Sample records for thin lif layer

  1. Lifetime Improvement of Organic Light Emitting Diodes using LiF Thin Film and UV Glue Encapsulation

    NASA Astrophysics Data System (ADS)

    Huang, Jian-Ji; Su, Yan-Kuin; Chang, Ming-Hua; Hsieh, Tsung-Eong; Huang, Bohr-Ran; Wang, Shun-Hsi; Chen, Wen-Ray; Tsai, Yu-Sheng; Hsieh, Huai-En; Liu, Mark O.; Juang, Fuh-Shyang

    2008-07-01

    This work demonstrates the use of lithium fluoride (LiF) as a passivation layer and a newly developed UV glue for encapsulation on the LiF passivation layer to enhance the stability of organic light-emitting devices (OLEDs). Devices with double protective layers showed a 25-fold increase in operational lifetime compared to those without any packaging layers. LiF has a low melting point and insulating characteristics and it can be adapted as both a protective layer and pre-encapsulation film. The newly developed UV glue has a fast curing time of only 6 s and can be directly spin-coated onto the surface of the LiF passivation layer. The LiF thin film plus spin-coated UV glue is a simple packaging method that reduces the fabrication costs of OLEDs.

  2. Surface morphology and interdiffusion of LiF in Alq3-based organic light-emitting devices.

    PubMed

    Lee, Young Joo; Li, Xiaolong; Kang, Da-Yeon; Park, Seong-Sik; Kim, Jinwoo; Choi, Jeong-Woo; Kim, Hyunjung

    2008-09-01

    Highly efficient organic light-emitting devices (OLEDs) have been realized by insertion of a thin insulating lithium fluoride (LiF) layer between aluminum (Al) cathode and an electron transport layer, tris-(8-hydroxyquinoline) aluminum (Alq(3)). In this paper, we study the surface morphology of LiF on Alq(3) by synchrotron X-ray scattering and atomic force microscopy (AFM) as a function of thickness of LiF. We also study the interdiffusion of LiF into Al cathode as well as into Alq(3) layer as a function of temperature. Initially, LiF molecules are distributed randomly as clusters on the Alq(3) layer and then gradually form a layer as increasing LiF thickness. The interdiffusion of LiF into Al occurs more actively than into Alq(3) in annealing process. LiF on Alq(3) induces the ordering of Al to (111) direction strongly with increasing LiF thickness.

  3. Influence of solvent species on the charge-discharge characteristics of a natural graphite electrode

    NASA Astrophysics Data System (ADS)

    Fujimoto, Masahisa; Shoji, Yoshihiro; Kida, Yoshinori; Ohshita, Ryuji; Nohma, Toshiyuki; Nishio, Koji

    The charge-discharge characteristics of a natural graphite electrode are examined in a mixed solvent composed of ethylene carbonate (EC) and propylene carbonate (PC). The characteristics are influenced largely by the solvent species. Natural graphite electrode displays good charge-discharge characteristics in an electrolyte containing EC with a high volume fraction. In an electrolyte containing PC, however, the electrode cannot be charged and the solvent is decomposed. X-ray photoelectron spectroscopy is used to obtain information about the surface of natural graphite. A thin LiF layer, the decomposition product of lithium hexafluorophosphate (LiPF 6), is formed on the surface of the natural graphite charged to 0.5 V (vs. Li/Li +) in an electrolyte containing a high volume fraction of EC. On the other hand, LiF and a carbonate compound are formed in the bulk and on the surface of natural graphite when the volume fraction of PC is high. These results suggest that the thin LiF layer, which is produced at a potential higher than 0.5 V (vs. Li/Li +) on the surface of natural graphite, enables the lithium ions to intercalate into the natural graphite without further decomposition of the electrolyte.

  4. Quantum Chemical Insight into the LiF Interlayer Effects in Organic Electronics: Reactions between Al Atom and LiF Clusters.

    PubMed

    Wu, Shui-Xing; Kan, Yu-He; Li, Hai-Bin; Zhao, Liang; Wu, Yong; Su, Zhong-Min

    2015-08-06

    It is well known that the aluminum cathode performs dramatically better when a thin lithium fluoride (LiF) layer inserted in organic electronic devices. The doping effect induced by the librated Li atom via the chemical reactions producing AlF3 as byproduct was previously proposed as one of possible mechanisms. However, the underlying mechanism discussion is quite complicated and not fully understood so far, although the LiF interlayer is widely used. In this paper, we perform theoretical calculations to consider the reactions between an aluminum atom and distinct LiF clusters. The reaction pathways of the Al-(LiF)n (n = 2, 4, 16) systems were discovered and the energetics were theoretically evaluated. The release of Li atom and the formation of AlF3 were found in two different chemical reaction routes. The undissociated Al-(LiF)n systems have chances to change to some structures with loosely bound electrons. Our findings about the interacted Al-(LiF)n systems reveal new insights into the LiF interlayer effects in organic electronics applications.

  5. Analysis of the Electrical Properties of an Electron Injection Layer in Alq3-Based Organic Light Emitting Diodes.

    PubMed

    Kim, Soonkon; Choi, Pyungho; Kim, Sangsub; Park, Hyoungsun; Baek, Dohyun; Kim, Sangsoo; Choi, Byoungdeog

    2016-05-01

    We investigated the carrier transfer and luminescence characteristics of organic light emitting diodes (OLEDs) with structure ITO/HAT-CN/NPB/Alq3/Al, ITO/HAT-CN/NPB/Alq3/Liq/Al, and ITO/HAT-CN/NPB/Alq3/LiF/A. The performance of the OLED device is improved by inserting an electron injection layer (EIL), which induces lowering of the electron injection barrier. We also investigated the electrical transport behaviors of p-Si/Alq3/Al, p-Si/Alq3/Liq/Al, and p-Si/Alq3/LiF/Al Schottky diodes, by using current-voltage (L-V) and capacitance-voltage (C-V) characterization methods. The parameters of diode quality factor n and barrier height φ(b) were dependent on the interlayer materials between Alq3 and Al. The barrier heights φ(b) were 0.59, 0.49, and 0.45 eV, respectively, and the diode quality factors n were 1.34, 1.31, and 1.30, respectively, obtained from the I-V characteristics. The built in potentials V(bi) were 0.41, 0.42, and 0.42 eV, respectively, obtained from the C-V characteristics. In this experiment, Liq and LiF thin film layers improved the carrier transport behaviors by increasing electron injection from Al to Alq3, and the LiF schottky diode showed better I-V performance than the Liq schottky diode. We confirmed that a Liq or LiF thin film inter-layer governs electron and hole transport at the Al/Alq3 interface, and has an important role in determining the electrical properties of OLED devices.

  6. Improved Astronomical Instrumentation for the Far Ultra-Violet

    NASA Astrophysics Data System (ADS)

    Witt, Emily M.; Fleming, Brian; Egan, Arika; Tyler, Rachel; Wiley, James

    2018-06-01

    Recent technological advances have opened up new instrument capabilities in the ultraviolet. Of particular interest are advanced deposition processes that have made lithium fluoride (LiF) based mirrors more accessible, achieving greater than 80% broadband reflectivity down into the Lyman UV (100 nm). Traditional MgF2 protected aluminum mirrors cut off at 115 nm, missing crucial tracers of warm gas and molecules. The hygroscopic sensitivity of LiF, which adds mission risk and cost, has also been mitigated with a thin capping layer of a more durable substance, making LiF mirrors accessible without onerous environmental procedures. These advances open up a new paradigm in UV astronomy by enabling multi-reflection systems in the Lyman UV. We present recent progress in the testing of eLiF-based optics, and then discuss the potential scientific avenues this opens up in UV astronomy.

  7. Decomposition of ultrathin LiF cathode underlayer in organic-based devices evidenced by ToF-SIMS depth profiling

    NASA Astrophysics Data System (ADS)

    Pakhomov, Georgy L.; Drozdov, Mikhail N.; Travkin, Vlad V.; Bochkarev, Mikhail N.

    2017-11-01

    In this work we investigate the chemical composition of an archetypal thin-film organic device with the Ag/LiF cathode using the time-of-flight secondary ion mass spectrometry (ToF-SIMS) with depth profiling. The LiF cathode underlayer is partly decomposed because a significant amount of lithium is released into the bulk of the multilayer device. The released lithium diffuses all the way to the substrate, accumulating, as revealed by ToF-SIMS depth profiles, at the interfaces rather than uniformly doping the underlying layers. Particularly, the bottom anode becomes chemically modified.

  8. A comparative study of optical and radiative characteristics of X-ray-induced luminescent defects in Ag-doped glass and LiF thin films and their applications in 2-D imaging

    NASA Astrophysics Data System (ADS)

    Kurobori, T.; Miyamoto, Y.; Maruyama, Y.; Yamamoto, T.; Sasaki, T.

    2014-05-01

    We report novel disk-type X-ray two-dimensional (2-D) imaging detectors utilising Ag-doped phosphate glass and lithium fluoride (LiF) thin films based on the radiophotoluminescence (RPL) and photoluminescence (PL) phenomena, respectively. The accumulated X-ray doses written in the form of atomic-scale Ag-related luminescent centres in Ag-doped glass and F-aggregated centres in LiF thin films were rapidly reconstructed as a dose distribution using a homemade readout system. The 2-D images reconstructed from the RPL and PL detectors are compared with that from the optically stimulated luminescence (OSL) detector. In addition, the optical and dosimetric characteristics of LiF thin films are investigated and evaluated. The possibilities of dose distributions with a high spatial resolution on the order of microns over large areas, a wide dynamic range covering 11 orders of magnitude and a non-destructive readout are successfully demonstrated by combining the Ag-doped glass with LiF thin films.

  9. Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode

    DOE PAGES

    Veith, Gabriel M.; Doucet, Mathieu; Baldwin, J. K.; ...

    2015-08-17

    Using neutron reflectometry we have determined the thickness and chemistry of the solid-electrolyte interphase (SEI) layer grown on a silicon anode as a function of state of charge and during cycling. We show the chemistry of this SEI layer becomes more LiF like with increasing lithiation and more Li-C-O-F like with delithiation. More importantly the SEI layer thickness appears to increase (about 250 ) as the electrode becomes less lithiated and thins to 180 with increasing Li content (Li 3.7Si). We attribute this breathing to the continual consumption of electrolyte with cycling.

  10. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    NASA Astrophysics Data System (ADS)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  11. Measurement of the differential cross sections of 6Li(d,d0) for Ion Beam Analysis purposes

    NASA Astrophysics Data System (ADS)

    Ntemou, E.; Aslanoglou, X.; Axiotis, M.; Foteinou, V.; Kokkoris, M.; Lagoyannis, A.; Misaelides, P.; Patronis, N.; Preketes-Sigalas, K.; Provatas, G.; Vlastou, R.

    2017-09-01

    In the present work, the 6Li(d,d0)6Li elastic scattering differential cross sections were measured in the energy range Ed,lab = 940-2000 keV for Elastic Backscattering Spectroscopy (EBS) purposes, using thin lithium targets, made by evaporating isotopically enriched 6LiF powder on self-supporting carbon foils, with an ultra-thin Au layer on top for normalization purposes. The experiment was carried out in deuteron beam energy steps of 20 or 30 keV and for the laboratory scattering angles of 125°, 140°, 150°, 160°, and 170°.

  12. Mineralogy and astrobiology detection using laser remote sensing instrument.

    PubMed

    Abedin, M Nurul; Bradley, Arthur T; Sharma, Shiv K; Misra, Anupam K; Lucey, Paul G; McKay, Christopher P; Ismail, Syed; Sandford, Stephen P

    2015-09-01

    A multispectral instrument based on Raman, laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), and a lidar system provides high-fidelity scientific investigations, scientific input, and science operation constraints in the context of planetary field campaigns with the Jupiter Europa Robotic Lander and Mars Sample Return mission opportunities. This instrument conducts scientific investigations analogous to investigations anticipated for missions to Mars and Jupiter's icy moons. This combined multispectral instrument is capable of performing Raman and fluorescence spectroscopy out to a >100  m target distance from the rover system and provides single-wavelength atmospheric profiling over long ranges (>20  km). In this article, we will reveal integrated remote Raman, LIF, and lidar technologies for use in robotic and lander-based planetary remote sensing applications. Discussions are focused on recently developed Raman, LIF, and lidar systems in addition to emphasizing surface water ice, surface and subsurface minerals, organics, biogenic, biomarker identification, atmospheric aerosols and clouds distributions, i.e., near-field atmospheric thin layers detection for next robotic-lander based instruments to measure all the above-mentioned parameters.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sungho, E-mail: shochoi@krict.re.kr; Park, Byung-Yoon; Jung, Ha-Kyun

    Highlights: {yields} Systematic study of the fluorides doped solution-processed ZnO thin films via the luminescence and electrical behaviors. {yields} Defect-related visible emission bands are affected by annealing ambient and fluoride addition. {yields} Adding lithium fluoride followed by annealing in oxygen ambient leads to a controlled defect density with proper TFT performance. -- Abstract: To develop an efficient channel layer for thin film transistors (TFTs), understanding the defect-related luminescence and electrical property is crucial for solution-processed ZnO thin films. Film growth with the fluorides addition, especially using LiF, followed by the oxygen ambient post-annealing leads to decreased defect-related emission as wellmore » as enhanced switching property. The saturation mobility and current on/off ratio are 0.31 cm{sup 2} V{sup -1} s{sup -1} and 1.04 x 10{sup 3}. Consequently, we can visualize an optimized process condition and characterization method for solution-processed TFT based on the fluorine-doped ZnO film channel layer by considering the overall emission behavior.« less

  14. Neutron detection devices with 6LiF converter layers

    NASA Astrophysics Data System (ADS)

    Finocchiaro, Paolo; Cosentino, Luigi; Meo, Sergio Lo; Nolte, Ralf; Radeck, Desiree

    2018-01-01

    The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of art of a promising lowcost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. Several configurations were studied with the GEANT4 simulation code, and then calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.

  15. Modulation of solid electrolyte interphase of lithium-ion batteries by LiDFOB and LiBOB electrolyte additives

    NASA Astrophysics Data System (ADS)

    Huang, Shiqiang; Wang, Shuwei; Hu, Guohong; Cheong, Ling-Zhi; Shen, Cai

    2018-05-01

    Solid-electrolyte interphase (SEI) layer is an organic-inorganic composite layer that allows Li+ transport across but blocks electron flow across and prevents solvent diffusing to electrode surface. Morphology, thickness, mechanical and chemical properties of SEI are important for safety and cycling performance of lithium-ion batteries. Herein, we employ a combination of in-situ AFM and XPS to investigate the effects of two electrolyte additives namely lithium difluoro(oxalate)borate (LiDFOB) and lithium bis(oxalato)borate (LiBOB) on SEI layer. LiDFOB is found to result in a thin but hard SEI layer containing more inorganic species (LiF and LiCO3); meanwhile LiBOB promotes formation of a thick but soft SEI layer containing more organic species such as ROCO2Li. Findings from present study will help development of electrolyte additives that promote formation of good SEI layer.

  16. Mineralogy and Astrobiology Detection Using Laser Remote Sensing Instrument

    NASA Technical Reports Server (NTRS)

    Abedin, M. Nurul; Bradley, Arthur T.; Sharma, Shiv K.; Misra, Anupam K.; Lucey, Paul G.; Mckay, Chistopher P.; Ismail, Syed; Sandford, Stephen P.

    2015-01-01

    A multispectral instrument based on Raman, laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), and a lidar system provides high-fidelity scientific investigations, scientific input, and science operation constraints in the context of planetary field campaigns with the Jupiter Europa Robotic Lander and Mars Sample Return mission opportunities. This instrument conducts scientific investigations analogous to investigations anticipated for missions to Mars and Jupiter's icy moons. This combined multispectral instrument is capable of performing Raman and fluorescence spectroscopy out to a >100 m target distance from the rover system and provides single-wavelength atmospheric profiling over long ranges (>20 km). In this article, we will reveal integrated remote Raman, LIF, and lidar technologies for use in robotic and lander-based planetary remote sensing applications. Discussions are focused on recently developed Raman, LIF, and lidar systems in addition to emphasizing surface water ice, surface and subsurface minerals, organics, biogenic, biomarker identification, atmospheric aerosols and clouds distributions, i.e., near-field atmospheric thin layers detection for next robotic-lander based instruments to measure all the above-mentioned parameters. OCIS codes: (120.0280) Remote sensing and sensors; (130.0250) Optoelectronics; (280.3640) Lidar; (300.2530) Fluorescence, laser-induced; (300.6450) Spectroscopy, Raman; (300.6365) Spectroscopy, laser induced breakdown

  17. The role of thin MgO(100) epilayer for polarized charge injection into top-emitting OLED

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hee; Jong Lee, Nyun; Bae, Yu Jeong; Cho, Hyunduck; Lee, Changhee; Ito, Eisuke

    2012-02-01

    A new top-emitting OLED (TOLED) structure, which is formed on an Si(100) substrate and an epitaxial MgO(100)/Fe(100)/MgO(100) bottom electrode, was investigated. Our TOLED design included a semi-transparent cathode Al, a stack of conventional organic electroluminescent layers (α-NPD/Alq3/LiF) and a thin Cu-Phthalocyanine (CuPc) film to enhance the hole injection into the luminescent layers. At room temperature (RT), magnetoluminescence of ˜5 % was observed in low magnetic field up to 1 Tesla , which is obviously larger than that of the OLEDs with epitaxial and polycrystalline Fe anodes without MgO(100) covering layer. Our results indicate that the magnetic field effect on the electroluminescence could be strongly related to the magnetic properties of bottom electrode, more precisely the interfacial properties between CuPc layer and the anode. Therefore, we focused on understanding interface electronic states and energy alignment by using x-ray photoemission spectroscopy and ultraviolet photoemission spectroscopy. Our results showed that the use of appropriate oxide layers could represent a new interface engineering technique for improving reliability and functionality in organic semiconductor devices.

  18. Photoluminescence of magnesium-associated color centers in LiF crystals implanted with magnesium ions

    NASA Astrophysics Data System (ADS)

    Nebogin, S. A.; Ivanov, N. A.; Bryukvina, L. I.; V. Shipitsin, N.; E. Rzhechitskii, A.; Papernyi, V. L.

    2018-05-01

    In the present paper, the effect of magnesium nanoparticles implanted in a LiF crystal on the optical properties of color centers is studied. The transmittance spectra and AFM images demonstrate effective formation of the color centers and magnesium nanoparticles in an implanted layer of ∼ 60-100 nm in thickness. Under thermal annealing, a periodical structure is formed on the surface of the crystal and in the implanted layer due to self-organization of the magnesium nanoparticles. Upon excitation by argon laser with a wavelength of 488 nm at 5 K, in a LiF crystal, implanted with magnesium ions as well as in heavily γ-irradiated LiF: Mg crystals, luminescence of the color centers at λmax = 640 nm with a zero-phonon line at 601.5 nm is observed. The interaction of magnesium nanoparticles and luminescing color centers in a layer implanted with magnesium ions has been revealed. It is shown that the luminescence intensity of the implanted layer at a wavelength of 640 nm is by more than two thousand times higher than that of a heavily γ-irradiated LiF: Mg crystal. The broadening of the zero-phonon line at 601.5 nm in the spectrum of the implanted layer indicates the interaction of the emitting quantum system with local field of the surface plasmons of magnesium nanoparticles. The focus of this work is to further optimize the processing parameters in a way to result in luminescence great enhancement of color centers by magnesium nanoparticles in LiF.

  19. {sup 6}LiF oleic acid capped nanoparticles entrapment in siloxanes for thermal neutron detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carturan, S., E-mail: sara.carturan@lnl.infn.it; Maggioni, G., E-mail: Gianluigi.maggioni@lnl.infn.it; INFN, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro

    2016-07-07

    The good light output of siloxane based scintillators as displayed under γ-rays and α particles has been exploited here to obtain clear and reliable response toward thermal neutrons. Sensitization towards thermal neutrons has been pursued by adding {sup 6}LiF, in form of nanoparticles. Aiming at the enhancement of compatibility between the inorganic nanoparticles and the low polarity, siloxane based surrounding medium, oleic acid-capped {sup 6}LiF nanoparticles have been synthesized by thermal decomposition of Li trifluoroacetate. Thin pellets siloxane scintillator maintained their optical transmittance up to weight load of 2% of {sup 6}Li. Thin samples with increasing {sup 6}Li concentration andmore » thicker ones with fixed {sup 6}Li amount have been prepared and tested with several sources (α, γ-rays, moderated neutrons). Light output as high as 80% of EJ212 under α irradiation was measured with thin samples, and negligible changes have been observed as a result of {sup 6}LiF addition. In case of thick samples, severe light loss has been observed, as induced by opacity. Nevertheless, thermal neutrons detection has been assessed and the data have been compared with GS20, based on Li glass, taken as a reference material.« less

  20. Long range surface plasmon resonance (LRSPR) based highly sensitive refractive index sensor using Kretschmann prism coupling arrangement

    NASA Astrophysics Data System (ADS)

    Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2016-04-01

    Long range surface plasmon resonance (LRSPR) when exploited for sensing purpose exhibit less losses in comparison to the sensors based on conventional SPR technique leading to the development of highly sensitive refractive index sensor. In order to excite long range surface plasmon (LRSP) mode, a high refractive index prism is used as coupler and a thin metal layer is sandwiched between a dielectric having similar refractive index with that of another semi-infinite dielectric. LRSP mode has been excited in symmetric configuration where metal (Au) layer is sandwiched between the two similar refractive index dielectrics (LiF thin film and a fixed concentration of sugar solution) for realization of a refractive index sensor. When the concentration of sugar solution is slightly increased from 30% to 40%, the LRSPR angle increases from 64.6° to 67.9° and the sensor is found to be highly sensitive with sensitivity of 0.0911 °/(mg/dl).

  1. High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Lei, Ming; Zhou, Yi; Song, Bo; Li, Yongfang

    2015-08-01

    Double cathode buffer layers (CBLs) composed of fullerene derivative functionalized with a crown-ether end group in its side chain (denoted as PCBC) and a LiF layer were introduced between the PCBM acceptor layer and the top cathode in planar p-i-n perovskite solar cells (pero-SCs) based on CH3NH3PbI3-XClX. The devices with the PCBC/LiF double CBLs showed significant improvements in power conversion efficiency (PCE) and long-term stability when compared to the device with LiF single CBL. Through optimizing the spin-coating speed of PCBC, a maximum PCE of 15.53% has been achieved, which is approximately 15% higher than that of the device with single LiF CBL. The remarkable improvement in PCE can be attributed to the formation of a better ohmic contact in the CBL between PCBC and LiF/Al electrode arising from the dipole moment of PCBC, leading to the enhanced fill factor and short-circuit current density (Jsc). Besides the PCE, the long-term stability of the devices with PCBC interlayer is also superior to that of the device with LiF single CBL, which is due to the more effective protection for the perovskite/PCBM interface.

  2. Asay window: A new spall diagnostic

    NASA Astrophysics Data System (ADS)

    McCluskey, Craig W.; Wilke, Mark D.; Anderson, William W.; Byers, Mark E.; Holtkamp, David B.; Rigg, Paulo A.; Furnish, Michael D.; Romero, Vincent T.

    2006-11-01

    By changing from the metallic foil of the Asay foil diagnostic, which can detect ejecta from a shocked surface, to a lithium fluoride (LiF) or polymethyl methacrylate (PMMA) window, it is possible to detect multiple spall layers and interlayer rubble. Past experiments to demonstrate this diagnostic have used high explosives (HEs) to shock metals to produce multiple spall layers. Because the exact characteristics of HE-induced spall layers cannot be predetermined, two issues exist in the quantitative interpretation of the data. First, to what level of fidelity is the Asay window method capable of providing quantitative information about spall layers, possibly separated by rubble, and second, contingent on the first, can an analytic technique be developed to convert the data to a meaningful description of spall from a given experiment? In this article, we address the first issue. A layered projectile fired from a gas gun was used to test the new diagnostic's accuracy and repeatability. We impacted a LiF or PMMA window viewed by a velocity interferometer system for any reflector (VISAR) probe with a projectile consisting of four thin stainless steel disks spaced apart 200μm with either vacuum or polyethylene. The window/surface interface velocity measured with a VISAR probe was compared with calculations. The good agreement observed between the adjusted calculation and the measured data indicates that, in principle and given enough prior information, it is possible to use the Asay window data to model a density distribution from spalled material with simple hydrodynamic models and only simple adjustments to nominal predictions.

  3. Developmental Competence of Buffalo (Bubalus bubalis) Pluripotent Embryonic Stem Cells Over Different Homologous Feeder Layers and the Comparative Evaluation with Various Extracellular Matrices.

    PubMed

    Sharma, Manjinder; Dubey, Pawan K; Kumar, Rajesh; Nath, Amar; Kumar, G Sai; Sharma, G Taru

    2013-05-01

    Use of somatic cells as a feeder layer to maintain the embryonic stem cells (ESCs) in undifferentiated state limits the stem cell research design, since experimental data may result from a combined ESCs and feeder cell response to various stimuli. Therefore, present study was designed to evaluate the developmental competence of the buffalo ESCs over different homogenous feeders and compare with various extracellular matrices using different concentrations of LIF. Inner cell masses (ICMs) of in vitro hatched blastocysts were cultured onto homologous feeders viz. fetal fibroblast, granulosa and oviductal cell feeder layers and synthetic matrices viz. fibronectin, collagen type I and matrigel in culture medium. Developmental efficiency was found higher for ESCs cultured on fetal fibroblast and granulosa layers (83.33%) followed by fibronectin (77.78%) at 30 ng LIF. Oviductal feeder was found to be the least efficient feeder showing only 11.11% undifferentiated primary ESC colonies at 30 ng LIF. However, neither feeder layer nor synthetic matrix could support the development of primary colonies at 10 ng LIF. Expression of SSEA- 4, TRA-1-60 and Oct-4 were found positive in ESC colonies from all the feeders and synthetic matrices with 20 ng and 30 ng LIF. Fetal fibroblast and granulosa cell while, amongst synthetic matrices, fibronectin were found to be equally efficient to support the growth and maintenance of ESCs pluripotency with 30 ng LIF. This well-defined culture conditions may provide an animal model for culturing human embryonic stem cells in the xeno-free or feeder-free conditions for future clinical applications.

  4. Recombinant rabbit leukemia inhibitory factor and rabbit embryonic fibroblasts support the derivation and maintenance of rabbit embryonic stem cells.

    PubMed

    Xue, Fei; Ma, Yinghong; Chen, Y Eugene; Zhang, Jifeng; Lin, Tzu-An; Chen, Chien-Hong; Lin, Wei-Wen; Roach, Marsha; Ju, Jyh-Cherng; Yang, Lan; Du, Fuliang; Xu, Jie

    2012-08-01

    The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs.

  5. High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaodong; Zhou, Yi, E-mail: yizhou@suda.edu.cn, E-mail: songbo@suda.edu.cn, E-mail: liyf@iccas.ac.cn; Song, Bo, E-mail: yizhou@suda.edu.cn, E-mail: songbo@suda.edu.cn, E-mail: liyf@iccas.ac.cn

    2015-08-10

    Double cathode buffer layers (CBLs) composed of fullerene derivative functionalized with a crown-ether end group in its side chain (denoted as PCBC) and a LiF layer were introduced between the PCBM acceptor layer and the top cathode in planar p-i-n perovskite solar cells (pero-SCs) based on CH{sub 3}NH{sub 3}PbI{sub 3−X}Cl{sub X}. The devices with the PCBC/LiF double CBLs showed significant improvements in power conversion efficiency (PCE) and long-term stability when compared to the device with LiF single CBL. Through optimizing the spin-coating speed of PCBC, a maximum PCE of 15.53% has been achieved, which is approximately 15% higher than thatmore » of the device with single LiF CBL. The remarkable improvement in PCE can be attributed to the formation of a better ohmic contact in the CBL between PCBC and LiF/Al electrode arising from the dipole moment of PCBC, leading to the enhanced fill factor and short-circuit current density (J{sub sc}). Besides the PCE, the long-term stability of the devices with PCBC interlayer is also superior to that of the device with LiF single CBL, which is due to the more effective protection for the perovskite/PCBM interface.« less

  6. Thin Layer Sensory Cues Affect Antarctic Krill Swimming Kinematics

    NASA Astrophysics Data System (ADS)

    True, A. C.; Webster, D. R.; Weissburg, M. J.; Yen, J.

    2013-11-01

    A Bickley jet (laminar, planar free jet) is employed in a recirculating flume system to replicate thin shear and phytoplankton layers for krill behavioral assays. Planar laser-induced fluorescence (LIF) and particle image velocimetry (PIV) measurements quantify the spatiotemporal structure of the chemical and free shear layers, respectively, ensuring a close match to in situ hydrodynamic and biochemical conditions. Path kinematics from digitized trajectories of free-swimming Euphausia superba examine the effects of hydrodynamic sensory cues (deformation rate) and bloom level phytoplankton patches (~1000 cells/mL, Tetraselamis spp.) on krill behavior (body orientation, swimming modes and kinematics, path fracticality). Krill morphology is finely tuned for receiving and deciphering both hydrodynamic and chemical information that is vital for basic life processes such as schooling behaviors, predator/prey, and mate interactions. Changes in individual krill behavior in response to ecologically-relevant sensory cues have the potential to produce population-scale phenomena with significant ecological implications. Krill are a vital trophic link between primary producers (phytoplankton) and larger animals (seabirds, whales, fish, penguins, seals) as well as the subjects of a valuable commercial fishery in the Southern Ocean; thus quantifying krill behavioral responses to relevant sensory cues is an important step towards accurately modeling Antarctic ecosystems.

  7. Novel methods of time-resolved fluorescence data analysis for in-vivo tissue characterization: application to atherosclerosis.

    PubMed

    Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Dorafshar, A; Reil, T; Baker, D; Freischlag, J; Marcu, L

    2004-01-01

    This study investigates the ability of new analytical methods of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data to characterize tissue in-vivo, such as the composition of atherosclerotic vulnerable plaques. A total of 73 TR-LIFS measurements were taken in-vivo from the aorta of 8 rabbits, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified as normal aorta, thin or thick lesions, and lesions rich in either collagen or macrophages/foam-cells. Different linear and nonlinear classification algorithms (linear discriminant analysis, stepwise linear discriminant analysis, principal component analysis, and feedforward neural networks) were developed using spectral and TR features (ratios of intensity values and Laguerre expansion coefficients, respectively). Normal intima and thin lesions were discriminated from thick lesions (sensitivity >90%, specificity 100%) using only spectral features. However, both spectral and time-resolved features were necessary to discriminate thick lesions rich in collagen from thick lesions rich in foam cells (sensitivity >85%, specificity >93%), and thin lesions rich in foam cells from normal aorta and thin lesions rich in collagen (sensitivity >85%, specificity >94%). Based on these findings, we believe that TR-LIFS information derived from the Laguerre expansion coefficients can provide a valuable additional dimension for in-vivo tissue characterization.

  8. Detection of high-risk atherosclerotic lesions by time-resolved fluorescence spectroscopy based on the Laguerre deconvolution technique

    NASA Astrophysics Data System (ADS)

    Jo, J. A.; Fang, Q.; Papaioannou, T.; Qiao, J. H.; Fishbein, M. C.; Beseth, B.; Dorafshar, A. H.; Reil, T.; Baker, D.; Freischlag, J.; Marcu, L.

    2006-02-01

    This study introduces new methods of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data analysis for tissue characterization. These analytical methods were applied for the detection of atherosclerotic vulnerable plaques. Upon pulsed nitrogen laser (337 nm, 1 ns) excitation, TR-LIFS measurements were obtained from carotid atherosclerotic plaque specimens (57 endarteroctomy patients) at 492 distinct areas. The emission was both spectrally- (360-600 nm range at 5 nm interval) and temporally- (0.3 ns resolution) resolved using a prototype clinically compatible fiber-optic catheter TR-LIFS apparatus. The TR-LIFS measurements were subsequently analyzed using a standard multiexponential deconvolution and a recently introduced Laguerre deconvolution technique. Based on their histopathology, the lesions were classified as early (thin intima), fibrotic (collagen-rich intima), and high-risk (thin cap over necrotic core and/or inflamed intima). Stepwise linear discriminant analysis (SLDA) was applied for lesion classification. Normalized spectral intensity values and Laguerre expansion coefficients (LEC) at discrete emission wavelengths (390, 450, 500 and 550 nm) were used as features for classification. The Laguerre based SLDA classifier provided discrimination of high-risk lesions with high sensitivity (SE>81%) and specificity (SP>95%). Based on these findings, we believe that TR-LIFS information derived from the Laguerre expansion coefficients can provide a valuable additional dimension for the diagnosis of high-risk vulnerable atherosclerotic plaques.

  9. Growth factor expression pattern of homologous feeder layer for culturing buffalo embryonic stem cell-like cells.

    PubMed

    Sharma, Ruchi; George, Aman; Kamble, Nitin M; Chauhan, Manmohan S; Singla, Suresh; Manik, Radhey S; Palta, Prabhat

    2012-01-01

    The present study examined the expression profile of buffalo fetal fibroblasts (BFF) used as a feeder layer for embryonic stem (ES) cell-like cells. The expression of important growth factors was detected in cells at different passages. Mitomycin-C inactivation increased relative expression levels of ACTIVIN-A, TGF-β1, BMP-4 and GREMLIN but not of fibroblast growth factor-2 (FGF-2). The expression level of ACTIVIN-A, transforming growth factor-β1 (TGF-β1), bone morphogenetic protein-4 (BMP-4) and FGF-2 was similar in buffalo fetal fibroblast (BFF) cultured in stem cell medium (SCM), SCM+1000IU mL(-1) leukemia inhibitory factor (LIF), SCM+5 ngmL(-1) FGF-2 or SCM+LIF+FGF-2 for 24 h whereas GREMLIN expression was higher in FGF-2-supplemented groups. In spent medium, the concentration of ACTIVIN-A was higher in FGF-2-supplemented groups whereas that of TGF-β1 was similar in SCM and LIF+FGF-2, which was higher than when either LIF or FGF-2 was used alone. Following culture of ES cell-like cells on a feeder layer for 24 h, the TGF-β1 concentration was higher with LIF+FGF-2 than with LIF or FGF-2 alone which, in turn, was higher than that in SCM. In the LIF+FGF-2 group, the concentration of TGF-β1 was lower and that of ACTIVIN-A was higher in spent medium at 24 h than at 48 h of culture. These results suggest that BFF produce signalling molecules that may help in self-renewal of buffalo ES cell-like cells.

  10. Recombinant Rabbit Leukemia Inhibitory Factor and Rabbit Embryonic Fibroblasts Support the Derivation and Maintenance of Rabbit Embryonic Stem Cells

    PubMed Central

    Xue, Fei; Ma, Yinghong; Chen, Y. Eugene; Zhang, Jifeng; Lin, Tzu-An; Chen, Chien-Hong; Lin, Wei-Wen; Roach, Marsha; Ju, Jyh-Cherng; Yang, Lan; Du, Fuliang

    2012-01-01

    Abstract The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs. PMID:22775411

  11. Primary and aggregate color centers in proton irradiated LiF crystals and thin films for luminescent solid state detectors

    NASA Astrophysics Data System (ADS)

    Piccinini, M.; Ambrosini, F.; Ampollini, A.; Bonfigli, F.; Libera, S.; Picardi, L.; Ronsivalle, C.; Vincenti, M. A.; Montereali, R. M.

    2015-04-01

    Proton beams of 3 MeV energy, produced by the injector of a linear accelerator for proton therapy, were used to irradiate at room temperature lithium fluoride crystals and polycrystalline thin films grown by thermal evaporation. The irradiation fluence range was 1011-1015 protons/cm2. The proton irradiation induced the stable formation of primary and aggregate color centers. Their formation was investigated by optical absorption and photoluminescence spectroscopy. The F2 and F3+ photoluminescence intensities, carefully measured in LiF crystals and thin films, show linear behaviours up to different maximum values of the irradiation fluence, after which a quenching is observed, depending on the nature of the samples (crystals and films). The Principal Component Analysis, applied to the absorption spectra of colored crystals, allowed to clearly identify the formation of more complex aggregate defects in samples irradiated at highest fluences.

  12. On the short circuit resilience of organic solar cells: prediction and validation.

    PubMed

    Oostra, A Jolt; Smits, Edsger C P; de Leeuw, Dago M; Blom, Paul W M; Michels, Jasper J

    2015-09-07

    The operational characteristics of organic solar cells manufactured with large area processing methods suffers from the occurrence of short-circuits due to defects in the photoactive thin film stack. In this work we study the effect of a shunt resistance on an organic solar cell and demonstrate that device performance is not affected negatively as long as the shunt resistance is higher than approximately 1000 Ohm. By studying charge transport across PSS-lithium fluoride/aluminum (LiF/Al) shunting junctions we show that this prerequisite is already met by applying a sufficiently thick (>1.5 nm) LiF layer. We demonstrate that this remarkable shunt-resilience stems from the formation of a significant charge transport barrier at the PSS-LiF/Al interface. We validate our predictions by fabricating devices with deliberately severed photoactive layers and find an excellent agreement between the calculated and experimental current-voltage characteristics.

  13. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    NASA Astrophysics Data System (ADS)

    Piccinini, M.; Ambrosini, F.; Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Nichelatti, E.; Vincenti, M. A.; Montereali, R. M.

    2015-06-01

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 1011 to 1015 protons/cm2. The visible photoluminescence spectra of radiation-induced F2 and F3+ laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 103 to about 106 Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.

  14. Properties of the dead zone due to the gas cushion effect in PBX 9502

    NASA Astrophysics Data System (ADS)

    Anderson, William

    2017-06-01

    The gas cushion effect is a well-known phenomenon in which gas trapped between an impactor and an explosive precompresses and deadens a layer of the explosive. We have conducted a series of impact experiments, with and without a trapped gas layer, on the plastic bonded explosive PBX 9502 (95% TATB and 5% Kel-F 800). In each experiment, a 100-oriented LiF window was glued, with an intervening Al foil (a reflector for VISAR), to the surface of a thin (2.5-3.3 mm) PBX 9502 sample and the opposite surface impacted by an impactor at a velocity sufficient to produce an overdriven detonation. VISAR was used to observe arrival of the resulting shock wave and reverberations between the LiF window and the impactor. In three experiments, a gap of 25-38 mm, filled with He gas at a pressure of 0.79 bar, existed between the impactor and the sample at the beginning of the experiment. In these three experiments, a low-amplitude wave reflected from the interface between the reacted explosive and the dead zone was observed to precede the reflection from the impactor. We have used the observed wave amplitudes and arrival times to quantify the properties of the dead zone and, by comparison to existing EOS data for reacted and unreacted PBX 9502, estimate the extent of reaction in the dead zone. This work was supported by the US Department of Energy under contract DE-AC52-06NA25396.

  15. Diagnosis of vulnerable atherosclerotic plaques by time-resolved fluorescence spectroscopy and ultrasound imaging.

    PubMed

    Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J; Shung, K K; Sun, L; Marcu, L

    2006-01-01

    In this study, time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonography were applied to detect vulnerable (high-risk) atherosclerotic plaque. A total of 813 TR-LIFS measurements were taken from carotid plaques of 65 patients, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified by histopathology as thin, fibrotic, calcified, low-inflamed, inflamed and necrotic lesions. Spectral and time-resolved parameters (normalized intensity values and Laguerre expansion coefficients) were extracted from the TR-LIFS data. Feature selection for classification was performed by either analysis of variance (ANOVA) or principal component analysis (PCA). A stepwise linear discriminant analysis algorithm was developed for detecting inflamed and necrotic lesion, representing the most vulnerable plaques. These vulnerable plaques were detected with high sensitivity (>80%) and specificity (>90%). Ultrasound (US) imaging was obtained in 4 carotid plaques in addition to TR-LIFS examination. Preliminary results indicate that US provides important structural information of the plaques that could be combined with the compositional information obtained by TR-LIFS, to obtain a more accurate diagnosis of vulnerable atherosclerotic plaque.

  16. Atomic Layer Deposition of Stable LiAlF4 Lithium Ion Conductive Interfacial Layer for Stable Cathode Cycling.

    PubMed

    Xie, Jin; Sendek, Austin D; Cubuk, Ekin D; Zhang, Xiaokun; Lu, Zhiyi; Gong, Yongji; Wu, Tong; Shi, Feifei; Liu, Wei; Reed, Evan J; Cui, Yi

    2017-07-25

    Modern lithium ion batteries are often desired to operate at a wide electrochemical window to maximize energy densities. While pushing the limit of cutoff potentials allows batteries to provide greater energy densities with enhanced specific capacities and higher voltage outputs, it raises key challenges with thermodynamic and kinetic stability in the battery. This is especially true for layered lithium transition-metal oxides, where capacities can improve but stabilities are compromised as wider electrochemical windows are applied. To overcome the above-mentioned challenges, we used atomic layer deposition to develop a LiAlF 4 solid thin film with robust stability and satisfactory ion conductivity, which is superior to commonly used LiF and AlF 3 . With a predicted stable electrochemical window of approximately 2.0 ± 0.9 to 5.7 ± 0.7 V vs Li + /Li for LiAlF 4 , excellent stability was achieved for high Ni content LiNi 0.8 Mn 0.1 Co 0.1 O 2 electrodes with LiAlF 4 interfacial layer at a wide electrochemical window of 2.75-4.50 V vs Li + /Li.

  17. Atomic layer deposition and etching methods for far ultraviolet aluminum mirrors

    NASA Astrophysics Data System (ADS)

    Hennessy, John; Moore, Christopher S.; Balasubramanian, Kunjithapatham; Jewell, April D.; Carter, Christian; France, Kevin; Nikzad, Shouleh

    2017-09-01

    High-performance aluminum mirrors at far ultraviolet wavelengths require transparent dielectric materials as protective coatings to prevent oxidation. Reducing the thickness of this protective layer can result in additional performance gains by minimizing absorption losses, and provides a path toward high Al reflectance in the challenging wavelength range of 90 to 110 nm. We have pursued the development of new atomic layer deposition processes (ALD) for the metal fluoride materials of MgF2, AlF3 and LiF. Using anhydrous hydrogen fluoride as a reactant, these films can be deposited at the low temperatures required for large-area surface-finished optics and polymeric diffraction gratings. We also report on the development and application of an atomic layer etching (ALE) procedure to controllably etch native aluminum oxide. Our ALE process utilizes the same chemistry used in the ALD of AlF3 thin films, allowing for a combination of high-performance evaporated Al layers and ultrathin ALD encapsulation without requiring vacuum transfer. Progress in demonstrating the scalability of this approach, as well as the environmental stability of ALD/ALE Al mirrors are discussed in the context of possible future applications for NASA LUVOIR and HabEx mission concepts.

  18. Determination of the Solid Electrolyte Interphase Structure Grown on a Silicon Electrode Using a Fluoroethylene Carbonate Additive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veith, Gabriel M.; Doucet, Mathieu; Sacci, Robert L.

    2017-07-24

    In this work we explore how an electrolyte additive (fluorinated ethylene carbonate – FEC) mediates the thickness and composition of the solid electrolyte interphase formed over a silicon anode in situ as a function of state-of-charge and cycle. We show the FEC condenses on the surface at open circuit voltage then is reduced to C-O containing polymeric species around 0.9 V (vs. Li/Li +). The resulting film is about 50 Å thick. Upon lithiation the SEI thickens to 70 Å and becomes more organic-like. With delithiation the SEI thins by 13 Å and becomes more inorganic in nature, consistent withmore » the formation of LiF. This thickening/thinning is reversible with cycling and shows the SEI is a dynamic structure. We compare the SEI chemistry and thickness to 280 Å thick SEI layers produced without FEC and provide a mechanism for SEI formation using FEC additives.« less

  19. Interfaces of electrical contacts in organic semiconductor devices

    NASA Astrophysics Data System (ADS)

    Demirkan, Korhan

    Progress in organic semiconductor devices relies on better understanding of interfaces as well as material development. The engineering of interfaces that exhibit low resistance, low operating voltage and long-term stability to minimize device degradation is one of the crucial requirements. Photoelectron spectroscopy is a powerful technique to study the metal-semiconductor interfaces, allowing: (i) elucidation of the energy levels of the semiconductor and the contacts that determine Schottky barrier height, (ii) inspection of electrical interactions (such as charge transfer, dipole formation, formation of induced density of states or formation of polaron/bi-polaron states) that effect the energy level alignment, (iii) determination of interfacial chemistry, and (iv) estimation of interface morphology. In this thesis, we have used photoelectron spectroscopy extensively for detailed analysis of the metal organic semiconductor interfaces. In this study, we demonstrate the use of photoelectron spectroscopy for construction of energy level diagrams and display some results related to chemical tailoring of materials for engineering interfaces with lowered Schottky barriers. Following our work on the energy level alignment of poly(p-phenyene vinylene) based organic semiconductors on various substrates [Au, indium tin oxide, Si (with native oxide) and Al (with native oxide)], we tested controlling the energy level alignment by using polar self assembled molecules (SAMs). Photoelectron spectroscopy showed that, by introducing SAMs on the Au surface, we successfully changed the effective work function of Au surface. We found that in this case, the change in the effective work function of the metal surface was not reflected as a shift in the energy levels of the organic semiconductor, as opposed to the results achieved with different substrate materials. To investigate the chemical interactions at the metal/organic interface, we studied the metallization of poly(2-methoxy-5,2'-ethyl-hexyloxy-phenylene vinylene) (MEH-PPV), polystyrene (PS) and ozone treated polystyrene (PS-O3) surfaces by thermal deposition of aluminum. Photoelectron spectroscopy showed the degree of chemical interaction between Al and each polymer, for MEH-PPV, the chemical interactions were mainly through the C-O present in the side chain of the polymer structure. The chemical interaction of Al with polystyrene was less significant, but it showed a dramatic increase after ozone treatment of the polystyrene surface (due to the formation of exposed oxygen sites). Formation of metal oxide and metal-organic compound is detected during the Al metallization of MEH-PPV and ozone-treated PS surfaces. Our results showed that the condensation of Al on polymer surfaces is highly dependent on surface reactivity. Enormous differences were observed for the condensation coefficient of Al on PS and PS-O3 surfaces. For the inert PS surface, results showed that Al atoms poorly wet the polymer surface and form distributed clusters at the surface. Results on reactive polymer surfaces suggest morphology reminiscent of a Stranski-Krastanov-type growth and high contact area. Many studies have shown that the insertion of a thin interlayer of the oxide or fluoride of alkali or alkaline metals between the low work function electrode and the organic semiconductor layers dramatically lowers the onset voltage and increases the efficiency compared to identical devices without the insulating layer. Various modes have been suggested for the mechanism of device performance enhancement. We have investigated the chemical and electrical interaction of (i) LiF with MEH-PPV, (ii) Al with MEH-PPV in the presence of a thin LiF layer at the interface, and finally (iii) the interaction of Al with LiF. AFM and XPS data showed that LiF forms island on the surface. Our data in agreement with various existing models suggested the (i) alteration in the electronic properties under applied bias, (ii) doping of the organic semiconductor, (iii) formation of metal alloy (Au-Li). In addition to the possible electrical modifications at the interface suggested previously, our data also suggest a change in the film growth on LiF modified surfaces.

  20. Thermoluminescent phosphor

    DOEpatents

    Lasky, Jerome B.; Moran, Paul R.

    1978-01-01

    A thermoluminescent phosphor comprising LiF doped with boron and magnesium is produced by diffusion of boron into a conventional LiF phosphor doped with magnesium. Where the boron dopant is made to penetrate only the outer layer of the phosphor, it can be used to detect shallowly penetrating radiation such as tritium beta rays in the presence of a background of more penetrating radiation.

  1. Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy.

    PubMed

    Marcu, Laura; Jo, Javier A; Fang, Qiyin; Papaioannou, Thanassis; Reil, Todd; Qiao, Jian-Hua; Baker, J Dennis; Freischlag, Julie A; Fishbein, Michael C

    2009-05-01

    Plaque with dense inflammatory cells, including macrophages, thin fibrous cap and superficial necrotic/lipid core is thought to be prone-to-rupture. We report a time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) technique for detection of such markers of plaque vulnerability in human plaques. The autofluorescence of carotid plaques (65 endarterectomy patients) induced by a pulsed laser (337 nm, 0.7 ns) was measured from 831 distinct areas. The emission was resolved spectrally (360-550 nm range) and temporally (0.3 ns resolution) using a prototype fiber-optic TR-LIFS apparatus. Lesions were evaluated microscopically and quantified as to the % of different components (fibrous cap, necrotic core, inflammatory cells, foam cells, mature and degraded collagen, elastic fibers, calcification, and smooth muscle cell of the vessel wall). We determined that the spectral intensities and time-dependent parameters at discrete emission wavelengths (1) allow for discrimination (sensitivity >81%, specificity >94%) of various compositional and pathological features associated with plaque vulnerability including infiltration of macrophages into intima and necrotic/lipid core under a thin fibrous cap, and (2) show a linear correlation with plaque biochemical content: elastin (P<0.008), collagen (P<0.02), inflammatory cells (P<0.003), necrosis (P<0.004). Our results demonstrate the feasibility of TR-LIFS as a method for the identification of markers of plaque vulnerability. Current findings enable future development of TR-LIFS-based clinical devices for rapid investigation of atherosclerotic plaques and detection of those at high-risk.

  2. The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes

    NASA Astrophysics Data System (ADS)

    Bordes, Arnaud; Eom, KwangSup; Fuller, Thomas F.

    2014-07-01

    When fluoroethylene carbonate (FEC) is added to the ethylene carbonate (EC)-diethyl carbonate (DEC) electrolyte, the capacity and cyclability of full-cells employing Si-graphene anode and lithium nickel cobalt aluminum oxide cathode (NCA) cathode are improved due to formation of a thin (30-50 nm) SEI layer with low ionic resistance (∼2 ohm cm2) on the surface of Si-graphene anode. These properties are confirmed with electrochemical impedance spectroscopy and a cross-sectional image analysis using Focused Ion Beam (FIB)-SEM. Approximately 5 wt.% FEC in EC:DEC (1:1 wt.%) shows the highest capacity and most stability. This high capacity and low capacity fade is attributed to a more stable SEI layer containing less CH2OCO2Li, Li2CO3 and LiF compounds, which consume cyclable Li. Additionally, a greater amount of polycarbonate (PC), which is known to form a more robust passivation layer, thus reducing further reduction of electrolyte, is confirmed with X-ray photoelectron spectroscopy (XPS).

  3. Method of preparing a thermoluminescent phosphor

    DOEpatents

    Lasky, Jerome B.; Moran, Paul R.

    1979-01-01

    A thermoluminescent phosphor comprising LiF doped with boron and magnesium is produced by diffusion of boron into a conventional LiF phosphor doped with magnesium. Where the boron dopant is made to penetrate only the outer layer of the phosphor, it can be used to detect shallowly penetrating radiation such as tritium beta ays in the presence of a background of more penetrating radiation.

  4. X-ray surface dose measurements using TLD extrapolation.

    PubMed

    Kron, T; Elliot, A; Wong, T; Showell, G; Clubb, B; Metcalfe, P

    1993-01-01

    Surface dose measurements in therapeutic x-ray beams are of importance in determining the dose to the skin of patients undergoing radiotherapy. Measurements were performed in the 6-MV beam of a medical linear accelerator with LiF thermoluminescence dosimeters (TLD) using a solid water phantom. TLD chips (surface area 3.17 x 3.17 cm2) of three different thicknesses (0.230, 0.099, and 0.038 g/cm2) were used to extrapolate dose readings to an infinitesimally thin layer of LiF. This surface dose was measured for field sizes ranging from 1 x 1 cm2 to 40 x 40 cm2. The surface dose relative to maximum dose was found to be 10.0% for a field size of 5 x 5 cm2, 16.3% for 10 x 10 cm2, and 26.9% for 20 x 20 cm2. Using a 6-mm Perspex block tray in the beam increased the surface dose in these fields to 10.7%, 17.7%, and 34.2% respectively. Due to the small size of the TLD chips, TLD extrapolation is applicable also for intracavity and exit dose determinations. The technique used for in vivo dosimetry could provide clinicians information about the build up of dose up to 1-mm depth in addition to an extrapolated surface dose measurement.

  5. Detection of Rupture-Prone Atherosclerotic Plaques by Time-Resolved Laser Induced Fluorescence Spectroscopy

    PubMed Central

    Marcu, Laura; Jo, Javier A.; Fang, Qiyin; Papaioannou, Thanassis; Reil, Todd; Qiao, Jian-Hua; Baker, J. Dennis; Freischlag, Julie A.; Fishbein, Michael C.

    2009-01-01

    Objective Plaque with dense inflammatory cells, including macrophages, thin fibrous cap and superficial necrotic/lipid core is thought to be prone-to-rupture. We report a time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) technique for detection of such markers of plaque vulnerability in human plaques. Methods The autofluorescence of carotid plaques (65 endarterectomy patients) induced by a pulsed laser (337 nm, 0.7 ns) was measured from 831 distinct areas. The emission was resolved spectrally- (360–550 nm range) and temporally- (0.3 ns resolution) using a prototype fiber-optic TR-LIFS apparatus. Lesions were evaluated microscopically and quantified as to the % of different components (fibrous cap, necrotic core, inflammatory cells, foam cells, mature and degraded collagen, elastic fibers, calcification, and smooth muscle cell of the vessel wall). Results We determined that the spectral intensities and time-dependent parameters at discrete emission wavelengths 1) allow for discrimination (sensitivity >81%, specificity >94%) of various compositional and pathological features associated with plaque vulnerability including infiltration of macrophages into intima and necrotic/lipid core under a thin fibrous cap, and 2) show a linear correlation with plaque biochemical content: elastin (P<0.008), collagen (P<0.02), inflammatory cells (P<0.003), necrosis (P<0.004). Conclusion Our results demonstrate the feasibility of TR-LIFS as a method for the identification of markers of plaque vulnerability. Current findings enable future development of TR-LIFS based clinical devices for rapid investigation of atherosclerotic plaques and detection of those at high-risk. PMID:18926540

  6. Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode

    PubMed Central

    Xie, Jin; Liao, Lei; Gong, Yongji; Li, Yanbin; Shi, Feifei; Pei, Allen; Sun, Jie; Zhang, Rufan; Kong, Biao; Subbaraman, Ram; Christensen, Jake; Cui, Yi

    2017-01-01

    Defects are important features in two-dimensional (2D) materials that have a strong influence on their chemical and physical properties. Through the enhanced chemical reactivity at defect sites (point defects, line defects, etc.), one can selectively functionalize 2D materials via chemical reactions and thereby tune their physical properties. We demonstrate the selective atomic layer deposition of LiF on defect sites of h-BN prepared by chemical vapor deposition. The LiF deposits primarily on the line and point defects of h-BN, thereby creating seams that hold the h-BN crystallites together. The chemically and mechanically stable hybrid LiF/h-BN film successfully suppresses lithium dendrite formation during both the initial electrochemical deposition onto a copper foil and the subsequent cycling. The protected lithium electrodes exhibit good cycling behavior with more than 300 cycles at relatively high coulombic efficiency (>95%) in an additive-free carbonate electrolyte. PMID:29202031

  7. Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jin; Liao, Lei; Gong, Yongji

    Defects are important features in two-dimensional (2D) materials that have a strong influence on their chemical and physical properties. Through the enhanced chemical reactivity at defect sites (point defects, line defects, etc.), one can selectively functionalize 2D materials via chemical reactions and thereby tune their physical properties. We demonstrate the selective atomic layer deposition of LiF on defect sites of h-BN prepared by chemical vapor deposition. The LiF deposits primarily on the line and point defects of h-BN, thereby creating seams that hold the h-BN crystallites together. The chemically and mechanically stable hybrid LiF/h-BN film successfully suppresses lithium dendrite formationmore » during both the initial electrochemical deposition onto a copper foil and the subsequent cycling. In conclusion, the protected lithium electrodes exhibit good cycling behavior with more than 300 cycles at relatively high coulombic efficiency (>95%) in an additive-free carbonate electrolyte.« less

  8. Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode

    DOE PAGES

    Xie, Jin; Liao, Lei; Gong, Yongji; ...

    2017-11-29

    Defects are important features in two-dimensional (2D) materials that have a strong influence on their chemical and physical properties. Through the enhanced chemical reactivity at defect sites (point defects, line defects, etc.), one can selectively functionalize 2D materials via chemical reactions and thereby tune their physical properties. We demonstrate the selective atomic layer deposition of LiF on defect sites of h-BN prepared by chemical vapor deposition. The LiF deposits primarily on the line and point defects of h-BN, thereby creating seams that hold the h-BN crystallites together. The chemically and mechanically stable hybrid LiF/h-BN film successfully suppresses lithium dendrite formationmore » during both the initial electrochemical deposition onto a copper foil and the subsequent cycling. In conclusion, the protected lithium electrodes exhibit good cycling behavior with more than 300 cycles at relatively high coulombic efficiency (>95%) in an additive-free carbonate electrolyte.« less

  9. Effects of interfacial stability between electron transporting layer and cathode on the degradation process of organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chu, Ta-Ya; Lee, Yong-Han; Song, Ok-Keun

    2007-11-01

    The authors have demonstrated that the increase of electron injection barrier height between tris(8-hydroxyquinoline)aluminum (Alq3) and LiF /Al cathode is one of the most critical parameters to determine the reliability of organic light-emitting diode with the typical structure of indium tin oxide/N ,N'-bis(naphthalen-1-yl)-N ,N'-bis(phenyl) benzidine/Alq3/LiF /Al. The electrical properties of several devices (hole only, electron only, and integrated double-layered devices) have been measured in the function of operating time to analyze the bulk and interface property changes. Bulk properties of trap energy and mobility in an organic layer have been estimated by using trap-charge-limited currents and transient electroluminescence measurements.

  10. Alternating Current Driven Organic Light Emitting Diodes Using Lithium Fluoride Insulating Layers

    PubMed Central

    Liu, Shang-Yi; Chang, Jung-Hung; -Wen Wu, I.; Wu, Chih-I

    2014-01-01

    We demonstrate an alternating current (AC)-driven organic light emitting diodes (OLED) with lithium fluoride (LiF) insulating layers fabricated using simple thermal evaporation. Thermal evaporated LiF provides high stability and excellent capacitance for insulating layers in AC devices. The device requires a relatively low turn-on voltage of 7.1 V with maximum luminance of 87 cd/m2 obtained at 10 kHz and 15 Vrms. Ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy are employed simultaneously to examine the electronic band structure of the materials in AC-driven OLED and to elucidate the operating mechanism, optical properties and electrical characteristics. The time-resolved luminance is also used to verify the device performance when driven by AC voltage. PMID:25523436

  11. Detection of altered extracellular matrix in surface layers of unstable carotid plaque: an optical spectroscopy, birefringence and microarray genetic analysis.

    PubMed

    Korol, Renee M; Canham, Peter B; Liu, Li; Viswanathan, Kasinath; Ferguson, Gary G; Hammond, Rob R; Finlay, Helen M; Baker, Henry V; Lopez, Cecilia; Lucas, Alexandra R

    2011-01-01

    Erosion and rupture of surface layers in atherosclerotic plaque can cause heart attack and stroke; however, changes in luminal surface composition are incompletely defined. Laser-induced fluorescence spectroscopy (LIFS), with limited tissue penetration, was used to investigate the surface of unstable carotid plaque and correlated with microscopy, birefringence and gene expression. Arterial matrix collagens I, III and elastin were assessed in unstable plaques (n = 25) and reference left internal mammary arteries (LIMA, n = 10). LIFS in addition to selective histological staining with picrosirius red, Movat pentachrome and immunostaining revealed decreased elastin and increased collagen I and III (P < 0.05) in carotid plaque when compared with LIMA. Within plaque, collagen I was elevated in the internal carotid region versus the common carotid region. Polarized light microscopy detected layers of aligned collagen and associated mechanical rigidity of the fibrous cap. Microarray analysis of three carotid and three LIMA specimens confirmed up-regulation of collagen I, III and IV, lysyl oxidase and MMP-12. In conclusion, LIFS analysis coupled with microscopy revealed marked regional differences in collagen I, III and elastin in surface layers of carotid plaque; indicative of plaque instability. Birefringence measurements demonstrated mechanical rigidity and weakening of the fibrous cap with complementary changes in ECM gene expression. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  12. Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon

    DOE PAGES

    Lin, Dingchang; Liu, Yayuan; Chen, Wei; ...

    2017-05-23

    Research on lithium (Li) metal chemistry has been rapidly gaining momentum nowadays not only because of the appealing high theoretical capacity, but also its indispensable role in the next-generation Li–S and Li–air batteries. However, two root problems of Li metal, namely high reactivity and infinite relative volume change during cycling, bring about numerous other challenges that impede its practical applications. In the past, extensive studies have targeted these two root causes by either improving interfacial stability or constructing a stable host. However, efficient surface passivation on three-dimensional (3D) Li is still absent. Here in this paper, we develop a conformalmore » LiF coating technique on Li surface with commercial Freon R134a as the reagent. In contrast to solid/liquid reagents, gaseous Freon exhibits not only nontoxicity and well-controlled reactivity, but also much better permeability that enables a uniform LiF coating even on 3D Li. By applying a LiF coating onto 3D layered Li-reduced graphene oxide (Li-rGO) electrodes, highly reduced side reactions and enhanced cycling stability without overpotential augment for over 200 cycles were proven in symmetric cells. Furthermore, Li–S cells with LiF protected Li-rGO exhibit significantly improved cyclability and Coulombic efficiency, while excellent rate capability (~800 mAh g -1 at 2 C) can still be retained.« less

  13. Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Dingchang; Liu, Yayuan; Chen, Wei

    Research on lithium (Li) metal chemistry has been rapidly gaining momentum nowadays not only because of the appealing high theoretical capacity, but also its indispensable role in the next-generation Li–S and Li–air batteries. However, two root problems of Li metal, namely high reactivity and infinite relative volume change during cycling, bring about numerous other challenges that impede its practical applications. In the past, extensive studies have targeted these two root causes by either improving interfacial stability or constructing a stable host. However, efficient surface passivation on three-dimensional (3D) Li is still absent. Here in this paper, we develop a conformalmore » LiF coating technique on Li surface with commercial Freon R134a as the reagent. In contrast to solid/liquid reagents, gaseous Freon exhibits not only nontoxicity and well-controlled reactivity, but also much better permeability that enables a uniform LiF coating even on 3D Li. By applying a LiF coating onto 3D layered Li-reduced graphene oxide (Li-rGO) electrodes, highly reduced side reactions and enhanced cycling stability without overpotential augment for over 200 cycles were proven in symmetric cells. Furthermore, Li–S cells with LiF protected Li-rGO exhibit significantly improved cyclability and Coulombic efficiency, while excellent rate capability (~800 mAh g -1 at 2 C) can still be retained.« less

  14. LIF instrument development, in situ measurement at South Pole and one-dimensional air-snowpack modeling of atmospheric nitrous acid (HONO)

    NASA Astrophysics Data System (ADS)

    Liao, Wei

    Atmospheric nitrous acid (HONO) is a significant and sometimes dominant OH source in Polar Regions. In the polar atmosphere, measurements of HONO are an important part of understanding the dynamics of snow-air chemistry and atmospheric photochemistry. The low levels of HONO present in such regions necessitate the development of instrumentation with low detection limits. An improved method of detecting HONO is developed using photo-fragmentation and laser-induced fluorescence. The detection limit of this method is 2-3 pptv for ten-minute integration time with 35% uncertainty. The ANTCI 2003 measurements confirm the high N oxides observed previously in ISCAT 1998 and 2000. The median LIF observed mixing ratio of HONO 10m above the snow was 5.8 pptv (mean value 6.3 pptv) with a maximum of 18.2pptv on Nov 30th, Dec 1st, 3rd, 15th, 17th, 21st, 22nd, 25th, 27th and 28th. The LIF HONO observations are compared to concurrent HONO observations performed by mist chamber/ion chromatography (MC/IC). Both the LIF and MC/IC techniques observed enhanced HONO; however, the MC/IC observations were higher than the LIF observations by a factor of 7.2+/-2.3 in the median. It is suggested that the MC/IC technique might suffer from interference from HNO4. As in ISCAT 2000, the abundance of both HONO measurements exceeds the pure gas phase model predictions, with LIF higher than the pure gas phase model by a factor of 1.92+/-0.67, which implies snow emission of HONO must occur. The LIF measured HONO concentrations are not high enough to significantly influence the NOx budget during ANTCI 2003, but will increase the modeled HOx over-prediction by 28%+/-15% and lead to a dramatic over-prediction of measured OH by 157%+/-35%. Given the short lifetime of HONO, these differences are hard to reconcile with observed low OH levels unless there is a missing HO x sink. It appears, however, that HONO competes with O3 and HCHO as the dominant source of OH at South Pole during ANTCI 2003. Since pure gas phase chemistry cannot account for the measured high concentration of HONO, a 1D air-snowpack model of HONO was developed and constrained by observed chemistry and meteorology data. The 1D model includes pure gas phase chemical mechanisms, molecular diffusion and mechanical dispersion, windpumping in snow, gas phase to quasi-liquid layer phase HONO transfer and quasiliquid layer nitrate photolysis. Photolysis of nitrate is important as a dominant HONO source inside the snowpack, however, the observed HONO emission from the snowpack is triggered mainly by the equilibrium between quasi liquid layer nitrite and firn air HONO deep down in the snow surface (i.e. 30 cm below snow surface). The high concentration HONO in the firn air is subsequently transported above the snowpack by diffusion and windpumping. Given the limited ANTCI 2003 field measurements of pH and nitrite snowpack concentrations, snow emission of HONO is highly likely and will be transported to 10 meters above the snow, where GT LIF measured high HONO concentration. The pH and thickness of the quasi liquid layer along with continuous nitrite measurement are key factors to calibrate and validate the air snowpack model.

