Suhk

    2017-05-01

    In this study, we present a highly efficient and economical solution called as 'in situ hydrogenation' for preparation of highly conductive thin film electrode based on silver nanodendrites. The silver nanodendrite (AgND)/cellulose acetate (CA) thin film electrodes exhibited sheet resistance ranging from 0.32ohm/sq to 122.1ohm/sq which could be controlled by changing the concentration of both silver and polymer. In addition, these electrodes exhibited outstanding toughness during the bending test. Further, these thin film electrodes have great potential for scale-up with an average weight of 3mg/cm 2 and can be also combined with active nanomaterials such as multiwalled carbon nanotubes (MWCNTs) to fabricate AgND/CA/MWCNTs thin film for high-performance flexible supercapacitor electrode. The AgND/CA/MWCNTs electrodes exhibited a maximum specific capacitance of 237F/g at a current density of 0.3A/g. After 1000 cycles, the AgND/MWCNT/CA exhibited a decrease of 16.0% of specific capacitance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Morphology and inhibition performance of Ag thin film as antimicrobial coating deposited by RF-PVD on 316 L stainless steel

    NASA Astrophysics Data System (ADS)

    Purniawan, A.; Khrisna, Y. S. A.; Rasyida, A.; Atmono, T. M.

    2018-04-01

    Foreign body related infection (FBRIs) is caused by forming biofilm of bacterial colony of medical equipment surfaces. In many cases, the FBRIs is still happened on the surface after medical sterilization process has been performed. In order to avoid the case, surface modification by antimicrobial coating was used. In this work, we present silver (Ag) thin film on 316 L stainless steel substrate surface was deposited using Radio Frequency Sputtering PVD (RF-PVD). The morphology of Ag thin film were characterized using SEM-EDX. Surface roughness of the thin film was measured by AFM. In addition, Kirby Bauer Test in Escherichia coli (E. coli) was conducted in order to evaluate the inhibition performance of the Ag thin film antimicrobial coating. Based on SEM and AFM results show that the particle size is increased from 523 nm to 708 nm and surface roughness from 9 to 20 nm for deposition time 10 minutes to 20 minutes, respectively. In addition, the inhibition layer of the coating is about 29 mm.

  16. Electrical and Infrared Optical Properties of Vanadium Oxide Semiconducting Thin-Film Thermometers

    NASA Astrophysics Data System (ADS)

    Zia, Muhammad Fakhar; Abdel-Rahman, Mohamed; Alduraibi, Mohammad; Ilahi, Bouraoui; Awad, Ehab; Majzoub, Sohaib

    2017-10-01

    A synthesis method has been developed for preparation of vanadium oxide thermometer thin film for microbolometer application. The structure presented is a 95-nm thin film prepared by sputter-depositing nine alternating multilayer thin films of vanadium pentoxide (V2O5) with thickness of 15 nm and vanadium with thickness of 5 nm followed by postdeposition annealing at 300°C in nitrogen (N2) and oxygen (O2) atmospheres. The resulting vanadium oxide (V x O y ) thermometer thin films exhibited temperature coefficient of resistance (TCR) of -3.55%/°C with room-temperature resistivity of 2.68 Ω cm for structures annealed in N2 atmosphere, and TCR of -3.06%/°C with room-temperature resistivity of 0.84 Ω cm for structures annealed in O2 atmosphere. Furthermore, optical measurements of N2- and O2-annealed samples were performed by Fourier-transform infrared ellipsometry to determine their dispersion curves, refractive index ( n), and extinction coefficient ( k) at wavelength from 7000 nm to 14,000 nm. The results indicate the possibility of applying the developed materials in thermometers for microbolometers.

  17. Plasma-formed hyperthermal atomic beams for use in thin film fabrication

    NASA Astrophysics Data System (ADS)

    Gilson, E. P.; Cohen, S. A.; Berlinger, B.; Chan, W.

    2013-10-01

    Enhancing the surface mobility of adsorbents during thin-film growth processes is important for creating certain high-quality thin films. Under the auspices of a DARPA program to develop methods for supplying momentum to adsorbates during thin-film formation without using bulk heating, a hyperthermal atomic beam (HAB) was generated and directed at silicon surfaces with patterned coatings of pentacene, gold, and other surrogates for adsorbents relevant to various thin-film coatings. The HAB was created when the plasma from a helicon plasma source struck a tungsten neutralizer plate and was reflected as neutrals. Time averaged HAB fluxes 100 times greater than in previous PPPL HAB sources have been generated. The effect of the HAB on the patterned coatings was measured using atomic force microscopy (AFM). Results are presented on the flux and energy of the HAB for various system pressures, magnetic fields, and neutralizer biases. AFM measurements of the surface topology demonstrate that the HAB energy, species, and integrated flux are all important factors in altering surface mobility. This research is supported by the U.S. Defense Advanced Research Projects Agency.

  18. Effect of thickness on physical properties of electron beam vacuum evaporated CdZnTe thin films for tandem solar cells

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2016-10-01

    The thickness and physical properties of electron beam vacuum evaporated CdZnTe thin films have been optimized in the present work. The films of thickness 300 nm and 400 nm were deposited on ITO coated glass substrates and subjected to different characterization tools like X-ray diffraction (XRD), UV-Vis spectrophotometer, source meter and scanning electron microscopy (SEM) to investigate the structural, optical, electrical and surface morphological properties respectively. The XRD results show that the as-deposited CdZnTe thin films have zinc blende cubic structure and polycrystalline in nature with preferred orientation (111). Different structural parameters are also evaluated and discussed. The optical study reveals that the optical transition is found to be direct and energy band gap is decreased for higher thickness. The transmittance is found to increase with thickness and red shift observed which is suitable for CdZnTe films as an absorber layer in tandem solar cells. The current-voltage characteristics of deposited films show linear behavior in both forward and reverse directions as well as the conductivity is increased for higher film thickness. The SEM studies show that the as-deposited CdZnTe thin films are found to be homogeneous, uniform, small circle-shaped grains and free from crystal defects. The experimental results confirm that the film thickness plays an important role to optimize the physical properties of CdZnTe thin films for tandem solar cell applications as an absorber layer.

  19. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity

    DOE PAGES

    Oliver, J. B.

    2017-06-12

    Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions, as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. As a result, this systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.

  20. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity.

    PubMed

    Oliver, J B

    2017-06-20

    Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. This systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.

  1. Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behler, Anna; Department of Physics, Institute for Solid State Physics, Dresden University of Technology, 01062 Dresden; Teichert, Niclas

    2013-12-15

    A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni{sub 50}Mn{sub 32}Sn{sub 18} thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.

  2. On the structural origins of ferroelectricity in HfO{sub 2} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sang, Xiahan; Grimley, Everett D.; LeBeau, James M.

    2015-04-20

    Here, we present a structural study on the origin of ferroelectricity in Gd doped HfO{sub 2} thin films. We apply aberration corrected high-angle annular dark-field scanning transmission electron microscopy to directly determine the underlying lattice type using projected atom positions and measured lattice parameters. Furthermore, we apply nanoscale electron diffraction methods to visualize the crystal symmetry elements. Combined, the experimental results provide unambiguous evidence for the existence of a non-centrosymmetric orthorhombic phase that can support spontaneous polarization, resolving the origin of ferroelectricity in HfO{sub 2} thin films.

  3. 19.5%-Efficient CuIn1-xGaxSe2 Photovoltaic Cells Using A Cd-Zn-S Buffer Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya. R. N.

    2008-01-01

    CuIn1-xGaxSe2 (CIGS) solar cell junctions prepared by chemical-bath-deposited (CBD) Zn1-xCdxS (CdZnS), ZnS, and CdS buffer layers are discussed. A 19.52%-efficient, CIGS-based, thin-film photovoltaic device has been fabricated using a single-layer CBD CdZnS buffer layer. The mechanism that creates extensive hydroxide and oxide impurities in CBD-ZnS and CBD-CdZnS thin films (compared to CBD-CdS thin film) is presented.

  4. A unified physical model of Seebeck coefficient in amorphous oxide semiconductor thin-film transistors

    NASA Astrophysics Data System (ADS)

    Lu, Nianduan; Li, Ling; Sun, Pengxiao; Banerjee, Writam; Liu, Ming

    2014-09-01

    A unified physical model for Seebeck coefficient was presented based on the multiple-trapping and release theory for amorphous oxide semiconductor thin-film transistors. According to the proposed model, the Seebeck coefficient is attributed to the Fermi-Dirac statistics combined with the energy dependent trap density of states and the gate-voltage dependence of the quasi-Fermi level. The simulation results show that the gate voltage, energy disorder, and temperature dependent Seebeck coefficient can be well described. The calculation also shows a good agreement with the experimental data in amorphous In-Ga-Zn-O thin-film transistor.

  5. Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, J. B.

    Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions, as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. As a result, this systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.

  6. Cu-Doped ZnO Thin Films Deposited by a Sol-Gel Process Using Two Copper Precursors: Gas-Sensing Performance in a Propane Atmosphere.

    PubMed

    Gómez-Pozos, Heberto; Arredondo, Emma Julia Luna; Maldonado Álvarez, Arturo; Biswal, Rajesh; Kudriavtsev, Yuriy; Pérez, Jaime Vega; Casallas-Moreno, Yenny Lucero; Olvera Amador, María de la Luz

    2016-01-29

    A study on the propane gas-sensing properties of Cu-doped ZnO thin films is presented in this work. The films were deposited on glass substrates by sol-gel and dip coating methods, using zinc acetate as a zinc precursor, copper acetate and copper chloride as precursors for doping. For higher sensitivity values, two film thickness values are controlled by the six and eight dippings, whereas for doping, three dippings were used, irrespective of the Cu precursor. The film structure was analyzed by X-ray diffractometry, and the analysis of the surface morphology and film composition was made through scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS), respectively. The sensing properties of Cu-doped ZnO thin films were then characterized in a propane atmosphere, C₃H₈, at different concentration levels and different operation temperatures of 100, 200 and 300 °C. Cu-doped ZnO films doped with copper chloride presented the highest sensitivity of approximately 6 × 10⁴, confirming a strong dependence on the dopant precursor type. The results obtained in this work show that the use of Cu as a dopant in ZnO films processed by sol-gel produces excellent catalysts for sensing C₃H₈ gas.

  7. Scalable Indium Phosphide Thin-Film Nanophotonics Platform for Photovoltaic and Photoelectrochemical Devices.

    PubMed

    Lin, Qingfeng; Sarkar, Debarghya; Lin, Yuanjing; Yeung, Matthew; Blankemeier, Louis; Hazra, Jubin; Wang, Wei; Niu, Shanyuan; Ravichandran, Jayakanth; Fan, Zhiyong; Kapadia, Rehan

    2017-05-23

    Recent developments in nanophotonics have provided a clear roadmap for improving the efficiency of photonic devices through control over absorption and emission of devices. These advances could prove transformative for a wide variety of devices, such as photovoltaics, photoelectrochemical devices, photodetectors, and light-emitting diodes. However, it is often challenging to physically create the nanophotonic designs required to engineer the optical properties of devices. Here, we present a platform based on crystalline indium phosphide that enables thin-film nanophotonic structures with physical morphologies that are impossible to achieve through conventional state-of-the-art material growth techniques. Here, nanostructured InP thin films have been demonstrated on non-epitaxial alumina inverted nanocone (i-cone) substrates via a low-cost and scalable thin-film vapor-liquid-solid growth technique. In this process, indium films are first evaporated onto the i-cone structures in the desired morphology, followed by a high-temperature step that causes a phase transformation of the indium into indium phosphide, preserving the original morphology of the deposited indium. Through this approach, a wide variety of nanostructured film morphologies are accessible using only control over evaporation process variables. Critically, the as-grown nanotextured InP thin films demonstrate excellent optoelectronic properties, suggesting this platform is promising for future high-performance nanophotonic devices.

  8. The calculation of band gap energy in zinc oxide films

    NASA Astrophysics Data System (ADS)

    Arif, Ali; Belahssen, Okba; Gareh, Salim; Benramache, Said

    2015-01-01

    We investigated the optical properties of undoped zinc oxide thin films as the n-type semiconductor; the thin films were deposited at different precursor molarities by ultrasonic spray and spray pyrolysis techniques. The thin films were deposited at different substrate temperatures ranging between 200 and 500 °C. In this paper, we present a new approach to control the optical gap energy of ZnO thin films by concentration of the ZnO solution and substrate temperatures from experimental data, which were published in international journals. The model proposed to calculate the band gap energy with the Urbach energy was investigated. The relation between the experimental data and theoretical calculation suggests that the band gap energies are predominantly estimated by the Urbach energies, film transparency, and concentration of the ZnO solution and substrate temperatures. The measurements by these proposal models are in qualitative agreements with the experimental data; the correlation coefficient values were varied in the range 0.96-0.99999, indicating high quality representation of data based on Equation (2), so that the relative errors of all calculation are smaller than 4%. Thus, one can suppose that the undoped ZnO thin films are chemically purer and have many fewer defects and less disorder owing to an almost complete chemical decomposition and contained higher optical band gap energy.

  9. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000more » hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercialization effort, the project team believes, will lead to increasing market attention and broader demand for more efficient, wide area general purpose white OLED lighting in the coming years.« less

  10. Swift heavy-ions induced sputtering in BaF2 thin films

    NASA Astrophysics Data System (ADS)

    Pandey, Ratnesh K.; Kumar, Manvendra; Singh, Udai B.; Khan, Saif A.; Avasthi, D. K.; Pandey, Avinash C.

    2013-11-01

    In our present experiment a series of barium fluoride thin films of different thicknesses have been deposited by electron beam evaporation technique at room temperature on silicon substrates. The effect of film thickness on the electronic sputter yield of polycrystalline BaF2 thin films has been reported in the present work. Power law for sputtered species collected on catcher grids has also been reported for film of lowest thickness. Sputtering has been performed by 100 MeV Au+28 ions. Atomic force microscopy (AFM) has been done to check the surface morphology of pristine samples. Glancing angle X-ray diffraction (GAXRD) measurements show that the pristine films are polycrystalline in nature and the grain size increases with increase in film thickness. Rutherford backscattering spectrometry (RBS) of pristine as well as irradiated films was done to determine the areal concentration of Ba and F atoms in the films. A reduction in the sputter yield of BaF2 films with the increase in film thickness has been observed from RBS results. The thickness dependence sputtering is explained on the basis of thermal spike and the energy confinement of the ions in the smaller grains. Also transmission electron microscopy (TEM) of the catchers shows a size distribution of sputtered species with values of power law exponent 1/2 and 3/2 for two fluences 5 × 1011 and 1 × 1012 ions/cm2, respectively.

  11. Thin film silicon by a microwave plasma deposition technique: Growth and devices, and, interface effects in amorphous silicon/crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Jagannathan, Basanth

    Thin film silicon (Si) was deposited by a microwave plasma CVD technique, employing double dilution of silane, for the growth of low hydrogen content Si films with a controllable microstructure on amorphous substrates at low temperatures (<400sp°C). The double dilution was achieved by using a Ar (He) carrier for silane and its subsequent dilution by Hsb2. Structural and electrical properties of the films have been investigated over a wide growth space (temperature, power, pressure and dilution). Amorphous Si films deposited by silane diluted in He showed a compact nature and a hydrogen content of ˜8 at.% with a photo/dark conductivity ratio of 10sp4. Thin film transistors (W/L = 500/25) fabricated on these films, showed an on/off ratio of ˜10sp6 and a low threshold voltage of 2.92 volts. Microcrystalline Si films with a high crystalline content (˜80%) were also prepared by this technique. Such films showed a dark conductivity ˜10sp{-6} S/cm, with a conduction activation energy of 0.49 eV. Film growth and properties have been compared for deposition in Ar and He carrier systems and growth models have been proposed. Low temperature junction formation by undoped thin film silicon was examined through a thin film silicon/p-type crystalline silicon heterojunctions. The thin film silicon layers were deposited by rf glow discharge, dc magnetron sputtering and microwave plasma CVD. The hetero-interface was identified by current transport analysis and high frequency capacitance methods as the key parameter controlling the photovoltaic (PV) response. The effect of the interface on the device properties (PV, junction, and carrier transport) was examined with respect to modifications created by chemical treatment, type of plasma species, their energy and film microstructure interacting with the substrate. Thermally stimulated capacitance was used to determine the interfacial trap parameters. Plasma deposition of thin film silicon on chemically clean c-Si created electron trapping sites while hole traps were seen when a thin oxide was present at the interface. Under optimized conditions, a 10.6% efficient cell (11.5% with SiOsb2 A/R) with an open circuit voltage of 0.55 volts and a short circuit current density of 30 mA/cmsp2 was fabricated.

  12. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C. Robert; Kozlowski, Mark R.; Campbell, John H.; Staggs, Michael; Rainer, Frank

    1995-01-01

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  13. Effect of substrate on thermoelectric properties of Al-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Mele, P.; Saini, S.; Honda, H.; Matsumoto, K.; Miyazaki, K.; Hagino, H.; Ichinose, A.

    2013-06-01

    We have prepared 2% Al doped ZnO (AZO) thin films on SrTiO3 (STO) and Al2O3 substrates by Pulsed Laser Deposition technique at various deposition temperatures (Tdep = 300 °C-600 °C). Transport and thermoelectric properties of AZO thin films were studied in low temperature range (300 K-600 K). AZO/STO films present superior performance respect to AZO/Al2O3 films deposited at the same temperature, except for films deposited at 400 °C. Best film is the fully c-axis oriented AZO/STO deposited at 300 °C, which epitaxial strain and dislocation density are the lowest: electrical conductivity 310 S/cm, Seebeck coefficient -65 μV/K, and power factor 0.13 × 10-3 W m-1 K-2 at 300 K. Its performance increases with temperature. For instance, power factor is enhanced up to 0.55 × 10-3 W m-1 K-2 at 600 K, surpassing the best AZO film previously reported in literature.

  14. Template-Free Mesoporous Electrochromic Films on Flexible Substrates from Tungsten Oxide Nanorods

    DOE PAGES

    Heo, Sungyeon; Kim, Jongwook; Ong, Gary K.; ...

    2017-08-08

    Low-temperature processed mesoporous nanocrystal thin films are platforms for fabricating functional composite thin films on flexible substrates. Using a random arrangement of anisotropic nanocrystals can be a facile solution to generate pores without templates. However, the tendency for anisotropic particles to spontaneously assemble into a compact structure must be overcome. Here in this paper, we present a method to achieve random networking of nanorods during solution phase deposition by switching their ligand-stabilized colloidal nature into a charge-stabilized nature by a ligand-stripping chemistry. Ligand-stripped tungsten suboxide (WO 2.72) nanorods result in uniform mesoporous thin films owing to repulsive electrostatic forces preventingmore » nanorods from densely packing. Porosity and pore size distribution of thin films are controlled by changing the aspect ratio of the nanorods. This template-free mesoporous structure, achieved without annealing, provides a framework for introducing guest components, therefore enabling our fabrication of inorganic nanocomposite electrochromic films on flexible substrates. Following infilling of niobium polyoxometalate clusters into pores and successive chemical condensation, a WO x–NbO x composite film is produced that selectively controls visible and near-infrared light transmittance without any annealing required. The composite shows rapid switching kinetics and can be stably cycled between optical states over 2000 times. This simple strategy of using anisotropic nanocrystals gives insight into mesoporous thin film fabrication with broader applications for flexible devices.« less

  15. Template-Free Mesoporous Electrochromic Films on Flexible Substrates from Tungsten Oxide Nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Sungyeon; Kim, Jongwook; Ong, Gary K.

    Low-temperature processed mesoporous nanocrystal thin films are platforms for fabricating functional composite thin films on flexible substrates. Using a random arrangement of anisotropic nanocrystals can be a facile solution to generate pores without templates. However, the tendency for anisotropic particles to spontaneously assemble into a compact structure must be overcome. Here in this paper, we present a method to achieve random networking of nanorods during solution phase deposition by switching their ligand-stabilized colloidal nature into a charge-stabilized nature by a ligand-stripping chemistry. Ligand-stripped tungsten suboxide (WO 2.72) nanorods result in uniform mesoporous thin films owing to repulsive electrostatic forces preventingmore » nanorods from densely packing. Porosity and pore size distribution of thin films are controlled by changing the aspect ratio of the nanorods. This template-free mesoporous structure, achieved without annealing, provides a framework for introducing guest components, therefore enabling our fabrication of inorganic nanocomposite electrochromic films on flexible substrates. Following infilling of niobium polyoxometalate clusters into pores and successive chemical condensation, a WO x–NbO x composite film is produced that selectively controls visible and near-infrared light transmittance without any annealing required. The composite shows rapid switching kinetics and can be stably cycled between optical states over 2000 times. This simple strategy of using anisotropic nanocrystals gives insight into mesoporous thin film fabrication with broader applications for flexible devices.« less

  16. Fabrication and Characterization of Colloidal Crystal Thin Films

    ERIC Educational Resources Information Center

    Rodriguez, I.; Ramiro-Manzano, F.; Meseguer, F.; Bonet, E.

    2011-01-01

    We present a laboratory experiment that allows undergraduate or graduate students to get introduced to colloidal crystal research concepts in an interesting way. Moreover, such experiments and studies can also be useful in the field of crystallography or solid-state physics. The work concerns the growth of colloidal crystal thin films obtained…

  17. Design of thin-film photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Silvestre, E.; Pottage, J. M.; Russell, P. St. J.; Roberts, P. J.

    2000-08-01

    We present numerical designs for single-mode leak-free photonic crystal waveguides exhibiting strongly anisotropic spatial and temporal dispersion. These structures may be produced quite simply by drilling regular arrays of holes into thin films of high refractive index, and permit the realization of highly compact optical elements and wavelength division multiplexing devices.

  18. The study of effect of solid electrolyte on charge-discharge characteristics of thin-film lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mazaletskiy, L. A.; Lebedev, M. E.; Mironenko, A. A.; Naumov, V. V.; Novozhilova, A. V.; Fedorov, I. S.; Rudy, A. S.

    2017-11-01

    Results of studies of the solid electrolyte effect on capacitance of thin-film electrodes on the basis of Si-O-Al and VxOy nanocomposites are presented. The studies were carried out by comparing the charge-discharge characteristics of two pairs of the identical electrodes, one of which was covered by LiPON film, within prototypes with two lithium electrodes - the counter and the reference electrode.

  19. Tuneable dielectric films having low electrical losses

    DOEpatents

    Dimos, Duane Brian; Schwartz, Robert William; Raymond, Mark Victor; Al-Shareef, Husam Niman; Mueller, Carl; Galt, David

    2000-01-01

    The present invention is directed to a method for forming dielectric thin films having substantially reduced electrical losses at microwave and millimeter wave frequencies relative to conventional dielectric thin films. The reduction in losses is realized by dramatically increasing the grain sizes of the dielectric films, thereby minimizing intergranular scattering of the microwave signal due to grain boundaries and point defects. The increase in grain size is realized by heating the film to a temperature at which the grains experience regrowth. The grain size of the films can be further increased by first depositing the films with an excess of one of the compoents, such that a highly mobile grain boundary phase is formed.

