Wu, Xiaohua; Dong, Dawei; Ma, Daqing
2016-08-08
BACKGROUND SARS is not only an acute disease, but also leads to long-term impaired lung diffusing capacity in some survivors. However, there is a paucity of data regarding long-term CT findings in survivors after SARS. The aim of this study was to assess the changes in lung function and lung thin-section computed tomography (CT) features in patients recovering from severe acute respiratory syndrome (SARS), especially the dynamic changes in ground-glass opacity (GGO). MATERIAL AND METHODS Clinical and radiological data from 11 patients with SARS were collected. The serial follow-up thin-section CTs were evaluated at 3, 6, and 84 months after SARS presentation. The distribution and predominant thin-section CT findings of lesions were evaluated. RESULTS The extent of the lesions on the CT scans of the 11 patients decreased at 6 and 84 months compared to 3 months. The number of segments involved on 84-month follow-up CTs was less than those at 6 months (P<0.05). The predominant thin-section CT manifestation at 84 months (intralobular and interlobular septal thickening) was different than that at 6 months, at which GGO was predominant. CONCLUSIONS During convalescence after SARS, GGO and intralobular and interlobular septal thickening were the main thin-section CT manifestation. Intralobular and interlobular septal thickening predominated over GGO at 84 months.
Godoy, Myrna C B; Kim, Tae Jung; White, Charles S; Bogoni, Luca; de Groot, Patricia; Florin, Charles; Obuchowski, Nancy; Babb, James S; Salganicoff, Marcos; Naidich, David P; Anand, Vikram; Park, Sangmin; Vlahos, Ioannis; Ko, Jane P
2013-01-01
The objective of our study was to evaluate the impact of computer-aided detection (CAD) on the identification of subsolid and solid lung nodules on thin- and thick-section CT. For 46 chest CT examinations with ground-glass opacity (GGO) nodules, CAD marks computed using thin data were evaluated in two phases. First, four chest radiologists reviewed thin sections (reader(thin)) for nodules and subsequently CAD marks (reader(thin) + CAD(thin)). After 4 months, the same cases were reviewed on thick sections (reader(thick)) and subsequently with CAD marks (reader(thick) + CAD(thick)). Sensitivities were evaluated. Additionally, reader(thick) sensitivity with assessment of CAD marks on thin sections was estimated (reader(thick) + CAD(thin)). For 155 nodules (mean, 5.5 mm; range, 4.0-27.5 mm)-74 solid nodules, 22 part-solid (part-solid nodules), and 59 GGO nodules-CAD stand-alone sensitivity was 80%, 95%, and 71%, respectively, with three false-positives on average (0-12) per CT study. Reader(thin) + CAD(thin) sensitivities were higher than reader(thin) for solid nodules (82% vs 57%, p < 0.001), part-solid nodules (97% vs 81%, p = 0.0027), and GGO nodules (82% vs 69%, p < 0.001) for all readers (p < 0.001). Respective sensitivities for reader(thick), reader(thick) + CAD(thick), reader(thick) + CAD(thin) were 40%, 58% (p < 0.001), and 77% (p < 0.001) for solid nodules; 72%, 73% (p = 0.322), and 94% (p < 0.001) for part-solid nodules; and 53%, 58% (p = 0.008), and 79% (p < 0.001) for GGO nodules. For reader(thin), false-positives increased from 0.64 per case to 0.90 with CAD(thin) (p < 0.001) but not for reader(thick); false-positive rates were 1.17, 1.19, and 1.26 per case for reader(thick), reader(thick) + CAD(thick), and reader(thick) + CAD(thin), respectively. Detection of GGO nodules and solid nodules is significantly improved with CAD. When interpretation is performed on thick sections, the benefit is greater when CAD marks are reviewed on thin rather than thick sections.
NASA Astrophysics Data System (ADS)
Tu, Shu-Ju; Wang, Chih-Wei; Pan, Kuang-Tse; Wu, Yi-Cheng; Wu, Chen-Te
2018-03-01
Lung cancer screening aims to detect small pulmonary nodules and decrease the mortality rate of those affected. However, studies from large-scale clinical trials of lung cancer screening have shown that the false-positive rate is high and positive predictive value is low. To address these problems, a technical approach is greatly needed for accurate malignancy differentiation among these early-detected nodules. We studied the clinical feasibility of an additional protocol of localized thin-section CT for further assessment on recalled patients from lung cancer screening tests. Our approach of localized thin-section CT was integrated with radiomics features extraction and machine learning classification which was supervised by pathological diagnosis. Localized thin-section CT images of 122 nodules were retrospectively reviewed and 374 radiomics features were extracted. In this study, 48 nodules were benign and 74 malignant. There were nine patients with multiple nodules and four with synchronous multiple malignant nodules. Different machine learning classifiers with a stratified ten-fold cross-validation were used and repeated 100 times to evaluate classification accuracy. Of the image features extracted from the thin-section CT images, 238 (64%) were useful in differentiating between benign and malignant nodules. These useful features include CT density (p = 0.002 518), sigma (p = 0.002 781), uniformity (p = 0.032 41), and entropy (p = 0.006 685). The highest classification accuracy was 79% by the logistic classifier. The performance metrics of this logistic classification model was 0.80 for the positive predictive value, 0.36 for the false-positive rate, and 0.80 for the area under the receiver operating characteristic curve. Our approach of direct risk classification supervised by the pathological diagnosis with localized thin-section CT and radiomics feature extraction may support clinical physicians in determining truly malignant nodules and therefore reduce problems in lung cancer screening.
Tu, Shu-Ju; Wang, Chih-Wei; Pan, Kuang-Tse; Wu, Yi-Cheng; Wu, Chen-Te
2018-03-14
Lung cancer screening aims to detect small pulmonary nodules and decrease the mortality rate of those affected. However, studies from large-scale clinical trials of lung cancer screening have shown that the false-positive rate is high and positive predictive value is low. To address these problems, a technical approach is greatly needed for accurate malignancy differentiation among these early-detected nodules. We studied the clinical feasibility of an additional protocol of localized thin-section CT for further assessment on recalled patients from lung cancer screening tests. Our approach of localized thin-section CT was integrated with radiomics features extraction and machine learning classification which was supervised by pathological diagnosis. Localized thin-section CT images of 122 nodules were retrospectively reviewed and 374 radiomics features were extracted. In this study, 48 nodules were benign and 74 malignant. There were nine patients with multiple nodules and four with synchronous multiple malignant nodules. Different machine learning classifiers with a stratified ten-fold cross-validation were used and repeated 100 times to evaluate classification accuracy. Of the image features extracted from the thin-section CT images, 238 (64%) were useful in differentiating between benign and malignant nodules. These useful features include CT density (p = 0.002 518), sigma (p = 0.002 781), uniformity (p = 0.032 41), and entropy (p = 0.006 685). The highest classification accuracy was 79% by the logistic classifier. The performance metrics of this logistic classification model was 0.80 for the positive predictive value, 0.36 for the false-positive rate, and 0.80 for the area under the receiver operating characteristic curve. Our approach of direct risk classification supervised by the pathological diagnosis with localized thin-section CT and radiomics feature extraction may support clinical physicians in determining truly malignant nodules and therefore reduce problems in lung cancer screening.
Ohno, Yoshiharu; Koyama, Hisanobu; Yoshikawa, Takeshi; Kishida, Yuji; Seki, Shinichiro; Takenaka, Daisuke; Yui, Masao; Miyazaki, Mitsue; Sugimura, Kazuro
2017-08-01
Purpose To compare the capability of pulmonary thin-section magnetic resonance (MR) imaging with ultrashort echo time (UTE) with that of standard- and reduced-dose thin-section computed tomography (CT) in nodule detection and evaluation of nodule type. Materials and Methods The institutional review board approved this study, and written informed consent was obtained from each patient. Standard- and reduced-dose chest CT (60 and 250 mA) and MR imaging with UTE were used to examine 52 patients; 29 were men (mean age, 66.4 years ± 7.3 [standard deviation]; age range, 48-79 years) and 23 were women (mean age, 64.8 years ± 10.1; age range, 42-83 years). Probability of nodule presence was assessed for all methods with a five-point visual scoring system. All nodules were then classified as missed, ground-glass, part-solid, or solid nodules. To compare nodule detection capability of the three methods, consensus for performances was rated by using jackknife free-response receiver operating characteristic analysis, and κ analysis was used to compare intermethod agreement for nodule type classification. Results There was no significant difference (F = 0.70, P = .59) in figure of merit between methods (standard-dose CT, 0.86; reduced-dose CT, 0.84; MR imaging with UTE, 0.86). There was no significant difference in sensitivity between methods (standard-dose CT vs reduced-dose CT, P = .50; standard-dose CT vs MR imaging with UTE, P = .50; reduced-dose CT vs MR imaging with UTE, P >.99). Intermethod agreement was excellent (standard-dose CT vs reduced-dose CT, κ = 0.98, P < .001; standard-dose CT vs MR imaging with UTE, κ = 0.98, P < .001; reduced-dose CT vs MR imaging with UTE, κ = 0.99, P < .001). Conclusion Pulmonary thin-section MR imaging with UTE was useful in nodule detection and evaluation of nodule type, and it is considered at least as efficacious as standard- or reduced-dose thin-section CT. © RSNA, 2017 Online supplemental material is available for this article.
CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...
CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...
Meenan, Christopher; Daly, Barry; Toland, Christopher; Nagy, Paul
2006-01-01
Rapid advances are changing the technology and applications of multidetector computed tomography (CT) scanners. The major increase in data associated with this new technology, however, breaks most commercial picture archiving and communication system (PACS) architectures by preventing them from delivering data in real time to radiologists and outside clinicians. We proposed a phased model for 3D workflow, installed a thin-slice archive and measured thin-slice data storage over a period of 5 months. A mean of 1,869 CT studies were stored per month, with an average of 643 images per study and a mean total volume of 588 GB/month. We also surveyed 48 radiologists to determine diagnostic use, impressions of thin-slice value, and requirements for retention times. The majority of radiologists thought thin slice was helpful for diagnosis and regularly used the application. Permanent storage of thin slice CT is likely to become best practice and a mission-critical pursuit for the health care enterprise.
Glenn, W V; Johnston, R J; Morton, P E; Dwyer, S J
1975-01-01
The various limitations to computerized axial tomographic (CT) interpretation are due in part to the 8-13 mm standard tissue plane thickness and in part to the absence of alternative planes of view, such as coronal or sagittal images. This paper describes a method for gathering multiple overlapped 8 mm transverse sections, subjecting these data to a deconvolution process, and then displaying thin (1 mm) transverse as well as reconstructed coronal and sagittal CT images. Verification of the deconvolution technique with phantom experiments is described. Application of the phantom results to human post mortem CT scan data illustrates this method's faithful reconstruction of coronal and sagittal tissue densities when correlated with actual specimen photographs of a sectioned brain. A special CT procedure, limited basal overlap scanning, is proposed for use on current first generation CT scanners without hardware modification.
Kim, Bohyoung; Lee, Kyoung Ho; Kim, Kil Joong; Mantiuk, Rafal; Kim, Hye-ri; Kim, Young Hoon
2008-06-01
The objective of our study was to assess the effects of compressing source thin-section abdominal CT images on final transverse average-intensity-projection (AIP) images. At reversible, 4:1, 6:1, 8:1, 10:1, and 15:1 Joint Photographic Experts Group (JPEG) 2000 compressions, we compared the artifacts in 20 matching compressed thin sections (0.67 mm), compressed thick sections (5 mm), and AIP images (5 mm) reformatted from the compressed thin sections. The artifacts were quantitatively measured with peak signal-to-noise ratio (PSNR) and a perceptual quality metric (High Dynamic Range Visual Difference Predictor [HDR-VDP]). By comparing the compressed and original images, three radiologists independently graded the artifacts as 0 (none, indistinguishable), 1 (barely perceptible), 2 (subtle), or 3 (significant). Friedman tests and exact tests for paired proportions were used. At irreversible compressions, the artifacts tended to increase in the order of AIP, thick-section, and thin-section images in terms of PSNR (p < 0.0001), HDR-VDP (p < 0.0001), and the readers' grading (p < 0.01 at 6:1 or higher compressions). At 6:1 and 8:1, distinguishable pairs (grades 1-3) tended to increase in the order of AIP, thick-section, and thin-section images. Visually lossless threshold for the compression varied between images but decreased in the order of AIP, thick-section, and thin-section images (p < 0.0001). Compression artifacts in thin sections are significantly attenuated in AIP images. On the premise that thin sections are typically reviewed using an AIP technique, it is justifiable to compress them to a compression level currently accepted for thick sections.
Lee, Ki Nam; Yoon, Seong Kuk; Sohn, Choon Hee; Choi, Pil Jo; Webb, W Richard
2002-01-01
To evaluate the influence of lung volume on dependent lung opacity seen at thin-section CT. In thirteen healthy volunteers, thin-section CT scans were performed at three levels (upper, mid, and lower portion of the lung) and at different lung volumes (10, 30, 50, and 100% vital capacity), using spirometric gated CT. Using a three-point scale, two radiologists determined whether dependent opacity was present, and estimated its degree. Regional lung attenuation at a level 2 cm above the diaphragm was determined using semiautomatic segmentation, and the diameter of a branch of the right lower posterior basal segmental artery was measured at each different vital capacity. At all three anatomic levels, dependent opacity occurred significantly more often at lower vital capacities (10, 30%) than at 100% vital capacity (p = 0.001). Visually estimated dependent opacity was significantly related to regional lung attenuation (p < 0.0001), which in dependent areas progressively increased as vital capacity decreased (p < 0.0001). The presence of dependent opacity and regional lung attenuation of a dependent area correlated significantly with increased diameter of a segmental arterial branch (r = 0.493 and p = 0.0002; r = 0.486 and p = 0.0003, respectively). Visual estimation and CT measurements of dependent opacity obtained by semiautomatic segmentation are significantly influenced by lung volume and are related to vascular diameter.
Acquisition of thin coronal sectional dataset of cadaveric liver.
Lou, Li; Liu, Shu Wei; Zhao, Zhen Mei; Tang, Yu Chun; Lin, Xiang Tao
2014-04-01
To obtain the thin coronal sectional anatomic dataset of the liver by using digital freezing milling technique. The upper abdomen of one Chinese adult cadaver was selected as the specimen. After CT and MRI examinations verification of absent liver lesions, the specimen was embedded with gelatin in stand erect position and frozen under profound hypothermia, and the specimen was then serially sectioned from anterior to posterior layer by layer with digital milling machine in the freezing chamber. The sequential images were captured by means of a digital camera and the dataset was imported to imaging workstation. The thin serial section of the liver added up to 699 layers with each layer being 0.2 mm in thickness. The shape, location, structure, intrahepatic vessels and adjacent structures of the liver was displayed clearly on each layer of the coronal sectional slice. CT and MR images through the body were obtained at 1.0 and 3.0 mm intervals, respectively. The methodology reported here is an adaptation of the milling methods previously described, which is a new data acquisition method for sectional anatomy. The thin coronal sectional anatomic dataset of the liver obtained by this technique is of high precision and good quality.
2011-01-01
Background Chest wall injury after stereotactic radiotherapy (SRT) for primary lung cancer has recently been reported. However, its detailed imaging findings are not clarified. So this study aimed to fully characterize the findings on computed tomography (CT), appearance time and frequency of chest wall injury after stereotactic radiotherapy (SRT) for primary lung cancer Materials and methods A total of 177 patients who had undergone SRT were prospectively evaluated for periodical follow-up thin-section CT with special attention to chest wall injury. The time at which CT findings of chest wall injury appeared was assessed. Related clinical symptoms were also evaluated. Results Rib fracture was identified on follow-up CT in 41 patients (23.2%). Rib fractures appeared at a mean of 21.2 months after the completion of SRT (range, 4 -58 months). Chest wall edema, thinning of the cortex and osteosclerosis were findings frequently associated with, and tending to precede rib fractures. No patients with rib fracture showed tumors > 16 mm from the adjacent chest wall. Chest wall pain was seen in 18 of 177 patients (10.2%), of whom 14 patients developed rib fracture. No patients complained of Grade 3 or more symptoms. Conclusion Rib fracture is frequently seen after SRT for lung cancer on CT, and is often associated with chest wall edema, thinning of the cortex and osteosclerosis. However, related chest wall pain is less frequent and is generally mild if present. PMID:21995807
Gee, Carole T
2013-11-01
As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction.
Kim, Tae Jung; Goo, Jin Mo; Lee, Kyung Won; Park, Chang Min; Lee, Hyun Ju
2009-05-01
To retrospectively compare the clinical, pathological, and thin-section CT features of persistent multiple ground-glass opacity (GGO) nodules with those of solitary GGO nodules. Histopathologic specimens were obtained from 193 GGO nodules in 136 patients (87 women, 49 men; mean age, 57; age range 33-81). The clinical data, pathologic findings, and thin-section CT features of multiple and solitary GGO nodules were compared by using t-test or Fisher's exact test. Multiple GGO nodules (n=105) included atypical adenomatous hyperplasia (AAH) (n=31), bronchioloalveolar carcinoma (BAC) (n=33), adenocarcinoma (n=34) and focal interstitial fibrosis (n=7). Solitary GGO nodules included AAH (n=8), BAC (n=15), adenocarcinoma (n=55) and focal interstitial fibrosis (n=10). AAH (P=.001) and BAC (P=.029) were more frequent in multiple GGO nodules, whereas adenocarcinoma (P<.001) was more frequent in solitary GGO nodules. Female sex (P<.001), nonsmoker (P=.012) and multiple primary lung cancers (P<.001) were more frequent for multiple GGO nodules, which were smaller (12 mm+/-7.9) than solitary GGO nodules (17 mm+/-8.1) (P<.001). Air-bronchogram (P=.019), bubble-lucency (P=.004), and pleural retraction (P<.001) were more frequent in solitary GGO nodules. There was no postoperative recurrence except for one patient with multiple GGO nodules and one with solitary GGO nodule. Clinical, pathological, and thin-section CT features of persistent multiple GGO nodules were found to differ from those of solitary GGO nodules. Nevertheless, the two nodule types can probably be followed up and managed in a similar manner because their prognoses were found to be similar.
Petrović, Kosta; Turkalj, Ivan; Stojanović, Sanja; Vucaj-Cirilović, Viktorija; Nikolić, Olivera; Stojiljković, Dragana
2013-08-01
Computerized tomography (CT), especially multidetector CT (MDCT), has had a revolutionary impact in diagnostic in traumatized patients. The aim of the study was to identify and compare the frequency of injuries to bone structures of the thorax displayed with 5-mm-thick axial CT slices and thin-slice (MDCT) examination with the use of 3D reconstructions, primarily multiplanar reformations (MPR). This prospective study included 61 patients with blunt trauma submitted to CT scan of the thorax as initial assessment. The two experienced radiologists inde pendently and separately described the findings for 5-mm-thick axial CT slices (5 mm CT) as in monoslice CT examination; MPR and other 3D reconstructions along with thin-slice axial sections which were available in modern MDCT technologies. After describing thin-slice examination in case of disagreement in the findings, the examiners redescribed thin-slice examination together which was ultimately considered as a real, true finding. No statistically significant difference in interobserver evaluation of 5 mm CT examination was recorded (p > 0.05). Evaluation of fractures of sternum with 5 mm CT and MDCT showed a statistically significant difference (p < 0.05) in favor of better display of injury by MDCT examination. MDCT is a powerful diagnostic tool that can describe higher number of bone fractures of the chest in traumatized patients compared to 5 mm CT, especially in the region of sternum for which a statistical significance was obtained using MPR. Moreover, the importance of MDCT is also set by easier and more accurate determination of the level of bone injury.
Gee, Carole T.
2013-01-01
• Premise of the study: As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • Methods: MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • Results: If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • Conclusions: This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction. PMID:25202495
Suwatanapongched, Thitiporn; Boonsarngsuk, Viboon; Amornputtisathaporn, Naparat; Leelachaikul, Paisan
2015-01-01
Thoracic endometriosis (TE) is an uncommon disorder affecting women of childbearing age. We herein report clinical and thin-section computed tomography (CT) findings of two cases, in which one woman presented with catamenial haemoptysis (CH) alone and another woman presented with bilateral catamenial pneumothoraces (CP) coinciding with CH, a rare manifestation of TE. The dynamic changes demonstrated on thin-section chest CT performed during and after menses led to accurate localisation and presumptive diagnosis of TE in both patients. Following danazol treatment, the patient with CH alone had a complete cure, while the patient with CP and CH had an incomplete cure and required long-term danazol treatment. We discuss the role of imaging studies in TE, with an emphasis on the appropriate timing and scanning technique of chest CT in women presenting with CH, potential mechanisms, treatment and patient outcomes. PMID:26243981
Ohno, Yoshiharu; Seki, Shinichiro; Koyama, Hisanobu; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Takenaka, Daisuke; Kassai, Yoshimori; Yui, Masao; Sugimura, Kazuro
2015-08-01
To compare predictive capabilities of non-contrast-enhanced (CE)- and dynamic CE-perfusion MRIs, thin-section multidetector computed tomography (CT) (MDCT), and perfusion scan for postoperative lung function in non-small cell lung cancer (NSCLC) patients. Sixty consecutive pathologically diagnosed NSCLC patients were included and prospectively underwent thin-section MDCT, non-CE-, and dynamic CE-perfusion MRIs and perfusion scan, and had their pre- and postoperative forced expiratory volume in one second (FEV1 ) measured. Postoperative percent FEV1 (po%FEV1 ) was then predicted from the fractional lung volume determined on semiquantitatively assessed non-CE- and dynamic CE-perfusion MRIs, from the functional lung volumes determined on quantitative CT, from the number of segments observed on qualitative CT, and from uptakes detected on perfusion scans within total and resected lungs. Predicted po%FEV1 s were then correlated with actual po%FEV1 s, which were %FEV1 s measured postoperatively. The limits of agreement were also determined. All predicted po%FEV1 s showed significant correlation (0.73 ≤ r ≤ 0.93, P < 0.0001) and limits of agreement with actual po%FEV1 (non-CE-perfusion MRI: 0.3 ± 10.0%, dynamic CE-perfusion MRI: 1.0 ± 10.8%, perfusion scan: 2.2 ± 14.1%, quantitative CT: 1.2 ± 9.0%, qualitative CT: 1.5 ± 10.2%). Non-CE-perfusion MRI may be able to predict postoperative lung function more accurately than qualitatively assessed MDCT and perfusion scan. © 2014 Wiley Periodicals, Inc.
Zhang, Ying; Tang, Jian; Xu, Jianrong
2017-01-01
Background To investigate the value of dual energy computed tomography (DECT) parameters (including iodine concentration and monochromatic CT numbers) for predicting pure ground-glass nodules (pGGNs) of invasive adenocarcinoma (IA). Methods A total of 55 resected pGGNs evaluated with both unenhanced thin-section CT (TSCT) and enhanced DECT scans were included. Correlations between histopathology [adenocarcinoma in situ (AIS), minimally IA (MIA), and IA] and CT scan characteristics were examined. CT scan and clinicodemographic data were investigated by univariate and multivariate analysis to identify features that helped distinguish IA from AIS or MIA. Results Both normalized iodine concentration (NIC) of IA and slope of spectral curve [slope(k)] were not significantly different between IA and AIS or MIA. Size, performance of pleural retraction and enhanced monochromatic CT attenuation values of 120–140 keV were significantly higher for IA. In multivariate regression analysis, size and enhanced monochromatic CT number of 140 keV were independent predictors for IA. Using the two parameters together, the diagnostic capacity of IA could be improved from 0.697 or 0.635 to 0.713. Conclusions DECT could help demonstrate blood supply and indicate invasion extent of pGGNs, and monochromatic CT number of higher energy (especially 140 keV) would be better for diagnosing IA than lower energies. Together with size of pGGNs, the diagnostic capacity of IA could be better. PMID:29312701
Malignant external otitis: early scintigraphic detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strashun, A.M.; Nejatheim, M.; Goldsmith, S.J.
1984-02-01
Pseudomonas otitis externa in elderly diabetics may extend aggressively to adjacent bone, cranial nerves, meninges, and vessels, leading to a clinical diagnosis of ''malignant'' external otitis. Early diagnosis is necessary for successful treatment. This study compares the findings of initial radiographs, thin-section tomography of temporal bone, CT scans of head and neck, technetium-99m methylene diphosphonate (MDP) and gallium-67 citrate scintigraphy, and single-photon emission computed tomography (SPECT) for detection of temporal bone osteomylitis in ten patients fulfilling the clinical diagnostic criteria of malignant external otitis. Skull radiographs were negative in all of the eight patients studied. Thin-section tomography was positive inmore » one of the seven patients studied using this modality. CT scanning suggested osteomyelitis in three of nine patients. Both Tc-99m and Ga-67 citrate scintigraphy were positive in 10 of 10 patients. These results suggest that technetium and gallium scintigraphy are more sensitive than radiographs and CT scans for early detection of malignant external otitis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plets, C.; Baert, A.L.; Nijs, G.L.
1986-01-01
It is of the greatest importance to the radiologist, the neurologist and the neurosurgeon to be able to localize topographically a pathological brain process on the CT scan as precisely as possible. For that purpose, the identification of as many anatomical structures as possible on the CT scan image are necessary and indispensable. In this atlas a great number of detailed anatomical data on frontal horizontal CT scan sections, each being only 2 mm thick, are indicated, e.g. the cortical gyri, the basal ganglia, details of the white matter, extracranial muscles and blood vessels, parts of the base and themore » vault of the skull, etc. The very precise topographical description of the numerous CT scan images was realized by the author by confrontation of these images with the corresponding anatomical sections of the same brain specimen, performed by an original technique.« less
NASA Astrophysics Data System (ADS)
Kahl, Wolf-Achim; Hidas, Károly; Dilissen, Nicole; Garrido, Carlos J.; López-Sánchez Vizcaíno, Vicente; Jesús Román-Alpiste, Manuel
2017-04-01
The complete reconstruction of the microstructure of rocks requires, among others, a full description of the shape preferred orientation (SPO) and crystal preferred orientation (CPO) of the constituent mineral phases. New advances in instrumental analyses, particularly electron backscatter diffraction (EBSD) coupled to focused ion beam-scanning electron microscope (FIB-SEM), allows a complete characterization of SPO and CPO in rocks at the micron scale [1-2]. Unfortunately, the large grain size of many crystalline rocks, such as peridotite, prevents a representative characterization of the CPO and SPO of their constituent minerals by this technique. Here, we present a new approach combining X-ray micro computed tomography (µ-CT) and EBSD to reconstruct the geographically oriented, 3-D SPO and CPO of cm- to mm-sized olivine crystals in two contrasting fabric types of chlorite harzburgites (Almírez ultramafic massif, SE Spain). The semi-destructive sample treatment involves drilling of geographically oriented micro drills in the field and preparation of oriented thin sections from µ-CT scanned cores. This allows for establishing the link among geological structures, macrostructure, fabric, and 3-D SPO-CPO at the thin section scale. Based on EBSD analyses, different CPO groups of olivine crystals can be discriminated in the thin sections and allocated to 3-D SPO in the µ-CT volume data. This approach overcomes the limitations of both methods (i.e., no crystal orientation data in µ-CT and no spatial information in EBSD), hence 3-D orientation of the crystallographic axes of olivines from different orientation groups could be correlated with the crystal shapes of olivine grains. This combined µ-CT and EBSD technique enables the correlation of both SPO and CPO and representative grain size, and is capable to characterize the 3-D microstructure of olivine-bearing rocks at the hand specimen scale. REFERENCES 1. Zaefferer, S., Wright, S.I., Raabe, D., 2008. Three-Dimensional orientation microscopy in a focused ion beam-scanning electron microscope: A new dimension of microstructure characterization. Metallurgical and Materials Transactions A 39, 374-389. 2. Burnett, T.L., Kelley, R., Winiarski, B., Contreras, L., Daly, M., Gholinia, A., Burke, M.G., Withers, P.J., 2016. Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. Ultramicroscopy 161, 119-129.
Sinogram restoration for ultra-low-dose x-ray multi-slice helical CT by nonparametric regression
NASA Astrophysics Data System (ADS)
Jiang, Lu; Siddiqui, Khan; Zhu, Bin; Tao, Yang; Siegel, Eliot
2007-03-01
During the last decade, x-ray computed tomography (CT) has been applied to screen large asymptomatic smoking and nonsmoking populations for early lung cancer detection. Because a larger population will be involved in such screening exams, more and more attention has been paid to studying low-dose, even ultra-low-dose x-ray CT. However, reducing CT radiation exposure will increase noise level in the sinogram, thereby degrading the quality of reconstructed CT images as well as causing more streak artifacts near the apices of the lung. Thus, how to reduce the noise levels and streak artifacts in the low-dose CT images is becoming a meaningful topic. Since multi-slice helical CT has replaced conventional stop-and-shoot CT in many clinical applications, this research mainly focused on the noise reduction issue in multi-slice helical CT. The experiment data were provided by Siemens SOMATOM Sensation 16-Slice helical CT. It included both conventional CT data acquired under 120 kvp voltage and 119 mA current and ultra-low-dose CT data acquired under 120 kvp and 10 mA protocols. All other settings are the same as that of conventional CT. In this paper, a nonparametric smoothing method with thin plate smoothing splines and the roughness penalty was proposed to restore the ultra-low-dose CT raw data. Each projection frame was firstly divided into blocks, and then the 2D data in each block was fitted to a thin-plate smoothing splines' surface via minimizing a roughness-penalized least squares objective function. By doing so, the noise in each ultra-low-dose CT projection was reduced by leveraging the information contained not only within each individual projection profile, but also among nearby profiles. Finally the restored ultra-low-dose projection data were fed into standard filtered back projection (FBP) algorithm to reconstruct CT images. The rebuilt results as well as the comparison between proposed approach and traditional method were given in the results and discussions section, and showed effectiveness of proposed thin-plate based nonparametric regression method.
Si, Ming-Jue; Tao, Xiao-Feng; Du, Guang-Ye; Cai, Ling-Ling; Han, Hong-Xiu; Liang, Xi-Zi; Zhao, Jiang-Min
2016-10-01
To retrospectively compare focal interstitial fibrosis (FIF), atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), and minimally invasive adenocarcinoma (MIA) with pure ground-glass opacity (GGO) using thin-section computed tomography (CT). Sixty pathologically confirmed cases were reviewed including 7 cases of FIF, 17 of AAH, 23of AIS, and 13 of MIA. All nodules kept pure ground glass appearances before surgical resection and their last time of thin-section CT imaging data before operation were collected. Differences of patient demographics and CT features were compared among these four types of lesions. FIF occurred more frequently in males and smokers while the others occurred more frequently in female nonsmokers. Nodule size was significant larger in MIA (P<0.001, cut-off value=7.5mm). Nodule shape (P=0.045), margin characteristics (P<0.001), the presence of pleural indentation (P=0.032), and vascular ingress (P<0.001) were significant factors that differentiated the 4 groups. A concave margin was only demonstrated in a high proportion of FIF at 85.7% (P=0.002). There were no significant differences (all P>0.05) in age, malignant history, attenuation value, location, and presence of bubble-like lucency. A nodule size >7.5mm increases the possibility of MIA. A concave margin could be useful for differentiation of FIF from the other malignant or pre-malignant GGO nodules. The presence of spiculation or pleural indentation may preclude the diagnosis of AAH. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Thin-section computed tomography findings in 104 immunocompetent patients with adenovirus pneumonia.
Park, Chan Kue; Kwon, Hoon; Park, Ji Young
2017-08-01
Background To date, there has been no computed tomography (CT) evaluation of adenovirus pneumonia in a large number of immunocompetent patients. Purpose To describe the thin-section CT findings of immunocompetent patients with adenovirus pneumonia. Material and Methods We prospectively enrolled 104 patients with adenovirus pneumonia from a military hospital. CT scans of each patient were retrospectively and independently assessed by two radiologists for the presence of abnormalities, laterality and zonal predominance of the parenchymal abnormalities, and dominant imaging patterns and their anatomic distributions. Results CT findings included consolidation (n = 92), ground-glass opacity (GGO; n = 82), septal thickening (n = 34), nodules (n = 46), bronchial wall thickening (n = 32), pleural effusion (n = 16), and lymphadenopathy (n = 3). Eighty-four patients (81%) exhibited unilateral parenchymal abnormalities and 57 (57%) exhibited lower lung zone abnormalities. The most frequently dominant CT pattern was consolidation with surrounding GGO (n = 50), with subpleural (70%) and peribronchovascular (94%) distributions. Consolidation-the second-most common pattern (n = 33)-also exhibited subpleural (79%) and peribronchovascular (97%) distributions. The dominant nodule pattern (n = 14) exhibited mixed (64%) and peribronchovascular (100%) distributions. A dominant GGO pattern was only observed in four patients; none had central distribution. Conclusion Although the manifestations of adenovirus pneumonia on CT are varied, we found the most frequent pattern was consolidation with or without surrounding GGO, with subpleural and peribronchovascular distributions. Parenchymal abnormalities were predominantly unilateral and located in the lower lung zone. If dominant consolidation findings are present in immunocompetent patients during the early stages, adenovirus pneumonia should be considered.
Kahl, W-A; Dilissen, N; Hidas, K; Garrido, C J; López-Sánchez-Vizcaíno, V; Román-Alpiste, M J
2017-11-01
We reconstruct the 3-D microstructure of centimetre-sized olivine crystals in rocks from the Almirez ultramafic massif (SE Spain) using combined X-ray micro computed tomography (μ-CT) and electron backscatter diffraction (EBSD). The semidestructive sample treatment involves geographically oriented drill pressing of rocks and preparation of oriented thin sections for EBSD from the μ-CT scanned cores. The μ-CT results show that the mean intercept length (MIL) analyses provide reliable information on the shape preferred orientation (SPO) of texturally different olivine groups. We show that statistical interpretation of crystal preferred orientation (CPO) and SPO of olivine becomes feasible because the highest densities of the distribution of main olivine crystal axes from EBSD are aligned with the three axes of the 3-D ellipsoid calculated from the MIL analyses from μ-CT. From EBSD data we distinguish multiple CPO groups and by locating the thin sections within the μ-CT volume, we assign SPO to the corresponding olivine crystal aggregates, which confirm the results of statistical comparison. We demonstrate that the limitations of both methods (i.e. no crystal orientation data in μ-CT and no spatial information in EBSD) can be overcome, and the 3-D orientation of the crystallographic axes of olivines from different orientation groups can be successfully correlated with the crystal shapes of representative olivine grains. Through this approach one can establish the link among geological structures, macrostructure, fabric and 3-D SPO-CPO relationship at the hand specimen scale even in complex, coarse-grained geomaterials. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
[Progress on the Rule of Clavicle Epiphyseal Closure Using Multi-Imaging Technology].
Fan, F; Tu, M; Luo, Y Z; Zhang, K; Chen, X G; Deng, Z H
2016-08-01
People aged 18 years could be punished lightly or diminished criminal responsibility, even be spared the death sentence, which has important meaning in Chinese judicatory adjudication. The epiphysis of long bones from human limbs and the secondary sexual characteristics almost have developed completely before 18 years old. Clavicle epiphysis is one of the articular metaphysis which has a late epiphyseal closure. The recent studies in exploring the rule of clavicle epiphyseal by multi-imaging technology shows that the development of clavicle epiphysis has some value in age estimation of 18 years old. CT, especially thin-section CT, is widely used at present. However, thin-section CT scanning has great net radiation, which is not ethically acceptable if it is not for diagnosis and treatment. MRI is nonradioactive tomographic imaging and easy to evaluate, which is one of the future research directions in forensic age estimation using the medial clavicle. This paper summarizes the progress on the rule of clavicle epiphyseal closure, and analyzes and summarizes the feasibility of rule of clavicle epiphyseal closure applies on age estimation. Copyright© by the Editorial Department of Journal of Forensic Medicine.
Heussel, C P; Herth, F J F; Kappes, J; Hantusch, R; Hartlieb, S; Weinheimer, O; Kauczor, H U; Eberhardt, R
2009-10-01
Characterisation and quantification of emphysema are necessary for planning of local treatment and monitoring. Sensitive, easy to measure, and stable parameters have to be established and their relation to the well-known pulmonary function testing (PFT) has to be investigated. A retrospective analysis of 221 nonenhanced thin-section MDCT with a corresponding PFT was carried out, with a subgroup analysis in 102 COPD stage III+IV, 44 COPD stage 0, and 33 investigations into interstitial lung disease (ILD). The in-house YACTA software was used for automatic quantification of lung and emphysema volume [l], emphysema index, mean lung density (MLD [HU]) and 15(th) percentile [HU]. CT-derived lung volume is significantly smaller in ILD (3.8) and larger in COPD (7.2) than in controls (5.9, p < 0.0001). Emphysema volume and index are significantly higher in COPD than in controls (3.2 vs. 0.5, p < 0.0001, 45% vs. 8%, p < 0.0001). MLD and 15(th) percentile are significantly smaller in COPD (-877/-985, p < 0.0001) and significantly higher in ILD (-777, p < 0.0006/-914, p < 0.0001) than in controls (-829/-935). A relevant amount of COPD patients apparently do not suffer from emphysema, while controls who do not fulfil PFT criteria for COPD also demonstrate CT features of emphysema. Automatic quantification of thin-section CT delivers convincing parameters and ranges that are able to differentiate among emphysema, control and ILD. An emphysema index of lower 20%, MLD higher than -850, and 15(th) percentile lower than -950 might be regarded as normal (thin-section, nonenhanced, B40, YACTA). These ranges might be helpful in the judgement of individual measures.
CT of the ear in Pendred syndrome.
Goldfeld, Moshe; Glaser, Benjamin; Nassir, Elias; Gomori, John Moshe; Hazani, Elitsur; Bishara, Nassir
2005-05-01
To prospectively determine the structural anomalies of the inner ear by using thin-section computed tomography (CT) in an extended family with Pendred syndrome. Ethics committee approved the study, and informed consent was obtained from every patient or from parents of patients under legal age. Twelve patients (three females and nine males aged 7-47 years) with Pendred syndrome (all from the same ethnic isolate and with the same mutation in the PDS gene) were evaluated for inner-ear malformation at thin-section CT. Both ears were evaluated. Presence or absence of interscalar septum between upper and middle turns of the cochlea was evaluated, and vestibule and vestibular aqueduct were examined for enlargement. Modiolus was determined to be present or absent (modiolar deficiency). CT scans were evaluated in consensus by two radiologists (M.G., J.M.G.). All patients had inner ear malformation on both sides. Modiolus was absent and vestibule was enlarged on both sides in all 12 patients. Interscalar septum was absent in 18 (75%) of 24 ears. In eight patients, interscalar septum was absent in both ears, whereas in two patients, it was absent on only one side. Aqueduct was enlarged in 20 (80%) of 24 ears. In nine patients, both ears had enlarged aqueducts, while in two patients, only one side was abnormal. Inner ear malformation is an invariable finding in Pendred syndrome. Modiolus deficiency and vestibular enlargement were the most consistent anomalies in this population with Pendred syndrome. (c) RSNA, 2005.
High Resolution X-Ray Micro-CT of Ultra-Thin Wall Space Components
NASA Technical Reports Server (NTRS)
Roth, Don J.; Rauser, R. W.; Bowman, Randy R.; Bonacuse, Peter; Martin, Richard E.; Locci, I. E.; Kelley, M.
2012-01-01
A high resolution micro-CT system has been assembled and is being used to provide optimal characterization for ultra-thin wall space components. The Glenn Research Center NDE Sciences Team, using this CT system, has assumed the role of inspection vendor for the Advanced Stirling Convertor (ASC) project at NASA. This article will discuss many aspects of the development of the CT scanning for this type of component, including CT system overview; inspection requirements; process development, software utilized and developed to visualize, process, and analyze results; calibration sample development; results on actual samples; correlation with optical/SEM characterization; CT modeling; and development of automatic flaw recognition software. Keywords: Nondestructive Evaluation, NDE, Computed Tomography, Imaging, X-ray, Metallic Components, Thin Wall Inspection
Study of CT Scan Flooding System at High Temperature and Pressure
NASA Astrophysics Data System (ADS)
Chen, X. Y.
