Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu
2016-02-25
In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al₂O₃ and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value.
Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu
2016-01-01
In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al2O3 and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value. PMID:28344296
Characterization of Cu buffer layers for growth of L10-FeNi thin films
NASA Astrophysics Data System (ADS)
Mizuguchi, M.; Sekiya, S.; Takanashi, K.
2010-05-01
A Cu(001) layer was fabricated on a Au(001) layer to investigate the use of Cu as a buffer layer for growing L10-FeNi thin films. The epitaxial growth of a Cu buffer layer was observed using reflection high-energy electron diffraction. The flatness of the layer improved drastically with an increase in the substrate temperature although the layer was an alloy (AuCu3). An FeNi thin film was epitaxially grown on the AuCu3 buffer layer by alternate monatomic layer deposition and the formation of an L10-FeNi ordered alloy was expected. The AuCu3 buffer layer is thus a promising candidate material for the growth of L10-FeNi thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohri, Maryam, E-mail: mmohri@ut.ac.ir; Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe; Nili-Ahmadabadi, Mahmoud
The crystallization of Ni-rich/NiTiCu bi-layer thin film deposited by magnetron sputtering from two separate alloy targets was investigated. To achieve the shape memory effect, the NiTi thin films deposited at room temperature with amorphous structure were annealed at 773 K for 15, 30, and 60 min for crystallization. Characterization of the films was carried out by differential scanning calorimetry to indicate the crystallization temperature, grazing incidence X-ray diffraction to identify the phase structures, atomic force microscopy to evaluate surface morphology, scanning transmission electron microscopy to study the cross section of the thin films. The results show that the structure ofmore » the annealed thin films strongly depends on the temperature and time of the annealing. Crystalline grains nucleated first at the surface and then grew inward to form columnar grains. Furthermore, the crystallization behavior was markedly affected by composition variations. - Highlights: • A developed bi-layer Ni45TiCu5/Ni50.8Ti was deposited on Si substrate and crystallized. • During crystallization, The Ni{sub 45}TiCu{sub 5} layer is thermally less stable than the Ni-rich layer. • The activation energy is 302 and 464 kJ/mol for Cu-rich and Ni-rich layer in bi-layer, respectively.« less
Li, H K; Chen, T P; Hu, S G; Li, X D; Liu, Y; Lee, P S; Wang, X P; Li, H Y; Lo, G Q
2015-10-19
Ultraviolet photodetector with p-n heterojunction is fabricated by magnetron sputtering deposition of n-type indium gallium zinc oxide (n-IGZO) and p-type nickel oxide (p-NiO) thin films on ITO glass. The performance of the photodetector is largely affected by the conductivity of the p-NiO thin film, which can be controlled by varying the oxygen partial pressure during the deposition of the p-NiO thin film. A highly spectrum-selective ultraviolet photodetector has been achieved with the p-NiO layer with a high conductivity. The results can be explained in terms of the "optically-filtering" function of the NiO layer.
NASA Astrophysics Data System (ADS)
Li, X. T.; Du, P. Y.; Mak, C. L.; Wong, K. H.
2007-06-01
Highly (00l)-oriented Li0.3Ni0.7O2 thin films have been fabricated on (001) MgO substrates by pulsed laser deposition. The Pb0.4Sr0.6TiO3 (PST40) thin film deposited subsequently also shows a significant (00l)-oriented texture. Both the PST40 and Li0.3Ni0.7O2 have good epitaxial behavior. The epitaxial growth of the PST40 thin film is more perfect with the Li0.3Ni0.7O2 buffer layer due to the less distortion in the film. The dielectric tunability of the PST40 thin film with Li0.3Ni0.7O2 buffer layer therefore reaches 70%, which is 75% higher than that without Li0.3Ni0.7O2 buffer layer, and the dielectric loss of the PST40 thin film is 0.06.
Seo, Seongrok; Park, Ik Jae; Kim, Myungjun; Lee, Seonhee; Bae, Changdeuck; Jung, Hyun Suk; Park, Nam-Gyu; Kim, Jin Young; Shin, Hyunjung
2016-06-02
NiO is a wide band gap p-type oxide semiconductor and has potential for applications in solar energy conversion as a hole-transporting layer (HTL). It also has good optical transparency and high chemical stability, and the capability of aligning the band edges to the perovskite (CH3NH3PbI3) layers. Ultra-thin and un-doped NiO films with much less absorption loss were prepared by atomic layer deposition (ALD) with highly precise control over thickness without any pinholes. Thin enough (5-7.5 nm in thickness) NiO films with the thickness of few time the Debye length (LD = 1-2 nm for NiO) show enough conductivities achieved by overlapping space charge regions. The inverted planar perovskite solar cells with NiO films as HTLs exhibited the highest energy conversion efficiency of 16.40% with high open circuit voltage (1.04 V) and fill factor (0.72) with negligible current-voltage hysteresis.
In-situ observation of equilibrium transitions in Ni films; agglomeration and impurity effects.
Thron, Andrew M; Greene, Peter; Liu, Kai; van Benthem, Klaus
2014-02-01
Dewetting of ultra-thin Ni films deposited on SiO2 layers was observed, in cross-section, by in situ scanning transmission electron microscopy. Holes were observed to nucleate by voids which formed at the Ni/SiO2 interface rather than at triple junctions at the free surface of the Ni film. Ni islands were observed to retract, in attempt to reach equilibrium on the SiO2 layer. SiO2 layers with 120 nm thickness were found to limit in situ heating experiments due to poor thermal conductivity of SiO2. The formation of graphite was observed during the agglomeration of ultra-thin Ni films. Graphite was observed to wet both the free surface and the Ni/SiO2 interface of the Ni islands. Cr forms surface oxide layers on the free surface of the SiO2 layer and the Ni islands. Cr does not prevent the dewetting of Ni, however it will likely alter the equilibrium shape of the Ni islands. © 2013 Published by Elsevier B.V.
Comparison of reproduce signal and noise of conventional and keepered CoCrTa/Cr thin film media
NASA Astrophysics Data System (ADS)
Sin, Kyusik; Ding, Juren; Glijer, Pawel; Sivertsen, John M.; Judy, Jack H.; Zhu, Jian-Gang
1994-05-01
We studied keepered high coercivity CoCrTa/Cr thin film media with a Cr isolation layer between the CoCrTa storage and an overcoating of an isotropic NiFe soft magnetic layer. The influence of the thickness of the NiFe and Cr layers, and the effects of head bias current on the signal output and noise, were studied using a thin film head. The reproduced signal increased by 7.3 dB, but the signal-to-noise ratio decreased by 4 dB at a linear density of 2100 fr/mm (53.3 kfr/in.) with a 1000 Å thick NiFe keeper layer. The medium noise increased with increasing NiFe thickness and the signal output decreased with decreasing Cr thickness. A low output signal obtained with very thin Cr may be due to magnetic interactions between the keeper layer and magnetic media layer. It is observed that signal distortion and timing asymmetry of the output signals depend on the thickness of the keeper layer and the head bias current. The signal distortion increased and the timing asymmetry decreased as the head bias current was increased. These results may be associated with different permeability of the keeper under the poles of the thin film head due to the superposition of head bias and bit fields.
Fabrication and performance of a double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O thin film detector
NASA Astrophysics Data System (ADS)
Zhou, Wei; Yin, Yiming; Yao, Niangjuan; Jiang, Lin; Qu, Yue; Wu, Jing; Gao, Y. Q.; Huang, Jingguo; Huang, Zhiming
2018-01-01
A thermal sensitive infrared and THz detector was fabricated by a double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O films. The Mn-Co-Ni-O material, as one type of transition metal oxides, has long been used as a candidate for thermal sensors or infrared detectors. The resistivity of a most important Mn-Co-Ni-O thin film, Mn1. 96Co0.96Ni0.48O4(MCN) , is about 200 Ω·cm at room temperature, which ranges about 2 orders larger than that of VOx detectors. Therefore, the thickness of a typical squared Mn-Co-Ni-O IR detector should be about 10 μm, which is too large for focal plane arrays applications. To reduce the resistivity of Mn-Co-Ni-O thin film, 1/6 of Co element was replaced by Cu. Meanwhile, a cover layer of MCN film was deposited onto the Mn-Co-Ni-Cu-O film to improve the long term stability. The detector fabricated by the double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O films showed large response to blackbody and 170 GHz radiation. The NEP of the detector was estimated to be the order of 10-8 W/Hz0. 5. By applying thermal isolation structure and additional absorption materials, the detection performance can be largely improved by 1-2 orders according to numerical estimation. The double layered Mn-Co-Ni-O film detector shows great potentials in applications in large scale IR detection arrays, and broad-band imaging.
NASA Astrophysics Data System (ADS)
Garcia-Garcia, F. J.; Beltrán, A. M.; Yubero, F.; González-Elipe, A. R.; Lambert, R. M.
2017-09-01
Magnetron sputtering under oblique angle deposition was used to produce Ni-containing ultra thin film anodes comprising alternating layers of gadolinium doped ceria (GDC) and yttria stabilized zirconia (YSZ) of either 200 nm or 1000 nm thickness. The evolution of film structure from initial deposition, through calcination and final reduction was examined by XRD, SEM, TEM and TOF-SIMS. After subsequent fuel cell usage, the porous columnar architecture of the two-component layered thin film anodes was maintained and their resistance to delamination from the underlying YSZ electrolyte was superior to that of corresponding single component Ni-YSZ and Ni-GDC thin films. Moreover, the fuel cell performance of the 200 nm layered anodes compared favorably with conventional commercially available thick anodes. The observed dependence of fuel cell performance on individual layer thicknesses prompted study of equivalent but more easily fabricated hybrid anodes consisting of simultaneously deposited Ni-GDC and Ni-YSZ, which procedure resulted in exceptionally intimate mixing and interaction of the components. The hybrids exhibited very unusual and favorable Isbnd V characteristics, along with exceptionally high power densities at high currents. Their discovery is the principal contribution of the present work.
NASA Astrophysics Data System (ADS)
Hu, Zijun; Chen, Da; Yang, Pan; Yang, Lijun; Qin, Laishun; Huang, Yuexiang; Zhao, Xiaochong
2018-05-01
In this work, high-performance inverted planar perovskite solar cells (PSCs) using sol-gel processed Y-doped NiO thin films as hole transport layer (HTL) were demonstrated. Y-doped NiO thin films containing different Y doping concentrations were successfully prepared through a simple sol-gel process. The Y doping could significantly improve the electrical conductivity of NiO thin film, and the photovoltaic performance of Y-doped NiO HTL-based PSC devices outperformed that of the pristine NiO HTL-based device. Notably, the PSC using a 5%Y-NiO HTL exhibited the champion performance with an open-circuit voltage (Voc) of 1.00 V, a short circuit current density (Jsc) of 23.82 mA cm-2, a fill factor (FF) of 68% and a power conversion efficiency (PCE) of 16.31%, resulting in a 27.62% enhancement in PCE in comparison with the NiO device. The enhanced performance of the Y-doped NiO device could be attributed to the improved hole mobility, the high quality compact active layer morphology, the more efficient charge extraction from perovskite absorber as well as the lower recombination probability of charge carriers. Thus, this work provides a simple and effective approach to improve the electrical conductivity of p-type NiO thin films for use as a promising HTL in high performance PSCs.
Spatially and momentum resolved energy electron loss spectra from an ultra-thin PrNiO{sub 3} layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinyanjui, M. K., E-mail: michael.kinyanjui@uni-ulm.de; Kaiser, U.; Benner, G.
2015-05-18
We present an experimental approach which allows for the acquisition of spectra from ultra-thin films at high spatial, momentum, and energy resolutions. Spatially and momentum (q) resolved electron energy loss spectra have been obtained from a 12 nm ultra-thin PrNiO{sub 3} layer using a nano-beam electron diffraction based approach which enabled the acquisition of momentum resolved spectra from individual, differently oriented nano-domains and at different positions of the PrNiO{sub 3} thin layer. The spatial and wavelength dependence of the spectral excitations are obtained and characterized after the analysis of the experimental spectra using calculated dielectric and energy loss functions. The presentedmore » approach makes a contribution towards obtaining momentum-resolved spectra from nanostructures, thin film, heterostructures, surfaces, and interfaces.« less
Formation of nickel germanides from Ni layers with thickness below 10 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jablonka, Lukas; Kubart, Tomas; Primetzhofer, Daniel
2017-03-01
The authors have studied the reaction between a Ge (100) substrate and thin layers of Ni ranging from 2 to 10 nm in thickness. The formation of metal-rich Ni5Ge3Ni5Ge3 was found to precede that of the monogermanide NiGe by means of real-time in situ x-ray diffraction during ramp-annealing and ex situ x-ray pole figure analyses for phase identification. The observed sequential growth of Ni5Ge3Ni5Ge3 and NiGe with such thin Ni layers is different from the previously reported simultaneous growth with thicker Ni layers. The phase transformation from Ni5Ge3Ni5Ge3 to NiGe was found to be nucleation-controlled for Ni thicknesses <5 nm<5more » nm, which is well supported by thermodynamic considerations. Specifically, the temperature for the NiGe formation increased with decreasing Ni (rather Ni5Ge3Ni5Ge3) thickness below 5 nm. In combination with sheet resistance measurement and microscopic surface inspection of samples annealed with a standard rapid thermal processing, the temperature range for achieving morphologically stable NiGe layers was identified for this standard annealing process. As expected, it was found to be strongly dependent on the initial Ni thickness« less
Enhancement of Sn-Bi-Ag Solder Joints with ENEPIG Surface Finish for Low-Temperature Interconnection
NASA Astrophysics Data System (ADS)
Pun, Kelvin P. L.; Islam, M. N.; Rotanson, Jason; Cheung, Chee-wah; Chan, Alan H. S.
2018-05-01
Low-temperature soldering constitutes a promising solution in interconnect technology with the increasing trend of heat-sensitive materials in integrated circuit packaging. Experimental work was carried out to investigate the effect of electroless Ni/electroless Pd/immersion gold (ENEPIG) layer thicknesses on Sn-Bi-Ag solder joint integrity during extended reflow at peak temperatures as low as 175°C. Optimizations are proposed to obtain reliable solder joints through analysis of interfacial microstructure with the resulting joint integrity under extended reflow time. A thin Ni(P) layer with thin Pd led to diffusion of Cu onto the interface resulting in Ni3Sn4 intermetallic compound (IMC) spalling with the formation of thin interfacial (Ni,Cu)3Sn4 IMCs which enhance the robustness of the solder after extended reflow, while thick Ni(P) with thin Pd resulted in weakened solder joints with reflow time due to thick interfacial Ni3Sn4 IMCs with the entrapped brittle Bi-phase. With a suitable thin Ni(P), the Pd thickness has to be optimized to prevent excessive Ni-P consumption and early Cu outward diffusion to enhance the solder joint during extended reflow. Based on these findings, suitable Ni(P) and Pd thicknesses of ENEPIG are recommended for the formation of robust low-temperature solder joints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghavan, C.M.; Kim, H.J.; Kim, J.W.
2013-11-15
Graphical abstract: - Highlights: • Chemical solution deposition of (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}–NiFe{sub 2}O{sub 4} double layered thin film. • Studies on structural, electrical and multiferroic properties. • NiFe{sub 2}O{sub 4} acts as both resistive buffer layer and magnetic source. - Abstract: (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}/NiFe{sub 2}O{sub 4} double layered thin film was prepared on a Pt(111)/Ti/SiO{sub 2}/Si(100) substrate by a chemical solution deposition method. X-ray diffraction and Raman scattering spectroscopy studies confirmed the formation of the distorted rhombohedral perovskite and the inverse spinel cubic structures for the (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}/NiFe{sub 2}O{sub 4}more » double layered thin film. The (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}/NiFe{sub 2}O{sub 4} double layered thin film exhibited well saturated ferromagnetic (2 M{sub r} of 18.1 emu/cm{sup 3} and 2H{sub c} of 0.32 kOe at 20 kOe) and ferroelectric (2P{sub r} of 60 μC/cm{sup 2} and 2E{sub c} of 813 kV/cm at 866 kV/cm) hysteresis loops with low order of leakage current density (4.5 × 10{sup −6} A/cm{sup 2} at an applied electric field of 100 kV/cm), which suggest the ferroelectric and ferromagnetic multi-layers applications in real devices.« less
Espejo, A P; Zierold, R; Gooth, J; Dendooven, J; Detavernier, C; Escrig, J; Nielsch, K
2016-08-26
Nickel-rich NiFe thin films (Ni92Fe8, Ni89Fe11 and Ni83Fe17) were prepared by combining atomic layer deposition (ALD) with a subsequent thermal reduction process. In order to obtain Ni x Fe1-x O y films, one ALD supercycle was performed according to the following sequence: m NiCp2/O3, with m = 1, 2 or 3, followed by one FeCp2/O3 cycle. The supercycle was repeated n times. The thermal reduction process in hydrogen atmosphere was investigated by in situ x-ray diffraction studies as a function of temperature. The metallic nickel iron alloy thin films were investigated and characterized with respect to crystallinity, morphology, resistivity, and magnetism. As proof-of-concept magnetic properties of an array of Ni83Fe17, close to the perfect Permalloy stoichiometry, nanotubes and an isolated tube were investigated.
NASA Astrophysics Data System (ADS)
Espejo, A. P.; Zierold, R.; Gooth, J.; Dendooven, J.; Detavernier, C.; Escrig, J.; Nielsch, K.
2016-08-01
Nickel-rich NiFe thin films (Ni92Fe8, Ni89Fe11 and Ni83Fe17) were prepared by combining atomic layer deposition (ALD) with a subsequent thermal reduction process. In order to obtain Ni x Fe1-x O y films, one ALD supercycle was performed according to the following sequence: m NiCp2/O3, with m = 1, 2 or 3, followed by one FeCp2/O3 cycle. The supercycle was repeated n times. The thermal reduction process in hydrogen atmosphere was investigated by in situ x-ray diffraction studies as a function of temperature. The metallic nickel iron alloy thin films were investigated and characterized with respect to crystallinity, morphology, resistivity, and magnetism. As proof-of-concept magnetic properties of an array of Ni83Fe17, close to the perfect Permalloy stoichiometry, nanotubes and an isolated tube were investigated.
Polishability of thin electrolytic and electroless NiP layers
NASA Astrophysics Data System (ADS)
Kinast, Jan; Beier, Matthias; Gebhardt, Andreas; Risse, Stefan; Tünnermann, Andreas
2015-10-01
Ultra-precise metal optics are key components of sophisticated scientific instrumentation in astronomy and space applications, covering a wide spectral range. Especially for applications in the visible or ultra-violet spectral ranges, a low roughness of the optics is required. Therefore, a polishable surface is necessary. State of the art is an amorphous nickel-phosphorus (NiP) layer, which enables several polishing techniques achieving a roughness of <1 nm RMS. Typically, these layers are approximately 30 μm to 60 μm thick. Deposited on Al6061, the bimetallic effect leads to a restricted operational temperature, caused by different coefficients of thermal expansion of Al6061 and NiP. Thinner NiP layers reduce the bimetallic effect. Hence, the possible operating temperature range. A deterministic shape correction via Magnetorheological Finishing of the substrate Al6061 leads to low shape deviations prior to the NiP deposition. This allows for depositing thin NiP-layers, which are polishable via a chemical mechanical polishing technique aiming at ultra-precise metal optics. The present article shows deposition processes and polishability of electroless and electrolytic NiP layers with thicknesses between 1 μm and 10 μm.
Carbon tolerance of Ni-Cu and Ni-Cu/YSZ sub-μm sized SOFC thin film model systems
NASA Astrophysics Data System (ADS)
Götsch, Thomas; Schachinger, Thomas; Stöger-Pollach, Michael; Kaindl, Reinhard; Penner, Simon
2017-04-01
Thin films of YSZ, unsupported Ni-Cu 1:1 alloy phases and YSZ-supported Ni-Cu 1:1 alloy solutions have been reproducibly prepared by magnetron sputter deposition on Si wafers and NaCl(001) single crystal facets at two selected substrate temperatures of 298 K and 873 K. Subsequently, the layer properties of the resulting sub-μm thick thin films as well as the tendency towards carbon deposition following treatment in pure methane at 1073 K has been tested comparatively. Well-crystallized structures of cubic YSZ, cubic NiCu and cubic NiCu/YSZ have been obtained following deposition at 873 K on both substrates. Carbon is deposited on all samples following the trend Ni-Cu (1:1) = Ni-Cu (1:1)/YSZ > pure YSZ, indicating that at least the 1:1 composition of layered Ni-Cu alloy phases is not able to suppress the carbon deposition completely, rendering it unfavorable for usage as anode component in sub-μm sized fuel cells. It is shown that surfaces with a high Cu/Ni ratio nevertheless prohibit any carbon deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, J. W.; Sakuraba, Y., E-mail: Sakuraba.Yuya@nims.go.jp; Sasaki, T. T.
2016-03-07
We have investigated the effects of insertion of a thin NiAl layer (≤0.63 nm) into a Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5} (CFGG)/Ag interface on the magnetoresistive properties in CFGG/Ag/CFGG current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo spin valves (PSVs). First-principles calculations of ballistic transmittance clarified that the interfacial band matching at the (001)-oriented NiAl/CFGG interface is better than that at the (001)-Ag/CFGG interface. The insertion of 0.21-nm-thick NiAl layers at the Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5}/Ag interfaces effectively improved the magnetoresistance (MR) output; the observed average and the highest MR ratio (ΔRA) are 62% (25 mΩ μm{sup 2}) and 77% (31 mΩ μm{sup 2}) atmore » room temperature, respectively, which are much higher than those without NiAl insertion. Microstructural analysis using scanning transmission electron microscopy confirmed the existence of thin NiAl layers at the Ag interfaces with only modest interdiffusion even after annealing at 550 °C. The improvement of the interfacial spin-dependent scattering by very thin NiAl insertion can be a predominant reason for the enhancement of the MR output.« less
NASA Astrophysics Data System (ADS)
Talantsev, Artem; Elzwawy, Amir; Kim, CheolGi
2018-05-01
Thin films and cross junctions, based on NiFe/Au/IrMn structures, were grown on Ta and NiFeCr seed layers by magnetron sputtering. The effects of substitution of Ta with NiFeCr in seed and capping layers on an exchange bias field are studied. A threefold improvement of the exchange bias value in the structures, grown with NiFeCr seed and capping layers, is demonstrated. The reasons for this effect are discussed. Formation of clusters in the NiFeCr capping layer is proved by atomic force microscopy technique. Ta replacement on NiFeCr in the capping layer results in the enhancement of magnetoresistive response and a reduction of noise.
Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors.
Yang, Yang; Li, Lei; Ruan, Gedeng; Fei, Huilong; Xiang, Changsheng; Fan, Xiujun; Tour, James M
2014-09-23
A three-dimensional nanoporous Ni(OH)2 thin-film was hydrothermally converted from an anodically formed porous layer of nickel fluoride/oxide. The nanoporous Ni(OH)2 thin-films can be used as additive-free electrodes for energy storage. The nanoporous layer delivers a high capacitance of 1765 F g(-1) under three electrode testing. After assembly with porous activated carbon in asymmetric supercapacitor configurations, the devices deliver superior supercapacitive performances with capacitance of 192 F g(-1), energy density of 68 Wh kg(-1), and power density of 44 kW kg(-1). The wide working potential window (up to 1.6 V in 6 M aq KOH) and stable cyclability (∼90% capacitance retention over 10,000 cycles) make the thin-film ideal for practical supercapacitor devices.
Growth of C60 thin films on Al2O3/NiAl(100) at early stages
NASA Astrophysics Data System (ADS)
Hsu, S.-C.; Liao, C.-H.; Hung, T.-C.; Wu, Y.-C.; Lai, Y.-L.; Hsu, Y.-J.; Luo, M.-F.
2018-03-01
The growth of thin films of C60 on Al2O3/NiAl(100) at the earliest stage was studied with scanning tunneling microscopy and synchrotron-based photoelectron spectroscopy under ultrahigh-vacuum conditions. C60 molecules, deposited from the vapor onto an ordered thin film of Al2O3/NiAl(100) at 300 K, nucleated into nanoscale rectangular islands, with their longer sides parallel to direction either [010] or [001] of NiAl. The particular island shape resulted because C60 diffused rapidly, and adsorbed and nucleated preferentially on the protrusion stripes of the crystalline Al2O3 surface. The monolayer C60 film exhibited linear protrusions of height 1-3 Å, due to either the structure of the underlying Al2O3 or the lattice mismatch at the boundaries of the coalescing C60 islands; such protrusions governed also the growth of the second layer. The second layer of the C60 film grew only for a C60 coverage >0.60 ML, implying a layer-by-layer growth mode, and also ripened in rectangular shapes. The thin film of C60 was thermally stable up to 400 K; above 500 K, the C60 islands dissociated and most C60 desorbed.
Sakaida, Shun; Haraguchi, Tomoyuki; Otsubo, Kazuya; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi
2017-07-17
We report the fabrication and characterization of the first example of a tetracyanonickelate-based two-dimensional-layered metal-organic framework, {Fe(py) 2 Ni(CN) 4 } (py = pyridine), thin film. To fabricate a nanometer-sized thin film, we utilized the layer-by-layer method, whereby a substrate was alternately soaked in solutions of the structural components. Surface X-ray studies revealed that the fabricated film was crystalline with well-controlled growth directions both parallel and perpendicular to the substrate. In addition, lattice parameter analysis indicated that the crystal system is found to be close to higher symmetry by being downsized to a thin film.
SmNiO3/NdNiO3 thin film multilayers
NASA Astrophysics Data System (ADS)
Girardot, C.; Pignard, S.; Weiss, F.; Kreisel, J.
2011-06-01
Rare earth nickelates RENiO3 (RE =rare earth), which attract interest due to their sharp metal-insulator phase transition, are instable in bulk form due to the necessity of an important oxygen pressure to stabilize Ni in its 3+ state of oxidation. Here, we report the stabilization of RE nickelates in [(SmNiO3)t/(NdNiO3)t]n thin film multilayers, t being the thickness of layers alternated n times. Both bilayers and multilayers have been deposited by metal-organic chemical vapor deposition. The multilayer structure and the presence of the metastable phases SmNiO3 and NdNiO3 are evidenced from by x-ray and Raman scattering. Electric measurements of a bilayer structure further support the structural quality of the embedded RE nickelate layers.
Self-organized layered hydrogenation in black Mg2NiHx switchable mirrors.
Lohstroh, W; Westerwaal, R J; Noheda, B; Enache, S; Giebels, I A M E; Dam, B; Griessen, R
2004-11-05
In addition to a mirrorlike (Mg2Ni) and a transparent (Mg2NiH4) state, thin films of Mg2NiHx exhibit a remarkable black state with low reflection over the entire visible spectrum, essentially zero transmission and a low electrical resistivity. Such a black state is not explicable for a homogeneous layer since a large absorption coefficient always yields substantial reflection. We show that it results from a self-organized and reversible double layering of metallic Mg2NiH0.3 and semiconducting Mg2NiH4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomczak, Y., E-mail: Yoann.Tomczak@imec.be; Department of Chemistry, KU Leuven; Swerts, J.
2016-01-25
Spin-transfer torque magnetic random access memory (STT-MRAM) is considered as a replacement for next generation embedded and stand-alone memory applications. One of the main challenges in the STT-MRAM stack development is the compatibility of the stack with CMOS process flows in which thermal budgets up to 400 °C are applied. In this letter, we report on a perpendicularly magnetized MgO-based tunnel junction (p-MTJ) on a thin Co/Ni perpendicular synthetic antiferromagnetic layer with high annealing tolerance. Tunnel magneto resistance (TMR) loss after annealing occurs when the reference layer loses its perpendicular magnetic anisotropy due to reduction of the CoFeB/MgO interfacial anisotropy. Amore » stable Co/Ni based p-MTJ stack with TMR values of 130% at resistance-area products of 9 Ω μm{sup 2} after 400 °C anneal is achieved via moment control of the Co/Ta/CoFeB reference layer. Thinning of the CoFeB polarizing layer down to 0.8 nm is the key enabler to achieve 400 °C compatibility with limited TMR loss. Thinning the Co below 0.6 nm leads to a loss of the antiferromagnetic interlayer exchange coupling strength through Ru. Insight into the thickness and moment engineering of the reference layer is displayed to obtain the best magnetic properties and high thermal stability for thin Co/Ni SAF-based STT-MRAM stacks.« less
NASA Astrophysics Data System (ADS)
Herz, Andreas; Theska, Felix; Rossberg, Diana; Kups, Thomas; Wang, Dong; Schaaf, Peter
2018-06-01
In the present work, the solid-state dewetting of Au-Ni bi-layer thin films deposited on SiO2/Si is systematically studied with respect to individual layer thickness and stacking sequence. For this purpose, a rapid heat treatment at medium temperatures is applied in order to examine void formation at the early stages of the dewetting. Compositional variations are realized by changing the thickness ratio of the bi-layer films, while the total thickness is maintained at 20 nm throughout the study. In the event of Au/Ni films annealed at 500 °C, crystal voids exposing the substrate are missing regardless of chemical composition. In reverse order, the number of voids per unit area in two-phase Au-Ni thin films is found to be governed by the amount of Au-rich material. At higher temperatures up to 650 °C, a decreased probability of nucleation comes at the expense of a major portion of cavities, resulting in the formation of bubbles in 15 nm Ni/5 nm Au bi-layers. Film buckling predominantly occurred at phase boundaries crossing the bubbles.
Tailoring the nickel nanoparticles anchored on the surface of Fe3O4@SiO2 spheres for nanocatalysis.
Ding, Lei; Zhang, Min; Zhang, Yanwei; Yang, Jinbo; Zheng, Jing; Hayat, Tasawar; Alharbi, Njud S; Xu, Jingli
2017-08-25
Herein, we report an efficient and universal strategy for synthesizing a unique triple-shell structured Fe 3 O 4 @SiO 2 @C-Ni hybrid composite. Firstly, the Fe 3 O 4 cores were synthesized by hydrothermal reaction, and sequentially coated with SiO 2 and a thin layer of nickel-ion-doped resin-formaldehyde (RF-Ni 2+ ) using an extended Stöber method. This was followed by carbonization to produce the Fe 3 O 4 @SiO 2 @C-Ni nanocomposites with metallic nickel nanoparticles embedded in an RF-derived thin graphic carbon layer. Interestingly, the thin SiO 2 spacer layer between RF-Ni 2+ and Fe 3 O 4 plays a critical role on adjusting the size and density of the nickel nanoparticles on the surface of Fe 3 O 4 @SiO 2 nanospheres. The detailed tailoring mechanism is explicitly discussed, and it is shown that the iron oxide core can react with the nickel nanoparticles without the SiO 2 spacer layer, and the size and density of the nickel nanoparticles can be effectively controlled when the SiO 2 layer exits. The multifunctional composites exhibit a significantly enhanced catalytic performance in the reduction of 4-nitrophenol (4-NP).
NASA Astrophysics Data System (ADS)
Le Pévédic, S.; Schmaus, D.; Cohen, C.
2007-01-01
This paper describes the second part of a study devoted to the growth of thin Ni-Al alloys after deposition of Al on Ni(1 1 1). In the previous paper [S. Le Pévédic, D. Schmaus, C. Cohen, Surf. Sci. 600 (2006) 565] we have described the results obtained for ultra-thin Al deposits, leading, after annealing at 750 K, to an epitaxial layer of Ni 3Al(1 1 1). In the present paper we show that this regime is only observed for Al deposits smaller than 8 × 10 15 Al/cm 2 and we describe the results obtained for Al deposits exceeding this critical thickness, up to 200 × 10 15 Al/cm 2. Al deposition was performed at low temperature (around 130 K) and the alloying process was followed in situ during subsequent annealing, by Auger electron spectroscopy, low energy electron diffraction and ion beam analysis-channeling measurements, in an ultra-high vacuum chamber connected to a Van de Graaff accelerator. We evidence the formation, after annealing at 750 K, of a crystallographically and chemically well-ordered NiAl(1 1 0) layer (whose thickness depends on the deposited Al amount), over a Ni 3Al "interfacial" layer (whose thickness—about 18 (1 1 1) planes—is independent of the deposited Al amount). The NiAl overlayer is composed of three variants, at 120° from each other in the surface plane, in relation with the respective symmetries of NiAl(1 1 0) and Ni 3Al(1 1 1). The NiAl layer is relaxed (the lattice parameters of cc-B2 NiAl and fcc-L1 2 Ni 3Al differ markedly), and we have determined its epitaxial relationship. In the case of the thickest alloyed layer formed the results concerning the structure of the NiAl layer have been confirmed and refined by ex situ X-ray diffraction and information on its grain size has been obtained by ex situ Atomic Force Microscopy. The kinetics of the alloying process is complex. It corresponds to an heterogeneous growth leading, above the thin Ni 3Al interfacial layer, to a mixture of Al and NiAl over the whole Al film, up to the surface. The atomic diffusion is very limited in the NiAl phase that forms, and thus the progressive enrichment in Ni of the Al film, i.e. of the mean Ni concentration, becomes slower and slower. As a consequence, alloying is observed to take place in a very broad temperature range between 300 K and 700 K. For annealing temperatures above 800 K, the alloyed layer is decomposed, Al atoms diffusing in the bulk of the substrate.
Difference in charge transport properties of Ni-Nb thin films with native and artificial oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trifonov, A. S., E-mail: trifonov.artem@phys.msu.ru; Physics Faculty, Lomonosov Moscow State University, Moscow 119991; Lubenchenko, A. V.
2015-03-28
Here, we report on the properties of native and artificial oxide amorphous thin film on a surface of an amorphous Ni-Nb sample. Careful measurements of local current-voltage characteristics of the system Ni-Nb / NiNb oxide/Pt, were carried out in contact mode of an atomic force microscope. Native oxide showed n-type conductivity, while in the artificial one exhibited p-type one. The shape of current-voltage characteristic curves is unique in both cases and no analogical behavior is found in the literature. X-ray photoelectron spectroscopy (XPS) measurements were used to detect chemical composition of the oxide films and the oxidation state of themore » alloy components. Detailed analysis of the XPS data revealed that the structure of natural Ni-Nb oxide film consists of Ni-NbO{sub x} top layer and nickel enriched bottom layer which provides n-type conductivity. In contrast, in the artificial oxide film Nb is oxidized completely to Nb{sub 2}O{sub 5}, Ni atoms migrate into bulk Ni-Nb matrix. Electron depletion layer is formed at the Ni-Nb/Nb{sub 2}O{sub 5} interface providing p-type conductivity.« less
Optical and structural properties of cobalt-permalloy slanted columnar heterostructure thin films
NASA Astrophysics Data System (ADS)
Sekora, Derek; Briley, Chad; Schubert, Mathias; Schubert, Eva
2017-11-01
Optical and structural properties of sequential Co-column-NiFe-column slanted columnar heterostructure thin films with an Al2O3 passivation coating are reported. Electron-beam evaporated glancing angle deposition is utilized to deposit the sequential multiple-material slanted columnar heterostructure thin films. Mueller matrix generalized spectroscopic ellipsometry data is analyzed with a best-match model approach employing the anisotropic Bruggeman effective medium approximation formalism to determine bulk-like and anisotropic optical and structural properties of the individual Co and NiFe slanted columnar material sub-layers. Scanning electron microscopy is applied to image the Co-NiFe sequential growth properties and to verify the results of the ellipsometric analysis. Comparisons to single-material slanted columnar thin films and optically bulk solid thin films are presented and discussed. We find that the optical and structural properties of each material sub-layer of the sequential slanted columnar heterostructure film are distinct from each other and resemble those of their respective single-material counterparts.
Effect of nickel seed layer on growth of α-V2O5 nanostructured thin films
NASA Astrophysics Data System (ADS)
Sharma, Rabindar Kumar; Kant, Chandra; Kumar, Prabhat; Singh, Megha; Reddy, G. B.
2015-08-01
In this communication, we reported the role of Ni seed layer on the growth of vanadium pentoxide (α-V2O5) nanostructured thin films (NSTs) using plasma assisted sublimation process (PASP). Two different substrates, simple glass substrate and the Ni coated glass substrate (Ni thickness ˜ 100 nm) are employing in the present work. The influence of seed layer on structural, morphological, and vibrational properties have been studied systematically. The structural analysis divulged that both films deposited on simple glass as well as on Ni coated glass shown purely orthorhombic phase, no other phases are detected. The morphological studies of V2O5 film deposited on both substrates are carried out by SEM, revealed that features of V2O5 NSTs is completely modified in presence of Ni seed layer and the film possessing the excellent growth of nanorods (NRs) on Ni coated glass rather than simple glass. The HRTEM analysis of NRs is performed at very high magnification, shows very fine fringe pattern, which confirmed the single crystalline nature of nanorods. The vibrational study of NRs is performed using micro-Raman spectroscopy, which strongly support the XRD observations.
High-frequency electromagnetic properties of soft magnetic metal-polyimide hybrid thin films
NASA Astrophysics Data System (ADS)
Kim, Sang Woo; Yoon, Chong S.
2007-09-01
Although there are a lot of demands for suppression of unwanted high-frequency electromagnetic noise in highly integrated electronic devices such as mobile phones and notebook computers, electromagnetic thin films that effectively work in the high-frequency range have still been underdeveloped. Soft magnetic metal-polyimide (PI) hybrid films with high electrical resistivity were prepared by thermal imidization and selective oxidation between the metal alloy layer and polyamic acid (PAA) layer. Electromagnetic properties of the hybrid thin films in the radio-frequency range were characterized by using the microstrip line method and were correlated with their material parameters. Although anisotropy field of the CoFe/NiFe hybrid film was two times lower than that of the NiFe hybrid film, the saturation magnetization of the CoFe/NiFe hybrid film was three times higher than that of the NiFe hybrid film. The CoFe/NiFe hybrid film showed higher power loss in the frequency range of 3-6 GHz compared to the NiFe hybrid film. The high power loss of the CoFe/NiFe hybrid film was caused by high relative permeability and high ferromagnetic resonance (FMR) frequency due to high saturation magnetization.
NASA Astrophysics Data System (ADS)
Nikov, R. G.; Nedyalkov, N. N.; Atanasov, P. A.; Karashanova, D. B.
2018-03-01
The paper presents results on nanosecond laser ablation of thin films immersed in a liquid. The thin films were prepared by consecutive deposition of layers of different metals by thermal evaporation (first layer) and classical on-axis pulsed laser deposition (second layer); Ni/Au, Ag/Au and Ni/Ag thin films were thus deposited on glass substrates. The as-prepared films were then placed at the bottom of a glass vessel filled with double distilled water and irradiated by nanosecond laser pulses delivered by a Nd:YAG laser system at λ = 355 nm. This resulted in the formation of colloids of the thin films’ material. We also compared the processes of ablation of a bulk target and a thin film in the liquid by irradiating a Au target and a Au thin film by the same laser wavelength and fluence (λ = 355 nm, F = 5 J/cm2). The optical properties of the colloids were evaluated by optical transmittance measurements in the UV– VIS spectral range. Transmission electron microscopy was employed to estimate the particles’ size distribution.
Connected Au network in annealed Ni/Au thin films on p-GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. P.; Jang, H. W.; Noh, D. Y.
2007-11-12
We report the formation of a connected Au network in annealed Ni/Au thin films on p-GaN, which was studied by scanning electron microscopy, transmission electron microscopy, and synchrotron x-ray diffraction. As the Ni was oxidized into NiO upon annealing at 530 deg. C in air, the Au layer was transformed to an interconnected network with an increased thickness. During annealing, Ni atoms diffuse out onto the Au through defects to form NiO, while Au atoms replace the Ni positions. The Au network grows downward until it reaches the p-GaN substrate, and NiO columns fill the space between the Au network.
NASA Astrophysics Data System (ADS)
Hayasaka, Takeshi; Yoshida, Shinya; Tanaka, Shuji
2017-07-01
This paper reports on the development of a novel buffer layer structure, (100)SrRuO3/(100)LaNiO3/(111)Pt/(111)CeO2, for the epitaxial growth of a (100)/(001)-oriented Pb(Zr,Ti)O3 (PZT)-based thin film on a (111)Si wafer. (111)Pt and (111)CeO2 were epitaxially grown on (111)Si straightforwardly. Then, the crystal orientation was forcibly changed from (111) to (100) at the LaNiO3 layer owing to its strong (100)-self-orientation property, which enabled the cube-on-cube epitaxial growth of the subsequent (100)SrRuO3 layer and preferentially (100)/(001)-oriented PZT-based thin film. The PZT-based epitaxial thin films were comprehensively characterized in terms of the crystallinity, in-plane epitaxial relationships, piezoelectricity, and so forth. This buffer layer structure for the epitaxial growth of PZT can be applied to piezoelectric micro-electro-mechanical systems (MEMS) vibrating ring gyroscopes.
NASA Astrophysics Data System (ADS)
Tateishi, Go
When a thin superconducting film (S film) is condensed onto a thin normal conducting film (N film), the first layers of the S film loose their superconductivity. This phenomenon is generally called the "superconducting proximity effect (SPE)". As an investigation of SPE we focus on the transition temperature of extremely thin NS double layers in the thin regime. Normal metal is condensed on top of insulating Sb, then Pb is deposited on it in small steps. The transition temperature is plotted in an inverse Tc-reduction 1/Delta T c =1/(Ts - Tc) versus Pb thickness graph. To compare our experimental results with the theoretical prediction, a numerical calculation of the SN double layer is performed by our group using the linear gap equation. As a result, there are large discrepancies between the experimental and theoretical results generally. The results of the NS double layers can be divided into three groups in terms of their discrepancies between experiment and theory.(1) Non-coupling (Tc = 0 K): N= Mg, Ag, Cu, Au. There are large deviations between experiment and theory by a factor to the order of 2.5. (2) Weak coupling (Tc is low (< 2.5 K)) : N=Cd, Zn, Al. Deviation is present, but only by a factor of 1.5. (3) Intermediate coupling (T c is around half of Pb's (≈ 4.5 K)) : N=In, Sn. The experimental results agree with the theory. Next, we examine the detection of the magnetic dead layer (MDL) of Ni thin films in terms of the anomalous Hall effect (AHE) with several non-magnetic metal substrates. In our results, when Ni film is contact with a polyvalent metal substrate film, the sandwich film has around 2 to 3.5 at.lay. of magnetic dead layers. However we have not observed the magnetic dead Ni layers with the alkali and noble metal substrate film. Finally, we revisit the Pb/Ni system to measure the magnetic scattering of Ni with the method of Weak Localization (WL) to compare with the dephasing rate due to the Tc-reduction. In this series, we use only very thin Pb films between 1.3 and 5 at.lay. deposited on top of the Ag substrate with about 37 at.lay. thickness, because we make the Ag substrate suppress the superconductivity of the extremely thin Pb film with the SPE and avoid the Azlamazov-Larkin fluctuations. After comparison, it becomes clear that the dephasing rate from the Tc-reduction method is much larger than that measured by the weak localization (the factor is around 120). We consider not only "pair breaking" but also "pair weakening", and conclude that the reduction of the superconducting transition temperature is not due to dephasing by magnetic scattering but due to the resonance scattering of Cooper pairs by non-magnetic d-states.
Study of Sn and SnAgCu Solders Wetting Reaction on Ni/Pd/Au Substrates
NASA Astrophysics Data System (ADS)
Liu, C. Y.; Wei, Y. S.; Lin, E. J.; Hsu, Y. C.; Tang, Y. K.
2016-12-01
Wetting reactions of pure Sn and Sn-Ag-Cu solder balls on Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates were investigated. The (Au, Pd)Sn4 phase formed in the initial interfacial reaction between pure Sn and Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates. Then, the initially formed (Au, Pd)Sn4 compound layer either dissolved or spalled into the molten Sn solder with 3 s of reflowing. The exposed Ni under-layer reacted with Sn solder and formed an interfacial Ni3Sn4 compound. We did not observe spalling compound in the Sn-Ag-Cu case, either on the thin Au (100 Å) or the thick Au (1000 Å) substrates. This implies that the Cu content in the Sn-Ag-Cu solder can efficiently suppress the spalling effect and really stabilize the interfacial layer. Sn-Ag-Cu solder has a better wetting than that of the pure Sn solder, regardless of the Au thickness of the Au/Pd/Ni substrate. For both cases of pure Sn and Sn-Ag-Cu, the initial wetting (<3-s reflowing) on the thin Au (100 Å) substrate is better than that of the thick Au (1000 Å) substrate. Over 3-s reflowing, the wetting on the thicker Au layer (1000 Å) substrate becomes better than the wetting on the thinner Au layer (100 Å) substrate.
Effect of nickel seed layer on growth of α-V{sub 2}O{sub 5} nanostructured thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Rabindar Kumar; Kant, Chandra; Kumar, Prabhat
In this communication, we reported the role of Ni seed layer on the growth of vanadium pentoxide (α-V{sub 2}O{sub 5}) nanostructured thin films (NSTs) using plasma assisted sublimation process (PASP). Two different substrates, simple glass substrate and the Ni coated glass substrate (Ni thickness ∼ 100 nm) are employing in the present work. The influence of seed layer on structural, morphological, and vibrational properties have been studied systematically. The structural analysis divulged that both films deposited on simple glass as well as on Ni coated glass shown purely orthorhombic phase, no other phases are detected. The morphological studies of V{sub 2}O{submore » 5} film deposited on both substrates are carried out by SEM, revealed that features of V{sub 2}O{sub 5} NSTs is completely modified in presence of Ni seed layer and the film possessing the excellent growth of nanorods (NRs) on Ni coated glass rather than simple glass. The HRTEM analysis of NRs is performed at very high magnification, shows very fine fringe pattern, which confirmed the single crystalline nature of nanorods. The vibrational study of NRs is performed using micro-Raman spectroscopy, which strongly support the XRD observations.« less
Lead zirconate titanate (PZT)-based thin film capacitors for embedded passive applications
NASA Astrophysics Data System (ADS)
Kim, Taeyun
Investigations on the key processing parameters and properties relationship for lead zirconate titanate (PZT, 52/48) based thin film capacitors for embedded passive capacitor application were performed using electroless Ni coated Cu foils as substrates. Undoped and Ca-doped PZT (52/48) thin film capacitors were prepared on electroless Ni coated Cu foil by chemical solution deposition. For PZT (52/48) thin film capacitors on electroless Ni coated Cu foil, voltage independent (zero tunability) capacitance behavior was observed. Dielectric constant reduced to more than half of the identical capacitor processed on Pt/SiO2/Si. Dielectric properties of the capacitors were mostly dependent on the crystallization temperature. Capacitance densities of almost 350 nF/cm2 and 0.02˜0.03 of loss tangent were routinely measured for capacitors crystallized at 575˜600°C. Leakage current showed dependence on film thickness and crystallization temperature. From a two-capacitor model, the existence of a low permittivity interface layer (permittivity ˜30) was suggested. For Ca-doped PZT (52/48) thin film capacitors prepared on Pt, typical ferroelectric and dielectric properties were measured up to 5 mol% Ca doping. When Ca-doped PZT (52/48) thin film capacitors were prepared on electroless Ni coated Cu foil, phase stability was influenced by Ca doping and phosphorous content. Dielectric properties showed dependence on the crystallization temperature and phosphorous content. Capacitance density of ˜400 nF/cm2 was achieved, which is an improvement by more than 30% compared to undoped composition. Ca doping also reduced the temperature coefficient of capacitance (TCC) less than 10%, all of them were consistent in satisfying the requirements of embedded passive capacitor. Leakage current density was not affected significantly by doping. To tailor the dielectric and reliability properties, ZrO2 was selected as buffer layer between PZT and electroless Ni. Only RF magnetron sputtering process could yield stable ZrO2 layers on electroless Ni coated Cu foil. Other processes resulted in secondary phase formation, which supports the reaction between PZT capacitor and electroless Ni might be dominated by phosphorous component. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Bechtold, Christoph; Lima de Miranda, Rodrigo; Chluba, Christoph; Zamponi, Christiane; Quandt, Eckhard
2016-12-01
Nitinol is the material of choice for many medical applications, in particular for minimally invasive implants due to its superelasticity and biocompatibility. However, NiTi has limited radiopacity which complicates positioning in the body. A common strategy to increase the radiopacity of NiTi devices is the addition of radiopaque markers by micro-riveting or micro-welding. The recent trend of miniaturizing medical devices, however, reduces their radiopacity further, and makes the addition of radiopaque markers to these miniaturized devices difficult. NiTi thin film technology has great potential to overcome such limitations and to fabricate new generations of miniaturized, self-expandable NiTi medical devices with additional functionalities, such as structured multilayer devices with increased radiopacity. For this purpose, we have produced superelastic thin film NiTi samples covered locally with Tantalum structures of different thickness and different shape. These multilayer devices were characterized regarding their mechanical and corrosion properties as well as their X-ray visibility. The superelastic behavior of the underlying NiTi layer is impeded by the Ta layer, and shows therefore a dependence on the Tantalum patterning geometry and thickness. No delamination was observed after mechanical and corrosion tests. The multilayers reveal excellent corrosion resistance, as well as a significant increase in radiopacity.
Synthesis and characterization of n-type NiO:Al thin films for fabrication of p-n NiO homojunctions
NASA Astrophysics Data System (ADS)
Sun, Hui; Liao, Ming-Han; Chen, Sheng-Chi; Li, Zhi-Yue; Lin, Po-Chun; Song, Shu-Mei
2018-03-01
n-type NiO:Al thin films were deposited by RF magnetron sputtering. Their optoelectronic properties versus Al target power was investigated. The results show that with increasing Al target power, the conduction type of NiO films changes from p-type to n-type. The variation of the film’s electrical and optical properties depends on Al amount in the film. When Al target power is relatively low, Al3+ cations tend to enter nickel vacancy sites, which makes the lattice structure of NiO more complete. This improves the carrier mobility and film’s transmittance. However, when Al target power exceeds 40 W, Al atoms begin to enter into interstitial sites and form an Al cluster in the NiO film. This behavior is beneficial for improving the film’s n-type conductivity but degrades the film’s transmittance. Finally, Al/(p-type NiO)/(n-type NiO:Al)/ITO homojunctions were fabricated. Their performance was compared with Al/(p-type NiO)/ITO heterojunctions without an n-type NiO layer. Thanks to the better interface quality between the two NiO layers, the homojunctions present better performance.
Nolan, Michael; Tofail, Syed A M
2010-05-01
The biocompatibility of NiTi shape memory alloys (SMA) has made possible applications in self-expandable cardio-vascular stents, stone extraction baskets, catheter guide wires and other invasive and minimally invasive biomedical devices. The NiTi intermetallic alloy spontaneously forms a thin passive layer of TiO(2), which provides its biocompatibility. The oxide layer is thought to form as the Ti in the alloy surface reacts with oxygen, resulting in a depletion of Ti in the subsurface region - experimental evidence indicates formation of a Ni-rich layer below the oxide film. In this paper, we study the initial stages of oxide growth on the (110) surface of the NiTi alloy to understand the formation of alloy/oxide interface. We initially adsorb atomic and molecular oxygen on the (110) surface and then successively add O(2) molecules, up to 2 monolayer of O(2). Oxygen adsorption always results in a large energy gain. With atomic oxygen, Ti is pulled out of the surface layer leaving behind a Ni-rich subsurface region. Molecular O(2), on the other hand adsorbs dissociatively and pulls a Ti atom farther out of the surface layer. The addition of further O(2) up to 1 monolayer is also dissociative and results in complete removal of Ti from the initial surface layer. When further O(2) is added up to 2 monolayer, Ti is pulled even further out of the surface and a single thin layer of composition O-Ti-O is formed. The electronic structure shows that the metallic character of the alloy is unaffected by interaction with oxygen and formation of the oxide layer, consistent with the oxide layer being a passivant. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qian, Shi-Bing; Wang, Yong-Ping; Shao, Yan; Liu, Wen-Jun; Ding, Shi-Jin
2017-02-01
For the first time, the growth of Ni nanoparticles (NPs) was explored by plasma-assisted atomic layer deposition (ALD) technique using NiCp2 and NH3 precursors. Influences of substrate temperature and deposition cycles on ALD Ni NPs were studied by field emission scanning electron microscope and X-ray photoelectron spectroscopy. By optimizing the process parameters, high-density and uniform Ni NPs were achieved in the case of 280 °C substrate temperature and 50 deposition cycles, exhibiting a density of 1.5 × 1012 cm-2 and a small size of 3 4 nm. Further, the above Ni NPs were used as charge storage medium of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistor (TFT) memory, demonstrating a high storage capacity for electrons. In particular, the nonvolatile memory exhibited an excellent programming characteristic, e.g., a large threshold voltage shift of 8.03 V was obtained after being programmed at 17 V for 5 ms.
Enhanced spin-valve giant magneto-resistance in non-exchange biased sandwich films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, M; Cerjan, C; Law, B
2000-02-17
A large giant magnetoresistance (GMR) value of 7.5% has been measured in simple NiFeCo(1)/Cu/NiFeCo(2) sandwich films grown on a 30 {angstrom} Cr seed layer. This spin-valve GMR effect is consistent with the differential switching of the two NiFeCo layers due to an enhanced coercivity of the NiFeCo(1) layer grown on the Cr seed layer. A change in growth texture of the NiFeCo(1) layer from fcc (111) to bcc (110) crystallographic orientation leads to an increase in magnetic anisotropy and an enhancement in coercivity. The GMR value increases to 8.7% when a thin CoFe interfacial enhancing layer is incorporated. Further enhancementmore » in GMR values up to 14% is seen in the sandwich films by nano-oxide layer formation. The specular reflection at oxide/magnetic layer interface further extends the mean free path of spin-polarized electrons.« less
Characterization of Softmagnetic Thin Layers Using Barkhausen Noise Microscopy
2001-04-01
magnetoresistive (MR) sensors softmagnetic thin layer systems are used. Optimal performance of these layers requires homogeneous magnetic properties , especially a...Sendust, used in inductive sensors and nanocrystalline NiFe , used in MR-sensors. In quality correlations to Barkhausen noise parameters were found...Brillouin scattering are frequently used. An important issue is the influence of mechanical properties , e.g. residual stress on the magnetic performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhusan Singh, Braj; Chaudhary, Sujeet
2012-09-15
The effect of variation in the thickness of ion assisted ion beam sputtered MgO spacer layer deposited at oxygen ion assisted energy of 50 eV on the extent of magnetic coupling of NiFe and CoFe layers in Si/NiFe(10 nm)/Mg(1 nm)/MgO(2,4,6 nm)/CoFe(10 nm) sandwich structure is investigated. At MgO spacer layer thickness of 4 nm, the separate reversal of magnetizations of the two ferromagnetic layers is observed in the hystresis loop recorded along easy direction. This results in a 3.5 Oe wide plateau like region during magnetization reversal, which became 4.5 Oe at 6 nm thin MgO. At 2 nm thinmore » MgO, the absence of plateau during magnetization reversal region revealed ferromagnetic coupling between the two ferromagnetic layers, which is understood to arise due to the growth of very thin and low density (1.22 gm/cc) MgO spacer layer, indicating the presence of pinholes as revealed by x-ray reflectometry. After vaccum annealing (200 Degree-Sign C/1 h), the plateau region for 4 and 6 nm thin MgO case decreased to 1.5 Oe and 2.0 Oe, respectively, due to enhanced interface roughness/mixing. In addition, an enhancement of the in-plane magnetic anisotropy is also observed.« less
Process for forming epitaxial perovskite thin film layers using halide precursors
Clem, Paul G.; Rodriguez, Mark A.; Voigt, James A.; Ashley, Carol S.
2001-01-01
A process for forming an epitaxial perovskite-phase thin film on a substrate. This thin film can act as a buffer layer between a Ni substrate and a YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor layer. The process utilizes alkali or alkaline metal acetates dissolved in halogenated organic acid along with titanium isopropoxide to dip or spin-coat the substrate which is then heated to about 700.degree. C. in an inert gas atmosphere to form the epitaxial film on the substrate. The YBCO superconductor can then be deposited on the layer formed by this invention.
Effects of F-treatment on degradation of Mg 2Ni electrode fabricated by mechanical alloying
NASA Astrophysics Data System (ADS)
Kim, Jun Sung; Lee, Chang Rae; Choi, Jae Woong; Kang, Sung Goon
The effects of surface fluorination on the electrochemical charge-discharge properties of a Mg 2Ni electrode, prepared by mechanical alloying in Ni-MH batteries are investigated. After 20 h milling, Mg and Ni powder form nanocrystalline Mg 2Ni. The discharge capacity of this alloy increases greatly on the initial cycle but, due to the formation of a Mg(OH) 2 passive layer, displays rapid degradation in alkaline solution within 10 cycles. In a 6 M KOH+ x M KF electrolyte ( x=0.5, 1, and 2), a continuous and stable fluorinated layer is formed and the durability of the Mg 2Ni electrode increases marketly and a high rate discharge capability is obtained (90-100 mAh/g). Addition of 2 M KF leads to the highest durability of all the electrodes tested. The improvement is due to a thin MgF 2—flourinated layer, which reduces the charge-transfer resistance and protects the Mg 2Ni electrode from forming a Mg(OH) 2 layer.
Geng, Xiaohua; Podlaha, Elizabeth J
2016-12-14
A new methodology is reported to shape template-assisted electrodeposition of Fe-rich, Fe-Ni-Co nanowires to have a thin nanowire segment using a coupled displacement reaction with a more noble elemental ion, Cu(II), and at the same time dealloying predominantly Fe from Fe-Ni-Co by the reduction of protons (H + ), followed by a subsequent etching step. The displacement/dealloyed layer was sandwiched between two trilayers of Fe-Ni-Co to facilitate the characterization of the reaction front, or penetration length. The penetration length region was found to be a function of the ratio of proton and Cu(II) concentration, and a ratio of 0.5 was found to provide the largest penetration rate, and hence the larger thinned length of the nanowire. Altering the etching time affected the diameter of the thinned region. This methodology presents a new way to thin nanowire segments connected to larger nanowire sections and also introduces a way to study the propagation of a reaction front into a nanowire.
Zhang, Yanwei; Zhang, Min; Yang, Jinbo; Ding, Lei; Zheng, Jing; Xu, Jingli; Xiong, Shenglin
2016-09-21
In this paper, we have developed an extended Stöber method to construct a Ni(2+)-polydopamine (PDA) complex thin coating on Fe3O4@SiO2 spheres, which can be carbonized to produce hybrid composites with metallic nickel nanoparticles embedded in a PDA-derived thin graphitic carbon layer (named Fe3O4@SiO2@C/Ni). Interestingly, by introducing a thin SiO2 spacer layer between PDA-Ni(2+) and Fe3O4, the reverse electron transfer from PDA to Fe3O4 is probably able to be suppressed in the calcination process, which leads to the in situ reduction of only Ni(2+) by PDA instead of Fe3O4 and Ni(2+). Consequently, the size and density of nickel nanoparticles on the surface of SiO2@Fe3O4 can be finely adjusted. Moreover, it is found that the ability of tuning nickel nanoparticles is mainly dependent on the thickness of the spacer layer. When the thickness of the SiO2 spacer is beyond the electron penetration depth, the size and density of nickel nanoparticles can be exactly tuned. The as-prepared Fe3O4@SiO2@C/Ni was employed as the catalyst to investigate the catalytic performance in the reduction of 4-nitrophenol (4-NP); furthermore, nickel nanoparticles decorated on Fe3O4@SiO2@C spheres display a strong affinity to His-tagged proteins (BHb and BSA) via a specific metal affinity force between polyhistidine groups and nickel nanoparticles.
Interfacial layers in high-temperature-oxidized NiCrAl
NASA Technical Reports Server (NTRS)
Larson, L. A.; Browning, R.; Poppa, H.; Smialek, J.
1983-01-01
The utility of Auger electron spectroscopy combined with ball cratering for depth analysis of oxide and diffusion layers produced in a Ni-14Cr-24Al alloy by oxidation in air at 1180 C for 25 hr is demonstrated. During postoxidation cooling, the oxide layers formed by this alloy spalled profusely. The remaining very thin oxide was primarily Cr2O3 with a trace of Ni. The underlying metal substrate exhibited gamma/gamma-prime and beta phases with a metallic interfacial layer which was similar to the bulk gamma/gamma-prime phase but slightly enriched in Cr and Al. These data are compared to electron microprobe results from a nominally identical alloy. The diffusion layer thickness is modelled with a simple mass balance equation and compared to recent results on the diffusion process in NiCrAl alloys.
Hönes, Roland; Rühe, Jürgen
2018-05-08
Metallic superhydrophobic surfaces (SHSs) combine the attractive properties of metals, such as ductility, hardness, and conductivity, with the favorable wetting properties of nanostructured surfaces. Moreover, they promise additional benefits with respect to corrosion protection. For the modification of the intrinsically polar and hydrophilic surfaces of metals, a new method has been developed to deposit a long-term stable, highly hydrophobic coating, using nanostructured Ni surfaces as an example. Such substrates were chosen because the deposition of a thin Ni layer is a common choice for enhancing corrosion resistance of other metals. As the hydrophobic coating, we propose a thin film of an extremely hydrophobic fluoropolymer network. To form this network, a thin layer of a fluoropolymer precursor is deposited on the Ni substrate which includes a comonomer that is capable of C,H insertion cross-linking (CHic). Upon UV irradiation or heating, the cross-linker units become activated and the thin glassy film of the precursor is transformed into a polymer network that coats the surface conformally and permanently, as shown by extensive extraction experiments. To achieve an even higher stability, the same precursor film can also be transformed into a chemically surface-attached network by depositing a self-assembled monolayer of an alkane phosphonic acid on the Ni before coating with the precursor. During cross-linking, by the same chemical process, the growing polymer network will simultaneously attach to the alkane phosphonic acid layer at the surface of the metal. This strategy has been used to turn fractal Ni "nanoflower" surfaces grown by anisotropic electroplating into SHSs. The wetting characteristics of the obtained nanostructured metallic surfaces are studied. Additionally, the corrosion protection effect and the significant mechanical durability are demonstrated.
NASA Astrophysics Data System (ADS)
Trindade, I. G.; Leitão, D.; Fermento, R.; Pogorelev, Y.; Sousa, J. B.
2009-08-01
In-situ electrical resistance measurements were performed to obtain the scattering characteristics of very thin polycrystalline metal transition magnetic alloys grown by ion beam deposition (IBD) on specific underlayers. The experimental curves show size effects at small film thicknesses and important differences between Co 85Fe 15 and Ni 81Fe 19 thin layers grown on identical underlayers of Ta70 Å/Ru13 Å. The largest difference was observed in Ni 81Fe 19 films grown on underlayers of amorphous Ta70 Å. The experimental curves of electrical resistivity/conductivity variation with layer thickness were well fit within the Mayadas and Shatzkes (M-S) model, assuming specific formulations for grain growth with layer thickness.
Maki, Hideshi; Takigawa, Masashi; Mizuhata, Minoru
2015-08-12
The direct synthesis of the adhered Ni-Al LDH thin film onto the surface of electrically conductive substrates by the liquid phase deposition (LPD) reaction is carried out for the development of the positive electrode. The complexation and solution equilibria of the dissolved species in the LPD reaction have been clarified by a theoretical approach, and the LPD reaction conditions for the Ni-Al LDH depositions are shown to be optimized by controlling the fluoride ion concentration and the pH of the LPD reaction solutions. The yields of metal oxides and hydroxides by the LPD method are very sensitive to the supersaturation state of the hydroxide in the reaction solution. The surfaces of conductive substrates are completely covered by the minute mesh-like Ni-Al LDH thin film; furthermore, there is no gap between the surfaces of conductive substrates and the deposited Ni-Al LDH thin film. The active material layer thickness was able to be controlled within the range from 100 nm to 1 μm by the LPD reaction time. The high-crystallinity and the arbitrary-thickness thin films on the conductive substrate surface will be beneficial for the interface control of charge transfer reaction fields and the internal resistance reduction of various secondary batteries.
Qian, Shi-Bing; Wang, Yong-Ping; Shao, Yan; Liu, Wen-Jun; Ding, Shi-Jin
2017-12-01
For the first time, the growth of Ni nanoparticles (NPs) was explored by plasma-assisted atomic layer deposition (ALD) technique using NiCp 2 and NH 3 precursors. Influences of substrate temperature and deposition cycles on ALD Ni NPs were studied by field emission scanning electron microscope and X-ray photoelectron spectroscopy. By optimizing the process parameters, high-density and uniform Ni NPs were achieved in the case of 280 °C substrate temperature and 50 deposition cycles, exhibiting a density of ~1.5 × 10 12 cm -2 and a small size of 3~4 nm. Further, the above Ni NPs were used as charge storage medium of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistor (TFT) memory, demonstrating a high storage capacity for electrons. In particular, the nonvolatile memory exhibited an excellent programming characteristic, e.g., a large threshold voltage shift of 8.03 V was obtained after being programmed at 17 V for 5 ms.
Loger, K; Engel, A; Haupt, J; Lima de Miranda, R; Lutter, G; Quandt, E
2016-03-01
Heart valves are constantly exposed to high dynamic loading and are prone to degeneration. Therefore, it is a challenge to develop a durable heart valve substitute. A promising approach in heart valve engineering is the development of hybrid scaffolds which are composed of a mechanically strong inorganic mesh enclosed by valvular tissue. In order to engineer an efficient, durable and very thin heart valve for transcatheter implantations, we developed a fabrication process for microstructured heart valve leaflets made from a nickel-titanium (NiTi) thin film shape memory alloy. To examine the capability of microstructured NiTi thin film as a matrix scaffold for tissue engineered hybrid heart valves, leaflets were successfully seeded with smooth muscle cells (SMCs). In vitro pulsatile hydrodynamic testing of the NiTi thin film valve leaflets demonstrated that the SMC layer significantly improved the diastolic sufficiency of the microstructured leaflets, without affecting the systolic efficiency. Compared to an established porcine reference valve model, magnetron sputtered NiTi thin film material demonstrated its suitability for hybrid tissue engineered heart valves.
2015-11-01
necessary anneal . Following this, a thin film of NiTi was blanket sputtered at 600 °C. This NiTi blanket layer was then wet -etch patterned using a...varying the sputter parameters during NiTi deposition, such as thickness, substrate temperature during deposition and anneal , and argon pressure during...6 Fig. 4 Surface texture comparison between NiTi sputtered at RT, then annealed at 600 °C, and NiTi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, Andrew J.; Temperton, Robert H.; Handrup, Karsten
2014-06-21
The interaction of the dye molecule N3 (cis-bis(isothiocyanato)bis(2,2-bipyridyl-4,4′-dicarbo-xylato) -ruthenium(II)) with the ultra-thin oxide layer on a AlNi(110) substrate, has been studied using synchrotron radiation based photoelectron spectroscopy, resonant photoemission spectroscopy, and near edge X-ray absorption fine structure spectroscopy. Calibrated X-ray absorption and valence band spectra of the monolayer and multilayer coverages reveal that charge transfer is possible from the molecule to the AlNi(110) substrate via tunnelling through the ultra-thin oxide layer and into the conduction band edge of the substrate. This charge transfer mechanism is possible from the LUMO+2 and 3 in the excited state but not from the LUMO,more » therefore enabling core-hole clock analysis, which gives an upper limit of 6.0 ± 2.5 fs for the transfer time. This indicates that ultra-thin oxide layers are a viable material for use in dye-sensitized solar cells, which may lead to reduced recombination effects and improved efficiencies of future devices.« less
Multiple resonance peaks of FeCo thin films with NiFe underlayer
NASA Astrophysics Data System (ADS)
Zhong, Xiaoxi; Soh, Wee Tee; Phuoc, Nguyen N.; Liu, Ying; Ong, C. K.
2015-01-01
Under zero external magnetic fields, single-layer FeCo thin films exhibit no ferromagnetic resonance (FMR) peaks, while multiple FMR peaks were obtained by growing FeCo thin films on NiFe underlayers with various thicknesses up to 50 nm. Comprehensive investigations of the dynamic magnetic properties and origin of the peaks were conducted through measurements of microwave permeability via a shorted microstrip perturbation technique. Through fitted values of saturation magnetization Ms, uniaxial anisotropy HKsta, and rotatable anisotropy HKrot extracted from the FMR experiments, it was found that two of the three resonance peaks originate from FeCo, and the third from NiFe. The two magnetic phases of FeCo grains are found to have different values of HKrot and explained by the exchange interaction between FeCo and NiFe grains.
Improvement of corrosion resistance of NiTi sputtered thin films by anodization
NASA Astrophysics Data System (ADS)
Bayat, N.; Sanjabi, S.; Barber, Z. H.
2011-08-01
Anodization of sputtered NiTi thin films has been studied in 1 M acetic acid at 23 °C for different voltages from 2 to 10 V. The morphology and cross-sectional structures of the untreated and anodized surfaces were investigated by field emission scanning electron microscopy (FE-SEM). The results show that increasing anodization voltage leads to film surface roughening and unevenness. It can be seen that the thickness of the anodized layer formed on the NiTi surface is in the nanometer range. The corrosion resistance of anodized thin films was studied by potentiodynamic scan (PDS) and impedance spectroscopy (EIS) techniques in Hank's solution at 310 K (37 °C). It was shown that the corrosion resistance of the anodized film surface improved with increasing voltage to 6 V. Anodization of austenitic sputtered NiTi thin films has also been studied, in the same anodizing conditions, at 4 V. Comparison of anodized sputtered NiTi thin films with anodized austenitic shape memory films illustrate that the former are more corrosion resistant than the latter after 1 h immersion in Hank's solution, which is attributed to the higher grain boundary density to quickly form a stable and protective passive film.
Hydrogen Gas Sensing Characteristics of Nanostructured NiO Thin Films Synthesized by SILAR Method
NASA Astrophysics Data System (ADS)
Karaduman, Irmak; Çorlu, Tugba; Yıldırım, M. Ali; Ateş, Aytunç; Acar, Selim
2017-07-01
Nanostructured NiO thin films have been synthesized by a facile, low-cost successive ionic layer adsorption and reaction (SILAR) method, and the effects of the film thickness on their hydrogen gas sensing properties investigated. The samples were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis, and energy-dispersive x-ray analysis. The XRD results revealed that the crystallinity improved with increasing thickness, exhibiting polycrystalline structure. SEM studies showed that all the films covered the glass substrate well. According to optical absorption measurements, the optical bandgap decreased with increasing film thickness. The gas sensing properties of the nanostructured NiO thin films were studied as a function of operating temperature and gas concentration. The samples showed good sensing performance of H2 gas with high response. The maximum response was 75% at operating temperature of 200°C for hydrogen gas concentration of 40 ppm. These results demonstrate that nanostructured NiO thin films synthesized by the SILAR method have potential for application in hydrogen detection.
Kim, Tae-Hyung; Kwak, Chang-Hoon; Lee, Jong-Heun
2017-09-20
NiO/NiWO 4 composite yolk-shell spheres with a nanoscale NiO outer layer were prepared using one-pot ultrasonic spray pyrolysis and their gas sensing characteristics were studied. The NiO/NiWO 4 yolk-shell spheres exhibited an extremely high response to 5 ppm p-xylene (ratio of resistance to gas and air = 343.5) and negligible cross-responses to 5 ppm ethanol, ammonia, carbon monoxide, hydrogen, and benzene, whereas pure NiO yolk-shell spheres showed very low responses and selectivity to all the analyte gases. The detection limit for p-xylene was as low as 22.7 ppb. This ultrasensitive and selective detection of p-xylene is attributed to a synergistic catalytic effect between NiO and NiWO 4 , high gas accessibility with large specific surface area, and increased chemiresistive variation due to the formation of a heterojunction. The NiO/NiWO 4 yolk-shell spheres with a thin NiO outer layer can be used to detect subppm-level p-xylene in a highly sensitive and selective manner for monitoring indoor air pollution.
Fiber laser micromachining of thin NiTi tubes for shape memory vascular stents
NASA Astrophysics Data System (ADS)
Liu, Lei; Li, Dong Bo; Tong, Yi Fei; Zhu, Yu Fu
2016-07-01
Nickel titanium (NiTi) alloy has widely been used in the vascular stent manufacturing due to its excellent properties. Neodymium-doped yttrium aluminum garnet (Nd:YAG) laser is commonly used for the preparation of metal vascular stents. Recently, fiber lasers have been used for stent profiling for better cutting quality. To investigate the cutting-kerf characters of NiTi vascular stents fabricated by fiber laser cutting, laser cutting experiments with thin NiTi tubes were conducted in this study, while NiTi sheets were used in other fiber laser cutting studies. Different with striation topography, new topographies such as layer topography and topography mixed with layers and striations were observed, and the underlying reason for new topographies was also discussed. Comparative research on different topographies was conducted through analyzing the surface roughness, kerf width, heat-affected zone (HAZ) and dross formation. Laser cutting process parameters have a comprehensive influence on the cutting quality; in this study, the process parameters' influences on the cutting quality were studied from the view of power density along the cutting direction. The present research provides a guideline for improving the cutting quality of NiTi vascular stents.