  20. Thin Film Photovoltaic Partnership Project | Photovoltaic Research | NREL

    Science.gov Websites

    Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the National Laboratory developed low-cost transparent encapsulation schemes for CIGS cells that reduced power

  1. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  2. Ordered organic-organic multilayer growth

    DOEpatents

    Forrest, Stephen R.; Lunt, Richard R.

    2016-04-05

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  3. Ordered organic-organic multilayer growth

    DOEpatents

    Forrest, Stephen R; Lunt, Richard R

    2015-01-13

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  4. Low work function, stable thin films

    DOEpatents

    Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.

    2000-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  5. Thermal Effusivity Determination of Metallic Films of Nanometric Thickness by the Electrical Micropulse Method

    NASA Astrophysics Data System (ADS)

    Lugo, J. M.; Oliva, A. I.

    2017-02-01

    The thermal effusivity of gold, aluminum, and copper thin films of nanometric thickness (20 nm to 200 nm) was investigated in terms of the films' thickness. The metallic thin films were deposited onto glass substrates by thermal evaporation, and the thermal effusivity was estimated by using experimental parameters such as the specific heat, thermal conductivity, and thermal diffusivity values obtained at room conditions. The specific heat, thermal conductivity, and thermal diffusivity values of the metallic thin films are determined with a methodology based on the behavior of the thermal profiles of the films when electrical pulses of few microseconds are applied at room conditions. For all the investigated materials, the thermal effusivity decreases with decreased thickness. The thermal effusivity values estimated by the presented methodology are consistent with other reported values obtained under vacuum conditions and more elaborated methodologies.

  6. The Impact of Standard Semiconductor Fabrication Processes on Polycrystalline Nb Thin Film Surfaces

    NASA Technical Reports Server (NTRS)

    Brown, Ari David; Barrentine, Emily M.; Moseley, Samuel H.; Noroozian, Omid; Stevenson, Thomas

    2011-01-01

    Polycrystalline superconducting Nb thin films are extensively used for submillimeter and millimeter transmission line applications and, less commonly, used in microwave kinetic inductance detector (MKID) applications. The microwave and mm-wave loss in these films is impacted, in part, by the presence of surface nitrides and oxides. In this study, glancing incidence x-ray diffraction was used to identify the presence of niobium nitride and niobium monoxide surface layers on Nb thin films which had been exposed to chemicals used in standard photolithographic processing. A method of mitigating the presence of ordered niobium monoxide surface layers is presented. Furthermore, we discuss the possibility of using glancing incidence x-ray diffraction as a non-destructive diagnostic tool for evaluating the quality of Nb thin films used in MKIDs and transmission lines. For a given fabrication process, we have both the x-ray diffraction data of the surface chemistry and a measure of the mm-wave and microwave loss, the latter being made in superconducting resonators.

  7. Interfacial mechanisms for stability of surfactant-laden films

    PubMed Central

    Chai, Chew; Àlvarez-Valenzuela, Marco A.; Tajuelo, Javier; Fuller, Gerald G.

    2017-01-01

    Thin liquid films are central to everyday life. They are ubiquitous in modern technology (pharmaceuticals, coatings), consumer products (foams, emulsions) and also serve vital biological functions (tear film of the eye, pulmonary surfactants in the lung). A common feature in all these examples is the presence of surface-active molecules at the air-liquid interface. Though they form only molecular-thin layers, these surfactants produce complex surface stresses on the free surface, which have important consequences for the dynamics and stability of the underlying thin liquid film. Here we conduct simple thinning experiments to explore the fundamental mechanisms that allow the surfactant molecules to slow the gravity-driven drainage of the underlying film. We present a simple model that works for both soluble and insoluble surfactant systems in the limit of negligible adsorption-desorption dynamics. We show that surfactants with finite surface rheology influence bulk flow through viscoelastic interfacial stresses, while surfactants with inviscid surfaces achieve stability through opposing surface-tension induced Marangoni flows. PMID:28520734

  8. C60 as an Active Smart Spacer Material on Silver Thin Film Substrates for Enhanced Surface Plasmon Coupled Emission

    PubMed Central

    Mulpur, Pradyumna; Podila, Ramakrishna; Ramamurthy, Sai Sathish; Kamisetti, Venkataramaniah; Rao, Apparao M.

    2015-01-01

    In this study, we present the use of C60 as an active spacer material on a silver (Ag) based surface plasmon coupled emission (SPCE) platform. In addition to its primary role of protecting the Ag thin film from oxidation, the incorporation of C60 facilitated the achievement of 30-fold enhancement in the emission intensity of rhodamine b (RhB) fluorophore. The high signal yield was attributed to the unique π-π interactions between C60 thin films and RhB, which enabled efficient transfer of energy of RhB emission to Ag plasmon modes. Furthermore, minor variations in the C60 film thickness yielded large changes in the enhancement and angularity properties of the SPCE signal, which can be exploited for sensing applications. Finally, the low-cost fabrication process of the Ag-C60 thin film stacks render C60 based SPCE substrates ideal, for the economic and simplistic detection of analytes. PMID:25785916

  9. The Impact of Standard Semiconductor Fabrication Processes on Polycrystalline Nb Thin Film Surfaces

    NASA Technical Reports Server (NTRS)

    Brown, Ari David; Barrentine, Emily M.; Moseley, Samuel H.; Noroozian, Omid; Stevenson, Thomas

    2016-01-01

    Polycrystalline Nb thin films are extensively used for microwave kinetic inductance detectors (MKIDs) and superconducting transmission line applications. The microwave and mm-wave loss in these films is impacted, in part, by the presence of surface nitrides and oxides. In this study, glancing incidence x-ray diffraction was used to identify the presence of niobium nitride and niobium monoxide surface layers on Nb thin films which had been exposed to chemicals used in standard photolithographic processing. A method of mitigating the presence of ordered niobium monoxide surface layers is presented. Furthermore, we discuss the possibility of using glancing incidence x-ray diffraction as a non-destructive diagnostic tool for evaluating the quality of Nb thin films used in MKIDs and transmission lines. For a given fabrication process, we have both the X-ray diffraction data of the surface chemistry and a measure of the mm-wave and microwave loss, the latter being made in superconducting resonators.

  10. Chemical Fabrication Used to Produce Thin-Film Materials for High Power-to- Weight-Ratio Space Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Rybicki, George C.; Raffaelle, Ryne P.; Harris, Jerry D.; Hehemann, David G.; Junek, William; Gorse, Joseph; Thompson, Tracy L.; Hollingsworth, Jennifer A.; Buhro, William E.

    2000-01-01

    The key to achieving high specific power (watts per kilogram) space solar arrays is the development of a high-efficiency, thin-film solar cell that can be fabricated directly on a flexible, lightweight, space-qualified durable substrate such as Kapton (DuPont) or other polyimide or suitable polymer film. Cell efficiencies approaching 20 percent at AM0 (air mass zero) are required. Current thin-film cell fabrication approaches are limited by either (1) the ultimate efficiency that can be achieved with the device material and structure or (2) the requirement for high-temperature deposition processes that are incompatible with all presently known flexible polyimide or other polymer substrate materials. Cell fabrication processes must be developed that will produce high-efficiency cells at temperatures below 400 degrees Celsius, and preferably below 300 degress Celsius to minimize the problems associated with the difference between the coefficients of thermal expansion of the substrate and thin-film solar cell and/or the decomposition of the substrate.

  11. New insights into the nanostructure of innovative thin film solar cells gained by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Eijt, S. W. H.; Shi, W.; Mannheim, A.; Butterling, M.; Schut, H.; Egger, W.; Dickmann, M.; Hugenschmidt, C.; Shakeri, B.; Meulenberg, R. W.; Callewaert, V.; Saniz, R.; Partoens, B.; Barbiellini, B.; Bansil, A.; Melskens, J.; Zeman, M.; Smets, A. H. M.; Kulbak, M.; Hodes, G.; Cahen, D.; Brück, E.

    2017-01-01

    Recent studies showed that positron annihilation methods can provide key insights into the nanostructure and electronic structure of thin film solar cells. In this study, positron annihilation lifetime spectroscopy (PALS) is applied to investigate CdSe quantum dot (QD) light absorbing layers, providing evidence of positron trapping at the surfaces of the QDs. This enables one to monitor their surface composition and electronic structure. Further, 2D-Angular Correlation of Annihilation Radiation (2D-ACAR) is used to investigate the nanostructure of divacancies in photovoltaic-high-quality a-Si:H films. The collected momentum distributions were converted by Fourier transformation to the direct space representation of the electron-positron autocorrelation function. The evolution of the size of the divacancies as a function of hydrogen dilution during deposition of a-Si:H thin films was examined. Finally, we present a first positron Doppler Broadening of Annihilation Radiation (DBAR) study of the emerging class of highly efficient thin film solar cells based on perovskites.

  12. A versatile route to polymer-reinforced, broadband antireflective and superhydrophobic thin films without high-temperature treatment.

    PubMed

    Ren, Tingting; Geng, Zhi; He, Junhui; Zhang, Xiaojie; He, Jin

    2017-01-15

    Broadband high transmittance, good mechanical robustness as well as simple and low temperature fabrication are three important aspects that dictate the practical applications of superhydrophobic thin films, especially on organic substrates. However, it has proved difficult to meet these challenges. In the present work, superhydrophobic thin films were prepared by first dip-coating solid silica nanoparticles, then spray-coating hollow silica nanoparticles, followed by spray-coating mesoporous silica nanosheets & poly(vinyl alcohol) (PVA), and eventually chemical vapor deposition of 1H,1H,2H,2H-perflurooctyltriethoxysilane (POTS) at 90°C. The optimized thin film has a maximum transmittance of 96.0% in the wavelength range of 300-2500nm and a WCA of 164° and a RA of 1°. The thin film also shows good mechanical robustness toward water droplet impact test, sand impact abrasion test and tape adhesion tests, which results from PVA as a binder, the formation of covalent bond between the hydroxyl group of PVA and the ethoxy group of POTS and the chemical inertness of CC, CF bonds of POTS molecules. To our best knowledge, it is the first example where antireflective and superhydrophobic thin films of excellent mechanical robustness were realized at low temperature on organic substrates (PMMA, PC). The current work would provide a promising route to meet the challenges in practical applications simultaneously posed by the requirements of broadband antireflection, good mechanical robustness as well as simple and low temperature fabrication of superhydrophobic thin films. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Bulk and Thin Film Synthesis of Compositionally Variant Entropy-stabilized Oxides.

    PubMed

    Sivakumar, Sai; Zwier, Elizabeth; Meisenheimer, Peter Benjamin; Heron, John T

    2018-05-29

    Here, we present a procedure for the synthesis of bulk and thin film multicomponent (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (Co variant) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (Cu variant) entropy-stabilized oxides. Phase pure and chemically homogeneous (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (x = 0.20, 0.27, 0.33) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (x = 0.11, 0.27) ceramic pellets are synthesized and used in the deposition of ultra-high quality, phase pure, single crystalline thin films of the target stoichiometry. A detailed methodology for the deposition of smooth, chemically homogeneous, entropy-stabilized oxide thin films by pulsed laser deposition on (001)-oriented MgO substrates is described. The phase and crystallinity of bulk and thin film materials are confirmed using X-ray diffraction. Composition and chemical homogeneity are confirmed by X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The surface topography of thin films is measured with scanning probe microscopy. The synthesis of high quality, single crystalline, entropy-stabilized oxide thin films enables the study of interface, size, strain, and disorder effects on the properties in this new class of highly disordered oxide materials.

  14. The Thin Oil Film Equation

    NASA Technical Reports Server (NTRS)

    Brown, James L.; Naughton, Jonathan W.

    1999-01-01

    A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.

  15. Characterization of thin MoO3 films formed by RF and DC-magnetron reactive sputtering for gas sensor applications

    NASA Astrophysics Data System (ADS)

    Yordanov, R.; Boyadjiev, S.; Georgieva, V.; Vergov, L.

    2014-05-01

    The present work discusses a technology for deposition and characterization of thin molybdenum oxide (MoOx, MoO3) films studied for gas sensor applications. The samples were produced by reactive radio-frequency (RF) and direct current (DC) magnetron sputtering. The composition and microstructure of the films were studied by XPS, XRD and Raman spectroscopy, the morphology, using high resolution SEM. The research was focused on the sensing properties of the sputtered thin MoO3 films. Highly sensitive gas sensors were implemented by depositing films of various thicknesses on quartz resonators. Making use of the quartz crystal microbalance (QCM) method, these sensors were capable of detecting changes in the molecular range. Prototype QCM structures with thin MoO3 films were tested for sensitivity to NH3 and NO2. Even in as-deposited state and without heating the substrates, these films showed good sensitivity. Moreover, no additional thermal treatment is necessary, which makes the production of such QCM gas sensors simple and cost-effective, as it is fully compatible with the technology for producing the initial resonator. The films are sensitive at room temperature and can register concentrations as low as 50 ppm. The sorption is fully reversible, the films are stable and capable of long-term measurements.

  16. Microstructure of epitaxial ferroelectric/metal oxide electrode thin film heterostructures on LaAlO{sub 3} and silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghonge, S.G.; Goo, E.; Ramesh, R.

    1994-12-31

    TEM and X-ray diffraction studies of PZT, PLZT, lead titanate and bismuth titanate ferroelectric thin films and YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}(YBCO), Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}(BSCCO) and La{sub 0.5}Sr{sub 0.5}CoO{sub 3}(LSCO) electrically conductive oxide thin films, that are sequentially deposited by pulsed laser ablation, show that these films may be deposited epitaxially onto LaAlO{sub 3}(LAO) or Si substrates. The conductive oxides are promising candidates for use is electrodes in place of metal electrodes in integrated ferroelectric device applications. The oxide electrodes are more chemically compatible with the ferroelectric films. High resolution electron microscopy his been used to investigate the interfacemore » between the ferroelectric and metal oxide thin films and no reaction was detected. Epitaxial growth is possible due to the similar crystal structures and the small lattice mismatch. The lattice mismatch that is present causes the domains in the ferroelectric films to be preferentially oriented and in the case of lead titanate, the film is single domain. These films may also have potential applications in integrated optical devices.« less

  17. Fully integrated carbon nanotube composite thin film strain sensors on flexible substrates for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H.

    2017-09-01

    Multifunctional thin film materials have opened many opportunities for novel sensing strategies for structural health monitoring. While past work has established methods of optimizing multifunctional materials to exhibit sensing properties, comparatively less work has focused on their integration into fully functional sensing systems capable of being deployed in the field. This study focuses on the advancement of a scalable fabrication process for the integration of multifunctional thin films into a fully integrated sensing system. This is achieved through the development of an optimized fabrication process that can create a broad range of sensing systems using multifunctional materials. A layer-by-layer deposited multifunctional composite consisting of single walled carbon nanotubes (SWNT) in a polyvinyl alcohol and polysodium-4-styrene sulfonate matrix are incorporated with a lithography process to produce a fully integrated sensing system deposited on a flexible substrate. To illustrate the process, a strain sensing platform consisting of a patterned SWNT-composite thin film as a strain-sensitive element within an amplified Wheatstone bridge sensing circuit is presented. Strain sensing is selected because it presents many of the design and processing challenges that are core to patterning multifunctional thin film materials into sensing systems. Strain sensors fabricated on a flexible polyimide substrate are experimentally tested under cyclic loading using standard four-point bending coupons and a partial-scale steel frame assembly under lateral loading. The study reveals the material process is highly repeatable to produce fully integrated strain sensors with linearity and sensitivity exceeding 0.99 and 5 {{V}}/{ε }, respectively. The thin film strain sensors are robust and are capable of high strain measurements beyond 3000 μ {ε }.

  18. "One-sample concept" micro-combinatory for high throughput TEM of binary films.

    PubMed

    Sáfrán, György

    2018-04-01

    Phases of thin films may remarkably differ from that of bulk. Unlike to the comprehensive data files of Binary Phase Diagrams [1] available for bulk, complete phase maps for thin binary layers do not exist. This is due to both the diverse metastable, non-equilibrium or instable phases feasible in thin films and the required volume of characterization work with analytical techniques like TEM, SAED and EDS. The aim of the present work was to develop a method that remarkably facilitates the TEM study of the diverse binary phases of thin films, or the creation of phase maps. A micro-combinatorial method was worked out that enables both preparation and study of a gradient two-component film within a single TEM specimen. For a demonstration of the technique thin Mn x Al 1- x binary samples with evolving concentration from x = 0 to x = 1 have been prepared so that the transition from pure Mn to pure Al covers a 1.5 mm long track within the 3 mm diameter TEM grid. The proposed method enables the preparation and study of thin combinatorial samples including all feasible phases as a function of composition or other deposition parameters. Contrary to known "combinatorial chemistry", in which a series of different samples are deposited in one run, and investigated, one at a time, the present micro-combinatorial method produces a single specimen condensing a complete library of a binary system that can be studied, efficiently, within a single TEM session. That provides extremely high throughput for TEM characterization of composition-dependent phases, exploration of new materials, or the construction of phase diagrams of binary films. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Doping effect on SILAR synthesized crystalline nanostructured Cu-doped ZnO thin films grown on indium tin oxide (ITO) coated glass substrates and its characterization

    NASA Astrophysics Data System (ADS)

    Dhaygude, H. D.; Shinde, S. K.; Velhal, Ninad B.; Takale, M. V.; Fulari, V. J.

    2016-08-01

    In the present study, a novel chemical route is used to synthesize the undoped and Cu-doped ZnO thin films in aqueous solution by successive ionic layer adsorption and reaction (SILAR) method. The synthesized thin films are characterized by x-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray analysis (EDAX), contact angle goniometer and UV-Vis spectroscopic techniques. XRD study shows that the prepared films are polycrystalline in nature with hexagonal crystal structure. The change in morphology for different doping is observed in the studies of FE-SEM. EDAX spectrum shows that the thin films consist of zinc, copper and oxygen elements. Contact angle goniometer is used to measure the contact angle between a liquid and a solid interface and after detection, the nature of the films is initiated from hydrophobic to hydrophilic. The optical band gap energy for direct allowed transition ranging between 1.60-2.91 eV is observed.

  20. Characterization of a new transparent-conducting material of ZnO doped ITO thin films

    NASA Astrophysics Data System (ADS)

    Ali, H. M.

    2005-11-01

    Thin films of indium tin oxide (ITO) doped with zinc oxide have the remarkable properties of being conductive yet still highly transparent in the visible and near-IR spectral ranges. The Electron beam deposi- tion technique is one of the simplest and least expensive ways of preparing. High-quality ITO thin films have been deposited on glass substrates by Electron beam evaporation technique. The effect of doping and substrate deposition temperature was found to have a significant effect on the structure, electrical and optical properties of ZnO doped ITO films. The average optical transmittance has been increased with in- creasing the substrate temperature. The maximum value of transmittance is greater than 84% in the visible region and 85% in the NIR region obtained for film with Zn/ITO = 0.13 at substrate temperature 200 °C. The dielectric constant, average excitation energy for electronic transitions (E o), the dispersion energy (E d), the long wavelength refractive index (n ), average oscillator wave length ( o) and oscillator strength S o for the thin films were determined and presented in this work.

  1. Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film

    PubMed Central

    Shirsath, Sagar E.; Liu, Xiaoxi; Yasukawa, Yukiko; Li, Sean; Morisako, Akimitsu

    2016-01-01

    Perpendicular magnetization and precise control over the magnetic easy axis in magnetic thin film is necessary for a variety of applications, particularly in magnetic recording media. A strong (111) orientation is successfully achieved in the CoFe2O4 (CFO) thin film at relatively low substrate temperature of 100 °C, whereas the (311)-preferred randomly oriented CFO is prepared at room temperature by the DC magnetron sputtering technique. The oxygen-deficient porous CFO film after post-annealing gives rise to compressive strain perpendicular to the film surface, which induces large perpendicular coercivity. We observe the coercivity of 11.3 kOe in the 40-nm CFO thin film, which is the highest perpendicular coercivity ever achieved on an amorphous SiO2/Si substrate. The present approach can guide the systematic tuning of the magnetic easy axis and coercivity in the desired direction with respect to crystal orientation in the nanoscale regime. Importantly, this can be achieved on virtually any type of substrate. PMID:27435010

  2. Enhanced Visible Transmittance of Thermochromic VO₂ Thin Films by SiO₂ Passivation Layer and Their Optical Characterization.

    PubMed

    Yu, Jung-Hoon; Nam, Sang-Hun; Lee, Ji Won; Boo, Jin-Hyo

    2016-07-09

    This paper presents the preparation of high-quality vanadium dioxide (VO₂) thermochromic thin films with enhanced visible transmittance (T vis ) via radio frequency (RF) sputtering and plasma enhanced chemical vapor deposition (PECVD). VO₂ thin films with high T vis and excellent optical switching efficiency (E os ) were successfully prepared by employing SiO₂ as a passivation layer. After SiO₂ deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO₂ coating, the phase transition temperature (T c ) of the prepared films was not affected. Compared with pristine VO₂, the total layer thickness after SiO₂ coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO₂ thin films showed a higher T vis value (λ 650 nm, 58%) compared with the pristine samples (λ 650 nm, 43%). This enhancement of T vis while maintaining high E os is meaningful for VO₂-based smart window applications.

  3. Computational and theoretical analysis of free surface flow in a thin liquid film under zero and normal gravity

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1988-01-01

    The results of a numerical computation and theoretical analysis are presented for the flow of a thin liquid film in the presence and absence of a gravitational body force. Five different flow systems were used. Also presented are the governing equations and boundary conditions for the situation of a thin liquid emanating from a pressure vessel; traveling along a horizontal plate with a constant initial height and uniform initial velocity; and traveling radially along a horizontal disk with a constant initial height and uniform initial velocity.

  4. Reversible superhydrophilicity and hydrophobicity switching of V2O5 thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhang, Chunzi; Peng, Zhiguang; Cui, Xiaoyu; Neil, Eric; Li, Yuanshi; Kasap, Safa; Yang, Qiaoqin

    2018-03-01

    V2O5 thin films are well-known "smart" materials due to their reversible wettability under UV irradiation and dark storage. Their surfaces are usually hydrophobic and turn into hydrophilic under UV irradiation. However, the V2O5 thin films deposited by magnetron sputtering in present work are superhydrophilic and turned into hydrophobic after days' of storage in air. This change can be recovered by heating. The effects of many factors including surface roughness, irradiation from visible light, UV, & X-ray, and storage in air & vacuum on the reversible switching of wettability were investigated. The results show that air absorption is the main factor causing the film surface change from superhydrophilicity to hydrophobicity.