2017-12-01
CT scan flooding experiment can scan micro-pore in different flooding stages by the use of CT scan technology, without changing the external morphology and internal structure of the core, and observe the distribution characterization in pore medium of different flooding fluid under different pressure.thus,it can rebuilt the distribution images of oil-water distribution in different flooding stages. However,under extreme high pressure and temperature conditions,the CT scan system can not meet the requirements. Container of low density materials or thin shell can not resist high pressure,while high density materials or thick shell will cause attenuation and scattering of X-ray. The experiment uses a simple Ct scanning systems.X ray from a point light source passing trough a micro beryllium shell on High pressure stainless steal container,continuously irradiates the core holder that can continuously 360° rotate along the core axis. A rare earth intensifying screen behind the core holder emitting light when irradiated with X ray can show the core X ray section image. An optical camera record the core X ray images through a transparency high pressure glazing that placed on the High pressure stainless steal container.Thus,multiple core X ray section images can reconstruct the 3D core reconstruction after a series of data processing.The experiment shows that both the micro beryllium shell and rare earth intensifying screen can work in high temperature and high pressure environment in the stainless steal container. This way that X-ray passes through a thin layer of micro beryllium shell , not high pressure stainless steal shell,avoid the attenuation and scattering of X-ray from the container shell,while improving the high-pressure experiment requirements.
Image Fusion for Radiosurgery, Neurosurgery and Hypofractionated Radiotherapy.
Inoue, Hiroshi K; Nakajima, Atsushi; Sato, Hiro; Noda, Shin-Ei; Saitoh, Jun-Ichi; Suzuki, Yoshiyuki
2015-03-01
Precise target detection is essential for radiosurgery, neurosurgery and hypofractionated radiotherapy because treatment results and complication rates are related to accuracy of the target definition. In skull base tumors and tumors around the optic pathways, exact anatomical evaluation of cranial nerves are important to avoid adverse effects on these structures close to lesions. Three-dimensional analyses of structures obtained with MR heavy T2-images and image fusion with CT thin-sliced sections are desirable to evaluate fine structures during radiosurgery and microsurgery. In vascular lesions, angiography is most important for evaluations of whole structures from feeder to drainer, shunt, blood flow and risk factors of bleeding. However, exact sites and surrounding structures in the brain are not shown on angiography. True image fusions of angiography, MR images and CT on axial planes are ideal for precise target definition. In malignant tumors, especially recurrent head and neck tumors, biologically active areas of recurrent tumors are main targets of radiosurgery. PET scan is useful for quantitative evaluation of recurrences. However, the examination is not always available at the time of radiosurgery. Image fusion of MR diffusion images with CT is always available during radiosurgery and useful for the detection of recurrent lesions. All images are fused and registered on thin sliced CT sections and exactly demarcated targets are planned for treatment. Follow-up images are also able to register on this CT. Exact target changes, including volume, are possible in this fusion system. The purpose of this review is to describe the usefulness of image fusion for 1) skull base, 2) vascular, 3) recurrent target detection, and 4) follow-up analyses in radiosurgery, neurosurgery and hypofractionated radiotherapy.
Image Fusion for Radiosurgery, Neurosurgery and Hypofractionated Radiotherapy
Nakajima, Atsushi; Sato, Hiro; Noda, Shin-ei; Saitoh, Jun-ichi; Suzuki, Yoshiyuki
2015-01-01
Precise target detection is essential for radiosurgery, neurosurgery and hypofractionated radiotherapy because treatment results and complication rates are related to accuracy of the target definition. In skull base tumors and tumors around the optic pathways, exact anatomical evaluation of cranial nerves are important to avoid adverse effects on these structures close to lesions. Three-dimensional analyses of structures obtained with MR heavy T2-images and image fusion with CT thin-sliced sections are desirable to evaluate fine structures during radiosurgery and microsurgery. In vascular lesions, angiography is most important for evaluations of whole structures from feeder to drainer, shunt, blood flow and risk factors of bleeding. However, exact sites and surrounding structures in the brain are not shown on angiography. True image fusions of angiography, MR images and CT on axial planes are ideal for precise target definition. In malignant tumors, especially recurrent head and neck tumors, biologically active areas of recurrent tumors are main targets of radiosurgery. PET scan is useful for quantitative evaluation of recurrences. However, the examination is not always available at the time of radiosurgery. Image fusion of MR diffusion images with CT is always available during radiosurgery and useful for the detection of recurrent lesions. All images are fused and registered on thin sliced CT sections and exactly demarcated targets are planned for treatment. Follow-up images are also able to register on this CT. Exact target changes, including volume, are possible in this fusion system. The purpose of this review is to describe the usefulness of image fusion for 1) skull base, 2) vascular, 3) recurrent target detection, and 4) follow-up analyses in radiosurgery, neurosurgery and hypofractionated radiotherapy. PMID:26180676
[Thin-section computed tomography of the bronchi; 2. Right upper lobe and left upper division].
Matsuoka, Y; Ookubo, T; Ohtomo, K; Nishikawa, J; Kojima, K; Oyama, K; Yoshikawa, K; Iio, M
1990-02-01
Thin (2mm) section contiguous computed tomographic (CT) scans were obtained through the bronchi of the right upper lobe and the left upper division in 30 patients. All segmental bronchi were identified. The right subsegmental bronchi were identified in 100%, and the left subsegmental bronchi in 97%. The type of the orifice of the right bronchus was trifurcated (53%), the extension of B1 was apicoanterior (50%), and the size of B2b was equal to B3a (63%). The extension of the left B3 was subapicoanterior (38%), and the size of B1+2c was equal to B3a (62%).
Bronchovascular anatomy of the upper lobes: evaluation with thin-section CT.
Lee, K S; Bae, W K; Lee, B H; Kim, I Y; Choi, E W; Lee, B H
1991-12-01
The anatomy of the bronchovascular trees of the upper lobes was evaluated with thin-section computed tomography (CT) in 50 patients. In all patients, the subsegmental bronchi could be seen, except the right B2b, left B1 + 2c, and left B3c. Regular anatomic relationships were seen between the right A3b and B3b (A3b was seen along the medial aspect of B3b in 45 patients [90%]), right A2a and B2a (A2a was seen along the posteromedial aspect of B2a in 45 patients [90%]), and left A1 + 2c and B1 + 2c (A1 + 2c was seen along the posterior aspect of B1 + 2c in 41 patients [82%]). Four patterns of bronchial branching were seen in the left upper lobe. The lateral branch of the posterior segmental vein of the upper lobes was an anatomic landmark dividing the anterior and posterior segments of the upper lobes. Three kinds of venous drainage patterns were identified in both the right and left upper lobes.
Model-based cartilage thickness measurement in the submillimeter range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streekstra, G. J.; Strackee, S. D.; Maas, M.
2007-09-15
Current methods of image-based thickness measurement in thin sheet structures utilize second derivative zero crossings to locate the layer boundaries. It is generally acknowledged that the nonzero width of the point spread function (PSF) limits the accuracy of this measurement procedure. We propose a model-based method that strongly reduces PSF-induced bias by incorporating the PSF into the thickness estimation method. We estimated the bias in thickness measurements in simulated thin sheet images as obtained from second derivative zero crossings. To gain insight into the range of sheet thickness where our method is expected to yield improved results, sheet thickness wasmore » varied between 0.15 and 1.2 mm with an assumed PSF as present in the high-resolution modes of current computed tomography (CT) scanners [full width at half maximum (FWHM) 0.5-0.8 mm]. Our model-based method was evaluated in practice by measuring layer thickness from CT images of a phantom mimicking two parallel cartilage layers in an arthrography procedure. CT arthrography images of cadaver wrists were also evaluated, and thickness estimates were compared to those obtained from high-resolution anatomical sections that served as a reference. The thickness estimates from the simulated images reveal that the method based on second derivative zero crossings shows considerable bias for layers in the submillimeter range. This bias is negligible for sheet thickness larger than 1 mm, where the size of the sheet is more than twice the FWHM of the PSF but can be as large as 0.2 mm for a 0.5 mm sheet. The results of the phantom experiments show that the bias is effectively reduced by our method. The deviations from the true thickness, due to random fluctuations induced by quantum noise in the CT images, are of the order of 3% for a standard wrist imaging protocol. In the wrist the submillimeter thickness estimates from the CT arthrography images correspond within 10% to those estimated from the anatomical sections. We present a method that yields virtually unbiased thickness estimates of cartilage layers in the submillimeter range. The good agreement of thickness estimates from CT images with estimates from anatomical sections is promising for clinical application of the method in cartilage integrity staging of the wrist and the ankle.« less
Paleoradiology: advanced CT in the evaluation of nine Egyptian mummies.
Hoffman, Heidi; Torres, William E; Ernst, Randy D
2002-01-01
Axial thin-collimation state-of-the-art spiral computed tomography (CT) was combined with sagittal and coronal reformatting, three-dimensional (3D) reconstruction, and virtual "fly-through" techniques to nondestructively study nine Egyptian mummies. These techniques provided important paleopathologic and historical information about mummification techniques, depicted anatomy in the most informative imaging plane, illustrated the soft-tissue preservation and physical appearance of mummies in superb detail, and generated an intriguing virtual tour through hollow mummified remains without harming the specimens themselves. Images generated with these methods can help archaeologists and Egyptologists understand these fascinating members of mankind and can serve as adjunct visual aids for laypersons who are interested in mummies. CT has emerged as the imaging modality of choice for the examination of Egyptian mummies due to its noninvasive cross-sectional nature and inherently superior contrast and spatial resolution. As multi-detector row CT and postprocessing tools evolve, the capabilities and applications of CT will continue to proliferate, attesting to the expanded versatility and utility of CT as a noninvasive research tool in the multidisciplinary study of Egyptian mummies. Copyright RSNA, 2002
NASA Astrophysics Data System (ADS)
Voorn, Maarten; Barnhoorn, Auke; Exner, Ulrike; Baud, Patrick; Reuschlé, Thierry
2015-04-01
Fractured reservoir rocks make up an important part of the hydrocarbon reservoirs worldwide. A detailed analysis of fractures and fracture networks in reservoir rock samples is thus essential to determine the potential of these fractured reservoirs. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this study, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna Basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. 3D μCT data is used to extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. The 3D analyses are complemented with thin sections made to provide some 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) of the µCT results towards more realistic reservoir conditions. Our results show that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner.
Kamalian, Shervin; Atkinson, Wendy L; Florin, Lauren A; Pomerantz, Stuart R; Lev, Michael H; Romero, Javier M
2014-06-01
Evaluation of the posterior fossa (PF) on 5-mm-thick helical CT images (current default) has improved diagnostic accuracy compared to 5-mm sequential CT images; however, 5-mm-thick images may not be ideal for PF pathology due to volume averaging of rapid changes in anatomy in the Z-direction. Therefore, we sought to determine if routine review of 1.25-mm-thin helical CT images has superior accuracy in screening for nontraumatic PF pathology. MRI proof of diagnosis was obtained within 6 h of helical CT acquisition for 90 consecutive ED patients with, and 88 without, posterior fossa lesions. Helical CT images were post-processed at 1.25 and 5-mm-axial slice thickness. Two neuroradiologists blinded to the clinical/MRI findings reviewed both image sets. Interobserver agreement and accuracy were rated using Kappa statistics and ROC analysis, respectively. Of the 90/178 (51 %) who were MR positive, 60/90 (66 %) had stroke and 30/90 (33 %) had other etiologies. There was excellent interobserver agreement (κ > 0.97) for both thick and thin slice assessments. The accuracy, sensitivity, and specificity for 1.25-mm images were 65, 44, and 84 %, respectively, and for 5-mm images were 67, 45, and 85 %, respectively. The diagnostic accuracy was not significantly different (p > 0.5). In this cohort of patients with nontraumatic neurological symptoms referred to the posterior fossa, 1.25-mm-thin slice CT reformatted images do not have superior accuracy compared to 5-mm-thick images. This information has implications on optimizing resource utilizations and efficiency in a busy emergency room. Review of 1.25-mm-thin images may help diagnostic accuracy only when review of 5-mm-thick images as current default is inconclusive.
Avizcuri-Inac, José-Miguel; Gonzalo-Diago, Ana; Sanz-Asensio, Jesús; Martínez-Soria, María-Teresa; López-Alonso, Miguel; Dizy-Soto, Marta; Echávarri-Granado, José-Federico; Vaquero-Fernández, Luis; Fernández-Zurbano, Purificación
2013-02-06
The overall objective of this study was to investigate the effect of manual cluster thinning (CT) and the application of the growth regulator Prohexadione calcium (ProCa) on the phenolic composition and the sensory profile of Tempranillo and Grenache wines produced from treated vines in La Rioja (Spain). ProCa was applied at preblooming and CT was carried out at veraison in two consecutive years. Different physicochemical parameters and analyses of phenolic compounds were carried out in control, CT and ProCa grapes and wines and wine sensory was performed. Thinning treatments decreased crop yield, besides ProCa application reduced berry size, and berry weight. Color and phenolic composition of Grenache and Tempranillo wines in general were affected by thinning treatments, with an increase in anthocyanin, flavanol and flavonol concentrations. In sensory analysis, wines obtained from thinned vines presented higher values for several aromatic (e.g., white and yellow fruits, fresh flowers) and taste attributes (i.e., astringency, bitternes, persistence). CT and ProCa treatments resulted in an improvement in wine quality. In general, similar results in phenolic composition, sensory properties and quality of wines were obtained by manual and chemical cluster thinning. ProCa as a growth regulator may be an option for a quality vitiviniculture.
Micro-CT scouting for transmission electron microscopy of human tissue specimens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, A. G.; Stempinski, E. S.; XIAO, X.
Transmission electron microscopy (TEM) provides sub-nanometre-scale details in volumetric samples. Samples such as pathology tissue specimens are often stained with a metal element to enhance contrast, which makes them opaque to optical microscopes. As a result, it can be a lengthy procedure to find the region of interest inside a sample through sectioning. Here, we describe micro-CT scouting for TEM that allows noninvasive identification of regions of interest within a block sample to guide the sectioning step. In a tissue pathology study, a bench-top micro-CT scanner with 10 m resolution was used to determine the location of patches of themore » mucous membrane in osmium-stained human nasal scraping samples. Furthermore, once the regions of interest were located, the sample block was sectioned to expose that location, followed by ultra-thin sectioning and TEM to inspect the internal structure of the cilia of the membrane epithelial cells with nanometre resolution. This method substantially reduced the time and labour of the search process from typically 20 sections for light microscopy to three sections with no added sample preparation. Lay description Electron microscopy provides very high levels of detail in a small area, and thus the question of where to look in an opaque sample, such as a stained tissue specimen, needs to be answered by sectioning the sample in small steps and examining the sections under a light microscope, until the region of interest is found. The search process can be lengthy and labor intensive, especially for a study involving a large number of samples. Small areas of interest can be missed in the process if not enough regions are examined. We also describe a method to directly locate the region of interest within a whole sample using micro-CT imaging, bypassing the need of blindly sectioning. Micro-CT enables locating the region within 3D space; this information provides a guide for sectioning the sample to expose that precise location for high resolution electron microscopy imaging. In a human tissue specimen study, this method considerably reduced the time and labor of the search process.« less
Micro-CT scouting for transmission electron microscopy of human tissue specimens
Morales, A. G.; Stempinski, E. S.; XIAO, X.; ...
2016-02-08
Transmission electron microscopy (TEM) provides sub-nanometre-scale details in volumetric samples. Samples such as pathology tissue specimens are often stained with a metal element to enhance contrast, which makes them opaque to optical microscopes. As a result, it can be a lengthy procedure to find the region of interest inside a sample through sectioning. Here, we describe micro-CT scouting for TEM that allows noninvasive identification of regions of interest within a block sample to guide the sectioning step. In a tissue pathology study, a bench-top micro-CT scanner with 10 m resolution was used to determine the location of patches of themore » mucous membrane in osmium-stained human nasal scraping samples. Furthermore, once the regions of interest were located, the sample block was sectioned to expose that location, followed by ultra-thin sectioning and TEM to inspect the internal structure of the cilia of the membrane epithelial cells with nanometre resolution. This method substantially reduced the time and labour of the search process from typically 20 sections for light microscopy to three sections with no added sample preparation. Lay description Electron microscopy provides very high levels of detail in a small area, and thus the question of where to look in an opaque sample, such as a stained tissue specimen, needs to be answered by sectioning the sample in small steps and examining the sections under a light microscope, until the region of interest is found. The search process can be lengthy and labor intensive, especially for a study involving a large number of samples. Small areas of interest can be missed in the process if not enough regions are examined. We also describe a method to directly locate the region of interest within a whole sample using micro-CT imaging, bypassing the need of blindly sectioning. Micro-CT enables locating the region within 3D space; this information provides a guide for sectioning the sample to expose that precise location for high resolution electron microscopy imaging. In a human tissue specimen study, this method considerably reduced the time and labor of the search process.« less
Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Takenaka, Daisuke; Takahashi, Masaya; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Obara, Makoto; van Cauteren, Marc; Sugimura, Kazuro
2013-08-01
To evaluate the utility of pulmonary magnetic resonance (MR) imaging with ultra-short echo times (UTEs) at a 3.0 T MR system for pulmonary functional loss and disease severity assessments of connective tissue disease (CTD) patients with interstitial lung disease (ILD). This prospective study was approved by the institutional review board, and written informed consent was obtained from 18 CTD patients (eight men and ten women) and eight normal subjects with suspected chest disease (three men and five women). All subjects underwent thin-section MDCT, pulmonary MR imaging with UTEs, pulmonary function test and serum KL-6. Regional T2 maps were generated from each MR data set, and mean T2 values were determined from ROI measurements. From each thin-section MDCT data set, CT-based disease severity was evaluated with a visual scoring system. Mean T2 values for normal and CTD subjects were statistically compared by using Student's t-test. To assess capability for pulmonary functional loss and disease severity assessments, mean T2 values were statistically correlated with pulmonary functional parameters, serum KL-6 and CT-based disease severity. Mean T2 values for normal and CTD subjects were significantly different (p=0.0019) and showed significant correlations with %VC, %DLCO, serum KL-6 and CT-based disease severity of CTD patients (p<0.05). Pulmonary MR imaging with UTEs is useful for pulmonary functional loss and disease severity assessments of CTD patients with ILD. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Characterisation of potato crisp effective porosity using micro-CT.
Renshaw, Ryan C; Robinson, John P; Dimitrakis, Georgios A; Bows, John R; Kingman, Samuel W
2016-10-01
The effective porosity is an important quantitative parameter for food products that has a significant effect on taste and quality. It is challenging to quantify the apparent porosity of fried potato crisps as they have a thin irregularly shaped cross section containing oil and water. This study uses a novel micro-CT technique to determine the solid volume fraction and hence the effective porosity of three types of potato crisps: standard continuously fried crisps, microwaved crisps, and continuously fried 'kettle' crisps. It was found that continuously fried kettle crisps had the lowest effective porosity at 0.54, providing the desired crunchy taste and lower oil contents. Crisps produced using a microwave process designed to mimic the dehydration process of standard continuous fried crisps had an effective porosity of 0.65, which was very similar to the effective porosity of 0.63 for standard continuously fried crisps. The results were supported by the findings of a forced preference consumer test. The effective porosity affects the product taste and is therefore a critical parameter. This study shows that micro-CT analysis can be used to characterise the change in effective porosity of a thin irregularly shaped food product, caused by a change of cooking procedure. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Quantifying Mesoscale Neuroanatomy Using X-Ray Microtomography
Gray Roncal, William; Prasad, Judy A.; Fernandes, Hugo L.; Gürsoy, Doga; De Andrade, Vincent; Fezzaa, Kamel; Xiao, Xianghui; Vogelstein, Joshua T.; Jacobsen, Chris; Körding, Konrad P.
2017-01-01
Methods for resolving the three-dimensional (3D) microstructure of the brain typically start by thinly slicing and staining the brain, followed by imaging numerous individual sections with visible light photons or electrons. In contrast, X-rays can be used to image thick samples, providing a rapid approach for producing large 3D brain maps without sectioning. Here we demonstrate the use of synchrotron X-ray microtomography (µCT) for producing mesoscale (∼1 µm 3 resolution) brain maps from millimeter-scale volumes of mouse brain. We introduce a pipeline for µCT-based brain mapping that develops and integrates methods for sample preparation, imaging, and automated segmentation of cells, blood vessels, and myelinated axons, in addition to statistical analyses of these brain structures. Our results demonstrate that X-ray tomography achieves rapid quantification of large brain volumes, complementing other brain mapping and connectomics efforts. PMID:29085899
2013-08-01
transformation models, such as thin - plate spline (1-3) or elastic-body spline (4, 5), is locally controlled. One of the main motivations behind the...research project. References: 1. Bookstein FL. Principal warps: thin - plate splines and the decomposition of deformations. IEEE Transactions on Pattern...Rohr K, Stiehl HS, Sprengel R, Buzug TM, Weese J, Kuhn MH. Landmark-based elastic registration using approximating thin - plate splines . IEEE Transactions
2013-08-01
as thin - plate spline (1-3) or elastic-body spline (4, 5), is locally controlled. One of the main motivations behind the use of B- spline ...FL. Principal warps: thin - plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence...Weese J, Kuhn MH. Landmark-based elastic registration using approximating thin - plate splines . IEEE Transactions on Medical Imaging. 2001;20(6):526-34
NASA Astrophysics Data System (ADS)
Sinsuat, Marodina; Shimamura, Ichiro; Saita, Shinsuke; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Ohmatsu, Hironobu; Kakinuma, Ryutaro; Eguchi, Kenji; Kaneko, Masahiro; Tominaga, Keigo; Moriyama, Noriyuki
2008-03-01
With thin and thick section Multi-slice CT images at lung cancer screening, we have statistically and quantitatively shown and evaluated the diagnostic capabilities of these slice thicknesses on physicians' pulmonary nodule diagnosis. To comparatively evaluate the 2 mm and 10 mm slice thicknesses, MSCT images of 360 people were read by six physicians. The reading criteria consisted of nodule for further examination (NFE), nodule for no further examination (NNFE) and no abnormality (NA) case. For reading results evaluation; firstly, cross-tabulation was carried out to roughly analyze the diagnoses based on whole lung field and each lung lobes. Secondly, from semi-automated extraction result of the nodule, detailed quantitative analysis was carried out to determine the diagnostic capabilities of two slice thicknesses. Finally, using the reading results of 2 mm thick image as the gold standard, the diagnostic capabilities were analyzed through the features and locations of pulmonary nodules. The study revealed that both slice thicknesses can depict lung cancer. Thin section may not be effective to diagnose nodules of <=3 mm in size and nodules of <= 5mm in size for thick section. Though thick section is less tiring for reading physicians, it is not good at depicting nodules located at the border of lung upper lobe and which have a pixel size distance of <=5 from the chest wall. The information presented may serve as a useful reference to determine in which particular pulmonary nodule condition the two slice thicknesses can be effectively used for early detection of lung cancer.
Differentiating constitutional thinness from anorexia nervosa in DSM 5 era.
Estour, Bruno; Marouani, Nesrine; Sigaud, Torrance; Lang, François; Fakra, Eric; Ling, Yiin; Diamondé, Aurélie; Minnion, James S; Galusca, Bogdan; Germain, Natacha
2017-10-01
Constitutional thinness (CT) is an underweight state characterized by normal menstruations and no change in feeding behaviour. Thinness is the only resemblance between Anorexia Nervosa (AN) and CT. Removal of amenorrhea from the new DSM 5 definition of AN might result in misdiagnosis between these two populations. The objective of this study was to compare CT, AN and Control subjects in terms of biological, anthropometric, and psychological markers in order to better distinguish AN from CT subjects. Body composition, nutritional markers, pituitary hormones, bone markers and psychological scores were evaluated in three groups of young women: fifty-six CT, forty restrictive-type AN and fifty-four Control subjects. For every marker, a receiver Operator Characteristics (ROC) curve was calculated to evaluate the accuracy of differentiation between AN and CT groups. For most studied parameters, CT subjects were similar to Controls but dramatically different from AN subjects. DEBQ Restrained Eating subscale score was identified by ROC data analysis as the only psychological parameter tested to successfully differentiate AN from CT. Free-T3 and Leptin were shown to be powerful markers to differentiate AN and CT populations as they were highly specific and sensitive ones. The exclusive use of psychological testing criteria is not always sufficient to differentiate AN and CT patients. Minimally, additional testing of Free T3 levels, which is cheap and widely accessible for general practitioners, should be completed to avoid misdiagnosis which could result in the implementation of ineffective treatment plans and social stigmatization for CT women. Copyright © 2017 Elsevier Ltd. All rights reserved.
Intrathoracic airway measurement: ex-vivo validation
NASA Astrophysics Data System (ADS)
Reinhardt, Joseph M.; Raab, Stephen A.; D'Souza, Neil D.; Hoffman, Eric A.
1997-05-01
High-resolution x-ray CT (HRCT) provides detailed images of the lungs and bronchial tree. HRCT-based imaging and quantitation of peripheral bronchial airway geometry provides a valuable tool for assessing regional airway physiology. Such measurements have been sued to address physiological questions related to the mechanics of airway collapse in sleep apnea, the measurement of airway response to broncho-constriction agents, and to evaluate and track the progression of disease affecting the airways, such as asthma and cystic fibrosis. Significant attention has been paid to the measurements of extra- and intra-thoracic airways in 2D sections from volumetric x-ray CT. A variety of manual and semi-automatic techniques have been proposed for airway geometry measurement, including the use of standardized display window and level settings for caliper measurements, methods based on manual or semi-automatic border tracing, and more objective, quantitative approaches such as the use of the 'half-max' criteria. A recently proposed measurements technique uses a model-based deconvolution to estimate the location of the inner and outer airway walls. Validation using a plexiglass phantom indicates that the model-based method is more accurate than the half-max approach for thin-walled structures. In vivo validation of these airway measurement techniques is difficult because of the problems in identifying a reliable measurement 'gold standard.' In this paper we report on ex vivo validation of the half-max and model-based methods using an excised pig lung. The lung is sliced into thin sections of tissue and scanned using an electron beam CT scanner. Airways of interest are measured from the CT images, and also measured with using a microscope and micrometer to obtain a measurement gold standard. The result show no significant difference between the model-based measurements and the gold standard; while the half-max estimates exhibited a measurement bias and were significantly different than the gold standard.
Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples
Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry
2015-01-01
With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method – non-destructive 3D X-ray micro-Computed Tomography (μCT) – to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations – in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner. PMID:26549935
Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples.
Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry
2015-03-01
With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner.
Combined X-ray CT and mass spectrometry for biomedical imaging applications
NASA Astrophysics Data System (ADS)
Schioppa, E., Jr.; Ellis, S.; Bruinen, A. L.; Visser, J.; Heeren, R. M. A.; Uher, J.; Koffeman, E.
2014-04-01
Imaging technologies play a key role in many branches of science, especially in biology and medicine. They provide an invaluable insight into both internal structure and processes within a broad range of samples. There are many techniques that allow one to obtain images of an object. Different techniques are based on the analysis of a particular sample property by means of a dedicated imaging system, and as such, each imaging modality provides the researcher with different information. The use of multimodal imaging (imaging with several different techniques) can provide additional and complementary information that is not possible when employing a single imaging technique alone. In this study, we present for the first time a multi-modal imaging technique where X-ray computerized tomography (CT) is combined with mass spectrometry imaging (MSI). While X-ray CT provides 3-dimensional information regarding the internal structure of the sample based on X-ray absorption coefficients, MSI of thin sections acquired from the same sample allows the spatial distribution of many elements/molecules, each distinguished by its unique mass-to-charge ratio (m/z), to be determined within a single measurement and with a spatial resolution as low as 1 μm or even less. The aim of the work is to demonstrate how molecular information from MSI can be spatially correlated with 3D structural information acquired from X-ray CT. In these experiments, frozen samples are imaged in an X-ray CT setup using Medipix based detectors equipped with a CO2 cooled sample holder. Single projections are pre-processed before tomographic reconstruction using a signal-to-thickness calibration. In the second step, the object is sliced into thin sections (circa 20 μm) that are then imaged using both matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and secondary ion (SIMS) mass spectrometry, where the spatial distribution of specific molecules within the sample is determined. The combination of two vastly different imaging approaches provides complementary information (i.e., anatomical and molecular distributions) that allows the correlation of distinct structural features with specific molecules distributions leading to unique insights in disease development.
Idriz, Sanjin; Patel, Jaymin H; Ameli Renani, Seyed; Allan, Rosemary; Vlahos, Ioannis
2015-01-01
The use of computed tomography (CT) in clinical practice has been increasing rapidly, with the number of CT examinations performed in adults and children rising by 10% per year in England. Because the radiology community strives to reduce the radiation dose associated with pediatric examinations, external factors, including guidelines for pediatric head injury, are raising expectations for use of cranial CT in the pediatric population. Thus, radiologists are increasingly likely to encounter pediatric head CT examinations in daily practice. The variable appearance of cranial sutures at different ages can be confusing for inexperienced readers of radiologic images. The evolution of multidetector CT with thin-section acquisition increases the clarity of some of these sutures, which may be misinterpreted as fractures. Familiarity with the normal anatomy of the pediatric skull, how it changes with age, and normal variants can assist in translating the increased resolution of multidetector CT into more accurate detection of fractures and confident determination of normality, thereby reducing prolonged hospitalization of children with normal developmental structures that have been misinterpreted as fractures. More important, the potential morbidity and mortality related to false-negative interpretation of fractures as normal sutures may be avoided. The authors describe the normal anatomy of all standard pediatric sutures, common variants, and sutural mimics, thereby providing an accurate and safe framework for CT evaluation of skull trauma in pediatric patients. (©)RSNA, 2015.
Rib fractures induced by coughing: an unusual cause of acute chest pain.
De Maeseneer, M; De Mey, J; Debaere, C; Meysman, M; Osteaux, M
2000-03-01
We report three patients with stress fractures of the ribs induced by coughing. Standard radiographs of the chest and ribs did not reveal evidence of rib fractures in any of the patients. Bone scintigraphy, performed 1 to 2 weeks after initial onset of symptoms, showed a focal area of increased uptake along the chest wall in all cases. Thin section angulated helical CT directly visualized the subtle rib fractures. Initial diagnosis of a cough-induced fracture of the rib may be difficult because of the associated underlying disorder, and unnecessary examinations are commonly performed. Identification of a cough-induced fracture of the rib using helical CT may be clinically important to avoid unnecessary concern and additional examinations.
Application of thin-section low-dose chest CT (TSCT) in the management of pediatric AIDS.
Ambrosino, M M; Roche, K J; Genieser, N B; Kaul, A; Lawrence, R M
1995-01-01
The aim of this study was to evaluate the usefulness of thin-section low-dose computed tomography (TSCT) in the management of children with AIDS, as chest radiographs (CXR) often fail to adequately explain the patients' clinical status. We performed 54 noncontrast TSCTs on 32 children. The patients aged from 3 months to 14.6 years, were diagnosed as having bacterial pneumonia, lumphocytic interstitial pneumonitis (LIP), Pneumocystis carinii pneumonia (PCP), or Mycobacterium avium-intracellulare infection (MAI). The scans were correlated with the clinical diagnosis, T-lymphocyte-subset percentages, and p24-antigen levels. Subsegmental consolidations were seen in patients with LIP, PCP, and MAI, and as an isolated finding in those with only bacterial pneumonia. Ground-glass haziness was seen exclusively with acute PCP. Reticulonodular thickening was identified only in patients with LIP. Mosaic perfusion was seen with MAI, LIP, and pneumonia. The presence of adenopathy correlated with CD4+ T-cell subset percentages. The greatest value of CT in this study was in detecting new disease when chest films failed to correlate with a patient's clinical state, and in demonstrating acute/subacute disease in patients with severe baseline chest-film changes. Recurrent pneumonias may represent progression of "smoldering" disease, rather than true recurrent disease following complete clearing. Adenopathy with low CD4+ levels should suggest lymphoma or infection with MAI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semin Chong; Kyung Soo Lee; Myung Jin Chung
Pneumoconiosis may be classified as either fibrotic or nonfibrotic, according to the presence or absence of fibrosis. Silicosis, coal worker pneumoconiosis, asbestosis, berylliosis, and talcosis are examples of fibrotic pneumoconiosis. Siderosis, stannosis, and baritosis are nonfibrotic forms of pneumoconiosis that result from inhalation of iron oxide, tin oxide, and barium sulfate particles, respectively. In an individual who has a history of exposure to silica or coal dust, a finding of nodular or reticulonodular lesions at chest radiography or small nodules with a perilymphatic distribution at thin-section computed tomography (CT), with or without eggshell calcifications, is suggestive of silicosis or coalmore » worker pneumoconiosis. Magnetic resonance imaging is helpful for distinguishing between progressive massive fibrosis and lung cancer. CT and histopathologic findings in asbestosis are similar to those in idiopathic pulmonary fibrosis, but the presence of asbestos bodies in histopathologic specimens is specific for the diagnosis of asbestosis. Giant cell interstitial pneumonia due to exposure to hard metals is classified as a fibrotic form of pneumoconiosis and appears on CT images as mixed ground-glass opacities and reticulation. Berylliosis simulates pulmonary sarcoidosis on CT images. CT findings in talcosis include small centrilobular and subpleural nodules or heterogeneous conglomerate masses that contain foci of high attenuation indicating talc deposition. Siderosis is nonfibrotic and is indicated by a CT finding of poorly defined centrilobular nodules or ground-glass opacities.« less
Takenaka, Daisuke; Ohno, Yoshiharu; Koyama, Hisanobu; Nogami, Munenobu; Onishi, Yumiko; Matsumoto, Keiko; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Sugimura, Kazuro
2010-06-01
To directly compare the capabilities of perfusion scan, SPECT, co-registered SPECT/CT, and quantitatively and qualitatively assessed MDCT (i.e. quantitative CT and qualitative CT) for predicting postoperative clinical outcome for lung volume reduction surgery (LVRS) candidates. Twenty-five consecutive candidates (19 men and six women, age range: 42-72 years) for LVRS underwent preoperative CT and perfusion scan with SPECT. Clinical outcome of LVRS for all subjects was also assessed by determining the difference between pre- and postoperative forced expiratory volume in 1s (FEV(1)) and 6-min walking distance (6MWD). All SPECT examinations were performed on a SPECT scanner, and co-registered to thin-section CT by using commercially available software. On planar imaging, SPECT and SPECT/CT, upper versus lower zone or lobe ratios (U/Ls) were calculated from regional uptakes between upper and lower lung fields in the operated lung. On quantitatively assessed CT, U/L for all subjects was assessed from regional functional lung volumes. On qualitatively assessed CT, planar imaging, SPECT and co-registered SPECT/CT, U/Ls were assessed with a 4-point visual scoring system. To compare capabilities of predicting clinical outcome, each U/L was statistically correlated with the corresponding clinical outcome. Significantly fair or moderate correlations were observed between quantitatively and qualitatively assessed U/Ls obtained with all four methods and clinical outcomes (-0.60
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Andrew K. H.; Basran, Parminder S.; Thomas, Steven D.
Purpose: To investigate the effects of brachytherapy seed size on the quality of x-ray computed tomography (CT), ultrasound (US), and magnetic resonance (MR) images and seed localization through comparison of the 6711 and 9011 {sup 125}I sources. Methods: For CT images, an acrylic phantom mimicking a clinical implantation plan and embedded with low contrast regions of interest (ROIs) was designed for both the 0.774 mm diameter 6711 (standard) and the 0.508 mm diameter 9011 (thin) seed models (Oncura, Inc., and GE Healthcare, Arlington Heights, IL). Image quality metrics were assessed using the standard deviation of ROIs between the seeds andmore » the contrast to noise ratio (CNR) within the low contrast ROIs. For US images, water phantoms with both single and multiseed arrangements were constructed for both seed sizes. For MR images, both seeds were implanted into a porcine gel and imaged with pelvic imaging protocols. The standard deviation of ROIs and CNR values were used as metrics of artifact quantification. Seed localization within the CT images was assessed using the automated seed finder in a commercial brachytherapy treatment planning system. The number of erroneous seed placements and the average and maximum error in seed placements were recorded as metrics of the localization accuracy. Results: With the thin seeds, CT image noise was reduced from 48.5 {+-} 0.2 to 32.0 {+-} 0.2 HU and CNR improved by a median value of 74% when compared with the standard seeds. Ultrasound image noise was measured at 50.3 {+-} 17.1 dB for the thin seed images and 50.0 {+-} 19.8 dB for the standard seed images, and artifacts directly behind the seeds were smaller and less prominent with the thin seed model. For MR images, CNR of the standard seeds reduced on average 17% when using the thin seeds for all different imaging sequences and seed orientations, but these differences are not appreciable. Automated seed localization required an average ({+-}SD) of 7.0 {+-} 3.5 manual corrections in seed positions for the thin seed scans and 3.0 {+-} 1.2 manual corrections in seed positions for the standard seed scans. The average error in seed placement was 1.2 mm for both seed types and the maximum error in seed placement was 2.1 mm for the thin seed scans and 1.8 mm for the standard seed scans. Conclusions: The 9011 thin seeds yielded significantly improved image quality for CT and US images but no significant differences in MR image quality.« less
Almeida, Luis G; Ricardo-Garcell, Josefina; Prado, Hugo; Barajas, Lázaro; Fernández-Bouzas, Antonio; Avila, David; Martínez, Reyna B
2010-12-01
Some longitudinal magnetic resonance imaging (MRI) studies have shown reduced volume or cortical thickness (CT) in the frontal cortices of individuals with attention-deficit/hyperactivity disorder (ADHD). These studies indicated that the aforementioned anatomical abnormalities disappear during adolescence. In contrast, cross-sectional studies on adults with ADHD have shown anatomical abnormalities in the frontal lobe region. It is not known whether the anatomical abnormalities in ADHD are a delay or a deviation in the encephalic maturation. The aim of this study was to compare CT in the frontal lobe of children, adolescents and adults of both genders presenting ADHD with that in corresponding healthy controls and to explore its relationship with the severity of the illness. An MRI scan study was performed on never-medicated ADHD patients. Twenty-one children (6-10 year-olds), twenty adolescents (14-17 year-olds) and twenty adults (25-35 year-olds) were matched with healthy controls according to age and sex. CT measurements were performed using the Freesurfer image analysis suite. The data showed regions in the right superior frontal gyrus where CT was reduced in children, adolescents and adults with ADHD in contrast to their respective healthy controls. The CT of these regions correlated with the severity of the illness. In subjects with ADHD, there is a thinning of the cortical surface in the right frontal lobe, which is present in the children, adolescents and in adults. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ishimori, Hiroyuki; Kawata, Yoshiki; Niki, Noboru; Nakaya, Yoshihiro; Ohmatsu, Hironobu; Matsui, Eisuke; Fujii, Masashi; Moriyama, Noriyuki
2007-03-01
We have developed a Micro CT system for understanding lung function at a high resolution of the micrometer order (up to 5µm in spatial resolution). Micro CT system enables the removal specimen of lungs to be observed at micro level, has expected a big contribution for micro internal organs morphology and the image diagnosis study. In this research, we develop system to visualize lung microstructures in three dimensions from micro CT images and analyze them. They characterize in that high CT value of the noise area is, and the difficulty of only using threshold processing to extract the alveolar wall of micro CT images. Thus, we are developing a method of extracting the alveolar wall with surface thinning algorithm. In this report, we propose the method which reduces the excessive degeneracy of figure which caused by surface thinning process. And, we apply this algorithm to the micro CT image of the actual pulmonary specimen. It is shown that the extraction of the alveolus wall becomes possible in the high precision.
Ihara, Tsutomu; Komori, Kimihiro; Yamamoto, Kiyohito; Kobayashi, Masayoshi; Banno, Hiroshi; Kodama, Akio
2013-02-01
Abdominal aortic aneurysm diameter is usually measured by the maximum minor-axis diameter on axial computed tomography (CT). However, this "traditional" diameter may underestimate the real size, as the aorta is not always straight and the aneurysm shape is sometimes in the form of an ellipse along the cross section. Therefore, we measured maximum major-axis diameters using a three-dimensional (3D) workstation and compared them with the traditional maximum minor-axis diameters measured using thin-slice axial CT. CT data of 141 AAA patients (with fusiform aneurysms) were stored in a 3D workstation. These thin-slice CT images were reviewed on the 3D workstation to obtain curved multiplanar reconstruction images (CPR images). Using the CPR images, we measured the maximum major-axis and minor-axis diameters on CPR and the angle of the aneurysms to the body axis. The mean traditional maximum minor-axis diameter was 51.2 ± 8.2 mm, whereas the mean maximum major-axis diameter on CPR was 54.7 ± 10.1 mm. Sixty eight patients had a mean aneurysm size of <50 mm when measured by the traditional minor-axis diameter. Among these patients, five (7.4%) had a major-axis diameter >55 mm on CPR. The measurement of the traditional maximum minor-axis diameter of aneurysms is useful in the case of most patients. However, the traditional maximum minor-axis diameter may underestimate the real aneurysmal diameter, particularly in patients with an ellipse-shaped aneurysm. The maximum major-axis diameter as measured using CPR images is effective for representing the real aneurysmal size. Copyright © 2013 Elsevier Inc. All rights reserved.