NASA Astrophysics Data System (ADS)
Oda, Yukinori; Fukumuro, Naoki; Yae, Shinji
2018-04-01
Using an electroless nickel/electroless palladium/immersion gold (ENEPIG) surface finish with a thick palladium-phosphorus (Pd-P) layer of 1 μm, the intermetallic compound (IMC) growth between the ENEPIG surface finish and lead-free solders Sn-3.5Ag (SA) or Sn-3.0Ag-0.5Cu (SAC) after reflow soldering and during solid-state aging at 150°C was investigated. After reflow soldering, in the SA/ENEPIG and SAC/ENEPIG interfaces, thick PdSn4 layers of about 2 μm to 3 μm formed on the residual Pd-P layers ( 0.5 μm thick). On the SA/ENEPIG interface, Sn was detected on the upper side of the residual Pd-P layer. On the SAC/ENEPIG interface, no Sn was detected in the residual Pd-P layer, and Cu was detected in the interface between the Pd-P and PdSn4 layers. After 300 h of aging at 150°C, the residual Pd-P layers had diffused completely into the solders. In the SA/ENEPIG interface, an IMC layer consisting of Ni3Sn4 and Ni3SnP formed between the PdSn4 layer and the nickel-phosphorus (Ni-P) layer, and a (Pd,Ni)Sn4 layer formed on the lower side of the PdSn4 layer. On the SAC/ENEPIG interface, a much thinner (Pd,Ni)Sn4 layer was observed, and a (Cu,Ni)6Sn5 layer was observed between the PdSn4 and Ni-P layers. These results indicate that Ni diffusion from the Ni-P layer to the PdSn4 layer produced a thick (Pd,Ni)Sn4 layer in the SA solder case, but was prevented by formation of (Cu,Ni)6Sn5 in the SAC solder case. This causes the difference in solder joint reliability between SA/ENEPIG and SAC/ENEPIG interfaces in common, thin Pd-P layer cases.
Fabrication of read-only type triple-layered disc
NASA Astrophysics Data System (ADS)
Yang, Huei Wen; Jeng, Tzuan Ren; Yen, Wen Hsin; Chan, Rong Po; Shin, Kuo Ding; Huang, Der Ray
2003-06-01
The approach to increase optical recording density has become very popular research subject in these years. One direct and effective method is to increase the recording layer stack number. That is to say, to add one more recording layer can get one more recording capacity. In this paper, we will propose a new method for manufacturing read only type multi-layered disc. The process is described in the following. This first recorded data layer (called L0) still follows the traditional DVD disc manufacturing process. We obtain the polycarbonate substrate by replicating from Ni stamper. Then polycarbonate substrate is sputtered thin silicon film for semi-reflection layer. As for second layer (L1) and even more layer (Ln-1) producing, one special kind of duplication (called SKD) method is proposed. The duplication (or replication) source of second or nth recorded data is not only limited from Ni stamper. Even polycarbonate or PMMA substrate has recording data are also acceptable sources. At next step, the duplication source is deposited by thin gold film. Then we apply spin coating to bond the first layer (L0) substrate and second layer (L1) duplication source by choosing suitable UV curing glue. After being emitted by UV lamp for several seconds, we can easily separate the duplication source of second layer (L1) from (L0) substrate. Then we find the thin second data layer (L1) is replicated and stacks upon the first layer. On the same way, we sputter thin AgTi layer on the thin second data layer for another semi- reflective layer. By following the above manufacture step, we can produce more layers. In our experimental, we prepare triple layered read-only type disc. The total capacity is almost 12GB for one side of disc, and 24GB for two side of disc. The read-out intensity of laser from each data layer is expected to be similar. Thus we have designed particular reflectance and transmittance for each data layer by controlling the thickness of thin silicon film. We can verify our design by checking the focusing error signal in S-curve search of optical pickup head. The signal quality for each layer can be found from the signal eye pattern and jitter. For compatibility with present drive system, the requirement of the readout signal from each layer should be same as DVD or CD specification
Structural and optical properties of Mg2 Ni Hx switchable mirrors upon hydrogen loading
NASA Astrophysics Data System (ADS)
Lohstroh, W.; Westerwaal, R. J.; van Mechelen, J. L. M.; Chacon, C.; Johansson, E.; Dam, B.; Griessen, R.
2004-10-01
The structural, thermodynamic and optical properties of Mg2Ni thin films covered with Pd are investigated upon exposure to hydrogen. Similar to bulk, thin films of metallic Mg2Ni take up 4 hydrogen per formula unit and semiconducting transparent Mg2NiH4-δ is formed. The dielectric function γ˜ of Mg2Ni and fully loaded Mg2NiH4-δ is determined from reflection and transmission measurements using a Drude-Lorentz parametrization. Besides the two “normal” optical states of a switchable mirror—metallic reflecting and semiconducting transparent— Mg2NiHx exhibit a third “black” state at intermediate hydrogen concentrations with low reflection and essentially zero transmission. This state originates from a subtle interplay of the optical properties of the constituent materials and a self-organized double layering of the film during loading. Mg2NiH4-δ preferentially nucleates at the film/substrate interface and not—as intuitively expected—close to the catalytic Pd capping layer. Using γ˜Mg2Ni and γ˜Mg2NiH4 and this loading sequence, the optical response at all hydrogen concentrations can be described quantitatively. The uncommon hydrogen loading sequence is confirmed by x-ray diffraction and hydrogen profiling using the resonant nuclear reaction H1(N15,αγ)C12 . Pressure-composition isotherms suggest that the formation of Mg2NiH4-δ at the film/substrate interface is mainly due to locally enhanced kinetics.
Microfabricated Cantilevers Based on Sputtered Thin-Film Ni50Ti50 Shape Memory Alloy (SMA)
2015-08-01
surface coating developed during the NiTi deposition or anneal that is relatively resistant to the wet etch. Fig. 2 SEMs after the NiTi wet -etch...SEMs of NiTi devices after the 600 °C anneal , wet -etch patterning of the NiTi. A 120-nm Au capping layer was also sputtered. Figure 3a shows a 200-nm...Ni50Ti50 Cantilever 2 3. Results and Discussion 3 3.1 Wet -Etch Patterning NiTi 3 3.2 Dry-Etch Release of NiTi Devices 5 3.3 Thermal Actuation of
What is the copper thin film thickness effect on thermal properties of NiTi/Cu bi-layer?
NASA Astrophysics Data System (ADS)
Fazeli, Sara; Vahedpour, Morteza; Khatiboleslam Sadrnezhaad, Sayed
2017-02-01
Molecular dynamics (MD) simulation was used to study of thermal properties of NiTi/Cu. Embedded atom method (EAM) potentials for describing of inter-atomic interaction and Nose-Hoover thermostat and barostat are employed. The melting of the bi-layers was considered by studying the temperature dependence of the cohesive energy and mean square displacement. To highlight the differences between bi-layers with various copper layer thickness, the effect of copper film thickness on thermal properties containing the cohesive energy, melting point, isobaric heat capacity and latent heat of fusion was estimated. The results show that thermal properties of bi-layer systems are higher than that of their corresponding of pure NiTi. But, these properties of bi-layer systems approximately are independent of copper film thicknesses. The mean square displacement (MSD) results show that, the diffusion coefficients enhance upon increasing of copper film thickness in a linear performance.
Fabrication of scrolled magnetic thin film patterns
NASA Astrophysics Data System (ADS)
Min, Seonggi; Lim, Jin-Hee; Gaffney, John; Kinttle, Kristofer; Wiley, John B.; Malkinski, Leszek
2012-04-01
Magnetic film scrolls have been fabricated via a deterministic release of rectangular patterns of bimetallic Ti (20 nm)/Ni (20 , 30 or 40 nm) films from a sacrificial Cu underlayer. The diameter of the scrolls varied from 2.64 μm to 4.28 μm with increasing thickness of the Ni layer from 20 to 40 nm. This behavior was found to be consistent with the model of bilayered film with interfacial strain between the Ti and Ni layers of about Δɛ = 0.01. Changing the geometry of the patterns from flat patterns to scrolls led to changes in their magnetic properties.
Influence of Ti Content on the Partial Oxidation of TixFeCoNi Thin Films in Vacuum Annealing
Yang, Ya-Chu; Yeh, Jien-Wei; Tsau, Chun-Huei
2017-01-01
This study investigated the effects of Ti content and vacuum annealing on the microstructure evolution of TixFeCoNi (x = 0, 0.5, and 1) thin films and the underlying mechanisms. The as-deposited thin film transformed from an FCC (face center cubic) structure at x = 0 into an amorphous structure at x = 1, which can be explained by determining topological instability and a hard ball model. After annealing was performed at 1000 °C for 30 min, the films presented a layered structure comprising metal solid solutions and oxygen-deficient oxides, which can be major attributed to oxygen traces in the vacuum furnace. Different Ti contents provided various phase separation and layered structures. The underlying mechanism is mainly related to the competition among possible oxides in terms of free energy production at 1000 °C. PMID:28953244
Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films
NASA Astrophysics Data System (ADS)
Li, Kun; Li, Yan; Huang, Xu; Gibson, Des; Zheng, Yang; Liu, Jiao; Sun, Lu; Fu, Yong Qing
2017-08-01
Ni-Ti-Nb and Ni-Ti shape memory thin films were sputter-deposited onto silicon substrates and annealed at 600 °C for crystallization. X-ray diffraction (XRD) measurements indicated that all of the annealed Ni-Ti-Nb films were composed of crystalline Ni-Ti (Nb) and Nb-rich grains. X-ray photoelectron spectroscopy (XPS) tests showed that the surfaces of Ni-Ti-Nb films were covered with Ti oxides, NiO and Nb2O5. The corrosion resistance of the Ni-Ti-Nb films in 3.5 wt.% NaCl solution was investigated using electrochemical tests such as open-circuit potential (OCP) and potentio-dynamic polarization tests. Ni-Ti-Nb films showed higher OCPs, higher corrosion potentials (Ecorr) and lower corrosion current densities (icorr) than the binary Ni-Ti film, which indicated a better corrosion resistance. The reason may be that Nb additions modified the passive layer on the film surface. The OCPs of Ni-Ti-Nb films increased with further Nb additions, whereas no apparent difference of Ecorr and icorr was found among the Ni-Ti-Nb films.
NASA Astrophysics Data System (ADS)
Meng, Xiuxia; Gong, Xun; Yin, Yimei; Yang, Naitao; Tan, Xiaoyao; Ma, Zi-Feng
2014-02-01
NiO-YSZ/porous YSZ (NiO-YSZ/p-YSZ) dual-layer hollow fibers have been fabricated by a co-spinning-sintering method, on which a dense YSZ films has been formed by a dip-coating and sintering process. A LSM-YSZ ink has been dip-coated on the dense YSZ films as cathode, while the Cu-CeO2 carbon-resistant catalyst has been impregnated in the p-YSZ layer to form double-anode supported micro tubular fuel cells (MT-SOFCs). The thickness of the Ni-YSZ layer, so called anode functional layer (AFL), is controlled from 74 μm to 13 μm by varying the spinning rates of the NiO-YSZ dopes. The maximum power density of an MT-SOFC, which is fabricated based on a thin co-spun AFL, reaches 566 mW cm-2 operated at 850 °C fed with dry methane, and is stably operated for 85 h without power declination.
Vortex Flipping in Superconductor-Ferromagnet Spin Valve Structures
NASA Astrophysics Data System (ADS)
Patino, Edgar J.; Aprili, Marco; Blamire, Mark; Maeno, Yoshiteru
2014-03-01
We report in plane magnetization measurements on Ni/Nb/Ni/CoO and Co/Nb/Co/CoO spin valve structures with one of the ferromagnetic layers pinned by an antiferromagnetic layer. In samples with Ni, below the superconducting transition Tc, our results show strong evidence of vortex flipping driven by the ferromagnets magnetization. This is a direct consequence of proximity effect that leads to vortex supercurrents leakage into the ferromagnets. Here the polarized electron spins are subject to vortices magnetic field occasioning vortex flipping. Such novel mechanism has been made possible for the first time by fabrication of the F/S/F/AF multilayered spin valves with a thin-enough S layer to barely confine vortices inside as well as thin-enough F layers to align and control the magnetization within the plane. When Co is used there is no observation of vortex flipping effect. This is attributed to Co shorter coherence length. Interestingly instead a reduction in pinning field of about 400 Oe is observed when the Nb layer is in superconducting state. This effect cannot be explained in terms of vortex fields. In view of these facts any explanation must be directly related to proximity effect and thus a remarkable phenomenon that deserves further investigation. Programa Nacional de Ciencias Basicas COLCIENCIAS (No. 120452128168).
NASA Astrophysics Data System (ADS)
Kuru, Hilal; Kockar, Hakan; Alper, Mursel
2017-12-01
Giant magnetoresistance (GMR) behavior in electrodeposited NiFe/Cu multilayers was investigated as a function of non-magnetic (Cu) and ferromagnetic (NiFe) layer thicknesses, respectively. Prior to the GMR analysis, structural and magnetic analyses of the multilayers were also studied. The elemental analysis of the multilayers indicated that the Cu and Ni content in the multilayers increase with increasing Cu and NiFe layer thickness, respectively. The structural studies by X-ray diffraction revealed that all multilayers have face centred cubic structure with preferred (1 1 0) crystal orientation as their substrates. The magnetic properties studied with the vibrating sample magnetometer showed that the magnetizations of the samples are significantly affected by the layer thicknesses. Saturation magnetisation, Ms increases from 45 to 225 emu/cm3 with increasing NiFe layer thickness. The increase in the Ni content of the multilayers with a small Fe content causes an increase in the Ms. And, the coercivities ranging from 2 to 24 Oe are between the soft and hard magnetic properties. Also, the magnetic easy axis of the multilayers was found to be in the film plane. Magnetoresistance measurements showed that all multilayers exhibited the GMR behavior. The GMR magnitude increases with increasing Cu layer thickness and reaches its maximum value of 10% at the Cu layer thickness of 1 nm, then it decreases. And similarly, the GMR magnitude increases and reaches highest value of pure GMR (10%) for the NiFe layer thickness of 3 nm, and beyond this point GMR decreases with increasing NiFe layer thickness. Some small component of the anisotropic magnetoresistance was also observed at thin Cu and thick NiFe layer thicknesses. It is seen that the highest GMR values up to 10% were obtained in electrodeposited NiFe/Cu multilayers up to now. The structural, magnetic and magnetoresistance properties of the NiFe/Cu were reported via the variations of the thicknesses of Cu and NiFe layers with stressing the role of layer thicknesses on the high GMR behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Inhye; Park, Jingyu; Jeon, Heeyoung
In this study, the effects of a thin Ru interlayer on the thermal and morphological stability of NiSi have been investigated. Ru and Ni thin films were deposited sequentially to form a Ni/Ru/Si bilayered structure, without breaking the vacuum, by remote plasma atomic layer deposition (RPALD) on a p-type Si wafer. After annealing at various temperatures, the thermal stabilities of the Ni/Ru/Si and Ni/Si structures were investigated by various analysis techniques. The results showed that the sheet resistance of the Ni/Ru/Si sample was consistently lower compared to the Ni/Si sample over the entire temperature range. Although both samples exhibited themore » formation of NiSi{sub 2} phases at an annealing temperature of 800 °C, as seen with glancing angle x-ray diffraction, the peaks of the Ni/Ru/Si sample were observed to have much weaker intensities than those obtained for the Ni/Si sample. Moreover, the NiSi film with a Ru interlayer exhibited a better interface and improved surface morphologies compared to the NiSi film without a Ru interlayer. These results show that the phase transformation of NiSi to NiSi{sub 2} was retarded and that the smooth NiSi/Si interface was retained due to the activation energy increment for NiSi{sub 2} nucleation that is caused by adding a Ru interlayer. Hence, it can be said that the Ru interlayer deposited by RPALD can be used to control the phase transformation and physical properties of nickel silicide phases.« less
Effect of Doping Materials on the Low-Level NO Gas Sensing Properties of ZnO Thin Films
NASA Astrophysics Data System (ADS)
Çorlu, Tugba; Karaduman, Irmak; Yildirim, Memet Ali; Ateş, Aytunç; Acar, Selim
2017-07-01
In this study, undoped, Cu-doped, and Ni-doped ZnO thin films have been successfully prepared by successive ionic layer adsorption and reaction method. The structural, compositional, and morphological properties of the thin films are characterized by x-ray diffractometer, energy dispersive x-ray analysis (EDX), and scanning electron microscopy, respectively. Doping effects on the NO gas sensing properties of these thin films were investigated depending on gas concentration and operating temperature. Cu-doped ZnO thin film exhibited a higher gas response than undoped and Ni-doped ZnO thin film at the operating temperature range. The sensor with Cu-doped ZnO thin film gave faster responses and recovery speeds than other sensors, so that is significant for the convenient application of gas sensor. The response and recovery speeds could be associated with the effective electron transfer between the Cu-doped ZnO and the NO molecules.
NASA Astrophysics Data System (ADS)
Wang, Xiao Lin; Liu, Zhen; Wen, Chao; Liu, Yang; Wang, Hong Zhe; Chen, T. P.; Zhang, Hai Yan
2018-06-01
With self-prepared nickel acetate based solution, NiO thin films with different thicknesses have been fabricated by spin coating followed by thermal annealing. By forming a two-terminal Ag/NiO/ITO structure on glass, write-once-read-many-times (WORM) memory devices are realized. The WORM memory behavior is based on a permanent switching from an initial high-resistance state (HRS) to an irreversible low-resistance state (LRS) under the application of a writing voltage, due to the formation of a solid bridge across Ag and ITO electrodes by conductive filaments (CFs). The memory performance is investigated as a function of the NiO film thickness, which is determined by the number of spin-coated NiO layers. For devices with 4 and 6 NiO layers, data retention up to 104 s and endurance of 103 reading operations in the measurement range have been obtained with memory window maintained above four orders for both HRS and LRS. Before and after writing, the devices show the hopping and ohmic conduction behaviors, respectively, confirming that the CF formation could be the mechanism responsible for writing in the WORM memory devices.
Insertion of NiO electron blocking layer in fabrication of GaN-organic heterostructures
NASA Astrophysics Data System (ADS)
Li, Junmei; Guo, Wei; Jiang, Jie'an; Gao, Pingqi; Bo, Baoxue; Ye, Jichun
2018-03-01
We report the fabrication of a NiO thin film on top of an n-type GaN epitaxial layer. The electron-blocking capability of NiO in a hybrid organic/inorganic heterostructure consisting of n-GaN/NiO/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is discussed. Surface morphology, crystallography orientation, bandgap, and fermi level information of NiO films were investigated in detail. A rectifying property consistent with the proposed band diagram was observed in the current-voltage measurement. Theoretical analysis also demonstrated the effective electron blocking due to band alignment and a more balanced carrier distribution inside the GaN region with NiO inserted into the n-GaN/PEDOT:PSS heterostructure. This work provides a promising approach to the fabrication of high-efficiency hybrid optoelectronic devices.
NASA Astrophysics Data System (ADS)
Molaei, Roya
The novel functionalities of Vanadium dioxide (VO2), such as, several orders of magnitude transition in resistivity and IR transmittance, provide the exciting opportunity for the development of next generation memory, sensor, and field-effect based devices. A critical issue in the development of practical devices based on metal oxides is the integration of high quality epitaxial oxide thin films with the existing silicon technology which is based on silicon (100) substrates. However, silicon is not suitable for epitaxial growth of oxides owing to its tendency to readily form an amorphous oxide layer or silicide at the film-substrate interface. The oxide films deposited directly on silicon exhibit poor crystallinity and are not suitable for device applications. To overcome this challenge, appropriate substrate templates must be developed for the growth of oxide thin films on silicon substrates. The primary objective of this dissertation was to develop an integration methodology of VO2 with Si (100) substrates so they could be used in "smart" sensor type of devices along with other multifunctional devices on the same silicon chip. This was achieved by using a NiO/c- YSZ template layer deposited in situ. It will be shown that if the deposition conditions are controlled properly. This approach was used to integrate VO 2 thin films with Si (100) substrates using pulsed laser deposition (PLD) technique. The deposition methodology of integrating VO2 thin films on silicon using various other template layers will also be discussed. Detailed epitaxial relationship of NiO/c-YSZ/Si(100) heterostructures as a template to growth of VO2 as well as were studied. We also were able to create a p-n junction within a single NiO epilayer through subsequent nanosecond laser annealing, as well as established a structure-property correlation in NiO/c-YSZ/Si(100) thin film epitaxial heterostructures with especial emphasis on the stoichiometry and crystallographic characteristics. NiO/c-YSZ/Si(100) heterostructures were used as template to grow fully relaxed VO2 thin films. The detailed x-ray diffraction, transmission electron microscopy (TEM), electrical characterization results for the deposited films will be presented. In the framework on domain matching epitaxy, epitaxial growth of VO2 (tetragonal crystal structure at growth temperature) on NiO has been explained. Our detailed phi-scan X-ray diffraction measurements corroborate our understanding of the epitaxial growth and in-plane atomic arrangements at the interface. It was observed that the transition characteristics (sharpness, over which electrical property changes are completed, amplitude, transition temperature, and hysteresis) are a strong function of microstructure, strain, and stoichiometry. We have shown that by the choosing the right template layer, strain in the VO2 thin films can be fully relaxed and near-bulk VO2 transition temperatures can be achieved. Finally, I will present my research work on modification of semiconductor-to-metal transition characteristics and effect on room temperature magnetic properties of VO2 thin films upon laser annealing. While the microstructure (epitaxy, crystalline quality etc.) and phase were preserved, we envisage these changes to occur as a result of introduction of oxygen vacancies upon laser treatment.
Using high thermal stability flexible thin film thermoelectric generator at moderate temperature
NASA Astrophysics Data System (ADS)
Zheng, Zhuang-Hao; Luo, Jing-Ting; Chen, Tian-Bao; Zhang, Xiang-Hua; Liang, Guang-Xing; Fan, Ping
2018-04-01
Flexible thin film thermoelectric devices are extensively used in the microscale industry for powering wearable electronics. In this study, comprehensive optimization was conducted in materials and connection design for fabricating a high thermal stability flexible thin film thermoelectric generator. First, the thin films in the generator, including the electrodes, were prepared by magnetron sputtering deposition. The "NiCu-Cu-NiCu" multilayer electrode structure was applied to ensure the thermal stability of the device used at moderate temperature in an air atmosphere. A design with metal layer bonding and series accordant connection was then employed. The maximum efficiency of a single PN thermocouple generator is >11%, and the output power loss of the generator is <10% after integration.
Influence of hydrogen on the structure and stability of ultra-thin ZnO on metal substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieniek, Bjoern; Hofmann, Oliver T.; Institut für Festkörperphysik, TU Graz, 8010 Graz
2015-03-30
We investigate the atomic and electronic structure of ultra-thin ZnO films (1 to 4 layers) on the (111) surfaces of Ag, Cu, Pd, Pt, Ni, and Rh by means of density-functional theory. The ZnO monolayer is found to adopt an α-BN structure on the metal substrates with coincidence structures in good agreement with experiment. Thicker ZnO layers change into a wurtzite structure. The films exhibit a strong corrugation, which can be smoothed by hydrogen (H) adsorption. An H over-layer with 50% coverage is formed at chemical potentials that range from low to ultra-high vacuum H{sub 2} pressures. For the Agmore » substrate, both α-BN and wurtzite ZnO films are accessible in this pressure range, while for Cu, Pd, Pt, Rh, and Ni wurtzite films are favored. The surface structure and the density of states of these H passivated ZnO thin films agree well with those of the bulk ZnO(0001{sup ¯})-2×1-H surface.« less
NASA Astrophysics Data System (ADS)
Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias
2018-04-01
Thin film metal-insulator-metal (MIM) diodes have attracted significant attention for use in infrared energy harvesting and detection applications. As demonstrated over the past decades, MIM or metal-insulator-insulator-metal (MIIM) diodes can operate at the THz frequencies range by quantum tunneling of electrons. The aim of this work is to synthesize required ultra-thin insulating layers and fabricate MIM diodes using the Langmuir-Blodgett (LB) technique. The nickel stearate (NiSt) LB precursor film was deposited on glass, silicon (Si), ITO glass and gold coated silicon substrates. The photodesorption (UV exposure) and the thermodesorption (annealing at 100 °C and 350 °C) methods were used to remove organic components from the NiSt LB film and to achieve a uniform homogenous nickel oxide (NiO) film. These ultrathin NiO films were characterized by EDS, AFM, FTIR and cyclic voltammetry methods, respectively. The MIM diode was fabricated by depositing nickel (Ni) on the NiO film, all on a gold (Au) plated silicon (Si) substrate. The current (I)-voltage (V) characteristics of the fabricated diode were studied to understand the conduction mechanism assumed to be tunneling of electron through the ultra-thin insulating layer. The sensitivity of the diode was measured to be as high as 35 V-1. The diode resistance was ˜100 ohms (at a bias voltage of 0.60 V), and the rectification ratio was about 22 (for a signal voltage of ±200 mV). At the bias point, the diode response demonstrated significant non-linearity and high asymmetry, which are very desirable characteristics for applications in infrared detection and harvesting.
Irwin, Michael D.; Buchholz, D. Bruce; Hains, Alexander W.; Chang, Robert P. H.; Marks, Tobin J.
2008-01-01
To minimize interfacial power losses, thin (5–80 nm) layers of NiO, a p-type oxide semiconductor, are inserted between the active organic layer, poly(3-hexylthiophene) (P3HT) + [6,6]-phenyl-C61 butyric acid methyl ester (PCBM), and the ITO (tin-doped indium oxide) anode of bulk-heterojunction ITO/P3HT:PCBM/LiF/Al solar cells. The interfacial NiO layer is deposited by pulsed laser deposition directly onto cleaned ITO, and the active layer is subsequently deposited by spin-coating. Insertion of the NiO layer affords cell power conversion efficiencies as high as 5.2% and enhances the fill factor to 69% and the open-circuit voltage (Voc) to 638 mV versus an ITO/P3HT:PCBM/LiF/Al control device. The value of such hole-transporting/electron-blocking interfacial layers is clearly demonstrated and should be applicable to other organic photovoltaics.
Polarity compensation in ultra-thin films of complex oxides: The case of a perovskite nickelate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middey, S.; Rivero, P.; Meyers, D.
2014-10-29
In this study, we address the fundamental issue of growth of perovskite ultra-thin films under the condition of a strong polar mismatch at the heterointerface exemplified by the growth of a correlated metal LaNiO 3 on the band insulator SrTiO 3 along the pseudo cubic [111] direction. While in general the metallic LaNiO 3 film can effectively screen this polarity mismatch, we establish that in the ultra-thin limit, films are insulating in nature and require additional chemical and structural reconstruction to compensate for such mismatch. A combination of in-situ reflection high-energy electron diffraction recorded during the growth, X-ray diffraction, andmore » synchrotron based resonant X-ray spectroscopy reveal the formation of a chemical phase La 2Ni 2O 5 (Ni 2+) for a few unit-cell thick films. First-principles layer-resolved calculations of the potential energy across the nominal LaNiO 3/SrTiO 3 interface confirm that the oxygen vacancies can efficiently reduce the electric field at the interface.« less
NASA Astrophysics Data System (ADS)
Ayareh, Zohreh; Moradi, Mehrdad; Mahmoodi, Saman
2018-06-01
In this paper, we report perpendicular magnetic anisotropy (PMA) in a (Ta/Cu/[Ni/Co]x/Ta) multilayers structure. These typical structures usually include a multilayer of ferromagnetic and transition metal thin films. Usually, magnetic anisotropy is characterized by magnetization loops determined by magnetometer or magneto-optical Kerr effect (MOKE). The interface between ferromagnetic and metallic layers plays an important role in magnetic anisotropy evolution from out-of-plane to in-plane in (Ta/Cu/[Ni/Co]/Ta) structure. Obtained results from MOKE and magnetometry of these samples show that they have different easy axes due to change in thickness of Cu as spacer layer and difference in number of repetition of [Ni/Co] stacks.
NASA Astrophysics Data System (ADS)
He, Fang; Hu, Zhibiao; Liu, Kaiyu; Zhang, Shuirong; Liu, Hongtao; Sang, Shangbin
2014-12-01
This paper introduces a new design route to fabricate nickel aluminum-layered double hydroxide (NiAl-LDH) nanosheets/hollow carbon nanofibers (CNFs) composite through an in situ growth method. The NiAl-LDH thin layers which grow on hollow carbon nanofibers have an average thickness of 13.6 nm. The galvanostatic charge-discharge test of the NiAl-LDH/CNFs composite yields an impressive specific capacitance of 1613 F g-1 at 1 A g-1 in 6 M KOH solution, the composite shows a remarkable specific capacitance of 1110 F g-1 even at a high current density of 10 A g-1. Furthermore, the composite remains a specific capacitance of 1406 F g-1 after 1000 cycles at 2 A g-1, indicating the composite has excellent high-current capacitive behavior and good cycle stability in compared to pristine NiAl-LDH.
NASA Astrophysics Data System (ADS)
Saikia, Dhrubajyoti; Sarma, Ranjit
2018-03-01
The influence of thin layer of nickel oxide (NiO) over the fluorine-doped tin oxide (FTO) surface on the performance of Organic light-emitting diode (OLED) is reported. With an optimal thickness of NiO (10 nm), the luminance efficiency is found to be increased as compared to the single FTO OLED. The performance of OLED is studied by depositing NiO films at different thicknesses on the FTO surface and analyzed their J-V and L-V characteristics. Further analysis is carried out by measuring sheet resistance and optical transmittance. The surface morphology is studied with the help of FE-SEM images. Our results indicate that NiO (10 nm) buffer layer is an excellent choice to increase the efficiency of FTO based OLED devices within the charge tunneling region. The maximum value of current efficiency is found to be 7.32 Cd/A.
Catalytic Activation of Mg-Doped GaN by Hydrogen Desorption Using Different Metal Thin Layers
NASA Astrophysics Data System (ADS)
Wei, Tongbo; Wang, Junxi; Liu, Naixin; Lu, Hongxi; Zeng, Yiping; Wang, Guohong; Li, Jinmin
2010-10-01
The annealing of Mg-doped GaN with Pt and Mo layers has been found to effectively improve the hole concentration of such material by more than 2 times as high as those in the same material without metal. Compared with the Ni and Mo catalysts, Pt showed good activation effect for hydrogen desorption and ohmic contact to the Ni/Au electrode. Despite the weak hydrogen desorption, Mo did not diffuse into the GaN epilayer in the annealing process, thus suppressing the carrier compensation phenomenon with respect to Ni and Pt depositions, which resulted in the high activation of Mg acceptors. For the GaN activated with the Ni, Pt, and Mo layers, the blue emission became dominant, followed by a clear peak redshift and the degradation of photoluminescence signal when compared with that of GaN without metal.
Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Nur, Omer; Willander, Magnus
2013-07-13
Cheap and efficient white light-emitting diodes (LEDs) are of great interest due to the energy crisis all over the world. Herein, we have developed heterojunction LEDs based on the well-aligned ZnO nanorods and nanotubes on the p-type GaN with the insertion of the NiO buffer layer that showed enhancement in the light emission. Scanning electron microscopy have well demonstrated the arrays of the ZnO nanorods and the proper etching into the nanotubes. X-ray diffraction study describes the wurtzite crystal structure array of ZnO nanorods with the involvement of GaN at the (002) peak. The cathodoluminescence spectra represent strong and broad visible emission peaks compared to the UV emission and a weak peak at 425 nm which is originated from GaN. Electroluminescence study has shown highly improved luminescence response for the LEDs fabricated with NiO buffer layer compared to that without NiO layer. Introducing a sandwich-thin layer of NiO between the n-type ZnO and the p-type GaN will possibly block the injection of electrons from the ZnO to the GaN. Moreover, the presence of NiO buffer layer might create the confinement effect.
Polarization fatigue of BiFeO3 films with ferromagnetic metallic electrodes
NASA Astrophysics Data System (ADS)
Chen, Chen; Wang, Ji; Li, Chen; Wen, Zheng; Xu, Qingyu; Du, Jun
2017-05-01
BiFeO3 (BFO) thin films were epitaxially grown on (001) SrTiO3 substrates using LaNiO3 as bottom electrode by pulsed laser deposition. The ferroelectric properties of BFO layer with ferromagnetic Ni21Fe79 (NiFe) or non-magnetic Pt electrode are investigated. Well saturated polarization-electric field (P-E) hysteresis loops are observed. Significant fatigue and associated drastic decrease in switchable polarization have been observed with cycling number exceeds 106, which can be explained by the domain wall pinning due to the oxygen vacancies trapping. With increasing cycle number to above 107, the polarization is rejuvenated. The polarization for BFO layer with NiFe electrode recovers to the initial value, while only about 75% of initial polarization is recovered for BFO layer with Pt electrode. Furthermore, the imprint is alleviated and the P-E hysteresis loops become more symmetric after the polarization recovery. The difference can be understood by the different interface state of NiFe/BFO and Pt/BFO.
Towards Thermal Wavelength Scale Two- and Three-Dimensional Photonic Crystals
2016-04-01
this now. We studied the anisotropic thermal conductivity of nanoscale graphite layers deposited by chemical vapor deposition on Ni substrates at...Braun, and David G. Cahill, “Thermal conductivity of graphite thin films grown by low temperature chemical vapor deposition on Ni (111),” submitted...that there is no degradation in the power factor. In the carbon work, we studied the deposited by chemical vapor deposition on Ni substrates at
NASA Astrophysics Data System (ADS)
Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu
2016-11-01
In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.
Synthesis and improved explosion behaviors of aluminum powders coated with nano-sized nickel film
NASA Astrophysics Data System (ADS)
Kim, Kyung Tae; Kim, Dong Won; Kim, Soo Hyung; Kim, Chang Kee; Choi, Yoon Jeong
2017-09-01
Nickel (Ni) materials with a thickness of a few hundred nm were homogeneously coated on the surfaces of aluminum (Al) powders by an electroless plating process. The Ni-coated Al powders show characteristic interfacial structures mixed of Ni, Al and O instead of densely packed Al oxide at the surface. The explosion test of the Ni-coated Al powders utilizing flame ignition showed that the powders had a 3.6 times enhanced pressurization rate of 405 kPa/ms compared to 111 kPa/ms of uncoated Al powders. It was found that this is due to a feasible diffusion of oxygen atoms into the Al powders through the thin and rough interfacial layers present at the Ni/Al interface. These results clearly indicate that nano-sized Ni film introduced instead of surface oxide acts as a very profitable layer to achieve efficient combustion behaviors by a rapid oxidation of Al powders.
Large-Area Growth of Turbostratic Graphene on Ni(111) via Physical Vapor Deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garlow, Joseph A.; Barrett, Lawrence K.; Wu, Lijun
Single-layer graphene has demonstrated remarkable electronic properties that are strongly influenced by interfacial bonding and break down for the lowest energy configuration of stacked graphene layers (AB Bernal). Multilayer graphene with relative rotations between carbon layers, known as turbostratic graphene, can effectively decouple the electronic states of adjacent layers, preserving properties similar to that of SLG. While the growth of AB Bernal graphene through chemical vapor deposition has been widely reported, we investigate the growth of turbostratic graphene on heteroepitaxial Ni(111) thin films utilizing physical vapor deposition. By varying the carbon deposition temperature between 800–1100°C, we report an increase inmore » the graphene quality concomitant with a transition in the size of uniform thickness graphene, ranging from nanocrystallites to thousands of square microns. Combination Raman modes of as-grown graphene within the frequency range of 1650 cm ₋1 to 2300 cm ₋1, along with features of the Raman 2D mode, were employed as signatures of turbostratic graphene. Bilayer and multilayer graphene were directly identified from areas that exhibited Raman characteristics of turbostratic graphene using high-resolution TEM imaging. Lastly, Raman maps of the pertinent modes reveal large regions of turbostratic graphene on Ni(111) thin films at a deposition temperature of 1100°C.« less
Large-Area Growth of Turbostratic Graphene on Ni(111) via Physical Vapor Deposition
Garlow, Joseph A.; Barrett, Lawrence K.; Wu, Lijun; ...
2016-01-29
Single-layer graphene has demonstrated remarkable electronic properties that are strongly influenced by interfacial bonding and break down for the lowest energy configuration of stacked graphene layers (AB Bernal). Multilayer graphene with relative rotations between carbon layers, known as turbostratic graphene, can effectively decouple the electronic states of adjacent layers, preserving properties similar to that of SLG. While the growth of AB Bernal graphene through chemical vapor deposition has been widely reported, we investigate the growth of turbostratic graphene on heteroepitaxial Ni(111) thin films utilizing physical vapor deposition. By varying the carbon deposition temperature between 800–1100°C, we report an increase inmore » the graphene quality concomitant with a transition in the size of uniform thickness graphene, ranging from nanocrystallites to thousands of square microns. Combination Raman modes of as-grown graphene within the frequency range of 1650 cm ₋1 to 2300 cm ₋1, along with features of the Raman 2D mode, were employed as signatures of turbostratic graphene. Bilayer and multilayer graphene were directly identified from areas that exhibited Raman characteristics of turbostratic graphene using high-resolution TEM imaging. Lastly, Raman maps of the pertinent modes reveal large regions of turbostratic graphene on Ni(111) thin films at a deposition temperature of 1100°C.« less
NASA Astrophysics Data System (ADS)
Chuang, T. H.; Lin, H. J.; Chuang, C. H.; Yeh, W. T.; Hwang, J. D.; Chu, H. S.
2014-12-01
A (Pb, Sn)Te thermoelectric element plated with a Ni barrier layer and a Ag reaction layer has been joined with a Cu electrode coated with Ag and Sn thin films using a solid-liquid interdiffusion bonding method. This method allows the interfacial reaction between Ag and Sn such that Ag3Sn intermetallic compounds form at low temperature and are stable at high temperature. In this study, the bonding strength was about 6.6 MPa, and the specimens fractured along the interface between the (Pb, Sn)Te thermoelectric element and the Ni barrier layer. Pre-electroplating a film of Sn with a thickness of about 1 μm on the thermoelectric element and pre-heating at 250°C for 3 min ensures the adhesion between the thermoelectric material and the Ni barrier layer. The bonding strength is thus increased to a maximal value of 12.2 MPa, and most of the fractures occur inside the thermoelectric material. During the bonding process, not only the Ag3Sn intermetallics but also Cu6Sn5 forms at the Ag3Sn/Cu interface, which transforms into Cu3Sn with increases in the bonding temperature or bonding time.
Large-Area Growth of Turbostratic Graphene on Ni(111) via Physical Vapor Deposition
Garlow, Joseph A.; Barrett, Lawrence K.; Wu, Lijun; Kisslinger, Kim; Zhu, Yimei; Pulecio, Javier F.
2016-01-01
Single-layer graphene has demonstrated remarkable electronic properties that are strongly influenced by interfacial bonding and break down for the lowest energy configuration of stacked graphene layers (AB Bernal). Multilayer graphene with relative rotations between carbon layers, known as turbostratic graphene, can effectively decouple the electronic states of adjacent layers, preserving properties similar to that of SLG. While the growth of AB Bernal graphene through chemical vapor deposition has been widely reported, we investigate the growth of turbostratic graphene on heteroepitaxial Ni(111) thin films utilizing physical vapor deposition. By varying the carbon deposition temperature between 800 –1100 °C, we report an increase in the graphene quality concomitant with a transition in the size of uniform thickness graphene, ranging from nanocrystallites to thousands of square microns. Combination Raman modes of as-grown graphene within the frequency range of 1650 cm−1 to 2300 cm−1, along with features of the Raman 2D mode, were employed as signatures of turbostratic graphene. Bilayer and multilayer graphene were directly identified from areas that exhibited Raman characteristics of turbostratic graphene using high-resolution TEM imaging. Raman maps of the pertinent modes reveal large regions of turbostratic graphene on Ni(111) thin films at a deposition temperature of 1100 °C. PMID:26821604
Kusnezoff, Mihails; Trofimenko, Nikolai; Müller, Martin; Michaelis, Alexander
2016-11-08
The solid oxide cell is a basis for highly efficient and reversible electrochemical energy conversion. A single cell based on a planar electrolyte substrate as support (ESC) is often utilized for SOFC/SOEC stack manufacturing and fulfills necessary requirements for application in small, medium and large scale fuel cell and electrolysis systems. Thickness of the electrolyte substrate, and its ionic conductivity limits the power density of the ESC. To improve the performance of this cell type in SOFC/SOEC mode, alternative fuel electrodes, on the basis of Ni/CGO as well as electrolytes with reduced thickness, have been applied. Furthermore, different interlayers on the air side have been tested to avoid the electrode delamination and to reduce the cell degradation in electrolysis mode. Finally, the influence of the contacting layer on cell performance, especially for cells with an ultrathin electrolyte and thin electrode layers, has been investigated. It has been found that Ni/CGO outperform traditional Ni/8YSZ electrodes and the introduction of a ScSZ interlayer substantially reduces the degradation rate of ESC in electrolysis mode. Furthermore, it was demonstrated that, for thin electrodes, the application of contacting layers with good conductivity and adhesion to current collectors improves performance significantly.
2013-01-01
Highly hexagonally ordered hard anodic aluminum oxide membranes, which have been modified by a thin cover layer of SiO2 deposited by atomic layer deposition method, were used as templates for the synthesis of electrodeposited magnetic Co-Ni nanowire arrays having diameters of around 180 to 200 nm and made of tens of segments with alternating compositions of Co54Ni46 and Co85Ni15. Each Co-Ni single segment has a mean length of around 290 nm for the Co54Ni46 alloy, whereas the length of the Co85Ni15 segments was around 430 nm. The composition and crystalline structure of each Co-Ni nanowire segment were determined by transmission electron microscopy and selected area electron diffraction techniques. The employed single-bath electrochemical nanowire growth method allows for tuning both the composition and crystalline structure of each individual Co-Ni segment. The room temperature magnetic behavior of the multisegmented Co-Ni nanowire arrays is also studied and correlated with their structural and morphological properties. PMID:23735184
NASA Astrophysics Data System (ADS)
Kim, Su Chol; Yamaguchi, Satoru; Kataoka, Yoshihide; Iwami, Motohiro; Hiraki, Akio; Satou, Mamoru; Fujimoto, Fuminori
1982-01-01
Sputtering yields of Si and Ni from thin layer films of Ni-Si compounds (Ni1-xSix), including the pure materials (Ni and Si), caused by 5 keV Ar+ ion bombardment were investigated using backscattering spectrometry. The sputtering yield for Si from Ni1-xSix increased with increasing Si concentration. However, there is an abrupt decrease in the yield for Si concentrations above NiSi2 to pure Si. This is in clear contrast to the sputtering yield of Ni from Ni1-xSix which increased with increasing Ni concentration monotonously. These results are discussed on the basis of both the difference in the atomic density and the electronic state of the alloy.
Laser sintered thin layer graphene and cubic boron nitride reinforced nickel matrix nanocomposites
NASA Astrophysics Data System (ADS)
Hu, Zengrong; Tong, Guoquan
2015-10-01
Laser sintered thin layer graphene (Gr)-cubic boron nitride (CBN)-Ni nanocomposites were fabricated on AISI 4140 plate substrate. The composites fabricating process, composites microstructure and mechanical properties were studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to study the micro structures and composition of the composites. XRD and Raman tests proved that graphene and CBN were dispersed in the nanocomposites. Nanoindentation test results indicate the significant improvements were achieved in the composites mechanical properties.
Integrated Temperature and Hydrogen Sensors with MEMS Technology
Jiang, Hongchuan; Huang, Min; Yu, Yibing; Tian, Xiaoyu; Zhang, Wanli; Zhang, Jianfeng; Huang, Yifan; Yu, Kun
2017-01-01
In this work, a PdNi thin film hydrogen gas sensor with integrated Pt thin film temperature sensor was designed and fabricated using the micro-electro-mechanical system (MEMS) process. The integrated sensors consist of two resistors: the former, based on Pt film, is used as a temperature sensor, while the latter had the function of hydrogen sensing and is based on PdNi alloy film. The temperature coefficient of resistance (TCR) in both devices was measured and the output response of the PdNi film hydrogen sensor was calibrated based on the temperature acquired by the Pt temperature sensor. The SiN layer was deposited on top of Pt film to inhibit the hydrogen diffusion and reduce consequent disturbance on temperature measurement. The TCR of the PdNi film and the Pt film was about 0.00122/K and 0.00217/K, respectively. The performances of the PdNi film hydrogen sensor were investigated with hydrogen concentrations from 0.3% to 3% on different temperatures from 294.7 to 302.2 K. With the measured temperature of the Pt resistor and the TCR of the PdNi film, the impact of the temperature on the performances of the PdNi film hydrogen sensor was reduced. The output response, response time and recovery time of the PdNi film hydrogen sensors under the hydrogen concentration of 0.5%, 1.0%, 1.5% and 2.0% were measured at 313 K. The output response of the PdNi thin film hydrogen sensors increased with increasing hydrogen concentration while the response time and recovery time decreased. A cycling test between pure nitrogen and 3% hydrogen concentration was performed at 313 K and PdNi thin film hydrogen sensor demonstrated great repeatability in the cycling test. PMID:29301220
NASA Astrophysics Data System (ADS)
Chen, Z. Q.; Huang, P.; Xu, K. W.; Wang, F.; Lu, T. J.
2016-12-01
We report that β-relaxation of amorphous NiW alloy film was effectively enhanced by adding two thin crystalline layers into the amorphous layer. Correspondingly, more bright bands, i.e., nano shear bands, were captured in the amorphous layer, which experienced more pronounced β-relaxations. Based on the potential energy landscape theory, the bright band was proposed to be the localized percolation of flow units corresponding to β-relaxation. Our findings may help connecting experimentally β-relaxation with flow units and shed light on the microstructure origin of β-relaxation.
He, Qiqi; Yao, Kai; Wang, Xiaofeng; Xia, Xuefeng; Leng, Shifeng; Li, Fan
2017-12-06
Flexible perovskite solar cells (PSCs) using plastic substrates have become one of the most attractive points in the field of thin-film solar cells. Low-temperature and solution-processable nanoparticles (NPs) enable the fabrication of semiconductor thin films in a simple and low-cost approach to function as charge-selective layers in flexible PSCs. Here, we synthesized phase-pure p-type Cu-doped NiO x NPs with good electrical properties, which can be processed to smooth, pinhole-free, and efficient hole transport layers (HTLs) with large-area uniformity over a wide range of film thickness using a room-temperature solution-processing technique. Such a high-quality inorganic HTL allows for the fabrication of flexible PSCs with an active area >1 cm 2 , which have a power conversion efficiency over 15.01% without hysteresis. Moreover, the Cu/NiO x NP-based flexible devices also demonstrate excellent air stability and mechanical stability compared to their counterpart fabricated on the pristine NiO x films. This work will contribute to the evolution of upscaling flexible PSCs with a simple fabrication process and high device performances.
Electron Emission Observations from As-Grown and Vacuum-Coated Chemical Vapor Deposited Diamond
NASA Technical Reports Server (NTRS)
Lamouri, A.; Wang, Yaxin; Mearini, G. T.; Krainsky, I. L.; Dayton, J. A., Jr.; Mueller,W.
1996-01-01
Field emission has been observed from chemical vapor deposited diamond grown on Mo and Si substrates. Emission was observed at fields as low as 20 kV/cm. The samples were tested in the as-grown form, and after coating with thin films of Au, CsI, and Ni. The emission current was typically maximum at the onset of the applied field, but was unstable, and decreased rapidly with time from the as-grown films. Thin Au layers, approximately 15 nm thick, vacuum deposited onto the diamond samples significantly improved the stability of the emission current at values approximately equal to those from uncoated samples at the onset of the applied field. Thin layers of CsI, approximately 5 nm thick, were also observed to improve the stability of the emission current but at values less than those from the uncoated samples at the onset of the applied field. While Au and CsI improved the stability of the emission, Ni was observed to have no effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, S. K.; Mohan, S.; Bysakh, S.
The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 °C in the as-deposited condition as well as in the postannealed (at 600 °C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletionmore » of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni{sub 3}Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200–250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (Ni{sub x}Ti{sub y}Si) at the film–substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region ∼250–300 nm just above the film substrate interface.« less
Characterization of corrosion resistant on NiCoCr coating layer exposed to 5%NaCl
NASA Astrophysics Data System (ADS)
Sugiarti, E.; Sundawa, R.; Desiati, R. D.; Zaini, K. A.
2018-03-01
Highly corrosion resistant of carbon steel coated NiCoCr was applied in corrosive of marine environtment. Carbon steel coated NiCoCr was prepared by a two step technique of NiCo electro-deposition and Cr pack cementation. The samples were exposed to 5 wt.% NaCl for 48 and 168 hours. The microstructure and corrosion product were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The corrosion resistance of carbon steel coated NiCoCr was found to be better than that of carbon steel substrate without coating. The results showed the microstructure of 48 h corroded sample has duplex layer composed of inner α-(Ni,Co), α-Cr and outer Cr2O3, while a quite thin and continues protective oxide of Cr2O3 was observed in outer layer of 168 h corroded sample. The formation of oxide scale rich in Cr2O3 has contributed for the better corrosion resistance of carbon steel coated NiCoCr, whereas the formation of non protective oxide of iron might caused low corrosion resistance of carbon steel substrate.
Room temperature spin valve effect in NiFe/WS2/Co junctions
Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood
2016-01-01
The two-dimensional (2D) layered electronic materials of transition metal dichalcogenides (TMDCs) have been recently proposed as an emerging canddiate for spintronic applications. Here, we report the exfoliated single layer WS2-intelayer based spin valve effect in NiFe/WS2/Co junction from room temperature to 4.2 K. The ratio of relative magnetoresistance in spin valve effect increases from 0.18% at room temperature to 0.47% at 4.2 K. We observed that the junction resistance decreases monotonically as temperature is lowered. These results revealed that semiconducting WS2 thin film works as a metallic conducting interlayer between NiFe and Co electrodes. PMID:26868638
Room temperature spin valve effect in NiFe/WS₂/Co junctions.
Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood
2016-02-12
The two-dimensional (2D) layered electronic materials of transition metal dichalcogenides (TMDCs) have been recently proposed as an emerging canddiate for spintronic applications. Here, we report the exfoliated single layer WS2-intelayer based spin valve effect in NiFe/WS2/Co junction from room temperature to 4.2 K. The ratio of relative magnetoresistance in spin valve effect increases from 0.18% at room temperature to 0.47% at 4.2 K. We observed that the junction resistance decreases monotonically as temperature is lowered. These results revealed that semiconducting WS2 thin film works as a metallic conducting interlayer between NiFe and Co electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ao; Liu, Guoxia, E-mail: gxliu@qdu.edu.cn, E-mail: fukaishan@yahoo.com; Zhu, Huihui
Solution-processed p-type oxide semiconductors have recently attracted increasing interests for the applications in low-cost optoelectronic devices and low-power consumption complementary metal-oxide-semiconductor circuits. In this work, p-type nickel oxide (NiO{sub x}) thin films were prepared using low-temperature solution process and integrated as the channel layer in thin-film transistors (TFTs). The electrical properties of NiO{sub x} TFTs, together with the characteristics of NiO{sub x} thin films, were systematically investigated as a function of annealing temperature. By introducing aqueous high-k aluminum oxide (Al{sub 2}O{sub 3}) gate dielectric, the electrical performance of NiO{sub x} TFT was improved significantly compared with those based on SiO{submore » 2} dielectric. Particularly, the hole mobility was found to be 60 times enhancement, quantitatively from 0.07 to 4.4 cm{sup 2}/V s, which is mainly beneficial from the high areal capacitance of the Al{sub 2}O{sub 3} dielectric and high-quality NiO{sub x}/Al{sub 2}O{sub 3} interface. This simple solution-based method for producing p-type oxide TFTs is promising for next-generation oxide-based electronic applications.« less
Interfacial characteristics and multiferroic properties of ion-doped BiFeO3/NiFe2O4 thin films
NASA Astrophysics Data System (ADS)
Guo, Meiyou; Tan, Guoqiang; Zheng, Yujuan; Liu, Wenlong; Ren, Huijun; Xia, Ao
2017-05-01
Multi-ion doped BiFeO3/NiFe2O4 bilayered thin films were successfully prepared on fluorine-doped SnO2/glass (SnO2:F) substrates by sol-gel method. The crystalline structure, leakage current, interfacial characteristics, and multiferroic properties were investigated in detail. The results of Rietveld refinement showed that the structure of BSrSFMC layer is transformed from rhombohedral to tetragonal structure by the means of ion-doping. The difference of leakage current density of the BSrSFMC/NiFe2O4 (NFO) bilayered films of the -40 V to 40 V and 40 V to -40 V are 0.32 × 10-5 and 1.13 × 10-5 A/cm2, respectively. It was observed that there are obvious interface effects between BSrSFMC and NFO layers, which will cause the accumulation of space charges and the establishment of built-in internal electric field (EI) at the interface. Therefore, different EI directions will affect the dipoles reversal and migration of carriers in the BSrSFMC layer, which will result in different values of transient current with the same applied voltage in the opposite directions. The larger coercive field (Ec ˜ 750 kV/cm) of BSrSFMC/NFO film indicated that there is a tensile stress at the interface between BSrSFMC and NFO layers, making the polarization difficult. These results showed that the above interesting phenomena of the J-V are closely related to the interface effects between the layer of BiFeO3 and NiFe2O4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Jingjing; Lai, Lincong; Zhang, Ping
Electrochromic materials with unique performance arouse great interest on account of potential application values in smart window, low-power display, automobile anti-glare rearview mirror, and e-papers. In this paper, high-performing Al-doped NiO porous electrochromic film grown on ITO substrate has been prepared via a layered double hydroxides(LDHs) precursor in situ pyrolytic route. The Al{sup 3+} ions distributed homogenously within the NiO matrix can significantly influence the crystallinity of Ni-Al LDH and NiO:Al{sup 3+} films. The electrochromic performance of the films were evaluated by means of UV–vis absorption spectroscopy, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry(CA) measurements. In addition, themore » ratio of Ni{sup 3+}/Ni{sup 2+} also varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range (58.4%), fast switching speed (bleaching/coloration times are 1.8/4.2 s, respectively) and excellent durability (30% decrease after 2000 cycles). The improved performance was owed to the synergy of large NiO film specific surface area and porous morphology, as well as Al doping stifled the formation of Ni{sup 3+} making bleached state more pure. This LDHs precursor pyrolytic method is simple, low-cost and environmental benign and is feasible for the preparation of NiO:Al and other Al-doped oxide thin film. - Graphical abstract: The ratio of Ni{sup 3+}/Ni{sup 2+} varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range, fast switching speed and excellent durability. Display Omitted.« less
NASA Astrophysics Data System (ADS)
Dev, B. N.; Banu, Nasrin; Fassbender, J.; Grenzer, J.; Schell, N.; Bischoff, L.; Groetzschel, R.; McCord, J.
2017-10-01
Fabrication of a multistrip magnetic/nonmagnetic structure in a thin sandwiched Ni layer [Si(5 nm)/Ni(15 nm)/Si] by a focused ion beam (FIB) irradiation has been attempted. A control experiment was initially performed by irradiation with a standard 30 keV Ga ion beam at various fluences. Analyses were carried out by Rutherford backscattering spectrometry, X-ray reflectivity, magnetooptical Kerr effect (MOKE) measurements and MOKE microscopy. With increasing ion fluence, the coercivity as well as Kerr rotation decreases. A threshold ion fluence has been identified, where ferromagnetism of the Ni layer is lost at room temperature and due to Si incorporation into the Ni layer, a Ni0.68Si0.32 alloy layer is formed. This fluence was used in FIB irradiation of parallel 50 nm wide stripes, leaving 1 µm wide unirradiated stripes in between. MOKE microscopy on this FIB-patterned sample has revealed interacting magnetic domains across several stripes. Considering shape anisotropy effects, which would favour an alignment of magnetization parallel to the stripe axis, the opposite behaviour is observed. Magneto-elastic effects introducing a stress-induced anisotropy component oriented perpendicular to the stripe axis are the most plausible explanation for the observed behaviour.
NASA Astrophysics Data System (ADS)
Meisner, S. N.; Yakovlev, E. V.; Semin, V. O.; Meisner, L. L.; Rotshtein, V. P.; Neiman, A. A.; D'yachenko, F.
2018-04-01
The physical-mechanical properties of the Ti-Ta based surface alloy with thickness up to ∼2 μm fabricated through the multiple (up to 20 cycles) alternation of magnetron deposition of Ti70Ta30 (at.%) thin (50 nm) films and their liquid-phase mixing with the NiTi substrate by microsecond low-energy, high current pulsed electron beam (LEHCPEB: ≤15 keV, ∼2 J/cm2) are presented. Two types of NiTi substrates (differing in the methods of melting alloys) were pretreated with LEHCPEB to improve the adhesion of thin-film coating and to protect it from local delimitation because of the surface cratering under pulsed melting. The methods used in the research include nanoindentation, transmission electron microscopy, and depth profile analysis of nanohardness, Vickers hardness, elastic modulus, depth recovery ratio, and plasticity characteristic as a function of indentation depth. For comparison, similar measurements were carried out with NiTi substrates in the initial state and after LEHCPEB pretreatment, as well as on "Ti70Ta30(1 μm) coating/NiTi substrate" system. It was shown that the upper surface layer in both NiTi substrates is the same in properties after LEHCPEB pretreatment. Our data suggest that the type of multilayer surface structure correlates with its physical-mechanical properties. For NiTi with the Ti-Ta based surface alloy ∼1 μm thick, the highest elasticity falls on the upper submicrocrystalline layer measuring ∼0.2 μm and consisting of two Ti-Ta based phases: α‧‧ martensite (a = 0.475 nm, b = 0.323 nm, c = 0.464 nm) and β austenite (a = 0.327 nm). Beneath the upper layer there is an amorphous sublayer followed by underlayers with coarse (>20 nm) and fine (<20 nm) average grain sizes which provide a gradual transition of the mechanical parameters to the values of the NiTi substrate.
Studying Pulsed Laser Deposition conditions for Ni/C-based multi-layers
NASA Astrophysics Data System (ADS)
Bollmann, Tjeerd R. J.
2018-04-01
Nickel carbon based multi-layers are a viable route towards future hard X-ray and soft γ-ray focusing telescopes. Here, we study the Pulsed Laser Deposition growth conditions of such bilayers by Reflective High Energy Electron Diffraction, X-ray Reflectivity and Diffraction, Atomic Force Microscopy, X-ray Photoelectron Spectroscopy and cross-sectional Transmission Electron Microscopy analysis, with emphasis on optimization of process pressure and substrate temperature during growth. The thin multi-layers are grown on a treated SiO substrate resulting in Ni and C layers with surface roughnesses (RMS) of ≤0.2 nm. Small droplets resulting during melting of the targets surface increase the roughness, however, and cannot be avoided. The sequential process at temperatures beyond 300 °C results into intermixing between the two layers, being destructive for the reflectivity of the multi-layer.
P-channel transparent thin-film transistor using physical-vapor-deposited NiO layer
NASA Astrophysics Data System (ADS)
Lin, Chiung-Wei; Chung, Wei-Chieh; Zhang, Zhao-De; Hsu, Ming-Chih
2018-01-01
The effect of oxygen (O) content on the electrical properties of physical-vapor-deposited nickel oxide (PVD-NiO) was studied. When the NiO target was sputtered, introducing O2 can lead to the formation of Ni3+ ions in the deposited film. These Ni3+ ions can act as acceptors. However, there were too many Ni3+ ions that were obtained following the introduction of O atoms. It resulted in intensive p-type conduction and made the O2-introduced PVD-NiO behave as a conductor. Thus, it was possible to reduce the O content of PVD-NiO to obtain a p-type semiconductor. In this study, a transparent PVD-NiO film with a carrier concentration of 1.62 × 1017 cm-3 and a resistivity of 3.74 Ω cm was sputter-deposited within pure argon plasma. The thin-film transistor (TFT) employing this proposed PVD-NiO can result in good current switching, and even operated at very low drain-source voltage. The ON/OFF current ratio, field-effect carrier mobility, and threshold voltage of the proposed NiO TFT were 3.61 × 104, 1.09 cm2 V-1 s-1 and -3.31 V, respectively.
Spin-orbit torque based magnetization switching in Pt/Cu/[Co/Ni]5 multilayer structures
NASA Astrophysics Data System (ADS)
Ostwal, Vaibhav; Penumatcha, Ashish; Hung, Yu-Ming; Kent, Andrew D.; Appenzeller, Joerg
2017-12-01
Spin-Orbit Torque (SOT) in Heavy Metal/Ferromagnet (HM/FM) structures provides an important tool to control the magnetization of FMs and has been an area of interest for memory and logic implementation. Spin transfer torque on the FM in such structures is attributed to two sources: (1) the Spin Hall effect in the HM and (2) the Rashba-effect at the HM/FM interface. In this work, we study the SOT in a Pt/[Co,Ni] structure and compare its strength with the SOT in a Pt/Cu/[Co,Ni] structure where copper, a metal with a low spin-orbit interaction, is inserted between the Pt (HM) layer and the [Co,Ni] (FM) layer. We use an AC harmonic measurement technique to measure the strength of the SOT on the magnetic thin-film layer. Our measurements show that a significant SOT is exerted on the magnetization even after a 6 nm thick copper layer is inserted between the HM and the FM. Also, we find that this torque can be used to switch a patterned magnetic layer in the presence of an external magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellar, S.A.
This thesis report the surface-structure determination of three, ultra-thin magnetic transition-metal films, Fe/Au(100), Mn/Ni(100), and Mn/Cu(100) using Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) and photoelectron holography. These structural studies are the first to use non-s initial states in the ARPEFS procedure. This thesis also reports an ARPEFS surface-structure determination of a two-dimensional transition-metal oxide, [(1 x 1)O/W(110)] x 12. The authors have analyzed the ARPFES signal from the Au 4f{sub 7/5} core level of the Au(1 ML)/Fe(15 ML)/Au(100) system. The analysis shows that the Fe grows layer by layer with one monolayer of gold, acting as a surfactant, remaining onmore » top of the growing Fe layers. These surface gold atoms sit in the four-fold hollow site, 1.67 {+-} 0.02 A above the iron surface. The grown Fe layer is very much like the bulk, bcc iron, with an interlayer spacing of 1.43 {+-} 0.03 A. Analysis of the Mn 3p ARPEFS signals from c(2 x 2)Mn/Ni(100) and c(2 x 2)Mn/Cu(100) shows that the Mn forms highly corrugated surface alloys. The corrugation of the Mn/Ni(100) and Mn/Cu(100) systems are 0.24 {+-} 0.02 A and 0.30 {+-} 0.04 A respectively. In both cases the Mn is sticking above the plane of the surface substrate atoms. For the Mn/Ni(100) system the first layer Ni is contracted 4% from the bulk value. The Mn/Cu(100) system shows bulk spacing for the substrate Cu. Photoelectron holography shows that the Mn/Ni interface is very abrupt with very little Mn leaking into the second layer, while the Mn/Cu(100) case has a significant amount of Mn leaking into the second layer. A new, five-element electrostatic electron lens was developed for hemispherical electron-energy analyzers. This lens system can be operated at constant transverse or constants angular magnification, and has been optimized for use with the very small photon-spot sizes. Improvements to the hemispherical electron-energy analyzer are also discussed.« less
NASA Astrophysics Data System (ADS)
Ali, Ahmad Hadi; Abu Bakar, Ahmad Shuhaimi; Hassan, Zainuriah
2014-10-01
ITO-based transparent conductive electrodes (TCE) with Ag/Ni thin metal under-layer were deposited on Si and glass substrates by thermal evaporator and RF magnetron sputtering system. Ceramic ITO with purity of 99.99% and In2O3:SnO2 weight ratio of 90:10 was used as a target at room temperature. Post-deposition annealing was performed on the TCE at moderate temperature of 500 °C, 600 °C and 700 °C under N2 ambient. It was observed that the structural properties, optical transmittance, electrical characteristics and surface morphology were improved significantly after the post-annealing process. Post-annealed ITO/Ag/Ni at 600 °C shows the best quality of TCE with figure-of-merit (FOM) of 1.5 × 10-2 Ω-1 and high optical transmittance of 83% at 470 nm as well as very low electrical resistivity of 4.3 × 10-5 Ω-cm. The crystalline quality and surface morphological plays an important role in determining the quality of the TCE multilayer thin films properties.
Experimental analysis of two-layered dissimilar metals by roll bonding
NASA Astrophysics Data System (ADS)
Zhao, Guanghui; Li, Yugui; Li, Juan; Huang, Qingxue; Ma, Lifeng
2018-02-01
Rolling reduction and base layers thickness have important implications for rolling compounding. A two-layered 304 stainless steel/Q345R low alloyed steel was roll bonded. The roll bonding was performed at the three thickness reductions of 25%, 40% and 55% with base layers of various thicknesses (Q345R). The microstructures of the composite were investigated by the ultra-deep microscope (OM) and scanning electron microscope (SEM) and Transmission electron microscope (TEM). Simultaneously, the mechanical properties of the composite were experimentally measured and the tensile fracture surfaces were observed by SEM. The interfaces were successfully bonded without any cracking or voids, which indicated a good fabrication of the 304/Q345R composite. The rolling reduction rate and thinning increase of the substrate contributed to the bonding effects appearance of the roll bonded sheet. The Cr and Ni enriched diffusion layer was formed by the interface elements diffusion. The Cr and Ni diffusion led to the formation of ˜10 μm wide Cr and Ni layers on the carbon steel side.
Growth and sacrificial oxidation of transition metal nanolayers
NASA Astrophysics Data System (ADS)
Tsarfati, Tim; Zoethout, Erwin; van de Kruijs, Robbert; Bijkerk, Fred
2009-04-01
Growth and oxidation of Au, Pt, Pd, Rh, Cu, Ru, Ni and Co layers of 0.3-4.3 nm thickness on Mo have been investigated with ARPES and AFM. Co and Ni layers oxidize while the Mo remains metallic. For nobler metals, the on top O and oxidation state of subsurface Mo increase, suggesting sacrificial e - donation by Mo. Au and Cu, in spite of their significantly lower surface free energy, grow in islands on Mo and actually promote Mo oxidation. Applications of the sacrificial oxidation in nanometer thin layers exist in a range of nanoscopic devices, such as nano-electronics and protection of e.g. multilayer X-ray optics for astronomy, medicine and lithography.
Ben Slama, Sonia; Hajji, Messaoud; Ezzaouia, Hatem
2012-08-17
Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications.
2012-01-01
Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341
Optically-free-standing InGaN microdisks with metallic reflectors
NASA Astrophysics Data System (ADS)
Zhang, Xuhui; To, Chap Hang; Choi, Hoi Wai
2017-01-01
The optical properties of free-standing thin-film microdisks with NiAg metallic reflectors are compared with those with an indium tin oxide (ITO) interfacial layer. The microdisks have been fabricated by a combination of microsphere lithography and laser lift-off processes. Optical-pumped lasing from the microdisk with NiAg reflector has been observed, with reduced threshold and higher quality factor compared those with ITO layers, attributed to improved optical confinement due to the reflectivity of the Ag coating. The results are supported by three-dimensional (3D) finite-difference-time-domain (FDTD) simulations.
Magnetic skin layer of NiO(100) probed by polarization-dependent spectromicroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, Suman, E-mail: suman.mandal@sscu.iisc.ernet.in; Menon, Krishnakumar S. R., E-mail: krishna.menon@saha.ac.in; Belkhou, Rachid
2014-06-16
Using polarization-dependent x-ray photoemission electron microscopy, we have investigated the surface effects on antiferromagnetic (AFM) domain formation. Depth-resolved information obtained from our study indicates the presence of strain-induced surface AFM domains on some of the cleaved NiO(100) crystals, which are unusually thinner than bulk AFM domain wall widths (∼150 nm). Existence of such magnetic skin layer is substantiated by exchange-coupled ferromagnetic Fe domains in Fe/NiO(100), thereby evidencing the influence of this surface AFM domains on interfacial magnetic coupling. Our observations demonstrate a depth evolution of AFM structure in presence of induced surface strain, while the surface symmetry-breaking in absence of inducedmore » strain does not modify the bulk AFM domain structure. Realization of such thin surface AFM layer will provide better microscopic understanding of the exchange bias phenomena.« less
Local oxidation using scanning probe microscope for fabricating magnetic nanostructures.
Takemura, Yasushi
2010-07-01
Local oxidation technique using atomic force microscope (AFM) was studied. The local oxidation of ferromagnetic metal thin films was successfully performed by AFM under both contact and dynamic force modes. Modification of magnetic and electrical properties of magnetic devices fabricated by the AFM oxidation was achieved. Capped oxide layers deposited on the ferromagnetic metal films are advantageous for stable oxidation due to hydrophilic surface of oxide. The oxide layer is also expected to prevent magnetic devices from degradation by oxidation of ferromagnetic metal. As for modification of magnetic property, the isolated region of CoFe layer formed by nanowires of CoFe-oxide exhibited peculiar characteristic attributed to the isolated magnetization property and pinning of domain wall during magnetization reversal. Temperature dependence of current-voltage characteristic of the planar-type tunnel junction consisting of NiFe/NiFe-oxide/NiFe indicated that the observed current was dominated by intrinsic tunneling current at the oxide barrier.
Ho, Thi Anh; Bae, Changdeuck; Nam, Hochul; Kim, Eunsoo; Lee, Seung Yong; Park, Jong Hyeok; Shin, Hyunjung
2018-04-18
We describe the direct preparation of crystalline Ni 3 S 2 thin films via atomic layer deposition (ALD) techniques at temperatures as low as 250 °C without postthermal treatments. A new ALD chemistry is proposed using bis(1-dimethylamino-2-methyl-2-butoxy) nickel(II) [Ni(dmamb) 2 ] and H 2 S as precursors. Homogeneous and conformal depositions of Ni 3 S 2 films were achieved on 4 in. wafers (both metal and oxide substrates, including Au and SiO 2 ). The resulting crystalline Ni 3 S 2 layers exhibited highly efficient and stable performance as electrocatalysts for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline solutions, with a low overpotential of 300 mV and a high turnover frequency for HER and an overpotential of 400 mV for OER (at a current density of 10 mA/cm 2 ). Using our Ni 3 S 2 films as both the cathode and the anode, two-electrode full-cell electrolyzers were constructed, which showed stable operation for 100 h at a current density of 10 mA/cm 2 . The proposed ALD electrocatalysts on planar surfaces exhibited the best performance among Ni 3 S 2 materials for overall water splitting recorded to date.
Holey nickel-cobalt layered double hydroxide thin sheets with ultrahigh areal capacitance
NASA Astrophysics Data System (ADS)
Zhi, Lei; Zhang, Wenliang; Dang, Liqin; Sun, Jie; Shi, Feng; Xu, Hua; Liu, Zonghuai; Lei, Zhibin
2018-05-01
Strong coupling of electroactive components on conductive carbonaceous matrix to fabricate flexible hybrid electrodes represents a promising approach towards high performance supercapacitors. This work reports the fabrication of holey nickel cobalt layered double hydroxide (NiCo-LDH) nanosheets that are vertically grown on the cotton cloth-derived activated textile carbon (aTC). The abundant nanoholes on the thin-sheet NiCo-LDH not only enhance the electrode efficiency for efficient Faradaic redox reactions but also facilitate access of electrolyte to the electrode surface, thus giving rise to 70% capacitance arising from their outer surface. As a result, the aTC-NiCo hybrid electrode is capable of simultaneously achieving extremely high areal capacitance (6.37 F cm-2), mass capacitance (525 F g-1) and volumetric capacitance (249 F cm-3) at a practical level of mass loading (6.72 mg cm-2). Moreover, a solid-state asymmetric capacitor built with aTC-NiCo as positive electrode and active carbon-coated on aTC as negative electrode can deliver a volumetric energy density of 7.4 mWh cm-3 at a power density of 103 mW cm-3, while preserving a superior power performance, satisfying cycling stability and good mechanical flexibility.
NASA Astrophysics Data System (ADS)
Singh, S. K.; Singhal, R.
2017-09-01
In the present work, we study the annealing and swift heavy ion (SHI) beam induced modifications in the optical and structural properties of sandwiched structured Carbon-gold-Carbon (a-C/Au/a-C) nanocomposite (NCs) thin films. The NCs thin films were synthesized by electron-beam evaporation technique at room temperature with ∼30 nm thickness for both carbon layer and ∼6 nm for gold layer. Gold-carbon NCs thin films were annealed in the presence of argon at a temperature of 500 °C, 600 °C and 750 °C. The NCs thin films were also irradiated with 90 MeV Ni ions beam with different ion fluences in the range from 3 × 1012, 6 × 1012 and 1 × 1013 ions/cm2. Surface plasmon resonance (SPR) of Au nanoparticles are not observed in the pristine film but, after annealing at temperature of 600 °C and 750 °C, it was clearly seen at ∼534 nm as confirmed by UV-visible absorption spectroscopy. 90 MeV Ni irradiated thin film at the fluence of 1 × 1013 ions/cm2 also show strong absorption band at ∼534 nm. The growth and size of Au nanoparticle for pristine and 90 MeV Ni ion irradiated thin film with fluence of 1 × 1013 ions/cm2, were estimated by Transmission electron microscopy (TEM) images with the bi-model distribution. The size of the gold nanoparticle (NPs) was found to be ∼4.5 nm for the pristine film and ∼5.4 nm for the irradiated film at a fluence of 1 × 1013 ions/cm2. The thickness and metal atomic fraction in carbon matrix were estimated by Rutherford backscattering spectroscopy (RBS). The effect of annealing as well as heavy ion irradiation on D and G band of carbon matrix were studied by Raman spectroscopy.
NASA Astrophysics Data System (ADS)
Kulesh, N. A.; Vázquez, M.; Lepalovskij, V. N.; Vas'kovskiy, V. O.