  5. Biopolymer Green Lubricant for Sustainable Manufacturing

    PubMed Central

    Shi, Shih-Chen; Lu, Fu-I

    2016-01-01

    We report on the preparation of a biopolymer thin film by hydroxypropyl methylcellulose (HPMC), which can be used as a dry green lubricant in sustainable manufacturing. The thin films were characterized through scanning electron microscopy, energy-dispersive spectroscopy, and Raman spectroscopy; the films showed desirable levels of thickness, controllability, and uniformity. Tribology tests also showed desirable tribological and antiwear behaviors, caused by the formation of transfer layers. Zebrafish embryo toxicity studies showed that HPMC has excellent solubility and biocompatibility, which may show outstanding potential for applications as a green lubricant. The results of the present study show that these techniques for biopolymer HPMC provide an ecologically responsible and convenient method for preparing functional thin films, which is particularly applicable to sustainable manufacturing. PMID:28773462

  6. Fully transparent conformal organic thin-film transistor array and its application as LED front driving.

    PubMed

    Cui, Nan; Ren, Hang; Tang, Qingxin; Zhao, Xiaoli; Tong, Yanhong; Hu, Wenping; Liu, Yichun

    2018-02-22

    A fully transparent conformal organic thin-film field-effect transistor array is demonstrated based on a photolithography-compatible ultrathin metallic grid gate electrode and a solution-processed C 8 -BTBT film. The resulting organic field-effect transistor array exhibits a high optical transparency of >80% over the visible spectrum, mobility up to 2 cm 2 V -1 s -1 , on/off ratio of 10 5 -10 6 , switching current of >0.1 mA, and excellent light stability. The transparent conformal transistor array is demonstrated to adhere well to flat and curved LEDs as front driving. These results present promising applications of the solution-processed wide-bandgap organic semiconductor thin films in future large-scale transparent conformal active-matrix displays.

  7. Low stress polysilicon film and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)

    2001-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.

  8. Low stress polysilicon film and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)

    2002-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.

  9. Radiative Performance of Rare Earth Garnet Thin Film Selective Emitters

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Good, Brian S.

    1994-01-01

    In this paper we present the first emitter efficiency results for the thin film 40 percent Er-1.5 percent Ho YAG (Yttrium Aluminum Garnet, Y3Al5O12) and 25 percent Ho YAG selective emitter at 1500 K with a platinum substrate. Spectral emittance and emissive power measurements were made (1.2 less than lambda less than 3.2 microns). Emitter efficiency and power density are significantly improved with the addition of multiple rare earth dopants. Predicted efficiency results are presented for an optimized (equal power density in the Er, (4)I(sub 15/2)-(4)I(sub 13/2) at 1.5 microns, and Ho, (5)I(sub 7)-(5)I(sub 8) at 2.0 micron emission bands) Er-Ho YAG thin film selective emitter.

  10. Some optical and electron microscope comparative studies of excimer laser-assisted and nonassisted molecular-beam epitaxically grown thin GaAs films on Si

    NASA Technical Reports Server (NTRS)

    Lao, Pudong; Tang, Wade C.; Rajkumar, K. C.; Guha, S.; Madhukar, A.; Liu, J. K.; Grunthaner, F. J.

    1990-01-01

    The quality of GaAs thin films grown via MBE under pulsed excimer laser irradiation on Si substrates is examined in both laser-irradiated and nonirradiated areas using Raman scattering, Rayleigh scattering, and by photoluminescence (PL), as a function of temperature, and by TEM. The temperature dependence of the PL and Raman peak positions indicates the presence of compressive stress in the thin GaAs films in both laser-irradiated and nonirradiated areas. This indicates incomplete homogeneous strain relaxation by dislocations at the growth temperature. The residual compressive strain at the growth temperature is large enough such that even with the introduction of tensile strain arising from the difference in thermal expansion coefficients of GaAs and Si, a compressive strain is still present at room temperature for these thin GaAs/Si films.

  11. Controllable Ag nanostructure patterning in a microfluidic channel for real-time SERS systems.

    PubMed

    Leem, Juyoung; Kang, Hyun Wook; Ko, Seung Hwan; Sung, Hyung Jin

    2014-03-07

    We present a microfluidic patterning system for fabricating nanostructured Ag thin films via a polyol method. The fabricated Ag thin films can be used immediately in a real-time SERS sensing system. The Ag thin films are formed on the inner surfaces of a microfluidic channel so that a Ag-patterned Si wafer and a Ag-patterned PDMS channel are produced by the fabrication. The optimum sensing region and fabrication duration for effective SERS detection were determined. As SERS active substrates, the patterned Ag thin films exhibit an enhancement factor (EF) of 4.25 × 10(10). The Ag-patterned polymer channel was attached to a glass substrate and used as a microfluidic sensing system for the real-time monitoring of biomolecule concentrations. This microfluidic patterning system provides a low-cost process for the fabrication of materials that are useful in medical and pharmaceutical detection and can be employed in mass production.

  12. Enhanced magnetoelectric response in 2-2 bilayer 0.50Pb(Ni1/3Nb2/3)O3-0.35PbTiO3-0.15PbZrO3/NiFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Ade, Ramesh; Sambasiva, V.; Kolte, Jayant; Karthik, T.; Kulkarni, Ajit R.; Venkataramani, N.

    2018-03-01

    In this work, room temperature magnetoelectric (ME) properties of 0.50Pb(Ni1/3Nb2/3)O3-0.35PbTiO3-0.15PbZrO3 (PNNZT)/NiFe2O4 (NFO) 2-2 bilayer thin films grown on Pt/Ti/SiO2/Si substrate, using pulsed laser deposition technique, are reported. Structural studies confirm single phase PNNZT/NFO 2-2 bilayer structure formation. PNNZT/NFO 2-2 bilayer thin film shows a maximum ME voltage coefficient (α E ) of ~0.70 V cm-1. Oe-1 at a frequency of 1 kHz. The present study reveals that PNNZT/NFO bilayer thin film can be a potential candidate for technological applications.

  13. Post-annealing-free, room temperature processed nanocrystalline indium tin oxide thin films for plastic electronics

    NASA Astrophysics Data System (ADS)

    Nyoung Jang, Jin; Jong Lee, You; Jang, YunSung; Yun, JangWon; Yi, Seungjun; Hong, MunPyo

    2016-06-01

    In this study, we confirm that bombardment by high energy negative oxygen ions (NOIs) is the key origin of electro-optical property degradations in indium tin oxide (ITO) thin films formed by conventional plasma sputtering processes. To minimize the bombardment effect of NOIs, which are generated on the surface of the ITO targets and accelerated by the cathode sheath potential on the magnetron sputter gun (MSG), we introduce a magnetic field shielded sputtering (MFSS) system composed of a permanent magnetic array between the MSG and the substrate holder to block the arrival of energetic NOIs. The MFSS processed ITO thin films reveal a novel nanocrystal imbedded polymorphous structure, and present not only superior electro-optical characteristics but also higher gas diffusion barrier properties. To the best of our knowledge, no gas diffusion barrier composed of a single inorganic thin film formed by conventional plasma sputtering processes achieves such a low moisture permeability.

  14. Fabrication of micromachined ceramic thin-film-type pressure sensors for overpressure tolerance and its characteristics

    NASA Astrophysics Data System (ADS)

    Chung, Gwiy-Sang; Kim, Jae-Min

    2004-04-01

    This paper describes the fabrication process and characteristics of ceramic thin-film pressure sensors based on Ta-N strain gauges for harsh environment applications. The Ta-N thin-film strain gauges are sputter-deposited on a thermally oxidized micromachined Si diaphragm with buried cavities for overpressure tolerance. The proposed device takes advantage of the good mechanical properties of single-crystalline Si as a diaphragm fabricated by SDB and electrochemical etch-stop technology, and in order to extend the temperature range, it has relatively higher resistance, stability and gauge factor of Ta-N thin-films more than other gauges. The fabricated pressure sensor presents a low temperature coefficient of resistance, high-sensitivity, low nonlinearity and excellent temperature stability. The sensitivity is 1.21-1.097 mV/V×kgf/cm2 in temperature ranges of 25-200°C and a maximum non-linearity is 0.43 %FS.

  15. Deposition of hydrogenated silicon clusters for efficient epitaxial growth.

    PubMed

    Le, Ha-Linh Thi; Jardali, Fatme; Vach, Holger

    2018-06-13

    Epitaxial silicon thin films grown from the deposition of plasma-born hydrogenated silicon nanoparticles using plasma-enhanced chemical vapor deposition have widely been investigated due to their potential applications in photovoltaic and nanoelectronic device technologies. However, the optimal experimental conditions and the underlying growth mechanisms leading to the high-speed epitaxial growth of thin silicon films from hydrogenated silicon nanoparticles remain far from being understood. In the present work, extensive molecular dynamics simulations were performed to study the epitaxial growth of silicon thin films resulting from the deposition of plasma-born hydrogenated silicon clusters at low substrate temperatures under realistic reactor conditions. There is strong evidence that a temporary phase transition of the substrate area around the cluster impact site to the liquid state is necessary for the epitaxial growth to take place. We predict further that a non-normal incidence angle for the cluster impact significantly facilitates the epitaxial growth of thin crystalline silicon films.

  16. Implantable polymer/metal thin film structures for the localized treatment of cancer by Joule heating

    NASA Astrophysics Data System (ADS)

    Kan-Dapaah, Kwabena; Rahbar, Nima; Theriault, Christian; Soboyejo, Wole

    2015-04-01

    This paper presents an implantable polymer/metal alloy thin film structure for localized post-operative treatment of breast cancer. A combination of experiments and models is used to study the temperature changes due to Joule heating by patterned metallic thin films embedded in poly-dimethylsiloxane. The heat conduction within the device and the surrounding normal/cancerous breast tissue is modeled with three-dimensional finite element method (FEM). The FEM simulations are used to explore the potential effects of device geometry and Joule heating on the temperature distribution and lesion (thermal dose). The FEM model is validated using a gel model that mimics biological media. The predictions are also compared to prior results from in vitro studies and relevant in vivo studies in the literature. The implications of the results are discussed for the potential application of polymer/metal thin film structures in hyperthermic treatment of cancer.

  17. Zirconium doped TiO{sub 2} thin films: A promising dielectric layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Arvind; Mondal, Sandip, E-mail: sandipmondal@physics.iisc.ernet.in; Rao, K. S. R. Koteswara

    2016-05-06

    In the present work, we have fabricated the zirconium doped TiO{sub 2} thin (ZTO) films from a facile spin – coating method. The addition of Zirconium in TiO{sub 2} offers conduction band offset to Si and consequently decreased the leakage current density by approximately two orders as compared to pure TiO{sub 2} thin (TO) films. The ZTO thin film shows a high dielectric constant 27 with a very low leakage current density ∼10{sup −8} A/cm{sup 2}. The oxide capacitate, flat band voltage and change in flat band voltage are 172 pF, -1.19 V and 54 mV. The AFM analysis confirmed the compactmore » and pore free flat surface. The RMS surface roughness is found to be 1.5 Å. The ellipsometry analysis also verified the fact with a high refractive index 2.21.« less

  18. The Use of Feature Parameters to Asses Barrier Properties of ALD coatings for Flexible PV Substrates

    NASA Astrophysics Data System (ADS)

    Blunt, Liam; Robbins, David; Fleming, Leigh; Elrawemi, Mohamed

    2014-03-01

    This paper reports on the recent work carried out as part of the EU funded NanoMend project. The project seeks to develop integrated process inspection, cleaning, repair and control systems for nano-scale thin films on large area substrates. In the present study flexible photovoltaic films have been the substrate of interest. Flexible PV films are the subject of significant development at present and the latest films have efficiencies at or beyond the level of Si based rigid PV modules. These flexible devices are fabricated on polymer film by the repeated deposition, and patterning, of thin layer materials using roll-to-roll processes, where the whole film is approximately 3um thick prior to encapsulation. Whilst flexible films offer significant advantages in terms of mass and the possibility of building integration (BIPV) they are at present susceptible to long term environmental degradation as a result of water vapor transmission through the barrier layers to the CIGS (Copper Indium Gallium Selenide CuInxGa(1-x)Se2) PV cells thus causing electrical shorts and efficiency drops. Environmental protection of the GIGS cell is provided by a thin (40nm) barrier coating of Al2O3. The highly conformal aluminium oxide barrier layer is produced by atomic layer deposition (ALD) where, the ultra-thin Al2O3 layer is deposited onto polymer thin films before these films encapsulate the PV cell. The surface of the starting polymer film must be of very high quality in order to avoid creating defects in the device layers. Since these defects reduce manufacturing yield, in order to prevent them, a further thin polymer coating (planarization layer) is generally applied to the polymer film prior to deposition. The presence of surface irregularities on the uncoated film can create defects within the nanometre-scale, aluminium oxide, barrier layer and these are measured and characterised. This paper begins by reporting the results of early stage measurements conducted to characterise the uncoated and coated polymer film surface topography using feature parameter analysis. The measurements are carried out using a Taylor Hobson Coherence Correlation Interferometer an optical microscope and SEM. Feature parameter analysis allows the efficient separation of small insignificant defects from large defects. The presence of both large and insignificant defects is then correlated with the water vapour transmission rate as measured on representative sets of films using at standard MOCON test. The paper finishes by drawing conclusions based on analysis of WVTR and defect size, where it is postulated that small numbers of large defects play a significant role in higher levels of WVTR.

  19. Silicon-sheet and thin-film cell and module technology potential: Issue study

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Costogue, E. N.; Ferber, R. R.

    1984-01-01

    The development of high-efficiency low-cost crystalline silicon ribbon and thih-film solar cells for the energy national photovoltaics program was examined. The findings of an issue study conducted are presented. The collected data identified the status of the technology, future research needs, and problems experienced. The potentials of present research activities to meet the Federal/industry long-term technical goal of achieving 15 cents per kilowatt-hour levelized PV energy cost are assessed. Recommendations for future research needs related to crystalline silicon ribbon and thin-film technologies for flat-plate collectors are also included.

  20. Thermal annealing and SHI irradiation induced modifications in sandwiched structured Carbon-gold-Carbon (a-C/Au/a-C) nanocomposite thin film

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Singhal, R.

    2017-09-01

    In the present work, we study the annealing and swift heavy ion (SHI) beam induced modifications in the optical and structural properties of sandwiched structured Carbon-gold-Carbon (a-C/Au/a-C) nanocomposite (NCs) thin films. The NCs thin films were synthesized by electron-beam evaporation technique at room temperature with ∼30 nm thickness for both carbon layer and ∼6 nm for gold layer. Gold-carbon NCs thin films were annealed in the presence of argon at a temperature of 500 °C, 600 °C and 750 °C. The NCs thin films were also irradiated with 90 MeV Ni ions beam with different ion fluences in the range from 3 × 1012, 6 × 1012 and 1 × 1013 ions/cm2. Surface plasmon resonance (SPR) of Au nanoparticles are not observed in the pristine film but, after annealing at temperature of 600 °C and 750 °C, it was clearly seen at ∼534 nm as confirmed by UV-visible absorption spectroscopy. 90 MeV Ni irradiated thin film at the fluence of 1 × 1013 ions/cm2 also show strong absorption band at ∼534 nm. The growth and size of Au nanoparticle for pristine and 90 MeV Ni ion irradiated thin film with fluence of 1 × 1013 ions/cm2, were estimated by Transmission electron microscopy (TEM) images with the bi-model distribution. The size of the gold nanoparticle (NPs) was found to be ∼4.5 nm for the pristine film and ∼5.4 nm for the irradiated film at a fluence of 1 × 1013 ions/cm2. The thickness and metal atomic fraction in carbon matrix were estimated by Rutherford backscattering spectroscopy (RBS). The effect of annealing as well as heavy ion irradiation on D and G band of carbon matrix were studied by Raman spectroscopy.

  1. An enhancement of photoluminescence property of Ag doped La2O3 thin films at room temperature

    NASA Astrophysics Data System (ADS)

    Jbeli, R.; Boukhachem, A.; Ben Jemaa, I.; Mahdhi, N.; Saadallah, F.; Elhouichet, H.; Alleg, S.; Amlouk, M.; Ezzaouïa, H.

    2017-09-01

    Metal transition doped oxide thin films or nanocomposites have recently emerged at the forefront of potentials research. With the focus mainly on efficiency, the aspect of stability against optical irradiation of such materials has so far not been thoroughly addressed. This work covers the synthesis of silver doped lanthanum oxide thin films (La2O3:Ag) which have been prepared by the spray pyrolysis technique on glass substrates at 460 °C. Then, Ag thin films were grown on lanthanum oxide thin films by thermal evaporation. The present work aims to reach the synthesis of La2O3:Ag thin films using both the spray pyrolysis and thermal evaporation techniques. First, X-ray diffraction analysis shows that undoped and Ag doped films crystallize in a mixture of hexagonal and cubic phase with crystallites oriented along (001) direction. Raman spectroscopy shows the bands positions corresponding to hexagonal and cubic phases. On the other hand, an attempt regarding their optical properties has been carried out by means of photoluminescence measurements. Second, from electrical conductivity measurements, the activation energy decreases from 1.42 to 1.09 eV with the increase of annealing time and the charge carriers are following the CBH model as dominant charge transport mechanism. Finally, the annealing time influences the surface wettability property and transforms La2O3 character from hydrophobic (θ > 90°) to hydrophilic (θ < 90°).

  2. An enhancement of photoluminescence property of Ag doped La2O3 thin films at room temperature.

    PubMed

    Jbeli, R; Boukhachem, A; Ben Jemaa, I; Mahdhi, N; Saadallah, F; Elhouichet, H; Alleg, S; Amlouk, M; Ezzaouïa, H

    2017-09-05

    Metal transition doped oxide thin films or nanocomposites have recently emerged at the forefront of potentials research. With the focus mainly on efficiency, the aspect of stability against optical irradiation of such materials has so far not been thoroughly addressed. This work covers the synthesis of silver doped lanthanum oxide thin films (La 2 O 3 :Ag) which have been prepared by the spray pyrolysis technique on glass substrates at 460°C. Then, Ag thin films were grown on lanthanum oxide thin films by thermal evaporation. The present work aims to reach the synthesis of La 2 O 3 :Ag thin films using both the spray pyrolysis and thermal evaporation techniques. First, X-ray diffraction analysis shows that undoped and Ag doped films crystallize in a mixture of hexagonal and cubic phase with crystallites oriented along (001) direction. Raman spectroscopy shows the bands positions corresponding to hexagonal and cubic phases. On the other hand, an attempt regarding their optical properties has been carried out by means of photoluminescence measurements. Second, from electrical conductivity measurements, the activation energy decreases from 1.42 to 1.09eV with the increase of annealing time and the charge carriers are following the CBH model as dominant charge transport mechanism. Finally, the annealing time influences the surface wettability property and transforms La 2 O 3 character from hydrophobic (θ>90°) to hydrophilic (θ<90°). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The 3D modeling of high numerical aperture imaging in thin films

    NASA Technical Reports Server (NTRS)

    Flagello, D. G.; Milster, Tom

    1992-01-01

    A modelling technique is described which is used to explore three dimensional (3D) image irradiance distributions formed by high numerical aperture (NA is greater than 0.5) lenses in homogeneous, linear films. This work uses a 3D modelling approach that is based on a plane-wave decomposition in the exit pupil. Each plane wave component is weighted by factors due to polarization, aberration, and input amplitude and phase terms. This is combined with a modified thin-film matrix technique to derive the total field amplitude at each point in a film by a coherent vector sum over all plane waves. Then the total irradiance is calculated. The model is used to show how asymmetries present in the polarized image change with the influence of a thin film through varying degrees of focus.

  4. Thin Film Electrodes for Rare Event Detectors

    NASA Astrophysics Data System (ADS)

    Odgers, Kelly; Brown, Ethan; Lewis, Kim; Giordano, Mike; Freedberg, Jennifer

    2017-01-01

    In detectors for rare physics processes, such as neutrinoless double beta decay and dark matter, high sensitivity requires careful reduction of backgrounds due to radioimpurities in detector components. Ultra pure cylindrical resistors are being created through thin film depositions onto high purity substrates, such as quartz glass or sapphire. By using ultra clean materials and depositing very small quantities in the films, low radioactivity electrodes are produced. A new characterization process for cylindrical film resistors has been developed through analytic construction of an analogue to the Van Der Pauw technique commonly used for determining sheet resistance on a planar sample. This technique has been used to characterize high purity cylindrical resistors ranging from several ohms to several tera-ohms for applications in rare event detectors. The technique and results of cylindrical thin film resistor characterization will be presented.

  5. Sputtered magnesium diboride thin films: Growth conditions and surface morphology

    NASA Astrophysics Data System (ADS)

    O'Brien, April; Villegas, Brendon; Gu, J. Y.

    2009-01-01

    Magnesium diboride (MgB 2) thin films were deposited on C-plane sapphire substrates by sputtering pure B and Mg targets at different substrate temperatures, and were followed by in situ annealing. A systematic study about the effects of the various growth and annealing parameters on the physical properties of MgB 2 thin films showed that the substrate temperature is the most critical factor that determines the superconducting transition temperature ( Tc), while annealing plays a minor role. There was no superconducting transition in the thin films grown at room temperature without post-annealing. The highest Tc of the samples grown at room temperature after the optimized annealing was 22 K. As the temperature of the substrate ( Ts) increased, Tc rose. However, the maximum Ts was limited due to the low magnesium sticking coefficient and thus the Tc value was limited as well. The highest Tc, 29 K, was obtained for the sample deposited at 180 °C, annealed at 620 °C, and was subsequently annealed a second time at 800 °C. Three-dimensional (3D) AFM images clearly demonstrated that the thin films with no transition, or very low Tc, did not have the well-developed MgB 2 grains while the films with higher Tc displayed the well-developed grains and smooth surface. Although the Tc of sputtered MgB 2 films in the current work is lower than that for the bulk and ex situ annealed thin films, this work presents an important step towards the fabrication of MgB 2 heterostructures using rather simple physical vapor deposition method such as sputtering.

  6. Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction

    NASA Astrophysics Data System (ADS)

    Oh, Hyo-Jun; Dao, Van-Duong; Choi, Ho-Suk

    2018-03-01

    This study presents the first use of a plasma reduction reaction under atmospheric pressure to fabricate a thin silver layer on polyethylene terephthalate (PET) film without the use of toxic chemicals, high voltages, or an expensive vacuum apparatus. The developed film is applied to electromagnetic interference (EMI) shielding. After repeatedly depositing a silver layer through a plasma reduction reaction on PET, we can successfully fabricate a uniformly deposited thin silver layer. It was found that both the particle size and film thickness of thin silver layers fabricated at different AgNO3 concentrations increase with an increase in the concentration of AgNO3. However, the roughness of the thin silver layer decreases when increasing the concentration of AgNO3 from 100 to 500 mM, and the roughness increases with a further increase in the concentration of AgNO3. The EMI shielding effectiveness (SE) of the film is measured in the frequency range of 0.045 to 1 GHz. As a result of optimizing the electrical conductivity by measuring sheet resistance of the thin silver layer, the film fabricated from 500 mM AgNO3 exhibits the highest EMI SE among all fabricated films. The maximum values of the EMI SE are 60.490 dB at 0.1 GHz and 54.721 dB at 1.0 GHz with minimum sheet resistance of 0.244 Ω/□. Given that the proposed strategy is simple and effective, it is promising for fabricating various low-cost metal films with high EMI SE.