Thin soil layer of green roof systems studied by X-Ray CT
NASA Astrophysics Data System (ADS)
Šácha, Jan; Jelínková, Vladimíra; Dohnal, Michal
2016-04-01
The popular non-invasive visualization technique of X-ray computed tomography (CT) has been used for 3D examination of thin soil layer of vegetated roof systems. The two categories of anthropogenic soils, usually used for green roof systems, were scanned during the first months after green roof system construction. First was represented by stripped topsoil with admixed crushed bricks and was well graded in terms of particle size distribution. The other category represented a commercial lightweight technogenic substrate. The undisturbed soil samples of total volume of 62.8 ccm were studied be means of X-ray Computed Tomography using X-ray Inspection System GE Phoenix Nanomex 180T with resulting spatial resolution about 57 μm in all directions. For both soil categories visible macroporosity, connectivity (described by the Euler characteristic), dimensionless connectivity and critical cross section of pore network were determined. Moreover, the temporal structural changes of studied soils were discussed together with heat and water regime of the green roof system. The analysis of CT images of anthropogenic soils was problematic due to the different X-ray attenuation of individual constituents. The correct determination of the threshold image intensity differentiating the soil constituents from the air phase had substantial importance for soil pore network analyses. However, X-ray CT derived macroporosity profiles reveal significant temporal changes notably in the soil comprised the stripped topsoil with admixed crushed bricks. The results implies that the technogenic substrate is structurally more stable over time compared to the stripped topsoil. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, M.J.D.; Chan, J.C.; Hensley, G.T.
1983-05-01
The clinical data, histologic findings, and computed tomographic (CT) abnormalities in eight adult Haitians with toxoplasma encephalitis were analyzed retrospectively. Diagnosis was established by identification of Toxoplasma gondii on autopsy in five and brain biopsy in three specimens and subsequently confirmed by the immunoperoxidase method. All these patiens, six of whom had been in the United States for 24 months or less, had severe idiopathic immunodeficiency syndrome. All were lymphopenic and six were on treatment for tuberculosis when the toxoplasma encephalitis developed. All patients were studied with CT when they developed an altered mental status and fever associated with seizuresmore » and/or focal neurologic deficits. Scans before treatment showed multiple intraparenchymal lesions in seven and a single lesion in the thalamus in one. Ring and/or nodular enhancement of the lesions was found in six and hypodense areas in two. Progressions of abnormalities occurred on serial studies. These CT findings that were best shown on axial and coronal thin-section double-dose contrast studies were useful but not diagnostically pathognomonic. In patients with similar clinical presentation CT is recommended to identify focal areas of involvement and to guide brain biopsy or excision so that prompt medical thereapy of this often lethal infection can be instituted.« less
Pneumoconiosis: Comparison of imaging and pathologic findings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chong, S.; Lee, K.S.; Chung, M.J.
2006-01-15
Pneumoconiosis may be classified as either fibrotic or nonfibrotic, according to the presence or absence of fibrosis. Silicosis, coal worker pneumoconiosis, asbestosis, berylliosis, and talcosis are examples of fibrotic pneumoconiosis. Siderosis, stannosis, and baritosis are nonfibrotic forms of pneumoconiosis that result from inhalation of iron oxide, tin oxide, and barium sulfate particles, respectively. In an individual who has a history of exposure to silica or coal dust, a finding of nodular or reticulonodular lesions at chest radiography or small nodules with a perilymphatic distribution at thin-section computed tomography (CT), with or without eggshell calcifications, is suggestive of silicosis or coalmore » worker pneumoconiosis. Magnetic resonance imaging is helpful for distinguishing between progressive massive fibrosis and lung cancer. CT and histopathologic findings in asbestosis are similar to those in idiopathic pulmonary fibrosis, but the presence of asbestos bodies in histopathologic specimens is specific for the diagnosis of asbestosis. Giant cell interstitial pneumonia due to exposure to hard metals is classified as a fibrotic form of pneumoconiosis and appears on CT images as mixed ground-glass opacities and reticulation. Berylliosis simulates pulmonary sarcoidosis on CT images. CT findings in talcosis include small centrilobular and subpleural nodules or heterogeneous conglomerate masses that contain foci of high attenuation indicating talc deposition. Siderosis is nonfibrotic and is indicated by a CT finding of poorly defined centrilobular nodules or ground-glass opacities.« less
NASA Astrophysics Data System (ADS)
Mahabadi, O. K.; Tatone, B. S. A.; Grasselli, G.
2014-07-01
This study investigates the influence of microscale heterogeneity and microcracks on the failure behavior and mechanical response of a crystalline rock. The thin section analysis for obtaining the microcrack density is presented. Using micro X-ray computed tomography (μCT) scanning of failed laboratory specimens, the influence of heterogeneity and, in particular, biotite grains on the brittle fracture of the specimens is discussed and various failure patterns are characterized. Three groups of numerical simulations are presented, which demonstrate the role of microcracks and the influence of μCT-based and stochastically generated phase distributions. The mechanical response, stress distribution, and fracturing process obtained by the numerical simulations are also discussed. The simulation results illustrate that heterogeneity and microcracks should be considered to accurately predict the tensile strength and failure behavior of the sample.
Nambu, Atsushi; Onishi, Hiroshi; Aoki, Shinichi; Tominaga, Licht; Kuriyama, Kengo; Araya, Masayuki; Saito, Ryoh; Maehata, Yoshiyasu; Komiyama, Takafumi; Marino, Kan; Koshiishi, Tsuyota; Sawada, Eiichi; Araki, Tsutomu
2013-02-07
As stereotactic body radiotherapy (SBRT) is a highly dose-dense radiotherapy, adverse events of neighboring normal tissues are a major concern. This study thus aimed to clarify the frequency and degree of clinical symptoms in patients with rib fractures after SBRT for primary lung cancer and to reveal risk factors for rib fracture. Appropriate α/β ratios for discriminating between fracture and non-fracture groups were also investigated. Between November 2001 and April 2009, 177 patients who had undergone SBRT were evaluated for clinical symptoms and underwent follow-up thin-section computed tomography (CT). The time of rib fracture appearance was also assessed. Cox proportional hazard modeling was performed to identify risk factors for rib fracture, using independent variables of age, sex, maximum tumor diameter, radiotherapeutic method and tumor-chest wall distance. Dosimetric details were analyzed for 26 patients with and 22 randomly-sampled patients without rib fracture. Biologically effective dose (BED) was calculated with a range of α/β ratios (1-10 Gy). Receiver operating characteristics analysis was used to define the most appropriate α/β ratio. Rib fracture was found on follow-up thin-section CT in 41 patients. The frequency of chest wall pain in patients with rib fracture was 34.1% (14/41), and was classified as Grade 1 or 2. Significant risk factors for rib fracture were smaller tumor-chest wall distance and female sex. Area under the curve was maximal for BED at an α/β ratio of 8 Gy. Rib fracture is frequently seen on CT after SBRT for lung cancer. Small tumor-chest wall distance and female sex are risk factors for rib fracture. However, clinical symptoms are infrequent and generally mild. When using BED analysis, an α/β ratio of 8 Gy appears most effective for discriminating between fracture and non-fracture patients.
2013-01-01
Background As stereotactic body radiotherapy (SBRT) is a highly dose-dense radiotherapy, adverse events of neighboring normal tissues are a major concern. This study thus aimed to clarify the frequency and degree of clinical symptoms in patients with rib fractures after SBRT for primary lung cancer and to reveal risk factors for rib fracture. Appropriate α/β ratios for discriminating between fracture and non-fracture groups were also investigated. Methods Between November 2001 and April 2009, 177 patients who had undergone SBRT were evaluated for clinical symptoms and underwent follow-up thin-section computed tomography (CT). The time of rib fracture appearance was also assessed. Cox proportional hazard modeling was performed to identify risk factors for rib fracture, using independent variables of age, sex, maximum tumor diameter, radiotherapeutic method and tumor-chest wall distance. Dosimetric details were analyzed for 26 patients with and 22 randomly-sampled patients without rib fracture. Biologically effective dose (BED) was calculated with a range of α/β ratios (1–10 Gy). Receiver operating characteristics analysis was used to define the most appropriate α/β ratio. Results Rib fracture was found on follow-up thin-section CT in 41 patients. The frequency of chest wall pain in patients with rib fracture was 34.1% (14/41), and was classified as Grade 1 or 2. Significant risk factors for rib fracture were smaller tumor-chest wall distance and female sex. Area under the curve was maximal for BED at an α/β ratio of 8 Gy. Conclusions Rib fracture is frequently seen on CT after SBRT for lung cancer. Small tumor-chest wall distance and female sex are risk factors for rib fracture. However, clinical symptoms are infrequent and generally mild. When using BED analysis, an α/β ratio of 8 Gy appears most effective for discriminating between fracture and non-fracture patients. PMID:23391264
Min, Yugang; Neylon, John; Shah, Amish; Meeks, Sanford; Lee, Percy; Kupelian, Patrick; Santhanam, Anand P
2014-09-01
The accuracy of 4D-CT registration is limited by inconsistent Hounsfield unit (HU) values in the 4D-CT data from one respiratory phase to another and lower image contrast for lung substructures. This paper presents an optical flow and thin-plate spline (TPS)-based 4D-CT registration method to account for these limitations. The use of unified HU values on multiple anatomy levels (e.g., the lung contour, blood vessels, and parenchyma) accounts for registration errors by inconsistent landmark HU value. While 3D multi-resolution optical flow analysis registers each anatomical level, TPS is employed for propagating the results from one anatomical level to another ultimately leading to the 4D-CT registration. 4D-CT registration was validated using target registration error (TRE), inverse consistency error (ICE) metrics, and a statistical image comparison using Gamma criteria of 1 % intensity difference in 2 mm(3) window range. Validation results showed that the proposed method was able to register CT lung datasets with TRE and ICE values <3 mm. In addition, the average number of voxel that failed the Gamma criteria was <3 %, which supports the clinical applicability of the propose registration mechanism. The proposed 4D-CT registration computes the volumetric lung deformations within clinically viable accuracy.
Mai, Cindy; Verleden, Stijn E; McDonough, John E; Willems, Stijn; De Wever, Walter; Coolen, Johan; Dubbeldam, Adriana; Van Raemdonck, Dirk E; Verbeken, Eric K; Verleden, Geert M; Hogg, James C; Vanaudenaerde, Bart M; Wuyts, Wim A; Verschakelen, Johny A
2017-04-01
Purpose To elucidate the underlying lung changes responsible for the computed tomographic (CT) features of idiopathic pulmonary fibrosis (IPF) and to gain insight into the way IPF proceeds through the lungs and progresses over time. Materials and Methods Micro-CT studies of tissue cores obtained from explant lungs were examined and were correlated 1:1 with a CT study obtained immediately before transplantation. Samples for histologic analysis were obtained from selected cores. Results In areas with no or minimal abnormalities on CT images, small areas of increased attenuation located in or near the interlobular septa can be seen on micro-CT studies. In more involved lung areas, the number of opacities increases and opacities enlarge and approach each other along the interlobular septa, causing a fine reticular pattern on CT images. Simultaneously, air-containing structures in and around these opacities arise, corresponding with small cysts on CT images. Honeycombing is caused by a progressive increase in the number and size of these cystic structures and tissue opacities that gradually extend toward the centrilobular region and finally replace the entire lobule. At histologic analysis, the small islands of increased attenuation very likely correspond with fibroblastic foci. Near these fibroblastic foci, an abnormal adjacency of alveolar walls was seen, suggesting alveolar collapse. In later stages, normal lung tissue is replaced by a large amount of young collagen, as seen in patients with advanced fibrosis. Conclusion Fibrosis and cyst formation in patients with IPF seem to start at the periphery of the pulmonary lobule and progressively extend toward the core of this anatomic lung unit. Evidence was found that alveolar collapse might already be present in an early stage when there is only little pulmonary fibrosis. © RSNA, 2016.
Mai, Cindy; Verleden, Stijn E.; McDonough, John E.; Willems, Stijn; De Wever, Walter; Coolen, Johan; Dubbeldam, Adriana; Van Raemdonck, Dirk E.; Verbeken, Eric K.; Verleden, Geert M.; Hogg, James C.; Vanaudenaerde, Bart M.; Wuyts, Wim A.
2017-01-01
Purpose To elucidate the underlying lung changes responsible for the computed tomographic (CT) features of idiopathic pulmonary fibrosis (IPF) and to gain insight into the way IPF proceeds through the lungs and progresses over time. Materials and Methods Micro-CT studies of tissue cores obtained from explant lungs were examined and were correlated 1:1 with a CT study obtained immediately before transplantation. Samples for histologic analysis were obtained from selected cores. Results In areas with no or minimal abnormalities on CT images, small areas of increased attenuation located in or near the interlobular septa can be seen on micro-CT studies. In more involved lung areas, the number of opacities increases and opacities enlarge and approach each other along the interlobular septa, causing a fine reticular pattern on CT images. Simultaneously, air-containing structures in and around these opacities arise, corresponding with small cysts on CT images. Honeycombing is caused by a progressive increase in the number and size of these cystic structures and tissue opacities that gradually extend toward the centrilobular region and finally replace the entire lobule. At histologic analysis, the small islands of increased attenuation very likely correspond with fibroblastic foci. Near these fibroblastic foci, an abnormal adjacency of alveolar walls was seen, suggesting alveolar collapse. In later stages, normal lung tissue is replaced by a large amount of young collagen, as seen in patients with advanced fibrosis. Conclusion Fibrosis and cyst formation in patients with IPF seem to start at the periphery of the pulmonary lobule and progressively extend toward the core of this anatomic lung unit. Evidence was found that alveolar collapse might already be present in an early stage when there is only little pulmonary fibrosis. © RSNA, 2016 PMID:27715655
Exciton-phonon coupling in diindenoperylene thin films
NASA Astrophysics Data System (ADS)
Heinemeyer, U.; Scholz, R.; Gisslén, L.; Alonso, M. I.; Ossó, J. O.; Garriga, M.; Hinderhofer, A.; Kytka, M.; Kowarik, S.; Gerlach, A.; Schreiber, F.
2008-08-01
We investigate exciton-phonon coupling and exciton transfer in diindenoperylene (DIP) thin films on oxidized Si substrates by analyzing the dielectric function determined by variable-angle spectroscopic ellipsometry. Since the molecules in the thin-film phase form crystallites that are randomly oriented azimuthally and highly oriented along the surface normal, DIP films exhibit strongly anisotropic optical properties with uniaxial symmetry. This anisotropy can be determined by multiple sample analysis. The thin-film spectrum is compared with a monomer spectrum in solution, which reveals similar vibronic subbands and a Huang-Rhys parameter of S≈0.87 for an effective internal vibration at ℏωeff=0.17eV . However, employing these parameters the observed dielectric function of the DIP films cannot be described by a pure Frenkel exciton model, and the inclusion of charge-transfer (CT) states becomes mandatory. A model Hamiltonian is parametrized with density-functional theory calculations of single DIP molecules and molecule pairs in the stacking geometry of the thin-film phase, revealing the vibronic coupling constants of DIP in its excited and charged states together with electron and hole transfer integrals along the stack. From a fit of the model calculation to the observed dielectric tensor, we find the lowest CT transition E00CT at 0.26±0.05eV above the neutral molecular excitation energy E00F , which is an important parameter for device applications.
Hemsley, S; Palmer, H; Canfield, R B; Stewart, M E B; Krockenberger, M B; Malik, R
2013-09-01
To use cross-sectional imaging (helical computed tomography (CT)) combined with conventional anatomical dissection to define the normal anatomy of the nasal cavity and bony cavitations of the koala skull. Helical CT scans of the heads of nine adult animals were obtained using a multislice scanner acquiring thin slices reconstructed in the transverse, sagittal and dorsal planes. Subsequent anatomical dissection permitted confirmation of correct identification and further delineation of bony and air-filled structures visible in axial and multiplanar reformatted CT images. The nasal cavity was relatively simple, with little scrolling of nasal conchae, but bony cavitations were complex and extensive. A rostral maxillary recess and ventral conchal, caudal maxillary, frontal and sphenoidal paranasal sinuses were identified and characterised. Extensive temporal bone cavitation was shown to be related to a large epitympanic recess. The detailed anatomical data provided are applicable to future functional and comparative anatomical studies, as well as providing a preliminary atlas for clinical investigation of conditions such as cryptococcal rhinosinusitis, a condition more common in the koala than in many other species. © 2013 Australian Veterinary Association.
Irving, Benjamin J; Goussard, Pierre; Andronikou, Savvas; Gie, Robert; Douglas, Tania S; Todd-Pokropek, Andrew; Taylor, Paul
2014-10-01
Airway deformation and stenosis can be key signs of pathology such as lymphadenopathy. This study presents a local airway point distribution model (LA-PDM) to automatically analyse regions of the airway tree in CT scans and identify abnormal airway deformation. In our method, the airway tree is segmented and the centreline identified from each chest CT scan. Thin-plate splines, along with a local mesh alignment method for tubular meshes, are used to register the airways and develop point distribution models (PDM). Each PDM is then used to analyse and classify local regions of the airway. This LA-PDM method was developed using 89 training cases and evaluated on a 90 CT test set, where each set includes paediatric tuberculosis (TB) cases (with airway involvement) and non-TB cases (without airway involvement). The LA-PDM was able to accurately distinguish cases with airway involvement with an AUC of the ROC classification (and 95% confidence interval) of 0.87 (0.77-0.94) for the Trachea-LMB-RMB region and 0.81 (0.68-0.90) for the RMB-RUL-BI region - outperforming a comparison method based on airway cross-sectional features. This has the potential to assist and improve airway analysis from CT scans by detecting involved airways and visualising affected airway regions. Copyright © 2014 Elsevier B.V. All rights reserved.
Gonçalves, Rita; Malalana, Fernando; McConnell, James Fraser; Maddox, Thomas
2015-01-01
For accurate interpretation of magnetic resonance (MR) images of the equine brain, knowledge of the normal cross-sectional anatomy of the brain and associated structures (such as the cranial nerves) is essential. The purpose of this prospective cadaver study was to describe and compare MRI and computed tomography (CT) anatomy of cranial nerves' origins and associated skull foramina in a sample of five horses. All horses were presented for euthanasia for reasons unrelated to the head. Heads were collected posteuthanasia and T2-weighted MR images were obtained in the transverse, sagittal, and dorsal planes. Thin-slice MR sequences were also acquired using transverse 3D-CISS sequences that allowed mutliplanar reformatting. Transverse thin-slice CT images were acquired and multiplanar reformatting was used to create comparative images. Magnetic resonance imaging consistently allowed visualization of cranial nerves II, V, VII, VIII, and XII in all horses. The cranial nerves III, IV, and VI were identifiable as a group despite difficulties in identification of individual nerves. The group of cranial nerves IX, X, and XI were identified in 4/5 horses although the region where they exited the skull was identified in all cases. The course of nerves II and V could be followed on several slices and the main divisions of cranial nerve V could be distinguished in all cases. In conclusion, CT allowed clear visualization of the skull foramina and occasionally the nerves themselves, facilitating identification of the nerves for comparison with MRI images. © 2015 American College of Veterinary Radiology.
Humphries, Stephen M; Yagihashi, Kunihiro; Huckleberry, Jason; Rho, Byung-Hak; Schroeder, Joyce D; Strand, Matthew; Schwarz, Marvin I; Flaherty, Kevin R; Kazerooni, Ella A; van Beek, Edwin J R; Lynch, David A
2017-10-01
Purpose To evaluate associations between pulmonary function and both quantitative analysis and visual assessment of thin-section computed tomography (CT) images at baseline and at 15-month follow-up in subjects with idiopathic pulmonary fibrosis (IPF). Materials and Methods This retrospective analysis of preexisting anonymized data, collected prospectively between 2007 and 2013 in a HIPAA-compliant study, was exempt from additional institutional review board approval. The extent of lung fibrosis at baseline inspiratory chest CT in 280 subjects enrolled in the IPF Network was evaluated. Visual analysis was performed by using a semiquantitative scoring system. Computer-based quantitative analysis included CT histogram-based measurements and a data-driven textural analysis (DTA). Follow-up CT images in 72 of these subjects were also analyzed. Univariate comparisons were performed by using Spearman rank correlation. Multivariate and longitudinal analyses were performed by using a linear mixed model approach, in which models were compared by using asymptotic χ 2 tests. Results At baseline, all CT-derived measures showed moderate significant correlation (P < .001) with pulmonary function. At follow-up CT, changes in DTA scores showed significant correlation with changes in both forced vital capacity percentage predicted (ρ = -0.41, P < .001) and diffusing capacity for carbon monoxide percentage predicted (ρ = -0.40, P < .001). Asymptotic χ 2 tests showed that inclusion of DTA score significantly improved fit of both baseline and longitudinal linear mixed models in the prediction of pulmonary function (P < .001 for both). Conclusion When compared with semiquantitative visual assessment and CT histogram-based measurements, DTA score provides additional information that can be used to predict diminished function. Automatic quantification of lung fibrosis at CT yields an index of severity that correlates with visual assessment and functional change in subjects with IPF. © RSNA, 2017.
Längkvist, Martin; Jendeberg, Johan; Thunberg, Per; Loutfi, Amy; Lidén, Mats
2018-06-01
Computed tomography (CT) is the method of choice for diagnosing ureteral stones - kidney stones that obstruct the ureter. The purpose of this study is to develop a computer aided detection (CAD) algorithm for identifying a ureteral stone in thin slice CT volumes. The challenge in CAD for urinary stones lies in the similarity in shape and intensity of stones with non-stone structures and how to efficiently deal with large high-resolution CT volumes. We address these challenges by using a Convolutional Neural Network (CNN) that works directly on the high resolution CT volumes. The method is evaluated on a large data base of 465 clinically acquired high-resolution CT volumes of the urinary tract with labeling of ureteral stones performed by a radiologist. The best model using 2.5D input data and anatomical information achieved a sensitivity of 100% and an average of 2.68 false-positives per patient on a test set of 88 scans. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Zhang, Luo; Han, De-min; Ge, Wen-tong; Zhou, Bing; Xian, Jun-fang; Liu, Zhong-yan; Wang, Kui-ji; He, Fei
2005-12-01
To investigate the anatomical interaction between uncinate process and agger nasi cell to better understand the anatomy of the frontal sinus drainage pathway by endoscopy, spiral computed tomography (CT) and sectioning. Twenty-one skeletal skulls (forty-two sides) and one cadaver head (two sides) were studied by spiral CT together with endoscopy and collodion embedded thin sectioning at coronal plane. The sections with the thickness of 100 microm were stained with hemotoxylin and eosin. Under endoscopy, a leaflet of bone to the middle turbinate, which is given off by uncinate process, forms the anterior insertion of the middle turbinate onto the lateral nasal wall. The middle portion of the uncinate process attached to the frontal process of the maxilla in all of the skeletal nasal cavities, as well as the lacrimal bone in 78.6% of the skeletal nasal cavities. On CT scans, the agger nasi cell is present in 90.5% of the skeletal nasal cavities. While the lateral wall of the agger nasi cell is formed by lacrimal bone, the medial wall of the agger nasi cell is formed by uncinate process. And the anterior wall is formed by the frontal process of the maxilla. The superior portion of the uncinate process forms the medial, posterior and top wall of the agger nasi cells. The superior portion of the uncinate extends into the frontal recess and may insert into lamina papyracea (33.3%), skull base (9.5%), middle turbinate, combination of these (57.2%). The agger nasi cell is the key that unlocks the frontal recess.
Galusca, Bogdan; Prévost, Gaëtan; Germain, Natacha; Dubuc, Isabelle; Ling, Yiin; Anouar, Youssef; Estour, Bruno; Chartrel, Nicolas
2015-01-01
Anorexia nervosa (AN) presents an adaptive appetite regulating profile including high levels of ghrelin and 26RFa (orexigenic) and low levels of leptin and PYY (anorexigenic). However, this adaptive mechanism is not effective in promoting food intake. The NPY/proopiomelanocortin (POMC) system plays a crucial role in the regulation of feeding behavior as NPY is the most potent orexigenic neuropeptide identified so far and as the POMC-derived peptide α-MSH drastically reduces food intake, and this peptidergic system has not been thoroughly studied in AN. The aim of the present study was thus to investigate whether a dysfunction of the NPY/POMC occurs in two populations with low body weight, AN and constitutional thinness (CT). This was a cross-sectional study performed in an endocrinological unit and in an academic laboratory. Three groups of age-matched young women were studied: 23 with AN (AN), 22 CT and 14 normal weight controls. Twelve-point circadian profiles of plasma NPY and α-MSH levels were measured in the three groups of investigated subjects. No significant circadian variation of NPY was detected between the three groups. Plasma α-MSH levels were significantly lower in AN (vs controls) all over the day. The CT group, compared to controls, presented lower levels of α-MSH in the morning and the evening, and an important rise during lunchtime. In AN patients, the NPY system is not up-regulated under chronic undernutrition suggesting that this may play a role in the inability of anorectic women to adapt food intake to their energy demand. In contrast, low circadian α-MSH levels integrate the adaptive profile of appetite regulation of this disease. Finally, in CT women, the important α-MSH peak detected during lunchtime could explain why these patients are rapidly food satisfied.
NASA Astrophysics Data System (ADS)
He, Nana; Zhang, Xiaolong; Zhao, Juanjuan; Zhao, Huilan; Qiang, Yan
2017-07-01
While the popular thin layer scanning technology of spiral CT has helped to improve diagnoses of lung diseases, the large volumes of scanning images produced by the technology also dramatically increase the load of physicians in lesion detection. Computer-aided diagnosis techniques like lesions segmentation in thin CT sequences have been developed to address this issue, but it remains a challenge to achieve high segmentation efficiency and accuracy without much involvement of human manual intervention. In this paper, we present our research on automated segmentation of lung parenchyma with an improved geodesic active contour model that is geodesic active contour model based on similarity (GACBS). Combining spectral clustering algorithm based on Nystrom (SCN) with GACBS, this algorithm first extracts key image slices, then uses these slices to generate an initial contour of pulmonary parenchyma of un-segmented slices with an interpolation algorithm, and finally segments lung parenchyma of un-segmented slices. Experimental results show that the segmentation results generated by our method are close to what manual segmentation can produce, with an average volume overlap ratio of 91.48%.
Stahl, Stephane; Hentschel, Pascal; Ketelsen, Dominik; Grosse, Ulrich; Held, Manuel; Wahler, Theodora; Syha, Roland; Schaller, Hans-Eberhard; Nikolaou, Konstantin; Grözinger, Gerd
2017-05-01
This prospective clinical study examined standard wrist magnetic resonance imaging (MRI) examinations and the incremental value of computed tomography (CT) in the diagnosis of Kienböck's disease (KD) with regard to reliability and precision in the different diagnostic steps during diagnostic work-up. Sixty-four consecutive patients referred between January 2009 and January 2014 with positive initial suspicion of KD according to external standard wrist MRI were prospectively included (step one). Institutional review board approval was obtained. Clinical examination by two handsurgeons were followed by wrist radiographs (step two), ultrathin-section CT, and 3T contrast-enhanced MRI (step three). Final diagnosis was established in a consensus conference involving all examiners and all examinations results available from step three. In 12/64 patients, initial suspicion was discarded at step two and in 34/64 patients, the initial suspicion of KD was finally discarded at step three. The final external MRI positive predictive value was 47%. The most common differential diagnoses at step three were intraosseous cysts (n=15), lunate pseudarthrosis (n=13), and ulnar impaction syndrome (n=5). A correlation between radiograph-based diagnoses (step two) with final diagnosis (step three) showed that initial suspicion of stage I KD had the lowest sensitivity for correct diagnosis (2/11). Technical factors associated with a false positive external MRI KD diagnosis were not found. Standard wrist MRI should be complemented with thin-section CT, and interdisciplinary interpretation of images and clinical data, to increase diagnostic accuracy in patients with suspected KD. Copyright © 2017. Published by Elsevier B.V.
Jiang, Binghu; Takashima, Shodayu; Hakucho, Tomoaki; Hodaka, Numasaki; Yasuhiko, Tomita; Masahiko, Higashiyama
2013-10-01
To investigate the clinicopathological features and prognosis in patients with adenocarcinoma of the lung with scattered consolidation (ALSC). Between January 2006 and March 2010, 139 consecutive patients with lung adenocarcinoma of ≤3 cm, who underwent pulmonary resection for lung cancer, were investigated retrospectively. Radiologic classification was based on the findings of thin-section CT such as the presence of consolidation or ground-glass opacity (GGO). Type I (n=15) and Type II (n=14), showed a pure GGO and a mixed GGO with consolidation <50%, respectively. Type IV (n=38) and Type V (n=52) showed a mixed GGO with consolidation ≥50% and a pure consolidation, respectively. Type III (n=20) was the adenocarcinoma of the lung with scattered consolidation (ALSC). The clinicopathological features and prognosis of ALSC was investigated with comparative analysis and survival analysis. Because of the similar recurrence rate for Type I and Type II (P=1.000), Type IV and Type V (P=0.343), we merged Type I and Type II as Type I+II, Type IV and Type V as Type IV+V, respectively. In the 20 (14.4%) patients with ALSC, lymph node metastasis was not observed, and it was rare in lymphatic invasion and vascular invasion. On the basis of IASLC/ATS/ERS 2011 classification, 80% of the ALSC were preinvasive lesions. In Noguchi classification, there was no significant difference between Type I+II and ALSC (P=0.260). The prognosis of ALSC was similar to Type I+II (P=0.408), but better than Type IV+V (P=0.040). Adenocarcinoma of the lung with scattered consolidation (ALSC) on thin-section CT was a relatively favorable prognostic factor. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Shin, M S; Zorn, G L; Ho, K J
1988-04-01
Computed tomographic (CT) findings of a rare case of triple-barreled aortic dissection was described. CT demonstrated the extent of dissection, a communication between two channels, and three lumens separated by the intimal flap and a thin undetached tunica media, resembling a Mercedes-Benz mark.
Stock, S R; Ignatiev, K I; Dahl, T; Veis, A; De Carlo, F
2003-12-01
This paper reports the first noninvasive, volumetric study of entire cross-sections of a sea urchin tooth in which the individual calcite structural elements could be resolved. Two cross-sectionally intact fragments of a Lytechinus variegatus tooth were studied with synchrotron microCT (microcomputed tomography) with 1.66 microm voxels (volume elements). These fragments were from the plumula, that is the tooth zone with rapidly increasing levels of mineral; one fragment was from a position aboral of where the keel developed and the second was from the zone where the keel was developing. The primary plates, secondary plates, carinar process plates, prisms, and elements of the lamellar-needle complex were resolved. Comparison of the microCT data with optical micrographs of stained thin sections confirmed the identifications and measured dimensions of the characteristic microarchitectural features. The interplay of reinforcing structures (plates and prisms) was more clearly revealed in the volumetric numerical data sets than in single or sequential slices. While it is well known that the primary plates and prisms in camarodont teeth are situated to improve resistance to bending (which can be termed primary bending), the data presented provide a new understanding of the mechanical role of the carinar process plates, that is, a geometry consistent with that required in the keel to resist lateral or transverse bending of the tooth about a second axis. The increase in robustness of teeth incorporating lateral keel reinforcement suggests that the relative development of carinar processes (toward a geometry similar to that of L. variegatus) is a character which can be used to infer which sea urchins among the stirodonts are most primitive and among the camarodonts which are more primitive.
Foster, Allison; Morandi, Federica; May, Elizabeth
2015-01-01
Previous reports describing the prevalence of ear diseases in dogs have primarily been based on dogs presenting with clinical signs of disease. The prevalence of subclinical ear disease remains unknown. The purpose of this cross-sectional retrospective study was to describe the prevalence of lesions consistent with middle and external ear disease in dogs presented for multidetector computed tomography (CT) of the head and/or cranial cervical spine at our hospital during the period of July 2011 and August 2013. For each included dog, data recorded were signalment, CT findings, diagnosis, and treatment. A total of 199 dogs met inclusion criteria. Nineteen dogs (9.5%) were referred for evaluation of suspected ear disease and 27 dogs (13.5%) had histories or physical examination findings consistent with otitis externa. A total of 163 dogs (81.9%) had CT lesions consistent with external ear disease (i.e. ear canal mineralization, external canal thickening, and/or narrowing of the external canal). Thirty-nine dogs (19.5%) had CT lesions consistent with middle ear disease (i.e. soft tissue attenuating/fluid material in the tympanic bullae, bulla wall thickening or lysis, and/or periosteal proliferation of the temporal bone). Findings from this study indicated that the prevalence of external and middle ear disease in dogs could be higher than that previously reported. © 2014 American College of Veterinary Radiology.
Visualization of Individual Images in Patterned Organic-Inorganic Multilayers Using GISAXS-CT.
Ogawa, Hiroki; Nishikawa, Yukihiro; Takenaka, Mikihito; Fujiwara, Akihiko; Nakanishi, Yohei; Tsujii, Yoshinobu; Takata, Masaki; Kanaya, Toshiji
2017-05-16
Using grazing-incidence small-angle scattering (GISAXS) with computed tomography (CT), we have individually reconstructed the spatial distribution of a thin gold (Au) layer buried under a thin poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) layer. Owing to the difference between total reflection angles of Au and PS-b-P2VP, the scattering profiles for Au nanoparticles and self-assembled nanostructures of PS-b-P2VP could be independently obtained by changing the X-ray angle of incidence. Reconstruction of scattering profiles allows one to separately characterize spatial distributions in Au and PS-b-P2VP nanostructures.
Constitutional Thinness and Anorexia Nervosa: A Possible Misdiagnosis?
Estour, Bruno; Galusca, Bogdan; Germain, Natacha
2014-01-01
Clinical and biological aspects of restrictive anorexia nervosa (R-AN) are well documented. More than 10,000 articles since 1911 and more than 600 in 2013 have addressed R-AN psychiatric, somatic, and biological aspects. Genetic background, ineffectiveness of appetite regulating hormones on refeeding process, bone loss, and place of amenorrhea in the definition are widely discussed and reviewed. Oppositely, constitutional thinness (CT) is an almost unknown entity. Only 32 articles have been published on this topic since 1953. Similar symptoms associating low body mass index, low fat, and bone mass are reported in both CT and R-AN subjects. Conversely, menses are preserved in CT women and almost the entire hormonal profile is normal, except for leptin and PYY. The aim of the present review is to alert the clinician on the confusing clinical presentation of these two situations, a potential source of misdiagnosis, especially since R-AN definition has changed in DSM5. PMID:25368605
Constitutional thinness and anorexia nervosa: a possible misdiagnosis?
Estour, Bruno; Galusca, Bogdan; Germain, Natacha
2014-01-01
Clinical and biological aspects of restrictive anorexia nervosa (R-AN) are well documented. More than 10,000 articles since 1911 and more than 600 in 2013 have addressed R-AN psychiatric, somatic, and biological aspects. Genetic background, ineffectiveness of appetite regulating hormones on refeeding process, bone loss, and place of amenorrhea in the definition are widely discussed and reviewed. Oppositely, constitutional thinness (CT) is an almost unknown entity. Only 32 articles have been published on this topic since 1953. Similar symptoms associating low body mass index, low fat, and bone mass are reported in both CT and R-AN subjects. Conversely, menses are preserved in CT women and almost the entire hormonal profile is normal, except for leptin and PYY. The aim of the present review is to alert the clinician on the confusing clinical presentation of these two situations, a potential source of misdiagnosis, especially since R-AN definition has changed in DSM5.
Effects of environmental risks and polygenic loading for schizophrenia on cortical thickness.
Neilson, Emma; Bois, Catherine; Gibson, Jude; Duff, Barbara; Watson, Andrew; Roberts, Neil; Brandon, Nicholas J; Dunlop, John; Hall, Jeremy; McIntosh, Andrew M; Whalley, Heather C; Lawrie, Stephen M
2017-06-01
There are established differences in cortical thickness (CT) in schizophrenia (SCZ) and bipolar (BD) patients when compared to healthy controls (HC). However, it is unknown to what extent environmental or genetic risk factors impact on CT in these populations. We have investigated the effect of Environmental Risk Scores (ERS) and Polygenic Risk Scores for SCZ (PGRS-SCZ) on CT. Structural MRI scans were acquired at 3T for patients with SCZ or BD (n=57) and controls (n=41). Cortical reconstructions were generated in FreeSurfer (v5.3). The ERS was created by determining exposure to cannabis use, childhood adverse events, migration, urbanicity and obstetric complications. The PGRS-SCZ were generated, for a subset of the sample (Patients=43, HC=32), based on the latest PGC GWAS findings. ANCOVAs were used to test the hypotheses that ERS and PGRS-SCZ relate to CT globally, and in frontal and temporal lobes. An increase in ERS was negatively associated with CT within temporal lobe for patients. A higher PGRS-SCZ was also related to global cortical thinning for patients. ERS effects remained significant when including PGRS-SCZ as a fixed effect. No relationship which survived FDR correction was found for ERS and PGRS-SCZ in controls. Environmental risk for SCZ was related to localised cortical thinning in patients with SCZ and BD, while increased PGRS-SCZ was associated with global cortical thinning. Genetic and environmental risk factors for SCZ appear therefore to have differential effects. This provides a mechanistic means by which different risk factors may contribute to the development of SCZ and BD. Copyright © 2016 Elsevier B.V. All rights reserved.
Kakinuma, Ryutaro; Ashizawa, Kazuto; Kuriyama, Keiko; Fukushima, Aya; Ishikawa, Hiroyuki; Kamiya, Hisashi; Koizumi, Naoya; Maruyama, Yuichiro; Minami, Kazunori; Nitta, Norihisa; Oda, Seitaro; Oshiro, Yasuji; Kusumoto, Masahiko; Murayama, Sadayuki; Murata, Kiyoshi; Muramatsu, Yukio; Moriyama, Noriyuki
2012-04-01
To evaluate interobserver agreement in regard to measurements of focal ground-glass opacities (GGO) diameters on computed tomography (CT) images to identify increases in the size of GGOs. Approval by the institutional review board and informed consent by the patients were obtained. Ten GGOs (mean size, 10.4 mm; range, 6.5-15 mm), one each in 10 patients (mean age, 65.9 years; range, 58-78 years), were used to make the diameter measurements. Eleven radiologists independently measured the diameters of the GGOs on a total of 40 thin-section CT images (the first [n = 10], the second [n = 10], and the third [n = 10] follow-up CT examinations and remeasurement of the first [n = 10] follow-up CT examinations) without comparing time-lapse CT images. Interobserver agreement was assessed by means of Bland-Altman plots. The smallest range of the 95% limits of interobserver agreement between the members of the 55 pairs of the 11 radiologists in regard to maximal diameter was -1.14 to 1.72 mm, and the largest range was -7.7 to 1.7 mm. The mean value of the lower limit of the 95% limits of agreement was -3.1 ± 1.4 mm, and the mean value of their upper limit was 2.5 ± 1.1 mm. When measurements are made by any two radiologists, an increase in the length of the maximal diameter of more than 1.72 mm would be necessary in order to be able to state that the maximal diameter of a particular GGO had actually increased. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.
Rogers, Ian S.; Cury, Ricardo C.; Blankstein, Ron; Shapiro, Michael D.; Nieman, Koen; Hoffmann, Udo; Brady, Thomas J.; Abbara, Suhny
2010-01-01
Background Despite rapid advances in cardiac computed tomography (CT), a strategy for optimal visualization of perfusion abnormalities on CT has yet to be validated. Objective To evaluate the performance of several post-processing techniques of source data sets to detect and characterize perfusion defects in acute myocardial infarctions with cardiac CT. Methods Twenty-one subjects (18 men; 60 ± 13 years) that were successfully treated with percutaneous coronary intervention for ST-segment myocardial infarction underwent 64-slice cardiac CT and 1.5 Tesla cardiac MRI scans following revascularization. Delayed enhancement MRI images were analyzed to identify the location of infarcted myocardium. Contiguous short axis images of the left ventricular myocardium were created from the CT source images using 0.75mm multiplanar reconstruction (MPR), 5mm MPR, 5mm maximal intensity projection (MIP), and 5mm minimum intensity projection (MinIP) techniques. Segments already confirmed to contain infarction by MRI were then evaluated qualitatively and quantitatively with CT. Results Overall, 143 myocardial segments were analyzed. On qualitative analysis, the MinIP and thick MPR techniques had greater visibility and definition than the thin MPR and MIP techniques (p < 0.001). On quantitative analysis, the absolute difference in Hounsfield Unit (HU) attenuation between normal and infarcted segments was significantly greater for the MinIP (65.4 HU) and thin MPR (61.2 HU) techniques. However, the relative difference in HU attenuation was significantly greatest for the MinIP technique alone (95%, p < 0.001). Contrast to noise was greatest for the MinIP (4.2) and thick MPR (4.1) techniques (p < 0.001). Conclusion The results of our current investigation found that MinIP and thick MPR detected infarcted myocardium with greater visibility and definition than MIP and thin MPR. PMID:20579617
Single-Enzyme Nanoparticles Armored by a Nanometer-Scale Organic/Inorganic Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jungbae; Grate, Jay W.