2018-02-01
Hysteresis properties and magnetization reversal in TbCo(30 nm) and FeNi(10 nm)/TbCo(30 nm) films with nanoscale antidot lattices are investigated to test the effect of nanoholes on the perpendicular anisotropy in the TbCo layer and the induced exchange bias in the FeNi layer. The antidots are introduced by depositing the films on top of hexagonally ordered porous anodic alumina substrates with pore diameter and interpore distance fixed to 75 nm and 105 nm, respectively. The analysis of combined vibrating sample magnetometry, Kerr microscopy and magnetic force microscopy imaging measurements has allowed us to link macroscopic and local magnetization reversal processes. For magnetically hard TbCo films, we demonstrate the tunability of magnetic anisotropy and coercive field (i.e., it increases from 0.2 T for the continuous film to 0.5 T for the antidot film). For the antidot FeNi/TbCo film, magnetization of FeNi is confirmed to be in plane. Although an exchange bias has been locally detected in the FeNi layer, the integrated hysteresis loop has increased coercivity and zero shift along the field axis due to the significantly decreased magnetic anisotropy of TbCo layer.
The dynamics of femtosecond pulsed laser removal of 20 nm Ni films from an interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrider, Keegan J.; Yalisove, Steven M.; Torralva, Ben
2015-09-21
The dynamics of femtosecond laser removal of 20 nm Ni films on glass substrates was studied using time-resolved pump-probe microscopy. 20 nm thin films exhibit removal at two distinct threshold fluences, removal of the top 7 nm of Ni above 0.14 J/cm{sup 2}, and removal of the entire 20 nm film above 0.36 J/cm{sup 2}. Previous work shows the top 7 nm is removed through liquid spallation, after irradiation the Ni melts and rapidly expands leading to tensile stress and cavitation within the Ni film. This work shows that above 0.36 J/cm{sup 2} the 20 nm film is removed in two distinct layers, 7 nm and 13 nm thick. The topmore » 7 nm layer reaches a speed 500% faster than the bottom 13 nm layer at the same absorbed fluence, 500–2000 m/s and 300–700 m/s in the fluence ranges studied. Significantly different velocities for the top 7 nm layer and bottom 13 nm layer indicate removal from an interface occurs by a different physical mechanism. The method of measuring film displacement from the development of Newton's rings was refined so it could be shown that the 13 nm layer separates from the substrate within 70 ps and accelerates to its final velocity within several hundred picoseconds. We propose that removal of the bottom 13 nm is consistent with heterogeneous nucleation and growth of vapor at the Ni-glass interface, but that the rapid separation and acceleration of the 13 nm layer from the Ni-glass interface requires consideration of exotic phases of Ni after excitation.« less
Nanostructured Transparent Conducting Oxides for Device Applications
NASA Astrophysics Data System (ADS)
Dutta, Titas
2011-12-01
Research on transparent conducting oxides (TCOs) alternative to indium tin oxide (ITO) has attracted a lot of attention due to the serious concern related to cost and chemical stability of indium tin oxide. The primary aim of this research is to develop low cost alternative transparent conducting oxides with an eye towards (1) increasing the organic solar cell efficiency and (2) fabricating transparent electronic devices utilizing p-type TCOs. To investigate the fundamental properties, the novel TCO films have been grown on sapphire and economical glass substrates using pulsed laser deposition (PLD) technique. The films were also grown under different deposition conditions in order to understand the effect of processing parameters on the film properties. The characteristics of the thin films have been investigated in detail using (X-ray diffraction, TEM, X-ray photoelectron spectroscopy (XPS), UV- photoelectron spectroscopy (UPS), four probe resistivity and UV-Vis transmittance measurements) in order to establish processing-structure-property correlation. ZnO doped with group III elements is a promising candidate because of its superior stability in hydrogen environment, benign nature and relatively inexpensive supply. However, ZnO based TCO films suffer from low work function (4.4 eV, compared to that of 4.8 eV for ITO), which increases the energy barrier and affects the carrier transport across ZnGa0.05O/organic layer interface. To overcome this issue of ZnO based TCOs, the growth of bilayered structure consisting of very thin MoOx (2.0 < x < 2.75), and/or p-Li xNi1-xO (0 ≤ x≤ 0.07) over layer on Zn0.95Ga 0.05O (GZO) film by pulsed laser ablation is proposed. The multiple oxidation states present in the over layers (Mo4+, Mo 5+ and Mo6+ in MoOx and Ni2+ and Ni3+ in NiO1+x), which result in desired TCO characteristics were determined and controlled by growth parameters and optimal target composition. These optimized bilayer films exhibited good optical transmittance (≥ 80%) and low resistivity of ˜ 10-4 O-cm. The optimized NiO1+x / GZO and MoOx / GZO bilayers showed significant increase in work function values (˜5.3 eV). The work function of the bilayer films was tuned by varying the processing conditions and doping of over layers. Preliminary test device results of the organic photovoltaic cells (OPVs) based on these surfaces modified TCO layers have shown an increase in the open circuit voltage (Voc) and/or increase in Fill factor (FF) and the power conversion efficiency of these devices. These results suggest that the surface modified GZO films have a potential to substitute for ITO in transparent electrode applications. To gain a better understanding of the fundamentals and factors affecting the properties of p-type TCO, NiO thin films have been grown on c-sapphire and glass substrates with controlled properties. Growth of NiO on c-sapphire occurs epitaxially in [111] direction with two types of crystalline grains rotated by 60° with respect to each other. We have also investigated the effects of the deposition parameters and Li doping concentration variations on the electrical and optical properties of NiO thin films. The analysis of the resistivity measurement showed that doped Li+ ions occupy the substitutional sites in the NiO films, enhancing the p-type conductivity. The minimum resistivity of 0.15 O-cm was obtained for Li0.07Ni 0.93O film. The results of this research help to understand the conduction mechanisms in TCOs and are critical to further improvement and optimization of TCO properties. This work has also demonstrated interesting possibilities for fabricating a p-LixNi1-xO/ i-MgZnO /n-ZnO heterojunction diode on c-sapphire. It has been demonstrated that epitaxial LixNi 1-xO can be grown on ZnO integrated with c-sapphire. Heteroeptaxial growth of the p-n junction is technologically important as it minimizes the electron scattering at the interface. The insertion of i-MgZnO between the p and n layer led to improved current-voltage characteristics with reduced leakage current. An attempt has been made to elucidate the role of point defects, in controlling the carrier concentration and transport characteristics of nanostructured TCO films. This study presents the systematic changes in structural, electrical and optical properties of NiO thin films introduced by nanosecond duration Ultraviolet Excimer laser pulses. NiO films show transformation from p-type semiconducting to n-type conducting behavior with three order of magnitude decrease in resistivity, while maintaining its cubic crystal structure and good epitaxial relationship. This phenomenon is reversible via oxygen annealing. From XPS analysis, a strong correlation has been established between n-type conductivity and non-equilibrium concentrations of laser induced Ni 0-like defect states.
NASA Astrophysics Data System (ADS)
Yan, X. L.; Coetsee, E.; Wang, J. Y.; Swart, H. C.; Terblans, J. J.
2017-07-01
The polycrystalline Ni/Cu multilayer thin films consisting of 8 alternating layers of Ni and Cu were deposited on a SiO2 substrate by means of electron beam evaporation in a high vacuum. Concentration-depth profiles of the as-deposited multilayered Ni/Cu thin films were determined with Auger electron spectroscopy (AES) in combination with Ar+ ion sputtering, under various bombardment conditions with the samples been stationary as well as rotating in some cases. The Mixing-Roughness-Information depth (MRI) model used for the fittings of the concentration-depth profiles accounts for the interface broadening of the experimental depth profiling. The interface broadening incorporates the effects of atomic mixing, surface roughness and information depth of the Auger electrons. The roughness values extracted from the MRI model fitting of the depth profiling data agrees well with those measured by atomic force microscopy (AFM). The ion sputtering induced surface roughness during the depth profiling was accordingly quantitatively evaluated from the fitted MRI parameters with sample rotation and stationary conditions. The depth resolutions of the AES depth profiles were derived directly from the values determined by the fitting parameters in the MRI model.
NASA Astrophysics Data System (ADS)
Schoop, Julius; Balk, T. John
2014-04-01
Thin films of nanoporous palladium (np-Pd) were produced from binary palladium-nickel (Pd-Ni) precursor alloys. A suitable precursor alloy and a method of dealloying to yield optimum nanoporosity (average pore/ligament size of 7 nm) were developed by studying the effects of various processing parameters on final microstructure. To obtain crack-free np-Pd, a 100 nm thin film of 20 at. pct Pd (80 at. pct Ni) can be dealloyed for ~5 hours in a 1 M solution of sulfuric acid, with oleic acid and oleylamine added as surfactants. Both shorter and longer dealloying times, as well as heating, inhibit the formation of crack-free np-Pd. Stress measurements at different stages of dealloying revealed that the necessary dealloying time is determined by the diffusion-controlled corrosion reaction occurring within the thin film during dealloying. Strong interaction between hydrogen and np-Pd was reflected in the stress evolution during dealloying. A mechanism is proposed for the formation of a Ni-rich dense top layer that results from H-induced swelling during initial dealloying and permits the development of defect-free np-Pd beneath, by limiting the speed of dealloying.
Growth of Monolayer Graphene on Nanoscale Copper-Nickel Alloy Thin Films
Cho, Joon Hyong; Gorman, Jason J.; Na, Seung Ryul; Cullinan, Michael
2017-01-01
Growth of high quality and monolayer graphene on copper thin films on silicon wafers is a promising approach to massive and direct graphene device fabrication in spite of the presence of potential dewetting issues in the copper film during graphene growth. Current work demonstrates roles of a nickel adhesion coupled with the copper film resulting in mitigation of dewetting problem as well as uniform monolayer graphene growth over 97 % coverage on films. The feasibility of monolayer graphene growth on Cu-Ni alloy films as thin as 150 nm in total is also demonstrated. During the graphene growth on Cu-Ni films, the nickel adhesion layer uniformly diffuses into the copper thin film resulting in a Cu-Ni alloy, helping to promote graphene nucleation and large area surface coverage. Furthermore, it was found that the use of extremely thin metal catalyst films also constraint the total amount of carbon that can be absorbed into the film during growth, which helps to eliminate adlayer formation and promote monolayer growth regardless of alloying content, thus improving the monolayer fraction of graphene coverage on the thinner films. These results suggest a path forward for the large scale integration of high quality, monolayer graphene into nanoelectronic and nanomechanical devices. PMID:28669999
NASA Astrophysics Data System (ADS)
Jo, Jea Woong; Seo, Myung-Seok; Jung, Jae Woong; Park, Joon-Suh; Sohn, Byeong-Hyeok; Ko, Min Jae; Son, Hae Jung
2018-02-01
The control of the optoelectronic properties of the interlayers of perovskite solar cells (PSCs) is crucial for achieving high photovoltaic performances. Of the solution-processable interlayer candidates, NiOx is considered one of the best inorganic hole-transporting layer (HTL) materials. However, the power conversion efficiencies (PCEs) of NiOx-based PSCs are limited by the unfavorable contact between perovskite layers and NiOx HTLs, the high density of surface trap sites, and the inefficient charge extraction from perovskite photoactive layers to anodes. Here, we introduce a new organic-inorganic double HTL consisting of a Cu:NiOx thin film passivated by a conjugated polyelectrolyte (PhNa-1T) film. This double HTL has a significantly lower pinhole density and forms better contact with perovskite films, which results in enhanced charge extraction. As a result, the PCEs of PSCs fabricated with the double HTL are impressively improved up to 17.0%, which is more than 25% higher than that of the corresponding PSC with a Cu:NiOx HTL. Moreover, PSCs with the double HTLs exhibit similar stabilities under ambient conditions to devices using inorganic Cu:NiOx. Therefore, this organic-inorganic double HTL is a promising interlayer material for high performance PSCs with high air stability.
Kandasamy, N; Venugopal, T; Kannan, K
2018-06-01
A flower like cobalt oxide nanostructured thin film (Co2O3) on Nickel (Ni) plate as have been successfully developed via alcoholic Seed Layer assisted chemical bath Deposition (SLD) process. Through the controlled alkaline electrolytes, the flower and paddles like Co2O3 nanoarchitectures were formed. The prepared thin film was characterized by X-ray diffraction (XRD), scanning electron microscope with energy dispersive X-ray (SEM and EDX), Atomic Force Microscope (AFM), Raman spectroscopy techniques. Electron micrograph reveals the flower and paddles like nanostructured Co2O3 thin film deposited on Ni plates. The electrochemical characteristics were investigated using cyclic voltammetry (CV), charge-discharge and AC impedance spectroscopy in different aqueous electrolytes such as NaOH, KOH, and LiOH. The maximum specific capacitance of 856 Fg-1 was attained with 2 M KOH electrolyte with 2 mVs-1 of the Co2O3 thin film coated Ni plate at 80 °C using SLD method. The capacitance values obtained with various electrolytes are in the order of KOH > NaOH > LiOH. The results indicate that the present method is economical and the material is ecofriendly with enhanced capacitance property.
Resonant x-ray diffraction revealing chemical disorder in sputtered L10 FeNi on Si(0 0 1)
NASA Astrophysics Data System (ADS)
Frisk, Andreas; Lindgren, Bengt; Pappas, Spiridon D.; Johansson, Erik; Andersson, Gabriella
2016-10-01
In the search for new rare earth free permanent magnetic materials, FeNi with a L10 structure is a possible candidate. We have synthesized the phase in the thin film form by sputtering onto HF-etched Si(0 0 1) substrates. Monatomic layers of Fe and Ni were alternately deposited on a Cu buffer layer, all of which grew epitaxially on the Si substrates. A good crystal structure and epitaxial relationship was confirmed by in-house x-ray diffraction (XRD). The chemical order, which to some part is the origin of an uniaxial magnetic anisotropy, was measured by resonant XRD. The 0 0 1 superlattice reflection was split in two symmetrically spaced peaks due to a composition modulation of the Fe and Ni layers. Furthermore the influence of roughness induced chemical anti-phase domains on the RXRD pattern is exemplified. A smaller than expected magnetic uniaxial anisotropy energy was obtained, which is partly due to the composition modulations, but the major reason is concluded to be the Cu buffer surface roughness.
Resonant x-ray diffraction revealing chemical disorder in sputtered L10 FeNi on Si(0 0 1).
Frisk, Andreas; Lindgren, Bengt; Pappas, Spiridon D; Johansson, Erik; Andersson, Gabriella
2016-10-12
In the search for new rare earth free permanent magnetic materials, FeNi with a L10 structure is a possible candidate. We have synthesized the phase in the thin film form by sputtering onto HF-etched Si(0 0 1) substrates. Monatomic layers of Fe and Ni were alternately deposited on a Cu buffer layer, all of which grew epitaxially on the Si substrates. A good crystal structure and epitaxial relationship was confirmed by in-house x-ray diffraction (XRD). The chemical order, which to some part is the origin of an uniaxial magnetic anisotropy, was measured by resonant XRD. The 0 0 1 superlattice reflection was split in two symmetrically spaced peaks due to a composition modulation of the Fe and Ni layers. Furthermore the influence of roughness induced chemical anti-phase domains on the RXRD pattern is exemplified. A smaller than expected magnetic uniaxial anisotropy energy was obtained, which is partly due to the composition modulations, but the major reason is concluded to be the Cu buffer surface roughness.
Template-assisted electrodeposition of Ni and Ni/Au nanowires on planar and curved substrates
NASA Astrophysics Data System (ADS)
Guiliani, Jason; Cadena, John; Monton, Carlos
2018-02-01
We present a variant of the template-assisted electrodeposition method that enables the synthesis of large arrays of nanowires (NWs) on flat and curved substrates. This method uses ultra-thin (50 nm-10 μm) anodic aluminum oxide membranes as a template. We have developed a procedure that uses a two-polymer protective layer to transfer these templates onto almost any surface. We have applied this technique to the fabrication of large arrays of Ni and segmented composition Ni/Au NWs on silicon wafers, Cu tapes, and thin (0.2 mm) Cu wires. In all cases, a complete coverage with NWs is achieved. The magnetic properties of these samples show an accentuated in-plane anisotropy which is affected by the form of the substrate (flat or curve) and the length of the NWs. Unlike current lithography techniques, the fabrication method proposed here allows the integration of complex nanostructures into devices, which can be fabricated on unconventional surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madito, M. J.; Bello, A.; Dangbegnon, J. K.
2016-01-07
A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupledmore » plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.« less
NASA Astrophysics Data System (ADS)
Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Oliphant, C. J.; Jordaan, W. A.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Fabiane, M.; Manyala, N.
2016-01-01
A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.
Absorption Amelioration of Amorphous Si Film by Introducing Metal Silicide Nanoparticles.
Sun, Hui; Wu, Hsuan-Chung; Chen, Sheng-Chi; Ma Lee, Che-Wei; Wang, Xin
2017-12-01
Amorphous Si (a-Si) films with metal silicide are expected to enhance the absorption ability of pure a-Si films. In this present study, NiSi (20 nm)/Si (40 nm) and AlSi (20 nm)/Si (40 nm) bilayer thin films are deposited through radio frequency (RF) sputtering at room temperature. The influence of the film's composition and the annealing temperature on the film's optical absorption is investigated. The results show that all the NiSi/Si films and AlSi/Si films possess higher absorption ability compared to a pure a-Si film (60 nm). After annealing from 400 to 600 °C under vacuum for 1 h, the Si layer remains amorphous in both NiSi/Si films and AlSi/Si films, while the NiSi layer crystallizes into NiSi 2 phase, whereas Al atoms diffuse through the whole film during the annealing process. Consequently, with increasing the annealing temperature, the optical absorption of NiSi/Si films increases, while that of AlSi/Si films obviously degrades.
Park, Chan-Young; Yang, Young-Hwan; Kim, Seong-Won; Lee, Sung-Min; Kim, Hyung-Tae; Jang, Byung-Koog; Lim, Dae-Soon; Oh, Yoon-Suk
2014-11-01
The effect of a 5 mol% La2O3 addition on the forming behavior and compositional variation at interface between a 4 mol% Yttria (Y2O3) stabilized ZrO2 (4YSZ) top coat and bond coat (NiCrAlY) as a thermal barrier coating (TBC) has been investigated. Top coats were deposited by electron beam physical vapor deposition (EB PVD) onto a super alloy (Ni-Cr-Co-Al) substrate without pre-oxidation of the bond coat. Top coats are found to consist of dense columnar grains with a thin interdiffusion layer between metallic bond coats. In the as-received 4YSZ coating, a thin interdiffusion zone at the interface between the top and bond coats was found to consist of a Ni-Zr intermetallic compound with a reduced quantity of Y, Al or O elements. On the other hand, in the case of an interdiffusion area of 5 mol% La2O3-added 4YSZ coating, it was found that the complicated composition and structure with La-added YSZ and Ni-Al rich compounds separately. The thermal conductivity of 5 mol% La2O3-added 4YSZ coating (- 1.6 W/m x k at 1100 degrees C) was lower than a 4YSZ coating (- 3.2 W/m x k at 1100 degrees C) alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Wanyi; Tsai, Hsinhan; Blancon, Jean -Christophe
Hybrid perovskites are on a trajectory toward realizing the most efficient single-junction, solution-processed photovoltaic devices. However, a critical issue is the limited understanding of the correlation between the degree of crystallinity and the emergent perovskite/hole (or electron) transport layer on device performance and photostability. Here, the controlled growth of hybrid perovskites on nickel oxide (NiO) is shown, resulting in the formation of thin films with enhanced crystallinity with characteristic peak width and splitting reminiscent of the tetragonal phase in single crystals. Photophysical and interface sensitive measurements reveal a reduced trap density at the perovskite/NiO interface in comparison with perovskites grownmore » on poly(3,4-ethylene dioxy thiophene) polystyrene sulfonate. Photovoltaic cells exhibit a high open circuit voltage (1.12 V), indicating a near-ideal energy band alignment. Moreover, photostability of photovoltaic devices up to 10-Suns is observed, which is a direct result of the superior crystallinity of perovskite thin films on NiO. Here, these results elucidate the critical role of the quality of the perovskite/hole transport layer interface in rendering high-performance and photostable optoelectronic devices.« less
Nie, Wanyi; Tsai, Hsinhan; Blancon, Jean-Christophe; Liu, Fangze; Stoumpos, Costas C; Traore, Boubacar; Kepenekian, Mikael; Durand, Olivier; Katan, Claudine; Tretiak, Sergei; Crochet, Jared; Ajayan, Pulickel M; Kanatzidis, MercouriG; Even, Jacky; Mohite, Aditya D
2018-02-01
Hybrid perovskites are on a trajectory toward realizing the most efficient single-junction, solution-processed photovoltaic devices. However, a critical issue is the limited understanding of the correlation between the degree of crystallinity and the emergent perovskite/hole (or electron) transport layer on device performance and photostability. Here, the controlled growth of hybrid perovskites on nickel oxide (NiO) is shown, resulting in the formation of thin films with enhanced crystallinity with characteristic peak width and splitting reminiscent of the tetragonal phase in single crystals. Photophysical and interface sensitive measurements reveal a reduced trap density at the perovskite/NiO interface in comparison with perovskites grown on poly(3,4-ethylene dioxy thiophene) polystyrene sulfonate. Photovoltaic cells exhibit a high open circuit voltage (1.12 V), indicating a near-ideal energy band alignment. Moreover, photostability of photovoltaic devices up to 10-Suns is observed, which is a direct result of the superior crystallinity of perovskite thin films on NiO. These results elucidate the critical role of the quality of the perovskite/hole transport layer interface in rendering high-performance and photostable optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nie, Wanyi; Tsai, Hsinhan; Blancon, Jean -Christophe; ...
2017-12-11
Hybrid perovskites are on a trajectory toward realizing the most efficient single-junction, solution-processed photovoltaic devices. However, a critical issue is the limited understanding of the correlation between the degree of crystallinity and the emergent perovskite/hole (or electron) transport layer on device performance and photostability. Here, the controlled growth of hybrid perovskites on nickel oxide (NiO) is shown, resulting in the formation of thin films with enhanced crystallinity with characteristic peak width and splitting reminiscent of the tetragonal phase in single crystals. Photophysical and interface sensitive measurements reveal a reduced trap density at the perovskite/NiO interface in comparison with perovskites grownmore » on poly(3,4-ethylene dioxy thiophene) polystyrene sulfonate. Photovoltaic cells exhibit a high open circuit voltage (1.12 V), indicating a near-ideal energy band alignment. Moreover, photostability of photovoltaic devices up to 10-Suns is observed, which is a direct result of the superior crystallinity of perovskite thin films on NiO. Here, these results elucidate the critical role of the quality of the perovskite/hole transport layer interface in rendering high-performance and photostable optoelectronic devices.« less
The atomic level structure of the TiO(2)-NiTi interface.
Nolan, M; Tofail, S A M
2010-09-07
The biocompatibility of NiTi shape memory alloys (SMA) has made possible applications in invasive and minimally invasive biomedical devices. The NiTi intermetallic alloy spontaneously forms a thin passive layer of TiO(2), which provides its biocompatibility. The oxide layer is thought to form as Ti in the alloy reacts with oxygen. In this paper, we study the details of the oxide-alloy interface. The atomic model is the (110) NiTi surface interfaced with the (100) rutile TiO(2) surface; this combination provides the best lattice match of alloy and oxide. When the interface forms, static minimisations and molecular dynamics show that there is no migration of atoms between the alloy and the oxide. In the alloy there are some notable structural relaxations. We find that a columnar structure appears in which alternating long and short Ni-Ti bonds are present in each surface and subsurface plane into the fourth subsurface layer. The oxide undergoes some structural changes as a result of terminal oxygen coordinating to Ti in the NiTi surface. The electronic structure shows that Ti(3+) species are present at the interface, with Ti(4+) in the bulk of the oxide layer and that the metallic character of the alloy is unaffected by the interaction with oxygen, all of which is consistent with experiment. A thermodynamic analysis is used to examine the stability of different possible structures-a perfect interface and one with Ti and O vacancies. We find that under conditions typical of oxidation and shape memory treatments, the most stable interface structure is that with Ti vacancies in the alloy surface, leaving an Ni-rich layer, consistent with the experimental findings for this interface.
NASA Astrophysics Data System (ADS)
Bae, Seongtae
Since giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR) spinvalve effects were developed for the last two decades after discovered, world wide researches on applying these effects for various kinds of solid state active devices has provided a strong impact on challenging new functional micro-magnetoelectronic devices. In particular, recently developed nano-structured magnetic spin-valve thin film materials for spin-electronic devices are now considered as building blocks of state-of-the-art electronic engineering. This research has been concentrated on developing and designing magneto-electronic solid state devices with high thermal and electrical stability using an alpha-Fe 2O3 and NiO oxide anti-ferromagnetic exchange biased GMR bottom spin-valves (BSV), NiFe/Cu/Co and NiFe/Cu/CoFe based closed-flux metallic pseudo spin-valves, and PtMn exchange biased TMR spin-valves. The category covering this research is divided into four main research steps. First is to investigate exchange bias coupling characteristics of alpha-Fe2 O3 and NiO oxide Anti-ferromagnetic materials (AF)/Ferromagnetic (F) layer systems for optimizing exchange biased BSV and to study magnetic properties of various kinds of magnetic thin films including single through multi-layered structures for the fundamental research on NiFe/Cu/Co and NiFe/Cu/CoFe closed-flux metallic pseudo spin-valves. Second is to develop and improve new kinds of BSVs and closed-flux metallic spinvalves by controlling process parameters in terms of crystalline orientation texture of AF and F layers, interfacial surface roughness, grain size (its size distribution), chemical composition, and kinetics of sputtering film growth. Third is to design, to fabricate, and to investigate the magnetic and electrical properties of magneto-electronic devices as well as their applications such as GMR magnetoresistive random access memory (MRAM), GMR read head, TMR read head, and new kinds of GMR solid state devices, which can be promisingly substituted for current microelectronic devices. Finally, the last is to focus on studying electrical reliability of GMR read sensor and GMR MRAM cell in terms of electromigration-induced failures of various kinds of magnetic thin films, which are currently used in GMR spin-valve materials, and is to investigate the effects of current (or voltage) induced dielectric breakdown in aluminum oxide tunnel barrier under various testing conditions on the electrical stability of real TMR read sensors.
NASA Astrophysics Data System (ADS)
Jalili, S.; Hajakbari, F.; Hojabri, A.
2018-03-01
Silver (Ag) nanolayers were deposited on nickel oxide (NiO) thin films by DC magnetron sputtering. The thickness of Ag layers was in range of 20-80 nm by variation of deposition time between 10 and 40 s. X-ray diffraction results showed that the crystalline properties of the Ag/NiO films improved by increasing the Ag film thickness. Also, atomic force microscopy and field emission scanning electron microscopy images demonstrated that the surface morphology of the films was highly affected by film thickness. The film thickness and the size of particles change by elevating the Ag deposition times. The composition of films was determined by Rutherford back scattering spectroscopy. The transmission of light was gradually reduced by augmentation of Ag films thickness. Furthermore; the optical band gap of the films was also calculated from the transmittance spectra.
NASA Astrophysics Data System (ADS)
Graczyk, Piotr; Trzaskowska, Aleksandra; Załȩski, Karol; Mróz, Bogusław
2016-07-01
Full ferroelastic and simultaneously ferroelectric materials are interesting candidates for applications in devices based on multiferroic heterostructures. They should allow for non-volatile and low-power writing of data bits in magnetoelectric random access memories. Moreover, ferroelasticity, in contrast to piezoelectric material, make magnetic information in ferromagnetic film resistant to external fields. As an example for such a system, we have studied the magnetoelastic interaction between a thin ferromagnetic layer of {{Ni}}85{{Fe}}15 with a full ferroelastic-ferroelectric gadolinium molybdate {{Gd}}2{({{MoO}}4)}3 crystal. We have investigated the influence of {{Gd}}2{({{MoO}}4)}3 spontaneous strain onto magnetic properties of thin ferromagnetic film. Particularly, we have shown by Brillouin spectroscopy, that it is possible to modulate surface spin wave frequency of {{Ni}}85{{Fe}}15 by spontaneous strain of gadolinium molybdate substrate.
Magnetic properties of sputtered Permalloy/molybdenum multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romera, M.; Ciudad, D.; Maicas, M.
2011-10-15
In this work, we report the magnetic properties of sputtered Permalloy (Py: Ni{sub 80}Fe{sub 20})/molybdenum (Mo) multilayer thin films. We show that it is possible to maintain a low coercivity and a high permeability in thick sputtered Py films when reducing the out-of-plane component of the anisotropy by inserting thin film spacers of a non-magnetic material like Mo. For these kind of multilayers, we have found coercivities which are close to those for single layer films with no out-of-plane anisotropy. The coercivity is also dependent on the number of layers exhibiting a minimum value when each single Py layer hasmore » a thickness close to the transition thickness between Neel and Bloch domain walls.« less
Etching Selectivity of Cr, Fe and Ni Masks on Si & SiO2 Wafers
NASA Astrophysics Data System (ADS)
Garcia, Jorge; Lowndes, Douglas H.
2000-10-01
During this Summer 2000 I joined the Semiconductors and Thin Films group led by Dr. Douglas H. Lowndes at Oak Ridge National Laboratory’s Solid State Division. Our objective was to evaluate the selectivity that Trifluoromethane (CHF3), and Sulfur Hexafluoride (SF6) plasmas have for Si, SiO2 wafers and the Ni, Cr, and Fe masks; being this etching selectivity the ratio of the etching rates of the plasmas for each of the materials. We made use of Silicon and Silicon Dioxide-coated wafers that have Fe, Cr or Ni masks. In the semiconductor field, metal layers are often used as masks to protect layers underneath during processing steps; when these wafers are taken to the dry etching process, both the wafer and the mask layers’ thickness are reduced.
Kwon, Young-Nam; Kim, In-Chul
2013-11-01
Hydrothermal stability of a porous nickel-supported silica membrane was successfully improved by deposition of titania multilayers on colloidal silica particles embedded in the porous nickel fiber support. Porous nickel-supported silica membranes were prepared by means of a dipping-freezing-fast drying (DFF) method. The titania layers were deposited on colloidal silica particles by repeating hydrolysis and condensation reactions of titanium isopropoxide on the silica particle surfaces. The deposition of thin titania layers on the nickel-supported silica membrane was verified by various analytical tools. The water flux and the solute rejection of the porous Ni fiber-supported silica membranes did not change after titania layer deposition, indicating that thickness of titania layers deposited on silica surface is enough thin not to affect the membrane performance. Moreover, improvement of the hydrothermal stability in the titania-deposited silica membranes was confirmed by stability tests, indicating that thin titania layers deposited on silica surface played an important role as a diffusion barrier against 90 degrees C water into silica particles.
NASA Astrophysics Data System (ADS)
Godefroy, J. C.; Gageant, C.; Francois, D.
Thin film surface thermometers and thermal gradient fluxmeters developed by ONERA to monitor thermal exchanges in aircraft engines to predict the remaining service life of the components are described. The sensors, less than 80 microns thick, with flexible Kapton dielectric layers and metal substrates, are integrated into the shape of the surface being monitored. Features of Cu-n, Ni-, Au-, and Cr-based films, including mounting and circuitry methods that permit calibration and accurate signal analysis, are summarized. Results are discussed from sample applications of the devices on a symmetric NACA 65(1)-012 airfoil and on a turbine blade.
NASA Astrophysics Data System (ADS)
Chowdhury, D. P.; Chaudhuri, Jayanta; Raju, V. S.; Das, S. K.; Bhattacharjee, B. B.; Gangadharan, S.
1989-07-01
The wear analysis of a compression ring and cylinder housing of an Internal Combustion Engine by thin layer activation (TLA) with 40 MeV α-particles from the Variable Energy Cyclotron at Calcutta is reported. The calibration curves have been obtained for Fe and Ni using stacked foil activation technique for determining the absolute wear in these machine parts. It has been possible to determine the pattern of wear on the points along the surface of machine components. The minimum detectable depth in this wear study has been estimated at 0.11 ± 0.04 μm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eren, B.; Material Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720; Gysin, U.
2016-01-25
Few layer graphene and graphite are simultaneously grown on a ∼100 nm thick polycrystalline nickel film. The work function of few layer graphene/Ni is found to be 4.15 eV with a variation of 50 meV by local measurements with Kelvin probe force microscopy. This value is lower than the work function of free standing graphene due to peculiar electronic structure resulting from metal 3d-carbon 2p(π) hybridization.
2014-01-01
We report on the successful integration of low-cost, conformal, and versatile atomic layer deposited (ALD) dielectric in Ni–Al2O3–Co magnetic tunnel junctions (MTJs) where the Ni is coated with a spin-filtering graphene membrane. The ALD tunnel barriers, as thin as 0.6 nm, are grown layer-by-layer in a simple, low-vacuum, ozone-based process, which yields high-quality electron-transport barriers as revealed by tunneling characterization. Even under these relaxed conditions, including air exposure of the interfaces, a significant tunnel magnetoresistance is measured highlighting the robustness of the process. The spin-filtering effect of graphene is enhanced, leading to an almost fully inversed spin polarization for the Ni electrode of −42%. This unlocks the potential of ALD for spintronics with conformal, layer-by-layer control of tunnel barriers in magnetic tunnel junctions toward low-cost fabrication and down-scaling of tunnel resistances. PMID:24988469
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Theodor; Warneke, Jonas; Zielasek, Volkmar, E-mail: zielasek@uni-bremen.de
2016-07-15
Optimizing thin metal film deposition techniques from metal-organic precursors such as atomic layer deposition, chemical vapor deposition (CVD), or electron beam-induced deposition (EBID) with the help of surface science analysis tools in ultrahigh vacuum requires a contamination-free precursor delivery technique, especially in the case of the less volatile precursors. For this purpose, the preparation of layers of undecomposed Ni(acac){sub 2} and Co(acac){sub 2} was tried via pulsed spray evaporation of a liquid solution of the precursors in ethanol into a flow of nitrogen on a CVD reactor. Solvent-free layers of intact precursor molecules were obtained when the substrate was heldmore » at a temperature of 115 °C. A qualitative comparison of thermally initiated and electron-induced precursor decomposition and metal center reduction was carried out. All deposited films were analyzed with respect to chemical composition quasi in situ by x-ray photoelectron spectroscopy. Thermally initiated decomposition yielded higher metal-to-metal oxide ratios in the deposit than the electron-induced process for which ratios of 60:40 and 20:80 were achieved for Ni and Co, resp. Compared to continuous EBID processes, all deposits showed low levels of carbon impurities of ∼10 at. %. Therefore, postdeposition irradiation of metal acetylacetonate layers by a focused electron beam and subsequent removal of intact precursor by dissolution in ethanol or by heating is proposed as electron beam lithography technique on the laboratory scale for the production of the metal nanostructures.« less
Gunjakar, Jayavant L; Inamdar, Akbar I; Hou, Bo; Cha, SeungNam; Pawar, S M; Abu Talha, A A; Chavan, Harish S; Kim, Jongmin; Cho, Sangeun; Lee, Seongwoo; Jo, Yongcheol; Kim, Hyungsang; Im, Hyunsik
2018-05-17
A mesoporous nanoplate network of two-dimensional (2D) layered nickel hydroxide Ni(OH)2 intercalated with polyoxovanadate anions (Ni(OH)2-POV) was built using a chemical solution deposition method. This approach will provide high flexibility for controlling the chemical composition and the pore structure of the resulting Ni(OH)2-POV nanohybrids. The layer-by-layer ordered growth of the Ni(OH)2-POV is demonstrated by powder X-ray diffraction and cross-sectional high-resolution transmission electron microscopy. The random growth of the intercalated Ni(OH)2-POV nanohybrids leads to the formation of an interconnected network morphology with a highly porous stacking structure whose porosity is controlled by changing the ratio of Ni(OH)2 and POV. The lateral size and thickness of the Ni(OH)2-POV nanoplates are ∼400 nm and from ∼5 nm to 7 nm, respectively. The obtained thin films are highly active electrochemical capacitor electrodes with a maximum specific capacity of 1440 F g-1 at a current density of 1 A g-1, and they withstand up to 2000 cycles with a capacity retention of 85%. The superior electrochemical performance of the Ni(OH)2-POV nanohybrids is attributed to the expanded mesoporous surface area and the intercalation of the POV anions. The experimental findings highlight the outstanding electrochemical functionality of the 2D Ni(OH)2-POV nanoplate network that will provide a facile route for the synthesis of low-dimensional hybrid nanomaterials for a highly active supercapacitor electrode.
NASA Astrophysics Data System (ADS)
Wu, Mao-Sung; Lyu, Li-Jyun; Syu, Jhih-Hao
2015-11-01
Copper and nickel hexacyanoferrate (CuHCF and NiHCF) nanostructures featuring three-dimensional open-framework tunnels are prepared using a solution-based coprecipitation process. CuHCF shows superior supercapacitive behavior than the NiHCF, due to the presence of numerous macropores in CuHCF particles for facilitating the transport of electrolyte. Both CuHCF and NiHCF electrodes with stainless steel (SS) substrate tend to lose their electroactivity towards intercalation/deintercalation of hydrated potassium ions owing to the partial corrosion of SS. Formation of a protective and conductive carbon layer in between SS and CuHCF (NiHCF) film is of paramount importance for improving the irreversible loss of electroactivity. Thin and compact graphene (GN) layer without observable holes in its normal plane is the most effective way to suppress the corrosion of SS compared with porous carbon nanotube and activated carbon layers. Specific capacitance of CuHCF electrode with GN layer (CuHCF/GN/SS) reaches 570 F g-1, which is even better than that of CuHCF with Pt substrate (500 F g-1) at 1 A g-1. The CuHCF/GN/SS exhibits high stability with 96% capacitance retention over 1000 cycles, greater than the CuHCF with Pt (75%).
Exchange stiffness in thin film Co alloys
NASA Astrophysics Data System (ADS)
Eyrich, C.; Huttema, W.; Arora, M.; Montoya, E.; Rashidi, F.; Burrowes, C.; Kardasz, B.; Girt, E.; Heinrich, B.; Mryasov, O. N.; From, M.; Karis, O.
2012-04-01
The exchange stiffness (Aex) is one of the key parameters controlling magnetization reversal in magnetic materials. We used a method based on the spin spiral formation in two ferromagnetic films antiferromagnetically coupled across a non-magnetic spacer layer and Brillouin scattering to measure Aex for a series of Co1-δXδ (X = Cr, Ni, Ru, Pd, Pt) thin film alloys. The results show that Aex of Co alloys does not necessarily scale with Ms; Aex approximately decreases at the rate of 1.1%, 1.5%, 2.1%, 3.5%, and 5.6%, while Ms decreases at the rate of 1.1%, 0.5%, 1.1%, 3.7%, and 2.5% per addition of 1 at % of Pt, Ni, Pd, Cr, and Ru, respectively.
Magnetic hysteresis measurements of thin films under isotropic stress.
NASA Astrophysics Data System (ADS)
Holland, Patrick; Dubey, Archana; Geerts, Wilhelmus
2000-10-01
Nowadays, ferromagnetic thin films are widely applied in devices for information technology (credit cards, video recorder tapes, floppies, hard disks) and sensors (air bags, anti-breaking systems, navigation systems). Thus, with the increase in the use of magnetic media continued investigation of magnetic properties of materials is necessary to help in determining the useful properties of materials for new or improved applications. We are currently interested in studying the effect of applied external stress on Kerr hysteresis curves of thin magnetic films. The Ni and NiFe films were grown using DC magnetron sputtering with Ar as the sputter gas (pAr=4 mTorr; Tsub=55-190 C). Seed and cap layers of Ti were used on all films for adhesion and oxidation protection, respectively. A brass membrane pressure cell was designed to apply in-plane isotropic stress to thin films. In this pressure cell, gas pressure is used to deform a flexible substrate onto which a thin magnetic film has been sputtered. The curvature of the samples could be controlled by changing the gas pressure to the cell. Magneto-Optical in-plane hysteresis curves at different values of strain were measured. The results obtained show that the stress sensitivity is dependent on the film thickness. For the 500nm NiFe films, the coercivity strongly decreased as a function of the applied stress.
Electroless Nickel Deposition for Front Side Metallization of Silicon Solar Cells
Hsieh, Shu Huei; Hsieh, Jhong Min; Chen, Wen Jauh; Chuang, Chia Chih
2017-01-01
In this work, nickel thin films were deposited on texture silicon by electroless plated deposition. The electroless-deposited Ni layers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), and sheet resistance measurement. The results indicate that the dominant phase was Ni2Si and NiSi in samples annealed at 300–800 °C. Sheet resistance values were found to correlate well with the surface morphology obtained by SEM and the results of XRD diffraction. The Cu/Ni contact system was used to fabricate solar cells by using two different activating baths. The open circuit voltage (Voc) of the Cu/Ni samples, before and after annealing, was measured under air mass (AM) 1.5 conditions to determine solar cell properties. The results show that open circuit voltage of a solar cell can be enhanced when the activation solution incorporated hydrofluoric acid (HF). This is mainly attributed to the native silicon oxide layer that can be decreased and/or removed by HF with the corresponding reduction of series resistance. PMID:28805724
Effect of Surface Termination on the Electonic Properties of LaNiO₃ Films
Kumah, Divine P.; Malashevich, Andrei; Disa, Ankit S.; ...
2014-11-06
The electronic and structural properties of thin LaNiO₃ films grown by using molecular beam epitaxy are studied as a function of the net ionic charge of the surface terminating layer. We demonstrate that electronic transport in nickelate heterostructures can be manipulated through changes in the surface termination due to a strong coupling of the surface electrostatic properties to the structural properties of the Ni—O bonds that govern electronic conduction. We observe experimentally and from first-principles theory an asymmetric response of the structural properties of the films to the sign of the surface charge, which results from a strong interplay betweenmore » electrostatic and mechanical boundary conditions governing the system. The structural response results in ionic buckling in the near-surface NiO₂ planes for films terminated with negatively charged NiO₂ and bulklike NiO₂ planes for films terminated with positively charged LaO planes. The ability to modify transport properties by the deposition of a single atomic layer can be used as a guiding principle for nanoscale device fabrication.« less
Fabrication and characterization of L10-ordered FeNi thin films
NASA Astrophysics Data System (ADS)
Takanashi, Koki; Mizuguchi, Masaki; Kojima, Takayuki; Tashiro, Takayuki
2017-12-01
L10-ordered FeNi, showing high uniaxial magnetic anisotropy (K u), is promising as a ‘rare metal-free’ high K u material. We have worked on L10-ordered FeNi thin films prepared by two methods: one is molecular beam epitaxy (MBE) with alternate deposition of Fe and Ni monatomic layers, and the other is sputtering with co-deposition or multilayer-deposition of Fe and Ni followed by rapid thermal annealing (RTA). For the MBE films prepared by alternate monatomic layer deposition (leading to the stoichiometric composition: Fe 50 at.%- Ni 50 at.%), a clear relationship between K u and the long-range order parameter S estimated by synchrotron x-ray diffraction (XRD) was found with maximum values of S = 0.48 and K u = 7.0 × 106 erg cm-3. The composition dependence of K u was also investigated by deviating the thickness from monatomic layer, showing a maximum of 9.3 × 106 erg cm-3 around 60 at.%Fe. In addition, the effect of Co addition to L10-ordered FeNi was investigated, suggesting that a small amount (<10 at.%) of Co substitution for Ni would enhance K u if S keeps the same. The experiments were in qualitatively good agreement with the first-principles calculations. The magnetic damping constant α was also measured to be approximately 0.01 irrespective of S, suggesting that L10-FeNi is a candidate material with high K u and low α. For the sputtered films with RTA, no major difference between co-deposition and multilayer-deposition was found: in both cases the formation of L10-ordered phase after RTA was definitely confirmed by XRD. Transmission electron microscopy observations indicated that nanometer-sized L10-ordered clusters were dispersed in a disordered phase, in contrast to that of MBE films showing the homogeneous formation of L10-ordered phase. The enhancement of coercivity (H c) and residual magnetization (M r/M s) was observed associated with the appearance of L10-ordered phase. The maxima of H c and M r/M s were obtained to be 1.35 kOe and 0.22, respectively.
NASA Astrophysics Data System (ADS)
Qu, Guanxiong; Cheng, P.-H.; Du, Ye; Sakuraba, Yuya; Kasai, Shinya; Hono, Kazuhiro
2017-11-01
We have fabricated fully epitaxial current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices using C1b-half Heusler compound NiMnSb, the first candidate of the half-metallic material, as the electrode with a Ag spacer. The device shows magnetoresistance ratios of 25% at 4.2 K and 9.6% at 290 K, which are one of the highest values for the CPP-GMR with half-Heusler compounds. However, these values are much lower compared to those reported for CPP-GMR devices with L21-full Heusler compounds. Careful analysis of the microstructure using scanning transmission electron microscopy and energy dispersive spectroscopy through the upper NiMnSb/Ag interface indicates the heterogeneous formation of Ag-rich solid solution or the island growth of Ag on top of NiMnSb, which clarified a difficulty in evaluating an intrinsic spin-polarization in NiMnSb from CPP-GMR devices. Thus, to evaluate a spin-polarization of a NiMnSb thin film, we fabricated non-local spin valve (NLSV) devices using NiMnSb with Cu channel wires, which is free from the diffusion of Cu to NiMnSb because of no annealing proccess after deposition of Cu. Finally, intrinsic spin polarization of the NiMnSb single layer was extrapolated to be around 50% from NLSV, suggesting a difficulty in obtaining half-metallic nature in the NiMnSb epitaxial thin film.
Nickel-Phosphorous Development for Total Solar Irradiance Measurement
NASA Astrophysics Data System (ADS)
Carlesso, F.; Berni, L. A.; Vieira, L. E. A.; Savonov, G. S.; Nishimori, M.; Dal Lago, A.; Miranda, E.
2017-10-01
The development of an absolute radiometer instrument is currently a effort at INPE for TSI measurements. In this work, we describe the development of black Ni-P coatings for TSI radiometers absorptive cavities. We present a study of the surface blackening process and the relationships between morphological structure, chemical composition and coating absorption. Ni-P deposits with different phosphorous content were obtained by electroless techniques on aluminum substrates with a thin zincate layer. Appropriate phosphorus composition and etching parameters process produce low reflectance black coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Pengfei; Nie, Anmin; Zheng, Jianming
Voltage and capacity fading of layer structured lithium and manganese rich (LMR) transition metal oxide is directly related to the structural and composition evolution of the material during the cycling of the battery. However, understanding such evolution at atomic level remains elusive. Based on atomic level structural imaging, elemental mapping of the pristine and cycled samples and density functional theory calculations, it is found that accompanying the hoping of Li ions is the simultaneous migration of Ni ions towards the surface from the bulk lattice, leading to the gradual depletion of Ni in the bulk lattice and thickening of amore » Ni enriched surface reconstruction layer (SRL). Furthermore, Ni and Mn also exhibit concentration partitions within the thin layer of SRL in the cycled samples where Ni is almost depleted at the very surface of the SRL, indicating the preferential dissolution of Ni ions in the electrolyte. Accompanying the elemental composition evolution, significant structural evolution is also observed and identified as a sequential phase transition of C2/m →I41→Spinel. For the first time, it is found that the surface facet terminated with pure cation is more stable than that with a mixture of cation and anion. These findings firmly established how the elemental species in the lattice of LMR cathode transfer from the bulk lattice to surface layer and further into the electrolyte, clarifying the long standing confusion and debate on the structure and chemistry of the surface layer and their correlation with the voltage fading and capacity decaying of LMR cathode. Therefore, this work provides critical insights for designing of cathode materials with both high capacity and voltage stability during cycling.« less
NASA Astrophysics Data System (ADS)
Yavuz, Arzu Büyükyağci; Carbas, Buket Bezgın; Sönmezoğlu, Savaş; Soylu, Murat
2016-01-01
A new tetrakis 4-(2,5-di-2-thiophen-2-yl-pyrrol-1-yl)-substituted nickel phthalocyanine (NiPc-SNS) has been synthesized. This synthesized NiPc-SNS thin film was deposited on p-type Si substrate using the spin coating method (SCM) to fabricate a NiPc-SNS/ p-Si heterojunction diode. The temperature-dependent electrical characteristics of the NiPc-SNS/ p-Si heterojunction with good rectifying behavior were investigated by current-voltage ( I- V) measurements between 50 K and 300 K. The results indicate that the ideality factor decreases while the barrier height increases with increasing temperature. The barrier inhomogeneity across the NiPc-SNS/ p-Si heterojunction reveals a Gaussian distribution at low temperatures. These results provide further evidence of the more complicated mechanisms occurring in this heterojunction. Based on these findings, NiPc-SNS/ p-Si junction diodes are feasible for use in low-temperature applications.
NASA Astrophysics Data System (ADS)
Jung, Sungpyo
In this dissertation, we investigate Al-doped ZnO(AZO) contact structure to a variety of GaN LED structures. Our results show that ZnO is a potentially viable transparent contact for GaN-based LEDs. We began our investigation by depositing AZO and Ni/AZO contacts to p-GaN. However, these contacts are highly resistive. Next, we deposited thin Ni/Au layer, oxidized the Ni/Au layer to form a good ohmic contact to p-GaN, and then followed by the deposition of thick AZO layer. However, the electrical resistance of oxidized Ni/Au-AZO contacts is higher than that of the conventional Ni/Au contacts. We solve the high contact resistance problem by using a two-step thermal annealing process. In this method, Ni/Au layer is deposited first followed by the AZO layer without any annealing step. After finishing the device fabrication, the samples are annealed in air first to achieve low contact resistance with Ni/Au/AZO and p-GaN and then annealed in nitrogen to achieve low sheet resistance for the AZO layer. The improved electrical and optical characteristics of this scheme compared to conventional Ni/Au contact scheme are demonstrated on a variety of GaN LEDs: blue, green, small area, large area and bottom emitting LEDs. The benefits of ZnO-based contacts are more significant in large area LEDs that include lower forward voltage, and higher optical emission, better emission uniformity and reliability. The advantages of ZnO-based contact in terms of lower contact resistance and higher optical emission on LED fabricated on roughened GaN wafers are also demonstrated. For bottom emitting LED structure intended for flip chip applications, our original oxidized Ni/Au layer over coated with either Al or Ag contacts have shown to simultaneously yield superior I-V characteristics and greatly enhanced optical performance compared to conventional LEDs using a thick Ni/Au contact in the flip-chip configuration. However, the contact is unstable at operating temperatures > 100°C due to close proximity of Ag and Al with p-GaN. Here, the ZnO layer probably can be interdiffusion barrier layer of Al into GaN. We have demonstrated low contact resistance and higher light emission by using ZnO as a barrier material between oxidize Ni/Au and Al reflecting layer. In summary, our investigation demonstrates the applicability of ZnO-based transparent contacts for high performance LEDs that will be larger in size and are expected to be operating at higher current for solid-state lighting of the future. (Abstract shortened by UMI.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X. J.; Zhao, D. G., E-mail: dgzhao@red.semi.ac.cn; Jiang, D. S.
2014-10-28
The significant effect of the thickness of Ni film on the performance of the Ohmic contact of Ni/Au to p-GaN is studied. The Ni/Au metal films with thickness of 15/50 nm on p-GaN led to better electrical characteristics, showing a lower specific contact resistivity after annealing in the presence of oxygen. Both the formation of a NiO layer and the evolution of metal structure on the sample surface and at the interface with p-GaN were checked by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The experimental results indicate that a too thin Ni film cannot form enough NiO to decrease themore » barrier height and get Ohmic contact to p-GaN, while a too thick Ni film will transform into too thick NiO cover on the sample surface and thus will also deteriorate the electrical conductivity of sample.« less
Complementary resistive switching in BaTiO3/NiO bilayer with opposite switching polarities
NASA Astrophysics Data System (ADS)
Li, Shuo; Wei, Xianhua; Lei, Yao; Yuan, Xincai; Zeng, Huizhong
2016-12-01
Resistive switching behaviors have been investigated in the Au/BaTiO3/NiO/Pt structure by stacking the two elements with different switching types. The conducting atomic force microscope measurements on BaTiO3 thin films and NiO thin films suggest that with the same active resistive switching region, the switching polarities in the two semiconductors are opposite to each other. It is in agreement with the bipolar hysteresis I-V curves with opposite switching polarities for single-layer devices. The bilayer devices show complementary resistive switching (CRS) without electroforming and unipolar resistive switching (URS) after electroforming. The coexistence of CRS and URS is mainly ascribed to the co-effect of electric field and Joule heating mechanisms, indicating that changeable of resistance in this device is dominated by the redistribution of oxygen vacancies in BaTiO3 and the formation, disruption, restoration of conducting filaments in NiO. CRS in bilayer with opposite switching polarities is effective to solve the sneak current without the introduction of any selector elements or an additional metal electrode.
Nanosphere lithography applied to magnetic thin films
NASA Astrophysics Data System (ADS)
Gleason, Russell
Magnetic nanostructures have widespread applications in many areas of physics and engineering, and nanosphere lithography has recently emerged as promising tool for the fabrication of such nanostructures. The goal of this research is to explore the magnetic properties of a thin film of ferromagnetic material deposited onto a hexagonally close-packed monolayer array of polystyrene nanospheres, and how they differ from the magnetic properties of a typical flat thin film. The first portion of this research focuses on determining the optimum conditions for depositing a monolayer of nanospheres onto chemically pretreated silicon substrates (via drop-coating) and the subsequent characterization of the deposited nanosphere layer with scanning electron microscopy. Single layers of permalloy (Ni80Fe20) are then deposited on top of the nanosphere array via DC magnetron sputtering, resulting in a thin film array of magnetic nanocaps. The coercivities of the thin films are measured using a home-built magneto-optical Kerr effect (MOKE) system in longitudinal arrangement. MOKE measurements show that for a single layer of permalloy (Py), the coercivity of a thin film deposited onto an array of nanospheres increases compared to that of a flat thin film. In addition, the coercivity increases as the nanosphere size decreases for the same deposited layer. It is postulated that magnetic exchange decoupling between neighboring nanocaps suppresses the propagation of magnetic domain walls, and this pinning of the domain walls is thought to be the primary source of the increase in coercivity.
Lu, Ping; Yan, Pengfei; Romero, Eric; ...
2015-01-27
Capacity loss, and voltage decrease upon electrochemical charge-discharge cycling observed in lithium-rich layered cathode oxides (Li[Li xMn yTM 1-x-y]O 2, TM = Ni, Co or Fe) have recently been attributed to the formation of a surface reconstructed layer (SRL) that evolves from a thin (<2 nm), defect spinel layer upon the first charge, to a relatively thick (~5nm), spinel or rock-salt layer upon continuous charge-discharge cycling. Here we report observations of a SRL and structural evolution of the SRL on the Li[Li 0.2Ni 0.2Mn 0.6]O 2 (LNMO) particles, which are identical to those reported due to the charge-discharge cycle butmore » are a result of electron-beam irradiation during scanning transmission electron microscopy (STEM) imaging. Sensitivity of the lithium-rich layered oxides to high-energy electrons leads to the formation of thin, defect spinel layer on surfaces of the particles when exposed to a 200kV electron beam for as little as 30 seconds under normal high-resolution STEM imaging conditions. Further electron irradiation produces a thicker layer of the spinel phase, ultimately producing a rock-salt layer at a higher electron exposure. Atomic-scale chemical mapping by electron dispersive X-ray spectroscopy in STEM indicates the electron-beam-induced SRL formation on LNMO is accomplished by migration of the transition metal ions to the Li sites without breaking down the lattice. The observation through this study provides an insight for understanding the mechanism of forming the SRL and also possibly a mean to study structural evolution in the Li-rich layered oxides without involving the electrochemistry.« less
Effect of catalyst on deposition of vanadium oxide in plasma ambient
NASA Astrophysics Data System (ADS)
Singh, Megha; Kumar, Prabhat; Saini, Sujit K.; Reddy, G. B.
2018-05-01
In this paper, we have studied effect of catalyst (buffer layer) on structure, morphology, crystallinity, uniformity of nanostructured thin films deposited in nitrogen plasma ambient keeping all other process parameters constant. The process used for deposition is novel known as Plasma Assisted Sublimation Process (PASP). Samples were then studied using SEM, TEM, HRTEM, Raman spectroscopy. By structural analysis it was found out that samples deposited on Ni layer composed chiefly of α-V2O5 but minor amount of other phases were present in the sample. Samples deposited on Al catalyst layer revealed different phase of V2O5, where sample deposited on Ag was composed chiefly of VO2±x phase. Further analysis revealed that morphology of samples is also affected by catalyst. While samples deposited in Al and Ag layer tend to have reasonably defined geometry, sample deposited on Ni layer were irregular in shape and size. All the results well corroborate with each other.
Spalling of a Thin Si Layer by Electrodeposit-Assisted Stripping
NASA Astrophysics Data System (ADS)
Kwon, Youngim; Yang, Changyol; Yoon, Sang-Hwa; Um, Han-Don; Lee, Jung-Ho; Yoo, Bongyoung
2013-11-01
A major goal in solar cell research is to reduce the cost of the final module. Reducing the thickness of the crystalline silicon substrate to several tens of micrometers can reduce material costs. In this work, we describe the electrodeposition of a Ni-P alloy, which induces high stress in the silicon substrate at room temperature. The induced stress enables lift-off of the thin-film silicon substrate. After lift-off of the thin Si film, the mother substrate can be reused, reducing material costs. Moreover, the low-temperature process expected to be improved Si substrate quality.
Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers.
Hyun, Byung-Ryool; Choi, Joshua J; Seyler, Kyle L; Hanrath, Tobias; Wise, Frank W
2013-12-23
Oxides are commonly employed as electron-transport layers in optoelectronic devices based on semiconductor nanocrystals, but are relatively rare as hole-transport layers. We report studies of NiO hole-transport layers in PbS nanocrystal photovoltaic structures. Transient fluorescence experiments are used to verify the relevant energy levels for hole transfer. On the basis of these results, planar heterojunction devices with ZnO as the photoanode and NiO as the photocathode were fabricated and characterized. Solution-processed devices were used to systematically study the dependence on nanocrystal size and achieve conversion efficiency as high as 2.5%. Optical modeling indicates that optimum performance should be obtained with thinner oxide layers than can be produced reliably by solution casting. Room-temperature sputtering allows deposition of oxide layers as thin as 10 nm, which enables optimization of device performance with respect to the thickness of the charge-transport layers. The best devices achieve an open-circuit voltage of 0.72 V and efficiency of 5.3% while eliminating most organic material from the structure and being compatible with tandem structures.
Raman evidence of the formation of LT-LiCoO 2 thin layers on NiO in molten carbonate at 650°C
NASA Astrophysics Data System (ADS)
Mendoza, L.; Baddour-Hadjean, R.; Cassir, M.; Pereira-Ramos, J. P.
2004-03-01
The structural evolution of thin layers of Co 3O 4 elaborated on nickel-based substrates in the Li 2CO 3-Na 2CO 3 carbonate eutectic at 650 °C as a function of time immersion is reported. Raman microspectrometry has been applied in order to provide more information on the nature of the protective cobalt oxide layers. The typical Raman fingerprint of the LT-LiCoO 2 compound has been obtained, with four well defined bands at 449, 484, 590 and 605 cm -1, while XRD data are unable to distinguish the layered phase (HT) from the spinel one (LT). The mechanical stability of such films does not exceed 10 h in direct contact with the molten carbonate bulk at 650 °C; nevertheless, these conditions are much more corrosive than in a molten carbonate fuel cell (MCFC).
NASA Astrophysics Data System (ADS)
Ditrói, F.; Takács, S.; Tárkányi, F.; Fenyvesi, A.; Bergman, J.; Heselius, S.-J.; Solin, O.
1995-12-01
Boron of natural composition was investigated in the form of NiBSi metallic-glass foil to determine the cross-section functions of the natB(p,x) 7Be and the natB(d,x) 7Be nuclear reactions. These reactions are very important from the point of view of Thin Layer Activation (TLA) technique to monitor the wear of boron-containing superhard materials (e.g. BN), because the 7Be with its half-life of 53 d and gamma-energy of 447 keV is very suitable for wear measurements. The possibility of recoil-implantation of the radioactive nuclei was also studied.
NASA Astrophysics Data System (ADS)
Ellmer, K.; Seeger, S.; Mientus, R.
2006-08-01
By rapid thermal crystallization of an amorphous WS3+x film, deposited by reactive magnetron sputtering at temperatures below 150 °C, layer-type semiconducting tungsten disulfide films (WS2) were grown. The rapid crystallization was monitored in real-time by in situ energy-dispersive X-ray diffraction. The films crystallize very fast (>40 nm/s), provided that a thin nickel film acts as nucleation seeds. Experiments on different substrates and the onset of the crystallization only at a temperature between 600 and 700 °C points to the decisive role of seeds for the textured growth of WS2, most probably liquid NiSx drops. The rapidly crystallized WS2 films exhibit a pronounced (001) texture with the van der Waals planes oriented parallel to the surface, leading to photoactive layers with a high hole mobility of about 80 cm2/Vs making such films suitable as absorbers for thin film solar cells.
Balamurugan, Jayaraman; Li, Chao; Peera, Shaik Gouse; Kim, Nam Hoon; Lee, Joong Hee
2017-09-21
Layered transition metal sulfides (TMS) are emerging as advanced materials for energy storage and conversion applications. In this work, we report a facile and cost-effective anion exchange technique to fabricate a layered, multifaceted, free standing, ultra-thin ternary cobalt molybdenum sulfide nanosheet (Co-Mo-S NS) architecture grown on a 3D porous Ni foam substrate. The unique Co-Mo layered double hydroxides are first synthesized as precursors and consequently transformed into ultra-thin Co-Mo-S NS. When employed as an electrode for supercapacitors, the Co-Mo-S NS delivered an ultra-high specific capacitance of 2343 F g -1 at a current density of 1 mA cm -2 with tremendous rate capability and extraordinary cycling performance (96.6% capacitance retention after 20 000 cycles). Furthermore, assembled Co-Mo-S/nitrogen doped graphene nanosheets (NGNS) in an asymmetric supercapacitor (ASC) device delivered an excellent energy density of 89.6 Wh kg -1 , an amazing power density of 20.07 kW kg -1 , and superior cycling performance (86.8% capacitance retention after 50 000 cycles). Such exceptional electrochemical performance of Co-Mo-S NS is ascribed to the good electrical contact with the 3D Ni foam, ultra-high contact area with the electrolyte, and enhanced architectural softening during the charging/discharging process. It is expected that the fabricated, unique, ultra-thin Co-Mo-S NS have great potential for future energy storage devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ping; Yan, Pengfei; Romero, Eric
Capacity loss, and voltage decrease upon electrochemical charge-discharge cycling observed in lithium-rich layered cathode oxides (Li[Li xMn yTM 1-x-y]O 2, TM = Ni, Co or Fe) have recently been attributed to the formation of a surface reconstructed layer (SRL) that evolves from a thin (<2 nm), defect spinel layer upon the first charge, to a relatively thick (~5nm), spinel or rock-salt layer upon continuous charge-discharge cycling. Here we report observations of a SRL and structural evolution of the SRL on the Li[Li 0.2Ni 0.2Mn 0.6]O 2 (LNMO) particles, which are identical to those reported due to the charge-discharge cycle butmore » are a result of electron-beam irradiation during scanning transmission electron microscopy (STEM) imaging. Sensitivity of the lithium-rich layered oxides to high-energy electrons leads to the formation of thin, defect spinel layer on surfaces of the particles when exposed to a 200kV electron beam for as little as 30 seconds under normal high-resolution STEM imaging conditions. Further electron irradiation produces a thicker layer of the spinel phase, ultimately producing a rock-salt layer at a higher electron exposure. Atomic-scale chemical mapping by electron dispersive X-ray spectroscopy in STEM indicates the electron-beam-induced SRL formation on LNMO is accomplished by migration of the transition metal ions to the Li sites without breaking down the lattice. The observation through this study provides an insight for understanding the mechanism of forming the SRL and also possibly a mean to study structural evolution in the Li-rich layered oxides without involving the electrochemistry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ping; Yan, Pengfei; Romero, Eric
Capacity loss, and voltage fade upon electrochemical charge-discharge cycling observed in lithium-rich layered cathode oxides (Li[LixMnyTM1-x-y]O2 , TM = Ni, Co or Fe) have recently been identified to be correlated to the gradual phase transformation, featuring the formation of a surface reconstructed layer (SRL) that evolves from a thin (<2 nm), defect spinel layer upon the first charge, to a relatively thick (~5 nm), spinel or rock-salt layer upon continuous charge-discharge cycling. Here we report observations of a SRL and structural evolution of the SRL on the Li[Li0.2Ni0.2Mn0.6]O2 (LMR) particles, which are identical to those reported due to the charge-dischargemore » cycle but are a result of electron-beam irradiation during scanning transmission electron microscopy (STEM) imaging. Sensitivity of the lithium-rich layered oxides to high-energy electrons leads to the formation of thin, defect spinel layer on surfaces of the particles when exposed to a 200 kV electron beam for as little as 30 seconds under normal high-resolution STEM imaging conditions. Further electron irradiation produces a thicker layer of the spinel phase, ultimately producing a rock-salt layer at a higher electron exposure. Atomic-scale chemical mapping by energy dispersive X-ray spectroscopy in STEM indicates the electron-beam-induced SRL formation on LMR is accomplished by migration of the transition metal ions to the Li sites without breaking down the lattice. This study provides an insight for understanding the mechanism of forming the SRL and also possibly a mean to study structural evolution in the Li-rich layered oxides without involving the electrochemistry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Shu; Huang Sen; Chen Hongwei
2011-10-31
We report the study of high-dielectric-constant (high-{kappa}) dielectric LaLuO{sub 3} (LLO) thin film that is grown on AlGaN/GaN heterostructure by molecular beam deposition (MBD). The physical properties of LLO on AlGaN/GaN heterostrucure have been investigated with atomic force microscopy, x-ray photoelectron spectroscopy, and TEM. It is revealed that the MBD-grown 16 nm-thick LLO film is polycrystalline with a thin ({approx}2 nm) amorphous transition layer at the LLO/GaN interface. The bandgap of LLO is derived as 5.3 {+-} 0.04 eV from O1s energy loss spectrum. Capacitance-voltage (C-V) characteristics of a Ni-Au/LLO/III-nitride metal-insulator-semiconductor diode exhibit small frequency dispersion (<2%) and reveal amore » high effective dielectric constant of {approx}28 for the LLO film. The LLO layer is shown to be effective in suppressing the reverse and forward leakage current in the MIS diode. In particular, the MIS diode forward current is reduced by 7 orders of magnitude at a forward bias of 1 V compared to a conventional Ni-Au/III-nitride Schottky diode.« less
Interface engineering in epitaxial growth of layered oxides via a conducting layer insertion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Yu; Meng, Dechao; Wang, Jianlin
2015-07-06
There is a long-standing challenge in the fabrication of layered oxide epitaxial films due to their thermodynamic phase-instability and the large stacking layer number. Recently, the demand for high-quality thin films is strongly pushed by their promising room-temperature multiferroic properties. Here, we find that by inserting a conducting and lattice matched LaNiO{sub 3} buffer layer, high quality m = 5 Bi{sub 6}FeCoTi{sub 3}O{sub 18} epitaxial films can be fabricated using the laser molecular beam epitaxy, in which the atomic-scale sharp interface between the film and the metallic buffer layer explains the enhanced quality. The magnetic and ferroelectric properties of the high qualitymore » Bi{sub 6}FeCoTi{sub 3}O{sub 18} films are studied. This study demonstrates that insertion of the conducting layer is a powerful method in achieving high quality layered oxide thin films, which opens the door to further understand the underline physics and to develop new devices.« less
NASA Astrophysics Data System (ADS)
Kamran Sami, Syed; Siddiqui, Saqib; Tajmeel Feroze, Muhammad; Chung, Chan-Hwa
2017-11-01
To pursue high-performance energy storage devices with both high energy density and power density, one-dimensional (1D) nanostructures play a key role in the development of functional devices including energy conversion, energy storage, and environmental devices. The polyacrylonitrile (PAN) nanofibers were obtained by the versatile electrospinning method. An ultra-thin nickel-cobalt sulfide (NiCoS) layer was conformably electrodeposited on a self-standing PAN nanofibers by cyclic voltammetry to fabricate the light-weighted porous electrodes for supercapacitors. The porous web of PAN nanofibers acts as a high-surface-area scaffold with significant electrochemical performance, while the electrodeposition of metal sulfide nanosheet further enhances the specific capacitance. The fabricated NiCoS on PAN (NiCoS/PAN) nanofibers exhibits a very high capacitance of 1513 F g-1 at 5 A g-1 in 1 M potassium chloride (KCl) aqueous electrolyte with superior rate capability and excellent electrochemical stability as a hybrid electrode. The high capacitance of the NiCoS is attributed to the large surface area of the electrospun PAN nanofibers scaffold, which has offered a large number of active sites for possible redox reaction of ultra-thin NiCoS layer. Benefiting from the compositional features and electrode architectures, the hybrid electrode of NiCoS/PAN nanofibers shows greatly improved electrochemical performance with an ultra-high capacitance (1124 F g-1 at 50 A g-1). Moreover, a binder-free asymmetric supercapacitor device is also fabricated by using NiCoS/PAN nanofibers as the positive electrode and activated carbon (MSP-20) on PAN nanofibers as the negative electrode; this demonstrates high energy density of 56.904 W h kg-1 at a power density of 1.445 kW kg-1, and it still delivers the energy density of 33.3923 W h kg-1 even at higher power density of 16.5013 kW kg-1.
Zhang, Jijun; Li, Jiawei; Tan, Guoguo; Hu, Renchao; Wang, Junqiang; Chang, Chuntao; Wang, Xinmin
2017-12-06
Thin and flexible materials that can provide efficient electromagnetic interference (EMI) shielding are urgently needed, especially if they can be easily processed and withstand harsh environments. Herein, layer-structured Fe-Si-B/Ni-Cu-P metallic glass composites have been developed by simple electroless plating Ni-Cu-P coating on commercial Fe-Si-B metallic glasses. The 0.1 mm-thick composite shows EMI shielding effectiveness of 40 dB over the X-band frequency range, which is higher than those of traditional metals, metal oxides, and their polymer composites of larger thickness. Most of the applied electromagnetic waves are proved to be absorbed rather than bounced back. This performance originates from the combination of a superior soft magnetic property, excellent electrical conductivity, and multiple internal reflections from multilayer composites. In addition, the flexible composites also exhibit good corrosion resistance, high thermal stability, and excellent tensile strength, making them suitable for EMI shielding in harsh chemical or thermal environments.
Study on AN Intermediate Temperature Planar Sofc
NASA Astrophysics Data System (ADS)
Wang, Shaorong; Cao, Jiadi; Chen, Wenxia; Lu, Zhiyi; Wang, Daqian; Wen, Ting-Lian
An ITSOFC consisted of Ni/YSZ anode supported YSZ composite thin film and La0.6Sr0.4CoO3 (LSCO) cathode combined with a Ce0.8Sm0.2O1.9 (CSO) interlayer was studied. Tape cast method was applied to prepare green sheets of Ni/YSZ anode supported YSZ composite thin film. After isostatic pressing and cosintering, the YSZ film on the Ni/YSZ anode was gas-tight dense, and 15-30μm thick. The area of the composite film was over 100 cm2. A CSO interlayer was sintered on to the YSZ electrolyte film to protect LSCO cathode from reaction with YSZ at high temperatures. The LSCO cathode layer was screen printed onto the CSO interlayer and sintered at 1200°C for 3h to form a single cell. The obtained single cell was operated with H2 as fuel and O2 as oxidant. The cell performance and impedance were measured and discussed relating with the component contributions.
Wang, Xiaobing; Hu, Jiangjiang; Su, Yichang; Hao, Jin; Liu, Fanggang; Han, Shuang; An, Jian; Lian, Jianshe
2017-03-23
A novel Ni foam-Ni 3 S 2 @Ni(OH) 2 -graphene sandwich-structured electrode (NF-NN-G) with high areal mass loading (8.33 mg cm -2 ) has been developed by sulfidation and hydrolysis reactions. The conductivity of Ni 3 S 2 and Ni(OH) 2 were both improved. The upper layer of Ni(OH) 2 , covered with a thin graphene film, is formed in situ from the surface of the lower layer of Ni 3 S 2 , whereas the Ni 3 S 2 grown on Ni foam substrate mainly acts as a rough support bridging the Ni(OH) 2 and Ni foam. The graphene stabilized the Ni(OH) 2 and the electrochemical properties were effectively enhanced. The as-synthesized NF-NN-G-5mg electrode shows a high specific capacitance (2258 F g -1 at 1 A g -1 or 18.81 F cm -2 at 8.33 mA cm -2 ) and an outstanding rate property (1010 F g -1 at 20 Ag -1 or 8.413 F cm -2 at 166.6 mA cm -2 ). This result is around double the capacitance achieved in previous research on Ni 3 S 2 @Ni(OH) 2 /3DGN composites (3DGN=three-dimensional graphene network). In addition, the as-fabricated NF-NN-G-5mg composite electrode has an excellent cycle life with no capacitance loss after 3000 cycles, indicating a potential application as an efficient electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankowski, A.F.; Hayes, J.P.; Kanna, R.L.