  7. Effects of doping on ferroelectric properties and leakage current behavior of KNN-LT-LS thin films on SrTiO3 substrate

    NASA Astrophysics Data System (ADS)

    Abazari, M.; Safari, A.

    2009-05-01

    We report the effects of Ba, Ti, and Mn dopants on ferroelectric polarization and leakage current of (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 (KNN-LT-LS) thin films deposited by pulsed laser deposition. It is shown that donor dopants such as Ba2+, which increased the resistivity in bulk KNN-LT-LS, had an opposite effect in the thin film. Ti4+ as an acceptor B-site dopant reduces the leakage current by an order of magnitude, while the polarization values showed a slight degradation. Mn4+, however, was found to effectively suppress the leakage current by over two orders of magnitude while enhancing the polarization, with 15 and 23 μC/cm2 remanent and saturated polarization, whose values are ˜70% and 82% of the reported values for bulk composition. This phenomenon has been associated with the dual effect of Mn4+ in KNN-LT-LS thin film, by substituting both A- and B-site cations. A detailed description on how each dopant affects the concentrations of vacancies in the lattice is presented. Mn-doped KNN-LT-LS thin films are shown to be a promising candidate for lead-free thin films and applications.

  8. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors.

    PubMed

    Zhang, Li Li; Zhao, Xin; Stoller, Meryl D; Zhu, Yanwu; Ji, Hengxing; Murali, Shanthi; Wu, Yaping; Perales, Stephen; Clevenger, Brandon; Ruoff, Rodney S

    2012-04-11

    We present a novel method to prepare highly conductive, free-standing, and flexible porous carbon thin films by chemical activation of reduced graphene oxide paper. These flexible carbon thin films possess a very high specific surface area of 2400 m(2) g(-1) with a high in-plane electrical conductivity of 5880 S m(-1). This is the highest specific surface area for a free-standing carbon film reported to date. A two-electrode supercapacitor using these carbon films as electrodes demonstrated an excellent high-frequency response, an extremely low equivalent series resistance on the order of 0.1 ohm, and a high-power delivery of about 500 kW kg(-1). While higher frequency and power values for graphene materials have been reported, these are the highest values achieved while simultaneously maintaining excellent specific capacitances and energy densities of 120 F g(-1) and 26 W h kg(-1), respectively. In addition, these free-standing thin films provide a route to simplify the electrode-manufacturing process by eliminating conducting additives and binders. The synthetic process is also compatible with existing industrial level KOH activation processes and roll-to-roll thin-film fabrication technologies. © 2012 American Chemical Society

  9. Effects of substrate heating and post-deposition annealing on characteristics of thin MOCVD HfO2 films

    NASA Astrophysics Data System (ADS)

    Gopalan, Sundararaman; Ramesh, Sivaramakrishnan; Dutta, Shibesh; Virajit Garbhapu, Venkata

    2018-02-01

    It is well known that Hf-based dielectrics have replaced the traditional SiO2 and SiON as gate dielectric materials for conventional CMOS devices. By using thicker high-k materials such as HfO2 rather than ultra-thin SiO2, we can bring down leakage current densities in MOS devices to acceptable levels. HfO2 is also one of the potential candidates as a blocking dielectric for Flash memory applications for the same reason. In this study, effects of substrate heating and oxygen flow rate while depositing HfO2 thin films using CVD and effects of post deposition annealing on the physical and electrical characteristics of HfO2 thin films are presented. It was observed that substrate heating during deposition helps improve the density and electrical characteristics of the films. At higher substrate temperature, Vfb moved closer to zero and also resulted in significant reduction in hysteresis. Higher O2 flow rates may improve capacitance, but also results in slightly higher leakage. The effect of PDA depended on film thickness and O2 PDA improved characteristics only for thick films. For thinner films forming gas anneal resulted in better electrical characteristics.

  10. Multiphonon Raman scattering and photoluminescence studies of CdS nanocrystals grown by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Farid, Sidra; Stroscio, Michael A.; Dutta, Mitra

    2018-03-01

    Thermal evaporation growth technique is presented as a route to grow cost effective high quality CdS thin films. We have successfully grown high quality CdS thin films on ITO coated glass substrates by thermal evaporation technique and analyzed the effects of annealing and excitation dependent input of CdS thin film using Raman and photoluminescence spectroscopy. LO phonon modes have been analyzed quantitatively considering the contributions due to anneal induced effects on film quality using phonon spatial correlation model, line shape and defect state analysis. Asymmetry in the Raman line shape towards the low frequency side is related to the phonon confinement effects and is modeled by spatial correlation model. Calculations of width (FWHM), integrated intensity, and line shape for the longitudinal (LO) optical phonon modes indicate improved crystalline quality for the annealed films as compared to the as grown films. With increase in laser power, intensity ratio of 2-LO to 1-LO optical phonon modes is found to increase while multiple overtones upto fourth order are observed. Power dependent photoluminescence data indicates direct band-to-band transition in CdS thin films.

  11. PREFACE: Proceedings Symposium G of E-MRS Spring Meeting on Fundamentals and Technology of Multifunctional Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Oxide materials exhibit a large variety of functional properties that are useful in a plethora of applications. Symposium G focused on oxide thin films that include dielectric or switching properties. Its program mirrored very well the strong worldwide search for high-K thin films for gate, memory, and on-chip capacitors, as well as the emerging field of functional thin films for MEMS. A complete session was devoted to the colossal effect of dielectric response in (Ca,Cu)TiO3, representing the major European research groups in this field. A comprehensive overview on this phenomenon was given by D Sinclair J Wolfman presented the latest results on CCTO thin films obtained by wafer scale pulsed laser deposition. A Loidl showed the analytical power of dielectric spectroscopy when covering the complete frequency range from 1-1012 Hz, i.e. from space charge to phonon contributions at the example of CCTO. Another session was devoted to applications in non-volatile memories, covering various effects including ferroelectric and resistive switching, the complex behavior of oxide tunnel junctions (H Kohlstedt), the possibility to manipulate the magnetic state of a 2d-electron gas by the polarization of an adjacent ferroelectric gate (I Stolitchnov). Latest advancements in ALD processing for high-K thin films in dynamic RAM were reported by S Ramanathan. The advancement of piezoelectric PZT thin film MEMS devices was well documented by outstanding talks on their developments in industry (M Klee, F Tyholdt), new possibilities in GHz filters (T Matshushima), advancements in sol-gel processing (B Tuttle, H Suzuki), and low temperature integration approaches by UV light curing (S Trolier-McKinstry). Recent advances in incipient ferroelectric thin films and nano composites for tunable capacitors in microwave applications were present by A Vorobiev and T Yamada. Integrated electro-optics is another field to be conquered by thin film structures. The impressive progress made in this field was highlighted by P Günter. Many contributions were devoted to processing techniques, showing the increasing importance of CVD techniques to deposit for instance perovskite thin films (G Malandrino). Nevertheless, stunning results were obtained by a sophisticated MBE tool allowing for precise compositional control of individual oxide monolayers and thus enabling High-Tc supraconductivity in individual monolayers to be addressed (I Bosovic). Oxides do not only gleam with giant dielectric properties, giant electronic conduction (superconductivity), there is also a giant electro-caloric effect, as explained by Z Kutnjak. The symposium could take advantage of the EU projects NUOTO and CAMELIA that organized a joint session on giant K dielectrics to present their project results to the scientific and industrial community. The symposium organizers Paul Muralt, EPFL, Lausanne, Switzerland Marija Kosec, Josef Stefan Institute, Ljubljana, Slovenia Vito Raineri, IMM-CNR, Catania, Italy Sebastiano Ravesi, STMicroelectronics, Catania, Italy Scientific Committee Robert Blinc (Josef Stefan Inst., Slovenia) Wolfgang Kleemann (Univ. Duisburg, Germany) Raffaella Lo Nigro (IMM-CNR, Italy) Ian M Reaney (Univ. Sheffield, Great Britain) T Metzger (EPCOS, Germany) Rainer Waser (TH Aachen, Germany)

  12. Fruit and vegetable films and uses thereof

    USDA-ARS?s Scientific Manuscript database

    The present invention is directed to monolayer, bilayer, and multilayer films made from fruit, vegetable or a combination thereof, which films have the thinness, strength, flexibility and crispness to serve as alternates or substitutes for seaweed-based films such as nori, while providing nutrition ...

  13. Preparation and characterization of ZnS thin films by the chemical bath deposition method (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ando, Shizutoshi; Iwashita, Taisuke

    2017-06-01

    Nowadays, the conversion efficiency of Cu(In・Ga)Se2 (CIGS)-based solar cell already reached over 20%. CdS thin films prepared by chemical bath deposition (CBD) method are used for CIGS-based thin film solar cells as the buffer layer. Over the past several years, a considerable number of studies have been conducted on ZnS buffer layer prepared by CBD in order to improve in conversion efficiency of CIGS-based solar cells. In addition, application to CIGS-based solar cell of ZnS buffer layer is expected as an eco-friendly solar cell by cadmium-free. However, it was found that ZnS thin films prepared by CBD included ZnO or Zn(OH)2 as different phase [1]. Nakata et. al reported that the conversion efficiency of CIGS-based solar cell using ZnS buffer layer (CBD-ZnS/CIGS) reached over 18% [2]. The problem which we have to consider next is improvement in crystallinity of ZnS thin films prepared by CBD. In this work, we prepared ZnS thin films on quarts (Si02) and SnO2/glass substrates by CBD with the self-catalysis growth process in order to improve crystallinity and quality of CBD-ZnS thin films. The solution to use for CBD were prepared by mixture of 0.2M ZnI2 or ZnSO4, 0.6M (NH2)2CS and 8.0M NH3 aq. In the first, we prepared the particles of ZnS on Si02 or SnO2/glass substrates by CBD at 80° for 20 min as initial nucleus (1st step ). After that, the particles of ZnS on Si02 or SnO2/glass substrates grew up to be ZnS thin films by CBD method at 80° for 40 min again (2nd step). We found that the surface of ZnS thin films by CBD with the self-catalyst growth process was flat and smooth. Consequently, we concluded that the CBD technique with self-catalyst growth process in order to prepare the particles of ZnS as initial nucleus layer was useful for improvement of crystallinity of ZnS thin films on SnO2/glass. [1] J.Vidal et,al., Thin Solid Films 419 (2002) 118. [2] T.Nakata et.al., Jpn. J. Appl. Phys. 41(2B), L165-L167 (2002)

  14. Metastable tantalum oxide formation during the devitrification of amorphous tantalum thin films

    DOE PAGES

    Donaldson, Olivia K.; Hattar, Khalid; Trelewicz, Jason R.

    2016-07-04

    Microstructural evolution during the devitrification of amorphous tantalum thin films synthesized via pulsed laser deposition was investigated using in situ transmission electron microscopy (TEM) combined with ex situ isothermal annealing, bright-field imaging, and electron-diffraction analysis. The phases formed during crystallization and their stability were characterized as a function of the chamber pressure during deposition, devitrification temperature, and annealing time. A range of metastable nanocrystalline tantalum oxides were identified following devitrification including multiple orthorhombic oxide phases, which often were present with, or evolved to, the tetragonal TaO 2 phase. While the appearance of these phases indicated the films were evolving tomore » the stable form of tantalum oxide—monoclinic tantalum pentoxide—it was likely not achieved for the conditions considered due to an insufficient amount of oxygen present in the films following deposition. Nevertheless, the collective in situ and ex situ TEM analysis applied to thin film samples enabled the isolation of a number of metastable tantalum oxides. As a result, new insights were gained into the transformation sequence and stability of these nanocrystalline phases, which presents opportunities for the development of advanced tantalum oxide-based dielectric materials for novel memristor designs.« less

  15. Summary Abstract: Growth and Alloying of Pd Films on Mo(110) Surfaces

    NASA Technical Reports Server (NTRS)

    Park, Ch. E.; Poppa, H.; Bauer, E.

    1985-01-01

    Alloying in small metal particles and in very thin films has recently received considerable attention. In the past it has been generally assumed that alloying is insignificant up to temperatures. Thus many epitaxy experiments of metals on metals with complete miscibility were performed at temperatures between 200 and 400 C and analyzed assuming no alloying. In particular, alloying was not suspected if the film material was not soluble in the substrate. In the present study, which was stimulated by annealing-induced CO adsorption anomalies on thin film surfaces, it has become evident that low temperature alloying can occur in thin films on a metal substrate which is refractory and has very strong interatomic bonds (as evidenced by a high sublimation energy) provided that the substrate is soluble in the film material. A good example of such a film-substrate combination is Pd on Mo. The solubility of Pd in Mo is very at temperatures below 1000 K but Pd can dissolve slightly more than 40 at. % Mo even at low temperatures.

  16. Experimental analysis and flow visualization of a thin liquid film on a stationary and rotating disk

    NASA Technical Reports Server (NTRS)

    Thomas, S.; Faghri, A.; Hankey, W.

    1991-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed ranged from 0-300 rpm and the flow rate varied from 7.0-15.0 lpm. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Upstream from the jump, the film thickness was determined by the inertial and frictional forces on the fluid, and the radial spreading of the film. The surface tension at the edge of the disk affected the film thickness downstream from the jump. For the rotating disk, the film thickness was dependent upon the inertial and frictional forces near the center of the disk and the centrifugal forces near the edge of the disk.

  17. Micron-scale channel formation by the release and bond-back of pre-stressed thin films: A finite element analysis

    NASA Astrophysics Data System (ADS)

    Annabattula, R. K.; Huck, W. T. S.; Onck, P. R.

    2010-04-01

    Buckling of thin films on a rigid substrate during use or fabrication is a well-known but unwanted phenomenon. However, this phenomenon can also be exploited to generate well-controlled patterns at the micro and nano-scale. These patterned surfaces find various technological applications such as optical gratings or micro/nano-fluidic channels. In this article, we present a numerical model that accounts for the buckling-up of pre-strained thin films by a reduction of the interface toughness and the subsequent bond-back. Channels are formed whose dimensions can be controlled by tuning the film dimensions, film thickness and stiffness, the eigenstrain in the film and the cohesive interface energy between the film and the substrate. We will show how the buckling-up and draping back processes can be captured in terms of a limited set of dimensionless parameters, providing quantitative insight on how these parameters should be tuned to generate a specified channel geometry.

  18. Magnon dispersion in thin magnetic films.

    PubMed

    Balashov, T; Buczek, P; Sandratskii, L; Ernst, A; Wulfhekel, W

    2014-10-01

    Although the dispersion of magnons has been measured in many bulk materials, few studies deal with the changes in the dispersion when the material is in the form of a thin film, a system that is of interest for applications. Here we review inelastic tunneling spectroscopy studies of magnon dispersion in Mn/Cu3Au(1 0 0) and present new studies on Co and Ni thin films on Cu(1 0 0). The dispersion in Mn and Co films closely follows the dispersion of bulk samples with negligible dependence on thickness. The lifetime of magnons depends slightly on film thickness, and decreases considerably as the magnon energy increases. In Ni/Cu(1 0 0) films the thickness dependence of dispersion is much more pronounced. The measurements indicate a considerable mode softening for thinner films. Magnon lifetimes decrease dramatically near the edge of the Brillouin zone due to a close proximity of the Stoner continuum. The experimental study is supported by first-principles calculations.

  19. Microbubble-Triggered Spontaneous Separation of Transparent Thin Films from Substrates Using Evaporable Core-Shell Nanocapsules.

    PubMed

    Son, Intae; Lee, Byungsun; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Ahn, Byung Wook; Hwang, Jeongho; Lee, Jonghyuk; Lee, Jun Hyup

    2018-05-23

    The spontaneous separation of a polymer thin film from a substrate is an innovative technology that will enable material recycling and reduce manufacturing cost in the film industry, and this can be applied in a wide range of applications, from optical films to wearable devices. Here, we present an unprecedented spontaneous strategy for separating transparent polymer films from substrates on the basis of microbubble generation using nanocapsules containing an evaporable material. The core-shell nanocapsules are prepared from poly(methyl methacrylate)-polyethyleneimine nanoparticles via the encapsulation of methylcyclohexane (MCH). A spherical nanostructure with a vaporizable core is obtained, with the heat-triggered gas release ability leading to the formation of microbubbles. Our separation method applied to transparent polymer films doped with a small amount of the nanocapsules encapsulating evaporable MCH enables spontaneous detachment of thin films from substrates via vacuum-assisted rapid vaporization of MCH over a short separation time, and clear detachment of the film is achieved with no deterioration of the inherent optical transparency and adhesive property compared to a pristine film.

  20. Study of electronic sputtering of CaF2 thin films

    NASA Astrophysics Data System (ADS)

    Pandey, Ratnesh K.; Kumar, Manvendra; Khan, Saif A.; Kumar, Tanuj; Tripathi, Ambuj; Avasthi, D. K.; Pandey, Avinash C.

    2014-01-01

    In the present work thin films of CaF2 deposited on Si substrate by electron beam evaporation have been investigated for swift heavy ions induced sputtering and surface modifications. Glancing angle X-ray Diffraction (GAXRD) measurements show that the pristine films are polycrystalline in nature and the grain size increases with increase in film thickness. Rutherford backscattering spectrometry (RBS) of pristine as well as irradiated films was performed to determine the sputter yield of CaF2 and a decrease in sputter yield has been observed with increase in film thickness. Thermal spike model has been applied to explain this. The confinement of energy in the grains having size smaller than the electron mean free path (λ) results in a higher sputtering yield. Atomic force microscopy (AFM) studies of irradiated CaF2 thin films show formation of cracks on film surface at a fluence of 5 × 1012 ions/cm2. Also RBS results confirm the removal of film from the surface and more exposure of substrate with increasing dose of ions.

  1. Influence of post-deposition annealing on structural, morphological and optical properties of copper (II) acetylacetonate thin films.

    PubMed

    Abdel-Khalek, H; El-Samahi, M I; El-Mahalawy, Ahmed M

    2018-05-21

    In this study, the effect of thermal annealing under vacuum conditions on structural, morphological and optical properties of thermally evaporated copper (II) acetylacetonate, cu(acac) 2 , thin films were investigated. The copper (II) acetylacetonate thin films were deposited using thermal evaporation technique at vacuum pressure ~1 × 10 -5  mbar. The deposited films were thermally annealed at 323, 373, 423, and 473 K for 2 h in vacuum. The thermogravimetric analysis of cu(acac) 2 powder indicated a thermal stability of cu(acac) 2 up to 423 K. The effects of thermal annealing on the structural properties of cu(acac) 2 were evaluated employing X-ray diffraction method and the analysis showed a polycrystalline nature of the as-deposited and annealed films with a preferred orientation in [1¯01] direction. Fourier transformation infrared (FTIR) technique was used to negate the decomposition of copper (II) acetylacetonate during preparation or/and annealing up to 423 K. The surface morphology of the prepared films was characterized by means of field emission scanning electron microscopy (FESEM). A significant enhancement of the morphological properties of cu(acac) 2 thin films was obtained till the annealing temperature reaches 423 K. The variation of optical constants that estimated from spectrophotometric measurements of the prepared thin films was investigated as a function of annealing temperature. The annealing process presented significantly impacted the nonlinear optical properties such as third-order optical susceptibility χ (3) and nonlinear refractive index n 2 of cu(acac) 2 thin films. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Influence of Cu-Ti thin film surface properties on antimicrobial activity and viability of living cells.

    PubMed

    Wojcieszak, Damian; Kaczmarek, Danuta; Antosiak, Aleksandra; Mazur, Michal; Rybak, Zbigniew; Rusak, Agnieszka; Osekowska, Malgorzata; Poniedzialek, Agata; Gamian, Andrzej; Szponar, Bogumila

    2015-11-01

    The paper describes properties of thin-film coatings based on copper and titanium. Thin films were prepared by co-sputtering of Cu and Ti targets in argon plasma. Deposited coatings consist of 90at.% of Cu and 10at.% of Ti. Characterization of the film was made on the basis of investigations of microstructure and physicochemical properties of the surface. Methods such as scanning electron microscopy, x-ray microanalysis, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, optical profilometry and wettability measurements were used to assess the properties of deposited thin films. An impact of Cu-Ti coating on the growth of selected bacteria and viability of the living cells (line L929, NCTC clone 929) was described in relation to the structure, surface state and wettability of the film. It was found that as-deposited films were amorphous. However, in such surroundings the nanocrystalline grains of 10-15nm and 25-35nm size were present. High surface active area with a roughness of 8.9nm, had an effect on receiving relatively high water contact angle value (74.1°). Such wettability may promote cell adhesion and result in an increase of the probability of copper ion transfer from the film surface into the cell. Thin films revealed bactericidal and fungicidal effects even in short term-contact. High activity of prepared films was directly related to high amount (ca. 51 %) of copper ions at 1+ state as x-ray photoelectron spectroscopy results have shown. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Synthesis and characterization of cobalt doped nickel oxide thin films by spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    Sathisha, D.; Naik, K. Gopalakrishna

    2018-05-01

    Cobalt (Co) doped nickel oxide (NiO) thin films were deposited on glass substrates at a temperature of about 400 °C by spray pyrolysis method. The effect of Co doping concentration on structural, optical and compositional properties of NiO thin films was investigated. X-ray diffraction result shows that the deposited thin films are polycrystalline in nature. Surface morphologies of the deposited thin films were observed by FESEM and AFM. EDS spectra showed the incorporation of Co dopants in NiO thin films. Optical properties of the grown thin films were characterized by UV-visible spectroscopy. It was found that the optical band gap energy and transmittance of the films decrease with increasing Co doping concentration.

  4. A Theoretical Model for Thin Film Ferroelectric Coupled Microstripline Phase Shifters

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Quereshi, A. H.

    2000-01-01

    Novel microwave phase shifters consisting of coupled microstriplines on thin ferroelectric films have been demonstrated recently. A theoretical model useful for predicting the propagation characteristics (insertion phase shift, dielectric loss, impedance, and bandwidth) is presented here. The model is based on a variational solution for line capacitance and coupled strip transmission line theory.

  5. Insight into the epitaxial encapsulation of Pd catalysts in an oriented metalloporphyrin network thin film for tandem catalysis.

    PubMed

    Vohra, M Ismail; Li, De-Jing; Gu, Zhi-Gang; Zhang, Jian

    2017-06-14

    A palladium catalyst (Pd-Cs) encapsulated metalloporphyrin network PIZA-1 thin film with bifunctional properties has been developed through a modified epitaxial layer-by-layer encapsulation approach. Combining the oxidation activity of Pd-Cs and the acetalization activity of the Lewis acidic sites in the PIZA-1 thin film, this bifunctional catalyst of the Pd-Cs@PIZA-1 thin film exhibits a good catalytic activity in a one-pot tandem oxidation-acetalization reaction. Furthermore, the surface components can be controlled by ending the top layer with different precursors in the thin film preparation procedures. The catalytic performances of these thin films with different surface composites were studied under the same conditions, which showed different reaction conversions. The result revealed that the surface component can influence the catalytic performance of the thin films. This epitaxial encapsulation offers a good understanding of the tandem catalysis for thin film materials and provides useful guidance to develop new thin film materials with catalytic properties.