2003-09-01
We have developed armored single-enzyme nanoparticles (SENs), which dramatically stabilize a protease (a-chymotrypsin, CT) by surrounding each enzyme molecule with a porous composite organic/inorganic shell of less than a few nanometers thick. The armored enzymes show no decrease in CT activity at 30C for four days while free CT activity is rapidly reduced by orders of magnitude. The armored shell around CT is sufficiently thin and porous that it does not place any serious mass-transfer limitation on substrates. This unique approach will have a great impact in using enzymes in various fields.
NASA Astrophysics Data System (ADS)
Shibata, Yosei; Tsutsumi, Jun'ya; Matsuoka, Satoshi; Matsubara, Koji; Yoshida, Yuji; Chikamatsu, Masayuki; Hasegawa, Tatsuo
2015-04-01
We report the fabrication of high quality thin films for semiconducting organic donor-acceptor charge-transfer (CT) compounds, (diC8BTBT)(FnTCNQ) (diC8BTBT = 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene and FnTCNQ [n = 0,2,4] = fluorinated derivatives of 7,7,8,8,-tetracyanoquinodimethane), which have a high degree of layered crystallinity. Single-phase and uniaxially oriented polycrystalline thin films of the compounds were obtained by co-evaporation of the component donor and acceptor molecules. Organic thin-film transistors (OTFTs) fabricated with the compound films exhibited n-type field-effect characteristics, showing a mobility of 6.9 × 10-2 cm2/V s, an on/off ratio of 106, a sub-threshold swing of 0.8 V/dec, and an excellent stability in air. We discuss the suitability of strong intermolecular donor-acceptor interaction and the narrow CT gap nature in compounds for stable n-type OTFT operation.
Ocean manganese nodules as stromatolite with a fractal like-signature
NASA Astrophysics Data System (ADS)
Akai, Junji; Akiyama, Shigeki; Tsuchiyama, Akira; Akai, Kurumi
Deep-sea manganese (Mn) nodules are problematic in terms of factors such as their characteristic form and genesis. There are many reports of bacterial species from manganese nodules. However, the genesis of these nodules has not been fully confirmed. Samples, mainly from the Clarion Clipperton Fracture zone in the Pacific Ocean, were examined by mineralogical methods and X-ray CT. Thin sections of these samples showed columnar stromatolite structures with rhythmic bands. Mineralized bacteria were observed by SEM and TEM. Surface morphology could be described as having a fractal-like nature. The fractal characteristics of spherical to dome-like forms were fundamentally composed of at least four ranks. The 4th order form corresponds to the stromatolite dome top shapes. Similar granular domain units and porous characteristics in manganese nodules were clearly observed by X-ray CT sections. Mathematical simulation based on fractal models reproduced similar morphological characteristics to the natural samples. So, we arrived at the concluding hypothesis that manganese nodules are aggregated stromatolite with fractal-like characteristics. Furthermore, we discussed the possibility that the nature of the layer manganese oxide minerals as the major component of the nodule and associated Fe-oxyhydroxide minerals may become an absorber/scavenger of strategic heavy metals and also toxic metals in the environments.
Murray, C P; Wong, P M; Louw, J; Waterer, G W
2009-08-01
To determine the prevalence of small lung nodules on low-dose helical computed tomography (CT) in a Western Australian cohort of asymptomatic long-term cigarette smokers and to compare this with a large, similarly derived cohort of North Americans from the Mayo Clinic Lung Cancer Screening Trial. Forty-nine asymptomatic long-term cigarette smokers of minimum age 50 years underwent a low-dose 64-slice helical CT of the lungs. Images were viewed on a soft copy reporting station with thin section axial and coronal images, maximum intensity projection images, and advanced image manipulation tools. The prevalence of all nodules was 39%, significantly lower than the Mayo Clinic cohort prevalence of 51% (P < 0.01, Fisher's exact test), despite the use of more advanced imaging technology and image manipulation designed to increase the sensitivity for nodules. The prevalence of small nodules in asymptomatic long-term cigarette smokers in Western Australia is high, though significantly less than that found in a large study in North America. The authors postulate this is due to the relatively low rates of mycobacterium tuberculosis and soil-derived fungal pulmonary infections in Western Australia, as well as a lower degree of urban air pollution.
Nano-Biotechnology in Using Enzymes for Environmental Remediation: Single-Enzyme Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jungbae; Grate, Jay W.
2005-01-01
We have developed armored single-enzyme nanoparticles (SENs), which dramatically stabilize a protease (a-chymotrypsin, CT) by surrounding each enzyme molecule with a porous composite organic/inorganic shell of less than a few nanometers thick. The armored enzymes show no decrease in CT activity at 30°C for a day while free CT activity is rapidly reduced by orders of magnitude. The armored shell around CT is sufficiently thin and porous that it does not place any serious mass-transfer limitation of substrate. This unique approach will have a great impact in using enzymes in various fields, including environmental remediation.
Multislice CT urography: state of the art.
Noroozian, M; Cohan, R H; Caoili, E M; Cowan, N C; Ellis, J H
2004-01-01
Recent improvements in helical CT hardware and software have provided imagers with the tools to obtain an increasingly large number of very thin axial images. As a result, a number of new applications for multislice CT have recently been developed, one of which is CT urography. The motivation for performing CT urography is the desire to create a single imaging test that can completely assess the kidneys and urinary tract for urolithiasis, renal masses and mucosal abnormalities of the renal collecting system, ureters and bladder. Although the preferred technique for performing multislice CT urography has not yet been determined and results are preliminary, early indications suggest that this examination can detect even subtle benign and malignant urothelial abnormalities and that it has the potential to completely replace excretory urography within the next several years. An important limitation of multislice CT urography is increased patient radiation exposure encountered when some of the more thorough recommended techniques are utilized.
Lee, Kyung Hee; Goo, Jin Mo; Lee, Sang Min; Park, Chang Min; Bahn, Young Eun; Kim, Hyungjin; Song, Yong Sub; Hwang, Eui Jin
2015-01-01
To evaluate nodule visibility, learning curves, and reading times for digital tomosynthesis (DT). We included 80 patients who underwent computed tomography (CT) and DT before pulmonary metastasectomy. One experienced chest radiologist annotated all visible nodules on thin-section CT scans using computer-aided detection software. Two radiologists used CT as the reference standard and retrospectively graded the visibility of nodules on DT. Nodule detection performance was evaluated in four sessions of 20 cases each by six readers. After each session, readers were unblinded to the DT images by revealing the true-positive markings and were instructed to self-analyze their own misreads. Receiver-operating-characteristic curves were determined. Among 414 nodules on CT, 53.3% (221/414) were visible on DT. The main reason for not seeing a nodule on DT was small size (93.3%, ≤ 5 mm). DT revealed a substantial number of malignant nodules (84.1%, 143/170). The proportion of malignant nodules among visible nodules on DT was significantly higher (64.7%, 143/221) than that on CT (41.1%, 170/414) (p < 0.001). Area under the curve (AUC) values at the initial session were > 0.8, and the average detection rate for malignant nodules was 85% (210/246). The inter-session analysis of the AUC showed no significant differences among the readers, and the detection rate for malignant nodules did not differ across sessions. A slight improvement in reading times was observed. Most malignant nodules > 5 mm were visible on DT. As nodule detection performance was high from the initial session, DT may be readily applicable for radiology residents and board-certified radiologists.
X-ray computed tomography datasets for forensic analysis of vertebrate fossils.
Rowe, Timothy B; Luo, Zhe-Xi; Ketcham, Richard A; Maisano, Jessica A; Colbert, Matthew W
2016-06-07
We describe X-ray computed tomography (CT) datasets from three specimens recovered from Early Cretaceous lakebeds of China that illustrate the forensic interpretation of CT imagery for paleontology. Fossil vertebrates from thinly bedded sediments often shatter upon discovery and are commonly repaired as amalgamated mosaics grouted to a solid backing slab of rock or plaster. Such methods are prone to inadvertent error and willful forgery, and once required potentially destructive methods to identify mistakes in reconstruction. CT is an efficient, nondestructive alternative that can disclose many clues about how a specimen was handled and repaired. These annotated datasets illustrate the power of CT in documenting specimen integrity and are intended as a reference in applying CT more broadly to evaluating the authenticity of comparable fossils.
Computed tomography, anatomy and morphometry of the lower extremity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoogewoud, H.M.; Rager, G.; Burch, H.
1989-01-01
This book presents up-to-date information on CT imaging of the lower extremity. It includes an atlas correlating new, high-resolution CT scans with identical thin anatomical slices covering the lower extremity from the crista iliaca to the planta pedis. Additional figures, including CT arthrograms of the hip, knee and ankle, depict the anatomy in detail The technique and clinical relevance of CT measurements especially in orthopedic surgery are also clearly explained. Of special interest is the new method developed by the authors for assessing the coverage of the femoral head. The special morphometry software and a 3D program allowing representation inmore » space make it possible to precisely and accurately measure the coverage with normal CT scans of the hip.« less
X-ray computed tomography datasets for forensic analysis of vertebrate fossils
Rowe, Timothy B.; Luo, Zhe-Xi; Ketcham, Richard A.; Maisano, Jessica A.; Colbert, Matthew W.
2016-01-01
We describe X-ray computed tomography (CT) datasets from three specimens recovered from Early Cretaceous lakebeds of China that illustrate the forensic interpretation of CT imagery for paleontology. Fossil vertebrates from thinly bedded sediments often shatter upon discovery and are commonly repaired as amalgamated mosaics grouted to a solid backing slab of rock or plaster. Such methods are prone to inadvertent error and willful forgery, and once required potentially destructive methods to identify mistakes in reconstruction. CT is an efficient, nondestructive alternative that can disclose many clues about how a specimen was handled and repaired. These annotated datasets illustrate the power of CT in documenting specimen integrity and are intended as a reference in applying CT more broadly to evaluating the authenticity of comparable fossils. PMID:27272251
Interfacial Charge Transfer States in Condensed Phase Systems
NASA Astrophysics Data System (ADS)
Vandewal, Koen
2016-05-01
Intermolecular charge transfer (CT) states at the interface between electron-donating (D) and electron-accepting (A) materials in organic thin films are characterized by absorption and emission bands within the optical gap of the interfacing materials. CT states efficiently generate charge carriers for some D-A combinations, and others show high fluorescence quantum efficiencies. These properties are exploited in organic solar cells, photodetectors, and light-emitting diodes. This review summarizes experimental and theoretical work on the electronic structure and interfacial energy landscape at condensed matter D-A interfaces. Recent findings on photogeneration and recombination of free charge carriers via CT states are discussed, and relations between CT state properties and optoelectronic device parameters are clarified.
NASA Astrophysics Data System (ADS)
Wormanns, Dag; Fiebich, Martin; Wietholt, Christian; Diederich, Stefan; Heindel, Walter
2000-06-01
We evaluated the practical application of a Computer-Aided Diagnosis (CAD) system for viewing spiral computed tomography (CT) of the chest low-dose screening examinations which includes an automatic detection of pulmonary nodules. A UNIX- based CAD system was developed including a detection algorithm for pulmonary nodules and a user interface providing an original axial image, the same image with nodules highlighted, a thin-slab MIP, and a cine mode. As yet, 26 CT examinations with 1625 images were reviewed in a clinical setting and reported by an experienced radiologist using both the CAD system and hardcopies. The CT studies exhibited 19 nodules found on the hardcopies in consensus reporting of 2 experienced radiologists. Viewing with the CAD system was more time consuming than using hardcopies (4.16 vs. 2.92 min) due to analyzing MIP and cine mode. The algorithm detected 49% (18/37) pulmonary nodules larger than 5 mm and 30% (21/70) of all nodules. It produced an average of 6.3 false positive findings per CT study. Most of the missed nodules were adjacent to the pleura. However, the program detected 6 nodules missed by the radiologists. Automatic nodule detection increases the radiologists's awareness of pulmonary lesions. Simultaneous display of axial image and thin-slab MIP makes the radiologist more confident in diagnosis of smaller pulmonary nodules. The CAD system improves the detection of pulmonary nodules at spiral CT. Lack of sensitivity and specificity is still an issue to be addressed but does not prevent practical use.
Meyer, C R; Boes, J L; Kim, B; Bland, P H; Zasadny, K R; Kison, P V; Koral, K; Frey, K A; Wahl, R L
1997-04-01
This paper applies and evaluates an automatic mutual information-based registration algorithm across a broad spectrum of multimodal volume data sets. The algorithm requires little or no pre-processing, minimal user input and easily implements either affine, i.e. linear or thin-plate spline (TPS) warped registrations. We have evaluated the algorithm in phantom studies as well as in selected cases where few other algorithms could perform as well, if at all, to demonstrate the value of this new method. Pairs of multimodal gray-scale volume data sets were registered by iteratively changing registration parameters to maximize mutual information. Quantitative registration errors were assessed in registrations of a thorax phantom using PET/CT and in the National Library of Medicine's Visible Male using MRI T2-/T1-weighted acquisitions. Registrations of diverse clinical data sets were demonstrated including rotate-translate mapping of PET/MRI brain scans with significant missing data, full affine mapping of thoracic PET/CT and rotate-translate mapping of abdominal SPECT/CT. A five-point thin-plate spline (TPS) warped registration of thoracic PET/CT is also demonstrated. The registration algorithm converged in times ranging between 3.5 and 31 min for affine clinical registrations and 57 min for TPS warping. Mean error vector lengths for rotate-translate registrations were measured to be subvoxel in phantoms. More importantly the rotate-translate algorithm performs well even with missing data. The demonstrated clinical fusions are qualitatively excellent at all levels. We conclude that such automatic, rapid, robust algorithms significantly increase the likelihood that multimodality registrations will be routinely used to aid clinical diagnoses and post-therapeutic assessment in the near future.
Horger, M; Fritz, J; Thaiss, W M; Ditt, H; Weisel, K; Haap, M; Kloth, Christopher
2018-03-01
To compare qualitative and quantitative computed tomography (CT) and magnetic resonance imaging (MRI) parameters for longitudinal disease monitoring of multiple myeloma (MM) of the axial skeleton. We included 31 consecutive patients (17 m; mean age 59.20 ± 8.08 years) with MM, who underwent all baseline (n = 31) and at least one or more (n = 47) follow-up examinations consisting of multi-parametric non-enhanced whole-body MRI ( WB MRI) and non-enhanced whole-body reduced-dose thin-section MDCT (NEWBMDCT) between 06/2013 and 09/2016. We classified response according to qualitative CT criteria into progression (PD), stable(SD), partial/very good partial (PR/VGPR) and complete response(CR), grouping the latter three together for statistical analysis because CT cannot reliably assess PR and CR. Qualitative MR-response criteria were defined and grouped similarly to CT using longitudinal quantification of signal-intensity changes on T1w/STIR/ T2*w and calculating ADC-values. Standard of reference was the hematological laboratory (M-gradient). Hematological response categories were CR (14/47, 29.7%), PR (2/47, 4.2%), SD (16/47, 34.0%) and PD (15/47, 29.9%). Qualitative-CT-evaluation showed PD in 12/47 (25.5%) and SD/PR/VGPR/CR in 35/47 (74.5%) cases. These results were confirmed by quantitative-CT in all focal lytic lesions (p < 0.001). Quantitative-CT at sites with diffuse bone involvement showed significant increase of maximum bone attenuation (p < 0.001*) and significant decrease of minimal bone (p < 0.002*) in the SD/PR/VGPR/CR group. Qualitative MRI showed PD in 14/47 (29.7%) and SD/PR/VGPR/CR in 33/47 (70.3%). Quantitative MRI diagnosis showed a statistically significant decrease in signal intensity on short tau inversion recovery sequences (STIR) in bone marrow in patients with diffuse bone marrow involvement achieving SD/PR/VGPR/CR (p < 0.001*). Imaging response monitoring using MRI is superior to CT only if qualitative parameters are used, whereas there was no definite benefit from using quantitative parameters with either CT or MRI.
Development of proton CT imaging system using plastic scintillator and CCD camera
NASA Astrophysics Data System (ADS)
Tanaka, Sodai; Nishio, Teiji; Matsushita, Keiichiro; Tsuneda, Masato; Kabuki, Shigeto; Uesaka, Mitsuru
2016-06-01
A proton computed tomography (pCT) imaging system was constructed for evaluation of the error of an x-ray CT (xCT)-to-WEL (water-equivalent length) conversion in treatment planning for proton therapy. In this system, the scintillation light integrated along the beam direction is obtained by photography using the CCD camera, which enables fast and easy data acquisition. The light intensity is converted to the range of the proton beam using a light-to-range conversion table made beforehand, and a pCT image is reconstructed. An experiment for demonstration of the pCT system was performed using a 70 MeV proton beam provided by the AVF930 cyclotron at the National Institute of Radiological Sciences. Three-dimensional pCT images were reconstructed from the experimental data. A thin structure of approximately 1 mm was clearly observed, with spatial resolution of pCT images at the same level as that of xCT images. The pCT images of various substances were reconstructed to evaluate the pixel value of pCT images. The image quality was investigated with regard to deterioration including multiple Coulomb scattering.
NASA Astrophysics Data System (ADS)
Tajik, Jehangir K.; Kugelmass, Steven D.; Hoffman, Eric A.
1993-07-01
We have developed a method utilizing x-ray CT for relating pulmonary perfusion to global and regional anatomy, allowing for detailed study of structure to function relationships. A thick slice, high temporal resolution mode is used to follow a bolus contrast agent for blood flow evaluation and is fused with a high spatial resolution, thin slice mode to obtain structure- function detail. To aid analysis of blood flow, we have developed a software module, for our image analysis package (VIDA), to produce the combined structure-function image. Color coded images representing blood flow, mean transit time, regional tissue content, regional blood volume, regional air content, etc. are generated and imbedded in the high resolution volume image. A text file containing these values along with a voxel's 3-D coordinates is also generated. User input can be minimized to identifying the location of the pulmonary artery from which the input function to a blood flow model is derived. Any flow model utilizing one input and one output function can be easily added to a user selectable list. We present examples from our physiologic based research findings to demonstrate the strengths of combining dynamic CT and HRCT relative to other scanning modalities to uniquely characterize pulmonary normal and pathophysiology.
Frissen, Aleida; van Os, Jim; Habets, Petra; Gronenschild, Ed; Marcelis, Machteld
2017-01-01
The alterations in cortical morphology, such as cortical thinning, observed in psychotic disorder, may be the outcome of interacting genetic and environmental effects. It has been suggested that urban upbringing may represent a proxy environmental effect impacting cortical thickness (CT). Therefore, the current study examined whether the association between group as a proxy genetic variable (patients with psychotic disorder [high genetic risk], healthy siblings of patients [intermediate risk] and healthy control subjects [average risk]) and CT was conditional on different levels of the childhood urban environment and whether this was sex-dependent. T1-weighted MRI scans were acquired from 89 patients with a psychotic disorder, 95 non-psychotic siblings of patients with psychotic disorder and 87 healthy control subjects. Freesurfer software was used to measure CT. Developmental urban exposure was classified as low, medium, and high, reflecting the population density and the number of moves between birth and the 15th birthday, using data from the Dutch Central Bureau of Statistics and the equivalent database in Belgium. Multilevel regression analyses were used to examine the association between group, sex, and urban upbringing (as well as their interactions) and cortical CT as the dependent variable. CT was significantly smaller in the patient group compared to the controls (B = -0.043, p <0.001), but not in the siblings compared to the controls (B = -0.013, p = 0.31). There was no main effect of developmental urbanicity on CT (B = 0.001, p = 0.91). Neither the three-way group × urbanicity × sex interaction (χ2 = 3.73, p = 0.16), nor the two-way group × urbanicity interaction was significant (χ2 = 0.51, p = 0.77). The negative association between (familial risk for) psychotic disorder and CT was not moderated by developmental urbanicity, suggesting that reduced CT is not the outcome of familial sensitivity to the proxy environmental factor 'urban upbringing'.
Heye, Tobias; Sommer, Gregor; Miedinger, David; Bremerich, Jens; Bieri, Oliver
2015-09-01
To evaluate the anatomical details offered by a new single breath-hold ultrafast 3D balanced steady-state free precession (uf-bSSFP) sequence in comparison to low-dose chest computed tomography (CT). This was an Institutional Review Board (IRB)-approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant prospective study. A total of 20 consecutive patients enrolled in a lung cancer screening trial underwent same-day low-dose chest CT and 1.5T MRI. The presence of pulmonary nodules and anatomical details on 1.9 mm isotropic uf-bSSFP images was compared to 2 mm lung window reconstructions by two readers. The number of branching points on six predefined pulmonary arteries and the distance between the most peripheral visible vessel segment to the pleural surface on thin slices and 50 mm maximum intensity projections (MIP) were assessed. Image quality and sharpness of the pulmonary vasculature were rated on a 5-point scale. The uf-bSSFP detection rate of pulmonary nodules (32 nodules visible on CT and MRI, median diameter 3.9 mm) was 45.5% with 21 false-positive findings (pooled data of both readers). Uf-bSSFP detected 71.2% of branching points visible on CT data. The mean distance between peripheral vasculature and pleural surface was 13.0 ± 4.2 mm (MRI) versus 8.5 ± 3.3 mm (CT) on thin slices and 8.6 ± 3.9 mm (MRI) versus 4.6 ± 2.5 mm (CT) on MIPs. Median image quality and sharpness were rated 4 each. Although CT is superior to MRI, uf-bSSFP imaging provides good anatomical details with sufficient image quality and sharpness obtainable in a single breath-hold covering the entire chest. © 2014 Wiley Periodicals, Inc.
Hong, Gil-Sun; Goo, Hyun Woo; Song, Jae-Woo
2012-06-01
To investigate the prevalence of ligamentum arteriosum calcification (LAC) on multi-section spiral CT and digital radiography. Five hundred and eight children and 232 adults who performed multi-section chest CT were included in this study and were divided into nine age groups: A (0-5 years), B (6-10 years), C (11-15 years), D (16-20 years), E (21-30 years), F (31-40 years), G (41-50 years), H (51-60 years), and I (61-70 years). Two radiologists assessed the presence of LAC on axial and coronal CT images, defined as focal calcific density on both or on one plane with attenuation >100 Hounsfield unit. The prevalence of LAC on CT was compared between children and adults, and between unenhanced and enhanced CT in children. The prevalence of LAC on digital radiography was evaluated in 476 children. The prevalence of definite LAC on unenhanced multi-section CT was significantly higher in children (37.8 %) than in adults (11.2 %) (P < 0.001), with prevalences in groups: A through I of 35.8, 48.7, 35.1, 28.6, 25.0, 10.2, 15.5, 7.8, and 5.6 %, respectively. The prevalences of indeterminate LAC in age groups A-I on unenhanced multi-section CT were 4.5, 12.8, 8.1, 19.0, 0.0, 0.0, 0.0, 2.0, and 1.9 %. In children, the prevalence of LAC was significantly higher on unenhanced than on enhanced CT (37.8 vs. 16.4 %, P < 0.001). The prevalence of LAC on digital radiography was 3.6 % in children. LAC is frequently observed in children and adults on multi-section spiral CT, more frequently than previously reported. Compared with that on multi-section spiral CT, the prevalence of LAC on digital radiography is substantially low.
Hakimé, Antoine; Peddi, Himaja; Hines-Peralta, Andrew U; Wilcox, Carol J; Kruskal, Jonathan; Lin, Shezhang; de Baere, Thierry; Raptopoulos, Vassilios D; Goldberg, S Nahum
2007-06-01
To prospectively compare single- and multisection computed tomographic (CT) perfusion for tumor blood flow determination in an animal model. All animal protocols and experiments were approved by the institutional animal care and use committee before the study was initiated. R3230 mammary adenocarcinoma was implanted in 11 rats. Tumors (18-20 mm) were scanned with dynamic 16-section CT at baseline and after administration of arsenic trioxide, which is known to cause acute reduction in blood flow. The concentration of arsenic was titrated (0-6 mg of arsenic per kilogram of body weight) to achieve a defined blood flow reduction (0%-75%) from baseline levels at 60 minutes, as determined with correlative laser Doppler flowmetry. The mean blood flow was calculated for each of four 5-mm sections that covered the entire tumor, as well as for the entire tumor after multiple sections were processed. Measurements obtained with both methods were correlated with laser Doppler flowmetry measurements. Interobserver agreement was determined for two blinded radiologists, who calculated the percentage of blood flow reduction for the "most representative" single sections at baseline and after arsenic administration. These results were compared with the interobserver variability of the same radiologists obtained by summing blood flow changes for the entire tumor volume. Overall correlations for acute blood flow reduction were demonstrated between laser Doppler flowmetry and the two CT perfusion approaches (single-section CT, r=0.85 and r(2)=0.73; multisection CT, r=0.93 and r(2)=0.87; pooled data, P=.01). CT perfusion disclosed marked heterogeneity of blood flow, with variations of 36% +/- 13 between adjacent 5-mm sections. Given these marked differences, interobserver agreement was much lower for single-section CT (standard deviation, 0.22) than for multisection CT (standard deviation, 0.10; P=.01). Multisection CT perfusion techniques may provide an accurate and more reproducible method of tumor perfusion surveillance than comparison of single representative tumor sections. (c) RSNA, 2007.
Galusca, Bogdan; Verney, Julien; Meugnier, Emmanuelle; Ling, Yiin; Edouard, Pascal; Feasson, Leonard; Ravelojaona, Marion; Vidal, Hubert; Estour, Bruno; Germain, Natacha
2018-05-13
Constitutional thinness (CT) is a rare condition of natural low bodyweight, with no psychological issues, no marker of undernutrition and a resistance to weight gain. This study evaluated the skeletal muscle phenotype of CT women by comparison to a normal BMI control group. 10 CT women (BMI< 17.5 kg/m2) and 10 female controls (BMI: 18.5-25 kg/m2) underwent metabolic and hormonal assessment along with muscle biopsies to analyse the skeletal muscular fibers pattern, capillarity, enzymes activities and transcriptomics. CTs displayed similar energy balance metabolic and hormonal profile to controls. CTs presented with lower mean area of all the skeletal muscular fibers (-24%, p= 0.01) and percentage of slow-twitch type I fibers (-25%, p=0.02, respectively). Significant down regulation of the mRNA expression of several mitochondrial related genes and triglycerides metabolism was found along with low Cytochrome C Oxydase (COX) activity and capillary network in type I fibers. Pre and post mitochondrial respiratory chain enzymes levels were found similar to controls. Transcriptomics also revealed downregulation of cytoskeletal related genes. Diminished type I fibers, decreased mitochondrial and metabolic activity suggested by these results are discordant with normal resting metabolic rate of CT subjects. Downregulated genes related to cytoskeletal proteins and myocyte differentiation could account for CT's resistance to weight gain. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Intrathoracic airway wall detection using graph search and scanner PSF information
NASA Astrophysics Data System (ADS)
Reinhardt, Joseph M.; Park, Wonkyu; Hoffman, Eric A.; Sonka, Milan
1997-05-01
Measurements of the in vivo bronchial tree can be used to assess regional airway physiology. High-resolution CT (HRCT) provides detailed images of the lungs and has been used to evaluate bronchial airway geometry. Such measurements have been sued to assess diseases affecting the airways, such as asthma and cystic fibrosis, to measure airway response to external stimuli, and to evaluate the mechanics of airway collapse in sleep apnea. To routinely use CT imaging in a clinical setting to evaluate the in vivo airway tree, there is a need for an objective, automatic technique for identifying the airway tree in the CT images and measuring airway geometry parameters. Manual or semi-automatic segmentation and measurement of the airway tree from a 3D data set may require several man-hours of work, and the manual approaches suffer from inter-observer and intra- observer variabilities. This paper describes a method for automatic airway tree analysis that combines accurate airway wall location estimation with a technique for optimal airway border smoothing. A fuzzy logic, rule-based system is used to identify the branches of the 3D airway tree in thin-slice HRCT images. Raycasting is combined with a model-based parameter estimation technique to identify the approximate inner and outer airway wall borders in 2D cross-sections through the image data set. Finally, a 2D graph search is used to optimize the estimated airway wall locations and obtain accurate airway borders. We demonstrate this technique using CT images of a plexiglass tube phantom.
O6.5. LINKING CORTICAL AND CONNECTIONAL PATHOLOGY IN SCHIZOPHRENIA
Di Biase, Maria; Cropley, Vanessa; Cocchi, Luca; Fornito, Alexander; Calamante, Fernando; Ganella, Eleni; Pantelis, Christos; Zalesky, Andrew
2018-01-01
Abstract Background Schizophrenia is associated with cortical thinning and breakdown in white matter microstructure. Whether these pathological processes are related remains unclear. We used multimodal neuroimaging to investigate the relation between regional cortical thinning and breakdown in adjacent infracortical white matter as a function of age and illness duration. Methods Structural magnetic resonance and diffusion images were acquired in 218 schizophrenia patients and 167 age-matched healthy controls to map cortical thickness (CT) and fractional anisotropy (FA) in regionally adjacent infracortical white matter at various cortical depths. Results Between-group differences in CT and infracortical FA were inversely correlated across cortical regions (r=−0.5, p<0.0001), such that the most anisotropic infracortical white matter was found adjacent to regions with extensive cortical thinning. This pattern was evident in early (20 years: r=−0.3, p=0.005) and middle life (30 years: r=−0.4, p=0.004, 40 years: r=−0.3, p=0.04), but not beyond 50 years (p>0.05). Frontal pathology contributed most to this pattern, with extensive cortical thinning in patients compared to controls at all ages (p<0.05); in contrast to initially increased frontal infracortical FA in patients at 30 years, followed by rapid decline in frontal FA with age (rate of annual decline; patients: 0.0012, controls 0.0006, p<0.001). Discussion Cortical thinning and breakdown in white matter anisotropy are inversely related in young schizophrenia patients, with abnormally elevated white matter myelination found adjacent to frontal regions with extensive cortical thinning. We argue that elevated frontal anisotropy reflects regionally-specific, compensatory responses to cortical thinning, which are eventually overwhelmed with increasing illness duration.
NASA Astrophysics Data System (ADS)
Duke, P. J.; Montufar-Solis, D.; Nguyen, H. C.; Cody, D. D.
2008-06-01
Using cartilage to replace/repair bone is advantageous as no scaffolding is required to form the implant which disappears as bone is formed during the endochondral process. Previously, we demonstrated that cartilage spheroids, grown in a rotating bioreactor, (Synthecon, Inc.) and implanted into a 2 mm skull defect, contributed to healing of the defect. In this report, skulls with or without implants were subjected to microCT scans, and sections from these scans were compared to histological sections of the defect region of demineralized skulls from the same experiment. The area of the defect staining for bone in histological sections of demineralized skulls was the same region shown as mineralized in CT sections. Defects without implants were shown in serial CT sections and histological sections, to be incompletely healed. This study demonstrates that microCT scans are an important corollary to histological studies evaluating the use of implants in healing of bony defects. Supported in part by NIH/NIDCR Training Grant T35 DE07252 and by Cancer Center Support Grant (CA-16672).
Kloth, C; Thaiss, W M; Hetzel, J; Ditt, H; Grosse, U; Nikolaou, K; Horger, M
2016-07-01
To assess the impact of endobronchial coiling on the segment bronchus cross-sectional area and volumes in patients with lung emphysema using quantitative chest-CT measurements. Thirty patients (female = 15; median age = 65.36 years) received chest-CT before and after endobronchial coiling for lung volume reduction (LVR) between January 2010 and December 2014. Thin-slice (0.6 mm) non-enhanced image data sets were acquired both at end-inspiration and end-expiration using helical technique and 120 kV/100-150 mAs. Clinical response was defined as an increase in the walking distance (Six-minute walk test; 6MWT) after LVR-therapy. Additionally, pulmonary function test (PFT) measurements were used for clinical correlation. In the treated segmental bronchia, the cross-sectional lumen area showed significant reduction (p < 0.05) in inspiration and tendency towards enlargement in expiration (p > 0.05). In the ipsilateral lobes, the lumina showed no significant changes. In the contralateral lung, we found tendency towards increased cross-sectional area in inspiration (p = 0.06). Volumes of the treated segments correlated with the treated segmental bronchial lumina in expiration (r = 0.80, p < 0.001). Clinical correlation with changes in 6MWT/PFT showed a significant decrease of the inspiratory volume of the treated lobe in responders only. Endobronchial coiling causes significant decrease in the cross-sectional area of treated segment bronchi in inspiration and a slight increase in expiration accompanied by a volume reduction. • Endobronchial coiling has indirect impact on cross-sectional area of treated segment bronchi • Volume changes of treated lobes correlate with changes in bronchial cross-sectional area • Coil-induced effects reflect their stabilizing and stiffening impact on lung parenchyma • Endobronchial coiling reduces bronchial collapsing compensating the loss of elasticity.
SU-F-207-06: CT-Based Assessment of Tumor Volume in Malignant Pleural Mesothelioma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qayyum, F; Armato, S; Straus, C
Purpose: To determine the potential utility of computed tomography (CT) scans in the assessment of physical tumor bulk in malignant pleural mesothelioma patients. Methods: Twenty-eight patients with malignant pleural mesothelioma were used for this study. A CT scan was acquired for each patient prior to surgical resection of the tumor (median time between scan and surgery: 27 days). After surgery, the ex-vivo tumor volume was measured by a pathologist using a water displacement method. Separately, a radiologist identified and outlined the tumor boundary on each CT section that demonstrated tumor. These outlines then were analyzed to determine the total volumemore » of disease present, the number of sections with outlines, and the mean volume of disease per outlined section. Subsets of the initial patient cohort were defined based on these parameters, i.e. cases with at least 30 sections of disease with a mean disease volume of at least 3mL per section. For each subset, the R- squared correlation between CT-based tumor volume and physical ex-vivo tumor volume was calculated. Results: The full cohort of 28 patients yielded a modest correlation between CT-based tumor volume and the ex-vivo tumor volume with an R-squared value of 0.66. In general, as the mean tumor volume per section increased, the correlation of CT-based volume with the physical tumor volume improved substantially. For example, when cases with at least 40 CT sections presenting a mean of at least 2mL of disease per section were evaluated (n=20) the R-squared correlation increased to 0.79. Conclusion: While image-based volumetry for mesothelioma may not generally capture physical tumor volume as accurately as one might expect, there exists a set of conditions in which CT-based volume is highly correlated with the physical tumor volume. SGA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology.« less
CT and PET-CT of a Dog with Multiple Pulmonary Adenocarcinoma
KIM, Jisun; KWON, Seong Young; CENA, Rohani; PARK, Seungjo; OH, Juyeon; OUI, Heejin; CHO, Kyoung-Oh; MIN, Jung-Joon; CHOI, Jihye
2013-01-01
ABSTRACT A 10-year-old, intact female Yorkshire terrier had multiple pulmonary nodules on thoracic radiography and ultrasonography with no lesions elsewhere. Computed tomography (CT) and positron emission tomography and computed tomography (PET-CT) using 18F-fluorodeoxyglucose (FDG) were performed to identify metastasis and undetected primary tumors. On CT examination, pulmonary nodules had a hypoattenuating center with thin peripheral enhancement, suggesting ischemic or necrotizing lesion. In PET-CT at 47 min after intravenous injection of 11.1 MBq/kg of FDG, the maximum standardized uptake value of each pulmonary nodule was about from 3.8 to 6.4. There were no abnormal lesions except for four pulmonary nodules on the CT and PET-CT. Primary lung tumor was tentatively diagnosed, and palliative therapy using 2 mg/kg tramadol and 2.2 mg/kg carprofen twice per day was applied. After the dog’s euthanasia due to deteriorated clinical signs and poor prognosis, undifferentiated pulmonary adenocarcinoma was diagnosed through histopathologic and immunochemistry examination. To the best of the authors’ knowledge, this is the first study of CT and PET-CT features of canine pulmonary adenocarcinoma. In this case, multiple pulmonary adenocarcinoma could be determined on the basis of FDG PET-CT through screening the obvious distant metastasis and/or lymph node invasions and excluding unknown primary tumors. PMID:24389742
Trebbastoni, Alessandro; Marcelli, Michela; Mallone, Fabiana; D'Antonio, Fabrizia; Imbriano, Letizia; Campanelli, Alessandra; de Lena, Carlo; Gharbiya, Magda
2017-01-01
To compare the 12-month choroidal thickness (CT) change between Alzheimer disease (AD) patients and normal subjects. In this prospective, observational study, 39 patients with a diagnosis of mild to moderate AD and 39 age-matched control subjects were included. All the subjects underwent neuropsychological (Mini Mental State Examination, Alzheimer disease Assessment Scale-Cognitive Subscale, and the Clinical Dementia Rating Scale) and ophthalmological evaluation, including spectral domain optical coherence tomography, at baseline and after 12 months. CT was measured manually using the caliper tool of the optical coherence tomography device. After 12 months, AD patients had a greater reduction of CT than controls (P≤0.05, adjusted for baseline CT, age, sex, axial length, and smoking). CT in patients with AD showed a rate of thinning greater than what could be expected during the natural course of aging.
... Tomography) Scan - العربية (Arabic) Bilingual PDF Health Information Translations Chinese, Simplified (Mandarin dialect) (简体中文) Expand Section CT ( ... Chinese, Simplified (Mandarin dialect)) Bilingual PDF Health Information Translations Chinese, Traditional (Cantonese dialect) (繁體中文) Expand Section CT ( ...
Congenitally absent lumbar pedicle: a reappraisal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wortzman, G.; Steinhardt, M.I.
1984-09-01
Three patients who had a diagnosis of congenitally absent lumbar pedicle underwent CT examination. Findings showed that each patient had an aberrant hypoplastic pedicle plus a retroisthmic defect in their ipsilateral lamina rather than an absent pedicle. Axial CT was the diagnostic modality of choice; reformated images were of little value. The differential diagnosis to be considered from the findings of plain film radiography includes pediculate thinning, neoplastic disease, neurofibroma, mesodermal dysplasia associated with neurofibromatosis, and vascular anomalies.
[Computed tomographic semiotics of respiratory tuberculosis in HIV-infected patients].
Gavrilov, P V; Lazareva, A S; Malashenkov, E A
2013-01-01
to study the computed tomographic (CT) semiotics of respiratory tuberculosis in HIV-infected patients in relation to the degree of immunosuppression. The study enrolled 74 patients with verified respiratory tuberculosis in the presence of HIV infection. According to the degree of immunosuppression and the Centers for Disease Control (CDC) and Prevention classification (Atlanta, USA, 1993), the patients were divided into 3 groups: (1) CD4 > or = 500 cells/microl (n = 10); 2) CD4 200-499 cells/microl (n = 28); (3) CD4 <200 cells/microl (n = 36). With spiral CT, focal changes with a predominance of clear-cut foci are visualized at a high frequency in the patients with pulmonary tuberculosis in the presence of HIV infection. In progressive immunosuppression, the CT pattern displays atypical syndromes (frosted glass-type foci, interstitial infiltration, and thin-walled cavities) with the lower rate of alveolar infiltration with confluent foci, as well as lung tissue decay. Enlarged intrathoracic lymph nodes are characteristic of 70.0% of the patients with HIV infection and tuberculosis regardless of the level of CD4 cells. As immunosuppression progresses, the CT pattern of respiratory tuberculosis in the presence of HIV infection shows as atypical syndromes (unclearly defined frosted glass-type focal changes, interstitial infiltrations, and thin-walled cavernous masses). A marked polymorphism in changes and a high rate of lymph node involvement are characteristic.
Lunar and Meteorite Thin Sections for Undergraduate and Graduate Studies
NASA Astrophysics Data System (ADS)
Allen, J.; Allen, C.