The formation of high energy density, storage devices is achievable using composite material systems. Alternate layering of carbon aerogel wafers and Ni foils with rnicroporous separators is a prospective composite for capacitor applications. An inherent problem exists to form a physical bond between Ni and the porous carbon wafer. The bonding process must be limited to temperatures less than 1000{degrees}C, at which point the aerogel begins to degrade. The advantage of a low temperature eutectic in the Ni-Ti alloy system solves this problem. Ti, a carbide former, is readily adherent as a sputter deposited thin film onto the carbon wafer.more » A vacuum bonding process is then used to join the Ni foil and Ti coating through eutectic phase formation. The parameters required for successfld bonding are described along with a structural characterization of the Ni foil-carbon aerogel wafer interface.« less
Development of a Lead-free Piezoelectric (K,Na)NbO3 Thin Film Deposited on Nickel-based Electrodes
NASA Astrophysics Data System (ADS)
Bani Milhim, Alaeddin
It is desirable to replace noble metals used as electrode materials for piezoelectric thin film with base metals. This will reduce the piezoelectric thin film fabrication cost. A nickel?based layer in conjunction with other protective layers is proposed as a bottom electrode for lead-free piezoelectric KNN thin film. The obtained results do not indicate the oxidation of the nickel?based bottom electrode after the deposition of KNN at 600 °C for 10 hours in the presence of oxygen and/or after annealing the sample at 400 °C for an hour in air. The fabricated KNN thin film was fully characterized in this work. The effective piezoelectric coefficients d33 and d31 were estimated to be 37 pm/V and 17.2 pm/V, respectively, at 100 kV/cm. The piezoelectric properties of the fabricated KNN/Ni/Ti/SiO2/Si are affected by the crystal orientation of the KNN layer, which was preferentially oriented in the (110) direction. Optimization of the deposition parameters of the fabricated KNN/Ni/Ti/SiO2/Si film is expected to further enhance the piezoelectric properties. Two novel systems utilizing the developed KNN piezoelectric thin film are proposed and their performance simulated based on the achieved KNN thin film parameters. The first is a precision automated nanomanipulation system using an AFM as a sensor and piezo-actuated manipulators. Real-time feedback of the particle being manipulated can be achieved using the proposed system. The length of the manipulators needs to be at least 2 mm to be incorporated with a commercial AFM system. To fabricate the required manipulators, a three-step electrochemical etching technique was developed. Tungsten tips combining well-defined conical shape, a length as large as 2 mm, and sharpness with a radius of curvature of around 20 nm were fabricated using the proposed technique. By depositing the KNN thin film on the fabricated manipulator, nanomanipulators with out-of-plane actuation can be produced. Ultrasonic piezoelectric fan array, the second system, is proposed for GPU cooling applications. The developed KNN thin film is proposed as the piezo layer in the piezo fan structure. The novel solution can offer large air flow rate and low power consumption. Since the operating frequency is beyond the human audible frequencies, non?audible noise fans are expected by using the proposed ultrasonic piezo fan system. Moreover, fabrication of these ultrasonic piezo fans can be part of the GPU fabrication process itself.
NASA Astrophysics Data System (ADS)
Yang, Xiaodan; Zhang, Min; Zheng, Jing; Li, Weizhen; Gan, Wenjun; Xu, Jingli; Hayat, Tasawar; Alharbi, Njud S.; Yang, Fan
2018-05-01
Sandwich-like structure of graphene oxide (GO) @SiO2@C-Ni nanosheets were prepared by combining an extended stöber method with subsequent carbonization treatment, in which polydopamine was used as reducing agent and carbon source. Firstly, the GO nanosheets were covered with SiO2 interlayer and finally coated with a outer shell of nickel ion doped polydopamine (PDA-Ni2+) with an extended stöber method. Followed by a carbonization to produce the GO@SiO2@C-Ni sheets with metallic nickel nanoparticles embedded in PDA-derived thin graphic carbon layer. Notably, silica interlayer played a vital role in the formation of such GO@SiO2@C-Ni sheets. Without the protection of SiO2, the hydrophobic graphene@C-Ni composites were obtained instead. While with silica layer as the spacer, the obtained hydrophilic GO@SiO2@C-Ni composites were not only well dispersed in the solution, but also can be adjusted in terms of the size and density of Ni nanoparticles (NPs) on surface by changing the calcination temperature or the molar ratio between dopamine and nickel salt. Furthermore, nickel nanoparticles decorated on GO@SiO2 sheets were employed to enrich His-rich proteins (BHb and BSA) via specific metal affinity force between polyhistidine groups and nickel nanoparticles.
NASA Astrophysics Data System (ADS)
Chen, Tao; Li, Xiang; Wang, Hao; Yan, Xinxiu; Wang, Lei; Deng, Bangwei; Ge, Wujie; Qu, Meizhen
2018-01-01
A gradient boracic polyanion-doping method is applied to Ni-rich LiNi0.8Co0.15Al0.05O2 (NCA) cathode material in this study to suppress the capacity/potential fade during charge-discharge cycling. Scanning electron microscope (SEM) results show that all samples present spherical morphology and the secondary particle size increases with increasing boron content. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) results demonstrate that boracic polyanions are successfully introduced into the bulk material and more enriched in the outer layer. XPS analysis further reveals that the valence state of Ni3+ is partly reduced to Ni2+ at the surface due to the incorporation of boracic polyanions. From the electrochemical measurements, B0.015-NCA electrode exhibits excellent cycling performance, even at high potential and elevated temperature. Moreover, the SEM images illustrate the presence of cracks and a thick SEI layer on pristine particles after 100 cycles at high temperature, while the B0.015-NCA particles show an intact structure and thin SEI layer. Electrochemical impedance spectroscopy confirms that the boracic polyanion doping could hinder the impedance increase during cycling at elevated temperature. These results clearly indicate that the gradient boracic polyanion-doping contributes to the remarkable enhancement of structure stability and cycling performance of NCA.
{001} Oriented piezoelectric films prepared by chemical solution deposition on Ni foils
NASA Astrophysics Data System (ADS)
Yeo, Hong Goo; Trolier-McKinstry, Susan
2014-07-01
Flexible metal foil substrates are useful in some microelectromechanical systems applications including wearable piezoelectric sensors or energy harvesters based on Pb(Zr,Ti)O3 (PZT) thin films. Full utilization of the potential of piezoelectrics on metal foils requires control of the film crystallographic texture. In this study, {001} oriented PZT thin films were grown by chemical solution deposition (CSD) on Ni foil and Si substrates. Ni foils were passivated using HfO2 grown by atomic layer deposition in order to suppress substrate oxidation during subsequent thermal treatment. To obtain the desired orientation of PZT film, strongly (100) oriented LaNiO3 films were integrated by CSD on the HfO2 coated substrates. A high level of {001} LaNiO3 and PZT film orientation were confirmed by X-ray diffraction patterns. Before poling, the low field dielectric permittivity and loss tangents of (001) oriented PZT films on Ni are near 780 and 0.04 at 1 kHz; the permittivity drops significantly on poling due to in-plane to out-of-plane domain switching. (001) oriented PZT film on Ni displayed a well-saturated hysteresis loop with a large remanent polarization ˜36 μC/cm2, while (100) oriented PZT on Si showed slanted P-E hysteresis loops with much lower remanent polarizations. The |e31,f| piezoelectric coefficient was around 10.6 C/m2 for hot-poled (001) oriented PZT film on Ni.
NASA Astrophysics Data System (ADS)
Choi, W. J.; Yeh, E. C. C.; Tu, K. N.
2003-11-01
Electromigration of eutectic SnPb flip chip solder joints and their mean-time-to-failure (MTTF) have been studied in the temperature range of 100 to 140 °C with current densities of 1.9 to 2.75×104 A/cm2. In these joints, the under-bump-metallization (UBM) on the chip side is a multilayer thin film of Al/Ni(V)/Cu, and the metallic bond-pad on the substrate side is a very thick, electroless Ni layer covered with 30 nm of Au. When stressed at the higher current densities, the MTTF was found to decrease much faster than what is expected from the published Black's equation. The failure occurred by interfacial void propagation at the cathode side, and it is due to current crowding near the contact interface between the solder bump and the thin-film UBM. The current crowding is confirmed by a simulation of current distribution in the solder joint. Besides the interfacial void formation, the intermetallic compounds formed on the UBM as well as the Ni(V) film in the UBM have been found to dissolve completely into the solder bump during electromigration. Therefore, the electromigation failure is a combination of the interfacial void formation and the loss of UBM. Similar findings in eutectic SnAgCu flip chip solder joints have also been obtained and compared.
Model and Subcomponent Development for a Pulse-Combustor-Driven Microgenerator
2004-08-31
sputtering of thin magnetic and dielectric layers [4]; and mechanical lamination of polymer -coated NiFe foils [5]. Although these approaches have...photomicrograph of the fabricated device is given in Figure 4.2-6. 3d solenoid- like Cu coil EPOXY SU8 NIFE LAMINATE D CORE Figure 4.2-6 Photomicrograph
NASA Astrophysics Data System (ADS)
Yang, H. F.; Liu, Z. T.; Fan, C. C.; Yao, Q.; Xiang, P.; Zhang, K. L.; Li, M. Y.; Liu, J. S.; Shen, D. W.
2016-08-01
By means of the state-of-the-art reactive oxide molecular beam epitaxy, we synthesized (001)- and (111)-orientated polar LaNiO3 thin films. In order to avoid the interfacial reconstructions induced by polar catastrophe, screening metallic Nb-doped SrTiO3 and iso-polarity LaAlO3 substrates were chosen to achieve high-quality (001)-orientated films in a layer-by-layer growth mode. For largely polar (111)-orientated films, we showed that iso-polarity LaAlO3 (111) substrate was more suitable than Nb-doped SrTiO3. In situ reflection high-energy electron diffraction, ex situ high-resolution X-ray diffraction, and atomic force microscopy were used to characterize these films. Our results show that special attentions need to be paid to grow high-quality oxide films with polar orientations, which can prompt the explorations of all-oxide electronics and artificial interfacial engineering to pursue intriguing emergent physics like proposed interfacial superconductivity and topological phases in LaNiO3 based superlattices.
NASA Astrophysics Data System (ADS)
White, Benjamin C.; Behbahanian, Amir; Stoker, T. McKay; Fowlkes, Jason D.; Hartnett, Chris; Rack, Phillip D.; Roberts, Nicholas A.
2018-03-01
Nanoparticles on a substrate have numerous applications in nanotechnology, from enhancements to solar cell efficiency to improvements in carbon nanotube growth. Producing nanoparticles in a cost effective fashion with control over size and spacing is desired, but difficult to do. This work presents a scalable method for altering the radius and pitch distributions of nickel nanoparticles. The introduction of alumina capping layers to thin nickel films during a pulsed laser-induced dewetting process has yielded reductions in the mean and standard deviation of radii and pitch for dewet nanoparticles with no noticeable difference in final morphology with increased capping layer thickness. The differences in carbon nanotube mats grown, on the uncapped sample and one of the capped samples, is also presented here, with a more dense mat being present for the capped case.
Characterization of Lateral Structure of the p-i-n Diode for Thin-Film Silicon Solar Cell.
Kiaee, Zohreh; Joo, Seung Ki
2018-03-01
The lateral structure of the p-i-n diode was characterized for thin-film silicon solar cell application. The structure can benefit from a wide intrinsic layer, which can improve efficiency without increasing cell thickness. Compared with conventional thin-film p-i-n cells, the p-i-n diode lateral structure exploited direct light irradiation on the absorber layer, one-side contact, and bifacial irradiation. Considering the effect of different carrier lifetimes and recombinations, we calculated efficiency parameters by using a commercially available simulation program as a function of intrinsic layer width, as well as the distance between p/i or n/i junctions to contacts. We then obtained excellent parameter values of 706.52 mV open-circuit voltage, 24.16 mA/Cm2 short-circuit current, 82.66% fill factor, and 14.11% efficiency from a lateral cell (thickness = 3 μm; intrinsic layer width = 53 μm) in monofacial irradiation mode (i.e., only sunlight from the front side was considered). Simulation results of the cell without using rear-side reflector in bifacial irradiation mode showed 11.26% front and 9.72% rear efficiencies. Our findings confirmed that the laterally structured p-i-n cell can be a potentially powerful means for producing highly efficient, thin-film silicon solar cells.
Analysis of surface scale on the Ni-based superalloy CMSX-10N and proposed mechanism of formation
NASA Astrophysics Data System (ADS)
Simmonds, S.; D'Souza, N.; Ryder, K. S.; Dong, H.
2012-01-01
There is a continuing demand to raise the operating temperature of jet engine turbine blades to meet the need for higher turbine entry temperatures (TET) in order to increase thermal efficiency and thrust. Modern, high-pressure turbine blades are made from Ni-based superalloys in single-crystal form via the investment casting process. One important post-cast surface defect, known as 'surface scale', has been investigated on the alloy CMSX-10N. This is an area of distinct discolouration of the aerofoil seen after casting. Auger electron and X-ray photoelectron spectroscopy analysis were carried out on both scaled and un-scaled areas. In the scaled region, a thin layer (~800nm) of Ni oxide is evident. In the un-scaled regions there is a thicker Al2O3 layer. It is shown that, as the blade cools during casting, differential thermal contraction of mould and alloy causes the solid blade to 'detach' from the mould in these scaled areas. The formation of Ni Oxides is facilitated by this separation.
Microstructure and Oxidation of a MAX Phase/Superalloy Hybrid Interface
NASA Technical Reports Server (NTRS)
Smialek, James L.; Garg, Anita
2014-01-01
Corrosion resistant, strain tolerant MAX phase coatings are of interest for turbine applications. Thin Cr2AlC MAX phase wafers were vacuum diffusion bonded to an advanced turbine disk alloy, LSHR, at 1100 C. The interface, examined by optical and scanning electron microscopy, revealed a primary diffusion zone consisting of 10 micrometers of beta-Ni(Co)Al, decorated with various NiCoCrAl, MC and M3B2 precipitates. On the Cr2AlC side, an additional 40 micrometers Al-depletion zone of Cr7C3 formed in an interconnected network with the beta-Ni(Co)Al. Oxidation of an exposed edge at 800 C for 100 h produced a fine-grained lenticular alumina scale over Cr2AlC and beta-Ni(Co)Al, with coarser chromia granules over the Cr7C3 regions. Subsequent growth of the diffusion layers was only 5 micrometers in total. A residual stress of 500 MPa was estimated for the MAX phase layer, but no interfacial damage was observed. Subsequent tests for 1000 h reveal similar results.
NASA Astrophysics Data System (ADS)
Godel, Florian; Meny, Christian; Doudin, Bernard; Majjad, Hicham; Dayen, Jean-François; Halley, David
2018-02-01
We report on the fabrication of ferromagnetic thin layers separated by a MgO dielectric barrier from a graphene-covered substrate. The growth of ferromagnetic metal layers—Co or Ni0.8Fe0.2—is achieved by Molecular Beam Epitaxy (MBE) on a 3 nm MgO(111) epitaxial layer deposited on graphene. In the case of a graphene, grown by chemical vapor deposition (CVD) over Ni substrates, an annealing at 450 °C, under ultra-high-vacuum (UHV) conditions, leads to the dewetting of the ferromagnetic layers, forming well-defined flat facetted clusters whose shape reflects the substrate symmetry. In the case of CVD graphene transferred on SiO2, no dewetting is observed after same annealing. We attribute this difference to the mechanical stress states induced by the substrate, illustrating how it matters for epitaxial construction through graphene. Controlling the growth parameters of such magnetic single objects or networks could benefit to new architectures for catalysis or spintronic applications.
NASA Astrophysics Data System (ADS)
Shen, Xiaohu; Jin, Hao; Dong, Shurong; Wong, Hei; Zhou, Jian; Guo, Zhaodi; Wang, Demiao
2012-11-01
We have demonstrated a novel sputtering method for lead-free thin metal films on ferrite substrates for surface-mount inductor applications. In a surface-mounting process, the cladding of enameled wire needs to be burnt off at high temperature, which requires the devices to withstand a high-temperature reliability test at 420°C for 10 s. There are no reports that a sputtered film of thickness less than 6 μm can withstand this test. In this work, we used Ag/Ni-7 wt.%V double metal layers for the metallization. The dissolution of Ni-7 wt.%V in Sn-3%Ag-0.5%Cu lead-free solder at various temperatures was studied in detail. Scanning electron microscopy with energy-dispersive x-ray spectroscopy was used to investigate the interfacial reaction between the sputtered films and the solder. The intermetallic compounds are mainly (Cu,Ni)6Sn5 at 250°C; however, (Ni,Cu)3Sn4 becomes the predominant composition at 420°C. In addition, although outdiffusion of V atoms from the Ni-V layer was observed, its effect on the intermetallic compound (IMC) was insignificant. We further confirmed that the proposed metallization is able to pass the aforementioned high-temperature reliability test.
Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures
NASA Astrophysics Data System (ADS)
Zietek, Slawomir; Ogrodnik, Piotr; Skowroński, Witold; Stobiecki, Feliks; van Dijken, Sebastiaan; Barnaś, Józef; Stobiecki, Tomasz
2016-08-01
Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions for optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.
Interplay between interface structure and magnetism in NiFe/Cu/Ni-based pseudo-spin valves
NASA Astrophysics Data System (ADS)
Loving, Melissa G.; Ambrose, Thomas F.; Ermer, Henry; Miller, Don; Naaman, Ofer
2018-05-01
Magnetic pseudo spin valves (PSVs) with superconducting Nb electrodes, have been leading candidates for an energy-efficient memory solution compatible with cryogenic operation of ultra-low power superconducting logic. Integration of these PSV Josephson junctions in a standard multi-layer Nb process requires growing high-quality thin magnetic films on a thick Nb bottom electrode (i.e. ≥1.5kÅ, to achieve bulk superconducting properties). However, as deposited, 1.5kÅ Nb exhibits a rough surface with a characteristic rice grain morphology, which severely degrades the switching properties of subsequently deposited PSVs. Therefore, in order to achieve coherent switching throughout a PSV, the Nb interface must be modified. Here, we demonstrate that the Nb surface morphology and PSV crystallinity can be altered with the incorporation of separate 50Å Cu or 100Å Al/50Å Cu non-magnetic seed layers, and demonstrate their impact on the magnetic switching of a 15Å Ni80Fe20/50Å Cu/20Å Ni PSV, at both room temperature and at 10 K. Most notably, these results show that the incorporation of an Al seed layer leads to an improved face centered cubic templating through the bulk of the PSV, and ultimately to superior magnetic switching.
Reactive diffusion in the presence of a diffusion barrier: Experiment and model
NASA Astrophysics Data System (ADS)
Mangelinck, D.; Luo, T.; Girardeaux, C.
2018-05-01
Reactions in thin films and diffusion barriers are important for applications such as protective coatings, electrical contact, and interconnections. In this work, the effect of a barrier on the kinetics of the formation for a single phase by reactive diffusion is investigated from both experimental and modeling point of views. Two types of diffusion barriers are studied: (i) a thin layer of W deposited between a Ni film and Si substrate and (ii) Ni alloy films, Ni(1%W) and Ni(5%Pt), that form a diffusion barrier during the reaction with the Si substrate. The effect of the barriers on the kinetics of δ-Ni2Si formation is determined by in situ X ray diffraction and compared to models that explain the kinetic slowdown induced by both types of barrier. A linear parabolic growth is found for the deposited barrier with an increasing linear contribution for increasing barrier thickness. On the contrary, the growth is mainly parabolic for the barrier formed by the reaction between an alloy film and the substrate. The permeability of the two types of barrier is determined and discussed. The developed models fit well with the dedicated model experiments, leading to a better understanding of the barrier effect on the reactive diffusion and allowing us to predict the barrier behaviour in various applications.
NASA Astrophysics Data System (ADS)
Li, Jinhua; Zhu, Minjie; Wang, Zhuqing; Ono, Takahito
2016-10-01
Heterostructure of graphene nanowalls (GNW) supported Ni thin-layer was fabricated to form an on-chip pseudocapacitor via a standard microelectromechanical system process. Beyond a high-rate capability of the micro-supercapacitors, a large specific energy density of 2.1 mW h cm-3 and power density up to 5.91 W cm-3 have been achieved, which are two orders of magnitude higher than those commercial electrolytic capacitors and thin-film batteries, respectively. Rational analysis revealed a rapid GNW growth originated from the Pt current collector embedment by catalyzing hydrocarbon dissociating. The unique concept in our design includes that Ni was evaporated onto GNW to serve as both the shadow mask for microelectrode patterning and subsequently a precursor to be in-situ electrochemically converted into pseudo-capacitive Ni(OH)2 for capacitance enhancing. Addressing the challenge to uniformly coat in complex nanoporous structures, this strategy renders a conformal deposition of pseudo-capacitive material on individual graphene nanoflakes, leading to efficient merits harnessing of huge accessible surfaces from the conductive GNW networks and great capacitance of the Ni-based active materials for high performance delivery. The proof of concept can be potentially extended to other transition metals and paves the way to further apply GNW hybrids in diverse microsystems.
NASA Astrophysics Data System (ADS)
Makuch, N.; Piasecki, A.; Dziarski, P.; Kulka, M.
2015-12-01
Ni-base superalloys were widely used in aeronautics, chemical and petrochemical industries due to their high corrosion resistance, high creep and rupture strength at high temperature. However, these alloys were not considered for applications in which conditions of appreciable mechanical wear were predominant. The diffusion boriding provided suitable protection against wear. Unfortunately, this process required long duration and high temperature. In this study, instead of the diffusion process, the laser alloying with boron and niobium was used in order to produce the hard and wear resistant layer on Nimonic 80A-alloy. The laser-alloying was carried out as a two-step process. First, the external cylindrical surface of specimens was pre-placed with a paste containing boron and niobium. Then, the pre-placed coating and the thin surface layer of the substrate were re-melted by a laser beam. The high laser beam power (P=1.56 kW) and high averaging irradiance (E=49.66 kW/cm2) provided the thick laser re-melted zone. The laser-borided layers were significantly thicker (470 μm) in comparison with the layers obtained as a consequence of the diffusion boriding. Simultaneously, the high overlapping of multiple laser tracks (86%) caused that the laser-alloyed layer was uniform in respect of the thickness. The produced layer consisted of nickel borides (Ni3B, Ni2B, Ni4B3, NiB), chromium borides (CrB, Cr2B), niobium borides (NbB2, NbB) and Ni-phase. The presence of hard borides caused the increase in microhardness up to 1000 HV in the re-melted zone. However, the measured values were lower than those-characteristic of niobium borides, chromium borides and nickel borides. The presence of the soft Ni-phase in re-melted zone was the reason for such a situation. After laser alloying, the significant increase in abrasive wear resistance was also observed. The mass wear intensity factor, as well as the relative mass loss of the laser-alloyed specimens, was over 10 times smaller in comparison with untreated Nimonic 80A-alloy.
Magneto-transport Characterization of Thin Film In-plane and Cross-plane Conductivity
NASA Astrophysics Data System (ADS)
Tang, Yang; Grayson, Matthew
Thin films with highly anisotropic in-plane and cross-plane conductivities are widely used in devices, such as infrared emitters and detectors, and the proper magneto-transport characterization in both directions can reveal information about the doping density, impurities, carrier life times and band structure. This work introduces a novel method for deducing the complete anisotropic electrical conductivity tensor of such an anisotropic resistive layer atop a highly conducting bottom contact, which is a standard part of the device structure. Three strip-line contacts separated by a length scale comparable to the film thickness are applied atop the resistive thin film layer of interest, with the highly conducting back-plane as a back-contact. The potential distribution in the device is modeled, using both scaling and conformal transformation to minimize the calculated volume. As a proof of concept, triple strip-line devices for GaAs and GaAs/AlGaAs superlattice thin films are fabricated. To achieve narrow strip-line contacts with sub-micron scale widths, non-annealed Ni/Au contacts form ohmic contacts to a patterned n+-GaAs cap layer atop the anisotropic thin films. Preliminary experimental data will be presented as a validation of this method. Acknowledgment: Funded by AFOSR FA9550-15-1-0377 and AFOSR FA9550-15-1-0247.
2015-06-25
layered systems including transitional metal dichalcogenides, oxides and nitrides which have an exciting spectrum of electronic, optical, thermal and...disulfide (WS2)islands materials were prepared by using H2S gas and Tungsten oxide thin films at 950C. Both AFM and FEG-SEM showed the triangular...gains defects after few layers growth. They also reported the property of h-BN protecting Ni from oxidation up to 1100C; it is more difficult to grow
Cho, Young-Lae; Lee, Jung-Woo; Lee, Chang-Hyoung; Choi, Hyung-Seon; Kim, Sung-Su; Song, Young Il; Park, Chan; Suh, Su-Jeong
2015-10-01
An aluminum (Al) thin film capacitor was fabricated for a high capacitance capacitor using electrochemical etching, barrier-type anodizing, and electroless Ni-P plating. In this study, we focused on the bottom-up filling of Ni-P electrodes on Al2O3/Al with etched tunnels. The Al tunnel pits were irregularly distributed on the Al foil, diameters were in the range of about 0.5~1 μm, the depth of the tunnel pits was approximately 35~40 μm, and the complex structure was made full filled hard metal. To control the plating rate, the experiment was performed by adding polyethyleneimine (PEI, C2H5N), a high molecular substance. PEI forms a cross-link at the etching tunnel inlet, playing the role of delaying the inlet plating. When the PEI solution bath was used after activation, the Ni-P layer was deposited selectively on the bottoms of the tunnels. The characteristics were analyzed by adding the PEI addition quantity rate of 100~600 mg/L into the DI water. The capacitance of the Ni-P/Al2O3 (650~700 nm)/Al film was measured at 1 kHz using an impedance/gain phase analyzer. For the plane film without etch tunnels the capacitance was 12.5 nF/cm2 and for the etch film with Ni-P bottom-up filling the capacitance was 92 nF/cm2. These results illustrate a remarkable maximization of capacitance for thin film metal capacitors.
Yang, Liping; Kong, Junhua; Zhou, Dan; Ang, Jia Ming; Phua, Si Lei; Yee, Wu Aik; Liu, Hai; Huang, Yizhong; Lu, Xuehong
2014-06-16
Inspired by the high transition-metal-ion content in mussel glues, and the cross-linking and mechanical reinforcement effects of some transition-metal ions in mussel threads, high concentrations of nickel(II), cobalt(II), and manganese(II) ions have been purposely introduced into the reaction system for dopamine polymerization. Kinetics studies were conducted for the Ni(2+)-dopamine system to investigate the polymerization mechanism. The results show that the Ni(2+) ions could accelerate the assembly of dopamine oligomers in the polymerization process. Spectroscopic and electron microscopic studies reveal that the Ni(2+) ions are chelated with polydopamine (PDA) units, forming homogeneous Ni(2+)-PDA complexes. This facile one-pot approach is utilized to construct transition-metal-ion-PDA complex thin coatings on graphene oxide, which can be carbonized to produce robust hybrid nanosheets with well-dispersed metallic nickel/metallic cobalt/manganese(II) oxide nanoparticles embedded in PDA-derived thin graphitic carbon layers. The nickel-graphene hybrid prepared by using this approach shows good catalytic properties and recyclability for the reduction of p-nitrophenol. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharadwaja, S. S. N., E-mail: s.s.n.bharadwaja@gmail.com; Ko, S. W.; Qu, W.
Excimer laser assisted re-oxidation for reduced, crystallized BaTiO{sub 3} thin films on Ni-foils was investigated. It was found that the BaTiO{sub 3} can be re-oxidized at an oxygen partial pressure of ∼50 mTorr and substrate temperature of 350 °C without forming a NiO{sub x} interface layer between the film and base metal foil. The dielectric permittivity of re-oxidized films was >1000 with loss tangent values <2% at 100 Hz, 30 mV{sub rms} excitation signal. Electron Energy Loss Spectroscopy indicated that BaTiO{sub 3} thin films can be re-oxidized to an oxygen stoichiometry close to ∼3 (e.g., stoichiometric). High resolution cross sectional transmission electronmore » microscopy showed no evidence of NiO{sub x} formation between the BaTiO{sub 3} and the Ni foil upon excimer laser re-oxidation. Spectroscopic ellipsometry studies on laser re-oxidized [001]{sub C} and [111]{sub C} BaTiO{sub 3} single crystals indicate that the re-oxidation of BaTiO{sub 3} single crystals is augmented by photo-excitation of the ozone, as well as laser pulse induced temperature and local stress gradients.« less
NASA Astrophysics Data System (ADS)
Sevastyanov, E. Yu.; Maksimova, N. K.; Potekaev, A. I.; Khludkova, L. S.; Chernikov, E. V.; Davydova, T. A.
2018-02-01
The results of studies of electrical and gas sensitive characteristics of acetone sensors based on thin nanocrystalline SnO2 films with various catalysts deposited on the surface (Pt/Pd, Au) and introduced into the volume (Au, Ni, Co) are presented. Films containing impurities of gold and 3d-metals were obtained by the method of magnetron sputtering of mosaic targets. Particular attention was paid to the influence of the longterm tests and humidity level on the properties of sensors. It is shown that the sensors with the deposited dispersed gold layers with Au+Ni and, especially, Au+Co additives introduced into the volume are characterized by the increased stability in the process of testing under prolonged exposure to acetone and also under conditions of varying humidity.
NASA Astrophysics Data System (ADS)
Geenen, F. A.; van Stiphout, K.; Nanakoudis, A.; Bals, S.; Vantomme, A.; Jordan-Sweet, J.; Lavoie, C.; Detavernier, C.
2018-02-01
The electrical contact of the source and drain regions in state-of-the-art CMOS transistors is nowadays facilitated through NiSi, which is often alloyed with Pt in order to avoid morphological agglomeration of the silicide film. However, the solid-state reaction between as-deposited Ni and the Si substrate exhibits a peculiar change for as-deposited Ni films thinner than a critical thickness of tc = 5 nm. Whereas thicker films form polycrystalline NiSi upon annealing above 450 ° C , thinner films form epitaxial NiSi2 films that exhibit a high resistance toward agglomeration. For industrial applications, it is therefore of utmost importance to assess the critical thickness with high certainty and find novel methodologies to either increase or decrease its value, depending on the aimed silicide formation. This paper investigates Ni films between 0 and 15 nm initial thickness by use of "thickness gradients," which provide semi-continuous information on silicide formation and stability as a function of as-deposited layer thickness. The alloying of these Ni layers with 10% Al, Co, Ge, Pd, or Pt renders a significant change in the phase sequence as a function of thickness and dependent on the alloying element. The addition of these ternary impurities therefore changes the critical thickness tc. The results are discussed in the framework of classical nucleation theory.
Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films
NASA Astrophysics Data System (ADS)
Cheemadan, Saheer; Santhosh Kumar, M. C.
2018-04-01
Nickel oxide (NiO) thin films were deposited by RF sputtering process and the physical properties were investigated for varying substrate temperatures and oxygen partial pressure. The variation of the crystallographic orientation and microstructure of the NiO thin films with an increase in substrate temperature were studied. It was observed that NiO thin films deposited at 350 °C shows relatively good crystalline characteristics with a preferential orientation along (111) plane. With the optimum substrate temperature of 350 °C, the NiO thin films were deposited under various oxygen partial pressures at the same experimental conditions. The structural, optical and electrical properties of NiO thin films under varying oxygen partial pressure of 10%–50% were investigated. From XRD it is clear that the films prepared in the pure argon atmosphere were amorphous while the films in oxygen partial pressure exhibited polycrystalline NiO phase. SEM and AFM investigations unveil that the higher substrate temperature improves the microstructure of the thin films. It is revealed that the NiO thin films deposited at oxygen partial pressure of 40% and a substrate temperature of 350 °C, showed higher electrical conductivity with p-type characteristics.
Flexible metasurface black nickel with stepped nanopillars.
Qian, Qinyu; Yan, Ying; Wang, Chinhua
2018-03-15
We report on a monolithic, all-metallic, and flexible metasurface perfect absorber [black nickel (Ni)] based on coupled Mie resonances originated from vertically stepped Ni nanopillars homoepitaxially grown on an Ni substrate. Coupled Mie resonances are generated from Ni nanopillars with different sizes such that Mie resonances of the stepped two sets of Ni nanopillars occur complementarily at different wavelengths to realize polarization-independent broadband absorption over the entire visible wavelength band (400-760 nm) within an ultra-thin surface layer of only 162 nm thick in total. Two-step double-beam interference lithography and electroplating are utilized to fabricate the proposed monolithic metasurface that can be arbitrarily bent and pressed. A black nickel metasurface is experimentally demonstrated in which an average polarization-independent absorption of 0.972 (0.961, experiment) in the entire visible band is achieved and remains 0.838 (0.815, experiment) when the incident angle increases to 70°.
NASA Astrophysics Data System (ADS)
Gong, Wenquan
2005-07-01
The objective of this work was to identify a materials system for intermediate temperature solid oxide fuel cells (IT-SOFCs). Towards this goal, alternating current complex impedance spectroscopy was employed as a tool to study electrode polarization effects in symmetrical cells employing strontium and magnesium doped lanthanum gallate (LSGM) electrolyte. Several cathode materials were investigated including strontium doped lanthanum manganite (LSM), Strontium and iron doped lanthanum cobaltate (LSCF), LSM-LSGM, and LSCF-LSGM composites. Investigated Anode materials included nickel-gadolinium or lanthanum doped cerium oxide (Ni-GDC, or Ni-LDC) composites. The ohmic and the polarization resistances of the symmetrical cells were obtained as a function of temperature, time, thickness, and the composition of the electrodes. Based on these studies, the single phase LSM electrode had the highest polarization resistance among the cathode materials. The mixed-conducting LSCF electrode had polarization resistance orders of magnitude lower than that of the LSM-LSGM composite electrodes. Although incorporating LSGM in the LSCF electrode did not reduce the cell polarization resistance significantly, it could reduce the thermal expansion coefficient mismatch between the LSCF electrodes and LSGM electrolyte. Moreover, the polarization resistance of the LSCF electrode decreased asymptotically as the electrode thickness was increased thus suggesting that the electrode thickness needed not be thicker than this asymptotic limit. On the anode side of the IT-SOFC, Ni reacted with LSGM electrolyte, and lanthanum diffusion occurred from the LSGM electrolyte to the GDC barrier layer, which was between the LSGM electrolyte and the Ni-composite anode. However, LDC served as an effective barrier layer. Ni-LDC (70 v% Ni) anode had the largest polarization resistance, while all other anode materials, i.e. Ni-LDC (50 v% Ni), Ni-GDC (70 v% NO, and Ni-GDC (50 v% Ni), had similar polarization resistances. Ni-LDC (50 v% NO was selected to be the anode for the LSGM electrolyte with a thin LDC barrier layer. Finally, the performance of complete LSGM electrolyte-supported IT-SOFCs with the selected cathode (LSCF-LSGM) and anode (Ni-LDC) materials coupled with the LDC barrier layer was evaluated at 600--800°C. The simulated cell performance of the anode-supported cell based on LSGM electrolyte was promising.
Vijselaar, Wouter; Tiggelaar, Roald M; Gardeniers, Han; Huskens, Jurriaan
2018-05-11
Most photoanodes commonly applied in solar fuel research (e.g., of Fe 2 O 3 , BiVO 4 , TiO 2 , or WO 3 ) are only active and stable in alkaline electrolytes. Silicon (Si)-based photocathodes on the other hand are mainly studied under acidic conditions due to their instability in alkaline electrolytes. Here, we show that the in-diffusion of nickel into a 3D Si structure, upon thermal annealing, yields a thin (sub-100 nm), defect-free nickel silicide (NiSi) layer. This has allowed us to design and fabricate a Si microwire photocathode with a NiSi interlayer between the catalyst and the Si microwires. Upon electrodeposition of the catalyst (here, nickel molybdenum) on top of the NiSi layer, an efficient, Si-based photocathode was obtained that is stable in strongly alkaline solutions (1 M KOH). The best-performing, all-earth-abundant microwire array devices exhibited, under AM 1.5G simulated solar illumination, an ideal regenerative cell efficiency of 10.1%.
Finite-size effects and magnetic exchange coupling in thin CoO layers
NASA Astrophysics Data System (ADS)
Ambrose, Thomas Francis
Finite size effects in CoO have been observed in CoO/SiOsb2 multilayers. The Neel temperatures of the CoO layers, as determined by dc susceptibility measurements, follow a finite-size scaling relation with a shift exponent lambda = 1.55 ± 0.05. This determined exponent is close to the theoretical value for finite size scaling in an Ising system. The value of the zero temperature correlation length has also been determined to be 18A, while antiferromagnetic ordering persists down to a CoO layer thickness of 10A. The properties of exchange biasing have been extensively studied in NiFe/CoO bilayers. The effects of the cooling field (Hsb{FC}), up to 50 kOe, on the resultant exchange field (Hsb{E}) and coercivity (Hsb{C}) have been examined. The value of Hsb{E} increases rapidly at low cooling fields (Hsb{FC} < 1kOe) and levels off for Hsb{FC} larger than 4 kOe. The value of Hsb{C} also depends upon Hsb{FC}, but less sensitively. The bilayer thickness also influences exchange biasing. We find that Hsb{E} varies inversely proprotional to both tsb{FM} and tsb{AF} where tsb{FM} and tsb{AF} are the ferromagnetic and antiferromagnetic layer thickness respectively. Because of the 1/tsb{AF}, the simple picture of interfacial coupling between ferromagnet and antiferromagnet spins appears to be inadequate. The assertion of long range coupling between ferromagnetic and antiferromagnetic layers has been verified by the observation of antiferromagnetic exchange coupling across spacer layers in NiFe/NM/CoO trilayers, where NM is a non-magnetic material. Exchange biasing has been observed in trilayers with metallic spacer layers up to 50A thick using Ag, Cu and Au, while no exchange field was observed for insulating spacer layers of any thickness using Alsb2Osb3, SiOsb2 and MgO. The temperature dependence of Hsb{E} and Hsb{C} and the effect of the deposition order have been studied in a series of bilayer (NiFe/CoO and CoO/NiFe) and trilayer (NiFe/CoO/NiFe) films. A profound difference in Hsb{E} was observed in samples with NiFe deposited on top of CoO compared to samples with CoO deposited on top of NiFe. When CoO is on top of NiFe Hsb{E} varies linearly with temperature, while for samples with NiFe on top of CoO Hsb{E} has a plateau followed by a rapid decrease. These distinct temperature dependences have been reproduced in NiFe/CoO/NiFe trilayers which contain both geometries. Structural analysis using Transmission Electron Microscopy indicate no apparent differences in the top and bottom interfaces. The angular dependence of the exchange coupling in a NiFe/CoO bilayer has been measured. Both Hsb{E} and Hsb{C} with unidirectional and uniaxial characteristics, respectively, are integral parts of the exchange coupling. The values of Hsb{E} can be expressed by a series of odd angle cosine terms, while the values of Hsb{C} can be expressed by a series of even angle cosine terms. Finally, exchange biasing has been used to "spin engineer" ferromagnetic layers in NiFe/CoO/NiFe trilayers. Four different spin structures have been observed. A phase diagram, for the four spin structures and the conditions with which each spin structure is obtained, has been determined. (Abstract shortened by UMI.)
EXAFS and XANES investigation of (Li, Ni) codoped ZnO thin films grown by pulsed laser deposition.
Mino, Lorenzo; Gianolio, Diego; Bardelli, Fabrizio; Prestipino, Carmelo; Senthil Kumar, E; Bellarmine, F; Ramanjaneyulu, M; Lamberti, Carlo; Ramachandra Rao, M S
2013-09-25
Ni doped, Li doped and (Li, Ni) codoped ZnO thin films were successfully grown using a pulsed laser deposition technique. Undoped and doped ZnO thin films were investigated using extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES). Preliminary investigations on the Zn K-edge of the undoped and doped ZnO thin films revealed that doping has not influenced the average Zn-Zn bond length and Debye-Waller factor. This shows that both Ni and Li doping do not appreciably affect the average local environment of Zn. All the doped ZnO thin films exhibited more than 50% of substitutional Ni, with a maximum of 77% for 2% Ni and 2% Li doped ZnO thin film. The contribution of Ni metal to the EXAFS signal clearly reveals the presence of Ni clusters. The Ni-Ni distance in the Ni(0) nanoclusters, which are formed in the film, is shorter with respect to the reference Ni metal foil and the Debye-Waller factor is higher. Both facts perfectly reflect what is expected for metal nanoparticles. At the highest doping concentration (5%), the presence of Li favors the growth of a secondary NiO phase. Indeed, 2% Ni and 5% Li doped ZnO thin film shows %Nisub = 75 ± 11, %Nimet = 10 ± 8, %NiO = 15 ± 8. XANES studies further confirm that the substitutional Ni is more than 50% in all the samples. These results explain the observed magnetic properties.
NASA Astrophysics Data System (ADS)
Aichner, Bernd; Jausner, Florian; Zechner, Georg; Mühlgassner, Rita; Lang, Wolfgang; Klimov, Andrii; Puźniak, Roman; Słysz, Wojciech; Guziewicz, Marek; Kruszka, Renata; Wegrzecki, Maciej; Sobolewski, Roman
2017-05-01
Thermodynamic fluctuations of the superconducting order parameter in NbN/NiCu and NbTiN/NiCu superconductor/ferromagnet (S/F) thin bilayers patterned to microbridges are investigated. Plain NbN and NbTiN films served as reference materials for the analyses. The samples were grown using dc-magnetron sputtering on chemically cleaned sapphire single-crystal substrates. After rapid thermal annealing at high temperatures, the superconducting films were coated with NiCu overlays, using co-sputtering. The positive magnetoresistance of the superconducting single layers is very small in the normal state but with a sharp upturn close to the superconducting transition, a familiar signature of superconducting fluctuations. The fluctuation-enhanced conductivity (paraconductivity) of the NbN and NbTiN single layer films is slightly larger than the prediction of the parameter-free Aslamazov-Larkin theory for order-parameter fluctuations in two-dimensional superconductors. The addition of a ferromagnetic top layer, however, changes the magnetotransport properties significantly. The S/F bilayers show a negative magnetoresistance up to almost room temperature, while the signature of fluctuations is similar to that in the plain films, demonstrating the relevance of both ferromagnetic and superconducting effects in the S/F bilayers. The paraconductivity is reduced below theoretical predictions, in particular in the NbTiN/NiCu bilayers. Such suppression of the fluctuation amplitude in S/F bilayers could be favorable to reduce dark counts in superconducting photon detectors and lead the way to enhance their performance.
Effect of composition and strain on the electrical properties of LaNiO3 thin films
NASA Astrophysics Data System (ADS)
Zhu, Mingwei; Komissinskiy, Philipp; Radetinac, Aldin; Vafaee, Mehran; Wang, Zhanjie; Alff, Lambert
2013-09-01
The Ni content of LaNi1-xO3 epitaxial thin films grown by pulsed laser deposition has been varied by ablation from targets with different composition. While tensile strain and Ni substoichiometry reduce the conductivity, nearly stoichiometric and unstrained films show reproducibly resistivities below 100 μΩ × cm. Since the thermodynamic instability of the Ni3+ state drives defect formation, Ni defect engineering is the key to obtain highly conducting LaNiO3 thin films.
Influence of spray time on the optical and electrical properties of CoNi2S4 thin films
NASA Astrophysics Data System (ADS)
El Radaf, I. M.; Fouad, S. S.; Ismail, A. M.; Sakr, G. B.
2018-04-01
In this paper, a facile spray pyrolysis technique was utilized to synthesize CoNi2S4 thin films. The influence of spray time on the structural, optical and electrical properties of the CoNi2S4 thin films was studied. The x-ray diffraction studies of the CoNi2S4 thin films illustrate that the films exhibit a polycrystalline nature with cubic structure. The values of the lattice strain ε, and the dislocation density δ, were decreased as the spray time increase while the grain size has reverse manner to lattice strain ε, and the dislocation density δ. The transmittance and reflectance spectra of the CoNi2S4 thin films were recorded in the wavelength range of (400–2500) nm to evaluate the optical parameters of the CoNi2S4 thin films. Optical absorption coefficient of CoNi2S4 thin films revealed a presence of a direct energy gap and the values of energy gap were decreased from 1.68 to 1.53 eV as the spray time increases from 15 min to 45 min. The nonlinear refractive index of the CoNi2S4 thin films was increased with increasing of the spray time. The CoNi2S4 thin films exhibit single activation energy and the activation energy was decreased as the spray time increased.
Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziętek, Slawomir, E-mail: zietek@agh.edu.pl; Skowroński, Witold; Stobiecki, Tomasz
Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions formore » optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.« less
Structural and magnetic characterization of Mn/NiFe bilayers with ion-beam-assisted deposition
NASA Astrophysics Data System (ADS)
Wu, Chun-Hsien; Zheng, Chao; Chiu, Chun-Cheng; Manna, Palash Kumar; van Lierop, Johan; Lin, Ko-Wei; Pong, Philip W. T.
2018-01-01
The exchange bias effect in ferromagnetic (FM)/antiferromagnetic (AF) bilayer structures has been widely investigated because its underlying principle is critical for spintronic applications. In this work, the effect of Ar+ beam bombardment on the microstructural and magnetic properties of the Mn/NiFe thin films was investigated. The in-situ Ar+ bombardment nontrivially promoted the Mn/NiFe intermixing and facilitated the formation of the FeMn phase, accompanied by a remarkable reduction of Mn and NiFe layer thickness. The enhanced Mn/NiFe intermixing greatly disordered the interfacial spins, inhibiting the interfacial exchange coupling and giving rise to a significant decrease of the exchange bias field (H ex). The facilitated Mn/NiFe intermixing effect also dramatically degraded the magnetocrystalline anisotropy of the NiFe crystallites, leading to a notable suppression of the coercivity (H c). These results indicate that both the exchange bias and coercivity of the Mn/NiFe bilayers can be directly affected by the in-situ Ar+ bombardment, offering an effective way to modify the magnetism of the exchange-bias systems.
Strategies to improve the electrochemical performance of electrodes for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Yang, Ming-Che
Lithium-ion batteries are widely used in consumer market because of their lightweight and rechargeable property. However, for the application as power sources of hybrid electric vehicles (HEVs), which need excellent cycling performance, high energy density, high power density, capacity, and low cost, new materials still need to be developed to meet the demands. In this dissertation work, three different strategies were developed to improve the properties of the electrode of lithium batteries. First, the voltage profile and lithium diffusion battier of LiM1/2Mn 3/2O4 (M=Ti, V, Cr, Fe, Co, Ni and Cu) were predicted by first principles theory. The computation results suggest that doping with Co or Cu can potentially lower Li diffusion barrier compared with Ni doping. Our experimental research has focused on LiNixCuyMn 2-x-yO4 (0
Contacting graphene in a 200 mm wafer silicon technology environment
NASA Astrophysics Data System (ADS)
Lisker, Marco; Lukosius, Mindaugas; Kitzmann, Julia; Fraschke, Mirko; Wolansky, Dirk; Schulze, Sebastian; Lupina, Grzegorz; Mai, Andreas
2018-06-01
Two different approaches for contacting graphene in a 200 mm wafer silicon technology environment were tested. The key is the opportunity to create a thin SiN passivation layer on top of the graphene protecting it from the damage by plasma processes. The first approach uses pure Ni contacts with a thickness of 200 nm. For the second attempt, Ni is used as the contact metal which substitutes the Ti compared to a standard contact hole filling process. Accordingly, the contact hole filling of this "stacked via" approach is Ni/TiN/W. We demonstrate that the second "stacked Via" is beneficial and shows contact resistances of a wafer scale process with values below 200 Ohm μm.
A thin film nitinol heart valve.
Stepan, Lenka L; Levi, Daniel S; Carman, Gregory P
2005-11-01
In order to create a less thrombogenic heart valve with improved longevity, a prosthetic heart valve was developed using thin film nitinol (NiTi). A "butterfly" valve was constructed using a single, elliptical piece of thin film NiTi and a scaffold made from Teflon tubing and NiTi wire. Flow tests and pressure readings across the valve were performed in vitro in a pulsatile flow loop. Bio-corrosion experiments were conducted on untreated and passivated thin film nitinol. To determine the material's in vivo biocompatibility, thin film nitinol was implanted in pigs using stents covered with thin film NiTi. Flow rates and pressure tracings across the valve were comparable to those through a commercially available 19 mm Perimount Edwards tissue valve. No signs of corrosion were present on thin film nitinol samples after immersion in Hank's solution for one month. Finally, organ and tissue samples explanted from four pigs at 2, 3, 4, and 6 weeks after thin film NiTi implantation appeared without disease, and the thin film nitinol itself was without thrombus formation. Although long term testing is still necessary, thin film NiTi may be very well suited for use in artificial heart valves.
Nan, Tianxiang; Zhou, Ziyao; Liu, Ming; Yang, Xi; Gao, Yuan; Assaf, Badih A; Lin, Hwaider; Velu, Siddharth; Wang, Xinjun; Luo, Haosu; Chen, Jimmy; Akhtar, Saad; Hu, Edward; Rajiv, Rohit; Krishnan, Kavin; Sreedhar, Shalini; Heiman, Don; Howe, Brandon M; Brown, Gail J; Sun, Nian X
2014-01-14
Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling.
CHEMICAL SOLUTION DEPOSITION BASED OXIDE BUFFERS AND YBCO COATED CONDUCTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranthaman, Mariappan Parans
We have reviewed briefly the growth of buffer and high temperature superconducting oxide thin films using a chemical solution deposition (CSD) method. In the Rolling-Assisted Biaxially Textured Substrates (RABiTS) process, developed at Oak Ridge National Laboratory, utilizes the thermo mechanical processing to obtain the flexible, biaxially oriented copper, nickel or nickel-alloy substrates. Buffers and Rare Earth Barium Copper Oxide (REBCO) superconductors have been deposited epitaxially on the textured nickel alloy substrates. The starting substrate serves as a template for the REBCO layer, which has substantially fewer weak links. Buffer layers play a major role in fabricating the second generation REBCOmore » wire technology. The main purpose of the buffer layers is to provide a smooth, continuous and chemically inert surface for the growth of the REBCO film, while transferring the texture from the substrate to the superconductor layer. To achieve this, the buffer layers need to be epitaxial to the substrate, i.e. they have to nucleate and grow in the same bi-axial texture provided by the textured metal foil. The most commonly used RABiTS multi-layer architectures consist of a starting template of biaxially textured Ni-5 at.% W (Ni-W) substrate with a seed (first) layer of Yttrium Oxide (Y2O3), a barrier (second) layer of Yttria Stabilized Zirconia (YSZ), and a Cerium Oxide (CeO2) cap (third) layer. These three buffer layers are generally deposited using physical vapor deposition (PVD) techniques such as reactive sputtering. On top of the PVD template, REBCO film is then grown by a chemical solution deposition. This article reviews in detail about the list of oxide buffers and superconductor REBCO films grown epitaxially on single crystal and/or biaxially textured Ni-W substrates using a CSD method.« less
WO{sub 3} thin film based multiple sensor array for electronic nose application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramgir, Niranjan S., E-mail: niranjanpr@yahoo.com, E-mail: deepakcct1991@gmail.com; Goyal, C. P.; Datta, N.
2015-06-24
Multiple sensor array comprising 16 x 2 sensing elements were realized using RF sputtered WO{sub 3} thin films. The sensor films were modified with a thin layer of sensitizers namely Au, Ni, Cu, Al, Pd, Ti, Pt. The resulting sensor array were tested for their response towards different gases namely H{sub 2}S, NH{sub 3}, NO and C{sub 2}H{sub 5}OH. The sensor response values measured from the response curves indicates that the sensor array generates a unique signature pattern (bar chart) for the gases. The sensor response values can be used to get both qualitative and quantitative information about the gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, H. F.; Liu, Z. T.; Fan, C. C.
2016-08-15
By means of the state-of-the-art reactive oxide molecular beam epitaxy, we synthesized (001)- and (111)-orientated polar LaNiO{sub 3} thin films. In order to avoid the interfacial reconstructions induced by polar catastrophe, screening metallic Nb-doped SrTiO{sub 3} and iso-polarity LaAlO{sub 3} substrates were chosen to achieve high-quality (001)-orientated films in a layer-by-layer growth mode. For largely polar (111)-orientated films, we showed that iso-polarity LaAlO{sub 3} (111) substrate was more suitable than Nb-doped SrTiO{sub 3}. In situ reflection high-energy electron diffraction, ex situ high-resolution X-ray diffraction, and atomic force microscopy were used to characterize these films. Our results show that special attentionsmore » need to be paid to grow high-quality oxide films with polar orientations, which can prompt the explorations of all-oxide electronics and artificial interfacial engineering to pursue intriguing emergent physics like proposed interfacial superconductivity and topological phases in LaNiO{sub 3} based superlattices.« less
Developing high-transmittance heterojunction diodes based on NiO/TZO bilayer thin films
2013-01-01
In this study, radio frequency magnetron sputtering was used to deposit nickel oxide thin films (NiO, deposition power of 100 W) and titanium-doped zinc oxide thin films (TZO, varying deposition powers) on glass substrates to form p(NiO)-n(TZO) heterojunction diodes with high transmittance. The structural, optical, and electrical properties of the TZO and NiO thin films and NiO/TZO heterojunction devices were investigated with scanning electron microscopy, X-ray diffraction (XRD) patterns, UV-visible spectroscopy, Hall effect analysis, and current-voltage (I-V) analysis. XRD analysis showed that only the (111) diffraction peak of NiO and the (002) and (004) diffraction peaks of TZO were observable in the NiO/TZO heterojunction devices, indicating that the TZO thin films showed a good c-axis orientation perpendicular to the glass substrates. When the sputtering deposition power for the TZO thin films was 100, 125, and 150 W, the I-V characteristics confirmed that a p-n junction characteristic was successfully formed in the NiO/TZO heterojunction devices. We show that the NiO/TZO heterojunction diode was dominated by the space-charge limited current theory. PMID:23634999
Fabrication and characterization of nickel oxide nanoparticles/silicon NiO NPS/Si
NASA Astrophysics Data System (ADS)
Shuihab, Aliyah; Khalf, Surour
2018-05-01
In this study, (NiO) thin film which prepared by chemical method and deposited by drop casting technique on glass. The structural, optical and chemical analyses have been investigated. X-ray diffraction (XRD) measurements relieve that the (NiO) thin film was polycrystalline, cubic structure and there is no trace of the other material. UV-Vis measurements reveal that the energy gap of (NiO) thin film was found 1.8 eV. The Fourier Transform Infrared Spectroscopy (FTIR) spectrum of (NiO) thin film shows NiO nanoparticles had its IR peak of Ni-O stretching vibration and shifted to blue direction. Due to their quantum size effect and spherical nanostructures, the FTIR absorption of NiO nanoparticles is blue-shifted compared to that of the bulk form.
Surface modification of NiTi by plasma based ion implantation for application in harsh environments
NASA Astrophysics Data System (ADS)
Oliveira, R. M.; Fernandes, B. B.; Carreri, F. C.; Gonçalves, J. A. N.; Ueda, M.; Silva, M. M. N. F.; Silva, M. M.; Pichon, L.; Camargo, E. N.; Otubo, J.
2012-12-01
The substitution of conventional components for NiTi in distinct devices such as actuators, valves, connectors, stents, orthodontic arc-wires, e.g., usually demands some kind of treatment to be performed on the surface of the alloy. A typical case is of biomaterials made of NiTi, in which the main drawback is the Ni out-diffusion, an issue that has been satisfactorily addressed by plasma based ion implantation (PBII). Even though PBII can tailor selective surface properties of diverse materials, usually, only thin modified layers are attained. When NiTi alloys are to be used in the harsh space environment, as is the case of devices designed to remotely release the solar panels and antenna arrays of satellites, e.g., superior mechanical and tribological properties are demanded. For this case the thickness of the modified layer must be larger than the one commonly achieved by conventional PBII. In this paper, new nitrogen PBII set up was used to treat samples of NiTi in moderate temperature of 450 °C, with negative voltage pulses of 7 kV/250 Hz/20 μs, in a process lasting 1 h. A rich nitrogen atomic concentration of 85 at.% was achieved on the near surface and nitrogen diffused at least for 11 μm depth. Tribological properties as well as corrosion resistance were evaluated.
Jia, Haiping; Stock, Christoph; Kloepsch, Richard; He, Xin; Badillo, Juan Pablo; Fromm, Olga; Vortmann, Britta; Winter, Martin; Placke, Tobias
2015-01-28
In this work, a novel, porous structured NiSi2/Si composite material with a core-shell morphology was successfully prepared using a facile ball-milling method. Furthermore, the chemical vapor deposition (CVD) method is deployed to coat the NiSi2/Si phase with a thin carbon layer to further enhance the surface electronic conductivity and to mechanically stabilize the whole composite structure. The morphology and porosity of the composite material was evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption measurements (BJH analysis). The as-prepared composite material consists of NiSi2, silicon, and carbon phases, in which the NiSi2 phase is embedded in a silicon matrix having homogeneously distributed pores, while the surface of this composite is coated with a carbon layer. The electrochemical characterization shows that the porous and core-shell structure of the composite anode material can effectively absorb and buffer the immense volume changes of silicon during the lithiation/delithiation process. The obtained NiSi2/Si/carbon composite anode material displays an outstanding electrochemical performance, which gives a stable capacity of 1272 mAh g(-1) for 200 cycles at a charge/discharge rate of 1C and a good rate capability with a reversible capacity of 740 mAh g(-1) at a rate of 5C.
NASA Astrophysics Data System (ADS)
Nikravech, Mehrdad; Rahmani, Abdelkader
2016-09-01
The association of plasma and spray will permit to process materials where organometallic precursors are not available or economically non-reliable. The injection of aerosols in low pressure plasma results in the rapid evaporation of solvent and the rapid transformation of small amounts of precursors contained in each droplet leading to form nanoscale oxide particles. We developed two configurations of this technique: one is Spray Plasma that permits to deposit this layers on flat substrates; the second one is Fluidized Spray Plasma that permits to deposit thin layers on the surface of solid beads. The aim of this presentation is to describe the principles of this new technique together with several applications. The influence of experimental parameters to deposit various mixed metal oxides will be demonstrated: thin dense layers of nanostructured ZnO for photovoltaic applications, porous layers of LaxSr1-x MnO3 as the cathode for fuel cells, ZnO-Cu, NiO layers on solid pellets in fluidized bed for catalysis applications. Aknowledgement to Programme interdisciplinaire SPC Énergies de Demain.
NASA Astrophysics Data System (ADS)
Kim, Hyun Joong; Kim, Manjin; Neoh, Ke Chean; Han, Gwon Deok; Bae, Kiho; Shin, Jong Mok; Kim, Gyu-Tae; Shim, Joon Hyung
2016-09-01
Thin ceramic bi-layered membrane comprising yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (GDC) is fabricated by the cost-effective slurry spin coating technique, and it is evaluated as an electrolyte of solid oxide fuel cells (SOFCs). It is demonstrated that the slurry spin coating method is capable of fabricating porous ceramic films by adjusting the content of ethyl-cellulose binders in the source slurry. The porous GDC layer deposited by spin coating under an optimal condition functions satisfactorily as a cathode-electrolyte interlayer in the test SOFC stack. A 2-μm-thick electrolyte membrane of the spin-coated YSZ/GDC bi-layer is successfully deposited as a dense and stable film directly on a porous NiO-YSZ anode support without any interlayers, and the SOFC produces power output over 200 mW cm-2 at 600 °C, with an open circuit voltage close to 1 V. Electrochemical impedance spectra analysis is conducted to evaluate the performance of the fuel cell components in relation with the microstructure of the spin-coated layers.
Kwon, Uisik; Kim, Bong-Gi; Nguyen, Duc Cuong; Park, Jong-Hyeon; Ha, Na Young; Kim, Seung-Joo; Ko, Seung Hwan; Lee, Soonil; Lee, Daeho; Park, Hui Joon
2016-07-28
In this work, we report on solution-based p-i-n-type planar-structured CH3NH3PbI3 perovskite photovoltaic (PV) cells, in which precrystallized NiO nanoparticles (NPs) without post-treatment are used to form a hole transport layer (HTL). X-ray diffraction and high-resolution transmission electron microscopy showed the crystallinity of the NPs, and atomic force microscopy and scanning electron microscopy confirmed the uniform surfaces of the resultant NiO thin film and the subsequent perovskite photoactive layer. Compared to the conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) HTL, the NiO HTL had excellent energy-level alignment with that of CH3NH3PbI3 and improved electron-blocking capability, as analyzed by photoelectron spectroscopy and diode modeling, resulting in Voc ~0.13 V higher than conventional PSS-based devices. Consequently, a power conversion efficiency (PCE) of 15.4% with a high fill factor (FF, 0.74), short-circuit current density (Jsc, 20.2 mA·cm(-2)), and open circuit voltage (Voc, 1.04 V) having negligible hysteresis and superior air stability has been achieved.
Kwon, Uisik; Kim, Bong-Gi; Nguyen, Duc Cuong; Park, Jong-Hyeon; Ha, Na Young; Kim, Seung-Joo; Ko, Seung Hwan; Lee, Soonil; Lee, Daeho; Park, Hui Joon
2016-01-01
In this work, we report on solution-based p-i-n-type planar-structured CH3NH3PbI3 perovskite photovoltaic (PV) cells, in which precrystallized NiO nanoparticles (NPs) without post-treatment are used to form a hole transport layer (HTL). X-ray diffraction and high-resolution transmission electron microscopy showed the crystallinity of the NPs, and atomic force microscopy and scanning electron microscopy confirmed the uniform surfaces of the resultant NiO thin film and the subsequent perovskite photoactive layer. Compared to the conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, the NiO HTL had excellent energy-level alignment with that of CH3NH3PbI3 and improved electron-blocking capability, as analyzed by photoelectron spectroscopy and diode modeling, resulting in Voc ~0.13 V higher than conventional PEDOT:PSS-based devices. Consequently, a power conversion efficiency (PCE) of 15.4% with a high fill factor (FF, 0.74), short-circuit current density (Jsc, 20.2 mA·cm−2), and open circuit voltage (Voc, 1.04 V) having negligible hysteresis and superior air stability has been achieved. PMID:27465263
Biocorrosion investigation of two shape memory nickel based alloys: Ni-Mn-Ga and thin film NiTi.
Stepan, L L; Levi, D S; Gans, E; Mohanchandra, K P; Ujihara, M; Carman, G P
2007-09-01
Thin film nitinol and single crystal Ni-Mn-Ga represent two new shape memory materials with potential to be used as percutaneously placed implant devices. However, the biocompatibility of these materials has not been adequately assessed. Immersion tests were conducted on both thin film nitinol and single crystal Ni-Mn-Ga in Hank's balanced salt solution at 37 degrees C and pH 7.4. After 12 h, large pits were found on the Ni-Mn-Ga samples while thin film nitinol displayed no signs of corrosion. Further electrochemical tests on thin film nitinol samples revealed breakdown potentials superior to a mechanically polished nitinol disc. These results suggest that passivation or electropolishing of thin film nitinol maybe unnecessary to promote corrosion resistance.
Low Fatigue in Epitaxial Pb(Zr0.2Ti0.8)O3 on Si Substrates with LaNiO3 Electrodes by RF Sputtering
NASA Astrophysics Data System (ADS)
Wang, Chun; Kryder, Mark H.
2009-09-01
Epitaxial PZT (001) thin films with a LaNiO3 bottom electrode were deposited by radio-frequency (RF) sputtering onto Si(001) single-crystal substrates with SrTiO3/TiN buffer layers. Pb(Zr0.2Ti0.8)O3 (PZT) samples were shown to consist of a single perovskite phase and to have an (001) orientation. The orientation relationship was determined to be PZT(001)[110]∥LaNiO3(001)[110]∥SrTiO3 (001)[110]∥TiN(001)[110]∥Si(001)[110]. Atomic force microscope (AFM) measurements showed the PZT films to have smooth surfaces with a roughness of 1.15 nm. The microstructure of the multilayer was studied using transmission electron microscopy (TEM). Electrical measurements were conducted using both Pt and LaNiO3 as top electrodes. The measured remanent polarization P r and coercive field E c of the PZT thin film with Pt top electrodes were 23 μC/cm2 and 75 kV/cm, and were 25 μC/cm2 and 60 kV/cm for the PZT film with LaNiO3 top electrodes. No obvious fatigue after 1010 switching cycles indicated good electrical endurance of the PZT films using LaNiO3 electrodes, compared with the PZT film with Pt top electrodes showing a significant polarization loss after 108 cycles. These PZT films with LaNiO3 electrodes could be potential recording media for probe-based high-density data storage.
Kamal, Tahseen; Khan, Sher Bahadar; Asiri, Abdullah M
2016-11-01
In this report, we used cellulose filter paper (FP) as high surface area catalyst supporting green substrate for the synthesis of nickel (Ni) nanoparticles in thin chitosan (CS) coating layer and their easy separation was demonstrated for next use. In this work, FP was coated with a 1 wt% CS solution onto cellulose FP to prepare CS-FP as an economical and environment friendly host material. CS-FP was put into 0.2 M NiCl 2 aqueous solution for the adsorption of Ni 2+ ions by CS coating layer. The Ni 2+ adsorbed CS-FP was treated with 0.1 M NaBH 4 aqueous solution to convert the ions into nanoparticles. Thus, we achieved Ni nanoparticles-CS composite through water based in-situ preparation process. Successful Ni nanoparticles formations was assessed by FESEM and EDX analyses. FTIR used to track the interactions between nanoparticles and host material. Furthermore, we demonstrated that the nanocomposite displays an excellent catalytic activity and reusability in three reduction reactions of toxic compounds i.e. conversion of 4-nitrophenol to 4-aminophenol, 2-nitrophenol to 2-aminophenol, and methyl orange dye reduction by NaBH 4 . Such a fabrication process of Ni/CS-FP may be applicable for the immobilization of other metal nanoparticles onto FP for various applications in catalysis, sensing, and environmental sciences. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Yan-Cheng; Yang, Chung-Lin; Huang, Jing-Yi; Jain, Chao-Chi; Hwang, Jen-Dong; Chu, Hsu-Shen; Chen, Sheng-Chi; Chuang, Tung-Han
2016-09-01
A Bi0.5Sb1.5Te3 thermoelectric material electroplated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode at low temperatures of 448 K (175 °C) to 523 K (250 °C) using a 4- μm-thick In interlayer under an external pressure of 3 MPa. During the bonding process, the In thin film reacted with the Ag layer to form a double layer of Ag3In and Ag2In intermetallic compounds. No reaction occurred at the Bi0.5Sb1.5Te3/Ni interface, which resulted in low bonding strengths of about 3.2 MPa. The adhesion of the Bi0.5Sb1.5Te3/Ni interface was improved by precoating a 1- μm Sn film on the surface of the thermoelectric element and preheating it at 523 K (250 °C) for 3 minutes. In this case, the bonding strengths increased to a range of 9.1 to 11.5 MPa after bonding at 473 K (200 °C) for 5 to 60 minutes, and the shear-tested specimens fractured with cleavage characteristics in the interior of the thermoelectric material. The bonding at 448 K (175 °C) led to shear strengths ranging from 7.1 to 8.5 MPa for various bonding times between 5 and 60 minutes, which were further increased to the values of 10.4 to 11.7 MPa by increasing the bonding pressure to 9.8 MPa. The shear strengths of Bi0.5Sb1.5Te3/Cu joints bonded with the optimized conditions of the modified solid-liquid interdiffusion bonding process changed only slightly after long-term exposure at 473 K (200 °C) for 1000 hours.
NASA Astrophysics Data System (ADS)
Konovalenko, Igor S.
2017-12-01
Here we develop the movable cellular automaton method based a numerical model of surface layers in a NiCr-TiC metal ceramic composite modified by pulsed electron beam irradiation in inert gas plasmas. The model explicitly takes into account the presence of several sublayers differing in structure and mechanical properties. The contribution of each sublayer to the mechanical response of the modified surface to contact loading is studied. It is shown that the maximum strength and fracture toughness are achieved in surface layers containing thin and stiff external sublayers and a more ductile thick internal sublayer.
NASA Astrophysics Data System (ADS)
Itapu, Srikanth
In recent years, low-cost and high-performance compact integrated circuit (IC) components have begun to play a significant role in enhancing circuit performance. One of many such components include on-chip inductors which often consume large area for moderate inductance (L) values and have relatively low-quality factor (Q). Besides reducing the physical circuitry of IC components, enhanced L and Q are also required in radio-frequency (RF) applications. Various approaches to overcome such limitations have been explored in recent years, such as incorporating magnetic materials, laminating and patterning ferromagnetic thin films, utilizing in-plane and out-of-plane anisotropy to enhance magnetic fields, patterning ground shields, fabricating multi-layers of magnetic thin film, etc. In this dissertation, we report on the possibility of forming microbump structures on films of magnetic metals, such as nickel (Ni), by single-pulse localized laser irradiation. Microstructuring on various metal films have been studied and different theoretical models have been proposed in recent years. We identified laser, geometry, and film quality conditions under which fabrication of such microstructures is possible and then examined this technique as a method to improve/enhance the L and Q of on-chip spiral inductors. The nanosecond pulsed-laser irradiation technique offers the advantage of localized thermal heating, noncontact nature and high throughput as compared to conventional microstructuring methods. In order to exploit the advantages of laser microstructuring, we modeled an inductor stack with copper as inductor layer over a silica substrate. Various ferromagnetic thin film materials (Ni, Co, Fe, ferrite, permalloy) were introduced and studied as a function of thickness and material properties. The microstructuring was then modeled as equivalent hemispherical structures and studied in detail as a function of microstructure density and diameter of the microstructure. A significant increase in L and Q was observed due to the ferromagnetic material as well as the microstructuring. To verify the simulated results, a 0.8cm x 1 cm inductor stack consisting of Ni/SiO2/Cu on glass substrate is fabricated and laser assisted microstructuring is performed on Ni thin film deposited by sputtering and evaporation. For Ni film deposited by RF sputtering, a grain structure with a fine network of inter-grain gaps (or cracks) were observed from the SEM images. These inter-grain gaps result in poor heat conduction laterally and vertically, thus hindering the microbump formation. Hence, smooth Ni films were obtained by vacuum evaporation. The continuous nature of the film material (vs voids and cracks in the sputtered film case) resulted in radially symmetric thermal expansion and deformation the amount of which can be controlled (within certain limits) by the laser pulse energy. Hence, for the inductor stack with evaporated Ni thin film, a 7% increase in L and 9% increase in Q is observed when microstructuring is performed on 12% of the total inductor area. For a further increase in the microstructuring to 19 % of the total inductor area, a 9% increae in L and 10% increase in Q is observed. Similarly, recent studies indicate an exciting research in wide bandgap transition metal oxide semiconductors such as NiO to enhance room temperature ferromagnetism for multiferroic devices, supercapacitor application and resistive switching. Dopants such Cu, Li enhance the p-type conductivity of NiO films and have been studied extensively, both theoretically and experimentally. Hence, the effect of ultraviolet (UV) laser irradiation on the structural, electrical, and optical properties of nickel oxide (NiOx) thin films, deposited by reactive sputtering of nickel in an oxygen containing atmosphere was studied. It was found that the conduction type can be changed from p-type to n-type and the resistivity decreased as the number of laser pulses is increased. The as-deposited films are polycrystalline, while laser irradiation renders the films amorphous. The observed transition from O-rich NiOx as-deposited films to Ni-rich laser- irradiated NiOx can be significant to resistive switching and other applications. The band gap of the as-deposited and the laser irradiated NiOx films was obtained from spectroscopic ellipsometry measurements and was found to slightly increase upon laser irradiation. It was also observed that the surface roughness increases slightly. Doping NiO with transition metals such as Fe, Zr and lanthanide metals such as La were studied experimentally, but no theoretical analysis has been investigated in knowing the vacancy and interstitial behavior in doped NiO. In this dissertation, we study the effect of doping transition metals belonging to the nickel family, i.e. Pd and Pt on the properties of NiO. An equivalent model to mimic the effects of laser irradiation on the native defects of NiO was also developed by studying the Ni16O16 in a 32 cell structure. A comprehensive study of varying the doping concentration in NiO was performed as a result of which the density of states (DOS) calculations revealed a decrease in the bandgap of Pd-doped NiO from 3.8eV for 3% Pd doping to 2.5eV for 20% Pd in NiO. Similarly, for the case of Pt-doped NiO, a decrease in the bandgap from 2.5 eV for 3% Pt doping to 2eV for 20% Pt doping is observed. The substitution of Ni3+ ions in NiO by Pd3+ and Pt3+ ions respectively, results in a decrease in the lattice constant as compared to undoped NiO.
Improved conductivity of indium-tin-oxide film through the introduction of intermediate layer
NASA Astrophysics Data System (ADS)
Ng, S. W.; Yam, F. K.; Beh, K. P.; Tneh, S. S.; Hassan, Z.