  15. Two-photon laser-induced fluorescence of atomic hydrogen in a diamond-depositing dc arcjet.

    PubMed

    Juchmann, Wolfgang; Luque, Jorge; Jeffries, Jay B

    2005-11-01

    Atomic hydrogen in the plume of a dc-arcjet plasma is monitored by use of two-photon excited laser-induced fluorescence (LIF) during the deposition of diamond film. The effluent of a dc-arc discharge in hydrogen and argon forms a luminous plume as it flows through a converging-diverging nozzle into a reactor. When a trace of methane (< 2%) is added to the flow in the diverging part of the nozzle, diamond thin film grows on a water-cooled molybdenum substrate from the reactive mixture. LIF of atomic hydrogen in the arcjet plume is excited to the 3S and 3D levels with two photons near 205 nm, and the subsequent fluorescence is observed at Balmer-alpha near 656 nm. Spatially resolved LIF measurements of atomic hydrogen are made as a function of the ratio of hydrogen to argon feedstock gas, methane addition, and reactor pressure. At lower reactor pressures, time-resolved LIF measurements are used to verify our collisional quenching correction algorithm. The quenching rate coefficients for collisions with the major species in the arcjet (Ar, H, and H2) do not change with gas temperature variations in the plume (T < 2300 K). Corrections of the LIF intensity measurements for the spatial variation of collisional quenching are important to determine relative distributions of the atomic hydrogen concentration. The relative atomic hydrogen concentrations measured here are calibrated with an earlier calorimetric determination of the feedstock hydrogen dissociation to provide quantitative hydrogen-atom concentration distributions.

  16. Standoff detection: classification of biological aerosols using laser induced fluorescence (LIF) technique

    NASA Astrophysics Data System (ADS)

    Hausmann, Anita; Duschek, Frank; Fischbach, Thomas; Pargmann, Carsten; Aleksejev, Valeri; Poryvkina, Larisa; Sobolev, Innokenti; Babichenko, Sergey; Handke, Jürgen

    2014-05-01

    The challenges of detecting hazardous biological materials are manifold: Such material has to be discriminated from other substances in various natural surroundings. The detection sensitivity should be extremely high. As living material may reproduce itself, already one single bacterium may represent a high risk. Of course, identification should be quite fast with a low false alarm rate. Up to now, there is no single technique to solve this problem. Point sensors may collect material and identify it, but the problems of fast identification and especially of appropriate positioning of local collectors are sophisticated. On the other hand, laser based standoff detection may instantaneously provide the information of some accidental spillage of material by detecting the generated thin cloud. LIF technique may classify but hardly identify the substance. A solution can be the use of LIF technique in a first step to collect primary data and - if necessary- followed by utilizing these data for an optimized positioning of point sensors. We perform studies on an open air laser test range at distances between 20 and 135 m applying LIF technique to detect and classify aerosols. In order to employ LIF capability, we use a laser source emitting two wavelengths alternatively, 280 and 355 nm, respectively. Moreover, the time dependence of fluorescence spectra is recorded by a gated intensified CCD camera. Signal processing is performed by dedicated software for spectral pattern recognition. The direct comparison of all results leads to a basic classification of the various compounds.

  17. Application of Localized Surface Plasmons for the Enhancement of Thin-Film Amorphous Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Hungerford, Chanse D.

    Photovoltaics (PV) is a rapidly growing electricity source and new PV technologies are continually being developed. Increasing the efficiency of PV will continue to drive down the costs of solar installations. One area of research that is necessary for increasing PV performance is light management. This is especially true for thin-film devices that are unable to maximize absorption of the solar spectrum in a single pass. Methods for light trapping include texturing, high index nanostructures, nanophotonic structures, and plasmonics. This research focus on the use of plasmonic structures, in this case metallic nanoparticles, to increase the power conversion efficiency of solar cells. Three different designs are investigated. First was an a-Si:H solar cell, approximately 300nm thick, with a rear reflector consisting of metallic nanoparticles and a mirror. This structure is referred to as a plasmonic back reflector. Simulations indicate that a maximum absorption increase of 7.2% in the 500nm to 800nm wavelength range is possible versus a flat reference. Experiments did not show enhancement, likely due to absorption in the transparent conducting oxide and the parasitic absorption in the small metallic nanoparticles. The second design was an a-Si:H solar cell with embedded metal nanoparticles. Experimental devices were successfully fabricated by breaking the i-layer deposition into two steps and introducing colloidal nanoparticles between the two depositions. These devices performed worse than the controls, but the results provide proof that fabrication of such a device is possible and may be improved in the future. Suggestions for improvements are discussed. The final device investigated was an ultra-thin, undoped solar cell. The device used an absorber layer < 100nm thick, with the thinnest device using an i-layer of only approximately 15nm. Loses due to the doped layers in the standard p-i-n structure can be reduced by replacing the doped layers with MoO 3 and LiF. While the efficiency and open circuit voltage of the test devices was lower than the controls, the short circuit current was increased by 27.3%. Incorporation of nanoparticles into the device caused shorting between the layers, resulting in non-functional solar cells. This is likely due to fabrication issues that can be solved and suggestions are discussed.

  18. The role of SOCS3 in modulating leukaemia inhibitory factor signalling during murine placental development

    PubMed Central

    Boyle, Kristy; Robb, Lorraine

    2008-01-01

    Cytokines are an integral part of the adaptive and innate immune responses. The signalling pathways triggered by receptor engagement translate exposure to cytokine into a coordinated biological response. To contain these responses, the initiation, duration and magnitude of the signal is controlled at multiple levels. SOCS (suppressor of cytokine signalling) proteins act in a negative feedback loop to inhibit signal transduction. Mice with a deletion of SOCS3 die at midgestion due to placental insufficiency. SOCS3-null placentae have increased numbers of mature trophoblast giant cells, disruption of the labyrinthine layer and a decrease in the spongiotrophoblast layer. Genetic crosses have revealed that the phenotype is due to dysregulation of signalling downstream of the leukaemia inhibitory factor (LIF) receptor alpha (LIFRα) and that the ligand responsible for this, LIF, is produced by embryonic tissues and acts in a paracrine fashion. These observations highlight the role of LIF as an extrinsic factor regulating trophoblast differentiation in vivo. The creation of mice with conditional deletion of SOCS3 in different tissues has also uncovered critical roles for SOCS3 in the regulation of IL-6, G-CSF and leptin signalling. PMID:17408753

  19. The role of SOCS3 in modulating leukaemia inhibitory factor signalling during murine placental development.

    PubMed

    Boyle, Kristy; Robb, Lorraine

    2008-01-01

    Cytokines are an integral part of the adaptive and innate immune responses. The signalling pathways triggered by receptor engagement translate exposure to cytokine into a coordinated biological response. To contain these responses, the initiation, duration and magnitude of the signal is controlled at multiple levels. Suppressor of cytokine signalling (SOCS) proteins act in a negative feedback loop to inhibit signal transduction. Mice with a deletion of SOCS3 die at midgestion due to placental insufficiency. SOCS3-null placentae have increased numbers of mature trophoblast giant cells, disruption of the labyrinthine layer and a decrease in the spongiotrophoblast layer. Genetic crosses have revealed that the phenotype is due to dysregulation of signalling downstream of the leukaemia inhibitory factor (LIF) receptor alpha (LIFRalpha) and that the ligand responsible for this, LIF, is produced by embryonic tissues and acts in a paracrine fashion. These observations highlight the role of LIF as an extrinsic factor regulating trophoblast differentiation in vivo. The creation of mice with conditional deletion of SOCS3 in different tissues has also uncovered critical roles for SOCS3 in the regulation of IL-6, G-CSF and leptin signalling.

  20. The effects of ultra-thin cerium fluoride film as the anode buffer layer on the electrical characteristics of organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lu, Hsin-Wei; Tsai, Cheng-Che; Hong, Cheng-Shong; Kao, Po-Ching; Juang, Yung-Der; Chu, Sheng-Yuan

    2016-11-01

    In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing a CeF3film as an ultra-thin buffer layer between the indium tin oxide (ITO) electrode and α-naphthylphenylbiphenyldiamine (NPB) hole transport layer, with the structure configuration ITO/CeF3 (0.5, 1, and 1.5 nm)/α-naphthylphenylbiphenyl diamine (NPB) (40 nm)/tris(8-hydroxyquinoline) aluminum (Alq3) (60 nm)/lithium fluoride (LiF) (1 nm)/Al (150 nm). The enhancement mechanism was systematically investigated via several approaches. The X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy results revealed the formation of the UV-ozone treated CeF3 film. The work function increased from 4.8 eV (standard ITO electrode) to 5.22 eV (0.5-nm-thick UV-ozone treated CeF3 film deposited on the ITO electrode). The surface roughness of the UV-ozone treated CeF3 film was smoother than that of the standard ITO electrode. Further, the UV-ozone treated CeF3 film increased both the surface energy and polarity, as determined from contact angle measurements. In addition, admittance spectroscopy measurements showed an increased capacitance and conductance of the OLEDs. Accordingly, the turn-on voltage decreased from 4.2 V to 3.6 V at 1 mA/cm2, the luminance increased from 7588 cd/m2 to 24760 cd/m2, and the current efficiency increased from 3.2 cd/A to 3.8 cd/A when the 0.5-nm-thick UV-ozone treated CeF3 film was inserted into the OLEDs.

  1. Nano-Dots Enhanced White Organic Light-Emitting Diodes

    DTIC Science & Technology

    2006-11-30

    phenolato)-aluminum (BAlq) and a 20 nm electron-transporting layer of tris(8-hydroxyl-quino- line)-aluminum ( Alq3 ) were sequentially deposited at 2...resultant red OLED at emission. The device composes structure of ITO/PEDOT: PSS/CBP: 6 wt% Btp2Ir(acac): x wt% CdSe quantum dots/BAlq/ Alq3 /LiF/ Al...The device composes struc- ture of ITO/PEDOT: PSS/CBP: 6 wt% Ir(ppy)3: x wt% CdSe quantum dots/BAlq/ Alq3 /LiF/ Al. Figure 8 shows the effect of

  2. Spatial Heterogeneities and Onset of Passivation Breakdown at Lithium Anode Interfaces

    DOE PAGES

    Leung, Kevin; Jungjohann, Katherine L.

    2017-09-08

    Effective passivation of lithium metal surfaces, and prevention of battery-shorting lithium dendrite growth, are critical for implementing lithium metal anodes for batteries with increased power densities. Nanoscale surface heterogeneities can be “hot spots” where anode passivation breaks down. Motivated by the observation of lithium dendrites in pores and grain boundaries in all-solid batteries, we examine lithium metal surfaces covered with Li 2O and/or LiF thin films with grain boundaries in them. Electronic structure calculations show that at >0.25 V computed equilibrium overpotential Li 2O grain boundaries with sufficiently large pores can accommodate Li0 atoms which aid e– leakage and passivationmore » breakdown. Strain often accompanies Li insertion; applying an ~1.7% strain already lowers the computed overpotential to 0.1 V. Lithium metal nanostructures as thin as 12 Å are thermodynamically favored inside cracks in Li 2O films, becoming “incipient lithium filaments”. LiF films are more resistant to lithium metal growth. Finally, the models used herein should in turn inform passivating strategies in all-solid-state batteries.« less

  3. Spatial Heterogeneities and Onset of Passivation Breakdown at Lithium Anode Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Kevin; Jungjohann, Katherine L.

    Effective passivation of lithium metal surfaces, and prevention of battery-shorting lithium dendrite growth, are critical for implementing lithium metal anodes for batteries with increased power densities. Nanoscale surface heterogeneities can be “hot spots” where anode passivation breaks down. Motivated by the observation of lithium dendrites in pores and grain boundaries in all-solid batteries, we examine lithium metal surfaces covered with Li 2O and/or LiF thin films with grain boundaries in them. Electronic structure calculations show that at >0.25 V computed equilibrium overpotential Li 2O grain boundaries with sufficiently large pores can accommodate Li0 atoms which aid e– leakage and passivationmore » breakdown. Strain often accompanies Li insertion; applying an ~1.7% strain already lowers the computed overpotential to 0.1 V. Lithium metal nanostructures as thin as 12 Å are thermodynamically favored inside cracks in Li 2O films, becoming “incipient lithium filaments”. LiF films are more resistant to lithium metal growth. Finally, the models used herein should in turn inform passivating strategies in all-solid-state batteries.« less

  4. Measurement of the Neutron Lifetime Using a Proton Trap

    NASA Astrophysics Data System (ADS)

    Dewey, M. S.; Gilliam, D. M.; Nico, J. S.; Wietfeldt, F. E.; Fei, X.; Snow, W. M.; Greene, G. L.; Pauwels, J.; Eykens, R.; Lamberty, A.; van Gestel, J.

    2003-10-01

    We report a new measurement of the neutron decay lifetime by the absolute counting of in-beam neutrons and their decay protons. Protons were confined in a quasi-Penning trap and counted with a silicon detector. The neutron beam fluence was measured by capture in a thin 6LiF foil detector with known absolute efficiency. The combination of these simultaneous measurements gives the neu­tron lifetime: τn=(886.8±1.2[stat]±3.2[syst]) s. The systematic uncertainty is dominated by uncertainties in the mass of the 6LiF deposit and the 6Li(n,t) cross section. This is the most precise measurement of the neutron lifetime to date using an in-beam method.

  5. Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jie; Liao, Lei; Shi, Feifei

    Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the serious environmental corrosion during handling and cycling. Here we developed a surface fluorination process to form a homogeneous and dense LiF coating on reactive anode materials, with in situ generated fluorine gas, by using a fluoropolymer, CYTOP, as the precursor. The process is effectively a “reaction in the beaker”, avoiding direct handling of highly toxic fluorine gas. Formore » lithium metal, this LiF coating serves as a chemically stable and mechanically strong interphase, which minimizes the corrosion reaction with carbonate electrolytes and suppresses dendrite formation, enabling dendrite-free and stable cycling over 300 cycles with current densities up to 5 mA/cm 2. Lithiated silicon can serve as either a pre-lithiation additive for existing lithium-ion batteries or a replacement for lithium metal in Li–O 2 and Li–S batteries. However, lithiated silicon reacts vigorously with the standard slurry solvent N-methyl-2-pyrrolidinone (NMP), indicating it is not compatible with the real battery fabrication process. With the protection of crystalline and dense LiF coating, Li xSi can be processed in anhydrous NMP with a high capacity of 2504 mAh/g. With low solubility of LiF in water, this protection layer also allows Li xSi to be stable in humid air (~40% relative humidity). Furthermore, this facile surface fluorination process brings huge benefit to both the existing lithium-ion batteries and next-generation lithium metal batteries.« less

  6. Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability

    DOE PAGES

    Zhao, Jie; Liao, Lei; Shi, Feifei; ...

    2017-07-26

    Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the serious environmental corrosion during handling and cycling. Here we developed a surface fluorination process to form a homogeneous and dense LiF coating on reactive anode materials, with in situ generated fluorine gas, by using a fluoropolymer, CYTOP, as the precursor. The process is effectively a “reaction in the beaker”, avoiding direct handling of highly toxic fluorine gas. Formore » lithium metal, this LiF coating serves as a chemically stable and mechanically strong interphase, which minimizes the corrosion reaction with carbonate electrolytes and suppresses dendrite formation, enabling dendrite-free and stable cycling over 300 cycles with current densities up to 5 mA/cm 2. Lithiated silicon can serve as either a pre-lithiation additive for existing lithium-ion batteries or a replacement for lithium metal in Li–O 2 and Li–S batteries. However, lithiated silicon reacts vigorously with the standard slurry solvent N-methyl-2-pyrrolidinone (NMP), indicating it is not compatible with the real battery fabrication process. With the protection of crystalline and dense LiF coating, Li xSi can be processed in anhydrous NMP with a high capacity of 2504 mAh/g. With low solubility of LiF in water, this protection layer also allows Li xSi to be stable in humid air (~40% relative humidity). Furthermore, this facile surface fluorination process brings huge benefit to both the existing lithium-ion batteries and next-generation lithium metal batteries.« less

  7. Dynamics of molecular excitons near a semiconductor surface studied by fluorescence quenching of polycrystalline tetracene on silicon

    NASA Astrophysics Data System (ADS)

    Piland, Geoffrey B.; Burdett, Jonathan J.; Hung, Tzu-Yao; Chen, Po-Hsun; Lin, Chi-Feng; Chiu, Tien-Lung; Lee, Jiun-Haw; Bardeen, Christopher J.

    2014-05-01

    Tetracene, a molecule that undergoes singlet fission, is deposited on Si with variable thickness LiF spacer layers. In agreement with earlier work (Hayashi et al., 1983 [10]), the fluorescence intensity of the tetracene greatly increases as the LiF thickness approaches 100 nm. This increase is partly due to a 30% increase in the prompt fluorescence decay time but mostly results from weaker coupling of the luminescence into the Si substrate. A decrease in the prompt fluorescence lifetime is observed as the tetracene thickness is increased on bare Si. We find no evidence for triplet energy transfer to the Si.

  8. Dual-Chamber/Dual-Anode Proportional Counter Incorporating an Intervening Thin-Foil Solid Neutron Converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boatner, Lynn A; Neal, John S; Blackston, Matthew A

    2012-01-01

    A dual-chamber/dual-anode gas proportional counter utilizing thin solid 6LiF or 10B neutron converters coated on a 2-micon-thick Mylar film that is positioned between the two counter chambers and anodes has been designed, fabricated, and tested using a variety of fill gases including naturally abundant helium. In this device, neutron conversion products emitted from both sides of the coated converter foil are detected rather than having half of the products absorbed in the wall of a conventional tube type counter where the solid neutron converter is deposited on the tube wall. Geant4-based radiation transport calculations were used to determine the optimummore » neutron converter coating thickness for both isotopes. Solution methods for applying these optimized-thickness coatings on a Mylar film were developed that were carried out at room temperature without any specialized equipment and that can be adapted to standard coating methods such as silk screen or ink jet printing. The performance characteristics of the dual-chamber/dual-anode neutron detector were determined for both types of isotopically enriched converters. The experimental performance of the 6LiF converter-based detector was described well by modeling results from Geant4. Additional modeling studies of multiple-foil/multiple-chamber/anode configurations addressed the basic issue of the relatively longer absorption range of neutrons versus the shorter range of the conversion products for 6LiF and 10B. Combined with the experimental results, these simulations indicate that a high-performance neutron detector can be realized in a single device through the application of these multiple-foil/solid converter, multiple-chamber detector concepts.« less

  9. Cleaning techniques for intense ion beam sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menge, P.R.; Cuneo, M.E.; Bailey, J.E.

    Generation of high power lithium ion beams on the SABRE (1TW) and PBFA-X (20 TW) accelerators have been limited by the parallel acceleration of contaminant ions. during the beam pulse lithium is replaced by protons and carbon ions. This replacement is accompanied by rapid impedance decay of the diode. The contaminant hydrogen and carbon is believed to originate from impurity molecules on the surface and in the bulk of the lithium ion source and its substrate material. Cleaning techniques designed to remove hydrocarbons from the ion source have been employed with some success in test stand experiments and on SABRE.more » The test stand experiments have shown that a lithium fluoride (LiF) ion source film can accrue dozens of hydrocarbon monolayers on its surface while sitting in vacuum. Application of 13.5 MHz RF discharge cleaning with 90% Ar/10% O{sub 2} can significantly reduce the surface hydrocarbon layers on the LiF film. On SABRE, combinations of RF discharge cleaning, anode heating, layering gold between the source film (LiF) and its substrate, and cryogenic cathode cooling produced an increase by a factor of 1.5--2 in the quantity of high energy lithium in the ion beam. A corresponding decrease in protons and carbon ions was also observed. Cleaning experiments on PBFA-X are underway. New designs of contamination resistant films and Li ion sources are currently being investigated.« less

  10. Design and spectrum calculation of 4H-SiC thermal neutron detectors using FLUKA and TCAD

    NASA Astrophysics Data System (ADS)

    Huang, Haili; Tang, Xiaoyan; Guo, Hui; Zhang, Yimen; Zhang, Yimeng; Zhang, Yuming

    2016-10-01

    SiC is a promising material for neutron detection in a harsh environment due to its wide band gap, high displacement threshold energy and high thermal conductivity. To increase the detection efficiency of SiC, a converter such as 6LiF or 10B is introduced. In this paper, pulse-height spectra of a PIN diode with a 6LiF conversion layer exposed to thermal neutrons (0.026 eV) are calculated using TCAD and Monte Carlo simulations. First, the conversion efficiency of a thermal neutron with respect to the thickness of 6LiF was calculated by using a FLUKA code, and a maximal efficiency of approximately 5% was achieved. Next, the energy distributions of both 3H and α induced by the 6LiF reaction according to different ranges of emission angle are analyzed. Subsequently, transient pulses generated by the bombardment of single 3H or α-particles are calculated. Finally, pulse height spectra are obtained with a detector efficiency of 4.53%. Comparisons of the simulated result with the experimental data are also presented, and the calculated spectrum shows an acceptable similarity to the experimental data. This work would be useful for radiation-sensing applications, especially for SiC detector design.

  11. Experimental analysis of dark frame growth mechanism in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Minagawa, Masahiro; Tanabe, Takuma; Kondo, Eiki; Kamimura, Kenji; Kimura, Munehiro

    2018-02-01

    Organic light-emitting diodes (OLEDs) were fabricated with heterojunction interfaces and layers that were prepared by cold isostatic pressing (CIP), and the growth characteristics of their non-emission areas, or dark frames (D/Fs), were investigated during storage. We fabricated an OLED with an indium-tin-oxide (ITO)/N,N‧-di(1-naphthyl)-N,N‧-diphenyl-(1,1‧-biphenyl)-4,4‧-diamine (α-NPD)/tris(8-hydroxylquinoline)aluminum (Alq3)/LiF/Al structure without CIP treatment (Device I), as well as OLEDs that were pressed after the deposition of α-NPD (Device II), Alq3 (Device III), and LiF/Al (Device IV) layers. Although Devices I, II, and III showed typical D/F growth characteristics, the D/F growth rate in Device IV was markedly mitigated, indicating that the Alq3/LiF/Al interfaces dominated the D/F growth. Moreover, we found that the electron injection characteristic was poorer in the electron-only device stored after the LiF layer deposition than in that stored before the LiF deposition. Therefore, the decreased electron injection due to storage at the interfaces was attributed to the D/F growth.

  12. Feedback mechanism for smart nozzles and nebulizers

    DOEpatents

    Montaser, Akbar [Potomac, MD; Jorabchi, Kaveh [Arlington, VA; Kahen, Kaveh [Kleinburg, CA

    2009-01-27

    Nozzles and nebulizers able to produce aerosol with optimum and reproducible quality based on feedback information obtained using laser imaging techniques. Two laser-based imaging techniques based on particle image velocimetry (PTV) and optical patternation map and contrast size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. Two pulses from thin laser sheet with known time difference illuminate droplets flow field. Charge coupled device (CCL)) captures scattering of laser light from droplets, providing two instantaneous particle images. Pointwise cross-correlation of corresponding images yields two-dimensional velocity map of aerosol velocity field. For droplet size distribution studies, solution is doped with fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. Ratio of LIF/Mie images provides relative droplet size information, then scaled by point calibration method via phase Doppler particle analyzer.

  13. Neutron Spectroscopy Using LiF Thin-Film Detectors

    DTIC Science & Technology

    2013-03-01

    Michael A. Ford, BS Second Lieutenant, USAF Approved: LTC Stephen R. McHale (Chairman) Date John W. McClory, PhD (Member) Date Justin A. Clinton, PhD...Member) Date AFIT-ENP-13-M-10 Abstract A stacked array of segmented micro-structured semiconductor neutron detectors (MSNDs) has been fabricated to...conveniently available from radioisotopes , reactions involving incident protons, deuterons, and so on must rely on artificially accelerated particles [12

  14. Inter-species chimeras of leukaemia inhibitory factor define a major human receptor-binding determinant.

    PubMed Central

    Owczarek, C M; Layton, M J; Metcalf, D; Lock, P; Willson, T A; Gough, N M; Nicola, N A

    1993-01-01

    Human leukaemia inhibitory factor (hLIF) binds to both human and mouse LIF receptors (LIF-R), while mouse LIF (mLIF) binds only to mouse LIF-R. Moreover, hLIF binds with higher affinity to the mLIF-R than does mLIF. In order to define the regions of the hLIF molecule responsible for species-specific interaction with the hLIF-R and for the unusual high-affinity binding to the mLIF-R, a series of 15 mouse/human LIF hybrids has been generated. Perhaps surprisingly, both of these properties mapped to the same region of the hLIF molecule. The predominant contribution was from residues in the loop linking the third and fourth helices, with lesser contributions from residues in the third helix and the loop connecting the second and third helices in the predicted three-dimensional structure. Since all chimeras retained full biological activity and receptor-binding activity on mouse cells, and there was little variation in the specific biological activity of the purified proteins, it can be concluded that the overall secondary and tertiary structures of each chimera were intact. This observation also implied that the primary binding sites on mLIF and hLIF for the mLIF-R were unaltered by inter-species domain swapping. Consequently, the site on the hLIF molecule that confers species-specific binding to the hLIF-R and higher affinity binding to the mLIF-R, must constitute an additional interaction site to that used by both mLIF and hLIF to bind to the mLIF-R. These studies define a maximum of 15 amino acid differences between hLIF and mLIF that are responsible for the different properties of these proteins. Images PMID:8253075

  15. X ray, extreme and far ultraviolet optical thin films for space applications

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.; Kim, Jongmin

    1993-01-01

    Far and extreme ultraviolet optical thin film filters find many uses in space astronomy, space astrophysics, and space aeronomy. Spacebased spectrographs are used for studying emission and absorption features of the earth, planets, sun, stars, and the interstellar medium. Most of these spectrographs use transmission or reflection filters. This requirement has prompted a search for selective filtering coatings with high throughput in the FUV and EUV spectral region. Important progress toward the development of thin film filters with improved efficiency and stability has been made in recent years. The goal for this field is the minimization of absorption to get high throughput and enhancement of wavelength selection. The Optical Aeronomy Laboratory (OAL) at the University of Alabama in Huntsville has recently developed the technology to determine optical constants of bulk and film materials for wavelengths extending from x-rays (0.1 nm) to the FUV (200 nm), and several materials have been identified that were used for designs of various optical devices which previously have been restricted to space application in the visible and near infrared. A new design concept called the Pi-multilayer was introduced and applied to the design of optical coatings for wavelengths extending from x-rays to the FUV. Section 3 of this report explains the Pi-multilayer approach and demonstrates its application for the design and fabrication of the FUV coatings. Two layer Pi-stacks have been utilized for the design of reflection filters in the EUV wavelength range from 70 - 100 nm. In order to eliminate losses due to the low reflection of the imaging optics and increase throughput and out-of-band rejection of the EUV instrumentation we introduced a self-filtering camera concept. In the FUV region, MgF2 and LiF crystals are known to be birefringent. Transmission polarizers and quarterwave retarders made of MgF2 or LiF crystals are commercially available but the performances are poor. New techniques for the design of the EUV and FUV polarizers and quarterwave retarders are described in Section 5. X- and gamma-ray detectors rely on a measurement of the electron which is effected when a ray interacts with matter. The design of an x- and gamma-ray telescope to operate in a particular region of the spectrum is, therefore, largely dictated by the mechanism through which the rays interact. Energy selection and the focusing of the incident high energy rays can be achieved with spectrally selective high reflective multilayers. The design and spectral performance of narrowband reflective x-ray Pi-multilayers are presented in section 6.

  16. Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators

    DOE PAGES

    Slutz, Stephen A.; Stygar, William A.; Gomez, Matthew R.; ...

    2016-02-04

    In this study, the MagLIF (Magnetized Liner Inertial Fusion) concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] has demonstrated fusion–relevant plasma conditions [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z accelerator with a peak drive current of about 18 MA. We present 2D numerical simulations of the scaling of MagLIF on Z as a function of drive current, preheat energy, and applied magnetic field. The results indicate that deuterium-tritium (DT) fusion yields greater than 100 kJ could be possible on Z when all of these parameters are at the optimum values:more » i.e., peak current = 25 MA, deposited preheat energy = 5 kJ, and B z = 30 T. Much higher yields have been predicted [S. A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012)] for MagLIF driven with larger peak currents. Two high performance pulsed-power accelerators (Z300 and Z800) based on linear-transformer-driver technology have been designed [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The Z300 design would provide 48 MA to a MagLIF load, while Z800 would provide 65 MA. Parameterized Thevenin-equivalent circuits were used to drive a series of 1D and 2D numerical MagLIF simulations with currents ranging from what Z can deliver now to what could be achieved by these conceptual future pulsed-power accelerators. 2D simulations of simple MagLIF targets containing just gaseous DT have yields of 18 MJ for Z300 and 440 MJ for Z800. The 2D simulated yield for Z800 is increased to 7 GJ by adding a layer of frozen DT ice to the inside of the liner.« less

  17. Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slutz, Stephen A.; Stygar, William A.; Gomez, Matthew R.

    In this study, the MagLIF (Magnetized Liner Inertial Fusion) concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] has demonstrated fusion–relevant plasma conditions [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z accelerator with a peak drive current of about 18 MA. We present 2D numerical simulations of the scaling of MagLIF on Z as a function of drive current, preheat energy, and applied magnetic field. The results indicate that deuterium-tritium (DT) fusion yields greater than 100 kJ could be possible on Z when all of these parameters are at the optimum values:more » i.e., peak current = 25 MA, deposited preheat energy = 5 kJ, and B z = 30 T. Much higher yields have been predicted [S. A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012)] for MagLIF driven with larger peak currents. Two high performance pulsed-power accelerators (Z300 and Z800) based on linear-transformer-driver technology have been designed [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The Z300 design would provide 48 MA to a MagLIF load, while Z800 would provide 65 MA. Parameterized Thevenin-equivalent circuits were used to drive a series of 1D and 2D numerical MagLIF simulations with currents ranging from what Z can deliver now to what could be achieved by these conceptual future pulsed-power accelerators. 2D simulations of simple MagLIF targets containing just gaseous DT have yields of 18 MJ for Z300 and 440 MJ for Z800. The 2D simulated yield for Z800 is increased to 7 GJ by adding a layer of frozen DT ice to the inside of the liner.« less

  18. Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slutz, S. A.; Stygar, W. A.; Gomez, M. R.

    The MagLIF (Magnetized Liner Inertial Fusion) concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] has demonstrated fusion–relevant plasma conditions [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z accelerator with a peak drive current of about 18 MA. We present 2D numerical simulations of the scaling of MagLIF on Z as a function of drive current, preheat energy, and applied magnetic field. The results indicate that deuterium-tritium (DT) fusion yields greater than 100 kJ could be possible on Z when all of these parameters are at the optimum values: i.e., peak current = 25 MA, deposited preheatmore » energy = 5 kJ, and B{sub z} = 30 T. Much higher yields have been predicted [S. A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012)] for MagLIF driven with larger peak currents. Two high performance pulsed-power accelerators (Z300 and Z800) based on linear-transformer-driver technology have been designed [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The Z300 design would provide 48 MA to a MagLIF load, while Z800 would provide 65 MA. Parameterized Thevenin-equivalent circuits were used to drive a series of 1D and 2D numerical MagLIF simulations with currents ranging from what Z can deliver now to what could be achieved by these conceptual future pulsed-power accelerators. 2D simulations of simple MagLIF targets containing just gaseous DT have yields of 18 MJ for Z300 and 440 MJ for Z800. The 2D simulated yield for Z800 is increased to 7 GJ by adding a layer of frozen DT ice to the inside of the liner.« less

  19. FAST NEUTRON SPECTROMETER USING SPACED SEMICONDUCTORS FOR MEASURING TOTAL ENERGY OF NEUTRONS CAPTURED

    DOEpatents

    Love, T.A.; Murray, R.B.

    1964-04-14

    A fast neutron spectrometer was designed, which utilizes a pair of opposed detectors having a layer of /sup 6/LiF between to produce alpha and T pair for each neutron captured to provide signals, which, when combined, constitute a measure of neutron energy. (AEC)

  20. Hot spot model of MagLIF implosions: Nernst term effect on magnetic flux losses

    NASA Astrophysics Data System (ADS)

    Garcia Rubio, Fernando; Sanz Recio, Javier; Betti, Riccardo

    2016-10-01

    An analytical model of a collisional plasma being compressed by a cylindrical liner is proposed and solved in a magnetized liner inertial fusion-like context. The implosion is assumed to be isobaric, and the magnetic diffusion is confined to a thin layer near the liner. Both unmagnetized and magnetized plasma cases are considered. The model reduces to a system of two partial differential equations for temperature and magnetic field. Special attention is given to the effect of the Nernst term on the evolution of the magnetic field. Scaling laws for temperature, magnetic field, hot spot mass increase and magnetic field losses are obtained. The temperature and magnetic field spatial profiles tend to a self-similar state. It is found that when the Nernst term is taken into account, the magnetic field is advected towards the liner, and the magnetic flux losses are independent of the magnetic Lewis number. Research supported by the Spanish Ministerio de Economía y Competitividad, Project No. ENE2014-54960R. Acknowledgements to the Laboratory of Laser Energetics (Rochester) for its hospitality.

  1. Infrared Emissivity of Tin upon Release of a 25 GPa Shock into a LiF Window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turley, W. D., Holtkamp, D. B., Marshall, B. R., Stevens, G. D., Veeser, L. R.

    We measured the emissivity of a tin sample at its interface with a lithium-fluoride window upon release of a 25 GPa shock wave from the tin into the window. Measurements were made over four wavelength bands between 1.2 and 5.4 μm. Thermal emission backgrounds from the tin, glue, and lithium fluoride were successfully removed from the reflectance signals. Emissivity changes for the sample, which was initially nearly specular, were small except for the longest wavelength band, where uncertainties were high because of poor signal-to-noise ratio at that wavelength. A thin glue layer, which bonds the sample to the window, wasmore » found to heat from reverberations of the shock wave between the tin and the lithium fluoride. At approximately 3.4 μm the thermal emission from the glue was large compared to the tin, allowing a good estimate of the glue temperature from the thermal radiance. The glue appears to remain slightly colder than the tin, thereby minimizing heat conduction into or out of the tin immediately after the shock passage.« less

  2. Selective radiative cooling with MgO and/or LiF layers

    DOEpatents

    Berdahl, Paul H.

    1986-01-01

    A material for a wavelength-selective radiative cooling system, the material comprising an infrared-reflective substrate coated with magnesium oxide and/or lithium fluoride in a polycrystalline form. The material is non-absorptive for short wavelengths, absorptive from 8 to 13 microns, and reflective at longer wavelengths. The infrared-reflective substrate inhibits absorption at wavelengths shorter than 8 microns, and the magnesium oxide and/or lithium fluoride layers reflect radiation at wavelengths longer than 13 microns.

  3. Infrared Chemiluminescence Studies of Ion-Molecule Reactions in a Flowing Afterglow.

    DTIC Science & Technology

    1982-01-01

    reaction rate constants and branching ratios have been addressed in drift tubes and flow drift systems, and the translational energy distribution of atomic...composed of about 40 thin cylindrical sections of flow tube , separated by mylar spacers and connected by precision resistors. In the region of LIF... tube radius (Albritton, 1967). For proper operation of a drift tube , ionic species of only one polarity can be present. Efficient separation of

  4. Atomic Layer Deposition Re Ective Coatings For Future Astronomical Space Telescopes And The Solar Corona Viewed Through The Minxss (Miniature X-Ray Solar Spectrometer) Cubesats

    NASA Astrophysics Data System (ADS)

    Moore, Christopher Samuel

    2017-11-01

    Advances in technology and instrumentation open new windows for observing astrophysical objects. The first half of my dissertation involves the development of atomic layer deposition (ALD) coatings to create high reflectivity UV mirrors for future satellite astronomical telescopes. Aluminum (Al) has intrinsic reflectance greater than 80% from 90 – 2,000 nm, but develops a native aluminum oxide (Al2O3) layer upon exposure to air that readily absorbs light below 250 nm. Thus, Al based UV mirrors must be protected by a transmissive overcoat. Traditionally, metal-fluoride overcoats such as MgF2 and LiF are used to mitigate oxidation but with caveats. We utilize a new metal fluoride (AlF3) to protect Al mirrors deposited by ALD. ALD allows for precise thickness control, conformal and near stoichiometric thin films. We prove that depositing ultra-thin ( 3 nm) ALD ALF3 to protect Al mirrors after removing the native oxide layer via atomic layer etching (ALE) enhances the reflectance near 90 nm from 5% to 30%.X-ray detector technology with high readout rates are necessary for the relatively bright Sun, particularly during large flares. The hot plasma in the solar corona generates X-rays, which yield information on the physical conditions of the plasma. The second half of my dissertation includes detector testing, characterization and solar science with the Miniature X-ray Solar Spectrometer (MinXSS) CubeSats. The MinXSS CubeSats employ Silicon Drift Diode (SDD) detectors called X123, which generate full sun spectrally resolved ( 0.15 FWHM at 5.9 keV) measurements of the sparsely measured, 0.5 – 12 keV range. The absolute radiometric calibration of the MinXSS instrument suite was performed at the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive sources. I used MinXSS along with data from the Geostationary Operational Environmental Satellites (GOES), Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), Hinode X-ray Telescope (XRT), Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) and Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) to study the solar corona. This resulted in new insights on the coronal temperature distribution and elemental abundance variations for quiescence, active regions and during solar flares.

  5. Spatial Studies of Ion Beams in an Expanding Plasma

    NASA Astrophysics Data System (ADS)

    Aguirre, Evan; Good, Timothy; Scime, Earl; Thompson, Derek

    2017-10-01

    We report spatially resolved perpendicular and parallel ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v 8 km/s flowing downstream that is confined to the center of the discharge. The ion beam is confined to within a few centimeters radially and is measurable for tens of centimeters axially before the LIF signal fades, likely a result of metastable quenching of the beam ions. The axial ion beam velocity slows in agreement with collisional processes. The perpendicular IVDFs show an ion population with a radially outward flow that increases with radial location. The DC electric field, electron temperature, and the plasma density in the double layer plume are all consistent with magnetic field aligned structures. The upstream and downstream electric field measurements show clear evidence of an ion hole that maps along the magnetic field at the edge of the plasma. Current theories and simulations of double layers, which are one-dimensional, completely miss these critically important two-dimensional features.

  6. Particle Heating in Space and Laboratory Plasmas

    NASA Astrophysics Data System (ADS)

    Scime, E. E.; Keesee, A. M.; Aquirre, E.; Good, T.

    2017-12-01

    We report spatially resolved perpendicular and parallel ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v ˜ 8 km/s flowing downstream that is confined to the center of the discharge. The ion beam is confined to within a few centimeters radially and is measurable for tens of centimeters axially before the LIF signal fades, likely a result of metastable quenching of the beam ions. The axial ion beam velocity slows in agreement with collisional processes. The perpendicular IVDFs show an ion population with a radially outward flow that increases with radial location. The DC electric field, electron temperature, and the plasma density in the double layer plume are all consistent with magnetic field aligned structures. The upstream and downstream electric field measurements show clear evidence of an ion hole that maps along the magnetic field at the edge of the plasma. Current theories and simulations of double layers, which are one-dimensional, completely miss these critically important two-dimensional features.

  7. System for analysis of explosives

    DOEpatents

    Haas, Jeffrey S [San Ramon, CA

    2010-06-29

    A system for analysis of explosives. Samples are spotted on a thin layer chromatography plate. Multi-component explosives standards are spotted on the thin layer chromatography plate. The thin layer chromatography plate is dipped in a solvent mixture and chromatography is allowed to proceed. The thin layer chromatography plate is dipped in reagent 1. The thin layer chromatography plate is heated. The thin layer chromatography plate is dipped in reagent 2.

  8. Synchrotron radiation-induced contamination on LiF window: Characterization by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yadav, P. K.; Swami, M. K.

    2016-05-01

    Characterization of synchrotron induced contamination on optical elements and their cleaning are serious issues in beam lines. We used Raman spectroscopy for characterization of synchrotron induced contamination layer on LiF window (used in high resolution vacuum ultra violet beam line). Three peaks at 1035 cm-1 (corresponding to C-C sp3 vibrations), 1563 cm-1 and 1375 cm-1 (corresponding to G and D bands of carbon) are observed. By data fitting I(D)/I(G) ratio (0.84) and FWHM(G)=124 cm-1 was obtained. Comparison with available literature indicates that the carbon might be present in the form of rings of hydrogenated amorphous carbon a-C:H (GLHC) with atomic hydrogen concentration about 15% with both sp2 and sp3 hybridization.

  9. Toluene laser-induced fluorescence imaging of compressible flows in an expansion tube

    NASA Astrophysics Data System (ADS)

    Miller, V. A.; Gamba, M.; Mungal, M. G.; Hanson, R. K.; Mohri, K.; Schulz, C.

    2011-11-01

    Laser-induced fluorescence (LIF) imaging using toluene as a tracer molecule has been developed for high-speed, low-to-moderate enthalpy conditions in the Stanford 6-inch Expansion Tube. The approach is demonstrated on three canonical compressible flow configurations: (i) supersonic flow over a 20° wedge, (ii) around a cylinder, and (iii) a supersonic boundary layer. Under constant-pressure conditions, toluene LIF offers unique sensitivity to temperature and can therefore be used as an accurate thermometry diagnostic for supersonic flows; on the other hand, for variable-pressure flow fields (e.g., flow around a blunt body), toluene LIF imaging is demonstrated to be an effective flow visualization tool. The three configurations selected demonstrate the diagnostic in these two capacities. For all configurations considered in the study, toluene (0.6% by volume) is seeded into a nitrogen freestream at a Mach number ~ 2.2, T ~ 500K, and p ~ 1.5 bar. A frequency-quadrupled pulsed Nd:YAG laser is used to excite the tracer, and the resulting fluorescence is captured by an ICCD camera. Synthetic fluorescence signals from CFD solutions of each case have been computed and compare favorably to measured signals. Sponsored by DoE PSAAP at Stanford University.

  10. 21 CFR 862.2270 - Thin-layer chromatography system for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Thin-layer chromatography system for clinical use... Instruments § 862.2270 Thin-layer chromatography system for clinical use. (a) Identification. A thin-layer... a mixture. The mixture of compounds is absorbed onto a stationary phase or thin layer of inert...

  11. Method of transferring a thin crystalline semiconductor layer

    DOEpatents

    Nastasi, Michael A [Sante Fe, NM; Shao, Lin [Los Alamos, NM; Theodore, N David [Mesa, AZ

    2006-12-26

    A method for transferring a thin semiconductor layer from one substrate to another substrate involves depositing a thin epitaxial monocrystalline semiconductor layer on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the thin semiconductor layer is bonded to a second substrate and the thin layer is separated away at the interface, which results in transferring the thin epitaxial semiconductor layer from one substrate to the other substrate.

  12. Triboelectric generator

    DOEpatents

    Wang, Zhong L; Fan, Fengru; Lin, Long; Zhu, Guang; Pan, Caofeng; Zhou, Yusheng

    2015-11-03

    A generator includes a thin first contact charging layer and a thin second contact charging layer. The thin first contact charging layer includes a first material that has a first rating on a triboelectric series. The thin first contact charging layer has a first side with a first conductive electrode applied thereto and an opposite second side. The thin second contact charging layer includes a second material that has a second rating on a triboelectric series that is more negative than the first rating. The thin first contact charging layer has a first side with a first conductive electrode applied thereto and an opposite second side. The thin second contact charging layer is disposed adjacent to the first contact charging layer so that the second side of the second contact charging layer is in contact with the second side of the first contact charging layer.

  13. Specificity of the lipase-specific foldases of gram-negative bacteria and the role of the membrane anchor.

    PubMed

    El Khattabi, M; Ockhuijsen, C; Bitter, W; Jaeger, K E; Tommassen, J

    1999-06-01

    Folding of lipases that are secreted by Pseudomonads and other gram-negative bacteria via the type II secretion pathway is facilitated by dedicated chaperones, called lipase-specific foldases (Lifs). Lifs are membrane-anchored proteins with a large periplasmic domain. The functional interaction between the Lif and its cognate lipase is specific, since the Pseudomonas aeruginosa Lif was found not to substitute for Lifs from Burkholderia glumae or Acinetobacter calcoaceticus. However, the P. aeruginosa Lif was able to activate the lipase from the closely related species P. alcaligenes. Hybrid proteins constructed from parts of the P. aeruginosa and B. glumae Lifs revealed that the C-terminal 138 amino acids of the B. glumae Lif determine the specificity of the interaction with the cognate lipase. Furthermore, the periplasmic domain of the B. glumae Lif was functional when cloned in frame with a cleavable signal sequence, which demonstrates that the membrane anchor is not essential for Lif function in vivo. However, the recombinant Lif was released into the medium, indicating that the function of the membrane anchor is to prevent secretion of the Lif together with the lipase.

  14. Renal synthesis of leukaemia inhibitory factor (LIF), under normal and inflammatory conditions.

    PubMed

    Morel, D S; Taupin, J L; Potier, M; Deminière, C; Potaux, L; Gualde, N; Moreau, J F

    2000-03-01

    Leukaemia inhibitory factor (LIF) is a pleiotropic cytokine that is particularly involved in nephrogenesis and repair of the extracellular matrix. Transgenic mice overexpressing LIF have mesangial proliferative glomerulonephritis. Also, during local inflammatory reactions, such as kidney graft rejection or urinary tract infections, urinary LIF excretion is enhanced. The aim of the study therefore was to study LIF production by normal and inflammatory diseased kidneys (glomerulonephritis or graft rejection), maintained in short cultures. To determine the responsibility of the kidney itself in LIF synthesis, we measured LIF secretion into the culture supernatants of human mesangial or renal tubular epithelial cells. Fragments from diseased kidneys, whether grafts or not, released more LIF than normal human kidney fragments, mesangial or renal tubular epithelial cells. However, LIF production was delayed in renal transplants compared to glomerulonephritic samples taken from untreated patients. In every case, LIF production was enhanced by interleukin 1beta (IL-1beta) and inhibited by IL-4 or dexamethasone, except in two severe rejection episodes. So, LIF appeared to respond to pro- and anti-inflammatory stimuli, in vitro and in vivo. Considering its biological effects, LIF could play a role in inflammatory renal diseases. Copyright 2000 Academic Press.

  15. LIF and emission studies of copper and nitrogen

    NASA Technical Reports Server (NTRS)

    Akundi, Murty A.

    1990-01-01

    A technique is developed to determine the rotational temperature of nitrogen molecular ion, N2(+), from the emission spectra of B-X transition, when P and R branches are not resolved. Its validity is tested on simulated spectra of the 0-1 band of N2(+) produced under low resolution. The method is applied to experimental spectra of N2(+) taken in the shock layer of a blunt body at distances of 1.91, 2.54, and 3.18 cm from the body. The laser induced fluorescence (LIF) spectra of copper atoms is analyzed to obtain the free stream velocities and temperatures. The only broadening mechanism considered is Doppler broadening. The temperatures are obtained by manual curve fitting, and the results are compared with least square fits. The agreement on the average is within 10 percent.

  16. LIF inhibits osteoblast differentiation at least in part by regulation of HAS2 and its product hyaluronan.

    PubMed

    Falconi, Dominic; Aubin, Jane E

    2007-08-01

    LIF arrests osteogenesis in fetal rat calvaria cells in a differentiation stage-specific manner. Differential display identified HAS2 as a LIF-induced gene and its product, HA, modulated osteoblast differentiation similarly to LIF. Our data suggest that LIF arrests osteoblast differentiation by altering HA content of the extracellular matrix. Leukemia inhibitory factor (LIF) elicits both anabolic and catabolic effects on bone. We previously showed in the fetal rat calvaria (RC) cell system that LIF inhibits osteoblast differentiation at the late osteoprogenitor/early osteoblast stage. To uncover potential molecular mediators of this inhibitory activity, we used a positive-negative genome-wide differential display screen to identify LIF-induced changes in the developing osteoblast transcriptome. Although LIF signaling is active throughout the RC cell proliferation-differentiation sequence, only a relatively small number of genes, in several different functional clusters, are modulated by LIF specifically during the LIF-sensitive inhibitory time window. Based on their known and predicted functions, most of the LIF-regulated genes identified are plausible candidates to be involved in the LIF-induced arrest of osteoprogenitor differentiation. To test this hypothesis, we further analyzed the function of one of the genes identified, hyaluronan synthase 2 (HAS2), in the LIF-induced inhibition. Synthesis of hyaluronan (HA), the product of HAS enzymatic activity, was stimulated by LIF and mimicked the HAS2 expression profile, with highest expression in early/proliferative and late/maturing cultures and lowest levels in intermediate/late osteoprogenitor-early osteoblast cultures. Exogenously added high molecular weight HA, the product of HAS2, dose-dependently inhibited osteoblast differentiation, with pulse-treatment effective in the same differentiation stage-specific inhibitory window as seen with LIF. In addition, however, pulse treatment with HA in early cultures slightly increased bone nodule formation. Treatment with hyaluronidase, on the other hand, stimulated bone nodule formation in early cultures but caused a small dose-dependent inhibition of osteoblast differentiation in the LIF- and HA-sensitive late time window. Together the data suggest that osteoblast differentiation is acutely sensitive to HA levels and that LIF inhibits osteoblast development at least in part by stimulating high molecular weight HA synthesis through HAS2.

  17. Absolute efficiency calibration of 6LiF-based solid state thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Finocchiaro, Paolo; Cosentino, Luigi; Lo Meo, Sergio; Nolte, Ralf; Radeck, Desiree

    2018-03-01

    The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of the art of a promising low-cost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. A few configurations were studied with the GEANT4 simulation code, and the intrinsic efficiency of the corresponding detectors was calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured intrinsic detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.

  18. Low stress polysilicon film and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)

    2001-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.

  19. Low stress polysilicon film and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)

    2002-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.

  20. Birth control vaccine targeting leukemia inhibitory factor.

    PubMed

    Lemons, Angela R; Naz, Rajesh K

    2012-02-01

    The population explosion and unintended pregnancies resulting in elective abortions continue to impose major public health issues. This calls for a better method of contraception. Immunocontraception has been proposed as a valuable alternative that can fulfill most, if not all, of the properties of an ideal contraceptive. There are several targets that are being explored for contraceptive vaccine development. Leukemia inhibitory factor (LIF), a member of interleukin-6 family, is required for embryo development and successful blastocyst implantation in several mammalian species. The present study was conducted to examine if LIF can be a target for the development of a birth control vaccine. Three sequences from LIF and two sequences from LIF-receptor (LIF-R) that span the regions involved in ligand-receptor binding were delineated, and peptides were synthesized based upon these sequences. Antibodies raised against these five peptides reduced LIF bioactivity in an in vitro culture assay using BA/F3 mLIF-R-mpg130 cells. Vaccines were prepared by conjugating these peptides to various carrier proteins. Immunization of female mice with these peptide vaccines induced a long-lasting, circulating as well as local antibody response in various parts of the genital tract, and resulted in a significant (P ≤ 0.05) inhibition in fertility in all the three trials; the LIF-R peptide vaccines proved to be a better vaccine target. The data indicate that LIF/LIF-R is an excellent target for the development of a birth control vaccine. This is the first study, to our knowledge, that examined LIF/LIF-R as a target for immunocontraception. The findings of this study can be easily translated to humans since LIF/LIF-R is also important for implantation and pregnancy in women. Copyright © 2011 Wiley Periodicals, Inc.

  1. HIF-2α mediates hypoxia-induced LIF expression in human colorectal cancer cells

    PubMed Central

    Zhao, Yuhan; Zhang, Cen; Wang, Jiabei; Yue, Xuetian; Yang, Qifeng; Hu, Wenwei

    2015-01-01

    Leukemia inhibitory factor (LIF), a multi-functional cytokine, has a complex role in cancer. While LIF induces the differentiation of several myeloid leukemia cells and inhibits their growth, it also promotes tumor progression, metastasis and chemoresistance in many solid tumors. LIF is frequently overexpressed in a variety of human tumors and its overexpression is often associated with poor prognosis of patients. Currently, the mechanism for LIF overexpression in tumor cells is not well-understood. Here, we report that hypoxia, a hallmark of solid tumors, induced LIF mRNA expression in human colorectal cancer cells. Analysis of LIF promoter revealed several hypoxia-responsive elements (HREs) that can specifically interact with and be transactivated by HIF-2α but not HIF-1α. Consistently, ectopic expression of HIF-2α but not HIF-1α transcriptionally induced LIF expression levels in cells. Knockdown of endogenous HIF-2α but not HIF-1α by siRNA largely abolished the induction of LIF by hypoxia in cells. Furthermore, there is a strong association of HIF-2α overexpression with LIF overexpression in human colorectal cancer specimens. In summary, results from this study demonstrate that hypoxia induces LIF expression in human cancer cells mainly through HIF-2α, which could be an important underlying mechanism for LIF overexpression in human cancers. PMID:25726527

  2. Patch testing with thin-layer chromatograms of chamomile tea in patients allergic to sesquiterpene lactones.

    PubMed

    Lundh, Kerstin; Gruvberger, Birgitta; Möller, Halvor; Persson, Lena; Hindsén, Monica; Zimerson, Erik; Svensson, Ake; Bruze, Magnus

    2007-10-01

    Patients with contact allergy to sesquiterpene lactones (SLs) are usually hypersensitive to Asteraceae plant products such as herbal teas. The objective of this study was to show sensitizers in chamomile tea by patch testing with thin-layer chromatograms. Tea made from German chamomile was separated by thin-layer chromatography. Strips of the thin-layer chromatograms were used for patch testing SL-positive patients. 15 (43%) of 35 patients tested positively to 1 or more spots on the thin-layer chromatogram, with many individual reaction patterns. Patch testing with thin-layer chromatograms of German chamomile tea showed the presence of several allergens.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S.; Dhar, A., E-mail: adhar@phy.iitkgp.ernet.in

    Highlights: • Alternative to chemically crosslinking of PMMA to achieve low leakage in provided. • Effect of LiF in reducing gate leakage through the OFET device is studied. • Effect of gate leakage on transistor performance has been investigated. • Low voltage operable and low temperature processed n-channel OFETs were fabricated. - Abstract: We report low temperature processed, low voltage operable n-channel organic field effect transistors (OFETs) using N,N′-Dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C{sub 8}) organic semiconductor and poly(methylmethacrylate) (PMMA)/lithium fluoride (LiF) bilayer gate dielectric. We have studied the role of LiF buffer dielectric in effectively reducing the gate leakage through the device andmore » thus obtaining superior performance in contrast to the single layer PMMA dielectric devices. The bilayer OFET devices had a low threshold voltage (V{sub t}) of the order of 5.3 V. The typical values of saturation electron mobility (μ{sub s}), on/off ratio and inverse sub-threshold slope (S) for the range of devices made were estimated to be 2.8 × 10{sup −3} cm{sup 2}/V s, 385, and 3.8 V/decade respectively. Our work thus provides a potential substitution for much complicated process of chemically crosslinking PMMA to achieve low leakage, high capacitance, and thus low operating voltage OFETs.« less

  4. Laser Induced Fluorescence Studies of Electrostatic Double Layers in an Expanding Helicon Plasma

    NASA Astrophysics Data System (ADS)

    Carr, Jerry, Jr.

    We report the first evidence of a laboratory double layer (DL) collapsing in the presence of an instability studied by Chakraborty Thakur et al. 1 with the use of time resolved laser induced fluorescence (LIF) studies. Higher time resolution studies then provided the first statistically validated proof of the correlation between the ion acoustic instability and a DL. Time-frequency analysis in the form of time resolved cross power spectra and continuous wavelet transforms were used to provide insight into beam formation. The implications of this work is that in the creation of strong DLs in expanding plasmas for plasma propulsion or other applications may be self-limited through instability growth. Over the past decade, experimental and theoretical studies have demonstrated the formation of stable, electrostatic, current-free double layers (CFDLs) in plasmas with a strong density gradient; typically a result of a divergent magnetic field. In this work, we present evidence for the formation of multiple double layers within a single divergent magnetic field structure. Downstream of the divergent magnetic field, multiple accelerated ion populations are observed through laser induced fluorescence measurements of the ion velocity distribution function. The formation of the multiple double layer structure is a strong function of the neutral gas pressure in the experiment. The similarity of the accelerated ion populations observed in these laboratory experiments to ion populations observed in reconnection outflow regions in the magnetosphere and in numerical simulations is also described. If ion energization during magnetic reconnection also results solely from acceleration in electric fields, these observations imply a prediction that the ion heating, i.e., the broadening of ion velocity distribution functions, reported in magnetic reconnection experiments is more accurately described by a superposition of differently accelerated ion populations. Therefore, the ion gheatingh rate during reconnection should scale as the square root of the cube of the charge per unit mass (q3/m)1/2 for ions with varying charge-to-mass ratios. A new RFEA probe was benchmarked on the low pressure CFDL plasmas produced in WVU HELIX-LEIA. This work was the result of collaboration between the University of Tromso (UiT) and WVU. LIF was used to confirm the RFEAs ability to detect a beam when one was present. The RFEA was also able to detect the presence of a beam when LIF techniques were limited by metastable quenching. The probefs limitations in dealing with ion focusing are discussed as well.

  5. Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer

    DOEpatents

    Carlson, David E.

    1980-01-01

    Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.

  6. Depth-resolved photo- and ionoluminescence of LiF and Al2O3

    NASA Astrophysics Data System (ADS)

    Skuratov, V. A.; Kirilkin, N. S.; Kovalev, Yu. S.; Strukova, T. S.; Havanscak, K.

    2012-09-01

    Microluminescence and laser confocal scanning microscopy techniques have been used to study spatial distribution of F-type color centers in LiF and mechanical stress profiles in Al2O3:Cr single crystals irradiated with 1.2 MeV/amu Ar, Kr, Xe and 3 MeV/amu Kr and Bi ions. It was found that F2 and F3+-center profiles at low ion fluences correlate with ionizing energy loss profiles. With increasing ion fluence, after ion track halo overlapping, the luminescence yield is defined by radiation defects formed in elastic collisions in the end-of-range area. Stress profiles and stress tensor components in ruby crystals across swift heavy ion irradiated layers have been deduced from depth-resolved photo-stimulated spectra using piezospectroscopic effect. Experimental data show that that stresses are compressive in basal plane and tensile in perpendicular direction in all samples irradiated with high energy ions.

  7. Effects of cathode thickness and thermal treatment on the design of balanced blue light-emitting polymer device

    NASA Astrophysics Data System (ADS)

    Chin, Byung Doo; Duan, Lian; Kim, Moo-Hyun; Lee, Seong Taek; Chung, Ho Kyoon

    2004-11-01

    The interface between layered conjugated polymer and electrode is a most important factor to improve the performance and lifetime of polymeric light-emitting devices (PLEDs). In this work, a blue PLED with improved stability was achieved by the combination of optimized cathode structure as well as thermal treatment of light-emitting polymer (LEP). Experimental evidence of the initial luminance "settling in" stage was found to be dependent upon the cathode structure, while the long-term slope of luminance as a function of elapsed time is governed by the annealing conditions. Our study revealed the importance of extrinsic design of device for the improvement of PLED stability. Experimental data shows that a blue PLED annealed at 170°C and 6nm LiF at LiF /Ca/Al cathode retained the best lifetime, which can be explained by the improved polymer-metal interface and LEP's charge mobility.

  8. Effects of channel thickness on oxide thin film transistor with double-stacked channel layer

    NASA Astrophysics Data System (ADS)

    Lee, Kimoon; Kim, Yong-Hoon; Yoon, Sung-Min; Kim, Jiwan; Oh, Min Suk

    2017-11-01

    To improve the field effect mobility and control the threshold voltage ( V th ) of oxide thin film transistors (TFTs), we fabricated the oxide TFTs with double-stacked channel layers which consist of thick Zn-Sn-O (ZTO) and very thin In-Zn-O (IZO) layers. We investigated the effects of the thickness of thin conductive layer and the conductivity of thick layer on oxide TFTs with doublestacked channel layer. When we changed the thickness of thin conductive IZO channel layer, the resistivity values were changed. This resistivity of thin channel layer affected on the saturation field effect mobility and the off current of TFTs. In case of the thick ZTO channel layer which was deposited by sputtering in Ar: O2 = 10: 1, the device showed better performances than that which was deposited in Ar: O2 = 1: 1. Our TFTs showed high mobility ( μ FE ) of 40.7 cm2/Vs and V th of 4.3 V. We assumed that high mobility and the controlled V th were caused by thin conductive IZO layer and thick stable ZTO layer. Therefore, this double-stacked channel structure can be very promising way to improve the electrical characteristics of various oxide thin film transistors.

  9. Pulsed Laser Gate Experiment for Magnetized Liner Inertial Fusion (MagLIF)

    NASA Astrophysics Data System (ADS)

    Miller, S. M.; Slutz, S. A.; Gomez, M. R.; Klein, S. R.; Campbell, P. C.; Woolstrum, J. M.; Yager-Elorriaga, D. A.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.; McBride, R. D.

    2017-10-01

    Fuel preheating in full scale magnetized liner inertial fusion (MagLIF) currently has low efficiency. This loss is thought to occur from laser-plasma interactions (LPI) at the laser entrance window (LEW). The gaseous fuel is held in a pressurized vessel by the thin mylar LEW that must be removed right before heating. To ensure more laser energy heats the fuel, the LEW could be weakened at an early time. One proposed solution is to use the current from a small pulse generator to break the LEW allowing it to open outward from the fuel. With the LEW removed away from the laser path, LPI losses would be reduced. Wire attached to a 13 kV mini-pulser will be used to remove the LEW from the laser path. We will report on LEW fabrication and the current state of the laser gate project. This research was funded in part by the University of Michigan, a Faculty Development Grant from the NRC, and Sandia National Laboratories under DOE-NNSA contract DE-NA0003525.

  10. Diagnosing the Stagnation Conditions of MagLIF Implosions Using Co and Kr dopants

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Hansen, S. B.; Harvey-Thompson, A. J.; Weis, M. R.; Hahn, K. D.; Gomez, M. R.; Knapp, P. F.; Slutz, S. A.; Geissel, M.; Ampleford, D. J.; Jennings, C. A.; Peterson, K.; Rochau, G. A.; Doron, R.; Stambulchik, E.; Nedostup, O.; Maron, Y.; Golovkin, I.

    2017-10-01

    Recent experiments on the Z-machine tested several new diagnostic techniques for investigating the stagnation conditions and the origins of the mix present in a Magnetized Liner Inertial Fusion (MagLIF) target. For the first time we have collected K-shell spectra from a low-concentration, Kr dopant placed in the gaseous D2 fuel. In addition, thin Co coatings were strategically applied to three different internal surfaces of the target in order to assess which surfaces actively contribute to the contamination of the fuel. Both imaging spectroscopy and narrow-band crystal imaging were used to identify the location of He-like Co ions. The Te and ne of the Co is inferred by fitting the He-alpha lines and the near-by Li-like satellites. The experimental measurements and the challenges associated with the analysis will be discussed. Sandia Natl Lab is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE NNSA under contract DE-NA-0003525.

  11. Depositing bulk or micro-scale electrodes

    DOEpatents

    Shah, Kedar G.; Pannu, Satinderpall S.; Tolosa, Vanessa; Tooker, Angela C.; Sheth, Heeral J.; Felix, Sarah H.; Delima, Terri L.

    2016-11-01

    Thicker electrodes are provided on microelectronic device using thermo-compression bonding. A thin-film electrical conducting layer forms electrical conduits and bulk depositing provides an electrode layer on the thin-film electrical conducting layer. An insulating polymer layer encapsulates the electrically thin-film electrical conducting layer and the electrode layer. Some of the insulating layer is removed to expose the electrode layer.

  12. Laser-Induced Fluorescence Measurements and Modeling of Nitric Oxide in Counterflow Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ravikrishna, Rayavarapu V.