2012-12-01
The Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. Studies of rock and soil samples from the Moon and meteorites continue to yield useful information about the early history of the Moon, the Earth, and the inner solar system. Petrographic Thin Section Packages containing polished thin sections of samples from either the Lunar or Meteorite collections have been prepared. Each set of twelve sections of Apollo lunar samples or twelve sections of meteorites is available for loan from JSC. The thin sections sets are designed for use in domestic college and university courses in petrology. The loan period is very strict and limited to two weeks. Contact Ms. Mary Luckey, Education Sample Curator. Email address: mary.k.luckey@nasa.gov Each set of slides is accompanied by teaching materials and a sample disk of representative lunar or meteorite samples. It is important to note that the samples in these sets are not exactly the same as the ones listed here. This list represents one set of samples. A key education resource available on the Curation website is Antarctic Meteorite Teaching Collection: Educational Meteorite Thin Sections, originally compiled by Bevan French, Glenn McPherson, and Roy Clarke and revised by Kevin Righter in 2010. Curation Websites College and university staff and students are encouraged to access the Lunar Petrographic Thin Section Set Publication and the Meteorite Petrographic Thin Section Package Resource which feature many thin section images and detailed descriptions of the samples, research results. http://curator.jsc.nasa.gov/Education/index.cfm Request research samples: http://curator.jsc.nasa.gov/ JSC-CURATION-EDUCATION-DISKS@mail.nasa.govLunar Thin Sections; Meteorite Thin Sections;
Ling, Yiin; Galusca, Bogdan; Hager, Jorg; Feasson, Leonard; Valsesia, Armand; Epelbaum, Jacques; Alexandre, Virginie; Wynn, Emma; Dinet, Cécile; Palaghiu, Radu; Peoc'h, Michel; Boirie, Yves; Montaurier, Christophe; Estour, Bruno; Germain, Natacha
2016-10-01
Constitutional thinness (CT) is a natural state of underweight (13-17.5kg/m 2 ) without the presence of any eating disorders and abnormal hormonal profile, and with preserved menses in women. We previously conducted a four-week fat overfeeding study showing weight gain resistance in CT women and one of our main results was the identification of an energy gap: a positive energy balance (higher energy intake than energy expenditure). This new overfeeding study is designed to confirm the energy gap and propose mechanistic hypothesis. A 2-week overfeeding (daily consumption of one bottle of Renutryl ® Booster (600kcal, 30g protein, 72g carbohydrate, 21g fat) on top of the dietary intake) is performed to compare 15 women and men in each CT group (Body Mass Index [BMI]<18.5kg/m 2 ) to their controls (BMI 20-25kg/m 2 ). Bodyweight, food intake, energy expenditure (canopy, calorimetric chamber and Actiheart), body composition (DXA), appetite regulatory hormone profiles after a test meal, proteomics, metabolomics, urinary metabolic profiles, stool microbiome and lipids, fat and muscle transcriptomics are monitored before and after overfeeding. Data inter-linking will be able to be established with results of this study. The findings could possibly open to therapeutic approaches to help CT patients to gain weight as well as provide a better understanding of energy regulation with regard to treat obesity (resistance to weight loss), a mirror image of CT (resistance to weight gain). Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Berkenblit, Robert; Hoenig, David; Lerer, Daniel; Moses, Melanie; Minsky, Lloyd
2013-02-01
CT has become a well-established modality in the evaluation of urinary calculi. The advent of multidetector CT (MDCT) scanners and submillimeter thick slice acquisitions has yielded CT images with even greater resolution. MDCT scanners allow for source data slice acquisition with submillimeter slice thickness. These source images can then be reconstructed to thicker slices for more convenient interpretation of the CT scan. Previous authors have looked at the effect of slice thickness on detection of urinary calculi. We investigated whether the thin slice source images yielded detection of additional stones and the potential significance of detecting these additional stones. Ninety-five consecutive patients who were referred to our outpatient imaging center for CT, with a clinical history placing them at risk for urinary calculi, were included in the study. In 49 (52%) of the 95 patients, more calculi were visualized using the 0.625-mm thick images than with the 5-mm thick images. In 34 (69%) of these 49 patients, the additional findings were thought to be "clinically significant," while in the remaining 15 (31%) patients, the additional findings were not thought to be clinically significant. In 46 (48%) of the 95 patients, there were no additional urinary calculi identified on the 0.625-mm thick images compared with that observed on 5-mm thick images. The results from this study encourage reviewing the thin slice source images of MDCTs in patients at risk for urinary calculi, because important clinical decisions may hinge on the additional findings made on these images.
Investigation of Carbon Fiber Architecture in Braided Composites Using X-Ray CT Inspection
NASA Technical Reports Server (NTRS)
Rhoads, Daniel J.; Miller, Sandi G.; Roberts, Gary D.; Rauser, Richard W.; Golovaty, Dmitry; Wilber, J. Patrick; Espanol, Malena I.
2017-01-01
During the fabrication of braided carbon fiber composite materials, process variations occur which affect the fiber architecture. Quantitative measurements of local and global fiber architecture variations are needed to determine the potential effect of process variations on mechanical properties of the cured composite. Although non-destructive inspection via X-ray CT imaging is a promising approach, difficulties in quantitative analysis of the data arise due to the similar densities of the material constituents. In an effort to gain more quantitative information about features related to fiber architecture, methods have been explored to improve the details that can be captured by X-ray CT imaging. Metal-coated fibers and thin veils are used as inserts to extract detailed information about fiber orientations and inter-ply behavior from X-ray CT images.
Liu, Tao; Xu, Wen; Yan, Wei-Li; Ye, Ming; Bai, Yong-Rui; Huang, Gang
2007-12-01
To perform a systematic review to compare FDG-PET, CT, and MRI imaging for diagnosis of local residual or recurrent nasopharyngeal carcinoma. MEDLINE, EMBASE, the CBMdisc databases and some other databases were searched for relevant original articles published from January 1990 to June 2007. Inclusion criteria were as follows: Articles were reported in English or Chinese; FDG-PET, CT, or MRI was used to detect local residual or recurrent nasopharyngeal carcinoma; histopathologic analysis and/or close clinical and imaging follow-up for at least 6 months were the reference standard. Two reviewers independently extracted data. A software called "Meta-DiSc" was used to obtain pooled estimates of sensitivity, specificity, diagnostic odds ratio (DOR), summary receiver operating characteristic (SROC) curves, and the Q* index. Twenty-one articles fulfilled all inclusion criteria. The pooled sensitivity estimates for PET (95%) were significantly higher than CT (76%) (P<0.001) and MRI (78%) (P<0.001). The pooled specificity estimates for PET (90%) were significantly higher than CT (59%) (P<0.001) and MRI (76%) (P<0.001). The pooled DOR estimates for PET (96.51) were significantly higher than CT (7.01) (P<0.001) and MRI (8.68) (P<0.001). SROC curve for FDG-PET showed better diagnostic accuracy than CT and MRI. The Q* index for PET (0.92) was significantly higher than CT (0.72) (P<0.001) and MRI (0.76) (P<0.01). For PET, the sensitivity and diagnostic OR for using qualitative analysis were significantly higher than using both qualitative and quantitative analyses (P<0.01). For CT, the sensitivity, specificity, diagnostic OR, and the Q* index for dual-section helical and multi-section helical were all significantly higher than nonhelical and single-section helical (P<0.01). And the sensitivity for 'section thickness <5 mm' was significantly lower than ' =5 mm' (P<0.01), while the specificity was significantly higher (P<0.01). For MRI, there were no significant differences found between magnetic field strength <1.5 and > or =1.5 T (P>0.05). FDG-PET was the best modality for diagnosis of local residual or recurrent nasopharyngeal carcinoma. The type of analysis for PET imaging and the section thickness for CT would affect the diagnostic results. Dual-section helical and multi-section helical CT were better than nonhelical and single-section helical CT.
Microcomputed tomography and shock microdeformation studies on shatter cones
NASA Astrophysics Data System (ADS)
Zaag, Patrice Tristan; Reimold, Wolf Uwe; Hipsley, Christy Anna
2016-08-01
One of the aspects of impact cratering that are still not fully understood is the formation of shatter cones and related fracturing phenomena. Yet, shatter cones have been applied as an impact-diagnostic criterion for decades without the role of shock waves and target rock defects in their formation having been elucidated ever. We have tested the application of the nondestructive microcomputed tomography (μCT) method to visualize the interior of shatter cones in order to possibly resolve links between fracture patterns and shatter cone surface features (striations and intervening "valleys"). Shatter-coned samples from different impact sites and in different lithologies were investigated for their μCT suitability, with a shatter cone in sandstone from the Serra da Cangalha impact structure (Brazil) remaining as the most promising candidate because of the fracture resolution achieved. To validate the obtained CT data, the scanned specimen was cut into three orthogonal sets of thin sections. Scans with 13 μm resolution were obtained. μCT scans and microscopic analysis unraveled an orientation of subplanar fractures and related fluid inclusion trails, and planar fracture (PF) orientations in the interior of shatter cones. Planar deformation features (PDF) were observed predominantly near the shatter cone surface. Previously undescribed varieties of feather features (FF), in the form of lamellae emanating from curviplanar and curved fractures, as well as an "arrowhead"-like FF development with microlamellae originating from both sides of a PF, were observed. The timing of shatter cone formation was investigated by establishing temporal relations to the generation of various shock microscopic effects. Shatter cones are, thus, generated post- or syn-formation of PF, FF, subplanar fractures, and PDF. The earliest possible time for shatter cone formation is during the late stage of the compressional phase, that is, shock wave passage, of an impact event.
Camiciottoli, G; Diciotti, S; Bartolucci, M; Orlandi, I; Bigazzi, F; Matucci-Cerinic, M; Pistolesi, M; Mascalchi, M
2013-03-01
Spiral low-dose computed tomography (LDCT) permits to measure whole-lung volume and density in a single breath-hold. To evaluate the agreement between static lung volumes measured with LDCT and pulmonary function test (PFT) and the correlation between the LDCT volumes and lung density in restrictive lung disease. Patients with Systemic Sclerosis (SSc) with (n = 24) and without (n = 16) pulmonary involvement on sequential thin-section CT and patients with chronic obstructive pulmonary disease (COPD)(n = 29) underwent spirometrically-gated LDCT at 90% and 10% of vital capacity to measure inspiratory and expiratory lung volumes and mean lung attenuation (MLA). Total lung capacity and residual volume were measured the same day of CT. Inspiratory [95% limits of agreement (95% LoA)--43.8% and 39.2%] and expiratory (95% LoA -45.8% and 37.1%) lung volumes measured on LDCT and PFT showed poor agreement in SSc patients with pulmonary involvement, whereas they were in substantial agreement (inspiratory 95% LoA -14.1% and 16.1%; expiratory 95% LoA -13.5% and 23%) in SSc patients without pulmonary involvement and in inspiratory scans only (95% LoA -23.1% and 20.9%) of COPD patients. Inspiratory and expiratory LDCT volumes, MLA and their deltas differentiated both SSc patients with or without pulmonary involvement from COPD patients. LDCT lung volumes and density were not correlated in SSc patients with pulmonary involvement, whereas they did correlate in SSc without pulmonary involvement and in COPD patients. In restrictive lung disease due to SSc there is poor agreement between static lung volumes measured using LDCT and PFT and the relationship between volume and density values on CT is altered.
Nondestructive insights into composition of the sculpture of Egyptian Queen Nefertiti with CT.
Huppertz, Alexander; Wildung, Dietrich; Kemp, Barry J; Nentwig, Tanja; Asbach, Patrick; Rasche, Franz Maximilian; Hamm, Bernd
2009-04-01
To assess the conservation status of, to gain information on the creation of, and to provide surface reformations of the core and the surface of the bust of the pharaoh-queen Nefertiti, considered to be one of the greatest treasures of ancient Egyptian art, with computed tomography (CT). Multisection CT was performed with 0.6-mm section thickness. Two- and three-dimensional reformations were made to depict the core and the surface separately. The stucco layer on the face and the ears was very thin, a maximum of 1-2 mm thick. The rear part of the reconstructed crown showed two thick stucco layers of different attenuation values, indicating that a multistep process was used to create the sculpture. Within the stucco, a great number of air-equivalent hypoattenuating areas, filamentous fissures parallel to the surface, and an inhomogeneous bonding between the layers were delineated. Nefertiti's inner face was not anonymous, but rather delicately sculpted by the royal sculptor Thutmose. The comparison to the outer face revealed differences, including the angles of the eyelids, creases around the corners of the mouth on the limestone surface, and a slight bump on the ridge of the nose. According to the beauty ideals of the Amarna period, the differences had positive and negative effects and can be read as signs of individualization of the sculpture. The potential material-related weaknesses of the sculpture that were revealed at imaging necessitate careful handling, with the avoidance of any focal pressure and shearing forces in the crown and the shoulders. CT imaging revealed construction techniques in Nefertiti's bust that had implications for conservation, as well as for an understanding of the artistic methods used in the creation of this masterpiece of art of the 18th dynasty.
Majkut, Patrycja; Sadr, Alireza; Shimada, Yasushi; Sumi, Yasunori; Tagami, Junji
2015-08-01
Optical coherence tomography (OCT) is a noninvasive modality to obtain in-depth images of biological structures. A dental OCT system has become available for chairside application. This in vitro study hypothesized that swept-source OCT can be used to measure the remaining dentin thickness (RDT) at the roof of the dental pulp chamber during excavation of deep caries. Human molar teeth with deep occlusal caries were investigated. After obtaining 2-dimensional and 3-dimensional OCT scans using a swept-source OCT system at a 1330-nm center wavelength, RDT was evaluated by image analysis software. Microfocus x-ray computed tomographic (micro-CT) images were obtained from the same cross sections to confirm OCT findings. The smallest RDT values at the visible pulp horn were measured on OCT and micro-CT imaging and compared using the Pearson correlation. Pulpal horns and pulp chamber roof observation under OCT and micro-CT imaging resulted in comparable images that allowed the measurement of coronal dentin thickness. RDT measured by OCT showed optical values range between 140 and 2300 μm, which corresponded to the range of 92-1524 μm on micro-CT imaging. A strong correlation was found between the 2 techniques (r = 0.96, P < .001). Further analysis indicated linear regression with a slope of 1.54 and no intercept, closely matching the bulk refractive index of dentin. OCT enables visualization of anatomic structures during deep caries excavation. Exposure of the vital dental pulp because of the removal of very thin remaining coronal dentin can be avoided with this novel noninvasive technique. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Improved quantitation and reproducibility in multi-PET/CT lung studies by combining CT information.
Holman, Beverley F; Cuplov, Vesna; Millner, Lynn; Endozo, Raymond; Maher, Toby M; Groves, Ashley M; Hutton, Brian F; Thielemans, Kris
2018-06-05
Matched attenuation maps are vital for obtaining accurate and reproducible kinetic and static parameter estimates from PET data. With increased interest in PET/CT imaging of diffuse lung diseases for assessing disease progression and treatment effectiveness, understanding the extent of the effect of respiratory motion and establishing methods for correction are becoming more important. In a previous study, we have shown that using the wrong attenuation map leads to large errors due to density mismatches in the lung, especially in dynamic PET scans. Here, we extend this work to the case where the study is sub-divided into several scans, e.g. for patient comfort, each with its own CT (cine-CT and 'snap shot' CT). A method to combine multi-CT information into a combined-CT has then been developed, which averages the CT information from each study section to produce composite CT images with the lung density more representative of that in the PET data. This combined-CT was applied to nine patients with idiopathic pulmonary fibrosis, imaged with dynamic 18 F-FDG PET/CT to determine the improvement in the precision of the parameter estimates. Using XCAT simulations, errors in the influx rate constant were found to be as high as 60% in multi-PET/CT studies. Analysis of patient data identified displacements between study sections in the time activity curves, which led to an average standard error in the estimates of the influx rate constant of 53% with conventional methods. This reduced to within 5% after use of combined-CTs for attenuation correction of the study sections. Use of combined-CTs to reconstruct the sections of a multi-PET/CT study, as opposed to using the individually acquired CTs at each study stage, produces more precise parameter estimates and may improve discrimination between diseased and normal lung.
Content Model Use and Development to Redeem Thin Section Records
NASA Astrophysics Data System (ADS)
Hills, D. J.
2014-12-01
The National Geothermal Data System (NGDS) is a catalog of documents and datasets that provide information about geothermal resources located primarily within the United States. The goal of NGDS is to make large quantities of geothermal-relevant geoscience data available to the public by creating a national, sustainable, distributed, and interoperable network of data providers. The Geological Survey of Alabama (GSA) has been a data provider in the initial phase of NGDS. One method by which NGDS facilitates interoperability is through the use of content models. Content models provide a schema (structure) for submitted data. Schemas dictate where and how data should be entered. Content models use templates that simplify data formatting to expedite use by data providers. These methodologies implemented by NGDS can extend beyond geothermal data to all geoscience data. The GSA, using the NGDS physical samples content model, has tested and refined a content model for thin sections and thin section photos. Countless thin sections have been taken from oil and gas well cores housed at the GSA, and many of those thin sections have related photomicrographs. Record keeping for these thin sections has been scattered at best, and it is critical to capture their metadata while the content creators are still available. A next step will be to register the GSA's thin sections with SESAR (System for Earth Sample Registration) and assign an IGSN (International Geo Sample Number) to each thin section. Additionally, the thin section records will be linked to the GSA's online record database. When complete, the GSA's thin sections will be more readily discoverable and have greater interoperability. Moving forward, the GSA is implementing use of NGDS-like content models and registration with SESAR and IGSN to improve collection maintenance and management of additional physical samples.
Tsuchiya, Nanae; Yamashiro, Tsuneo; Murayama, Sadayuki
2016-09-01
Lung volume and pulmonary blood flow decrease in patients with interstitial lung disease (ILD). The purpose of this study was to assess the relationship between pulmonary blood flow and lung volume in ILD patients. This research was approved by the institutional review board. Twenty-seven patients (9 men, 18 women; mean age, 59 years; range, 24-79 years) with ILD were included. Blood flow was assessed in the pulmonary trunk and the left and right pulmonary arteries by phase contrast magnetic resonance imaging (MRI). Lung volume and the computed tomography (CT) visual score that indicates the severity of ILD were assessed on the left and right sides by thin-section CT scanning. Lung volume was automatically measured by lung analysis software (VINCENT Ver. 4). The CT visual score was measured by averaging the proportion of abnormal lung area at five anatomic levels. Pearson's correlation coefficient was used to determine the relationship between pulmonary blood flow and lung volume. Pulmonary blood flow showed a significant correlation with lung volume (both: r=0.52, p=0.006; left: r=0.61, p=0.001; right: r=0.54, p=0.004) and CT visual score (both: r=-0.39, p=0.04; left: r=-0.48, p=0.01; right: r=-0.38, p=0.04). Partial correlation analysis, controlled for age, height and weight, showed a significant correlation between pulmonary blood flow and lung volume (both: r=0.43, p=0.03; left: r=0.55, p=0.005; right: r=0.48, p=0.01) and CT visual score (both: r=-0.58, p=0.003; left: r=-0.51, p=0.01; right: r=-0.64, p=0.001). In ILD, reduced pulmonary blood flow is associated with reduced lung volume and increased abnormal lung area. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Yanagawa, Masahiro; Kusumoto, Masahiko; Johkoh, Takeshi; Noguchi, Masayuki; Minami, Yuko; Sakai, Fumikazu; Asamura, Hisao; Tomiyama, Noriyuki
2018-05-01
Measuring the size of invasiveness on computed tomography (CT) for the T descriptor size was deemed important in the 8th edition of the TNM lung cancer classification. We aimed to correlate the maximal dimensions of the solid portions using both lung and mediastinal window settings on CT imaging with the pathologic invasiveness (> 0.5 cm) in lung adenocarcinoma patients. The study population consisted of 378 patients with a histologic diagnosis of adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), invasive adenocarcinoma (IVA)-lepidic, IVA-acinar and/or IVA-papillary, and IVA-micropapillary and/or solid adenocarcinoma. A panel of 15 radiologists was divided into 2 groups (group A, 9 radiologists; and group B, 6 radiologists). The 2 groups independently measured the maximal and perpendicular dimensions of the solid components and entire tumors on the lung and mediastinal window settings. The solid proportion of nodule was calculated by dividing the solid portion size (lung and mediastinal window settings) by the nodule size (lung window setting). The maximal dimensions of the invasive focus were measured on the corresponding pathologic specimens by 2 pathologists. The solid proportion was larger in the following descending order: IVA-micropapillary and/or solid, IVA-acinar and/or papillary, IVA-lepidic, MIA, and AIS. For both groups A and B, a solid portion > 0.8 cm in the lung window setting or > 0.6 cm in the mediastinal window setting on CT was a significant indicator of pathologic invasiveness > 0.5 cm (P < .001; receiver operating characteristic analysis using Youden's index). A solid portion > 0.8 cm on the lung window setting or solid portion > 0.6 cm on the mediastinal window setting on CT predicts for histopathologic invasiveness to differentiate IVA from MIA and AIS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Sanchez, Sophie; Dupret, Vincent; Tafforeau, Paul; Trinajstic, Katherine M; Ryll, Bettina; Gouttenoire, Pierre-Jean; Wretman, Lovisa; Zylberberg, Louise; Peyrin, Françoise; Ahlberg, Per E
2013-01-01
Firm attachments binding muscles to skeleton are crucial mechanical components of the vertebrate body. These attachments (entheses) are complex three-dimensional structures, containing distinctive arrangements of cells and fibre systems embedded in the bone, which can be modified during ontogeny. Until recently it has only been possible to obtain 2D surface and thin section images of entheses, leaving their 3D histology largely unstudied except by extrapolation from 2D data. Entheses are frequently preserved in fossil bones, but sectioning is inappropriate for rare or unique fossil material. Here we present the first non-destructive 3D investigation, by propagation phase contrast synchrotron microtomography (PPC-SRµCT), of enthesis histology in extant and fossil vertebrates. We are able to identify entheses in the humerus of the salamander Desmognathus from the organization of bone-cell lacunae and extrinsic fibres. Statistical analysis of the lacunae differentiates types of attachments, and the orientation of the fibres, reflect the approximate alignment of the muscle. Similar histological structures, including ontogenetically related pattern changes, are perfectly preserved in two 380 million year old fossil vertebrates, the placoderm Compagopiscis croucheri and the sarcopterygian fish Eusthenopteron foordi. We are able to determine the position of entheses in fossil vertebrates, the approximate orientation of the attached muscles, and aspects of their ontogenetic histories, from PPC-SRµCT data. Sub-micron microtomography thus provides a powerful tool for studying the structure, development, evolution and palaeobiology of muscle attachments.
Oh, Youn Soo; Jo, Ho Young; Ryu, Ji-Hun; Kim, Geon-Young
2017-02-15
The feasibility of using microfluidic tests to investigate water-rock (mineral) interactions in fractures regarding sorption onto thin rock sections (i.e., shale and granite) of lead (Pb) and uranium (U) was evaluated using a synthetic PbCl 2 solution and uranium-containing natural groundwater as fluids. Effluent composition and element distribution on the thin rock sections before and after microfluidic testing were analyzed. Most Pb removal (9.8mg/cm 2 ) occurred within 3.5h (140 PVF), which was 74% of the total Pb removal (13.2mg/cm 2 ) at the end of testing (14.5h, 560 PVF). Element composition on the thin shale sections determined by μ-XRF analysis indicated that Pb removal was related primarily to Fe-containing minerals (e.g., pyrite). Two thin granite sections (biotite rich, Bt-R and biotite poor, Bt-P) exhibited no marked difference in uranium removal capacity, but a slightly higher amount of uranium was removed onto the thin Bt-R section (266μg/cm 2 ) than the thin Bt-P section (240μg/cm 2 ) within 120h (4800 PVF). However, uranium could not be detected by micro X-ray fluorescence (μ-XRF) analysis, likely due to the detection limit. These results suggest that microfluidic testing on thin rock sections enables quantitative evaluation of rock (mineral)-water interactions at the micro-fracture or pore scale. Copyright © 2016 Elsevier B.V. All rights reserved.
Genital Tract Infections in an Isolated Community: 100 Women of the Príncipe Island
Vieira-Baptista, Pedro; Grinceviciene, Svitrigaile; Sousa, Carlos; Saldanha, Conceição; Broeck, Davy Vanden; Bogers, John-Paul
2017-01-01
Objective To characterize the vaginal microbiome and the rate of sexually transmitted infections (STIs) in the women of Príncipe (São Tomé and Príncipe). Methods Cross-sectional study of 100 consecutive women, invited for a free appointment and cervical cancer screening. A vaginal slide (wet mount microscopy) and a cervical sample (ThinPrep®) (Pap test, high risk human papillomavirus [HR-HPV], N. gonorrhea [NG], T. vaginalis [TV], and C. trachomatis [CT]) were obtained. Results TV, NG, CT, and HIV were found in 8.0%, 2.0%, 3.0%, and 2.0%, respectively, and were more prevalent in younger women. HR-HPV was positive in 36.7%; 2 were positive for HPV18, but none for HPV16. Coinfection of HPV with other STIs was 8.3%. Prevalence of abnormal vaginal flora (AVF) was 82.5%, mostly bacterial vaginosis (BV) 54.6%, and moderate/severe aerobic vaginitis (msAV) 25.8%. HR-HPV was not related to BV (p = 0.67). The association of abnormal Pap test with msAV was not significant (p = 0.08). Conclusion The prevalence of NG, CT, TV, and HR-HPV was according to expected, while that of HR-AVF was higher. The surprisingly low prevalence of HPV16 and HPV18 must be considered in the design of programs for prevention and vaccination; this setting can be useful as a model for postvaccination scenarios. PMID:29259388
Carbonaceous Chondrite Thin Section Preparation
NASA Technical Reports Server (NTRS)
Harrington, R.; Righter, K.
2017-01-01
Carbonaceous chondrite meteorites have long posed a challenge for thin section makers. The variability in sample hardness among the different types, and sometimes within individual sections, creates the need for an adaptable approach at each step of the thin section making process. This poster will share some of the procedural adjustments that have proven to be successful at the NASA JSC Meteorite Thin Section Laboratory. These adjustments are modifications of preparation methods that have been in use for decades and therefore do not require investment in new technology or materials.
EDI OCT evaluation of choroidal thickness in Stargardt disease
Sodi, Andrea; Bacherini, Daniela; Caporossi, Orsola; Murro, Vittoria; Mucciolo, Dario Pasquale; Cipollini, Francesca; Passerini, Ilaria; Virgili, Gianni; Rizzo, Stanislao
2018-01-01
Purpose Choroidal thickness (CT) evaluation with EDI-OCT in Stargardt Disease (STGD), considering its possible association with some clinical features of the disease. Methods CT was evaluated in 41 STGD patients and in 70 controls. Measurements were performed in the subfoveal position and at 1000 μm nasally and temporally. CT average values in STGD and in the control group were first compared by means of Student’s T test. Then, the possible association between CT and some clinical features was evaluated by means of linear regression analysis. Considered clinical parameters were: age, age on onset, duration of the disease, visual acuity, foveal thickness, Fishman clinical phenotype, visual field loss and ERG response. Results Average CT was not significantly different between controls and STGD patients. In the STGD group the correlation between CT and age (r = 0.22, p = 0.033) and age of onset (r = 0.05, p = 0.424) was modest, while that of CT with disease duration (r = 0.30, p<0.001) was moderate. CT and foveal thickness were also significantly but modestly correlated (r = 0.15, p = 0.033). Conclusion In our series average CT is not significantly changed in STGD in comparison with the controls. Nevertheless a choroidal thinning may be identified in the more advanced stages of the disease. PMID:29304098
Synchrotron X-Ray Diffraction Analysis of Meteorites in Thin Section: Preliminary Results
NASA Technical Reports Server (NTRS)
Treiman, A. H.; Lanzirotti, A.; Xirouchakis, D.
2004-01-01
X-ray diffraction is the pre-eminent technique for mineral identification and structure determination, but is difficult to apply to grains in thin section, the standard meteorite preparation. Bright focused X-ray beams from synchrotrons have been used extensively in mineralogy and have been applied to extraterrestrial particles. The intensity and small spot size achievable in synchrotron X-ray beams makes them useful for study of materials in thin sections. Here, we describe Synchrotron X-ray Diffraction (SXRD) in thin section as done at the National Synchrotron Light Source, and cite examples of its value for studies of meteorites in thin section.
Schaly, B; Bauman, G S; Battista, J J; Van Dyk, J
2005-02-07
The goal of this study is to validate a deformable model using contour-driven thin-plate splines for application to radiation therapy dose mapping. Our testing includes a virtual spherical phantom as well as real computed tomography (CT) data from ten prostate cancer patients with radio-opaque markers surgically implanted into the prostate and seminal vesicles. In the spherical mathematical phantom, homologous control points generated automatically given input contour data in CT slice geometry were compared to homologous control point placement using analytical geometry as the ground truth. The dose delivered to specific voxels driven by both sets of homologous control points were compared to determine the accuracy of dose tracking via the deformable model. A 3D analytical spherically symmetric dose distribution with a dose gradient of approximately 10% per mm was used for this phantom. This test showed that the uncertainty in calculating the delivered dose to a tissue element depends on slice thickness and the variation in defining homologous landmarks, where dose agreement of 3-4% in high dose gradient regions was achieved. In the patient data, radio-opaque marker positions driven by the thin-plate spline algorithm were compared to the actual marker positions as identified in the CT scans. It is demonstrated that the deformable model is accurate (approximately 2.5 mm) to within the intra-observer contouring variability. This work shows that the algorithm is appropriate for describing changes in pelvic anatomy and for the dose mapping application with dose gradients characteristic of conformal and intensity modulated radiation therapy.
Liu, Jiamin; Kabadi, Suraj; Van Uitert, Robert; Petrick, Nicholas; Deriche, Rachid; Summers, Ronald M.
2011-01-01
Purpose: Surface curvatures are important geometric features for the computer-aided analysis and detection of polyps in CT colonography (CTC). However, the general kernel approach for curvature computation can yield erroneous results for small polyps and for polyps that lie on haustral folds. Those erroneous curvatures will reduce the performance of polyp detection. This paper presents an analysis of interpolation’s effect on curvature estimation for thin structures and its application on computer-aided detection of small polyps in CTC. Methods: The authors demonstrated that a simple technique, image interpolation, can improve the accuracy of curvature estimation for thin structures and thus significantly improve the sensitivity of small polyp detection in CTC. Results: Our experiments showed that the merits of interpolating included more accurate curvature values for simulated data, and isolation of polyps near folds for clinical data. After testing on a large clinical data set, it was observed that sensitivities with linear, quadratic B-spline and cubic B-spline interpolations significantly improved the sensitivity for small polyp detection. Conclusions: The image interpolation can improve the accuracy of curvature estimation for thin structures and thus improve the computer-aided detection of small polyps in CTC. PMID:21859029
NASA Astrophysics Data System (ADS)
Hapca, Simona
2015-04-01
Many soil properties and functions emerge from interactions of physical, chemical and biological processes at microscopic scales, which can be understood only by integrating techniques that traditionally are developed within separate disciplines. While recent advances in imaging techniques, such as X-ray computed tomography (X-ray CT), offer the possibility to reconstruct the 3D physical structure at fine resolutions, for the distribution of chemicals in soil, existing methods, based on scanning electron microscope (SEM) and energy dispersive X-ray detection (EDX), allow for characterization of the chemical composition only on 2D surfaces. At present, direct 3D measurement techniques are still lacking, sequential sectioning of soils, followed by 2D mapping of chemical elements and interpolation to 3D, being an alternative which is explored in this study. Specifically, we develop an integrated experimental and theoretical framework which combines 3D X-ray CT imaging technique with 2D SEM-EDX and use spatial statistics methods to map the chemical composition of soil in 3D. The procedure involves three stages 1) scanning a resin impregnated soil cube by X-ray CT, followed by precision cutting to produce parallel thin slices, the surfaces of which are scanned by SEM-EDX, 2) alignment of the 2D chemical maps within the internal 3D structure of the soil cube, and 3) development, of spatial statistics methods to predict the chemical composition of 3D soil based on the observed 2D chemical and 3D physical data. Specifically, three statistical models consisting of a regression tree, a regression tree kriging and cokriging model were used to predict the 3D spatial distribution of carbon, silicon, iron and oxygen in soil, these chemical elements showing a good spatial agreement between the X-ray grayscale intensities and the corresponding 2D SEM-EDX data. Due to the spatial correlation between the physical and chemical data, the regression-tree model showed a great potential in predicting chemical composition in particular for iron, which is generally sparsely distributed in soil. For carbon, silicon and oxygen, which are more densely distributed, the additional kriging of the regression tree residuals improved significantly the prediction, whereas prediction based on co-kriging was less consistent across replicates, underperforming regression-tree kriging. The present study shows a great potential in integrating geo-statistical methods with imaging techniques to unveil the 3D chemical structure of soil at very fine scales, the framework being suitable to be further applied to other types of imaging data such as images of biological thin sections for characterization of microbial distribution. Key words: X-ray CT, SEM-EDX, segmentation techniques, spatial correlation, 3D soil images, 2D chemical maps.
Banzato, Tommaso; Russo, Elisa; Di Toma, Anna; Palmisano, Giuseppe; Zotti, Alessandro
2011-12-01
To evaluate the radiographic, computed tomographic (CT), and cadaveric anatomy of the head of boa constrictors. 4 Boa constrictor imperator cadavers. Cadavers weighed 3.4 to 5.6 kg and had a body length ranging from 189 to 221 cm. Radiographic and CT images were obtained with a high-detail screen-film combination, and conventional CT was performed with a slice thickness of 1.5 mm. Radiographic images were obtained in ventrodorsal, dorsoventral, and left and right laterolateral recumbency; CT images were obtained with the animals positioned in ventral recumbency directly laying on a plastic support. At the end of the radiographic and CT imaging session, 2 heads were sectioned following a stratigraphic approach; the other 2, carefully maintained in the same position on the plastic support, were moved into a freezer (-20°C) until completely frozen and then sectioned into 3-mm slices, respecting the imaging protocol. The frozen sections were cleaned and then photographed on each side. Anatomic structures were identified and labeled on gross anatomic images and on the corresponding CT or radiographic image with the aid of available literature. Radiographic and CT images provided high detail for visualization of bony structures; soft tissues were not easily identified on radiographic and CT images. Results provide an atlas of stratigraphic and cross-sectional gross anatomy and radiographic and CT anatomy of the heads of boa constrictors that might be useful in the interpretation of any imaging modality in this species.
Three-rooted premolar analyzed by high-resolution and cone beam CT.
Marca, Caroline; Dummer, Paul M H; Bryant, Susan; Vier-Pelisser, Fabiana Vieira; Só, Marcus Vinicius Reis; Fontanella, Vania; Dutra, Vinicius D'avila; de Figueiredo, José Antonio Poli
2013-07-01
The aim of this study was to analyze the variations in canal and root cross-sectional area in three-rooted maxillary premolars between high-resolution computed tomography (μCT) and cone beam computed tomography (CBCT). Sixteen extracted maxillary premolars with three distinct roots and fully formed apices were scanned using μCT and CBCT. Photoshop CS software was used to measure root and canal cross-sectional areas at the most cervical and the most apical points of each root third in images obtained using the two tomographic computed (CT) techniques, and at 30 root sections equidistant from both root ends using μCT images. Canal and root areas were compared between each method using the Student t test for paired samples and 95 % confidence intervals. Images using μCT were sharper than those obtained using CBCT. There were statistically significant differences in mean area measurements of roots and canals between the μCT and CBCT techniques (P < 0.05). Root and canal areas had similar variations in cross-sectional μCT images and became proportionally smaller in a cervical to apical direction as the cementodentinal junction was approached, from where the area then increased apically. Although variation was similar in the roots and canals under study, CBCT produced poorer image details than μCT. Although CBCT is a strong diagnosis tool, it still needs improvement to provide accuracy in details of the root canal system, especially in cases with anatomical variations, such as the three-rooted maxillary premolars.
NASA Astrophysics Data System (ADS)
Baumgartner, L.; Wohlers, A.; Müller, T.
2003-04-01
Micro X-ray tomography is rapidly advancing to an important tool for non-destructive 3-D imaging of geological and engineering materials. We have been using a Skyscan 1072 system (Skyscan, Belgium) to successfully image as diverse geological materials as sandstones, foraminifers, run products of hydrothermal partial melting experiments, and metamorphic rocks. The system has a conical x-ray source with a spot size of about 5µm. The X-ray source is powered by a 10W, 20--100kV, tunable supply. Images are acquired with a scintillator coupled by glass fiber optics to a 1024×1024 pixel, 12-bit CCD. The sample is rotated for 180^o (or 360^o) in steps as small as 0.24^o. Transmission image are back projected, using a Feldkamp algorithm, into a stack of up to 1000 1K×1K images, each of which represents a horizontal cross section of the sample. We have succeeded to image very low contrast systems (feldspar/quartz and olivine/calcite/dolomite), by using extended acquisition times (up to 24 hours), and low excitation voltages (30--40kV) in combination with aluminum filters to reduce beam hardening. Some quartzites collected in the Little Cottonwood contact aureole have been infiltrated by a pegmatitic liquid. These liquids are the products of partial melting in intercalated meta-pelites. 2-D images (thin sections) clearly show, that poly-crystalline interstitial feldspar and mica represent precipitates from the infiltrated pegmatitic liquid (acute quartz-feldspar junctions similar to melting experiments). The micro-CT images reveal a thin mica-feldspar network. It forms highly anastomosing, multiply interconnected networks surrounding quartz grains. They connect larger, up to 1mm sized ponds, located in triple junctions. These results have important consequences for porous melt transport in shallow crustal rocks. Micro-CT images of spinifex textured olivine in marbles from the Ubehebe Peak contact aureole (Death Valley, California) reveal two preferential growth orientations of olivine, and irregular distribution of calcite haloes. These volumetric images suggesting that the growth of olivine is related to mass transport, rather than to their inherent crystallographic growth preferences.
Raji, A R; Sardari, K; Mohammadi, H R
2008-06-01
The purpose of this study was to define the structures of the digits and hoof in Holstein dairy cattle by using computed tomography scan (CT scan). Transverse, sagittal and dorsoplantar CT images of two isolated cattle cadaver digits were obtained using a Siemens ARTX2 Somatom. The CT images were compared to corresponding frozen cross-sections. Relevant anatomical structures were identified and labelled at each level. The CT images provided anatomical detail of the digits and hoof in Holstein dairy cattle. Transversal images provided excellent depiction of anatomical structures when compared to corresponding frozen cross-sections. The information presented in this paper would serve as an initial reference to the evaluation of CT images of the digits and hoof in Holstein dairy cattle.
Li, Mingxing; Chen, Jia-Shiang; Routh, Prahlad K.; ...
2018-05-17
Atomically thin transition metal dichalcogenides (TMDCs) have intriguing nanoscale properties like high charge mobility, photosensitivity, layer-thickness-dependent bandgap, and mechanical flexibility, which are all appealing for the development of next generation optoelectronic, catalytic, and sensory devices. Their atomically thin thickness, however, renders TMDCs poor absorptivity. For this study, bilayer MoS 2 is combined with core-only CdSe QDs and core/shell CdSe/ZnS QDs to obtain hybrids with increased light harvesting and exhibiting interfacial charge transfer (CT) and nonradiative energy transfer (NET), respectively. Field-effect transistors based on these hybrids and their responses to varying laser power and applied gate voltage are investigated with scanningmore » photocurrent microscopy (SPCM) in view of their potential utilization in light harvesting and photodetector applications. CdSe–MoS 2 hybrids are found to exhibit encouraging properties for photodetectors, like high responsivity and fast on/off response under low light exposure while CdSe/ZnS–MoS 2 hybrids show enhanced charge carrier generation with increased light exposure, thus suitable for photovoltaics. While distinguishing optically between CT and NET in QD–TMDCs is nontrivial, it is found that they can be differentiated by SPCM as these two processes exhibit distinctive light-intensity dependencies: CT causes a photogating effect, decreasing the photocurrent response with increasing light power while NET increases the photocurrent response with increasing light power, opposite to CT case.« less
NASA Astrophysics Data System (ADS)
Bhanot, K. K.; Downes, H.; Petrone, C. M.; Humphreys-Williams, E.
2017-04-01
Spinel pyroxene-clusters, which are intergrowths of spinel, orthopyroxene and clinopyroxene in mantle xenoliths, have been investigated through the use of micro-CT (μ-CT) in this study. Samples have been studied from two different tectonic settings: (1) the northern Massif Central, France, an uplifted and rifted plateau on continental lithosphere and (2) Lanzarote in the Canary Islands, an intraplate volcanic island on old oceanic lithosphere. μ-CT analysis of samples from both locations has revealed a range of spinel textures from small < 2 mm microcrystals which can be either spatially concentrated or distributed more evenly throughout the rock with a lineation, to large 4-12 mm individual clusters with ellipsoidal complex vermicular textures in random orientation. Microprobe analyses of pyroxenes inside and outside the clusters show broadly similar compositions. Spinel-pyroxene clusters are the result of a transition of shallow lithospheric mantle from the garnet stability field to the spinel stability field. Both the northern Massif Central and Lanzarote are regions that have experienced significant lithospheric thinning. This process provides a mechanism where the sub-solidus reaction of olivine + garnet = orthopyroxene + clinopyroxene + spinel is satisfied by providing a pathway from garnet peridotite to spinel peridotite. We predict that such textures would only occur in the mantle beneath regions that show evidence of thinning of the lithospheric mantle. Metasomatic reactions are seen around spinel-pyroxene clusters in some Lanzarote xenoliths, so metasomatism post-dated cluster formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingxing; Chen, Jia-Shiang; Routh, Prahlad K.