2016-09-01
A thin intermediate layer (Ag, AuSn, In, Ni, Sn, SiO2) was individually deposited on glass substrates prior to the deposition of indium-tin-oxide (ITO) thin film by radio-frequency (RF) magnetron sputtering employing ITO target (composition ratio of In2O3:SnO2 = 9:1). The structural, optical and electrical properties were investigated to compare the ITO thin film with and without an intermediate layer. The preferential orientation of all ITO films was along (222) plane. Although all thin films were polycrystalline, the presence of intermediate layer promoted the overall crystallinity. The sheet resistance and resistivity of the ITO film were reduced from ∼68 Ω/□ to ∼29-45 Ω/□, and 16.2 × 10-4 Ω cm up to 7.58 × 10-4 Ω cm, respectively, by inserting a thin metal layer underneath the ITO film, and it is dependent on the degree of crystallization. The optical transmittance in the visible region varies from 40 to 88% for different samples. Based on the evaluation from Tauc plot, the optical band gap falls in the range of 4.02-4.12 eV. Physical film thickness was compared with that evaluated by optical measurement in the visible range and the physical thickness was found to be smaller. Similarly, the carrier concentration/scattering time from Hall effect measurement were also compared with that from optical measurement in the infrared region. Haacke's figure of merit (FOM) was employed to assess the quality of the ITO films, and the highest FOM is credited to ITO/In up to ∼8 × 10-3 Ω-1 in the visible light region.
Spin-filter spin valves with nano-oxide layers for high density recording heads
NASA Astrophysics Data System (ADS)
Al-Jibouri, Abdul; Hoban, M.; Lu, Z.; Pan, G.
2002-05-01
A new spin-filter spin valve with nano-oxide specular layers with structure of Ta/NiFe/IrMn/CoFe/NOL1/CoFe/Cu/CoFetfl/CutCu/NOL2/Ta was deposited using a Nordiko 9606 physical vapor deposition system. The data clearly show that the magnetoresistive (MR) ratio has been significantly improved for spin valves with thinner free layers. The MR ratio remains larger than 12% even when the CoFe free layer is as thin as 1 nm. An optimized MR ratio of ˜15% was obtained when tfl was about 1.2 nm and tCu about 1.5 nm, and was a result of the balance between the increase in the electron mean free path difference and current shunting through the conducting layer. It is also found that the Cu enhancing layer can improve soft magnetic properties of the CoFe free layer due to the low atomic intermixing observed between Co and Cu. The CoFe free layer of 1-4 nm exhibited coercivity of ˜3 Oe after annealing in a static magnetic field. This kind of spin valve with a very thin soft CoFe free layer is particularly attractive for ultra high density read head applications.
NASA Astrophysics Data System (ADS)
Okita, Kazuhiko; Ishiyama, Kazushi; Miura, Hideo
2012-04-01
Magnetostriction constant of a magnetic thin film is conventionally measured by detecting the deformation of a coupon sample that consists of the magnetic film deposited on a thin glass substrate (e.g., cover glass of size 10 mm × 25 mm) under an applied field using a laser beam [A. C. Tam and H. Schroeder, J. Appl. Phys. 64, 5422 (1988)]. This method, however, cannot be applied to films deposited on actual large-size substrates (wafers) with diameter from 3 to 6 in. or more. In a previous paper [Okita et al., J. Phys.: Conf. Ser. 200, 112008 (2010)], the authors presented a method for measuring magnetostriction of a magnetic thin film deposited on an actual substrate by detecting the change of magnetic anisotropy field, Hk, under mechanical bending of the substrate. It was validated that the method is very effective for measuring the magnetostriction constant of a free layer on the actual substrate. However, since a Ni-Fe shield layer usually covers a magnetic head used for a hard disk drive, this shield layer disturbs the effective measurement of R-H curve under minor loop. Therefore, a high magnetic field that can saturate the magnetic material in the shield layer should be applied to the head in order to measure the magnetostriction constant of a pinned layer under the shield layer. In this paper, this method was applied to the measurement of the magnetostriction constant of a pinned layer under the shield layer by using a high magnetic field up to 320 kA/m (4 kOe).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanan, Senthilnathan; Diebolder, Rolf; Hibst, Raimund
2008-04-01
We report about the influence of pulsed laser irradiation on the structural and magnetic properties of NiMn/Co thin films. Rocking curve measurements showed a significant improvement of the (111) texture of NiMn after laser irradiation which was accompanied by grain growth. We have studied the ordering transition in as-prepared and irradiated (laser fluence of 0.15 J/cm{sup 2}) samples during subsequent annealing. The onset of the fcc to fct phase transformation occurs at 325 deg. C irrespective of laser irradiation. Exchange bias fields for the laser irradiated samples are higher than those of the as-prepared samples. The observed increase in themore » exchange bias field for laser irradiated samples has been attributed to the increased grain size and the improved (111) texture of the NiMn layer after laser irradiation.« less
Study of nickel silicide formation by physical vapor deposition techniques
NASA Astrophysics Data System (ADS)
Pancharatnam, Shanti
Metal silicides are used as contacts to the highly n-doped emitter in photovoltaic devices. Thin films of nickel silicide (NiSi) are of particular interest for Si-based solar cells, as they form at lower temperature and consume less silicon. However, interfacial oxide limits the reduction in sheet resistance. Hence, different diffusion barriers were investigated with regard to optimizing the conductivity and thermal stability. The formation of NiSi, and if it can be doped to have good contact with the n-side of a p-n junction were studied. Reduction of the interfacial oxide by the interfacial Ti layer to allow the formation of NiSi was observed. Silicon was treated in dilute hydrofluoric acid for removing the surface oxide layer. Ni and a Ti diffusion barrier were deposited on Si by physical vapor deposition (PVD) methods - electron beam evaporation and sputtering. The annealing temperature and time were varied to observe the stability of the deposited film. The films were then etched to observe the retention of the silicide. Characterization was done using scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and Rutherford back scattering (RBS). Sheet resistance was measured using the four-point probe technique. Annealing temperatures from 300°C showed films began to agglomerate indicating some diffusion between Ni and Si in the Ti layer, also supported by the compositional analysis in the Auger spectra. Films obtained by evaporation and sputtering were of high quality in terms of coverage over substrate area and uniformity. Thicknesses of Ni and Ti were optimized to 20 nm and 10 nm respectively. Resistivity was low at these thicknesses, and reduced by about half post annealing at 300°C for 8 hours. Thus a low resistivity contact was obtained at optimized thicknesses of the metal layers. It was also shown that some silicide formation occurs at temperatures starting from 300°C and can thus be used to make good silicide contacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vu, Hien Thu; Nguyen, Minh Duc, E-mail: minh.nguyen@itims.edu.vn; Inorganic Materials Science
2015-12-15
Graphical abstract: The cross sections show a very dense structure in the (001)-oriented films (c,d), while an open columnar growth structure is observed in the case of the (110)-oriented films (a,b). The (110)-oriented PZT films show a significantly larger longitudinal piezoelectric coefficient (d33{sub ,f}), but smaller transverse piezoelectric coefficient (d31{sub ,f}) than the (001) oriented films. - Highlights: • We fabricate all-oxide, epitaxial piezoelectric PZT thin films on Si. • The orientation of the films can be controlled by changing the buffer layer stack. • The coherence of the in-plane orientation of the grains and grain boundaries affects the ferroelectricmore » properties. • Good cycling stability of the ferroelectric properties of (001)-oriented PZT thin films. The (110)-oriented PZT thin films show a larger d33{sub ,f} but smaller d31{sub ,f} than the (001)-oriented films. - Abstract: Epitaxial ferroelectric Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT) thin films were fabricated on silicon substrates using pulsed laser deposition. Depending on the buffer layers and perovskite oxide electrodes, epitaxial films with different orientations were grown. (110)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) films were obtained on YSZ-buffered Si substrates, while (001)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) were fabricated with an extra CeO{sub 2} buffer layer (CeO{sub 2}/YSZ/Si). There is no effect of the electrode material on the properties of the films. The initial remnant polarizations in the (001)-oriented films are higher than those of (110)-oriented films, but it increases to the value of the (001) films upon cycling. The longitudinal piezoelectric d33{sub ,f} coefficients of the (110) films are larger than those of the (001) films, whereas the transverse piezoelectric d31{sub ,f} coefficients in the (110)-films are less than those in the (001)-oriented films. The difference is ascribed to the lower density (connectivity between grains) of the former films.« less
Xie, Jin; Sendek, Austin D; Cubuk, Ekin D; Zhang, Xiaokun; Lu, Zhiyi; Gong, Yongji; Wu, Tong; Shi, Feifei; Liu, Wei; Reed, Evan J; Cui, Yi
2017-07-25
Modern lithium ion batteries are often desired to operate at a wide electrochemical window to maximize energy densities. While pushing the limit of cutoff potentials allows batteries to provide greater energy densities with enhanced specific capacities and higher voltage outputs, it raises key challenges with thermodynamic and kinetic stability in the battery. This is especially true for layered lithium transition-metal oxides, where capacities can improve but stabilities are compromised as wider electrochemical windows are applied. To overcome the above-mentioned challenges, we used atomic layer deposition to develop a LiAlF 4 solid thin film with robust stability and satisfactory ion conductivity, which is superior to commonly used LiF and AlF 3 . With a predicted stable electrochemical window of approximately 2.0 ± 0.9 to 5.7 ± 0.7 V vs Li + /Li for LiAlF 4 , excellent stability was achieved for high Ni content LiNi 0.8 Mn 0.1 Co 0.1 O 2 electrodes with LiAlF 4 interfacial layer at a wide electrochemical window of 2.75-4.50 V vs Li + /Li.
NASA Astrophysics Data System (ADS)
da Silva, O. E.; de Siqueira, J. V.; Kern, P. R.; Garcia, W. J. S.; Beck, F.; Rigue, J. N.; Carara, M.
2018-04-01
Exchange bias properties of NiFe/FeMn thin films have been investigated through X-ray diffraction, hysteresis loops, angular measurements of anisotropic magnetoresistance (AMR) and magnetic torque. As first predicted by Meiklejohn and Bean we found a decrease on the bias field as the NiFe layer thickness increases. However such reduction is not as strong as expected and it was attributed to the increase on the number of uncompensed antiferromagnetic spins resulting from the increase on the number of FeMn grains at the interface as the thickness of the NiFe layer is increased. The angular evolution of AMR and the magnetic torque were calculated and compared to the experimental ones using the minimization of the free magnetic energy and finding the magnetization equilibrium angle. The free energy, for each grain of the polycrystalline sample, is composed by the following terms: Zeeman, uniaxial, unidirectional and the rotatable energies. While from the AMR curves we obtain stable anisotropy fields independently on the measuring fields, from the torque curves we obtain increasing values of the uniaxial and rotatable fields, as the measuring field is increased. These results were attributed to the physical origin and sensitivity of the two different techniques. Magnetoresistance is mainly sensitive to the inner portion of the ferromagnetic layer, and the torque brings out information of the whole ferromagnetic layer including the interface of the layers. In this way, we believe that the increase in the uniaxial and rotatable values were due to an increase on the volume of the ferromagnetic layer, near the interfaces, which is made to rotate with the measuring field. Studying the rotational hysteresis by both techniques allows to separately obtain the contributions coming from the inner portion of ferromagnetic layer and from the interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B.H.
This paper reports on a ceramic joining technique that has been developed that utilizes an exothermic combustion reaction to simultaneously synthesize the joint interlayer material and to bond together the ceramic workpieces. The method has been used to join SiC ceramics using Ti-C-Ni powder mixtures that ignite below 1200{degrees} C to form a TiC-Ni joining material. Thin layers of the powder reactants were prepared by tape casting, and joining was accomplished by heating in a hot-press to ignite the combustion reaction. during this process, localized exothermic heating of the joint region resulted in chemical interaction at the interface between themore » TiC-Ni and the SiC ceramic that contributed to bonding. Room-temperature four-point bending strengths of joints produced by this method have exceeded 100 MPa.« less
Structural, morphological and optical properties of LiCo0.5Ni0.45Ag0.05O2 thin films
NASA Astrophysics Data System (ADS)
Haider, Adawiya J.; AL-Rsool, Rusul Abed; AL-Tabbakh, Ahmed A.; Al-Gebori, Abdul Nasser M.; Mohamed, Aliaa
2018-05-01
Pulsed Laser Deposition (PLD) method has been successfully used for the synthesized of nano-crystalline cathode m aterial LiCo0.5Ni0.45Ag0.05O2 (LCNAO) thin film. LCNAO Ferromagnetic using pulsed Nd-YAG laser with wavelength (λ = 532 nm) and duration (10 ns) and energy fluence (1.4 J/cm2) with different substrate temperature (100, 200, 300) ˚C and O2 pressure at 10 mbar. The structural, morphological and optical properties of the films were determined by X-ray Diffraction (XRD), Scan Electron Microscopy (SEM), Atomic Force microscope (AFM) and UV-VIS spectroscopy respectively. It is observed that partial layer to spinel transformation takes place during post annealing and the average particle size of the LiCo0.5Ni0.45Ag0.05O2 is found to be (1-12) nm from SEM measurement. Finally the optical properties of the thin films have been studied at different Substrate temperature. It found the energy gap decreases from 4.2 to 3.8 eV when the substrate's temperature increasing from 100° C into 300 °C of the LCNAO films. These mean that the optical quality of LCNAO films is improved due to the increase in crystalline size and reduction of defect sites.
Advanced Catalysts for Fuel Cells
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R.; Whitacre, Jay; Valdez, T. I.
2006-01-01
This viewgraph presentation reviews the development of catalyst for Fuel Cells. The objectives of the project are to reduce the cost of stack components and reduce the amount of precious metal used in fuel cell construction. A rapid combinatorial screening technique based on multi-electrode thin film array has been developed and validated for identifying catalysts for oxygen reduction; focus shifted from methanol oxidation in FY05 to oxygen reduction in FY06. Multi-electrode arrays of thin film catalysts of Pt-Ni and Pt-Ni-Zr have been deposited. Pt-Ni and have been characterized electrochemically and structurally. Pt-Ni-Zr and Pt-Ni films show higher current density and onset potential compared to Pt. Electrocatalytic activity and onset potential are found to be strong function of the lattice constant. Thin film Pt(59)Ni(39)Zr(2) can provide 10 times the current density of thin film Pt. Thin film Pt(59)Ni(39)Zr(2) also shows 65mV higher onset potential than Pt.
Observation of spin-polarized electron transport in Alq3 by using a low work function metal
NASA Astrophysics Data System (ADS)
Jang, Hyuk-Jae; Pernstich, Kurt P.; Gundlach, David J.; Jurchescu, Oana D.; Richter, Curt. A.
2012-09-01
We present the observation of magnetoresistance in Co/Ca/Alq3/Ca/NiFe spin-valve devices. Thin Ca layers contacting 150 nm thick Alq3 enable the injection of spin-polarized electrons into Alq3 due to the engineering of the band alignment. The devices exhibit symmetric current-voltage (I-V) characteristics indicating identical metal contacts on Alq3, and up to 4% of positive magnetoresistance was observed at 4.5 K. In contrast, simultaneously fabricated Co/Alq3/NiFe devices displayed asymmetric I-V curves due to the different metal electrodes, and spin-valve effects were not observed.
NASA Astrophysics Data System (ADS)
Cattin, L.; Reguig, B. A.; Khelil, A.; Morsli, M.; Benchouk, K.; Bernède, J. C.
2008-07-01
NiO thin films have been deposited by chemical spray pyrolysis using a perfume atomizer to grow the aerosol. The influence of the precursor, nickel chloride hexahydrate (NiCl 2·6H 2O), nickel nitrate hexahydrate (Ni(NO 3) 2·6H 2O), nickel hydroxide hexahydrate (Ni(OH) 2·6H 2O), nickel sulfate tetrahydrate (NiSO 4·4H 2O), on the thin films properties has been studied. In the experimental conditions used (substrate temperature 350 °C, precursor concentration 0.2-0.3 M, etc.), pure NiO thin films crystallized in the cubic phase can be achieved only with NiCl 2 and Ni(NO 3) 2 precursors. These films have been post-annealed at 425 °C for 3 h either in room atmosphere or under vacuum. If all the films are p-type, it is shown that the NiO films conductivity and optical transmittance depend on annealing process. The properties of the NiO thin films annealed under room atmosphere are not significantly modified, which is attributed to the fact that the temperature and the environment of this annealing is not very different from the experimental conditions during spray deposition. The annealing under vacuum is more efficient. This annealing being proceeded in a vacuum no better than 10 -2 Pa, it is supposed that the modifications of the NiO thin film properties, mainly the conductivity and optical transmission, are related to some interaction between residual oxygen and the films.
Advanced electron microscopy characterization of tri-layer rare-earth oxide superlattices
NASA Astrophysics Data System (ADS)
Phillips, Patrick; Disa, Ankit; Ismail-Beigi, Sohrab; Klie, Robert; University of Illinois-Chicago Team; Yale University Team
2015-03-01
Rare-earth nickelates are known to display complex electronic and magnetic behaviors owed to a very localized and sensitive Ni-site atomic and electronic structure. Toward realizing the goal of manipulating of the energetic ordering of Ni d orbitals and 2D conduction, the present work focuses on the experimental characterization of thin film superlattice structures consisting of alternating layers of LaTiO3 and LaNiO3 sandwiched between a dull insulator, LaAlO3. Using advanced scanning transmission electron microscopy (STEM)-based methods, properties such as interfacial sharpness, electron transfer, O presence, and local electronic structure can be probed at the atomic scale, and will be discussed at length. By combining both energy dispersive X-ray (EDX) and electronic energy loss (EEL) spectroscopies in an aberration-corrected STEM, it is possible to attain energy and spatial resolutions of 0.35 eV and 100 pm, respectively. Focus of the talk will remain not only on the aforementioned properties, but will also include details and parameters of the acquisitions to facilitate future characterization at this level.
2018-01-01
Most photoanodes commonly applied in solar fuel research (e.g., of Fe2O3, BiVO4, TiO2, or WO3) are only active and stable in alkaline electrolytes. Silicon (Si)-based photocathodes on the other hand are mainly studied under acidic conditions due to their instability in alkaline electrolytes. Here, we show that the in-diffusion of nickel into a 3D Si structure, upon thermal annealing, yields a thin (sub-100 nm), defect-free nickel silicide (NiSi) layer. This has allowed us to design and fabricate a Si microwire photocathode with a NiSi interlayer between the catalyst and the Si microwires. Upon electrodeposition of the catalyst (here, nickel molybdenum) on top of the NiSi layer, an efficient, Si-based photocathode was obtained that is stable in strongly alkaline solutions (1 M KOH). The best-performing, all-earth-abundant microwire array devices exhibited, under AM 1.5G simulated solar illumination, an ideal regenerative cell efficiency of 10.1%. PMID:29780886
Structural, electrical, optical and magnetic properties of NiO/ZnO thin films
NASA Astrophysics Data System (ADS)
Sushmitha, V.; Maragatham, V.; Raj, P. Deepak; Sridharan, M.
2018-02-01
Nickel oxide/Zinc oxide (NiO/ZnO) thin films have been deposited onto thoroughly cleaned glass substrates by reactive direct current (DC) magnetron sputtering technique and subsequently annealed at 300 °C for 3 h in vacuum. The NiO/ZnO thin films were then studied for their structural, optical and electrical properties. X-ray diffraction (XRD) pattern of ZnO and NiO showed the diffraction planes corresponding to hexagonal and cubic phase respectively. The optical properties showed that with the increase in the deposition time of NiO the energy band gap varied between 3.1 to 3.24 eV. Hence, by changing the deposition time of NiO the tuning of band gap and conductivity were achieved. The magnetic studies revealed the diamagnetic nature of the NiO/ZnO thin films.
Effect of Annealing Process on the Properties of Ni(55%)Cr(40%)Si(5%) Thin-Film Resistors
Cheng, Huan-Yi; Chen, Ying-Chung; Li, Pei-Jou; Yang, Cheng-Fu; Huang, Hong-Hsin
2015-01-01
Resistors in integrated circuits (ICs) are implemented using diffused methods fabricated in the base and emitter regions of bipolar transistor or in source/drain regions of CMOS. Deposition of thin films on the wafer surface is another choice to fabricate the thin-film resistors in ICs’ applications. In this study, Ni(55%)Cr(40%)Si(5%) (abbreviated as NiCrSi) in wt % was used as the target and the sputtering method was used to deposit the thin-film resistors on Al2O3 substrates. NiCrSi thin-film resistors with different thicknesses of 30.8 nm~334.7 nm were obtained by controlling deposition time. After deposition, the thin-film resistors were annealed at 400 °C under different durations in N2 atmosphere using the rapid thermal annealing (RTA) process. The sheet resistance of NiCrSi thin-film resistors was measured using the four-point-probe method from 25 °C to 125 °C, then the temperature coefficient of resistance could be obtained. We aim to show that resistivity of NiCrSi thin-film resistors decreased with increasing deposition time (thickness) and the annealing process had apparent effect on the sheet resistance and temperature coefficient of resistance. We also aim to show that the annealed NiCrSi thin-film resistors had a low temperature coefficient of resistance (TCR) between 0 ppm/°C and +50 ppm/°C. PMID:28793598
Effect of Annealing Process on the Properties of Ni(55%)Cr(40%)Si(5%) Thin-Film Resistors.
Cheng, Huan-Yi; Chen, Ying-Chung; Li, Pei-Jou; Yang, Cheng-Fu; Huang, Hong-Hsin
2015-10-02
Resistors in integrated circuits (ICs) are implemented using diffused methods fabricated in the base and emitter regions of bipolar transistor or in source/drain regions of CMOS. Deposition of thin films on the wafer surface is another choice to fabricate the thin-film resistors in ICs' applications. In this study, Ni(55%)Cr(40%)Si(5%) (abbreviated as NiCrSi) in wt % was used as the target and the sputtering method was used to deposit the thin-film resistors on Al2O3 substrates. NiCrSi thin-film resistors with different thicknesses of 30.8 nm~334.7 nm were obtained by controlling deposition time. After deposition, the thin-film resistors were annealed at 400 °C under different durations in N₂ atmosphere using the rapid thermal annealing (RTA) process. The sheet resistance of NiCrSi thin-film resistors was measured using the four-point-probe method from 25 °C to 125 °C, then the temperature coefficient of resistance could be obtained. We aim to show that resistivity of NiCrSi thin-film resistors decreased with increasing deposition time (thickness) and the annealing process had apparent effect on the sheet resistance and temperature coefficient of resistance. We also aim to show that the annealed NiCrSi thin-film resistors had a low temperature coefficient of resistance (TCR) between 0 ppm/°C and +50 ppm/°C.
NASA Astrophysics Data System (ADS)
Ohteki, Yusuke; Sugiyama, Mutsumi
2018-07-01
A high-transparency ZnO thin film of high carrier concentration was grown by conventional RF sputtering, where the carrier concentration was continuously varied from 1016 to 1019 cm‑3 by controlling the amounts of O2 and H2 sputtering gases. To prevent the formation of a Schottky junction at the contact with In–Zn–O, and to improve the fill factor of a visible-light-transparent solar cell, a Ag-paste/NiO/ZnO/ZnO:H/IZO p–n diode structure with the carrier concentration of the ZnO:H layer of 1019 cm‑3 was fabricated. It is possible to reduce the depletion width and inverse the rectification action around ZnO/IZO by controlling the carrier concentration of the ZnO layer while maintaining the high transparency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, C.H.; Hsu, K.Y.; Kai, J.J.
1992-12-31
The surface layers of copper alloy specimens were made radioactive by bombarding with 5 MeV protons from a van de Graaff accelerator which converted Cu-65 into Zn-65 through (p,n) reaction. The amount of surface material loss could then be monitored by measuring the total remaining {gamma}-ray activity generated from Zn-65 decay. This technique, termed thin layer activation (TLA), has the advantage of in situ monitoring the rate of surface removal due to corrosion, erosion-corrosion, wearing, etc. In this work, the erosion-corrosion tests on aluminum brass and 90Cu-10Ni were conducted in circulating sea water and the erosion-corrosion rates measured using TLAmore » and conventional methods such as linear polarization resistance (LPR) method and weight loss coupons were compared. A vibrational cavitation-erosion test was also performed on aluminum bronze, in which the measurements by TLA were compared with those of weight loss measurements.« less
Local light-induced magnetization using nanodots and chiral molecules.
Dor, Oren Ben; Morali, Noam; Yochelis, Shira; Baczewski, Lech Tomasz; Paltiel, Yossi
2014-11-12
With the increasing demand for miniaturization, nanostructures are likely to become the primary components of future integrated circuits. Different approaches are being pursued toward achieving efficient electronics, among which are spin electronics devices (spintronics). In principle, the application of spintronics should result in reducing the power consumption of electronic devices. Recently a new, promising, effective approach for spintronics has emerged, using spin selectivity in electron transport through chiral molecules. In this work, using chiral molecules and nanocrystals, we achieve local spin-based magnetization generated optically at ambient temperatures. Through the chiral layer, a spin torque can be transferred without permanent charge transfer from the nanocrystals to a thin ferromagnetic layer, creating local perpendicular magnetization. We used Hall sensor configuration and atomic force microscopy (AFM) to measure the induced local magnetization. At low temperatures, anomalous spin Hall effects were measured using a thin Ni layer. The results may lead to optically controlled spintronics logic devices that will enable low power consumption, high density, and cheap fabrication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hanlei; May, Brian M.; Serrano-Sevillano, Jon
The surface configuration of pristine layered oxide cathode particles for Li-ion batteries significantly affects the electrochemical behavior, which is generally considered to be a thin rock-salt layer in the surface. Unfortunately, aside from its thin nature and spatial location on the surface, the true structural nature of this surface rock-salt layer remains largely unknown, creating the need to understand its configuration and the underlying mechanisms of formation. Using scanning transmission electron microscopy, we have found a correlation between the surface rock-salt formation and the crystal facets on pristine LiNi0.80Co0.15Al0.05O2 primary particles. It is found that the originally (01more » $$ \\overline{4}\\ $$) and (003) surfaces of the layered phase result in two kinds of rock-salt reconstructions: the (002) and (111) rock-salt surfaces, respectively. Stepped surface configurations are generated for both reconstructions. The (002) configuration is relatively flat with monoatomic steps while the (111) configuration shows significant surface roughening. Both reconstructions reduce the ionic and electronic conductivity of the cathode, leading to a reduced electrochemical performance.« less
NASA Astrophysics Data System (ADS)
Kalaivani, A.; Senguttuvan, G.; Kannan, R.
2018-03-01
Nickel based alloys has a huge applications in microelectronics and micro electromechanical systems owing to its superior soft magnetic properties. With the advantages of simplicity, cost-effectiveness and controllable patterning, electroplating processes has been chosen to fabricate thin films in our work. The soft magnetic NiFeP thin film was successfully deposited over the surface of copper plate through galvanostatic electroplating method by applying constant current density of 10 mA cm-2 for a deposition rate for half an hour. The properties of the deposited NiFeP thin films were analyzed by subjecting it into different physio-chemical characterization such as XRD, SEM, EDAX, AFM and VSM. XRD pattern confirms the formation of NiFeP particles and the structural analysis reveals that the NiFeP particles were uniformly deposited over the surface of copper substrate. The surface roughness analysis of the NiFeP films was done using AFM analysis. The magnetic studies and the hardness of the thin film were evaluated from the VSM and hardness test. The NiFeP thin films possess lower coercivity with higher magnetization value of 69. 36 × 10-3 and 431.92 Gauss.
Effect of intermediate layers on atomic layer deposition-aluminum oxide protected silver mirrors
NASA Astrophysics Data System (ADS)
Fryauf, David M.; Diaz Leon, Juan J.; Phillips, Andrew C.; Kobayashi, Nobuhiko P.
2017-07-01
This work investigates intermediate materials deposited between silver (Ag) thin-film mirrors and an aluminum oxide (AlOx) barrier overlayer and compares the effects on mirror durability to environmental stresses. Physical vapor deposition of various fluorides, oxides, and nitrides in combination with AlOx by atomic layer deposition (ALD) is used to develop several coating recipes. Ag-AlOx samples with different intermediate materials undergo aggressive high-temperature (80°C), high-humidity (80%) (HTHH) testing for 10 days. Reflectivity of mirror samples is measured before and after HTHH testing, and image processing techniques are used to analyze the specular surface of the samples after HTHH testing. Among the seven intermediate materials used in this work, TiN, MgAl2O4, NiO, and Al2O3 intermediate layers offer more robust protection against chemical corrosion and moisture when compared with samples with no intermediate layer. In addition, results show that the performance of the ALD-AlOx barrier overlayer depends significantly on the ALD-growth process temperature. Because higher durability is observed in samples with less transparent TiN and NiO layers, we propose a figure of merit based on post-HTHH testing reflectivity change and specular reflective mirror surface area remaining after HTHH testing to judge overall barrier performance.
Evaluation of Ni-Cr-base alloys for SOFC interconnect applications
NASA Astrophysics Data System (ADS)
Yang, Zhenguo; Xia, Guan-Guang; Stevenson, Jeffry W.
To further understand the suitability of Ni-Cr-base alloys for solid oxide fuel cell (SOFC) interconnect applications, three commercial Ni-Cr-base alloys, Haynes 230, Hastelloy S and Haynes 242 were selected and evaluated for oxidation behavior under different exposure conditions, scale conductivity and thermal expansion. Haynes 230 and Hastelloy S, which have a relatively high Cr content, formed a thin scale mainly comprised of Cr 2O 3 and (Mn,Cr,Ni) 3O 4 spinels under SOFC operating conditions, demonstrating excellent oxidation resistance and a high scale electrical conductivity. In contrast, a thick double-layer scale with a NiO outer layer above a chromia-rich substrate was grown on Haynes 242 in moist air or at the air side of dual exposure samples, indicating limited oxidation resistance for the interconnect application. With a face-centered-cubic (FCC) substrate, all three alloys possess a coefficient of thermal expansion (CTE) that is higher than that of candidate ferritic stainless steels, e.g. Crofer22 APU. Among the three alloys, Haynes 242, which is heavily alloyed with W and Mo and contains a low Cr content, demonstrated the lowest average CTE at 13.1 × 10 -6 K -1 from room temperature to 800 °C, but it was also observed that the CTE behavior of Haynes 242 was very non-linear.
Xi, Shuang; Zhu, Yinlong; Yang, Yutu; Jiang, Shulan; Tang, Zirong
2017-12-01
Free-standing NiO/MnO 2 core-shell nanoflake structure was deposited on flexible carbon cloth (CC) used as electrode for high-performance supercapacitor (SC). The NiO core was grown directly on CC by hydrothermal process and the following annealing treatment. MnO 2 thin film was then covered on NiO structures via a self-limiting process in aqueous solution of 0.5 M KMnO 4 and 0.5 M Na 2 SO 4 with a carbon layer serving as the sacrificial layer. Both the core and shell materials are good pseudocapacitive materials, the compounds of binary metal oxides can provide the synergistic effect of all individual constituents, and thus enhance the performance of SC electrode. The obtained CC/NiO/MnO 2 heterostructure was directly used as SC electrodes, showing an enhanced electrochemical performance including areal capacitance of 316.37 mF/cm 2 and special gravimetric capacitance of 204.3 F/g at the scan rate of 50 mV/s. The electrode also shows excellent cycling stability, which retains 89% of its initial discharge capacitance after 2200 cycles with >97% Coulombic efficiency. The synthesized binder-free hierarchical composite electrode with superior electrochemical properties demonstrates enormous potential in the application of flexible SCs.
Electrodeposited Nanolaminated CoNiFe Cores for Ultracompact DC-DC Power Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J; Kim, M; Herrault, F
2015-09-01
Laminated metallic alloy cores (i.e., alternating layers of thin film metallic alloy and insulating material) of appropriate lamination thickness enable suppression of eddy current losses at high frequencies. Magnetic cores comprised of many such laminations yield substantial overall magnetic volume, thereby enabling high-power operation. Previously, we reported nanolaminated permalloy (Ni-80 Fe-20) cores based on a sequential electrodeposition technique, demonstrating negligible eddy current losses at peak flux densities up to 0.5 T and operating at megahertz frequencies. This paper demonstrates improved performance of nanolaminated cores comprising tens to hundreds of layers of 300-500-nm-thick CoNiFe films that exhibit superior magnetic properties (e.g.,more » higher saturation flux density and lower coercivity) than permalloy. Nanolaminated CoNiFe cores can be operated up to a peak flux density of 0.9 T, demonstrating improved power handling capacity and exhibiting 30% reduced volumetric core loss, attributed to lowered hysteresis losses compared to the nanolaminated permalloy core of the same geometry. Operating these cores in a buck dc-dc power converter at a switching frequency of 1 MHz, the nanolaminated CoNiFe cores achieved a conversion efficiency exceeding 90% at output power levels up to 7 W, compared to an achieved permalloy core conversion efficiency below 86% at 6 W.« less
NASA Astrophysics Data System (ADS)
Lee, Su-Jae; Moon, Seung-Eon; Ryu, Han-Cheol; Kwak, Min-Hwan; Kim, Young-Tae
2002-07-01
Highly (h00)-oriented (Ba,Sr)TiO3 [BST] thin films were deposited by pulsed laser depositi on on the perovskite LaNiO3 metallic oxide layer as a bottom electrode. The LaNiO3 films were deposited on SiO2/Si substrates by the rf-magnetron sputtering method. The crystal line phases of the BST film were characterized by X-ray θ-2θ, ω-rocking curve and Φ-scan diffraction measurements. The surface microstructure observed by scanning electron mi croscopy was very dense and smooth. The low-frequency dielectric responses of the BST films grown at various substrate temperatures were measured as a function of frequency in the frequency range from 0.1 Hz to 10 MHz. The BST films have the dielectric constant of 265 at 1 kHz and showed multiple dielectric relaxations in the measured frequency region. The origins of these low-frequency dielectric relaxations are attributed to ionized space charge carriers such as the oxygen vacancies and defects in the BST film, the interfacial polarization in the grain boundary region and the electrode polarization. We also studied the capacitance-voltage characteristics of BST films.
Ti:Pt:Au:Ni thin-film CVD diamond sensor ability for charged particle detection.
Kasiwattanawut, Haruetai; Tchouaso, Modeste Tchakoua; Prelas, Mark A
2018-05-22
This work demonstrates the development of diamond sensors with reliable contacts using a new metallization formula, which can operate under high-pressure gas environment. The metallization was created using thin film layers of titanium, platinum, gold and nickel deposited on a single crystal electronic grade CVD diamond chip. The contacts were 2 mm in diameter with thickness of 50/5/20/150 nm of Ti:Pt:Au:Ni. The optimum operating voltage of the sensor was determined from the current-voltage measurements. The sensor was calibrated with 239 Pu and 241 Am alpha radiation sources at 300 V. The energy resolution of the Ti:Pt:Au:Ni diamond sensor was determined to be 7.6% at 5.2 MeV of 239 Pu and 2.2% at 5.48 MeV of 241 Am. The high-pressure gas loading environment under which this sensor was used is discussed. Specifically, experimental observations are described using hydrogen loading of nickel as a means of initiating low energy nuclear reactions. No neutrons, electrons, ions or other ionizing radiations were observed in these experiments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Development of Functional Inorganic Materials by Soft Chemical Process Using Ion-Exchange Reactions
NASA Astrophysics Data System (ADS)
Feng, Qi
Our study on soft chemical process using the metal oxide and metal hydroxide nanosheets obtained by exfoliation their layered compounds were reviewed. Ni(OH)2⁄MnO2 sandwich layered nanostructure can be prepared by layer by-layer stacking of exfoliated manganese oxide nanosheets and nickel hydroxide layers. Manganese oxide nanotubes can be obtained by curling the manganese oxide nanosheets using the cationic surfactants as the template. The layered titanate oriented thin film can be prepared by restacking the titanate nanosheets on a polycrystalline substrate, and transformed to the oriented BaTiO3 and TiO2 thin films by the topotactic structural transformation reactions, respectively. The titanate nanosheets can be transformed anatase-type TiO2 nanocrystals under hydrothermal conditions. The TiO2 nanocrystals are formed by a topotactic structural transformation reaction. The TiO2 nanocrystals prepared by this method expose specific crystal plane on their surfaces, and show high photocatalytic activity and high dye adsorption capacity for high performance dye-sensitized solar cell. A series of layered basic metal salt (LBMS) compounds were prepared by hydrothermal reactions of transition metal hydroxides and organic acids. We succeeded in the exfoliation of these LBMS compounds in alcohol solvents, and obtained the transition metal hydroxide nanosheets for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girsova, S. L., E-mail: girs@ispms.tsc.ru; Poletika, T. M., E-mail: poletm@ispms.tsc.ru; Meisner, S. N., E-mail: msn@ispms.tsc.ru
The study was carried on for the single NiTi crystals subjected to the Si-ion beam implantation. Using the transmission electron microscopy technique (TEM), the surface layer structure [111]{sub B2} was examined for the treated material. The modified near-surface sublayers were found to have different composition. Thus the uppermost sublayer contained mostly oxides; the lower-lying modified sublayer material was in an amorphous state and the thin underlying sublayer had a defect structure.
Optical transparency of graphene layers grown on metal surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rut’kov, E. V.; Lavrovskaya, N. P.; Sheshenya, E. S., E-mail: sheshenayket@gmail.ru
It is shown that, in contradiction with the fundamental results obtained for free graphene, graphene films grown on the Rh(111) surface to thicknesses from one to ~(12–15) single layers do not absorb visible electromagnetic radiation emitted from the surface and influence neither the brightness nor true temperature of the sample. At larger thicknesses, such absorption occurs. This effect is observed for the surfaces of other metals, specifically, Pt(111), Re(1010), and Ni(111) and, thus, can be considered as being universal. It is thought that the effect is due to changes in the electronic properties of thin graphene layers because of electronmore » transfer between graphene and the metal substrate.« less
Kim, Donghwan; Lee, Hyunsuk; Bae, Joohyeon; Jeong, Hyomin; Choi, Byeongkeun; Nam, Taehyun; Noh, Jungpil
2018-09-01
Ti-Ni shape memory alloy (SMA) thin films are very attractive material for industrial and medical applications such as micro-actuator, micro-sensors, and stents for blood vessels. An important property besides shape memory effect in the application of SMA thin films is the adhesion between the film and the substrate. When using thin films as micro-actuators or micro-sensors in MEMS, the film must be strongly adhered to the substrate. On the other hand, when using SMA thin films in medical devices such as stents, the deposited alloy thin film must be easily separable from the substrate for efficient processing. In this study, we investigated the effect of substrate roughness on the adhesion of Ti-Ni SMA thin films, as well as the structural properties and phase-transformation behavior of the fabricated films. Ti-Ni SMA thin films were deposited onto etched glass substrates with magnetron sputtering. Radio frequency plasma was used for etching the substrate. The adhesion properties were investigated through progressive scratch test. Structural properties of the films were determined via Feld emission scanning electron microscopy, X-ray diffraction measurements (XRD) and Energy-dispersive X-ray spectroscopy analysis. Phase transformation behaviors were observed with differential scanning calorimetry and low temperature-XRD. Ti-Ni SMA thin film deposited onto rough substrate provides higher adhesive strength than smooth substrate. However the roughness of the substrate has no influence on the growth and crystallization of the Ti-Ni SMA thin films.
Properties of NiO thin films deposited by intermittent spray pyrolysis process
NASA Astrophysics Data System (ADS)
Reguig, B. A.; Khelil, A.; Cattin, L.; Morsli, M.; Bernède, J. C.
2007-02-01
NiO thin films have been grown on glass substrates by intermittent spray pyrolysis deposition of NiCl 2·6H 2O diluted in distilled water, using a simple "perfume atomizer". The effect of the solution molarity on their properties was studied and compared to those of NiO thin films deposited with a classical spray system. It is shown that NiO thin films crystallized in the NiO structure are achieved after deposition. Whatever the precursor molarity, the grain size is around 25-30 nm. The crystallites are preferentially oriented along the (1 1 1) direction. All the films are p-type. However, the thickness and the conductivity of the NiO films depend on the precursor contraction. By comparison with the properties of films deposited by classical spray technique, it is shown that the critical precursor concentration, which induces strong thin films properties perturbations, is higher when a perfume atomizer is used. This broader stability domain can be attributed to better chlorides decomposition during the rest time used in the perfume atomizer technique.
Dong, Yibo; Xie, Yiyang; Xu, Chen; Fu, Yafei; Fan, Xing; Li, Xuejian; Wang, Le; Xiong, Fangzhu; Guo, Weiling; Pan, Guanzhong; Wang, Qiuhua; Qian, Fengsong; Sun, Jie
2018-06-14
Chemical vapor deposited graphene suffers from two problems: transfer from metal catalysts to insulators, and photoresist induced degradation during patterning. Both result in macroscopic and microscopic damages such as holes, tears, doping, and contamination, translated into property and yield dropping. We attempt to solve the problems simultaneously. A nickel thin film is evaporated on SiO 2 as a sacrificial catalyst, on which surface graphene is grown. A polymer (PMMA) support is spin-coated on the graphene. During the Ni wet etching process, the etchant can permeate the polymer, making the etching efficient. The PMMA/graphene layer is fixed on the substrate by controlling the surface morphology of Ni film during the graphene growth. After etching, the graphene naturally adheres to the insulating substrate. By using this method, transfer-free, lithography-free and fast growth of graphene realized. The whole experiment has good repeatability and controllability. Compared with graphene transfer between substrates, here, no mechanical manipulation is required, leading to minimal damage. Due to the presence of Ni, the graphene quality is intrinsically better than catalyst-free growth. The Ni thickness and growth temperature are controlled to limit the number of layers of graphene. The technology can be extended to grow other two-dimensional materials with other catalysts.
On the origin of resistive switching volatility in Ni/TiO{sub 2}/Ni stacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortese, Simone, E-mail: simone.cortese@soton.ac.uk; Trapatseli, Maria; Khiat, Ali
2016-08-14
Resistive switching and resistive random access memories have attracted huge interest for next generation nonvolatile memory applications, also thought to be able to overcome flash memories limitations when arranged in crossbar arrays. A cornerstone of their potential success is that the toggling between two distinct resistance states, usually a High Resistive State (HRS) and a Low Resistive State (LRS), is an intrinsic non-volatile phenomenon with the two states being thermodynamically stable. TiO{sub 2} is one of the most common materials known to support non-volatile RS. In this paper, we report a volatile resistive switching in a titanium dioxide thin filmmore » sandwiched by two nickel electrodes. The aim of this work is to understand the underlying physical mechanism that triggers the volatile effect, which is ascribed to the presence of a NiO layer at the bottom interface. The NiO layer alters the equilibrium between electric field driven filament formation and thermal enhanced ion diffusion, resulting in the volatile behaviour. Although the volatility is not ideal for non-volatile memory applications, it shows merit for access devices in crossbar arrays due to its high LRS/HRS ratio, which are also briefly discussed.« less
NASA Astrophysics Data System (ADS)
Yang, Xueliang; Liu, Wei; Chen, Jingwei; Sun, Yun
2018-04-01
Using metal oxides to form a carrier-selective interface on crystalline silicon (c-Si) has recently generated considerable interest for use with c-Si photovoltaics because of the potential to reduce cost. n-type oxides, such as MoO3, V2O5, and WO3, have been widely studied. In this work, a p-type oxide, Cu-doped NiO (NiO:Cu), is explored as a transparent hole-selective contact to n-Si. An ultrathin SiOx layer, fabricated by a wet-chemical method (wet-SiOx), is introduced at the NiO:Cu/n-Si interface to achieve a tunnelling junction solar cell. Interestingly, it was observed that the interface quality of the NiO:Cu/wet-SiOx/n-Si heterojunction was dramatically enhanced by post-deposition annealing (PDA) at a temperature of 200 °C. Our device exhibits an improved power conversion efficiency of 10.8%, which is the highest efficiency among NiO/Si heterojunction photo-electric devices to date. It is demonstrated that the 200 °C PDA treatment enhances the built-in field by a reduction in the interface density of states (Dit) but does not influence the work function of the NiO:Cu thin layer. This stable work function after the PDA treatment is in conflict with the changed built-in field according to the Schottky model. Thus, the Bardeen model is introduced for this physical insight: the enhancement of the built-in field originates from the unpinning of the Fermi levels of NiO:Cu and n-Si by the interface state reduction.
Sharp chemical interface in epitaxial Fe{sub 3}O{sub 4} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gálvez, S.; Rubio-Zuazo, J., E-mail: rubio@esrf.fr; Salas-Colera, E.
Chemically sharp interface was obtained on single phase single oriented Fe{sub 3}O{sub 4} (001) thin film (7 nm) grown on NiO (001) substrate using oxygen assisted molecular beam epitaxy. Refinement of the atomic structure, stoichiometry, and oxygen vacancies were determined by soft and hard x-ray photoelectron spectroscopy, low energy electron diffraction and synchrotron based X-ray reflectivity, and X-ray diffraction. Our results demonstrate an epitaxial growth of the magnetite layer, perfect iron stoichiometry, absence of oxygen vacancies, and the existence of an intermixing free interface. Consistent magnetic and electrical characterizations are also shown.
Tailoring the electronic transitions of NdNiO{sub 3} films through (111){sub pc} oriented interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catalano, S., E-mail: sara.catalano@unige.ch; Gibert, M.; Zubko, P.
2015-06-01
Bulk NdNiO{sub 3} and thin films grown along the pseudocubic (001){sub pc} axis display a 1st order metal to insulator transition (MIT) together with a Néel transition at T = 200 K. Here, we show that for NdNiO{sub 3} films deposited on (111){sub pc} NdGaO{sub 3}, the MIT occurs at T = 335 K and the Néel transition at T = 230 K. By comparing transport and magnetic properties of layers grown on substrates with different symmetries and lattice parameters, we demonstrate a particularly large tuning when the epitaxy is realized on (111){sub pc} surfaces. We attribute this effect tomore » the specific lattice matching conditions imposed along this direction when using orthorhombic substrates.« less
NASA Astrophysics Data System (ADS)
Ye, Pan; Dong, Hui; Xu, Yunlong; Zhao, Chongjun; Liu, Dong
2018-01-01
Here we report a novel transitional metal oxide (NiCo2O4) coated Li[Ni0.03Mn1.97]O4 micro-/nano- spheres as high-performance Li-ion battery cathode material. A thin layer of ∼10 nm NiCo2O4 was formed by simple wet-chemistry approach adjacent to the surface of Li[Ni0.03Mn1.97]O4 micro-/nano- spheres, leading to significantly enhanced battery electrochemical performance. The optimized sample(1 wt%) not only delivers excellent discharge capacity and cycling stability improvement at both room temperature and elevated temperatures, but also effectively prevents Mn dissolution while retaining its coating structure intact according to XRF and TEM results. The CV and EIS break-down analysis indicated a much faster electrochemical reaction kinetics, more reversible electrode process and greatly reduced charge transfer and Warburg resistance, clearly illustrating the dual role of NiCo2O4 coating to boost electron transport and Li+ diffusion, and alleviation of manganese dissolving. This approach may render as an efficient technique to realize high-performance lithium ion battery cathode material.
Ni3Si2 nanowires grown in situ on Ni foam for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Jiang, Yizhe; Li, Zhihui; Li, Beibei; Zhang, Jinying; Niu, Chunming
2016-07-01
Ni3Si2 nanowires and nanoawls have grown in situ on the surface of Ni foams by a controlled low pressure chemical vapor deposition process. Structural characterization shows that the individual Ni3Si2 nanowire is single crystal covered with a thin layer (1-2 nm) of SiO2 with a diameter of ∼20-30 nm and length of ten's micrometers. Individual nanoawl with a circular cone shape is polycrystalline. Both Ni3Si2 nanowire and nanoawl samples are evaluated as potential electrode materials for supercapacitors. The nanowire electrode delivers a very high specific capacitance and excellent rate capability. A specific capacitance of 760 F g-1 is measured at current density of 0.5 A g-1, which decreases to 518 F g-1 when the current density increases to 10 A g-1. The capacitance is dominated by pseudocapacitance with a mechanism similar to that of NiO or Ni(OH)2 widely studied in the literature. An asymmetric supercapacitor fabricated by pairing Ni3Si2 nanowire electrode with an activated carbon electrode exhibits energy densities of 17.5 Wh kg-1 and 8.8 Wh kg-1 at power densites of 301 W kg-1 and 3000 W kg-1.
NASA Astrophysics Data System (ADS)
Steffen, H. J.
1994-12-01
It is demonstrated how Auger line shape analysis with factor analysis (FA), least-squares fitting and even simple peak height measurements may provide detailed information about the composition, different chemical states and also defect concentration or crystal order. Advantage is taken of the capability of Auger electron spectroscopy to give valence band structure information with high surface sensitivity and the special aspect of FA to identify and discriminate quantitatively unknown chemical species. Valence band spectra obtained from Ni, Fe, Cr and NiFe40Cr20 during oxygen exposure at room temperature reveal the oxidation process in the initial stage of the thin layer formation. Furthermore, the carbon chemical states that were formed during low energy C(+) and Ne(+) ion irradiation of graphite are delineated and the evolution of an amorphous network with sp3 bonds is disclosed. The analysis represents a unique method to quantify the fraction of sp3-hybridized carbon in diamond-like materials.
Mechanical and Functional Properties of Nickel Titanium Adhesively Bonded Joints
NASA Astrophysics Data System (ADS)
Niccoli, F.; Alfano, M.; Bruno, L.; Furgiuele, F.; Maletta, C.
2014-07-01
In this study, adhesive joints made up of commercial NiTi sheets with shape memory capabilities are analyzed. Suitable surface pre-treatments, i.e., degreasing, sandblasting, and chemical etching, are preliminary compared in terms of surface roughness, surface energy, and substrate thinning. Results indicate that chemical etching induces marked substrate thinning without substantial gains in terms of surface roughness and free energy. Therefore, adhesive joints with degreased and sandblasted substrates are prepared and tested under both static and cyclic conditions, and damage development within the adhesive layer is monitored in situ using a CCD camera. Sandblasted specimens have a significantly higher mechanical static strength with respect to degreased ones, although they essentially fail in similar fashion, i.e., formation of microcracks followed by decohesion along the adhesive/substrate interface. In addition, the joints show a good functional response with almost complete shape memory recovery after thermo-mechanical cycling, i.e., a small accumulation of residual deformations occurs. The present results show that adhesive bonding is a viable joining technique for NiTi alloys.
Free and forced Barkhausen noises in magnetic thin film based cross-junctions
NASA Astrophysics Data System (ADS)
Elzwawy, Amir; Talantsev, Artem; Kim, CheolGi
2018-07-01
Barkhausen noise, driven by thermal fluctuations in stationary magnetic field, and Barkhausen jumps, driven by sweeping magnetic field, are demonstrated to be effects of different orders of magnitude. The critical magnetic field for domain walls depinning, followed by avalanched and irreversible magnetization jumps, is determined. Magnetoresistive response of NiFe/M/NiFe (M = Au, Ta, Ag) trilayers to stationary and sweeping magnetic field is studied by means of anisotropic magnetoresistance (AMR) and planar Hall effect (PHE) measurements. Thermal fluctuations result in local and reversible changes of magnetization of the layers in thin film magnetic junctions, while the sweeping magnetic field results in reversible and irreversible avalanched domain motion, dependently on the ratio between the values of sweeping magnetic field and domain wall depinning field. The correlation between AMR and PHE responses to Barkhausen jumps is studied. The value of this correlation is found to be dependent on the α angle between the directions of magnetic field and current path.
NASA Astrophysics Data System (ADS)
Laik, A.; Shirzadi, A. A.; Sharma, G.; Tewari, R.; Jayakumar, T.; Dey, G. K.
2015-02-01
Microstructural evolution and interfacial reactions during vacuum brazing of grade-2 Ti and 304L-type stainless steel (SS) using eutectic alloy Ag-28 wt pct Cu were investigated. A thin Ni-depleted zone of -Fe(Cr, Ni) solid solution formed on the SS-side of the braze zone (BZ). Cu from the braze alloy, in combination with the dissolved Fe and Ti from the base materials, formed a layer of ternary compound , adjacent to Ti in the BZ. In addition, four binary intermetallic compounds, CuTi, CuTi, CuTi and CuTi formed as parallel contiguous layers in the BZ. The unreacted Ag solidified as islands within the layers of CuTi and CuTi. Formation of an amorphous phase at certain locations in the BZ could be revealed. The -Ti(Cu) layer, formed due to diffusion of Cu into Ti-based material, transformed to an -Ti + CuTi eutectoid with lamellar morphology. Tensile test showed that the brazed joints had strength of 112 MPa and failed at the BZ. The possible sequence of events that led to the final microstructure and the mode of failure of these joints were delineated.
Effect of copper and nickel doping on the optical and structural properties of ZnO
NASA Astrophysics Data System (ADS)
Muǧlu, G. Merhan; Sarıtaş, S.; ćakıcı, T.; Şakar, B.; Yıldırım, M.
2017-02-01
The present study is focused on the Cu doped ZnO and Ni doped ZnO dilute magnetic semiconductor thin films. ZnO:Cu and ZnO:Ni thin films were grown by Chemically Spray Pyrolysis (CSP) method on glass substrates. Optical analysis of the films was done spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. The structure, morphology, topology and elemental analysis of ZnO:Cu and ZnO:Ni dilute magnetic thin films were investigated by X-ray diffraction (XRD), Raman Analysis, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) techniques, respectively. Also The magnetic properties of the ZnO:Ni thin film was investigated by vibrating sample magnetometer (VSM) method. VSM measurements of ZnO:Ni thin film showed that the ferromagnetic behavior.
In Situ, High-Resolution Profiles of Labile Metals in Sediments of Lake Taihu
Wang, Dan; Gong, Mengdan; Li, Yangyang; Xu, Lv; Wang, Yan; Jing, Rui; Ding, Shiming; Zhang, Chaosheng
2016-01-01
Characterizing labile metal distribution and biogeochemical behavior in sediments is crucial for understanding their contamination characteristics in lakes, for which in situ, high-resolution data is scare. The diffusive gradient in thin films (DGT) technique was used in-situ at five sites across Lake Taihu in the Yangtze River delta in China to characterize the distribution and mobility of eight labile metals (Fe, Mn, Zn, Ni, Cu, Pb, Co and Cd) in sediments at a 3 mm spatial resolution. The results showed a great spatial heterogeneity in the distributions of redox-sensitive labile Fe, Mn and Co in sediments, while other metals had much less marked structure, except for downward decreases of labile Pb, Ni, Zn and Cu in the surface sediment layers. Similar distributions were found between labile Mn and Co and among labile Ni, Cu and Zn, reflecting a close link between their geochemical behaviors. The relative mobility, defined as the ratio of metals accumulated by DGT to the total contents in a volume of sediments with a thickness of 10 mm close to the surface of DGT probe, was the greatest for Mn and Cd, followed by Zn, Ni, Cu and Co, while Pb and Fe had the lowest mobility; this order generally agreed with that defined by the modified BCR approach. Further analyses showed that the downward increases of pH values in surface sediment layer may decrease the lability of Pb, Ni, Zn and Cu as detected by DGT, while the remobilization of redox-insensitive metals in deep sediment layer may relate to Mn cycling through sulphide coprecipitation, reflected by several corresponding minima between these metals and Mn. These in situ data provided the possibility for a deep insight into the mechanisms involved in the remobilization of metals in freshwater sediments. PMID:27608033
Quality of Metal Deposited Flux Cored Wire With the System Fe-C-Si-Mn-Cr-Mo-Ni-V-Co
NASA Astrophysics Data System (ADS)
Gusev, Aleksander I.; Kozyrev, Nikolay A.; Osetkovskiy, Ivan V.; Kryukov, Roman E.; Kozyreva, Olga A.
2017-10-01
Studied the effect of the introduction of vanadium and cobalt into the charge powder fused wire system Fe-C-Si-Mn-Cr-Ni-Mo-V, used in cladding assemblies and equipment parts and mechanisms operating under abrasive and abrasive shock loads. the cored wires samples were manufactured in the laboratory conditions and using appropriate powder materials and as a carbonfluoride contained material were used the dust from gas purification of aluminum production, with the following components composition, %: Al2O3 = 21-46.23; F = 18-27; Na2O = 8-15; K2O = 0.4-6; CaO = 0.7-2.3; Si2O = 0.5-2.48; Fe2O3 = 2.1-3.27; C = 12.5-30.2; MnO = 0.07-0.9; MgO = 0.06-0.9; S = 0.09-0.19; P = 0.1-0.18. Surfacing was produced on the St3 metal plates in 6 layers under the AN-26C flux by welding truck ASAW-1250. Cutting and preparation of samples for research had been implemented. The chemical composition and the hydrogen content of the weld metal were determined by modern methods. The hardness and abrasion rate of weld metal had been measured. Conducted metallographic studies of weld metal: estimated microstructure, grain size, contamination of oxide non-metallic inclusions. Metallographic studies showed that the microstructure of the surfaced layer by cored wire system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co is uniform, thin dendrite branches are observed. The microstructure consists of martensite, which is formed inside the borders of the former austenite grain retained austenite present in small amounts in the form of separate islands, and thin layers of δ-ferrite, which is located on the borders of the former austenite grains. Carried out an assessment the effect of the chemical composition of the deposited metal on the hardness and wear and hydrogen content. In consequence of multivariate correlation analysis, it was determined dependence to the hardness of the deposited layer and the wear resistance of the mass fraction of the elements included in the flux-cored wires of the system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co. The calculated value of the average approximation error suggests that the dependence is adequate and can be used to determine the resulting indicators. These dependencies can be used to predict the hardness of the deposited layer and its wear resistance while changing the chemical composition of the weld metal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escobedo-Cousin, Enrique; Vassilevski, Konstantin; Hopf, Toby
Patterned few-layer graphene (FLG) films were obtained by local solid phase growth from nickel silicide supersaturated with carbon, following a fabrication scheme, which allows the formation of self-aligned ohmic contacts on FLG and is compatible with conventional SiC device processing methods. The process was realised by the deposition and patterning of thin Ni films on semi-insulating 6H-SiC wafers followed by annealing and the selective removal of the resulting nickel silicide by wet chemistry. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to confirm both the formation and subsequent removal of nickel silicide. The impact of process parameters such asmore » the thickness of the initial Ni layer, annealing temperature, and cooling rates on the FLG films was assessed by Raman spectroscopy, XPS, and atomic force microscopy. The thickness of the final FLG film estimated from the Raman spectra varied from 1 to 4 monolayers for initial Ni layers between 3 and 20 nm thick. Self-aligned contacts were formed on these patterned films by contact photolithography and wet etching of nickel silicide, which enabled the fabrication of test structures to measure the carrier concentration and mobility in the FLG films. A simple model of diffusion-driven solid phase chemical reaction was used to explain formation of the FLG film at the interface between nickel silicide and silicon carbide.« less
Bae, Kiho; Lee, Sewook; Jang, Dong Young; Kim, Hyun Joong; Lee, Hunhyeong; Shin, Dongwook; Son, Ji-Won; Shim, Joon Hyung
2016-04-13
In this study, we used a compositionally gradient anode functional layer (AFL) consisting of Ni-BaCe(0.5)Zr(0.35)Y(0.15)O(3-δ) (BCZY) with increasing BCZY contents toward the electrolyte-anode interface for high-performance protonic ceramic fuel cells. It is identified that conventional homogeneous AFLs fail to stably accommodate a thin film of BCZY electrolyte. In contrast, a dense 2 μm thick BCZY electrolyte was successfully deposited onto the proposed gradient AFL with improved adhesion. A fuel cell containing this thin electrolyte showed a promising maximum peak power density of 635 mW cm(-2) at 600 °C, with an open-circuit voltage of over 1 V. Impedance analysis confirmed that minimizing the electrolyte thickness is essential for achieving a high power output, suggesting that the anode structure is important in stably accommodating thin electrolytes.
Structural and magnetic analysis of Cu, Co substituted NiFe2O4 thin films
NASA Astrophysics Data System (ADS)
Sharma, Hakikat; Bala, Kanchan; Negi, N. S.
2016-05-01
In the present work we prepared NiFe2O4, Ni0.95Cu0.05Fe2O4 and Ni0.94Cu0.05Co0.01 Fe2O4 thin films by metallo-organic decomposition method (MOD) using spin coating technique. The thin films were analyzed by X-ray diffractometer (XRD) and Atomic force microscope (AFM) for structural studies. The XRD patterns confirmed the ferrite phase of thin films. From AFM, we analyzed surface morphology, calculated grain size (GS) and root mean square roughness (RMSR). Room temperature magnetic properties were investigated by vibrating sample magnetometer (VSM).
NASA Astrophysics Data System (ADS)
Singh, Kirandeep; Kaur, Davinder
2017-04-01
The current study reports the strong magnetoelectric coupling (M-E) in silicon (Si)-integrated ferromagnetic shape memory alloy-based PZT/Ni-Mn-In thin-film multiferroic heterostructure. The strain-mediated nature of converse M-E coupling is reflected from the butterfly-shaped normalized magnetization (M/M s) versus electric field plots. The direct M-E properties of the heterostructure were measured with a frequency of AC magnetic field, bias magnetic field, as well as with temperature. A maximum direct M-E coupling in the bilayered thin-film multiferroic heterostructures occurred at resonance frequencies around the first-order structural transitional temperature of the bottom Ni-Mn-In layer. It was observed that the measuring temperature remarkably affects the direct M-E characteristic of the heterostructure. A large direct ME effect and converse ME effect coefficient α DME ~ 894 mV cm-1.Oe and α CME ~ 2.7 × 10-5 s m-1, respectively, were achieved in the bilayer at room temperature. The mechanism of direct as well as converse M-E effects in the thin-film multiferroic heterostructures is discussed. The electrically driven angular dependence of normalized magnetization (M/M s) reveals the twofold symmetric magnetic anisotropy of the heterostructure, with the drastic shifting of the magnetic hard axis at E > E c (coercivity of PZT).
NASA Astrophysics Data System (ADS)
Bahadormanesh, Behrouz; Ghorbani, Mohammad
2018-06-01
The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the cathodic current density. The composition, surface morphology, roughness, layers growth pattern as well as the phase structure of deposits were extensively studied via SEM, EDS, AFM and XRD analysis. Effects of bath ingredients on the electrodeposition behavior were analyzed through cathodic linear sweep voltammetry. Although the concentration of Zn2+ in bath was 13 times higher than Ni2+, the Zn-Ni deposition potential was much nearer to Ni deposition potential rather than that of Zn. Addition of NaH2PO2 to the Ni deposition bath considerably raised the current density and shifted the crystallization potential of Ni to more nobble values. Codeposition of P with Zn-Ni alloy lead to crack formation in the monolayer that was deposited in 60 mA/cm2. However, the cracks were not observed in the Zn-Ni layers of multilayers. Zn-Ni layers in CMMCs exhibited a three-dimensional pattern of growth while that of Ni-P layers was two-dimensional. Also, the Ni-P deposits tends to fill the discontinuities in Zn-Ni layers and performed leveling properties and lowered the surface roughness of Zn-Ni layers and CMMCs. Structural analysis demonstrated that Ni-P layers were amorphous and the Zn-Ni layers exhibited crystallite phase of Zn11Ni2. Thus, the Ni-P/Zn-Ni CMMCs comprised of alternate layers of amorphous Ni-P and nanocrystalline Zn Ni.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2012-10-09
Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2008-04-01
Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.
Dopant controlled photoinduced hydrophilicity and photocatalytic activity of SnO2 thin films
NASA Astrophysics Data System (ADS)
Talinungsang; Dhar Purkayastha, Debarun; Krishna, M. Ghanashyam
2018-07-01
The influence of Fe and Ni (1 wt.%) doping on the wettability and photocatalytic activity of sol-gel derived SnO2 films is reported. X-ray diffraction studies revealed the presence of tetragonal phase for both pure and doped SnO2 thin films. The crystallite size was of the order of 8 nm indicating the nanocrystalline nature of the films. The pure SnO2 films which were hydrophilic with a contact angle of 11.8° showed increase in contact angle with doping (38.7° for Fe and 48.6° for Ni). This is accompanied by decrease in surface energy and root mean square roughness, with doping of SnO2 film. In order to further increase the water contact angle, the film surfaces were modified using a layer of stearic acid. As a consequence, the water contact angles increased to 108°, 110° and 111° for the pure, Fe and Ni doped SnO2 films respectively, rendering them hydrophobic. Significantly, the unmodified surfaces that did not exhibit any change under UV irradiation showed photoinduced hydrophilicity on modification with stearic acid. There was a red-shift in the optical band gap of SnO2 films from 3.8 to 3.5 eV with doping, indicating the possibility of dopant controlled photocatalytic activity. This was confirmed by observing the photocatalytic degradation of an aqueous solution of methylene blue under UV irradiation. There was, indeed, significant improvement in the photocatalytic efficiency of the metal doped SnO2 thin film in comparison to undoped film. The current work, thus, demonstrates a simple method to chemically engineer the wettability and photocatalytic activity of SnO2 thin film surfaces.
Micromagnetic modeling of the shielding properties of nanoscale ferromagnetic layers
NASA Astrophysics Data System (ADS)
Iskandarova, I. M.; Knizhnik, A. A.; Popkov, A. F.; Potapkin, B. V.; Stainer, Q.; Lombard, L.; Mackay, K.
2016-09-01
Ferromagnetic shields are widely used to concentrate magnetic fields in a target region of space. Such shields are also used in spintronic nanodevices such as magnetic random access memory and magnetic logic devices. However, the shielding properties of nanostructured shields can differ considerably from those of macroscopic samples. In this work, we investigate the shielding properties of nanostructured NiFe layers around a current line using a finite element micromagnetic model. We find that thin ferromagnetic layers demonstrate saturation of magnetization under an external magnetic field, which reduces the shielding efficiency. Moreover, we show that the shielding properties of nanoscale ferromagnetic layers strongly depend on the uniformity of the layer thickness. Magnetic anisotropy in ultrathin ferromagnetic layers can also influence their shielding efficiency. In addition, we show that domain walls in nanoscale ferromagnetic shields can induce large increases and decreases in the generated magnetic field. Therefore, ferromagnetic shields for spintronic nanodevices require careful design and precise fabrication.
Growth and Characteristic of Amorphous Nano-Granular TeO2-V2O5-NiO Thin Films
NASA Astrophysics Data System (ADS)
Hosseinzadeh, Sh.; Rahmati, A.; Bidadi, H.
2016-12-01
TeO2-V2O5-NiO thin films were deposited using thermal evaporation from 40TeO2-(60-y)V2O5-yNiO (y=0-30mol%) target. Structural analysis of the films was identified by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The amorphous TeO2-V2O5-NiO films have nanosized clear grain structure and sharp grain boundaries. DC conductivity and current-voltage (I-V) characteristic of TeO2-V2O5-NiO thin films were measured in the temperature range of 300-423K. As nickel oxide (NiO) content increases, the DC conductivity decreases up to two orders in value (10-9-10-11Sṡcm-1). Temperature dependence of conductivity is described using the small polaron hopping (SPH) model as well. Poole-Frenkel effect is observed at high external electric field. The optical absorption spectra of the TeO2-V2O5-NiO thin films were recorded in the wavelength range of 380-1100nm. The absorption coefficient revealed bandgap shrinkage (3.01-2.3eV) and band tail widening, due to an increase in NiO content. Energy dispersive X-ray spectroscopy (EDX) was used to determine elemental composition. In TeO2-V2O5-NiO thin films, the NiO content is around fifth of the initial target.
Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors
NASA Astrophysics Data System (ADS)
Turgut, Erdal; Çoban, Ömer; Sarıtaş, Sevda; Tüzemen, Sebahattin; Yıldırım, Muhammet; Gür, Emre
2018-03-01
NiO thin films were grown by Radio Frequency (RF) Magnetron Sputtering method under different oxygen partial pressures, which are 0.6 mTorr, 1.3 mTorr and 2.0 mTorr. The effects of oxygen partial pressures on the thin films were analyzed through Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Hall measurements. The change in the surface morphology of the thin films has been observed with the SEM and AFM measurements. While nano-pyramids have been obtained on the thin film grown at the lowest oxygen partial pressure, the spherical granules lower than 60 nm in size has been observed for the samples grown at higher oxygen partial pressures. The shift in the dominant XRD peak is realized to the lower two theta angle with increasing the oxygen partial pressures. XPS measurements showed that the Ni2p peak involves satellite peaks and two oxidation states of Ni, Ni2+ and Ni3+, have been existed together with the corresponding splitting in O1s spectrum. P-type conductivity of the grown NiO thin films are confirmed by the Hall measurements with concentrations on the order of 1013 holes/cm-3. Gas sensor measurements revealed minimum of 10% response to the 10 ppm H2 level. Enhanced responsivity of the gas sensor devices of NiO thin films is shown as the oxygen partial pressure increases.
Magnetic properties of Co/Ni grain boundaries after annealing
NASA Astrophysics Data System (ADS)
Coutts, Chris; Arora, Monika; Hübner, René; Heinrich, Bret; Girt, Erol
2018-05-01
Magnetic and microstructural properties of <111> textured Cu/N×[Co/Ni] films are studied as a function of the number of bilayer repeats N and annealing temperature. M(H) loop measurements show that coercivity, Hc, increases with annealing temperature and that the slope of the saturation curve at Hc has a larger reduction for smaller N. An increase of the magnetic anisotropy (Ku) to saturation magnetization (Ms) ratio after annealing N×[Co/Ni] with N < 15 only partially describes the increase to Hc. Energy-dispersive X-ray spectroscopy analyses performed in scanning transmission electron microscopy mode across cross-sections of as-deposited and annealed Cu/16×[Co/Ni] films show that Cu diffuses from the seed layer into grain boundaries of Co/Ni. Diffusion of Cu reduces exchange coupling (Hex) between the magnetic grains and explains the increase in Hc. Additionally, the difference in the slope of the M(H) curves at Hc between the thick (N = 16) and thin (N = 4) magnetic multilayers is due to Cu diffusion more effectively decoupling magnetic grains in the thinner multilayer.
NASA Astrophysics Data System (ADS)
Cai, Yixiao; Wang, Baoyuan; Wang, Yi; Xia, Chen; Qiao, Jinli; van Aken, Peter A.; Zhu, Bin; Lund, Peter
2018-04-01
YSZ as the electrolyte of choice has dominated the progressive development of solid oxide fuel cell (SOFC) technologies for many years. To enable SOFCs operating at intermediate temperatures of 600 °C or below, major technical advances were built on a foundation of a thin-film YSZ electrolyte, NiO anode, and perovskite cathode, e.g. La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF). Inspired by functionalities in engineered heterostructure interfaces, the present work uses the components from state-of-the-art SOFCs, i.e, the anode NiO-YSZ and the cathode LSCF-YSZ, or the convergence of all three components, i.e., NiO-YSZ-LSCF, to fabricate semiconductor-ionic membranes (SIMs) and devices. A series of proof-of-concept fuel cell devices are designed by using each of the above SIMs sandwiched between two semiconducting Ni0.8Co0.15Al0.05LiO2-δ (NCAL) layers. We systematically compare these novel designs at 600 °C with two reference fuel cells: a commercial product of anode-supported YSZ electrolyte thin-film cell, and a lab-assembled fuel cell with a conventional configuration of NiO-YSZ (anode)/YSZ (electrolyte)/LSCF-YSZ (cathode). In comparison to the reference cells, the SIM device in a configuration of NCAL/NiO-YSZ-LSCF/NCAL reaches more than 3-fold enhancement of the maximum power output. By using spherical aberration-corrected transmission electron microscopy and spectroscopy approaches, this work offers insight into the mechanisms underlying SIM-associated SOFC performance enhancement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suharyadi, Edi, E-mail: esuharyadi@ugm.ac.id; Riyanto, Agus; Abraha, Kamsul
2016-04-19
CoNiFe thin films with various compositions had been successfully fabricated using electro-chemical deposition method. The crystal structure of Co{sub 65}Ni{sub 15}Fe{sub 20}, Co{sub 62}Ni{sub 15}Fe{sub 23}, and Co{sub 55}Ni{sub 15}Fe{sub 30} thin films was fcc, bcc-fcc mix, and bcc, respectively. The difference crystal structure results the difference in magnetic properties. The saturation magnetic flux density (Bs) of Co{sub 65}Ni{sub 15}Fe{sub 20}, Co{sub 62}Ni{sub 15}Fe{sub 23}, and Co{sub 55}Ni{sub 15}Fe{sub 30} thin films was 1.89 T, 1.93 T, and 2.05 T, respectively. An optimal annealing temperature was determined for controlling the microstructure and magnetic properties of CoNiFe thin films. Depending onmore » annealing temperature, the ratio of bcc and fcc structure varied without changing the film composition. By annealing at temperature of T ≥ 350°C, the intensity ratio of X-ray diffraction peaks for bcc(110) to fcc(111) increased. The increase of phase ratio of bcc(110) to fcc(111) caused the increase of Bs, from 1.89 T to 1.95 T. Coercivity (Hc) also increased after annealing, from 2.6 Oe to 18.6 Oe for fcc phase thin films, from 2.0 Oe to 12.0 Oe for fcc-bcc mix phase thin films, and 7.8 Oe to 8 Oe for bcc phase thin films. The changing crystal structures during annealing process indicated that the thermal treatment at high temperature cause the changing crystallinity and atomic displacement. The TEM bright-field images with corresponding selected-area electron diffraction (SAED) patterns showed that there are strongly effects of thermal annealing on the size of fcc and bcc phase crystalline grain as described by size of individual spot and discontinuous rings. The size of crystalline grains increased by thermal annealing. The evolution of bcc and fcc structures of CoNiFe during annealing is though to be responsible for the change of magnetic properties.« less
Synthesis and characterization of cobalt doped nickel oxide thin films by spray pyrolysis method
NASA Astrophysics Data System (ADS)
Sathisha, D.; Naik, K. Gopalakrishna
2018-05-01
Cobalt (Co) doped nickel oxide (NiO) thin films were deposited on glass substrates at a temperature of about 400 °C by spray pyrolysis method. The effect of Co doping concentration on structural, optical and compositional properties of NiO thin films was investigated. X-ray diffraction result shows that the deposited thin films are polycrystalline in nature. Surface morphologies of the deposited thin films were observed by FESEM and AFM. EDS spectra showed the incorporation of Co dopants in NiO thin films. Optical properties of the grown thin films were characterized by UV-visible spectroscopy. It was found that the optical band gap energy and transmittance of the films decrease with increasing Co doping concentration.