    2000-01-01

    The feasibility of making quantitative nonintrusive NO concentration ([NO]) measurements in nonpremixed flames has been assessed by obtaining laser-induced fluorescence (LIF) measurements of [NO] in counterflow diffusion flames at atmospheric and higher pressures. Comparisons at atmospheric pressure between laser-saturated fluorescence (LSF) and linear LIF measurements in four diluted ethane-air counterflow diffusion flames with strain rates from 5 to 48/s yielded excellent agreement from fuel-lean to moderately fuel-rich conditions, thus indicating the utility of a model-based quenching correction technique, which was then extended to higher pressures. Quantitative LIF measurements of [NO] in three diluted methane-air counterflow diffusion flames with strain rates from 5 to 35/s were compared with OPPDIF model predictions using the GRI (version 2.11) chemical kinetic mechanism. The comparisons revealed that the GRI mechanism underpredicts prompt-NO by 30-50% at atmospheric pressure. Based on these measurements, a modified reaction rate coefficient for the prompt-NO initiation reaction was proposed which causes the predictions to match experimental data. Temperature measurements using thin filament pyrometry (TFP) in conjunction with a new calibration method utilizing a near-adiabatic H2-air Hencken burner gave very good comparisons with model predictions in these counterflow diffusion flames. Quantitative LIF measurements of [NO] were also obtained in four methane-air counterflow partially-premixed flames with fuel-side equivalence ratios (phi(sub B)) of 1.45, 1.6, 1.8 and 2.0. The measurements were in excellent agreement with model predictions when accounting for radiative heat loss. Spatial separation between regions dominated by the prompt and thermal NO mechanisms was observed in the phi(sub B) = 1.45 flame. The modified rate coefficient proposed earlier for the prompt-NO initiation reaction improved agreement between code predictions and measurements in the region where prompt-NO dominates. Finally, LIF measurements of NO were obtained in counterflow diffusion flames at 2 to 5 atm. Comparisons between [NO] measurements and predictions show that the GRI mechanism underpredicts prompt-NO by a factor of two to three at all pressures. In general, the results indicate a need for refinement of the CH chemistry, especially the pressure-dependent CH formation and destruction reactions.

  13. Method for bonding thin film thermocouples to ceramics

    DOEpatents

    Kreider, Kenneth G.

    1993-01-01

    A method is provided for adhering a thin film metal thermocouple to a ceramic substrate used in an environment up to 700 degrees Centigrade, such as at a cylinder of an internal combustion engine. The method includes the steps of: depositing a thin layer of a reactive metal on a clean ceramic substrate; and depositing thin layers of platinum and a platinum-10% rhodium alloy forming the respective legs of the thermocouple on the reactive metal layer. The reactive metal layer serves as a bond coat between the thin noble metal thermocouple layers and the ceramic substrate. The thin layers of noble metal are in the range of 1-4 micrometers thick. Preferably, the ceramic substrate is selected from the group consisting of alumina and partially stabilized zirconia. Preferably, the thin layer of reactive metal is in the range of 0.015-0.030 micrometers (15-30 nanometers) thick. The preferred reactive metal is chromium. Other reactive metals may be titanium or zirconium. The thin layer of reactive metal may be deposited by sputtering in ultra high purity argon in a vacuum of approximately 2 milliTorr (0.3 Pascals).

  14. Multi-layer assemblies with predetermined stress profile and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor); Phillips, Stephen M. (Inventor)

    2003-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin films may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films. Multi-layer assemblies exhibiting selectively determinable overall bending moments are also disclosed. Selective production of overall bending moments in microstructures enables manufacture of such structures with a wide array of geometrical configurations.

  15. Thin thermoluminescent dosimeter and method of making same

    DOEpatents

    Simons, Gale G.; DeBey, Timothy M.

    1987-01-01

    An improved thermoluminescent ionizing radiation dosimeter of solid, extremely thin construction for more accurate low energy beta dosimetry is provided, along with a method of fabricating the dosimeter. In preferred forms, the dosimeter is a composite including a backing support (which may be tissue equivalent) and a self-sustaining body of solid thermoluminescent material such as LiF having a thickness of less than about 0.25 millimeters and a volume of at least about 0.0125 mm.sup.3. In preferred fabrication procedures, an initially thick (e.g., 0.89 millimeters) TLD body is wet sanded using 600 grit or less sandpaper to a thickness of less than about 0.25 millimeters, followed by adhesively attaching the sanded body to an appropriate backing. The sanding procedure permits routine production of extremely thin (about 0.05 millimeters) TLD bodies, and moreover serves to significantly reduce non-radiation-induced thermoluminescence. The composite dosimeters are rugged in use and can be subjected to annealing temperatures for increased accuracy.

  16. Optical Properties of Hybrid Inorganic/Organic Thin Film Encapsulation Layers for Flexible Top-Emission Organic Light-Emitting Diodes.

    PubMed

    An, Jae Seok; Jang, Ha Jun; Park, Cheol Young; Youn, Hongseok; Lee, Jong Ho; Heo, Gi-Seok; Choi, Bum Ho; Lee, Choong Hun

    2015-10-01

    Inorganic/organic hybrid thin film encapsulation layers consist of a thin Al2O3 layer together with polymer material. We have investigated optical properties of thin film encapsulation layers for top-emission flexible organic light-emitting diodes. The transmittance of hybrid thin film encapsulation layers and the electroluminescent spectrum of organic light-emitting diodes that were passivated by hybrid organic/inorganic thin film encapsulation layers were also examined as a function of the thickness of inorganic Al203 and monomer layers. The number of interference peaks, their intensity, and their positions in the visible range can be controlled by varying the thickness of inorganic Al2O3 layer. On the other hand, changing the thickness of monomer layer had a negligible effect on the optical properties. We also verified that there is a trade-off between transparency in the visible range and the permeation of water vapor in hybrid thin film encapsulation layers. As the number of dyads decreased, optical transparency improved while the water vapor permeation barrier was degraded. Our study suggests that, in top-emission organic light-emitting diodes, the thickness of each thin film encapsulation layer, in particular that of the inorganic layer, and the number of dyads should be controlled for highly efficient top-emission flexible organic light-emitting diodes.

  17. Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Abraham, D. P.; Furczon, M. M.; Kang, S.-H.; Dees, D. W.; Jansen, A. N.

    Hybrid-electric vehicles require lithium-battery electrolytes that form stable, low impedance passivation layers to protect the electrodes, while allowing rapid lithium-ion transport under high current charge/discharge pulses. In this article, we describe data acquired on cells containing LiNi 0.8Co 0.15Al 0.05O 2-based positive electrodes, graphite-based negative electrodes, and electrolytes with lithium hexafluorophosphate (LiPF 6), lithium tetrafluoroborate (LiBF 4), lithium bis(oxalato)borate (LiBOB) and lithium difluoro(oxalato) borate (LiF 2OB) salts. The impedance data were collected in cells containing a Li-Sn reference electrode to determine effect of electrolyte composition and testing temperature on individual electrode impedance. The full cell impedance data showed the following trend: LiBOB > LiBF 4 > LiF 2OB > LiPF 6. The negative electrode impedance showed a trend similar to that of the full cell; this electrode was the main contributor to impedance in the LiBOB and LiBF 4 cells. The positive electrode impedance values for the LiBF 4, LiF 2OB, and LiPF 6 cells were comparable; the values were somewhat higher for the LiBOB cell. Cycling and impedance data were also obtained for cells containing additions of LiBF 4, LiBOB, LiF 2OB, and vinylene carbonate (VC) to the EC:EMC (3:7 by wt.) + 1.2 M LiPF 6 electrolyte. Our data indicate that the composition and morphology of the graphite SEI formed during the first lithiation cycle is an important determinant of the negative electrode impedance, and hence full cell impedance.

  18. Composite polymeric film and method for its use in installing a very-thin polymeric film in a device

    DOEpatents

    Duchane, D.V.; Barthell, B.L.

    1982-04-26

    A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  19. Composite polymeric film and method for its use in installing a very thin polymeric film in a device

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1984-01-01

    A composite polymeric film and a method for its use in forming and installing a very thin (<10 .mu.m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectively dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to be successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  20. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    DOEpatents

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  1. Fabrication of low-temperature solid oxide fuel cells with a nanothin protective layer by atomic layer deposition

    PubMed Central

    2013-01-01

    Anode aluminum oxide-supported thin-film fuel cells having a sub-500-nm-thick bilayered electrolyte comprising a gadolinium-doped ceria (GDC) layer and an yttria-stabilized zirconia (YSZ) layer were fabricated and electrochemically characterized in order to investigate the effect of the YSZ protective layer. The highly dense and thin YSZ layer acted as a blockage against electron and oxygen permeation between the anode and GDC electrolyte. Dense GDC and YSZ thin films were fabricated using radio frequency sputtering and atomic layer deposition techniques, respectively. The resulting bilayered thin-film fuel cell generated a significantly higher open circuit voltage of approximately 1.07 V compared with a thin-film fuel cell with a single-layered GDC electrolyte (approximately 0.3 V). PMID:23342963

  2. Thin film electronic devices with conductive and transparent gas and moisture permeation barriers

    DOEpatents

    Simpson, Lin Jay

    2015-07-28

    Thin film electronic devices (or stacks integrated with a substrate) that include a permeation barrier formed of a thin layer of metal that provides a light transmitting and electrically conductive layer, wherein the electrical conductive layer is formed on a surface of the substrate or device layer such as a transparent conducting material layer with pin holes or defects caused by manufacturing and the thin layer of metal is deposited on the conductive layer and formed from a self-healing metal that forms self-terminating oxides. A permeation plug or block is formed in or adjacent to the thin film of metal at or proximate to the pin holes to block further permeation of contaminants through the pin holes.

  3. Large area polysilicon films with predetermined stress characteristics and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor); Phillips, Stephen M. (Inventor)

    2002-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin films may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films. Multi-layer assemblies exhibiting selectively determinable overall bending moments are also disclosed. Selective production of overall bending moments in microstructures enables manufacture of such structures with a wide array of geometrical configurations.

  4. Leukemia inhibitory factor promotes human first trimester extravillous trophoblast adhesion to extracellular matrix and secretion of tissue inhibitor of metalloproteinases-1 and -2

    PubMed Central

    Tapia, Alejandro; Salamonsen, Lois A.; Manuelpillai, Ursula; Dimitriadis, Evdokia

    2008-01-01

    BACKGROUND Leukemia inhibitory factor (LIF) is a pleiotropic cytokine that is essential for blastocyst implantation in mice. It has been suggested that LIF may play a role in human first trimester extravillous trophoblast (EVT) invasion. The aim of the present study was to establish whether LIF induces changes in EVT function related to invasiveness. METHODS Primary first trimester human EVT cell cultures were treated with/without LIF and the effects on cell adhesion to fibronectin (FN), vitronectin (VN) and laminin (LN) were assessed. Transcript levels of integrin subunits that mediate cell adhesion to these extracellular matrix (ECM) elements were determined by real-time RT–PCR. Matrix metalloproteinase (MMP)2 and MMP9 secretion was assessed by gelatine zymography and tissue inhibitors matrix metalloproteinase (TIMP) -1 and TIMP-2 secretion by enzyme-linked immunosorbent assay. RESULTS EVT cells showed increased adhesion to FN, VN and LN ECM elements in response to LIF (20, 20 and 29%, respectively, P < 0.05 FN and VN compared to control; and P < 0.001 LN compared to control). Integrin β4 mRNA levels decreased by 50% following LIF treatment (P < 0.001 versus control). MMP2 and MMP9 secretion was not affected by LIF but LIF did increase secretion of TIMP-1 and -2 (P < 0.001 versus control). LIF stimulated the phosphorylation of signal transducer and activator of transcription (STAT) 3 protein while it did not affect STAT3 protein abundance. The addition of a LIF inhibitor attenuated the LIF-induced STAT3 phosphorylation in EVT. CONCLUSION The results suggest that LIF can regulate EVT invasion, suggesting an important role in early placental development. PMID:18492704

  5. Comparison Between Navier-Stokes and Thin-Layer Computations for Separated Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Degani, David; Steger, Joseph L.

    1983-01-01

    In the numerical simulation of high Reynolds-number flow, one can frequently supply only enough grid points to resolve the viscous terms in a thin layer. As a consequence, a body-or stream-aligned coordinate system is frequently used and viscous terms in this direction are discarded. It is argued that these terms cannot be resolved and computational efficiency is gained by their neglect. Dropping the streamwise viscous terms in this manner has been termed the thin-layer approximation. The thin-layer concept is an old one, and similar viscous terms are dropped, for example, in parabolized Navier-Stokes schemes. However, such schemes also make additional assumptions so that the equations can be marched in space, and such a restriction is not usually imposed on a thin-layer model. The thin-layer approximation can be justified in much the same way as the boundary-layer approximation; it requires, therefore, a body-or stream-aligned coordinate and a high Reynolds number. Unlike the boundary-layer approximation, the same equations are used throughout, so there is no matching problem. Furthermore, the normal momentum equation is not simplified and the convection terms are not one-sided differenced for marching. Consequently, the thin-layer equations are numerically well behaved at separation and require no special treatment there. Nevertheless, the thin-layer approximation receives criticism. It has been suggested that the approximation is invalid at separation and, more recently, that it is inadequate for unsteady transonic flow. Although previous comparisons between the thin-layer and Navier-Stokes equations have been made, these comparisons have not been adequately documented.

  6. Interaction of turbulent premixed flames with combustion products: Role of stoichiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coriton, Bruno Rene Leon; Frank, Jonathan H.; Gomez, Alessandro

    Stabilization methods of turbulent flames often involve mixing of reactants with hot products of combustion. The stabilizing effect of combustion product enthalpy has been long recognized, but the role played by the chemical composition of the product gases is typically overlooked. We employ a counterflow system to pinpoint the effects of the combustion product stoichiometry on the structure of turbulent premixed flames under conditions of both stable burning and local extinction. To that end, a turbulent jet of lean-to-rich, CH 4/O 2/N 2-premixed reactants at a turbulent Reynolds number of 1050 was opposed to a stream of hot products ofmore » combustion that were generated in a preburner. While the combustion product stream temperature was kept constant, its stoichiometry was varied independently from that of the reactant stream, leading to reactant-to-product stratification of relevance to practical combustion systems. The detailed structure of the turbulent flame front was analyzed in two series of experiments using laser-induced fluorescence (LIF): joint CH 2O LIF and OH LIF measurements and joint CO LIF and OH LIF measurements. Results revealed that a decrease in local CH 2O+OH and CO+OH reaction rates coincide with the depletion of OH radicals in the vicinity of the combustion product stream. These critical combustion reaction rates were more readily quenched in the presence of products of combustion from a stoichiometric flame, whereas they were favored by lean combustion products. As a result, stoichiometric combustion products contributed to a greater occurrence of local extinction. Furthermore, they limited the capacity of premixed reactants to ignite and of the turbulent premixed flames to stabilize. In contrast, lean and rich combustion products facilitated flame ignition and stability and reduced the rate of local extinction. The influence of the combustion product stream on the turbulent flame front was limited to a zone of approximately two millimeters from the gas mixing layer interface (GMLI) of the product stream. As a result, flame fronts that were separated from the GMLI by larger distances were unaffected by the product stream stoichiometry.« less

  7. Interaction of turbulent premixed flames with combustion products: Role of stoichiometry

    DOE PAGES

    Coriton, Bruno Rene Leon; Frank, Jonathan H.; Gomez, Alessandro

    2016-05-30

    Stabilization methods of turbulent flames often involve mixing of reactants with hot products of combustion. The stabilizing effect of combustion product enthalpy has been long recognized, but the role played by the chemical composition of the product gases is typically overlooked. We employ a counterflow system to pinpoint the effects of the combustion product stoichiometry on the structure of turbulent premixed flames under conditions of both stable burning and local extinction. To that end, a turbulent jet of lean-to-rich, CH 4/O 2/N 2-premixed reactants at a turbulent Reynolds number of 1050 was opposed to a stream of hot products ofmore » combustion that were generated in a preburner. While the combustion product stream temperature was kept constant, its stoichiometry was varied independently from that of the reactant stream, leading to reactant-to-product stratification of relevance to practical combustion systems. The detailed structure of the turbulent flame front was analyzed in two series of experiments using laser-induced fluorescence (LIF): joint CH 2O LIF and OH LIF measurements and joint CO LIF and OH LIF measurements. Results revealed that a decrease in local CH 2O+OH and CO+OH reaction rates coincide with the depletion of OH radicals in the vicinity of the combustion product stream. These critical combustion reaction rates were more readily quenched in the presence of products of combustion from a stoichiometric flame, whereas they were favored by lean combustion products. As a result, stoichiometric combustion products contributed to a greater occurrence of local extinction. Furthermore, they limited the capacity of premixed reactants to ignite and of the turbulent premixed flames to stabilize. In contrast, lean and rich combustion products facilitated flame ignition and stability and reduced the rate of local extinction. The influence of the combustion product stream on the turbulent flame front was limited to a zone of approximately two millimeters from the gas mixing layer interface (GMLI) of the product stream. As a result, flame fronts that were separated from the GMLI by larger distances were unaffected by the product stream stoichiometry.« less

  8. Multilayer composites and manufacture of same

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi

    2006-02-07

    The present invention is directed towards a process of depositing multilayer thin films, disk-shaped targets for deposition of multilayer thin films by a pulsed laser or pulsed electron beam deposition process, where the disk-shaped targets include at least two segments with differing compositions, and a multilayer thin film structure having alternating layers of a first composition and a second composition, a pair of the alternating layers defining a bi-layer wherein the thin film structure includes at least 20 bi-layers per micron of thin film such that an individual bi-layer has a thickness of less than about 100 nanometers.

  9. A Major Binding Protein for Leukemia Inhibitory Factor in Normal Mouse Serum: Identification as a Soluble Form of the Cellular Receptor

    NASA Astrophysics Data System (ADS)

    Layton, Meredith J.; Cross, Bronwyn A.; Metcalf, Donald; Ward, Larry D.; Simpson, Richard J.; Nicola, Nicos A.

    1992-09-01

    A protein that specifically binds leukemia inhibitory factor (LIF) has been isolated from normal mouse serum by using four successive fractionation steps: chromatography on a LIF affinity matrix, anion-exchange chromatography, size-exclusion chromatography, and preparative native gel electrophoresis. The purified LIF-binding protein (LBP) is a glycoprotein with an apparent molecular mass of 90 kDa that specifically binds 125I-labeled murine LIF with an affinity comparable to that of the low-affinity cellular LIF receptor (K_d = 600 pM). N-terminal sequencing has identified this protein as a soluble truncated form of the α chain of the cellular LIF receptor. LBP is present in normal mouse serum at high levels (1 μg/ml) and these levels are elevated in pregnant mice and reduced in neonatal mice. Since normal serum concentrations of LBP can block the biological actions of LIF in culture, LBP may serve as an inhibitor of the systemic effects of locally produced LIF.

  10. Ordered organic-organic multilayer growth

    DOEpatents

    Forrest, Stephen R.; Lunt, Richard R.

    2016-04-05

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  11. Ordered organic-organic multilayer growth

    DOEpatents

    Forrest, Stephen R; Lunt, Richard R

    2015-01-13

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  12. Interleukin-4 but not interleukin-10 inhibits the production of leukemia inhibitory factor by rheumatoid synovium and synoviocytes.

    PubMed

    Dechanet, J; Taupin, J L; Chomarat, P; Rissoan, M C; Moreau, J F; Banchereau, J; Miossec, P

    1994-12-01

    The expression of the proinflammatory cytokine leukemia inhibitory factor (LIF) has been reported in the cartilage and synovium of rheumatoid arthritis (RA) patients. Here, we show that high levels of LIF were constitutively produced by cultures of synovium pieces. Low levels of LIF were produced spontaneously by isolated synoviocytes, but interleukin (IL)-1 beta caused a fourfold enhancement of this secretion. The anti-inflammatory cytokine IL-4 reduced the production of LIF by synovium pieces by 75%, as observed earlier with IL-6, IL-1 beta and tumor necrosis factor (TNF)-alpha. IL-4 had a direct effect since it inhibited LIF production by unstimulated and IL-1 beta- or TNF-alpha-stimulated synoviocytes. Conversely, IL-4 enhanced the production of IL-6, which shares with LIF biological activities and receptor components. The inhibitory effect of IL-4 was dose dependent and was reversed using a blocking anti-IL-4 receptor antibody. Similar inhibitory action of IL-4 on LIF production was observed on synovium pieces from patients with osteoarthritis and on normal synoviocytes. IL-10, another anti-inflammatory cytokine acting on monocytes, had no effect on LIF production by either synovium pieces or isolated synoviocytes. Thus, the production of LIF by synovium tissue was inhibited by IL-4 through both a direct effect on synoviocytes and an indirect effect by inhibition of the production of LIF-inducing cytokines.

  13. Soluble Expression of Human Leukemia Inhibitory Factor with Protein Disulfide Isomerase in Escherichia coli and Its Simple Purification

    PubMed Central

    Chong, Seon-Ha; Kim, Kyunhoo; Choi, Dong Kyu; Thi Vu, Thu Trang; Nguyen, Minh Tan; Jeong, Boram; Ryu, Han-Bong; Kim, Injune; Jang, Yeon Jin; Robinson, Robert Charles; Choe, Han

    2013-01-01

    Human leukemia inhibitory factor (hLIF) is a multifunctional cytokine that is essential for maintaining the pluripotency of embryonic stem cells. hLIF may be also be useful in aiding fertility through its effects on increasing the implantation rate of fertilized eggs. Thus these applications in biomedical research and clinical medicine create a high demand for bioactive hLIF. However, production of active hLIF is problematic since eukaryotic cells demonstrate limited expression and prokaryotic cells produce insoluble protein. Here, we have adopted a hybrid protein disulfide isomerase design to increase the solubility of hLIF in Escherichia coli. Low temperature expression of hLIF fused to the b'a' domain of protein disulfide isomerase (PDIb'a') increased the soluble expression in comparison to controls. A simple purification protocol for bioactive hLIF was established that includes removal of the PDIb'a' domain by cleavage by TEV protease. The resulting hLIF, which contains one extra glycine residue at the N-terminus, was highly pure and demonstrated endotoxin levels below 0.05 EU/μg. The presence of an intramolecular disulfide bond was identified using mass spectroscopy. This purified hLIF effectively maintained the pluripotency of a murine embryonic stem cell line. Thus we have developed an effective method to produce a pure bioactive version of hLIF in E. coli for use in biomedical research. PMID:24358310

  14. Production of feline leukemia inhibitory factor with biological activity in Escherichia coli.

    PubMed

    Kanegi, R; Hatoya, S; Tsujimoto, Y; Takenaka, S; Nishimura, T; Wijewardana, V; Sugiura, K; Takahashi, M; Kawate, N; Tamada, H; Inaba, T

    2016-07-15

    Leukemia inhibitory factor (LIF) is a cytokine which is essential for oocyte and embryo development, embryonic stem cell, and induced pluripotent stem cell maintenance. Leukemia inhibitory factor improves the maturation of oocytes in the human and the mouse. However, feline LIF (fLIF) cloning and effects on oocytes during IVM have not been reported. Thus, we cloned complete cDNA of fLIF and examined its biological activity and effects on oocytes during IVM in the domestic cat. The aminoacid sequence of fLIF revealed a homology of 81% or 92% with that of mouse or human. The fLIF produced by pCold TF DNA in Escherichia coli was readily soluble and after purification showed bioactivity in maintaining the undifferentiated state of mouse embryonic stem cells and enhancing the proliferation of human erythrocyte leukemia cells. Furthermore, 10- and 100-ng/mL fLIF induced cumulus expansion with or without FSH and EGF (P < 0.05). The rate of metaphase II oocytes was also improved with 100-ng/mL fLIF (P < 0.05). We therefore confirmed the successful production for the first time of biologically active fLIF and revealed its effects on oocytes during IVM in the domestic cat. Feline LIF will further improve reproduction and stem cell research in the feline family. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer [Computational exploration of the Li-electrode|electrolyte interface complicated by a nanometer thin solid-electrolyte interphase (SEI) layer

    DOE PAGES

    Li, Yunsong; Leung, Kevin; Qi, Yue

    2016-09-30

    A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have “selective” transport properties: blocking electrons from attacking the electrolytes, while allowing Li + ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li + + e → Li 0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. We consider the passivation layer, called “solid electrolyte interphasemore » (SEI)”, as “the most important but the least understood in rechargeable Li-ion batteries,” partly due to the lack of understanding of its structure–property relationship. In predictive modeling, starting from the ab initio level, we find that it is an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li + ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li + and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li + transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure–property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li 2CO 3, LiF, Li 2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li + ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. We note that the SEI not only affects Li + and e – transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li -metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.« less

  16. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer [Computational exploration of the Li-electrode|electrolyte interface complicated by a nanometer thin solid-electrolyte interphase (SEI) layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yunsong; Leung, Kevin; Qi, Yue

    A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have “selective” transport properties: blocking electrons from attacking the electrolytes, while allowing Li + ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li + + e → Li 0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. We consider the passivation layer, called “solid electrolyte interphasemore » (SEI)”, as “the most important but the least understood in rechargeable Li-ion batteries,” partly due to the lack of understanding of its structure–property relationship. In predictive modeling, starting from the ab initio level, we find that it is an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li + ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li + and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li + transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure–property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li 2CO 3, LiF, Li 2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li + ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. We note that the SEI not only affects Li + and e – transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li -metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.« less

  17. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, P.; Sengupta, D.; CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effectmore » of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.« less

  18. [Rapid Detection of Adenovirus in Fecal Samples by Capillary Electrophoresis-laser Induced Fluorescence and Microchip Capillary Electrophoresis-laser Induced Fluorescence].

    PubMed

    Ruan, Jia; Ren, Dong-xia; Yang, Dan-ni; Long, Pin-pin; Zhao, Hong-yue; Wang, Yi-qi; Li, Yong-xin

    2015-07-01

    To establish a rapid and sensitive method based on polymerase chain reaction (PCR) combined with capillary electrophoresis-laser induced fluorescence (CE-LIF) and microchip capillary electrophoresis-laser induced fluorescence (MCE-LIF) for detecting adenoviruses in fecal samples. The DNA of adenovirus in fecal samples were extracted by the commercial kits and the conserved region of hexon gene was selected as the target gene and amplified by PCR reaction. After labeling highly sensitive nucleic acid fluorescent dye SYBR Gold and SYBR Orange respectively, PCR amplification products were separated by CE and MCE under the optimized condition and detected by LIF detector. PCR amplification products could be detected within 9 min by CE-LIF and 6 min by MCE-LIF under the optimized separation condition. The sequenced PCR product showed good specificity in comparison with the prototype sequences from NCBI. The intraday and inter-day relative standard deviation (RSD) of the size (bp) of the target DNA was in the range of 1.14%-1.34% and 1.27%- 2.76%, respectively, for CE-LIF, and 1.18%-1.48% and 2.85%-4.06%, respectively, for MCE-LIF. The detection limits was 2.33 x 10(2) copies/mL for CE-LIF and 2.33 x 10(3) copies/mL for MCE-LIF. The two proposed methods were applied to detect fecal samples, both showing high accuracy. The two proposed methods of PCR-CE-LIF and PCR-MCE-LIF can detect adenovirus in fecal samples rapidly, sensitively and specifically.

  19. An Electrochemical Experiment Using an Optically Transparent Thin Layer Electrode

    ERIC Educational Resources Information Center

    DeAngelis, Thomas P.; Heineman, William R.

    1976-01-01

    Describes a unified experiment in which an optically transparent thin layer electrode is used to illustrate the techniques of thin layer electrochemistry, cyclic voltammetry, controlled potential coulometry, and spectroelectrochemistry. (MLH)

  20. Rectenna that converts infrared radiation to electrical energy

    DOEpatents

    Davids, Paul; Peters, David W.

    2016-09-06

    Technologies pertaining to converting infrared (IR) radiation to DC energy are described herein. In a general embodiment, a rectenna comprises a conductive layer. A thin insulator layer is formed on the conductive layer, and a nanoantenna is formed on the thin insulator layer. The thin insulator layer acts as a tunnel junction of a tunnel diode.

  1. Cadmium-free junction fabrication process for CuInSe.sub.2 thin film solar cells

    DOEpatents

    Ramanathan, Kannan V.; Contreras, Miguel A.; Bhattacharya, Raghu N.; Keane, James; Noufi, Rommel

    1999-01-01

    The present invention provides an economical, simple, dry and controllable semiconductor layer junction forming process to make cadmium free high efficiency photovoltaic cells having a first layer comprised primarily of copper indium diselenide having a thin doped copper indium diselenide n-type region, generated by thermal diffusion with a group II(b) element such as zinc, and a halide, such as chlorine, and a second layer comprised of a conventional zinc oxide bilayer. A photovoltaic device according the present invention includes a first thin film layer of semiconductor material formed primarily from copper indium diselenide. Doping of the copper indium diselenide with zinc chloride is accomplished using either a zinc chloride solution or a solid zinc chloride material. Thermal diffusion of zinc chloride into the copper indium diselenide upper region creates the thin n-type copper indium diselenide surface. A second thin film layer of semiconductor material comprising zinc oxide is then applied in two layers. The first layer comprises a thin layer of high resistivity zinc oxide. The second relatively thick layer of zinc oxide is doped to exhibit low resistivity.

  2. The threshold strength of laminar ceramics utilizing molar volume changes and porosity

    NASA Astrophysics Data System (ADS)

    Pontin, Michael Gene

    It has been shown that uniformly spaced thin compressive layers within a ceramic body can arrest the propagation of an otherwise catastrophic crack, producing a threshold strength: a strength below which the probability of failure is zero. Previous work has shown that the threshold strength increases with both the magnitude of the compressive stress and the fracture toughness of the thin layer material, and finite element analysis predicts that the threshold strength can be further increased when the elastic modulus of the compressive layer is much smaller than the thicker layer. The current work describes several new approaches to increase the threshold strength of a laminar ceramic system. The initial method utilized a molar volume expansion within the thin layers, produced by the tetragonal-to-monoclinic phase transformation of unstabilized zirconia during cooling, in order to produce large compressive stresses within the thin layers. High threshold strengths were measured for this system, but they remained relatively constant as the zirconia content was increased. It was determined that microcracking produced during the transformation reduced the magnitude of the compressive stresses, but may also have served to reduce the modulus of the thin compressive layer, providing an additional strengthening mechanism. The second approach studied the addition of porosity to reduce the elastic modulus of the thin compressive layers. A new processing method was created and analyzed, in which thick layers of the laminate were fabricated by tape-casting, and then dip-coated into a slurry, containing rice starch, to create thin porous compressive layers upon densification. The effects of porosity on the residual compressive stress, elastic modulus, and fracture toughness of the thin layers were measured and calculated, and it was found that the elastic modulus mismatch between the thin and thick layers produced a large strengthening effect for volume fractions of porosity below a critical level. Specimens with greater volume fractions of porosity exhibited complete crack arrest, typically followed by non-catastrophic failure, as cracks initiating in adjacent thick layers coalesced by cracking or delamination along the thin porous layers.

  3. wnt3a but not wnt11 supports self-renewal of embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singla, Dinender K.; Schneider, David J.; LeWinter, Martin M.

    2006-06-30

    wnt proteins (wnts) promote both differentiation of midbrain dopaminergic cells and self-renewal of haematopoietic stem cells. Mouse embryonic stem (ES) cells can be maintained and self-renew on mouse feeder cell layers or in media containing leukemia inhibitory factor (LIF). However, the effects of wnts on ES cells self-renewal and differentiation are not clearly understood. In the present study, we found that conditioned medium prepared from L cells expressing wnt3a can replace feeder cell layers and medium containing LIF in maintaining ES cells in the proliferation without differentiation (self-renewal) state. By contrast, conditioned medium from NIH3T3 cells expressing wnt11 did not.more » Alkaline phosphatase staining and compact colony formation were used as criteria of cells being in the undifferentiated state. ES cells maintained in medium conditioned by Wnt3a expressing cells underwent freezing and thawing while maintaining properties seen with LIF maintained ES cells. Purified wnt3a did not maintain self-renewal of ES cells for prolonged intervals. Thus, other factors in the medium conditioned by wnt3a expressing cells may have contributed to maintenance of ES cells in a self-renewal state. Pluripotency of ES cells was determined with the use of embryoid bodies in vitro. PD98059, a MEK specific inhibitor, promoted the growth of undifferentiated ES cells maintained in conditioned medium from wnt3a expressing cells. By contrast, the P38 MAPK inhibitor SB230580 did not, suggesting a role for the MEK pathway in self-renewal and differentiation of ES cells maintained in the wnt3a cell conditioned medium. Thus, our results show that conditioned medium from wnt3a but not wnt11 expressing cells can maintain ES cells in self-renewal and in a pluripotent state.« less

  4. Characterization of Cu buffer layers for growth of L10-FeNi thin films

    NASA Astrophysics Data System (ADS)

    Mizuguchi, M.; Sekiya, S.; Takanashi, K.

    2010-05-01

    A Cu(001) layer was fabricated on a Au(001) layer to investigate the use of Cu as a buffer layer for growing L10-FeNi thin films. The epitaxial growth of a Cu buffer layer was observed using reflection high-energy electron diffraction. The flatness of the layer improved drastically with an increase in the substrate temperature although the layer was an alloy (AuCu3). An FeNi thin film was epitaxially grown on the AuCu3 buffer layer by alternate monatomic layer deposition and the formation of an L10-FeNi ordered alloy was expected. The AuCu3 buffer layer is thus a promising candidate material for the growth of L10-FeNi thin films.

  5. One-year enzyme-linked immunosorbent assay follow-up of human interleukin for Da cells/leukemia inhibitory factor in blood and urine of 22 kidney transplant recipients.

    PubMed

    Morel, D; Taupin, J L; Combe, C; Potaux, L; Gualde, N; Moreau, J F

    1994-12-15

    The cytokine human interleukin for Da cells/leukemia inhibitory factor (HILDA/LIF) exerts multiple biological effects in vitro. In mice, high circulating levels of HILDA/LIF induce a wide range of pathophysiological events, some of them closely involved with immunological and inflammatory responses. Using a sandwich ELISA recognizing the natural human HILDA/LIF molecule with a threshold of 50 pg/ml in urine and 150 pg/ml in plasma, we monitored the urine and plasma HILDA/LIF levels of 22 patients in their first year after a kidney transplant. HILDA/LIF urine excretion is increased during acute rejection, and infections also trigger heavy HILDA/LIF plasma concentrations or urine excretion. In addition, this study raises the question of HILDA/LIF involvement in post-kidney-transplant phenomena such as hypercalcemia, osteoporosis, or the reversal of anemia.

  6. Leukemia inhibitory factor influences the timing of programmed synapses withdrawal from neonatal muscles.

    PubMed

    Kwon, Y W; Abbondanzo, S J; Stewart, C L; Gurney, M E

    1995-09-01

    We show that leukemia inhibitory factor (LIF) plays a physiological role in the programmed withdrawal of synapses from neonatal muscles. First, LIF mRNA is present in embryonic skeletal muscle and is developmentally regulated. We detect high levels of LIF mRNA at embryonic day 17 (E17) in mouse hind leg muscles. The content of LIF mRNA falls 10-fold between E17 and birth and then remains low in the neonate and adult. The decrease in LIF mRNA in skeletal muscle coincides with the end of secondary myogenesis and the completion of the adult number of myofibers. Second, treatment of the mouse tensor fascia latae (TFL), a superficial muscle of the hind leg, with LIF from birth (100 ng/day), transiently delays the withdrawal of excess inputs from polyneuronally innervated myofibers by approximately 3 days. The midpoint of the process is shifted from 7.5 +/- 10.2 +/- 0.6 days of age. LIF treatment delays synapse withdrawal by altering its timing without an appreciable effect on its rate. Third, in mice homozygous for a disruption of the LIF gene, the midpoint in the reduction of multiply innervated TFL myofibers occurs 1 day earlier, at 6.5 +/- 0.5 days of age. Muscle fiber number is unchanged in LIF null mice. Treatment with LIF does not alter the rate of neonatal growth, the number of muscle fibers in the TFL, or the reappearance of inputs that have been eliminated. Instead, LIF appears to delay maturation of the motor unit by transiently delaying the onset of synapse withdrawal. We hypothesize that this is a necessary component of a selective process that will operate simultaneously and equally on multiple, competing motor units.

  7. Leukemia inhibitory factor in the neuroimmune communication pathways in allergic asthma.

    PubMed

    Lin, Min-Juan; Lao, Xue-Jun; Liu, Sheng-Ming; Xu, Zhen-Hua; Zou, Wei-Feng

    2014-03-20

    In the pathogenesis of asthma, central sensitization is suggested to be an important neural mechanism, and neurotrophins and cytokines are likely to be the major mediators in the neuroimmune communication pathways of asthma. However, their impact on the central nervous system in allergic asthma remains unclear. We hypothesize that central neurogenic inflammation develops in the pathogenesis of allergic asthma, and nerve growth factor (NGF) and leukemia inhibitory factor (LIF) are important mediators in its development. An asthma model of rats was established by sensitization and challenged with ovalbumin (OVA). For further confirmation of the role of LIF in neurogenic inflammation, a subgroup was pretreated with intraperitoneally (i.p.) LIF antibody before OVA challenge. The levels of LIF and NGF were measured with reverse transcription and polymerase chain reaction (RT-PCR), in situ hybridization (ISH) and immunohistochemistry stain in lung tissue, airway-specific dorsal root ganglia (DRG, C7-T5) and brain stem of asthmatic rats, anti-LIF pretreated rats and controls. A significantly increased number of LIF- and NGF-immunoreactive cells were detected in lung tissue, DRG and the brain stem of asthmatic rats. In the asthma group a significantly increase level of mRNA encoding LIF and NGF in lung tissue was detected, but not in DRG and the brain stem. Pretreatment with LIF antibody decreased the level of LIF and NGF in all tissues. LIF is an important mediator in the crosstalk between nerve and immune systems. Our study demonstrate that the increased level of LIF and NGF in DRG and brain stem may be not based on result from de novo synthesis, but rather on result from retrograde nerve transport or passage across the blood-brain-barrier. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor); Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  9. Thin-layer voltammetry of soluble species on screen-printed electrodes: proof of concept.

    PubMed

    Botasini, S; Martí, A C; Méndez, E

    2016-10-17

    Thin-layer diffusion conditions were accomplished on screen-printed electrodes by placing a controlled-weight onto the cast solution and allowing for its natural spreading. The restricted diffusive conditions were assessed by cyclic voltammetry at low voltage scan rates and electrochemical impedance spectroscopy. The relationship between the weight exerted over the drop and the thin-layer thickness achieved was determined, in such a way that the simple experimental set-up designed for this work could be developed into a commercial device with variable control of the thin-layer conditions. The experimental results obtained resemble those reported for the voltammetric features of electroactive soluble species employing electrodes modified with carbon nanotubes or graphene layers, suggesting that the attainment of the benefits reported for these nanomaterials could be done simply by forcing the solution to spread over the screen-printed electrodic system to form a thin layer solution. The advantages of thin-layer voltammetry in the kinetic characterization of quasi-reversible and irreversible processes are highlighted.

  10. A model for thin layer formation by delayed particle settling at sharp density gradients

    NASA Astrophysics Data System (ADS)

    Prairie, Jennifer C.; White, Brian L.

    2017-02-01

    Thin layers - regions where plankton or particles accumulate vertically on scales of a few meters or less - are common in coastal waters, and have important implications for both trophic dynamics and carbon cycling. These features can form by a variety of biological and physical mechanisms, including localized growth, shear-thinning, and directed swimming. An additional mechanism may result in the formation of thin layers of marine aggregates, which have been shown to decrease their settling velocity when passing through sharp density gradients, a behavior termed delayed settling. Here, we apply a simple vertical advection-diffusion model to predict the properties of aggregate thin layers formed by this process. We assume a constant vertical flux of particles from the surface, which is parameterized by observations from laboratory experiments with marine aggregates. The formation, maintenance, and shape of the layers are described in relation to non-dimensional numbers that depend on environmental conditions and particle settling properties. In particular, model results demonstrate layer intensity and sharpness both increase with higher Péclet number (Pe), that is, under conditions with weaker mixing relative to layer formation. Similarly, more intense and sharper layers are found when the delayed settling behavior of aggregates is characterized by a lower velocity minimum. The model also predicts layers that are vertically asymmetric and highly "peaky" when compared with a Gaussian distribution, features often seen in thin layers in natural environments. Lastly, by comparing model predictions with observations of thin layers in the field, we are able to gain some insight into the applicability of delayed settling as a thin layer formation mechanism in different environmental conditions.

  11. Thin Film Transistors On Plastic Substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  12. Room temperature rubbing for few-layer two-dimensional thin flakes directly on flexible polymer substrates

    PubMed Central

    Yu, Yan; Jiang, Shenglin; Zhou, Wenli; Miao, Xiangshui; Zeng, Yike; Zhang, Guangzu; Liu, Sisi

    2013-01-01

    The functional layers of few-layer two-dimensional (2-D) thin flakes on flexible polymers for stretchable applications have attracted much interest. However, most fabrication methods are “indirect” processes that require transfer steps. Moreover, previously reported “transfer-free” methods are only suitable for graphene and not for other few-layer 2-D thin flakes. Here, a friction based room temperature rubbing method is proposed for fabricating different types of few-layer 2-D thin flakes (graphene, hexagonal boron nitride (h-BN), molybdenum disulphide (MoS2), and tungsten disulphide (WS2)) on flexible polymer substrates. Commercial 2-D raw materials (graphite, h-BN, MoS2, and WS2) that contain thousands of atom layers were used. After several minutes, different types of few-layer 2-D thin flakes were fabricated directly on the flexible polymer substrates by rubbing procedures at room temperature and without any transfer step. These few-layer 2-D thin flakes strongly adhere to the flexible polymer substrates. This strong adhesion is beneficial for future applications. PMID:24045289

  13. Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film

    NASA Astrophysics Data System (ADS)

    Sarkar, Suman; Kundu, Sarathi

    2018-04-01

    Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.

  14. Nonenzymatic detection of glucose using BaCuO2 thin layer

    NASA Astrophysics Data System (ADS)

    Ito, Takeshi; Asada, Tsuyoshi; Asai, Naoto; Shimizu, Tomohiro; Shingubara, Shoso

    2017-01-01

    A BaCuO2 thin layer was deposited on a glassy carbon electrode and used for the direct oxidation of glucose. The crystalline, electrochemical, and physicochemical properties that depend on the deposition temperature and deposition time were studied. X-ray diffraction (XRD) analysis showed that the thin layer was amorphous even at 400 °C. The current density of the glucose oxidation using the thin layer deposited at 200 °C was higher than those at other deposition temperatures. Under this condition, the current density increased with the glucose concentration and deposition time. These results indicate that a BaCuO2 thin layer has potential for measuring the blood glucose level without enzymes.

  15. Methods for making thin layers of crystalline materials

    DOEpatents

    Lagally, Max G; Paskiewicz, Deborah M; Tanto, Boy

    2013-07-23

    Methods for making growth templates for the epitaxial growth of compound semiconductors and other materials are provided. The growth templates are thin layers of single-crystalline materials that are themselves grown epitaxially on a substrate that includes a thin layer of sacrificial material. The thin layer of sacrificial material, which creates a coherent strain in the single-crystalline material as it is grown thereon, includes one or more suspended sections and one or more supported sections.

  16. Hugoniot-based equations of state for two filled EPDM rubbers

    NASA Astrophysics Data System (ADS)

    Pacheco, Adam; Dattelbaum, Dana; Orler, E.; Gustavsen, R.

    2013-06-01

    The shock response of silica filled and Kevlar filled ethylene-propylene-diene (EPDM) rubbers was studied using gas gun-driven plate impact experiments. Both materials are proprietary formulations made by Kirkhill-TA, Brea CA USA, and are used for ablative internal rocket motor insulation. Two types of experiments were performed. In the first, the filled-EPDM sample was mounted on the front of the projectile and impacted a Lithium Fluoride (LiF) window. The Hugoniot state was determined from the measured projectile velocity, the EPDM/LiF interface velocity (measured using VISAR) and impedance matching to LiF. In the second type of experiment, electromagnetic particle velocity gauges were embedded between layers of filled-EPDM. These provided in situ particle velocity and shock velocity measurements. Experiments covered a pressure range of 0.34 - 14 GPa. Hugoniot-based equations of state were obtained for both materials, and will be compared to those of other filled elastomers such as silica-filled polydimethylsiloxane and adiprene. Work performed while at Los Alamos National Laboratory.

  17. ZnO:Zn/6LiF scintillator-A low afterglow alternative to ZnS:Ag/6LiF for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Sykora, G. Jeff; Schooneveld, Erik M.; Rhodes, Nigel J.

    2018-03-01

    Current ZnS:Ag/6LiF based scintillation detectors are often count rate limited by the long lifetime afterglow in the scintillator. Despite this drawback, new instruments at neutron scattering facilities, like ISIS in the UK, would still like to use ZnS:Ag/6LiF detectors due to their low gamma sensitivity, high light output, simplicity of detector design and relatively inexpensive production. One particular advantage of ZnS:Ag/6LiF detectors is their ability to provide strong pulse shape discrimination between neutrons and gammas. Despite the advantages of these detectors, it is becoming clear that new and upgraded instruments will be limited by the count rate capability of ZnS:Ag/6LiF, so an alternative scintillator technology with equivalent simplicity is being sought. ZnO:Zn/6LiF is investigated here as a low afterglow alternative to ZnS:Ag/6LiF. Basic scintillation properties of ZnO:Zn are studied and are discussed. Pulse shape discrimination between neutrons and gammas is explored and taken advantage of through simple single photon counting methods. A further step toward a realistic detector for neutron scattering is also taken by fiber coupling the ZnO:Zn/6LiF to a PMT. In an initial study of this fiber coupled configuration, 60Co gamma sensitivity of ∼ 7 × 10-6 is shown and improvements in count rate capability of at least a factor of 6 over ZnS:Ag/6LiF based neutron detectors are demonstrated.

  18. High-fat diet-induced downregulation of anorexic leukemia inhibitory factor in the brain stem.

    PubMed

    Licursi, Maria; Alberto, Christian O; Dias, Alex; Hirasawa, Kensuke; Hirasawa, Michiru

    2016-11-01

    High-fat diet (HFD) is known to induce low-grade hypothalamic inflammation. Whether inflammation occurs in other brain areas remains unknown. This study tested the effect of short-term HFD on cytokine gene expression and identified leukemia inhibitory factor (LIF) as a responsive cytokine in the brain stem. Thus, functional and cellular effects of LIF in the brain stem were investigated. Male rats were fed chow or HFD for 3 days, and then gene expression was analyzed in different brain regions for IL-1β, IL-6, TNF-α, and LIF. The effect of intracerebroventricular injection of LIF on chow intake and body weight was also tested. Patch clamp recording was performed in the nucleus tractus solitarius (NTS). HFD increased pontine TNF-α mRNA while downregulating LIF in all major parts of the brain stem, but not in the hypothalamus or hippocampus. LIF injection into the cerebral aqueduct suppressed food intake without conditioned taste aversion, suggesting that LIF can induce anorexia via lower brain regions without causing malaise. In the NTS, a key brain stem nucleus for food intake regulation, LIF induced acute changes in neuronal excitability. HFD-induced downregulation of anorexic LIF in the brain stem may provide a permissive condition for HFD overconsumption. This may be at least partially mediated by the NTS. © 2016 The Obesity Society.

  19. Improvement in temperature dependence and dielectric tunability properties of PbZr0.52Ti0.48O3 thin films using Ba(Mg1/3Ta2/3)O3 buffer layer

    NASA Astrophysics Data System (ADS)

    Wu, Zhi; Zhou, Jing; Chen, Wen; Shen, Jie; Yang, Huimin; Zhang, Shisai; Liu, Yueli

    2016-12-01

    In this paper, Pb(Zr0.52Ti0.48)O3 (PZT) thin films were prepared via sol-gel method. The effects of Ba(Mg1/3Ta2/3)O3 (BMT) buffer layer on the temperature dependence and dielectric tunability properties of PZT thin films were studied. As the thickness of BMT buffer layer increases, the tan δ and tunability of PZT thin films decrease while tunability still maintains above 10%. This result shows that BMT buffer layer can improve the dielectric tunability properties of PZT thin films. Furthermore, the temperature coefficient of the dielectric constant decreases from 2333.4 to 906.9 ppm/°C with the thickness of BMT buffer layer increasing in the range from 25 to 205 °C, indicating that BMT buffer layer can improve the temperature stability of PZT thin films. Therefore, BMT buffer layer plays a critical role in improving temperature dependence and dielectric tunability properties of PbZr0.52Ti0.48O3 thin films.

  20. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition

    PubMed Central

    Liao, Yu-Kuang; Liu, Yung-Tsung; Hsieh, Dan-Hua; Shen, Tien-Lin; Hsieh, Ming-Yang; Tzou, An-Jye; Chen, Shih-Chen; Tsai, Yu-Lin; Lin, Wei-Sheng; Chan, Sheng-Wen; Shen, Yen-Ping; Cheng, Shun-Jen; Chen, Chyong-Hua; Wu, Kaung-Hsiung; Chen, Hao-Ming; Kuo, Shou-Yi; Charlton, Martin D. B.; Hsieh, Tung-Po; Kuo, Hao-Chung

    2017-01-01

    Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs) with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD) and chemical bath deposition (CBD) as used by the Cu(In,Ga)Se2 (CIGS) thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase. PMID:28383488

  1. Layer-by-Layer Assembly of a pH-Responsive and Electrochromic Thin Film

    ERIC Educational Resources Information Center

    Schmidt, Daniel J.; Pridgen, Eric M.; Hammond, Paula T.; Love, J. Christopher

    2010-01-01

    This article summarizes an experiment on thin-film fabrication with layer-by-layer assembly that is appropriate for undergraduate laboratory courses. The purpose of this experiment is to teach students about self-assembly in the context of thin films and to expose students to the concepts of functional polymeric coatings. Students dip coat…

  2. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (LIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper will document the latest improvements of the LIF system design and demonstrations of the redeveloped AHF and IHF LIF systems.

  3. Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A-X (0,0) excitation

    NASA Astrophysics Data System (ADS)

    Bessler, Wolfgang G.; Schulz, Christof; Lee, Tonghun; Jeffries, Jay B.; Hanson, Ronald K.

    2002-06-01

    Three different high-pressure flame measurement strategies for NO laser-induced fluorescence (LIF) with A-X (0,0) excitation have been studied previously with computational simulations and experiments in flames up to 15 bars. Interference from O2 LIF is a significant problem in lean flames for NO LIF measurements, and pressure broadening and quenching lead to increased interference with increased pressure. We investigate the NO LIF signal strength, interference by hot molecular oxygen, and temperature dependence of the three previous schemes and for two newly chosen excitation schemes with wavelength-resolved LIF measurements in premixed methane and air flames at pressures between 1 and 60 bars and a range of fuel /air ratios. In slightly lean flames with an equivalence ratio of 0.83 at 60 bars, the contribution of O2 LIF to the NO LIF signal varies between 8% and 29% for the previous schemes. The O2 interference is best suppressed with excitation at 226.03 nm.

  4. Gyrotactic trapping: A numerical study

    NASA Astrophysics Data System (ADS)

    Ghorai, S.

    2016-04-01

    Gyrotactic trapping is a mechanism proposed by Durham et al. ["Disruption of vertical motility by shear triggers formation of thin Phytoplankton layers," Science 323, 1067-1070 (2009)] to explain the formation of thin phytoplankton layer just below the ocean surface. This mechanism is examined numerically using a rational model based on the generalized Taylor dispersion theory. The crucial role of sedimentation speed in the thin layer formation is demonstrated. The effects of variation in different parameters on the thin layer formation are also investigated.

  5. [High performance thin-layer chromatography in specific blood diagnosis (author's transl)].

    PubMed

    Bernardelli, B; Masotti, G

    1976-01-01

    Furthering their research into the differentiation of various haemoglobins (both human and animal) with the use of thin layer chromatographic methods, the Authors have applied Kaiser's high performance thin layer chromatography (HPTLC) to the specific diagnosis of blood. Although the method was superior to ascending one-dimensional thin layer chromatography for its sensitivity, Rf reproducibility and much briefer migration times, it did not turn out to be suitable for application to the specific requirements of forensic haematology.

  6. Thin-film metal coated insulation barrier in a Josephson tunnel junction. [Patent application

    DOEpatents

    Hawkins, G.A.; Clarke, J.

    1975-10-31

    A highly stable, durable, and reproducible Josephson tunnel junction consists of a thin-film electrode of a hard superconductor, a thin oxide insulation layer over the electrode constituting a Josephson tunnel junction barrier, a thin-film layer of stabilizing metal over the barrier, and a second thin-film hard superconductive electrode over the stabilizing film. The thin stabilizing metal film is made only thick enough to limit penetration of the electrode material through the insulation layer so as to prevent a superconductive short.

  7. Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition.

    PubMed

    Liang, Junsheng; Li, Pengfei; Wang, Dazhi; Fang, Xu; Ding, Jiahong; Wu, Junxiong; Tang, Chang

    2016-01-19

    Dense and crack-free barium titanate (BaTiO₃, BTO) thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet) deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film.

  8. Performance enhancement in Sb doped Cu(InGa)Se2 thin film solar cell by e-beam evaporation

    NASA Astrophysics Data System (ADS)

    Chen, Jieyi; Shen, Honglie; Zhai, Zihao; Li, Yufang; Yi, Yunge

    2018-03-01

    To investigate the effects of Sb doping on the structural and electrical properties of Cu(InGa)Se2 (CIGS) thin films and solar cells, CIGS thin films, prepared by e-beam evaporation on soda-lime glass, were doped with lower and upper Sb layers in the precursor stacks respectively. Change of structure and introduction of stress were observed in the CIGS thin films with upper Sb layer in stack through XRD and Raman measurement. Both crystalline quality and compactness of CIGS thin films were improved by the doping of upper Sb layer in stack and the CIGS thin film showed an optimal structural property with 20 nm Sb layer. Movement of Fermi level of the surface of CIGS thin film after doping of upper Sb layer in stack and electrons transfer between Cu/Cu+ redox couple and CIGS thin films, which provided probability for the substitution of Sb for Cu sites at the surface of CIGS thin films, were proposed to explain the migration of Cu from the surface to the bulk of CIGS thin films. The larger barrier at the CIGS/CdS interface after doping of upper Sb layer in stack made contribution to the increase of VOC of CIGS solar cells. The efficiency of CIGS solar cell was improved from 3.3% to 7.2% after doping with 20 nm upper Sb. Compared to the CIGS solar cell with lower Sb layer in stack, in which an additional Cu2-xSe phase was found, the CIGS solar cell with upper Sb layer in stack possessed a higher efficiency.

  9. Evaluation of double-layer density modulated Si thin films as Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Taha Demirkan, Muhammed; Yurukcu, Mesut; Dursun, Burcu; Demir-Cakan, Rezan; Karabacak, Tansel

    2017-10-01

    Double-layer density modulated silicon thin films which contain alternating low and high density Si film layers were fabricated by magnetron sputtering. Two different samples consisting of alternating layers of high-density/low-density and low-density/high-density Si thin film layers were investigated as anode electrodes in Li-ion batteries. Si thin film in which the terminating layer at the top is low density Si layer-quoted as low-density/high-density film (LD/HD)- exhibits better performance than Si thin film that has high density layer at the top, -quoted as high-density/low-density (HD/LD). A highly stabilized cycling performance with the specific charge capacities of 2000 mAh g-1 at the 150th cycle at C/2 current density, and 1200 mAh g-1 at the 240th cycle at 10 C current density were observed for the LD/HD Si anode in the presence of fluoroethylene carbonate (FEC) electrolyte additive.

  10. Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making

    DOEpatents

    Wu, Xuanzhi; Coutts, Timothy J.; Sheldon, Peter; Rose, Douglas H.

    1999-01-01

    A photovoltaic device having a substrate, a layer of Cd.sub.2 SnO.sub.4 disposed on said substrate as a front contact, a thin film comprising two or more layers of semiconductor materials disposed on said layer of Cd.sub.2 SnO.sub.4, and an electrically conductive film disposed on said thin film of semiconductor materials to form a rear electrical contact to said thin film. The device is formed by RF sputter coating a Cd.sub.2 SnO.sub.4 layer onto a substrate, depositing a thin film of semiconductor materials onto the layer of Cd.sub.2 SnO.sub.4, and depositing an electrically conductive film onto the thin film of semiconductor materials.

  11. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com; Rock Fluid Imaging Lab., Bandung; Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied aboutmore » the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.« less

  12. LiF dissolution by anion-binding-agent in LiCF x battery systems: Lower ohmic and interfacial resistance.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2015-02-01

    In this paper we will discuss our preliminary thermal and electrochemical data aimed at developing a robust nonflammable Li-CFx cell capable of wide temperature operation. To accomplish this goal, we are evaluating a thermally stable solvent comprised of an anion binding agent (ABA) and lithium fluoride (LiF), typically at a 1:1 molar ratio. In conventional carbonate based electrolytes, ABA is soluble while LiF remains insoluble. However, the neutral ABA solubilizes LiF and forms a salt complex represented as Li+(ABAF-). We are exploiting this unique feature and apply this strategy to CFx chemistry to improve cell performance, due to the CFxmore » cell chemistry generating LiF as discharge product. Continuous solvation of the salt mixture during discharge allows for utilization of electrolytes initially containing sub stoichiometric amount of LiF. The practical benefits are reduced cell weight, mitigation of electrode fouling, and consequently better low temperature performance. Electrolytes containing dimethyl methyl phosphonate (DMMP), 1M tris(pentafluorophenyl) borane (TPFB) and varying concentrations of LiF (1M; 0.5M and 0.1M) were prepared and characterized for ionic conductivity and voltage stability. In general, ionic conductivity decreases with decreasing LiF concentration. The room temperature conductivity for the DMMP 1M TPFB:1M LiF is ~ 9mS/cm and ~3mS/cm for the 1M TPFB:0.1M LiF. Unlike the conductivity, the electrochemical voltage stability did not vary substantially with LiF concentration and the electrolytes showed a stable voltage window in the range 0-3.5V vs. Li +/Li, which is substantially wider than the Li-CFx cell voltage. Flammability measurement performed at our thermal abuse facility demonstrated that the electrolyte was nonflammable. Discharge performance of CFx materials obtained from several vendors was evaluated in 2032 coin cells at room temperature. Experimental results demonstrate a reduction in ohmic resistance and interfacial resistance during discharge for a cell containing lower concentrations of added LiF compared to ABA. These observations are a direct demonstration that the unbound ABA in the electrolyte dissolves the LiF generated in the discharge reaction.« less

  13. Higher atypical enteropathogenic Escherichia coli (a-EPEC) bacterial loads in children with diarrhea are associated with PCR detection of the EHEC factor for adherence 1/lymphocyte inhibitory factor A (efa1/lifa) gene.

    PubMed

    Slinger, Robert; Lau, Kimberley; Slinger, Michael; Moldovan, Ioana; Chan, Francis

    2017-03-23

    Typical enteropathogenic Escherichia coli (t-EPEC) are known to cause diarrhea in children but it is uncertain whether atypical EPEC (a-EPEC) do, since a-EPEC lack the bundle-forming pilus (bfp) gene that encodes a key adherence factor in t-EPEC. In culture-based studies of a-EPEC, the presence of another adherence factor, called EHEC factor for adherence/lymphocyte activation inhibitor (efa1/lifA), was strongly associated with diarrhea. Since a-EPEC culture is not feasible in clinical laboratories, we designed an efa1/lifA quantitative PCR assay and examined whether the presence of efa1/lifA was associated with higher a-EPEC bacterial loads in pediatric diarrheal stool samples. Fecal samples from children with diarrhea were tested by qPCR for EPEC (presence of eae gene) and for shiga toxin genes to exclude enterohemorrhagic E. coli, which also contain the eae gene. EPEC containing samples were then tested for the bundle-forming pilus gene found in t-EPEC and efa1/lifA. The eae gene quantity in efa1/lifA-positive and negative samples was compared. Thirty-nine of 320 (12%) fecal samples tested positive for EPEC and 38/39 (97%) contained a-EPEC. The efa1/lifA gene was detected in 16/38 (42%) a-EPEC samples. The median eae concentration for efa1/lifA positive samples was significantly higher than for efa1/lifA negative samples (median 16,745 vs. 1183 copies/µL, respectively, p = 0.006). Atypical enteropathogenic E. coli-positive diarrheal stool samples containing the efa1/lifA gene had significantly higher bacterial loads than samples lacking this gene. This supports the idea that efa1/lifA contributes to diarrheal pathogenesis and suggests that, in EPEC-positive samples, efa/lifA may be a useful additional molecular biomarker.

  14. Laser-induced tissue autofluorescence versus exogenous chemical probe induced fluorescence as an arterial layer detection method: a comparative study

    NASA Astrophysics Data System (ADS)

    Papazoglou, Theodore G.; Arakawa, Koh; Grundfest, Warren S.; Papaioannou, Thanassis; Fishbein, Michael C.; Litvack, Frank

    1990-07-01

    The goal ofihis sludy was o develop a reliable laser inducedfluorescence specira analysis system using the 308nm Excimer Laser as an ablaiion andfluorescence inducing source. During our analysis we also aflempled lo determine whether exogenous chloroeiracycline hydrocloride (CTC) increased the discrimination capacity of the LIFS system. We then assessed the ability of CTC to improve the detection of the boundary between atheroma and normal media.

  15. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    DOEpatents

    Ruffner, Judith A.; Bullington, Jeff A.; Clem, Paul G.; Warren, William L.; Brinker, C. Jeffrey; Tuttle, Bruce A.; Schwartz, Robert W.

    1999-01-01

    A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.

  16. Simultaneous Detection of Yersinia Enterocolitica and Listeria Monocytogenes in Foodstuffs by Capillary Electrophoresis and Microchip Capillary Electrophoresis Laser-Induced Fluorescence Detector.

    PubMed

    Li, Yongru; Su, Hongwei; Lan, Yajia

    2018-05-29

    Background: Food safety is one of the most important public health problems in the world,and pathogenic bacterium is a major factor causing serious foodborne diseases. Objective: Two methods of duplex PCR combined with capillary electrophoresis laser-induced fluorescence detector (CE-LIF) and microchip capillary electrophoresis laser-induced fluorescence detector (MCE-LIF) have been developed for the simultaneous detection of Yersinia enterocolitica and Listeria monocytogenes in various foods. The specific conservative sequences of these two bacteria were amplified. Methods: After labelled with nucleic acid dye SYBR Gold and SYBR Orange, the PCR products were analyzed by CE-LIF and MCE-LIF, respectively. Under the optimal conditions, the detection of PCR products of the target bacteria was achieved in less than 15 min by CE-LIF and within 6 min by MCE-LIF. Results: The alignment analysis demonstrated that the PCR products had good agreement with the sequences published in GenBank. The CE-LIF method could detect 10 CFU/mL Y. enterocolitica and L. monocytogenes , and the MCE-LIF method could detect 100 CFU/mL Y. enterocolitica and L. monocytogenes . The intraday precisions of migration time and peak area of DNA markers and PCR products were in the range of 1.13 to 1.18% and 1.60 to 6.29%, respectively, for CE-LIF and 1.18 to 1.48% and 2.85 to 4.06%, respectively, for MCE-LIF. Conclusions : The proposed methods could be applied to target bacterial detection infood samples rapidly, sensitively, and specifically. Highlights : Two new methods based on CE and MCE have been developed for the simultaneous detection of Y. enterocolitica and L. monocytogenes in foodstuffs, and they can detect the bacteria directly without any enrichment because of their high sensitivity.

  17. Expression of mRNA encoding leukaemia inhibitory factor (LIF) and its receptor (LIFRβ) in buffalo preimplantation embryos produced in vitro: markers of successful embryo implantation.

    PubMed

    Eswari, S; Sai Kumar, G; Sharma, G Taru

    2013-05-01

    Summary The objective of this study was to evaluate the effect of supplementation of recombinant leukaemia inhibitory factor (LIF) in culture media on blastocyst development, total cell number and blastocyst hatching rates and the reverse transcription-polymerase chain reaction analysis of preimplantation buffalo embryos to determine whether they contain the LIF-encoding mRNA and its beta receptor (LIFRβ) genes in different stages of preimplantation buffalo embryos. Cumulus-oocyte complexes retrieved from slaughterhouse buffalo ovaries were matured in vitro and fertilized using frozen buffalo semen. After 18 h of co-incubation with sperm, the presumptive zygotes were cultured in modified synthetic oviductal fluid without (control) or with rhLIF (100 ng/ml). There was no significant difference in the overall cleavage rate up to morula stage however the development of blastocysts, hatching rate and total cell numbers were significantly higher in the LIF-treated group than control. Transcripts for LIFRβ were detected from immature, in vitro-matured oocytes and in the embryos up to blastocyst stage, while transcripts for the LIF were detected from 8-16-cell stage up to blastocyst, which indicated that embryo-derived LIF can act in an autocrine manner on differentiation process and blastocyst formation. This study indicated that the addition of LIF to the embryo culture medium improved development of blastocysts, functional (hatching) and morphological (number of cells) quality of the blastocysts produced in vitro. The stage-specific expression pattern of LIF and LIFRβ mRNA transcripts in buffalo embryos indicated that LIF might play an important role in the preimplantation development and subsequent implantation of buffalo embryos.