Atomically thin transition metal dichalcogenides (TMDCs) have intriguing nanoscale properties like high charge mobility, photosensitivity, layer-thickness-dependent bandgap, and mechanical flexibility, which are all appealing for the development of next generation optoelectronic, catalytic, and sensory devices. Their atomically thin thickness, however, renders TMDCs poor absorptivity. For this study, bilayer MoS 2 is combined with core-only CdSe QDs and core/shell CdSe/ZnS QDs to obtain hybrids with increased light harvesting and exhibiting interfacial charge transfer (CT) and nonradiative energy transfer (NET), respectively. Field-effect transistors based on these hybrids and their responses to varying laser power and applied gate voltage are investigated with scanningmore » photocurrent microscopy (SPCM) in view of their potential utilization in light harvesting and photodetector applications. CdSe–MoS 2 hybrids are found to exhibit encouraging properties for photodetectors, like high responsivity and fast on/off response under low light exposure while CdSe/ZnS–MoS 2 hybrids show enhanced charge carrier generation with increased light exposure, thus suitable for photovoltaics. While distinguishing optically between CT and NET in QD–TMDCs is nontrivial, it is found that they can be differentiated by SPCM as these two processes exhibit distinctive light-intensity dependencies: CT causes a photogating effect, decreasing the photocurrent response with increasing light power while NET increases the photocurrent response with increasing light power, opposite to CT case.« less
Paranasal sinuses and nasopharynx CT and MRI.
Sievers, K W; Greess, H; Baum, U; Dobritz, M; Lenz, M
2000-03-01
Neoplastic disease of the nose, paranasal sinuses, the nasopharynx and the parapharyngeal space requires thorough assessment of location and extent in order to plan appropriate treatment. CT allows the deep soft tissue planes to be evaluated and provides a complement to the physical examination. It is especially helpful in regions involving thin bony structures (paranasal sinuses, orbita); here CT performs better than MRI. MRI possesses many advantages over other imaging modalities caused by its excellent tissue contrast. In evaluating regions involving predominantly soft tissue structures (ec nasopharynx and parapharyngeal space) MRI is superior to CT. The possibility to obtain strictly consecutive volume data sets with spiral CT or 3D MRI offer excellent perspectives to visualize the data via 2D or 3D postprocessing. Because head and neck tumors reside in a complex area, having a 3D model of the anatomical features may assist in the delineation of pathology. Data sets may be transferred directly into computer systems and thus be used in computer assisted surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jia; Christner, Jodie A.; Duan Xinhui
2012-11-15
Purpose: To estimate attenuation using cross sectional CT images and scanned projection radiograph (SPR) images in a series of thorax and abdomen phantoms. Methods: Attenuation was quantified in terms of a water cylinder with cross sectional area of A{sub w} from both the CT and SPR images of abdomen and thorax phantoms, where A{sub w} is the area of a water cylinder that would absorb the same dose as the specified phantom. SPR and axial CT images were acquired using a dual-source CT scanner operated at 120 kV in single-source mode. To use the SPR image for estimating A{sub w},more » the pixel values of a SPR image were calibrated to physical water attenuation using a series of water phantoms. A{sub w} and the corresponding diameter D{sub w} were calculated using the derived attenuation-based methods (from either CT or SPR image). A{sub w} was also calculated using only geometrical dimensions of the phantoms (anterior-posterior and lateral dimensions or cross sectional area). Results: For abdomen phantoms, the geometry-based and attenuation-based methods gave similar results for D{sub w}. Using only geometric parameters, an overestimation of D{sub w} ranging from 4.3% to 21.5% was found for thorax phantoms. Results for D{sub w} using the CT image and SPR based methods agreed with each other within 4% on average in both thorax and abdomen phantoms. Conclusions: Either the cross sectional CT or SPR images can be used to estimate patient attenuation in CT. Both are more accurate than use of only geometrical information for the task of quantifying patient attenuation. The SPR based method requires calibration of SPR pixel values to physical water attenuation and this calibration would be best performed by the scanner manufacturer.« less
Experimental Investigation of Material Flows Within FSWs Using 3D Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles R. Tolle; Timothy A. White; Karen S. Miller
2008-06-01
There exists significant prior work using tracers or pre-placed hardened markers within friction stir welding (FSWing) to experimentally explore material flow within the FSW process. Our experiments replaced markers with a thin sheet of copper foil placed between the 6061 aluminum lap and butt joints that were then welded. The absorption characteristics of x-rays for copper and aluminum are significantly different allowing for non-destructive evaluation (NDE) methods such as x-ray computed tomography (CT) to be used to demonstrate the material movement within the weldment on a much larger scale than previously shown. 3D CT reconstruction of the copper components ofmore » the weldment allows for a unique view into the final turbulent state of the welding process as process parameters are varied. The x-ray CT data of a section of the weld region was collected using a cone-beam x-ray imaging system developed at the INL. Six-hundred projections were collected over 360-degrees using a 160-kVp Bremsstrahlung x-ray generator (25-micrometer focal spot) and amorphoussilicon x-ray detector. The region of the object that was imaged was about 3cm tall and 1.5cm x 1cm in cross section, and was imaged at a magnification of about 3.6x. The data were reconstructed on a 0.5x0.5x0.5 mm3 voxel grid. After reconstruction, the aluminum and copper could be easily discriminated using a gray level threshold allowing visualization of the copper components. Fractal analysis of the tomographic reconstructed material topology is investigated as a means to quantify macro level material flow based on process parameters. The results of multi-pass FSWs show increased refinement of the copper trace material. Implications of these techniques for quantifying process flow are discussed.« less
O'Neill, Marisol; Huang, Gene O; Lamb, Dolores J
2017-12-01
The murine penis model has enriched our understanding of anomalous penile development. The morphologic characterization of the murine penis using conventional serial sectioning methods is labor intensive and prone to errors. To develop a novel application of micro-computerized tomography (micro-CT) with iodine staining for rapid, non-destructive morphologic study of murine penis structure. Penises were dissected from 10 adult wild-type mice and imaged using micro-CT with iodine staining. Images were acquired at 5-μm spatial resolution on a Bruker SkyScan 1272 micro-CT system. After images were acquired, the specimens were washed of any remaining iodine and embedded in paraffin for conventional histologic examination. Histologic and micro-CT measurements for all specimens were made by 2 independent observers. Measurements of penile structures were made on virtual micro-CT sections and histologic slides. The Lin concordance correlation coefficient demonstrated almost perfect strength of agreement for interobserver variability for histologic section (0.9995, 95% CI = 0.9990-0.9997) and micro-CT section (0.9982, 95% CI = 0.9963-0.9991) measurements. Bland-Altman analysis for agreement between the 2 modalities of measurement demonstrated mean differences of -0.029, 0.022, and -0.068 mm for male urogenital mating protuberance, baculum, and penile glans length, respectively. There did not appear to be a bias for overestimation or underestimation of measured lengths and limits of agreement were narrow. The enhanced ability offered by micro-CT to phenotype the murine penis has the potential to improve translational studies examining the molecular pathways contributing to anomalous penile development. The present study describes the first reported use of micro-CT with iodine staining for imaging the murine penis. Producing repeated histologic sections of identical orientation was limited by inherent imperfections in mounting and tissue sectioning, but this was compensated for by using micro-CT reconstructions to identify matching virtual sections. This study demonstrates the successful use of micro-CT with iodine staining, which has the potential for submicron spatial resolution, as a non-destructive method of characterizing murine penile morphology. O'Neill M, Huang GO, Lamb DJ. Novel Application of Micro-Computerized Tomography for Morphologic Characterization of the Murine Penis. J Sex Med 2017;14:1533-1539. Copyright © 2017. Published by Elsevier Inc.
Volumetric applications for spiral CT in the thorax
NASA Astrophysics Data System (ADS)
Rubin, Geoffrey D.; Napel, Sandy; Leung, Ann N.
1994-05-01
Spiral computed tomography (CT) is a new technique for rapidly acquiring volumetric data within the body. By combining a continuous gantry rotation and table feed, it is possible to image the entire thorax within a single breath-hold. This eliminates the ventilatory misregistration seen with conventional thoracic CT, which can result in small pulmonary lesions being undetected. An additional advantage of a continuous data set is that axial sections can be reconstructed at arbitrary intervals along the spiral path, resulting in the generation of overlapping sections which diminish partial volume effects resulting from lesions that straddle adjacent sections. The rapid acquisition of spiral CT enables up to a 50% reduction in the total iodinated contrast dose required for routine thoracic CT scanning. This can be very important for imaging patients with cardiac and renal diseases and could reduce the cost of thoracic CT scanning. Alternatively, by combining a high flow peripheral intravenous iodinated contrast injection with a spiral CT acquisition, it is possible to obtain images of the vasculature, which demonstrate pulmonary arterial thrombi, aortic aneurysms and dissections, and congenital vascular anomalies in detail previously unattainable without direct arterial access.
Tan, J S P; Tan, K-L; Lee, J C L; Wan, C-M; Leong, J-L; Chan, L-L
2009-02-01
To our knowledge, there has been no study that compares the radiation dose delivered to the eye lens by 16- and 64-section multidetector CT (MDCT) for standard clinical neuroimaging protocols. Our aim was to assess radiation-dose differences between 16- and 64-section MDCT from the same manufacturer, by using near-identical neuroimaging protocols. Three cadaveric heads were scanned on 16- and 64-section MDCT by using standard neuroimaging CT protocols. Eye lens dose was measured by using thermoluminescent dosimeters (TLD), and each scanning was repeated to reduce random error. The dose-length product, volume CT dose index (CTDI(vol)), and TLD readings for each imaging protocol were averaged and compared between scanners and protocols, by using the paired Student t test. Statistical significance was defined at P < .05. The radiation dose delivered and eye lens doses were lower by 28.1%-45.7% (P < .000) on the 64-section MDCT for near-identical imaging protocols. On the 16-section MDCT, lens dose reduction was greatest (81.1%) on a tilted axial mode, compared with a nontilted helical mode for CT brain scans. Among the protocols studied, CT of the temporal bone delivered the greatest radiation dose to the eye lens. Eye lens radiation doses delivered by the 64-section MDCT are significantly lower, partly due to improvements in automatic tube current modulation technology. However, where applicable, protection of the eyes from the radiation beam by either repositioning the head or tilting the gantry remains the best way to reduce eye lens dose.
Xu, Haotong; Li, Xiaoxiao; Zhang, Zhengzhi; Qiu, Mingguo; Mu, Qiwen; Wu, Yi; Tan, Liwen; Zhang, Shaoxiang; Zhang, Xiaoming
2011-01-01
Background The major hindrance to multidetector CT imaging of the left extraperitoneal space (LES), and the detailed spatial relationships to its related spaces, is that there is no obvious density difference between them. Traditional gross anatomy and thick-slice sectional anatomy imagery are also insufficient to show the anatomic features of this narrow space in three-dimensions (3D). To overcome these obstacles, we used a new method to visualize the anatomic features of the LES and its spatial associations with related spaces, in random sections and in 3D. Methods In conjunction with Mimics® and Amira® software, we used thin-slice cross-sectional images of the upper abdomen, retrieved from the Chinese and American Visible Human dataset and the Chinese Virtual Human dataset, to display anatomic features of the LES and spatial relationships of the LES to its related spaces, especially the gastric bare area. The anatomic location of the LES was presented on 3D sections reconstructed from CVH2 images and CT images. Principal Findings What calls for special attention of our results is the LES consists of the left sub-diaphragmatic fat space and gastric bare area. The appearance of the fat pad at the cardiac notch contributes to converting the shape of the anteroexternal surface of the LES from triangular to trapezoidal. Moreover, the LES is adjacent to the lesser omentum and the hepatic bare area in the anterointernal and right rear direction, respectively. Conclusion The LES and its related spaces were imaged in 3D using visualization technique for the first time. This technique is a promising new method for exploring detailed communication relationships among other abdominal spaces, and will promote research on the dynamic extension of abdominal diseases, such as acute pancreatitis and intra-abdominal carcinomatosis. PMID:22087259
Cortical thinness and volume differences associated with marijuana abuse in emerging adults.
Mashhoon, Y; Sava, S; Sneider, J T; Nickerson, L D; Silveri, M M
2015-10-01
The prevalence of marijuana (MJ) use among youth and its legalization for medical or recreational use has intensified public health endeavors of understanding MJ effects on brain structure and function. Studies indicate that MJ use is related to impaired cognitive performance, and altered functional brain activation and chemistry in adolescents and adults, but MJ effects on brain morphology in emerging adults are less understood. Fifteen MJ users (age 21.8±3.6, 2 females) and 15 non-user (NU) participants (age 22.3±3.5, 2 females) were included, demographically matched on age, education and alcohol use. High-resolution structural MR images were acquired at 3Tesla. Cortical thickness (CT) and volumetric analyses were performed using Freesurfer. A priori regions of interest (ROI) included orbitofrontal and cingulate cortices, amygdala, hippocampus and thalamus. Whole brain CT analysis did not result in significant group differences in a priori ROIs but revealed MJ users had significantly less CT (i.e., thinness) in right fusiform gyrus (rFG) compared to NU (p<0.05). Thalamic volume was significantly smaller in MJ users compared to NU (right, p=0.05; left, p=0.01) and associated with greater non-planning (p<0.01) and overall impulsivity (p=0.04). There were no other group differences. RFG cortical thinness and smaller thalamic volume in emerging adults is associated with MJ abuse. Furthermore, smaller thalamic volume associated with greater impulsivity contributes to growing evidence that the thalamus is neurobiologically perturbed by MJ use. Collectively, altered thalamic and rFG structural integrity may interfere with their known roles in regulating visuoperceptual and object information processing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
SU-F-I-59: Quality Assurance Phantom for PET/CT Alignment and Attenuation Correction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, T; Hamacher, K
2016-06-15
Purpose: This study utilizes a commercial PET/CT phantom to investigate two specific properties of a PET/CT system: the alignment accuracy of PET images with those from CT used for attenuation correction and the accuracy of this correction in PET images. Methods: A commercial PET/CT phantom consisting of three aluminum rods, two long central cylinders containing uniform activity, and attenuating materials such as air, water, bone and iodine contrast was scanned using a standard PET/CT protocol. Images reconstructed with 2 mm slice thickness and a 512 by 512 matrix were obtained. The center of each aluminum rod in the PET andmore » CT images was compared to evaluate alignment accuracy. ROIs were drawn on transaxial images of the central rods at each section of attenuating material to determine the corrected activity (in BQML). BQML values were graphed as a function of slice number to provide a visual representation of the attenuation-correction throughout the whole phantom. Results: Alignment accuracy is high between the PET and CT images. The maximum deviation between the two in the axial plane is less than 1.5 mm, which is less than the width of a single pixel. BQML values measured along different sections of the large central rods are similar among the different attenuating materials except iodine contrast. Deviation of BQML values in the air and bone sections from the water section is less than 1%. Conclusion: Accurate alignment of PET and CT images is critical to ensure proper calculation and application of CT-based attenuation correction. This study presents a simple and quick method to evaluate the two with a single acquisition. As the phantom also includes spheres of increasing diameter, this could serve as a straightforward means to annually evaluate the status of a modern PET/CT system.« less
Thin sectioning and surface replication of ice at low temperature.
Daley, M.A.; Kirby, S.H.
1984-01-01
We have developed a new technique for making thin sections and surface replicas of ice at temperatures well below 273d K. The ability to make thin sections without melting sample material is important in textural and microstructural studies of ice deformed at low temperatures because of annealing effects we have observed during conventional section making.-from Author
Student Use of Thin Sections in Introductory Geology
ERIC Educational Resources Information Center
O'Brien, Lawrence
1978-01-01
Thin-section photomicrographs are used to introduce the introductory geology laboratory classes to many of the optical properties of minerals. Evaluation by questionnaire suggests that the study of thin sections has a positive effect on the enjoyment and understanding of rock identification and classification by introductory students. (Author/MA)
Publications - GMC 360 | Alaska Division of Geological & Geophysical
DGGS GMC 360 Publication Details Title: Photomicrographs of Petrographic Thin Sections for the Inigok Reference Shell International EP, Inc., 2009, Photomicrographs of Petrographic Thin Sections for the Inigok page for information on ordering data on DVD. Keywords Oil and Gas; Petrographic; Thin Section Top of
Publications - GMC 391 | Alaska Division of Geological & Geophysical
DGGS GMC 391 Publication Details Title: Core descriptions, photographs and thin section photomicro , Inc., 2010, Core descriptions, photographs and thin section photomicro-graphs from the Humble Oil DDH DVD. Keywords Core Drilling; Thin Section Top of Page Department of Natural Resources, Division of
Yaghi, Shadi; Chang, Andrew D; Hung, Peter; Mac Grory, Brian; Collins, Scott; Gupta, Ajay; Reynolds, Jacques; Finn, Caitlin B; Hemendinger, Morgan; Cutting, Shawna M; McTaggart, Ryan A; Jayaraman, Mahesh; Leasure, Audrey; Sansing, Lauren; Panda, Nikhil; Song, Christopher; Chu, Antony; Merkler, Alexander; Gialdini, Gino; Sheth, Kevin N; Kamel, Hooman; Elkind, Mitchell S V; Greer, David; Furie, Karen; Atalay, Michael
2018-06-01
The left atrial appendage (LAA) is the main source of thrombus in atrial fibrillation, and there is an association between non-chicken wing (NCW) LAA morphology and stroke. We hypothesized that the prevalence of NCW LAA morphology would be higher among patients with cardioembolic (CE) stroke and embolic stroke of undetermined source (ESUS) than among those with noncardioembolic stroke (NCS). This multicenter retrospective pilot study included consecutive patients with ischemic stroke from 3 comprehensive stroke centers who previously underwent a qualifying chest computed tomography (CT) to assess LAA morphology. Patients underwent inpatient diagnostic evaluation for ischemic stroke, and stroke subtype was determined based on ESUS criteria. LAA morphology was determined using clinically performed contrast enhanced thin-slice chest CT by investigators blinded to stroke subtype. The primary predictor was NCW LAA morphology and the outcome was stroke subtype (CE, ESUS, NCS). We identified 172 patients with ischemic stroke who had a clinical chest CT performed. Mean age was 70.1 ± 14.3 years and 51.7% were male. Compared with patients with NCS, the prevalence of NCW LAA morphology was higher in patients with CE stroke (58.7% versus 46.3%, P = .1) and ESUS (58.8% versus 46.3%, P = .2), but this difference did not achieve statistical significance. The prevalence of NCW LAA morphology may be similar in patients with ESUS and CE, and may be higher than that in those with NCS. Larger studies are needed to confirm these associations. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.
[Osteo-odonto-kerato-prosthesis. Radiographic, CT and MR features].
Bellelli, A; Avitto, A; Liberali, M; Iannetti, F; Iannetti, L; David, V
2001-09-01
Osteo-odonto-keratoprosthesis, a complex eye surgery technique devised by Strampelli, provides a valuable opportunity to restore vision in patients with severe corneal opacification (chemical or thermal burns, bullous keratopathy, severe keratitis, consequences of perforating injuries) in whom corneal transplant or the insertion of synthetic prostheses is contraindicated because of the high risk of rejection. Successful implantation of corneal prostheses in these patients was clearly dependent on the use of perfectly biocompatible materials to support the optic. Strampelli demonstrated that thin autologous tooth sections, complete with alveolar-dental ligament fulfilled these requirements, and integrated perfectly with the eye tissues without any risk of rejection. This study aims to present the radiological aspects and postoperative outcome of 13 patients who received osteo-odonto-keratoprosthesis (bilateral in 11 cases and monolateral in 2) evaluated by plain radiography, CT and MRI. Between 1993 and 2001 we evaluated 13 patients who had undergone Strampelli's osteo-odonto-keratoprosthesis, using CT, plain radiography and MRI. All patients were examined by plain radiography; 11 patients were also examined by CT and 8 also by MRI. The time interval between surgery and the radiological evaluation ranged from 3 to 13 years with a mean follow-up of 5 years and 9 months. All patients underwent periodic clinical and imaging examinations in the post-operative period to evaluate the osteo-dental implant and to study trophism of the transplant. No post-operative complications, either cicatricial, inflammatory or of any other nature, were clinically suspected. Only two patients showed partial reabsorption of the osteo-dental lamina - evident both on plain film and CT - 10 and 12 years after surgery. Vision was restored in all the patients, with visual acuity of 10/10 in 7 cases. Plain radiography allows to correctly evaluate the position of the prosthesis and detect possible displacements or variations in thickness, but it fails to visualize intraocular soft tissues. Besides allowing visualization and study of the prosthesis, CT also allows optimal evaluation of the intra-orbital structures and early detection of the presence and extension of inflammatory complications that may undermine outcome of the procedure. MRI is similar to CT in its capacity to evaluate intra-orbital tissues, but has the advantage of allowing greater contrast resolution thanks to the use of different types of sequences. However, because of the long image acquisition times, this method is subject to movement artifacts that are less evident in the CT examination which, especially if performed using the spiral technique, has very short image acquisition times.
Visualizing Rhizosphere Soil Structure Around Living Roots
NASA Astrophysics Data System (ADS)
Menon, M.; Berli, M.; Ghezzehei, T. A.; Nico, P.; Young, M. H.; Tyler, S. W.
2008-12-01
The rhizosphere, a thin layer of soil (0 to 2 mm) surrounding a living root, is an important interface between bulk soil and plant root and plays a critical role in root water and nutrient uptake. In this study, we used X-ray Computerized Microtomography (microCT) to visualize soil structure around living roots non-destructively and with high spatial resolution. Four different plant species (Helianthus annuus, Lupinus hartwegii, Vigna radiata and Phaseolus lunatus), grown in four different porous materials (glass beads, medium and coarse sand, loam aggregates), were scanned with 10 ìm spatial resolution, using the microtomography beamline 8.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA. Sample cross section images clearly show contacts between roots and soil particles, connecting water films, air-water interfaces as well as some cellular features of the plants taproots. We found with a simulation experiment, inflating a cylindrical micro-balloon in a pack of air-dry loam aggregates, that soil fracturing rather than compaction might occur around a taproot growing in dry soil. Form these preliminary experiments, we concluded that microCT has potential as a tool for a more process-based understanding of the role of rhizosphere soil structure on soil fertility, plant growth and the water balance at the earth-atmosphere interface.
... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...
Estimating pore and cement volumes in thin section
Halley, R.B.
1978-01-01
Point count estimates of pore, grain and cement volumes from thin sections are inaccurate, often by more than 100 percent, even though they may be surprisingly precise (reproducibility + or - 3 percent). Errors are produced by: 1) inclusion of submicroscopic pore space within solid volume and 2) edge effects caused by grain curvature within a 30-micron thick thin section. Submicroscopic porosity may be measured by various physical tests or may be visually estimated from scanning electron micrographs. Edge error takes the form of an envelope around grains and increases with decreasing grain size and sorting, increasing grain irregularity and tighter grain packing. Cements are greatly involved in edge error because of their position at grain peripheries and their generally small grain size. Edge error is minimized by methods which reduce the thickness of the sample viewed during point counting. Methods which effectively reduce thickness include use of ultra-thin thin sections or acetate peels, point counting in reflected light, or carefully focusing and counting on the upper surface of the thin section.
Teymouri, Jessica; Hullar, Timothy E; Holden, Timothy A; Chole, Richard A
2011-08-01
To determine the efficacy of clinical computed tomographic (CT) imaging to verify postoperative electrode array placement in cochlear implant (CI) patients. Nine fresh cadaver heads underwent clinical CT scanning, followed by bilateral CI insertion and postoperative clinical CT scanning. Temporal bones were removed, trimmed, and scanned using micro-CT. Specimens were then dehydrated, embedded in either methyl methacrylate or LR White resin, and sectioned with a diamond wafering saw. Histology sections were examined by 3 blinded observers to determine the position of individual electrodes relative to soft tissue structures within the cochlea. Electrodes were judged to be within the scala tympani, scala vestibuli, or in an intermediate position between scalae. The position of the array could be estimated accurately from clinical CT scans in all specimens using micro-CT and histology as a criterion standard. Verification using micro-CT yielded 97% agreement, and histologic analysis revealed 95% agreement with clinical CT results. A composite, 3-dimensional image derived from a patient's preoperative and postoperative CT images using a clinical scanner accurately estimates the position of the electrode array as determined by micro-CT imaging and histologic analyses. Information obtained using the CT method provides valuable insight into numerous variables of interest to patient performance such as surgical technique, array design, and processor programming and troubleshooting.
CT manifestations of peritoneal carcinomatosis.
Walkey, M M; Friedman, A C; Sohotra, P; Radecki, P D
1988-05-01
Seventy-three abdominopelvic contrast-enhanced CT scans obtained in 60 patients with peritoneal tumor spread were reviewed retrospectively to determine the CT signs of peritoneal malignancy. Ascites was present in 54 studies (74%) and was the most common CT finding. Loculation of the fluid occurred in 25 (46%) of these. In nine (17%) of the 54, a new finding, absence of cul-de-sac fluid in the presence of generalized ascites, was noted. Parietal peritoneal thickening with contrast enhancement of the peritoneum, making the peritoneum visible as a thin line along the abdominal wall, was present in 45 (62%) of studies. This is believed to represent confluent peritoneal metastases. Small-bowel involvement was present in half of the cases (wall thickening and irregularity with or without obstruction). Tumor involvement of the omentum was visible as soft-tissue permeation of fat, enhancing nodules, and/or an omental cake. Of the 26 patients without a previously known malignancy, identification of the primary tumor in addition to peritoneal carcinomatosis was possible in 13 (50%). Appreciation of the spectrum of CT findings in peritoneal carcinomatosis is essential for accurate evaluation of scans in patients with abdominopelvic malignancies.
NASA Astrophysics Data System (ADS)
Dalstra, M.; Schulz, G.; Dagassan-Berndt, D.; Verna, C.; Müller-Gerbl, M.; Müller, B.
2016-10-01
An entire human head obtained at autopsy was micro-CT scanned in a nano/micro-CT scanner in a 6-hour long session. Despite the size of the head, it could still be scanned with a pixel size of 70 μm. The aim of this study was to obtain an optimal quality 3D data-set to be used as baseline control in a larger study comparing the image quality of various cone beam CT systems currently used in dentistry. The image quality of the micro-CT scans was indeed better than the ones of the clinical imaging modalities, both with regard to noise and streak artifacts due to metal dental implants. Bony features in the jaws, like the trabecular architecture and the thin wall of the alveolar bone were clearly visible. Therefore, the 3D micro-CT data-set can be used as the gold standard for linear, angular, and volumetric measurements of anatomical features in and around the oral cavity when comparing clinical imaging modalities.
Pitfalls in 16-detector row CT of the coronary arteries.
Nakanishi, Tadashi; Kayashima, Yasuyo; Inoue, Rintaro; Sumii, Kotaro; Gomyo, Yukihiko
2005-01-01
Recently developed 16-detector row computed tomography (CT) has been introduced as a reliable noninvasive imaging modality for evaluating the coronary arteries. In most cases, with appropriate premedication that includes beta-blockers and nitroglycerin, ideal data sets can be acquired from which to obtain excellent-quality coronary CT angiograms, most often with multiplanar reformation, thin-slab maximum intensity projection, and volume rendering. However, various artifacts associated with data creation and reformation, postprocessing methods, and image interpretation can hamper accurate diagnosis. These artifacts can be related to pulsation (nonassessable segments, pseudostenosis) as well as rhythm disorders, respiratory issues, partial volume averaging effect, high-attenuation entities, inappropriate scan pitch, contrast material enhancement, and patient body habitus. Some artifacts have already been resolved with technical advances, whereas others represent partially inherent limitations of coronary CT angiography. Familiarity with the pitfalls of coronary angiography with 16-detector row CT, coupled with the knowledge of both the normal anatomy and anatomic variants of the coronary arteries, can almost always help radiologists avoid interpretive errors in the diagnosis of coronary artery stenosis. (c) RSNA, 2005.
Alonso-Farré, J M; Gonzalo-Orden, M; Barreiro-Vázquez, J D; Barreiro-Lois, A; André, M; Morell, M; Llarena-Reino, M; Monreal-Pawlowsky, T; Degollada, E
2015-02-01
Computed tomography (CT) and low-field magnetic resonance imaging (MRI) were used to scan seven by-caught dolphin cadavers, belonging to two species: four common dolphins (Delphinus delphis) and three striped dolphins (Stenella coeruleoalba). CT and MRI were obtained with the animals in ventral recumbency. After the imaging procedures, six dolphins were frozen at -20°C and sliced in the same position they were examined. Not only CT and MRI scans, but also cross sections of the heads were obtained in three body planes: transverse (slices of 1 cm thickness) in three dolphins, sagittal (5 cm thickness) in two dolphins and dorsal (5 cm thickness) in two dolphins. Relevant anatomical structures were identified and labelled on each cross section, obtaining a comprehensive bi-dimensional topographical anatomy guide of the main features of the common and the striped dolphin head. Furthermore, the anatomical cross sections were compared with their corresponding CT and MRI images, allowing an imaging identification of most of the anatomical features. CT scans produced an excellent definition of the bony and air-filled structures, while MRI allowed us to successfully identify most of the soft tissue structures in the dolphin's head. This paper provides a detailed anatomical description of the head structures of common and striped dolphins and compares anatomical cross sections with CT and MRI scans, becoming a reference guide for the interpretation of imaging studies. © 2014 Blackwell Verlag GmbH.
Mitrecić, D; Cunko, V F; Gajović, S
2008-12-01
Descriptive morphological studies are often combined with gene expression pattern analyses. Unembedded vibratome or cryotome sections are compatible with in situ RNA hybridization, but spatial resolution is rather low for precise microscopic studies necessary in embryology. Therefore, use of plastic embedding media, which allow semi-thin and ultra-thin sectioning for light and electron microscopy, could be an important advantage. This work suggested a new approach based on the whole mount hybridization of mouse embryos and subsequent epoxy resin embedding. Epoxy resin allowed serial sectioning of semi-thin sections with preserved in situ RNA hybridization signal, which was a necessary prerequisite for precise morphological analysis of embryo development.
Kawamura, Jumpei; Kamoshida, Shingo; Shimakata, Takaaki; Hayashi, Yurie; Sakamaki, Kuniko; Denda, Tamami; Kawai, Kenji; Kuwao, Sadahito
2017-04-01
Intraoperative diagnosis of central nervous system (CNS) tumors provides critical guidance to surgeons in the determination of surgical resection margins and treatment. The techniques and preparations used for the intraoperative diagnosis of CNS tumors include frozen sectioning and cytologic methods (squash smear and touch imprint). Cytologic specimens, which do not have freezing artifacts, are important as an adjuvant tool to frozen sections. However, if the amount of submitted tissue samples is limited, then it is difficult to prepare both frozen sections and squash smears or touch imprint specimens from a single sample at the same time. Therefore, the objective of this study was to derive cells directly from filter paper on which tumor samples are placed. The authors established the filter paper-assisted cell transfer (FaCT) smear technique, in which tumor cells are transferred onto a glass slide directly from the filter paper sample spot after the biopsy is removed. Cell yields and diagnostic accuracy of the FaCT smears were assessed in 40 CNS tumors. FaCT smears had ample cell numbers and well preserved cell morphology sufficient for cytologic diagnosis, even if the submitted tissues were minimal. The overall diagnostic concordance rates between frozen sections and FaCT smears were 90% and 87.5%, respectively (no significant differences). When combining FaCT smears with frozen sections, the diagnostic concordance rate rose to 92.5%. The current results suggest that the FaCT smear technique is a simple and effective processing method that has significant value for intraoperative diagnosis of CNS tumors. Cancer Cytopathol 2017;125:277-282. © 2016 American Cancer Society. © 2017 American Cancer Society.
Kim, Young Saing; Kim, Eun Young; Kang, Shin Myung; Ahn, Hee Kyung; Kim, Hyung Sik
2017-09-01
Skeletal muscle depletion is an important prognostic factor in patients with chronic obstructive pulmonary disease (COPD); a recent study demonstrated significant correlations between pectoralis muscle area on an axial CT image and COPD-related traits. The purpose of this study was to evaluate the relation between pectoralis muscle areas on CT scans and total body skeletal muscle mass (SMM) in healthy subjects. For 434 subjects that underwent a low-dose chest CT and bioelectrical impedance analysis (BIA) during health screening from January to June of 2014, cross-sectional area of pectoralis muscles were measured in CT scans. Pearson's correlation and multiple linear regression analysis were used to assess the relationship between cross-sectional CT areas of pectoralis muscles and BIA-assessed SMMs. Mean age was 50 ± 10 years (78·8% were male). The mean cross-sectional area of pectoralis muscles was 24·1 cm 2 ± 6·8. A moderate correlation was observed between pectoralis muscle area and BIA-based SMM (r = 0·665, P<0.001). Multivariable analysis showed CT determined pectoralis muscle area was significantly associated with BIA-assessed SMM after adjusting for gender, weight, height and age (β = 0·14 ± 0·02, P<0·001). Cross-sectional area of the pectoralis muscles on single axial CT images shows moderate correlation with total body SMM determined by BIA in healthy subjects. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Perz, Rafał; Toczyski, Jacek; Subit, Damien
2015-01-01
Computational models of the human body are commonly used for injury prediction in automobile safety research. To create these models, the geometry of the human body is typically obtained from segmentation of medical images such as computed tomography (CT) images that have a resolution between 0.2 and 1mm/pixel. While the accuracy of the geometrical and structural information obtained from these images depend greatly on their resolution, the effect of image resolution on the estimation of the ribs geometrical properties has yet to be established. To do so, each of the thirty-four sections of ribs obtained from a Post Mortem Human Surrogate (PMHS) was imaged using three different CT modalities: standard clinical CT (clinCT), high resolution clinical CT (HRclinCT), and microCT. The images were processed to estimate the rib cross-section geometry and mechanical properties, and the results were compared to those obtained from the microCT images by computing the 'deviation factor', a metric that quantifies the relative difference between results obtained from clinCT and HRclinCT to those obtained from microCT. Overall, clinCT images gave a deviation greater than 100%, and were therefore deemed inadequate for the purpose of this study. HRclinCT overestimated the rib cross-sectional area by 7.6%, the moments of inertia by about 50%, and the cortical shell area by 40.2%, while underestimating the trabecular area by 14.7%. Next, a parametric analysis was performed to quantify how the variations in the estimate of the geometrical properties affected the rib predicted mechanical response under antero-posterior loading. A variation of up to 45% for the predicted peak force and up to 50% for the predicted stiffness was observed. These results provide a quantitative estimate of the sensitivity of the response of the FE model to the resolution of the images used to generate it. They also suggest that a correction factor could be derived from the comparison between microCT and HRclinCT images to improve the response of the model developed based on HRclinCT images. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McCall, N.; Gulick, S. P. S.; Morgan, J. V.; Hall, B. J.; Jones, L.; Expedition 364 Science Party, I. I.
2017-12-01
During Expedition 364, IODP/ICDP drilled the peak ring of the Chicxulub impact crater at Site M0077, recovering core from 505.7 to 1334.7 mbsf. The core has been imaged via X-ray Computer Tomography (CT) as a noninvasive method to create a 3-dimensional model of the core, providing information on the density and internal structure at a 0.3 mm resolution. Results from the expedition show that from 748 mbsf and deeper the peak ring is largely composed of uplifted and fractured granitic basement rocks originally sourced from approximately 8-10 km depth. Impact crater modeling suggests the peak ring was formed through dynamic collapse of a rebounding central peak within 10 minutes of impact, requiring the target rocks to temporarily behave as a viscous fluid. The newly recovered core provides a rare opportunity to investigate the cratering process, specifically how the granite was weakened, as well as the extent of the hydrothermal system created after the impact. Based on the CT data, we identify four classes of fractures based on their CT facies deforming the granitoids: pervasive fine fractures, discrete fine fractures, discrete filled fractures, and discrete open fractures. Pervasive fine fractures were most commonly found proximal to dikes and impact melt rock. Discrete filled fractures often displayed a cataclastic texture. We present density trends for the different facies and compare these to petrophysical properties (density, NGR, P-wave seismic velocity). Fractured areas have a lower density than the surrounding granite, as do most filled fractures. This reduction suggests that fluid migrating through the peak ring in the wake of the impact either deposited lower density minerals within the fractures and/or altered the original fracture fill. The extent and duration of fluid flow recorded in these fractures will assist in the characterization of the post-impact hydrothermal system. Future work includes combining information from CT images with thin sections and plug samples at similar depths, refinement of CT facies characterization, examining cross-cutting relationships to determine timing constraints of deformation processes, and measurement of the orientation of the fractures.
Retrospective case series of the imaging findings of facial nerve hemangioma.
Yue, Yunlong; Jin, Yanfang; Yang, Bentao; Yuan, Hui; Li, Jiandong; Wang, Zhenchang
2015-09-01
The aim was to compare high-resolution computed tomography (HRCT) and thin-section magnetic resonance imaging (MRI) findings of facial nerve hemangioma. The HRCT and MRI characteristics of 17 facial nerve hemangiomas diagnosed between 2006 and 2013 were retrospectively analyzed. All patients included in the study suffered from a space-occupying lesion of soft tissues at the geniculate ganglion fossa. Affected nerve was compared for size and shape with the contralateral unaffected nerve. HRCT showed irregular expansion and broadening of the facial nerve canal, damage of the bone wall and destruction of adjacent bone, with "point"-like or "needle"-like calcifications in 14 cases. The average CT value was 320.9 ± 141.8 Hu. Fourteen patients had a widened labyrinthine segment; 6/17 had a tympanic segment widening; 2/17 had a greater superficial petrosal nerve canal involvement, and 2/17 had an affected internal auditory canal (IAC) segment. On MRI, all lesions were significantly enhanced due to high blood supply. Using 2D FSE T2WI, the lesion detection rate was 82.4 % (14/17). 3D fast imaging employing steady-state acquisition (3D FIESTA) revealed the lesions in all patients. HRCT showed that the average number of involved segments in the facial nerve canal was 2.41, while MRI revealed an average of 2.70 segments (P < 0.05). HRCT and MR findings of facial nerve hemangioma were typical, revealing irregular masses growing along the facial nerve canal, with calcifications and rich blood supply. Thin-section enhanced MRI was more accurate in lesion detection and assessment compared with HRCT.
Quantification of spatial distribution and spread of bacteria in soil at microscale
NASA Astrophysics Data System (ADS)
Juyal, Archana; Eickhorst, Thilo; Falconer, Ruth; Baveye, Philippe; Otten, Wilfred
2015-04-01
Soil bacteria play an essential role in functioning of ecosystems and maintaining of biogeochemical cycles. Soil is a complex heterogeneous environment comprising of highly variable and dynamic micro-habitats that have significant impacts on the growth and activity of resident microbiota including bacteria and fungi. Bacteria occupy a very small portion of available pore space in soil which demonstrates that their spatial arrangement in soil has a huge impact on the contact to their target and on the way they interact to carry out their functions. Due to limitation of techniques, there is scant information on spatial distribution of indigenous or introduced bacteria at microhabitat scale. There is a need to understand the interaction between soil structure and microorganisms including fungi for ecosystem-level processes such as carbon sequestration and improving the predictive models for soil management. In this work, a combination of techniques was used including X-ray CT to characterize the soil structure and in-situ detection via fluorescence microscopy to visualize and quantify bacteria in soil thin sections. Pseudomonas fluorescens bacteria were introduced in sterilized soil of aggregate size 1-2 mm and packed at bulk-densities 1.3 g cm-3 and 1.5 g cm-3. A subset of samples was fixed with paraformaldehyde and subsequently impregnated with resin. DAPI and fluorescence in situ hybridization (FISH) were used to visualize bacteria in thin sections of soil cores by epifluorescence microscopy to enumerate spatial distribution of bacteria in soil. The pore geometry of soil was quantified after X-ray microtomography scanning. The distribution of bacteria introduced locally reduced significantly (P
NASA Technical Reports Server (NTRS)
Nettles, J. W.; Lofgren, G. E.; Carlson, W. D.; McSween, H. Y., Jr.