Fluoride Thin Films: from Exchange Bias to Multferroicity
NASA Astrophysics Data System (ADS)
Johnson, Trent A.
This dissertation concerns research into the growth and characterization fluoride thin films by molecular beam epitaxy. After a discussion of relevant background material and experimental procedures in the first two chapters, we study exchange bias in magnetic multilayers incorporating the uniaxial antiferromagnet FeF2, grown to varying thicknesses, sandwiched between ferromagnetic Co layers with fixed thicknesses of 5 and 20 nm. Several bilayers with only the 20 nm thick Co layer were grown for comparative study. The samples were grown on Al2O3 (112¯0) substrates at room temperature. In-situ RHEED and x-ray diffraction indicated the films were polycrystalline. The films were determined to have low surface and interlayer roughness, as determined by AFM and x-ray reflectivity. After field-cooling to below the Neel temperature of FeF2 in a magnetic field of 1 kOe, magnetic hysteresis loops were measured as a function of temperature. We found that both layers had a negative exchange bias, with the exchange bias of the thinner layer larger than that of the thicker layer. In addition, the coercivity below the blocking temperature TB of the thinner layer was significantly larger than that of the thick layer, even though the coercivity of the two layers was the same for T > TB. The exchange bias effect, manifested by a shift in these hysteresis loops, showed a strong dependence on the thickness of the antiferromagnet. Anisotropic magnetoresistance measurements provided additional insight into the magnetization reversal mechanism within the ferromagnets. The thickness dependent exchange anisotropy of trilayer and bilayer samples is explained by adapting a random field model to the antiferromagnet/ferromagnet interface. Finally, We investigate the temperature dependent growth, as well as the magnetic and ferroelectric properties of thin films of the multiferroic compounds BaMF4, where M = Fe, Co, Ni. The films were grown to thicknesses of 50 or 100 nm on single crystal Al2O3 (0001) substrates. X-ray diffraction showed that this family of films grew epitaxially in the (010) orientation, but were twinned in the plane, with three domain orientations rotated by 120 degrees relative to one another. Measurements of the remanent hysteresis via interdigitated electrodes showed that the compounds M = Co, and Ni were ferroelectric, but no switching behavior was observed in the Fe system at electric fields up to 400 kV/cm. Measurements of the field-cooled and zero-field-cooled magnetic moment confirmed low temperature antiferromagnetic behavior, and found new weak ferromagnetic phases induced by strain.
Full-switching FSF-type superconducting spin-triplet magnetic random access memory element
NASA Astrophysics Data System (ADS)
Lenk, D.; Morari, R.; Zdravkov, V. I.; Ullrich, A.; Khaydukov, Yu.; Obermeier, G.; Müller, C.; Sidorenko, A. S.; von Nidda, H.-A. Krug; Horn, S.; Tagirov, L. R.; Tidecks, R.
2017-11-01
In the present work a superconducting Co/CoOx/Cu41Ni59 /Nb/Cu41Ni59 nanoscale thin film heterostructure is investigated, which exhibits a superconducting transition temperature, Tc, depending on the history of magnetic field applied parallel to the film plane. In more detail, around zero applied field, Tc is lower when the field is changed from negative to positive polarity (with respect to the cooling field), compared to the opposite case. We interpret this finding as the result of the generation of the odd-in-frequency triplet component of superconductivity arising at noncollinear orientation of the magnetizations in the Cu41Ni59 layer adjacent to the CoOx layer. This interpretation is supported by superconducting quantum interference device magnetometry, which revealed a correlation between details of the magnetic structure and the observed superconducting spin-valve effects. Readout of information is possible at zero applied field and, thus, no permanent field is required to stabilize both states. Consequently, this system represents a superconducting magnetic random access memory element for superconducting electronics. By applying increased transport currents, the system can be driven to the full switching mode between the completely superconducting and the normal state.
Analysis of high reverse currents of 4H-SiC Schottky-barrier diodes
NASA Astrophysics Data System (ADS)
Okino, Hiroyuki; Kameshiro, Norifumi; Konishi, Kumiko; Shima, Akio; Yamada, Ren-ichi
2017-12-01
Nickel (Ni), titanium (Ti), and molybdenum (Mo) 4H-silicon carbide Schottky-barrier diodes (SiC SBDs) were fabricated and used to investigate the relation between forward and reverse currents. Temperature dependence of reverse current follows a theory that includes tunneling in regard to thermionic emission, namely, temperature dependence is weak at low temperature but strong at high temperatures. On the other hand, the reverse currents of the Ni and Mo SBDs are higher than their respective currents calculated from their Schottky barrier heights (SBHs), whereas the reverse current of the Ti SBD agrees well with that calculated from its SBH. The cause of the high reverse currents was investigated from the viewpoints of low barrier patch, Gaussian distribution of barrier height (GD), thin surface barrier, and electron effective mass. The high reverse current of the Ni and Mo SBDs can be explained not in terms of a low-barrier patch, GD, or thin surface barrier but in terms of small effective masses. Investigation of crystal structures at the Schottky interface revealed a large lattice mismatch between the metals (Ni, Ti, or Mo) and SiC for the Ni and Mo SBDs. The small effective mass is possibly attributed to the large lattice mismatch, which might generate transition layers at the Schottky interface. It is concluded from these results that the lattice constant as well as the work function is an important factor in selecting the metal species as the Schottky metal for wide band-gap SBDs, for which tunneling current dominates reverse current.
Passivation Layer and Cathodic Redox Reactions in Sodium-Ion Batteries Probed by HAXPES.
Doubaji, Siham; Philippe, Bertrand; Saadoune, Ismael; Gorgoi, Mihaela; Gustafsson, Torbjorn; Solhy, Abderrahim; Valvo, Mario; Rensmo, Håkan; Edström, Kristina
2016-01-08
The cathode material P2-Nax Co2/3 Mn2/9 Ni1/9 O2, which could be used in Na-ion batteries, was investigated through synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES). Nondestructive analysis was made through the electrode/electrolyte interface of the first electrochemical cycle to ensure access to information not only on the active material, but also on the passivation layer formed at the electrode surface and referred to as the solid permeable interface (SPI). This investigation clearly shows the role of the SPI and the complexity of the redox reactions. Cobalt, nickel, and manganese are all electrochemically active upon cycling between 4.5 and 2.0 V; all are in the 4+ state at the end of charging. Reduction to Co(3+), Ni(3+), and Mn(3+) occurs upon discharging and, at low potential, there is partial reversible reduction to Co(2+) and Ni(2+). A thin layer of Na2 CO3 and NaF covers the pristine electrode and reversible dissolution/reformation of these compounds is observed during the first cycle. The salt degradation products in the SPI show a dependence on potential. Phosphates mainly form at the end of the charging cycle (4.5 V), whereas fluorophosphates are produced at the end of discharging (2.0 V). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrochemical high-temperature gas sensors
NASA Astrophysics Data System (ADS)
Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.
2012-06-01
Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.
Homodyne detection of ferromagnetic resonance by a non-uniform radio-frequency excitation current
NASA Astrophysics Data System (ADS)
Ikebuchi, Tetsuya; Moriyama, Takahiro; Shiota, Yoichi; Ono, Teruo
2018-05-01
Ferromagnetic resonance (FMR) is one of the most popular techniques to characterize dynamic properties of ferromagnetic materials. Among various FMR measurement techniques, the homodyne FMR detection has been frequently used to characterize thin-film ferromagnetic multilayers owing to its high sensitivity. However, a drawback of this technique was considered to be the requirement for a structural inversion asymmetry, which makes it unsuitable to characterize a single layer of ferromagnet. In this study, we demonstrate a homodyne FMR detection of the Kittel’s mode FMR dynamics of a single layer of FeNi by creating a non-uniform radio-frequency excitation current.
NASA Astrophysics Data System (ADS)
Uudeküll, Peep; Kozlova, Jekaterina; Mändar, Hugo; Link, Joosep; Sihtmäe, Mariliis; Käosaar, Sandra; Blinova, Irina; Kasemets, Kaja; Kahru, Anne; Stern, Raivo; Tätte, Tanel; Kukli, Kaupo; Tamm, Aile
2017-05-01
Spherical nickel particles with size in the range of 100-400 nm were synthesized by non-aqueous liquid phase benzyl alcohol method. Being developed for magnetically guided biomedical applications, the particles were coated by conformal and antimicrobial thin titanium oxide films by atomic layer deposition. The particles retained their size and crystal structure after the deposition of oxide films. The sensitivity of the coated particles to external magnetic fields was increased compared to that of the uncoated powder. Preliminary toxicological investigations on microbial cells and small aquatic crustaceans revealed non-toxic nature of the synthesized particles.
Green binary and phase shifting mask
NASA Astrophysics Data System (ADS)
Shy, S. L.; Hong, Chao-Sin; Wu, Cheng-San; Chen, S. J.; Wu, Hung-Yu; Ting, Yung-Chiang
2009-12-01
SixNy/Ni thin film green mask blanks were developed , and are now going to be used to replace general chromium film used for binary mask as well as to replace molydium silicide embedded material for AttPSM for I-line (365 nm), KrF (248 nm), ArF (193 nm) and Contact/Proximity lithography. A bilayer structure of a 1 nm thick opaque, conductive nickel layer and a SixNy layer is proposed for binary and phase-shifting mask. With the good controlling of plasma CVD of SixNy under silane (50 sccm), ammonia (5 sccm) and nitrogen (100 sccm), the pressure is 250 mTorr. and RF frequency 13.56 MHz and power 50 W. SixNy has enough deposition latitude to meet the requirements as an embedded layer for required phase shift 180 degree, and the T% in 193, 248 and 365 nm can be adjusted between 2% to 20% for binary and phase shifting mask usage. Ni can be deposited by E-gun, its sheet resistance Rs is less than 1.435 kΩ/square. Jeol e-beam system and I-line stepper are used to evaluate these thin film green mask blanks, feature size less than 200 nm half pitch pattern and 0.558 μm pitch contact hole can be printed. Transmission spectrums of various thickness of SixNy film are inspected by using UV spectrometer and FTIR. Optical constants of the SixNy film are measured by n & k meter and surface roughness is inspected by using Atomic Force Microscope (AFM).
Recrystallization in Si upon ion irradiation at room temperature in Co/Si(111) thin film systems
NASA Astrophysics Data System (ADS)
Banu, Nasrin; Satpati, B.; Dev, B. N.
2018-04-01
After several decades of research it was concluded that for a constant flux recrystallization in Si upon ion irradiation is possible only at high temperature. At low temperature or at room temperature only amorphization can take place. However we have observed recrystallization in Si upon ion irradiation at room temperature in a Co/Si thin film system. The Co/Si sample was prepared by deposition of 25 nm Co on clean Si(111) substrate. An oxide layer (˜ 2nm) of cobalt at the top of the film due to air exposure. The ion irradiation was done at room temperature under high vacuum with 1MeV Si+ ion with low beam current < 400 nA. Earlier we have shown similar ion induced recrystallization in Si(100) substrate which had a sandwich Si/Ni/Si structure. This system had an epitaxial buffer Si layer on Si substrate. This study also shows that the phenomenon is independent of substrate orientation and buffer layer. We have used transmission electron microscopy (TEM) to study the recrystallization behavior.
Au Nanoparticle Sub-Monolayers Sandwiched between Sol-Gel Oxide Thin Films
Della Gaspera, Enrico; Menin, Enrico; Sada, Cinzia
2018-01-01
Sub-monolayers of monodisperse Au colloids with different surface coverage have been embedded in between two different metal oxide thin films, combining sol-gel depositions and proper substrates functionalization processes. The synthetized films were TiO2, ZnO, and NiO. X-ray diffraction shows the crystallinity of all the oxides and verifies the nominal surface coverage of Au colloids. The surface plasmon resonance (SPR) of the metal nanoparticles is affected by both bottom and top oxides: in fact, the SPR peak of Au that is sandwiched between two different oxides is centered between the SPR frequencies of Au sub-monolayers covered with only one oxide, suggesting that Au colloids effectively lay in between the two oxide layers. The desired organization of Au nanoparticles and the morphological structure of the prepared multi-layered structures has been confirmed by Rutherford backscattering spectrometry (RBS), Secondary Ion Mass Spectrometry (SIMS), and Scanning Electron Microscopy (SEM) analyses that show a high quality sandwich structure. The multi-layered structures have been also tested as optical gas sensors. PMID:29538338
Liu, Meitang; Wang, Tianlei; Ma, Hongwen; Fu, Yu; Hu, Kunran; Guan, Chao
2014-01-01
In this present report, luminescent ordered multilayer thin films (OMFs) based on oppositely-charged inorganic nanosheets and the different oppositely-charged chromophores were fabricated via layer-by-layer assembly method. Exfoliated layered double hydroxides (LDHs) and montmorillonite (MMT) nanosheets with opposite charges can be expected to provide a pseudo electronic microenvironment (PEM) which has not been declared in previous literatures, and transition metal-bearing LDHs nanosheets can offer an additional ferromagnetic effect (FME) for the chromophores at the same time. Surprisingly, the luminescent lifetimes of those OMFs with PEM and FME are significantly prolonged compared with that of the pristine chromophores, even much longer than those of OMFs without oppositely-charged and ferromagnetic architecture. Therefore, it is highly expected that the PEM and FME formed by oppositely-charged and transition metal-bearing inorganic nanosheets have remarkable influence on obtaining better optical property, which suggests a new potential way to manipulate, control and develop the novel light-emitting materials and optical devices. PMID:25413710
Status of flexible CIS research at ISET
NASA Technical Reports Server (NTRS)
Basol, B. M.; Kapur, V. K.; Minnick, A.; Halani, A.; Leidholm, C. R.
1994-01-01
Polycrystalline thin film solar cells fabricated on light-weight, flexible substrates are very attractive for space applications. In this work CulnSe2 (CIS) based thin film devices were processed on metallic foil substrates using the selenization technique. CIS deposition method involved reaction of electron-bean evaporated Cu-In precursor layers with a selenizing atmosphere at around 400 C. Several metallic foils such as Mo, Ti, Al, Ni, and Cu were evaluated as possible substrates for these devices. Solar cells with AM1.5 efficiencies of 9.0-9.34 percent and good mechanical integrity were demonstrated on Mo and Ti foils. Monolithic integration of these devices was also demonstrated up to 4 in x 4 in size.
NASA Astrophysics Data System (ADS)
Kovaleva, Natalia N.; Bagdinov, Anton V.; Stupakov, Alexandr; Dejneka, Alexandr; Demikhov, Evgenii I.; Gorbatsevich, Alexandr A.; Pudonin, Fedor A.; Kugel, Kliment I.; Kusmartsev, Feodor V.
2018-04-01
By using superconducting quantum interference device (SQUID) magnetometry, we investigated anisotropic high-field ( H ≲ 7T) low-temperature (10 K) magnetization response of inhomogeneous nanoisland FeNi films grown by rf sputtering deposition on Sitall (TiO2) glass substrates. In the grown FeNi films, the FeNi layer nominal thickness varied from 0.6 to 2.5 nm, across the percolation transition at the d c ≃ 1.8 nm. We discovered that, beyond conventional spin-magnetism of Fe21Ni79 permalloy, the extracted out-of-plane magnetization response of the nanoisland FeNi films is not saturated in the range of investigated magnetic fields and exhibits paramagnetic-like behavior. We found that the anomalous out-of-plane magnetization response exhibits an escalating slope with increase in the nominal film thickness from 0.6 to 1.1 nm, however, it decreases with further increase in the film thickness, and then practically vanishes on approaching the FeNi film percolation threshold. At the same time, the in-plane response demonstrates saturation behavior above 1.5-2T, competing with anomalously large diamagnetic-like response, which becomes pronounced at high magnetic fields. It is possible that the supported-metal interaction leads to the creation of a thin charge-transfer (CT) layer and a Schottky barrier at the FeNi film/Sitall (TiO2) interface. Then, in the system with nanoscale circular domains, the observed anomalous paramagnetic-like magnetization response can be associated with a large orbital moment of the localized electrons. In addition, the inhomogeneous nanoisland FeNi films can possess spontaneous ordering of toroidal moments, which can be either of orbital or spin origin. The system with toroidal inhomogeneity can lead to anomalously strong diamagnetic-like response. The observed magnetization response is determined by the interplay between the paramagnetic- and diamagnetic-like contributions.
NASA Astrophysics Data System (ADS)
Magrasó, Anna; Fontaine, Marie-Laure
In the current manufacturing process of novel LaNbO 4-based proton conducting fuel cells a thin layer of the electrolyte is deposited by wet ceramic coating on NiO-LaNbO 4 based anode and co-sintered at 1200-1300 °C. The chemical compatibility of NiO with acceptor doped LaNbO 4 material is crucial to ensure viability of the cell, so potential effects of other phases resulting from off-stoichiometry in acceptor doped LaNbO 4 should also be explored. Compatibility of NiO with Ca-doped LaNbO 4 and its typical off-set compositions (La 3NbO 7 and LaNb 3O 9) are investigated in this work. It is shown that while NiO does not react with Ca-doped LaNbO 4, fast reaction occurs with La 3NbO 7 or LaNb 3O 9. La 3NbO 7 and NiO form a mixed conducting perovskite phase LaNi 2/3Nb 1/3O 3, while LaNb 3O 9 and NiO form either NiNb 2O 6 or Ni 4Nb 2O 9 depending on the annealing temperature. This implies that manufacturing LaNbO 4-based proton conducting fuel cells requires a strict control of the stoichiometry of the electrolyte.
NASA Astrophysics Data System (ADS)
Fiorenza, Patrick; Nigro, Raffaella Lo; Raineri, Vito
Recently, giant dielectric permittivities (ɛ ' ˜ 104) have been found in several nonferroelectric materials such as CaCu3Ti4O12 (CCTO) (Subramanian et al., J. Solid State Chem. 151:323, 2000; Homes et al., Science 293:673, 2001), doped-NiO (Wu et al., Phys. Rev. Lett. 89:217601, 2002) systems (Li x Ti y Ni1 - x - y O, Li x Si y Ni1 - x - y O, Ki x Ti y Ni1 - x - y O), CuO, (Lin et al., Phys. Rev. B 72:014103, 2005; Sarkar et al., App. Phys. Lett. 92:142901, 2008) etc., and most important, the high ɛ ' values of these materials are almost independent over a wide range of temperature. This is one of the most intriguing features for their implementations in microelectronics devices, and as a consequence, these materials have been subjected to extensive research. Here, an introduction to such materials and to the methods for their dielectric characterization is given. So far, the crucial question is whether the large dielectric response is an intrinsic property of new class of crystals or an extrinsic property originated by a combination of the structural properties and other features such as defects and inhomogeneities. Preliminary, this peculiar dielectric behavior has been explained in powder ceramics by the internal barrier layer capacitor (IBLC) model, that is the presence of semiconducting domains surrounded by thin insulating regions within the crystal microstructure. It has been considered the most appropriate model and it has been generally accepted to explain the giant response of these materials. However, it could not be transferred to single crystals and thin films. In this scenario, scanning probe-based methods (like STM, KPFM, C-AFM, SIM etc) represent the most powerful instrument to understand the colossal permittivity-related physical phenomena, by investigations at nanoscale, clarifying the local effects responsible of the rising of macroscopic giant dielectric responses. Scanning probe microscopy investigations showed the relevance of inhomogeneity within single crystal, polycrystalline ceramics, and thin films. In particular, they are powerful tools to point out the presence of few nanometer wide internal barrier layers and of electrical domains, which are not recognisable with standard macroscopic electric characterization techniques.
Au nanoparticle monolayers covered with sol-gel oxide thin films: optical and morphological study.
Della Gaspera, Enrico; Karg, Matthias; Baldauf, Julia; Jasieniak, Jacek; Maggioni, Gianluigi; Martucci, Alessandro
2011-11-15
In this work, we provide a detailed study of the influence of thermal annealing on submonolayer Au nanoparticle deposited on functionalized surfaces as standalone films and those that are coated with sol-gel NiO and TiO(2) thin films. The systems are characterized through the use of UV-vis absorption, X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and spectroscopic ellipsometry. The surface plasmon resonance peak of the Au nanoparticles was found to red-shift and increase in intensity with increasing surface coverage, an observation that is directly correlated to the complex refractive index properties of Au nanoparticle layers. The standalone Au nanoparticles sinter at 200 °C, and a relationship between the optical properties and the annealing temperature is presented. When overcoated with sol-gel metal oxide films (NiO, TiO(2)), the optical properties of the Au nanoparticles are strongly affected by the metal oxide, resulting in an intense red shift and broadening of the plasmon band; moreover, the temperature-driven sintering is strongly limited by the metal oxide layer. Optical sensing tests for ethanol vapor are presented as one possible application, showing reversible sensing dynamics and confirming the effect of Au nanoparticles in increasing the sensitivity and in providing a wavelength dependent response, thus confirming the potential use of such materials as optical probes.
Structural and magnetic analysis of Cu, Co substituted NiFe{sub 2}O{sub 4} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Hakikat; Bala, Kanchan; Negi, N. S.
2016-05-23
In the present work we prepared NiFe{sub 2}O{sub 4}, Ni{sub 0.95}Cu{sub 0.05}Fe{sub 2}O{sub 4} and Ni{sub 0.94}Cu{sub 0.05}Co{sub 0.01} Fe{sub 2}O{sub 4} thin films by metallo-organic decomposition method (MOD) using spin coating technique. The thin films were analyzed by X-ray diffractometer (XRD) and Atomic force microscope (AFM) for structural studies. The XRD patterns confirmed the ferrite phase of thin films. From AFM, we analyzed surface morphology, calculated grain size (GS) and root mean square roughness (RMSR). Room temperature magnetic properties were investigated by vibrating sample magnetometer (VSM).
Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy
Baiutti, Federico; Christiani, Georg
2014-01-01
Summary In this paper we present the atomic-layer-by-layer oxide molecular beam epitaxy (ALL-oxide MBE) which has been recently installed in the Max-Planck Institute for Solid State Research and we report on its present status, providing some examples that demonstrate its successful application in the synthesis of different layered oxides, with particular reference to superconducting La2CuO4 and insulator-to-metal La2− xSrxNiO4. We briefly review the ALL-oxide MBE technique and its unique capabilities in the deposition of atomically smooth single-crystal thin films of various complex oxides, artificial compounds and heterostructures, introducing our goal of pursuing a deep investigation of such systems with particular emphasis on structural defects, with the aim of tailoring their functional properties by precise defects control. PMID:24995148
Ferromagnetic resonance investigation in as-prepared NiFe/FeMn/NiFe trilayer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, S. J.; Xu, K.; Yu, L. M.
2007-06-01
NiFe/FeMn/NiFe trilayer prepared by dc magnetron sputtering was systematically investigated by ferromagnetic resonance technique (FMR) at room temperature. For NiFe/FeMn/NiFe trilayer, there are two distinct resonance peaks both in in-plane and out-of-plane FMR spectra, which are attributed to the two NiFe layers, respectively. The isotropic in-plane resonance field shift is negative for the bottom NiFe layer, while positive for the top NiFe layer. And, such phenomena result from the negative interfacial perpendicular anisotropy at the bottom NiFe/FeMn interface and positive interfacial perpendicular anisotropy at the top FeMn/NiFe interface. The linewidth of the bottom NiFe layer is larger than that ofmore » the top NiFe layer, which might be related to the greater exchange coupling at the bottom NiFe/FeMn interface.« less
Method for measurement of diffusivity: Calorimetric studies of Fe/Ni multilayer thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, JX; Barmak, K
2015-07-15
A calorimetric method for the measurement of diffusivity in thin film multilayers is introduced and applied to the Fe Ni system. Using this method, the diffusivity in [Fe (25 nm)/Ni (25 nm)](20) multilayer thin films is measured as 4 x 10(-3)exp(-1.6 +/- 0.1 eV/ k(B)T) cm(2)/s, respectively. The diffusion mechanism in the multilayers and its relevance to laboratory synthesis of L1(0) ordered FeNi are discussed. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Coercivity scaling in antidot lattices in Fe, Ni, and NiFe thin films
NASA Astrophysics Data System (ADS)
Gräfe, Joachim; Schütz, Gisela; Goering, Eberhard J.
2016-12-01
Antidot lattices can be used to artificially engineer magnetic properties in thin films, however, a conclusive model that describes the coercivity enhancement in this class of magnetic nano-structures has so far not been found. We prepared Fe, Ni, and NiFe thin films and patterned each with 21 square antidot lattices with different geometric parameters and measured their hysteretic behavior. On the basis of this extensive dataset we are able to provide a model that can describe both the coercivity scaling over a wide range of geometric lattice parameters and the influence of different materials.
NASA Astrophysics Data System (ADS)
Hida, Rachid; Falub, Claudiu V.; Perraudeau, Sandrine; Morin, Christine; Favier, Sylvie; Mazel, Yann; Saghi, Zineb; Michel, Jean-Philippe
2018-05-01
Thin films based on layers of Fe52Co28B20 (at%), Fe65Co35 (at%), and Ni80Fe20 (at%) were deposited by sputtering on 8″ bare Si and Si/200 nm-thermal-SiO2 wafers by simultaneous use of two or more cathodes. Due to the continuous rotation of the substrate cage, such that the substrates faced different targets alternately, the multilayers consisted of stacks of alternating, nanometer-thick regular layers. The composition of the films was determined by Rutherford Backscattering Spectrometry (RBS) and Nuclear Reactive Analysis (NRA), whereas Plasma Profiling Time of Flight Mass Spectrometry (PP-TOFMS) analysis gave depth profile information about the chemical elements. The structural and magnetic properties of the films were investigated by X-ray Diffraction and by TEM analysis, B-H loop tracer and high frequency single coil technique permeametry, respectively. The linear dependence of the coercivity of these thin films versus the grain size can be explained by the random anisotropy model. These novel, composite soft magnetic multilayers, with tunable in-plane anisotropy, allow operation at tunable frequencies, as shown by broadband (between 100 MHz and 10 GHz) RF measurements that exhibit a classical Landau-Lifschitz-Gilbert (LLG) behavior and, combine the magnetic properties of the individual materials in an advantageous way. This article presents a method to produce nanostructured soft magnetic multilayers, the properties of which can easily be tuned by choosing the ratio of the individual nanolayers. In this way it's possible to combine soft magnetic materials with complementary properties, e.g. high saturation magnetization, low coercivity, high specific resistivity and low magnetostriction
NASA Astrophysics Data System (ADS)
Kumar, Veeresh; Singhal, Rahul
2018-04-01
In the present study, thin films of Ni-Ti shape memory alloy have been grown on Si substrate by dc magnetron co-sputtering technique using separate sputter targets Ni and Ti. The prepared thin films have been irradiated by 100 MeV Ag7+ ions at three different fluences, which are 1 × 1012, 5 × 1012, and 1 × 1013 ions/cm2. The elemental composition and depth profile of pristine film have been investigated by Rutherford backscattering spectrometry. The changes in crystal orientation, surface morphology, and mechanical properties of Ni-Ti thin films before and after irradiation have been studied by X-ray diffraction, atomic force microscopy, field-emission scanning electron microscopy, and nanoindentation techniques, respectively. X-ray diffraction measurement has revealed the existence of both austenite and martensite phases in pristine film and the formation of precipitate on the surface of the film after irradiation at an optimized fluence of 1 × 1013 ions/cm2. Nanoindentation measurement has revealed improvement in mechanical properties of Ni-Ti thin films after ion irradiation via increasing hardness and Young modulus due to the formation of precipitate and ductile phase. The improvement in mechanical behavior could be explained in terms of precipitation hardening and structural change of Ni-Ti thin film after irradiation by Swift heavy ion irradiation.
NASA Astrophysics Data System (ADS)
Kannan, R.; Devaki, P.; Premkumar, P. S.; Selvambikai, M.
2018-04-01
Electrodeposition of nanocrystalline NiFe and NiFeW thin films were carried out from ammonium citrate bath at a constant current density and controlled pH of 8 by varying the bath temperature from 40 °C to 70 °C. The surface morphology and chemical composition of the electrodeposited NiFe and NiFeW soft magnetic thin films were studied by using SEM and EDAX. The SEM micrographs of the films coated at higher electrodeposited bath temperature have no micro cracks and also the films have more uniform surface morphology. The existence of crystalline nature of the coated films were analysed by XRD. The presence of predominant peaks in x-ray diffraction pattern (compared with JCPDS data) reveal that the average crystalline size was in the order of few tens of nano meters. The magnetic properties such as coercivity, saturation magnetization and magnetic flux density have been calculated from vibrating sample magnetometer analysis. The VSM result shows that the NiFeW thin film synthesised at 70 °C exhibit the lower coercivity with higher saturation magnetization. The hardness and adhesion of the electroplated films have been investigated. Reasons for variation in magnetic properties and structural characteristics are also discussed. The electroplated NiFe and NiFeW thin films can be used for Micro Electro Mechanical System (MEMS) applications due to their excellent soft magnetic behaviour.
Development of flexible Ni80Fe20 magnetic nano-thin films
NASA Astrophysics Data System (ADS)
Vopson, M. M.; Naylor, J.; Saengow, T.; Rogers, E. G.; Lepadatu, S.; Fetisov, Y. K.
2017-11-01
Flexible magnetic Ni80Fe20 thin films with excellent adhesion, mechanical and magnetic properties have been fabricated using magnetron plasma deposition. We demonstrate that flexible Ni80Fe20 thin films maintain their non-flexible magnetic properties when the films are over 60 nm thick. However, when their thickness is reduced, the flexible thin films display significant increase in their magnetic coercive field compared to identical films coated on a solid Silicon substrate. For a 15 nm flexible Ni80Fe20 film coated onto 110 μm Polyvinylidene fluoride polymer substrate, we achieved a remarkable 355% increase in the magnetic coercive field relative to the same film deposited onto a Si substrate. Experimental evidence, backed by micro-magnetic modelling, indicates that the increase in the coercive fields is related to the larger roughness texture of the flexible substrates. This effect essentially transforms soft Ni80Fe20 permalloy thin films into medium/hard magnetic films allowing not only mechanical flexibility of the structure, but also fine tuning of their magnetic properties.
NASA Astrophysics Data System (ADS)
Xu, Jiang; Zhuo, Chengzhi; Tao, Jie; Jiang, Shuyun; Liu, Linlin
2009-01-01
In order to overcome the problem of corrosion wear of AISI 316L stainless steel (SS), two kinds of composite alloying layers were prepared by a duplex treatment, consisting of Ni/nano-SiC and Ni/nano-SiO2 predeposited by brush plating, respectively, and subsequent surface alloying with Ni-Cr-Mo-Cu by a double glow process. The microstructure of the two kinds of nanoparticle reinforced Ni-based composite alloying layers was investigated by means of SEM and TEM. The electrochemical corrosion behaviour of composite alloying layers compared with the Ni-based alloying layer and 316L SS under different conditions was characterized by potentiodynamic polarization test and electrochemical impedance spectroscopy. Results showed that under alloying temperature (1000 °C) conditions, amorphous nano-SiO2 particles still retained the amorphous structure, whereas nano-SiC particles were decomposed and Ni, Cr reacted with SiC to form Cr6.5Ni2.5Si and Cr23C6. In static acidic solution, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is lower than that of the Ni-based alloying layer. However, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is prominently superior to that of the Ni-based alloying layer under acidic flow medium condition and acidic slurry flow condition. The corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiC particles interlayer is evidently lower than that of the Ni-based alloying layer, but higher than that of 316L SS under all test conditions. The results show that the highly dispersive nano-SiO2 particles are helpful in improving the corrosion wear resistance of the Ni-based alloying layer, whereas carbides and silicide phase are deleterious to that of the Ni-based alloying layer due to the fact that the preferential removal of the matrix around the precipitated phase takes place by the chemical attack of an aggressive medium.
Structure and reaction properties of thin Al films deposited on Ni(110)
NASA Astrophysics Data System (ADS)
Hahn, Peter; Bertino, Massimo F.; Toennies, J. Peter; Ritter, Michael; Weiss, Werner
1998-09-01
A variety of experimental techniques, including scanning tunneling microscopy (STM) and thermal desorption spectroscopy (TDS) have been used to investigate the structure and reaction properties of thin Al films on Ni(110) as a model for technical Raney nickel catalysts. The measurements show that Al grows by the Volmer-Weber growth mode, with Al islands reaching a height of 30 Å before the first Al layer is completed. On exposure to deuterium the TDS spectra indicate that the addition of Al produces a new deuterium chemisorption state with a desorption energy which decreases from 27 to 14 kJ/mol with increasing deuterium coverage. This new bound state is attributed to deuterium atoms bound to adsorption sites in the vicinity of Al islands. Thermal desorption measurements also reveal that the deuterium initial sticking coefficient S0 decreases with Al coverage. The results can be explained by a simple model which shows that for low Al coverages each Al island inhibits deuterium dissociation in a region which is about three times larger than the island area.
Femtosecond laser-induced periodic surface structure on the Ti-based nanolayered thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrović, Suzana M.; Gaković, B.; Peruško, D.
2013-12-21
Laser-induced periodic surface structures (LIPSSs) and chemical composition changes of Ti-based nanolayered thin films (Al/Ti, Ni/Ti) after femtosecond (fs) laser pulses action were studied. Irradiation is performed using linearly polarized Ti:Sapphire fs laser pulses of 40 fs pulse duration and 800 nm wavelength. The low spatial frequency LIPSS (LSFL), oriented perpendicular to the laser polarization with periods slightly lower than the irradiation wavelength, was typically formed at elevated laser fluences. On the contrary, high spatial frequency LIPSS (HSFL) with uniform period of 155 nm, parallel to the laser light polarization, appeared at low laser fluences, as well as in themore » wings of the Gaussian laser beam distribution for higher used fluence. LSFL formation was associated with the material ablation process and accompanied by the intense formation of nanoparticles, especially in the Ni/Ti system. The composition changes at the surface of both multilayer systems in the LSFL area indicated the intermixing between layers and the substrate. Concentration and distribution of all constitutive elements in the irradiated area with formed HSFLs were almost unchanged.« less
Room-temperature ferromagnetism in Dy films doped with Ni
NASA Astrophysics Data System (ADS)
Edelman, I.; Ovchinnikov, S.; Markov, V.; Kosyrev, N.; Seredkin, V.; Khudjakov, A.; Bondarenko, G.; Kesler, V.
2008-09-01
Temperature, magnetic field and spectral dependences of magneto-optical effects (MOEs) in bi-layer films Dy (1-x)Ni x-Ni and Dy (1-x)(NiFe) x-NiFe were investigated, x changes from 0 to 0.06. Peculiar behavior of the MOEs was revealed at temperatures essentially exceeding the Curie temperature of bulk Dy which is explained by the magnetic ordering of the Dy layer containing Ni under the action of two factors: Ni impurities distributed homogeneously over the whole Dy layer and atomic contact of this layer with continues Ni layer. The mechanism of the magnetic ordering is suggested to be associated with the change of the density of states of the alloy Dy (1-x)Ni x owing to hybridization with narrow peaks near the Fermi level character for Ni.
Electrochemical vs X-ray Spectroscopic Measurements of NiFe(CN)6 Crystals
NASA Astrophysics Data System (ADS)
Peecher, Benjamin; Hampton, Jennifer
Pseudocapacitive materials like hexacyanoferrate have greater energy storage capabilities than standard capacitors while maintaining an ability to charge and discharge quickly. We modify the surface of an electrodeposited Ni thin film with a layer of hexacyanoferrate. Charging and discharging these modified films using cyclic voltammetry (CV) allows us to measure the electrochemically active Fe in the film. To determine how closely this resembles the full amount of Fe in the film, we measure the films' composition using particle-induced x-ray emission (PIXE). We also vary the amount of Ni deposited, both to compare the electrolysis value of charge deposited to the PIXE measurement of Ni in the film, and also to measure how varying the thickness of the Ni surface affects the presence of Fe in the film. Comparisons of the CV and PIXE measurements show agreement in Ni levels but disagreement in Fe levels. PIXE measurements of Fe in the film have positive correlation with Ni in the film. This correlation between PIXE measurements of Ni and Fe suggests that PIXE provides a reliable measure of Fe in the film. This implies that a variable proportion of total Fe in a given film is electrochemically active. This research was made possible by the Hope College Department of Physics Frissel Research Fund and the National Science Foundation under Grants RUI-DMR-1104725, MRI-CHE-0959282, and MRI/RUI-PHY-0319523.
Song, Bang Joo; Hong, Kihyon; Kim, Woong-Kwon; Kim, Kisoo; Kim, Sungjun; Lee, Jong-Lam
2010-11-25
We report how treatment of nickel (Ni) with O(2) plasma affects the polarity of Ni surface, crystallinity of pentacene film on the Ni, and electrical properties of pentacene organic thin-film transistors (OTFTs) that use Ni as source-drain electrodes. The polar component of surface energy in Ni surface increased from 8.1 to 43.3 mJ/m(2) after O(2)-plasma treatment for 10 s. From X-ray photoelectron spectra and secondary electron emission spectra, we found that NiO(x) was formed on the O(2)-plasma-treated Ni surface and the work function of O(2)-plasma-treated Ni was 0.85 eV higher than that of untreated Ni. X-ray diffraction and atomic force microscopy measurements showed that pentacene molecules are well aligned as a thin-film and grains grow much larger on O(2)-plasma-treated Ni than on untreated Ni. This change in the growth mode is attributed to the reduction of interaction energy between pentacene and Ni due to formation of oxide at the Ni/pentacene interface. Thus, O(2)-plasma treatment promoted the growth of well-ordered pentacene film and lowered both the hole injection barrier and the contact resistance between Ni and pentacene by forming NiO(x), enhancing the electrical property of bottom-contact OTFTs.
Morpho-Structural Characterization of WC20Co Deposited Layers
NASA Astrophysics Data System (ADS)
Tugui, C. A.; Vizureanu, P.
2017-06-01
Hydroelectric power plants use the power of water to produce electricity. In this paper we propose a solution that will increase the efficiency of turbine operation by implementing new innovative technologies to increase the working characteristics by depositing hard thin films of tungsten carbide. For this purpose hard tough deposits with WC20Co and Jet Plasma Jet on X3CrNiMo13-4 stainless steel were used for the realization of the Francis turbine with vertical shaft.
NASA Astrophysics Data System (ADS)
Hussain, Fayyaz; Imran, Muhammad; Rana, Anwar Manzoor; Khalil, R. M. Arif; Khera, Ejaz Ahmad; Kiran, Saira; Javid, M. Arshad; Sattar, M. Atif; Ismail, Muhammad
2018-03-01
The aim of this study is to figure out better metal dopants for CeO2 for designing highly efficient non-volatile memory (NVM) devices. The present DFT work involves four different metals doped interstitially and substitutionally in CeO2 thin films. First principle calculations involve electron density of states (DOS) and partial density of states (PDOS), and isosurface charge densities are carried out within the plane-wave density functional theory using GGA and GGA + U approach by employing the Vienna ab initio simulation package VASP. Isosurface charge density plots confirmed that interstitial doping of Zr and Ti metals truly assists in generating conduction filaments (CFs), while substitutional doping of these metals cannot do so. Substitutional doping of W may contribute in generating CFs in CeO2 directly, but its interstitial doping improves conductivity of CeO2. However, Ni-dopant is capable of directly generating CFs both as substitutional and interstitial dopants in ceria. Such a capability of Ni appears acting as top electrode in Ni/CeO2/Pt memory devices, but its RS behavior is not so good. On inserting Zr layer to make Ni/Zr:CeO2/Pt memory stacks, Ni does not contribute in RS characteristics, but Zr plays a vital role in forming CFs by creating oxygen vacancies and forming ZrO2 interfacial layer. Therefore, Zr-doped devices exhibit high-resistance ratio of 104 and good endurance as compared to undoped devices suitable for RRAM applications.
NASA Astrophysics Data System (ADS)
Suria, Ateeq J.; Yalamarthy, Ananth Saran; Heuser, Thomas A.; Bruefach, Alexandra; Chapin, Caitlin A.; So, Hongyun; Senesky, Debbie G.
2017-06-01
In this paper, we describe the use of 50 nm atomic layer deposited (ALD) Al2O3 to suppress the interfacial reaction and inter-diffusion between the gate metal and semiconductor interface, to extend the operation limit up to 600 °C in air. Suppression of diffusion is verified through Auger electron spectroscopy (AES) depth profiling and X-ray diffraction (XRD) and is further supported with electrical characterization. An ALD Al2O3 thin film (10 nm and 50 nm), which functions as a dielectric layer, was inserted between the gate metal (Ni/Au) and heterostructure-based semiconductor material (AlGaN/GaN) to form a metal-insulator-semiconductor high electron mobility transistor (MIS-HEMT). This extended the 50 nm ALD Al2O3 MIS-HEMT (50-MIS) current-voltage (Ids-Vds) and gate leakage (Ig,leakage) characteristics up to 600 °C. Both, the 10 nm ALD Al2O3 MIS-HEMT (10-MIS) and HEMT, failed above 350 °C, as evidenced by a sudden increase of approximately 50 times and 5.3 × 106 times in Ig,leakage, respectively. AES on the HEMT revealed the formation of a Ni-Au alloy and Ni present in the active region. Additionally, XRD showed existence of metal gallides in the HEMT. The 50-MIS enables the operation of AlGaN/GaN based electronics in oxidizing high-temperature environments, by suppressing interfacial reaction and inter-diffusion of the gate metal with the semiconductor.
Spin Currents and Spin Orbit Torques in Ferromagnets and Antiferromagnets
NASA Astrophysics Data System (ADS)
Hung, Yu-Ming
This thesis focuses on the interactions of spin currents and materials with magnetic order, e.g., ferromagnetic and antiferromagnetic thin films. The spin current is generated in two ways. First by spin-polarized conduction-electrons associated with the spin Hall effect in heavy metals (HMs) and, second, by exciting spin-waves in ferrimagnetic insulators using a microwave frequency magnetic field. A conduction-electron spin current can be generated by spin-orbit coupling in a heavy non-magnetic metal and transfer its spin angular momentum to a ferromagnet, providing a means of reversing the magnetization of perpendicularly magnetized ultrathin films with currents that flow in the plane of the layers. The torques on the magnetization are known as spin-orbit torques (SOT). In the first part of my thesis project I investigated and contrasted the quasistatic (slowly swept current) and pulsed current-induced switching characteristics of micrometer scale Hall crosses consisting of very thin (<1 nm) perpendicularly magnetized CoFeB layers on beta-Ta. While complete magnetization reversal occurs at a threshold current density in the quasistatic case, pulses with short duration (≤10 ns) and larger amplitude (≃10 times the quasistatic threshold current) lead to only partial magnetization reversal and domain formation. The partial reversal is associated with the limited time for reversed domain expansion during the pulse. The second part of my thesis project studies and considers applications of SOT-driven domain wall (DW) motion in a perpendicularly magnetized ultrathin ferromagnet sandwiched between a heavy metal and an oxide. My experiment results demonstrate that the DW motion can be explained by a combination of the spin Hall effect, which generates a SOT, and Dzyaloshinskii-Moriya interaction, which stabilizes chiral Neel-type DW. Based on SOT-driven DW motion and magnetic coupling between electrically isolated ferromagnetic elements, I proposed a new type of spin logic devices. I then demonstrate the device operation by using micromagnetic modeling which involves studying the magnetic coupling induced by fringe fields from chiral DWs in perpendicularly magnetized nanowires. The last part of my thesis project reports spin transport and spin-Hall magnetoresistance (SMR) in yttrium iron garnet Y3Fe5O 12 (YIG)/NiO/Pt trilayers with varied NiO thickness. To characterize the spin transport through NiO we excite ferromagnetic resonance in YIG with a microwave frequency magnetic field and detect the voltage associated with the inverse spin-Hall effect (ISHE) in the Pt layer. The ISHE signal is found to decay exponentially with the NiO thickness with a characteristic decay length of 3.9 nm. However, in contrast to the ISHE response, as the NiO thickness increases the SMR signal goes towards zero abruptly at a NiO thickness of 4 nm, highlighting the different length scales associated with the spin-transport in NiO and SMR in such trilayers.
NASA Astrophysics Data System (ADS)
Ryu, Jae Hyeon; Baek, Geun-Woo; Kim, Seung Yeob; Kwon, Hyuck-In; Jin, Sung Hun
2018-07-01
In this letter, spray-coated single walled carbon nanotubes (SWNTs) as one of alternative electrodes in SnO thin-film transistors are demonstrated for emerging electronic applications. Herein, the device architecture of SnO TFTs with a polymer etch stop layer (SU-8) enables the selective etching of SWNTs in a desired region without the detrimental effects of SnO channel layers. Moreover, SnO TFTs with SWNT electrodes as substitutes successfully demonstrate decent width normalized electrical contact properties (∼1.49 kΩ cm), field effect mobility (∼0.69 cm2 V‑1 s‑1), sub-threshold slope (∼0.4 V dec‑1), and current on–off ratio (I on/I off ∼ 3.5 × 103). Systematic temperature dependency measurements elucidate that SnO channel transports with an activation energy within several tens of meV, together with decent contact resistance as compared to that of conventional Ni electrodes.
An, Ke; Yuan, Lang; Dial, Laura; ...
2017-09-11
Severe residual stresses in metal parts made by laser powder bed fusion additive manufacturing processes (LPBFAM) can cause both distortion and cracking during the fabrication processes. Limited data is currently available for both iterating through process conditions and design, and in particular, for validating numerical models to accelerate process certification. In this work, residual stresses of a curved thin-walled structure, made of Ni-based superalloy Inconel 625™ and fabricated by LPBFAM, were resolved by neutron diffraction without measuring the stress-free lattices along both the build and the transverse directions. The stresses of the entire part during fabrication and after cooling downmore » were predicted by a simplified layer-by-layer finite element based numerical model. The simulated and measured stresses were found in good quantitative agreement. The validated simplified simulation methodology will allow to assess residual stresses in more complex structures and to significantly reduce manufacturing cycle time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Ke; Yuan, Lang; Dial, Laura
Severe residual stresses in metal parts made by laser powder bed fusion additive manufacturing processes (LPBFAM) can cause both distortion and cracking during the fabrication processes. Limited data is currently available for both iterating through process conditions and design, and in particular, for validating numerical models to accelerate process certification. In this work, residual stresses of a curved thin-walled structure, made of Ni-based superalloy Inconel 625™ and fabricated by LPBFAM, were resolved by neutron diffraction without measuring the stress-free lattices along both the build and the transverse directions. The stresses of the entire part during fabrication and after cooling downmore » were predicted by a simplified layer-by-layer finite element based numerical model. The simulated and measured stresses were found in good quantitative agreement. The validated simplified simulation methodology will allow to assess residual stresses in more complex structures and to significantly reduce manufacturing cycle time.« less
NASA Astrophysics Data System (ADS)
Lee, Sol Kyu; Seok, Ki Hwan; Park, Jae Hyo; Kim, Hyung Yoon; Chae, Hee Jae; Jang, Gil Su; Lee, Yong Hee; Han, Ji Su; Joo, Seung Ki
2016-06-01
Excimer laser annealing (ELA) is known to be the most common crystallization technology for the fabrication of low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) in the mass production industry. This technology, however, cannot be applied to bottom-gate (BG) TFTs, which are well developed for the liquid-crystal display (LCD) back-planes, because strong laser energy of ELA can seriously damage the other layers. Here, we propose a novel high-performance BG poly-Si TFT using Ni silicide seed-induced lateral crystallization (SILC). The SILC technology renders it possible to ensure low damage in the layers, smooth surface, and longitudinal large grains in the channel. It was observed that the electrical properties exhibited a steep subthreshold slope of 110 mV/dec, high field-effect mobility of 304 cm2/Vsec, high I on/ I off ratio of 5.9 × 107, and a low threshold voltage of -3.9 V.
NASA Astrophysics Data System (ADS)
El-Shahawi, M. S.; Al-Jahdali, M. S.; Bashammakh, A. S.; Al-Sibaai, A. A.; Nassef, H. M.
2013-09-01
The ligation behavior of bis-benzoin ethylenediamine (B2ED) and benzoin thiosemicarbazone (BTS) Schiff bases towards Ru3+, Rh3+, Pd2+, Ni2+ and Cu2+ were determined. The bond length of M-N and spectrochemical parameters (10Dq, β, B and LFSE) of the complexes were evaluated. The redox characteristics of selected complexes were explored by cyclic voltammetry (CV) at Pt working electrode in non aqueous solvents. Au mesh (100 w/in.) optically transparent thin layer electrode (OTTLE) was also used for recording thin layer CV for selected Ru complex. Oxidation of some complexes occurs in a consecutive chemical reaction of an EC type mechanism. The characteristics of electron transfer process of the couples M2+/M3+ and M3+/M4+ (M = Ru3+, Rh3+) and the stability of the complexes towards oxidation and/or reduction were assigned. The nature of the electroactive species and reduction mechanism of selected electrode couples were assigned.
NASA Astrophysics Data System (ADS)
Panneerselvam, Vengatesh; Chinnakutti, Karthik Kumar; Thankaraj Salammal, Shyju; Soman, Ajith Kumar; Parasuraman, Kuppusami; Vishwakarma, Vinita; Kanagasabai, Viswanathan
2018-04-01
In this study, pristine nickel oxide (NiO), copper-doped NiO (Cu-NiO) and vanadium-doped NiO (V-NiO) thin films were deposited using reactive RF magnetron co-sputtering as a function of dopant sputtering power. Cu (0-8 at%) and V (0-1 at%) were doped into the NiO lattice by varying the sputtering power of Cu and V in the range of 5-15 W. The effect of dopant concentration on optoelectronic behavior is investigated by UV-Vis-NIR spectrophotometer and Hall measurements. XRD analysis showed that the preferred orientation of the cubic phase for undoped NiO changes from (200) to (111) plane when the sputtering parameters are varied. The observed changes in the lattice parameters and bonding states of the doped NiO indicate the substitution of Ni ions by monovalent Cu and trivalent V ions. The optical bandgap of pristine NiO, Cu-NiO, and V-NiO was found to be 3.6, 3.45, and 3.05 eV, respectively, with decreased transmittance and resistivity. Further analysis using SEM and AFM described the morphological behavior of doped NiO thin films and Raman spectroscopy indicated the structural changes on doping. These findings would be helpful in fabricating solid-state solar cells using doped NiO as efficient hole transporting material.
Fabrication and Characterization of Functionally Graded Cathodes for Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Simonet, J.; Kapelski, G.; Bouvard, D.
2008-02-01
Solid oxide fuel cells are multi-layered designed. The most prevalent structure is an anode supported cell with a thick porous layer of nickel oxide NiO and yttrium stabilized zirconia (YSZ) composite acting as an anode, a thin dense layer of YSZ as an electrolyte, a composite thin porous layer of lanthanum strontium manganate LSM and YSZ and a current collector layer of porous LSM. Regular operating temperature is 1000 °C. The industrial development requires designing cathodes with acceptable electrochemical and mechanical properties at a lower temperature, typically between 700 and 800 °C. A solution consists in designing composite bulk cathodes with more numerous electro-chemical reaction sites. This requirement could be met by grading the composition of the cathode in increasing the YSZ volume fraction near the electrolyte and the LSM volume fraction near the current collector layer so that the repartition of reaction sites and the interfacial adhesion between the cathode and electrolyte layers are optimal. The fabrication of graded composite cathode has been investigated using a sedimentation process that consists of preparing a suspension containing the powder mixture and allowing the particles to fall by gravity upon a substrate. Different composite cathodes with continuous composition gradient have been obtained by sedimentation of LSM and YSZ powder mixture upon a dense YSZ substrate and subsequent firing. Their compositions and microstructures have been analysed with Scanning Electron Microscope (SEM) and Electron Dispersive Spectrometry (EDS).
Effects of Substrate Surface Topology on NiFe/Cu/Co Spin Valve Characteristics
NASA Astrophysics Data System (ADS)
Kim, Hyeong-Jun; Jeong, Won-Cheol; Cho, Kwon-Ku; Kim, Young-Keun; Joo, Seung-Ki
2000-08-01
In order to control the crystallinity of sputter-deposited NiFe/Cu/Co spin valve thin films, surface topology of 4°tilt-cut Si(111) substrates was modified in various ways prior to formation of the spin valves. In case of the mirror polished substrate, NiFe and Co showed fcc (110) preferred orientation with in-plane uniaxial magnetic anisotropy. The easy axes of these magnetic layers were aligned in 90° to each other and giant magnetoresistance (GMR) was measured to be 4.5% at room temperature. The spin valves formed on the amorphized substrate by Ar ion mass doping, however, did not show magnetic anisotropy due to the loss of crystallinity and no appreciable GMR could be observed. The spin valves deposited on the unpolished substrate, of which the average surface roughness was measured to be a few microns, turned out to show a sound multilayeredness as well as crystallinity, but GMR was reduced to 3.5%. Tailing in the magnetoresistance (R-H) curve occurred in the spin valves formed on the unpolished substrate, and it was thought to be attributed to the shape anisotropy related to the interface roughness of the films. Detailed discussion on the relationship between GMR and crystallinity of the magnetic layers has been made with the results of simple simulation.
NASA Astrophysics Data System (ADS)
Ginley, David; Zakutayev, Andriy; Garcia, Andreas; Widjonarko, Nicodemus; Ndione, Paul; Sigdel, Ajaya; Parilla, Phillip; Olson, Dana; Perkins, John; Berry, Joseph
2011-03-01
We will report on the development of novel inorganic hole transport layers (HTL) for organic photovoltaics (OPV). All the studied materials belong to the general class of wide-bandgap p-type oxide semiconductors. Potential candidates suitable for HTL applications include SnO, NiO, Cu2O (and related CuAlO2, CuCrO2, SrCu2O4 etc) and Co3O4 (and related ZnCo2O4, NiCo2O4, MgCo2O4 etc.). Materials have been optimized by high-throughput combinatorial approaches. The thin films were deposited by RF sputtering and pulsed laser deposition at ambient and elevated temperatures. Performance of the inorganic HTLs and that of the reference organic PEDOT:PSS HTL were compared by measuring the power conversion efficiencies and spectral responses of the P3HT/PCBM- and PCDTBT/PCBM-based OPV devices. Preliminary results indicate that Co3O4-based HTLs have performance comparable to that of our previously reported NiOs and PEDOT:PSS HTLs, leading to a power conversion efficiency of about 4 percent. The effect of composition and work function of the ternary materials on their performance in OPV devices is under investigation.
Lee, Ching-Ting; Chen, Chia-Chi; Lee, Hsin-Ying
2018-03-05
The three dimensional inverters were fabricated using novel complementary structure of stacked bottom n-type aluminum-doped zinc oxide (Al:ZnO) thin-film transistor and top p-type nickel oxide (NiO) thin-film transistor. When the inverter operated at the direct voltage (V DD ) of 10 V and the input voltage from 0 V to 10 V, the obtained high performances included the output swing of 9.9 V, the high noise margin of 2.7 V, and the low noise margin of 2.2 V. Furthermore, the high performances of unskenwed inverter were demonstrated by using the novel complementary structure of the stacked n-type Al:ZnO thin-film transistor and p-type nickel oxide (NiO) thin-film transistor.
NASA Astrophysics Data System (ADS)
Sabri, Nasehah Syamin; Lim, Eng Liang; Yap, Chi Chin; Yahaya, Muhammad; Salleh, Muhamad Mat; Jumali, Mohammad Hafizuddin Haji
2017-05-01
In this work, the effect of multiple deposition of nickel oxide (NiO) hole transport layer (HTL) on the performance of inverted type organic solar cell with a configuration of fluorine tin oxide (FTO)/zinc oxide (ZnO) nanorods/ poly(3-hexylthiopene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM)/NiO/silver (Ag) was investigated. The NiO nanoparticles solution was spin-coated on top of the photoactive layer (P3HT:PCBM) prior to deposition of Ag electrode. Different numbers of NiO layers (1, 2, and 4) were deposited on the photoactive layer to obtain the optimum surface morphology of HTL. The device with 2 layers of NiO exhibited the optimum power conversion efficiency of 1.10%. It is believed that the optimum NiO deposition layer gives the complete coverage at photoactive layer and forms ohmic contact between the photoactive layer and Ag electrode.
NASA Astrophysics Data System (ADS)
Singh, Sumitra; Mahala, Pramila; Pal, Suchandan
2018-01-01
This work evaluates the effect of graphene, indium tin oxide (ITO) and Ni/Au as contact/current spreading layer/current spreading layer for GaN vertical light emitting diodes (V-LEDs). In this simulation study, the effect of these contact/current spreading layers on different performance parameters of GaN V-LEDs has been studied. By using these three different types of contact/current spreading layers, we have comparatively studied the effect on light extraction efficiency (LEE), optical output power, wall plug efficiency and radiant intensity of V-LEDs. As per the simulation results, it shows that using graphene contact/current spreading layers, it is possible to achieve better performance than using ITO and Ni/Au contact/current spreading layers. For graphene/(Ni/Au) contact/current spreading layers, the LEE is improved by 36.77% whereas for ITO/(Ni/Au) contact/current spreading layers it is improved by 13.74%. Also, by using graphene/(Ni/Au) contact/current spreading layers, the optical output power of LEDs improved by 11.11% whereas for ITO/(Ni/Au) contact/current spreading layers shown 4.16% improvement. The radiant intensity is enhanced by 37.65% for graphene/(Ni/Au) contact/current spreading layers and 13.5% for ITO/(Ni/Au) contact/current spreading layers. In this report, we have given a detailed analysis of the obtained simulation results. The simulation was carried out in SimuLED tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, M. A. R., E-mail: ameerridhwan89@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com
2016-07-06
Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.
Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Nakhaie, S.; Wofford, J. M.; Schumann, T.; Jahn, U.; Ramsteiner, M.; Hanke, M.; Lopes, J. M. J.; Riechert, H.
2015-05-01
Hexagonal boron nitride (h-BN) is a layered two-dimensional material with properties that make it promising as a dielectric in various applications. We report the growth of h-BN films on Ni foils from elemental B and N using molecular beam epitaxy. The presence of crystalline h-BN over the entire substrate is confirmed by Raman spectroscopy. Atomic force microscopy is used to examine the morphology and continuity of the synthesized films. A scanning electron microscopy study of films obtained using shorter depositions offers insight into the nucleation and growth behavior of h-BN on the Ni substrate. The morphology of h-BN was found to evolve from dendritic, star-shaped islands to larger, smooth triangular ones with increasing growth temperature.
NASA Astrophysics Data System (ADS)
He, Tao
2002-09-01
Perovskite-based ruthenates have been receiving considerable attention both because of their interesting and variable magnetic properties, and because of the discovery of exotic superconductivity in the layered ruthenate Sr 2RuO4. Another perovskite, SrRuO3, is the only known oxide ferromagnet with a 4d transition metal, and magnetism is easily suppressed by Ca doping. The suppression of ferromagnetic interactions in SrxCa1-xRuO3 has frequently been attributed to the orthorhombic structural distortion, either through the crossover to classical antiferromagnetic interactions, or, alternatively, to a nearly ferromagnetic metal. This study reports the comparison of the magnetic properties of Srx(Na0.5La0.5)1-xRuO 3 to SrxCa1-xRuO3, showing that there is a much faster suppression of ferromagnetic interactions in the former case. Neither orthorhombic distortion nor cation size disorder can explain the observed difference. Instead, the difference may be attributed to charge disorder on the A-site, which greatly affects the local environment of Ru atoms and leads to the faster suppression of the long-range ferromagnetic state. The magnetic ground state of perovskite structure CaRuO3 has been enigmatic for decades. This study also shows that paramagnetic CaRuO 3 can be made ferromagnetic by very small amounts of partial substitution of Ru by various transition metals. The results are consistent with the recent proposal that CaRuO3 is not a classical antiferromagnet, but rather is poised at a critical point between ferromagnetic and paramagnetic ground states. Ti, Fe, Mn and Ni doping result in ferromagnetic behavior. The second part of this thesis is on the superconductivity of MgB 2 and MgCNi3. Since the discovery of superconductivity in MgB2 in January 2001, detailed information on its properties has been rapidly accumulated. The reported properties, the very simple structure, and the commercial availability of this material make MgB2 a favorite candidate for large scale and electronic applications. In thin film fabrication, the reactivity of MgB2 with substrate materials or insulating or metallic layers in multi-layer circuits is an important factor. In this work the reactivity of MgB2 with powdered forms of common substrate and electronic materials is studied. Some oxides and nitrides prove to be potentially good substrates for making thin films, while others, including some commonly used substrates like Al2O3, SrTiO 3, and SiO2, have serious chemical compatibility problems. In the latter case, caution should be taken when fabricating thin films. This thesis also describes the discovery of superconductivity at 8 K in the perovskite structure compound MgCNi3. This material is the three-dimensional analogue of the LnNi2B2C family of superconductors, which have Tcs up to 16K. The itinerant electrons in both LnNi2B2C and MgCNi3 are based on partial filling of Ni d-states, which generally leads to ferromagnetism, as is the case in metallic Ni. The very high relative proportion of Ni in MgCNi3 is especially suggestive of the possible importance of magnetic interactions in the superconductivity, and, further, the lower Tc of the three-dimensional compound is contrary to conventional ideas.
Tang, Minghong; Zhao, Bingcheng; Zhu, Weihua; Zhu, Zhendong; Jin, Q Y; Zhang, Zongzhi
2018-02-07
Dynamic magnetic properties in perpendicularly exchange-coupled [Co/Ni] 5 /Cu (t Cu = 0-2 nm)/TbCo structures show strong dependences on the interfacial antiferromagnetic strength J ex , which is controlled by the Cu interlayer thickness. The precession frequency f and effective damping constant α eff of a [Co/Ni] 5 multilayer differ distinctly for parallel (P) and antiparallel (AP) magnetization orientation states. For samples with a thin t Cu , f of the AP state is apparently higher, whereas α eff is lower than that in the P state, owing to the unidirectional exchange bias effect (H EB ) from the TbCo layer. The differences in f and α eff between the two states gradually decrease with increasing t Cu . By using a uniform precession model including an additional H EB term, the field-dependent frequency curves can be well-fitted, and the fitted H EB value is in good agreement with the experimental data. Moreover, the saturation damping constant α 0 displays a nearly linear correlation with J ex . It decreases significantly with J ex and eventually approaches a constant value of 0.027 at t Cu = 2 nm where J ex vanishes. These results provide a better understanding and effective control of magnetization dynamics in exchange-coupled composite structures for spintronic applications.
Strain and Ni substitution induced ferromagnetism in LaCoO3 thin films
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Kumar, Vinod; Kumar, Rajesh; Kumar, Ravi
2018-05-01
We have grown epitaxial strained films of LaCoO3 and LaCo0.7Ni0.3O3 on LaAlO3 (100) substrate via pulsed laser deposition. Superconducting quantum interference device magnetization measurements show that, unlike its bulk counterpart, the ground state of the strained LaCoO3 on LAO is ferromagnetic. The saturation magnetization has been found increase strongly from a value of 118 emu/cm3 to 350 emu/ cm3 for Ni substituted thin film. Present study reveals that strain can stabilize FM order in these thin films down to low temperature, which can further be tuned to higher saturation magnetization with the Ni substitution.
Investigation of percolation thickness of sputter coated thin NiCr films on clear float glass
NASA Astrophysics Data System (ADS)
Erkan, Selen; Arpat, Erdem; Peters, Sven
2017-11-01
Percolation thickness of reactively sputtered nickel chromium (NiCr) thin films is reported in this study. Nickel-chromium films with the thicknesses in between 1 and 10 nm were deposited on 4 mm clear glass substrate by dc magnetron sputtering. Optical properties such as refractive index, extinction coefficient and also sheet resistance, carrier concentration and mobility of NiCr films were determined by a combination of variable-angle spectroscopic ellipsometry and four point probe measurements. We show both the percolation phenomena in atmosphere and critical percolation thickness for thin NiCr films by both electrical and optical techniques. The two techniques gave consistent results with each other.
Influence of Bond Coat on HVOF-Sprayed Gradient Cermet Coating on Copper Alloy
NASA Astrophysics Data System (ADS)
Ke, Peng; Cai, Fei; Chen, Wanglin; Wang, Shuoyu; Ni, Zhenhang; Hu, Xiaohong; Li, Mingxi; Zhu, Guanghong; Zhang, Shihong
2017-06-01
Coatings are required on mold copper plates to prolong their service life through enhanced hardness, wear resistance, and oxidation resistance. In the present study, NiCr-30 wt.%Cr3C2 ceramic-metallic (cermet) layers were deposited by high velocity oxy-fuel (HVOF) spraying on different designed bond layers, including electroplated Ni, HVOF-sprayed NiCr, and double-decker Ni-NiCr. Annealing was also conducted on the gradient coating (GC) with NiCr bond layer to improve the wear resistance and adhesion strength. Coating microstructure was investigated by scanning electron microscopy and x-ray diffraction analysis. Mechanical properties including microhardness, wear resistance, and adhesion strength of the different coatings were evaluated systematically. The results show that the types of metallic bond layer and annealing process had a significant impact on the mechanical properties of the GCs. The GCs with electroplated Ni bond layer exhibited the highest adhesion strength (about 70 MPa). However, the GC with HVOF-sprayed NiCr bond layer exhibited better wear resistance. The wear resistance and adhesion strength of the coating with NiCr metallic bond layer were enhanced after annealing.
Metal diffusion barriers for GaAs solar cells.
van Leest, R H; Mulder, P; Bauhuis, G J; Cheun, H; Lee, H; Yoon, W; van der Heijden, R; Bongers, E; Vlieg, E; Schermer, J J
2017-03-15
In this study accelerated ageing testing (AAT), J-V characterization and TEM imaging in combination with phase diagram data from literature are used to assess the potential of Ti, Ni, Pd and Pt as diffusion barriers for Au/Cu-based metallization of III-V solar cells. Ni barriers show the largest potential as at an AAT temperature of 250 °C both cells with 10 and 100 nm thick Ni barriers show significantly better performance compared to Au/Cu cells, with the cells with 10 nm Ni barriers even showing virtually no degradation after 7.5 days at 250 °C (equivalent to 10 years at 100 °C at an E a of 0.70 eV). Detailed investigation shows that Ni does not act as a barrier in the classical sense, i.e. preventing diffusion of Cu and Au across the barrier. Instead Ni modifies or slows down the interactions taking place during device degradation and thus effectively acts as an 'interaction' barrier. Different interactions occur at temperatures below and above 250 °C and for thin (10 nm) and thick (100 nm) barriers. The results of this study indicate that 10-100 nm thick Ni intermediate layers in the Cu/Au based metallization of III-V solar cells may be beneficial to improve the device stability upon exposure to elevated temperatures.
NASA Astrophysics Data System (ADS)
Bazhan, Z.; Ghodsi, F. E.; Mazloom, J.
2016-05-01
Nanostructured nickel ferrite (NF) was prepared by the sol-gel method and calcined at 500 °C for 2 h. The effect of Ni/Fe molar ratios (0, 10, 30, 50 %) on structural, morphological, compositional, optical, and magnetic properties of samples was investigated using analytical tools. XRD patterns indicated the presence of hematite phase in the pure and 10 % NF samples. The samples of 30 and 50 % Ni/Fe molar ratios showed the formation of nickel ferrite structure. Using AFM images, power spectrum density analysis were performed for Ni/Fe with different molar ratio. Also the effect of thickness on morphology of 30 % sample was studied. The fractal dimension increases by increasing the Ni/Fe molar ratio. Optical parameters were evaluated by theoretical approach, and compositional dependence of these parameters was discussed comprehensively. Band gap narrowing was observed in nickel ferrite thin films by increasing the nickel contents from 10 to 50 %. Magnetic analysis revealed that increasing nickel content improved the saturation magnetization. Electrochemical measurements indicated that NF thin films have higher total charge density rather than Fe2O3 thin films and the ion storage capacitance of NF thin films increased by increasing the Ni/Fe content.
Kinetic model for thin film stress including the effect of grain growth
NASA Astrophysics Data System (ADS)
Chason, Eric; Engwall, A. M.; Rao, Z.; Nishimura, T.
2018-05-01
Residual stress during thin film deposition is affected by the evolution of the microstructure. This can occur because subsurface grain growth directly induces stress in the film and because changing the grain size at the surface affects the stress in new layers as they are deposited. We describe a new model for stress evolution that includes both of these effects. It is used to explain stress in films that grow with extensive grain growth (referred to as zone II) so that the grain size changes throughout the thickness of the layer as the film grows. Equations are derived for different cases of high or low atomic mobility where different assumptions are used to describe the diffusion of atoms that are incorporated into the grain boundary. The model is applied to measurements of stress and grain growth in evaporated Ni films. A single set of model parameters is able to explain stress evolution in films grown at multiple temperatures and growth rates. The model explains why the slope of the curvature measurements changes continuously with thickness and attributes it to the effect of grain size on new layers deposited on the film.
NASA Astrophysics Data System (ADS)
Fontaine, M.-L.; Larring, Y.; Haugsrud, R.; Norby, T.; Wiik, K.; Bredesen, R.
For breakthrough development in solid oxide fuel cells, novel cell architectures integrating better performing materials and cost-effective manufacturing processes with potential for mass production must be realised. The present work addresses this on the basis of the recent discovery of acceptor doped rare-earth ortho-niobate proton conductors and the development of a versatile fabrication process. La 0.995Sr 0.005NbO 4- δ/NiO anodes are produced by tape-casting and co-lamination of green layers. Their porosity is finely tuned by using a pyrolyzable pore former. La 0.995Sr 0.005NbO 4- δ electrolytes are spin-coated using ceramic-based suspensions. Fully dense electrolytes with thickness ranging from 9 μm to 26 μm are obtained after sintering in air at 1350 °C. The cathode layers are then screen-printed. To match thermal expansion and to avoid chemical reaction between the functional layers, special attention is paid to the design of cathode architectures. CaTi 0.9Fe 0.1O 3- δ, La 2NiO 4+ δ and La 4Ni 3O 10 mixed oxygen ion and electron conducting oxides are investigated as either monophase or La 0.995Sr 0.005NbO 4- δ-based composite electrodes. The latter gives the whole cell an innovative "semi-monolithic" concept, which can take advantage of the chemical and mechanical stability of La 0.995Sr 0.005NbO 4- δ, as well as of inherent material integration. Most promising cell architectures are finally selected based on thermo-mechanical and chemical compatibility of all functional layers.
Effect of a CoFeB layer on the anisotropic magnetoresistance of Ta/CoFeB/MgO/NiFe/MgO/CoFeB/Ta films
NASA Astrophysics Data System (ADS)
Li, Minghua; Shi, Hui; Dong, Yuegang; Ding, Lei; Han, Gang; Zhang, Yao; Liu, Ye; Yu, Guanghua
2017-10-01
The anisotropic magnetoresistance (AMR) and magnetic properties of NiFe films can be remarkably enhanced via CoFeB layer. In the case of an ultrathin NiFe film having a Ta/CoFeB/MgO/NiFe/MgO/CoFeB/Ta structure, the CoFeB/MgO layers suppressed the formation of magnetic dead layers and the interdiffusions and interface reactions between the NiFe and Ta layers. The AMR reached a maximum value of 3.56% at 450 °C. More importantly, a single NiFe (1 1 1) peak can be formed resulting in higher AMR values for films having CoFeB layer. This enhanced AMR also originated from the significant specular reflection of electrons owing to the crystalline MgO layer, together with the sharp interfaces with the NiFe layer. These factors together resulted in higher AMR and improved magnetic properties.
NASA Astrophysics Data System (ADS)
Seeley, Zachary Mark
Among metal-oxide gas sensors which change electrical resistive properties upon exposure to target gasses, titanium dioxide (TiO2) has received attention for its sensitivity and stability during high temperature (>500°C) operation. However, due to the sensing mechanism sensitivity, selectivity, and stability remain as critical deficiencies to be resolved before these sensors reach commercial use. In this study, TiO2 thick films of approximately 30mum and thin films of approximately 1mum thick were fabricated to assess the influence of their material properties on gas sensing mechanism. Increased calcination temperature of TiO2 thick films led to grain growth, reduction in specific surface area, and particle-particle necking. These properties are known to degrade sensitivity; however the measured carbon monoxide (CO) gas response improved with increasing calcination temperature up to 800°C. It was concluded that the sensing improvement was due to increased crystallinity within the films. Sensing properties of TiO2 thin films of were also dependent on crystallization, however; due to the smaller volume of material, they reached optimized crystallization at lower temperatures of 650°C, compared to 800°C for thick films. Incorporation of tungsten (W) and nickel (Ni) ions into the films created donor and acceptor defect sites, respectively, within the electronic band gap of TiO2. The additional n-type defects in W-doped TiO 2 improved n-type CO response, while p-type defects in Ni-doped TiO 2 converted the gas response to p-type. Chemistry of thin films had a more significant impact on the electrical properties and gas response than did microstructure or crystallinity. Doped films could be calcined at higher temperatures and yet remain highly sensitive to CO. Thin films with p-n bi-layer structure were fabricated to determine the influence of a p-n junction on gas sensing properties. No effect of the junction was observed and the sensing response neared the average of the layers; however, electrical and gas response studies revealed that the majority of the conductivity and gas-surface reactions took place on the outer layer of the film. Further research is necessary to understand the influence of p-n junctions on the gas sensing behavior.