  6. Generation of low work function, stable compound thin films by laser ablation

    DOEpatents

    Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.

    2001-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  7. Exciting transition metal doped dilute magnetic thin films: MgO:Er and ZnO:Er

    NASA Astrophysics Data System (ADS)

    Ćakıcı, T.; Sarıtaş, S.; Muǧlu, G. Merhan; Yıldırım, M.

    2017-02-01

    Erbium doped MgO and doped ZnO thin films have reasonably important properties applications in spintronic devices. These films were synthesized on glass substrates by Chemical Spray Pyrolysis (CSP) method. In the literature there has been almost no report on preparation of MgO:Er dilute magnetic thin films by means of CSP. Because doped thin films show different magnetic behaviors, depending upon the type of magnetic material ions, concentration of them, synthesis route and experimental conditions, synthesized MgO:Er and ZnO:Er films were compared to thin film properties. Optical analyses of the synthesized thin films were examined spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. Structural analysis of the thin films was examined by using XRD, Raman Analysis, FE-SEM, EDX and AFM techniques. Also, magnetic properties of the MgO:Er and ZnO:Er films were investigated by vibrating sample magnetometer (VSM) which show that diamagnetic behavior of the MgO:Er thin film and ferromagnetic (FM) behavior of the ZnO:Er film were is formed.

  8. Coupling Single-Mode Fiber to Uniform and Symmetrically Tapered Thin-Film Waveguide Structures Using Gadolinium Gallium Garnet

    NASA Technical Reports Server (NTRS)

    Gadi, Jagannath; Yalamanchili, Raj; Shahid, Mohammad

    1995-01-01

    The need for high efficiency components has grown significantly due to the expanding role of fiber optic communications for various applications. Integrated optics is in a state of metamorphosis and there are many problems awaiting solutions. One of the main problems being the lack of a simple and efficient method of coupling single-mode fibers to thin-film devices for integrated optics. In this paper, optical coupling between a single-mode fiber and a uniform and tapered thin-film waveguide is theoretically modeled and analyzed. A novel tapered structure presented in this paper is shown to produce perfect match for power transfer.

  9. Development of an Ultraflex-Based Thin Film Solar Array for Space Applications

    NASA Technical Reports Server (NTRS)

    White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan; Piszczor, Michael F.

    2003-01-01

    As flexible thin film photovoltaic (FTFPV) cell technology is developed for space applications, integration into a viable solar array structure that optimizes the attributes of this cell technology is critical. An advanced version of ABLE'sS UltraFlex solar array platform represents a near-term, low-risk approach to demonstrating outstanding array performance with the implementation of FTFPV technology. Recent studies indicate that an advanced UltraFlex solar array populated with 15% efficient thin film cells can achieve over 200 W/kg EOL. An overview on the status of hardware development and the future potential of this technology is presented.

  10. Understanding the Origin of Ferromagnetism in Strained LaCoO3 Thin Films

    NASA Astrophysics Data System (ADS)

    Ma, J. X.; Shi, J.; Freeland, J. W.

    2009-03-01

    Using strain to control the behavior of strongly correlated materials offers new opportunities to control fundamental properties. For the case of magnetism, LaCoO3 offers the ability to use strain through thin film growth to manipulate directly the spin-state of Co in this system. Here we present the results of a detailed polarized x-ray spectroscopy study of LaCoO3 thin films grown on SrTiO3(001) and LaAlO3 (001) substrates. X-ray diffraction from 25 nm thin films confirm the films are fully strained in both cases and, for films under tensile strain, total moment magnetometry shows a clear transition to ferromagnetic state at ˜80K. X-ray absorption shows that the films grown from a LaCoO3 target are slightly hole doped due to non-stoichiometry generated during growth (effective doping ˜ 0.1 holes per unit cell), which in the bulk is sufficient to destroy the low-spin state. However, even though the films are slightly hole doped, the films under tensile strain show long range ferromagnetic order unlike the bulk system. Since the films are insulating, these results are consistent with a ferromagnetic insulating state arising due to superexchange. Work at UCR is supported by ONR/DMEA under award H94003-08-2-0803.

  11. Binary metal oxide nanoparticle incorporated composite multilayer thin films for sono-photocatalytic degradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Gokul, Paramasivam; Vinoth, Ramalingam; Neppolian, Bernaurdshaw; Anandhakumar, Sundaramurthy

    2017-10-01

    We report reduced graphene oxide (rGO) supported binary metal oxide (CuO-TiO2/rGO) nanoparticle (NP) incorporated multilayer thin films based on Layer-by-Layer (LbL) assembly for enhanced sono-photocatalytic degradation of methyl orange under exposure to UV radiation. Multilayer thin films were fabricated on glass and quartz slides, and investigated using scanning electron microscopy and UV-vis spectroscopy. The loading of catalyst NPs on the film resulted in the change of morphology of the film from smooth to rough with uniformly distributed NPs on the surface. The growth of the control and NP incorporated films followed a linear regime as a function of number of layers. The%degradation of methyl orange as a function of time was investigated by UV-vis spectroscopy and total organic carbon (TOC) measurements. Complete degradation of methyl orange was achieved within 13 h. The amount of NP loading in the film significantly influenced the%degradation of methyl orange. Catalyst reusability studies revealed that the catalyst thin films could be repeatedly used for up to five times without any change in photocatalytic activity of the films. The findings of the present study support that the binary metal oxide catalyst films reported here are very useful for continuous systems, and thus, making it an option for scale up.

  12. Thin-film optical initiator

    DOEpatents

    Erickson, Kenneth L.

    2001-01-01

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  13. Through a Window, Brightly: A Review of Selected Nanofabricated Thin-Film Platforms for Spectroscopy, Imaging, and Detection.

    PubMed

    Dwyer, Jason R; Harb, Maher

    2017-09-01

    We present a review of the use of selected nanofabricated thin films to deliver a host of capabilities and insights spanning bioanalytical and biophysical chemistry, materials science, and fundamental molecular-level research. We discuss approaches where thin films have been vital, enabling experimental studies using a variety of optical spectroscopies across the visible and infrared spectral range, electron microscopies, and related techniques such as electron energy loss spectroscopy, X-ray photoelectron spectroscopy, and single molecule sensing. We anchor this broad discussion by highlighting two particularly exciting exemplars: a thin-walled nanofluidic sample cell concept that has advanced the discovery horizons of ultrafast spectroscopy and of electron microscopy investigations of in-liquid samples; and a unique class of thin-film-based nanofluidic devices, designed around a nanopore, with expansive prospects for single molecule sensing. Free-standing, low-stress silicon nitride membranes are a canonical structural element for these applications, and we elucidate the fabrication and resulting features-including mechanical stability, optical properties, X-ray and electron scattering properties, and chemical nature-of this material in this format. We also outline design and performance principles and include a discussion of underlying material preparations and properties suitable for understanding the use of alternative thin-film materials such as graphene.

  14. Influence of electron beam irradiation on nonlinear optical properties of Al doped ZnO thin films for optoelectronic device applications in the cw laser regime

    NASA Astrophysics Data System (ADS)

    Antony, Albin; Pramodini, S.; Poornesh, P.; Kityk, I. V.; Fedorchuk, A. O.; Sanjeev, Ganesh

    2016-12-01

    We present the studies on third-order nonlinear optical properties of Al doped ZnO thin films irradiated with electron beam at different dose rate. Al doped ZnO thin films were deposited on a glass substrate by spray pyrolysis deposition technique. The thin films were irradiated using the 8 MeV electron beam from microtron ranging from 1 kG y to 5 kG y. Nonlinear optical studies were carried out by employing the single beam Z-scan technique to determine the sign and magnitude of absorptive and refractive nonlinearities of the irradiated thin films. Continuous wave He-Ne laser operating at 633 nm was used as source of excitation. The open aperture Z-scan measurements indicated the sample displays reverse saturable absorption (RSA) process. The negative sign of the nonlinear refractive index n2 was noted from the closed aperture Z-scan measurements indicates, the films exhibit self-defocusing property due to thermal nonlinearity. The third-order nonlinear optical susceptibility χ(3) varies from 8.17 × 10-5 esu to 1.39 × 10-3 esu with increase in electron beam irradiation. The present study reveals that the irradiation of electron beam leads to significant changes in the third-order optical nonlinearity. Al doped ZnO displays good optical power handling capability with optical clamping of about ∼5 mW. The irradiation study endorses that the Al doped ZnO under investigation is a promising candidate photonic device applications such as all-optical power limiting.

  15. Fabrication and etching processes of silicon-based PZT thin films

    NASA Astrophysics Data System (ADS)

    Zhao, Hongjin; Liu, Yanxiang; Liu, Jianshe; Ren, Tian-Ling; Liu, Li-Tian; Li, Zhijian

    2001-09-01

    Lead-zirconate-titanate (PZT) thin films on silicon were prepared by a sol-gel method. Phase characterization and crystal orientation of the films were investigated by x-ray diffraction analysis (XRD). It was shown that the PZT thin films had a perfect perovskite structure after annealed at a low temperature of 600 degrees C. PZT thin films were chemically etched using HCl/HF solution through typical semiconductor lithographic process, and the etching condition was optimized. The scanning electron microscopy results indicated that the PZT thin film etching problem was well solved for the applications of PZT thin film devices.

  16. Optical properties and indentation hardness of thin-film acrylated epoxidized oil

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Syuhaimi Ab.; Shaktur, Khaled Mohamed; Mohammad, Rahmah; Zalikha, Wan Aimi; Nawi, Norwimie; Mohd, Ahmad Faiza

    2012-02-01

    Epoxy acrylate has been widely used as optical resin for applications such as cladding, the core of a waveguide, and other photonic devices. In this study, sustainable resin from edible oil was used as an alternative to epoxy acrylate. Structural features and the transmission of planar thin-film resin from an ultraviolet-visible spectroscopy (UV-VIS) spectrometer were investigated upon UV exposure. It was found that high transmission still persists for all samples with and without an UV absorber for exposed and unexposed samples. The film was found to absorb strongly below 400 nm. A change in the cut-off wavelength was observed upon exposure. Thin-film hardness and its dynamic indentation in the load-unload mode with different test forces were evaluated. Vickers hardness and the elastic modulus were determined for unacrylated epoxidized soybean oil (ESO) and acrylated epoxidized soybean oil (AESO). It was found that the AESO has a higher Vickers hardness and elastic modulus than those of unacrylated thin film. The Vickers hardness and elastic modulus were found to increase as the applied test force increased. The refractive index, thickness, and modes present were characterized from a spin-coated planar thin film. The refractive index in the transverse electric mode (TE) and transverse magnetic mode (TM) were determined and compared for unacrylated and acrylated epoxidized oil.

  17. Magneto-transport Characterization of Thin Film In-plane and Cross-plane Conductivity

    NASA Astrophysics Data System (ADS)

    Tang, Yang; Grayson, Matthew

    Thin films with highly anisotropic in-plane and cross-plane conductivities are widely used in devices, such as infrared emitters and detectors, and the proper magneto-transport characterization in both directions can reveal information about the doping density, impurities, carrier life times and band structure. This work introduces a novel method for deducing the complete anisotropic electrical conductivity tensor of such an anisotropic resistive layer atop a highly conducting bottom contact, which is a standard part of the device structure. Three strip-line contacts separated by a length scale comparable to the film thickness are applied atop the resistive thin film layer of interest, with the highly conducting back-plane as a back-contact. The potential distribution in the device is modeled, using both scaling and conformal transformation to minimize the calculated volume. As a proof of concept, triple strip-line devices for GaAs and GaAs/AlGaAs superlattice thin films are fabricated. To achieve narrow strip-line contacts with sub-micron scale widths, non-annealed Ni/Au contacts form ohmic contacts to a patterned n+-GaAs cap layer atop the anisotropic thin films. Preliminary experimental data will be presented as a validation of this method. Acknowledgment: Funded by AFOSR FA9550-15-1-0377 and AFOSR FA9550-15-1-0247.

  18. Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films.

    PubMed

    Hees, J; Heidrich, N; Pletschen, W; Sah, R E; Wolfer, M; Williams, O A; Lebedev, V; Nebel, C E; Ambacher, O

    2013-01-18

    Unimorph heterostructures based on piezoelectric aluminum nitride (AlN) and diamond thin films are highly desirable for applications in micro- and nanoelectromechanical systems. In this paper, we present a new approach to combine thin conductive boron-doped as well as insulating nanocrystalline diamond (NCD) with sputtered AlN films without the need for any buffer layers between AlN and NCD or polishing steps. The zeta potentials of differently treated nanodiamond (ND) particles in aqueous colloids are adjusted to the zeta potential of AlN in water. Thereby, the nucleation density for the initial growth of diamond on AlN can be varied from very low (10(8) cm(-2)), in the case of hydrogen-treated ND seeding particles, to very high values of 10(11) cm(-2) for oxidized ND particles. Our approach yielding high nucleation densities allows the growth of very thin NCD films on AlN with thicknesses as low as 40 nm for applications such as microelectromechanical beam resonators. Fabricated piezo-actuated micro-resonators exhibit enhanced mechanical properties due to the incorporation of boron-doped NCD films. Highly boron-doped NCD thin films which replace the metal top electrode offer Young's moduli of more than 1000 GPa.

  19. Effects of chloride additives on the mechanical stability and environmental durability of porous MgF2 thin films

    NASA Astrophysics Data System (ADS)

    Schütz, F.; Scheurell, K.; Scholz, G.; Kemnitz, E.

    2016-09-01

    Porous antireflective thin films, prepared of nanoscopic MgF2 sols, exhibit a low refraction index and are useful for various optical applications. Due to their porosity, film stability and durability suffer from mechanical abrasion and water solubility, respectively. Hence, we present approaches of improved mechanical stability of MgF2 layers induced by chloride addition. Antireflective (AR) films were produced by dip-coating followed by thermal treatment. Afterwards, film stability and environmental durability was strained by crockmeter and water stability tests, respectively. In comparison to films prepared from chloride-free MgF2 sols, chloride mingled sols form coatings with increased mechanical stability and a lower solubility.

  20. Investigations of Si Thin Films as Anode of Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qingliu; Shi, Bing; Bareño, Javier

    Amorphous silicon thin films having various thicknesses were investigated as a negative electrode material for lithium-ion batteries. Electrochemical characterization of the 20 nm thick thin silicon film revealed a very low first cycle Coulombic efficiency, which can be attributed to the silicon oxide layer formed on both the surface of the as-deposited Si thin film and the interface between the Si and the substrate. Among the investigated films, the 100 nm Si thin film demonstrated the best performance in terms of first cycle efficiency and cycle life. Observations from scanning electron microscopy demonstrated that the generation of cracks was inevitablemore » in the cycled Si thin films, even as the thickness of the film was as little as 20 nm, which was not predicted by previous modeling work. However, the cycling performance of the 20 and 100 nm silicon thin films was not detrimentally affected by these cracks. The poor capacity retention of the 1 mu m silicon thin film was attributed to the delamination.« less

  1. Diamond-like nanocomposite: a novel promising carbon based thin film as antireflection and passivation coating for silicon solar cell

    NASA Astrophysics Data System (ADS)

    Jana, Sukhendu; Das, Sayan; De, Debasish; Mondal, Anup; Gangopadhyay, Utpal

    2018-02-01

    Presently, silicon nitride (SiN x ) is widely used as antireflection coating (ARC) on p-type silicon solar cell. But, two highly toxic gasses ammonia and silane are used. In the present study, the ARC and passivation properties of diamond-like nanocomposite (DLN) thin film on silicon solar cell have been investigated. The DLN thin film has been deposited by rf-PACVD process using liquid precursor HMDSO in argon plasma. The film has been characterized by FESEM, HRTEM, FTIR, and Raman spectroscopy. The optical properties have been estimated by UV-vis-NIR spectroscopy. The minimum reflection has been achieved to 0.75% at 630 nm. Both the short circuit current density and open circuit voltage has been increased significantly from 28.6 mA cm-2 to 35.5 mA cm-2 and 0.551 V to 0.613 V respectively. The field effect passivation has been confirmed by dark IV characterization of c-Si /DLN heterojunction structure. All these lead to enhancement of efficiency by almost 4% absolute, which is comparable to SiN x . The ammonia and silane free deposited DLN thin film has a great potential to use as ARC for silicon based solar cell.

  2. [Preparation of large area Al-ZnO thin film by DC magnetron sputtering].

    PubMed

    Jiao, Fei; Liao, Cheng; Han, Jun-Feng; Zhou, Zhen

    2009-03-01

    Solar cells of p-CIS/n-buffer/ZnO type, where CIS is (CuInS2, CuInSe2 or intermediates, are thin-film-based devices for the future high-efficiency and low-cost photovoltaic devices. As important thin film, the properties of Al-doped ZnO (AZO) directly affect the parameter of the cell, especially for large volume. In the present paper, AZO semiconductor transparent thin film on soda-lime glass was fabricated using cylindrical zinc-aluminum target, which can not only lower the cost of the target but also make the preparation of large area AZO thin film more easily. Using the DC magnet sputtering techniques and rolling target, high utilization efficiency of target was achieved and large area uniform and directional film was realized. An introduction to DC magnet sputtering techniques for large area film fabrication is given. With different measurement methods, such as X-ray diffraction (XRD) and scan electron microscope (SEM), we analyzed large size film's structure, appearance, and electrical and optical characteristics. The XRD spectrum indicated that the AZO film shows well zinc-blende structure with a preferred (002) growth and the c-axis is oriented normal to the substrate plane. The lattice constant is 5.603 9 nm and the mismatch with CdS thin film is only 2 percent. It absolutely satisfied the demand of the GIGS solar cell. The cross-section of the AZO thin film indicates the columnar structure and the surface morphology shows that the crystal size is about 50 nm that is consistent with the result of XRD spectrum. By the optical transmission curve, not only the high transmission rate over 85 percent in the visible spectrum between 400 nm and 700 nm was showed but also the band gap 3.1 eV was estimated. And all these parameters can meet the demand of the large area module of GIGS solar cell. The result is that using alloy target and Ar gas, and controlling the appropriate pressure of oxygen, we can get directional, condensed, uniform, high transmitting rate, low resistance and large size (300 mm x 300 mm) AZO film.

  3. Enhancement of magnetostrictive properties of Galfenol thin films

    NASA Astrophysics Data System (ADS)

    Nivedita, Lalitha Raveendran; Manivel, Palanisamy; Pandian, Ramanathaswamy; Murugesan, S.; Morley, Nicola Ann; Asokan, K.; Rajendra Kumar, Ramasamy Thangavelu

    2018-04-01

    The present study investigates the role of substrate temperatures on the structural, morphological, magnetic and magnetostrictive properties of DC sputtered FeGa thin films grown on Si substrates. These films were deposited at various substrate temperatures between 50 and 350 °C. The structural characterization of the films revealed columnar growth and the transformation of surface morphology from prismatic to spherical at high substrate temperatures. Both L12 and B2 phases of FeGa existed in the films, with the L12 phase dominating. The in-plane and out-of-plane vibration sample magnetometry measurements showed the evolution of magnetic anisotropy in these films. It was revealed from the magnetostriction measurements that the films deposited at 250 °C exhibited the maximum value of 59 ppm.

  4. Cu-Doped ZnO Thin Films Deposited by a Sol-Gel Process Using Two Copper Precursors: Gas-Sensing Performance in a Propane Atmosphere

    PubMed Central

    Gómez-Pozos, Heberto; Arredondo, Emma Julia Luna; Maldonado Álvarez, Arturo; Biswal, Rajesh; Kudriavtsev, Yuriy; Pérez, Jaime Vega; Casallas-Moreno, Yenny Lucero; Olvera Amador, María de la Luz

    2016-01-01

    A study on the propane gas-sensing properties of Cu-doped ZnO thin films is presented in this work. The films were deposited on glass substrates by sol-gel and dip coating methods, using zinc acetate as a zinc precursor, copper acetate and copper chloride as precursors for doping. For higher sensitivity values, two film thickness values are controlled by the six and eight dippings, whereas for doping, three dippings were used, irrespective of the Cu precursor. The film structure was analyzed by X-ray diffractometry, and the analysis of the surface morphology and film composition was made through scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS), respectively. The sensing properties of Cu-doped ZnO thin films were then characterized in a propane atmosphere, C3H8, at different concentration levels and different operation temperatures of 100, 200 and 300 °C. Cu-doped ZnO films doped with copper chloride presented the highest sensitivity of approximately 6 × 104, confirming a strong dependence on the dopant precursor type. The results obtained in this work show that the use of Cu as a dopant in ZnO films processed by sol-gel produces excellent catalysts for sensing C3H8 gas. PMID:28787885

  5. Studies of thin-film growth of sputtered hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Moustakas, T. D.

    1982-11-01

    The anticipated potential use of hydrogenated amorphous silicon (a-SiHx), or related materials, for large area thin film device applications has stimulated extensive research. Studies conducted by Ross and Messier (1981) have shown that the growth habit of the sputtered a-SiHx films is columnar. It is found that films produced at high argon pressure have columnar microstructure, while those produced at low argon pressure show no noticeable microstructure. The preferred interpretation for the lack of microstructure for the low argon pressure films is bombardment of the films by positive Ar(+) ions due to the substrate negative floating potential. Anderson et al. (1979) attribute the microstructural changes to the bombardment of the film by the neutral sputtered Si species from which the film grows. In connection with the present investigation, data are presented which clearly indicate that charged particle bombardment rather than neutral particle bombardment is the cause of the observed microstructural changes as a function of argon pressure.

  6. Zinc oxide films chemically grown onto rigid and flexible substrates for TFT applications

    NASA Astrophysics Data System (ADS)

    Suchea, M.; Kornilios, N.; Koudoumas, E.

    2010-10-01

    This contribution presents some preliminary results regarding the use of a chemical route for the growth of good quality ZnO thin films that can be used for the fabrication of thin film transistors (TFTs). The films were grown at rather low temperature (60 °C) on glass and PET substrates using non-aqueous (zinc acetate dihydrate in methanol) precursor solution and their surface morphology, crystalline structure, optical transmittance and electrical characteristics were studied. The study indicated that good quality films with desirable ZnO structure onto rigid and flexible substrates can be obtained, using a simple, cheap, low temperature chemical growth method.