2004-01-01
Many workers have considered the degree to which partial melting occurred in chondrules they have studied, and this has led to attempts to find reliable methods of determining the degree of melting. At least two quantitative methods have been used in the literature: a convolution index (CVI), which is a ratio of the perimeter of the chondrule as seen in thin section divided by the perimeter of a circle with the same area as the chondrule, and nominal grain size (NGS), which is the inverse square root of the number density of olivines and pyroxenes in a chondrule (again, as seen in thin section). We have evaluated both nominal grain size and convolution index as melting indicators. Nominal grain size was measured on the results of a set of dynamic crystallization experiments previously described, where aliquots of LEW97008(L3.4) were heated to peak temperatures of 1250, 1350, 1370, and 1450 C, representing varying degrees of partial melting of the starting material. Nominal grain size numbers should correlate with peak temperature (and therefore degree of partial melting) if it is a good melting indicator. The convolution index is not directly testable with these experiments because the experiments do not actually create chondrules (and therefore they have no outline on which to measure a CVI). Thus we had no means to directly test how well the CVI predicted different degrees of melting. Therefore, we discuss the use of the CVI measurement and support the discussion with X-ray Computed Tomography (CT) data.
Last, Anna; Burr, Sarah; Alexander, Neal; Harding-Esch, Emma; Roberts, Chrissy H; Nabicassa, Meno; Cassama, Eunice Teixeira da Silva; Mabey, David; Holland, Martin; Bailey, Robin
2017-07-31
Chlamydia trachomatis (Ct) is the most common cause of bacterial sexually transmitted infection and infectious cause of blindness (trachoma) worldwide. Understanding the spatial distribution of Ct infection may enable us to identify populations at risk and improve our understanding of Ct transmission. In this study, we sought to investigate the spatial distribution of Ct infection and the clinical features associated with high Ct load in trachoma-endemic communities on the Bijagós Archipelago (Guinea Bissau). We collected 1507 conjunctival samples and corresponding detailed clinical data during a cross-sectional population-based geospatially representative trachoma survey. We used droplet digital PCR to estimate Ct load on conjunctival swabs. Geostatistical tools were used to investigate clustering of ocular Ct infections. Spatial clusters (independent of age and gender) of individuals with high Ct loads were identified using local indicators of spatial association. We did not detect clustering of individuals with low load infections. These data suggest that infections with high bacterial load may be important in Ct transmission. These geospatial tools may be useful in the study of ocular Ct transmission dynamics and as part of trachoma surveillance post-treatment, to identify clusters of infection and thresholds of Ct load that may be important foci of re-emergent infection in communities. © FEMS 2017.
Lakshmanan, P; Loh, C S; Goh, C J
1995-05-01
A thin section culture system for rapid regeneration of the monopodial orchid hybrid Aranda Deborah has been developed. Thin sections (0.6-0.7mm thick) obtained by transverse sectioning of a single shoot tip (6-7mm), when cultured in Vacin and Went medium enriched with coconut water (20% v/v), produced an average 13.6 protocorm-like bodies (PLB) after 45 days, compared to 2.7 PLB formed by a single 6-7 mm long shoot tip under same culture condition. Addition of α-naphthaleneacetic acid to Vacin and Went medium enriched with coconut water further increased PLB production by thin sections. PLB developed into plantlets on solid Vacin and Went medium containing 10% (v/v) coconut water and 0.5 g l(-1) activated charcoal. With this procedure, more than 80,000 plantlets could be produced from thin sections obtained from a single shoot tip in a year as compared to nearly 11,000 plantlets produced by the conventional shoot tip method.
Low agreement of visual rating for detailed quantification of pulmonary emphysema in whole-lung CT.
Mascalchi, Mario; Diciotti, Stefano; Sverzellati, Nicola; Camiciottoli, Gianna; Ciccotosto, Cesareo; Falaschi, Fabio; Zompatori, Maurizio
2012-02-01
Multidetector spiral computed tomography (CT) has opened the possibility of quantitative evaluation of emphysema extent in the whole lung. Visual assessment can be used for such a purpose, but its reproducibility has not been established. To assess agreement of detailed assessment of pulmonary emphysema on whole-lung CT using a visual scale. Thirty patients with chronic obstructive pulmonary disease underwent whole-lung inspiratory CT. Four chest radiologists rated the same 22 ± 2 thin sections using a visual scale which defines a range of emphysema extent between 0 and 100. Two of them repeated the rating two months later. Inter- and intra-operator agreement was evaluated with the Bland and Altman method. In addition, the percentage of emphysema at -950 Hounsfield units in the whole lung was determined using fully automated commercially available software for 3D densitometry. In three of six operator pairs and in one of two intra-operator pairs the Kendall τ test showed a significant correlation between the difference and the average magnitude of visual scores. Among different operators the half-width of 95% limits of agreement (95% LoA) was wide ranging between a score of 14.2-27.7 for an average visual score of 20 and between 18.5-36.8 for an average visual score of 80. Within the same operator the half-width of 95% LoA ranged between a score of 10.9-21.0 for an average visual score of 20 and between 25.1-30.1 for an average visual score of 80. The visual scores of the four radiologists were correlated with the results of densitometry (P < 0.001; r = 0.65-0.81). The inter- and intra-operator agreement of detailed assessment of emphysema in the whole lung using a visual scale is low and decreases with increasing emphysema extent.
Barrett, H E; Cunnane, E M; O Brien, J M; Moloney, M A; Kavanagh, E G; Walsh, M T
2017-10-01
The purpose of this study is to determine the optimal target CT spatial resolution for accurately imaging abdominal aortic aneurysm (AAA) wall characteristics, distinguishing between tissue and calcification components, for an accurate assessment of rupture risk. Ruptured and non-ruptured AAA-wall samples were acquired from eight patients undergoing open surgical aneurysm repair upon institutional review board approval and informed consent was obtained from all patients. Physical measurements of AAA-wall cross-section were made using scanning electron microscopy. Samples were scanned using high resolution micro-CT scanning. A resolution range of 15.5-155μm was used to quantify the influence of decreasing resolution on wall area measurements, in terms of tissue and calcification. A statistical comparison between the reference resolution (15.5μm) and multi-detector CT resolution (744μm) was also made. Electron microscopy examination of ruptured AAAs revealed extremely thin outer tissue structure <200μm in radial distribution which is supporting the aneurysm wall along with large areas of adjacent medial calcifications far greater in area than the tissue layer. The spatial resolution of 155μm is a significant predictor of the reference AAA-wall tissue and calcification area measurements (r=0.850; p<0.001; r=0.999; p<0.001 respectively). The tissue and calcification area at 155μm is correct within 8.8%±1.86 and 26.13%±9.40 respectively with sensitivity of 87.17% when compared to the reference. The inclusion of AAA-wall measurements, through the use of high resolution-CT will elucidate the variations in AAA-wall tissue and calcification distributions across the wall which may help to leverage an improved assessment of AAA rupture risk. Copyright © 2017 Elsevier B.V. All rights reserved.
Caruso, Valentina; Cummaudo, Marco; Maderna, Emanuela; Cappella, Annalisa; Caudullo, Giorgio; Scarpulla, Valentina; Cattaneo, Cristina
2018-02-01
The present study aims to evaluate the preservation of the microstructure of skeletal remains collected from four different known burial sites (archaeological and contemporary). Histological analysis on undecalcified and decalcified thin sections was performed in order to assess which of the two techniques is more affected by taphonomic insults. A histological analysis was performed on both undecalcified and decalcified thin sections of 40 long bones and the degree of diagenetic change was evaluated using transmitted and polarized light microscopy according to the Oxford Histological Index (OHI). In order to test the optical behavior of bone tissue, thin sections were observed by polarized light microscopy and the intensity of birefringence was evaluated. The more ancient samples are generally characterized by a low OHI (0-1) with extensive microscopic focal destruction; recent samples exhibited a better preservation of bone micromorphology. When comparing undecalcified to decalcified thin sections, the latter showed an amelioration in the conservation of microscopic structure. As regards the birefringence, it was very low in all the undecalcified thin sections, whereas decalcification process seems to improve its visibility. The preservation of the bone microscopic structure appears to be influenced not only by age, but also by the burial context. Undecalcified bones appear to be more affected by taphonomical alterations, probably because of the thickness of the thin sections; on the contrary, decalcified thin sections proved to be able to tackle this issue allowing a better reading of the bone tissue. © 2017 Wiley Periodicals, Inc.
Cement line staining in undecalcified thin sections of cortical bone
NASA Technical Reports Server (NTRS)
Bain, S. D.; Impeduglia, T. M.; Rubin, C. T.
1990-01-01
A technique for demonstrating cement lines in thin, undecalcified, transverse sections of cortical bone has been developed. Cortical bone samples are processed and embedded undecalcified in methyl methacrylate plastic. After sectioning at 3-5 microns, cross-sections are transferred to a glass slide and flattened for 10 min. Sections of cortical bone are stained for 20 sec free-floating in a fresh solution of 1% toluidine blue dissolved in 0.1% formic acid. The section is dehydrated in t-butyl alcohol, cleared in xylene, and mounted with Eukitt's medium. Reversal lines appear as thin, scalloped, dark blue lines against a light blue matrix, whereas bone formation arrest lines are thicker with a smooth contour. With this technique cellular detail, osteoid differentiation, and fluorochrome labels are retained. Results demonstrate the applicability of a one-step staining method for cement lines which will facilitate the assessment of bone remodeling activity in thin sections of undecalcified cortical bone.
Atlas-based whole-body segmentation of mice from low-contrast Micro-CT data.
Baiker, Martin; Milles, Julien; Dijkstra, Jouke; Henning, Tobias D; Weber, Axel W; Que, Ivo; Kaijzel, Eric L; Löwik, Clemens W G M; Reiber, Johan H C; Lelieveldt, Boudewijn P F
2010-12-01
This paper presents a fully automated method for atlas-based whole-body segmentation in non-contrast-enhanced Micro-CT data of mice. The position and posture of mice in such studies may vary to a large extent, complicating data comparison in cross-sectional and follow-up studies. Moreover, Micro-CT typically yields only poor soft-tissue contrast for abdominal organs. To overcome these challenges, we propose a method that divides the problem into an atlas constrained registration based on high-contrast organs in Micro-CT (skeleton, lungs and skin), and a soft tissue approximation step for low-contrast organs. We first present a modification of the MOBY mouse atlas (Segars et al., 2004) by partitioning the skeleton into individual bones, by adding anatomically realistic joint types and by defining a hierarchical atlas tree description. The individual bones as well as the lungs of this adapted MOBY atlas are then registered one by one traversing the model tree hierarchy. To this end, we employ the Iterative Closest Point method and constrain the Degrees of Freedom of the local registration, dependent on the joint type and motion range. This atlas-based strategy renders the method highly robust to exceptionally large postural differences among scans and to moderate pathological bone deformations. The skin of the torso is registered by employing a novel method for matching distributions of geodesic distances locally, constrained by the registered skeleton. Because of the absence of image contrast between abdominal organs, they are interpolated from the atlas to the subject domain using Thin-Plate-Spline approximation, defined by correspondences on the already established registration of high-contrast structures (bones, lungs and skin). We extensively evaluate the proposed registration method, using 26 non-contrast-enhanced Micro-CT datasets of mice, and the skin registration and organ interpolation, using contrast-enhanced Micro-CT datasets of 15 mice. The posture and shape varied significantly among the animals and the data was acquired in vivo. After registration, the mean Euclidean distance was less than two voxel dimensions for the skeleton and the lungs respectively and less than one voxel dimension for the skin. Dice coefficients of volume overlap between manually segmented and interpolated skeleton and organs vary between 0.47+/-0.08 for the kidneys and 0.73+/-0.04 for the brain. These experiments demonstrate the method's effectiveness for overcoming exceptionally large variations in posture, yielding acceptable approximation accuracy even in the absence of soft-tissue contrast in in vivo Micro-CT data without requiring user initialization. Copyright 2010 Elsevier B.V. All rights reserved.
Tosaka, Masahiko; Tsushima, Yoshito; Watanabe, Saiko; Sakamoto, Kazuya; Yodonawa, Masahiko; Kunimine, Hideo; Fujita, Haruyasu; Fujii, Takashi
2015-07-01
The present study examined the computed tomography (CT) findings after surgery and overnight drainage for chronic subdural hematoma (CSDH) to clear the significance of inner superficial subarachnoid CSF space and outer subdural hematoma cavity between the brain surface and the inner skull. A total of 73 sides in 60 patients were evaluated. Head CT was performed on the day after surgery and overnight drainage (1st CT), within 3 weeks of surgery (2nd CT), and more than 3 weeks after surgery (3rd CT). Subdural and subarachnoid spaces were identified to focus on density of fluid, shape of air collection, and location of silicone drainage tube, etc. Cases with subdural space larger than the subarachnoid CSF space were classified as Group SD between the brain and the skull. Cases with subarachnoid CSF space larger than the subdural space were classified as Group SA. Cases with extremely thin (<3 mm) spaces between the brain and the skull were classified as Group NS. Group SA, SD, and NS accounted for 31.9, 55.6 and 12.5% of cases on the 1st CT. No statistical differences were found between Groups SA, SD, and NS in any clinical factors, including recurrence. Group SA were found significantly more on 1st CT than on 2nd and 3rd CT. Subarachnoid CSF space sometimes expands between the brain and skull on CT after surgical overnight drainage. Expansion of the arachnoid space may be a passive phenomenon induced by overnight drainage and delayed re-expansion of the brain parenchyma.
CT evaluation of canal preparation using rotary and hand NI-TI instruments: An in vitro study
Nagaraja, Shruthi; Sreenivasa Murthy, B V
2010-01-01
Background: Controlled, uniformly tapered radicular preparation is a great challenge in endodontics. Improper preparation can lead to procedural errors like transportation of foramen, uneven dentine thickness, stripping of root canal, formation of ledge, zip, and elbow in curved canals. These procedural errors and their sequel can adversely affect the prognosis of treatment. Aim/Objectives: The present in vitro study aims to evaluate canal preparation based on the following factors: canal transportation, remaining dentine thickness and comparing centering ability between hand Ni-Ti K files and ProTaper rotary Ni-Ti instruments using computed tomography (CT). Materials and Methods: For evaluation, 30 mesiobuccal roots of maxillary molars were selected. Of these, 15 roots were distributed into two groups where Group 1 included hand instrumentation with Ni-Ti K-files; and Group 2 comprised ProTaper NiTi rotary system. Pre instrumentation and post instrumentation three-dimensional CT images were obtained from root cross-sections that were 1 mm thick from apex to the canal orifice; scanned images were then superimposed and compared. Result: It was observed that the manual technique using hand Ni-Ti K-file produced lesser canal transportation and maintained greater dentine thickness than the rotary ProTaper technique at middle and coronal third and this difference was statistically significant. No significant difference was seen with regard to canal transportation and remaining root dentine at apical levels. With regard to centering ratio, no significant difference was seen between both the groups at all levels. Conclusion: ProTaper should be used judiciously, especially in curved canals, as it causes higher canal transportation and thinning of root dentine at middle and coronal levels. None of the groups showed optimal centering ability. PMID:20582214
CT evaluation of canal preparation using rotary and hand NI-TI instruments: An in vitro study.
Nagaraja, Shruthi; Sreenivasa Murthy, B V
2010-01-01
Controlled, uniformly tapered radicular preparation is a great challenge in endodontics. Improper preparation can lead to procedural errors like transportation of foramen, uneven dentine thickness, stripping of root canal, formation of ledge, zip, and elbow in curved canals. These procedural errors and their sequel can adversely affect the prognosis of treatment. The present in vitro study aims to evaluate canal preparation based on the following factors: canal transportation, remaining dentine thickness and comparing centering ability between hand Ni-Ti K files and ProTaper rotary Ni-Ti instruments using computed tomography (CT). For evaluation, 30 mesiobuccal roots of maxillary molars were selected. Of these, 15 roots were distributed into two groups where Group 1 included hand instrumentation with Ni-Ti K-files; and Group 2 comprised ProTaper NiTi rotary system. Pre instrumentation and post instrumentation three-dimensional CT images were obtained from root cross-sections that were 1 mm thick from apex to the canal orifice; scanned images were then superimposed and compared. It was observed that the manual technique using hand Ni-Ti K-file produced lesser canal transportation and maintained greater dentine thickness than the rotary ProTaper technique at middle and coronal third and this difference was statistically significant. No significant difference was seen with regard to canal transportation and remaining root dentine at apical levels. With regard to centering ratio, no significant difference was seen between both the groups at all levels. ProTaper should be used judiciously, especially in curved canals, as it causes higher canal transportation and thinning of root dentine at middle and coronal levels. None of the groups showed optimal centering ability.
Effect of Angle on Flow-Induced Vibrations of Pinniped Vibrissae
Murphy, Christin T.; Eberhardt, William C.; Calhoun, Benton H.; Mann, Kenneth A.; Mann, David A.
2013-01-01
Two types of vibrissal surface structures, undulated and smooth, exist among pinnipeds. Most Phocidae have vibrissae with undulated surfaces, while Otariidae, Odobenidae, and a few phocid species possess vibrissae with smooth surfaces. Variations in cross-sectional profile and orientation of the vibrissae also exist between pinniped species. These factors may influence the way that the vibrissae behave when exposed to water flow. This study investigated the effect that vibrissal surface structure and orientation have on flow-induced vibrations of pinniped vibrissae. Laser vibrometry was used to record vibrations along the whisker shaft from the undulated vibrissae of harbor seals (Phoca vitulina) and northern elephant seals (Mirounga angustirostris) and the smooth vibrissae of California sea lions (Zalophus californianus). Vibrations along the whisker shaft were measured in a flume tank, at three orientations (0°, 45°, 90°) to the water flow. The results show that vibration frequency and velocity ranges were similar for both undulated and smooth vibrissae. Angle of orientation, rather than surface structure, had the greatest effect on flow-induced vibrations. Vibration velocity was up to 60 times higher when the wide, flat aspect of the whisker faced into the flow (90°), compared to when the thin edge faced into the flow (0°). Vibration frequency was also dependent on angle of orientation. Peak frequencies were measured up to 270 Hz and were highest at the 0° orientation for all whiskers. Furthermore, CT scanning was used to quantify the three-dimensional structure of pinniped vibrissae that may influence flow interactions. The CT data provide evidence that all vibrissae are flattened in cross-section to some extent and that differences exist in the orientation of this profile with respect to the major curvature of the hair shaft. These data support the hypothesis that a compressed cross-sectional profile may play a key role in reducing self-noise of the vibrissae. PMID:23922834
Moriwaki, Yoshihiro; Otani, Jun; Okuda, Junzo; Maemoto, Ryo
2018-03-23
Both laparoscopic and endoscopic robotic surgery are widely accepted for many abdominal surgeries. However, the port site for the laparoscope cannot be easily sutured without defect, particularly in the cranial end; this can result in a port-site incisional hernia and trigger the progressive thinning and stretching of the linea alba, leading to epigastric hernia. In the present case, we encountered an epigastric hernia contiguous with an incisional scar at the port site from a previous endoscopic robotic total prostatectomy. Abdominal ultrasound and CT revealed that the width of the linea alba was 30-48 mm. Previous CT images prepared before endoscopic robotic prostatectomy had shown a thinning of the linea alba. We should be aware of the possibility of epigastric hernia after laparoscopic and endoscopic robotic surgery. In laparoscopic and endoscopic robotic surgery for a high-risk patient for epigastric hernia, we should consider additional sutures cranial to the port-site incision to prevent of an epigastric hernia. © 2018 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.
The importance of cone beam CT in the radiological detection of osteomalacia.
Cakur, B; Sümbüllü, M A; Dagistan, S; Durna, D
2012-01-01
Although osteomalacia is one of the most common osteometabolic diseases among the elderly, there is no case in the literature that presents the effects of osteomalacia in detail using cone beam CT (CBCT). While thin and porous bones are the most common radiographic sign of the disease, the radiological hallmarks are pseudofractures (Looser's zone). We coincidentally detected osteomalacia in a 23-year-old female and we showed the pseudofracture on CBCT images. In the present case, we aim to present the images of osteomalacia that were detected by CBCT in detail. CBCT has an important value in screening for osteomalacia.
The importance of cone beam CT in the radiological detection of osteomalacia
Çakur, B; Sümbüllü, M A; Dağistan, S; Durna, D
2012-01-01
Although osteomalacia is one of the most common osteometabolic diseases among the elderly, there is no case in the literature that presents the effects of osteomalacia in detail using cone beam CT (CBCT). While thin and porous bones are the most common radiographic sign of the disease, the radiological hallmarks are pseudofractures (Looser's zone). We coincidentally detected osteomalacia in a 23-year-old female and we showed the pseudofracture on CBCT images. In the present case, we aim to present the images of osteomalacia that were detected by CBCT in detail. CBCT has an important value in screening for osteomalacia. PMID:22074877
Research Interests and Broad Agency Announcement 94-1 of the Air Force Office of Scientific Research
1993-10-01
tine Or rln• ; tri ris Ct.On$. searching existinlg data, sourcel. gathern.r ed , r ,.Atrtct’lg the data neaede. Ind conoietrg and regie-. r the czenjch...ct r ,,tron end c~rh e" lrga’ ,rts biorden esti-ate or anv othet asomel of thin coliedon t ,ontormattci, ,ncira S suggestionn or r -’*ucnl tnhi b• raen...to ha$ r -;ton ,eadaa.arer$ Services. D•rectorate for nforrat~on Ogerations and Rem,,.is 1 2 1 Jefterion Oa~s H? .. a, S,,Te 12C4. Ao g!tom. 0 A 2202-43C
Xiao, Xiang-sheng; Yu, Hong; Li, Hui-min; Liu, Shi-yuan; Li, Cheng-zhou; Liu, Jing
2006-04-01
To investigate the blood supply of primary lung cancer (PLC) using CT angiography for bronchial artery (BA) and pulmonary artery (PA). Thin-section enhanced multi-layer spiral CT (MSCT) were carried out in 147 primary lung cancer patients and 46 healthy subjects as control. Three-dimensional images of bronchial artery and pulmonary artery were obtained using volume render (VR) and multi-planar reconstruction (MPR) or maximum intensity projection (MIP) at the workstation, and their morphological findings and relationship with the mass were assessed. 136 primary lung cancer patients and 32 healthy controls were evaluated for at least one bronchial artery displayed clearly in VR. The detective rate of the bronchial artery was 92.5% and 69.6%, respectively. The bronchial artery caliber and the total section area of lesion side in lung cancer patients were significantly larger than that on the contralateral side and that of the control (P < 0.05). Bronchial artery on the lesion side in lung cancer was dilated and tortuous, directly penetrating into the mass with reticularly anastomosed branches. In the PLC patients, all PA were shown clearly with normal morphological image though crossing over the masses in 54 patients; In 25 PLC patients, the PA being essentially intact, was pushed around and surrounded the mass, giving the "hold ball" sign; In 40 other PLC patients, PA being also intact, the mass surrounded and buried the PA from the outside, crushing the PA flat resulting in an eccentric or centrifugal shrinkage, forming the "dead branch" sign; In the rest 28 patients, the PA was surrounded and even compressed, forming the "residual root" sign. Primary lung cancer patient shows dilated bronchial arteries and increased bronchial artery blood flow, whereas pulmonary arteries just pass through the mass or are compressed by the mass. It is further demonstrated that the bronchial artery, instead of the pulmonary artery, is the main vessel of blood supply to the primary lung cancer as shown by MSCT angiography of bronchial artery and pulmonary artery.
Development of lung cancer CT screening operating support system
NASA Astrophysics Data System (ADS)
Ishigaki, Rikuta; Hanai, Kozou; Suzuki, Masahiro; Kawata, Yoshiki; Niki, Noboru; Eguchi, Kenji; Kakinuma, Ryutaro; Moriyama, Noriyuki
2009-02-01
In Japan, lung cancer death ranks first among men and third among women. Lung cancer death is increasing yearly, thus early detection and treatment are needed. For this reason, CT screening for lung cancer has been introduced. The CT screening services are roughly divided into three sections: office, radiology and diagnosis sections. These operations have been performed through paper-based or a combination of paper-based and an existing electronic health recording system. This paper describes an operating support system for lung cancer CT screening in order to make the screening services efficient. This operating support system is developed on the basis of 1) analysis of operating processes, 2) digitalization of operating information, and 3) visualization of operating information. The utilization of the system is evaluated through an actual application and users' survey questionnaire obtained from CT screening centers.
76 FR 401 - MetLife Insurance Company of Connecticut, et al.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
... SECURITIES AND EXCHANGE COMMISSION [Release No. IC-29544; File No. 812-13816] MetLife Insurance... Section 17(b) of the Act from Section 17(a) of the Act. Applicants: MetLife Insurance Company of Connecticut (``MetLife of CT''), MetLife of CT Separate Account Eleven for Variable Annuities (``Separate...
75 FR 16205 - MetLife Insurance Company of Connecticut, et al.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-31
... SECURITIES AND EXCHANGE COMMISSION [Release No. IC-29190; File No. 812-13700] MetLife Insurance... Section 17(b) of the Act from Section 17(a) of the Act. Applicants: MetLife Insurance Company of Connecticut (``MetLife of CT''), MetLife of CT Separate Account Eleven for Variable Annuities (``Separate...
21 CFR 1020.33 - Computed tomography (CT) equipment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... opening where insertion of any part of the human body into the primary beam is possible. (2) For systems... Section 1020.33 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... diameters of 32.0 centimeters for testing any CT system designed to image any section of the body (whole...
21 CFR 1020.33 - Computed tomography (CT) equipment.
Code of Federal Regulations, 2011 CFR
2011-04-01
... opening where insertion of any part of the human body into the primary beam is possible. (2) For systems... Section 1020.33 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... diameters of 32.0 centimeters for testing any CT system designed to image any section of the body (whole...
Intravenous volume tomographic pulmonary angiography imaging
NASA Astrophysics Data System (ADS)
Ning, Ruola; Strang, John G.; Chen, Biao; Conover, David L.; Yu, Rongfeng
1999-05-01
This study presents a new intravenous (IV) tomographic angiography imaging technique, called intravenous volume tomographic digital angiography (VTDA) for cross sectional pulmonary angiography. While the advantages of IV-VTDA over spiral CT in terms of volume scanning time and resolution have been validated and reported in our previous papers for head and neck vascular imaging, the superiority of IV-VTDA over spiral CT for cross sectional pulmonary angiography has not been explored yet. The purpose of this study is to demonstrate the advantage of isotropic resolution of IV-VTDA in the x, y and z directions through phantom and animal studies, and to explore its clinical application for detecting clots in pulmonary angiography. A prototype image intensifier-based VTDA imaging system has been designed and constructed by modifying a GE 8800 CT scanner. This system was used for a series of phantom and dog studies. A pulmonary vascular phantom was designed and constructed. The phantom was scanned using the prototype VTDA system for direct 3D reconstruction. Then the same phantom was scanned using a GE CT/i spiral CT scanner using the routine pulmonary CT angiography protocols. IV contrast injection and volume scanning protocols were developed during the dog studies. Both VTDA reconstructed images and spiral CT images of the specially designed phantom were analyzed and compared. The detectability of simulated vessels and clots was assessed as the function of iodine concentration levels, oriented angles, and diameters of the vessels and clots. A set of 3D VTDA reconstruction images of dog pulmonary arteries was obtained with different IV injection rates and isotropic resolution in the x, y and z directions. The results of clot detection studies in dog pulmonary arteries have also been shown. This study presents a new tomographic IV angiography imaging technique for cross sectional pulmonary angiography. The results of phantom and animal studies indicate that IV-VTDA is superior to spiral CT for cross sectional pulmonary angiography.
NASA Astrophysics Data System (ADS)
Xu, Yuntao; Xiong, Bo; Chung Chang, Yih; Ng, C. Y.
2016-08-01
Using the vacuum ultraviolet laser pulsed field ionization-photoion source, together with the double-quadrupole-double-octopole mass spectrometer developed in our laboratory, we have investigated the state-selected ion-molecule reaction {{{{N}}}2}+({X}2{{{{Σ }}}{{g}}}+; v + = 0-2, N+ = 0-9) + C2H2, achieving high internal-state selectivity and high kinetic energy resolution for reactant {{{{N}}}2}+ ions. The charge transfer (CT) and hydrogen-atom transfer (HT) channels, which lead to the respective formation of product {{{C}}}2{{{{H}}}2}+ and N2H+ ions, are observed. The vibrationally selected absolute integral cross sections for the CT [σ CT(v +)] and HT [[σ HT(v +)] channels obtained in the center-of-mass collision energy (E cm) range of 0.03-10.00 eV reveal opposite E cm dependences. The σ CT(v +) is found to increase as E cm is decreased, and is consistent with the long-range exothermic CT mechanism, whereas the E cm enhancement observed for the σ HT(v +) suggests effective coupling of kinetic energy to internal energy, enhancing the formation of N2H+. The σ HT(v +) curve exhibits a step at E cm = 0.70-1.00 eV, suggesting the involvement of the excited {{{C}}}2{{{{H}}}2}+({A}2{{{{Σ }}}{{g}}}+) state in the HT reaction. Contrary to the strong E cm dependences for σ CT(v +) and σ HT(v +), the effect of vibrational excitation of {{{{N}}}2}+ on both the CT and HT channels is marginal. The branching ratios and cross sections for the CT and HT channels determined in the present study are useful for modeling the atmospheric compositions of Saturn's largest moon, Titan. These cross sections and branching ratios are also valuable for benchmarking theoretical calculations on chemical dynamics of the titled reaction.
[Anatomy of the skull base and the cranial nerves in slice imaging].
Bink, A; Berkefeld, J; Zanella, F
2009-07-01
Computed tomography (CT) and magnetic resonance imaging (MRI) are suitable methods for examination of the skull base. Whereas CT is used to evaluate mainly bone destruction e.g. for planning surgical therapy, MRI is used to show pathologies in the soft tissue and bone invasion. High resolution and thin slice thickness are indispensible for both modalities of skull base imaging. Detailed anatomical knowledge is necessary even for correct planning of the examination procedures. This knowledge is a requirement to be able to recognize and interpret pathologies. MRI is the method of choice for examining the cranial nerves. The total path of a cranial nerve can be visualized by choosing different sequences taking into account the tissue surrounding this cranial nerve. This article summarizes examination methods of the skull base in CT and MRI, gives a detailed description of the anatomy and illustrates it with image examples.
Recent technologic advances in multi-detector row cardiac CT.
Halliburton, Sandra Simon
2009-11-01
Recent technical advances in multi-detector row CT have resulted in lower radiation dose, improved temporal and spatial resolution, decreased scan time, and improved tissue differentiation. Lower radiation doses have resulted from the use of pre-patient z collimators, the availability of thin-slice axial data acquisition, the increased efficiency of ECG-based tube current modulation, and the implementation of iterative reconstruction algorithms. Faster gantry rotation and the simultaneous use of two x-ray sources have led to improvements in temporal resolution, and gains in spatial resolution have been achieved through application of the flying x-ray focal-spot technique in the z-direction. Shorter scan times have resulted from the design of detector arrays with increasing numbers of detector rows and through the simultaneous use of two x-ray sources to allow higher helical pitch. Some improvement in tissue differentiation has been achieved with dual energy CT. This article discusses these recent technical advances in detail.
3D temporal subtraction on multislice CT images using nonlinear warping technique
NASA Astrophysics Data System (ADS)
Ishida, Takayuki; Katsuragawa, Shigehiko; Kawashita, Ikuo; Kim, Hyounseop; Itai, Yoshinori; Awai, Kazuo; Li, Qiang; Doi, Kunio
2007-03-01
The detection of very subtle lesions and/or lesions overlapped with vessels on CT images is a time consuming and difficult task for radiologists. In this study, we have developed a 3D temporal subtraction method to enhance interval changes between previous and current multislice CT images based on a nonlinear image warping technique. Our method provides a subtraction CT image which is obtained by subtraction of a previous CT image from a current CT image. Reduction of misregistration artifacts is important in the temporal subtraction method. Therefore, our computerized method includes global and local image matching techniques for accurate registration of current and previous CT images. For global image matching, we selected the corresponding previous section image for each current section image by using 2D cross-correlation between a blurred low-resolution current CT image and a blurred previous CT image. For local image matching, we applied the 3D template matching technique with translation and rotation of volumes of interests (VOIs) which were selected in the current and the previous CT images. The local shift vector for each VOI pair was determined when the cross-correlation value became the maximum in the 3D template matching. The local shift vectors at all voxels were determined by interpolation of shift vectors of VOIs, and then the previous CT image was nonlinearly warped according to the shift vector for each voxel. Finally, the warped previous CT image was subtracted from the current CT image. The 3D temporal subtraction method was applied to 19 clinical cases. The normal background structures such as vessels, ribs, and heart were removed without large misregistration artifacts. Thus, interval changes due to lung diseases were clearly enhanced as white shadows on subtraction CT images.
NASA Astrophysics Data System (ADS)
Li, Bin; Wang, Dayong; Rong, Lu; Zhai, Changchao; Wang, Yunxin; Zhao, Jie
2018-02-01
Terahertz (THz) radiation is able to penetrate many different types of nonpolar and nonmetallic materials without the damaging effects of x-rays. THz technology can be combined with computed tomography (CT) to form THz CT, which is an effective imaging method that is used to visualize the internal structure of a three-dimensional sample as cross-sectional images. Here, we reported an application of THz as the radiation source in CT imaging by replacing the x-rays. In this method, the sample cross section is scanned in all translation and rotation directions. Then, the projection data are reconstructed using a tomographic reconstruction algorithm. Two-dimensional (2-D) cross-sectional images of the chicken ulna were obtained through the continuous-wave (CW) THz CT system. Given by the difference of the THz absorption of different substances, the compact bone and spongy bone inside the chicken ulna are structurally distinguishable in the 2-D cross-sectional images. Using the filtered back projection algorithm, we reconstructed the projection data of the chicken ulna at different projection angle intervals and found that the artifacts and noise in the images are strikingly increased when the projection angle intervals become larger, reflected by the blurred boundary of the compact bone. The quality and fidelity of the 2-D cross-sectional images could be substantially improved by reducing the projection angle intervals. Our experimental data demonstrated a feasible application of the CW THz CT system in biological imaging.
Stringheta, Carolina Pessoa; Pelegrine, Rina Andréa; Kato, Augusto Shoji; Freire, Laila Gonzales; Iglecias, Elaine Faga; Gavini, Giulio; Bueno, Carlos Eduardo da Silveira
2017-12-01
The objective of this study was to compare the methods of micro-computed tomography (micro-CT) and cross-sectioning followed by stereomicroscopy in assessing dentinal defects after instrumentation with different mechanized systems. Forty mesial roots of mandibular molars were scanned and divided into 4 groups (n = 10): Group R, Reciproc; Group PTN, ProTaper Next; Group WOG, WaveOne Gold; Group PDL, ProDesign Logic. After instrumentation, the roots were once again submitted to a micro-CT scan, and then sectioned at 3, 6, and 9 mm from the apex, and assessed for the presence of complete and incomplete dentinal defects under a stereomicroscope. The nonparametric Kruskal-Wallis, Friedman, and Wilcoxon tests were used in the statistical analysis. The study used a significance level of 5%. The total number of defects observed by cross-sectioning followed by stereomicroscopy was significantly higher than that observed by micro-CT, in all of the experimental groups (P ≤ .05). All of the defects identified in the postoperative period were already present in the corresponding preoperative period. There was no significant difference among the instrumentation systems as to the median numbers of defects, for either cross-sectioning followed by stereomicroscopy or micro-CT, at all the root levels (P > .05). In the micro-CT analysis, no significant difference was found between the median numbers of pre- and postinstrumentation defects, regardless of the instrumentation system (P > .05). None of the evaluated instrumentation systems led to the formation of new dentin defects. All of the defects identified in the stereomicroscopic analysis were already present before instrumentation, or were absent at both time points in the micro-CT analysis, indicating that the formation of new defects resulted from the sectioning procedure performed before stereomicroscopy and not from instrumentation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Apollo-11 lunar sample information catalogue
NASA Technical Reports Server (NTRS)
Kramer, F. E. (Compiler); Twedell, D. B. (Compiler); Walton, W. J. A., Jr. (Compiler)
1977-01-01
The Apollo 11 mission is reviewed with emphasis on the collection of lunar samples, their geologic setting, early processing, and preliminary examination. The experience gained during five subsequent missions was applied to obtain physical-chemical data for each sample using photographic and binocular microscope techniques. Topics discussed include: binocular examination procedure; breccia clast dexrriptuons, thin section examinations procedure typical breccia in thin section, typical basalt in thin section, sample histories, and chemical and age data. An index to photographs is included.
Chen, Alexander; Pastis, Nicholas; Furukawa, Brian; Silvestri, Gerard A
2015-05-01
Electromagnetic navigation has improved the diagnostic yield of peripheral bronchoscopy for pulmonary nodules. For these procedures, a thin-slice chest CT scan is performed prior to bronchoscopy at full inspiration and is used to create virtual airway reconstructions that are used as a map during bronchoscopy. Movement of the lung occurs with respiratory variation during bronchoscopy, and the location of pulmonary nodules during procedures may differ significantly from their location on the initial planning full-inspiratory chest CT scan. This study was performed to quantify pulmonary nodule movement from full inspiration to end-exhalation during tidal volume breathing in patients undergoing electromagnetic navigation procedures. A retrospective review of electromagnetic navigation procedures was performed for which two preprocedure CT scans were performed prior to bronchoscopy. One CT scan was performed at full inspiration, and a second CT scan was performed at end-exhalation during tidal volume breathing. Pulmonary lesions were identified on both CT scans, and distances between positions were recorded. Eighty-five pulmonary lesions were identified in 46 patients. Average motion of all pulmonary lesions was 17.6 mm. Pulmonary lesions located in the lower lobes moved significantly more than upper lobe nodules. Size and distance from the pleura did not significantly impact movement. Significant movement of pulmonary lesions occurs between full inspiration and end-exhalation during tidal volume breathing. This movement from full inspiration on planning chest CT scan to tidal volume breathing during bronchoscopy may significantly affect the diagnostic yield of electromagnetic navigation bronchoscopy procedures.
Model based rib-cage unfolding for trauma CT
NASA Astrophysics Data System (ADS)
von Berg, Jens; Klinder, Tobias; Lorenz, Cristian
2018-03-01
A CT rib-cage unfolding method is proposed that does not require to determine rib centerlines but determines the visceral cavity surface by model base segmentation. Image intensities are sampled across this surface that is flattened using a model based 3D thin-plate-spline registration. An average rib centerline model projected onto this surface serves as a reference system for registration. The flattening registration is designed so that ribs similar to the centerline model are mapped onto parallel lines preserving their relative length. Ribs deviating from this model appear deviating from straight parallel ribs in the unfolded view, accordingly. As the mapping is continuous also the details in intercostal space and those adjacent to the ribs are rendered well. The most beneficial application area is Trauma CT where a fast detection of rib fractures is a crucial task. Specifically in trauma, automatic rib centerline detection may not be guaranteed due to fractures and dislocations. The application by visual assessment on the large public LIDC data base of lung CT proved general feasibility of this early work.
Nishi, Tomo; Ueda, Tetsuo; Mizusawa, Yuutaro; Semba, Kentaro; Shinomiya, Kayo; Mitamura, Yoshinori; Sakamoto, Taiji; Ogata, Nahoko
2017-01-01
The purpose of this study was to determine the effect of optical correction on the best-corrected visual acuity (BCVA) and subfoveal choroidal thickness (CT) in the eyes of children with anisohypermetropic amblyopia. Twenty-four anisohypermetropic amblyopic eyes and their fellow eyes of 24 patients and twenty-three eyes of 23 age-matched control children were studied. After one year of optical correction, the BCVA in the anisohypermetropic amblyopic eyes was significantly improved. Before the treatment, the mean subfoveal CT in the amblyopic eyes was 351.9 ± 59.4 μm which was significantly thicker than that of control eyes at 302.4 ± 63.2 μm. After the treatment, the amount of change in the subfoveal CT in the amblyopic and fellow eyes was greater than that in the control eyes. The amblyopic and fellow eyes with thicker choroids had a greater thinning of the choroid whereas eyes with thinner choroids had a greater thickening of the choroid. We conclude that wearing corrective lenses improves the visual acuity, and induces changes of the subfoveal CT in eyes with anisohypermetropic amblyopia.