Flame Spray Strain Gages with Improved Durability and Lifetimes
NASA Technical Reports Server (NTRS)
Fralick, Gustave (Technical Monitor); Gregory, Otto
2003-01-01
The focus of this APP research program was to improve the bond coats used in the fabrication of flame sprayed instrumentation. Typically. a bond coat is applied to a superalloy surface prior to the application of a thin dielectric coating onto which instrumentation is placed. After affixing the instrumentation, a much thicker ceramic topcoat is typically applied to protect the instrumentation from harsh environments. The fatigue life of NiCoCrAlY coated superalloys was extended beyond current state-of-the-art by relatively simple and cost effective means. Heat treatment in reduced oxygen partial pressures at 1750 to 1800 F effectively doubled the fatigue life of NiCoCrAlY coated substrates relative to as-sprayed substrates and when used in conjunction with platinum diffusion barriers yielded a four fold increase in the fatigue life of NiCoCrAlY coated substrates. Further improvements in the fatigue life of thermally sprayed coatings were made by employing intermediate coatings, which minimized thermal expansion differences between the bond coat and top coat. Combinatorial chemistry experiments yielded an optimum composition for an intermediate TCE matching coating that showed considerable promise in extending the fatigue life of thermal spray instrumentation. The intermediate coating had two functions: to reduce the surface roughness of the peaks and valleys associated with the as-sprayed NiCoCrAlY bond coat, and to produce a thin layer of a mixture of Al2O3 and NiCoCrAlY that exhibited an intermediate TCE. The optimal composition of the intermediate coating consisted of 60 wt% Al2O3 and 40 wt% NiCoCrAlY, as determined by energy dispersive analysis of x-rays (EDS). Intermediate coatings having this composition were prepared by physical vapor deposition and the resulting coating systems are being evaluated in our test facility.
Cooling field and ion-beam bombardment effects on exchange bias behavior in NiFe/(Ni,Fe)O bilayers.
Lin, K W; Wei, M R; Guo, J Y
2009-03-01
The dependence of the cooling field and the ion-beam bombardment on the exchange bias effects in NiFe/(Ni,Fe)O bilayers were investigated. The positive exchange bias was found in the zero-field-cooled (ZFC) process whereas a negative exchange bias occurred in the FC process. The increased exchange field, H(ex) with increasing (Ni,Fe)O thicknesses indicates the thicker the AF (Ni,Fe)O, the stronger the exchange coupling between the NiFe layer and the (Ni,Fe)O layer. In addition, the dependence of the H(ex) (ZFC vs. FC) on the (Ni,Fe)O thicknesses reflects the competition between the applied magnetic field and the (Ni,Fe)O surface layer exchange coupled to the NiFe layer. Further, an unusual oscillating exchange bias was observed in NiFe/(Ni,Fe)O bilayers that results from the surface of the (Ni,Fe)O layer being bombarded with different Ar-ion energies using End-Hall deposition voltages (V(EH)) from 0 to 150 V. The behavior of the H(ex) and the H(c) with the V(EH) is attributed to the surface spin reorientation that is due to moderate ion-beam bombardment effects on the surface of the (Ni,Fe)O layer. Whether the (Ni,Fe)O antiferromagnetic spins are coupled to the NiFe moments antiferromagnetically or ferromagnetically changes the sign of the exchange bias.
Formation of anomalous eutectic in Ni-Sn alloy by laser cladding
NASA Astrophysics Data System (ADS)
Wang, Zhitai; Lin, Xin; Cao, Yongqing; Liu, Fencheng; Huang, Weidong
2018-02-01
Ni-Sn anomalous eutectic is obtained by single track laser cladding with the scanning velocity from 1 mm/s to 10 mm/s using the Ni-32.5 wt.%Sn eutectic powders. The microstructure of the cladding layer and the grain orientations of anomalous eutectic were investigated. It is found that the microstructure is transformed from primary α-Ni dendrites and the interdendritic (α-Ni + Ni3Sn) eutectic at the bottom of the cladding layer to α-Ni and β-Ni3Sn anomalous eutectic at the top of the cladding layer, whether for single layer or multilayer laser cladding. The EBSD maps and pole figures indicate that the spatially structure of α-Ni phase is discontinuous and the Ni3Sn phase is continuous in anomalous eutectic. The transformation from epitaxial growth columnar at bottom of cladding layer to free nucleation equiaxed at the top occurs, i.e., the columnar to equiaxed transition (CET) at the top of cladding layer during laser cladding processing leads to the generation of anomalous eutectic.
NASA Astrophysics Data System (ADS)
Lockman, Z.; Goldacker, W.; Nast, R.; deBoer, B.; MacManus-Driscoll, J. L.
2002-08-01
Thermal oxidation of cube textured, pure Ni and Ni-Cr tapes was undertaken under different oxidation conditions to form cube textured NiO for the use as a first component of buffer layer for the coated conductor. Cube textured NiO was formed on pure Ni after oxidising for more than 130 min in O 2 at 1250 °C. The oxide thickness was >30 μm. Much shorter oxidation times (20-40 min, NiO thickness of ∼5 μm) and lower temperature (1050 °C) were required to form a similar texture on Ni-Cr foils. In addition, NiO formed on Ni-13%Cr was more highly textured than Ni-10%Cr. A Cr 2O 3 inner layer and NiO outer layer was formed on the Ni-Cr alloys.
Wijten, Jochem H J; Jong, Ronald P H; Mul, Guido; Weckhuysen, Bert M
2018-04-25
Photocathodes for hydrogen evolution from water were made by electrodeposition of Ni-Mo layers on NiFe 2 O 4 substrates, deposited by spin coating on F:SnO 2 -glass. Analysis confirmed the formation of two separate layers, without significant reduction of NiFe 2 O 4 . Bare NiFe 2 O 4 was found to be unstable under alkaline conditions during (photo)electrochemistry. To improve the stability significantly, the deposition of a bifunctional Ni-Mo layer through a facile electrodeposition process was performed and the composite electrodes showed stable operation for at least 1 h. Moreover, photocurrents up to -2.1 mA cm -2 at -0.3 V vs. RHE were obtained for Ni-Mo/NiFe 2 O 4 under ambient conditions, showing that the new combination functions as both a stabilizing and catalytic layer for the photoelectrochemical evolution of hydrogen. The photoelectrochemical response of these composite electrodes decreased with increasing NiFe 2 O 4 layer thickness. Transient absorption spectroscopy showed that the lifetime of excited states is short and on the ns timescale. An increase in lifetime was observed for NiFe 2 O 4 of large layer thickness, likely explained by decreasing the defect density in the primary layer(s), as a result of repetitive annealing at elevated temperature. The photoelectrochemical and transient absorption spectroscopy results indicated that a short charge carrier lifetime limits the performance of Ni-Mo/NiFe 2 O 4 photocathodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanocrystalline high-entropy alloy (CoCrFeNiAl 0.3 ) thin-film coating by magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Weibing; Lan, Si; Gao, Libo
High-entropy CoCrFeNiAl0.3 alloy thin films were prepared by magnetron sputtering technique. The thin film surface was very smooth and homogeneous. The synchrotron X-ray experiment confirmed that (111) type of texture existed in the thin film, and the structure was face-centered cubic nanocrystals with a minor content of ordered NiAl-type body-centered cubic structures. Interestingly, the elastic modulus of the thin film was nearly the same to the bulk single-crystal counterpart, however, the nanohardness is about four times of the bulk single-crystal counterpart. It was found that the high hardness was due to the formation of nanocrystal structure inside the thin filmsmore » and the preferred growth orientation, which could be promising for applications in micro fabrication and advanced coating technologies.« less
NASA Astrophysics Data System (ADS)
Chavan, Apparao R.; Chilwar, R. R.; Shisode, M. V.; Hivrekar, Mahesh M.; Mande, V. K.; Jadhav, K. M.
2018-05-01
The nanocrystalline NiFe2O4 thin film has been prepared using a spray pyrolysis technique on glass substrate. The prepared thin film was characterized by using X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR), and Field Emission-Scanning Electron Microscopy (FE-SEM) characterization techniques for the structural and microstructural analysis. The magnetic property was measured using vibrating sample magnetometer (VSM) at room temperature. X-ray diffraction studies show the formation of single phase spinel structure of the thin film. The octahedral and tetrahedral vibration in the sample was studied by Fourier transform infrared (FT-IR) spectra. Magnetic hysteresis loop was recorded for thin film at room temperature. At 15 kOe, saturation magnetization (Ms) was found to increase while coercivity (Hc) decreases with thickness of the NiFe2O4 thin film.
Characterisation of nickel silicide thin films by spectroscopy and microscopy techniques.
Bhaskaran, M; Sriram, S; Holland, A S; Evans, P J
2009-01-01
This article discusses the formation and detailed materials characterisation of nickel silicide thin films. Nickel silicide thin films have been formed by thermally reacting electron beam evaporated thin films of nickel with silicon. The nickel silicide thin films have been analysed using Auger electron spectroscopy (AES) depth profiles, secondary ion mass spectrometry (SIMS), and Rutherford backscattering spectroscopy (RBS). The AES depth profile shows a uniform NiSi film, with a composition of 49-50% nickel and 51-50% silicon. No oxygen contamination either on the surface or at the silicide-silicon interface was observed. The SIMS depth profile confirms the existence of a uniform film, with no traces of oxygen contamination. RBS results indicate a nickel silicide layer of 114 nm, with the simulated spectra in close agreement with the experimental data. Atomic force microscopy and transmission electron microscopy have been used to study the morphology of the nickel silicide thin films. The average grain size and average surface roughness of these films was found to be 30-50 and 0.67 nm, respectively. The film surface has also been studied using Kikuchi patterns obtained by electron backscatter detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinova, E.; Zhecheva, E.; Stoyanova, R.
Layered (1-a)LiNi{sub 1-y}Al{sub y}O{sub 2}.aLi[Li{sub 1/3}Ni{sub 2/3}]O{sub 2} oxides, 0=1.2. While pure NiO{sub 2}-layersmore » are able to incorporate under high-pressure up to 1/3Li, the appearance of Al in the NiO{sub 2}-layers hinders Li{sup +} dissolution (Li<(1-y)/3). In addition, with increasing Al content there is a strong cationic mixing between the layers. High-frequency EPR of Ni{sup 3+} indicates that the structural interaction of LiAl{sub y}Ni{sub 1-y}O{sub 2} with Li[Li{sub 1/3}Ni{sub 2/3}]O{sub 2} proceeds via the formation of domains comprising different amount of Ni{sup 3+} ions. The use of Li{sub 1.08}Al{sub 0.09}Ni{sub 0.83}O{sub 2} as a cathode material in a lithium ion cells displays a first irreversible Li extraction at 4.8V, after which a reversible lithium insertion/extraction between 3.0 and 4.5V is observed on further cycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Bing; Sherman, Benjamin D.; Klug, Christina M.
2017-08-31
We report here a new photocathode composed of a bi-layered doped NiO film topped by a macro-mesoporous ITO (ioITO) layer with molecular assemblies attached to the ioITO surface. The NiO film containing a 2% K+ doped NiO inner layer and a 2% Cu2+ doped NiO outer layer provides sufficient driving force for hole transport after injection to NiO by the molecular assembly. The tri-layered oxide, NiK0.02O | NiCu0.02O | ioITO, sensitized by a ruthenium polypyridyl dye and functionalized with a nickel-based hydrogen evolution catalyst, outperforms its counterpart, NiO | NiO | ioITO, in photocatalytic hydrogen evolution from water over amore » period of several hours with a Faradaic yield of ~90%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawar, C. S., E-mail: charudutta-p@yahoo.com; Gujar, M. P.; Mathe, V. L.
Nano crystalline Nickel Zinc ferrite (Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4}) thin films were synthesized by Sol Gel method for gas response. The phase and microstructure of the obtained Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The nanostructured Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin film shows single spinel phase. Magnetic study was obtained with the help of VSM. The effects of working temperature on the gas response were studied. The results reveal that the Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin film gas sensor shows good selectivity to chlorine gas at roommore » temperature. The sensor shows highest sensitivity (∼50%) at room temperature, indicating its application in detecting chlorine gas at room temperature in the future.« less
NASA Astrophysics Data System (ADS)
Ade, Ramesh; Sambasiva, V.; Kolte, Jayant; Karthik, T.; Kulkarni, Ajit R.; Venkataramani, N.
2018-03-01
In this work, room temperature magnetoelectric (ME) properties of 0.50Pb(Ni1/3Nb2/3)O3-0.35PbTiO3-0.15PbZrO3 (PNNZT)/NiFe2O4 (NFO) 2-2 bilayer thin films grown on Pt/Ti/SiO2/Si substrate, using pulsed laser deposition technique, are reported. Structural studies confirm single phase PNNZT/NFO 2-2 bilayer structure formation. PNNZT/NFO 2-2 bilayer thin film shows a maximum ME voltage coefficient (α E ) of ~0.70 V cm-1. Oe-1 at a frequency of 1 kHz. The present study reveals that PNNZT/NFO bilayer thin film can be a potential candidate for technological applications.
Pulsed-Current Electrochemical Codeposition and Heat Treatment of Ti-Dispersed Ni-Matrix Layers
NASA Astrophysics Data System (ADS)
Janetaisong, Pathompong; Boonyongmaneerat, Yuttanant; Techapiesancharoenkij, Ratchatee
2016-08-01
An electrochemical deposition is a fast and cost-efficient process to produce film or coating. In this research, Ni-Ti electrodeposition is developed by codepositing a Ti-dispersed Ni-matrix layer from a Ni-plating solution suspended with Ti particles. To enhance the coating uniformity and control the atomic composition, the pulsed current was applied to codeposit Ni-Ti layers with varying pulse duty cycles (10 to 100 pct) and frequencies (10 to 100 Hz). The microstructures and compositions of the codeposited layers were analyzed by scanning electron microscopy, X-ray diffraction, and X-ray fluorescent techniques. The pulsed current significantly improved the quality of the Ni-Ti layer as compared to a direct current. The Ni-Ti layers could be electroplated with a controlled composition within 48 to 51 at. pct of Ti. The optimal pulse duty cycle and frequency are 50 pct and 10 Hz, respectively. The standalone Ni-49Ti layers were removed from copper substrates by selective etching method and subsequently heat-treated under Ar-fed atmosphere at 1423 K (1150 °C) for 5 hours. The phase and microstructures of the post-annealed samples exhibit different Ni-Ti intermetallic compounds, including NiTi, Ni3Ti, and NiTi2. Yet, the contamination of TiN and TiO2 was also present in the post-annealed samples.
Solid State Reaction of Thin Metal Films with MERCURY(1-X)CADMIUM(X)TELLURIDE.
NASA Astrophysics Data System (ADS)
Ehsani, Hassan
The solid state reactions of both e-beam evaporation and sputter deposition of thin layers of Cu, Co, and Ni onto CdTe and Hg_{0.8}Cd _{0.2}Te have been investigated using Transmission Electron Microscopy and Auger Electron Spectroscopy. For a Cu overlayer deposited by either method on CdTe(111) and Hg_{0.8}Cd _{0.2}Te substrates, we observed formation of a relatively thick region of Cu _{rm 2-x}Te (superlattice structure), even though the heat of reactions ( DeltaH_{rm R} ) are positive as calculated using bulk parameters. Deposition of Co onto Hg_{0.8 }Cd_{0.2}Te substrates reacted to form the gamma -phase (Co_3Te_4) at room temperature in the case of deposition by sputtering, and at 150^circC annealing temperature in the case of deposition by e-beam evaporation. This compound was stable at room and elevated temperatures (100 ^circC, 200^ circC, 300^circC, and 400^circC). On the other hand Co did not react with CdTe (at temperature less than 300^circC) instead, generation of Te was observed. The Te generated in the case of sputter deposition and fast deposition (8-10A) e-beam evaporation was polycrystalline whereas, in the case of slow deposition (0.3-0.5A) e-beam evaporation it was amorphous. Auger depth profile indicated that the amount of excess Te in the case of sputter deposition was larger in compared with deposition by e-beam evaporation. The excess Te was distributed throughout the Co film. The results of Ni deposited onto Hg_ {0.8}Cd_{0.2} Te or CdTe substrate were somewhat similar to the Co cases. Ni reacted with Hg_{0.8 }Cd_{0.2}Te at room temperature in either deposition system to form the delta-phase (NiTe-Ni _2Te). From the results of this work it is clear that the solid produced as a result of either e-beam or sputter deposition has a higher free energy than that of a metal layer on contact with the substrate. This result indicates importance of kinetics in the formation of the interface structure of metals deposited on Hg_{0.8 }Cd_{0.2}Te substrates. (Abstract shortened with permission of author.).
Periodic order and defects in Ni-based inverse opal-like crystals on the mesoscopic and atomic scale
NASA Astrophysics Data System (ADS)
Chumakova, A. V.; Valkovskiy, G. A.; Mistonov, A. A.; Dyadkin, V. A.; Grigoryeva, N. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Petukhov, A. V.; Grigoriev, S. V.
2014-10-01
The structure of inverse opal crystals based on nickel was probed on the mesoscopic and atomic levels by a set of complementary techniques such as scanning electron microscopy and synchrotron microradian and wide-angle diffraction. The microradian diffraction revealed the mesoscopic-scale face-centered-cubic (fcc) ordering of spherical voids in the inverse opal-like structure with unit cell dimension of 750±10nm. The diffuse scattering data were used to map defects in the fcc structure as a function of the number of layers in the Ni inverse opal-like structure. The average lateral size of mesoscopic domains is found to be independent of the number of layers. 3D reconstruction of the reciprocal space for the inverse opal crystals with different thickness provided an indirect study of original opal templates in a depth-resolved way. The microstructure and thermal response of the framework of the porous inverse opal crystal was examined using wide-angle powder x-ray diffraction. This artificial porous structure is built from nickel crystallites possessing stacking faults and dislocations peculiar for the nickel thin films.
Li, Man; Ma, Qiang; Zi, Wei; Liu, Xiaojing; Zhu, Xuejie; Liu, Shengzhong (Frank)
2015-01-01
A deposition process has been developed to fabricate a complete-monolayer Pt coating on a large-surface-area three-dimensional (3D) Ni foam substrate using a buffer layer (Ag or Au) strategy. The quartz crystal microbalance, current density analysis, cyclic voltammetry integration, and X-ray photoelectron spectroscopy results show that the monolayer deposition process accomplishes full coverage on the substrate and the deposition can be controlled to a single atomic layer thickness. To our knowledge, this is the first report on a complete-monolayer Pt coating on a 3D bulk substrate with complex fine structures; all prior literature reported on submonolayer or incomplete-monolayer coating. A thin underlayer of Ag or Au is found to be necessary to cover a very reactive Ni substrate to ensure complete-monolayer Pt coverage; otherwise, only an incomplete monolayer is formed. Moreover, the Pt monolayer is found to work as well as a thick Pt film for catalytic reactions. This development may pave a way to fabricating a high-activity Pt catalyst with minimal Pt usage. PMID:26601247
Liu, Zhen; Cui, Tong; Pulletikurthi, Giridhar; Lahiri, Abhishek; Carstens, Timo; Olschewski, Mark; Endres, Frank
2016-02-18
Metallic zinc is a promising anode material for rechargeable Zn-based batteries. However, the dendritic growth of zinc has prevented practical applications. Herein it is demonstrated that dendrite-free zinc deposits with a nanocrystalline structure can be obtained by using nickel triflate as an additive in a zinc triflate containing ionic liquid. The formation of a thin layer of Zn-Ni alloy (η- and γ-phases) on the surface and in the initial stages of deposition along with the formation of an interfacial layer on the electrode strongly affect the nucleation and growth of zinc. A well-defined and uniform nanocrystalline zinc deposit with particle sizes of about 25 nm was obtained in the presence of Ni(II) . Further, it is shown that the nanocrystalline Zn exhibits a high cycling stability even after 50 deposition/stripping cycles. This strategy of introducing an inorganic metal salt in ionic liquid electrolytes can be considered as an efficient way to obtain dendrite-free zinc. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Zilong; Wang, Zilin; Heng, Liuyang; Wang, Shuai; Chen, Xiqiao; Fu, Xiquan; Zou, Yanhong; Tang, Zhixiang
2018-05-01
MoS2 is a promising material with microwave absorption performance due to its high dielectric properties and low density. However, pure MoS2 is non-magnetic and has a bad impedance matching characteristic. In this study we prepared the Ni/MoS2 nanocomposites by cladding the MoS2 micrometer slices with magnetic Ni nanoparticles. Our results show that the microwave absorption properties of Ni/MoS2 nanocomposites have been improved obviously compared with the pure MoS2. Because of the introduction of Ni particles, the permeability of the nanocomposites has been turned from one to a complex, indicating a newly added magnetic loss. Meanwhile, the big gap between the permittivity and permeability of the Ni/MoS2 nanocomposites has been properly narrowed, which suggests an improved impedance matching. Moreover, the dielectric Cole-Cole semicircle shows that there are more Debye relaxation processes for the Ni/MoS2 nanocomposites, which further enhances the dielectric loss. Due to its improved electromagnetic properties, the minimum reflection loss (RL) value of the Ni/MoS2 nanocomposites with 60 wt % loading reaches -55 dB and the absorption bandwidth (<-10 dB) is up to 4.0 GHz (10.8-14.8 GHz) with a matching thickness of 1.5 mm. The results provide an excellent candidate for microwave absorbing materials with a broad effective absorption bandwidth at thin thicknesses.
NASA Astrophysics Data System (ADS)
Lin, Yung-Chi; Shih, Toung-Yi; Tien, Shih-Kang; Duh, Jenq-Gong
2007-11-01
Interfacial morphologies and microstructure of Sn-3Ag-0.5Cu/Ni-P under bump metallization (UBM) with various phosphorous contents were investigated by transmission electron microscope (TEM) and field emission electron probe microanalyzer (FE-EPMA). It was revealed that as the Ni-Sn-P compound was formed between the solder matrix and Ni-P UBM, the conventionally so-called phosphorous-rich (P-rich) layer was transformed to a series of layer compounds, including Ni3P, Ni12P5 and Ni2P. The relationship between Ni-Sn-P formation and evolution of P-rich layers was probed by electron microscopic characterization with the aid of the phase diagram of Ni-P. On the basis of the TEM micrograph, the selected area diffraction (SAD) pattern, and the FE-EPMA results, the detailed phase evolution of P-rich layers in the SnAgCu/Ni-P joint was revealed and proposed.
NASA Technical Reports Server (NTRS)
Bill, R. C.; Sovey, J.; Allen, G. P.
1981-01-01
The development of plasma-sprayed yttria stabilized zirconia (YSZ) ceramic turbine blade tip seal components is discussed. The YSZ layers are quite thick (0.040 to 0.090 in.). The service potential of seal components with such thick ceramic layers is cyclic thermal shock limited. The most usual failure mode is ceramic layer delamination at or very near the interface between the plasma sprayed YSZ layer and the NiCrAlY bondcoat. Deposition of a thin RF sputtered YSZ primer to the bondcoat prior to deposition of the thick plasma sprayed YSZ layer was found to reduce laminar cracking in cyclic thermal shock testing. The cyclic thermal shock life of one ceramic seal design was increased by a factor of 5 to 6 when the sputtered YSZ primer was incorporated. A model based on thermal response of plasma sprayed YSZ particles impinging on the bondcoat surface with and without the sputtered YSZ primer provides a basis for understanding the function of the primer.
Spin-filter specular spin valves
NASA Astrophysics Data System (ADS)
Lu, Z. Q.; Pan, G.; Jibouri, A. A.; Zheng, Yaunkai
2002-01-01
Both a thin free layer and high magnetoresistance (MR) ratio are required in spin valves for high magnetic density recording heads. In traditional spin valve structures, reducing the free layer normally results in a reduction in MR. We report here on a spin-filter specular spin valve with structure Ta 3.5 nm/NiFe 2 nm/IrMn 6 nm/CoFe 1.5 nm/Nol/CoFe 2 nm/Cu 2.2 nm/CoFe tF/Cu tSF/Nol2/Ta 3 nm, which is demonstrated to maintain MR ratio higher than 12% even when the CoFe free layer is reduced to 1 nm. The semiclassical Boltzmann transport equation was used to simulate MR ratio. An optimized MR ratio of ˜14.5% was obtained when tF was about 1.5 nm and tSF about 1.0 nm as a result of the balance between the increase in electron mean free path difference and current shunting through conducting layer. It is found that the Cu enhancing layer not only enhances the MR ratio but also improves soft magnetic properties of CoFe free layer due to the low atomic intermixing observed between Co and Cu. The CoFe free layer of 1-4 nm exhibits a low coercivity of ˜3 Oe even after annealing at 270 °C for 7 h in a field of 1 kOe. Furthermore, the interlayer coupling field Hint between free layer and pinned layer can be controlled by balancing the Rudermann-Kittel-(Kasuya)-Yosida and magnetostatic coupling. Such a thin soft CoFe free layer is particularly attractive for high density read sensor application.
NASA Astrophysics Data System (ADS)
Gray, Zachary R.
This thesis investigates ways to enhance the efficiency of thin film solar cells through the application of both novel nano-element array light trapping architectures and nickel oxide hole transport/electron blocking layers. Experimental results independently demonstrate a 22% enhancement in short circuit current density (JSC) resulting from a nano-element array light trapping architecture and a ˜23% enhancement in fill factor (FF) and ˜16% enhancement in open circuit voltage (VOC) resulting from a nickel oxide transport layer. In each case, the overall efficiency of the device employing the light trapping or transport layer was superior to that of the corresponding control device. Since the efficiency of a solar cell scales with the product of JSC, FF, and VOC, it follows that the results of this thesis suggest high performance thin film solar cells can be realized in the event light trapping architectures and transport layers can be simultaneously optimized. The realizations of these performance enhancements stem from extensive process optimization for numerous light trapping and transport layer fabrication approaches. These approaches were guided by numerical modeling techniques which will also be discussed. Key developments in this thesis include (1) the fabrication of nano-element topographies conducive to light trapping using various fabrication approaches, (2) the deposition of defect free nc-Si:H onto structured topographies by switching from SiH4 to SiF 4 PECVD gas chemistry, and (3) the development of the atomic layer deposition (ALD) growth conditions for NiO. Keywords: light trapping, nano-element array, hole transport layer, electron blocking layer, nickel oxide, nanocrystalline silicon, aluminum doped zinc oxide, atomic layer deposition, plasma enhanced chemical vapor deposition, electron beam lithography, ANSYS HFSS.
NASA Astrophysics Data System (ADS)
Jiao, Junke; Xu, Zifa; Zan, Shaoping; Zhang, Wenwu; Sheng, Liyuan
2017-10-01
In this paper, the laser cladding method was used to preparation the TiC reinforced Ni-Fe-Al coating on the Ni base superalloy. The Ti/Ni-Fe-Al powder was preset on the Ni base superalloy and the powder layer thickness is 0.5mm. A fiber laser was used the melting Ti/Ni-Fe-Al powder in an inert gas environment. The shape of the cladding layer was tested using laser scanning confocal microscope (LSCM) under different cladding parameters such as the laser power, the melting velocity and the defocused amount. The microstructure, the micro-hardness was tested by LSCM, SEM, Vickers hardness tester. The test result showed that the TiC particles was distributed uniformly in the cladding layer and hardness of the cladding layer was improved from 180HV to 320HV compared with the Ni-Fe-Al cladding layer without TiC powder reinforced, and a metallurgical bonding was produced between the cladding layer and the base metal. The TiC powder could make the Ni-Fe-Al cladding layer grain refining, and the more TiC powder added in the Ni-Fe-Al powder, the smaller grain size was in the cladding layer.
NASA Astrophysics Data System (ADS)
Djiokap, S. R. Tankio; Urgessa, Z. N.; Mbulanga, C. M.; Boumenou, C. Kameni; Venter, A.; Botha, J. R.
2018-04-01
In this paper, the growth of ZnO nanorods on bare and NiO-coated p-Si substrates is reported. A two-step chemical bath deposition process has been used to grow the nanorods. X-ray diffraction and scanning probe microscopy confirmed that the NiO films were polycrystalline, and that the average grain size correlated with the NiO layer thickness. The ZnO nanorod morphology, orientation and optical properties seemed to be unaffected by the intermediate NiO layer thickness. Current-voltage measurements confirmed the rectifying behavior of all the ZnO/NiO/Si heterostructures. The inclusion of a NiO layer between the substrate and the ZnO nanorods are shown to cause a reduction in both the forward and reverse bias currents. This is in qualitative agreement with the band diagram of these heterostructures, which suggests that the intermediate NiO layer should act as an electron blocking layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saravanan, P.; Defence Metallurgical Research Laboratory, Hyderabad 500058; Hsu, Jen-Hwa, E-mail: jhhsu@phys.ntu.edu.tw
2014-06-28
Films of L1{sub 1}-type CoPt/NiFe exchange springs were grown with different NiFe (Permalloy) layer thickness (t{sub NiFe} = 0–10 nm). X-ray diffraction analysis reveals that the characteristic peak position of NiFe(111) is not affected by the CoPt-layer—confirming the absence of any inter-diffusion between the CoPt and NiFe layers. Magnetic studies indicate that the magnetization orientation of NiFe layer can be tuned through varying t{sub NiFe} and the perpendicular magnetic anisotropy of L1{sub 1}-type CoPt/NiFe films cannot sustain for t{sub NiFe} larger than 3.0 nm due to the existence of exchange interaction at the interface of L1{sub 1}-CoPt and NiFe layers. Magnetic force microscopy analysismore » on the as-grown samples shows the changes in morphology from maze-like domains with good contrast to hazy domains when t{sub NiFe} ≥ 3.0 nm. The three-dimensional micro-magnetic simulation results demonstrate that the magnetization orientation in NiFe layer is not uniform, which continuously increases from the interface to the top of NiFe layer. Furthermore, the tilt angle of the topmost NiFe layers can be changed over a very wide range from a small number to about 75° by varying t{sub NiFe} from 1 to 10 nm. It is worth noting that there is an abrupt change in the magnetization direction at the interface, for all the t{sub NiFe} investigated. The results of present study demonstrate that the tunable tilted exchange springs can be realized with L1{sub 1}-type CoPt/NiFe bilayers for future applications in three-axis magnetic sensors or advanced spintronic devices demanding inclined magnetic anisotropy.« less
Yahia, L H; Lombardi, S; Piron, D; Klemberg-Sapieha, J E; Wertheimer, M R
NiTi alloy specimens were plasma cleaned and then coated with a thin film of plasma-polymerized tetrafluoroethylene (TFE) in a Radio-Frequency reactor. The corrosion protection provided by these films was studied by potentiodynamic tests performed in Hank's physiological solution. Surface properties which determine biocompatibility were characterized by X-ray photoelectron spectroscopy (XPS). The results showed that the surface of untreated NiTi was mostly composed by oxygen, carbon, titanium oxide (TiO2) with traces of nickel oxides (NiO and Ni2O3) and metallic Ni. The passivity of untreated NiTi was found to be unstable in the simulated human body media. After plasma treatment, the NiTi surface contained only carbon and fluor. The plasma-polymerized thin film was found to stabilize the NiTi passivity and to increase its pitting potential. This treatment provides a good protection against dissolution of nickel from NiTi alloys.
Electron microscopy study of Ni induced crystallization in amorphous Si thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radnóczi, G. Z.; Battistig, G.; Pécz, B., E-mail: pecz.bela@ttk.mta.hu
2015-02-17
The crystallization of amorphous silicon is studied by transmission electron microscopy. The effect of Ni on the crystallization is studied in a wide temperature range heating thinned samples in-situ inside the microscope. Two cases of limited Ni source and unlimited Ni source are studied and compared. NiSi{sub 2} phase started to form at a temperature as low as 250°C in the limited Ni source case. In-situ observation gives a clear view on the crystallization of silicon through small NiSi{sub 2} grain formation. The same phase is observed at the crystallization front in the unlimited Ni source case, where a secondmore » region is also observed with large grains of Ni{sub 3}Si{sub 2}. Low temperature experiments show, that long annealing of amorphous silicon at 410 °C already results in large crystallized Si regions due to the Ni induced crystallization.« less
Formation and possible growth mechanism of bismuth nanowires on various substrates
NASA Astrophysics Data System (ADS)
Volkov, V. T.; Kasumov, A. Yu.; Kasumov, Yu. A.; Khodos, I. I.
2017-08-01
In this work, we report results of a study of bismuth nanowires growth on various substrates, including Fe, Ni, Co, W, Pt, Au thin films on oxidized Si, Si (111), oxidized Si (100), and fused quartz. The nanowires (NW) were prepared by RF diode sputtering of Bi onto a substrate heated to about 200 °C. The structure of the wires was studied by a scanning and transmission electron microscopy. The NWs are monocrystalline up to a length of several micrometers and possess a very thin (less than 2 nm) oxide layer. A major influence of the substrate type on the quantity and the length of the obtained nanowires is observed. Based on the above studies, we propose a possible mechanism of a bismuth nanowire growth.
Fused Silica Surface Coating for a Flexible Silica Mat Insulation System
NASA Technical Reports Server (NTRS)
Rhodes, W. H.
1973-01-01
Fused silica insulation coatings have been developed for application to a flexible mat insulation system. Based on crystalline phase nucleation and growth kinetics, a 99+% SiO2 glass was selected as the base composition. A coating was developed that incorporated the high emissivity phase NiCr2O4 as a two phase coating with goals of high emittance and minimum change in thermal expansion. A second major coating classification has a plasma sprayed emittance coating over a sealed pure amorphous SiO2 layer. A third area of development centered on extremely thin amorphous SiO2 coatings deposited by chemical vapor deposition. The coating characterization studies presented are mechanical testing of thin specimens extracted from the coatings, cyclic arc exposures, and emittance measurements before and after arc exposures.
Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behler, Anna; Department of Physics, Institute for Solid State Physics, Dresden University of Technology, 01062 Dresden; Teichert, Niclas
2013-12-15
A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni{sub 50}Mn{sub 32}Sn{sub 18} thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.
NASA Astrophysics Data System (ADS)
Kang, Chun Hong; Shen, Chao; M. Saheed, M. Shuaib; Mohamed, Norani Muti; Ng, Tien Khee; Ooi, Boon S.; Burhanudin, Zainal Arif
2016-08-01
Transparent conductive electrodes (TCE) made of carbon nanotube (CNT) and graphene composite for GaN-based light emitting diodes (LED) are presented. The TCE with 533-Ω/□ sheet resistance and 88% transmittance were obtained when chemical-vapor-deposition grown graphene was fused across CNT networks. With an additional 2-nm thin NiOx interlayer between the TCE and top p-GaN layer of the LED, the forward voltage was reduced to 5.12 V at 20-mA injection current. Four-fold improvement in terms of light output power was observed. The improvement can be ascribed to the enhanced lateral current spreading across the hybrid CNT-graphene TCE before injection into the p-GaN layer.
Pinholes and Nano-oxide Specular Layers in Spin Valves
NASA Astrophysics Data System (ADS)
Fry, R. A.; Egelhoff, W. F., Jr.; McMichael, R. D.; Chen, P. J.; Powell, C. J.; Beach, G.; Berkowitz, A. E.
2001-03-01
Recently, nano-oxide layers (NOL) in giant magnetoresistance (GMR) spin valves have attracted interest as a method of achieving increased GMR associated with specular reflection at Co/oxide interfaces. The NOL must be thin enough so that strong magnetic coupling across it exists; otherwise, the films separated by NOL could switch separately. We have investigated the structure NiO/2.5 nm Co/2.5 nm Cu/2 nm Co/NOL/2 nm Co/10 nm IrMn. The bottom Co is pinned by NiO more strongly than the top Co is pinned by IrMn; thus the top Co film can be switched to observe GMR loops. With no NOL, the GMR loop obtained by switching the 4 nm top Co film is shifted 300 Oe by the exchange bias of IrMn. Using CoO as a NOL, at thickness of 1 nm there is a sudden drop from 300 Oe to <10 Oe. It appears that pinhole coupling at CoO<1 nm forces the two Co films to switch together, but at CoO 1 nm the pinholes close up and the Co films switch separately. Such observations constitute a new approach to the study of pinholes, and we use it to investigate several oxides and metal spacer layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kuan-Ting; Soh, Yeong-Ah; Skinner, Stephen J., E-mail: s.skinner@imperial.ac.uk
2013-10-15
Graphical abstract: - Highlights: • High quality epitaxial thin films of layered Ruddlesden–Popper nickelates were prepared. • For the first time this has been achieved by the PLD process. • n = 1, 2 and 3 films were successfully deposited on SrTiO{sub 3} and NdGaO{sub 3} substrates. • c-Axis oriented films were confirmed by XRD analysis. • In-plane and out-of-plane strain effects on lattice are discussed. - Abstract: Layered Ruddlesden–Popper phases of composition La{sub n+1}Ni{sub n}O{sub 3n+1} (n = 1, 2 and 3) have been epitaxially grown on SrTiO{sub 3} (0 0 1) or NdGaO{sub 3} (1 1 0) singlemore » crystal substrates using the pulsed laser deposition technique. X-ray diffraction analyses (θ/2θ, rocking curves, and φ-scans) and atomic force microscopy confirms the high-quality growth of the series of films with low surface roughness values (less than 1 nm). In particular, epitaxial growth of the higher order phases (n = 2 and 3) of lanthanum nickelate have been demonstrated for the first time.« less
Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery.
Zhang, Jie; Lu, Qingwen; Fang, Jianhua; Wang, Jiulin; Yang, Jun; NuLi, Yanna
2014-10-22
Lithium-rich materials represented by xLi2MnO3·(1 - x)LiMO2 (M = Mn, Co, Ni) are attractive cathode materials for lithium-ion battery due to their high specific energy and low cost. However, some drawbacks of these materials such as poor cycle and rate capability remain to be addressed before applications. In this study, a thin polyimide (PI) layer is coated on the surface of Li1.2Ni0.13Mn0.54Co0.13O2 (LNMCO) by a polyamic acid (PAA) precursor with subsequently thermal imidization process. X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HR-TEM) results confirm the successful formation of a PI layer (∼3 nm) on the surface of LNMCO without destruction of its main structure. X-ray photoelectron spectroscopy (XPS) spectra show a slight shift of the Mn valence state from Mn(IV) to Mn(III) in the PI-LNMCO treated at 450 °C, elucidating that charge transfer takes place between the PI layer and LNMCO surface. Electrochemical performances of LNMCO including cyclic stability and rate capability are evidently improved by coating a PI nanolayer, which effectively separates the cathode material from the electrolyte and stabilizes their interface at high voltage.
NASA Astrophysics Data System (ADS)
Bahadormanesh, Behrouz; Ghorbani, Mohammad
2018-06-01
The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the deposition current density. The corrosion resistance of the deposits was studied and compared with that of monolayers of Ni-P and Zn-Ni alloys via Tafel polarization, EIS and salt spray tests. Characterization of corrosion products by means of EDS and XRD revealed more details from the corrosion mechanism of the monolayers and multilayers. The corrosion current density of Ni-P/Zn-Ni CMMCs were around one tenth of Zn-Ni monolayer. The CMMC with incomplete layers performed lower polarization resistance and higher corrosion current density compared to the CMMC with complete layers. The electrical circuit that was proposed for modeling the corrosion process based on the EIS spectrum, proved that layering reduces the porosity and consequently improves the barrier properties. Although, layering of Zn-Ni layers with Ni-P deposits increased the time to red rust in salt spray test, the time for white rust formation decreased. The corrosion mechanism of both Zn-Ni and Ni-P (containing small amount of Zn) was preferential dissolution of Zn and the corrosion products were comprised of mainly Zn hydroxychloride and Zn hydroxycarbonate. Also, Ni and P did not take part in the corrosion products. Based on the electrochemical character of the layers and the morphology of the corroded surface, the corrosion mechanism of multilayers was discussed.
Thin film fabrication and system integration test run for a microactuator for a tuneable lens
NASA Astrophysics Data System (ADS)
Hoheisel, Dominik; Rissing, Lutz
2014-03-01
An electromagnetic microactuator, for controlling of a tuneable lens, with an integrated electrostatic element is fabricated by thin film technology. The actuator consists of two parts: the first part with microcoil and flux guide and the second part with a ring shaped back iron on a polyimide membrane. The back iron is additionally useable as electrode for electrostatic measurement of the air gap and for electrostatic actuation. By attracting the back iron an optical liquid is displaced and forms a liquid lens inside the back iron ring covered by the membrane. For testing the thin film fabrication sequence, up-scaled systems are generated in a test run. To fabricate the flux guide in an easy and quick way, a Ni-Fe foil with a thickness of 50 μm is laminated on the Si-wafer. This foil is also utilized in the following fabrication sequence as seed layer for electroplating. Compared to Ni-Fe structures deposited by electroplating, the foil is featuring better soft magnetic properties. The foil is structured by wet chemical etching and the backside of the wafer is structured by deep reactive ion etching (DRIE). For post fabrication thinning, the polyimide membrane is treated by oxygen plasma etching. To align the back iron to the microcoil and the flux guide, a flip-chip-bonder is used during test run of system integration. To adjust a constant air gap, a water solvable polymer is tested. A two component epoxy and a polyimide based glue are compared for their bonding properties of the actuator parts.
Taniguchi, Midori; Saito, Hirokazu; Mitsubayashi, Kohji
2017-01-01
A rapid and reproducible fiber-optic immunosensor for Escherichia coli O157:H7 (E. coli O157:H7) was described. The biosensor consisted of a flow cell, an optical fiber with a thin Ni layer, and a PC linked fluorometer. First, the samples with E. coli O157:H7 were incubated with magnetic beads coated with anti-E. coli O157:H7 antibodies and anti-E. coli O157:H7 antibodies labeled cyanine 5 (Cy5) to make sandwich complexes. Then the Cy5-(E. coli O157:H7)-beads were injected into a flow cell and pulled to the magnetized Ni layer on the optical fiber set in the flow cell. An excitation light (λ = 635 nm) was used to illuminate the optical fiber, and the Cy5 florescent molecules facing the optical fiber were exposed to an evanescent wave from the optical fiber. The 670 nm fluorescent light was measured using a photodiode. Finally, the magnetic intensity of the Ni layer was removed and the Cy5-E. coli O157:H7-beads were washed out for the next immunoassay. E. coli O157:H7, diluted with phosphate buffer (PB), was measured from 1 × 105 to 1 × 107 cells/mL. The total time required for an assay was less than 15 min (except for the pretreatment process) and repeating immunoassay on one optical fiber was made possible. PMID:28925937
Taniguchi, Midori; Saito, Hirokazu; Mitsubayashi, Kohji
2017-09-19
A rapid and reproducible fiber-optic immunosensor for Escherichia coli O157:H7 ( E. coli O157:H7) was described. The biosensor consisted of a flow cell, an optical fiber with a thin Ni layer, and a PC linked fluorometer. First, the samples with E. coli O157:H7 were incubated with magnetic beads coated with anti- E. coli O157:H7 antibodies and anti- E. coli O157:H7 antibodies labeled cyanine 5 (Cy5) to make sandwich complexes. Then the Cy5-( E. coli O157:H7)-beads were injected into a flow cell and pulled to the magnetized Ni layer on the optical fiber set in the flow cell. An excitation light (λ = 635 nm) was used to illuminate the optical fiber, and the Cy5 florescent molecules facing the optical fiber were exposed to an evanescent wave from the optical fiber. The 670 nm fluorescent light was measured using a photodiode. Finally, the magnetic intensity of the Ni layer was removed and the Cy5- E. coli O157:H7-beads were washed out for the next immunoassay. E. coli O157:H7, diluted with phosphate buffer (PB), was measured from 1 × 10⁵ to 1 × 10⁷ cells/mL. The total time required for an assay was less than 15 min (except for the pretreatment process) and repeating immunoassay on one optical fiber was made possible.
Zhang, Jiankai; Luo, Hui; Xie, Weijia; Lin, Xuanhuai; Hou, Xian; Zhou, Jianping; Huang, Sumei; Ou-Yang, Wei; Sun, Zhuo; Chen, Xiaohong
2018-03-28
Planar perovskite solar cells (PSCs) that use nickel oxide (NiO x ) as a hole transport layer have recently attracted tremendous attention because of their excellent photovoltaic efficiencies and simple fabrication. However, the electrical conductivity of NiO x and the interface contact properties of the NiO x /perovskite layer are always limited for the NiO x layer fabricated at a relatively low annealing temperature. Ferrocenedicarboxylic acid (FDA) was firstly introduced to modify a p-type NiO x hole transport layer in PSCs, which obviously improves the crystallization of the perovskite layer and hole transport and collection abilities and reduces carrier recombination. PSCs with a FDA modified NiO x layer reached a PCE of 18.20%, which is much higher than the PCE (15.13%) of reference PSCs. Furthermore, PSCs with a FDA interfacial modification layer show better UV durability and a hysteresis-free effect and still maintain the original PCE value of 49.8%after being exposed to UV for 24 h. The enhanced performance of the PSCs is attributed to better crystallization of the perovskite layer, the passivation effect of FDA, superior interface contact at the NiO x /perovskite layers and enhancement of the electrical conductivity of the FDA modified NiO x layer. In addition, PSCs with FDA inserted at the interface of the perovskite/PCBM layers can also improve the PCE to 16.62%, indicating that FDA have dual functions to modify p-type and n-type carrier transporting layers.
Interface magnetic anisotropy for monatomic layer-controlled Co/Ni epitaxial multilayers
NASA Astrophysics Data System (ADS)
Shioda, A.; Seki, T.; Shimada, J.; Takanashi, K.
2015-05-01
The magnetic properties for monatomic layer (ML)-controlled Co/Ni epitaxial multilayers were investigated in order to evaluate the interface magnetic anisotropy energy (Ks) between Ni and Co layers. The Co/Ni epitaxial multilayers were prepared on an Al2O3 (11-20) substrate with V/Au buffer layers. The value of Ks was definitely larger than that for the textured Co/Ni grown on a thermally oxidized Si substrate. We consider that the sharp interface for the epitaxial Co/Ni played a role to increase the value of Ks, which also enabled us to obtain perpendicular magnetization even for the 1 ML-Co/1 ML-Ni multilayer.
Capability of Sputtered Micro-patterned NiTi Thick Films
NASA Astrophysics Data System (ADS)
Bechtold, Christoph; Lima de Miranda, Rodrigo; Quandt, Eckhard
2015-09-01
Today, most NiTi devices are manufactured by a combination of conventional metal fabrication steps, e.g., melting, extrusion, cold working, etc., and are subsequently structured by high accuracy laser cutting. This combination has been proven to be very successful; however, there are several limitations to this fabrication route, e.g., in respect to the fabrication of more complex device designs, device miniaturization or the combination of different materials for the integration of further functionality. These issues have to be addressed in order to develop new devices and applications. The fabrication of micro-patterned films using magnetron sputtering, UV lithography, and wet etching has great potential to overcome limitations of conventional device manufacturing. Due to its fabrication characteristics, this method allows the production of devices with complex designs, high structural accuracy, smooth edge profile, at layer thicknesses up to 75 µm. The aim of this study is to present recent developments in the field of NiTi thin film technology, its advantages and limitations, as well as new possible applications in the medical and in non-medical fields. These developments include among others NiTi scaffold structures covered with NiTi membranes for their potential use as filters, heart valve components or aneurysm treatments, as well as micro-actuators for consumable electronics or automotive applications.
Hynstova, Veronika; Sterbova, Dagmar; Klejdus, Borivoj; Hedbavny, Josef; Huska, Dalibor; Adam, Vojtech
2018-01-30
In this study, 14 commercial products (dietary supplements) containing alga Chlorella vulgaris and cyanobacteria Spirulina platensis, originated from China and Japan, were analysed. UV-vis spectrophotometric method was applied for rapid determination of chlorophylls, carotenoids and pheophytins; as degradation products of chlorophylls. High Performance Thin-Layer Chromatography (HPTLC) was used for effective separation of these compounds, and also Atomic Absorption Spectrometry for determination of heavy metals as indicator of environmental pollution. Based on the results obtained from UV-vis spectrophotometric determination of photosynthetic pigments (chlorophylls and carotenoids), it was confirmed that Chlorella vulgaris contains more of all these pigments compared to the cyanobacteria Spirulina platensis. The fastest mobility compound identified in Chlorella vulgaris and Spirulina platensis using HPTLC method was β-carotene. Spectral analysis and standard calibration curve method were used for identification and quantification of separated substances on Thin-Layer Chromatographic plate. Quantification of copper (Cu 2+ , at 324.7 nm) and zinc (Zn 2+ , at 213.9nm) was performed using Flame Atomic Absorption Spectrometry with air-acetylene flame atomization. Quantification of cadmium (Cd 2+ , at 228.8 nm), nickel (Ni 2+ , at 232.0nm) and lead (Pb 2+ , at 283.3nm) by Electrothermal Graphite Furnace Atomic Absorption Spectrometry; and quantification of mercury (Hg 2+ , at 254nm) by Cold Vapour Atomic Absorption Spectrometry. Copyright © 2017 Elsevier B.V. All rights reserved.
The Dye Sensitized Photoelectrosynthesis Cell (DSPEC) for Solar Water Splitting and CO2 Reduction
NASA Astrophysics Data System (ADS)
Meyer, Thomas; Alibabaei, Leila; Sherman, Benjamin; Sheridan, Matthew; Ashford, Dennis; Lapides, Alex; Brennaman, Kyle; Nayak, Animesh; Roy, Subhangi; Wee, Kyung-Ryang; Gish, Melissa; Meyer, Jerry; Papanikolas, John
The dye-sensitized photoelectrosynthesis cell (DSPEC) integrates molecular level light absorption and catalysis with the bandgap properties of stable oxide materials such as TiO2 and NiO. Excitation of surface-bound chromophores leads to excited state formation and rapid electron or hole injection into the conduction or valence bands of n or p-type oxides. Addition of thin layers of TiO2 or NiO on the surfaces of mesoscopic, nanoparticle films of semiconductor or transparent conducting oxides to give core/shell structures provides a basis for accumulating multiple redox equivalents at catalysts for water oxidation or CO2 reduction. UNC EFRC Center for Solar Fuels, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001011.
Superfluid Densities in Superconducting/Ferromagnetic (Nb/NiV/Nb) Heterostructures
NASA Astrophysics Data System (ADS)
Hinton, Michael; Peters, Brian; Hauser, Adam; Meyer, Julia; Yang, Fengyuan; Lemberger, Thomas
2011-03-01
Superfluid density measurements allow us to probe the superconducting structure of thin films below Tc with remarkable detail. They yield information not only of the inherent robustness of the superconducting state, but also about the homogeneity of the sample and possible ``hidden'' transitions at temperatures lower than the initial Tc . For this reason multiple transitions in superconducting heterostructures are revealed to us. We use superfluid density measurements on Nb/ Ni 0.95 V0.05 /Nb trilayers to study the interplay between two superconducting films separated by the destructive proximity effects of a ferromagnet. We show there are trilayers with strong coupling, which produces a single transition, that become decoupled to the point of separation into two transitions as the ferromagnetic layer thickness increases. We discuss the difficulties in observing the second transition in σ1 , while obvious in λ-2 .
Brillouin light scattering study of spin waves in NiFe/Co exchange spring bilayer films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haldar, Arabinda; Banerjee, Chandrima; Laha, Pinaki
2014-04-07
Spin waves are investigated in Permalloy(Ni{sub 80}Fe{sub 20})/Cobalt(Co) exchange spring bilayer thin films using Brillouin light scattering (BLS) experiment. The magnetic hysteresis loops measured by magneto-optical Kerr effect show a monotonic decrease in coercivity of the bilayer films with increasing Py thickness. BLS study shows two distinct modes, which are modelled as Damon-Eshbach and perpendicular standing wave modes. Linewidths of the frequency peaks are found to increase significantly with decreasing Py layer thickness. Interfacial roughness causes to fluctuate exchange coupling at the nanoscale regimes and the effect is stronger for thinner Py films. A quantitative analysis of the magnon linewidthsmore » shows the presence of strong local exchange coupling field which is much larger compared to macroscopic exchange field.« less
Tang, Chun-hua; Yin, Xuesong; Gong, Hao
2013-11-13
Pseudocapacitors based on fast surface Faradaic reactions can achieve high energy densities together with high power densities. Usually, researchers develop a thin layer of active materials to increase the energy density by enhancing the surface area; meanwhile, this sacrifices the mass loading. In this work, we developed a novel 3D core-shell Co3O4@Ni(OH)2 electrode that can provide high energy density with very high mass loading. Core-shell porous nanowires (Co3O4@Ni(OH)2) were directly grown on a Ni current collector as an integrated electrode/collector for the supercapacitor anode. This Co3O4@Ni(OH)2 core-shell nanoarchitectured electrode exhibits an ultrahigh areal capacitance of 15.83 F cm(-2). The asymmetric supercapacitor prototypes, assembled using Co3O4@Ni(OH)2 as the anode, reduced graphene oxide (RGO) or active carbon (AC) as the cathode, and 6 M aqueous KOH as the electrolyte, exhibit very high energy densities falling into the energy-density range of Li-ion batteries. Because of the large mass loading and high energy density, the prototypes can drive a minifan or light a bulb even though the size is very small. These results indicate that our asymmetric supercapacitors have outstanding potential in commercial applications. Systematic study and scientific understanding were carried out.
NASA Astrophysics Data System (ADS)
Karbasian, Golnaz
The continuing increase of the device density in integrated circuits (ICs) gives rise to the high level of power that is dissipated per unit area and consequently a high temperature in the circuits. Since temperature affects the performance and reliability of the circuits, minimization of the energy consumption in logic devices is now the center of attention. According to the International Technology Roadmaps for Semiconductors (ITRS), single electron transistors (SETs) hold the promise of achieving the lowest power of any known logic device, as low as 1x10-18 J per switching event. Moreover, SETs are the most sensitive electrometers to date, and are capable of detecting a fraction of an electron charge. Despite their low power consumption and high sensitivity for charge detection, room temperature operation of these devices is quite challenging mainly due to lithographical constraints in fabricating structures with the required dimensions of less than 10 nm. Silicon based SETs have been reported to operate at room temperature. However, they all suffer from significant variation in batch-to-batch performance, low fabrication yield, and temperature-dependent tunnel barrier height. In this project, we explored the fabrication of SETs featuring metal-insulator-metal (MIM) tunnel junctions. While Si-based SETs suffer from undesirable effect of dopants that result in irregularities in the device behavior, in metal-based SETs the device components (tunnel barrier, island, and the leads) are well-defined. Therefore, metal SETs are potentially more predictable in behavior, making them easier to incorporate into circuits, and easier to check against theoretical models. Here, the proposed fabrication method takes advantage of unique properties of chemical mechanical polishing (CMP) and plasma enhanced atomic layer deposition (PEALD). Chemical mechanical polishing provides a path for tuning the dimensions of the tunnel junctions, surpassing the limits imposed by electron beam lithography and lift-off, while atomic layer deposition provides precise control over the thickness of the tunnel barrier and significantly increases the choices for barrier materials. As described below in detail, the fabrication of ultra-thin (~1nm) tunnel transparent barriers with PEALD is in fact challenging; we demonstrate that in fabrication of SETs with PEALD to form the barrier in the Ni-insulator-Ni tunnel junctions, additional NiO layers are parasitically formed in the Ni layers that form the top and bottom electrodes of the tunnel junctions. The NiO on the bottom electrode is formed due to oxidizing effect of the O 2 plasma used in the PEALD process, while the NiO on the bottom of the top electrode is believed to form during the metal deposition due to oxygen-containing contaminants on the surface of the deposited tunnel barrier. We also show that due to the presence of these surface parasitic layers of NiO, the resistance of Ni-insulator-Ni tunnel junctions is drastically increased. Moreover, the transport mechanism is changed from quantum tunneling through the dielectric barrier to one consistent with the tunnel barrier in series with compound layers of NiO and possibly, NiSixOy. The parasitic component in the tunnel junctions results in conduction freeze-out at low temperatures, deviation of junction parameters from ideal model, and excessive noise in the device. The reduction of NiO to Ni is therefore necessary to restore the metal-insulator-metal structure of the junctions. We have studied forming gas anneal as well as H2 plasma treatment as techniques to reduce the NiO layers that are parasitically formed in the junctions. Using either of these two techniques, we reduced the NiO formed on the island after being covered with the PEALD dielectric and before defining the top source and drain. Later, the NiO formed on the bottom of the source/drain is reduced during a second reducing step after the source/drain are formed on the tunnel barrier. Electrical characterization of SETs that are made with the proposed reducing treatments enable us to study the effect of each reducing process on the properties of the constituent tunnel junctions. In comparison to the junctions annealed twice in forming gas at 400°C, we consistently observed a ~10x higher conductance in devices treated twice with H2 plasma at 300°C. The possible damage to the barrier during the plasma treatment and thermally induced film deformation during the anneal which respectively, is believed to increase and lower the conductance are among the possible cause of this difference. Although both types of treatments were effective in alleviating the effect of the activated components in the junctions, all the devices that were treated by two anneal steps or by two H2 plasma steps (for reducing the top and bottom NiO) show deviations from ideal simulated MIM SET model and suffer from significant random telegraph signal (RTS) noise. However, our results show that by using forming gas anneal for bottom NiO reduction and H2 plasma for the top NiO reduction, one can achieve devices close to ideal MIM SETs with significantly less noise.
1978-03-01
NSWC/WOL TR 77-178 SUMMARY This raport gives measurements of changes in the magnetic properties of thin films due to oxidation. Evaporated NiFe ...Fi lm An i sotropy NiFe Thi n Fi lm Th in Fi lm Magnetos triction Magnetic Fi lm Aging - Magnetic Film Anneal ing — ~~~~. A BSTRACT CenhSnu. on r.v...rs• .Id. I nsc•ss y ond Idsnhl~ b block me.eb.r) _ . .—~~ Low magnetostriction NiFe and NiFe based’ ternary films 220A to 340A thick were prepared by
NASA Astrophysics Data System (ADS)
Koyama, Miki; Ichimura, Masaya
2018-05-01
Ni(OH)2 precursor films were deposited by galvanostatic electrochemical deposition (ECD), and NiO thin films were fabricated by annealing in air. The effects of the deposition current densities were studied in a range that included current densities high enough to electrolyze water and generate hydrogen bubbles. The films fabricated by ECD involving water electrolysis had higher transparency and smoother surface morphology than those deposited with lower current densities. In addition, the annealed NiO films clearly had preferred (111) orientation when the deposition was accompanied by water electrolysis. p-type conduction was confirmed for the annealed films.
A Platinum-Enriched gamma+gamma' Two-Phase Bond Coat on Ni-Base Superalloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ying; Pint, Bruce A; Haynes, James A
2005-01-01
Pt-enriched {gamma} + {gamma}{prime} two-phase coating was applied to directionally-solidified Ni-based superalloy Ren{acute e} 142 substrates with three different Hf levels (0.02, 0.76, and 1.37 wt.%). The coating was prepared by electroplating a thin layer of Pt on the superalloy followed by a diffusion treatment. The as-deposited coating exhibited a {gamma} + {gamma}{prime} two-phase microstructure with a major composition of Ni-16Al-18Pt-7Cr-9Co (in at.%) along with some incorporation of refractory elements from the substrates. Cyclic oxidation testing at 1100 C in air indicated improved oxidation resistance of the Ren{acute e} 142 alloys with the Pt-enriched {gamma} + {gamma}{prime} coatings. In addition,more » the oxidation resistance of both uncoated and coated alloys was proportional to the Hf content in the substrate. Compared with the single-phase {beta}-(Ni,Pt)Al coating, slightly higher mass gains and localized spallation were observed on the {gamma} + {gamma}{prime} two-phase coating, which might be due to the segregation of refractory elements and high sulfur levels in these superalloy substrates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hee Joon; Edwards, Dan J.; Kurtz, Richard J.
An investigation of the influence of helium on damage evolution under neutron irradiation of an 11 at% Al, 19 at% Cr ODS ferritic PM2000 alloy was carried out in the High Flux Isotope Reactor (HFIR) using a novel in situ helium injection (ISHI) technique. Helium was injected into adjacent TEM discs from thermal neutron 59Ni(nth, 59Ni(nth,α) reactions in a thin NiAl layer. The PM2000 undergoes concurrent displacement damage from the high-energy neutrons. The ISHI technique allows direct comparisons of regions with and without high concentrations of helium since only the side coated with the NiAl experiences helium injection. The correspondingmore » microstructural and microchemical evolutions were characterized using both conventional and scanning transmission electron microscopy techniques. The evolutions observed include formation of dislocation loops and associated helium bubbles, precipitation of a variety of phases, amorphization of the Al2YO3 oxides (which also variously contained internal voids), and several manifestations of solute segregation. Notably, high concentrations of helium had a significant effect on many of these diverse phenomena. These results on PM2000 are compared and contrasted to the evolution of so-called nanostructured ferritic alloys (NFA).« less
NASA Astrophysics Data System (ADS)
He, Q.; Huang, W. M.; Hong, M. H.; Wu, M. J.; Fu, Y. Q.; Chong, T. C.; Chellet, F.; Du, H. J.
2004-10-01
NiTi shape memory thin films are potentially desirable for micro-electro-mechanical system (MEMS) actuators, because they have a much higher work output per volume and also a significantly improved response speed due to a larger surface-to-volume ratio. A new technique using a temperature controllable atomic force microscope (AFM) is presented in order to find the transformation temperatures of NiTi shape memory thin films of micrometer size, since traditional techniques, such as differential scanning calorimetry (DSC) and the curvature method, have difficulty in dealing with samples of such a scale as this. This technique is based on the surface relief phenomenon in shape memory alloys upon thermal cycling. The reliability of this technique is investigated and compared with the DSC result in terms of the transformation fraction (xgr). It appears that the new technique is nondestructive, in situ and capable of characterizing sputtering deposited very small NiTi shape memory thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Ming; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000; Hu, Jiamian
2013-11-04
Multiferroic NiFe (∼30 nm)/Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3}(PMN–PT, ∼220 nm) bilayered thin films were grown on common Pt/Ti/SiO{sub 2}/Si substrates by a combination of off-axis magnetron sputtering and sol-gel spin-coating technique. By using AC-mode magneto-optical Kerr effect technique, the change in the Kerr signal (magnetization) of the NiFe upon applying a low-frequency AC voltage to the PMN–PT film was in situ acquired at zero magnetic field. The obtained Kerr signal versus voltage loop essentially tracks the electromechanical strain curve of the PMN–PT thin film, clearly demonstrating a strain-mediated converse magnetoelectric coupling, i.e., voltage-modulated magnetization, in the NiFe/PMN–PT nanocomposite thin films.
Amorphous nickel incorporated tin oxide thin film transistors
NASA Astrophysics Data System (ADS)
Yang, Jianwen; Ren, Jinhua; Lin, Dong; Han, Yanbing; Qu, Mingyue; Pi, Shubin; Fu, Ruofan; Zhang, Qun
2017-09-01
Nickel as a dopant has been proposed to suppress excess carrier concentration in n-type tin oxide based thin film transistors (TFTs). The influences of Ni content on nickel doped tin oxide (TNO) thin films and their corresponding TFTs were investigated with experimental results showing that the TNO thin films are amorphous. Through the comparison of the transfer characteristic curves of the TNO TFTs with different Ni contents, it was observed that Ni doping is useful to improve the performance of SnO2-based TFTs by suppressing the off-state current and shifting the threshold voltage to 0 V. The amorphous TNO TFT with 3.3 at.% Ni content shows optimum performance, with field effect mobility of 8.4 cm2 V-1 s-1, saturation mobility of 6.8 cm2 V-1 s-1, subthreshold swing value of 0.8 V/decade, and an on-off current ratio of 2.1 × 107. Nevertheless, the bias stress stability of SnO2-based TFTs deteriorate.
NASA Astrophysics Data System (ADS)
de Oliveira, Henrique Bortolaz; Wypych, Fernando
2016-11-01
Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO42-/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO42-/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated.
El-Shahawi, M S; Al-Jahdali, M S; Bashammakh, A S; Al-Sibaai, A A; Nassef, H M
2013-09-01
The ligation behavior of bis-benzoin ethylenediamine (B2ED) and benzoin thiosemicarbazone (BTS) Schiff bases towards Ru(3+), Rh(3+), Pd(2+), Ni(2+) and Cu(2+) were determined. The bond length of M-N and spectrochemical parameters (10Dq, β, B and LFSE) of the complexes were evaluated. The redox characteristics of selected complexes were explored by cyclic voltammetry (CV) at Pt working electrode in non aqueous solvents. Au mesh (100 w/in.) optically transparent thin layer electrode (OTTLE) was also used for recording thin layer CV for selected Ru complex. Oxidation of some complexes occurs in a consecutive chemical reaction of an EC type mechanism. The characteristics of electron transfer process of the couples M(2+)/M(3+) and M(3+)/M(4+) (M=Ru(3+), Rh(3+)) and the stability of the complexes towards oxidation and/or reduction were assigned. The nature of the electroactive species and reduction mechanism of selected electrode couples were assigned. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shiue, Ren-Kae; Wu, Shyi-Kaan; Yang, Sheng-Hao
2017-02-01
Infrared brazing of Ti50Ni50 SMA and Inconel 600 alloy using Cusil-ABA and Ticusil filler metals has been investigated. The joints were dominated by Ag-Cu eutectic with proeutectic Cu in the Cusil-ABA brazed joint and with proeutectic Ag in the Ticusil one. A continuous curved belt composed of a Ni3Ti layer and a (Cu x Ni1- x )2Ti layer formed in the brazed Ti50Ni50/Ticusil/Inconel 600 joint. On the Ti50Ni50 SMA side, an intermetallic layer of (Cu x Ni1- x )2Ti formed in all joints, with x values around 0.81 and 0.47. Layers of (Cu x Ni1- x )2Ti, Ni3Ti, and mixed Ni3Ti and Ni2Cr intermetallics were observed next to the Inconel 600 substrate in the brazed Ti50Ni50/Cusil-ABA/Inconel 600 joint. The maximum shear strengths of the joints using the Cusil-ABA filler metal and the Ticusil filler metal were 324 and 300 MPa, respectively. In the Cusil-ABA brazed joint, cracks with cleavage-dominated fracture propagated along the (Cu x Ni1- x )2Ti interfacial layer next to the Ti50Ni50 SMA substrate. In the Ticusil brazed joint, ductile dimple fracture occurred in the Ag-rich matrix near the Inconel 600 alloy substrate. The absence of a detrimental Ti-Fe-(Cu) layer on the Inconel 600 substrate side can effectively improve the shear strength of the joint.
The Characterization of Thin Film Nickel Titanium Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Harris Odum, Nicole Latrice
Shape memory alloys (SMA) are able to recover their original shape through the appropriate heat or stress exposure after enduring mechanical deformation at a low temperature. Numerous alloy systems have been discovered which produce this unique feature like TiNb, AgCd, NiAl, NiTi, and CuZnAl. Since their discovery, bulk scale SMAs have undergone extensive material property investigations and are employed in real world applications. However, its thin film counterparts have been modestly investigated and applied. Researchers have introduced numerous theoretical microelectromechanical system (MEMS) devices; yet, the research community's overall unfamiliarity with the thin film properties has delayed growth in this area. In addition, it has been difficult to outline efficient thin film processing techniques. In this dissertation, NiTi thin film processing and characterization techniques will be outlined and discussed. NiTi thin films---1 mum thick---were produced using sputter deposition techniques. Substrate bound thin films were deposited to analysis the surface using Scanning Electron Microscopy; the film composition was obtained using Energy Dispersive Spectroscopy; the phases were identified using X-ray diffraction; and the transformation temperatures acquired using resistivity testing. Microfabrication processing and sputter deposition were employed to develop tensile membranes for membrane deflection experimentation to gain insight on the mechanical properties of the thin films. The incorporation of these findings will aid in the movement of SMA microactuation devices from theory to fruition and greatly benefit industries such as medicinal and aeronautical.
Role of Ni doping on transport properties of ZnO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dar, Tanveer Ahmad, E-mail: tanveerphysics@gmail.com; Agrawal, Arpana; Sen, Pratima
2015-06-24
Nickel doped (Ni=0.05) and undoped Zinc Oxide (ZnO) thin films have been prepared by Pulsed laser deposition (PLD) technique. The structural analysis of the films was done by X-ray diffraction (XRD) studies which reveal absence of any secondary phase in the prepared samples. UV transmission spectra show that Ni doping reduces the transparency of the films. X-ray Photoelectron spectroscopy (XPS) also shows the presence of metallic Ni along with +2 oxidation state in the sample. Low temperature magneto transport properties of the ZnO and NiZnO films are also discussed in view of Khosla fisher model. Ni doping in ZnO resultsmore » in decrease in magnitude of negative MR.« less
Graphene-silicon layered structures on single-crystalline Ir(111) thin films
Que, Yande D.; Tao, Jing; Zhang, Yong; ...
2015-01-20
Epitaxial growth of graphene on transition metal crystals, such as Ru,⁽¹⁻³⁾ Ir,⁽⁴⁻⁶⁾ and Ni,⁽⁷⁾ provides large-area, uniform graphene layers with controllable defect density, which is crucial for practical applications in future devices. To decrease the high cost of single-crystalline metal bulks, single-crystalline metal films are strongly suggested as the substrates for epitaxial growth large-scale high-quality graphene.⁽⁸⁻¹⁰⁾ Moreover, in order to weaken the interactions of graphene with its metal host, which may result in a suppression of the intrinsic properties of graphene,⁽¹¹ ¹²⁾ the method of element intercalation of semiconductors at the interface between an epitaxial graphene layer and a transitionmore » metal substrate has been successfully realized.⁽¹³⁻¹⁶⁾« less
Du, Ke-zhao; Wang, Xing-zhi; Liu, Yang; Hu, Peng; Utama, M Iqbal Bakti; Gan, Chee Kwan; Xiong, Qihua; Kloc, Christian
2016-02-23
2D semiconducting metal phosphorus trichalcogenides, particularly the bulk crystals of MPS3 (M = Fe, Mn, Ni, Cd and Zn) sulfides and MPSe3 (M = Fe and Mn) selenides, have been synthesized, crystallized and exfoliated into monolayers. The Raman spectra of monolayer FePS3 and 3-layer FePSe3 show the strong intralayer vibrations and structural stability of the atomically thin layers under ambient condition. The band gaps can be adjusted by element choices in the range of 1.3-3.5 eV. The wide-range band gaps suggest their optoelectronic applications in a broad wavelength range. The calculated cleavage energies of MPS3 are smaller than that of graphite. Therefore, the monolayers used for building of heterostructures by van der Waals stacking could be considered as the candidates for artificial 2D materials with unusual ferroelectric and magnetic properties.
Organic thin film transistor with a simplified planar structure
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yu, Jungsheng; Zhong, Jian; Jiang, Yadong
2009-05-01
Organic thin film transistor (OTFT) with a simplified planar structure is described. The gate electrode and the source/drain electrodes of OTFT are processed in one planar structure. And these three electrodes are deposited on the glass substrate by DC sputtering technology using Cr/Ni target. Then the electrode layouts of different width length ratio are made by photolithography technology at the same time. Only one step of deposition and one step of photolithography is needed while conventional process takes at least two steps of deposition and two steps of photolithography. Metal is first prepared on the other side of glass substrate and electrode is formed by photolithography. Then source/drain electrode is prepared by deposition and photolithography on the side with the insulation layer. Compared to conventional process of OTFTs, the process in this work is simplified. After three electrodes prepared, the insulation layer is made by spin coating method. The organic material of polyimide is used as the insulation layer. A small molecular material of pentacene is evaporated on the insulation layer using vacuum deposition as the active layer. The process of OTFTs needs only three steps totally. A semi-auto probe stage is used to connect the three electrodes and the probe of the test instrument. A charge carrier mobility of 0.3 cm2 /V s, is obtained from OTFTs on glass substrates with and on/off current ratio of 105. The OTFTs with the planar structure using simplified process can simplify the device process and reduce the fabrication cost.
2016-09-01
AFRL-RX-WP-JA-2017-0140 NON-VOLATILE FERROELECTRIC SWITCHING OF FERROMAGNETIC RESONANCE IN NIFE/PLZT MULTIFERROIC THIN FILM ...OF FERROMAGNETIC RESONANCE IN NIFE/PLZT MULTIFERROIC THIN FILM HETEROSTRUCTURES (POSTPRINT) 5a. CONTRACT NUMBER FA8650-14-C-5706 5b. GRANT... films , where the magnetic anisotropy of NiFe can be electrically modified by low voltages. Ferromagnetic resonance measurements confirm that the
Li, Y Z; Wang, Z L; Luo, H; Wang, Y Z; Xu, W J; Ran, G Z; Qin, G G; Zhao, W Q; Liu, H
2010-07-19
A phosphorescent organic light-emitting diode (PhOLED) with a nanometer-thick (approximately 10 nm) Ni silicide/ polycrystalline p-Si composite anode is reported. The structure of the PhOLED is Al mirror/ glass substrate / Si isolation layer / Ni silicide / polycrystalline p-Si/ V(2)O(5)/ NPB/ CBP: (ppy)(2)Ir(acac)/ Bphen/ Bphen: Cs(2)CO(3)/ Sm/ Au/ BCP. In the composite anode, the Ni-induced polycrystalline p-Si layer injects holes into the V(2)O(5)/ NPB, and the Ni silicide layer reduces the sheet resistance of the composite anode and thus the series resistance of the PhOLED. By adopting various measures for specially optimizing the thickness of the Ni layer, which induces Si crystallization and forms a Ni silicide layer of appropriate thickness, the highest external quantum efficiency and power conversion efficiency have been raised to 26% and 11%, respectively.