  18. Microstructure and thermochromic properties of VOX-WOX-VOX ceramic thin films

    NASA Astrophysics Data System (ADS)

    Khamseh, S.; Araghi, H.; Ghahari, M.; Faghihi Sani, M. A.

    2016-03-01

    W-doped VO2 films have been synthesized via oxygen annealing of V-W-V (vanadium-tungsten-vanadium) multilayered films. The effects of middle layer's thickness of V-W-V multilayered film on structure and properties of VOX-WOX-VOX ceramic thin films were investigated. The as-deposited V-W-V multilayered film showed amorphous-like structure when mixed structure of VO2 (M) and VO2 (B) was formed in VOX-WOX-VOX ceramic thin films. Tungsten content of VOX-WOX-VOX ceramic thin films increased with increasing middle layer's thickness. With increasing middle layer's thickness, room temperature square resistance ( R sq) of VOX-WOX-VOX ceramic thin films increased from 65 to 86 kΩ/sq. The VOX-WOX-VOX ceramic thin film with the thinnest middle layer showed significant SMT (semiconductor-metal transition) when SMT became negligible on increasing middle layer's thickness.

  19. Comparison of 2c- and 3cLIF droplet temperature imaging

    NASA Astrophysics Data System (ADS)

    Palmer, Johannes; Reddemann, Manuel A.; Kirsch, Valeri; Kneer, Reinhold

    2018-06-01

    This work presents "pulsed 2D-3cLIF-EET" as a measurement setup for micro-droplet internal temperature imaging. The setup relies on a third color channel that allows correcting spatially changing energy transfer rates between the two applied fluorescent dyes. First measurement results are compared with results of two slightly different versions of the recent "pulsed 2D-2cLIF-EET" method. Results reveal a higher temperature measurement accuracy of the recent 2cLIF setup. Average droplet temperature is determined by the 2cLIF setup with an uncertainty of less than 1 K and a spatial deviation of about 3.7 K. The new 3cLIF approach would become competitive, if the existing droplet size dependency is anticipated by an additional calibration and if the processing algorithm includes spatial measurement errors more appropriately.

  20. Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A-X(0,1) excitation

    NASA Astrophysics Data System (ADS)

    Bessler, Wolfgang G.; Schulz, Christof; Lee, Tonghun; Jeffries, Jay B.; Hanson, Ronald K.

    2003-04-01

    A-X(0,1) excitation is a promising new approach for NO laser-induced fluorescence (LIF) diagnostics at elevated pressures and temperatures. We present what to our knowledge are the first detailed spectroscopic investigations within this excitation band using wavelength-resolved LIF measurements in premixed methane/air flames at pressures between 1 and 60 bar and a range of fuel/air ratios. Interference from O2 LIF is a significant problem in lean flames for NO LIF measurements, and pressure broadening and quenching lead to increased interference with increased pressure. Three different excitation schemes are identified that maximize NO/O2 LIF signal ratios, thereby minimizing the O2 interference. The NO LIF signal strength, interference by hot molecular oxygen, and temperature dependence of the three schemes are investigated.

  1. Leukemia inhibitory factor levels are elevated in septic shock and various inflammatory body fluids.

    PubMed Central

    Waring, P; Wycherley, K; Cary, D; Nicola, N; Metcalf, D

    1992-01-01

    Leukemia inhibitory factor (LIF) has many biological actions which parallel those of IL-1, IL-6 and tumor necrosis factor-alpha, but its role in the pathogenesis of human disease is unknown. A specific radioreceptor competition assay capable of detecting LIF at concentrations above 1 ng/ml (45 pM) was developed. To identify disease states in which LIF might be involved, a cross-sectional survey of serum and body fluids from approximately 1,500 subjects with a variety of diseases was performed using the LIF radioreceptor competition assay. Serum LIF concentrations were transiently elevated (2-200 ng/ml) in six subjects with meningococcal or Gram-negative septic shock, and in a subject with idiopathic fulminant hepatic failure. Moderately elevated LIF concentrations (> 10 ng/ml) were detected in cerebrospinal fluid from subjects with bacterial meningitis, in effusions associated with pneumonia and peritonitis, and in amniotic fluid from a woman with chorioamnionitis. Low LIF concentrations (1-10 ng/ml) were present in synovial fluid from subjects with inflammatory arthritis, amniotic fluid from women in labor, and some reactive, chronic inflammatory and malignant effusions and cyst fluids, but rarely in transudates. These initial findings suggest that LIF might be involved in the pathogenesis of inflammation and septic shock. PMID:1430224

  2. Sequential production of leukaemia inhibitory factor by blood cell culture in patients with ARDS.

    PubMed

    Gruson, D; Hilbert, G; Juzan, M; Taupin, J L; Coulon, V; Moreau, J F; Gualde, N; Gbikpi-Benissan, G

    1998-04-01

    Leukaemia inhibitory factor (LIF) is a polyfunctional cytokine integrated in cytokine networks and its concentration has been shown to be elevated in bronchoalveolar lavage fluid of patients with the acute respiratory distress syndrome (ARDS). The aim of our study was to evaluate the production of LIF by culturing blood cells from patients with ARDS. 8 patients with ARDS, 8 patients with pneumonia and 5 healthy subjects. The blood samples were taken on day 1 after onset of ARDS. LIF was measured, in the cell-free supernatant, with an enzyme-linked immunosorbent assay after 24 h, 48 h and 72 h of blood cell culture. LIF was detectable in some patients in the ARDS group: at i) at 24 h and 48 h: in 2 patients ii) at 72 h in 4/5 patients (140 +/- 231 pg/ml). Only in the 4 patients in whom LIF was measured at 72 h was ARDS associated with the multiple organ dysfunction syndrome. Furthermore, among the 5 patients with ARDS who subsequently died, 4 had a detectable LIF. We have observed that LIF was produced only in ARDS, but not in all patients. The production of LIF seems to be a good indicator of the severity of ARDS. These preliminary results must be confirmed by a larger study.

  3. System and Method for Fabricating Super Conducting Circuitry on Both Sides of an Ultra-Thin Layer

    NASA Technical Reports Server (NTRS)

    Brown, Ari D. (Inventor); Mikula, Vilem (Inventor)

    2017-01-01

    A method of fabricating circuitry in a wafer includes depositing a superconducting metal on a silicon on insulator wafer having a handle wafer, coating the wafer with a sacrificial layer and bonding the wafer to a thermally oxide silicon wafer with a first epoxy. The method includes flipping the wafer, thinning the flipped wafer by removing a handle wafer, etching a buried oxide layer, depositing a superconducting layer, bonding the wafer to a thermally oxidized silicon wafer having a handle wafer using an epoxy, flipping the wafer again, thinning the flipped wafer, etching a buried oxide layer from the wafer and etching the sacrificial layer from the wafer. The result is a wafer having superconductive circuitry on both sides of an ultra-thin silicon layer.

  4. Observed OH and HO2 concentrations in the upper troposphere inside and outside of Asian monsoon influenced air.

    NASA Astrophysics Data System (ADS)

    Marno, D. R.; Künstler, C.; Hens, K.; Tatum Ernest, C.; Broch, S.; Fuchs, H.; Martinez, M.; Bourtsoukidis, E.; Williams, J.; Holland, F.; Hofzumahaus, A.; Tomsche, L.; Fischer, H.; Klausner, T.; Schlager, H.; Eirenschmalz, L.; Stratmann, G.; Stock, P.; Ziereis, H.; Roiger, A.; Bohn, B.; Zahn, A.; Wahner, A.; Lelieveld, J.; Harder, H.

    2016-12-01

    The Asian monsoon convectively transports pollutants like volatile organic compounds (VOCs), NOx, and SO2 from the boundary layer over South Asia into the upper troposphere where they can potentially enter the stratosphere, or be dispersed globally. Therefore, it is crucial to understand the oxidizing capacity of this system regarding the rate of aerosol formation, and conversion of pollutants into compounds that have much shorter atmospheric lifetimes. OH plays a central role in this oxidation process. During the OMO-ASIA campaign in the summer of 2015, OH and HO2 were measured onboard the High Altitude Long-Range (HALO) Research Aircraft. Two laser-induced fluorescence instruments based on the fluorescence assay by gas expansion technique (LIF-FAGE) had been deployed, the AIR-LIF instrument from Forschungszentrum Jülich GmbH and the HORUS instrument from the Max Planck Institute for Chemistry, Mainz. To measure the chemical background of OH potentially produced inside the HORUS instrument from highly oxidized VOCs, atmospheric OH is scavenged by an Inlet Pre-injector (IPI) system. This was the first time an IPI system was implemented within an airborne LIF-FAGE instrument measuring OH and HO2. Throughout this campaign OH and HO2 were measured at 12 to 15km within the Asian monsoon anticyclone. These measurements have been contrasted by probing air outside the anticyclone in air masses influenced by North American emissions, and in very clean air masses originated from the southern hemisphere.

  5. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    DOEpatents

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  6. Device and method for luminescence enhancement by resonant energy transfer from an absorptive thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akselrod, Gleb M.; Bawendi, Moungi G.; Bulovic, Vladimir

    Disclosed are a device and a method for the design and fabrication of the device for enhancing the brightness of luminescent molecules, nanostructures, and thin films. The device includes a mirror, a dielectric medium or spacer, an absorptive layer, and a luminescent layer. The absorptive layer is a continuous thin film of a strongly absorbing organic or inorganic material. The luminescent layer may be a continuous luminescent thin film or an arrangement of isolated luminescent species, e.g., organic or metal-organic dye molecules, semiconductor quantum dots, or other semiconductor nanostructures, supported on top of the absorptive layer.

  7. Advanced germanium layer transfer for ultra thin body on insulator structure

    NASA Astrophysics Data System (ADS)

    Maeda, Tatsuro; Chang, Wen-Hsin; Irisawa, Toshifumi; Ishii, Hiroyuki; Hattori, Hiroyuki; Poborchii, Vladimir; Kurashima, Yuuichi; Takagi, Hideki; Uchida, Noriyuki

    2016-12-01

    We present the HEtero-Layer Lift-Off (HELLO) technique to obtain ultra thin body (UTB) Ge on insulator (GeOI) substrates. The transferred ultra thin Ge layers are characterized by the Raman spectroscopy measurements down to the thickness of ˜1 nm, observing a strong Raman intensity enhancement for high quality GeOI structure in ultra thin regime due to quantum size effect. This advanced Ge layer transfer technique enabled us to demonstrate UTB-GeOI nMOSFETs with the body thickness of only 4 nm.

  8. Y1Ba2Cu3O(6+delta) growth on thin Y-enhanced SiO2 buffer layers on silicon

    NASA Technical Reports Server (NTRS)

    Robin, T.; Mesarwi, A.; Wu, N. J.; Fan, W. C.; Espoir, L.; Ignatiev, A.; Sega, R.

    1991-01-01

    SiO2 buffer layers as thin as 2 nm have been developed for use in the growth of Y1Ba2Cu3O(6+delta) thin films on silicon substrates. The SiO2 layers are formed through Y enhancement of silicon oxidation, and are highly stoichiometric. Y1Ba2Cu3O(6+delta) film growth on silicon with thin buffer layers has shown c orientation and Tc0 = 78 K.

  9. Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making

    DOEpatents

    Wu, X.; Coutts, T.J.; Sheldon, P.; Rose, D.H.

    1999-07-13

    A photovoltaic device is disclosed having a substrate, a layer of Cd[sub 2]SnO[sub 4] disposed on said substrate as a front contact, a thin film comprising two or more layers of semiconductor materials disposed on said layer of Cd[sub 2]SnO[sub 4], and an electrically conductive film disposed on said thin film of semiconductor materials to form a rear electrical contact to said thin film. The device is formed by RF sputter coating a Cd[sub 2]SnO[sub 4] layer onto a substrate, depositing a thin film of semiconductor materials onto the layer of Cd[sub 2]SnO[sub 4], and depositing an electrically conductive film onto the thin film of semiconductor materials. 10 figs.

  10. Layered Organization in the Coastal Ocean: 4-D Assessment of Thin Layer Structure, Dynamics and Impacts

    DTIC Science & Technology

    2009-09-30

    maintenance and dissipation of layers; (2) to understand the spatial coherence and spatial properties of thin layers in the coastal ocean (especially in...ORCAS profilers at K1 South and K2 had a Nortek ADV (Acoustic Doppler Velocity meter) for simultaneously measuring centimeter- scale currents and...year will be used to (1) detect the presence, intensity, thickness, temporal persistence, and spatial coherence of thin optical and acoustical layers

  11. A tri-layer thin film containing graphene oxide to protect zinc substrates from wear

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Gu, Zhengpeng; Yuan, Ningyi; Chu, Fuqiang; Cheng, Guanggui; Ding, Jianning

    2018-06-01

    Due to its excellent properties, Zn alloy is widely used in daily life. However, the poor wear-resisting properties of Zn alloys limits their application. In this paper, a tri-layer thin film consisting of 3-aminopropyltriethoxysilane (APS), graphene oxide (GO) and perfluoropolyethers (PFPE) were successfully prepared on the surface of Zn alloy to improve the wear-resisting properties. The as-prepared tri-layer thin films were characterized by atomic force microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy and contact angle measurement. In addition, the tribological properties of the as-prepared tri-layer thin films were studied on a ball-on-plate tribometer and the morphologies of worn surfaces were observed using 3D noncontact interferometric microscope. Compared with the control samples, the tri-layer thin films showed excellent friction-reducing and wear-resisting properties, which was attributed to the synergistic effect of the GO as the load-carrying layer and the PFPE as the lubricating layer.

  12. Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition

    PubMed Central

    Liang, Junsheng; Li, Pengfei; Wang, Dazhi; Fang, Xu; Ding, Jiahong; Wu, Junxiong; Tang, Chang

    2016-01-01

    Dense and crack-free barium titanate (BaTiO3, BTO) thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet) deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film. PMID:28787860

  13. MultiLayer solid electrolyte for lithium thin film batteries

    DOEpatents

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  14. Developments of the Physical and Electrical Properties of NiCr and NiCrSi Single-Layer and Bi-Layer Nano-Scale Thin-Film Resistors.

    PubMed

    Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu

    2016-02-25

    In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al₂O₃ and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value.

  15. Developments of the Physical and Electrical Properties of NiCr and NiCrSi Single-Layer and Bi-Layer Nano-Scale Thin-Film Resistors

    PubMed Central

    Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu

    2016-01-01

    In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al2O3 and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value. PMID:28344296

  16. Monitoring the layer-by-layer self-assembly of graphene and graphene oxide by spectroscopic ellipsometry.

    PubMed

    Zhou, Kai-Ge; Chang, Meng-Jie; Wang, Hang-Xing; Xie, Yu-Long; Zhang, Hao-Li

    2012-01-01

    Thin films of graphene oxide, graphene and copper (II) phthalocyanine dye have been successfully fabricated by electrostatic layer-by-layer (LbL) assembly approach. We present the first variable angle spectroscopic ellipsometry (VASE) investigation on these graphene-dye hybrid thin films. The thickness evaluation suggested that our LbL assembly process produces highly uniform and reproducible thin films. We demonstrate that the refractive indices of the graphene-dye thin films undergo dramatic variation in the range close to the absorption of the dyes. This investigation provides new insight to the optical properties of graphene containing thin films and shall help to establish an appropriate optical model for graphene-based hybrid materials.

  17. Influences of Indium Tin Oxide Layer on the Properties of RF Magnetron-Sputtered (BaSr)TiO3 Thin Films on Indium Tin Oxide-Coated Glass Substrate

    NASA Astrophysics Data System (ADS)

    Kim, Tae Song; Oh, Myung Hwan; Kim, Chong Hee

    1993-06-01

    Nearly stoichiometric ((Ba+Sr)/Ti=1.08-1.09) and optically transparent (BaSr)TiO3 thin films were deposited on an indium tin oxide (ITO)-coated glass substrate by means of rf magnetron sputtering for their application to the insulating layer of an electroluminescent flat panel display. The influence of the ITO layer on the properties of (BaSr)TiO3 thin films deposited on the ITO-coated substrate was investigated. The ITO layer did not affect the crystallographic orientation of (BaSr)TiO3 thin film, but enhanced the grain growth. Another effect of the ITO layer on (BaSr)TiO3 thin films was the interdiffusion phenomenon, which was studied by means of secondary ion mass spectrometry (SIMS). As the substrate temperature increased, interdiffusion intensified at the interface not only between the grown film and ITO layer but also between the ITO layer and base glass substrate. The refractive index (nf) of (BaSr)TiO3 thin film deposited on a bare glass substrate was 2.138-2.286, as a function of substrate temperature.

  18. Lateral interbody fusion combined with open posterior surgery for adult spinal deformity.

    PubMed

    Strom, Russell G; Bae, Junseok; Mizutani, Jun; Valone, Frank; Ames, Christopher P; Deviren, Vedat

    2016-12-01

    OBJECTIVE Lateral interbody fusion (LIF) with percutaneous screw fixation can treat adult spinal deformity (ASD) in the coronal plane, but sagittal correction is limited. The authors combined LIF with open posterior (OP) surgery using facet osteotomies and a rod-cantilever technique to enhance lumbar lordosis (LL). It is unclear how this hybrid strategy compares to OP surgery alone. The goal of this study was to evaluate the combination of LIF and OP surgery (LIF+OP) for ASD. METHODS All thoracolumbar ASD cases from 2009 to 2014 were reviewed. Patients with < 6 months follow-up, prior fusion, severe sagittal imbalance (sagittal vertical axis > 200 mm or pelvic incidence-LL > 40°), and those undergoing anterior lumbar interbody fusion were excluded. Deformity correction, complications, and outcomes were compared between LIF+OP and OP-only surgery patients. RESULTS LIF+OP (n = 32) and OP-only patients (n = 60) had similar baseline features and posterior fusion levels. On average, 3.8 LIFs were performed. Patients who underwent LIF+OP had less blood loss (1129 vs 1833 ml, p = 0.016) and lower durotomy rates (0% vs 23%, p = 0.002). Patients in the LIF+OP group required less ICU care (0.7 vs 2.8 days, p < 0.001) and inpatient rehabilitation (63% vs 87%, p = 0.015). The incidence of new leg pain, numbness, or weakness was similar between groups (28% vs 22%, p = 0.609). All leg symptoms resolved within 6 months, except in 1 OP-only patient. Follow-up duration was similar (28 vs 25 months, p = 0.462). LIF+OP patients had significantly less pseudarthrosis (6% vs 27%, p = 0.026) and greater improvement in visual analog scale back pain (mean decrease 4.0 vs 1.9, p = 0.046) and Oswestry Disability Index (mean decrease 21 vs 12, p = 0.035) scores. Lumbar coronal correction was greater with LIF+OP surgery (mean [± SD] 22° ± 13° vs 14° ± 13°, p = 0.010). LL restoration was 22° ± 13°, intermediately between OP-only with facet osteotomies (11° ± 7°, p < 0.001) and pedicle subtraction osteotomy (29° ± 10°, p = 0.045). CONCLUSIONS LIF+OP is an effective strategy for ASD of moderate severity. Compared with the authors' OP-only operations, LIF+OP was associated with faster recovery, fewer complications, and greater relief of pain and disability.

  19. Corrosion-resistant multilayer structures with improved reflectivity

    DOEpatents

    Soufli, Regina; Fernandez-Perea, Monica; Robinson, Jeff C.

    2013-04-09

    In one general embodiment, a thin film structure includes a substrate; a first corrosion barrier layer above the substrate; a reflective layer above the first corrosion barrier layer, wherein the reflective layer comprises at least one repeating set of sub-layers, wherein one of the sub-layers of each set of sub-layers being of a corrodible material; and a second corrosion barrier layer above the reflective layer. In another general embodiment, a system includes an optical element having a thin film structure as recited above; and an image capture or spectrometer device. In a further general embodiment, a laser according to one embodiment includes a light source and the thin film structure as recited above.

  20. Internal hypersonic flow. [in thin shock layer

    NASA Technical Reports Server (NTRS)

    Lin, T. C.; Rubin, S. G.

    1974-01-01

    An approach for studying hypersonic internal flow with the aid of a thin-shock-layer approximation is discussed, giving attention to a comparison of thin-shock-layer results with the data obtained on the basis of the imposition theory or a finite-difference integration of the Euler equations. Relations in the case of strong interaction are considered together with questions of pressure distribution and aspects of the boundary-layer solution.

  1. Methods for producing thin film charge selective transport layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria

    Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.

  2. Forkhead-Associated Domain of Yeast Xrs2, a Homolog of Human Nbs1, Promotes Nonhomologous End Joining Through Interaction With a Ligase IV Partner Protein, Lif1

    PubMed Central

    Matsuzaki, Kenichiro; Shinohara, Akira; Shinohara, Miki

    2008-01-01

    DNA double-strand breaks (DSB) are repaired through two different pathways, homologous recombination (HR) and nonhomologous end joining (NHEJ). Yeast Xrs2, a homolog of human Nbs1, is a component of the Mre11-Rad50-Xrs2 (MRX) complex required for both HR and NHEJ. Previous studies showed that the N-terminal forkhead-associated (FHA) domain of Xrs2/Nbs1 in yeast is not involved in HR, but is likely to be in NHEJ. In this study, we showed that the FHA domain of Xrs2 plays a critical role in efficient DSB repair by NHEJ. The FHA domain of Xrs2 specifically interacts with Lif1, a component of the ligase IV complex, Dnl4-Nej1-Lif1 (DNL). Lif1, which is phosphorylated in vivo, contains two Xrs2-binding regions. Serine 383 of Lif1 plays an important role in the interaction with Xrs2 as well as in NHEJ. Interestingly, the phospho-mimetic substitutions of serine 383 enhance the NHEJ activity of Lif1. Our results suggest that the phosphorylation of Lif1 at serine 383 is recognized by the Xrs2 FHA domain, which in turn may promote recruitment of the DNL complex to DSB for NHEJ. The interaction between Xrs2 and Lif1 through the FHA domain is conserved in humans; the FHA domain Nbs1 interacts with Xrcc4, a Lif1 homolog of human. PMID:18458108

  3. Al-/Ga-Doped ZnO Window Layers for Highly Efficient Cu₂ZnSn(S,Se)₄ Thin Film Solar Cells.

    PubMed

    Seo, Se Won; Seo, Jung Woo; Kim, Donghwan; Cheon, Ki-Beom; Lee, Doh-Kwon; Kim, Jin Young

    2018-09-01

    The successful use of Al-/Ga-doped ZnO (AGZO) thin films as a transparent conducting oxide (TCO) layer of a Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cell is demonstrated. The AGZO thin films were prepared by radio frequency (RF) sputtering. The structural, crystallographic, electrical, and optical properties of the AGZO thin films were systematically investigated. The photovoltaic properties of CZTSSe thin film solar cells incorporating the AGZO-based TCO layer were also reported. It has been found that the RF power and substrate temperature of the AGZO thin film are important factors determining the electrical, optical, and structural properties. The optimization process involving the RF power and the substrate temperature leads to good electrical and optical transmittance of the AGZO thin films. Finally, the CZTSSe solar cell with the AGZO TCO layer demonstrated a high conversion efficiency of 9.68%, which is higher than that of the conventional AZO counterpart by 12%.

  4. Growth and optical property characterization of textured barium titanate thin films for photonic applications

    NASA Astrophysics Data System (ADS)

    Dicken, Matthew J.; Diest, Kenneth; Park, Young-Bae; Atwater, Harry A.

    2007-03-01

    We have investigated the growth of barium titanate thin films on bulk crystalline and amorphous substrates utilizing biaxially oriented template layers. Ion beam-assisted deposition was used to grow thin, biaxially textured, magnesium oxide template layers on amorphous and silicon substrates. Growth of highly oriented barium titanate films on these template layers was achieved by molecular beam epitaxy using a layer-by-layer growth process. Barium titanate thin films were grown in molecular oxygen and in the presence of oxygen radicals produced by a 300 W radio frequency plasma. We used X-ray and in situ reflection high-energy electron diffraction (RHEED) to analyze the structural properties and show the predominantly c-oriented grains in the films. Variable angle spectroscopic ellipsometry was used to analyze and compare the optical properties of the thin films grown with and without oxygen plasma. We have shown that optical quality barium titanate thin films, which show bulk crystal-like properties, can be grown on any substrate through the use of biaxially oriented magnesium oxide template layers.

  5. White light emission from an exciplex interface with a single emitting layer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bernal, Wilson; Perez-Gutierrez, Enrique; Agular, Andres; Barbosa G, J. Oracio C.; Maldonado, Jose L.; Meneses-Nava, Marco Antonio; Rodriguez Rivera, Mario A.; Rodriguez, Braulio

    2017-02-01

    Efficient solid state lighting devices based in inorganic emissive materials are now available in the market meanwhile for organic emissive materials still a lot of research work is in its way. [1,2] In this work a new organic emissive material based on carbazole, N-(4-Ethynylphenyl) carba-zole-d4 (6-d4), is used as electron-acceptor and commercial PEDOT:PSS as the electron-donor to obtain white emission. Besides the HOMO-LUMO levels of materials the white emission showed dependence on the films thicknesses and applied voltages. In here it is reported that by diminishing the thickness of the PEDOT:PSS layer, from 60 to 35 nm, and by keeping the derivative carbazole layer constant at 100 nm the electro-luminescence (EL) changed from emissive exciton states to the mixture of emissive exciton and exciplex states. [3] For the former thicknesses no white light was obtained meanwhile for the later the EL spectra broadened due to the emission of exciplex states. Under this condition, the best-achieved CIE coordinate was (0.31,0.33) with a driving voltage of 8 V. To lower the driving voltage of the devices a thin film of LiF was added between the derivative of carbazol and cathode but the CIE coordinates changed. The best CIE coordinates for this case were (0.29, 0.34) and (0.32, 0.37) with driving voltage of about 6.5 V. Acknowledgments: CeMie-Sol/27 (Mexico) 207450 References [1] Timothy L Dawson, Society of Dyers and Colourists, Color. Technol., 126, 1-10 (2010), doi: 10.1111/j.1478-4408.2010.00220.x [2] G. M. Farinola, R. Ragni, Journal of Solid State Lighting, 2:9 (2015), doi: 10.1186/s40539-015-0028-7. [3] E. Angioni, et al, J. Mater. Chem. C, 2016, 4, 3851, doi: 10.1039/c6tc00750c.

  6. Disruption of THY-1 signaling in alveolar lipofibroblasts in experimentally induced congenital diaphragmatic hernia.

    PubMed

    Friedmacher, Florian; Hofmann, Alejandro Daniel; Takahashi, Hiromizu; Takahashi, Toshiaki; Gosemann, Jan-Hendrik; Puri, Prem

    2014-02-01

    Pulmonary hypoplasia (PH), characterized by alveolar immaturity, remains the main cause of neonatal mortality and long-term morbidity in infants with congenital diaphragmatic hernia (CDH). Lipid-containing interstitial fibroblasts (LIFs) are critically important for normal alveolar development. Thymocyte antigen 1 (Thy-1) is a highly expressed cell-surface protein in this specific subset of lung fibroblasts, which plays a key role in fetal alveolarization by coordinating the differentiation and lipid homeostasis of alveolar LIFs. Thy-1 increases the lipid content of LIFs by upregulation of adipocyte differentiation-related protein (ADRP), a lipogenic molecular marker characterizing pulmonary LIFs. Thy-1 (-/-) mice further show impaired alveolar development with reduced proliferation of pulmonary LIFs, resulting in a PH-similar phenotype. We hypothesized that pulmonary Thy-1 signaling is disrupted in experimentally induced CDH, which may has an adverse effect on the lipid content of alveolar LIFs. Timed-pregnant Sprague-Dawley rats were treated with either 100 mg nitrofen or vehicle on embryonic day 9.5 (E9.5). Fetuses were killed on E21.5, and lungs were divided into controls (n = 14) and CDH-associated PH (n = 14). Pulmonary gene expression levels of Thy-1 and ADRP were assessed by quantitative real-time PCR. ADRP immunohistochemistry and oil-red-O staining were used to localize alveolar LIF expression and lipid droplets. Immunofluorescence double staining for Thy-1 and oil-red-O was performed to evaluate Thy-1 expression and lipid content in alveolar LIFs. Radial alveolar count was significantly reduced in CDH-associated PH with significant downregulation of pulmonary Thy-1 and ADRP mRNA expression compared to controls. ADRP immunoreactivity and lipid droplets were markedly diminished in alveolar interstitial cells, which coincided with decreased alveolar LIF expression in CDH-associated PH compared to controls. Confocal laser scanning microscopy confirmed markedly decreased Thy-1 expression and lipid content in alveolar LIFs of CDH-associated PH compared to controls. Our study provides strong evidence that disruption of pulmonary Thy-1 signaling results in reduced lipid droplets in alveolar LIFs and may thus contribute to PH in the nitrofen-induced CDH model. Treatment modalities aimed at increasing lipid content in alveolar LIFs may therefore have a therapeutic potential in attenuating CDH-associated PH.

  7. Effect of different coating layer on the topography and optical properties of ZnO nanostructured

    NASA Astrophysics Data System (ADS)

    Mohamed, R.; Mamat, M. H.; Malek, M. F.; Ismail, A. S.; Yusoff, M. M.; Asiah, M. N.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    Magnesium (Mg) and aluminum (Al) co-doped zinc oxide (MAZO) thin films were synthesized on glass substrate by sol-gel spin coating method. MAZO thin films were prepared at different coating layers range from 1 to 9. Atomic Force Microscopy (AFM) was used to investigate the topography of the thin films. According to the AFM results, Root Means Square (RMS) of MAZO thin films was increased from 0.747 to 6.545 nm, with increase of number coating layer from 1 to 9, respectively. The results shown the variation on structural and topography properties of MAZO seed film when it's deposited at different coating layers on glass substrate. The optical properties was analyzed using UV-Vis spectroscopy. The obtained results show that the transmittance spectra was increased as thin films coating layer increases.

  8. Laser-induced fluorescence spectroscopy for improved chemical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelbwachs, J.A.

    1983-09-01

    This report summarizes the progress achieved over the past five years in the laser-induced fluorescence spectroscopy (LIFS) for improved chemical analysis program. Our initial efforts yielded significantly lower detection limits for trace elemental analysis by the use of both cw and pulsed laser excitations. New methods of LIFS were developed that were shown to overcome many of the traditional limitations to LIFS techniques. LIFS methods have been applied to yield fundamental scientific data that further the understanding of forces between atoms and other atoms and molecules. In recent work, two-photon ionization was combined with LIFS and applied, for the firstmore » time, to the study of energy transfer in ions.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koepke, Mark

    Collaborative research between WVU and PPPL was carried out at WVU for the purpose of incorporating the sophisticated diagnostic technique known as laser-induced fluorescence (LIF) in the Paul-Trap Simulation Experiment (PTSX) at PPPL. WVU assembled a LIF system at WVU, transported it to PPPL, helped make LIF experiments on the PTSX device, participated in PTSX science, and trained PPPL staff in LIF techniques. In summary, WVU refurbished a non-operational LIF system being loaned from University of Maryland to PPPL and, by doing so, provided PPPL with additional diagnostic capability for its PTSX device and other General Plasma Science experiments. WVUmore » students, staff, and faculty will visit PPPL to collaborate on PTSX experiments in the future.« less

  10. Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Zhao, K. G.; Wang, L. F.; Xue, C.; Ye, W. H.; Wu, J. F.; Ding, Y. K.; Zhang, W. Y.

    2018-03-01

    On the basis of the thin layer approximation [Ott, Phys. Rev. Lett. 29, 1429 (1972)], a revised thin layer model for incompressible Rayleigh-Taylor instability has been developed to describe the deformation and nonlinear evolution of the perturbed interface. The differential equations for motion are obtained by analyzing the forces (the gravity and pressure difference) of fluid elements (i.e., Newton's second law). The positions of the perturbed interface are obtained from the numerical solution of the motion equations. For the case of vacuum on both sides of the layer, the positions of the upper and lower interfaces obtained from the revised thin layer approximation agree with that from the weakly nonlinear (WN) model of a finite-thickness fluid layer [Wang et al., Phys. Plasmas 21, 122710 (2014)]. For the case considering the fluids on both sides of the layer, the bubble-spike amplitude from the revised thin layer model agrees with that from the WN model [Wang et al., Phys. Plasmas 17, 052305 (2010)] and the expanded Layzer's theory [Goncharov, Phys. Rev. Lett. 88, 134502 (2002)] in the early nonlinear growth regime. Note that the revised thin layer model can be applied to investigate the perturbation growth at arbitrary Atwood numbers. In addition, the large deformation (the large perturbed amplitude and the arbitrary perturbed distributions) in the initial stage can also be described by the present model.

  11. Two-dimensional models for the optical response of thin films

    NASA Astrophysics Data System (ADS)

    Li, Yilei; Heinz, Tony F.

    2018-04-01

    In this work, we present a systematic study of 2D optical models for the response of thin layers of material under excitation by normally incident light. The treatment, within the framework of classical optics, analyzes a thin film supported by a semi-infinite substrate, with both the thin layer and the substrate assumed to exhibit local, isotropic linear response. Starting from the conventional three-dimensional (3D) slab model of the system, we derive a two-dimensional (2D) sheet model for the thin film in which the optical response is described by a sheet optical conductivity. We develop criteria for the applicability of this 2D sheet model for a layer with an optical thickness far smaller than the wavelength of the light. We examine in detail atomically thin semi-metallic and semiconductor van-der-Waals layers and ultrathin metal films as representative examples. Excellent agreement of the 2D sheet model with the 3D slab model is demonstrated over a broad spectral range from the radio frequency limit to the near ultraviolet. A linearized version of system response for the 2D model is also presented for the case where the influence of the optically thin layer is sufficiently weak. Analytical expressions for the applicability and accuracy of the different optical models are derived, and the appropriateness of the linearized treatment for the materials is considered. We discuss the advantages, as well as limitations, of these models for the purpose of deducing the optical response function of the thin layer from experiment. We generalize the theory to take into account in-plane anisotropy, layered thin film structures, and more general substrates. Implications of the 2D model for the transmission of light by the thin film and for the implementation of half- and totally absorbing layers are discussed.

  12. Novel Preclinical Testing Strategies for Treatment of Metastatic Pheochromocytoma

    DTIC Science & Technology

    2014-09-01

    normal neural stem cells based on the Additions to Basic medium + 10% FBS + 1mM Hydrocortisone 1% BSA + 1mM Hydrocortisone None 0 0 BME 0 0 LIF...proliferation of tumor cells under any condition tested Trichostatin A LIF 1000 IU/mL Hydrocortisone 1 µM LIF 1000 IU/mL + Hydrocortisone 1 µM...deacetylase inhibitor trichostatin A or leukemia inhibiting factor (LIF), which are reported to maintain “stemness”. Hydrocortisone is a survival

  13. Time-Synchronized Continuous Wave Laser Induced Fluorescence Velocity Measurements of a 600 Watt Hall Thruster

    DTIC Science & Technology

    2015-07-01

    channel and near- field plume region of a 600 W Hall thruster operating on xenon. Results show significant fluctuations in LIF signal intensity... LIF signal intensity (corre- lated with the density of the probed excited metastable state) in time during the discharge current cycle, with the peak...fluorescence ( LIF ).1 LIF provides the opportunity to investigate plasma sources non-intrusively with higher spatial resolution (typically < 1 mm) than

  14. Low-Impact Flooring: Does It Reduce Fall-Related Injuries?

    PubMed

    Hanger, H Carl

    2017-07-01

    To compare fall rates and injuries from falls on low-impact flooring (LIF) compared with a standard vinyl flooring. Prospective, observational, nonrandomized controlled study. Subacute Older Persons Health ward (N = 20 beds). Older inpatients. Three different types of LIF. All falls in the ward were prospectively monitored using incident reporting, noting location and consequences of each fall. Fall rates (per 1000 bed days) and injuries, were compared between bedroom falls on LIF against those occurring on standard vinyl flooring (controls). Over 31 months, there were 278 bedroom falls (from 178 fallers). The bedroom fall rate (falls per 1000 bed days occupied) did not differ between the LIF and control groups (median 15 [IQR 8-18] versus 17 [IQR 9-23], respectively; P = .47). However, fall-related injuries were significantly less frequent when they occurred on LIFs (22% of falls versus 34% of falls on control flooring; P = .02). Fractures occurred in 0.7% of falls in the LIF cohort versus 2.3% in the control cohort. Rolling resistance when moving heavier equipment, such as beds or hoists, was an issue for staff on LIF. LIF significantly reduced fall-related injuries compared with a standard vinyl flooring, whereas they did not alter the overall risk of falling. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  15. Leukemia inhibitory factor: a novel bone-active cytokine.

    PubMed

    Reid, L R; Lowe, C; Cornish, J; Skinner, S J; Hilton, D J; Willson, T A; Gearing, D P; Martin, T J

    1990-03-01

    A number of cytokines have been found to be potent regulators of bone resorption and to share the properties originally attributed to osteoclast-activating factor. One such activity, differentiation-inducing factor (DIF, D-factor) from mouse spleen cells, shares a number of biological and biochemical properties with the recently characterized and cloned leukemia inhibitory factor (LIF). We have assessed the effects of recombinant LIF on bone resorption and other parameters in neonatal mouse calvaria. Both recombinant murine and human (h) LIFs stimulated 45Ca release from prelabeled calvaria in a dose-dependent manner. The increase in bone resorption was associated with an increase in the number of osteoclasts per mm2 bone. The osteolytic effect of hLIF were blocked by 10(-7) M indomethacin. hLIF also stimulated incorporation of [3H] thymidine into calvaria, but the dose-response relationship was distinct from that for bone resorption, and this effect was not blocked by indomethacin. Similarly, hLIF increased [3H]phenylalanine incorporation into calvaria, and this was also not inhibited by indomethacin. It is concluded that LIF stimulates bone resorption by a mechanism involving prostaglandin production, but that a distinct mechanism is responsible for its stimulation of DNA and protein synthesis. The primary structure of LIF differs from that of other fully characterized, bone-active cytokines, and it, thus, represents a novel factor which may be involved in the normal regulation of bone cell function.

  16. Dietary Factors Modulate Iron Uptake in Caco-2 Cells from an Iron Ingot Used as a Home Fortificant to Prevent Iron Deficiency

    PubMed Central

    Rodriguez-Ramiro, Ildefonso; Perfecto, Antonio; Fairweather-Tait, Susan J.

    2017-01-01

    Iron deficiency is a major public health concern and nutritional approaches are required to reduce its prevalence. The aim of this study was to examine the iron bioavailability of a novel home fortificant, the “Lucky Iron Fish™” (LIF) (www.luckyironfish.com/shop, Guelph, Canada) and the impact of dietary factors and a food matrix on iron uptake from LIF in Caco-2 cells. LIF released a substantial quantity of iron (about 1.2 mM) at pH 2 but this iron was only slightly soluble at pH 7 and not taken up by cells. The addition of ascorbic acid (AA) maintained the solubility of iron released from LIF (LIF-iron) at pH 7 and facilitated iron uptake by the cells in a concentration-dependent manner. In vitro digestion of LIF-iron in the presence of peas increased iron uptake 10-fold. However, the addition of tannic acid to the digestion reduced the cellular iron uptake 7.5-fold. Additionally, LIF-iron induced an overproduction of reactive oxygen species (ROS), similar to ferrous sulfate, but this effect was counteracted by the addition of AA. Overall, our data illustrate the major influence of dietary factors on iron solubility and bioavailability from LIF, and demonstrate that the addition of AA enhances iron uptake and reduces ROS in the intestinal lumen. PMID:28895913

  17. Initial formation of calcite crystals in the thin prismatic layer with the periostracum of Pinctada fucata.

    PubMed

    Suzuki, Michio; Nakayama, Seiji; Nagasawa, Hiromichi; Kogure, Toshihiro

    2013-02-01

    Although the formation mechanism of calcite crystals in the prismatic layer has been studied well in many previous works, the initial state of calcite formation has not been observed in detail using electron microscopes. In this study, we report that the soft prismatic layer with transparent color (the thin prismatic layer) in the tip of the fresh shell of Pinctada fucata was picked up to observe the early calcification phase. A scanning electron microscope (SEM) image showed that the growth tip of the thin prismatic layer was covered by the periostracum, which was also where the initial formation of calcite crystals began. A cross-section containing the thin calcite crystals in the thin prismatic layer with the periostracum was made using a focused ion beam (FIB) system. In a transmission electron microscope (TEM) observation, the thin calcite crystal (thickness is about 1μm) on the periostracum was found to be a single crystal with the c-axis oriented perpendicular to the shell surface. On the other hand, many aggregated small particles consisting of bassanite crystals were observed in the periostracum suggesting the possibility that not only organic sulfate but also inorganic sulfates exist in the prismatic layer. These discoveries in the early calcification phase of the thin prismatic layer may help to clarify the mechanism of regulating the nucleation and orientation of the calcite crystal in the shell. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Buffer layers for high-Tc thin films on sapphire

    NASA Technical Reports Server (NTRS)

    Wu, X. D.; Foltyn, S. R.; Muenchausen, R. E.; Cooke, D. W.; Pique, A.; Kalokitis, D.; Pendrick, V.; Belohoubek, E.

    1992-01-01

    Buffer layers of various oxides including CeO2 and yttrium-stabilized zirconia (YSZ) have been deposited on R-plane sapphire. The orientation and crystallinity of the layers were optimized to promote epitaxial growth of YBa2Cu3O(7-delta) (YBCO) thin films. An ion beam channeling minimum yield of about 3 percent was obtained in the CeO2 layer on sapphire, indicating excellent crystallinity of the buffer layer. Among the buffer materials used, CeO2 was found to be the best one for YBCO thin films on R-plane sapphire. High Tc and Jc were obtained in YBCO thin films on sapphire with buffer layers. Surface resistances of the YBCO films were about 4 mOmega at 77 K and 25 GHz.

  19. Layered ultra-thin coherent structures used as electrical resistors having low-temperature coefficient of resistivity

    DOEpatents

    Werner, T.R.; Falco, C.M.; Schuller, I.K.

    1982-08-31

    A thin film resistor having a controlled temperature coefficient of resistance (TCR) ranging from negative to positive degrees kelvin and having relatively high resistivity. The resistor is a multilayer superlattice crystal containing a plurality of alternating, ultra-thin layers of two different metals. TCR is varied by controlling the thickness of the individual layers. The resistor can be readily prepared by methods compatible with thin film circuitry manufacturing techniques.

  20. A Comparison of Laser Induced Florescence and Continuous Wave Ring Down Spectroscopy Measurements of Argon Ion and Neutral VDFs in a Helicon Plasma

    NASA Astrophysics Data System (ADS)

    McCarren, Dustin; Vandervort, Robert; Carr, Jerry, Jr.; Scime, Earl

    2012-10-01

    In this work, we compare two spectroscopic methods for measuring the velocity distribution functions (VDFs) of argon ions and neutrals in a helicon plasma: laser induced florescence (LIF) and continuous wave cavity ring down spectroscopy (CW-CRDS). An established and powerful technique, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density. In most cases, this requirement limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. However, CRDS is a line integrated technique that lacks the spatial resolution of LIF. CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique and when combined with a CW diode laser that has a sufficiently narrow linewidth, the Doppler broadened absorption line, i.e., the VDFs, can be measured. We present CW-CRDS and LIF measurements of the VDFs in an argon plasma using the 668.614 nm (in vacuum) line of Ar II and the 667.9125 nm (in vacuum) line of Ar I.

  1. Effect of ZnO buffer layer on phase transition properties of vanadium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Huiqun; Li, Lekang; Li, Chunbo

    2016-03-01

    VO2 thin films were prepared on ZnO buffer layers by DC magnetron sputtering at room temperature using vanadium target and post annealing at 400 °C. The ZnO buffer layers with different thickness deposited on glass substrates by magnetron sputtering have a high visible and near infrared optical transmittance. The electrical resistivity and the phase transition properties of the VO2/ZnO composite thin films in terms of temperature were investigated. The results showed that the resistivity variation of VO2 thin film with ZnO buffer layer deposited for 35 min was 16 KΩ-cm. The VO2/ZnO composite thin films exhibit a reversible semiconductor-metal phase transition at 48 °C.

  2. Thin-Layer Fuel Cell for Teaching and Classroom Demonstrations

    ERIC Educational Resources Information Center

    Shirkhanzadeh, M.

    2009-01-01

    A thin-layer fuel cell is described that is simple and easy to set up and is particularly useful for teaching and classroom demonstrations. The cell is both an electrolyzer and a fuel cell and operates using a thin layer of electrolyte with a thickness of approximately 127 micrometers and a volume of approximately 40 microliters. As an…

  3. Optical characterizations of silver nanoprisms embedded in polymer thin film layers

    NASA Astrophysics Data System (ADS)

    Carlberg, Miriam; Pourcin, Florent; Margeat, Olivier; Le Rouzo, Judikael; Berginc, Gerard; Sauvage, Rose-Marie; Ackermann, Jorg; Escoubas, Ludovic

    2017-10-01

    The precise control of light-matter interaction has a wide range of applications and is currently driven by the use of nanoparticles (NPs) by the recent advances in nanotechnology. Taking advantage of the material, size, shape, and surrounding media dependence of the optical properties of plasmonic NPs, thin film layers with tunable optical properties are achieved. The NPs are synthesized by wet chemistry and embedded in a polyvinylpyrrolidone (PVP) polymer thin film layer. Spectrophotometer and spectroscopic ellipsometry measurements are coupled to finite-difference time domain numerical modeling to optically characterize the heterogeneous thin film layers. Silver nanoprisms of 10 to 50 nm edge size exhibit high absorption through the visible wavelength range. A simple optical model composed of a Cauchy law and a Lorentz law, accounting for the optical properties of the nonabsorbing polymer and the absorbing property of the nanoprisms, fits the spectroscopic ellipsometry measurements. Knowing the complex optical indices of heterogeneous thin film layers let us design layers of any optical properties.

  4. Extracting elastic properties of an atomically thin interfacial layer by time-domain analysis of femtosecond acoustics

    NASA Astrophysics Data System (ADS)

    Chen, H.-Y.; Huang, Y.-R.; Shih, H.-Y.; Chen, M.-J.; Sheu, J.-K.; Sun, C.-K.

    2017-11-01

    Modern devices adopting denser designs and complex 3D structures have created much more interfaces than before, where atomically thin interfacial layers could form. However, fundamental information such as the elastic property of the interfacial layers is hard to measure. The elastic property of the interfacial layer is of great importance in both thermal management and nano-engineering of modern devices. Appropriate techniques to probe the elastic properties of interfacial layers as thin as only several atoms are thus critically needed. In this work, we demonstrated the feasibility of utilizing the time-resolved femtosecond acoustics technique to extract the elastic properties and mass density of a 1.85-nm-thick interfacial layer, with the aid of transmission electron microscopy. We believe that this femtosecond acoustics approach will provide a strategy to measure the absolute elastic properties of atomically thin interfacial layers.

  5. A phase I study of recombinant human leukemia inhibitory factor in patients with advanced cancer.

    PubMed

    Gunawardana, Dishan H; Basser, Russell L; Davis, Ian D; Cebon, Jonathan; Mitchell, Paul; Underhill, Craig; Kilpatrick, Trevor J; Reardon, Katrina; Green, Michael D; Bardy, Peter; Amor, Pene; Crump, David; Ng, Siobhan; Nation, Roger L; Begley, C Glenn

    2003-06-01

    Leukemia inhibitory factor (LIF) is a pleiotropic molecule of the interleukin 6 family of cytokines. We aimed to examine the safety, pharmacokinetics, and biological effects of recombinant human LIF (rhLIF, emfilermin) in patients with advanced cancer. In stage 1 of the study, 34 patients received rhLIF or placebo (3:1 ratio) at doses of 0.25-16.0 micro g/kg/day or 4.0 micro g/kg three times daily for 7 days. In stage 2, 40 patients received rhLIF or placebo, either once daily for 14 days commencing the day after chemotherapy (0.25-8.0 micro g/kg/day) or for 7 days commencing the day before chemotherapy (4.0 micro g/kg three times daily). The chemotherapy was cisplatin 75 mg/m(2) and paclitaxel 135 mg/m(2). In stage 1, platelet counts increased in most patients, including those who received placebo. Blood progenitor cells increased in response to rhLIF. In stage 2, platelet recovery to baseline levels was earlier for patients receiving higher doses of rhLIF (>/=4.0 micro g/kg/day; P = 0.02). The neutrophil nadir after chemotherapy was less severe in patients receiving >/=4.0 micro g/kg/day of rhLIF. In stages 1 and 2, increases in C reactive protein were seen at higher doses. Several patients developed evidence of autonomic dysfunction, in particular impotence and episodic hypotension. The dose-limiting toxicities were hypotension and rigors. Pharmacokinetic studies demonstrated a short half-life (1-5 h) independent of dose. We demonstrated a biological effect of rhLIF on blood progenitor cells, C reactive protein levels, and hemopoietic recovery after chemotherapy.

  6. Laser-induced-fluorescence spectroscopy for improved chemical analysis. Progress report, 1978-1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelbwachs, J.A.

    1983-09-01

    This report summarizes the progress achieved over the past five years in the laser-induced fluorescence spectroscopy (LIFS) for improved chemical analysis program. Our initial efforts yielded significantly lower detection limits for trace elemental analysis by the use of both cw and pulsed laser excitations. New methods of LIFS were developed that were shown to overcome many of the traditional limitations to LIFS techniques. LIFS methods have been applied to yield fundamental scientific data that further the understanding of forces between atoms and other atoms and molecules. In recent work, two-photon ionization was combined with LIFS and applied, for the firstmore » time, to the study of energy transfer in ions.« less

  7. Laser-induced-fluorescence spectroscopy for improved chemical analysis. Progress report, 1978-1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelbwachs, J.A.

    1983-09-01

    This report summarizes the progress achieved over the past five years in the laser-induced-fluorescence spectroscopy (LIFS) for improved chemical-analysis program. Our initial efforts yielded significantly lower detection limits for trace elemental analysis by the use of both cw and pulsed-laser excitations. New methods of LIFS were developed that were shown to overcome many of the traditional limitations to LIFS techniques. LIFS methods have been applied to yield fundamental scientific data that further the understanding of forces between atoms and other atoms and molecules. In recent work, two-photon ionization was combined with LIFS and applied, for the first time, to themore » study of energy transfer in ions.« less

  8. Determination of the Mass Absorption Coefficient in Two-Layer Ti/V and V/Ti Thin Film Systems by the X-Ray Fluorescence Method

    NASA Astrophysics Data System (ADS)

    Mashin, N. I.; Chernyaeva, E. A.; Tumanova, A. N.; Gafarova, L. M.

    2016-03-01

    A new XRF procedure for the determination of the mass absorption coefficient in thin film Ti/V and V/Ti two-layer systems has been proposed. The procedure uses easy-to-make thin-film layers of sputtered titanium and vanadium on a polymer film substrate. Correction coefficients have been calculated that take into account attenuation of primary radiation of the X-ray tube, as well as attenuation of the spectral line of the bottom layer element in the top layer.

  9. Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A-X excitation schemes

    NASA Astrophysics Data System (ADS)

    Bessler, Wolfgang G.; Schulz, Christof; Lee, Tonghun; Jeffries, Jay B.; Hanson, Ronald K.

    2003-08-01

    Laser-induced fluorescence (LIF) has proven a reliable technique for nitric oxide (NO) diagnostics in practical combustion systems. However, a wide variety of different excitation and detection strategies are proposed in the literature without giving clear guidelines of which strategies to use for a particular diagnostic situation. We give a brief review of the high-pressure NO LIF diagnostics literature and compare strategies for exciting selected transitions in the A-X(0, 0), (0, 1), and (0, 2) bands using a different detection bandpass. The strategies are compared in terms of NO LIF signal strength, attenuation of laser and signal light in the hot combustion gases, signal selectivity against LIF interference from O2 and CO2, and temperature and pressure sensitivity of the LIF signal. The discussion is based on spectroscopic measurements in laminar premixed methane-air flames at pressures between 1 and 60 bars and on NO and O2 LIF spectral simulations.

  10. High Performance and Highly Reliable ZnO Thin Film Transistor Fabricated by Atomic Layer Deposition for Next Generation Displays

    DTIC Science & Technology

    2011-08-19

    zinc oxide ( ZnO ) thin film as an active channel layer in TFT has become of great interest owing to their specific...630-0192 Japan Phone: +81-743-72-6060 Fax: +81-743-72-6069 E-mail: uraoka@ms.naist.jp Keywords: zinc oxide , thin film transistors , atomic layer...deposition Symposium topic: Transparent Semiconductors Oxides [Abstract] In this study, we fabricated TFTs using ZnO thin film as the

  11. Domain matched epitaxial growth of (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} thin films on (0001) Al{sub 2}O{sub 3} with ZnO buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnaprasad, P. S., E-mail: pskrishnaprasu@gmail.com, E-mail: mkj@cusat.ac.in; Jayaraj, M. K., E-mail: pskrishnaprasu@gmail.com, E-mail: mkj@cusat.ac.in; Antony, Aldrin

    2015-03-28

    Epitaxial (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown by pulsed laser deposition on (0001) Al{sub 2}O{sub 3} substrate with ZnO as buffer layer. The x-ray ω-2θ, Φ-scan and reciprocal space mapping indicate epitaxial nature of BST thin films. The domain matched epitaxial growth of BST thin films over ZnO buffer layer was confirmed using Fourier filtered high resolution transmission electron microscope images of the film-buffer interface. The incorporation of ZnO buffer layer effectively suppressed the lattice mismatch and promoted domain matched epitaxial growth of BST thin films. Coplanar inter digital capacitors fabricated on epitaxial (111) BSTmore » thin films show significantly improved tunable performance over polycrystalline thin films.« less

  12. Experimental Study of Acid Treatment Toward Characterization of Structural, Optical, and Morphological Properties of TiO2-SnO2 Composite Thin Film

    NASA Astrophysics Data System (ADS)

    Fajar, M. N.; Hidayat, R.; Triwikantoro; Endarko

    2018-04-01

    The TiO2-SnO2 thin film with single and double-layer structure has successfully synthesized on FTO (Fluorine-doped Tin Oxide) substrate using the screen printing technique. The structural, optical, and morphological properties of the film were investigated by XRD, UV-Vis, and SEM, respectively. The results showed that the single and double-layer structure of TiO2-SnO2 thin film has mixed phase with a strong formation of casseritte phase. The acid treatment effect on TiO2-SnO2 thin film decreases the peak intensity of anatase phase formation and thin film’s absorbance values. The morphological study is also revealed that the single layer TiO2-SnO2 thin film had a more porous nature and decreased particle size distribution after acid treatment, while the double-layer TiO2-SnO2 thin film Eroded due to acid treatment.

  13. Nanopore thin film enabled optical platform for drug loading and release.

    PubMed

    Song, Chao; Che, Xiangchen; Que, Long

    2017-08-07

    In this paper, a drug loading and release device fabricated using nanopore thin film and layer-by-layer (LbL) nanoassembly is reported. The nanopore thin film is a layer of anodic aluminum oxide (AAO), consisting of honeycomb-shape nanopores. Using the LbL nanoassembly process, the drug, using gentamicin sulfate (GS) as the model, can be loaded into the nanopores and the stacked layers on the nanopore thin film surface. The drug release from the device is achieved by immersing it into flowing DI water. Both the loading and release processes can be monitored optically. The effect of the nanopore size/volume on drug loading and release has also been evaluated. Further, the neuron cells have been cultured and can grow normally on the nanopore thin film, verifying its bio-compatibility. The successful fabrication of nanopore thin film device on silicon membrane render it as a potential implantable controlled drug release device.

  14. Surface passivation investigation on ultra-thin atomic layer deposited aluminum oxide layers for their potential application to form tunnel layer passivated contacts

    NASA Astrophysics Data System (ADS)

    Xin, Zheng; Ling, Zhi Peng; Nandakumar, Naomi; Kaur, Gurleen; Ke, Cangming; Liao, Baochen; Aberle, Armin G.; Stangl, Rolf

    2017-08-01

    The surface passivation performance of atomic layer deposited ultra-thin aluminium oxide layers with different thickness in the tunnel layer regime, i.e., ranging from one atomic cycle (∼0.13 nm) to 11 atomic cycles (∼1.5 nm) on n-type silicon wafers is studied. The effect of thickness and thermal activation on passivation performance is investigated with corona-voltage metrology to measure the interface defect density D it(E) and the total interface charge Q tot. Furthermore, the bonding configuration variation of the AlO x films under various post-deposition thermal activation conditions is analyzed by Fourier transform infrared spectroscopy. Additionally, poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) is used as capping layer on ultra-thin AlO x tunneling layers to further reduce the surface recombination current density to values as low as 42 fA/cm2. This work is a useful reference for using ultra-thin ALD AlO x layers as tunnel layers in order to form hole selective passivated contacts for silicon solar cells.

  15. High-Power Ion Thruster Technology

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Matossian, J. N.

    1996-01-01

    Performance data are presented for the NASA/Hughes 30-cm-diam 'common' thruster operated over the power range from 600 W to 4.6 kW. At the 4.6-kW power level, the thruster produces 172 mN of thrust at a specific impulse of just under 4000 s. Xenon pressure and temperature measurements are presented for a 6.4-mm-diam hollow cathode operated at emission currents ranging from 5 to 30 A and flow rates of 4 sccm and 8 sccm. Highly reproducible results show that the cathode temperature is a linear function of emission current, ranging from approx. 1000 C to 1150 C over this same current range. Laser-induced fluorescence (LIF) measurements obtained from a 30-cm-diam thruster are presented, suggesting that LIF could be a valuable diagnostic for real-time assessment of accelerator-arid erosion. Calibration results of laminar-thin-film (LTF) erosion badges with bulk molybdenum are presented for 300-eV xenon, krypton, and argon sputtering ions. Facility-pressure effects on the charge-exchange ion current collected by 8-cm-diam and 30-cm-diam thrusters operated on xenon propellant are presented to show that accel current is nearly independent of facility pressure at low pressures, but increases rapidly under high-background-pressure conditions.

  16. Validation of a time-resolved fluorescence spectroscopy apparatus in a rabbit atherosclerosis model

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin; Jo, Javier A.; Papaioannou, Thanassis; Dorafshar, Amir; Reil, Todd; Qiao, Jian-Hua; Fishbein, Michael C.; Freischlag, Julie A.; Marcu, Laura

    2004-07-01

    Time-resolved laser-induced fluorescence spectroscopy (tr-LIFS) has been studied as a potential tool for in vivo diagnosis of atherosclerotic lesions. This study is to evaluate the potential of a compact fiber-optics based tr-LIFS instrument developed in our laboratory for in vivo analysis of atherosclerotic plaque composition. Time-resolved fluorescence spectroscopy studies were performed in vivo on fifteen New Zealand White rabbits (atherosclerotic: N=8, control: N=7). Time-resolved fluorescence spectra were acquired (range: 360-600 nm, increment: 5 nm, total acquisition time: 65 s) from normal aorta wall and lesions in the abdominal aorta. Data were analyzed in terms of fluorescence emission spectra and wavelength specific lifetimes. Following trichrome staining, tissue specimens were analyzed histopathologically in terms of intima/media thickness and biochemical composition (collagen, elastin, foam cells, and etc). Based on intimal thickness, the lesions were divided into thin and thick lesions. Each group was further separated into two categories: collagen rich lesions and foam cell rich lesions based on their biochemical composition. The obtained spectral and time domain fluorescence signatures were subsequently correlated to the histopathological findings. The results have shown that time-domain fluorescence spectral features can be used in vivo to separate atherosclerotic lesions from normal aorta wall as well discrimination within certain types of lesions.

  17. The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes

    DOE PAGES

    Schroder, Kjell; Li, Juchuan; Dudney, Nancy J.; ...

    2015-08-03

    Fluoroethylene carbonate (FEC) has become a standard electrolyte additive for use with silicon negative electrodes, but how FEC affects solid electrolyte interphase (SEI) formation on the silicon anode’s surface is still not well understood. Herein, SEI formed from LiPF6-based carbonate electrolytes, with and without FEC, were investigated on 50 nm thick amorphous silicon thin film electrodes to understand the role of FEC on silicon electrode surface reactions. In contrast to previous work, anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films. This allowed for accurate characterization of the SEI structure and composition bymore » X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry depth profiling. These results show that FEC reduction leads to fluoride ion and LiF formation, consistent with previous computational and experimental results. Surprisingly, we also find that these species decrease lithium-ion solubility and increase the reactivity of the silicon surface. We conclude that the effectiveness of FEC at improving the Coulombic efficiency and capacity retention is due to fluoride ion formation from reduction of the electrolyte, which leads to the chemical attack of any silicon-oxide surface passivation layers and the formation of a kinetically stable SEI comprising predominately lithium fluoride and lithium oxide.« less

  18. Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate

    PubMed Central

    2013-01-01

    Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques. PMID:23448090

  19. Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate.

    PubMed

    Wei, Xianqi; Zhao, Ranran; Shao, Minghui; Xu, Xijin; Huang, Jinzhao

    2013-02-28

    Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques.

  20. Conductive layer for biaxially oriented semiconductor film growth

    DOEpatents

    Findikoglu, Alp T.; Matias, Vladimir

    2007-10-30

    A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.

  1. Unexpected structural and magnetic depth dependence of YIG thin films

    NASA Astrophysics Data System (ADS)

    Cooper, J. F. K.; Kinane, C. J.; Langridge, S.; Ali, M.; Hickey, B. J.; Niizeki, T.; Uchida, K.; Saitoh, E.; Ambaye, H.; Glavic, A.

    2017-09-01

    We report measurements on yttrium iron garnet (YIG) thin films grown on both gadolinium gallium garnet (GGG) and yttrium aluminum garnet (YAG) substrates, with and without thin Pt top layers. We provide three principal results: the observation of an interfacial region at the Pt/YIG interface, we place a limit on the induced magnetism of the Pt layer, and confirm the existence of an interfacial layer at the GGG/YIG interface. Polarized neutron reflectometry (PNR) was used to give depth dependence of both the structure and magnetism of these structures. We find that a thin film of YIG on GGG is best described by three distinct layers: an interfacial layer near the GGG, around 5 nm thick and nonmagnetic, a magnetic "bulk" phase, and a nonmagnetic and compositionally distinct thin layer near the surface. We theorize that the bottom layer, which is independent of the film thickness, is caused by Gd diffusion. The top layer is likely to be extremely important in inverse spin Hall effect measurements, and is most likely Y2O3 or very similar. Magnetic sensitivity in the PNR to any induced moment in the Pt is increased by the existence of the Y2O3 layer; any moment is found to be less than 0.02 μB/atom .

  2. Methods for fabricating thin film III-V compound solar cell

    DOEpatents

    Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve

    2011-08-09

    The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.

  3. Schottky barrier solar cell

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M. (Inventor)

    1981-01-01

    A method of fabricating a Schottky barrier solar cell is described. The cell consists of a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive. A thin layer of heavily doped n-type polycrystalling germanium is deposited on the substrate after a passivation layer is deposited to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes to serve as a base layer on which a thin layer of gallium arsenide is vapor-epitaxilly grown followed by a thermally-grown oxide layer. A metal layer is deposited on the oxide layer and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer.

  4. Laser readable thermoluminescent radiation dosimeters and methods for producing thereof

    DOEpatents

    Braunlich, Peter F.; Tetzlaff, Wolfgang

    1989-01-01

    Thin layer thermoluminescent radiation dosimeters for use in laser readable dosimetry systems, and methods of fabricating such thin layer dosimeters. The thin layer thermoluminescent radiation dosimeters include a thin substrate made from glass or other inorganic materials capable of withstanding high temperatures and high heating rates. A thin layer of a thermoluminescent phoshphor material is heat bonded to the substrate using an inorganic binder such as glass. The dosimeters can be mounted in frames and cases for ease in handling. Methods of the invention include mixing a suitable phosphor composition and binder, both being in particulate or granular form. The mixture is then deposited onto a substrate such as by using mask printing techniques. The dosimeters are thereafter heated to fuse and bond the binder and phosphor to the substrate.

  5. Selective radiative cooling with MgO and/or LiF layers

    DOEpatents

    Berdahl, P.H.