  7. Compositional ratio effect on the surface characteristics of CuZn thin films

    NASA Astrophysics Data System (ADS)

    Choi, Ahrom; Park, Juyun; Kang, Yujin; Lee, Seokhee; Kang, Yong-Cheol

    2018-05-01

    CuZn thin films were fabricated by RF co-sputtering method on p-type Si(100) wafer with various RF powers applied on metallic Cu and Zn targets. This paper aimed to determine the morphological, chemical, and electrical properties of the deposited CuZn thin films by utilizing a surface profiler, atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), UV photoelectron spectroscopy (UPS), and a 4-point probe. The thickness of the thin films was fixed at 200 ± 8 nm and the roughness of the thin films containing Cu was smaller than pure Zn thin films. XRD studies confirmed that the preferred phase changed, and this tendency is dependent on the ratio of Cu to Zn. AES spectra indicate that the obtained thin films consisted of Cu and Zn. The high resolution XPS spectra indicate that as the content of Cu increased, the intensities of Zn2+ decreased. The work function of CuZn thin films increased from 4.87 to 5.36 eV. The conductivity of CuZn alloy thin films was higher than pure metallic thin films.

  8. The effect of thin film morphology on the electrochemical performance of Cu-Sn anode for lithium rechargeable batteries.

    PubMed

    Polat, B D; Keleş, O

    2014-05-01

    We investigate the anode performance of non ordered and ordered nanostructured Cu-Sn thin films deposited via electron beam deposition technique. The ordered nanostructured Cu-Sn thin film having nano-porosities was fabricated using an oblique (co)deposition technique. Our results showed that the nano structured Cu-Sn thin film containing Cu-Sn nanorods had higher initial anodic capacity (790 mA h g(-)) than that of the non ordered thin film (330 mA h g(-)). But the capacity of the ordered nanostructured Cu-Sn thin film diminished after the first cycle and a steady state capacity value around 300 mA h g(-) is sustainable in following up to 80th cycle, which is attributed to the composition and morphology of the thin film. The presence of copper containing Sn nanorods leading to form nano-porosities as interstitial spaces among them, enhanced lithium ions movement within thin film and increased the thin film tolerance against the stress generated because of the drastic volume change occurred during lithiation-delithiation processes; hence, homogenously distributed porosities increased the cycle life of the thin film.

  9. Specific considerations for obtaining appropriate La1-xSrxGa1-yMgyO3-δ thin films using pulsed-laser deposition and its influence on the performance of solid-oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Hwang, Jaeyeon; Lee, Heon; Lee, Jong-Ho; Yoon, Kyung Joong; Kim, Hyoungchul; Hong, Jongsup; Son, Ji-Won

    2015-01-01

    To obtain La1-xSrxGa1-yMgyO3-δ (LSGM) thin films with the appropriate properties, pulsed-laser deposition (PLD) is employed, and specific considerations regarding control of the deposition parameters is investigated. It is demonstrated that with a target of stoichiometric composition, appropriate LSGM thin films cannot be produced because of the deviation of the composition from the target to the thin film. Only after adjusting the target composition an LSGM thin film with an appropriate composition and phase can be obtained. The optimized LSGM thin film possesses an electrical conductivity close to that of the bulk LSGM. In contrast, non-optimized thin films do not yield any measurable electrical conductivity. The impact of the optimization of the LSGM thin-film electrolyte on the cell performance is quite significant, in that a solid-oxide fuel cell (SOFC) with an optimized LSGM thin-film electrolyte produces a maximum power density of 1.1 W cm-2 at 600 °C, whereas an SOFC with a non-optimal LSGM thin-film electrolyte is not operable.

  10. Bending impact on the performance of a flexible Li4Ti5O12-based all-solid-state thin-film battery.

    PubMed

    Sepúlveda, Alfonso; Speulmanns, Jan; Vereecken, Philippe M

    2018-01-01

    The growing demand of flexible electronic devices is increasing the requirements of their power sources. The effect of bending in thin-film batteries is still not well understood. Here, we successfully developed a high active area flexible all-solid-state battery as a model system that consists of thin-film layers of Li 4 Ti 5 O 12 , LiPON, and Lithium deposited on a novel flexible ceramic substrate. A systematic study on the bending state and performance of the battery is presented. The battery withstands bending radii of at least 14 mm achieving 70% of the theoretical capacity. Here, we reveal that convex bending has a positive effect on battery capacity showing an average increase of 5.5%, whereas concave bending decreases the capacity by 4% in contrast with recent studies. We show that the change in capacity upon bending may well be associated to the Li-ion diffusion kinetic change through the electrode when different external forces are applied. Finally, an encapsulation scheme is presented allowing sufficient bending of the device and operation for at least 500 cycles in air. The results are meant to improve the understanding of the phenomena present in thin-film batteries while undergoing bending rather than showing improvements in battery performance and lifetime.

  11. Electrochromic counter electrode

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland; Jorgensen, Gary J.

    2005-02-22

    The present invention discloses an amorphous material comprising nickel oxide doped with tantalum that is an anodically coloring electrochromic material. The material of the present invention is prepared in the form of an electrode (200) having a thin film (202) of an electrochromic material of the present invention residing on a transparent conductive film (203). The material of the present invention is also incorporated into an electrochromic device (100) as a thin film (102) in conjunction with a cathodically coloring prior art electrochromic material layer (104) such that the devices contain both anodically coloring (102) and cathodically coloring (104) layers. The materials of the electrochromic layers in these devices exhibit broadband optical complimentary behavior, ionic species complimentary behavior, and coloration efficiency complimentary behavior in their operation.

  12. Pathways toward unidirectional alignment in block copolymer thin films on faceted surfaces

    NASA Astrophysics Data System (ADS)

    Gunkel, Ilja; Gu, Xiaodan; Sarje, Abhinav; Hexemer, Alexander; Russell, Thomas

    2015-03-01

    Solvent vapor annealing (SVA) has been shown recently to be an effective means to produce long-range lateral order in block copolymer (BCP) thin films in relatively short times. Furthermore, using substrates with faceted surfaces allows for generating unidirectionally aligned BCP microdomains on the size scale of an entire wafer. While in recent years SVA has been largely demystified, the detailed pathways toward obtaining unidirectional alignment still remain unclear. Grazing-incidence X-ray scattering (GISAXS) is a very powerful tool for characterizing the structure and morphology of BCPs in thin films, and is particularly useful for studying structural changes in BCP thin films during SVA. We here present in situ GISAXS experiments on cylinder-forming PS-b-P2VP BCP thin films on faceted Sapphire substrates during annealing in THF. We show that the degree of alignment of cylindrical microdomains is greatly enhanced at solvent concentrations close to the order-disorder transition of the copolymer. Furthermore, we observed that inducing disorder by further increasing the solvent concentration and subsequent quenching to the ordered (not yet glassy) state induced the highest degree of alignment with nearly unidirectional alignment of the microdomains in less than 30 min.

  13. Effect of copper doping on the photocatalytic activity of ZnO thin films prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Saidani, T.; Zaabat, M.; Aida, M. S.; Boudine, B.

    2015-12-01

    In the present work, we prepared undoped and copper doped ZnO thin films by the sol-gel dip coating method on glass substrates from zinc acetate dissolved in a solution of ethanol. The objective of our work is to study the effect of Cu doping with different concentrations on structural, morphological, optical properties and photocatalytic activity of ZnO thin films. For this purpose, we have used XRD to study the structural properties, and AFM to determine the morphology of the surface of the ZnO thin films. The optical properties and the photocatalytic degradation of the films were examined by UV-visibles spectrophotometer. The Tauc method was used to estimate the optical band gap. The XRD spectra indicated that the films have an hexagonal wurtzite structure, which gradually deteriorated with increasing Cu concentration. The results showed that the incorporation of Cu decreases the crystallite size. The AFM study showed that an increase of the concentration of Cu causes the decrease of the surface roughness, which passes from 20.2 for Un-doped ZnO to 12.16 nm for doped ZnO 5 wt% Cu. Optical measurements have shown that all the deposited films show good optical transmittance (77%-92%) in the visible region and increases the optical gap with increasing Cu concentration. The presence of copper from 1% to 5 wt% in the ZnO thin films is found to decelerate the photocatalytic process.

  14. Electrochemical and In Vitro Behavior of Nanostructure Sol-Gel Coated 316L Stainless Steel Incorporated with Rosemary Extract

    NASA Astrophysics Data System (ADS)

    Motalebi, Abolfazl; Nasr-Esfahani, Mojtaba

    2013-06-01

    The corrosion resistance of AISI 316L stainless steel for biomedical applications, was significantly enhanced by means of hybrid organic-inorganic sol-gel thin films deposited by spin-coating. Thin films of less than 100 nm with different hybrid characters were obtained by incorporating rosemary extract as green corrosion inhibitor. The morphology, composition, and adhesion of hybrid sol-gel coatings have been examined by SEM, EDX, and pull-off test, respectively. Addition of high additive concentrations (0.1%) did not disorganize the sol-gel network. Direct pull-off test recorded a mean coating-substrate bonding strength larger than 21.2 MPa for the hybrid sol-gel coating. The effect of rosemary extract, with various added concentrations from 0.012 to 0.1%, on the anticorrosion properties of sol-gel films have been characterized by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in simulated body fluid (SBF) solution and has been compared to the bare metal. Rosemary extract additions (0.05%) have significantly increased the corrosion protection of the sol-gel thin film to higher than 90%. The in vitro bioactivity of prepared films indicates that hydroxyapatite nuclei can form and grow on the surface of the doped sol-gel thin films. The present study shows that due to their excellent anticorrosion properties, bioactivity and bonding strength to substrate, doped sol-gel thin films are practical hybrid films in biomedical applications.

  15. Preparation of nickel oxide thin films at different annealing temperature by sol-gel spin coating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullah, M. A. R., E-mail: ameerridhwan89@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com

    2016-07-06

    Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.

  16. Thin-film metal coated insulation barrier in a Josephson tunnel junction. [Patent application

    DOEpatents

    Hawkins, G.A.; Clarke, J.

    1975-10-31

    A highly stable, durable, and reproducible Josephson tunnel junction consists of a thin-film electrode of a hard superconductor, a thin oxide insulation layer over the electrode constituting a Josephson tunnel junction barrier, a thin-film layer of stabilizing metal over the barrier, and a second thin-film hard superconductive electrode over the stabilizing film. The thin stabilizing metal film is made only thick enough to limit penetration of the electrode material through the insulation layer so as to prevent a superconductive short.

  17. [Spectral emissivity of thin films].

    PubMed

    Zhong, D

    2001-02-01

    In this paper, the contribution of multiple reflections in thin film to the spectral emissivity of thin films of low absorption is discussed. The expression of emissivity of thin films derived here is related to the thin film thickness d and the optical constants n(lambda) and k(lambda). It is shown that in the special case d-->infinity the emissivity of thin films is equivalent to that of the bulk material. Realistic numerical and more precise general numerical results for the dependence of the emissivity on d, n(lambda) and k(lambda) are given.

  18. Effect of Substrate Roughness on Adhesion and Structural Properties of Ti-Ni Shape Memory Alloy Thin Film.

    PubMed

    Kim, Donghwan; Lee, Hyunsuk; Bae, Joohyeon; Jeong, Hyomin; Choi, Byeongkeun; Nam, Taehyun; Noh, Jungpil

    2018-09-01

    Ti-Ni shape memory alloy (SMA) thin films are very attractive material for industrial and medical applications such as micro-actuator, micro-sensors, and stents for blood vessels. An important property besides shape memory effect in the application of SMA thin films is the adhesion between the film and the substrate. When using thin films as micro-actuators or micro-sensors in MEMS, the film must be strongly adhered to the substrate. On the other hand, when using SMA thin films in medical devices such as stents, the deposited alloy thin film must be easily separable from the substrate for efficient processing. In this study, we investigated the effect of substrate roughness on the adhesion of Ti-Ni SMA thin films, as well as the structural properties and phase-transformation behavior of the fabricated films. Ti-Ni SMA thin films were deposited onto etched glass substrates with magnetron sputtering. Radio frequency plasma was used for etching the substrate. The adhesion properties were investigated through progressive scratch test. Structural properties of the films were determined via Feld emission scanning electron microscopy, X-ray diffraction measurements (XRD) and Energy-dispersive X-ray spectroscopy analysis. Phase transformation behaviors were observed with differential scanning calorimetry and low temperature-XRD. Ti-Ni SMA thin film deposited onto rough substrate provides higher adhesive strength than smooth substrate. However the roughness of the substrate has no influence on the growth and crystallization of the Ti-Ni SMA thin films.

  19. Effects of high temperature and film thicknesses on the texture evolution in Ag thin films

    NASA Astrophysics Data System (ADS)

    Eshaghi, F.; Zolanvari, A.

    2017-04-01

    In situ high-temperature X-ray diffraction techniques were used to study the effect of high temperatures (up to 600°C) on the texture evolution in silver thin films. Ag thin films with different thicknesses of 40, 80, 120 and 160nm were sputtered on the Si(100) substrates at room temperature. Then, microstructure of thin films was determined using X-ray diffraction. To investigate the influence of temperature on the texture development in the Ag thin films with different thicknesses, (111), (200) and (220) pole figures were evaluated and orientation distribution functions were calculated. Minimizing the total energy of the system which is affected by competition between surface and elastic strain energy was a key factor in the as-deposited and post annealed thin films. Since sputtering depositions was performed at room temperature and at the same thermodynamic conditions, the competition growth caused the formation of the {122} < uvw \\rangle weak fiber texture in as-deposited Ag thin films. It was significantly observed that the post annealed Ag thin films showed {111} < uvw \\rangle orientations as their preferred orientations, but their preferred fiber texture varied with the thickness of thin films. Increasing thin film thickness from 40nm to 160nm led to decreasing the intensity of the {111} < uvw \\rangle fiber texture.

  20. Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates

    DOEpatents

    Rogers, John A; Cao, Qing; Alam, Muhammad; Pimparkar, Ninad

    2015-02-03

    The present invention provides device components geometries and fabrication strategies for enhancing the electronic performance of electronic devices based on thin films of randomly oriented or partially aligned semiconducting nanotubes. In certain aspects, devices and methods of the present invention incorporate a patterned layer of randomly oriented or partially aligned carbon nanotubes, such as one or more interconnected SWNT networks, providing a semiconductor channel exhibiting improved electronic properties relative to conventional nanotubes-based electronic systems.

  1. Epitaxially influenced boundary layer model for size effect in thin metallic films

    NASA Astrophysics Data System (ADS)

    Bažant, Zdeněk P.; Guo, Zaoyang; Espinosa, Horacio D.; Zhu, Yong; Peng, Bei

    2005-04-01

    It is shown that the size effect recently observed by Espinosa et al., [J. Mech. Phys. Solids51, 47 (2003)] in pure tension tests on free thin metallic films can be explained by the existence of a boundary layer of fixed thickness, located at the surface of the film that was attached onto the substrate during deposition. The boundary layer is influenced by the epitaxial effects of crystal growth on the dislocation density and texture (manifested by prevalent crystal plane orientations). This influence is assumed to cause significantly elevated yield strength. Furthermore, the observed gradual postpeak softening, along with its size independence, which is observed in short film strips subjected to pure tension, is explained by slip localization, originating at notch-like defects, and by damage, which can propagate in a stable manner when the film strip under pure tension is sufficiently thin and short. For general applications, the present epitaxially influenced boundary layer model may be combined with the classical strain-gradient plasticity proposed by Gao et al., [J. Mech. Phys. Solids 47, 1239 (1999)], and it is shown that this combination is necessary to fit the test data on both pure tension and bending of thin films by one and the same theory. To deal with films having different crystal grain sizes, the Hall-Petch relation for the yield strength dependence on the grain size needs to be incorporated into the combined theory. For very thin films, in which a flattened grain fills the whole film thickness, the Hall-Petch relation needs a cutoff, and the asymptotic increase of yield strength with diminishing film thickness is then described by the extension of Nix's model of misfit dislocations by Zhang and Zhou [J. Adv. Mater. 38, 51 (2002)]. The final result is a proposal of a general theory for strength, size effect, hardening, and softening of thin metallic films.

  2. Investigation of electron beam lithography effects on metal-insulator transition behavior of vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Yuce, H.; Alaboz, H.; Demirhan, Y.; Ozdemir, M.; Ozyuzer, L.; Aygun, G.

    2017-11-01

    Vanadium dioxide (VO2) shows metal-insulator phase transition at nearly 68 °C. This metal-insulator transition (MIT) in VO2 leads to a significant change in near-infrared transmittance and an abrupt change in the resistivity of VO2. Due to these characteristics, VO2 plays an important role on optic and electronic devices, such as thermochromic windows, meta-materials with tunable frequency, uncooled bolometers and switching devices. In this work, VO2 thin films were fabricated by reactive direct current magnetron sputtering in O2/Ar atmosphere on sapphire substrates without any further post annealing processes. The effect of sputtering parameters on optical characteristics and structural properties of grown thin films was investigated by SEM, XRD, Raman and UV/VIS spectrophotometer measurements. Patterning process of VO2 thin films was realized by e-beam lithography technique to monitor the temperature dependent electrical characterization. Electrical properties of VO2 samples were characterized using microprobe station in a vacuum system. MIT with hysteresis behavior was observed for the unpatterned square samples at around 68 °C. By four orders of magnitude of resistivity change was measured for the deposited VO2 thin films at transition temperature. After e-beam lithography process, substantial results in patterned VO2 thin films were observed. In this stage, for patterned VO2 thin films as stripes, the change in resistivity of VO2 was reduced by a factor of 10. As a consequence of electrical resistivity measurements, MIT temperature was shifted from 68 °C to 50 °C. The influence of e-beam process on the properties of VO2 thin films and the mechanism of the effects are discussed. The presented results contribute to the achievement of VO2 based thermochromic windows and bolometer applications.

  3. The Tuning of Optical Properties of Nanoscale MOFs-Based Thin Film through Post-Modification.

    PubMed

    Yin, Wenchang; Tao, Cheng-An; Zou, Xiaorong; Wang, Fang; Qu, Tianlian; Wang, Jianfang

    2017-08-29

    Optical properties, which determine the application of optical devices in different fields, are the most significant properties of optical thin films. In recent years, Metal-organic framework (MOF)-based optical thin films have attracted increasing attention because of their novel optical properties and important potential applications in optical and photoelectric devices, especially optical thin films with tunable optical properties. This study reports the first example of tuning the optical properties of a MOF-based optical thin film via post-modification. The MOF-based optical thin film was composed of NH₂-MIL-53(Al) nanorods (NRs) (MIL: Materials from Institute Lavoisier), and was constructed via a spin-coating method. Three aldehydes with different lengths of carbon chains were chosen to modify the MOF optical thin film to tune their optical properties. After post-modification, the structural color of the NH₂-MIL-53(Al) thin film showed an obvious change from purple to bluish violet and cyan. The reflection spectrum and the reflectivity also altered in different degrees. The effective refractive index ( n eff ) of MOFs thin film can also be tuned from 1.292 to 1.424 at a wavelength of 750 nm. The success of tuning of the optical properties of MOFs thin films through post-modification will make MOFs optical thin films meet different needs of optical properties in various optical and optoelectronic devices.

  4. The Tuning of Optical Properties of Nanoscale MOFs-Based Thin Film through Post-Modification

    PubMed Central

    Zou, Xiaorong; Wang, Fang; Qu, Tianlian; Wang, Jianfang

    2017-01-01

    Optical properties, which determine the application of optical devices in different fields, are the most significant properties of optical thin films. In recent years, Metal-organic framework (MOF)-based optical thin films have attracted increasing attention because of their novel optical properties and important potential applications in optical and photoelectric devices, especially optical thin films with tunable optical properties. This study reports the first example of tuning the optical properties of a MOF-based optical thin film via post-modification. The MOF-based optical thin film was composed of NH2-MIL-53(Al) nanorods (NRs) (MIL: Materials from Institute Lavoisier), and was constructed via a spin-coating method. Three aldehydes with different lengths of carbon chains were chosen to modify the MOF optical thin film to tune their optical properties. After post-modification, the structural color of the NH2-MIL-53(Al) thin film showed an obvious change from purple to bluish violet and cyan. The reflection spectrum and the reflectivity also altered in different degrees. The effective refractive index (neff) of MOFs thin film can also be tuned from 1.292 to 1.424 at a wavelength of 750 nm. The success of tuning of the optical properties of MOFs thin films through post-modification will make MOFs optical thin films meet different needs of optical properties in various optical and optoelectronic devices. PMID:28850057

  5. Growth temperature modulated phase evolution and functional characteristics of high quality Pb1-x Lax (Zr0.9Ti0.1)O3 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Anuj; Pawar, Shuvam; Singh, Kirandeep; Kaur, Davinder

    2018-05-01

    In this study, we have reported the influence of growth temperature on perovskite phase evolution in sputtered deposited high quality Pb1-x Lax (Zr0.9 Ti0.1)O3 (PLZT) thin films on Pt/Ti/SiO2/Si substrate. PLZT thin films were fabricated at substrate temperature ranging from 400 to 700 °C. We have investigated the structural, dielectric, ferroelectric and leakage current characteristics of these thin films. XRD patterns reveal that 600 °C is the optimized temperature to deposit highly (110) oriented perovskite phase PLZT thin film. The further increase in temperature (700 °) causes reappearance of additional peaks corresponding to lead deficient pyrochlore phase. All PLZT thin films show decrease in dielectric constant with frequency. However, PLZT thin film fabricated at 600 °C displays dielectric constant ˜532 at 1 MHz frequency which is relatively higher than other deposited thin films. The P-E loops of these PLZT thin films exhibit strong dependence on deposition temperature. The pure perovskite PZLT thin film shows saturation polarization of ˜51.2µC/cm2 and coercive field (2Ec) ˜67.85 kV/cm. These high quality PLZT thin films finds their applications in non-volatile memory and nano-electro-mechanical systems (NEMS).

  6. Characterization Of Superconducting Samples With SIC System For Thin Film Developments: Status And Recent Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, H. Lawrence; Reece, Charles E.; Valente-Feliciano, Anne-Marie

    2014-02-01

    Within any thin film development program directed towards SRF accelerating structures, there is a need for an RF characterization device that can provide information about RF properties of small samples. The current installation of the RF characterization device at Jefferson Lab is Surface Impedance Characterization (SIC) system. The data acquisition environment for the system has recently been improved to allow for automated measurement, and the system has been routinely used for characterization of bulk Nb, films of Nb on Cu, MgB{sub 2}, NbTiN, Nb{sub 3}Sn films, etc. We present some of the recent results that illustrate present capabilities and limitationsmore » of the system.« less

  7. Ultra thin metallic coatings to control near field radiative heat transfer

    NASA Astrophysics Data System (ADS)

    Esquivel-Sirvent, R.

    2016-09-01

    We present a theoretical calculation of the changes in the near field radiative heat transfer between two surfaces due to the presence of ultra thin metallic coatings on semiconductors. Depending on the substrates, the radiative heat transfer is modulated by the thickness of the ultra thin film. In particular we consider gold thin films with thicknesses varying from 4 to 20 nm. The ultra-thin film has an insulator-conductor transition close to a critical thickness of dc = 6.4 nm and there is an increase in the near field spectral heat transfer just before the percolation transition. Depending on the substrates (Si or SiC) and the thickness of the metallic coatings we show how the near field heat transfer can be increased or decreased as a function of the metallic coating thickness. The calculations are based on available experimental data for the optical properties of ultrathin coatings.