NASA Astrophysics Data System (ADS)
Luciu, I.; Duday, D.; Choquet, P.; Perigo, E. A.; Michels, A.; Wirtz, T.
2016-12-01
Magnetic coatings are used for a lot of applications from data storage in hard discs, spintronics and sensors. Meanwhile, magnetron sputtering is a process largely used in industry for the deposition of thin films. Unfortunately, deposition of magnetic coatings by magnetron sputtering is a difficult task due to the screening effect of the magnetic target lowering the magnetic field strength of the magnet positioned below the target, which is used to generate and trap ions in the vicinity of the target surface to be sputtered. In this work we present an efficient method to obtain soft magnetic thin films by reactive sputtering of a non-magnetic target. The aim is to recover the magnetic properties of Ni after dealloying of Ni and Cr due to the selective reactivity of Cr with the reactive nitrogen species generated during the deposition process. The effects of nitrogen content on the dealloying and DC magnetron sputtering (DCMS) deposition processes are studied here. The different chemical compositions, microstructures and magnetic properties of DCMS thin films obtained by sputtering in reactive gas mixtures with different ratios of Ar/N2 from a non-magnetic Ni-20Cr target have been determined. XPS data indicate that the increase of nitrogen content in the films has a strong influence on the NiCr phase decomposition into Ni and CrN, leading to ferromagnetic coatings due to the Ni phase. XRD results show that the obtained Ni-CrN films consist of a metallic fcc cubic Ni phase mixed with fcc cubic CrN. The lattice parameter decreases with the N2 content and reaches the theoretical value of the pure fcc-Ni, when Cr is mostly removed from the Ni-Cr phase. Dealloying of Cr from a Ni80-Cr20 solid solution is achieved in our experimental conditions and the deposition of Ni ferromagnetic coatings embedding CrN from a non-magnetic target is possible with reactive DC magnetron sputtering.
NASA Astrophysics Data System (ADS)
Chen, Yuehua; Hao, Lin; Zhang, Xinwen; Zhang, Xiaolin; Liu, Mengjiao; Zhang, Mengke; Wang, Jiong; Lai, Wen-Yong; Huang, Wei
2017-08-01
In this paper, solution-processed nickel oxide (NiOx) is used as hole-injection layers (HILs) in solution-processed phosphorescent organic light-emitting diodes (PhOLEDs). Serious exciton quenching is verified at the NiOx/emitting layer (EML) interface, resulting in worse device performance. The device performance is significantly improved by inserting a layer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) between the EML and NiOx. The solution-processed blue PhOLED with the double-stacked NiOx/PEDOT:PSS HILs shows a maximum current efficiency of 30.5 cd/A, which is 75% and 30% higher than those of the devices with a single NiOx HIL and a PEDOT:PSS HIL, respectively. Improvement of device efficiency can be attributed to reducing exciton quenching of the PEDOT:PSS layer as well as the electron blocking effect of the NiOx layer.
NASA Astrophysics Data System (ADS)
Sevast'yanov, E. Yu.; Maksimova, N. K.; Potekaev, A. I.; Sergeichenko, N. V.; Chernikov, E. V.; Almaev, A. V.; Kushnarev, B. O.
2017-11-01
Analysis of the results of studying electrical and gas sensitive characteristics of the molecular hydrogen sensors based on thin nanocrystalline SnO2 films coated with dispersed Au layers and containing Au+Ni and Au+Co impurities in the bulk showed that the characteristics of these sensors are more stable under the prolonged exposure to hydrogen in comparison with Au/SnO2:Sb, Au films modified only with gold. It has been found that introduction of the nickel and cobalt additives increases the band bending at the grain boundaries of tin dioxide already in freshly prepared samples, which indicates an increase in the density Ni of the chemisorbed oxygen. It is important that during testing, the band bending eφs at the grain boundaries of tin dioxide additionally slightly increases. It can be assumed that during crystallization of films under thermal annealing, the 3d-metal atoms in the SnO2 volume partially segregate on the surface of microcrystals and form bonds with lattice oxygen, the superstoichiometric tin atoms are formed, and the density Ni increases. If the bonds of oxygen with nickel and cobalt are stronger than those with tin, then, under the prolonged tests, atomic hydrogen will be oxidized not by lattice oxygen, but mainly by the chemisorbed one. In this case, stability of the sensors' characteristics increases.
Formation of alternating interfacial layers in Au-12Ge/Ni joints
Lin, Shih-kang; Tsai, Ming-yueh; Tsai, Ping-chun; Hsu, Bo-hsun
2014-01-01
Au-Ge alloys are promising materials for high-power and high-frequency packaging, and Ni is frequently used as diffusion barriers. This study investigates interfacial reactions in Au-12Ge/Ni joints at 300°C and 400°C. For the reactions at 300°C, typical interfacial morphology was observed and the diffusion path was (Au) + (Ge)/NiGe/Ni5Ge3/Ni. However, an interesting phenomenon – the formation of (Au,Ni,Ge)/NiGe alternating layers – was observed for the reactions at 400°C. The diffusion path across the interface was liquid/(Au,Ni,Ge)/NiGe/···/(Au,Ni,Ge)/NiGe/Ni2Ge/Ni. The periodic thermodynamic instability at the NiGe/Ni2Ge interface caused the subsequent nucleation of new (Au,Ni,Ge)/NiGe pairs. The thermodynamic foundation and mechanism of formation of the alternating layers are elaborated in this paper. PMID:24690992
Development and Verification of Sputtered Thin-Film Nickel-Titanium (NiTi) Shape Memory Alloy (SMA)
2015-08-01
Shape Memory Alloy (SMA) by Cory R Knick and Christopher J Morris Approved for public release; distribution unlimited...Laboratory Development and Verification of Sputtered Thin-Film Nickel-Titanium (NiTi) Shape Memory Alloy (SMA) by Cory R Knick and Christopher
Investigation of Ni@CoO core-shell nanoparticle films synthesized by sequential layer deposition
NASA Astrophysics Data System (ADS)
Spadaro, M. C.; Luches, P.; Benedetti, F.; Valeri, S.; Turchini, S.; Bertoni, G.; Ferretti, A. M.; Capetti, E.; Ponti, A.; D'Addato, S.
2017-02-01
Films of Ni@CoO core-shell nanoparticles (NP Ni core size d ≈ 11 nm) have been grown on Si/SiOx and lacey carbon supports, by a sequential layer deposition method: a first layer of CoO was evaporated on the substrate, followed by the deposition of a layer of pre-formed, mass-selected Ni NPs, and finally an overlayer of CoO was added. The Ni NPs were formed by a magnetron gas aggregation source, and mass selected with a quadrupole mass filter. The morphology of the films was investigated with Scanning Electron Microscopy and Scanning Transmission Electron Microscopy. The Ni NP cores have a shape compatible with McKay icosahedron, caused by multitwinning occurring during their growth in the source, and the Ni NP layer shows the typical random paving growth mode. After the deposition of the CoO overlayer, CoO islands are observed, gradually extending and tending to merge with each other, with the formation of shells that enclose the Ni NP cores. In situ X-ray Photoelectron Spectroscopy showed that a few Ni atomic layers localized at the core-shell interface are oxidized, hinting at the possibility of creating an intermediate NiO shell between Ni and CoO, depending on the deposition conditions. Finally, X-ray Magnetic Circular Dichroism at the Ni L2,3 absorption edge showed the presence of magnetization at room temperature even at remanence, revealing the possibility of magnetic stabilization of the NP film.
Hajihashemi, R; Rashidi, Ali M; Alaie, M; Mohammadzadeh, R; Izadi, N
2014-11-01
Nano-composite of multiwall carbon nanotube, decorated with NiFe2O4 nanoparticles (NiFe2O4-MWCNT), was synthesized using the sol-gel method. NiFe2O4-MWCNTs were characterized using different methods such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM). The average size of the crystallites is 23.93 nm. The values of the saturation magnetization (MS), coercivity (HC) and retentivity (MR) of NiFe2O4-MWCNTs are obtained as 15 emu g(-1), 21Oe and 5 emu g(-1), respectively. In this research, NiFe2O4-MWCNT thin films were prepared with the spin-coating method. These thin films were used as the H2S gas sensor. The results suggest the possibility of the utilization of NiFe2O4-MWCNT nano-composite, as the H2S detector. The sensor shows appropriate response towards 100 ppm of H2S at 300°C. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ueki, Kosuke; Ueda, Kyosuke; Nakai, Masaaki; Nakano, Takayoshi; Narushima, Takayuki
2018-04-01
Microstructural changes were observed during the plastic deformation of ASTM F90 Co-20Cr-15W-10Ni (mass pct) alloy heat-treated at 873 K (600 °C) for 14.4 ks, and analyzed by electron backscatter diffraction and in situ X-ray diffraction techniques. The obtained results revealed that the area fraction of the ɛ-phase (f ɛ ) in the as-received alloy was higher than that in the heat-treated alloy in the low-to-middle strain region (≤ 50 pct), whereas the f ɛ of the heat-treated alloy was higher than that of the as-received alloy at the fracture point. During plastic deformation, the ɛ-phase was preferentially formed at the twin boundaries of the heat-treated alloy rather than at the grain boundaries. According to the transmission electron microscopy observations, the thin ɛ-phase layer formed due to the alloy heat treatment acted as the origin of deformation twinning, which decreased the stress concentration at the grain boundaries. The results of anodic polarization testing showed that neither the heat treatment at 873 K (600 °C) nor plastic deformation affected the alloy corrosion properties. To the best of our knowledge, this is the first study proving that the formation of a thin ɛ-phase layer during the low-temperature heat treatment of the studied alloy represents an effective method for the enhancement of the alloy ductility without sacrificing its strength and corrosion properties.
NASA Astrophysics Data System (ADS)
Wahyuningsih, S.; Rahmawati, F.; Kamal, S.; Slamet, S.; Yunianto, M.; Rahmawati, P.; Aini, F. N.
2018-03-01
Optode (Optical sensors) is one of the modern chemical sensors in the field of analytical chemistry that has utilized of inorganic polymers. The optode based on MLCT (Metal to Ligand Charge Transfer) (or MMLL’CT, Mixing Metal-Ligand to Ligand Charge Transfer) or LMCT (Ligand to Metal Charge Transfer) phenomenons have beed generated from oktyltrietxysilane, aminopropyltrimethoxysilane and 4-(2-pyrydilazo) resorcinol (abbreviated as OTES-APTS-PAR) for Cu(II), Cr(III), Ni(II), Fe(III), Cd(II), and Zn(II) ions target. The syntheses of thin layer optode were performed by sol gel method followed by evaporation in glass substrat. The formation of 4-(2-pyrydilazo) resorcinol complexes with ions target have gained strong absorption spectras in visible region because of charge transfer phenomenons. The optical sensor of OTES-APTS-PAR was analysed thermal properties using Differential Thermal Analysis (DTA). DTA thermogram showed a glass transition peaks at a temperature of 315.5 °C. Fourier transform Infrared (FTIR) spectras have showed that the optode materials consisted NH aryl groups indicated IR absorption at 1577.7 cm-1 and also –CH aromatic at 1469.0 cm-1. Synthesized optode materials have strong broad visible absorption with the maximum wavelengths (λmax) = 405 nm and 508.5 nm, respectively. This material have excellent optical responds to several metal ions such as Cu(II), Cr(III), Ni(II), Fe(III), Cd(II), and Zn(II) that was showed from huge Δλmax and the increase of Ktotal
NASA Astrophysics Data System (ADS)
Ueki, Kosuke; Ueda, Kyosuke; Nakai, Masaaki; Nakano, Takayoshi; Narushima, Takayuki
2018-06-01
Microstructural changes were observed during the plastic deformation of ASTM F90 Co-20Cr-15W-10Ni (mass pct) alloy heat-treated at 873 K (600 °C) for 14.4 ks, and analyzed by electron backscatter diffraction and in situ X-ray diffraction techniques. The obtained results revealed that the area fraction of the ɛ-phase ( f ɛ ) in the as-received alloy was higher than that in the heat-treated alloy in the low-to-middle strain region (≤ 50 pct), whereas the f ɛ of the heat-treated alloy was higher than that of the as-received alloy at the fracture point. During plastic deformation, the ɛ-phase was preferentially formed at the twin boundaries of the heat-treated alloy rather than at the grain boundaries. According to the transmission electron microscopy observations, the thin ɛ-phase layer formed due to the alloy heat treatment acted as the origin of deformation twinning, which decreased the stress concentration at the grain boundaries. The results of anodic polarization testing showed that neither the heat treatment at 873 K (600 °C) nor plastic deformation affected the alloy corrosion properties. To the best of our knowledge, this is the first study proving that the formation of a thin ɛ-phase layer during the low-temperature heat treatment of the studied alloy represents an effective method for the enhancement of the alloy ductility without sacrificing its strength and corrosion properties.
New Insight into Nuclear Reactions in Solids
NASA Astrophysics Data System (ADS)
Miley, George H.
2003-04-01
Earlier work by the author disclosed evidence for nuclear transmutations in multi-layer thin-film Ni/Pd electrodes loaded to a high ratio of hydrogen/film metal using an electrolytic technique [1]. Non-natural isotopes abundances were found for select products. A distinctive characteristic of this and similar experiments by others is a product yield curve vs. mass with four high yield peaks distributed between low and high masses. Attempts to explain this observation have evolved around the original swimming electron layer (SEL) theory [2]. In addition, CR-39 track detector measurements have revealed low-level emission of 1.6 MeV protons and 16 MeV alpha particles from the front face of the thin film electrodes during runs [3]. Most recently Mitsubishi Corp. researchers have reported a real-time transmutation measurement using built-in XPS diagnostics where a surface layer of Sr-88 was transmuted into Mo-96 over a 200 hour run period during the diffusion of deuterium through a multi-layer thin-film Pd/CaO substrate [4]. Likewise in a companion experiment, Cs-133 was transmuted into Pr-141. These products exhibit a large deviation from natural isotopic abundance, and the characteristic signature is a mass change of 8 and charge change of 4. These various phenomena along with a preliminary theory involving SEL and orbital mixing will be presented. The objective is to provide a unified understanding of both types of experiments presented in Refs. 1 and 3. [1] G.H. Miley and J. A. Patterson, "Nuclear Transmutations in Thin-Film Nickel Coatings Undergoing Electrolysis," J. New Energy, 1, 3, 5-30 (1996). [2] H. Hora, et al., "Screening in Cold Fusion Derived from D D Reactions," Physics Ltrs. A, 175, 138-143, (1993). [3] A. Lipson, et al., "In-situ long - range alpha particles and X-ray detection in Pd thin film-cathodes during electrolysis in, Li2SO4/H2O, Bult. APS, 47, 1,Pt. II, 1219, Indianapolis, (2002). [4] Y. Iwamura, T. Itoh, et al., "Low energy nuclear reaction induced by D gas permeation through multilayer film," Japanese J. Physics, 41, pt. 1, 7A, 4642, (2002).
NASA Astrophysics Data System (ADS)
Găluşcă, D. G.; Perju, M. C.; Nejneru, C.; Burduhos Nergiş, D. D.; Lăzărescu, I. E.
2018-06-01
The modification of surface properties by duplex treatments, involving the overlapping of two surface treatment techniques, has been established as an intelligent solution to create new applications for the substrate metallic material. There are driveline components operating under very tough wear and corrosion conditions, with high temperature and humidity variations. Such components are usually made of high Cr and Ni stainless steel and for the hardening of surfaces it is recommended a thermo chemical treatment. Since stainless steels, especially austenitic stainless steels, are difficult to nitride, experimental studies focus on increasing the depth of the nitride layer and surface hardness. Achieving the goal involves changing active layer chemical composition by introducing aluminum in the surface layer. In order to find a solution, a new surface treatment technique is produced by combining aluminum thin films by MO-CVD in a fluidized bed using a triisobutylaluminum precursor with a thermo chemical nitriding treatment.
Walker, Mary P; White, Richard J; Kula, Katherine S
2005-06-01
Titanium-based alloys have high corrosion resistance because they form a thin, stable oxide layer. Nevertheless, fluoride prophylactic agents can cause corrosion and associated discoloration of titanium-based orthodontic wires. The purpose of this investigation was to study the effects of fluoride prophylactic agents on the mechanical properties of nickel-titanium (Ni-Ti) and copper-nickel-titanium (Cu-Ni-Ti) orthodontic archwires. Preformed rectangular Ni-Ti and Cu-Ni-Ti wires were immersed in either an acidulated fluoride agent, a neutral fluoride agent, or distilled water (control) for 1.5 hours at 37 degrees C. After immersion, the loading and unloading elastic modulus and yield strength of the wires were measured with a 3-point bend test in a water bath at 37 degrees C, in accordance with the criteria in the current American National Standard/American Dental Association Specification No. 32 for Orthodontic Wires (2000). Scanning electron microscopy was also used to characterize the effects of the fluoride treatment on the wire topography. Unloading mechanical properties of Ni-Ti orthodontic wires were significantly decreased after exposure to both fluoride agents (1-way analysis of variance [ANOVA] and Dunnett's post hoc, alpha =.05); however, Cu-Ni-Ti wire mechanical properties were not significantly affected by either fluoride agent (1-way ANOVA, alpha =.05). Corrosive changes in surface topography were observed for both wires, with Cu-Ni-Ti appearing to be more severely affected. The results suggest that using topical fluoride agents with Ni-Ti wire could decrease the functional unloading mechanical properties of the wire and contribute to prolonged orthodontic treatment.
Interface perpendicular magnetic anisotropy in ultrathin Ta/NiFe/Pt layered structures
NASA Astrophysics Data System (ADS)
Hirayama, Shigeyuki; Kasai, Shinya; Mitani, Seiji
2018-01-01
Interface perpendicular magnetic anisotropy (PMA) in ultrathin Ta/NiFe/Pt layered structures was investigated through magnetization measurements. Ta/NiFe/Pt films with NiFe layer thickness (t) values of 2 nm or more showed typical in-plane magnetization curves, which was presumably due to the dominant contribution of the shape magnetic anisotropy. The thickness dependence of the saturation magnetization of the entire NiFe layer (M s) was well analyzed using the so-called dead-layer model, showing that the magnetically active part of the NiFe layer has saturation magnetization (M\\text{s}\\text{act}) independent of t and comparable to the bulk value. In the perpendicular direction, the saturation field H k was found to clearly decrease with decreasing t, while the effective field of shape magnetic anisotropy due to the active NiFe saturation magnetization M\\text{s}\\text{act} should be independent of t. These observations show that there exists interface PMA in the layered structures. The interface PMA energy density was determined to be ∼0.17 erg/cm2 using the dead-layer model. Motivated by the correlation observed between M s and H k, we also attempted to interpret the experimental results using an alternative approach beyond the dead-layer model; however, it gives only implications on the incomplete validity of the dead-layer model and no better understanding.
Wang, Fuzhi; Sun, Gang; Li, Cong; Liu, Jiyan; Hu, Siqian; Zheng, Hua; Tan, Zhan'ao; Li, Yongfang
2014-06-25
Efficient polymer solar cells (PSCs) with enhanced open-circuit voltage (Voc) are fabricated by introducing solution-processed and UV-ozone (UVO)-treated nickel acetate (O-NiAc) as an anode buffer layer. According to X-ray photoelectron spectroscopy data, NiAc partially decomposed to NiOOH during the UVO treatment. NiOOH is a dipole species, which leads to an increase in the work function (as confirmed by ultraviolet photoemission spectroscopy), thus benefitting the formation of ohmic contact between the anode and photoactive layer and leading to increased Voc. In addition, the UVO treatment improves the wettability between the substrate and solvent of the active layer, which facilitates the formation of an upper photoactive layer with better morphology. Further, the O-NiAc layer can decrease the series resistance (Rs) and increase the parallel resistance (Rp) of the devices, inducing enhanced Voc in comparison with the as-prepared NiAc-buffered control devices without UVO treatment. For PSCs based on the P3HT:PCBM system, Voc increases from 0.50 to 0.60 V after the NiAc buffer layer undergoes UVO treatment. Similarly, in the P3HT:ICBA system, the Voc value of the device with a UVO-treated NiAc buffer layer increases from 0.78 to 0.88 V, showing an enhanced power conversion efficiency of 6.64%.
Performance of magnetoelectric PZT/Ni multiferroic system for energy harvesting application
NASA Astrophysics Data System (ADS)
Gupta, Reema; Tomar, Monika; Kumar, Ashok; Gupta, Vinay
2017-03-01
Magnetoelectric (ME) coefficient of Lead Zirconium Titanate (PZT) thin films has been probed for possible energy harvesting applications. Single phase PZT thin films have been deposited on nickel substrate (PZT/Ni) using pulsed laser deposition (PLD) technique. The effect of PLD process parameters on the ME coupling coefficient in the prepared systems has been investigated. The as grown PZT films on Ni substrate were found to be polycrystalline with improved ferroelectric and ferromagnetic properties. The electrical switching behavior of the PZT thin films were verified using capacitance voltage measurements, where well defined butterfly loops were obtained. The ME coupling coefficient was estimated to be in the range of 94.5 V cm-1 Oe-1-130.5 V cm-1 Oe-1 for PZT/Ni system, which is large enough for harnessing electromagnetic energy for subsequent applications.
Ce doped NiO nanoparticles as selective NO2 gas sensor
NASA Astrophysics Data System (ADS)
Gawali, Swati R.; Patil, Vithoba L.; Deonikar, Virendrakumar G.; Patil, Santosh S.; Patil, Deepak R.; Patil, Pramod S.; Pant, Jayashree
2018-03-01
Metal oxide gas sensors are promising portable gas detection devices because of their advantages such as low cost, easy production and compact size. The performance of such sensors is strongly dependent on material properties such as morphology, structure and doping. In the present study, we report the effect of cerium (Ce) doping on nickel oxide (NiO) nano-structured thin film sensors towards various gases. Bare NiO and Ce doped NiO nanoparticles (Ce:NiO) were synthesized by sol-gel method. To understand the effect of Ce doping in nickel oxide, various molar percentages of Ce with respect to nickel were incorporated. The structure, phase, morphology and band-gap energy of as-synthesized nanoparticles were studied by XRD, SEM, EDAX and UV-vis spectroscopy. Thin film gas sensors of all the samples were prepared and subjected to various gases such as LPG, NH3, CH3COCH3 and NO2. A systematic and comparative study reveals an enhanced gas sensing performance of Ce:NiO sensors towards NO2 gas. The maximum sensitivity for NO2 gas is around 0.719% per ppm at moderate operating temperature of 150 °C for 0.5% Ce:NiO thin film gas sensor. The enhanced gas sensing performance for Ce:NiO is attributed to the distortion of crystal lattice caused by doping of Ce into NiO.
Corrosion and wear properties of Zn-Ni and Zn-Ni-Al2O3 multilayer electrodeposited coatings
NASA Astrophysics Data System (ADS)
Shourgeshty, M.; Aliofkhazraei, M.; Karimzadeh, A.; Poursalehi, R.
2017-09-01
Zn-Ni and Zn-Ni-Al2O3 multilayer coatings with 32, 128, and 512 layers were electroplated on a low carbon steel substrate by pulse electrodeposition under alternative changes in the duty cycle between 20% and 90% and a constant frequency of 250 Hz. Corrosion behavior was investigated by potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) and wear behavior of the coatings was evaluated by a pin on disk test. The results showed that the corrosion resistance of coatings was improved by increasing the number of layers (the decrease in layer thickness) as well as the presence of alumina nanoparticles. The lowest corrosion current density corresponds to Zn-Ni-Al2O3 with 512 layers equal to 3.74 µA cm-2. Increasing the number of layers in the same total thickness and the presence of alumina nanoparticles within the coating also leads to the improvement in wear resistance of the samples. The coefficient of friction decreased with increasing number of layers and the lowest coefficient of friction (0.517) corresponds to Zn-Ni-Al2O3 coating with 512 layers. Wear mechanism of Zn-Ni coatings with a different number of layers is adhesive while in the Zn-Ni-Al2O3 coatings wear mechanism is a combination of adhesive and abrasive wear, where by increasing the number of the layers to 512 abrasive wear mechanism becomes dominant.
Electronic structure and magnetic properties of Ni-doped SnO2 thin films
NASA Astrophysics Data System (ADS)
Sharma, Mayuri; Kumar, Shalendra; Alvi, P. A.
2018-05-01
This paper reports the electronic structure and magnetic properties of Ni-doped SnO2 thin film which were grown on Si (100) substrate by PLD (pulse laser deposition) technique under oxygen partial pressure (PO2). For getting electronic structure and magnetic behavior, the films were characterized using near edge X-ray absorption fine structure spectroscopy (NEXAFS) and DC magnetization measurements. The NEXAFS study at Ni L3,2 edge has been done to understand the local environment of Ni and Sn ions within SnO2 lattice. DC magnetization measurement shows that the saturation magnetization increases with the increase in substitution of Ni2+ ions in the system.
Sn diffusion during Ni germanide growth on Ge1-xSnx
NASA Astrophysics Data System (ADS)
Demeulemeester, J.; Schrauwen, A.; Nakatsuka, O.; Zaima, S.; Adachi, M.; Shimura, Y.; Comrie, C. M.; Fleischmann, C.; Detavernier, C.; Temst, K.; Vantomme, A.
2011-11-01
We report on the redistribution of Sn during Ni germanide formation on Ge1-xSnx/
Excimer laser annealing of NiTi shape memory alloy thin film
NASA Astrophysics Data System (ADS)
Xie, Qiong; Huang, Weimin; Hong, Ming Hui; Song, Wendong; Chong, Tow Chong
2003-02-01
NiTi Shape Memory Alloy (SMA) is with great potential for actuation in microsystems. It is particularly suitable for medical applications due to its excellent biocompatibility. In MEMS, local annealing of SMA is required in the process of fabrication. In this paper, local annealing of Ni52Ti48 SMA with excimer laser is proposed for the first time. The Ni52Ti48 thin film in a thickness of 5 μm was deposited on Si (100) wafer by sputtering at room temperature. After that, the thin film was annealed by excimer laser (248nm KrF laser) for the first time. Field-Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM) were used to characterize the surface profile of the deposited film after laser annealing. The phase transformation was measured by Differential Scanning Calorimeter (DSC) test. It is concluded that NiTi film sputtering on Si(100) substrate at room temperature possesses phase transformation after local laser annealing but with cracks.
Nanoporous Ni(OH)2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor.
Ji, Junyi; Zhang, Li Li; Ji, Hengxing; Li, Yang; Zhao, Xin; Bai, Xin; Fan, Xiaobin; Zhang, Fengbao; Ruoff, Rodney S
2013-07-23
Nanoporous nickel hydroxide (Ni(OH)2) thin film was grown on the surface of ultrathin-graphite foam (UGF) via a hydrothermal reaction. The resulting free-standing Ni(OH)2/UGF composite was used as the electrode in a supercapacitor without the need for addition of either binder or metal-based current collector. The highly conductive 3D UGF network facilitates electron transport and the porous Ni(OH)2 thin film structure shortens ion diffusion paths and facilitates the rapid migration of electrolyte ions. An asymmetric supercapacitor was also made and studied with Ni(OH)2/UGF as the positive electrode and activated microwave exfoliated graphite oxide ('a-MEGO') as the negative electrode. The highest power density of the fully packaged asymmetric cell (44.0 kW/kg) was much higher (2-27 times higher), while the energy density was comparable to or higher, than high-end commercially available supercapacitors. This asymmetric supercapacitor had a capacitance retention of 63.2% after 10,000 cycles.
Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor
NASA Astrophysics Data System (ADS)
Gupta, Vinay; Gupta, Shubhra; Miura, Norio
Spinels are not known for their supercapacitive nature. Here, we have explored electrochemically synthesized nanostructured NiCo 2O 4 spinel thin-film electrode for electrochemical supercapacitors. The nanostructured NiCo 2O 4 spinel thin film exhibited a high specific capacitance value of 580 F g -1 and an energy density of 32 Wh kg -1 at the power density of 4 kW kg -1, accompanying with good cyclic stability.
NASA Astrophysics Data System (ADS)
Yuan, Peng; Zhang, Ning; Zhang, Dan; Liu, Tao; Chen, Limiao; Ma, Renzhi; Qiu, Guanzhou; Liu, Xiaohe
2016-01-01
A facile solvothermal method is developed for synthesizing layered Co-Ni hydroxide hierarchical structures by using hexamethylenetetramine (HMT) as alkaline reagent. The electrochemical measurements reveal that the specific capacitances of layered bimetallic (Co-Ni) hydroxides are generally superior to those of layered monometallic (Co, Ni) hydroxides. The as-prepared Co0.5Ni0.5 hydroxide hierarchical structures possesses the highest specific capacitance of 1767 F g-1 at a galvanic current density of 1 A g-1 and an outstanding specific capacitance retention of 87% after 1000 cycles. In comparison with the dispersed nanosheets of Co-Ni hydroxide, layered hydroxide hierarchical structures show much superior electrochemical performance. This study provides a promising method to construct hierarchical structures with controllable transition-metal compositions for enhancing the electrochemical performance in hybrid supercapacitors.
NASA Astrophysics Data System (ADS)
Hong, Ie-Hong; Hsu, Hsin-Zan
2018-03-01
The layered antiferromagnetism of parallel nanowire (NW) arrays self-assembled on Si(110) have been observed at room temperature by direct imaging of both the topographies and magnetic domains using spin-polarized scanning tunneling microscopy/spectroscopy (SP-STM/STS). The topographic STM images reveal that the self-assembled unidirectional and parallel NiSi NWs grow into the Si(110) substrate along the [\\bar{1}10] direction (i.e. the endotaxial growth) and exhibit multiple-layer growth. The spatially-resolved SP-STS maps show that these parallel NiSi NWs of different heights produce two opposite magnetic domains, depending on the heights of either even or odd layers in the layer stack of the NiSi NWs. This layer-wise antiferromagnetic structure can be attributed to an antiferromagnetic interlayer exchange coupling between the adjacent layers in the multiple-layer NiSi NW with a B2 (CsCl-type) crystal structure. Such an endotaxial heterostructure of parallel magnetic NiSi NW arrays with a layered antiferromagnetic ordering in Si(110) provides a new and important perspective for the development of novel Si-based spintronic nanodevices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callori, S. J., E-mail: sara.callori@ansto.gov.au; Bertinshaw, J.; Bragg Institute, Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234
2014-07-21
We have observed 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer system using polarized neutron reflectometry. Magnetometry results show magnetic switching for both the biased and free NiFe layers, the latter of which reverses at low applied fields. As these measurements are only capable of providing information about the total magnetization within a sample, polarized neutron reflectometry was used to investigate the reversal behavior of the NiFe layers individually. Both the non-spin-flip and spin-flip neutron reflectometry signals were tracked around the free NiFe layer hysteresis loop and were used to detail the evolution of the magnetization during reversal. At lowmore » magnetic fields near the free NiFe coercive field, a large spin-flip signal was observed, indicating magnetization aligned perpendicular to both the applied field and pinned layer.« less
Nanoscale strengthening mechanisms in metallic thin film systems
NASA Astrophysics Data System (ADS)
Schoeppner, Rachel Lynn
Nano-scale strengthening mechanisms for thin films were investigated for systems governed by two different strengthening techniques: nano-laminate strengthening and oxide dispersion strengthening. Films were tested under elevated temperature conditions to investigate changes in deformation mechanisms at different operating temperatures, and the structural stability. Both systems exhibit remarkable stability after annealing and thus long-term reliability. Nano-scale metallic multilayers with smaller layer thicknesses show a greater relative resistance to decreasing strength at higher temperature testing conditions than those with larger layer thicknesses. This is seen in both Cu/Ni/Nb multilayers as well as a similar tri-component bi-layer system (Cu-Ni/Nb), which removed the coherent interface from the film. Both nanoindentation and micro-pillar compression tests investigated the strain-hardening ability of these two systems to determine what role the coherent interface plays in this mechanism. Tri-layer films showed a higher strain-hardening ability as the layer thickness decreased and a higher strain-hardening exponent than the bi-layer system: verifying the presence of a coherent interface increases the strain-hardening ability of these multilayer systems. Both systems exhibited hardening of the room temperature strength after annealing, suggesting a change in microstructure has occurred, unlike that seen in other multilayer systems. Oxide dispersion strengthened Au films showed a marked increase in hardness and wear resistance with the addition of ZnO particles. The threshold for stress-induced grain-refinement as opposed to grain growth is seen at concentrations of at least 0.5 vol%. These systems exhibited stable microstructures during thermal cycling in films containing at least 1.0%ZnO. Nanoindentation experiments show the drop in hardness following annealing is almost completely attributed to the resulting grain growth. Four-point probe resistivity measurements on annealed films showed a significant drop in resistivity for the higher concentration ZnO films, which is proposed to be the result of a change in the particle-matrix interface structure. A model connecting the hardness and resistivity as a function of ZnO concentration has been developed based on the assumption that the impact of nm-scale ZnO precipitates on the mechanical and electrical behavior of Au films is likely dominated by a transition from semi-coherent to incoherent interfaces.
Benea, Lidia; Celis, Jean-Pierre
2016-04-06
This research work describes the effect of dispersed titanium carbide (TiC) nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers.
Conductivity and local structure in LaNiO3
NASA Astrophysics Data System (ADS)
Fowlie, Jennifer; Gibert, Marta; Tieri, Giulio; Gloter, Alexandre; à+/-Iguez, Jorge; Filippetti, Alessio; Catalano, Sara; Gariglio, Stefano; StéPhan, Odile; Triscone, Jean-Marc
In this study we approach the thickness-dependence of the properties of LaNiO3 films along multiple, complementary avenues: sophisticated ab initio calculations, scanning transmission electron microscopy and electronic transport. Specifically, we find an unexpected maximum in conductivity in films of thickness 6 - 10 unit cells (3 nm) for several series of LaNiO3 films. Ab initio transport based on the detailed crystal structure also reveals a maximum in conductivity at the same thickness. In agreement with the structure obtained from scanning transmission electron microscopy (STEM), our simulated structures reveal that the substrate- and surface-induced distortions lead to three types of local structure (heterointerface, interior-layer, surface). Based on this observation, a 3-element parallel conductor model neatly reproduces the trend of conductivity with thickness. This study addresses the question of how structural distortions at the atomic scale evolve in a thin film under the influence of the substrate and the surface. This topic is key to the understanding of the physics of heterostructures and the design of functional oxides.
Lee, Daeho; Paeng, Dongwoo; Park, Hee K; Grigoropoulos, Costas P
2014-10-28
We introduce a method for direct patterning of Ni electrodes through selective laser direct writing (LDW) of NiO nanoparticle (NP) ink. High-resolution Ni patterns are generated from NiO NP thin films by a vacuum-free, lithography-free, and solution-processable route. In particular, a continuous wave laser is used for the LDW reductive sintering of the metal oxide under ambient conditions with the aid of reducing agents in the ink solvent. Thin (∼ 40 nm) Ni electrodes of glossy metallic surfaces with smooth morphology and excellent edge definition can be fabricated. By applying this method, we demonstrate a high transmittance (>87%), electrically conducting panel for a touch screen panel application. The resistivity of the Ni electrode is less than an order of magnitude higher compared to that of the bulk Ni. Mechanical bending test, tape-pull test, and ultrasonic bath test confirm the robust adhesion of the electrodes on glass and polymer substrates.
NASA Astrophysics Data System (ADS)
Lai, Wei-Chih; Lin, Kun-Wei; Guo, Tzung-Fang; Chen, Peter; Liao, Yuan-Yu
2018-02-01
We demonstrated the performance of inverted CH3NH3PbI3 perovskite-based solar cells (SCs) with a thermally oxidized nickel/gold/copper (Ni/Au/Cu) trilayer transparent electrode. Oxidized Ni/Au/Cu is a high transparent layer and has less resistance than the oxidized Ni/Au layer. Like the oxidized Ni/Au layer, oxidized Ni and Cu in oxidized Ni/Au/Cu could perform as a hole transport layer of the perovskite-based SCs. It leads to improved perovskite SC performance on an open circuit voltage of 1.01 V, a short circuit current density of 14.36 mA/cm2, a fill factor of 76.7%, and a power conversion efficiency (η%) of 11.1%. The η% of perovskite SCs with oxidized Ni (10 nm)/Au (6 nm)/Cu (1 nm) improved by approximately 10% compared with that of perovskite SCs with oxidized Ni/Au.
2014-01-01
CdS nanoneedles with different morphologies, structures, and growth modes have been grown on Ni-coated Si(100) surface under different experimental conditions by pulsed laser deposition method. The effects of catalyst layer, substrate temperature, and laser pulse energy on the growth of the CdS nanoneedles were studied in detail. It was confirmed that the formation of the molten catalyst spheres is the key to the nucleation of the CdS nanoneedles by observing the morphologies of the Ni catalyst thin films annealed at different substrate temperatures. Both the substrate temperature and laser pulse energy strongly affected the growth modes of the CdS nanoneedles. The secondary growth of the smaller nanoneedles on the top of the main nanoneedles was found at appropriate conditions. A group of more completed pictures of the growth modes of the CdS nanoneedles were presented. PMID:24559455
Bareno, Javier; Dietz Rago, Nancy; Dogan, Fulya; ...
2018-01-17
Here, 1.5 Ah pouch cells based on Li(Ni 0.5Mn 0.3Co 0.2)O 2 cathodes and graphite anodes, both containing poly (vinylidene fluoride) (PVDF) binders, were systematically overcharged to 100, 120, 140, 160, 180, and 250% state of charge (SOC), at which point they vented. The cells were subsequently discharged to 0% SOC and disassembled under an inert atmosphere for characterization. A combination of X-ray photoelectron spectroscopy (XPS), scanning-electron microscopy (SEM), energy-dispersive spectroscopy (EDS), 6Li SSNMR, and X-ray diffraction (XRD) analysis of the NMC532 cathodes indicates the formation of a thin C- and O-rich cathode electrolyte interphase layer, progressive Li lossmore » above 140% SOC, and retention of the bulk crystal structure at all states of charge.« less
NASA Astrophysics Data System (ADS)
Bareño, Javier; Dietz Rago, Nancy; Dogan, Fulya; Graczyk, Donald G.; Tsai, Yifen; Naik, Seema R.; Han, Sang-Don; Lee, Eungje; Du, Zhijia; Sheng, Yangping; Li, Jianlin; Wood, David L.; Steele, Leigh Anna; Lamb, Joshua; Spangler, Scott; Grosso, Christopher; Fenton, Kyle; Bloom, Ira
2018-05-01
1.5 Ah pouch cells based on Li(Ni0.5Mn0.3Co0.2)O2 cathodes and graphite anodes, both containing poly (vinylidene fluoride) (PVDF) binders, were systematically overcharged to 100, 120, 140, 160, 180, and 250% state of charge (SOC), at which point they vented. The cells were subsequently discharged to 0% SOC and disassembled under an inert atmosphere for characterization. A combination of X-ray photoelectron spectroscopy (XPS), scanning-electron microscopy (SEM), energy-dispersive spectroscopy (EDS), 6Li SSNMR, and X-ray diffraction (XRD) analysis of the NMC532 cathodes indicates the formation of a thin C- and O-rich cathode electrolyte interphase layer, progressive Li loss above 140% SOC, and retention of the bulk crystal structure at all states of charge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bareno, Javier; Dietz Rago, Nancy; Dogan, Fulya
Here, 1.5 Ah pouch cells based on Li(Ni 0.5Mn 0.3Co 0.2)O 2 cathodes and graphite anodes, both containing poly (vinylidene fluoride) (PVDF) binders, were systematically overcharged to 100, 120, 140, 160, 180, and 250% state of charge (SOC), at which point they vented. The cells were subsequently discharged to 0% SOC and disassembled under an inert atmosphere for characterization. A combination of X-ray photoelectron spectroscopy (XPS), scanning-electron microscopy (SEM), energy-dispersive spectroscopy (EDS), 6Li SSNMR, and X-ray diffraction (XRD) analysis of the NMC532 cathodes indicates the formation of a thin C- and O-rich cathode electrolyte interphase layer, progressive Li lossmore » above 140% SOC, and retention of the bulk crystal structure at all states of charge.« less
A Designed Room Temperature Multilayered Magnetic Semiconductor
NASA Astrophysics Data System (ADS)
Bouma, Dinah Simone; Charilaou, Michalis; Bordel, Catherine; Duchin, Ryan; Barriga, Alexander; Farmer, Adam; Hellman, Frances; Materials Science Division, Lawrence Berkeley National Lab Team
2015-03-01
A room temperature magnetic semiconductor has been designed and fabricated by using an epitaxial antiferromagnet (NiO) grown in the (111) orientation, which gives surface uncompensated magnetism for an odd number of planes, layered with the lightly doped semiconductor Al-doped ZnO (AZO). Magnetization and Hall effect measurements of multilayers of NiO and AZO are presented for varying thickness of each. The magnetic properties vary as a function of the number of Ni planes in each NiO layer; an odd number of Ni planes yields on each NiO layer an uncompensated moment which is RKKY-coupled to the moments on adjacent NiO layers via the carriers in the AZO. This RKKY coupling oscillates with the AZO layer thickness, and it disappears entirely in samples where the AZO is replaced with undoped ZnO. The anomalous Hall effect data indicate that the carriers in the AZO are spin-polarized according to the direction of the applied field at both low temperature and room temperature. NiO/AZO multilayers are therefore a promising candidate for spintronic applications demanding a room-temperature semiconductor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Semanti; Barman, Saswati, E-mail: saswati@bose.res.in; Barman, Anjan, E-mail: abarman@bose.res.in
2014-05-07
We have investigated optically induced ultrafast magnetization dynamics of a series of Fe{sub 55}Pt{sub 45}/Ni{sub 80}Fe{sub 20} exchange spring bi-layers with varying Ni{sub 80}Fe{sub 20} thickness. Rich spin-wave spectra are observed; whose frequency shows a strong dependence on the Ni{sub 80}Fe{sub 20} layer thickness. Micromagnetic simulations based on a simplified magnetic microstructure were able to reproduce the experimental data qualitatively. The spin twist structure introduced in the Ni{sub 80}Fe{sub 20} layer gives rise to new modes in the composite system as opposed to the bare Ni{sub 80}Fe{sub 20} films.
Aluminizing a Ni sheet through severe plastic deformation induced by ball collisions
NASA Astrophysics Data System (ADS)
Romankov, S.; Shchetinin, I. V.; Park, Y. C.
2015-07-01
Aluminizing a Ni sheet was performed through severe plastic deformation induced by ball collisions. The Ni sheet was fixed in the center of a mechanically vibrated vial between two connected parts. The balls were loaded into the vial on both sides of the Ni disk. Al disks, which were fixed on the top and the bottom of the vial, served as the sources of Al contamination. During processing, the Ni sheet was subject to intense ball collisions. The Al fragments were transferred and alloyed to the surface of the Ni sheet by these collisions. The combined effects of deformation-induced plastic flow, mechanical intermixing, and grain refinement resulted in the formation of a dense, continuous nanostructured Al layer on the Ni surface on both sides of the sheet. The Al layer consisted of Al grains with an average size of about 40 nm. The Al layer was reinforced with nano-sized Ni flakes that were introduced from the Ni surface during processing. The local amorphization at the Ni/Al interface revealed that the bonding between Ni and Al was formed by mechanical intermixing of atomic layers at the interface. The hardness of the fabricated Al layer was 10 times that of the initial Al plate. The ball collisions destroyed the initial rolling texture of the Ni sheet and induced the formation of the mixed [1 0 0] + [1 1 1] fiber texture. The laminar rolling structure of the Ni was transformed into an ultrafine grain structure.
Materials science in pre-plated leadframes for electronic packages
NASA Astrophysics Data System (ADS)
Liu, Lilin
Au/Pd/Ni pre-plated leadframes (PPF) are high performance frames for accommodating high-end electronic packages. Cost and reliability are major concerns in their wide application. The present work, from a materials science point view, deepens the understanding of PPFs, optimizes the conventional PPFs, develops a novel PPF architecture and models the residual stress relaxation in heteroepitaxial thin films. The wire pull test, the solderability test, and High-Resolution Transmission Electron Microscopy (HRTEM) were employed to characterize the PPFs in order to understand the relationship between performance and microstructure. We optimized the electroplating profiles and determined the minimum thickness of the Pd layer with the PPF performance satisfying the industry standards. Further increasing the Pd layer thickness beyond the critical thickness will not enhance the performance more, but increase the product cost. With the optimized electroplating profile, the electroplated Au layer is epitaxially deposited on the Pd layer, and so does the Pd layer on the Ni layer. Misfit dislocations and nanotwins are present at the interface between the Pd and Ni layers, which are generated to release the about 10.4% misfit strain between the Pd and Ni lattices. This work demonstrates that the electro-deposition technique can electroplate epitaxy-like Pd films on the highly (200) textured Ni films, which are grown on the Cu substrates. A novel technique for impeding Cu out-diffusion in Cu alloy based pre-plated leadframes was developed by electroplating a 3-4 nm thick Sn layer on a Cu alloy base prior to electroplating a Ni layer. A 10-14 nm thick epitaxy-like and dense (Cu,Ni)3Sn intermetallic compound (IMC) layer is automatically formed en route of diffuse reaction, which leads to a drastic reduction in Cu out-diffusion and hence improves significantly the protection of the leadframes against oxidation and corrosion attack. The oxidation behaviours were quantified by Electron Diffraction X-ray (EX) incorporated in Scanning Electron Microscopy (SEM) in the present work, which is a good complementary to the traditional weight gain test by a balance. A diffusion/oxidation model was developed to estimate the effective diffusion coefficient of Cu in the formed IMC nanolayers. The estimated Cu diffusion coefficient in the IMC interlayer is about 1.6x10 -22m2/s at 250°C, which is around 7~11 orders lower than the interdiffusion coefficients for eta- Cu6Sn5 and epsilon- Cu3Sn phases at corresponding temperatures. Based on the dislocation theory of twinning, analytical solutions by using the hybrid superposition and Fourier transformation approach were derived for the calculation of various energies involved in the misfit twinning process. For a given epilayer thickness and lattice mismatch strain, the twin formation energy should reach its minimum to determine the twin width and a zero minimum formation energy determines the critical thickness for misfit twinning. The effect of elastic mismatch between the epilayer and the substrate on the critical thickness was studied comprehensively, revealing that an elastically soft epilayer has a large critical thickness. Moreover, a misfit-twin-and-perfect-dislocation predominance chart is constructed to predict the predominant regions of misfit twinning and perfect dislocation in the mismatch strain and the specific twin boundary energy domain. Multiple misfit twins in epilayer/substrate systems were studied by summing up the stress and displacement fields of individual twins. In principle, the energy minimization approach can be applied to multiple misfit twins, although only periodic arrays of parallel and alternating twins were investigated here in detail. The equilibrium twin width and equilibrium twin spacing of a periodic array of twins represent the misfit twin morphology. The theoretical results indicate that the difference in elastic constants between an epilayer and its substrate has great effects on the morphology of equilibrium twins. The theoretical predictions agree with experimental observations.
Wireless digital pressure gauge based on nanomaterials
NASA Astrophysics Data System (ADS)
Abay, Dilyara; Otarbay, Zhuldyz; Token, Madengul; Guseinov, Nazim; Muratov, Mukhit; Gabdullin, Maratbek; Ismailov, Daniyar
2018-03-01
In the article studies the efficiency of using nanostructured nickel copper films as thin films for bending sensors. Thin films of nickel-copper alloy were deposited using magnetron sputtering technology followed by the appropriate masks. Scanning electron microscopy (SEM) and energy- dispersive X-ray spectroscopy (EDS) techniques were used to examine structure and surface of the Ni Cu coatings. The results of the bending sensors result indicated that the Ni Cu thin film strain gauge showed an excellent sensitive.
Investigation deuteron-induced reactions on cobalt
NASA Astrophysics Data System (ADS)
Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.; Baba, M.; Ignatyuk, A. V.
2010-09-01
The excitation functions of deuteron-induced reactions were measured on metallic cobalt. Beyond the 56,57,58,60Co cobalt isotopes, we also identified 57Ni, 54Mn, 56Mn and 59Fe in the deuteron experiments. For the above radionuclides, the excitation functions in the measured energy range were determined and compared with the data found in the literature and with the results of model calculations (ALICE-IPPE, EMPIRE-D, EAF, and TALYS (TENDL)). The excitation functions agree with previous measurements; furthermore, we calculated the yield and thin layer activation (TLA) curves that are necessary for practical and industrial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guang Jie; Li, Jun, E-mail: jacob_lijun@sina.com; Luo, Xing
2014-12-15
Laser-clad composite coatings on the Ti6Al4V substrate were heat-treated at 700, 800, and 900 °C for 1 h. The effects of post-heat treatment on the microstructure, microhardness, and fracture toughness of the coatings were investigated by scanning electron microscopy, X-ray diffractometry, energy dispersive spectroscopy, and optical microscopy. The wear resistance of the coatings was evaluated under dry reciprocating sliding friction at room temperature. The coatings mainly comprised some coarse gray blocky (W,Ti)C particles accompanied by the fine white WC particles, a large number of black TiC cellular/dendrites, and the matrix composed of NiTi and Ni{sub 3}Ti; some unknown rich Ni-more » and Ti-rich particles with sizes ranging from 10 nm to 50 nm were precipitated and uniformly distributed in the Ni{sub 3}Ti phase to form a thin granular layer after heat treatment at 700 °C. The granular layer spread from the edge toward the center of the Ni{sub 3}Ti phase with increasing temperature. A large number of fine equiaxed Cr{sub 23}C{sub 6} particles with 0.2–0.5 μm sizes were observed around the edges of the NiTi supersaturated solid solution when the temperature was further increased to 900 °C. The microhardness and fracture toughness of the coatings were improved with increased temperature due to the dispersion-strengthening effect of the precipitates. Dominant wear mechanisms for all the coatings included abrasive and delamination wear. The post-heat treatment not only reduced wear volume and friction coefficient, but also decreased cracking susceptibility during sliding friction. Comparatively speaking, the heat-treated coating at 900 °C presented the most excellent wear resistance. - Highlights: • TiC + WC reinforced intermetallic compound matrix composite coatings were produced. • The formation mechanism of the reinforcements was analyzed. • Two precipitates were generated at elevated temperature. • Cracking susceptibility and microhardness of the coatings were improved. • Post-heat treatment enhances wear resistance of the coatings.« less
Nanocrystalline Pd:NiFe2O4 thin films: A selective ethanol gas sensor
NASA Astrophysics Data System (ADS)
Rao, Pratibha; Godbole, R. V.; Bhagwat, Sunita
2016-10-01
In this work, Pd:NiFe2O4 thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe2O4 thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost.
Tuning of Thermal Stability in Layered Li(Ni x Mn y Co z )O 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jiaxin; Liu, Tongchao; Hu, Zongxiang
2016-09-19
Understanding and further designing new layered Li(Ni xMn yCo z)O 2 (NMC) (x + y + z = 1) materials with optimized thermal stability is important to rechargeable Li batteries (LIBs) for electrical vehicles (EV). Using ab initio calculations combined with experiments, we clarified how the thermal stability of NMC materials can be tuned by the most unstable oxygen, which is determined by the local coordination structure unit (LCSU) of oxygen (TM(Ni, Mn, Co) 3-O-Li 3-x'): each O atom bonds with three transition metals (TM) from the TM-layer and three to zero Li from fully discharged to charged states frommore » the Li-layer. Under this model, how the lithium content, valence states of Ni, contents of Ni, Mn, and Co, and Ni/Li disorder to tune the thermal stability of NMC materials by affecting the sites, content, and the release temperature of the most unstable oxygen is proposed. The synergistic effect between Li vacancies and raised valence state of Ni during delithiation process can aggravate instability of oxygen, and oxygen coordinated with more nickel (especially with high valence state) in LSCU becomes more unstable at a fixed delithiation state. The Ni/Li mixing would decrease the thermal stability of the “NiMn” group NMC materials but benefit the thermal stability of “Ni-rich” group, because the Ni in the Li layer would form 180° Ni-O-Ni super exchange chains in “Ni-rich” NMC materials. Mn and Co doping can tune the initial valence state of Ni, local coordination environment of oxygen, and the Ni/Li disorder, thus to tune the thermal stability directly.« less
NASA Astrophysics Data System (ADS)
Bae, Joongmyeon; Lim, Sungkwang; Jee, Hyunjin; Kim, Jung Hyun; Yoo, Young-Sung; Lee, Taehee
We are developing 1 kW class solid oxide fuel cell (SOFC) system for residential power generation (RPG) application supported by Korean Government. Anode-supported single cells with thin electrolyte layer of YSZ (yttria-stabilized zirconia) or ScSZ (scandia-stabilized zirconia) for intermediate temperature operation (650-750 °C), respectively, were fabricated and small stacks were built and evaluated. The LSCF/ScSZ/Ni-YSZ single cell showed performance of 543 mW cm -2 at 650 °C and 1680 mW cm -2 at 750 °C. The voltage of 15-cell stack based on 5 cm × 5 cm single cell (LSM/YSZ/Ni-YSZ) at 150 mW was 12.5 V in hydrogen as fuel of 120 sccm per cell at 750 °C and decreased to about 10.9 V at 500 h operation time. A 5-cell stack based on the LSCF/YSZ/FL/Ni-YSZ showed the maximum power density of 30 W, 25 W and 20 W at 750 °C, 700 °C and 650 °C, respectively. LSCF/ScSZ/Ni-YSZ-based stack showed better performance than LSCF/YSZ/Ni-YSZ stack from the experiment temperature range. I- V characteristics by using hydrogen gas and reformate gas of methane as fuel were investigated at 750 °C in LSCF/ScSZ/FL/Ni-YSZ-based 5-cell stack.
Femtosecond laser processing of NiPd single and 5x(Ni/Pd) multilayer thin films
NASA Astrophysics Data System (ADS)
Petrović, S.; Gaković, B.; Zamfirescu, M.; Radu, C.; Peruško, D.; Radak, B.; Ristoscu, C.; Zdravković, S.; Luculescu, C. L.; Mihailescu, I. N.
2017-09-01
Modification of single and complex nickel-palladium samples by laser processing in the femtosecond time domain was studied. The samples were processed by focused Ti:Sapphire laser beam (Clark CPA-2101) with 775 nm laser wavelength, 2 kHz repetition rate, 200 fs pulse duration. The laser-induced morphological modifications have shown dependence on the applied fluences and number of laser pulses. The formed surface nanostructures on the single NiPd/Si and multilayer 5x(Ni/Pd)/Si systems are compared with individual Ni and Pd thin films. The results show an increase in surface roughness, formation of parallel periodic surface structures, appearance of hydrodynamic features and ablation of surface material. At low number of pulses (less than 10 pulses) and low pulse energies range (not over 1.7 μJ), the two types of laser-induced periodic surface structure (LIPSS) can be observed: low and high spatial frequency LIPSS (HSFL and LSFL). For all samples, the measured LSFL periods were 720 nm for the ripples created solely on thin film surfaces during the single pulse action. In the case of the multi-pulse irradiation, the periodicities of created LSFLs on the all investigated thin films have shown tendency to reduction with increasing of pulse energies.
NASA Astrophysics Data System (ADS)
Raghavendra, C. R.; Basavarajappa, S.; Sogalad, Irappa
2018-02-01
Electrodeposition is one of the most technologically feasible and economically superior techniques for producing metallic coating. The advancement in the application of nano particles has grabbed the attention in all fields of engineering. In this present study an attempt has been made on the Ni-Al2O3nano particle composite coating on aluminium substrate by electrodeposition process. The aluminium surface requires a specific pre-treatment for better adherence of coating. In light of this a thin zinc layer is coated on the aluminium substrate by electroless process. In addition to this surface roughness is an important parameter for any coating method and material. In this work Ni-Al2O3 composite coating were successfully coated by varying the process parameters such as bath temperature, current density and particle loading. The experimentation was performed using central composite design based 20 trials of experiments. The effect of process parameters and surface roughness before and after coating is analyzed on wear rate and coating thickness. The results shown a better wear resistance of Ni-Al2O3 composite electrodeposited coating compared to Ni coating. The particle loading and interaction effect of current density with temperature has greater significant effect on wear rate. The surface roughness is significantly affected the wear behaviour and thickness of coating.
In Situ Probing and Synthetic Control of Cationic Ordering in Ni-Rich Layered Oxide Cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jianqing; Zhang, Wei; Huq, Ashfia
Ni-rich layered oxides (LiNi1-xMxO2; M = Co, Mn, ...) are appealing alternatives to conventional LiCoO2 as cathodes in Li-ion batteries for automobile and other large-scale applications due to their high theoretical capacity and low cost. However, preparing stoichiometric LiNi1-xMxO2 with ordered layer structure and high reversible capacity, has proven difficult due to cation mixing in octahedral sites. Herein, in situ studies of synthesis reactions and the associated structural ordering in preparing LiNiO2 and the Co-substituted variant, LiNi0.8Co0.2O2, are made, to gain insights into synthetic control of the structure and electrochemical properties of Ni-rich layered oxides. Results from this study indicatemore » a direct transformation of the intermediate from the rock salt structure into hexagonal phase, and during the process, Co substitution facilities the nucleation of a Co-rich layered phase at low temperatures and subsequent growth and stabilization of solid solution Li(Ni, Co)O-2 upon further heat treatment. Optimal conditions are identified from the in situ studies and utilized to obtain stoichiometric LiNi0.8Co0.2O2 that exhibits high capacity (up to 200 mA h g(-1) ) with excellent retention. The findings shed light on designing high performance Ni-rich layered oxide cathodes through synthetic control of the structural ordering in the materials.« less
In Situ Probing and Synthetic Control of Cationic Ordering in Ni-Rich Layered Oxide Cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jianqing; Zhang, Wei; Huq, Ashfia
Ni-rich layered oxides (LiNi 1-xM xO 2; M=Co, Mn, …) are appealing alternatives to conventional LiCoO 2 as cathodes in Li-ion batteries for automobile and other large-scale applications due to their high theoretical capacity and low cost. However, preparing stoichiometric LiNi 1-xM xO 2 with ordered layer structure and high reversible capacity, has proven difficult due to Ni 2+/Li + cation mixing in octahedral sites. Herein, we report on in-situ studies of synthesis reactions and the associated structural ordering in preparing LiNiO 2 and the Co-substituted variant, LiNi 0.8Co 0.2O 2, thereby gaining insights into synthetic control of the structuremore » and electrochemical properties of Ni-rich layered oxides. Results from this study indicate a direct transformation of the intermediate from the rock salt structure into hexagonal phase, and during the process, Co substitution facilities the nucleation of a Co-rich layered phase at low temperatures and subsequent growth and stabilization of solid solution Li(Ni, Co)O 2 upon heat treatment in a highly oxidation environment. Optimal conditions were identified from the in-situ studies and utilized in obtaining stoichiometric LiNi 0.8Co 0.2O 2 that exhibits high capacity of about 200 mAh/g with excellent retention. The findings shed light on designing Ni-rich layered oxide cathodes with enhanced electrochemical properties through synthetic control of the structural ordering in the materials.« less
In Situ Probing and Synthetic Control of Cationic Ordering in Ni-Rich Layered Oxide Cathodes
Zhao, Jianqing; Zhang, Wei; Huq, Ashfia; ...
2016-10-17
Ni-rich layered oxides (LiNi 1-xM xO 2; M=Co, Mn, …) are appealing alternatives to conventional LiCoO 2 as cathodes in Li-ion batteries for automobile and other large-scale applications due to their high theoretical capacity and low cost. However, preparing stoichiometric LiNi 1-xM xO 2 with ordered layer structure and high reversible capacity, has proven difficult due to Ni 2+/Li + cation mixing in octahedral sites. Herein, we report on in-situ studies of synthesis reactions and the associated structural ordering in preparing LiNiO 2 and the Co-substituted variant, LiNi 0.8Co 0.2O 2, thereby gaining insights into synthetic control of the structuremore » and electrochemical properties of Ni-rich layered oxides. Results from this study indicate a direct transformation of the intermediate from the rock salt structure into hexagonal phase, and during the process, Co substitution facilities the nucleation of a Co-rich layered phase at low temperatures and subsequent growth and stabilization of solid solution Li(Ni, Co)O 2 upon heat treatment in a highly oxidation environment. Optimal conditions were identified from the in-situ studies and utilized in obtaining stoichiometric LiNi 0.8Co 0.2O 2 that exhibits high capacity of about 200 mAh/g with excellent retention. The findings shed light on designing Ni-rich layered oxide cathodes with enhanced electrochemical properties through synthetic control of the structural ordering in the materials.« less
Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil
Alkire, Randall W.
2016-11-01
In an effort to improve the characteristics of a fluorescing metal-foil-based beam position monitor, a new bimetal ultra-thin (0.98/0.67 µm) Ti–Ni foil was introduced to replace an existing single-element ultra-thin 0.5 µm thick Cr foil. During characterization it was determined that absorption measurements on the bimetal foil could be used to fit the Ni mass absorption coefficients accurately in the vicinity of the NiKedge. Comparison with experimental results from the literature demonstrated that the fitting procedure produced coefficients with uncertainties of the order of ±1%. Once determined, these fit coefficients allowed the thickness of an independently mounted 8 µm thickmore » Ni foil to be computed from absorption measurements instead of relying on a tool-based measurement of the foil thickness. Using the 8 µm thick foil, a continuous map of Ni mass absorption coefficients was produced at 1 eV resolution throughout the near-edge region. Lastly, this high-resolution map marks a significant improvement over the existing NIST XCOM or FFAST database mass absorption coefficients, which have estimated errors of 10–20% for the near-edge region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bortolaz de Oliveira, Henrique; Wypych, Fernando, E-mail: wypych@ufpr.br
Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO{sub 4}{sup 2−}/g of material, respectively. Although the removal values obtained for Zn/NiHN andmore » Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO{sub 4}{sup 2−}/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.« less
MgO buffer layers on rolled nickel or copper as superconductor substrates
Paranthaman, Mariappan; Goyal, Amit; Kroeger, Donald M.; List, III, Frederic A.
2001-01-01
Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.
Method for making MgO buffer layers on rolled nickel or copper as superconductor substrates
Paranthaman, Mariappan; Goyal, Amit; Kroeger, Donald M.; List, III, Frederic A.
2002-01-01
Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.
NASA Astrophysics Data System (ADS)
Kwon, Hye Jin; Sohn, Keun Yong; Park, Won-Wook
2013-11-01
In this study, rapidly solidified Si-Ti-Ni-Cu alloys have been investigated as high capacity anodes for Li-ion secondary batteries. To obtain nano-sized Si particles dispersed in the inactive matrix, the alloy ribbons were fabricated using the melt spinning process. The thin ribbons were pulverized using ball-milling to make a fine powder of ˜ 4 µm average size. Coin-cell assembly was carried out under an argon gas in a glove box, in which pure lithium was used as a counter-electrode. The cells were cycled using the galvanostatic method in the potential range of 0.01 V and 1.5 V vs. Li/Li+. The microstructure and morphology were examined using an x-ray diffractometer, Field-Emission Scanning Electron Microscopy and High Resolution Transmission Electron Microscopy. Among the anode alloys, the Si70Ti15Ni15 electrodes had the highest discharge capacity (974.1 mAh/g) after the 50th cycle, and the Si60Ti16Ni16Cu8 electrode showed the best coulombic efficiency of ˜95.9% in cyclic behavior. It was revealed that the Si7Ni4Ti4 crystal phase coexisting with an amorphous phase, could more efficiently act as a buffer layer than the fully crystallized Si7Ni4Ti4 phase. Consequently, the electrochemical properties of the anode materials pronouncedly improved when the nano-sized primary Si particle was dispersed in the inactive Si7Ni4Ti4-based matrix mixed with an amorphous structure.
NASA Astrophysics Data System (ADS)
Coia, Cedrik
The objective of the thesis is to develop a detailed fundamental understanding of the thermally induced solid-state reactions that lead to the formation of the NiSi. We use in situ synchrotron x-ray diffraction as well as wafer curvature measurements to monitor reactions as they occur during the annealing treatment. These analyses are complemented by ex situ transmission electron microscopy, Rutherford backscattering spectroscopy, and secondary ions mass spectroscopy. The solid-state reactions between 4 to 500 nm-thick Ni films and Si (001) are considerably more complex than previously believed. In addition to the commonly observed phases listed above, we observe the formation of three additional compounds---θ-Ni2Si, Ni31Si12 and Ni3Si2---before the complete transformation of the reacted film into NiSi. These compounds are found to co-exist laterally (within the same layer) with delta-Ni2Si and/or NiSi. The metastable compound θ-Ni2Si, which formation results from texture inheritance and rapid growth through vacancy diffusion, is present in all samples and forms at the same temperature (300+/-10°C) regardless of the initial Ni thickness. Indeed, this compound forms rapidly during ramps anneals, apparently consuming all the delta-Ni2Si for initial Ni films thickness of up to 10 nm. Its disappearance is also rapid and is correlated to both the growth of NiSi and to a surprising return of the orthorhombic delta-Ni 2Si. The formation sequence is therefore not monotonic in composition in contrast to what is usually expected in solid-state reactions. An investigation of the effect of alloying elements (Pt and Co) and impurities (B, P, As, F, N) on the Ni-Si reactions enables us to determine that nucleation plays a limiting role in the growth of metastable θ-Ni2Si and that the template provided by delta-Ni2Si is crucial in promoting this nucleation. Furthermore, reactions with amorphized and amorphous substrates indicate that the possibility of epitaxy with the Si substrate is not a necessary condition for θ-Ni2Si to form. Activated CMOS dopants and alloying impurities delay the growth of all Ni-rich compounds and eventually suppress the formation of θ-Ni2Si possibly because of a limited solubility. Impurities implanted without subsequent re-crystallization anneals stabilize the compound partly through the presence of an amorphous interface, at least at the beginning of the reaction. A quantitative investigation of the growth kinetics of θ-Ni 2Si on undoped Si(001) reveals two distinct stages which are well described by a model incorporating 2D nucleation-controlled growth at the silicide/Si interface and the non-planar diffusion-controlled penetration of θ-Ni 2Si in the overlying delta-Ni2Si grains. Despite the very good fit of the model to our data, we cannot rule out the possibility that the second stage consists of a 1D diffusion-controlled planar growth during which the composition of the non-stoichiometric θ-Ni2Si changes. In F-doped samples, the second stage corresponds to a 1D diffusion-controlled growth in the absence of delta-Ni2Si and Ni, suggesting a possible compositional change during growth. The results presented in this thesis show that thanks to the use of powerful in situ monitoring techniques we have observed the kinetic competition between different growing compounds in the early stages of their growth. This competition has been predicted by many growth models, yet to our knowledge it has not been observed so far. We also have shown that this competition can lead to the lateral co-existence of several compounds in the same layer whereas most solid-state reaction models assume or require a layer-by-layer co-existence scheme. Finally, we show that the combination of (i) strong interfacial concentration gradients, (ii) structural similarities between delta-Ni 2Si, NiSi and θ-Ni2Si, and (iii) the ability of the latter to sustain vacancies and to nucleate in concentration gradients lead to a very peculiar reaction pathway, which results in a striking non-sequential succession of compounds. Our results therefore bear an important interest on the fundamental material science point of view in addition to the technological points of view given their pertinence for the SALICIDE process used to implement the Ni-Si contact metallurgy in the CMOS technology. (Abstract shortened by UMI.)
Benea, Lidia; Celis, Jean-Pierre
2016-01-01
This research work describes the effect of dispersed titanium carbide (TiC) nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers. PMID:28773395
Induced spin-polarization of EuS at room temperature in Ni/EuS multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poulopoulos, P., E-mail: poulop@upatras.gr; Materials Science Department, University of Patras, 26504 Patras; Goschew, A.
2014-03-17
Ni/EuS multilayers with excellent multilayer sequencing are deposited via e-beam evaporation on the native oxide of Si(100) wafers at 4 × 10{sup −9} millibars. The samples have very small surface and interface roughness and show sharp interfaces. Ni layers are nanocrystalline 4–8 nm thick and EuS layers are 2–4 nm thick and are either amorphous or nanocrystalline. Unlike for Co/EuS multilayers, all Eu ions are in divalent (ferromagnetic) state. We show a direct antiferromagnetic coupling between EuS and Ni layers. At room temperature, the EuS layers are spin-polarized due to the proximity of Ni. Therefore, Ni/EuS is a candidate for room-temperature spintronics applications.
In situ oxidation studies on /001/ copper-nickel alloy thin films
NASA Technical Reports Server (NTRS)
Heinemann, K.; Rao, D. B.; Douglass, D. L.
1977-01-01
High-resolution transmission electron microscopy studies are reported of (001)-oriented single crystalline thin films of Cu-3%Ni, Cu-4.6%Ni, and Cu-50%Ni alloy which were prepared by vapor deposition onto (001) NaCl substrates and subsequently annealed at around 1100 K and oxidized at 725 K at low oxygen partial pressure. At all alloy concentrations, Cu2O and NiO nucleated and grew independently without the formation of mixed oxides. The shape and growth rates of Cu2O nuclei were similar to rates found earlier. For low-nickel alloy concentrations, the NiO nuclei were larger and the number density of NiO was less than that of Cu-50%Ni films for which the shape and growth rates of NiO were identical to those for pure nickel films. Phenomena involving a reduced induction period, surface precipitation, and through-thickness growth are also described. The results are consistent with previously established oxidation mechanisms for pure copper and pure nickel films.
Electrochemical Properties of Si Film Electrodes Containing TiNi Thin-Film Current Collectors
NASA Astrophysics Data System (ADS)
Im, Yeon-min; Noh, Jung-pil; Cho, Gyu-bong; Nam, Tea-hyun
2018-03-01
A 50.3Ti-49.7Ni thin film fabricated by DC sputtering was employed as a current collector of Si film electrode. The structural and electrochemical properties of Si/TiNi film electrode were compared with those of a Si/Cu film electrode. The TiNi film with cluster-like structures composed of B2 austenitic phase at room temperature displayed the high electrochemical stability for Li ions. The amorphous Si film deposited on the TiNi film also consisted of cluster-like structures on the surface. The Si film grown on the TiNi film current collector (Si/TiNi electrode) demonstrated a high columbic efficiency of 87% at the first cycle (363 μAh/cm2 of charge capacity and 314 μAh/cm2 of discharge capacity). The Si/TiNi electrode exhibited better electrochemical properties in terms of capacity, cycle performance, and structural stability compared to the Si electrode with a conventional Cu foil current collector.
Sengupta, Pranesh; Rogalla, Detlef; Becker, Hans Werner; Dey, Gautam Kumar; Chakraborty, Sumit
2011-08-15
Alloy 690 based 'nuclear waste vitrification furnace' components degrade prematurely due to molten glass-alloy interactions at high temperatures and thereby increase the volume of metallic nuclear waste. In order to reduce the waste inventory, compositionally graded Ni-YSZ (Y(2)O(3) stabilized ZrO(2)) composite coating has been developed on Alloy 690 using Pulsed Laser Deposition technique. Five different thin-films starting with Ni80YSZ20 (Ni 80 wt%+YSZ 20 wt%), through Ni60YSZ40 (Ni 60 wt%+YSZ 40 wt%), Ni40YSZ60 (Ni 40 wt%+YSZ 60 wt%), Ni20YSZ80 (Ni 20 wt%+YSZ 80 wt%) and Ni0YSZ100 (Ni 0 wt%+YSZ 100 wt%), were deposited successively on Alloy 690 coupons. Detailed analyses of the thin-films identify them as homogeneous, uniform, pore free and crystalline in nature. A comparative study of coated and uncoated Alloy 690 coupons, exposed to sodium borosilicate melt at 1000°C for 1-6h suggests that the graded composite coating could substantially reduced the chemical interactions between Alloy 690 and borosilicate melt. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Hyowon; Millis, Andrew J.; Marianetti, Chris A.
Atomically precise superlattices involving transition metal oxides provide a unique opportunity to engineer correlated electron physics using strain (modulated by choice of substate) and quantum confinement (controlled by layer thickness). We use the combination of density functional theory and dynamical mean field theory (DFT+DMFT) to study Ni E g d-orbital polarization in strained LaNiO 3/LaAlO 3 superlattices consisting of four layers of nominally metallic NiO 2 and four layers of insulating AlO 2 separated by LaO layers. The layer-resolved orbital polarization is calculated as a function of strain and analyzed in terms of structural, quantum confinement, and correlation effects. Wemore » determined that the effect of strain is from the dependence of the results on the Ni-O bondlength ratio and the octahedral rotation angles; quantum confinement is studied by comparison to bulk calculations with similar degrees of strain; correlation effects are inferred by varying interaction parameters within our DFT+DMFT calculations. The calculated dependence of orbital polarization on strain in superlattices is qualitatively consistent with recent X-ray absorption spectroscopy and resonant reflectometry data. But, interesting differences of detail are found between theory and experiment. Under tensile strain, the two inequivalent Ni ions display orbital polarization similar to that calculated for strained bulk LaNiO 3 and observed in experiment. Compressive strain produces a larger dependence of orbital polarization on Ni position and even the inner Ni layer exhibits orbital polarization different from that calculated for strained bulk LaNiO 3.« less