    1984-09-14

    A selective radiation cooling material which is absorptive only in the 8 to 13 microns wavelength range is accomplished by placing ceramic magnesium oxide and/or polycrystalline lithium fluoride on an infrared-reflective substrate. The reflecting substrate may be a metallic coating, foil or sheet, such as aluminum, which reflects all atmospheric radiation from 0.3 to 8 microns, the magnesium oxide and lithium fluoride being nonabsorptive at those wavelengths. <10% of submicron voids in the material is permissible in which case the MgO and/or LiF layer is diffusely scattering, but still nonabsorbing, in the wavelength range of 0.3 to 8 microns. At wavelengths from 8 to 13 microns, the magnesium oxide and lithium fluoride radiate power through the ''window'' in the atmosphere, and thus remove heat from the reflecting sheet of material and the attached object to be cooled. At wavelengths longer than 13 microns, the magnesium oxide and lithium fluoride reflects the atmospheric radiation back into the atmosphere. This high reflectance is only obtained if the surface is sufficiently smooth: roughness on a scale of 1 micron is permissible but roughness on a scale of 10 microns is not. An infrared-transmitting cover or shield is mounted in spaced relationship to the material to reduce convective heat transfer. If this is utilized in direct sunlight, the infrared transmitting cover or shield should be opaque in the solar spectrum of 0.3 to 3 microns.

  6. Layered Organization in the Coastal Ocean: 4-D Assessment of Thin Layer Structure, Dynamics and Impacts

    DTIC Science & Technology

    2007-09-30

    For example, the differences seen between the waters off of the US Pacific Northwest and the California Bight are almost certainly a reflection of the...the Pacific Northwest were favorable for thin layer development during that study. This is even more evident in those cases where thin layers...approach during the 2005 and 2006 LOCO process study combined time series data from an array of our Ocean Response Coastal Analysis System ( ORCAS ) (Donaghay

  7. LIF potentiates the NT-3-mediated survival of spiral ganglia neurones in vitro.

    PubMed

    Marzella, P L; Clark, G M; Shepherd, R K; Bartlett, P F; Kilpatrick, T J

    1997-05-06

    The survival of auditory neurones depends on the continued supply of trophic factors. Early postnatal spiral ganglion cells (SGC) in a dissociated cell culture were used as a model of auditory innervation to test the trophic factors leukaemia inhibitory factor (LIF) and neurotrophin-3 (NT-3) for their ability, individually or in combination, to promote neuronal survival. The findings suggest that LIF supports neuronal survival in a concentration-dependent manner. Moreover LIF potentiated NT-3-mediated spiral ganglion neuronal survival in a synergistic fashion.

  8. LIF-activated Jak signaling determines Esrrb expression during late-stage reprogramming

    PubMed Central

    Huang, Delun; Wang, Ling; Duan, Jingyue; Huang, Chang; Tian, Xiuchun (Cindy); Zhang, Ming

    2018-01-01

    ABSTRACT The regulatory process of naïve-state induced pluripotent stem cell (iPSC) generation is not well understood. Leukemia inhibitory factor (LIF)-activated Janus kinase/signal transducer and activator of transcription 3 (Jak/Stat3) is the master regulator for naïve-state pluripotency achievement and maintenance. The estrogen-related receptor beta (Esrrb) serves as a naïve-state marker gene regulating self-renewal of embryonic stem cells (ESCs). However, the interconnection between Esrrb and LIF signaling for pluripotency establishment in reprogramming is unclear. We screened the marker genes critical for complete reprogramming during mouse iPSC generation, and identified genes including Esrrb that are responsive to LIF/Jak pathway signaling. Overexpression of Esrrb resumes the reprogramming halted by inhibition of Jak activity in partially reprogrammed cells (pre-iPSCs), and leads to the generation of pluripotent iPSCs. We further show that neither overexpression of Nanog nor stimulation of Wnt signaling, two upstream regulators of Esrrb in ESCs, stimulates the expression of Esrrb in reprogramming when LIF or Jak activity is blocked. Our study demonstrates that Esrrb is a specific reprogramming factor regulated downstream of the LIF/Jak signaling pathway. These results shed new light on the regulatory role of LIF pathway on complete pluripotency establishment during iPSC generation. PMID:29212799

  9. Investigation of optical fibers for gas-phase, ultraviolet laser-induced-fluorescence (UV-LIF) spectroscopy.

    PubMed

    Hsu, Paul S; Kulatilaka, Waruna D; Jiang, Naibo; Gord, James R; Roy, Sukesh

    2012-06-20

    We investigate the feasibility of transmitting high-power, ultraviolet (UV) laser pulses through long optical fibers for laser-induced-fluorescence (LIF) spectroscopy of the hydroxyl radical (OH) and nitric oxide (NO) in reacting and non-reacting flows. The fundamental transmission characteristics of nanosecond (ns)-duration laser pulses are studied at wavelengths of 283 nm (OH excitation) and 226 nm (NO excitation) for state-of-the-art, commercial UV-grade fibers. It is verified experimentally that selected fibers are capable of transmitting sufficient UV pulse energy for single-laser-shot LIF measurements. The homogeneous output-beam profile resulting from propagation through a long multimode fiber is ideal for two-dimensional planar-LIF (PLIF) imaging. A fiber-coupled UV-LIF system employing a 6 m long launch fiber is developed for probing OH and NO. Single-laser-shot OH- and NO-PLIF images are obtained in a premixed flame and in a room-temperature NO-seeded N(2) jet, respectively. Effects on LIF excitation lineshapes resulting from delivering intense UV laser pulses through long fibers are also investigated. Proof-of-concept measurements demonstrated in the current work show significant promise for fiber-coupled UV-LIF spectroscopy in harsh diagnostic environments such as gas-turbine test beds.

  10. Hypothalamic-pituitary cytokine network.

    PubMed

    Kariagina, Anastasia; Romanenko, Dmitry; Ren, Song-Guang; Chesnokova, Vera

    2004-01-01

    Cytokines expressed in the brain and involved in regulating the hypothalamus-pituitary-adrenal (HPA) axis contribute to the neuroendocrine interface. Leukemia inhibitory factor (LIF) and LIF receptors are expressed in human pituitary cells and murine hypothalamus and pituitary. LIF potently induces pituitary proopiomelanocortin (POMC) gene transcription and ACTH secretion and potentiates CRH induction of POMC. In vivo, LIF, along with CRH, enhances POMC expression and ACTH secretion in response to emotional and inflammatory stress. To further elucidate specific roles for both CRH and LIF in activating the inflammatory HPA response, double-knockout mice (CRH/LIFKO) were generated by breeding the null mutants for each respective single gene. Inflammation produced by ip injection of lipopolysaccharide (1 microg/mouse) to double CRH and LIF-deficient mice elicited pituitary POMC induction similar to wild type and markedly higher than in single null animals (P<0.0.01). Double-knockout mice also demonstrated robust corticosterone response to inflammation. High pituitary POMC mRNA levels may reflect abundant TNFalpha, IL-1beta, and IL-6 activation observed in the hypothalamus and pituitary of these animals. Our results suggest that increased central proinflammatory cytokine expression can compensate for the impaired HPA axis function and activates inflammatory ACTH and corticosterone responses in mice-deficient in both CRH and LIF.

  11. Physicochemical Properties of Industrial Aluminum Electrolytes Enriching Li and K: The Liquidus Temperature

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-jun; Shuang, Ya-jing; Li, Jie; Chen, Shi-yue; Lai, Yan-qing; Zhang, Hong-liang; Liu, Ye-xiang

    2017-04-01

    The alumina contains plenty of Li2O and K2O as a result of using low-grade bauxite in China. Thus, LiF and KF will be enriched in the electrolytes with the operation of the cell, so that the composition and physicochemical properties of electrolytes have been changed. The effects of LiF, KF, and CR on the liquidus temperature of electrolytes based on the xNaF·AlF3-5 wt pct CaF2-2.5 wt pct Al2O3-0.5 wt pct MgF2 system have been investigated in this study. The results show that the liquidus temperature decreases by 5.13 K to 10.74 K (5.13 °C to 10.74 °C) per 1 wt pct addition of LiF and that the liquidus temperature decreases by 1.63 K to 3.8 K (1.63 °C to 3.8 °C) with per 1 wt pct addition of KF. When adding LiF and KF together, it has the interplay between LiF and KF. Under different electrolyte systems, the interplay between LiF and KF is complex. The effect of CR on liquidus temperature has been related to the concentration of LiF and KF.

  12. A sintering study on the β-spodumene-based glass ceramics prepared from gel-derived precursor powders with LiF additive

    NASA Astrophysics Data System (ADS)

    Wang, Moo-Chin; Wu, Nan-Chung; Yang, Sheng; Wen, Shaw-Bing

    2002-01-01

    Beta-spodumene (Li2O·Al2O3·4SiO2, LAS) powders were prepared by a sol-gel process using Si(OC2H5)4, Al(OC4H9)3, and LiNO3 as precursors and LiF as a sintering aid agent. Dilatometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and electron diffraction (ED) were utilized to study the sintering, phase transformation, microstructure, and properties of the β-spodumene glass-ceramics prepared from the gel-derived precursor powders with and without LiF additives. For the LAS precursor powders containing no LiF, the only crystalline phase obtained was β-spodumene. For the pellets containing less than 4 wt pct LiF and sintered at 1050 °C for 5 hours the crystalline phases were β-spodumene and β-eucryptite (Li2O·Al2O3·2SiO2). When the LiF content was 5 wt pct and the sintering process was carried out at 1050 °C for 5 hours, the crystalline phases were β-spodumene, β-eucryptite (triclinic), and eucryptite (rhombohedral (hex.)) phases. With the LiF additive increased from 0.5 to 4 wt pct and sintering at 1050 °C for 5 hours, the open porosity of the sintered bodies decrease from 30 to 2.1 pct. The grains size is about to 4 to 5 µm when pellect LAS compact contains LiF 3 wt pct as sintered at 1050 °C for 5 hours. The grains size grew to 8 to 25 µm with a remarkable discontinuous grain growth for pellet LAS compact contain LiF 5 wt pct sintered at 1050 °C for 5 hours. Relative densities greater than 90 pct could be obtained for the LAS precursor powders with LiF > 2 wt pct when sintered at 1050 °C for 5 hours. The coefficient of thermal expansion of the sintered bodies decreased from 8.3 × 10-7 to 5.2 × 10-7/°C (25 °C to 900 °C) as the LiF addition increased from 0 to 5 wt pct.

  13. High average power scaleable thin-disk laser

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Payne, Stephen A.; Powell, Howard; Krupke, William F.; Sutton, Steven B.

    2002-01-01

    Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

  14. Impact of the electron-transport layer on the performance of solution-processed small-molecule organic solar cells.

    PubMed

    Long, Guankui; Wan, Xiangjian; Kan, Bin; Hu, Zhicheng; Yang, Xuan; Zhang, Yi; Zhang, Mingtao; Wu, Hongbing; Huang, Fei; Su, Shijian; Cao, Yong; Chen, Yongsheng

    2014-08-01

    Although the performance of polymer solar cells has been improved significantly recently through careful optimization with different interlayers for the same materials, more improvement is needed in this respect for small-molecule-based solar cells, particularly for the electron-transport layers (ETLs). In this work, three different solution-processed ETLs, PFN, ZnO nanoparticles, and LiF, were investigated and compared in the performance of small-molecule-based devices, and power conversion efficiencies (PCEs) of 8.32, 7.30, and 7.38% were achieved, respectively. The mechanism for the ETL-induced enhancement has been studied, and different ETLs have a significantly different impact on the device performance. The clearly improved performance of PFN is attributed to the combination of reduced bimolecular recombination and increased effective photon absorption in the active layer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Highly Efficient Inverted Perovskite Solar Cells with CdSe QDs/LiF Electron Transporting Layer

    NASA Astrophysics Data System (ADS)

    Tan, Furui; Xu, Weizhe; Hu, Xiaodong; Yu, Ping; Zhang, Weifeng

    2017-12-01

    Organic/inorganic hybrid perovskite solar cell has emerged as a very promising candidate for the next generation of near-commercial photovoltaic devices. Here in this work, we focus on the inverted perovskite solar cells and have found that remarkable photovoltaic performance could be obtained when using cadmium selenide (CdSe) quantum dots (QDs) as electron transporting layer (ETL) and lithium fluoride (LiF) as the buffer, with respect to the traditionally applied and high-cost [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The easily processed and low-cost CdSe QDs/LiF double layer could facilitate convenient electron-transfer and collection at the perovskite/cathode interface, promoting an optoelectric conversion efficiency of as high as 15.1%, very close to that with the traditional PCBM ETL. Our work provides another promising choice on the ETL materials for the highly efficient and low-cost perovskite solar cells.

  16. The enhancement mechanism of thin plasma layer on antenna radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Jiang, Binhao; Li, Xueai

    A model of plasma-antenna is carried out to study the radiation enhancement mechanism of antenna covered by thin plasma layer. The results show when the radiation intensity achieves maximum, a region of equal electric field is formed due to the reflection of electric field at the interface of plasma and air. The plasma layer acted as an extension of the antenna. Furthermore, the shape of plasma layer is changed to verify the effect of plasma boundary on antenna radiation. The study shows the effect of thin plasma layer on electromagnetic field and provides a type of plasma antenna.

  17. Highly efficient organic electroluminescent diodes realized by efficient charge balance with optimized electron and hole transport layers

    NASA Astrophysics Data System (ADS)

    Khan, M. A.; Xu, Wei; Wei, Fuxiang; Bai, Yu; Jiang, X. Y.; Zhang, Z. L.; Zhu, W. Q.

    2007-11-01

    Highly efficient organic electroluminescent devices (OLEDs) were developed based on 4,7-diphenyl-1, 10-phenanthroline (BPhen) as the electron transport layer (ETL), tris-(8-hydroxyquinoline) aluminum (Alq 3) as the emission layer (EML) and N,Ń-bis-[1-naphthy(-N,Ńdiphenyl-1,1'-biphenyl-4,4'-diamine)] (NPB) as the hole transport layer (HTL). The typical device structure was glass substrate/ ITO/ NPB/ Alq 3/ BPhen/ LiF/ Al. Since BPhen possesses a considerable high electron mobility of 5×10 -4 cm 2 V -1 s -1, devices with BPhen as ETL can realize an extremely high luminous efficiency. By optimizing the thickness of both HTL and ETL, we obtained a highly efficient OLED with a current efficiency of 6.80 cd/A and luminance of 1361 cd/m 2 at a current density of 20 mA/cm 2. This dramatic improvement in the current efficiency has been explained on the principle of charge balance.

  18. Improving Fire Resistance of Cotton Fabric through Layer-by-Layer Assembled Graphene Multilayer Nanocoating

    NASA Astrophysics Data System (ADS)

    Jang, Wonjun; Chung, Il Jun; Kim, Junwoo; Seo, Seongmin; Park, Yong Tae; Choi, Kyungwho

    2018-05-01

    In this study, thin films containing poly(vinyl alcohol) (PVA) and graphene nanoplatelets (GNPs), stabilized with poly(4-styrene-sulfonic acid) (PSS), were assembled by a simple and cost-effective layer-by-layer (LbL) technique in order to introduce the anti-flammability to cotton. These antiflammable layers were characterized by using UV-vis spectrometry and quartz crystal microbalance as a function of the number of bilayers deposited. Scanning electron microscopy was used to visualize the morphology of the thin film coatings on the cotton fabric. The graphene-polymer thin films introduced anti-flammable properties through thermally stable carbonaceous layers at a high temperature. The thermal stability and flame retardant property of graphene-coated cotton was demonstrated by thermogravimetric analysis, cone calorimetry, and vertical flame test. The results indicate that LbL-assembled graphene-polymer thin films can be applied largely in the field of flame retardant.

  19. Programmable Electrochemical Rectifier Based on a Thin-Layer Cell.

    PubMed

    Park, Seungjin; Park, Jun Hui; Hwang, Seongpil; Kwak, Juhyoun

    2017-06-21

    A programmable electrochemical rectifier based on thin-layer electrochemistry is described here. Both the rectification ratio and the response time of the device are programmable by controlling the gap distance of the thin-layer electrochemical cell, which is easily controlled using commercially available beads. One of the electrodes was modified using a ferrocene-terminated self-assembled monolayer to offer unidirectional charge transfers via soluble redox species. The thin-layer configuration provided enhanced mass transport, which was determined by the gap thickness. The device with the smallest gap thickness (∼4 μm) showed an unprecedented, high rectification ratio (up to 160) with a fast response time in a two-terminal configuration using conventional electronics.

  20. The effects of layering in ferroelectric Si-doped HfO{sub 2} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomenzo, Patrick D.; Nishida, Toshikazu, E-mail: nishida@ufl.edu; Takmeel, Qanit

    2014-08-18

    Atomic layer deposited Si-doped HfO{sub 2} thin films approximately 10 nm thick are deposited with various Si-dopant concentrations and distributions. The ferroelectric behavior of the HfO{sub 2} thin films are shown to be dependent on both the Si mol. % and the distribution of Si-dopants. Metal-ferroelectric-insulator-semiconductor capacitors are shown to exhibit a tunable remanent polarization through the adjustment of the Si-dopant distribution at a constant Si concentration. Inhomogeneous layering of Si-dopants within the thin films effectively lowers the remanent polarization. A pinched hysteresis loop is observed for higher Si-dopant concentrations and found to be dependent on the Si layering distribution.

  1. NMR of thin layers using a meanderline surface coil

    DOEpatents

    Cowgill, Donald F.

    2001-01-01

    A miniature meanderline sensor coil which extends the capabilities of nuclear magnetic resonance (NMR) to provide analysis of thin planar samples and surface layer geometries. The sensor coil allows standard NMR techniques to be used to examine thin planar (or curved) layers, extending NMRs utility to many problems of modern interest. This technique can be used to examine contact layers, non-destructively depth profile into films, or image multiple layers in a 3-dimensional sense. It lends itself to high resolution NMR techniques of magic angle spinning and thus can be used to examine the bonding and electronic structure in layered materials or to observe the chemistry associated with aging coatings. Coupling this sensor coil technology with an arrangement of small magnets will produce a penetrator probe for remote in-situ chemical analysis of groundwater or contaminant sediments. Alternatively, the sensor coil can be further miniaturized to provide sub-micron depth resolution within thin films or to orthoscopically examine living tissue. This thin-layer NMR technique using a stationary meanderline coil in a series-resonant circuit has been demonstrated and it has been determined that the flat meanderline geometry has about he same detection sensitivity as a solenoidal coil, but is specifically tailored to examine planar material layers, while avoiding signals from the bulk.

  2. Effect of processing parameters on microstructure of MoS{sub 2} ultra-thin films synthesized by chemical vapor deposition method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yang; You, Suping; Sun, Kewei

    2015-06-15

    MoS{sub 2} ultra-thin layers are synthesized using a chemical vapor deposition method based on the sulfurization of molybdenum trioxide (MoO{sub 3}). The ultra-thin layers are characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy and atomic force microscope (AFM). Based on our experimental results, all the processing parameters, such as the tilt angle of substrate, applied voltage, heating time and the weight of source materials have effect on the microstructures of the layers. In this paper, the effects of such processing parameters on the crystal structures and morphologies of the as-grown layers are studied. It is found that the film obtainedmore » with the tilt angle of 0.06° is more uniform. A larger applied voltage is preferred to the growth of MoS{sub 2} thin films at a certain heating time. In order to obtain the ultra-thin layers of MoS{sub 2}, the weight of 0.003 g of source materials is preferred. Under our optimal experimental conditions, the surface of the film is smooth and composed of many uniformly distributed and aggregated particles, and the ultra-thin MoS{sub 2} atomic layers (1∼10 layers) covers an area of more than 2 mm×2 mm.« less

  3. The properties of plasma-enhanced atomic layer deposition (ALD) ZnO thin films and comparison with thermal ALD

    NASA Astrophysics Data System (ADS)

    Kim, Doyoung; Kang, Hyemin; Kim, Jae-Min; Kim, Hyungjun

    2011-02-01

    Zinc oxide (ZnO) thin films were prepared by plasma-enhanced atomic layer deposition (PE-ALD) using oxygen plasma as a reactant and the properties were compared with those of thermal atomic layer deposition (TH-ALD) ZnO thin films. While hexagonal wurzite phase with preferential (0 0 2) orientation was obtained for both cases, significant differences were observed in various aspects of film properties including resistivity values between these two techniques. Photoluminescence (PL) measurements have shown that high resistivity of PE-ALD ZnO thin films is due to the oxygen interstitials at low growth temperature of 200 °C, whose amount decreases with increasing growth temperature. Thin film transistors (TFT) using TH- and PE-ALD ZnO as an active layer were also fabricated and the device properties were evaluated comparatively.

  4. Laser readable thermoluminescent radiation dosimeters and methods for producing thereof

    DOEpatents

    Braunlich, P.F.; Tetzlaff, W.

    1989-04-25

    Thin layer thermoluminescent radiation dosimeters for use in laser readable dosimetry systems, and methods of fabricating such thin layer dosimeters are disclosed. The thin layer thermoluminescent radiation dosimeters include a thin substrate made from glass or other inorganic materials capable of withstanding high temperatures and high heating rates. A thin layer of a thermoluminescent phosphor material is heat bonded to the substrate using an inorganic binder such as glass. The dosimeters can be mounted in frames and cases for ease in handling. Methods of the invention include mixing a suitable phosphor composition and binder, both being in particulate or granular form. The mixture is then deposited onto a substrate such as by using mask printing techniques. The dosimeters are thereafter heated to fuse and bond the binder and phosphor to the substrate. 34 figs.

  5. Fermi level de-pinning of aluminium contacts to n-type germanium using thin atomic layer deposited layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gajula, D. R., E-mail: dgajula01@qub.ac.uk; Baine, P.; Armstrong, B. M.

    Fermi-level pinning of aluminium on n-type germanium (n-Ge) was reduced by insertion of a thin interfacial dielectric by atomic layer deposition. The barrier height for aluminium contacts on n-Ge was reduced from 0.7 eV to a value of 0.28 eV for a thin Al{sub 2}O{sub 3} interfacial layer (∼2.8 nm). For diodes with an Al{sub 2}O{sub 3} interfacial layer, the contact resistance started to increase for layer thicknesses above 2.8 nm. For diodes with a HfO{sub 2} interfacial layer, the barrier height was also reduced but the contact resistance increased dramatically for layer thicknesses above 1.5 nm.

  6. LP/LIF STUDY OF THE FORMATION AND CONSUMPTION OF MERCURY (I) CHLORIDE: KINETICS OF MERCURY CHLORINATION

    EPA Science Inventory

    The laser photolysis/laser induced flourescence (LP/LIF) technique has been applied to studies of gas-phase mercury (Hg) chlorination. Mercury (I) chloride (HgCl) has been detected via LIF at 272 nm from reactions of elemental Hg and Cl atoms generated from the 193 nm photolysis ...

  7. Electrocatalytic transformation of HF impurity to H 2 and LiF in lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strmcnik, Dusan; Castelli, Ivano E.; Connell, Justin G.

    The formation of solid electrolyte interphase on graphite anodes plays a key role in the efficiency of Li-ion batteries. However, to date, fundamental understanding of the formation of LiF as one of the main solid electrolyte interphase components in hexafluorophosphate-based electrolytes remains elusive. In this paper, we present experimental and theoretical evidence that LiF formation is an electrocatalytic process that is controlled by the electrochemical transformation of HF impurity to LiF and H 2. Although the kinetics of HF dissociation and the concomitant production of LiF and H 2 is dependent on the structure and nature of surface atoms, themore » underlying electrochemistry is the same. The morphology, and thus the role, of the LiF formed is strongly dependent on the nature of the substrate and HF inventory, leading to either complete or partial passivation of the interface. Finally, our finding is of general importance and may lead to new opportunities for the improvement of existing, and design of new, Li-ion technologies.« less

  8. Fabrication of magnetic tunnel junctions with a single-crystalline LiF tunnel barrier

    NASA Astrophysics Data System (ADS)

    Krishna Narayananellore, Sai; Doko, Naoki; Matsuo, Norihiro; Saito, Hidekazu; Yuasa, Shinji

    2018-04-01

    We fabricated Fe/LiF/Fe magnetic tunnel junctions (MTJs) by molecular beam epitaxy on a MgO(001) substrate, where LiF is an insulating tunnel barrier with the same crystal structure as MgO (rock-salt type). Crystallographical studies such as transmission electron microscopy and nanobeam electron diffraction observations revealed that the LiF tunnel barrier is single-crystalline and has a LiF(001)[100] ∥ bottom Fe(001)[110] crystal orientation, which is constructed in the same manner as MgO(001) on Fe(001). Also, the in-plane lattice mismatch between the LiF tunnel barrier and the Fe bottom electrode was estimated to be small (about 0.5%). Despite such advantages for the tunnel barrier of the MTJ, the observed tunnel magnetoresistance (MR) ratio was low (˜6% at 20 K) and showed a significant decrease with increasing temperature (˜1% at room temperature). The results imply that indirect tunneling and/or thermally excited carriers in the LiF tunnel barrier, in which the current basically is not spin-polarized, play a major role in electrical transport in the MTJ.

  9. Electrocatalytic transformation of HF impurity to H 2 and LiF in lithium-ion batteries

    DOE PAGES

    Strmcnik, Dusan; Castelli, Ivano E.; Connell, Justin G.; ...

    2018-04-09

    The formation of solid electrolyte interphase on graphite anodes plays a key role in the efficiency of Li-ion batteries. However, to date, fundamental understanding of the formation of LiF as one of the main solid electrolyte interphase components in hexafluorophosphate-based electrolytes remains elusive. In this paper, we present experimental and theoretical evidence that LiF formation is an electrocatalytic process that is controlled by the electrochemical transformation of HF impurity to LiF and H 2. Although the kinetics of HF dissociation and the concomitant production of LiF and H 2 is dependent on the structure and nature of surface atoms, themore » underlying electrochemistry is the same. The morphology, and thus the role, of the LiF formed is strongly dependent on the nature of the substrate and HF inventory, leading to either complete or partial passivation of the interface. Finally, our finding is of general importance and may lead to new opportunities for the improvement of existing, and design of new, Li-ion technologies.« less

  10. Continuous Wave Ring-Down Spectroscopy for Velocity Distribution Measurements in Plasma

    NASA Astrophysics Data System (ADS)

    McCarren, Dustin W.

    Cavity Ring-Down Spectroscopy CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique. When combined with a continuous wavelength (CW) diode laser that has a sufficiently narrow line width, the Doppler broadened absorption line, i.e., the velocity distribution functions (VDFs) of the absorbing species, can be measured. Measurements of VDFs can be made using established techniques such as laser induced fluorescence (LIF). However, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density and that the excitation scheme fluoresces at an easily detectable wavelength. This usually limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. Also, as a direct absorption technique, CW-CRDS measurements only need to be concerned with the species' absorption wavelength and provide an absolute measure of the line integrated initial state density. Presented in this work are measurements of argon ion and neutral VDFs in a helicon plasma using CW-CRDS and LIF.

  11. Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries

    PubMed Central

    Nyström, Gustav; Marais, Andrew; Karabulut, Erdem; Wågberg, Lars; Cui, Yi; Hamedi, Mahiar M.

    2015-01-01

    Traditional thin-film energy-storage devices consist of stacked layers of active films on two-dimensional substrates and do not exploit the third dimension. Fully three-dimensional thin-film devices would allow energy storage in bulk materials with arbitrary form factors and with mechanical properties unique to bulk materials such as compressibility. Here we show three-dimensional energy-storage devices based on layer-by-layer self-assembly of interdigitated thin films on the surface of an open-cell aerogel substrate. We demonstrate a reversibly compressible three-dimensional supercapacitor with carbon nanotube electrodes and a three-dimensional hybrid battery with a copper hexacyanoferrate ion intercalating cathode and a carbon nanotube anode. The three-dimensional supercapacitor shows stable operation over 400 cycles with a capacitance of 25 F g−1 and is fully functional even at compressions up to 75%. Our results demonstrate that layer-by-layer self-assembly inside aerogels is a rapid, precise and scalable route for building high-surface-area 3D thin-film devices. PMID:26021485

  12. Thin film electronic devices with conductive and transparent gas and moisture permeation barriers

    DOEpatents

    Simpson, Lin Jay

    2013-12-17

    A thin film stack (100, 200) is provided for use in electronic devices such as photovoltaic devices. The stack (100, 200) may be integrated with a substrate (110) such as a light transmitting/transmissive layer. A electrical conductor layer (120, 220) is formed on a surface of the substrate (110) or device layer such as a transparent conducting (TC) material layer (120,220) with pin holes or defects (224) caused by manufacturing. The stack (100) includes a thin film (130, 230) of metal that acts as a barrier for environmental contaminants (226, 228). The metal thin film (130,230) is deposited on the conductor layer (120, 220) and formed from a self-healing metal such as a metal that forms self-terminating oxides. A permeation plug or block (236) is formed in or adjacent to the thin film (130, 230) of metal at or proximate to the pin holes (224) to block further permeation of contaminants through the pin holes (224).

  13. Aging and unusual catecholamine-containing structures in the mouse brain.

    PubMed

    Masuoka, D T; Jonsson, G; Finch, C E

    1979-06-22

    Brains of C57BL/6J mice, aged 4, 8 and 20--29 months, were examined by the Falck-Hillarp histochemical fluorescence technique. Numerous large, intensely fluorescent green to yellow-green spots (LIFS) were observed in the brains of senescent mice. LIFS were generally round to ovoid in shape and ranged in size from about 10 micrometer to about 30 micrometer. Histochemical and pharmacological procedures and spectral analysis indicated that the formaldehyde-induced fluorescence of the LIFS was due to the presence of catecholamines (CA) rather than aging pigment. Their distribution in the brain suggests an association with nerve axons or terminals rather than cell bodies. The number of LIFS in the hypothalamus increased progressively during aging. It is proposed that LIFS may represent age-related, unusual CA accumulation in enlargements proximal to axonal or terminal portions undergoing spontaneous degeneration.

  14. Standoff analysis of laser-produced plasmas using laser-induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, S. S.; Brumfield, B. E.; Phillips, M. C.

    We report the use of laser-induced fluorescence (LIF) of laser ablation plumes for standoff applications. The standoff analysis of Al species, as major and minor species in samples, is performed in a nanosecond laser-produced plasma created at a distance ~10 m. The LIF analysis is performed by resonantly exciting an Al transition at 394.4 nm using a continuous wave (cw) tunable laser and by collecting the direct-line fluorescence signal at 396.15 nm. The spectral resolution of LIF is obtained by scanning the cw tunable LIF laser across the selected Al transition. Our results highlight that LIF provides enhanced signal intensity,more » emission persistence, and spectral resolution when compared to thermally-excited emission, and these are crucial considerations for using laser-produced plasma for standoff isotopic analysis.« less

  15. Fabrication of read-only type triple-layered disc

    NASA Astrophysics Data System (ADS)

    Yang, Huei Wen; Jeng, Tzuan Ren; Yen, Wen Hsin; Chan, Rong Po; Shin, Kuo Ding; Huang, Der Ray

    2003-06-01

    The approach to increase optical recording density has become very popular research subject in these years. One direct and effective method is to increase the recording layer stack number. That is to say, to add one more recording layer can get one more recording capacity. In this paper, we will propose a new method for manufacturing read only type multi-layered disc. The process is described in the following. This first recorded data layer (called L0) still follows the traditional DVD disc manufacturing process. We obtain the polycarbonate substrate by replicating from Ni stamper. Then polycarbonate substrate is sputtered thin silicon film for semi-reflection layer. As for second layer (L1) and even more layer (Ln-1) producing, one special kind of duplication (called SKD) method is proposed. The duplication (or replication) source of second or nth recorded data is not only limited from Ni stamper. Even polycarbonate or PMMA substrate has recording data are also acceptable sources. At next step, the duplication source is deposited by thin gold film. Then we apply spin coating to bond the first layer (L0) substrate and second layer (L1) duplication source by choosing suitable UV curing glue. After being emitted by UV lamp for several seconds, we can easily separate the duplication source of second layer (L1) from (L0) substrate. Then we find the thin second data layer (L1) is replicated and stacks upon the first layer. On the same way, we sputter thin AgTi layer on the thin second data layer for another semi- reflective layer. By following the above manufacture step, we can produce more layers. In our experimental, we prepare triple layered read-only type disc. The total capacity is almost 12GB for one side of disc, and 24GB for two side of disc. The read-out intensity of laser from each data layer is expected to be similar. Thus we have designed particular reflectance and transmittance for each data layer by controlling the thickness of thin silicon film. We can verify our design by checking the focusing error signal in S-curve search of optical pickup head. The signal quality for each layer can be found from the signal eye pattern and jitter. For compatibility with present drive system, the requirement of the readout signal from each layer should be same as DVD or CD specification

  16. Insight into the epitaxial encapsulation of Pd catalysts in an oriented metalloporphyrin network thin film for tandem catalysis.

    PubMed

    Vohra, M Ismail; Li, De-Jing; Gu, Zhi-Gang; Zhang, Jian

    2017-06-14

    A palladium catalyst (Pd-Cs) encapsulated metalloporphyrin network PIZA-1 thin film with bifunctional properties has been developed through a modified epitaxial layer-by-layer encapsulation approach. Combining the oxidation activity of Pd-Cs and the acetalization activity of the Lewis acidic sites in the PIZA-1 thin film, this bifunctional catalyst of the Pd-Cs@PIZA-1 thin film exhibits a good catalytic activity in a one-pot tandem oxidation-acetalization reaction. Furthermore, the surface components can be controlled by ending the top layer with different precursors in the thin film preparation procedures. The catalytic performances of these thin films with different surface composites were studied under the same conditions, which showed different reaction conversions. The result revealed that the surface component can influence the catalytic performance of the thin films. This epitaxial encapsulation offers a good understanding of the tandem catalysis for thin film materials and provides useful guidance to develop new thin film materials with catalytic properties.

  17. Use of a thin-layer technique in thyroid fine needle aspiration.

    PubMed

    Malle, Despoina; Valeri, Rosalia-Maria; Pazaitou-Panajiotou, Kalliopi; Kiziridou, Anastasia; Vainas, Iraklis; Destouni, Charicleia

    2006-01-01

    To investigate the efficacy of the ThinPrep Processor (Cytyc Corporation, Boxborough, Massachusetts, U.S.A) in fine needle aspiration (FNA) of thyroid gland lesions. This study included 459 thyroid FNA specimens obtained from patients who came to our endocrinology department with various thyroid disorders over 3 years. The cytologic material was prepared using both the conventional and ThinPrep method in the first 2 years (285 cases), while in the last one only the ThinPrep method was used (1 74 cases). The smears were stained using a modified Papanicolaou procedure and May-Grünwald-Giemsa stain. Immunocytochemistry was performed on thin-layer slides using specific monoclonal antibodies when needed. Thin-layer and direct smear diagnoses were compared with the final cytologic or histologic diagnoses, when available. Our cases included 279 adenomatoid nodules, 15 cases of Hashimoto thyroiditis, 45 follicular neoplasms, 14 Hürthle cell tumors, 58 papillary carcinomas and 1 5 anaplastic carcinomas. Thin-layer preparations showed a trend toward a lower proportion of inadequate specimens and a lower false negative rate. Cytomorphologic features showed some differences between the 2 methods. Colloid was less frequently observed on ThinPrep slides, while nuclear detail and micronucleoli were more easily detected with this technique. Moreover, ThinPrep appeared to be the appropriate method for the use of ancillary techniques in suspicious cases. Thin-layer cytology improves the diagnostic accuracy of thyroid FNA and offers the possibility of performing new techniques, such as immunocytochemistry, on the same sample in order to detect malignancy as well as the type and origin of thyroid gland neoplasms.

  18. Photovoltaic sub-cell interconnects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Hest, Marinus Franciscus Antonius Maria; Swinger Platt, Heather Anne

    2017-05-09

    Photovoltaic sub-cell interconnect systems and methods are provided. In one embodiment, a photovoltaic device comprises a thin film stack of layers deposited upon a substrate, wherein the thin film stack layers are subdivided into a plurality of sub-cells interconnected in series by a plurality of electrical interconnection structures; and wherein the plurality of electrical interconnection structures each comprise no more than two scribes that penetrate into the thin film stack layers.

  19. Effect of atmospheric-pressure plasma treatment on the adhesion properties of a thin adhesive layer in a selective transfer process

    NASA Astrophysics Data System (ADS)

    Yoon, Min-Ah; Kim, Chan; Hur, Min; Kang, Woo Seok; Kim, Jaegu; Kim, Jae-Hyun; Lee, Hak-Joo; Kim, Kwang-Seop

    2018-01-01

    The adhesion between a stamp and thin film devices is crucial for their transfer on a flexible substrate. In this paper, a thin adhesive silicone layer on the stamp was treated by atmospheric pressure plasma to locally control the adhesion strength for the selective transfer. The adhesion strength of the silicone layer was significantly reduced after the plasma treatment, while its surface energy was increased. To understand the inconsistency between the adhesion strength and surface energy changes, the surface properties of the silicone layer were characterized using nanoindentation and X-ray photoelectron spectroscopy. These techniques revealed that a thin, hard, silica-like layer had formed on the surface from plasma-enhanced oxidation. This layer played an important role in decreasing the contact area and increasing the interfacial slippage, resulting in decreased adhesion. As a practical application, the transfer process was demonstrated on GaN LEDs that had been previously delaminated by a laser lift-off (LLO) process. Although the LEDs were not transferred onto the treated adhesive layer due to the reduced adhesion, the untreated adhesive layer could readily pick up the LEDs. It is expected that this simple method of controlling the adhesion of a stamp with a thin adhesive layer would enable a continuous, selective and large-scale roll-to-roll selective transfer process and thereby advance the development of flexible, stretchable and wearable electronics.

  20. Development of a cryogenically cooled platform for the Magnetized Liner Inertial Fusion (MagLIF) Program [Development of a cryogenically-cooled platform for the Magnetized Liner Inertial Fusion (MagLIF) Concept

    DOE PAGES

    Awe, T. J.; Shelton, K. P.; Sefkow, A. B.; ...

    2017-09-25

    A cryogenically cooled hardware platform has been developed and commissioned on the Z Facility at Sandia National Laboratories in support of the Magnetized Liner Inertial Fusion (MagLIF) Program. MagLIF is a magneto-inertial fusion concept that employs a magnetically imploded metallic tube (liner) to compress and inertially confine premagnetized and preheated fusion fuel. The fuel is preheated using a ~2 kJ laser that must pass through a ~1.5-3.5-μm-thick polyimide “window” at the target’s laser entrance hole (LEH). As the terawatt-class laser interacts with the dense window, laser plasma instabilities (LPIs) can develop, which reduce the preheat energy delivered to the fuel,more » initiate fuel contamination, and degrade target performance. Cryogenically cooled targets increase the parameter space accessible to MagLIF target designs by allowing nearly 10 times thinner windows to be used for any accessible gas density. Thinner LEH windows reduce the deleterious effects of difficult to model LPIs. The Z Facility’s cryogenic infrastructure has been significantly altered to enable compatibility with the premagnetization and fuel preheat stages of MagLIF. The MagLIF cryostat brings the liquid helium coolant directly to the target via an electrically resistive conduit. This design maximizes cooling power while allowing rapid diffusion of the axial magnetic field supplied by external Helmholtz-like coils. A variety of techniques have been developed to mitigate the accumulation of ice from vacuum chamber contaminants on the cooled LEH window, as even a few hundred nanometers of ice would impact laser energy coupling to the fuel region. Here, the MagLIF cryostat has demonstrated compatibility with the premagnetization and preheat stages of MagLIF and the ability to cool targets to liquid deuterium temperatures in approximately 5 min.« less

  1. Development of a cryogenically cooled platform for the Magnetized Liner Inertial Fusion (MagLIF) Program [Development of a cryogenically-cooled platform for the Magnetized Liner Inertial Fusion (MagLIF) Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awe, T. J.; Shelton, K. P.; Sefkow, A. B.

    A cryogenically cooled hardware platform has been developed and commissioned on the Z Facility at Sandia National Laboratories in support of the Magnetized Liner Inertial Fusion (MagLIF) Program. MagLIF is a magneto-inertial fusion concept that employs a magnetically imploded metallic tube (liner) to compress and inertially confine premagnetized and preheated fusion fuel. The fuel is preheated using a ~2 kJ laser that must pass through a ~1.5-3.5-μm-thick polyimide “window” at the target’s laser entrance hole (LEH). As the terawatt-class laser interacts with the dense window, laser plasma instabilities (LPIs) can develop, which reduce the preheat energy delivered to the fuel,more » initiate fuel contamination, and degrade target performance. Cryogenically cooled targets increase the parameter space accessible to MagLIF target designs by allowing nearly 10 times thinner windows to be used for any accessible gas density. Thinner LEH windows reduce the deleterious effects of difficult to model LPIs. The Z Facility’s cryogenic infrastructure has been significantly altered to enable compatibility with the premagnetization and fuel preheat stages of MagLIF. The MagLIF cryostat brings the liquid helium coolant directly to the target via an electrically resistive conduit. This design maximizes cooling power while allowing rapid diffusion of the axial magnetic field supplied by external Helmholtz-like coils. A variety of techniques have been developed to mitigate the accumulation of ice from vacuum chamber contaminants on the cooled LEH window, as even a few hundred nanometers of ice would impact laser energy coupling to the fuel region. Here, the MagLIF cryostat has demonstrated compatibility with the premagnetization and preheat stages of MagLIF and the ability to cool targets to liquid deuterium temperatures in approximately 5 min.« less

  2. Study on the growth mechanism and optical properties of sputtered lead selenide thin films

    NASA Astrophysics Data System (ADS)

    Sun, Xigui; Gao, Kewei; Pang, Xiaolu; Yang, Huisheng; Volinsky, Alex A.

    2015-11-01

    Lead selenide thin films with different microstructure were deposited on Si (1 0 0) substrates using magnetron sputtering at 50 °C, 150 °C and 250 °C, respectively. The crystal structure of the sputtered PbSe thin films varies from amorphous crystalline to columnar grain, and then to double-layer (nano-crystalline layer and columnar grain layer) structure as the deposition temperature increases, which is due to the dominating growth mode of the thin films changes from Frank-van der Merwe (or layer-by-layer) growth mode at 50 °C to Volmer-Weber (or 3D island) growth mode at 150 °C, and then to Stranski-Krastanow (or 3D island-on-wetting-layer) growth mode at 250 °C. The growth mechanism of the sputtered PbSe thin films is mainly dominated by the surface and strain energy contributions. Moreover, the strain energy contribution is more prominent when the deposition temperature is less than 180 °C, while, the surface energy contribution is more prominent when the deposition temperature is higher than 180 °C. The absorption spectra of the sputtered PbSe thin films are in 3.1-5 μm range. Besides, the sputtered PbSe thin film prepared at 250 °C has two different optical band gaps due to its unique double-layer structure. According to the theoretical calculation results, the variation of the band gap with the deposition temperature is determined by the shift of the valence band maximum with the lattice constant.

  3. FPGA based demodulation of laser induced fluorescence in plasmas

    NASA Astrophysics Data System (ADS)

    Mattingly, Sean W.; Skiff, Fred

    2018-04-01

    We present a field programmable gate array (FPGA)-based system that counts photons from laser-induced fluorescence (LIF) on a laboratory plasma. This is accomplished with FPGA-based up/down counters that demodulate the data, giving a background-subtracted LIF signal stream that is updated with a new point as each laser amplitude modulation cycle completes. We demonstrate using the FPGA to modulate a laser at 1 MHz and demodulate the resulting LIF data stream. This data stream is used to calculate an LIF-based measurement sampled at 1 MHz of a plasma ion fluctuation spectrum.

  4. Synthesis and characterization of Zn(O,OH)S and AgInS2 layers to be used in thin film solar cells

    NASA Astrophysics Data System (ADS)

    Vallejo, W.; Arredondo, C. A.; Gordillo, G.

    2010-11-01

    In this paper AgInS2 and Zn(O,OH)S thin films were synthesized and characterized. AgInS2 layers were grown by co-evaporation from metal precursors in a two-step process, and, Zn(O,OH)S thin films were deposited from chemical bath containing thiourea, zinc acetate, sodium citrate and ammonia. X-ray diffraction measurements indicated that AgInS2 thin films grown with chalcopyrite structure, and the as-grown Zn(O,OH)S thin films were polycrystalline. It was also found that the AgInS2 films presented p-type conductivity, a high absorption coefficient (greater than 104 cm-1) and energy band-gap Eg of about 1.95 eV, Zn(O,OH),S thin films presented Eg of about 3.89 eV. Morphological analysis showed that under this synthesis conditions Zn(O,OH),S thin films coated uniformly the absorber layer. Additionally, the Zn(O,OH)S kinetic growth on AgInS2 layer was studied also. Finally, the results suggest that these layers possibly could be used in one-junction solar cells and/or as top cell in a tandem solar cell.

  5. Deformation behavior of coherently strained InAs/GaAs(111)A heteroepitaxial systems: Theoretical calculations and experimental measurements

    NASA Astrophysics Data System (ADS)

    Zepeda-Ruiz, Luis A.; Pelzel, Rodney I.; Nosho, Brett Z.; Weinberg, W. Henry; Maroudas, Dimitrios

    2001-09-01

    A comprehensive, quantitative analysis is presented of the deformation behavior of coherently strained InAs/GaAs(111)A heteroepitaxial systems. The analysis combines a hierarchical theoretical approach with experimental measurements. Continuum linear elasticity theory is linked with atomic-scale calculations of structural relaxation for detailed theoretical studies of deformation in systems consisting of InAs thin films on thin GaAs(111)A substrates that are mechanically unconstrained at their bases. Molecular-beam epitaxy is used to grow very thin InAs films on both thick and thin GaAs buffer layers on epi-ready GaAs(111)A substrates. The deformation state of these samples is characterized by x-ray diffraction (XRD). The interplanar distances of thin GaAs buffer layers along the [220] and [111] crystallographic directions obtained from the corresponding XRD spectra indicate clearly that thin buffer layers deform parallel to the InAs/GaAs(111)A interfacial plane, thus aiding in the accommodation of the strain induced by lattice mismatch. The experimental measurements are in excellent agreement with the calculated lattice interplanar distances and the corresponding strain fields in the thin mechanically unconstrained substrates considered in the theoretical analysis. Therefore, this work contributes direct evidence in support of our earlier proposal that thin buffer layers in layer-by-layer semiconductor heteroepitaxy exhibit mechanical behavior similar to that of compliant substrates [see, e.g., B. Z. Nosho, L. A. Zepeda-Ruiz, R. I. Pelzel, W. H. Weinberg, and D. Maroudas, Appl. Phys. Lett. 75, 829 (1999)].

  6. Self-assembly of dodecaphenyl POSS thin films

    NASA Astrophysics Data System (ADS)

    Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor

    2017-12-01

    The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.

  7. Effect of Al doping on performance of ZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Dong, Junchen; Han, Dedong; Li, Huijin; Yu, Wen; Zhang, Shendong; Zhang, Xing; Wang, Yi

    2018-03-01

    In this work, we investigate the Aluminum-doped Zinc Oxide (AZO) thin films and their feasibility as the active layer for thin film transistors (TFTs). A comparison on performance is made between the AZO TFTs and ZnO TFTs. The electrical properties such as saturation mobility, subthreshold swing, and on-to-off current ratio are improved when AZO is utilized as the active layer. Oxygen component of the thin film materials indicates that Al is the suppressor for oxygen defect in active layer, which improves the subthreshold swing. Moreover, based on band structure analyzation, we observe that the carrier concentration of AZO is higher than ZnO, leading to the enhancement of saturation mobility. The microstructure of the thin films convey that the AZO films exhibit much smaller grain boundaries than ZnO films, which results in the lower off-state current and higher on-to-off current ratio of AZO TFTs. The AZO thin films show huge potential to be the active layer of TFTs.

  8. Thin film photovoltaic device with multilayer substrate

    DOEpatents

    Catalano, Anthony W.; Bhushan, Manjul

    1984-01-01

    A thin film photovoltaic device which utilizes at least one compound semiconductor layer chosen from Groups IIB and VA of the Periodic Table is formed on a multilayer substrate The substrate includes a lowermost support layer on which all of the other layers of the device are formed. Additionally, an uppermost carbide or silicon layer is adjacent to the semiconductor layer. Below the carbide or silicon layer is a metal layer of high conductivity and expansion coefficient equal to or slightly greater than that of the semiconductor layer.

  9. Controlled placement and orientation of nanostructures

    DOEpatents

    Zettl, Alex K; Yuzvinsky, Thomas D; Fennimore, Adam M

    2014-04-08

    A method for controlled deposition and orientation of molecular sized nanoelectromechanical systems (NEMS) on substrates is disclosed. The method comprised: forming a thin layer of polymer coating on a substrate; exposing a selected portion of the thin layer of polymer to alter a selected portion of the thin layer of polymer; forming a suspension of nanostructures in a solvent, wherein the solvent suspends the nanostructures and activates the nanostructures in the solvent for deposition; and flowing a suspension of nanostructures across the layer of polymer in a flow direction; thereby: depositing a nanostructure in the suspension of nanostructures only to the selected portion of the thin layer of polymer coating on the substrate to form a deposited nanostructure oriented in the flow direction. By selectively employing portions of the method above, complex NEMS may be built of simpler NEMSs components.

  10. High electrical resistivity Nd-Fe-B die-upset magnet doped with eutectic DyF3-LiF salt mixture

    NASA Astrophysics Data System (ADS)

    Kim, K. M.; Kim, J. Y.; Kwon, H. W.; Kim, D. H.; Lee, J. G.; Yu, J. H.

    2017-05-01

    Nd-Fe-B-type die-upset magnet with high electrical resistivity was prepared by doping of eutectic DyF3-LiF salt mixture. Mixture of melt-spun Nd-Fe-B flakes (MQU-F: Nd13.6Fe73.6Co6.6Ga0.6B5.6) and eutectic binary (DyF3-LiF) salt (25 mol% DyF3 - 75 mol% LiF) was hot-pressed and then die-upset. By adding the eutectic salt mixture (> 4 wt%), electrical resistivity of the die-upset magnet was enhanced to over 400 μ Ω .cm compared to 190 μ Ω .cm of the un-doped magnet. Remarkable enhancement of the electrical resistivity was attributed to homogeneous and continuous coverage of the interface between flakes by the easily melted eutectic salt dielectric mixture. It was revealed that active substitution of the Nd atoms in neighboring flakes by the Dy atoms from the added (DyF3-LiF) salt mixture had occurred during such a quick thermal processing of hot-pressing and die-upsetting. This Dy substitution led to coercivity enhancement in the die-upset magnet doped with the eutectic (DyF3-LiF) salt mixture. Coercivity and remanence of the die-upset magnet doped with (DyF3-LiF) salt mixture was as good as those of the DyF3-doped magnet.

  11. A comparison of ion beam measurements by retarding field energy analyzer and laser induced fluorescence in helicon plasma devices

    NASA Astrophysics Data System (ADS)

    Gulbrandsen, N.; Fredriksen, Å.; Carr, J.; Scime, E.

    2015-03-01

    Both Laser-Induced Fluorescence (LIF) and Retarding Field Energy Analyzers (RFEA) have been applied to the investigation of beams formed in inductively coupled helicon plasmas. While the LIF technique provides a direct measurement of the velocity distribution in the plasma, the RFEA measures ion flux as a function of a retarding potential. In this paper, we present a method to compare the two techniques, by converting the LIF velocity distribution to an equivalent of a RFEA measurement. We applied this method to compare new LIF and RFEA measurements in two different experiments; the Hot Helicon Experiment (HELIX) - Large Experiment on Instabilities and Anisotropies (LEIA) at West Virginia University and Njord at University of Tromsø. We find good agreement between beam energies of the two methods. In agreement with earlier observations, the RFEA is found to measure ion beams with densities too low for the LIF to resolve. In addition, we present measurements of the axial development of the ion beam in both experiments. Beam densities drop exponentially with distance from the source, both in LIF and RFEA measurements. The effective quenching cross section from LIF in LEIA is found to be σb,*=4 ×10-19 m2 , and the effective beam collisional cross sections by RFEA in Njord to be σb=1.7 ×10-18 m2 .

  12. Effect of inserting a hole injection layer in organic light-emitting diodes: A numerical approach

    NASA Astrophysics Data System (ADS)

    Lee, Hyeongi; Hwang, Youngwook; Won, Taeyoung

    2015-01-01

    For investigating the effect of inserting a hole injection layer (HIL), we carried out a computational study concerning organic light-emitting diodes (OLEDs) that had a thin CuPc layer as the hole injection layer. We used S-TAD (2, 2', 7, 7'-tetrakis-(N, Ndiphenylamino)-9, 9-spirobifluoren) for the hole transfer layer, S-DPVBi (4, 4'-bis (2, 2'-diphenylvinyl)-1, 1'-spirobiphenyl) for the emission layer and Alq3 (Tris (8-hyroxyquinolinato) aluminium) for the electron transfer layer. This tri-layer device was compared with four-layer devices. To this tri-layer device, we added a thin CuPc layer, which had a 5.3 eV highest occupied molecular orbital (HOMO) level and a 3.8 eV lowest unoccupied molecular orbital (LUMO) level, as a hole injection layer, and we chose this device for Device A. Also, we varied the LUMO level or the HOMO level of the thin CuPc layer. These two devices were identified as Device C and Device D, respectively. In this paper, we simulated the carrier injection, transport and recombination in these four devices. Thereby, we showed the effect of the HIL, and we demonstrated that the characteristics of these devices were improved by adding a thin layer of CuPc between the anode and the HTL.

  13. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    NASA Astrophysics Data System (ADS)

    Li, Na; Chen, Fei; Shen, Qiang; Wang, Chuanbin; Zhang, Lianmeng

    2013-03-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  14. Oriented conductive oxide electrodes on SiO2/Si and glass

    DOEpatents

    Jia, Quanxi; Arendt, Paul N.

    2001-01-01

    A thin film structure is provided including a silicon substrate with a layer of silicon dioxide on a surface thereof, and a layer of cubic oxide material deposited upon the layer of silicon dioxide by ion-beam-assisted-deposition, said layer of cubic oxide material characterized as biaxially oriented. Preferably, the cubic oxide material is yttria-stabilized zirconia. Additional thin layers of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide are deposited upon the layer of yttria-stabilized zirconia. An intermediate layer of cerium oxide is employed between the yttria-stabilized zirconia layer and the lanthanum strontium cobalt oxide layer. Also, a layer of barium strontium titanium oxide can be upon the layer of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide. Also, a method of forming such thin film structures, including a low temperature deposition of a layer of a biaxially oriented cubic oxide material upon the silicon dioxide surface of a silicon dioxide/silicon substrate is provided.

  15. A randomized, double-blinded, placebo-controlled phase II trial of recombinant human leukemia inhibitory factor (rhuLIF, emfilermin, AM424) to prevent chemotherapy-induced peripheral neuropathy.

    PubMed

    Davis, Ian D; Kiers, Lynette; MacGregor, Lachlan; Quinn, Michael; Arezzo, Joseph; Green, Michael; Rosenthal, Mark; Chia, Michael; Michael, Michael; Bartley, Peter; Harrison, Leonie; Daly, Michael

    2005-03-01

    To determine whether recombinant human leukemia inhibitory factor (rhuLIF, AM424, emfilermin) can prevent or ameliorate the development of chemotherapy-induced peripheral neuropathy (CIPN) after treatment with carboplatin (AUC 6) and paclitaxel (175 mg/m(2) over 3 hours). Randomized double-blind placebo-controlled phase II clinical trial. Eligible patients had solid tumors for which treatment with carboplatin/paclitaxel was appropriate. The primary end point was a standardized composite peripheral nerve electrophysiology (CPNE) score, based on nerve velocities and amplitudes, measured at baseline and after four cycles of chemotherapy. Secondary efficacy end points included CPNE score at last cycle and at exit evaluation, vibration perception threshold, H-reflex latency, symptom scores, and quantitative assessment of neurologic signs. Study drug was given s.c. daily for 7 days starting the day before chemotherapy. Patients were randomized to receive low-dose rhuLIF (2 microg/kg), high-dose rhuLIF (4 microg/kg), or placebo. Patients (n = 117) were randomized across seven neurology test centers. Thirty-six patients received low dose rhuLIF (2 microg/kg), 39 received high dose rhuLIF (4 microg/kg) and 42 received placebo. rhuLIF was well tolerated with 95% compliance and no adverse effects on quality of life. No differences between groups in CPNE or any of the individual neurologic testing variables were observed between baseline and cycle 4 or by the secondary efficacy variables. rhuLIF is not effective in preventing CIPN caused by carboplatin and paclitaxel. CPNE is a reliable and valid tool that was sensitive to the onset and progression of CIPN.

  16. Resistivity and magnetic susceptibility studies of Tl[sub m]Ca[sub n[minus]1]Ba[sub 2]Cu[sub n]O[sub y] before and after doping with LiF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Hamalawy, A.A.; El-Zaidia, M.M.; Ammar, A.A.

    1993-04-01

    Measurements of the superconducting resistance as a function of temperature were performed using the conventional four-probe method. The transition to complete superconductivity was recorded for samples of (Tl[sub 2]Ca[sub 2]Ba[sub 2]Cu[sub 3]O[sub 10])[sub 100[minus]x]LiF[sub x] (2223) mixed with different LiF ratios x = 0, 2, 4, 5, 6, 8, 10, and 12wt.%. It was found that the transition temperature T[sub c] was increased up to 5 wt.% of LiF. Further addition of LiF decreases T[sub c]. Therefore, 5 wt.% LiF is the optimum concentration giving a transition temperature of 130 K. Measurements of the superconducting resistance of all the samplesmore » except the (1111) compound show that the addition of 5 wt.% LiF increases T[sub c] and decreases the metastable phases. The real part of the a.c. magnetic susceptibility [chi][sub a.c.] is studied using a zero-field cooled mechanism. The temperature dependence of [chi][sub a.c.] for the prepared TlBaCaCuO having stoichiometric composition of (1111), (2223), (2234), and (3245) and that after doping with 5 wt.% LiF showed a broad feature. The transition to the complete diamagnetic state takes place in a broad transition region containing many transition steps, indicating the presence of metastable phases. The addition of LiF decreases the fluctuation in the transition region and its effect in reducing the number of multiphases. 29 refs., 10 refs.« less

  17. A handheld laser-induced fluorescence detector for multiple applications.

    PubMed

    Fang, Xiao-Xia; Li, Han-Yang; Fang, Pan; Pan, Jian-Zhang; Fang, Qun

    2016-04-01

    In this paper, we present a compact handheld laser-induced fluorescence (LIF) detector based on a 450 nm laser diode and quasi-confocal optical configuration with a total size of 9.1 × 6.2 × 4.1 cm(3). Since there are few reports on the use of 450 nm laser diode in LIF detection, especially in miniaturized LIF detector, we systematically investigated various optical arrangements suitable for the requirements of 450 nm laser diode and system miniaturization, including focusing lens, filter combination, and pinhole, as well as Raman effect of water at 450 nm excitation wavelength. As the result, the handheld LIF detector integrates the light source (450 nm laser diode), optical circuit module (including a 450 nm band-pass filter, a dichroic mirror, a collimating lens, a 525 nm band-pass filter, and a 1.0mm aperture), optical detector (miniaturized photomultiplier tube), as well as electronic module (including signal recording, processing and displaying units). This detector is capable of working independently with a cost of ca. $2000 for the whole instrument. The detection limit of the instrument for sodium fluorescein solution is 0.42 nM (S/N=3). The broad applicability of the present system was demonstrated in capillary electrophoresis separation of fluorescein isothiocyanate (FITC) labeled amino acids and in flow cytometry of tumor cells as an on-line LIF detector, as well as in droplet array chip analysis as a LIF scanner. We expect such a compact LIF detector could be applied in flow analysis systems as an on-line detector, and in field analysis and biosensor analysis as a portable universal LIF detector. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Immunogenicity of HILDA/LIF either in a soluble or in a membrane anchored form expressed in vivo by recombinant vaccinia viruses.

    PubMed

    Taupin, J L; Acres, B; Dott, K; Schmitt, D; Kieny, M P; Gualde, N; Moreau, J F

    1993-09-01

    Insertion of various cDNAs in the genome of the vaccinia virus (VV) enables the in vivo and in vitro study of the functional role and/or the immunogenicity of the virally encoded recombinant proteins. We have prepared a recombinant VV expressing the cDNA of the human cytokine HILDA/LIF (human interleukin for DA cells/leukaemia inhibitory factor), and used this virus to immunize mice against this protein, which is very homologous to its murine counterpart (approximately 80% homology). We also constructed and expressed by the same system a chimeric gene encoding the HILDA/LIF protein fused to the 37 COOH-terminal amino-acids of the human decay accelerating factor (DAF). This sequence proved to be sufficient for the targeting of the fusion protein to the cell membrane, where it is linked to the phosphatidylinositols. Both recombinant VVs induced cytokine-specific antibodies in mice as analysed with an ELISA where the recombinant HILDA/LIF was plastic-coated and a cytofluorometric assay where the LIF-DAF molecule was present at the cell surface of stably transfected P815. In the latter case HILDA/LIF remained biologically active suggesting that it was expressed in its native form. The LIF-DAF fusion protein was found to exhibit a better capacity to elicit an antibody response against the native form of the cytokine as detected in cytofluorometric assays. Whatever the recombinant virus used to immunize the mice, the MoAbs obtained were positive either in the ELISA or in the cytofluorometric assays but one, which suggested that the plastic coating induced a conformational change of HILDA/LIF.

  19. LIF supports primitive endoderm expansion during pre-implantation development.

    PubMed

    Morgani, Sophie M; Brickman, Joshua M

    2015-10-15

    Embryonic stem cells (ESCs) are pluripotent cell lines that can be maintained indefinitely in an early developmental state. ESC culture conditions almost always require the cytokine LIF to maintain self-renewal. As ESCs are not homogeneous but contain multiple populations reminiscent of the blastocyst, identifying the target cells of LIF is necessary to understand the propagation of pluripotency. We recently found that LIF acts under self-renewing conditions to stimulate the fraction of ESCs that express extraembryonic markers, but has little impact on pluripotent gene expression. Here, we report that LIF has two distinct roles: it blocks early epiblast (Epi) differentiation, and it supports the expansion of primitive endoderm (PrE)-primed ESCs and PrE in vivo. We find that activation of JAK/STAT signalling downstream of LIF occurs initially throughout the pre-implantation embryo, but later marks the PrE. Moreover, the addition of LIF to cultured embryos increases the GATA6(+) PrE population, whereas inhibition of JAK/STAT signalling reduces both NANOG(+) epiblast and GATA6(+) PrE. The reduction of the NANOG(+) Epi might be explained by its precocious differentiation to later Epi derivatives, whereas the increase in PrE is mediated both by an increase in proliferation and inhibition of PrE apoptosis that is normally triggered in embryos with an excess of GATA6(+) cells. Thus, it appears that the relative size of the PrE is determined by the number of LIF-producing cells in the embryo. This suggests a mechanism by which the embryo adjusts the relative ratio of the primary lineages in response to experimental manipulation. © 2015. Published by The Company of Biologists Ltd.

  20. Damped response of shells by a constrained viscoelastic layer

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1986-01-01

    Vibration absorbers are introduced into an asymmetric configuration of thin cylinders and tori enclosing an acoustic medium. The absorbers consist of thin axial strips bonded to the cylinder with a thin viscoelastic layer. The constrained layer dissipates the energy of relative motions between strip and cylinder. The absorber is most effective on response modes with two or more circumferential waves. The use of transfer matrices is extended to the coupled cylinder-absorber system.

  1. Photocurrent generation in SnO2 thin film by surface charged chemisorption O ions

    NASA Astrophysics Data System (ADS)

    Lee, Po-Ming; Liao, Ching-Han; Lin, Chia-Hua; Liu, Cheng-Yi

    2018-06-01

    We report a photocurrent generation mechanism in the SnO2 thin film surface layer by the charged chemisorption O ions on the SnO2 thin film surface induced by O2-annealing. A critical build-in electric field in the SnO2 surface layer resulted from the charged O ions on SnO2 surface prolongs the lifetime and reduces the recombination probability of the photo-excited electron-hole pairs by UV-laser irradiation (266 nm) in the SnO2 surface layer, which is the key for the photocurrent generation in the SnO2 thin film surface layer. The critical lifetime of prolonged photo-excited electron-hole pair is calculated to be 8.3 ms.

  2. Multi-oxide active layer deposition using Applied Materials Pivot array coater for high-mobility metal oxide TFT

    NASA Astrophysics Data System (ADS)

    Park, Hyun Chan; Scheer, Evelyn; Witting, Karin; Hanika, Markus; Bender, Marcus; Hsu, Hao Chien; Yim, Dong Kil

    2015-11-01

    By controlling a thin indium tin oxide (ITO), indium zinc oxide interface layer between gate insulator and indium gallium zinc oxide (IGZO), the thin-film transistor (TFT) performance can reach higher mobility as conventional IGZO as well as superior stability. For large-area display application, Applied Materials static PVD array coater (Applied Materials GmbH & Co. KG, Alzenau, Germany) using rotary targets has been developed to enable uniform thin layer deposition in display industry. Unique magnet motion parameter optimization in Pivot sputtering coater is shown to provide very uniform thin ITO layer to reach TFT performance with high mobility, not only on small scale, but also on Gen8.5 (2500 × 2200 mm glass size) production system.