  8. Dewetting of Thin Polymer Films

    NASA Astrophysics Data System (ADS)

    Dixit, P. S.; Sorensen, J. L.; Kent, M.; Jeon, H. S.

    2001-03-01

    DEWETTING OF THIN POLYMER FILMS P. S. Dixit,(1) J. L. Sorensen,(2) M. Kent,(2) H. S. Jeon*(1) (1) Department of Petroleum and Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, jeon@nmt.edu (2) Department 1832, Sandia National Laboratories, Albuquerque, NM. Dewetting of thin polymer films is of technological importance for a variety of applications such as protective coatings, dielectric layers, and adhesives. Stable and smooth films are required for the above applications. Above the glass transition temperature (Tg) the instability of polymer thin films on a nonwettable substrate can be occurred. The dewetting mechanism and structure of polypropylene (Tg = -20 ^circC) and polystyrene (Tg = 100 ^circC) thin films is investigated as a function of film thickness (25 Åh < 250 Åand quenching temperature. Contact angle measurements are used in conjunction with optical microscope to check the surface homogeneity of the films. Uniform thin films are prepared by spin casting the polymer solutions onto silicon substrates with different contact angles. We found that the stable and unstable regions of the thin films as a function of the film thickness and quenching temperature, and then constructed a stability diagram for the dewetting of thin polymer films. We also found that the dewetting patterns of the thin films are affected substantially by the changes of film thickness and quenching temperature.

  9. The flow of a thin liquid film on a stationary and rotating disk. I - Experimental analysis and flow visualization

    NASA Technical Reports Server (NTRS)

    Thomas, S.; Faghri, A.; Hankey, W.

    1990-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed was 0-300 RPM and the flow rate was 7.0-15.0 LPM. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Surface waves were found in the supercritical and subcritical regions at all flow rates studied. When the rotational speed of the disk is low, a standing wave at the edge of the disk was present. As the rotational speed increased, the surface waves changed from the wavy-laminar region to a region in which the waves ran nearly radially across the disk on top of a thin substrate of fluid.

  10. Temperature dependence of LRE-HRE-TM thin films

    NASA Astrophysics Data System (ADS)

    Li, Zuoyi; Cheng, Xiaomin; Lin, Gengqi; Li, Zhen; Huang, Zhixin; Jin, Fang; Wang, Xianran; Yang, Xiaofei

    2003-04-01

    Temperature dependence of the properties of RE-TM thin films is very important for MO recording. In this paper, we studied the temperature dependence of the magnetic and magneto-optical properties of the amorphous LRE-HRE-TM single layer thin films and LRE-HRE-TM/HRE-TM couple-bilayered thin films. For LRE-HRE-TM single layer thin films, the temperature dependence of the magnetization was investigated by using the mean field theory. The experimental and theoretical results matched very well. With the LRE substitution in HRE-TM thin film, the compensation temperature Tcomp decreased and the curie temperature Tc remained unchanged. Kerr rotation angle became larger and the saturation magnetization Ms at room temperature increased. For LRE-HRE-TM/HRE-TM couple-bilayered thin films, comparisons of the temperature dependences of the coercivities and Kerr rotation angles were made between isolated sublayers and couple-bilayered thin film.

  11. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    NASA Astrophysics Data System (ADS)

    Nagao, Yuki; Kubo, Takahiro

    2014-12-01

    Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120-670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  12. Thin film superconductor magnetic bearings

    DOEpatents

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  13. Ultrafast electron diffraction optimized for studying structural dynamics in thin films and monolayers

    PubMed Central

    Badali, D. S.; Gengler, R. Y. N.; Miller, R. J. D.

    2016-01-01

    A compact electron source specifically designed for time-resolved diffraction studies of free-standing thin films and monolayers is presented here. The sensitivity to thin samples is achieved by extending the established technique of ultrafast electron diffraction to the “medium” energy regime (1–10 kV). An extremely compact design, in combination with low bunch charges, allows for high quality diffraction in a lensless geometry. The measured and simulated characteristics of the experimental system reveal sub-picosecond temporal resolution, while demonstrating the ability to produce high quality diffraction patterns from atomically thin samples. PMID:27226978

  14. Electrostatic modulation of the electronic properties of Dirac semimetal Na3Bi thin films

    NASA Astrophysics Data System (ADS)

    Hellerstedt, Jack; Yudhistira, Indra; Edmonds, Mark T.; Liu, Chang; Collins, James; Adam, Shaffique; Fuhrer, Michael S.

    2017-10-01

    Large-area thin films of topological Dirac semimetal Na3Bi are grown on amorphous SiO2:Si substrates to realize a field-effect transistor with the doped Si acting as a back gate. As-grown films show charge carrier mobilities exceeding 7 000 cm2/V s and carrier densities below 3 ×1018cm-3 , comparable to the best thin-film Na3Bi . An ambipolar field effect and minimum conductivity are observed, characteristic of Dirac electronic systems. The results are quantitatively understood within a model of disorder-induced charge inhomogeneity in topological Dirac semimetals. The hole mobility is significantly larger than the electron mobility in Na3Bi which we ascribe to the inverted band structure. When present, these holes dominate the transport properties.

  15. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    NASA Astrophysics Data System (ADS)

    Che, Franklin; Grabtchak, Serge; Whelan, William M.; Ponomarenko, Sergey A.; Cada, Michael

    We have experimentally measured the surface second-harmonic generation (SHG) of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver.

  16. Metal Induced Growth of Si Thin Films and NiSi Nanowires

    DTIC Science & Technology

    2010-02-25

    Zinc Oxide Over MIG Silicon- We have been studying the formation of ZnO films by RF sputtering. Part of this study deals with...about 50 nm. 15. SUBJECT TERMS Thin film silicon, solar cells, thin film transistors , nanowires, metal induced growth 16. SECURITY CLASSIFICATION...to achieve, µc-Si is more desirable than a-Si due to its increased mobility. Thin film µc-Si is also a popular material for thin film transistors

  17. Measurements of the intrinsic quantum efficiency and absorption length of tetraphenyl butadiene thin films in the vacuum ultraviolet regime

    NASA Astrophysics Data System (ADS)

    Benson, Christopher; Gann, Gabriel Orebi; Gehman, Victor

    2018-04-01

    A key enabling technology for many liquid noble gas (LNG) detectors is the use of the common wavelength shifting medium tetraphenyl butadiene (TPB). TPB thin films are used to shift ultraviolet scintillation light into the visible spectrum for detection and event reconstruction. Understanding the wavelength shifting efficiency and optical properties of these films are critical aspects in detector performance and modeling and hence in the ultimate physics sensitivity of such experiments. This article presents the first measurements of the room-temperature microphysical quantum efficiency for vacuum-deposited TPB thin films - a result that is independent of the optics of the TPB or substrate. Also presented are measurements of the absorption length in the vacuum ultraviolet regime, the secondary re-emission efficiency, and more precise results for the "black-box" efficiency across a broader spectrum of wavelengths than previous results. The low-wavelength sensitivity, in particular, would allow construction of LNG scintillator detectors with lighter elements (Ne, He) to target light mass WIMPs.

  18. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  19. NMR characterization of thin films

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  20. Mid-Infrared Spectroscopy Platform Based on GaAs/AlGaAs Thin-Film Waveguides and Quantum Cascade Lasers.

    PubMed

    Sieger, Markus; Haas, Julian; Jetter, Michael; Michler, Peter; Godejohann, Matthias; Mizaikoff, Boris

    2016-03-01

    The performance and versatility of GaAs/AlGaAs thin-film waveguide technology in combination with quantum cascade lasers for mid-infrared spectroscopy in comparison to conventional FTIR spectroscopy is presented. Infrared radiation is provided by a quantum cascade laser (QCL) spectrometer comprising four tunable QCLs providing a wavelength range of 5-11 μm (1925-885 cm(-1)) within a single collimated beam. Epitaxially grown GaAs slab waveguides serve as optical transducer for tailored evanescent field absorption analysis. A modular waveguide mounting accessory specifically designed for on-chip thin-film GaAs waveguides is presented serving as a flexible analytical platform in lieu of conventional attenuated total reflection (ATR) crystals uniquely facilitating macroscopic handling and alignment of such microscopic waveguide structures in real-world application scenarios.

  1. Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivero, Pedro Jose; Goicoechea, Javier; Urrutia, Aitor; Matias, Ignacio Raul; Arregui, Francisco Javier

    2013-10-01

    In the present study, we show that silver nanoparticles (AgNPs) with different shape, aggregation state and color (violet, green, orange) have been successfully incorporated into polyelectrolyte multilayer thin films using the layer-by-layer (LbL) assembly. In order to obtain colored thin films based on AgNPs is necessary to maintain the aggregation state of the nanoparticles, a non-trivial aspect in which this work is focused on. The use of Poly(acrylic acid, sodium salt) (PAA) as a protective agent of the AgNPs is the key element to preserve the aggregation state and makes possible the presence of similar aggregates (shape and size) within the LbLcolored films. This approach based on electrostatic interactions of the polymeric chains and the immobilization of AgNPs with different shape and size into the thin films opens up a new interesting perspective to fabricate multicolornanocomposites based on AgNPs.

  2. Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles

    PubMed Central

    2013-01-01

    In the present study, we show that silver nanoparticles (AgNPs) with different shape, aggregation state and color (violet, green, orange) have been successfully incorporated into polyelectrolyte multilayer thin films using the layer-by-layer (LbL) assembly. In order to obtain colored thin films based on AgNPs is necessary to maintain the aggregation state of the nanoparticles, a non-trivial aspect in which this work is focused on. The use of Poly(acrylic acid, sodium salt) (PAA) as a protective agent of the AgNPs is the key element to preserve the aggregation state and makes possible the presence of similar aggregates (shape and size) within the LbLcolored films. This approach based on electrostatic interactions of the polymeric chains and the immobilization of AgNPs with different shape and size into the thin films opens up a new interesting perspective to fabricate multicolornanocomposites based on AgNPs. PMID:24148227

  3. Improved Adhesion of Gold Thin Films Evaporated on Polymer Resin: Applications for Sensing Surfaces and MEMS

    PubMed Central

    Moazzez, Behrang; O'Brien, Stacey M.; Merschrod S., Erika F.

    2013-01-01

    We present and analyze a method to improve the morphology and mechanical properties of gold thin films for use in optical sensors or other settings where good adhesion of gold to a substrate is of importance and where controlled topography/roughness is key. To improve the adhesion of thermally evaporated gold thin films, we introduce a gold deposition step on SU-8 photoresist prior to UV exposure but after the pre-bake step of SU-8 processing. Shrinkage and distribution of residual stresses, which occur during cross-linking of the SU-8 polymer layer in the post-exposure baking step, are responsible for the higher adhesion of the top gold film to the post-deposition cured SU-8 sublayer. The SU-8 underlayer can also be used to tune the resulting gold film morphology. Our promoter-free protocol is easily integrated with existing sensor microfabrication processes. PMID:23760086

  4. Synthesis and characterization of organic/inorganic heterostructure films for hybrid light emitting diode

    NASA Astrophysics Data System (ADS)

    Toyama, Toshihiko; Ichihara, Tokuyuki; Yamaguchi, Daisuke; Okamoto, Hiroaki

    2007-10-01

    Thin-film light emitting devices based on organic materials have been gathering attentions for applying a flat-panel display and a solid-state lighting. Alternatively, inorganic technologies such as Si-based thin-film technology have been growing almost independently. It is then expected that combining the Si-based thin-film technology with the organic light emitting diode (OLED) technology will develop innovative devices. Here, we report syntheses of the hybrid light emitting diode (LED) with a heterostructure consisting of p-type SiC x and tris-(8-hydroxyquinoline) aluminum films and characterization for the hybrid LEDs. We present the energy diagram of the heterostructure, and describe that the use of high dark conductivities of the p-type SiC x as well as inserting wide-gap intrinsic a-SiC x at the p-type SiC x/Alq interface are effective for improving device performance.

  5. Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films

    DOE PAGES

    Jensen, K. M.Ø.; Blichfeld, A. B.; Bauers, S. R.; ...

    2015-07-05

    By means of normal incidence, high flux and high energy x-rays, we have obtained total scattering data for Pair Distribution Function (PDF) analysis from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. We illustrate the ‘tfPDF’ method through studies of as depositedmore » (i.e. amorphous) and crystalline FeSb 3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb 3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb 3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb 6 octahedra with motifs highly resembling the local structure in crystalline FeSb 3. Analysis of the amorphous structure allows predicting whether the final crystalline product will form the FeSb 3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.« less

  6. Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films

    PubMed Central

    Jensen, Kirsten M. Ø.; Blichfeld, Anders B.; Bauers, Sage R.; Wood, Suzannah R.; Dooryhée, Eric; Johnson, David C.; Iversen, Bo B.; Billinge, Simon J. L.

    2015-01-01

    By means of normal-incidence, high-flux and high-energy X-rays, total scattering data for pair distribution function (PDF) analysis have been obtained from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. The ‘tfPDF’ method is illustrated through studies of as-deposited (i.e. amorphous) and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows the prediction of whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films. PMID:26306190

  7. A general strategy for hybrid thin film fabrication and transfer onto arbitrary substrates.

    PubMed

    Zhang, Yong; Magan, John J; Blau, Werner J

    2014-04-28

    The development of thin film-based structures/devices often requires thin films to be transferred onto arbitrary substrates/surfaces. Controllable and non-destructive transfer method, although highly desired, remains quite challenging. Here we report a general method for fabrication and transfer of hybrid (ultra)thin films. The proposed solution-based in-situ transfer method shows not only its robust ability for thin film transfer onto arbitrary substrates but also its highly controlled and non-destructive characteristic. With a hole structure as the support, fully-stretched free-standing thin film is prepared. The successful transfer to a curved surface demonstrates the possibility for production of thin film-coated complex optical components. Ultrathin (35 nm) hybrid film transferred onto PET (50 μm thick) shows high transparency (>90% in visible range), conductivity (1.54 × 10(4) S/m), and flexibility (radius of curvature down to mm scale). The reported transfer method would provide a powerful route towards complex thin film-based structures/devices.

  8. A General Strategy for Hybrid Thin Film Fabrication and Transfer onto Arbitrary Substrates

    PubMed Central

    Zhang, Yong; Magan, John J.; Blau, Werner J.

    2014-01-01

    The development of thin film-based structures/devices often requires thin films to be transferred onto arbitrary substrates/surfaces. Controllable and non-destructive transfer method, although highly desired, remains quite challenging. Here we report a general method for fabrication and transfer of hybrid (ultra)thin films. The proposed solution-based in-situ transfer method shows not only its robust ability for thin film transfer onto arbitrary substrates but also its highly controlled and non-destructive characteristic. With a hole structure as the support, fully-stretched free-standing thin film is prepared. The successful transfer to a curved surface demonstrates the possibility for production of thin film-coated complex optical components. Ultrathin (35 nm) hybrid film transferred onto PET (50 μm thick) shows high transparency (>90% in visible range), conductivity (1.54 × 104 S/m), and flexibility (radius of curvature down to mm scale). The reported transfer method would provide a powerful route towards complex thin film-based structures/devices. PMID:24769689

  9. Fabrication of VO2 thin film by rapid thermal annealing in oxygen atmosphere and its metal—insulator phase transition properties

    NASA Astrophysics Data System (ADS)

    Liang, Ji-Ran; Wu, Mai-Jun; Hu, Ming; Liu, Jian; Zhu, Nai-Wei; Xia, Xiao-Xu; Chen, Hong-Da

    2014-07-01

    Vanadium dioxide thin films have been fabricated through sputtering vanadium thin films and rapid thermal annealing in oxygen. The microstructure and the metal—insulator transition properties of the vanadium dioxide thin films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and a spectrometer. It is found that the preferred orientation of the vanadium dioxide changes from (1¯11) to (011) with increasing thickness of the vanadium thin film after rapid thermal annealing. The vanadium dioxide thin films exhibit an obvious metal—insulator transition with increasing temperature, and the phase transition temperature decreases as the film thickness increases. The transition shows hysteretic behaviors, and the hysteresis width decreases as the film thickness increases due to the higher concentration carriers resulted from the uncompleted lattice. The fabrication of vanadium dioxide thin films with higher concentration carriers will facilitate the nature study of the metal—insulator transition.

  10. Synthesis, characterization, and photocatalytic properties of nanocrystalline NZO thin films

    NASA Astrophysics Data System (ADS)

    Aryanto, D.; Hastuti, E.; Husniya, N.; Sudiro, T.; Nuryadin, B. W.

    2018-03-01

    Nanocrystalline Ni-doped ZnO (NZO) thin films were synthesized on glass substrate using sol-gel spin coating methods. The effect of annealing on the structural and optical properties of nanocrystalline thin film was studied using X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), UV-VIS spectrophotometry, and photoluminescence (PL). The results showed that the annealing temperature strongly influenced the physical properties of nanocrystalline NZO thin films. The photocatalytic properties of nanocrystalline NZO thin films were evaluated using an aqueous solution of Rhodamine-B. The photocatalytic activity of nanocrystalline NZO thin films increased with the increase of annealing temperature. The results indicated that the structure, morphology, and band gap energy of nanocrystalline NZO thin films played an important role in photocatalytic activity.

  11. Metallic Thin-Film Bonding and Alloy Generation

    NASA Technical Reports Server (NTRS)

    Peotter, Brian S. (Inventor); Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  12. Electron-Beam Deposition of Superconducting Molybdenum Thin Films for the Development of Mo/Au TES X-Ray Microcalorimeter

    NASA Technical Reports Server (NTRS)

    Finkbeiner, Fred Michael; Adams, Joseph S.; Bandler, Simon R.; Betancour-Martinez, Gabriele L.; Brown, Ari David; Chang, Meng-Ping; Chervenak, James A.; Chiao, Meng P.; Datesman, Aaron; Eckart, Megan E.; hide

    2016-01-01

    We are exploring the properties of electron-beam evaporated molybdenum thin films on silicon nitride coated silicon wafers at substrate temperatures between room temperature and 650 C. The temperature dependence of film stress, transition temperature, and electrical properties are presented. X-ray diffraction measurements are performed to gain information on molybdenum crystallite size and growth. Results show the dominant influence of the crystallite size on the intrinsic properties of our films. Wafer-scale uniformity, wafer yield, and optimal thermal bias regime for TES fabrication are discussed.

  13. Synthesis of Stretchable Gold Films with Nanocracks: Stretched up to 120% Strain while Maintaining Conductivity

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Wang, Chong; Yang, Cancan; Yu, Zhe

    2017-11-01

    With the great deformability of stretch, compression, bend and twisting, while preserving electrical property, metal films on elastomeric substrates have many applications for serving as bioelectrical interfaces. However, at present, most polymer-supported thin metal films reported rupture at small elongations (<10%). In this work, highly stretchable thin gold films were fabricated on PDMS substrates by a novel micro-processing technology. The as deposited films can be stretched by a maximum 120% strain while maintaining their electrical conductivity. Electrical characteristics of the gold films under single-cycle and multi-cycle stretch deformations are investigated in this work. SEM images imply that the gold films are under the structure of nanocracks. The mechanisms of the stretchability of the gold films can be explained by the nanocraks, which uniformly distribute with random orientation in the films.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Ritu, E-mail: maan.ritupal@gmail.com; Kumar, C. N.; Loomba, Shally

    We present the exact analytical solutions of cubic-quintic nonlinear Schrödinger equation with localized gain. We have demonstrated that the bright and dark solitons exist for the repulsive cubic and attractive quintic nonlinearity. These solutions have been obtained for those values of parameters which support the formation of solitons in Yttrium iron garnet thin films. Our results may be useful to understand the nonlinear pulse excitations in thin films.

  15. A study of using femtosecond LIBS in analyzing metallic thin film-semiconductor interface

    NASA Astrophysics Data System (ADS)

    Galmed, A. H.; Kassem, A. K.; von Bergmann, H.; Harith, M. A.

    2011-01-01

    Metals and metal alloys are usually employed as interconnections to guide electrical signals between components into the very large scale integrated (VLSI) devices. These devices demand higher complexity, better performance and lower cost. Thin film is a common geometry for these metallic applications, requiring a substrate for rigidity. Accurate depth profile analysis of coatings is becoming increasingly important with expanding industrial use in technological fields. A number of articles devoted to LIBS applications for depth-resolved analysis have been published in recent years. In the present work, we are studying the ability of femtosecond LIBS to make depth profiling for a Ti thin film of thickness 213 nm deposited onto a silicon (100) substrate before and after thermal annealing. The measurements revealed that an average ablation rates of 15 nm per pulse have been achieved. The thin film was examined using X-Ray Diffraction (XRD) and Atomic Force Microscope (AFM), while the formation of the interface was examined using Rutherford Back Scattering (RBS) before and after annealing. To verify the depth profiling results, a theoretical simulation model is presented that gave a very good agreement with the experimental results.

  16. Control of nanoscale atomic arrangement in multicomponent thin films by temporally modulated vapour fluxes

    NASA Astrophysics Data System (ADS)

    Sarakinos, Kostas

    2016-09-01

    Synthesis of multicomponent thin films using vapor fluxes with a modulated deposition pattern is a potential route for accessing a wide gamut of atomic arrangements and morphologies for property tuning. In the current study, we present a research concept that allows for understanding the combined effect of flux modulation, kinetics and thermodynamics on the growth of multinary thin films. This concept entails the combined use of thin film synthesis by means of multiatomic vapor fluxes modulated with sub-monolayer resolution, deterministic growth simulations and nanoscale microstructure probes. Using this research concept we study structure formation within the archetype immiscible Ag-Cu binary system showing that atomic arrangement and morphology at different length scales is governed by diffusion of near-surface Ag atoms to encapsulate 3D Cu islands growing on 2D Ag layers. Moreover, we explore the relevance of the mechanism outlined above for morphology evolution and structure formation within the miscible Ag-Au binary system. The knowledge generated and the methodology presented herein provides the scientific foundation for tailoring atomic arrangement and physical properties in a wide range of miscible and immiscible multinary systems.

  17. Effect of annealing temperatures on the morphology and structural properties of PVDF/MgO nanocomposites thin films

    NASA Astrophysics Data System (ADS)

    Rozana, M. D.; Arshad, A. N.; Wahid, M. H. M.; Habibah, Z.; Sarip, M. N.; Rusop, M.