  3. Highly stable thin film transistors using multilayer channel structure

    NASA Astrophysics Data System (ADS)

    Nayak, Pradipta K.; Wang, Zhenwei; Anjum, D. H.; Hedhili, M. N.; Alshareef, H. N.

    2015-03-01

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60 °C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO2 layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO2 layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.

  4. Method of manufacturing a shapeable short-resistant capacitor

    DOEpatents

    Taylor, Ralph S.; Myers, John D.; Baney, William J.

    2013-04-02

    A method that employs a novel combination of conventional fabrication techniques provides a ceramic short-resistant capacitor that is bendable and/or shapeable to provide a multiple layer capacitor that is extremely compact and amenable to desirable geometries. The method allows thinner and more flexible ceramic capacitors to be made. The method includes forming a first thin metal layer on a substrate; depositing a thin, ceramic dielectric layer over the metal layer; depositing a second thin metal layer over the dielectric layer to form a capacitor exhibiting a benign failure mode; and separating the capacitor from the substrate. The method may also include bending the resulting capacitor into a serpentine arrangement with gaps between the layers that allow venting of evaporated electrode material in the event of a benign failure.

  5. Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique

    DOEpatents

    Wang, Qi; Iwaniczko, Eugene

    2006-10-17

    A thin-film solar cell is provided. The thin-film solar cell comprises an a-SiGe:H (1.6 eV) n-i-p solar cell having a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer by hot wire chemical vapor deposition. A method for fabricating a thin film solar cell is also provided. The method comprises depositing a n-i-p layer at a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer.

  6. A 2-lambda laser-induced flurorescence field instrument for ground-based and airborne measurements of atmospheric OH

    NASA Technical Reports Server (NTRS)

    Rodgers, M. O.; Bradshaw, J. D.; Sandholm, S. T.; Kesheng, S.; Davis, D. D.

    1985-01-01

    A number of techniques have been proposed for detecting atmospheric OH radicals. Of these, the laser-induced fluorescence (LIF) technique has been used by the largest number of investigators. One of the problems arising in connection with the implementation of this technique is related to the perturbing effect of the UV (lambda approximately 282 nm) laser beam used for OH monitoring, while another problem relates to signal extraction. Several new LIF approaches have been or are currently under development with the objective to bring both problems under control. The present paper deals with the experimental features of one of these new approaches. The considered approach is referred to as 2-lambda laser-induced fluorescence (2-lambda LIF). It is shown that the 2-lambda LIF system provides significant advantages over earlier 1-lambda LIF OH measurement instruments operating at ambient pressure.

  7. Continuous Wave Ring-Down Spectroscopy Diagnostic for Measuring Argon Ion and Neutral Velocity Distribution Functions in a Helicon Plasma

    NASA Astrophysics Data System (ADS)

    McCarren, Dustin; Vandervort, Robert; Soderholm, Mark; Carr, Jerry, Jr.; Galante, Matthew; Magee, Richard; Scime, Earl

    2013-10-01

    Cavity Ring-Down Spectroscopy CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique. When combined with a continuous wavelength (CW) diode laser that has a sufficiently narrow line width, the Doppler broadened absorption line, i.e., the velocity distribution functions (IVDFs), can be measured. Measurements of IVDFS can be made using established techniques, such as laser induced fluorescence (LIF). However, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density. This usually limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. In this work we present ongoing measurements of the CW-CRDS diagnostic and discuss the technical challenges of using CW-CRDS to make measurements in a helicon plasma.

  8. Exploring magnetized liner inertial fusion with a semi-analytic model

    DOE PAGES

    McBride, Ryan D.; Slutz, Stephen A.; Vesey, Roger A.; ...

    2016-01-01

    In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less

  9. Exploring magnetized liner inertial fusion with a semi-analytic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, R. D.; Slutz, S. A.; Vesey, R. A.

    In this paper, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less

  10. Exploring magnetized liner inertial fusion with a semi-analytic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, Ryan D.; Slutz, Stephen A.; Vesey, Roger A.

    In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less

  11. Ultra-high current density thin-film Si diode

    DOEpatents

    Wang; Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  12. Electron transport in ultra-thin films and ballistic electron emission microscopy

    NASA Astrophysics Data System (ADS)

    Claveau, Y.; Di Matteo, S.; de Andres, P. L.; Flores, F.

    2017-03-01

    We have developed a calculation scheme for the elastic electron current in ultra-thin epitaxial heterostructures. Our model uses a Keldysh’s non-equilibrium Green’s function formalism and a layer-by-layer construction of the epitaxial film. Such an approach is appropriate to describe the current in a ballistic electron emission microscope (BEEM) where the metal base layer is ultra-thin and generalizes a previous one based on a decimation technique appropriated for thick slabs. This formalism allows a full quantum mechanical description of the transmission across the epitaxial heterostructure interface, including multiple scattering via the Dyson equation, which is deemed a crucial ingredient to describe interfaces of ultra-thin layers properly in the future. We introduce a theoretical formulation needed for ultra-thin layers and we compare with results obtained for thick Au(1 1 1) metal layers. An interesting effect takes place for a width of about ten layers: a BEEM current can propagate via the center of the reciprocal space (\\overlineΓ ) along the Au(1 1 1) direction. We associate this current to a coherent interference finite-width effect that cannot be found using a decimation technique. Finally, we have tested the validity of the handy semiclassical formalism to describe the BEEM current.

  13. Lidar observation of transition of cirrus clouds over a tropical station Gadanki (13.45° N, 79.18° E): case studies

    NASA Astrophysics Data System (ADS)

    Srinivasan, M. A.; Rao, C. Dhananjaya; Krishnaiah, M.

    2016-05-01

    The present study describes Mie lidar observations of the cirrus cloud passage showing transition between double thin layers into single thick and single thick layer into double thin layers of cirrus over Gadanki region. During Case1: 17 January 2007, Case4: 12 June 2007, Case5: 14 July 2007 and Case6: 24 July 2007 the transition is found to from two thin cirrus layers into single geometrically thick layer. Case2: 14 May 2007 and Case3: 15 May 2007, the transition is found to from single geometrically thick layer into two thin cirrus layers. Linear Depolarization Ratio (LDR) and Back Scatter Ration (BSR) are found to show similar variation with strong peaks during transition; both LDR and Cloud Optical Depth (COD) is found to show similar variation except during transition with strong peaks in COD which is not clearly found from LDR for the all cases. There is a significant weakening of zonal and meridional winds during Case1 which might be due to the transition from multiple to single thick cirrus indicating potential capability of thick cirrus in modulating the wind fields. There exists strong upward wind dominance contributed to significant ascent in cloud-base altitude thereby causing transition of multiple thin layers into single thick cirrus.

  14. Patterning layer-by-layer self-assembled multilayer by lithography and its applications to thin film devices

    NASA Astrophysics Data System (ADS)

    Hua, Feng

    Nanoparticles are exciting materials because they exhibit unique electronic, catalytic, and optical properties. As a novel and promising nanobuilding block, it attracts considerable research efforts in its integration into a wide variety of thin film devices. Nanoparticles were adsorbed onto the substrate with layer-by-layer self-assembly which becomes of great interest due to its suitability in colloid particle assembly. Without extremely high temperatures and sophisticated equipment, molecularly organized films in an exactly pre-designed order can grow on almost all the substrates in nature. Two approaches generating spatially separated patterns comprised of nanoparticles are demonstrated, as well as two approaches patterning more than one type of nonoparticle on a silicon wafer. The structure of the thin film patterned by these approaches are analyzed and considered suitable to the thin film device. Finally, the combination of lithography and layer-by-layer (lbl) self-assembly is utilized to realize the microelectronic device with functional nonoparticles. The lbl self-assembly is the way to coat the nonoparticles and the lighography to pattern them. Based on the coating and patterning technique, a MOS-capacitor, a MOS field-effect-transistor and magnetic thin film cantilever are fabricated.

  15. Thin and thick layers of resin-based sealer cement bonded to root dentine compared: Adhesive behaviour.

    PubMed

    Pane, Epita S; Palamara, Joseph E A; Messer, Harold H

    2015-12-01

    This study aims to evaluate tensile and shear bond strengths of one epoxy (AH) and two methacrylate resin-based sealers (EZ and RS) in thin and thick layers bonded to root dentine. An alignment device was prepared for accurate positioning of 20 root dentine cylinders in a predefined gap of 0.1 or 1 mm. Sealer was placed in the interface. Bond strength tests were conducted. Mode of failures and representative surfaces were evaluated. Data were analysed using anova and post-hoc tests, with P < 0.05. The thick layer of sealer produced higher bond strength, except for the shear bond strength of EZ. Significant differences between thin and thick layers were found only in tensile bond strengths of AH and RS. Mixed type of failure was constantly found with all sealers. Bond strengths of thick layers of resin-based sealers to root dentine tended to be higher than with thin layers. © 2015 Australian Society of Endodontology.

  16. Method of Fabricating Schottky Barrier solar cell

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M. (Inventor)

    1982-01-01

    On a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive is deposited a thin layer of heavily doped n-type polycrystalline germanium, with crystalline sizes in the submicron range. A passivation layer may be deposited on the substrate to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes in the germanium layer to not less than 5 micros to serve as a base layer on which a thin layer of gallium arsenide is vapor epitaxially grown to a selected thickness. A thermally-grown oxide layer of a thickness of several tens of angstroms is formed on the gallium arsenide layer. A metal layer, of not more about 100 angstroms thick, is deposited on the oxide layer, and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer. An antireflection coating may be deposited on the exposed top surface of the metal layer.

  17. Machine vision systems using machine learning for industrial product inspection

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Chen, Tie Q.; Chen, Jie; Zhang, Jian; Tisler, Anthony

    2002-02-01

    Machine vision inspection requires efficient processing time and accurate results. In this paper, we present a machine vision inspection architecture, SMV (Smart Machine Vision). SMV decomposes a machine vision inspection problem into two stages, Learning Inspection Features (LIF), and On-Line Inspection (OLI). The LIF is designed to learn visual inspection features from design data and/or from inspection products. During the OLI stage, the inspection system uses the knowledge learnt by the LIF component to inspect the visual features of products. In this paper we will present two machine vision inspection systems developed under the SMV architecture for two different types of products, Printed Circuit Board (PCB) and Vacuum Florescent Displaying (VFD) boards. In the VFD board inspection system, the LIF component learns inspection features from a VFD board and its displaying patterns. In the PCB board inspection system, the LIF learns the inspection features from the CAD file of a PCB board. In both systems, the LIF component also incorporates interactive learning to make the inspection system more powerful and efficient. The VFD system has been deployed successfully in three different manufacturing companies and the PCB inspection system is the process of being deployed in a manufacturing plant.

  18. Estimates of crystalline LiF thermal conductivity at high temperature and pressure by a Green-Kubo method

    DOE PAGES

    Jones, R. E.; Ward, D. K.

    2016-07-18

    Here, given the unique optical properties of LiF, it is often used as an observation window in high-temperature and -pressure experiments; hence, estimates of its transmission properties are necessary to interpret observations. Since direct measurements of the thermal conductivity of LiF at the appropriate conditions are difficult, we resort to molecular simulation methods. Using an empirical potential validated against ab initio phonon density of states, we estimate the thermal conductivity of LiF at high temperatures (1000–4000 K) and pressures (100–400 GPa) with the Green-Kubo method. We also compare these estimates to those derived directly from ab initio data. To ascertainmore » the correct phase of LiF at these extreme conditions, we calculate the (relative) phase stability of the B1 and B2 structures using a quasiharmonic ab initio model of the free energy. We also estimate the thermal conductivity of LiF in an uniaxial loading state that emulates initial stages of compression in high-stress ramp loading experiments and show the degree of anisotropy induced in the conductivity due to deformation.« less

  19. Research of mine water source identification based on LIF technology

    NASA Astrophysics Data System (ADS)

    Zhou, Mengran; Yan, Pengcheng

    2016-09-01

    According to the problem that traditional chemical methods to the mine water source identification takes a long time, put forward a method for rapid source identification system of mine water inrush based on the technology of laser induced fluorescence (LIF). Emphatically analyzes the basic principle of LIF technology. The hardware composition of LIF system are analyzed and the related modules were selected. Through the fluorescence experiment with the water samples of coal mine in the LIF system, fluorescence spectra of water samples are got. Traditional water source identification mainly according to the ion concentration representative of the water, but it is hard to analysis the ion concentration of the water from the fluorescence spectra. This paper proposes a simple and practical method of rapid identification of water by fluorescence spectrum, which measure the space distance between unknown water samples and standard samples, and then based on the clustering analysis, the category of the unknown water sample can be get. Water source identification for unknown samples verified the reliability of the LIF system, and solve the problem that the current coal mine can't have a better real-time and online monitoring on water inrush, which is of great significance for coal mine safety in production.

  20. A monoclonal antibody based elisa for quantitation of human leukaemia inhibitory factor.

    PubMed

    Taupin, J L; Gualde, N; Moreau, J F

    1997-02-01

    The authors report on the development of a new sandwich enzyme-linked immunoabsorbent assay (ELISA) for the quantitation of the human cytokine leukaemia inhibitory factor/human interleukin for DA cells (LIF/HILDA) with high accuracy and sensitivity (23 pg/ml), in less than 5 h and in various biological fluids. The antibodies used in this assay were raised against recombinant glycosylated LIF expressed in vivo following inoculation of recombinant vaccinia viruses, and screened with the biologically active cytokine in a flow cytometry assay using cells expressing a membrane-bound form of LIF. Furthermore, this home-made assay was compared with two commercially available ELISA kits. The results led to the conclusion that these three assays are far from being equivalent between each other, in terms of sensitivity towards non-glycosylated vs glycosylated LIF. Two major parameters must be incriminated: the glycosylation status of the LIF molecule used as the calibrator, and the binding characteristics of the monoclonal antibodies used to set up these assays toward LIF derived from Escherichia coli or from eukaryotic cells. This points out the importance of these parameters for the design of ELISAs meant for the quantitation of glycosylated cytokines in biological fluids.

  1. Characterization of aluminum selenide bi-layer thin film

    NASA Astrophysics Data System (ADS)

    Boolchandani, Sarita; Soni, Gyanesh; Srivastava, Subodh; Vijay, Y. K.

    2018-05-01

    The Aluminum Selenide (AlSe) bi-layer thin films were grown on glass substrate using thermal evaporation method under high vacuum condition. The morphological characterization was done using SEM. Electrical measurement with temperature variation shows that thin films exhibit the semiconductor nature. The optical properties of prepared thin films have also been characterized by UV-VIS spectroscopy measurements. The band gap of composite thin films has been calculated by Tauc's relation at different temperature ranging 35°C-100°C.

  2. Piezoresistivity of mechanically drawn single-walled carbon nanotube (SWCNT) thin films-: mechanism and optimizing principle

    NASA Astrophysics Data System (ADS)

    Obitayo, Waris

    The individual carbon nanotube (CNT) based strain sensors have been found to have excellent piezoresistive properties with a reported gauge factor (GF) of up to 3000. This GF on the other hand, has been shown to be structurally dependent on the nanotubes. In contrast, to individual CNT based strain sensors, the ensemble CNT based strain sensors have very low GFs e.g. for a single walled carbon nanotube (SWCNT) thin film strain sensor, GF is ~1. As a result, studies which are mostly numerical/analytical have revealed the dependence of piezoresistivity on key parameters like concentration, orientation, length and diameter, aspect ratio, energy barrier height and Poisson ratio of polymer matrix. The fundamental understanding of the piezoresistive mechanism in an ensemble CNT based strain sensor still remains unclear, largely due to discrepancies in the outcomes of these numerical studies. Besides, there have been little or no experimental confirmation of these studies. The goal of my PhD is to study the mechanism and the optimizing principle of a SWCNT thin film strain sensor and provide experimental validation of the numerical/analytical investigations. The dependence of the piezoresistivity on key parameters like orientation, network density, bundle diameter (effective tunneling area), and length is studied, and how one can effectively optimize the piezoresistive behavior of a SWCNT thin film strain sensors. To reach this goal, my first research accomplishment involves the study of orientation of SWCNTs and its effect on the piezoresistivity of mechanically drawn SWCNT thin film based piezoresistive sensors. Using polarized Raman spectroscopy analysis and coupled electrical-mechanical test, a quantitative relationship between the strain sensitivity and SWCNT alignment order parameter was established. As compared to randomly oriented SWCNT thin films, the one with draw ratio of 3.2 exhibited ~6x increase on the GF. My second accomplishment involves studying the influence of the network density on the piezoresistivity of mechanically drawn SWCNT thin films. Mechanically drawn SWCNT thin films with different layer (or thickness) e.g. 1-layer, 3-layer, 10-layer and 20-layer SWCNT thin films were prepared to understand the variation of SWCNT network density as well as the alignment of SWCNTs on the strain sensitivity. The less entangled SWCNT bundles observed in the sparse network density (1- layer and 3-layer SWCNT thin films) allows for easy alignment and the best gauge factors. As compared to the randomly oriented SWCNT thin films, the one with draw ratio of 3.2 exhibited ~8x increase on the GF for the 1-layer SWCNT thin films while the 20-layer SWCNT thin films exhibited ~3x increase in the GF. My third accomplishment examines the effect of SWCNT bundles with different diameters on the piezoresistive behavior of mechanically drawn SWCNT thin films. SWCNT thin film network of sparse morphology (1-layer) with different bundle sizes were prepared by varying the sonication duration e.g. S0.5hr, S4hr, S10hr and S20hr and using spraying coating. The GF increased by a factor of ~10 when the randomly oriented SWCNT thin film was stretched to a draw ratio of 3.2 for the S0.5hr SWCNT thin films and by a factor of ~2 for the S20hr SWCNT thin films. Three main mechanisms were attributed to this behavior e.g. effect of concentration of exfoliated nanotubes, bundle reduction due to mechanical stretching, and influence of bundle length on the alignment of SWCNTs. Furthermore, information about the average length and length distribution is very essential when investigating the influence of individual nanotube length on the strain sensitivity. With that in mind, we would use our previously developed preparative ultracentrifuge method (PUM), and our newly developed gel electrophoresis and simultaneous Raman and photoluminescence spectroscopy (GEP-SRSPL) to characterize the average length and length distribution of individual SWCNTs respectively.

  3. Process for forming epitaxial perovskite thin film layers using halide precursors

    DOEpatents

    Clem, Paul G.; Rodriguez, Mark A.; Voigt, James A.; Ashley, Carol S.

    2001-01-01

    A process for forming an epitaxial perovskite-phase thin film on a substrate. This thin film can act as a buffer layer between a Ni substrate and a YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor layer. The process utilizes alkali or alkaline metal acetates dissolved in halogenated organic acid along with titanium isopropoxide to dip or spin-coat the substrate which is then heated to about 700.degree. C. in an inert gas atmosphere to form the epitaxial film on the substrate. The YBCO superconductor can then be deposited on the layer formed by this invention.

  4. Photo-EMF sensitivity of porous silicon thin layer-crystalline silicon heterojunction to ammonia adsorption.

    PubMed

    Vashpanov, Yuriy; Jung, Jae Il; Kwack, Kae Dal

    2011-01-01

    A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light.

  5. 19.5%-Efficient CuIn1-xGaxSe2 Photovoltaic Cells Using A Cd-Zn-S Buffer Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya. R. N.

    2008-01-01

    CuIn1-xGaxSe2 (CIGS) solar cell junctions prepared by chemical-bath-deposited (CBD) Zn1-xCdxS (CdZnS), ZnS, and CdS buffer layers are discussed. A 19.52%-efficient, CIGS-based, thin-film photovoltaic device has been fabricated using a single-layer CBD CdZnS buffer layer. The mechanism that creates extensive hydroxide and oxide impurities in CBD-ZnS and CBD-CdZnS thin films (compared to CBD-CdS thin film) is presented.

  6. Component-/structure-dependent elasticity of solid electrolyte interphase layer in Li-ion batteries: Experimental and computational studies

    NASA Astrophysics Data System (ADS)

    Shin, Hosop; Park, Jonghyun; Han, Sangwoo; Sastry, Ann Marie; Lu, Wei

    2015-03-01

    The mechanical instability of the Solid Electrolyte Interphase (SEI) layer in lithium ion (Li-ion) batteries causes significant side reactions resulting in Li-ion consumption and cell impedance rise by forming further SEI layers, which eventually leads to battery capacity fade and power fade. In this paper, the composition-/structure-dependent elasticity of the SEI layer is investigated via Atomic Force Microscopy (AFM) measurements coupled with X-ray Photoelectron Spectroscopy (XPS) analysis, and atomistic calculations. It is observed that the inner layer is stiffer than the outer layer. The measured Young's moduli are mostly in the range of 0.2-4.5 GPa, while some values above 80 GPa are also observed. This wide variation of the observed elastic modulus is elucidated by atomistic calculations with a focus on chemical and structural analysis. The numerical analysis shows the Young's moduli range from 2.4 GPa to 58.1 GPa in the order of the polymeric, organic, and amorphous inorganic components. The crystalline inorganic component (LiF) shows the highest value (135.3 GPa) among the SEI species. This quantitative observation on the elasticity of individual components of the SEI layer must be essential to analyzing the mechanical behavior of the SEI layer and to optimizing and controlling it.

  7. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman, E-mail: anis@eee.buet.ac.bd

    2016-05-21

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatchmore » between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or polygon, total absorption remains approximately the same. However, the total absorption suffers significantly if the holes are triangle. The transmission spectra of incident light into the bottom subcell, and hence the absorption, change significantly for square and circle holes if the active materials change to cadmium selenide (CdSe) and cadmium telluride (CdTe) in the top and bottom subcells, respectively. Although the intermediate metal layer may induce electron-hole pair recombination due to surface defects, the short-circuit current density of an ultra-thin plasmonic solar cell with an intermediate metal layer with two-dimensional hole array is >9% of that of a structure without the intermediate metal layer.« less

  8. Leukemia inhibitory factor protects against experimental lethal Escherichia coli septic shock in mice.

    PubMed Central

    Waring, P M; Waring, L J; Billington, T; Metcalf, D

    1995-01-01

    Leukemia inhibitory factor (LIF) has recently been associated with septic shock in humans. In this study we sought to determine, in mice, the role of LIF in septic shock. During sublethal endotoxemia, serum LIF levels, as determined by radio-receptor competition assay, peaked at 2 h and were low (3 ng/ml), whereas in lethal Escherichia coli septic shock serum LIF levels rose progressively (> 30 ng/ml) in the premorbid phase coincident with the development of tissue injury. Single i.v. injections of high doses (up to 50 micrograms per mouse) of recombinant murine LIF had no obvious acute detrimental effects, whereas continued i.p. administration (30 micrograms per mouse per day) for 3-4 days induced a fatal catabolic state without evidence of preceding hemodynamic collapse or shock. Simultaneous or subsequent administration of high doses of LIF had no effect on mortality from sublethal and lethal E. coli septic shock, whereas prior administration conferred significant protection against lethality (P << 0.001 by log-rank test), an effect that was dose and interval dependent. This protective effect resembled endotoxin tolerance and was characterized by suppression of E. coli-induced serum tumor necrosis factor concentration (P < 0.05), reduction in the number of viable bacteria (P < 0.05), and prevention of sepsis-induced tissue injury. These observations suggest that systemic LIF production is part of the host response to both endotoxin and sepsis-induced tissue injury. Images Fig. 2 Fig. 5 PMID:7877978

  9. Analysis of subcellular sized particles. Capillary electrophoresis with post-column laser-induced fluorescence detection versus flow cytometry.

    PubMed

    Poe, Bobby G; Navratil, Marian; Arriaga, Edgar A

    2006-12-29

    Flow cytometry (FCM) and more recently capillary electrophoresis with post-column laser-induced fluorescence detection (CE-LIF) have both been used for subcellular particle analysis but their analytical performance has not been compared. In this work, we compare a commercial FCM with an in-house built CE-LIF instrument using fluorescently labeled microspheres and isolated mitochondria. As evidenced by the relative standard deviation (RSD) of the individual fluorescence intensities, FCM is two-fold better than CE-LIF for microspheres with > or =1.5 x 10(6) molecules of equivalent soluble fluorescein (MESF). However, FCM has a comparatively low signal-to-noise ratio (S/N) and high RSD for microspheres with <1.5 x 10(6) MESF. CE-LIF, on the other hand, produces S/N ratios that are >25 times higher than FCM for all the microspheres tested and a lower RSD for microspheres with <1.5 x 10(6) MESF. When 10-N-nonyl acridine orange (NAO)-labeled mitochondria are analyzed, the S/N ratios of both techniques are similar. This appears to result from photobleaching of NAO-labeled mitochondria as they are detected by the LIF detector of the CE-LIF instrument. Both techniques have a niche in subcellular analysis; FCM has the advantage of collecting data for thousands of particles quickly, whereas CE-LIF consumes less than a nanoliter of sample and provides the electrophoretic mobility for individual particles.

  10. A comparison of ion beam measurements by retarding field energy analyzer and laser induced fluorescence in helicon plasma devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulbrandsen, N., E-mail: njal.gulbrandsen@uit.no; Fredriksen, Å.; Carr, J.

    2015-03-15

    Both Laser-Induced Fluorescence (LIF) and Retarding Field Energy Analyzers (RFEA) have been applied to the investigation of beams formed in inductively coupled helicon plasmas. While the LIF technique provides a direct measurement of the velocity distribution in the plasma, the RFEA measures ion flux as a function of a retarding potential. In this paper, we present a method to compare the two techniques, by converting the LIF velocity distribution to an equivalent of a RFEA measurement. We applied this method to compare new LIF and RFEA measurements in two different experiments; the Hot Helicon Experiment (HELIX) - Large Experiment onmore » Instabilities and Anisotropies (LEIA) at West Virginia University and Njord at University of Tromsø. We find good agreement between beam energies of the two methods. In agreement with earlier observations, the RFEA is found to measure ion beams with densities too low for the LIF to resolve. In addition, we present measurements of the axial development of the ion beam in both experiments. Beam densities drop exponentially with distance from the source, both in LIF and RFEA measurements. The effective quenching cross section from LIF in LEIA is found to be σ{sub b,*}=4×10{sup −19} m{sup 2}, and the effective beam collisional cross sections by RFEA in Njord to be σ{sub b}=1.7×10{sup −18} m{sup 2}.« less

  11. Study on the Hydrogenated ZnO-Based Thin Film Transistors. Part 1

    DTIC Science & Technology

    2011-04-30

    IGZO film on the performance of thin film transistors 5 Chapter 2. Hydrogenation of a- IGZO channel layer in the thin film transistors 12...effect of substrate temperature during the deposition of a- IGZO film on the performance of thin film transistors Introduction The effect of substrate...temperature during depositing IGZO channel layer on the performance of amorphous indium-gallium-zinc oxide (a- IGZO

  12. Thin-Film Power Transformers

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  13. Substrate spacing and thin-film yield in chemical bath deposition of semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Arias-Carbajal Reádigos, A.; García, V. M.; Gomezdaza, O.; Campos, J.; Nair, M. T. S.; Nair, P. K.

    2000-11-01

    Thin-film yield in the chemical bath deposition technique is studied as a function of separation between substrates in batch production. Based on a mathematical model, it is proposed and experimentally verified in the case of CdS thin films that the film thickness reaches an asymptotic maximum with increase in substrate separation. It is shown that at a separation less than 1 mm between substrates the yield, i.e. percentage in moles of a soluble cadmium salt deposited as a thin film of CdS, can exceed 50%. This behaviour is explained on the basis of the existence of a critical layer of solution near the substrate, within which the relevant ionic species have a higher probability of interacting with the thin-film layer than of contributing to precipitate formation. The critical layer depends on the solution composition and the temperature of the bath as well as the duration of deposition. An effective value for the critical layer thickness has been defined as half the substrate separation at which 90% of the maximum film thickness for the particular bath composition, bath temperature and duration of deposition is obtained. In the case of CdS thin films studied as an example, the critical layer is found to extend from 0.5 to 2.5 mm from the substrate surface, depending on the deposition conditions.

  14. Effects of morphological control on the characteristics of vertical-type OTFTs using Alq3.

    PubMed

    Kim, Young Do; Park, Jong Wook; Kang, In Nam; Oh, Se Young

    2008-09-01

    We have fabricated vertical-type organic thin-film transistors (OTFTs) using tris-(8-hydroxyquinoline) aluminum (Alq(3)) as an n-type active material. Vertical-type OTFT using Alq(3) has a layered structure of Al(source electrode)/Alq(3)(active layer)/Al(gate electrode)/Alq(3)(active layer)/ITO glass(drain electrode). Alq(3) thin films containing various surface morphologies could be obtained by the control of evaporation rate and substrate temperature. The effects of the morphological control of Alq(3) thin layer on the grain size and the flatness of film surface were investigated. The characteristics of vertical-type OTFT significantly influenced the growth condition of Alq(3) layer.

  15. Disruption of vertical motility by shear triggers formation of thin phytoplankton layers.

    PubMed

    Durham, William M; Kessler, John O; Stocker, Roman

    2009-02-20

    Thin layers of phytoplankton are important hotspots of ecological activity that are found in the coastal ocean, meters beneath the surface, and contain cell concentrations up to two orders of magnitude above ambient concentrations. Current interpretations of their formation favor abiotic processes, yet many phytoplankton species found in these layers are motile. We demonstrated that layers formed when the vertical migration of phytoplankton was disrupted by hydrodynamic shear. This mechanism, which we call gyrotactic trapping, can be responsible for the thin layers of phytoplankton commonly observed in the ocean. These results reveal that the coupling between active microorganism motility and ambient fluid motion can shape the macroscopic features of the marine ecological landscape.

  16. Enhanced electrical properties of dual-layer channel ZnO thin film transistors prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Li, Huijin; Han, Dedong; Dong, Junchen; Yu, Wen; Liang, Yi; Luo, Zhen; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2018-05-01

    The thin film transistors (TFTs) with a dual-layer channel structure combing ZnO thin layer grown at 200 °C and ZnO film grown at 120 °C by atomic layer deposition are fabricated. The dual-layer channel TFT exhibits a low leakage current of 2.8 × 10-13 A, Ion/Ioff ratio of 3.4 × 109, saturation mobility μsat of 12 cm2 V-1 s-1, subthreshold swing (SS) of 0.25 V/decade. The SS value decreases to 0.18 V/decade after the annealing treatment in O2 due to the reduction of the trap states at the channel/dielectric interface and in the bulk channel layer. The enhanced performance obtained from the dual-layer channel TFTs is due to the ability of maintaining high mobility and suppressing the increase in the off-current at the same time.

  17. Fabrication and characterization of {110}-oriented Pb(Zr,Ti)O3 thin films on Pt/SiO2/Si substrates using PdO//Pd buffer layer

    NASA Astrophysics Data System (ADS)

    Oshima, Naoya; Uchiyama, Kiyoshi; Ehara, Yoshitaka; Oikawa, Takahiro; Ichinose, Daichi; Tanaka, Hiroki; Sato, Tomoya; Uchida, Hiroshi; Funakubo, Hiroshi

    2017-10-01

    A strongly {110}-oriented perovskite-type thin film of tetragonal Pb(Zr0.4Ti0.6)O3 (PZT) was successfully obtained on a (100)Si substrate using a {101}PdO//{111}Pd thin film as a buffer layer. The {101}PdO//{111}Pd thin film buffer layer was obtained by oxidizing {111}Pd after depositing {111}Pd on a {111}Pt/TiO x /SiO2/{100}Si substrate. Using this buffer layer, a {110} c -oriented SrRuO3 (SRO) thin film was deposited by sputtering as a bottom electrode of PZT thin films. Subsequently, the {110}-oriented PZT thin film can be deposited on a (110) c SRO thin film by metal-organic chemical deposition (MOCVD) and its properties can be compared with those of PZT thin films with other orientations of {100} and {111}. Among the {100}, {110}, {111}-oriented PZT films, the {100}-oriented one showed the largest remnant polarization, which is in good agreement with those of the PZTs epitaxially grown in the 〈100〉, 〈110〉, and 〈111〉 directions. The other properties, i.e., piezoelectricity and dielectric constants, also showed similar anisotropic tendencies, which is in good agreement with the data reported in the epitaxially grown PZTs.

  18. Modeling of Multiphase Flow through Thin Porous Layers: Application to a Polymer Electrolyte Fuel Cell (PEFC)

    NASA Astrophysics Data System (ADS)

    Qin, C.; Hassanizadeh, S.

    2013-12-01

    Multiphase flow and species transport though thin porous layers are encountered in a number of industrial applications, such as fuel cells, filters, and hygiene products. Based on some macroscale models like the Darcy's law, to date, the modeling of flow and transport through such thin layers has been mostly performed in 3D discretized domains with many computational cells. But, there are a number of problems with this approach. First, a proper representative elementary volume (REV) is not defined. Second, one needs to discretize a thin porous medium into computational cells whose size may be comparable to the pore sizes. This suggests that the traditional models are not applicable to such thin domains. Third, the interfacial conditions between neighboring layers are usually not well defined. Last, 3D modeling of a number of interacting thin porous layers often requires heavy computational efforts. So, to eliminate the drawbacks mentioned above, we propose a new approach to modeling multilayers of thin porous media as 2D interacting continua (see Fig. 1). Macroscale 2D governing equations are formulated in terms of thickness-averaged material properties. Also, the exchange of thermodynamic properties between neighboring layers is described by thickness-averaged quantities. In Comparison to previous macroscale models, our model has the distinctive advantages of: (1) it is rigorous thermodynamics-based model; (2) it is formulated in terms of thickness-averaged material properties which are easily measureable; and (3) it reduces 3D modeling to 2D leading to a very significant reduction of computation efforts. As an application, we employ the new approach in the study of liquid water flooding in the cathode of a polymer electrolyte fuel cell (PEFC). To highlight the advantages of the present model, we compare the results of water distribution with those obtained from the traditional 3D Darcy-based modeling. Finally, it is worth noting that, for specific case studies, a number of material properties in the model need to be determined experimentally, such as mass and heat exchange coefficients between neighboring layers. Fig. 1: Schematic representation of three thin porous layers, which may exchange mass, momentum, and energy. Also, a typical averaging domain (REV) is shown. Note that the layer thickness and thus the REV height can be spatially variable. Also, in reality, the layers are tightly stacked and there is no gap between them.

  19. Effect of thin oxide layers incorporated in spin valve structures

    NASA Astrophysics Data System (ADS)

    Gillies, M. F.; Kuiper, A. E. T.; Leibbrandt, G. W. R.

    2001-06-01

    The enhancement of the magnetoresistance effect, induced by incorporating nano-oxide layers (NOLs) in a bottom-type spin valve, was studied for various preparation conditions. The effect of a NOL in the Co90Fe10 pinned layer was found to depend critically on the oxygen pressure applied to form the thin oxide film. Pressures over 10-3 Torr O2 yield oxides thicker than about 0.7 nm, which apparently deteriorate the biasing field which exists over the oxide. The magnetoresistance values can further be raised by forming a specular reflecting oxide on top of the sense layer. Promising results were obtained with an Al2O3 capping layer formed in a solid-state oxidation reaction that occurs spontaneously when a thin Al layer is deposited on the oxidized surface of the Co90Fe10 sense layer.

  20. Water softening process

    DOEpatents

    Sheppard, John D.; Thomas, David G.

    1976-01-01

    This invention involves an improved process for softening hard water which comprises selectively precipitaing CaCO.sub.3 to form a thin layer thereof, increasing the pH of said water to precipitate magnesium as magnesium hydroxide and then filtering the resultant slurry through said layer. The CaCO.sub.3 layer serves as a thin permeable layer which has particularly useful application in cross-flow filtration applications.

  1. Matching characteristics of different buffer layers with VO2 thin films

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Zhang, Dongping; Liu, Yi; Guan, Tianrui; Qin, Xiaonan; Zhong, Aihua; Cai, Xingmin; Fan, Ping; Lv, Weizhong

    2016-10-01

    VO2 thin films were fabricated by reactive DC magnetron sputtering on different buffer layers of MgF2, Al2O3 and TiO2, respectively. The crystallinity and orientation relationship, thickness of VO2 thin films, atoms vibrational modes, optical and electrical property, surface morphology of films were characterized by X-ray diffraction, Raman scattering microscopy, step profiler, spectrophotometer, four-probe technique, and scanning electron microscopy, respectively. XRD results investigated that the films have preferential crystalline planes VO2 (011). The crystallinity of VO2 films grown on TiO2 buffer layers are superior to VO2 directly deposited on soda-lime glass. The Raman bands of the VO2 films correspond to an Ag symmetry mode of VO2 (M). The sample prepared on 100nm TiO2 buffer layer appears nanorods structure, and exhibits remarkable solar energy modulation ability as high as 5.82% in full spectrum and 23% in near infrared spectrum. Cross-sectional SEM image of the thin films samples indicate that MgF2 buffer layer has clear interface with VO2 layer. But there are serious interdiffusion phenomenons between Al2O3, TiO2 buffer layer with VO2 layer.

  2. Isolation of Three Components from Spearmint Oil: An Exercise in Column and Thin-Layer Chromatography

    ERIC Educational Resources Information Center

    Davies, Don R.; Johnson, Todd M.

    2007-01-01

    A simple experiment for undergraduate organic chemistry students to separate a colorless mixture using column chromatography and then monitor the outcome of the separation using thin-layer chromatography (TLC) and infrared spectroscopy(IR) is described. The experiment teaches students the principle and techniques of column and thin-layer…

  3. High performance thin film transistor with ZnO channel layer deposited by DC magnetron sputtering.

    PubMed

    Moon, Yeon-Keon; Moon, Dae-Yong; Lee, Sang-Ho; Jeong, Chang-Oh; Park, Jong-Wan

    2008-09-01

    Research in large area electronics, especially for low-temperature plastic substrates, focuses commonly on limitations of the semiconductor in thin film transistors (TFTs), in particular its low mobility. ZnO is an emerging example of a semiconductor material for TFTs that can have high mobility, while a-Si and organic semiconductors have low mobility (<1 cm2/Vs). ZnO-based TFTs have achieved high mobility, along with low-voltage operation low off-state current, and low gate leakage current. In general, ZnO thin films for the channel layer of TFTs are deposited with RF magnetron sputtering methods. On the other hand, we studied ZnO thin films deposited with DC magnetron sputtering for the channel layer of TFTs. After analyzing the basic physical and chemical properties of ZnO thin films, we fabricated a TFT-unit cell using ZnO thin films for the channel layer. The field effect mobility (micro(sat)) of 1.8 cm2/Vs and threshold voltage (Vth) of -0.7 V were obtained.

  4. Magnetoelastic sensor for characterizing properties of thin-film/coatings

    NASA Technical Reports Server (NTRS)

    Bachas, Leonidas G. (Inventor); Barrett, Gary (Inventor); Grimes, Craig A. (Inventor); Kouzoudis, Dimitris (Inventor); Schmidt, Stefan (Inventor)

    2004-01-01

    An apparatus for determining elasticity characteristics of a thin-film layer. The apparatus comprises a sensor element having a base magnetostrictive element at least one surface of which is at least partially coated with the thin-film layer. The thin-film layer may be of a variety of materials (having a synthetic and/or bio-component) in a state or form capable of being deposited, manually or otherwise, on the base element surface, such as by way of eye-dropper, melting, dripping, brushing, sputtering, spraying, etching, evaporation, dip-coating, laminating, etc. Among suitable thin-film layers for the sensor element of the invention are fluent bio-substances, thin-film deposits used in manufacturing processes, polymeric coatings, paint, an adhesive, and so on. A receiver, preferably remotely located, is used to measure a plurality of values for magneto-elastic emission intensity of the sensor element in either characterization: (a) the measure of the plurality of values is used to identify a magneto-elastic resonant frequency value for the sensor element; and (b) the measure of the plurality of successive values is done at a preselected magneto-elastic frequency.

  5. Scavenging of oxygen from SrTiO3 by metals and its implications for oxide thin film deposition

    NASA Astrophysics Data System (ADS)

    Posadas, Agham; Kormondy, Kristy; Guo, Wei; Ponath, Patrick; Kremer, Jacqueline; Hadamek, Tobias; Demkov, Alexander

    SrTiO3 is a widely used substrate for the growth of other functional oxide thin films. However, SrTiO3 loses oxygen very easily during oxide thin film deposition even under relatively high oxygen pressures. In some cases, there will be an interfacial layer of oxygen-deficient SrTiO3 formed at the interface with the deposited oxide film, depending on the metals present in the film. By depositing a variety of metals layer by layer and measuring the evolution of the core level spectra of both the deposited metal and SrTiO3 using x-ray photoelectron spectroscopy, we show that there are three distinct types of behavior that occur for thin metal films on SrTiO3. We discuss the implications of these types of behavior for the growth of complex oxide thin films on SrTiO3, and which oxide thin films are expected to produce an interfacial oxygen-deficient layer depending on their elemental constituents.

  6. Performance Characteristics of Compact Mobile LIFS (Laser-Induced Fluorescence Spectrum) Lidar

    NASA Astrophysics Data System (ADS)

    Tomida, Takayuki; Nishizawa, Naoto; Sakurai, Kosuke; Suganumata, Hikaru; Tsukada, Shodai; Song, Sung-Moo; Park, Ho-Dong; Saito, Yasunori

    2016-06-01

    We developed a compact but versatile laser-induced fluorescence spectrum (LIFS) lidar that has potential use for material or aerosol identification outside experimental rooms. The compactness and mobility of the LIFS lidar means observations can be more freely conducted at any place and any time. Its performance characteristics were validated by threedimensional fluorescence imaging of targets and remote detection of quasi bio/organic aerosols.

  7. Extraordinary Corrosion Protection from Polymer-Clay Nanobrick Wall Thin Films.

    PubMed

    Schindelholz, Eric J; Spoerke, Erik D; Nguyen, Hai-Duy; Grunlan, Jaime C; Qin, Shuang; Bufford, Daniel C

    2018-06-20

    Metals across all industries demand anticorrosion surface treatments and drive a continual need for high-performing and low-cost coatings. Here we demonstrate polymer-clay nanocomposite thin films as a new class of transparent conformal barrier coatings for protection in corrosive atmospheres. Films assembled via layer-by-layer deposition, as thin as 90 nm, are shown to reduce copper corrosion rates by >1000× in an aggressive H 2 S atmosphere. These multilayer nanobrick wall coatings hold promise as high-performing anticorrosion treatment alternatives to costlier, more toxic, and less scalable thin films, such as graphene, hexavalent chromium, or atomic-layer-deposited metal oxides.

  8. Effects of V2O5/Au bi-layer electrodes on the top contact Pentacene-based organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Borthakur, Tribeni; Sarma, Ranjit

    2017-05-01

    Top-contact Pentacene-based organic thin film transistors (OTFTs) with a thin layer of Vanadium Pent-oxide between Pentacene and Au layer are fabricated. Here we have found that the devices with V2O5/Au bi-layer source-drain electrode exhibit better field-effect mobility, high on-off ratio, low threshold voltage and low sub-threshold slope than the devices with Au only. The field-effect mobility, current on-off ratio, threshold voltage and sub-threshold slope of V2O5/Au bi-layer OTFT estimated from the device with 15 nm thick V2O5 layer is .77 cm2 v-1 s-1, 7.5×105, -2.9 V and .36 V/decade respectively.

  9. Vertical III-nitride thin-film power diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierer, Jr., Jonathan; Fischer, Arthur J.; Allerman, Andrew A.

    2017-03-14

    A vertical III-nitride thin-film power diode can hold off high voltages (kV's) when operated under reverse bias. The III-nitride device layers can be grown on a wider bandgap template layer and growth substrate, which can be removed by laser lift-off of the epitaxial device layers grown thereon.

  10. Carbon-Nanotube Conductive Layers for Thin-Film Solar Cells

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2005-01-01

    Thin, transparent layers comprising mats of carbon nanotubes have been proposed for providing lateral (that is, inplane) electrical conductivities for collecting electric currents from the front surfaces of the emitter layers of thin-film solar photovoltaic cells. Traditionally, thin, semitransparent films of other electrically conductive materials (usually, indium tin oxide, zinc oxide, or cadmium sulfide) have been used for this purpose. As in the cases of the traditional semitransparent conductive films, the currents collected by the nanotube layers would, in turn, be further collected by front metal contact stripes. Depending on details of a specific solar-cell design, the layer of carbon nanotubes would be deposited in addition to, or instead of, a semitransparent layer of one of these traditional conductive materials (see figure). The proposal is expected to afford the following advantages: The electrical conductivity of the carbon- nanotube layer would exceed that of the corresponding semitransparent layer of traditional electrically conductive material. The greater electrical conductivity of the carbon-nanotube layer would make it possible to retain adequate lateral electrical conductivity while reducing the thickness of, or eliminating entirely, the traditional semitransparent conductive layer. As a consequence of thinning or elimination of the traditional semitransparent conductive layer, less light would be absorbed, so that more of the incident light would be available for photovoltaic conversion. The greater electrical conductivity of the carbon-nanotube layer would make it possible to increase the distance between front metal contact stripes, in addition to (or instead of) thinning or eliminating the layer of traditional semitransparent conductive material. Consequently, the fraction of solar-cell area shadowed by front metal contact stripes would be reduced again, making more of the incident light available for photovoltaic conversion. The electrical conductivities of individual carbon nanotubes can be so high that the mat of carbon nanotubes could be made sparse enough to be adequately transparent while affording adequate lateral electrical conductivity of the mat as a whole. The thickness of the nanotube layer would be chosen so that the layer would contribute significant lateral electrical conductivity, yet would be as nearly transparent as possible to incident light. A typical thickness for satisfying these competing requirements is expected to lie between 50 and 100 nm. The optimum thickness must be calculated by comparing the lateral electrical conductivity, the distance between front metal stripes, and the amount of light lost by absorption in the nanotube layer.

  11. Advanced Environmentally Resistant Lithium Fluoride for Next-Generation Broadband Observatories

    NASA Astrophysics Data System (ADS)

    Fleming, Brian

    2018-06-01

    Recent advances in the physical vapor deposition of protective fluoride films have raised the far ultraviolet (FUV: 912 – 1600 Angstrom) reflectivity of aluminum-based mirrors closer to the theoretical limit. The greatest gains have come for lithium fluoride protected aluminum, which has the shortest wavelength cutoff of any conventional overcoat. Despite the success of the NASA FUSE mission, the use of LiF-based optics is rare as LiF is hygroscopic and requires handling procedures that can drive risk. With NASA now studying two large mission concepts for astronomy (LUVOIR and HabEx) that mandate throughput down to 1000 Angstroms, the development of LiF-based coatings becomes crucial. We discuss the steps that are being taken to qualify these new enhanced LiF protected aluminum (eLiF) mirror coatings for flight. In addition to quantifying the hygroscopic degradation, we have developed a new method of protecting eLiF with an ultrathin capping layer of a non-hygroscopic material to increase durability. We report on the performance of eLiF-based optics and assess the steps that need to be taken to qualify such coatings for LUVOIR, HabEx, and other FUV-sensitive space missions.

  12. Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction

    NASA Astrophysics Data System (ADS)

    Oh, Hyo-Jun; Dao, Van-Duong; Choi, Ho-Suk

    2018-03-01

    This study presents the first use of a plasma reduction reaction under atmospheric pressure to fabricate a thin silver layer on polyethylene terephthalate (PET) film without the use of toxic chemicals, high voltages, or an expensive vacuum apparatus. The developed film is applied to electromagnetic interference (EMI) shielding. After repeatedly depositing a silver layer through a plasma reduction reaction on PET, we can successfully fabricate a uniformly deposited thin silver layer. It was found that both the particle size and film thickness of thin silver layers fabricated at different AgNO3 concentrations increase with an increase in the concentration of AgNO3. However, the roughness of the thin silver layer decreases when increasing the concentration of AgNO3 from 100 to 500 mM, and the roughness increases with a further increase in the concentration of AgNO3. The EMI shielding effectiveness (SE) of the film is measured in the frequency range of 0.045 to 1 GHz. As a result of optimizing the electrical conductivity by measuring sheet resistance of the thin silver layer, the film fabricated from 500 mM AgNO3 exhibits the highest EMI SE among all fabricated films. The maximum values of the EMI SE are 60.490 dB at 0.1 GHz and 54.721 dB at 1.0 GHz with minimum sheet resistance of 0.244 Ω/□. Given that the proposed strategy is simple and effective, it is promising for fabricating various low-cost metal films with high EMI SE.

  13. Extended MHD Effects in High Energy Density Experiments

    NASA Astrophysics Data System (ADS)

    Seyler, Charles

    2016-10-01

    The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation results. Collaborator: Nathaniel D. Hamlin, School of Electrical and Computer Engineering, Cornell University, Ithaca, New York.

  14. Comparison of reproduce signal and noise of conventional and keepered CoCrTa/Cr thin film media

    NASA Astrophysics Data System (ADS)

    Sin, Kyusik; Ding, Juren; Glijer, Pawel; Sivertsen, John M.; Judy, Jack H.; Zhu, Jian-Gang

    1994-05-01

    We studied keepered high coercivity CoCrTa/Cr thin film media with a Cr isolation layer between the CoCrTa storage and an overcoating of an isotropic NiFe soft magnetic layer. The influence of the thickness of the NiFe and Cr layers, and the effects of head bias current on the signal output and noise, were studied using a thin film head. The reproduced signal increased by 7.3 dB, but the signal-to-noise ratio decreased by 4 dB at a linear density of 2100 fr/mm (53.3 kfr/in.) with a 1000 Å thick NiFe keeper layer. The medium noise increased with increasing NiFe thickness and the signal output decreased with decreasing Cr thickness. A low output signal obtained with very thin Cr may be due to magnetic interactions between the keeper layer and magnetic media layer. It is observed that signal distortion and timing asymmetry of the output signals depend on the thickness of the keeper layer and the head bias current. The signal distortion increased and the timing asymmetry decreased as the head bias current was increased. These results may be associated with different permeability of the keeper under the poles of the thin film head due to the superposition of head bias and bit fields.

  15. Multiple-layered effective medium approximation approach to modeling environmental effects on alumina passivated highly porous silicon nanostructured thin films measured by in-situ Mueller matrix ellipsometry

    NASA Astrophysics Data System (ADS)

    Mock, Alyssa; Carlson, Timothy; VanDerslice, Jeremy; Mohrmann, Joel; Woollam, John A.; Schubert, Eva; Schubert, Mathias

    2017-11-01

    Optical changes in alumina passivated highly porous silicon slanted columnar thin films during controlled exposure to toluene vapor are reported. Electron-beam evaporation glancing angle deposition and subsequent atomic layer deposition are utilized to deposit alumina passivated nanostructured porous silicon thin films. In-situ Mueller matrix generalized spectroscopic ellipsometry in an environmental cell is then used to determine changes in optical properties of the nanostructured thin films by inspection of individual Mueller matrix elements, each of which exhibit sensitivity to adsorption. The use of a multiple-layered effective medium approximation model allows for accurate description of the inhomogeneous nature of toluene adsorption onto alumina passivated highly porous silicon slanted columnar thin films.

  16. Effect of Selectively Etched Ferroelectric Thin-Film Layer on the Performance of a Tunable Bandpass Filter

    NASA Technical Reports Server (NTRS)

    Subramanyam, Guru; Vignesparamoorthy, Sivaruban; Mueller, Carl; VanKeuls, Fred; Warner, Joseph; Miranda, Felix A.

    2001-01-01

    The main purpose of this work is to study the effect of a selectively etched ferroelectric thin film layer on the performance of an electrically tunable filter. An X-band tunable filter was designed, fabricated and tested on a selectively etched Barium Strontium Titanate (BSTO) ferroelectric thin film layer. Tunable filters with varying lengths of BSTO thin-film in the input and output coupling gaps were modeled, as well as experimentally tested. Experimental results showed that filters with coupling gaps partially filled with BSTO maintained frequency tunability and improved the insertion loss by approx. 2dB. To the best of our knowledge, these results represent the first experimental demonstration of the advantages of selective etching in the performance of thin film ferroelectric-based tunable microwave components.

  17. High dispersibility and enhanced luminescence properties of BaMgAl10O17:Eu2+ phosphors derived from molten salt synthesis

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Li, Jin-hong; Shi, Ping-lu; Guan, Wei-min; Zhang, Hong-yao

    2015-08-01

    BaMgAl10O17:Eu2+ (BAM) phosphors were prepared via the molten salt synthesis (MSS) method. The NaCl-KCl eutectic mixture and LiF were used as the molten salt and flux, respectively. X-ray powder diffraction (XRD) patterns indicate that the BAM phase is formed above 1200 °C and that the addition of LiF leads to an obvious improvement in crystallinity. The emission intensity of the BAM phosphor with 10 wt% LiF is about 85% higher than that of the phosphor without LiF and about 200% higher than that of the phosphor without molten salt and LiF. Scanning electron microscopy (SEM) reveal that the as-prepared phosphors have good crystallinity and regular morphology, and most importantly, they are not aggregated. Li+ doping is benefit for the thermal stability and results in a slightly longer decay times of 1.17 μs.

  18. A compact and low-cost laser induced fluorescence detector with silicon based photodetector assembly for capillary flow systems.

    PubMed

    Geng, Xuhui; Shi, Meng; Ning, Haijing; Feng, Chunbo; Guan, Yafeng

    2018-05-15

    A compact and low-cost laser induced fluorescence (LIF) detector based on confocal structure for capillary flow systems was developed and applied for analysis of Her2 protein on single Hela cells. A low-power and low-cost 450 nm laser diode (LD) instead of a high quality laser was used as excitation light source. A compact optical design together with shortened optical path length improved the optical efficiency and detection sensitivity. A superior silicon based photodetector assembly was used for fluorescence detection instead of a photomultiplier (PMT). The limit of detection (LOD) for fluorescein sodium was 3 × 10 -12 M or 165 fluorescein molecules in detection volume measured on a homemade capillary electroosmotic driven (EOD)-LIF system, which was similar to commercial LIFs. Compared to commercial LIFs, the whole volume of our LIF was reduced to 1/2-1/3, and the cost was less than 1/3 of them. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Simultaneous measurements of velocity, temperature, and pressure using rapid CW wavelength-modulation laser-induced fluorescence of OH

    NASA Technical Reports Server (NTRS)

    Chang, A. Y.; Battles, B. E.; Hanson, R. K.

    1990-01-01

    In high speed flows, laser induced fluorescence (LIF) on Doppler shifted transitions is an attractive technique for velocity measurement. LIF velocimetry was applied to combined single-point measurements of velocity, temperature, and pressure and 2-D imaging of velocity and pressure. Prior to recent research using NO, LIF velocimetry in combustion related flows relied largely on the use of seed molecules. Simultaneous, single-point LIF measurements is reported of velocity, temperature, and pressure using the naturally occurring combustion species OH. This experiment is an extension of earlier research in which a modified ring dye laser was used to make time resolved temperature measurements behind reflected shock waves by using OH absorption an in postflame gases by using OH LIF. A pair of fused-silica rhombs mounted on a single galvanonmeter in an intracavity-doubled Spectra-Physics 380 ring laser permit the UV output to be swept continuously over a few wave numbers at an effective frequency of 3kHz.

  20. Preferential Propagation of Competent SIX2+ Nephronic Progenitors by LIF/ROCKi Treatment of the Metanephric Mesenchyme

    PubMed Central

    Tanigawa, Shunsuke; Sharma, Nirmala; Hall, Michael D.; Nishinakamura, Ryuichi; Perantoni, Alan O.

    2015-01-01

    Summary Understanding the mechanisms responsible for nephrogenic stem cell preservation and commitment is fundamental to harnessing the potential of the metanephric mesenchyme (MM) for nephron regeneration. Accordingly, we established a culture model that preferentially expands the MM SIX2+ progenitor pool using leukemia inhibitory factor (LIF), a Rho kinase inhibitor (ROCKi), and extracellular matrix. Passaged MM cells express the key stem cell regulators Six2 and Pax2 and remain competent to respond to WNT4 induction and form mature tubular epithelia and glomeruli. Mechanistically, LIF activates STAT, which binds to a Stat consensus sequence in the Six2 proximal promoter and sustains SIX2 levels. ROCKi, on the other hand, attenuates the LIF-induced differentiation activity of JNK. Concomitantly, the combination of LIF/ROCKi upregulates Slug expression and activates YAP, which maintains SIX2, PAX2, and SALL1. Using this novel model, our study underscores the pivotal roles of SIX2 and YAP in MM stem cell stability. PMID:26321142

  1. Optimization of confocal laser induced fluorescence for long focal length applications

    NASA Astrophysics Data System (ADS)

    Jemiolo, Andrew J.; Henriquez, Miguel F.; Thompson, Derek S.; Scime, Earl E.

    2017-10-01

    Laser induced fluorescence (LIF) is a non-perturbative diagnostic for measuring ion and neutral particle velocities and temperatures in a plasma. The conventional method for single-photon LIF requires intersecting optical paths for light injection and collection. The multiple vacuum windows needed for such measurements are unavailable in many plasma experiments. Confocal LIF eliminates the need for perpendicular intersecting optical paths by using concentric injection and collection paths through a single window. One of the main challenges with using confocal LIF is achieving high resolution measurements at the longer focal lengths needed for many plasma experiments. We present confocal LIF measurements in HELIX, a helicon plasma experiment at West Virginia University, demonstrating spatial resolution dependence on focal length and spatial filtering. By combining aberration mitigating optics with spatial filtering, our results show high resolution measurements at focal lengths of 0.5 m, long enough to access the interiors of many laboratory plasma experiments. This work was supported by U.S. National Science Foundation Grant No. PHY-1360278.

  2. Surface layer formation of LiCoO2 thin film electrodes in non-aqueous electrolyte containing lithium bis(oxalate)borate

    NASA Astrophysics Data System (ADS)

    Matsui, Masaki; Dokko, Kaoru; Akita, Yasuhiro; Munakata, Hirokazu; Kanamura, Kiyoshi

    2012-07-01

    Surface layer formation processes on a LiCoO2 thin film electrode in a non-aqueous electrolyte containing lithium bis(oxalate)borate (LiBOB) were investigated using in situ FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). The in situ FTIR spectra of the electrolyte solution containing LiBOB showed that the adsorption of BOB anions on the electrode surface occurred during the charge process of the LiCoO2 thin film electrode above 4.0 V. XPS analysis for the LiCoO2 thin film electrode charged in an electrolyte containing LiBOB suggested that the adsorbed BOB anions on the electrode surface prevent the continuous decomposition of hexafluorophosphate (PF6) anions resulting in the formation of a very thin surface layer containing organic species, while the LiCoO2 charged in a LiPF6 solution had a relatively thick surface layer containing organic species and inorganic species.

  3. Nanofiber based triple layer hydro-philic/-phobic membrane - a solution for pore wetting in membrane distillation

    PubMed Central

    Prince, J. A.; Rana, D.; Matsuura, T.; Ayyanar, N.; Shanmugasundaram, T. S.; Singh, G.

    2014-01-01

    The innovative design and synthesis of nanofiber based hydro-philic/phobic membranes with a thin hydro-phobic nanofiber layer on the top and a thin hydrophilic nanofiber layer on the bottom of the conventional casted micro-porous layer which opens up a solution for membrane pore wetting and improves the pure water flux in membrane distillation. PMID:25377488

  4. Burning Graphene Layer-by-Layer

    PubMed Central

    Ermakov, Victor A.; Alaferdov, Andrei V.; Vaz, Alfredo R.; Perim, Eric; Autreto, Pedro A. S.; Paupitz, Ricardo; Galvao, Douglas S.; Moshkalev, Stanislav A.

    2015-01-01

    Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in “cold-wall” reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material. PMID:26100466

  5. Detailed Hydraulic Assessment Using a High-Resolution Piezocone Coupled to the GeoVis

    DTIC Science & Technology

    2008-04-01

    story. For example, the SCAPS laser - induced fluorescence (LIF) technology for petroleum hydrocarbons (commercialized as the Rapid Optical...impacts of oily or viscous waste materials smearing during camera deployment, the SCAPS laser induced fluorescence (LIF) probe uses the same type of...characterization techniques on DOD sites. ESTCP has previously funded efforts to help establish regulatory acceptance of the SCAPS Laser Induced Fluorescence (LIF

  6. New methods for time-resolved fluorescence spectroscopy data analysis based on the Laguerre expansion technique--applications in tissue diagnosis.

    PubMed

    Jo, J A; Marcu, L; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J

    2007-01-01

    A new deconvolution method for the analysis of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data is introduced and applied for tissue diagnosis. The intrinsic TR-LIFS decays are expanded on a Laguerre basis, and the computed Laguerre expansion coefficients (LEC) are used to characterize the sample fluorescence emission. The method was applied for the diagnosis of atherosclerotic vulnerable plaques. At a first stage, using a rabbit atherosclerotic model, 73 TR-LIFS in-vivo measurements from the normal and atherosclerotic aorta segments of eight rabbits were taken. The Laguerre deconvolution technique was able to accurately deconvolve the TR-LIFS measurements. More interesting, the LEC reflected the changes in the arterial biochemical composition and provided discrimination of lesions rich in macrophages/foam-cells with high sensitivity (> 85%) and specificity (> 95%). At a second stage, 348 TR-LIFS measurements were obtained from the explanted carotid arteries of 30 patients. Lesions with significant inflammatory cells (macrophages/foam-cells and lymphocytes) were detected with high sensitivity (> 80%) and specificity (> 90%), using LEC-based classifiers. This study has demonstrated the potential of using TR-LIFS information by means of LEC for in vivo tissue diagnosis, and specifically for detecting inflammation in atherosclerotic lesions, a key marker of plaque vulnerability.

  7. Leucemia inhibitory factor; investigating the time-dependent effect on viability of vitrified bovine embryos.

    PubMed

    Kocyigit, A; Cevik, M

    2017-12-01

    Leucemia inhibitory factor (LIF) is involved in various reproductive processes, including sperm development, regulation of ovulation, as well as blastocyst formation, hatching and implantation in embryos. Moreover, LIF has also been shown significantly to enhance the blastocyst formation rates of bovine embryos, a finding that remains controversial. Our purpose was to investigate time-dependent effect of LIF on bovine embryo culture, especially in terms of addition timing. Presumptive zygotes were cultured in five different groups. In this study, 100 ng/ml LIF was added to the culture medium were as follows; control: SOF alone, group A: at day 0 (fertilization day), group B: at day 4 post-insemination (p.i.), group C: at day 4 to 7 (p.i. before vitrification) and group D: at day 8 (p.i. after thawing). Addition of LIF to the culture medium at day 4 significantly increased the percentage of blastocyst rate when compared day 0, day 4 at 6/7 and control group (41.8% versus 24.3%, 19.7%, 34.6%). In conclusion, the addition of LIF only on day 4 (p.i.) to the culture medium was found to be beneficial for bovine embryonic development based on several measures, including blastocysts rate, re-expansion rate and cellular cryotolerance after vitrification. © 2017 Blackwell Verlag GmbH.

  8. Polymer mediated layer-by-layer assembly of different shaped gold nanoparticles.

    PubMed

    Budy, Stephen M; Hamilton, Desmond J; Cai, Yuheng; Knowles, Michelle K; Reed, Scott M

    2017-02-01

    Gold nanoparticles (GNPs) have a wide range of properties with potential applications in electronics, optics, catalysis, and sensing. In order to demonstrate that dense, stable, and portable samples could be created for these applications, multiple layers of GNPs were assembled via drop casting on glass substrates by layer-by-layer (LBL) techniques. Two cationic polyelectrolytes, poly(diallyldimethylammonium chloride) and polyethyleneimine, one anionic polyelectrolyte, poly(sodium 4-styrene sulfonate), and one neutral polymer, polyvinylpyrrolidone, were combined with four different shapes of GNPs (spherical, rod, triangular prismatic, and octahedral) to prepare thin films. A subset of these polymer nanoparticle combinations were assembled into thin films. Synthesized GNPs were characterized via dynamic light scattering, UV-vis spectroscopy, and transmission electron microscopy and the LBL thin films were characterized using UV-vis spectroscopy and atomic force microscopy. Sensing applications of the nanoparticles in solution and thin films were tested by monitoring the localized surface plasmon resonance of the GNPs. LBL thin films were prepared ranging from 25 to 100 layers with optical densities at plasmon from 0.5 to 3.0. Sensitivity in solutions ranged from 14 to 1002nm/refractive index units (RIU) and films ranged from 18.8 to 135.1nm/RIU suggesting reduced access to the GNPs within the films. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Stepwise crystallization and the layered distribution in crystallization kinetics of ultra-thin poly(ethylene terephthalate) film

    NASA Astrophysics Data System (ADS)

    Zuo, Biao; Xu, Jianquan; Sun, Shuzheng; Liu, Yue; Yang, Juping; Zhang, Li; Wang, Xinping

    2016-06-01

    Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films, with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.

  10. Stepwise crystallization and the layered distribution in crystallization kinetics of ultra-thin poly(ethylene terephthalate) film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Biao, E-mail: chemizuo@zstu.edu.cn, E-mail: wxinping@yahoo.com; Xu, Jianquan; Sun, Shuzheng

    2016-06-21

    Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films,more » with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.« less

  11. Approximate transient and long time limit solutions for the band broadening induced by the thin sidewall-layer in liquid chromatography columns.

    PubMed

    Broeckhoven, Ken; Desmet, Gert

    2007-11-16

    Using a combination of both analytical and numerical techniques, approximate analytical expressions have been established for the transient and long time limit band broadening, originating from the presence of a thin disturbed sidewall layer in liquid chromatography columns, including packed, monolithic as well as microfabricated columns. The established expressions can be used to compare the importance of a thin disturbed sidewall layer with that of other radial heterogeneity effects (such as transcolumn packing density variations due to the relief of packing stresses). The expressions are independent of the actual velocity profile inside the layer as long as the disturbed sidewall layer occupies less than 2.5% of the column width.

  12. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings

    NASA Astrophysics Data System (ADS)

    Kats, Mikhail A.; Byrnes, Steven J.; Blanchard, Romain; Kolle, Mathias; Genevet, Patrice; Aizenberg, Joanna; Capasso, Federico

    2013-09-01

    Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.

  13. Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models.

    PubMed

    Mazzoni, Alberto; Lindén, Henrik; Cuntz, Hermann; Lansner, Anders; Panzeri, Stefano; Einevoll, Gaute T

    2015-12-01

    Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP). Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best "LFP proxy", we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with "ground-truth" LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D) network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo.

  14. Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models

    PubMed Central

    Cuntz, Hermann; Lansner, Anders; Panzeri, Stefano; Einevoll, Gaute T.

    2015-01-01

    Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP). Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best “LFP proxy”, we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with “ground-truth” LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D) network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo. PMID:26657024

  15. High Performance 50 nm InAlAs/In0.75GaAs Metamorphic High Electron Mobility Transistors with Si3N4 Passivation on Thin InGaAs Layer

    NASA Astrophysics Data System (ADS)

    Yeon, Seongjin; Seo, Kwangseok

    2008-04-01

    We fabricated 50 nm InAlAs/InGaAs metamorphic high electron mobility transistors (HEMTs) with a very thin barrier. Through the reduction of the gate-channel distance (dGC) in the epitaxial structure, a channel aspect ratio (ARC) of over three was achieved when Lg was 50 nm. We inserted a thin InGaAs layer as a protective layer, and tested various gate structures to reduce surface problems induced by barrier shrinkage and to optimize the device characteristics. Through the optimization of the gate structure with the thin InGaAs layer, the fabricated 50 nm metamorphic HEMT exhibited high DC and RF characteristics, Gm of 1.5 S/mm, and fT of 490 GHz.

  16. Frontally eluted components procedure with thin layer chromatography as a mode of sample preparation for high performance liquid chromatography quantitation of acetaminophen in biological matrix.

    PubMed

    Klimek-Turek, A; Sikora, M; Rybicki, M; Dzido, T H

    2016-03-04

    A new concept of using thin-layer chromatography to sample preparation for the quantitative determination of solute/s followed by instrumental techniques is presented Thin-layer chromatography (TLC) is used to completely separate acetaminophen and its internal standard from other components (matrix) and to form a single spot/zone containing them at the solvent front position (after the final stage of the thin-layer chromatogram development). The location of the analytes and internal standard in the solvent front zone allows their easy extraction followed by quantitation by HPLC. The exctraction procedure of the solute/s and internal standard can proceed from whole solute frontal zone or its part without lowering in accuracy of quantitative analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Thin layer drying of cassava starch using continuous vibrated fluidized bed dryer

    NASA Astrophysics Data System (ADS)

    Suherman, Trisnaningtyas, Rona

    2015-12-01

    This paper present the experimental work and thin layer modelling of cassava starch drying in continuous vibrated fluidized bed dryer. The experimental data was used to validate nine thin layer models of drying curve. Cassava starch with 0.21 initial moisture content was dried in different air drying temperature (50°C, 55°C, 60°C, 65°C, 70°C), different weir height in bed (0 and 1 cm), and different solid feed flow (10 and 30 gr.minute-1). The result showed air dryer temperature has a significant effect on drying curve, while the weir height and solid flow rate are slightly. Based on value of R2, χ2, and RMSE, Page Model is the most accurate simulation for thin layer drying model of cassava starch.

  18. Fabrication of nanocrystal ink based superstrate-type CuInS₂ thin film solar cells.

    PubMed

    Cho, Jin Woo; Park, Se Jin; Kim, Woong; Min, Byoung Koun

    2012-07-05

    A CuInS₂ (CIS) nanocrystal ink was applied to thin film solar cell devices with superstrate-type configuration. Monodispersed CIS nanocrystals were synthesized by a colloidal synthetic route and re-dispersed in toluene to form an ink. A spray method was used to coat CIS films onto conducting glass substrates. Prior to CIS film deposition, TiO₂ and CdS thin films were also prepared as a blocking layer and a buffer layer, respectively. We found that both a TiO₂ blocking layer and a CdS buffer layer are necessary to generate photoresponses in superstrate-type devices. The best power conversion efficiency (∼1.45%) was achieved by the CIS superstrate-type thin film solar cell device with 200 and 100 nm thick TiO₂ and CdS films, respectively.

  19. Synthesis and Characterization of Hydrophobic Silica Thin Layer Derived from Methyltrimethoxysilane (MTMS)

    NASA Astrophysics Data System (ADS)

    Darmawan, Adi; Utari, Riyadini; Eka Saputra, Riza; Suhartana; Astuti, Yayuk

    2018-01-01

    This study investigated the synthesis and characterization of MTMS hydrophobic silica prepared by sol-gel method. In principle, silica xerogels and silica thin layer were obtained by reacting MTMS in ethanol solvent in some pH variations. The MTMS solution was used to modify the surface of the ceramic plate by dipcoating method to further be calcined at two different temperatures of 350°C and 500°C. The silica xerogels were analysed by FTIR, TGA-DSC and GSA to determine functional group characteristics, thermal properties and pore morphology respectively. Meanwhile, the silica thin layers were analysed their hydrophobic properties using water contact angle measurement and surface roughness determination using SEM. The results showed that the higher the pH used in the MTMS solution, the higher the resulting contact angle. The highest contact angle was obtained at pH 8.12 which reached 94.7° and 79.5° for silica thin layer calcined at 350°C and 500°C, respectively. The TGA results indicated that the methyl group survived up to 400°C and disappeared at 500°C which had implications on silica thin layer hydrophobic nature. GSA result exhibited that the silica xerogel had a close structure with a very low pore volume. While the SEM-EDX results displayed that the silica thin layer prepared at acidic pH had smoother surface morphology and became rough when prepared at an alkaline pH.

  20. Evidence for decreased lipofibroblast expression in hypoplastic rat lungs with congenital diaphragmatic hernia.

    PubMed

    Friedmacher, Florian; Fujiwara, Naho; Hofmann, Alejandro Daniel; Takahashi, Hiromizu; Gosemann, Jan-Hendrik; Puri, Prem

    2014-10-01

    Pulmonary hypoplasia (PH) is a serious condition in newborns with congenital diaphragmatic hernia (CDH). Lipid-containing interstitial fibroblasts (LIFs) play an essential role in fetal lung maturation by stimulating alveolarization and lipid homeostasis. In rodents, LIFs are first evident during the canalicular phase of lung development with a significant increase over the last 4 days of gestation. Adipocyte differentiation-related protein (ADRP), a functional lipogenic molecular marker characterizing LIFs, is highly expressed in fetal lungs during this critical time period. We hypothesized that LIF expression in hypoplastic rat lungs is decreased in the nitrofen-induced CDH model, which is accompanied by reduced alveolar ADRP expression and lipid content. On embryonic day 9.5 (E9.5), time-mated rats received either nitrofen or vehicle. Fetuses were sacrificed on selected time points E18.5 and E21.5, and dissected lungs were divided into controls and CDH-associated PH. Pulmonary gene expression levels of ADRP were determined by quantitative real-time polymerase chain reaction. ADRP immunohistochemistry and oil red O staining were used to assess pulmonary protein expression and lipid content. Immunofluorescence double staining for alpha smooth muscle actin, which is known to be absent in LIFs, and lipid droplets was performed to evaluate the pulmonary expression of this specific subset of fibroblasts. Relative mRNA expression of ADRP was significantly reduced in lungs of CDH-associated PH on E18.5 and E21.5 compared to controls. ADRP immunoreactivity and lipid staining were markedly diminished in alveolar mesenchymal cells of CDH-associated PH on E18.5 and E21.5 compared to controls. Confocal laser scanning microscopy demonstrated markedly decreased LIF expression in alveolar interstitium of CDH-associated PH on E18.5 and E21.5 compared to controls. Decreased pulmonary LIF expression during late gestation suggests impaired LIF functioning in the nitrofen-induced CDH model, which may cause disruption in fetal alveolarization and lipid homeostasis, and thus contribute to the development of PH.

  1. (Cu,C)Ba2Ca3Cu4Ox (LiF)y: addition of LiF—an effective way to synthesize overdoped superconductor

    NASA Astrophysics Data System (ADS)

    Badica, P.; Iyo, A.; Aldica, G.; Kito, H.; Crisan, A.; Tanaka, Y.

    2004-03-01

    (Cu,C)Ba2Ca3Cu4Ox superconductor with addition of y mol LiF has been synthesized by a high-pressure method. For the same synthesis conditions it was found that (almost) single-phase Cu, C-1234 samples can be synthesized for yLiF = 0-0.1 if the amount of z mol AgO oxidizer is increased linearly from zAgO = 0.45 to 0.73 and for yLiF = 0.1-0.2 if zAgO = 0.73 = constant. Transport measurements (rgr(T) and room-temperature Seebeck coefficient) have shown that these samples are overdoped: LiF is an effective addition for synthesis of overdoped Cu, C-1234 with a controlled level of carriers. LiF addition continuously decreases Tc. The critical point at yLiF = 0.1 is discussed as the solubility limit of LiF and/or the point where the doping mechanism changes. It is proposed that the reason is the reaction of extra Li with C and O to form Li2CO3, inducing a lower concentration of C in Cu, C-1234/LiF crystals, and at the same time a possible substitution of Li not only for the Cu site but also for the Ca site, resulting in formation of a higher amount of residual Ca0.828CuO2 (for yLiF>0.1). LiF induces the formation of a liquid phase and acts as a flux promoting the formation of Cu,C-12 (n-1)n with n \\ge 4 . LiF modifies to some degree the grain growth from a 3D to a 2D type (thinner platelike grains have been observed in the LiF added samples).

  2. Tensile Properties and Structure of Several Superalloys after Long- Term Exposure to LiF and Vacuum at 1173 K

    NASA Astrophysics Data System (ADS)

    Whittenberger, J. D.

    1995-12-01

    The use of the solid- to- liquid phase transformation of LiF to store thermal energy is under consideration for a space- based solar dynamic system. Although advantageous in terms of its energy density, the melting point of this salt (1121K) is beyond the commonly accepted upper- use temperature of 1100 K for chromium- bearing superalloys in vacuum. However, one commercially available nickel- base superalloy (Hastelloy B- 2) is chromium free; unfortunately, because of its high molybdenum content, this alloy can form phases that cause high- temperature embrittlement. To test the suitability of Hastelloy B- 2, it has been exposed to molten LiF, its vapor and vacuum at 1173 K for 2500, 5000, and 10 h. For control, the chromium- containing cobalt- base Haynes alloy 188 and nickel- base Haynes alloy 230 were also exposed to LiF and vacuum at 1173 K for 5000 h. Neither LiF nor vacuum exposures had any significant effect on Hastelloy B- 2 in terms of microstructural surface damage or weight change. Measurement of the post exposure tensile properties of Hastelloy B- 2, nevertheless, revealed low tensile ductility at 1050 K. Such embrittlement and low strength at elevated temperatures appear to preclude the use of Hastelloy B- 2 as a containment material for LiF. Little evidence of significant attack by LiF was seen in either of the chromium- containing superalloys; however, considerable weight loss and near- surface microstructural damage occurred in both alloys exposed to vacuum. Although measurement of the post exposure room-temperature tensile properties of Haynes alloys 188 and 230 revealed no significant loss of strength or ductility, the severe degree of microstructural damage found in unshielded alloys exposed to vacuum indicates that chromium-bearing superalloys might also be unsuitable for prolonged containment of LiF in space above 1100 K. Keywords

  3. Acute myotube protein synthesis regulation by IL-6-related cytokines.

    PubMed

    Gao, Song; Durstine, J Larry; Koh, Ho-Jin; Carver, Wayne E; Frizzell, Norma; Carson, James A

    2017-11-01

    IL-6 and leukemia inhibitory factor (LIF), members of the IL-6 family of cytokines, play recognized paradoxical roles in skeletal muscle mass regulation, being associated with both growth and atrophy. Overload or muscle contractions can induce a transient increase in muscle IL-6 and LIF expression, which has a regulatory role in muscle hypertrophy. However, the cellular mechanisms involved in this regulation have not been completely identified. The induction of mammalian target of rapamycin complex 1 (mTORC1)-dependent myofiber protein synthesis is an established regulator of muscle hypertrophy, but the involvement of the IL-6 family of cytokines in this process is poorly understood. Therefore, we investigated the acute effects of IL-6 and LIF administration on mTORC1 signaling and protein synthesis in C2C12 myotubes. The role of glycoprotein 130 (gp130) receptor and downstream signaling pathways, including phosphoinositide 3-kinase (PI3K)-Akt-mTORC1 and signal transducer and activator of transcription 3 (STAT3)-suppressor of cytokine signaling 3 (SOCS3), was investigated by administration of specific siRNA or pharmaceutical inhibitors. Acute administration of IL-6 and LIF induced protein synthesis, which was accompanied by STAT3 activation, Akt-mTORC1 activation, and increased SOCS3 expression. This induction of protein synthesis was blocked by both gp130 siRNA knockdown and Akt inhibition. Interestingly, STAT3 inhibition or Akt downstream mTORC1 signaling inhibition did not fully block the IL-6 or LIF induction of protein synthesis. SOCS3 siRNA knockdown increased basal protein synthesis and extended the duration of the protein synthesis induction by IL-6 and LIF. These results demonstrate that either IL-6 or LIF can activate gp130-Akt signaling axis, which induces protein synthesis via mTORC1-independent mechanisms in cultured myotubes. However, IL-6- or LIF-induced SOCS3 negatively regulates the activation of myotube protein synthesis. Copyright © 2017 the American Physiological Society.

  4. Composite lamination method

    NASA Technical Reports Server (NTRS)

    Dickerson, G. E. (Inventor)

    1977-01-01

    A process was developed for preparing relatively thick composite laminate structure wherein thin layers of prepreg tapes are assembled, these thin layers are cut into strips that are partially cured, and stacked into the desired thickness with uncured prepreg disposed between each layer of strips. The formed laminate is finally cured and thereafter machined to the desired final dimensions.

  5. The corrosion behavior of CVI SiC matrix in SiCf/SiC composites under molten fluoride salt environment

    NASA Astrophysics Data System (ADS)

    Wang, Hongda; Feng, Qian; Wang, Zhen; Zhou, Haijun; Kan, Yanmei; Hu, Jianbao; Dong, Shaoming

    2017-04-01

    High temperature corrosion behavior and microstructural evolution of designed chemical-vapor-infiltrated SiC matrix in SiC fiber reinforced SiC ceramic matrix composites in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt at 800 °C for various corrosion time was studied. Worse damage was observed as extending the exposure time, with the mass loss ratio increasing from 0.716 wt. % for 50 h to 5.914 wt. % for 500 h. The mass loss rate showed a trend of first decrease and then increase with the extended corrosion exposure. Compared with the near-stoichiometric SiC matrix layers, the O-contained boundaries between deposited matrix layers and the designed Si-rich SiC matrix layers were much less corrosion resistant and preferentially corroded. Liner relationship between the mass loss ratio and the corrosion time obtained from 50 h to 300 h indicated that the corrosion action was reaction-control process. Further corrosion would lead to matrix layer exfoliation and higher mass loss ratio.

  6. A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries.

    PubMed

    Reyes Jiménez, Antonia; Klöpsch, Richard; Wagner, Ralf; Rodehorst, Uta C; Kolek, Martin; Nölle, Roman; Winter, Martin; Placke, Tobias

    2017-05-23

    The next generation of lithium ion batteries (LIBs) with increased energy density for large-scale applications, such as electric mobility, and also for small electronic devices, such as microbatteries and on-chip batteries, requires advanced electrode active materials with enhanced specific and volumetric capacities. In this regard, silicon as anode material has attracted much attention due to its high specific capacity. However, the enormous volume changes during lithiation/delithiation are still a main obstacle avoiding the broad commercial use of Si-based electrodes. In this work, Si-based thin film electrodes, prepared by magnetron sputtering, are studied. Herein, we present a sophisticated surface design and electrode structure modification by amorphous carbon layers to increase the mechanical integrity and, thus, the electrochemical performance. Therefore, the influence of amorphous C thin film layers, either deposited on top (C/Si) or incorporated between the amorphous Si thin film layers (Si/C/Si), was characterized according to their physical and electrochemical properties. The thin film electrodes were thoroughly studied by means of electrochemical impedance spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. We can show that the silicon thin film electrodes with an amorphous C layer showed a remarkably improved electrochemical performance in terms of capacity retention and Coulombic efficiency. The C layer is able to mitigate the mechanical stress during lithiation of the Si thin film by buffering the volume changes and to reduce the loss of active lithium during solid electrolyte interphase formation and cycling.

  7. Effects of different wetting layers on the growth of smooth ultra-thin silver thin films

    NASA Astrophysics Data System (ADS)

    Ni, Chuan; Shah, Piyush; Sarangan, Andrew M.

    2014-09-01

    Ultrathin silver films (thickness below 10 nm) are of great interest as optical coatings on windows and plasmonic devices. However, producing these films has been a continuing challenge because of their tendency to form clusters or islands rather than smooth contiguous thin films. In this work we have studied the effect of Cu, Ge and ZnS as wetting layers (1.0 nm) to achieve ultrasmooth thin silver films. The silver films (5 nm) were grown by RF sputter deposition on silicon and glass substrates using a few monolayers of the different wetting materials. SEM imaging was used to characterize the surface properties such as island formation and roughness. Also the optical properties were measured to identify the optical impact of the different wetting layers. Finally, a multi-layer silver based structure is designed and fabricated, and its performance is evaluated. The comparison between the samples with different wetting layers show that the designs with wetting layers which have similar optical properties to silver produce the best overall performance. In the absence of a wetting layer, the measured optical spectra show a significant departure from the model predictions, which we attribute primarily to the formation of clusters.

  8. Durable high strength cement concrete topping for asphalt roads

    NASA Astrophysics Data System (ADS)

    Vyrozhemskyi, Valerii; Krayushkina, Kateryna; Bidnenko, Nataliia

    2017-09-01

    Work on improving riding qualities of pavements by means of placing a thin cement layer with high roughness and strength properties on the existing asphalt pavement were conducted in Ukraine for the first time. Such pavement is called HPCM (High Performance Cementitious Material). This is a high-strength thin cement-layer pavement of 8-9 mm thickness reinforced with metal or polymer fiber of less than 5 mm length. Increased grip properties are caused by placement of stone material of 3-5 mm fraction on the concrete surface. As a result of the research, the preparation and placement technology of high-strength cement thin-layer pavement reinforced with fiber was developed to improve friction properties of existing asphalt pavements which ensures their roughness and durability. It must be emphasized that HPCM is a fundamentally new type of thin-layer pavement in which a rigid layer of 10 mm thickness is placed on a non-rigid base thereby improving riding qualities of asphalt pavement at any season of a year.

  9. Resonant TMR inversion in LiF/EuS based spin-filter tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fen; Chen, Aixi; Institute for Quantum Computing & Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada

    Resonant tunneling can lead to inverse tunnel magnetoresistance when impurity levels rather than direct tunneling dominate the transport process. We fabricated hybrid magnetic tunnel junctions of CoFe/LiF/EuS/Ti, with an epitaxial LiF energy barrier joined with a polycrystalline EuS spin-filter barrier. Due to the water solubility of LiF, the devices were fully packaged in situ. The devices showed sizeable positive TMR up to 16% at low bias voltages but clearly inverted TMR at higher bias voltages. The TMR inversion depends sensitively on the thickness of LiF, and the tendency of inversion disappears when LiF gets thick enough and recovers its intrinsicmore » properties.« less

  10. Uptake of Light Elements in Thin Metallic Films

    NASA Astrophysics Data System (ADS)

    Markwitz, Andreas; Waldschmidt, Mathias

    Ion beam analysis was used to investigate the influence of substrate temperature on the inclusion of impurities during the deposition process of thin metallic single and double layers. Thin layers of gold and aluminium were deposited at different temperatures onto thin copper layers evaporated on silicon wafer substrates. The uptake of oxygen in the layers was measured using the highly sensitive non-resonant reaction 16O(d,p)170O at 920 keV. Nuclear reaction analysis was also used to probe for carbon and nitrogen with a limit of detection better than 20 ppm. Hydrogen depth profiles were measured using elastic recoil detection on the nanometer scale. Rutherford backscattering spectroscopy was used to determine the depth profiles of the metallic layers and to study diffusion processes. The combined ion beam analyses revealed an uptake of oxygen in the layers depending on the different metallic cap layers and the deposition temperature. Lowest oxygen values were measured for the Au/Cu layers, whereas the highest amount of oxygen was measured in Al/Cu layers deposited at 300°C. It was also found that with single copper layers produced at various temperatures, oxygen contamination occurred during the evaporation process and not afterwards, for example, as a consequence of the storage of the films under normal conditions for several days. Hydrogen, carbon, and nitrogen were found as impurities in the single and double layered metallic films, a finding that is in agreement with the measured oxidation behaviour of the metallic films.

  11. Method of forming ultra thin film devices by vacuum arc vapor deposition

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F. (Inventor)

    2005-01-01

    A method for providing an ultra thin electrical circuit integral with a portion of a surface of an object, including using a focal Vacuum Arc Vapor Deposition device having a chamber, a nozzle and a nozzle seal, depressing the nozzle seal against the portion of the object surface to create an airtight compartment in the chamber and depositing one or more ultra thin film layer(s) only on the portion of the surface of the object, the layers being of distinct patterns such that they form the circuit.

  12. Non-destructive evaluation of nano-sized structure of thin film devices by using small angle neutron scattering.

    PubMed

    Shin, E J; Seong, B S; Choi, Y; Lee, J K

    2011-01-01

    Nano-sized multi-layers copper-doped SrZrO3, platinum (Pt) and silicon oxide (SiO2) on silicon substrates were prepared by dense plasma focus (DPF) device with the high purity copper anode tip and analyzed by using small angle neutron scattering (SANS) to establish a reliable method for the non-destructive evaluation of the under-layer structure. Thin film was well formed at the time-to-dip of 5 microsec with stable plasma of DPF. Several smooth intensity peaks were periodically observed when neutron beam penetrates the thin film with multi-layers perpendicularly. The platinum layer is dominant to intensity peaks, where the copper-doped SrZnO3 layer next to the platinum layer causes peak broadening. The silicon oxide layer has less effect on the SANS spectra due to its relative thick thickness. The SANS spectra shows thicknesses of platinum and copper-doped SrZnO3 layers as 53 and 25 nm, respectively, which are well agreement with microstructure observation.

  13. Layer-by-layer deposition of nanostructured CsPbBr3 perovskite thin films

    NASA Astrophysics Data System (ADS)

    Reshetnikova, A. A.; Matyushkin, L. B.; Andronov, A. A.; Sokolov, V. S.; Aleksandrova, O. A.; Moshnikov, V. A.

    2017-11-01

    Layer-by-layer deposition of nanostructured perovskites cesium lead halide thin films is described. The method of deposition is based on alternate immersion of the substrate in the precursor solutions or colloidal solution of nanocrystals and methyl acetate/lead nitrate solution using the device for deposition of films by SILAR and dip-coating techniques. An example of obtaining a photosensitive structure based on nanostructures of ZnO nanowires and layers of CsBbBr3 nanocrystals is also shown.

  14. Silicon superlattices. 2: Si-Ge heterostructures and MOS systems

    NASA Technical Reports Server (NTRS)

    Moriarty, J. A.

    1983-01-01

    Five main areas were examined: (1) the valence-and conduction-band-edge electronic structure of the thin layer ( 11 A) silicon-superlattice systems; (2) extension of thin-layer calculations to layers of thickness 11 A, where most potential experimental interest lies; (3) the electronic structure of thicker-layer (11 to 110 A) silicon superlattices; (4) preliminary calculations of impurity-scattering-limited electron mobility in the thicker-layer superlattices; and (5) production of the fine metal lines that would be required to produce on MOS superlattice.

  15. Epitaxial thinning process

    NASA Technical Reports Server (NTRS)

    Siegel, C. M. (Inventor)

    1984-01-01

    A method is described for thinning an epitaxial layer of a wafer that is to be used in producing diodes having a specified breakdown voltage and which also facilitates the thinning process. Current is passed through the epitaxial layer, by connecting a current source between the substrate of the wafer and an electrolyte in which the wafer is immersed. When the wafer is initially immersed, the voltage across the wafer initially drops and then rises at a steep rate. When light is applied to the wafer the voltage drops, and when the light is interrupted the voltage rises again. These changes in voltage, each indicate the breakdown voltage of a Schottky diode that could be prepared from the wafer at that time. The epitaxial layer is thinned by continuing to apply current through the wafer while it is immersed and light is applied, to form an oxide film and when the oxide film is thick the wafer can then be cleaned of oxide and the testing and thinning continued. Uninterrupted thinning can be achieved by first forming an oxide film, and then using an electrolyte that dissolves the oxide about as fast as it is being formed, to limit the thickness of the oxide layer.

  16. Electrochemical planarization

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.

    1993-10-26

    In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer. 12 figures.

  17. Use of screenings to produce HMA mixtures

    DOT National Transportation Integrated Search

    2002-10-01

    Thin-lift hot mix asphalt (HMA) layers are utilized in almost every maintenance and rehabilitation application. These mix types require smaller maximum particle sizes than most conventional HMA surface layers. Although the primary functions of thin-l...

  18. [Ascending one-dimensional thin layer chromatography in specific blood diagnosis (author's transl)].

    PubMed

    Bernardelli, B; Masotti, G

    1976-01-01

    A brief review of the literature on chromatography in forensic haematology is followed by a report of the results obtained by using ascending one-dimensional thin layer chromatography in specific blood diagnosis.

  19. Flat-lying semiconductor-insulator interfacial layer in DNTT thin films.

    PubMed

    Jung, Min-Cherl; Leyden, Matthew R; Nikiforov, Gueorgui O; Lee, Michael V; Lee, Han-Koo; Shin, Tae Joo; Takimiya, Kazuo; Qi, Yabing

    2015-01-28

    The molecular order of organic semiconductors at the gate dielectric is the most critical factor determining carrier mobility in thin film transistors since the conducting channel forms at the dielectric interface. Despite its fundamental importance, this semiconductor-insulator interface is not well understood, primarily because it is buried within the device. We fabricated dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) thin film transistors by thermal evaporation in vacuum onto substrates held at different temperatures and systematically correlated the extracted charge mobility to the crystal grain size and crystal orientation. As a result, we identify a molecular layer of flat-lying DNTT molecules at the semiconductor-insulator interface. It is likely that such a layer might form in other material systems as well, and could be one of the factors reducing charge transport. Controlling this interfacial flat-lying layer may raise the ultimate possible device performance for thin film devices.

  20. Bias of shear wave elasticity measurements in thin layer samples and a simple correction strategy.

    PubMed

    Mo, Jianqiang; Xu, Hao; Qiang, Bo; Giambini, Hugo; Kinnick, Randall; An, Kai-Nan; Chen, Shigao; Luo, Zongping

    2016-01-01

    Shear wave elastography (SWE) is an emerging technique for measuring biological tissue stiffness. However, the application of SWE in thin layer tissues is limited by bias due to the influence of geometry on measured shear wave speed. In this study, we investigated the bias of Young's modulus measured by SWE in thin layer gelatin-agar phantoms, and compared the result with finite element method and Lamb wave model simulation. The result indicated that the Young's modulus measured by SWE decreased continuously when the sample thickness decreased, and this effect was more significant for smaller thickness. We proposed a new empirical formula which can conveniently correct the bias without the need of using complicated mathematical modeling. In summary, we confirmed the nonlinear relation between thickness and Young's modulus measured by SWE in thin layer samples, and offered a simple and practical correction strategy which is convenient for clinicians to use.

  1. AES study on the chemical composition of ferroelectric BaTiO3 thin films RF sputter-deposited on silicon

    NASA Technical Reports Server (NTRS)

    Dharmadhikari, V. S.; Grannemann, W. W.

    1983-01-01

    AES depth profiling data are presented for thin films of BaTiO3 deposited on silicon by RF sputtering. By profiling the sputtered BaTiO3/silicon structures, it was possible to study the chemical composition and the interface characteristics of thin films deposited on silicon at different substrate temperatures. All the films showed that external surface layers were present, up to a few tens of angstroms thick, the chemical composition of which differed from that of the main layer. The main layer had stable composition, whereas the intermediate film-substrate interface consisted of reduced TiO(2-x) oxides. The thickness of this intermediate layer was a function of substrate temperature. All the films showed an excess of barium at the interface. These results are important in the context of ferroelectric phenomena observed in BaTiO3 thin films.

  2. Impact of bimetal electrodes on dielectric properties of TiO2 and Al-doped TiO2 films.

    PubMed

    Kim, Seong Keun; Han, Sora; Jeon, Woojin; Yoon, Jung Ho; Han, Jeong Hwan; Lee, Woongkyu; Hwang, Cheol Seong

    2012-09-26

    Rutile structured Al-doped TiO(2) (ATO) and TiO(2) films were grown on bimetal electrodes (thin Ru/thick TiN, Pt, and Ir) for high-performance capacitors. The work function of the top Ru layer decreased on TiN and increased on Pt and Ir when it was thinner than ~2 nm, suggesting that the lower metal within the electrodes influences the work function of the very thin Ru layer. The use of the lower electrode with a high work function for bottom electrode eventually improves the leakage current properties of the capacitor at a very thin Ru top layer (≤2 nm) because of the increased Schottky barrier height at the interface between the dielectric and the bottom electrode. The thin Ru layer was necessary to achieve the rutile structured ATO and TiO(2) dielectric films.

  3. Fuel cell with interdigitated porous flow-field

    DOEpatents

    Wilson, Mahlon S.

    1997-01-01

    A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers.

  4. Fuel cell with interdigitated porous flow-field

    DOEpatents

    Wilson, M.S.

    1997-06-24

    A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers. 9 figs.

  5. Electrical contacts to thin layers of Bi2Sr2CaCu2O8+δ

    NASA Astrophysics Data System (ADS)

    Suzuki, Shota; Taniguchi, Hiroki; Kawakami, Tsukasa; Cosset-Cheneau, Maxen; Arakawa, Tomonori; Miyasaka, Shigeki; Tajima, Setsuko; Niimi, Yasuhiro; Kobayashi, Kensuke

    2018-05-01

    Thin layers of Bi2Sr2CaCu2O8+δ (Bi2212) were fabricated using the mechanical exfoliation technique. Good electrical contacts to the thin Bi2212 films with low contact resistance were realized by depositing Ag and Au electrodes onto the Bi2212 films and annealing them with an oxygen flow at 350 °C for 30 min. We observed cross-section images of the Bi2212 thin film device using a transmission electron microscope to characterize the diffusion of Ag and Au atoms into the Bi2212 thin film.

  6. Precise Control of the Number of Layers of Graphene by Picosecond Laser Thinning.

    PubMed

    Lin, Zhe; Ye, Xiaohui; Han, Jinpeng; Chen, Qiao; Fan, Peixun; Zhang, Hongjun; Xie, Dan; Zhu, Hongwei; Zhong, Minlin

    2015-06-26

    The properties of graphene can vary as a function of the number of layers (NOL). Controlling the NOL in large area graphene is still challenging. In this work, we demonstrate a picosecond (ps) laser thinning removal of graphene layers from multi-layered graphene to obtain desired NOL when appropriate pulse threshold energy is adopted. The thinning process is conducted in atmosphere without any coating and it is applicable for graphene films on arbitrary substrates. This method provides many advantages such as one-step process, non-contact operation, substrate and environment-friendly, and patternable, which will enable its potential applications in the manufacturing of graphene-based electronic devices.

  7. Precise Control of the Number of Layers of Graphene by Picosecond Laser Thinning

    NASA Astrophysics Data System (ADS)

    Lin, Zhe; Ye, Xiaohui; Han, Jinpeng; Chen, Qiao; Fan, Peixun; Zhang, Hongjun; Xie, Dan; Zhu, Hongwei; Zhong, Minlin

    2015-06-01

    The properties of graphene can vary as a function of the number of layers (NOL). Controlling the NOL in large area graphene is still challenging. In this work, we demonstrate a picosecond (ps) laser thinning removal of graphene layers from multi-layered graphene to obtain desired NOL when appropriate pulse threshold energy is adopted. The thinning process is conducted in atmosphere without any coating and it is applicable for graphene films on arbitrary substrates. This method provides many advantages such as one-step process, non-contact operation, substrate and environment-friendly, and patternable, which will enable its potential applications in the manufacturing of graphene-based electronic devices.

  8. Thin-film limit formalism applied to surface defect absorption.

    PubMed

    Holovský, Jakub; Ballif, Christophe

    2014-12-15

    The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking.

  9. Abrogation of E-cadherin-mediated cell-cell contact in mouse embryonic stem cells results in reversible LIF-independent self-renewal.

    PubMed

    Soncin, Francesca; Mohamet, Lisa; Eckardt, Dominik; Ritson, Sarah; Eastham, Angela M; Bobola, Nicoletta; Russell, Angela; Davies, Steve; Kemler, Rolf; Merry, Catherine L R; Ward, Christopher M

    2009-09-01

    We have previously demonstrated that differentiation of embryonic stem (ES) cells is associated with downregulation of cell surface E-cadherin. In this study, we assessed the function of E-cadherin in mouse ES cell pluripotency and differentiation. We show that inhibition of E-cadherin-mediated cell-cell contact in ES cells using gene knockout (Ecad(-/-)), RNA interference (EcadRNAi), or a transhomodimerization-inhibiting peptide (CHAVC) results in cellular proliferation and maintenance of an undifferentiated phenotype in fetal bovine serum-supplemented medium in the absence of leukemia inhibitory factor (LIF). Re-expression of E-cadherin in Ecad(-/-), EcadRNAi, and CHAVC-treated ES cells restores cellular dependence to LIF supplementation. Although reversal of the LIF-independent phenotype in Ecad(-/-) ES cells is dependent on the beta-catenin binding domain of E-cadherin, we show that beta-catenin null (betacat(-/-)) ES cells also remain undifferentiated in the absence of LIF. This suggests that LIF-independent self-renewal of Ecad(-/-) ES cells is unlikely to be via beta-catenin signaling. Exposure of Ecad(-/-), EcadRNAi, and CHAVC-treated ES cells to the activin receptor-like kinase inhibitor SB431542 led to differentiation of the cells, which could be prevented by re-expression of E-cadherin. To confirm the role of transforming growth factor beta family signaling in the self-renewal of Ecad(-/-) ES cells, we show that these cells maintain an undifferentiated phenotype when cultured in serum-free medium supplemented with Activin A and Nodal, with fibroblast growth factor 2 required for cellular proliferation. We conclude that transhomodimerization of E-cadherin protein is required for LIF-dependent ES cell self-renewal and that multiple self-renewal signaling networks subsist in ES cells, with activity dependent upon the cellular context.

  10. A Herpes Simplex Virus-Derived Replicative Vector Expressing LIF Limits Experimental Demyelinating Disease and Modulates Autoimmunity

    PubMed Central

    Nygårdas, Michaela; Paavilainen, Henrik; Müther, Nadine; Nagel, Claus-Henning; Röyttä, Matias; Sodeik, Beate; Hukkanen, Veijo

    2013-01-01

    Herpes simplex virus type 1 (HSV-1) has properties that can be exploited for the development of gene therapy vectors. The neurotropism of HSV enables delivery of therapeutic genes to the nervous system. Using a bacterial artificial chromosome (BAC), we constructed an HSV-1(17+)-based replicative vector deleted of the neurovirulence gene γ134.5, and expressing leukemia inhibitory factor (LIF) as a transgene for treatment of experimental autoimmune encephalomyelitis (EAE). EAE is an inducible T-cell mediated autoimmune disease of the central nervous system (CNS) and is used as an animal model for multiple sclerosis. Demyelination and inflammation are hallmarks of both diseases. LIF is a cytokine that has the potential to limit demyelination and oligodendrocyte loss in CNS autoimmune diseases and to affect the T-cell mediated autoimmune response. In this study SJL/J mice, induced for EAE, were treated with a HSV-LIF vector intracranially and the subsequent changes in disease parameters and immune responses during the acute disease were investigated. Replicating HSV-LIF and its DNA were detected in the CNS during the acute infection, and the vector spread to the spinal cord but was non-virulent. The HSV-LIF significantly ameliorated the EAE and contributed to a higher number of oligodendrocytes in the brains when compared to untreated mice. The HSV-LIF therapy also induced favorable changes in the expression of immunoregulatory cytokines and T-cell population markers in the CNS during the acute disease. These data suggest that BAC-derived HSV vectors are suitable for gene therapy of CNS disease and can be used to test the therapeutic potential of immunomodulatory factors for treatment of EAE. PMID:23700462

  11. Epitaxial growth of lithium fluoride on the (1 1 1) surface of CaF 2

    NASA Astrophysics Data System (ADS)

    Klumpp, St; Dabringhaus, H.

    1999-08-01

    Growth of lithium fluoride by molecular beam epitaxy on the (1 1 1) surface of calcium fluoride crystals was studied by TEM and LEED for crystal temperatures from 400 to 773 K and impinging lithium fluoride fluxes from 3×10 11 to 3×10 14 cm -2 s -1. Growth starts, usually, at the <1 1 0> steps on the (1 1 1) surface of CaF 2. For larger step distances and at later growth stages also growth on the terraces between the steps is found. Preferably, longish, roof-like crystallites are formed, which can be interpreted by growth of LiF(2 0 1¯)[0 1 0] parallel to CaF 2(1 1 1)[ 1¯ 0 1]. To a lesser extent square crystallites, i.e. growth with LiF(0 0 1), and, rarely, three-folded pyramidal crystallites, i.e. growth with LiF(1 1 1) parallel to CaF 2(1 1 1), are observed. While the pyramidal crystallites show strict epitaxial orientation with LiF[ 1¯ 0 1]‖CaF 2[ 1¯ 0 1] and LiF[ 1¯ 0 1]‖CaF 2[1 2¯ 1], only about 80% of the square crystallites exhibit an epitaxial alignment, where LiF[1 0 0]‖CaF 2[ 1¯ 0 1] is preferred to LiF[1 1 0]‖CaF 2[ 1¯ 0 1]. The epitaxial relationships are discussed on the basis of theoretically calculated adsorption positions of the lithium fluoride monomer and dimer on the terrace and at the steps of the CaF 2(1 1 1) surface.

  12. Visible photoluminescence of color centers in LiF crystals for absorbed dose evaluation in clinical dosimetry

    NASA Astrophysics Data System (ADS)

    Villarreal-Barajas, J. E.; Piccinini, M.; Vincenti, M. A.; Bonfigli, F.; Khan, R. F.; Montereali, R. M.

    2015-04-01

    Among insulating materials, lithium fluoride (LiF) has been successfully used as ionizing radiation dosemeter for more than 60 years. Thermoluminescence (TL) has been the most commonly used reading technique to evaluate the absorbed dose. Lately, optically stimulated luminescence (OSL) of visible emitting color centers (CCs) has also been explored in pure and doped LiF. This work focuses on the experimental behaviour of nominally pure LiF crystals dosemeters for 6 MV x rays at low doses based on photoluminescence (PL) of radiation induced CCs. Polished LiF crystals were irradiated using 6 MV x rays produced by a clinical linear accelerator. The doses (absorbed dose to water) covered the 1-100 Gy range. Optical absorption spectra show stable formation of primary F defects up to a maximum concentration of 2×1016 cm-3, while no significant M absorption band at around 450 nm was detected. On the other hand, under Argon laser excitation at 458 nm, PL spectra of the irradiated LiF crystals clearly exhibited the characteristic F2 and F+3 visible broad emission bands. Their sum intensity is linearly proportional to the absorbed dose in the investigated range. PL integrated intensity was also measured using a conventional fluorescence optical microscope under blue lamp illumination. The relationship between the absorbed dose and the integrated F2 and F+3 PL intensities, represented by the net average pixel number in the optical fluorescence images, is also fairly linear. Even at the low point defect densities obtained at the investigated doses, these preliminary experimental results are encouraging for further investigation of CCs PL in LiF crystals for clinical dosimetry.

  13. Expansive open-door laminoplasty versus laminectomy and instrumented fusion for cases with cervical ossification of the posterior longitudinal ligament and straight lordosis.

    PubMed

    Liu, Xiaowei; Chen, Yu; Yang, Haisong; Li, Tiefeng; Xu, Bin; Chen, Deyu

    2017-04-01

    To identify whether expansive open-door laminoplasty (Lam) is more appropriate than laminectomy and instrumented fusion (LIF) for cases with ossification of the posterior longitudinal ligament (OPLL) and straight cervical lordosis. A total of 67 cases were included and divided into Group Lam (n = 32) and Group LIF (n = 35), and the mean follow-up periods were 38 and 42 months, respectively. The cervical lordosis was elevated by C2-7 Cobb angle and cervical sagittal balance by C2-C7 sagittal vertical axis (SVA). Japanese Orthopedic Association (JOA), neurological recovery rate (RR) being calculated by the JOA, visual analog scale (VAS) and neck disability index (NDI) were used to assess clinical outcomes. Differences in general data between two groups were not significant. Total blood loss and operation duration in Group Lam were both significantly less than that in the Group LIF. By the final follow-up, the cervical lordosis significantly decreased in Group Lam and increased in Group LIF, the SVA significantly increased in Group Lam and kept unchanged in Group LIF, and the JOA, VAS, NDI significantly improved in both groups. Although there was no significant difference in RR between the two groups, cases in Group Lam had significantly larger incidence of postoperative kyphosis and kyphotic change rate, and less VAS, NDI and incidence of axial pain than cases in Group LIF. When compared with the LIF, the Lam is recommended for cases with OPLL and straight cervical lordosis when taking comparable neurological recovery, less axial pain and better neck function improvement into consideration.

  14. Examination of Rotating Spoke Instability in a Cross-Field Discharge

    DTIC Science & Technology

    2013-07-08

    leader), L. Balika, J. Vaudolon EMAU R. Schneider, K. Matyash PPPL Y. Raitses, A. Diallo, Y. Shi Distribution A: Approved for public...the spoke. The project was originally divided into three successive phases, namely: Phase 1: Time-averaged LIF study on the CHT at PPPL Phase 2...Time-resolved LIF study on the CHT at ICARE Phase 3: Time-resolved LIF study on a 2 kW HT at PPPL (Optional) Distribution A: Approved for public

  15. Simultaneous Laser-induced Fluorescence of Nitric Oxide and Atomic Oxygen in the Hypersonic Materials Environment Test System Arcjet Facility

    NASA Technical Reports Server (NTRS)

    Johansen, Craig; Lincoln, Daniel; Bathel, Brett; Inman, Jennifer; Danehy, Paul

    2014-01-01

    Simultaneous nitric oxide (NO) and atomic oxygen (O) laser induced fluorescence (LIF) experiments were performed in the Hypersonic Materials Environmental Test System (HYMETS) facility at the NASA Langley Research Center. The data serves as an experimental database for validation for chemical and thermal nonequilibrium models used in hypersonic flows. Measurements were taken over a wide range of stagnation enthalpies (6.7 - 18.5 MJ/kg) using an Earth atmosphere simulant with a composition of 75% N2, 20% O2, and 5% Ar (by volume). These are the first simultaneous measurements of NO and O LIF to be reported in literature for the HYMETS facility. The maximum O LIF mean signal intensity was observed at a stagnation enthalpy of approximately 12 MJ/kg while the maximum NO LIF mean signal intensity was observed at a stagnation enthalpy of 6.7 MJ/kg. Experimental results were compared to simple fluorescence model that assumes equilibrium conditions in the plenum and frozen chemistry in the isentropic nozzle expansion (Mach 5). The equilibrium calculations were performed using CANTERA v2.1.1 with 16 species. The fluorescence model captured the correlation in mean O and NO LIF signal intensities over the entire range of stagnation enthalpies tested. Very weak correlations between single-shot O and NO LIF intensities were observed in the experiments at all of the stagnation enthalpy conditions.

  16. High-pressure and high-temperature physical properties of LiF studied by density functional theory calculations and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Wei; Liu, Zi-Jiang; Quan, Wei-Long; Song, Ting; Khenata, Rabah; Bin-Omran, Saad

    2018-05-01

    Using the revised Perdew-Burke-Ernzerhof generalized gradient approximation based on first-principles plane-wave pseudopotential density functional theory, the high-pressure structural phase transition of LiF is explored. From the analysis of Gibbs free energies, we find that no phase transition occurs for LiF in the presented pressure range from 0 to 1000 GPa, and this result is consistent with the theoretical prediction obtained via ab initio calculations [N.A. Smirnov, Phys. Rev. B 83 (2011) 014109]. Using the classical molecular dynamics technique with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction, the melting phase diagram of LiF is determined. The obtained normalized volumes under pressure are in good agreement with our density functional theory results and the available experimental data. Meanwhile, with the help of the quasi-harmonic Debye model in which the phononic effects are considered, the thermodynamic properties of interest, including the volume thermal expansion coefficient, isothermal bulk modulus and its first and second pressure derivatives, heat capacity at constant volume, entropy, Debye temperature, and Grüneisen parameter of LiF are predicted systematically. All the properties of LiF with the stable NaCl-type structure in the temperature range of 0-4900 K and the pressure up to 1000 GPa are summarized.

  17. Leukemia inhibitory factor promote trophoblast invasion via urokinase-type plasminogen activator receptor in preeclampsia.

    PubMed

    Zheng, Qin; Dai, Kuixing; Cui, Xinyuan; Yu, Ming; Yang, Xuesong; Yan, Bin; Liu, Shuai; Yan, Qiu

    2016-05-01

    Preeclampsia is a pregnancy-related syndrome which can cause perinatal mortality and morbidity. Inadequate invasion by trophoblast cells may lead to poor perfusion of the placenta, even result in preeclampsia. Understanding the molecular mechanisms underlying placentation facilitates the better intervention of preeclampsia. Urokinase-type plasminogen activator receptor (uPAR) is involved in the physiological and pathological processes. Leukemia inhibitory factor (LIF) is an important regulator in the establishment of pregnancy. However, the expression of uPAR in preeclamptic patients and its relationship with LIF remains unclear. In the current study, we found that the level of uPAR was relatively lower in the placentas from preeclamptic patients as compared with normal pregnant women. LIF promoted trophoblast cell outgrowth by upregulating uPAR in an explants culture, and LIF also enhanced migration and invasion potential through uPAR in trophoblast JAR and JEG-3 cell lines, and with increased gelatinolytic activities of matrix metalloproteinase 2 (MMP-2). The effect of LIF and uPAR on trophoblast migration and invasion was mediated by PI3K/AKT signaling pathway. Our data indicates the roles of LIF in promoting trophoblast migration and invasion through uPAR and suggest that abnormal expression of uPAR might be associated with the etiology of preeclampsia. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Temperature measurements of the gas-phase during surrogate diesel injection using two-color toluene LIF

    NASA Astrophysics Data System (ADS)

    Zegers, R. P. C.; Yu, M.; Bekdemir, C.; Dam, N. J.; Luijten, C. C. M.; de Goey, L. P. H.

    2013-08-01

    Planar laser-induced fluorescence (LIF) of toluene has been applied in an optical engine and a high-pressure cell, to determine temperatures of fuel sprays and in-cylinder vapors. The method relies on a redshift of the toluene LIF emission spectrum with increasing temperature. Toluene fluorescence is recorded simultaneously in two disjunct wavelength bands by a two-camera setup. After calibration, the pixel-by-pixel LIF signal ratio is a proxy for the local temperature. A detailed measurement procedure is presented to minimize measurement inaccuracies and to improve precision. n-Heptane is used as the base fuel and 10 % of toluene is added as a tracer. The toluene LIF method is capable of measuring temperatures up to 700 K; above that the signal becomes too weak. The precision of the spray temperature measurements is 4 % and the spatial resolution 1.3 mm. We pay particular attention to the construction of the calibration curve that is required to translate LIF signal ratios into temperature, and to possible limitations in the portability of this curve between different setups. The engine results are compared to those obtained in a constant-volume high-pressure cell, and the fuel spray results obtained in the high-pressure cell are also compared to LES simulations. We find that the hot ambient gas entrained by the head vortex gives rise to a hot zone on the spray axis.

  19. Fabrication of Organic Thin Film Transistors Using Layer-By-Layer Assembly (Preprint)

    DTIC Science & Technology

    2007-03-01

    thin-film transistors ( TFTs ) have received considerable attention as a low- cost, light-weight, flexible alternative to traditional amorphous silicon...Previous studies have investigated the use of a number of materials for both the active layer and the gate dielectric in various TFT architectures. These...performance. Conjugated small molecules, such as pentacene, or polymers, such as poly(3- hexylthiophene), are commonly used as the active layer in organic TFT

  20. Use of separate ZnTe interface layers to form ohmic contacts to p-CdTe films

    DOEpatents

    Gessert, T.A.

    1999-06-01

    A method of is disclosed improving electrical contact to a thin film of a p-type tellurium-containing II-VI semiconductor comprising: depositing a first undoped layer of ZnTe on a thin film of p-type tellurium containing II-VI semiconductor with material properties selected to limit the formation of potential barriers at the interface between the p-CdTe and the undoped layer, to a thickness sufficient to control diffusion of the metallic-doped ZnTe into the p-type tellurium-containing II-VI semiconductor, but thin enough to minimize affects of series resistance; depositing a second heavy doped p-type ZnTe layer to the first layer using an appropriate dopant; and depositing an appropriate metal onto the outer-most surface of the doped ZnTe layer for connecting an external electrical conductor to an ohmic contact. 11 figs.

  1. High-performance a-IGZO thin-film transistor with conductive indium-tin-oxide buried layer

    NASA Astrophysics Data System (ADS)

    Ahn, Min-Ju; Cho, Won-Ju

    2017-10-01

    In this study, we fabricated top-contact top-gate (TCTG) structure of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with a thin buried conductive indium-tin oxide (ITO) layer. The electrical performance of a-IGZO TFTs was improved by inserting an ITO buried layer under the IGZO channel. Also, the effect of the buried layer's length on the electrical characteristics of a-IGZO TFTs was investigated. The electrical performance of the transistors improved with increasing the buried layer's length: a large on/off current ratio of 1.1×107, a high field-effect mobility of 35.6 cm2/Vs, a small subthreshold slope of 116.1 mV/dec, and a low interface trap density of 4.2×1011 cm-2eV-1 were obtained. The buried layer a-IGZO TFTs exhibited enhanced transistor performance and excellent stability against the gate bias stress.

  2. Thin Carbon Layers on Nanostructured Silicon-Properties and Applications

    NASA Astrophysics Data System (ADS)

    Angelescu, Anca; Kleps, Irina; Miu, Mihaela; Simion, Monica; Bragaru, Adina; Petrescu, Stefana; Paduraru, Crina; Raducanu, Aurelia

    Thin carbon layers such as silicon carbide (SiC) and diamond like carbon (DLC) layers on silicon, or on nanostructured silicon substrats were obtained by different methods. This paper is a review of our results in the areas of carbon layer microfabrication technologies and their properties related to different microsystem apllications. So, silicon membranes using a-SiC or DLC layers as etching mask, as well as silicon carbide membranes using a combined porous silicon — DLC structure were fabricated for sensor applications. A detailed evaluation of the field emission (FE) properties of these films was done to demonstrate their capability to be used in field emission devices. Carbon thin layers on nanostructured silicon samples were also investigated with respect to the living cell adhesion on these structures. The experiments indicate that the cell attachment on the surface of carbon coatings can be controlled by deposition parameters during the technological process.

  3. Use of separate ZnTe interface layers to form OHMIC contacts to p-CdTe films

    DOEpatents

    Gessert, Timothy A.

    1999-01-01

    A method of improving electrical contact to a thin film of a p-type tellurium-containing II-VI semiconductor comprising: depositing a first undoped layer of ZnTe on a thin film of p-type tellurium containing II-VI semiconductor with material properties selected to limit the formation of potential barriers at the interface between the p-CdTe and the undoped layer, to a thickness sufficient to control diffusion of the metallic-doped ZnTe into the p-type tellurim-containing II-VI semiconductor, but thin enough to minimize affects of series resistance; depositing a second heavy doped p-type ZnTe layer to the first layer using an appropriate dopant; and depositing an appropriate metal onto the outer-most surface of the doped ZnTe layer for connecting an external electrical conductor to an ohmic contact.

  4. Thin-film solar cell fabricated on a flexible metallic substrate

    DOEpatents

    Tuttle, John R.; Noufi, Rommel; Hasoon, Falah S.

    2006-05-30

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  5. Thin-Film Solar Cell Fabricated on a Flexible Metallic Substrate

    DOEpatents

    Tuttle, J. R.; Noufi, R.; Hasoon, F. S.

    2006-05-30

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  6. Direct charge carrier injection into Ga2O3 thin films using an In2O3 cathode buffer layer: their optical, electrical and surface state properties

    NASA Astrophysics Data System (ADS)

    Cui, W.; Zhao, X. L.; An, Y. H.; Guo, D. Y.; Qing, X. Y.; Wu, Z. P.; Li, P. G.; Li, L. H.; Cui, C.; Tang, W. H.

    2017-04-01

    Conductive Ga2O3 thin films with an In2O3 buffer layer have been prepared on c-plane sapphire substrates using a laser molecular beam epitaxy technique. The effects of the In2O3 buffer layer on the structure and optical, electrical and surface state properties of the Ga2O3 films have been studied. The change in conductivity of the thin films is attributed to different thicknesses of the In2O3 buffer layer, which determine the concentration of charge carriers injected into the upper Ga2O3 layer from the interface of the bilayer thin films. In addition, the increase in flat band voltage shift and capacitance values as the In2O3 buffer layer thickens are attributed to the increase in surface state density, which also contributes to the rapid shrinkage of the optical band gap of the Ga2O3. With transparency to visible light, high n-type conduction and the ability to tune the optical band gap and surface state density, we propose that Ga2O3/In2O3 bilayer thin film is an ideal n-type semiconductor for fabrication of transparent power devices, solar cell electrodes and gas sensors.

  7. Laser induced fluorescence in nanosecond repetitively pulsed discharges for CO2 conversion

    NASA Astrophysics Data System (ADS)

    Martini, L. M.; Gatti, N.; Dilecce, G.; Scotoni, M.; Tosi, P.

    2018-01-01

    A CO2 nanosecond repetitively pulsed discharge (NRP) is a harsh environment for laser induced fluorescence (LIF) diagnostics. The difficulties arise from it being a strongly collisional system in which the gas composition, pressure and temperature, have quick and strong variations. The relevant diagnostic problems are described and illustrated through the application of LIF to the measurement of the OH radical in three different discharge configurations, with gas mixtures containing CO2 + H2O. These range from a dielectric barrier NRP with He buffer gas, a less hostile case in which absolute OH density measurement is possible, to an NRP in CO2+H2O, where the full set of drawbacks is at work. In the last case, the OH density measurement is not possible with laser pulses and detector time resolution in the ns time scale. Nevertheless, it is shown that with a proper knowledge of the collisional rate constants involved in the LIF process, a collisional energy transfer-LIF methodology is still applicable to deduce the gas composition from the analysis of LIF spectra.

  8. Synthesis of bimetallic nanostructures by nanosecond laser ablation of multicomponent thin films in water

    NASA Astrophysics Data System (ADS)

    Nikov, R. G.; Nedyalkov, N. N.; Atanasov, P. A.; Karashanova, D. B.

    2018-03-01

    The paper presents results on nanosecond laser ablation of thin films immersed in a liquid. The thin films were prepared by consecutive deposition of layers of different metals by thermal evaporation (first layer) and classical on-axis pulsed laser deposition (second layer); Ni/Au, Ag/Au and Ni/Ag thin films were thus deposited on glass substrates. The as-prepared films were then placed at the bottom of a glass vessel filled with double distilled water and irradiated by nanosecond laser pulses delivered by a Nd:YAG laser system at λ = 355 nm. This resulted in the formation of colloids of the thin films’ material. We also compared the processes of ablation of a bulk target and a thin film in the liquid by irradiating a Au target and a Au thin film by the same laser wavelength and fluence (λ = 355 nm, F = 5 J/cm2). The optical properties of the colloids were evaluated by optical transmittance measurements in the UV– VIS spectral range. Transmission electron microscopy was employed to estimate the particles’ size distribution.

  9. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    NASA Astrophysics Data System (ADS)

    Jeon, Jun-Young; Ha, Tae-Jun

    2017-08-01

    In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  10. Organic Field Effect Transistor Using Amorphous Fluoropolymer as Gate Insulating Film

    NASA Astrophysics Data System (ADS)

    Kitajima, Yosuke; Kojima, Kenzo; Mizutani, Teruyoshi; Ochiai, Shizuyasu

    Organic field effect transistors are fabricated by the active layer of Regioregular poly (3-hexylthiophene-2,5-diy)(P3HT) thin film. CYTOP thin film made from Amorphous Fluoropolymer and fabricated by spin-coating is adopted to a gate dielectric layer on Polyethylenenaphthalate (PEN) thin film that is the substrate of an organic field effect transistor. The surface morphology and molecular orientation of P3HT thin films is observed by atomic force microscope (AFM) and X-Ray diffractometer (XRD). Grains are observed on the CYTOP thin film via an AFM image and the P3HT molecule is oriented perpendicularly on the CYTOP thin film. Based on the performance of the organic field effect transistor, the carrier mobility is 0.092 cm2/Vs, the ON/OFF ratio is 7, and the threshold voltage is -12 V. The ON/OFF ratio is relatively low and to improve On/Off ratio, the CYTOP/Polyimide double gate insulating layer is adopted to OFET.

  11. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  12. Organic photovoltaic cells utilizing ultrathin sensitizing layer

    DOEpatents

    Rand, Barry P [Princeton, NJ; Forrest, Stephen R [Princeton, NJ

    2011-05-24

    A photosensitive device includes a series of organic photoactive layers disposed between two electrodes. Each layer in the series is in direct contact with a next layer in the series. The series is arranged to form at least one donor-acceptor heterojunction, and includes a first organic photoactive layer comprising a first host material serving as a donor, a thin second organic photoactive layer comprising a second host material disposed between the first and a third organic photoactive layer, and the third organic photoactive layer comprising a third host material serving as an acceptor. The first, second, and third host materials are different. The thin second layer serves as an acceptor relative to the first layer or as a donor relative to the third layer.

  13. In-depth evolution of chemical states and sub-10-nm-resolution crystal orientation mapping of nanograins in Ti(5 nm)/Au(20 nm)/Cr(3 nm) tri-layer thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoli; Todeschini, Matteo; Bastos da Silva Fanta, Alice; Liu, Lintao; Jensen, Flemming; Hübner, Jörg; Jansen, Henri; Han, Anpan; Shi, Peixiong; Ming, Anjie; Xie, Changqing

    2018-09-01

    The applications of Au thin films and their adhesion layers often suffer from a lack of sufficient information about the chemical states of adhesion layers and about the high-lateral-resolution crystallographic morphology of Au nanograins. Here, we demonstrate the in-depth evolution of the chemical states of adhesive layers at the interfaces and the crystal orientation mapping of gold nanograins with a lateral resolution of less than 10 nm in a Ti/Au/Cr tri-layer thin film system. Using transmission electron microscopy, the variation in the interdiffusion at Cr/Au and Ti/Au interfaces was confirmed. From X-ray photoelectron spectroscopy (XPS) depth profiling, the chemical states of Cr, Au and Ti were characterized layer by layer, suggesting the insufficient oxidation of the adhesive layers. At the interfaces the Au 4f peaks shift to higher binding energies and this behavior can be described by a proposed model based on electron reorganization and substrate-induced final-state neutralization in small Au clusters supported by the partially oxidized Ti layer. Utilizing transmission Kikuchi diffraction (TKD) in a scanning electron microscope, the crystal orientation of Au nanograins between two adhesion layers was non-destructively characterized with sub-10 nm spatial resolution. The results provide nanoscale insights into the Ti/Au/Cr thin film system and contribute to our understanding of its behavior in nano-optic and nano-electronic devices.

  14. Development of the α-IGZO/Ag/α-IGZO Triple-Layer Structure Films for the Application of Transparent Electrode.

    PubMed

    Chen, Kun-Neng; Yang, Cheng-Fu; Wu, Chia-Ching; Chen, Yu-Hsin

    2017-02-24

    We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO) triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□) and high optical transmittance (88.1%) at room temperature without postannealing processing on the deposited thin films.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesfaye, Meron; MacDonald, Andrew N.; Dudenas, Peter J.

    Local gas transport limitation attributed to the ionomer thin-film in the catalyst layer is a major deterrent to widespread commercialization of polymer-electrolyte fuel cells. So far functionality and limitations of these thin-films have been assumed identical in the anode and cathode. In this study, Nafion ionomer thin-films on platinum(Pt) support were exposed to H 2 and air as model schemes, mimicking anode and cathode catalyst layers. Findings indicate decreased swelling, increased densification of ionomer matrix, and increased humidity-induced aging rates in reducing environment, compared to oxidizing and inert environments. Observed phenomenon could be related to underlying Pt-gas interaction dictating Pt-ionomermore » behavior. Presented results could have significant implications about the disparate behavior of ionomer thin-film in anode and cathode catalyst layers.« less

  16. Spectroscopic Ellipsometry Studies of Ag and ZnO Thin Films and Their Interfaces for Thin Film Photovoltaics

    NASA Astrophysics Data System (ADS)

    Sainju, Deepak

    Many modern optical and electronic devices, including photovoltaic devices, consist of multilayered thin film structures. Spectroscopic ellipsometry (SE) is a critically important characterization technique for such multilayers. SE can be applied to measure key parameters related to the structural, optical, and electrical properties of the components of multilayers with high accuracy and precision. One of the key advantages of this non-destructive technique is its capability of monitoring the growth dynamics of thin films in-situ and in real time with monolayer level precision. In this dissertation, the techniques of SE have been applied to study the component layer materials and structures used as back-reflectors and as the transparent contact layers in thin film photovoltaic technologies, including hydrogenated silicon (Si:H), copper indium-gallium diselenide (CIGS), and cadmium telluride (CdTe). The component layer materials, including silver and both intrinsic and doped zinc oxide, are fabricated on crystalline silicon and glass substrates using magnetron sputtering techniques. These thin films are measured in-situ and in real time as well as ex-situ by spectroscopic ellipsometry in order to extract parameters related to the structural properties, such as bulk layer thickness and surface roughness layer thickness and their time evolution, the latter information specific to real time measurements. The index of refraction and extinction coefficient or complex dielectric function of a single unknown layer can also be obtained from the measurement versus photon energy. Applying analytical expressions for these optical properties versus photon energy, parameters that describe electronic transport, such as electrical resistivity and electron scattering time, can be extracted. The SE technique is also performed as the sample is heated in order to derive the effects of annealing on the optical properties and derived electrical transport parameters, as well as the intrinsic temperature dependence of these properties and parameters. One of the major achievements of this dissertation research is the characterization of the thickness and optical properties of the interface layer formed between the silver and zinc oxide layers in a back-reflector structure used in thin film photovoltaics. An understanding of the impact of these thin film material properties on solar cell device performance has been complemented by applying reflectance and transmittance spectroscopy as well as simulations of cell performance.

  17. Cu2ZnSnSe4 Thin Film Solar Cell with Depth Gradient Composition Prepared by Selenization of Sputtered Novel Precursors.