    2018-05-01

    This study investigates the effect of annealing on the topography, morphology and crystal phases of poly(vinylideneflouride)/Magnesium Oxide (MgO) nanocomposites thin films via AFM, FESEM and ATR-FTIR. The nanocomposites thin films were annealed at temperatures ranging from 70°C to 170°C. The annealed PVDF/MgO nanocomposites thin films were then cooled at room temperature before removal from the oven. This is to restructure the crystal lattice and to reduce imperfection for the PVDF/MgO nanocomposites thin films. PVDF/MgO nanocomposites thin films with annealing temperatures of 70°C, 90°C and 110°C showed uniform distribution of MgO nanoparticles, relatively low average surface roughness and no visible of defects. High application of annealing temperature on PVDF/MgO nanocomposites thin films caused tear-like defects on the thin films surface as observed by FESEM. The PVDF/MgO nanocomposites thin films annealed at 70°C was found to be a favourable film to be utilized in this study due to its enhanced β-crystalites of PVDF as evident in ATR-FTIR spectra.

  18. Atomic layer deposition of copper thin film and feasibility of deposition on inner walls of waveguides

    NASA Astrophysics Data System (ADS)

    Yuqing, XIONG; Hengjiao, GAO; Ni, REN; Zhongwei, LIU

    2018-03-01

    Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature, using copper(I)-N,N‧-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas. The influence of temperature, plasma power, mode of plasma, and pulse time, on the deposition rate of copper thin film, the purity of the film and the step coverage were studied. The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied. The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy, respectively. The square resistance of the thin film was also tested by a four-probe technique. On the basis of on-line diagnosis, a growth mechanism of copper thin film was put forward, and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films. A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.

  19. Nanocrystal thin film fabrication methods and apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Cherie R.; Kim, David K.; Choi, Ji-Hyuk

    Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.

  20. Pyrolyzed thin film carbon

    NASA Technical Reports Server (NTRS)

    Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor); Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  1. [Modification and luminescence properties of transparent Lu2SiO5 : Ce3+ thin-film phosphors].

    PubMed

    Fan, Yang-Yang; Liu, Xiao-Lin; Gu, Mu; Ni, Chen; Huang, Shi-Ming; Liu, Bo

    2011-02-01

    To achieve high-spatial-resolution for X-ray imaging and flat panel display, transparent thin-film phosphors have been attracted much attention in recent years. In comparison with conventional powder phosphors, the transparent thin-film phosphors have some outstanding advantages such as high contrast and resolution, superior thermal conductivity and better adhesion. Cerium-doped lutetium oxyorthosilicate Lu2 SiO5 (LSO) is one promising candidate due to its high density (7.4 g x cm(-3)), high light yield (27 300 photons x MeV(-1)), short decay time (40 ns), and excellent chemical stability. The sol-gel method is one of the most important techniques for deposition of functional thin films, because it possesses a number of advantages over conventional film formation techniques, such as low processing temperature, easy coating of large surfaces, homogenous multicomponent films, and cheap equipments. In X-ray imaging application, the thickness of the thin-film phosphor is the most important factor, which can increase X-ray absorption of the film and then strengthen its luminescence intensity. In the present work, transparent LSO : Ce film was successfully prepared using sol-gel method and spin-coating technique by using inorganic salts as raw materials, 2-methoxyethanol as solvent, and poly (ethylene glycol) (PEG) as modifier without inert atmosphere. The effect of PEG on the luminescence properties of the film was investigated in detail. The results indicated that PEG200 played an important role in the formation of LSO : Ce film, improving its quality and luminescent intensity. The film thickness of 0.9 microm was achieved after 5 times of coating. The luminescence properties of the film were studied. Their performances were good, which implied that the film would have promising applications in high-spatial-resolution X-ray imaging and flat panel display devices.

  2. Preparation of LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries by a mist CVD process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadanaga, Kiyoharu, E-mail: tadanaga@chem.osakafu-u.ac.jp; Yamaguchi, Akihiro; Sakuda, Atsushi

    2014-05-01

    Highlights: • LiMn{sub 2}O{sub 4} thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn{sub 2}O{sub 4} thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueousmore » solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles.« less

  3. Structural and electrochemical analysis of chemically synthesized microcubic architectured lead selenide thin films

    NASA Astrophysics Data System (ADS)

    Bhat, T. S.; Shinde, A. V.; Devan, R. S.; Teli, A. M.; Ma, Y. R.; Kim, J. H.; Patil, P. S.

    2018-01-01

    The present work deals with the synthesis of lead selenide (PbSe) thin films by simple and cost-effective chemical bath deposition method with variation in deposition time. The structural, morphological, and electrochemical properties of as-deposited thin films were examined using characterization techniques such as X-ray diffraction spectroscopy (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy. XRD reveals formation of rock salt phase cubic structured PbSe. FE-SEM images show the formation of microcubic structured morphology. The existence of the PbSe is confirmed from the XPS analysis. On the other hand, CV curves show four reaction peaks corresponding to oxidation [PbSe and Pb(OH)2] and reduction (PbO2 and Pb(OH)2) at the surface of PbSe thin films. The PbSe:2 sample deposited for 80 min. shows maximum specific capacitance of 454 ± 5 F g- 1 obtained at 0.25 mA cm- 2 current density. The maximum energy density of 69 Wh kg- 1 was showed by PbSe:2 electrode with a power density of 1077 W kg- 1. Furthermore, electrochemical impedance studies of PbSe:2 thin film show 80 ± 3% cycling stability even after 500 CV cycles. Such results show the importance of microcubic structured PbSe thin film as an anode in supercapacitor devices.

  4. Enhanced Visible Transmittance of Thermochromic VO2 Thin Films by SiO2 Passivation Layer and Their Optical Characterization

    PubMed Central

    Yu, Jung-Hoon; Nam, Sang-Hun; Lee, Ji Won; Boo, Jin-Hyo

    2016-01-01

    This paper presents the preparation of high-quality vanadium dioxide (VO2) thermochromic thin films with enhanced visible transmittance (Tvis) via radio frequency (RF) sputtering and plasma enhanced chemical vapor deposition (PECVD). VO2 thin films with high Tvis and excellent optical switching efficiency (Eos) were successfully prepared by employing SiO2 as a passivation layer. After SiO2 deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO2 coating, the phase transition temperature (Tc) of the prepared films was not affected. Compared with pristine VO2, the total layer thickness after SiO2 coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO2 thin films showed a higher Tvis value (λ 650 nm, 58%) compared with the pristine samples (λ 650 nm, 43%). This enhancement of Tvis while maintaining high Eos is meaningful for VO2-based smart window applications. PMID:28773679

  5. Surface roughening and scaling behavior of vacuum-deposited SnCl{sub 2}Pc organic thin films on different substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obaidulla, Sk. Md.; Giri, P. K., E-mail: giri@iitg.ernet.in; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039

    2015-11-30

    The evolution of surface morphology and scaling behavior of tin (IV) phthalocyanine dichloride (SnCl{sub 2}Pc) thin films grown on Si(100) and glass substrates have been studied using atomic force microscopy (AFM) and height-height correlation function analysis. X-ray diffraction measurement confirms the crystalline nature of the SnCl{sub 2}Pc thin film on glass substrate, while no crystallographic ordering is present for the film grown on Si substrate. The growth exponent β is found to be much larger for the film on glass substrate (0.48 ± 0.07) as compared to that on Si substrate (0.21 ± 0.08), which may be due to the high step-edge barrier, so-calledmore » Ehrlich-Schwöbel barrier, resulting in the upward dominant growth on glass substrate. From the 2D fast Fourier transform of AFM images and derived scaling exponents, we conclude that the surface evolution follows a mound like growth. These results imply the superiority of glass substrate over the Si substrate for the growth of device quality SnCl{sub 2}Pc thin film.« less

  6. Structural, optical and NO2 gas sensing properties of ZnMgO thin films prepared by the sol gel method

    NASA Astrophysics Data System (ADS)

    Chebil, W.; Boukadhaba, M. A.; Madhi, I.; Fouzri, A.; Lusson, A.; Vilar, C.; Sallet, V.

    2017-01-01

    In this present work, ZnO and ZnMgO thin films prepared by a sol-gel process were deposited on glass substrates via spin coating technique. The structural, morphological and optical properties of the obtained films were investigated. X-ray diffraction study revealed that all layers exhibit a hexagonal wurtzite structure without any secondary phase segregation. The atomic force microscopy (AFM) depicts that the grains size of ours samples decreases as magnesium content increases. The absorption spectra obtained on ZnMgO thin films show a band gap tuning from 3.19 to 3.36 eV, which is also consistent with blue shifting of near-band edge PL emission, measured at low temperature. The incorporated amount of magnesium was calculated and confirmed by EDX. The gas sensing performances were tested in air containing NO2 for different operating temperatures. The experimental result exhibited that ZnMgO sensors shows a faster response and recovery time than the ZnO thin films. The resistivity and the sensor response as function of Mg content were also investigated.

  7. Ferroelectric and magnetic properties of Aurivillius Bi{sub m+1}Ti{sub 3}Fe{sub m−3}O{sub 3m+3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Tingting, E-mail: jia.tingting@nims.go.jp; Kimura, Hideo, E-mail: KIMURA.Hideo@nims.go.jp; Cheng, Zhenxiang

    2015-11-15

    Aurivillius Bi{sub m+1}Ti{sub 3}Fe{sub m−3}O{sub 3m+3} (m = 4, 5, 6) thin films have been deposited by a pulsed laser deposition system. The x-ray diffraction patterns indicate the formation of orthorhombic phase. The remanent polarization (2P{sub r}) of Bi{sub m+1}Ti{sub 3}Fe{sub m−3}O{sub 3m+3} thin films is decreased with the m-number. Positive-up-negative-down measurements indicate the presence of ferroelectric (FE) polarization in as-obtained thin films. Piezoresponse force microscopy investigations confirm the existence of FE domains and the switchable polarization. Weak magnetic moment is detected in the Aurivillius films at room temperature. The present work suggests the possibility of Aurivillius Bi{sub m+1}Ti{sub 3}Fe{sub m−3}O{sub 3m+3}more » (m = 4, 5, 6) materials as potential room-temperature multiferroics.« less

  8. Reversible tuning of magnetocaloric Ni-Mn-Ga-Co films on ferroelectric PMN-PT substrates.

    PubMed

    Schleicher, Benjamin; Niemann, Robert; Schwabe, Stefan; Hühne, Ruben; Schultz, Ludwig; Nielsch, Kornelius; Fähler, Sebastian

    2017-10-31

    Tuning functional properties of thin caloric films by mechanical stress is currently of high interest. In particular, a controllable magnetisation or transition temperature is desired for improved usability in magnetocaloric devices. Here, we present results of epitaxial magnetocaloric Ni-Mn-Ga-Co thin films on ferroelectric Pb(Mg 1/3 Nb 2/3 ) 0.72 Ti 0.28 O 3 (PMN-PT) substrates. Utilizing X-ray diffraction measurements, we demonstrate that the strain induced in the substrate by application of an electric field can be transferred to the thin film, resulting in a change of the lattice parameters. We examined the consequences of this strain on the magnetic properties of the thin film by temperature- and electric field-dependent measurements. We did not observe a change of martensitic transformation temperature but a reversible change of magnetisation within the austenitic state, which we attribute to the intrinsic magnetic instability of this metamagnetic Heusler alloy. We demonstrate an electric field-controlled entropy change of about 31 % of the magnetocaloric effect - without any hysteresis.

  9. Thermal diffusivity measurement of GaAs/AlGaAs thin-film structures

    NASA Astrophysics Data System (ADS)

    Chen, G.; Tien, C. L.; Wu, X.; Smith, J. S.

    1994-05-01

    This work develops a new measurement technique that determines the thermal diffusivity of thin films in both parallel and perpendicular directions, and presents experimental results on the thermal diffusivity of GaAs/AlGaAs-based thin-film structures. In the experiment, a modulated laser source heats up the sample and a fast-response temperature sensor patterned directly on the sample picks up the thermal response. From the phase delay between the heating source and the temperature sensor, the thermal diffusivity in either the parallel or perpendicular direction is obtained depending on the experimental configuration. The experiment is performed on a molecular-beam-epitaxy grown vertical-cavity surface-emitting laser (VCSEL) structure. The substrates of the samples are etched away to eliminate the effects of the interface between the film and the substrate. The results show that the thermal diffusivity of the VCSEL structure is 5-7 times smaller than that of its corresponding bulk media. The experiments also provide evidence on the anisotropy of thermal diffusivity caused solely by the effects of interfaces and boundaries of thin films.

  10. Investigation of AgInS2 thin films grown by coevaporation

    NASA Astrophysics Data System (ADS)

    Arredondo, C. A.; Clavijo, J.; Gordillo, G.

    2009-05-01

    AgInS2 thin films were grown on soda-lime glass substrates by co-evaporation of the precursors in a two-step process. X-ray diffraction (XRD) measurements indicated that these compounds grow in different phases and with different crystalline structure depending upon the deposition conditions. However, through a parameter study, conditions were found to grow thin films containing only the AgInS2 phase with chalcopyrite type structure. In samples containing a mixture of several phases, the contribution in percentage terms of each phase to the whole compound was estimated with the help of the PowderCell simulation package. It was also found that the AgInS2 films present p-type conductivity, a high absorption coefficient (greater than 104 cm-1) and an energy band gap Eg of about 1.95 eV, indicating that this compound has good properties to perform as absorbent layer in thin film tandem solar cells. The effect of the deposition conditions on the optical and morphological properties was also investigated through spectral transmitance and atomic force microscopy (AFM) measurements.

  11. MoS2 thin films prepared by sulfurization

    NASA Astrophysics Data System (ADS)

    Sojková, M.; Chromik, Å.; Rosová, A.; Dobročka, E.; Hutár, P.; Machajdík, D.; Kobzev, A. P.; Hulman, M.

    2017-08-01

    Sulfurization of a Mo layer is one of the most used methods for preparation of thin MoS2 films. In the method, a sulfur powder and Mo covered substrate are placed in different positions within a furnace, and heated separately. This requires a furnace having at least two zones. Here, we present a simplified version of the method where a one-zone tube furnace was used. A molybdenum film on a substrate and a sulfur powder were placed in the center of the furnace and heated at temperatures above 800°C. Mo films transform into MoS2 in vapors of sulphur at high temperatures. As-prepared films were characterized by number of techniques including X-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman, Rutherford backscattering (RBS) and X-ray photoelectron spectroscopy (XPS). It appears that one-zone sulfurization, with just one annealing temperature used, is a suitable method for fabrication of MoS2 thin films. This method is fast, cheap and easy to scale up.

  12. Energy band engineering and controlled p-type conductivity of CuAlO2 thin films by nonisovalent Cu-O alloying

    NASA Astrophysics Data System (ADS)

    Yao, Z. Q.; He, B.; Zhang, L.; Zhuang, C. Q.; Ng, T. W.; Liu, S. L.; Vogel, M.; Kumar, A.; Zhang, W. J.; Lee, C. S.; Lee, S. T.; Jiang, X.

    2012-02-01

    The electronic band structure and p-type conductivity of CuAlO2 films were modified via synergistic effects of energy band offset and partial substitution of less-dispersive Cu+ 3d10 with Cu2+ 3d9 orbitals in the valence band maximum by alloying nonisovalent Cu-O with CuAlO2 host. The Cu-O/CuAlO2 alloying films show excellent electronic properties with tunable wide direct bandgaps (˜3.46-3.87 eV); Hall measurements verify the highest hole mobilities (˜11.3-39.5 cm2/Vs) achieved thus far for CuAlO2 thin films and crystals. Top-gate thin film transistors constructed on p-CuAlO2 films were presented, and the devices showed pronounced performance with Ion/Ioff of ˜8.0 × 102 and field effect mobility of 0.97 cm2/Vs.

  13. Effect of preparation conditions on the properties of Cu3BiS3 thin films grown by a two - step process

    NASA Astrophysics Data System (ADS)

    Mesa, F.; Gordillo, G.

    2009-05-01

    Cu3BiS3 thin films were prepared on soda-lime glass substrates by co-evaporation of the precursors in a two-step process; for that, the metallic precursors were evaporated from a tungsten boat in presence of elemental sulfur evaporated from a tantalum effusion cell. The films were characterized by spectral transmittance, atomic force microscopy AFM and x-ray diffraction (XRD) measurements to investigate the effect of the growth conditions on the optical, morphological and structural properties. The results revealed that, independently of the deposition conditions, the films grow only in the orthorhombic Cu3BiS3 phase. It was also found that the Cu3BiS3 films present p-type conductivity, a high absorption coefficient (greater than 104 cm-1) and an energy band gap Eg of about 1.41 eV, indicating that this compound has good properties to perform as absorbent layer in thin film solar cells.

  14. Indium local geometry in In-Sb-Te thin films using XANES and DFT calculations

    NASA Astrophysics Data System (ADS)

    Bilovol, V.; Gil Rebaza, A. V.; Mudarra Navarro, A. M.; Errico, L.; Fontana, M.; Arcondo, B.

    2017-12-01

    In-Sb-Te when is a thin film presents a huge difference in its electrical resistivity when transform from the amorphous (insulating) to the crystalline (conducting) phase. This property made this system one of the main phase-change materials used in the data storage industry. The change in the electrical conductivity is probably associated to a change in the bonding geometry of some of its constituents. To explore this point, we present in this work an study of the bonding geometry of In atoms in In-Sb-Te films by means of In K-edge X-ray absorption near edge structure (XANES) spectroscopy using synchrotron radiation in both as deposited (amorphous) and crystalline thin films obtained as a result of resistance (R) vs temperature (T) measurements. Comparison of the XANES spectra obtained for ternary amorphous films and binary crystalline reference films suggests that in amorphous films the bonding geometry of In atoms is tetrahedral-like. After the thermal annealing has been carried out the differences in the XANES spectra of the as deposited and the annealed films indicate that the bonding geometry of In atoms changes. Based on X-ray diffraction results and ab initio calculations in the framework of the Density Functional Theory (DFT) we show that the new coordination geometry is associated with a tendency of In atoms towards octahedral-like.

  15. Heavily-doped ZnO:Al thin films prepared by using magnetron Co-sputtering: Optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Moon, Eun-A.; Jun, Young-Kil; Kim, Nam-Hoon; Lee, Woo-Sun

    2016-07-01

    Photovoltaic applications require transparent conducting-oxide (TCO) thin films with high optical transmittance in the visible spectral region (380 - 780 nm), low resistivity, and high thermal/chemical stability. The ZnO thin film is one of the most common alternatives to the conventional indium-tin-oxide (ITO) thin film TCO. Highly transparent and conductive ZnO thin films can be prepared by doping with group III elements. Heavily-doped ZnO:Al (AZO) thin films were prepared by using the RF magnetron co-sputtering method with ZnO and Al targets to obtain better characteristics at a low cost. The RF sputtering power to each target was varied to control the doping concentration in fixed-thickness AZO thin films. The crystal structures of the AZO thin films were analyzed by using X-ray diffraction. The morphological microstructure was observed by using scanning electron microscopy. The optical transmittance and the band gap energy of the AZO thin films were examined with an UV-visible spectrophotometer in the range of 300 - 1800 nm. The resistivity and the carrier concentration were examined by using a Hall-effect measurement system. An excellent optical transmittance > 80% with an appropriate band gap energy (3.26 - 3.27 eV) and an improved resistivity (~10 -1 Ω·cm) with high carrier concentration (1017 - 1019 cm -3) were demonstrated in 350-nm-thick AZO thin films for thin-film photovoltaic applications.

  16. Decoding Nucleation and Growth of Zeolitic Imidazolate Framework Thin Films with Atomic Force Microscopy and Vibrational Spectroscopy.

    PubMed

    Öztürk, Zafer; Filez, Matthias; Weckhuysen, Bert M

    2017-08-10

    The synthesis of metal-organic framework (MOF) thin films has garnered significant attention during the past decade. By better understanding the parameters governing the nucleation and growth of such thin films, their properties can be rationally tuned, empowering their application as (reactive) membranes. Here, a combined AFM-vibrational spectroscopy research strategy is employed to detail the chemistries governing the nucleation and growth of zeolitic imidazolate framework (ZIF) thin films, in particular isostructural Co-ZIF-67 and Zn-ZIF-8. First, a single step direct synthesis approach is used to investigate the influence of different synthesis parameters -metal/linker ratio, temperature, and metal type- on the thin film nucleation and growth behaviour. While the metal/linker ratio has a pronounced effect on the thin film nucleation rate, the temperature mainly influences the growth kinetics of nuclei forming the thin film. In addition, the nucleation and growth of ZIF thin films is shown to be highly dependent on the electronegativity of the metal type. Thin-film thickness control can be achieved by using a multistep synthesis strategy, implying repetitive applications of single step deposition under identical synthesis conditions, for which a growth mechanism is proposed. This study provides insight into the influence of synthesis parameters on the ZIF thin film properties, using tools at hand to rationally tune MOF thin film properties. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  17. Thin-film limit formalism applied to surface defect absorption.

    PubMed

    Holovský, Jakub; Ballif, Christophe

    2014-12-15

    The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking.

  18. Study of blended conductive graft copolymer with graphite oxide thin films deposited using spin coating method for gas sensing and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    KałuŻyński, P.; Procek, M.; Stolarczyk, Agnieszka; Maciak, E.

    2017-08-01

    This work presents an investigation on conductive graft comb copolymer like SILPEG CH9 with carbon materials like graphite oxide or reduced graphite oxide. Morphology and optical properties like sample roughness, graphite oxide particles distribution, optical transmittance were measured of obtained thin films deposited on glass substrate using spin coating method. The study showed that obtained thin films are repeatable, convenient to process, and their parameters can be easy changed by the spin rate regulation during the deposition. Given results shows the possibility of using such polymer blend in the implementation of organic photovoltaic cells and different optoelectronics applications.

  19. Fabrication and chemical composition of RF magnetron sputtered Tl-Ca-Ba-Cu-O high Tc superconducting thin films

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Radpour, F.; Kapoor, V. J.; Lemon, G. H.

    1990-01-01

    The preparation of TlCaBaCuO superconducting thin films on (100) SrTiO3 substrates is described, and the results of their characterization are presented. Sintering and annealing the thin films in a Tl-rich ambient yielded superconductivity with a Tc of 107 K. The results of an XPS study support two possible mechanisms for the creation of holes in the TlCaBaCuO compound: (1) partial substitution of Ca(2+) for Tl(3+), resulting in hole creation, and (2) charge transfer from Tl(3+) to the CuO layers, resulting in a Tl valence between +3 and +1.

  20. Direct observation of fatigue in epitaxially grown Pb(Zr,Ti)O3 thin films using second harmonic piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Murari, Nishit M.; Hong, Seungbum; Lee, Ho Nyung; Katiyar, Ram. S.

    2011-08-01

    Here, we present a direct observation of fatigue phenomena in epitaxially grown Pb(Zr0.2Ti0.8)O3 (PZT) thin films using second harmonic piezoresponse force microscopy (SH-PFM). We observed strong correlation between the SH-PFM amplitude and phase signals with the remnant piezoresponse at different switching cycles. The SH-PFM results indicate that the average fraction of switchable domains decreases globally and the phase delays of polarization switching differ locally. In addition, we found that the fatigue developed uniformly over the whole area without developing region-by-region suppression of switchable polarization as in polycrystalline PZT thin films.

Top