    PubMed

    Lai, Fang-I; Yang, Jui-Fu; Chen, Wei-Chun; Kuo, Shou-Yi

    2017-11-22

    In this study, we proposed a new method for the synthesis of the target material used in a two stage process for preparation of a high quality CZTSe thin film. The target material consisting of a mixture of Cu x Se and Zn x Sn 1-x alloy was synthesized, providing a quality CZTSe precursor layer for highly efficient CZTSe thin film solar cells. The CZTSe thin film can be obtained by annealing the precursor layers through a 30 min selenization process under a selenium atmosphere at 550 °C. The CZTSe thin films prepared by using the new precursor thin film were investigated and characterized using X-ray diffraction, Raman scattering, and photoluminescence spectroscopy. It was found that diffusion of Sn occurred and formed the CTSe phase and Cu x Se phase in the resultant CZTSe thin film. By selective area electron diffraction transmission electron microscopy images, the crystallinity of the CZTSe thin film was verified to be single crystal. By secondary ion mass spectroscopy measurements, it was confirmed that a double-gradient band gap profile across the CZTSe absorber layer was successfully achieved. The CZTSe solar cell with the CZTSe absorber layer consisting of the precursor stack exhibited a high efficiency of 5.46%, high short circuit current (J SC ) of 37.47 mA/cm 2 , open circuit voltage (V OC ) of 0.31 V, and fill factor (F.F.) of 47%, at a device area of 0.28 cm 2 . No crossover of the light and dark current-voltage (I-V) curves of the CZTSe solar cell was observed, and also, no red kink was observed under red light illumination, indicating a low defect concentration in the CZTSe absorber layer. Shunt leakage current with a characteristic metal/CZTSe/metal leakage current model was observed by temperature-dependent I-V curves, which led to the discovery of metal incursion through the CdS buffer layer on the CZTSe absorber layer. This leakage current, also known as space charge-limited current, grew larger as the measurement temperature increased and completely overwhelmed the diode current at a measurement temperature of 200 °C. This is due to interlayer diffusion of metal that increases the shunt leakage current and decreases the efficiency of the CZTSe thin film solar cells.

  18. Characterization of crystallographic properties of thin films using X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Zoo, Yeongseok

    2007-12-01

    Silver (Ag) has been recognized as one of promising candidates in Ultra-Large Scale Integrated (ULSI) applications in that it has the lowest bulk electrical resistivity of all pure metals and higher electromigration resistance than other interconnect materials. However, low thermal stability on Silicon Dioxide (Si02) at high temperatures (e.g., agglomeration) is considered a drawback for the Ag metallization scheme. Moreover, if a thin film is attached on a substrate, its properties may differ significantly from that of the bulk, since the properties of thin films can be significantly affected by the substrate. In this study, the Coefficient of Thermal Expansion (CTE) and texture evolution of Ag thin films on different substrates were characterized using various analytical techniques. The experimental results showed that the CTE of the Ag thin film was significantly affected by underlying substrate and the surface roughness of substrate. To investigate the alloying effect for Ag meatallization, small amounts of Copper (Cu) were added and characterized using theta-2theta X-ray Diffraction (XRD) scan and pole figure analysis. These XRD techniques are useful for investigating the primary texture of a metal film, (111) in this study, which (111) is the notation of a specific plane in the orthogonal coordinate system. They revealed that the (111) textures of Ag and Ag(Cu) thin films were enhanced with increasing temperature. Comparison of texture profiles between Ag and Ag(Cu) thin films showed that Cu additions enhanced (111) texture in Ag thin films. Accordingly, the texture enhancement in Ag thin films by Cu addition was discussed. Strained Silicon-On-Insulator (SSOI) is being considered as a potential substrate for Complementary Metal-Oxide-Semiconductor (CMOS) technology since the induced strain results in a significant improvement in device performance. High resolution X-ray diffraction (XRD) techniques were used to characterize the perpendicular and parallel strains in SSOI layers. XRD diffraction profiles generated from the crystalline SSOI layer provided a direct measurement of the layer's strain components. In addition, it has demonstrated that the rotational misalignment between the layer and the substrate can be incorporated within the biaxial strain equations for epitaxial layers. Based on these results, the strain behavior of the SSOI layer and the relation between strained Si and SiO2 layers are discussed for annealed samples.

  19. Optimization of rotational speed for growing BaFe12O19 thin films using spin coating

    NASA Astrophysics Data System (ADS)

    Budiawanti, S.; Soegijono, B.; Mudzakir, I.; Suharno, Fadillah, L.

    2017-07-01

    Barium ferrite (BaFe12O19, BaM) thin films were fabricated by the spin coating of precursors obtained by using a sol-gel method. The effects of the rotational speed on the spin-coating process for growing a BaM thin film were investigated in this study. Coated films were heat-deposited at different rotational speeds ranging from 2000 to 4000 rpm, while the number of layers was set to nine. Further, the effect of the number of layers on the growth of BaM thin films was discussed. For this purpose, we take the layers number 1 to 12 and take the constant rotational speed of 3000 rpm. All the film were characterized using X-Ray diffraction, Scanning Electron microscope, and Energy-dispersive X-Ray spectroscopy and Vibrating Sample Magnetometer. It was found that by increasing the rotational speed the amount of material deposited on the Si substrate decreased. The measured grain size of the BaM thin film was nearly similar for three three different rotational speeds. However, the grain size was found to increase the number of layers.

  20. GaN ultraviolet p-i-n photodetectors with enhanced deep ultraviolet quantum efficiency

    NASA Astrophysics Data System (ADS)

    Wang, Guosheng; Xie, Feng; Wang, Jun; Guo, Jin

    2017-10-01

    GaN ultraviolet (UV) p-i-n photodetectors (PDs) with a thin p-AlGaN/GaN contact layer are designed and fabricated. The PD exhibits a low dark current density of˜7 nA/cm2 under -5 V, and a zero-bias peak responsivity of ˜0.16 A/W at 360 nm, which corresponds to a maximum quantum efficiency of 55%. It is found that, in the wavelength range between 250 and 365 nm, the PD with thin p-AlGaN/GaN contact layer exhibits enhanced quantum efficiency especially in a deep-UV wavelength range, than that of the control PD with conventional thin p-GaN contact layer. The improved quantum efficiency of the PD with thin p-AlGaN/GaN contact layer in the deep-UV wavelength range is mainly attributed to minority carrier reflecting properties of thin p-AlGaN/GaN heterojunction which could reduce the surface recombination loss of photon-generated carriers and improve light current collection efficiency.

  1. LIF-dependent signaling: new pieces in the Lego.

    PubMed

    Mathieu, Marie-Emmanuelle; Saucourt, Claire; Mournetas, Virginie; Gauthereau, Xavier; Thézé, Nadine; Praloran, Vincent; Thiébaud, Pierre; Bœuf, Hélène

    2012-03-01

    LIF, a member of the IL6 family of cytokine, displays pleiotropic effects on various cell types and organs. Its critical role in stem cell models (e.g.: murine ES, human mesenchymal cells) and its essential non redundant function during the implantation process of embryos, in eutherian mammals, put this cytokine at the core of many studies aiming to understand its mechanisms of action, which could benefit to medical applications. In addition, its conservation upon evolution raised the challenging question concerning the function of LIF in species in which there is no implantation. We present the recent knowledge about the established and potential functions of LIF in different stem cell models, (embryonic, hematopoietic, mesenchymal, muscle, neural stem cells and iPSC). We will also discuss EVO-DEVO aspects of this multifaceted cytokine.

  2. Study of 2219 aluminum alloy using direct current A-TIG welding

    NASA Astrophysics Data System (ADS)

    Li, Hui; Zou, Jiasheng

    2017-07-01

    Direct current A-TIG (DCEN A-TIG) welding using special active agent had eliminated the pores and the oxidation of 2219 high-strength aluminum alloy in welding. Addition of AlF3-25% LiF active agent to DCEN A-TIG welding and arc morphology showed a trailing phenomenon. However, the change in arc morphology was not remarkable when AlF3-75% LiF active agent was added. Addition of AlF3-75% LiF active agent can refine the grain size of DCEN A-TIG joint. The mechanical properties of the weld were optimal at 10% AlF3-75% LiF active agent. Compared with AC TIG and AC A-TIG welding, DCEN A-TIG welding yielded better results for 2219 Al alloy.

  3. Elaboration and Characterization of TiO2 and Study of the Influence of The Number of Thin Films on the Methylene Blue Adsorption Rate

    NASA Astrophysics Data System (ADS)

    Madoui, Karima; Medjahed, Aicha; Hamici, Melia; Djamila, Abdi; Boudissa, Mokhtar

    2018-05-01

    Thin films of titanium oxide (TiO2) deposited on glass substrates were fabricated by using the sol-gel route. The realization of these thin layers was made using the dip-coating technique with a solution of titanium isopropoxyde as a precursor. The samples prepared with different numbers of deposited layers were annealed at 400 ° C for 2 hours. The main purposes of this work were investigations of both the effect of the number of thin TiO2 layers on the crystal structure of the anatase form first and, their ability to adsorb the solution of methylene blue in order to make colored filters from a photocatalytic process. The deposited titanium-oxide layers were characterized by using various techniques: namely, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and UV-Visible spectrometry. The result obtained by using the XRD technique showed the appearance of an anatase phase, as was confirmed by using Raman spectroscopy. The AFM surface analysis allowed the surface topography to be characterized and the surface roughness to be measured, which increased with increasing number of layers. The UV-Visible spectra showed that the TiO2 films had a good transmittance varying from 65% to 95% according to the number of layers. The gap energy varied as a function of the number of deposited layers. The as deposited TiO2 layers were tested as a photocatalyst towards the adsorption of methylene blue dye. The results obtained during this study showed that the adsorption capacity varied according to the number of deposited thin layers and the exposing duration to ultraviolet (UV) light. The maximum absorption rate of the dye was obtained for the two-layer sample. Seventy-two hours of irradiation allowed the adsorption intensity of the dye to be maximized for two-layer films.

  4. Ultraviolet emission enhancement in ZnO thin films modified by nanocrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Zheng, Gaige; Lu, Xi; Qian, Liming; Xian, Fenglin

    2017-05-01

    In this study, nanocrystalline TiO2 modified ZnO thin films were prepared by electron beam evaporation. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV-visible spectroscopy, fluorescence spectroscopy, respectively. The composition of the films was examined by energy dispersive X-ray spectroscopy (EDX). The photoluminescent spectrum shows that the pure ZnO thin film exhibits an ultraviolet (UV) emission peak and a strong green emission band. Surface analysis indicates that the ZnO thin film contains many oxygen vacancy defects on the surface. After the ZnO thin film is modified by the nanocrystalline TiO2 layer, the UV emission of ZnO is largely enhanced and the green emission is greatly suppressed, which suggests that the surface defects such as oxygen vacancies are passivated by the TiO2 capping layer. As for the UV emission enhancement of the ZnO thin film, the optimized thickness of the TiO2 capping layer is ∼16 nm. When the thickness is larger than 16 nm, the UV emission of the ZnO thin film will decrease because the TiO2 capping layer absorbs most of the excitation energy. The UV emission enhancement in the nanocrystalline TiO2 modified ZnO thin film can be attributed to surface passivation and flat band effect.

  5. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu; Quesnel, David J.; Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical propertiesmore » of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the films reduces the activation volume for yielding.« less

  6. Spatially and momentum resolved energy electron loss spectra from an ultra-thin PrNiO{sub 3} layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinyanjui, M. K., E-mail: michael.kinyanjui@uni-ulm.de; Kaiser, U.; Benner, G.

    2015-05-18

    We present an experimental approach which allows for the acquisition of spectra from ultra-thin films at high spatial, momentum, and energy resolutions. Spatially and momentum (q) resolved electron energy loss spectra have been obtained from a 12 nm ultra-thin PrNiO{sub 3} layer using a nano-beam electron diffraction based approach which enabled the acquisition of momentum resolved spectra from individual, differently oriented nano-domains and at different positions of the PrNiO{sub 3} thin layer. The spatial and wavelength dependence of the spectral excitations are obtained and characterized after the analysis of the experimental spectra using calculated dielectric and energy loss functions. The presentedmore » approach makes a contribution towards obtaining momentum-resolved spectra from nanostructures, thin film, heterostructures, surfaces, and interfaces.« less

  7. Materials science and integration bases for fabrication of (BaxSr1-x)TiO3 thin film capacitors with layered Cu-based electrodes

    NASA Astrophysics Data System (ADS)

    Fan, W.; Kabius, B.; Hiller, J. M.; Saha, S.; Carlisle, J. A.; Auciello, O.; Chang, R. P. H.; Ramesh, R.

    2003-11-01

    The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 °C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlOx, while the oxide layer at the TiAl/Cu interface is an Al2O3-rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlOx interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 °C followed by a rapid thermal annealing at 700 °C. This process significantly reduced the thickness of the TiAlOx layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high dielectric constant (280), low dielectric loss (0.007), and low leakage current (<2×10-8 A/cm2 at 100 kV/cm) were achieved for BST thin film capacitors with Cu-based electrodes.

  8. Using atomistic simulations to model cadmium telluride thin film growth

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Kenny, Steven D.

    2016-03-01

    Cadmium telluride (CdTe) is an excellent material for low-cost, high efficiency thin film solar cells. It is important to conduct research on how defects are formed during the growth process, since defects lower the efficiency of solar cells. In this work we use computer simulation to predict the growth of a sputter deposited CdTe thin film. On-the-fly kinetic Monte Carlo technique is used to simulate the CdTe thin film growth on the (1 1 1) surfaces. The results show that on the (1 1 1) surfaces the growth mechanisms on surfaces which are terminated by Cd or Te are quite different, regardless of the deposition energy (0.1∼ 10 eV). On the Te-terminated (1 1 1) surface the deposited clusters first form a single mixed species layer, then the Te atoms in the mixed layer moved up to form a new layer. Whilst on the Cd-terminated (1 1 1) surface the new Cd and Te layers are formed at the same time. Such differences are probably caused by stronger bonding between ad-atoms and surface atoms on the Te layer than on the Cd layer.

  9. Marangoni-Benard Convection in a Evaporating Liquid Thin Layer

    NASA Technical Reports Server (NTRS)

    Chai, An-Ti; Zhang, Nengli

    1996-01-01

    Marangoni-Benard convection in evaporating liquid thin layers has been investigated through flow visualization and temperature profile measurement. Twelve liquids, namely ethyl alcohol, methanol, chloroform, acetone, cyclohexane, benzine, methylene chloride, carbon tetrachloride, ethyl acetate, n-pentane, silicone oil (0.65 cSt.), and freon-113, were tested and convection patterns in thin layers of these samples were observed. Comparison among these tested samples shows that some liquids are sensitive to surface contamination from aluminum powder but some are not. The latter is excellent to be used for the investigation of surface-tension driven convection through visualization using the tracer. Two sample liquids, alcohol and freon-113 were particularly selected for systematic study. It was found that the wavelength of Benard cells would not change with thickness of the layer when it evaporates at room temperature. Special attention was focused on cases in which a liquid layer was cooled from below, and some interesting results were obtained. Convection patterns were recorded during the evaporation process and the patterns at certain time frame were compared. Benard cells were observed in thin layers with a nonlinear temperature profile and even with a zero or positive temperature gradient. Wavelength of the cells was found to increase as the evaporation progressed.

  10. Solid oxide fuel cell having monolithic core

    DOEpatents

    Ackerman, John P.; Young, John E.

    1984-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick.

  11. Exciton-dominated dielectric function of atomically thin MoS 2 films

    DOE PAGES

    Yu, Yiling; Yu, Yifei; Cai, Yongqing; ...

    2015-11-24

    We systematically measure the dielectric function of atomically thin MoS 2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5–7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5–7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS 2 films and its contribution to the dielectricmore » function may dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. Lastly, the knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS 2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.« less

  12. High efficiency copper indium gallium diselenide (CIGS) thin film solar cells

    NASA Astrophysics Data System (ADS)

    Rajanikant, Ray Jayminkumar

    The generation of electrical current from the solar radiation is known as the photovoltaic effect. Solar cell, also known as photovoltaic (PV) cell, is a device that works on the principle of photovoltaic effect, and is widely used for the generation of electricity. Thin film polycrystalline solar cells based on copper indium gallium diselenide (CIGS) are admirable candidates for clean energy production with competitive prices in the near future. CIGS based polycrystalline thin film solar cells with efficiencies of 20.3 % and excellent temperature stability have already been reported at the laboratory level. The present study discusses about the fabrication of CIGS solar cell. Before the fabrication part of CIGS solar cell, a numerical simulation is carried out using One-Dimensional Analysis of Microelectronic and Photonic Structures (AMPS-ID) for understanding the physics of a solar cell device, so that an optimal structure is analyzed. In the fabrication part of CIGS solar cell, Molybdenum (Mo) thin film, which acts as a 'low' resistance metallic back contact, is deposited by RF magnetron sputtering on organically cleaned soda lime glass substrate. The major advantages for using Mo are high temperature, (greater than 600 °C), stability and inertness to CIGS layer (i.e., no diffusion of CIGS into Mo). Mo thin film is deposited at room temperature (RT) by varying the RF power and the working pressure. The Mo thin films deposited with 100 W RF power and 1 mTorr working pressure show a reflectivity of above average 50 % and the low sheet resistance of about 1 O/□. The p-type CIGS layer is deposited on Mo. Before making thin films of CIGS, a powder of CIGS material is synthesized using melt-quenching method. Thin films of CIGS are prepared by a single-stage flash evaporation process on glass substrates, initially, for optimization of deposition parameters and than on Mo coated glass substrates for device fabrication. CIGS thin film is deposited at 250 °C at a pressure of 10-5 mbar. The thickness of the film was kept 1 mum for the solar cell device preparation. Rapid Thermal Annealing (RTA) is carried out of CIGS thin film at 500 °C for 2 minutes in the argon atmosphere. Annealing process mainly improves the grain growth of the CIGS and, hence the surface roughness, which is essential for a multilayered semiconductor structure. Thin layer of n-type highly resistive cadmium sulphide (CdS), generally known as a "buffer" layer, is deposited on CIGS layer by thermal and flash evaporation method at the substrate temperature of 100 °C. The CdS thin film plays a crucial role in the formation of the p-n junction and thus the solar cell device performance. The effect of CdS film substrate temperature ranging from 50 °C to 200 °C is observed. At the 100 °C substrate temperature, CdS thin film shows the near to 85 % of transmission in the visible region and resistivity of the order of greater then 20 x 109 Ocm, which are the essential characteristics of buffer layer. The bi-layer structure of ZnO, containing 70 nm i-ZnO and 500 nm aluminum (Al) doped ZnO, act as a transparent front-contact for CIGS thin film solar cell. These layers were deposited using RF magnetron sputtering. i-ZnO thin film acts as an insulating layer, which prevents the recombination of the photo-generated carries and also minimizes the lattice miss match defects between CdS and Al-ZnO. The resistivity of iZnO and Al-ZnO is of the order of 1012 Ocm and 10-4 Ocm, respectively. Al-ZnO thin films act as transparent conducting top electrode having transparency of about 85 % in the visible region. On Al-ZnO layer the finger-type grid pattern of silver (Ag), 200 nm thick, is deposited for the collection of photo-generated carriers. The thin film based multilayered structure Mo / CIGS / CdS / i-ZnO / Al-ZnO / Ag grid of CIGS solar cell is grown one by one on a single glass substrate. As-prepared CIGS solar cell device shows a minute photovoltaic effect. For the further improvement of the cell we have varied the thickness of the buffer layer i.e. CdS. In addition, the deposition of CdS is carried out using flash evaporation method to improve the CIGS/CdS junction. Heat soak pulses of about 200 °C are also applied for 20 sec for the further upgrading the junction. To protect the CIGS/CdS junction from the high-energy sputtered particles of ZnO, a fine mesh of stainless steel is placed just before the sample holder to enhance the performance of the solar cell. The influence of the thickness of iZnO and CdS has been checked. The maximum V oe and Jsc of about 138 mV and 1.3 mA/cm2 , respectively, are achieved using flash evaporated CIGS layer and flash evaporated CdS thin film. Further improvement of current performance can be done either by adopting some other fabrication method to obtain a denser CIGS absorber layer or replacing the CdS layer with some other efficient buffer layer.

  13. Neutron Fading Characteristics of Copper Doped Lithium Fluoride (LiF: MCP) Thermoluminescent Dosimeters (TLDs)

    DTIC Science & Technology

    2008-05-21

    Albedo Dosimetry TLDs that are used for neutron or neutron-photon personnel dosimetry are albedo dosimeters. The word albedo simply means the proportion... dosimetry . When LiF: MCP is exposed to thermal neutron irradiation, there is no obvious change in the glow curve shape. In the case of TLD -100, the...LiF: MCP undergoes compared to TLD -100. Therefore, LET results in significant variations in TL output for LiF: MCP. Limitations of Albedo Dosimetry

  14. Method of forming contacts for a back-contact solar cell

    DOEpatents

    Manning, Jane

    2013-07-23

    Methods of forming contacts for back-contact solar cells are described. In one embodiment, a method includes forming a thin dielectric layer on a substrate, forming a polysilicon layer on the thin dielectric layer, forming and patterning a solid-state p-type dopant source on the polysilicon layer, forming an n-type dopant source layer over exposed regions of the polysilicon layer and over a plurality of regions of the solid-state p-type dopant source, and heating the substrate to provide a plurality of n-type doped polysilicon regions among a plurality of p-type doped polysilicon regions.

  15. Observations of metal concentrations in E-region sporadic thin layers using incoherent-scatter radar

    NASA Astrophysics Data System (ADS)

    Suzuki, Nobuhiro

    This thesis has used incoherent-scatter radar data from the facility at Sondrestrom, Greenland to determine the ion mass values inside thin sporadic-E layers in the lower ionosphere. Metallic positively-charged ions of meteoric origin are deposited in the earth's upper atmosphere over a height range of about 85-120 km. Electric fields and neutral-gas (eg N2, O, O2) winds at high latitudes may produce convergent ion dynamics that results in the re-distribution of the background altitude distribution of the ions to form thin (1-3 km) high-density layers that are detectable with radar. A large database of experimental radar observations has been processed to determine ion mass values inside these thin ion layers. The range resolution of the radar was 600 meters that permitted mass determinations at several altitude steps within the layers. Near the lower edge of the layers the ion mass values were in the range 20-25 amu while at the top portion of the layers the mass values were generally in the range 30-40 amu. The numerical values are consistent with in-situ mass spectrometer data obtained by other researchers that suggest these layers are mainly composed of a mixture or Mg +, Si+, and Fe + ions. The small tendency for heavier ions to reside at the top portion of the layers is consistent with theory. The results have also found new evidence for the existence of complex-shaped multiple layers; the examples studied suggest similar ion mass values in different layers that in some cases are separated in altitude by several km.

  16. The effects of GaN nanocolumn arrays and thin SixNy buffer layers on the morphology of GaN layers grown by plasma-assisted molecular beam epitaxy on Si(111) substrates

    NASA Astrophysics Data System (ADS)

    Shubina, K. Yu; Pirogov, E. V.; Mizerov, A. M.; Nikitina, E. V.; Bouravleuv, A. D.

    2018-03-01

    The effects of GaN nanocolumn arrays and a thin SixNy layer, used as buffer layers, on the morphology of GaN epitaxial layers are investigated. Two types of samples with different buffer layers were synthesized by PA-MBE. The morphology of the samples was characterized by SEM. The crystalline quality of the samples was assessed by XRD. The possibility of synthesis of continuous crystalline GaN layers on Si(111) substrates without the addition of other materials such as aluminum nitride was demonstrated.

  17. Thin layer asphaltic concrete density measuring using nuclear gages.

    DOT National Transportation Integrated Search

    1989-03-01

    A Troxler 4640 thin layer nuclear gage was evaluated under field conditions to determine if it would provide improved accuracy of density measurements on asphalt overlays of 1-3/4 and 2 inches in thickness. Statistical analysis shows slightly improve...

  18. High-performance thin layer chromatography to assess pharmaceutical product quality.

    PubMed

    Kaale, Eliangiringa; Manyanga, Vicky; Makori, Narsis; Jenkins, David; Michael Hope, Samuel; Layloff, Thomas

    2014-06-01

    To assess the sustainability, robustness and economic advantages of high-performance thin layer chromatography (HPTLC) for quality control of pharmaceutical products. We compared three laboratories where three lots of cotrimoxazole tablets were assessed using different techniques for quantifying the active ingredient. The average assay relative standard deviation for the three lots was 1.2 with a range of 0.65-2.0. High-performance thin layer chromatography assessments are yielding valid results suitable for assessing product quality. The local pharmaceutical manufacturer had evolved the capacity to produce very high quality products. © 2014 John Wiley & Sons Ltd.

  19. [Thin layer agar represents a cost-effective alternative for the rapid diagnosis of multi-drug resistant tuberculosis].

    PubMed

    Hernández-Sarmiento, José M; Martínez-Negrete, Milton A; Castrillón-Velilla, Diana M; Mejía-Espinosa, Sergio A; Mejía-Mesa, Gloria I; Zapata-Fernández, Elsa M; Rojas-Jiménez, Sara; Marín-Castro, Andrés E; Robledo-Restrepo, Jaime A

    2014-01-01

    Using cost-benefit analysis for comparing the thin-layer agar culture method to the standard multiple proportion method used in diagnosing multidrug-resistant tuberculosis (MDR TB). A cost-benefit evaluation of two diagnostic tests was made at the Corporación para Investigaciones Biológicas (CIB) in Medellín, Colombia. 100 patients were evaluated; 10.8% rifampicin resistance and 14.3% isoniazid resistance were found. A computer-based decision tree model was used for cost-effectiveness analysis (Treeage Pro); the thin-layer agar culture method was most cost-effective, having 100% sensitivity, specificity and predictive values for detecting rifampicin and isoniazid resistance. The multiple proportion method value was calculated as being US$ 71 having an average 49 day report time compared to US$ 18 and 14 days for the thin-layer agar culture method. New technologies have been developed for diagnosing tuberculosis which are apparently faster and more effective; their operating characteristics must be evaluated as must their effectiveness in terms of cost-benefit. The present study established that using thin-layer agar culture was cheaper, equally effective and could provide results more quickly than the traditional method. This implies that a patient could receive MDR TB treatment more quickly.

  20. Enhanced stability of thin film transistors with double-stacked amorphous IWO/IWO:N channel layer

    NASA Astrophysics Data System (ADS)

    Lin, Dong; Pi, Shubin; Yang, Jianwen; Tiwari, Nidhi; Ren, Jinhua; Zhang, Qun; Liu, Po-Tsun; Shieh, Han-Ping

    2018-06-01

    In this work, bottom-gate top-contact thin film transistors with double-stacked amorphous IWO/IWO:N channel layer were fabricated. Herein, amorphous IWO and N-doped IWO were deposited as front and back channel layers, respectively, by radio-frequency magnetron sputtering. The electrical characteristics of the bi-layer-channel thin film transistors (TFTs) were examined and compared with those of single-layer-channel (i.e., amorphous IWO or IWO:N) TFTs. It was demonstrated to exhibit a high mobility of 27.2 cm2 V‑1 s‑1 and an on/off current ratio of 107. Compared to the single peers, bi-layer a-IWO/IWO:N TFTs showed smaller hysteresis and higher stability under negative bias stress and negative bias temperature stress. The enhanced performance could be attributed to its unique double-stacked channel configuration, which successfully combined the merits of the TFTs with IWO and IWO:N channels. The underlying IWO thin film provided percolation paths for electron transport, meanwhile, the top IWO:N layer reduced the bulk trap densities. In addition, the IWO channel/gate insulator interface had reduced defects, and IWO:N back channel surface was insensitive to the ambient atmosphere. Overall, the proposed bi-layer a-IWO/IWO:N TFTs show potential for practical applications due to its possibly long-term serviceability.

  1. General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Cheng, Yang-Tse; Qi, Yue

    2015-04-01

    Understanding the ionic conduction in solid electrolytes in contact with electrodes is vitally important to many applications, such as lithium ion batteries. The problem is complex because both the internal properties of the materials (e.g., electronic structure) and the characteristics of the externally contacting phases (e.g., voltage of the electrode) affect defect formation and transport. In this paper, we developed a method based on density functional theory to study the physics of defects in a solid electrolyte in equilibrium with an external environment. This method was then applied to predict the ionic conduction in lithium fluoride (LiF), in contact with different electrodes which serve as reservoirs with adjustable Li chemical potential (μLi) for defect formation. LiF was chosen because it is a major component in the solid electrolyte interphase (SEI) formed on lithium ion battery electrodes. Seventeen possible native defects with their relevant charge states in LiF were investigated to determine the dominant defect types on various electrodes. The diffusion barrier of dominant defects was calculated by the climbed nudged elastic band method. The ionic conductivity was then obtained from the concentration and mobility of defects using the Nernst-Einstein relationship. Three regions for defect formation were identified as a function of μLi: (1) intrinsic, (2) transitional, and (3) p -type region. In the intrinsic region (high μLi, typical for LiF on the negative electrode), the main defects are Schottky pairs and in the p -type region (low μLi, typical for LiF on the positive electrode) are Li ion vacancies. The ionic conductivity is calculated to be approximately 10-31Scm-1 when LiF is in contact with a negative electrode but it can increase to 10-12Scm-1 on a positive electrode. This insight suggests that divalent cation (e.g., Mg2+) doping is necessary to improve Li ion transport through the engineered LiF coating, especially for LiF on negative electrodes. Our results provide an understanding of the influence of the environment on defect formation and demonstrate a linkage between defect concentration in a solid electrolyte and the voltage of the electrode.

  2. Leukemia Inhibitory Factor Enhances Endogenous Cardiomyocyte Regeneration after Myocardial Infarction

    PubMed Central

    Kanda, Masato; Nagai, Toshio; Takahashi, Toshinao; Liu, Mei Lan; Kondou, Naomichi; Naito, Atsuhiko T.; Akazawa, Hiroshi; Sashida, Goro; Iwama, Atsushi; Komuro, Issei; Kobayashi, Yoshio

    2016-01-01

    Cardiac stem cells or precursor cells regenerate cardiomyocytes; however, the mechanism underlying this effect remains unclear. We generated CreLacZ mice in which more than 99.9% of the cardiomyocytes in the left ventricular field were positive for 5-bromo-4-chloro-3-indolyl-β-d-galactoside (X-gal) staining immediately after tamoxifen injection. Three months after myocardial infarction (MI), the MI mice had more X-gal-negative (newly generated) cells than the control mice (3.04 ± 0.38/mm2, MI; 0.47 ± 0.16/mm2, sham; p < 0.05). The cardiac side population (CSP) cell fraction contained label-retaining cells, which differentiated into X-gal-negative cardiomyocytes after MI. We injected a leukemia inhibitory factor (LIF)-expression construct at the time of MI and identified a significant functional improvement in the LIF-treated group. At 1 month after MI, in the MI border and scar area, the LIF-injected mice had 31.41 ± 5.83 X-gal-negative cardiomyocytes/mm2, whereas the control mice had 12.34 ± 2.56 X-gal-negative cardiomyocytes/mm2 (p < 0.05). Using 5-ethynyl-2'-deoxyurinide (EdU) administration after MI, the percentages of EdU-positive CSP cells in the LIF-treated and control mice were 29.4 ± 2.7% and 10.6 ± 3.7%, respectively, which suggests that LIF influenced CSP proliferation. Moreover, LIF activated the Janus kinase (JAK)signal transducer and activator of transcription (STAT), mitogen-activated protein kinase/extracellular signal-regulated (MEK)extracellular signal-regulated kinase (ERK), and phosphatidylinositol 3-kinase (PI3K)–AKT pathways in CSPs in vivo and in vitro. The enhanced green fluorescent protein (EGFP)-bone marrow-chimeric CreLacZ mouse results indicated that LIF did not stimulate cardiogenesis via circulating bone marrow-derived cells during the 4 weeks following MI. Thus, LIF stimulates, in part, stem cell-derived cardiomyocyte regeneration by activating cardiac stem or precursor cells. This approach may represent a novel therapeutic strategy for cardiogenesis. PMID:27227407

  3. Development of buffer layer structure for epitaxial growth of (100)/(001)Pb(Zr,Ti)O3-based thin film on (111)Si wafer

    NASA Astrophysics Data System (ADS)

    Hayasaka, Takeshi; Yoshida, Shinya; Tanaka, Shuji

    2017-07-01

    This paper reports on the development of a novel buffer layer structure, (100)SrRuO3/(100)LaNiO3/(111)Pt/(111)CeO2, for the epitaxial growth of a (100)/(001)-oriented Pb(Zr,Ti)O3 (PZT)-based thin film on a (111)Si wafer. (111)Pt and (111)CeO2 were epitaxially grown on (111)Si straightforwardly. Then, the crystal orientation was forcibly changed from (111) to (100) at the LaNiO3 layer owing to its strong (100)-self-orientation property, which enabled the cube-on-cube epitaxial growth of the subsequent (100)SrRuO3 layer and preferentially (100)/(001)-oriented PZT-based thin film. The PZT-based epitaxial thin films were comprehensively characterized in terms of the crystallinity, in-plane epitaxial relationships, piezoelectricity, and so forth. This buffer layer structure for the epitaxial growth of PZT can be applied to piezoelectric micro-electro-mechanical systems (MEMS) vibrating ring gyroscopes.

  4. Direct numerical simulation of turbulent Rayleigh-Bénard convection in a vertical thin disk

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Wang, Yin; He, Xiao-Zhou; Yik, Hiu-Fai; Wang, Xiao-Ping; Schumacher, Jorg; Tong, Penger

    2017-11-01

    We report a direct numerical simulation (DNS) of turbulent Rayleigh-Bénard convection in a thin vertical disk with a high-order spectral element method code NEK5000. An unstructured mesh is used to adapt the turbulent flow in the thin disk and to ensure that the mesh sizes satisfy the refined Groetzbach criterion and a new criterion for thin boundary layers proposed by Shishkina et al. The DNS results for the mean and variance temperature profiles in the thermal boundary layer region are found to be in good agreement with the predictions of the new boundary layer models proposed by Shishkina et al. and Wang et al.. Furthermore, we numerically calculate the five budget terms in the boundary layer equation, which are difficult to measure in experiment. The DNS results agree well with the theoretical predictions by Wang et al. Our numerical work thus provides a strong support for the development of a common framework for understanding the effect of boundary layer fluctuations. This work was supported in part by Hong Kong Research Grants Council.

  5. High density nonmagnetic cobalt in thin films

    NASA Astrophysics Data System (ADS)

    Banu, Nasrin; Singh, Surendra; Basu, Saibal; Roy, Anupam; Movva, Hema C. P.; Lauter, V.; Satpati, B.; Dev, B. N.

    2018-05-01

    Recently high density (HD) nonmagnetic cobalt has been discovered in a nanoscale cobalt thin film, grown on Si(111) single crystal. This form of cobalt is not only nonmagnetic but also superconducting. These promising results have encouraged further investigations of the growth of the nonmagnetic (NM) phase of cobalt. In the original investigation, the cobalt film had a natural cobalt oxide at the top. We have investigated whether the growth of HD NM cobalt layers in the thin film depends on (i) a capping layer on the cobalt film, (ii) the thickness of the cobalt film and (iii) the nature of the substrate on which the cobalt film is grown. The results of such investigations indicate that for cobalt films capped with a thin gold layer, and for various film thicknesses, HD NM cobalt layers are formed. However, instead of a Si substrate, when the cobalt films are grown on oxide substrates, such as silicon oxide or cobalt oxide, HD NM cobalt layers are not formed. The difference is attributed to the nature—crystalline or amorphous—of the substrate.

  6. Impact of ultra-thin Al2O3-y layers on TiO2-x ReRAM switching characteristics

    NASA Astrophysics Data System (ADS)

    Trapatseli, Maria; Cortese, Simone; Serb, Alexander; Khiat, Ali; Prodromakis, Themistoklis

    2017-05-01

    Transition metal-oxide resistive random access memory devices have demonstrated excellent performance in switching speed, versatility of switching and low-power operation. However, this technology still faces challenges like poor cycling endurance, degradation due to high electroforming (EF) switching voltages and low yields. Approaches such as engineering of the active layer by doping or addition of thin oxide buffer layers have been often adopted to tackle these problems. Here, we have followed a strategy that combines the two; we have used ultra-thin Al2O3-y buffer layers incorporated between TiO2-x thin films taking into account both 3+/4+ oxidation states of Al/Ti cations. Our devices were tested by DC and pulsed voltage sweeping and in both cases demonstrated improved switching voltages. We believe that the Al2O3-y layers act as reservoirs of oxygen vacancies which are injected during EF, facilitate a filamentary switching mechanism and provide enhanced filament stability, as shown by the cycling endurance measurements.

  7. Electrically tunable infrared metamaterial devices

    DOEpatents

    Brener, Igal; Jun, Young Chul

    2015-07-21

    A wavelength-tunable, depletion-type infrared metamaterial optical device is provided. The device includes a thin, highly doped epilayer whose electrical permittivity can become negative at some infrared wavelengths. This highly-doped buried layer optically couples with a metamaterial layer. Changes in the transmission spectrum of the device can be induced via the electrical control of this optical coupling. An embodiment includes a contact layer of semiconductor material that is sufficiently doped for operation as a contact layer and that is effectively transparent to an operating range of infrared wavelengths, a thin, highly doped buried layer of epitaxially grown semiconductor material that overlies the contact layer, and a metallized layer overlying the buried layer and patterned as a resonant metamaterial.

  8. Thin film solar cell including a spatially modulated intrinsic layer

    DOEpatents

    Guha, Subhendu; Yang, Chi-Chung; Ovshinsky, Stanford R.

    1989-03-28

    One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

  9. Pulsed laser deposition of functionalized Mg-Al layered double hydroxide thin films

    NASA Astrophysics Data System (ADS)

    Vlad, A.; Birjega, R.; Tirca, I.; Matei, A.; Mardare, C. C.; Hassel, A. W.; Nedelcea, A.; Dinescu, M.; Zavoianu, R.

    2018-02-01

    In this paper, magnesium-aluminium layered double hydroxide (LDH) has been functionalized with sodium dodecyl sulfate (DS) and deposited as thin film by pulsed laser deposition (PLD). Mg, Al-LDH powders were prepared by co-precipitation and used as reference material. Intercalation of DS as an anionic surfactant into the LDHs host layers has been prepared in two ways: co-precipitation (P) and reconstruction (R). DS intercalation occurred in LDH powder via both preparation methods. The films deposited via PLD, in particular at 532 and 1064 nm, preserve the organic intercalated layered structure of the targets prepared from these powders. The results reveal the ability of proposed deposition technique to produce functional composite organo-modified LDHs thin films.

  10. Fabrication and Structural Characterization of an Ultrathin Film of a Two-Dimensional-Layered Metal-Organic Framework, {Fe(py)2[Ni(CN)4]} (py = pyridine).

    PubMed

    Sakaida, Shun; Haraguchi, Tomoyuki; Otsubo, Kazuya; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2017-07-17

    We report the fabrication and characterization of the first example of a tetracyanonickelate-based two-dimensional-layered metal-organic framework, {Fe(py) 2 Ni(CN) 4 } (py = pyridine), thin film. To fabricate a nanometer-sized thin film, we utilized the layer-by-layer method, whereby a substrate was alternately soaked in solutions of the structural components. Surface X-ray studies revealed that the fabricated film was crystalline with well-controlled growth directions both parallel and perpendicular to the substrate. In addition, lattice parameter analysis indicated that the crystal system is found to be close to higher symmetry by being downsized to a thin film.

  11. Treatment of ice cover and other thin elastic layers with the parabolic equation method.

    PubMed

    Collins, Michael D

    2015-03-01

    The parabolic equation method is extended to handle problems involving ice cover and other thin elastic layers. Parabolic equation solutions are based on rational approximations that are designed using accuracy constraints to ensure that the propagating modes are handled properly and stability constrains to ensure that the non-propagating modes are annihilated. The non-propagating modes are especially problematic for problems involving thin elastic layers. It is demonstrated that stable results may be obtained for such problems by using rotated rational approximations [Milinazzo, Zala, and Brooke, J. Acoust. Soc. Am. 101, 760-766 (1997)] and generalizations of these approximations. The approach is applied to problems involving ice cover with variable thickness and sediment layers that taper to zero thickness.

  12. Biotechnology Conference: Diagnostics 󈨛 Held in Cambridge, England on 10 and 11 December 1987.

    DTIC Science & Technology

    1988-05-25

    settings. 1 -hour culture confirmation test for herpes (ColorGene DNA hybridization test for HSV confirmation). This test NEW AMPEROMETRIC BIOSENSORS...I Thin Layer Technology: Monolayers to Multi Thin Films ................. 1 Single-Step Immunoassay Systems...if this thin-layer pr•ccss~is probe technolh,,y. and biosensors. The aim of the con- demonstrated in Figure 1 . which shows the disposition of ference

  13. Epitaxial growth of metallic buffer layer structure and c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 thin film on Si for high performance piezoelectric micromachined ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Thao, Pham Ngoc; Yoshida, Shinya; Tanaka, Shuji

    2017-12-01

    This paper reports on the development of a metallic buffer layer structure, (100) SrRuO3 (SRO)/(100) Pt/(100) Ir/(100) yttria-stabilized zirconia (YSZ) layers for the epitaxial growth of a c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 (PMnN-PZT) thin film on a (100) Si wafer for piezoelectric micro-electro mechanical systems (MEMS) application. The stacking layers were epitaxially grown on a Si substrate under the optimal deposition condition. A crack-free PMnN-PZT epitaxial thin films was obtained at a thickness up to at least 1.7 µm, which is enough for MEMS applications. The unimorph MEMS cantilevers based on the PMnN-PZT thin film were fabricated and characterized. As a result, the PMnN-PZT thin film exhibited -10 to -12 C/m2 as a piezoelectric coefficient e 31,f and ˜250 as a dielectric constants ɛr. The resultant FOM for piezoelectric micromachined ultrasonic transducer (pMUT) is higher than those of general PZT and AlN thin films. This structure has a potential to provide high-performance pMUTs.

  14. Apparatus for forming thin-film heterojunction solar cells employing materials selected from the class of I-III-VI.sub.2 chalcopyrite compounds

    DOEpatents

    Mickelsen, Reid A.; Chen, Wen S.

    1983-01-01

    Apparatus for forming thin-film, large area solar cells having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n-type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order of about 2.5 microns to about 5.0 microns (.congruent.2.5 .mu.m to .congruent.5.0 .mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the transient n-type material in the first semiconductor layer to evolve into p-type material, thereby defining a thin layer heterojunction device characterized by the absence of voids, vacancies and nodules which tend to reduce the energy conversion efficiency of the system.

  15. High Performance Thin Layer Chromatography.

    ERIC Educational Resources Information Center

    Costanzo, Samuel J.

    1984-01-01

    Clarifies where in the scheme of modern chromatography high performance thin layer chromatography (TLC) fits and why in some situations it is a viable alternative to gas and high performance liquid chromatography. New TLC plates, sample applications, plate development, and instrumental techniques are considered. (JN)

  16. Ion Dynamics of a BHT-600 Hall Thruster Measured with Time-Resolved Laser-Induced Fluorescence

    DTIC Science & Technology

    2016-01-14

    LIF  Method V = 0 V V λ = λ0 λ > λ0 λ < λ0 Ion Velocity from  Doppler Shift: 0 5 10 15 20 25 30 0 0.1 0.2 0.3 0.4...0.5 0.6 0.7 0.8 0.9 1 Frequency (GHz) N o r m a l i z e d S i g n a l xneg28z6_AVG OG LIF OG Fit LIF Fit AFRL | BHT‐600 TRLIF | Jan 14, 2016 10...Distribution A: Approved for Public Release; Distribution Unlimited. PA# 16204 Time‐Resolved  LIF  Method Laser  Tapered Amp  D1  BS1  BS2  D2  O G C  

  17. Lattice dynamics and thermal conductivity of lithium fluoride via first-principles calculations

    NASA Astrophysics Data System (ADS)

    Liang, Ting; Chen, Wen-Qi; Hu, Cui-E.; Chen, Xiang-Rong; Chen, Qi-Feng

    2018-04-01

    The lattice thermal conductivity of lithium fluoride (LiF) is accurately computed from a first-principles approach based on an iterative solution of the Boltzmann transport equation. Real-space finite-difference supercell approach is employed to generate the second- and third-order interatomic force constants. The related physical quantities of LiF are calculated by the second- and third- order potential interactions at 30 K-1000 K. The calculated lattice thermal conductivity 13.89 W/(m K) for LiF at room temperature agrees well with the experimental value, demonstrating that the parameter-free approach can furnish precise descriptions of the lattice thermal conductivity for this material. Besides, the Born effective charges, dielectric constants and phonon spectrum of LiF accord well with the existing data. The lattice thermal conductivities for the iterative solution of BTE are also presented.

  18. Line Lists for LiF and LiCl in the X 1Σ+ Ground State

    NASA Astrophysics Data System (ADS)

    Bittner, Dror M.; Bernath, Peter F.

    2018-03-01

    Vibration–rotation line lists for 6LiF, 7LiF, 6Li35Cl, 6Li37Cl, 7Li35Cl, and 7Li37Cl in the X 1Σ+ ground states have been prepared. The rovibrational energy levels have been calculated using potential energy surfaces determined by direct potential-fitting employing the rotational and rovibrational transition frequencies of all isotopologues, and required the inclusion of Born–Oppenheimer breakdown terms. Dipole moment functions calculated ab initio at the MRCI/aug-cc-pwCV5Z level have been used for line strength calculations. Partition functions for temperatures up to 5000 K have been calculated. LiF and LiCl are predicted to be present in the atmospheres of hot rocky exoplanets, brown dwarfs, and cool stars.

  19. Effect of LiF as Sintering Agent on the Densification and Phase Formation in Al2O3-4 Wt Pct Nb2O5 Ceramic Compound

    NASA Astrophysics Data System (ADS)

    Santos, J. L.; Marçal, R. L. S. B.; Jesus, P. R. R.; Gomes, A. V.; Lima, E. P.; Monteiro, S. N.; de Campos, J. B.; Louro, L. H. L.

    2017-10-01

    Different amounts of LiF were added to an Al2O3-4 pct Nb2O5 basic ceramic, as sintering agent. Improved new ceramics were obtained with LiF concentrations varying from 0.25 to 1.50 wt pct and three sintering temperatures of 1573 K, 1623 K, and 1673 K (1300 °C, 1350 °C, and 1400 °C). The addition of 0.5 wt pct LiF yielded the highest densification, 94 pct of the theoretical density, in association with a sintering temperature of 1673 K (1400 °C). Based on X-ray diffraction (XRD), this improvement was due not only to the presence of transformed phases, more precisely Nb3O7F, but also to the absence of LiAl5O8. The preferential interaction of LiF with Nb2O5, instead of Al2O3, contributed to increase the alumina sintering ability by liquid phase formation. Scanning electron microscopy (SEM) results revealed well-connected grains and isolated pores, whereas the chemical composition analysis by energy dispersive energy (EDX) indicated a preferential interaction of fluorine with niobium, in agreement with the results of XRD. It was also observed from thermal analysis that the polyethylene glycol binder burnout temperature increased for all LiF concentrations. This may be related to the formation of hydrogen bridge bonds.

  20. Parallel microscope-based fluorescence, absorbance and time-of-flight mass spectrometry detection for high performance liquid chromatography and determination of glucosamine in urine.

    PubMed

    Xiong, Bo; Wang, Ling-Ling; Li, Qiong; Nie, Yu-Ting; Cheng, Shuang-Shuang; Zhang, Hui; Sun, Ren-Qiang; Wang, Yu-Jiao; Zhou, Hong-Bin

    2015-11-01

    A parallel microscope-based laser-induced fluorescence (LIF), ultraviolet-visible absorbance (UV) and time-of-flight mass spectrometry (TOF-MS) detection for high performance liquid chromatography (HPLC) was achieved and used to determine glucosamine in urines. First, a reliable and convenient LIF detection was developed based on an inverted microscope and corresponding modulations. Parallel HPLC-LIF/UV/TOF-MS detection was developed by the combination of preceding Microscope-based LIF detection and HPLC coupled with UV and TOF-MS. The proposed setup, due to its parallel scheme, was free of the influence from photo bleaching in LIF detection. Rhodamine B, glutamic acid and glucosamine have been determined to evaluate its performance. Moreover, the proposed strategy was used to determine the glucosamine in urines, and subsequent results suggested that glucosamine, which was widely used in the prevention of the bone arthritis, was metabolized to urines within 4h. Furthermore, its concentration in urines decreased to 5.4mM at 12h. Efficient glucosamine detection was achieved based on a sensitive quantification (LIF), a universal detection (UV) and structural characterizations (TOF-MS). This application indicated that the proposed strategy was sensitive, universal and versatile, and it was capable of improved analysis, especially for analytes with low concentrations in complex samples, compared with conventional HPLC-UV/TOF-MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Exploring substrate/ionomer interaction under oxidizing and reducing environments

    DOE PAGES

    Tesfaye, Meron; MacDonald, Andrew N.; Dudenas, Peter J.; ...

    2018-02-09

    Local gas transport limitation attributed to the ionomer thin-film in the catalyst layer is a major deterrent to widespread commercialization of polymer-electrolyte fuel cells. So far functionality and limitations of these thin-films have been assumed identical in the anode and cathode. In this study, Nafion ionomer thin-films on platinum(Pt) support were exposed to H 2 and air as model schemes, mimicking anode and cathode catalyst layers. Findings indicate decreased swelling, increased densification of ionomer matrix, and increased humidity-induced aging rates in reducing environment, compared to oxidizing and inert environments. Observed phenomenon could be related to underlying Pt-gas interaction dictating Pt-ionomermore » behavior. Presented results could have significant implications about the disparate behavior of ionomer thin-film in anode and cathode catalyst layers.« less

  2. Method for synthesizing thin film electrodes

    DOEpatents

    Boyle, Timothy J [Albuquerque, NM

    2007-03-13

    A method for making a thin-film electrode, either an anode or a cathode, by preparing a precursor solution using an alkoxide reactant, depositing multiple thin film layers with each layer approximately 500 1000 .ANG. in thickness, and heating the layers to above 600.degree. C. to achieve a material with electrochemical properties suitable for use in a thin film battery. The preparation of the anode precursor solution uses Sn(OCH.sub.2C(CH.sub.3).sub.3).sub.2 dissolved in a solvent in the presence of HO.sub.2CCH.sub.3 and the cathode precursor solution is formed by dissolving a mixture of (Li(OCH.sub.2C(CH.sub.3).sub.3)).sub.8 and Co(O.sub.2CCH.sub.3).H.sub.2O in at least one polar solvent.

  3. Electrochemical Atomic Layer Epitaxy of Thin Film CdSe

    NASA Astrophysics Data System (ADS)

    Pham, L.; Kaleida, K.; Happek, U.; Mathe, M. K.; Vaidyanathan, R.; Stickney, J. L.; Radevic, M.

    2002-10-01

    Electrochemical atomic layer epitaxy (EC-ALE) is a current developmental technique for the fabrication of compound semiconductor thin films. The deposition of elements making up the compound utilizes surface limited reactions where the potential is less than that required for bulk growth. This growth method offers mono-atomic layer control, allowing the deposition of superlattices with sharp interfaces. Here we report on the EC-ALE formation of CdSe thin films on Au and Cu substrates using an automated flow cell system. The band gap was measured using IR absorption and photoconductivity and found to be consistent with the literature value of 1.74 eV at 300K and 1.85 eV at 20K. The stoichiometry of the thin film was confirmed with electron microprobe analysis and x-ray diffraction.

  4. Characterization of Softmagnetic Thin Layers Using Barkhausen Noise Microscopy

    DTIC Science & Technology

    2001-04-01

    magnetoresistive (MR) sensors softmagnetic thin layer systems are used. Optimal performance of these layers requires homogeneous magnetic properties , especially a...Sendust, used in inductive sensors and nanocrystalline NiFe , used in MR-sensors. In quality correlations to Barkhausen noise parameters were found...Brillouin scattering are frequently used. An important issue is the influence of mechanical properties , e.g. residual stress on the magnetic performance

  5. Flexible Thin Metal Film Thermal Sensing System

    NASA Technical Reports Server (NTRS)

    Thomsen, Donald Laurence (Inventor)

    2012-01-01

    A flexible thin metal film thermal sensing system is provided. A thermally-conductive film made from a thermally-insulating material is doped with thermally-conductive material. At least one layer of electrically-conductive metal is deposited directly onto a surface of the thermally-conductive film. One or more devices are coupled to the layer(s) to measure an electrical characteristic associated therewith as an indication of temperature.

  6. Optical sensors and multisensor arrays containing thin film electroluminescent devices

    DOEpatents

    Aylott, Jonathan W.; Chen-Esterlit, Zoe; Friedl, Jon H.; Kopelman, Raoul; Savvateev, Vadim N.; Shinar, Joseph

    2001-12-18

    Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.

  7. Preliminary results on complex ceramic layers deposition by atmospheric plasma spraying

    NASA Astrophysics Data System (ADS)

    Florea, Costel; Bejinariu, Costicǎ; Munteanu, Corneliu; Cimpoeşu, Nicanor

    2017-04-01

    In this article we obtain thin layers from complex ceramic powders using industrial equipment based on atmospheric plasma spraying. We analyze the influence of the substrate material roughness on the quality of the thin layers using scanning electron microscopy (SEM) and X-ray dispersive energy analyze (EDAX). Preliminary results present an important dependence between the surface state and the structural and chemical homogeneity.

  8. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  9. Simulation of light in-coupling through an aperture probe to investigate light propagation in a thin layer for opto-electronic application

    NASA Astrophysics Data System (ADS)

    Ermes, Markus; Lehnen, Stephan; Cao, Zhao; Bittkau, Karsten; Carius, Reinhard

    2015-06-01

    In thin optoelectronic devices, like organic light emitting diodes (OLED) or thin-film solar cells (TFSC), light propagation, which is initiated by a local point source, is of particular importance. In OLEDs, light is generated in the layer by the luminescence of single molecules, whereas in TFSCs, light is coupled into the devices by scattering at small surface features. In both applications, light propagation within the active layers has a significant impact on the optical device performance. Scanning near-field optical microscopy (SNOM) using aperture probes is a powerful tool to investigate this propagation with a high spatial resolution. Dual-probe SNOM allows simulating the local light generation by an illumination probe as well as the detection of the light propagated through the layer. In our work, we focus on the light propagation in thin silicon films as used in thin-film silicon solar cells. We investigate the light-in-coupling from an illuminating probe via rigorous solution of Maxwell's equations using a Finite-Difference Time-Domain approach, especially to gain insight into the light distribution inside a thin layer, which is not accessible in the experiment. The structures investigated include at and structured surfaces with varying illumination positions and wavelengths. From the performed simulations, we define a "spatial sensitivity" which is characteristic for the local structure and illumination position. This quantity can help to identify structures which are beneficial as well as detrimental to absorption inside the investigated layer. We find a strong dependence of the spatial sensitivity on the surface structure as well as both the absorption coefficient and the probe position. Furthermore, we investigate inhomogeneity in local light propagation resulting from different surface structures and illumination positions.

  10. Relationship of Estimated SHIV Acquisition Time Points During the Menstrual Cycle and Thinning of Vaginal Epithelial Layers in Pigtail Macaques.

    PubMed

    Kersh, Ellen N; Ritter, Jana; Butler, Katherine; Ostergaard, Sharon Dietz; Hanson, Debra; Ellis, Shanon; Zaki, Sherif; McNicholl, Janet M

    2015-12-01

    HIV acquisition in the female genital tract remains incompletely understood. Quantitative data on biological HIV risk factors, the influence of reproductive hormones, and infection risk are lacking. We evaluated vaginal epithelial thickness during the menstrual cycle in pigtail macaques (Macaca nemestrina). This model previously revealed increased susceptibility to vaginal infection during and after progesterone-dominated periods in the menstrual cycle. Nucleated and nonnucleated (superficial) epithelial layers were quantitated throughout the menstrual cycle of 16 macaques. We examined the relationship with previously estimated vaginal SHIVSF162P3 acquisition time points in the cycle of 43 different animals repeatedly exposed to low virus doses. In the luteal phase (days 17 to cycle end), the mean vaginal epithelium thinned to 66% of mean follicular thickness (days 1-16; P = 0.007, Mann-Whitney test). Analyzing 4-day segments, the epithelium was thickest on days 9 to 12 and thinned to 31% thereof on days 29 to 32, with reductions of nucleated and nonnucleated layers to 36% and 15% of their previous thickness, respectively. The proportion of animals with estimated SHIV acquisition in each cycle segment correlated with nonnucleated layer thinning (Pearson r = 0.7, P < 0.05, linear regression analysis), but not nucleated layer thinning (Pearson r = 0.6, P = 0.15). These data provide a detailed picture of dynamic cycle-related changes in the vaginal epithelium of pigtail macaques. Substantial thinning occurred in the superficial, nonnucleated layer, which maintains the vaginal microbiome. The findings support vaginal tissue architecture as susceptibility factor for infection and contribute to our understanding of innate resistance to SHIV infection.

  11. Fabrication technology of CNT-Nickel Oxide based planar pseudocapacitor for MEMS and NEMS

    NASA Astrophysics Data System (ADS)

    Lebedev, E. A.; Kitsyuk, E. P.; Gavrilin, I. M.; Gromov, D. G.; Gruzdev, N. E.; Gavrilov, S. A.; Dronov, A. A.; Pavlov, A. A.

    2015-11-01

    Fabrication technology of planar pseudocapacitor (PsC) based on carbon nanotube (CNT) forest, synthesized using plasma enhanced chemical vapor deposition (PECVD) method, covered with thin nickel oxide layer deposited by successive ionic layer adsorption and reaction (SILAR) method, is demonstrated. Dependences of deposited oxide layers thickness on device specific capacities is studied. It is shown that pseudocapacity of nickel oxide thin layer increases specific capacity of the CNT's based device up to 2.5 times.

  12. Durable thin film coatings for reflectors used in low earth orbit

    NASA Technical Reports Server (NTRS)

    Mcclure, Donald J.

    1989-01-01

    This paper discusses the properties of thin film coatings used to provide a durable reflective surface for solar concentrators used in the solar dynamic system designed for the Space Station. The material system to be used consists of an adhesion promotion layer, a silver reflective layer, and a protective layer of aluminum oxide and silicon dioxide. The performance characteristics of this system are described and compared to those of several alternative systems which use aluminum as the reflective layer.

  13. A photoluminescence, thermoluminescence and electron paramagnetic resonance study of EFG grown europium doped lithium fluoride (LiF) crystals

    NASA Astrophysics Data System (ADS)

    Seth, Pooja; Swati, G.; Haranath, D.; Rao, S. M. D.; Aggarwal, Shruti

    2018-07-01

    Europium (Eu) doped LiF crystals have been grown by the Edge-defined film fed growth (EFG) technique. The designing and installation of the furnace used for the growth of the crystals have been discussed in detail. In the present study, Eu (Eu2O3) has been doped in LiF in different concentration (0.02-0.2 wt %). X-ray diffractometry (XRD) and Energy Dispersive X-ray (EDX) spectroscopy confirms the incorporation of Eu in LiF. The influence of Eu on LiF has been investigated through photoluminescence (PL), thermoluminescence (TL) and electron paramagnetic resonance (EPR) in as-grown and annealed crystals. PL emission spectra shows the presence of both Eu3+ and Eu2+ form in the as-grown crystals which is confirmed by EPR results. Whereas, in annealed crystals, Eu is present predominantly as Eu2+ form. This suggests that growing crystals at high temperature (∼900 °C) in argon gas atmosphere through EFG technique favours the reduction of Eu3+ → Eu2+. This reduction phenomenon has been explained on the basis of charge compensation model. TL study of the LiF: Eu (0.02-0.2 wt %) crystals has been done after irradiation with Co60 gamma rays. In this study, it has been observed that the TL intensity as well as glow curve structure of LiF: Eu crystals are a strong function of Eu concentration. The maximum TL is observed at Eu concentration of 0.05 wt% at which a well defined glow curve structure with a prominent peak at 185 °C and a small peak at 253 °C. Beyond this concentration (0.05 wt %), TL intensity decreases due to aggregation of defects in the host. The peak at 185 °C in LiF: Eu (0.05 wt %) is certainly due to the presence of Eu2+ associated defects which is also supported by the PL spectra. It has been observed that Eu doping have a key role in creation of more defect levels which lead to the increased number of electron and hole traps. Further, trapping parameters are analysed using glow curve deconvolution method to have an insight study of TL phenomena. Further, TL glow curve structure of as-grown and annealed crystal are distinct which may be attributed to the nature of defect traps formed inside the LiF.

  14. In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.

    Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the formation of solid-electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and other electrolyte components are still unclear. Here, we report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach involving AIMD modelingmore » and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li 2S, LiF, Li 2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and electrolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS 5) fouling process. In conclusion, these new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategies for the development of Li–S batteries.« less

  15. In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.

    Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the for-mation of solid electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and oth-er electrolyte components are still unclear. We report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach in-volving AIMD modelingmore » and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li2S, LiF, Li2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and elec-trolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS5) fouling process. These new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategies for the development of Li–S batteries.« less

  16. In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries

    DOE PAGES

    Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.; ...

    2017-05-03

    Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the formation of solid-electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and other electrolyte components are still unclear. Here, we report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach involving AIMD modelingmore » and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li 2S, LiF, Li 2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and electrolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS 5) fouling process. In conclusion, these new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategies for the development of Li–S batteries.« less

  17. Estimating dose to implantable cardioverter-defibrillator outside the treatment fields using a skin QED diode, optically stimulated luminescent dosimeters, and LiF thermoluminescent dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Maria F., E-mail: chanm@mskcc.org; Song, Yulin; Dauer, Lawrence T.

    2012-10-01

    The purpose of this work was to determine the relative sensitivity of skin QED diodes, optically stimulated luminescent dosimeters (OSLDs) (microStar Trade-Mark-Sign DOT, Landauer), and LiF thermoluminescent dosimeters (TLDs) as a function of distance from a photon beam field edge when applied to measure dose at out-of-field points. These detectors have been used to estimate radiation dose to patients' implantable cardioverter-defibrillators (ICDs) located outside the treatment field. The ICDs have a thin outer case made of 0.4- to 0.6-mm-thick titanium ({approx}2.4-mm tissue equivalent). A 5-mm bolus, being the equivalent depth of the devices under the patient's skin, was placed overmore » the ICDs. Response per unit absorbed dose-to-water was measured for each of the dosimeters with and without bolus on the beam central axis (CAX) and at a distance up to 20 cm from the CAX. Doses were measured with an ionization chamber at various depths for 6- and 15-MV x-rays on a Varian Clinac-iX linear accelerator. Relative sensitivity of the detectors was determined as the ratio of the sensitivity at each off-axis distance to that at the CAX. The detector sensitivity as a function of the distance from the field edge changed by {+-} 3% (1-11%) for LiF TLD-700, decreased by 10% (5-21%) for OSLD, and increased by 16% (11-19%) for the skin QED diode (Sun Nuclear Corp.) at the equivalent depth of 5 mm for 6- or 15-MV photon energies. Our results showed that the use of bolus with proper thickness (i.e., {approx}d{sub max} of the photon energy) on the top of the ICD would reduce the scattered dose to a lower level. Dosimeters should be calibrated out-of-field and preferably with bolus equal in thickness to the depth of interest. This can be readily performed in clinic.« less

  18. Temperature dependence of LRE-HRE-TM thin films

    NASA Astrophysics Data System (ADS)

    Li, Zuoyi; Cheng, Xiaomin; Lin, Gengqi; Li, Zhen; Huang, Zhixin; Jin, Fang; Wang, Xianran; Yang, Xiaofei

    2003-04-01

    Temperature dependence of the properties of RE-TM thin films is very important for MO recording. In this paper, we studied the temperature dependence of the magnetic and magneto-optical properties of the amorphous LRE-HRE-TM single layer thin films and LRE-HRE-TM/HRE-TM couple-bilayered thin films. For LRE-HRE-TM single layer thin films, the temperature dependence of the magnetization was investigated by using the mean field theory. The experimental and theoretical results matched very well. With the LRE substitution in HRE-TM thin film, the compensation temperature Tcomp decreased and the curie temperature Tc remained unchanged. Kerr rotation angle became larger and the saturation magnetization Ms at room temperature increased. For LRE-HRE-TM/HRE-TM couple-bilayered thin films, comparisons of the temperature dependences of the coercivities and Kerr rotation angles were made between isolated sublayers and couple-bilayered thin film.

  19. Direct measurement of the concentration of metastable ions produced from neutral gas particles using laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Chu, Feng; Skiff, Fred; Berumen, Jorge; Mattingly, Sean; Hood, Ryan

    2017-10-01

    Extensive information can be obtained on wave-particle interactions and wave fields by direct measurement of perturbed ion distribution functions using laser-induced fluorescence (LIF). For practical purposes, LIF is frequently performed on metastables that are produced from neutral gas particles and existing ions in other electronic states. We numerically simulate the ion velocity distribution measurement and wave-detection process using a Lagrangian model for the LIF signal. The results show that under circumstances where the metastable ion population is coming directly from the ionization of neutrals (as opposed to the excitation of ground-state ions), the velocity distribution will only faithfully represent processes which act on the ion dynamics in a time shorter than the metastable lifetime. Therefore, it is important to know the ratio of metastable population coming from neutrals to that from existing ions to correct the LIF measurements of plasma ion temperature and electrostatic waves. In this paper, we experimentally investigate the ratio of these two populations by externally launching an ion acoustic wave and comparing the wave amplitudes that are measured with LIF and a Langmuir probe using a lock-in amplifier. DE-FG02-99ER54543.

  20. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnson's arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

Top