Specific Heat and Thermal Diffusivity of YBCO Coated Conductors
NASA Astrophysics Data System (ADS)
Naito, Tomoyuki; Fujishiro, Hiroyuki; YasuhisaYamamura; Saito, Kazuya; Okamoto, Hiroshi; Hayashi, Hidemi; Gosho, Yoshihiro; Ohkuma, Takeshi; Shiohara, Yuh
We have measured the temperature dependence of specific heat,C(T), for Ag deposited YBCO coated conductor (YCC),YCC reinforced by a thin Cutape (YCC-Cu), andthe Hastelloy substrate with buffer layer. C(T) of HastelloyC-276 with buffer layer agrees well with the reported oneof HastelloyC-276, indicating that the contribution of the buffer layer to the measured C(T) is negligibly small. C(T)of both YCC and YCC-Cu tapes was successfully reproduced by the simple sum rule using the C(T) values reported for Hastelloy, Ag and Cu. The results demonstrate that C(T) of various YCC tapes can be estimated using the reported C(T)of constitutional materials. The estimated thermal diffusivity, a = K/C, at 300K of YCC, which was estimated using the thermal conductivity, K, did not agree with the reported a of Ag. This resultwas in consistent with the fact that the applied heat flew through the Aglayer, suggesting that a relation of a = K/Cfor homogeneous material cannot be applicable for the layered material such as YCC.
Sharma, Ashish K; Toussaint, Nigel D; Masterson, Rosemary; Holt, Stephen G; Rajapakse, Chamith S; Ebeling, Peter R; Mohanty, Sindhu T; Baldock, Paul; Elder, Grahame J
2018-05-23
Cortical bone is a significant determinant of bone strength and its deterioration contributes to bone fragility. Thin cortices and increased cortical porosity have been noted in patients with chronic kidney disease (CKD), but the "Turnover Mineralization Volume" classification of renal osteodystrophy does not emphasize cortical bone as a key parameter. We aimed to assess trabecular and cortical bone microarchitecture by histomorphometry and micro-CT in patients with CKD G5 and 5D (dialysis). Transiliac bone biopsies were performed in 14 patients undergoing kidney transplantation (n = 12) and parathyroidectomy (n = 2). Structural parameters were analysed by histomorphometry and micro-CT including trabecular bone volume, thickness (TbTh), number (TbN) and separation and cortical thickness (CtTh) and porosity (CtPo). Indices of bone remodelling and mineralisation were obtained and relationships to bone biomarkers examined. Associations were determined by Spearman's or Pearson's rank correlation coefficients. By micro-CT, trabecular parameters were within normal ranges in most patients, but all patients showed very low CtTh (127 ± 44 µm) and high CtPo (60.3 ± 22.5%). CtPo was inversely related to TbN (r = -0.56; p = 0.03) by micro-CT and to TbTh (r = -0.60; p = 0.024) by histomorphometry and correlated to parathyroid hormone values (r = 0.62; p = 0.021). By histomorphometry, bone turnover was high in 50%, low in 21% and normal in 29%, while 36% showed abnormal patterns of mineralization. Significant positive associations were observed between osteoblast surface, osteoclast surface, mineralization surface and bone turnover markers. Deterioration of cortical -microarchitecture despite predominantly normal trabecular parameters reinforces the importance of comprehensive cortical evaluation in patients with CKD. © 2018 S. Karger AG, Basel.
Characteristics and performance of thin LaBr3(Ce) crystal for hard X-ray astronomy
NASA Astrophysics Data System (ADS)
Manchanda, R. K.
2011-01-01
We have developed a new detector using thin lanthanum bromide crystal (32 × 3 mm) for use in X-ray astronomy. The instrument was launched in high altitude balloon flight on two different occasions, December 21, 2007, which reached a ceiling altitude of 4.3 mbs and April 25, 2008 reaching a ceiling altitude 2.8 mbs. The observed background counting rate at the ceiling altitude of 4 mbs was ˜4 × 10-3 ct cm-2 s-1 keV-1 sr-1. This paper describes the details of the experiment, the detector characteristics, and the background behaviour at the ceiling altitude.
Methods for making thin layers of crystalline materials
Lagally, Max G; Paskiewicz, Deborah M; Tanto, Boy
2013-07-23
Methods for making growth templates for the epitaxial growth of compound semiconductors and other materials are provided. The growth templates are thin layers of single-crystalline materials that are themselves grown epitaxially on a substrate that includes a thin layer of sacrificial material. The thin layer of sacrificial material, which creates a coherent strain in the single-crystalline material as it is grown thereon, includes one or more suspended sections and one or more supported sections.
Novel Thin Film Sensor Technology for Turbine Engine Hot Section Components
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.
2007-01-01
Degradation and damage that develops over time in hot section components can lead to catastrophic failure of the turbine section of aircraft engines. A range of thin film sensor technology has been demonstrated enabling on-component measurement of multiple parameters either individually or in sensor arrays including temperature, strain, heat flux, and flow. Conductive ceramics are beginning to be investigated as new materials for use as thin film sensors in the hot section, leveraging expertise in thin films and high temperature materials. The current challenges are to develop new sensor and insulation materials capable of withstanding the extreme hot section environment, and to develop techniques for applying sensors onto complex high temperature structures for aging studies of hot propulsion materials. The technology research and development ongoing at NASA Glenn Research Center for applications to future aircraft, launch vehicles, space vehicles, and ground systems is outlined.
NASA Astrophysics Data System (ADS)
Gomila, Rodrigo; Arancibia, Gloria; Nehler, Mathias; Bracke, Rolf; Stöckhert, Ferdinand
2016-04-01
Fault zones and their related structural permeability play a leading role in the migration of fluids through the continental crust. A first approximation to understanding the structural permeability conditions, and the estimation of its hydraulic properties (i.e. palaeopermeability and fracture porosity conditions) of the fault-related fracture mesh is the 2D analysis of its veinlets, usually made in thin-section. Those estimations are based in the geometrical parameters of the veinlets, such as average fracture density, length and aperture, which can be statistically modelled assuming penny-shaped fractures of constant radius and aperture within an anisotropic fracture system. Thus, this model is related to fracture connectivity, its length and to the cube of the fracture apertures. In this way, the estimated values presents their own inaccuracies owing to the method used. Therefore, the study of the real spatial distribution of the veinlets of the fault-related fracture mesh (3D), feasible with the use of micro-CT analyses, is a first order factor to unravel both, the real structural permeability conditions of a fault-zone, together with the validation of previous estimations made in 2D analyses in thin-sections. This early contribution shows the preliminary results of a fault-related fracture mesh and its 3D spatial distribution in the damage zone of the Jorgillo Fault (JF), an ancient subvertical left-lateral strike-slip fault exposed in the Atacama Fault System in northern Chile. The JF is a ca. 20 km long NNW-striking strike-slip fault with sinistral displacement of ca. 4 km. The methodology consisted of the drilling of vertically oriented plugs of 5 mm in diameter located at different distances from the JF core - damage zone boundary. Each specimen was, then, scanned with an x-ray micro-CT scanner (ProCon X-Ray CTalpha) in order to assess the fracture mesh. X-rays were generated in a transmission target x-ray tube with acceleration voltages ranging from 90-120 kV and target currents from 40-60 μA. The focal spot size on the diamond/tungsten target was about 5 μm. The x-ray beam was filtered using a 1 mm Aluminum plate before passing the sample. 1200 x-ray images were taken during a full rotation of the sample using an amorphous silicon flat panel detector with 1516x1900 pixels. This resulted in a voxel resolution of about 8 μm in the 3D data reconstructed from the images. Future work will be aimed in the images segmentation of the fault-related fracture mesh followed by the estimation of its hydraulic properties at the time of fracture sealing. Acknowledgements: This work is a contribution to the CONICYT- BMBF International Scientific Collaborative Research Program Project PCCI130025/FKZ01DN14033 and the FONDAP-CONICYT Project 15090013.
Prevalence of macular complications associated with high myopia by multimodal imaging.
Lichtwitz, O; Boissonnot, M; Mercié, M; Ingrand, P; Leveziel, N
2016-04-01
To describe the prevalence of macular complications in patients with visual acuity decrease related to high myopia (HM). To establish correlations between these complications and demographic or anatomical characteristics. Cross-sectional observational study including HM patients undergoing best-corrected visual acuity (BCVA), fundus examination, macular SD-OCT, and fluorescein angiography in the case of suspicion of choroidal neovascularization (CNV). The presence of anatomical criteria (staphyloma, subfoveal choroidal thickness [CT]) and macular complications (CNV, lacquer cracks, central chorioretinal atrophy, dome-shaped macula with serous retinal detachment [SRD], retinal foveoschisis, macular hole and epiretinal membrane) was investigated. A total of 87 eyes of 47 patients were included (39 eyes without macular complication and 48 eyes with macular complications). In the case of macular complications, decrease in BCVA was related to CNV in 33%, macular hole in 25%, chorioretinal atrophy in 19%, foveoschisis in 11%, lacquer crack in 6%, to a dome-shape macula with serous retinal detachment in 4% and epiretinal membrane in 2%. After adjusting for interocular correlation and degree of myopia, staphyloma (P=0.0023), choroidal thinning (P=0.0036), and extrafoveal chorioretinal atrophy (P=0.042) were significantly associated with macular complications. High myopic patients with staphyloma or choroidal thinning should undergo regular comprehensive retinal screening for retinal complications. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
El-Shafey, A; Kassab, A
2013-04-01
The purpose of the present study was to provide a detailed computed tomography (CT) and cross-sectional anatomic reference of the normal metatarsus and digits for the camel and buffalo, as well as to compare between metatarsus and digits in these animals to outstand a basis for diagnosis of their diseases. Advantages, including depiction of detailed cross-sectional anatomy, improved contrast resolution and computer reformatting, make it a potentially valuable diagnostic technique. The hind limbs of 12 healthy adult camel and buffalo were used. Clinically relevant anatomic structures were identified and labelled at each level in the corresponding images (CT and anatomic slices). CT images were used to identify the bony and soft tissue structures of the metatarsus and digits. The knowledge of normal anatomy of the camel and buffalo metatarsus and digits would serve as initial reference to the evaluation of CT images in these species. © 2012 Blackwell Verlag GmbH.
Publications - GMC 186 | Alaska Division of Geological & Geophysical
DGGS GMC 186 Publication Details Title: Petrographic thin-section photographs of cuttings (14220'-14250 for more information. Bibliographic Reference Unknown, 1991, Petrographic thin-section photographs of
Veladiano, Irene A; Banzato, Tommaso; Bellini, Luca; Montani, Alessandro; Catania, Salvatore; Zotti, Alessandro
2016-12-01
OBJECTIVE To create an atlas of the normal CT anatomy of the head of blue-and-gold macaws (Ara ararauna), African grey parrots (Psittacus erithacus), and monk parakeets (Myiopsitta monachus). ANIMALS 3 blue-and-gold macaws, 5 African grey parrots, and 6 monk parakeets and cadavers of 4 adult blue-and-gold macaws, 4 adult African grey parrots, and 7 monk parakeets. PROCEDURES Contrast-enhanced CT imaging of the head of the live birds was performed with a 4-multidetector-row CT scanner. Cadaveric specimens were stored at -20°C until completely frozen, and each head was then sliced at 5-mm intervals to create reference cross sections. Frozen cross sections were cleaned with water and photographed on both sides. Anatomic structures within each head were identified with the aid of the available literature, labeled first on anatomic photographs, and then matched to and labeled on corresponding CT images. The best CT reconstruction filter, window width, and window level for obtaining diagnostic images of each structure were also identified. RESULTS Most of the clinically relevant structures of the head were identified in both the cross-sectional photographs and corresponding CT images. Optimal visibility of the bony structures was achieved via CT with a standard soft tissue filter and pulmonary window. The use of contrast medium allowed a thorough evaluation of the soft tissues. CONCLUSIONS AND CLINICAL RELEVANCE The labeled CT images and photographs of anatomic structures of the heads of common pet parrot species created in this study may be useful as an atlas to aid interpretation of images obtained with any imaging modality.
7 CFR 29.2663 - Thin Leaf (C Group).
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Thin Leaf (C Group). 29.2663 Section 29.2663... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2663 Thin Leaf (C Group). This group consists of leaves that are thin in body. Grades Grade names and specifications C1L Choice Light-brown Thin Leaf. Thin...
7 CFR 29.2663 - Thin Leaf (C Group).
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Thin Leaf (C Group). 29.2663 Section 29.2663... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2663 Thin Leaf (C Group). This group consists of leaves that are thin in body. Grades Grade names and specifications C1L Choice Light-brown Thin Leaf. Thin...
7 CFR 29.2663 - Thin Leaf (C Group).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Thin Leaf (C Group). 29.2663 Section 29.2663... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2663 Thin Leaf (C Group). This group consists of leaves that are thin in body. Grades Grade names and specifications C1L Choice Light-brown Thin Leaf. Thin...
7 CFR 29.2663 - Thin Leaf (C Group).
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Thin Leaf (C Group). 29.2663 Section 29.2663... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2663 Thin Leaf (C Group). This group consists of leaves that are thin in body. Grades Grade names and specifications C1L Choice Light-brown Thin Leaf. Thin...
7 CFR 29.2663 - Thin Leaf (C Group).
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Thin Leaf (C Group). 29.2663 Section 29.2663... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2663 Thin Leaf (C Group). This group consists of leaves that are thin in body. Grades Grade names and specifications C1L Choice Light-brown Thin Leaf. Thin...
Preparation methodologies and nano/microstructural evaluation of metal/semiconductor thin films.
Chen, Zhiwen; Jiao, Zheng; Wu, Minghong; Shek, Chan-Hung; Wu, C M Lawrence; Lai, Joseph K L
2012-01-01
Metal/semiconductor thin films are a class of unique materials that are widespread technological applications, particularly in the field of microelectronic devices. Assessment strategies of fractal and tures are of fundamental importance in the development of nano/microdevices. This review presents the preparation methodologies and nano/microstructural evaluation of metal/semiconductor thin films including Au/Ge bilayer films and Pd-Ge alloy thin films, which show in the form of fractals and nanocrystals. Firstly, the extended version of Au/Ge thin films for the fractal crystallization of amorphous Ge and the formation of nanocrystals developed with improved micro- and nanostructured features are described in Section 2. Secondly, the nano/microstructural characteristics of Pd/Ge alloy thin films during annealing have been investigated in detail and described in Section 3. Finally, we will draw the conclusions from the present work as shown in Section 4. It is expected that the preparation methodologies developed and the knowledge of nano/microstructural evolution gained in metal/semiconductor thin films, including Au/Ge bilayer films and Pd-Ge alloy thin films, will provide an important fundamental basis underpinning further interdisciplinary research in these fields such as physics, chemistry, materials science, and nanoscience and nanotechnology, leading to promising exciting opportunities for future technological applications involving these thin films.
Publications - GMC 357 | Alaska Division of Geological & Geophysical
DGGS GMC 357 Publication Details Title: Thin Section and Scanning Electron Microscopy summary Laboratories, Inc., 2008, Thin Section and Scanning Electron Microscopy summary photographs from plugs taken
Nano-Computed Tomography: Technique and Applications.
Kampschulte, M; Langheinirch, A C; Sender, J; Litzlbauer, H D; Althöhn, U; Schwab, J D; Alejandre-Lafont, E; Martels, G; Krombach, G A
2016-02-01
Nano-computed tomography (nano-CT) is an emerging, high-resolution cross-sectional imaging technique and represents a technical advancement of the established micro-CT technology. Based on the application of a transmission target X-ray tube, the focal spot size can be decreased down to diameters less than 400 nanometers (nm). Together with specific detectors and examination protocols, a superior spatial resolution up to 400 nm (10 % MTF) can be achieved, thereby exceeding the resolution capacity of typical micro-CT systems. The technical concept of nano-CT imaging as well as the basics of specimen preparation are demonstrated exemplarily. Characteristics of atherosclerotic plaques (intraplaque hemorrhage and calcifications) in a murine model of atherosclerosis (ApoE (-/-)/LDLR(-/-) double knockout mouse) are demonstrated in the context of superior spatial resolution in comparison to micro-CT. Furthermore, this article presents the application of nano-CT for imaging cerebral microcirculation (murine), lung structures (porcine), and trabecular microstructure (ovine) in contrast to micro-CT imaging. This review shows the potential of nano-CT as a radiological method in biomedical basic research and discusses the application of experimental, high resolution CT techniques in consideration of other high resolution cross-sectional imaging techniques. Nano-computed tomography is a high resolution CT-technology for 3D imaging at sub-micrometer resolution. The technical concept bases on a further development of the established ex-vivo-micro-CT technology. By improvement of the spatial resolution, structures at a cellular level become visible (e.g. osteocyte lacunae). © Georg Thieme Verlag KG Stuttgart · New York.
3D intrathoracic region definition and its application to PET-CT analysis
NASA Astrophysics Data System (ADS)
Cheirsilp, Ronnarit; Bascom, Rebecca; Allen, Thomas W.; Higgins, William E.
2014-03-01
Recently developed integrated PET-CT scanners give co-registered multimodal data sets that offer complementary three-dimensional (3D) digital images of the chest. PET (positron emission tomography) imaging gives highly specific functional information of suspect cancer sites, while CT (X-ray computed tomography) gives associated anatomical detail. Because the 3D CT and PET scans generally span the body from the eyes to the knees, accurate definition of the intrathoracic region is vital for focusing attention to the central-chest region. In this way, diagnostically important regions of interest (ROIs), such as central-chest lymph nodes and cancer nodules, can be more efficiently isolated. We propose a method for automatic segmentation of the intrathoracic region from a given co-registered 3D PET-CT study. Using the 3D CT scan as input, the method begins by finding an initial intrathoracic region boundary for a given 2D CT section. Next, active contour analysis, driven by a cost function depending on local image gradient, gradient-direction, and contour shape features, iteratively estimates the contours spanning the intrathoracic region on neighboring 2D CT sections. This process continues until the complete region is defined. We next present an interactive system that employs the segmentation method for focused 3D PET-CT chest image analysis. A validation study over a series of PET-CT studies reveals that the segmentation method gives a Dice index accuracy of less than 98%. In addition, further results demonstrate the utility of the method for focused 3D PET-CT chest image analysis, ROI definition, and visualization.
Kwon, Sung Woo; Kim, Young Jin; Shim, Jaemin; Sung, Ji Min; Han, Mi Eun; Kang, Dong Won; Kim, Ji-Ye; Choi, Byoung Wook; Chang, Hyuk-Jae
2011-04-01
To evaluate the prognostic outcome of cardiac computed tomography (CT) for prediction of major adverse cardiac events (MACEs) in low-risk patients suspected of having coronary artery disease (CAD) and to explore the differential prognostic values of coronary artery calcium (CAC) scoring and coronary CT angiography. Institutional review committee approval and informed consent were obtained. In 4338 patients who underwent 64-section CT for evaluation of suspected CAD, both CAC scoring and CT angiography were concurrently performed by using standard scanning protocols. Follow-up clinical outcome data regarding composite MACEs were procured. Multivariable Cox proportional hazards models were developed to predict MACEs. Risk-adjusted models incorporated traditional risk factors for CAC scoring and coronary CT angiography. During the mean follow-up of 828 days ± 380, there were 105 MACEs, for an event rate of 3%. The presence of obstructive CAD at coronary CT angiography had independent prognostic value, which escalated according to the number of stenosed vessels (P < .001). In the receiver operating characteristic curve (ROC) analysis, the superiority of coronary CT angiography to CAC scoring was demonstrated by a significantly greater area under the ROC curve (AUC) (0.892 vs 0.810, P < .001), whereas no significant incremental value for the addition of CAC scoring to coronary CT angiography was established (AUC = 0.892 for coronary CT angiography alone vs 0.902 with addition of CAC scoring, P = .198). Coronary CT angiography is better than CAC scoring in predicting MACEs in low-risk patients suspected of having CAD. Furthermore, the current standard multisection CT protocol (coronary CT angiography combined with CAC scoring) has no incremental prognostic value compared with coronary CT angiography alone. Therefore, in terms of determining prognosis, CAC scoring may no longer need to be incorporated in the cardiac CT protocol in this population. © RSNA, 2011.
NASA Astrophysics Data System (ADS)
Fheed, Adam; Krzyżak, Artur; Świerczewska, Anna
2018-04-01
The complexity of hydrocarbon reservoirs, comprising numerous moulds, vugs, fractures and channel porosity, requires a specific set of methods to be used in order to obtain plausible petrophysical information. Both computed microtomography (μCT) and nuclear magnetic resonance (NMR) are nowadays commonly utilized in pore space investigation. The principal aim of this paper is to propose an alternative, quick and easily executable approach, enabling a thorough understanding of the complicated interiors of the carbonate hydrocarbon reservoir rocks. Highly porous and fractured Zechstein bioclastic packstones from the Brońsko Reef, located in West Poland were studied. Having examined 20 thin sections coming from two different well bores, 10 corresponding core samples were subjected to both μCT and NMR experiments. After a preliminary μCT-based image analysis, 9.4 [T] high-field zero echo time (ZTE) imaging, using a very short repetition time (RT) of 2 [μs] was conducted. Taking into consideration the risk of internal gradients' generation, the reliability of ZTE was verified by 0.6 [T] Single Point Imaging (SPI), during which such a phenomenon is much less probable. Both narrow channels and fractures of different apertures appeared to be common within the studied rocks. Their detailed description was therefore undertaken based on an additional tool - the spatially-resolved 0.05 [T] T2 profiling. According to the obtained results, ZTE seems to be especially suitable for studying porous and fractured carbonate rocks, as little disturbance to the signal appears. This can be confirmed by the SPI, indicating the negligible impact of the internal gradients on the registered ZTE images. Both NMR imaging and μCT allowed for locating the most porous intervals including well-developed mouldic porosity, as well as the contrasting impermeable structures, such as the stylolites and anhydrite veins. The 3D low-field profiling, in turn, showed the fracture aperture variations and contributed to the recognition of pore geometry. Analogously, the authors believe that such a spatially-resolved profiling could also be successfully implemented to study unconventional reservoirs. Finally, it has been concluded that although it is possible to investigate the connectivity of a given pore space solely using μCT, a detailed labeling process might turn out to be too time consuming and require a sound experience in that field. Therefore it is proposed to follow a preliminary μCT modeling by the direct and non-invasive set of NMR experiments.
Nemsadze, G; Urushadze, O
2011-11-01
Using of mutislice spiral CT as first line examination for the diagnosis of Acute Facial trauma in the setting of Polytrauma reduces both: valuable time and cost of patient treatment. After a brief clinical examination, MDCT was performed depending on the area of injury, using a slice thickness of 0.65 mm. The obtained data were analyzed using 3D, MIP and Standard axial with Bone reconstruction protocols. 64 polytrauma patients were evaluated with both Anterior and Lateral craniography (plain skull X ray: AP and Lateral) and Multi Slice CT. Craniography detected only 18 cases of traumatic injuries of facial bones, but exact range of dislocation and accurate management plan could not be established. In the same 64 cases, Multislice CT revealed localization of all existed fractures, range of fragment dislocation, soft tissue damage and status of Paranasal sinus in 62 cases (96.8%). In two cases MS CT missed the facial fracture, in one case the examination was complicated because of bone thinness and numerous fracture fragments, in another multiple foreign body artifacts complicated the investigation. The study results show that, CT investigation based on our MDCT polytrauma protocol, detects all more or less serious facial bone injuries.
Publications - GMC 339 | Alaska Division of Geological & Geophysical
petrography from petrographic thin sections of core (4759'-4894') Authors: Unknown Publication Date: Feb 2007 thin sections of core (4759'-4894'): Alaska Division of Geological & Geophysical Surveys Geologic
NASA Technical Reports Server (NTRS)
Botha, Pieter; Butcher, Alan R.; Horsch, Hana; Rickman, Doug; Wentworth, Susan J.; Schrader, Christian M.; Stoeser, Doug; Benedictus, Aukje; Gottlieb, Paul; McKay, David
2008-01-01
Polished thin-sections of samples extracted from Apollo drive tubes provide unique insights into the structure of the Moon's regolith at various landing sites. In particular, they allow the mineralogy and texture of the regolith to be studied as a function of depth. Much has been written about such thin-sections based on optical, SEM and EPMA studies, in terms of their essential petrographic features, but there has been little attempt to quantify these aspects from a spatial perspective. In this study, we report the findings of experimental analysis of two thin-sections (64002, 6019, depth range 5.0 - 8.0 cm & 64001, 6031, depth range 50.0 - 53.1 cm), from a single Apollo 16 drive tube using QEMSCAN . A key feature of the method is phase identification by ultrafast energy dispersive x-ray mapping on a pixel-by-pixel basis. By selecting pixel resolutions ranging from 1 - 5 microns, typically 8,500,000 individual measurement points can be collected on a thin-section. The results we present include false colour digital images of both thin-sections. From these images, information such as phase proportions (major, minor and trace phases), particle textures, packing densities, and particle geometries, has been quantified. Parameters such as porosity and average phase density, which are of geomechanical interest, can also be calculated automatically. This study is part of an on-going investigation into spatial variation of lunar regolith and NASA's ISRU Lunar Simulant Development Project.
Phase-contrast x-ray computed tomography for observing biological specimens and organic materials
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Itai, Yuji
1995-02-01
A novel three-dimensional x-ray imaging method has been developed by combining a phase-contrast x-ray imaging technique with x-ray computed tomography. This phase-contrast x-ray computed tomography (PCX-CT) provides sectional images of organic specimens that would produce absorption-contrast x-ray CT images with little contrast. Comparing PCX-CT images of rat cerebellum and cancerous rabbit liver specimens with corresponding absorption-contrast CT images shows that PCX-CT is much more sensitive to the internal structure of organic specimens.
Characteristics of the Hadronic Production of the $$D^{*\\pm}$$ Meson (in Portuguese)
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Miranda, Jussara Marques
The Fermilab experiment E769, a 250 GeV /c tagged hadron beam incident on thin target foils of Be, Al,Cu, and W, measured themore » $$X_F$$ and $$p^2_t$$ distributions of $$D^{*\\pm}$$ through the decay mode$$D^{*\\pm} \\to D^0 \\pi^+, D^0 \\to K^- \\pi^+$$. Fitting the distributions to the form $$A(1 - X_F)^n$$ and $$B exp(-bp^2_t)$$, we determined $n$ - 3.84 ± 0.20 ± 0.06 and $b$ = 0. 7 48 ± 0.034 ± 0.009, respectively. We observe no significant lea.ding particle ef.~ct suggested by earlier experiments. The dependence of the total cross section on the atomic mass number was determined to be $$A^{0.98 \\pm 0,05 \\pm 0.04}$$ . The measurements were based on 351 ± 16 fully reconstructed $$D^{*\\pm}$$ mesons induced by a $$\\pi^{\\pm}$$ and $$K^{\\pm}$$ beam. This is the gest available sample of hadroproduced $$D^{*\\pm}$$.« less
Higashigaito, K; Becker, A S; Sprengel, K; Simmen, H-P; Wanner, G; Alkadhi, H
2016-09-01
To demonstrate the feasibility and accuracy of automatic radiation dose monitoring software for computed tomography (CT) of trauma patients in a clinical setting over time, and to evaluate the potential of radiation dose reduction using iterative reconstruction (IR). In a time period of 18 months, data from 378 consecutive thoraco-abdominal CT examinations of trauma patients were extracted using automatic radiation dose monitoring software, and patients were split into three cohorts: cohort 1, 64-section CT with filtered back projection, 200 mAs tube current-time product; cohort 2, 128-section CT with IR and identical imaging protocol; cohort 3, 128-section CT with IR, 150 mAs tube current-time product. Radiation dose parameters from the software were compared with the individual patient protocols. Image noise was measured and image quality was semi-quantitatively determined. Automatic extraction of radiation dose metrics was feasible and accurate in all (100%) patients. All CT examinations were of diagnostic quality. There were no differences between cohorts 1 and 2 regarding volume CT dose index (CTDIvol; p=0.62), dose-length product (DLP), and effective dose (ED, both p=0.95), while noise was significantly lower (chest and abdomen, both -38%, p<0.017). Compared to cohort 1, CTDIvol, DLP, and ED in cohort 3 were significantly lower (all -25%, p<0.017), similar to the noise in the chest (-32%) and abdomen (-27%, both p<0.017). Compared to cohort 2, CTDIvol (-28%), DLP, and ED (both -26%) in cohort 3 was significantly lower (all, p<0.017), while noise in the chest (+9%) and abdomen (+18%) was significantly higher (all, p<0.017). Automatic radiation dose monitoring software is feasible and accurate, and can be implemented in a clinical setting for evaluating the effects of lowering radiation doses of CT protocols over time. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Publications - GMC 399 | Alaska Division of Geological & Geophysical
DGGS GMC 399 Publication Details Title: Thin section photomicrographs and descriptions for the Ikpikpuk Boyer, D., 2012, Thin section photomicrographs and descriptions for the Ikpikpuk #1, Inigok #1, J.W
Wear resistant pavement study.
DOT National Transportation Integrated Search
2009-01-01
This report documents the construction of three special pavement test sections on I-90 east of Spokane, Washington. The test sections included ultra-thin and thin whitetopping, Modified Class D open graded asphalt concrete, and micro/macro surfacing ...
Grams, Michael P; Fong de Los Santos, Luis E; Antolak, John A; Brinkmann, Debra H; Clarke, Michelle J; Park, Sean S; Olivier, Kenneth R; Whitaker, Thomas J
2016-01-01
To assess the accuracy of the Eclipse Analytical Anisotropic Algorithm when calculating dose for spine stereotactic body radiation therapy treatments involving surgically implanted titanium hardware. A human spine was removed from a cadaver, cut sagittally along the midline, and then separated into thoracic and lumbar sections. The thoracic section was implanted with titanium stabilization hardware; the lumbar section was not implanted. Spine sections were secured in a water phantom and simulated for treatment planning using both standard and extended computed tomography (CT) scales. Target volumes were created on both spine sections. Dose calculations were performed using (1) the standard CT scale with relative electron density (RED) override of image artifacts and hardware, (2) the extended CT scale with RED override of image artifacts only, and (3) the standard CT scale with no RED overrides for hardware or artifacts. Plans were delivered with volumetric modulated arc therapy using a 6-MV beam with and without a flattening filter. A total of 3 measurements for each plan were made with Gafchromic film placed between the spine sections and compared with Eclipse dose calculations using gamma analysis with a 2%/2 mm passing criteria. A single measurement in a homogeneous phantom was made for each plan before actual delivery. Gamma passing rates for measurements in the homogeneous phantom were 99.6% or greater. Passing rates for measurements made in the lumbar spine section without hardware were 99.3% or greater; measurements made in the thoracic spine containing titanium were 98.6 to 99.5%. Eclipse Analytical Anisotropic Algorithm can adequately model the effects of titanium implants for spine stereotactic body radiation therapy treatments using volumetric modulated arc therapy. Calculations with standard or extended CT scales give similarly accurate results. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Impact of the HERA I+II combined data on the CT14 QCD global analysis
NASA Astrophysics Data System (ADS)
Dulat, S.; Hou, T.-J.; Gao, J.; Guzzi, M.; Huston, J.; Nadolsky, P.; Pumplin, J.; Schmidt, C.; Stump, D.; Yuan, C.-P.
2016-11-01
A brief description of the impact of the recent HERA run I+II combination of inclusive deep inelastic scattering cross-section data on the CT14 global analysis of PDFs is given. The new CT14HERA2 PDFs at NLO and NNLO are illustrated. They employ the same parametrization used in the CT14 analysis, but with an additional shape parameter for describing the strange quark PDF. The HERA I+II data are reasonably well described by both CT14 and CT14HERA2 PDFs, and differences are smaller than the PDF uncertainties of the standard CT14 analysis. Both sets are acceptable when the error estimates are calculated in the CTEQ-TEA (CT) methodology and the standard CT14 PDFs are recommended to be continuously used for the analysis of LHC measurements.
A petrographic thin sectioning technique for evaluating composite materials
NASA Technical Reports Server (NTRS)
Parker, D. S.; Yee, A. F.
1989-01-01
Petrographic thin sectioning by a low-speed diamond saw has been used in conjunction with transmission polarized light microscopy for the characterization of the microstructure and deformation mechanisms of a variety of polymer systems. It has proven possible by these means to study three types of thermoplastic matrices for composite applications: PEEK, BPA-based polycarbonate (PC), and a rubber-modified PC. The reinforcing fibers for these matrices were in all cases AS4 carbon fibers, unidirectionally arrayed. Superior analyzability of matrix morphology and subsurface fracture processes is achieved by thin sectioning.
Connection method of separated luminal regions of intestine from CT volumes
NASA Astrophysics Data System (ADS)
Oda, Masahiro; Kitasaka, Takayuki; Furukawa, Kazuhiro; Watanabe, Osamu; Ando, Takafumi; Hirooka, Yoshiki; Goto, Hidemi; Mori, Kensaku
2015-03-01
This paper proposes a connection method of separated luminal regions of the intestine for Crohn's disease diagnosis. Crohn's disease is an inflammatory disease of the digestive tract. Capsule or conventional endoscopic diagnosis is performed for Crohn's disease diagnosis. However, parts of the intestines may not be observed in the endoscopic diagnosis if intestinal stenosis occurs. Endoscopes cannot pass through the stenosed parts. CT image-based diagnosis is developed as an alternative choice of the Crohn's disease. CT image-based diagnosis enables physicians to observe the entire intestines even if stenosed parts exist. CAD systems for Crohn's disease using CT volumes are recently developed. Such CAD systems need to reconstruct separated luminal regions of the intestines to analyze intestines. We propose a connection method of separated luminal regions of the intestines segmented from CT volumes. The luminal regions of the intestines are segmented from a CT volume. The centerlines of the luminal regions are calculated by using a thinning process. We enumerate all the possible sequences of the centerline segments. In this work, we newly introduce a condition using distance between connected ends points of the centerline segments. This condition eliminates unnatural connections of the centerline segments. Also, this condition reduces processing time. After generating a sequence list of the centerline segments, the correct sequence is obtained by using an evaluation function. We connect the luminal regions based on the correct sequence. Our experiments using four CT volumes showed that our method connected 6.5 out of 8.0 centerline segments per case. Processing times of the proposed method were reduced from the previous method.
Karlo, Christoph A; Patcas, Raphael; Kau, Thomas; Watzal, Helmut; Signorelli, Luca; Müller, Lukas; Ullrich, Oliver; Luder, Hans-Ulrich; Kellenberger, Christian J
2012-07-01
To determine the best suited sagittal MRI sequence out of a standard temporo-mandibular joint (TMJ) imaging protocol for the assessment of the cortical bone of the mandibular condyles of cadaveric specimens using micro-CT as the standard of reference. Sixteen TMJs in 8 human cadaveric heads (mean age, 81 years) were examined by MRI. Upon all sagittal sequences, two observers measured the cortical bone thickness (CBT) of the anterior, superior and posterior portions of the mandibular condyles (i.e. objective analysis), and assessed for the presence of cortical bone thinning, erosions or surface irregularities as well as subcortical bone cysts and anterior osteophytes (i.e. subjective analysis). Micro-CT of the condyles was performed to serve as the standard of reference for statistical analysis. Inter-observer agreements for objective (r = 0.83-0.99, P < 0.01) and subjective (κ = 0.67-0.88) analyses were very good. Mean CBT measurements were most accurate, and cortical bone thinning, erosions, surface irregularities and subcortical bone cysts were best depicted on the 3D fast spoiled gradient echo recalled sequence (3D FSPGR). The most reliable MRI sequence to assess the cortical bone of the mandibular condyles on sagittal imaging planes is the 3D FSPGR sequence. MRI may be used to assess the cortical bone of the TMJ. • Depiction of cortical bone is best on 3D FSPGR sequences. • MRI can assess treatment response in patients with TMJ abnormalities.
NASA Astrophysics Data System (ADS)
Cattaneo, Paolo M.; Dalstra, Michel; Beckmann, Felix; Donath, Tilman; Melsen, Birte
2004-10-01
This study explores the application of conventional micro tomography (μCT) and synchrotron radiation (SR) based μCT to evaluate the bone around titanium dental implants. The SR experiment was performed at beamline W2 of HASYLAB at DESY using a monochromatic X-ray beam of 50 keV. The testing material consisted of undecalcified bone segments harvested from the upper jaw of a macaca fascicularis monkey each containing a titanium dental implant. The results from the two different techniques were qualitatively compared with conventional histological sections examined under light microscopy. The SR-based μCT produced images that, especially at the bone-implant interface, are less noisy and sharper than the ones obtained with conventional μCT. For the proper evaluation of the implant-bone interface, only the SR-based μCT technique is able to display the areas of bony contact and visualize the true 3D structure of bone around dental implants correctly. This investigation shows that both conventional and SR-based μCT scanning techniques are non-destructive methods, which provide detailed images of bone. However with SR-based μCT it is possible to obtain an improved image quality of the bone surrounding dental implants, which display a level of detail comparable to histological sections. Therefore, SR-based μCT scanning could represent a valid, unbiased three-dimensional alternative to evaluate osseointegration of dental implants
Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.
We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.
Danz, J C; Habegger, M; Bosshardt, D D; Katsaros, C; Stavropoulos, A
2014-01-01
Histomorphometric evaluation of the buccal aspects of periodontal tissues in rodents requires reproducible alignment of maxillae and highly precise sections containing central sections of buccal roots; this is a cumbersome and technically sensitive process due to the small specimen size. The aim of the present report is to describe and analyze a method to transfer virtual sections of micro-computer tomographic (CT)-generated image stacks to the microtome for undecalcified histological processing and to describe the anatomy of the periodontium in rat molars. A total of 84 undecalcified sections of all buccal roots of seven untreated rats was analyzed. The accuracy of section coordinate transfer from virtual micro-CT slice to the histological slice, right–left side differences and the measurement error for linear and angular measurements on micro-CT and on histological micrographs were calculated using the Bland–Altman method, interclass correlation coefficient and the method of moments estimator. Also, manual alignment of the micro-CT-scanned rat maxilla was compared with multiplanar computer-reconstructed alignment. The supra alveolar rat anatomy is rather similar to human anatomy, whereas the alveolar bone is of compact type and the keratinized gingival epithelium bends apical to join the junctional epithelium. The high methodological standardization presented herein ensures retrieval of histological slices with excellent display of anatomical microstructures, in a reproducible manner, minimizes random errors, and thereby may contribute to the reduction of number of animals needed. PMID:24266502
7 CFR 29.3648 - Thin Leaf (C Group).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Thin Leaf (C Group). 29.3648 Section 29.3648... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3648 Thin Leaf (C Group). This group consists of leaves... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth...
7 CFR 29.3648 - Thin Leaf (C Group).
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Thin Leaf (C Group). 29.3648 Section 29.3648... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3648 Thin Leaf (C Group). This group consists of leaves... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth...
7 CFR 29.3648 - Thin Leaf (C Group).
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Thin Leaf (C Group). 29.3648 Section 29.3648... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3648 Thin Leaf (C Group). This group consists of leaves... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth...
7 CFR 29.3648 - Thin Leaf (C Group).
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Thin Leaf (C Group). 29.3648 Section 29.3648... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3648 Thin Leaf (C Group). This group consists of leaves... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth...
7 CFR 29.3648 - Thin Leaf (C Group).
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Thin Leaf (C Group). 29.3648 Section 29.3648... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3648 Thin Leaf (C Group). This group consists of leaves... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Z; Greskovich, J; Xia, P
Purpose: To generate virtual phantoms with clinically relevant deformation and use them to objectively evaluate geometric and dosimetric uncertainties of deformable image registration (DIR) algorithms. Methods: Ten lung cancer patients undergoing adaptive 3DCRT planning were selected. For each patient, a pair of planning CT (pCT) and replanning CT (rCT) were used as the basis for virtual phantom generation. Manually adjusted meshes were created for selected ROIs (e.g. PTV, lungs, spinal cord, esophagus, and heart) on pCT and rCT. The mesh vertices were input into a thin-plate spline algorithm to generate a reference displacement vector field (DVF). The reference DVF wasmore » used to deform pCT to generate a simulated replanning CT (srCT) that was closely matched to rCT. Three DIR algorithms (Demons, B-Spline, and intensity-based) were applied to these ten virtual phantoms. The images, ROIs, and doses were mapped from pCT to srCT using the DVFs computed by these three DIRs and compared to those mapped using the reference DVF. Results: The average Dice coefficients for selected ROIs were from 0.85 to 0.96 for Demons, from 0.86 to 0.97 for intensity-based, and from 0.76 to 0.95 for B-Spline. The average Hausdorff distances for selected ROIs were from 2.2 to 5.4 mm for Demons, from 2.3 to 6.8 mm for intensity-based, and from 2.4 to 11.4 mm for B-Spline. The average absolute dose errors for selected ROIs were from 0.2 to 0.6 Gy for Demons, from 0.1 to 0.5 Gy for intensity-based, and from 0.5 to 1.5 Gy for B-Spline. Conclusion: Virtual phantoms were modeled after patients with lung cancer and were clinically relevant for adaptive radiotherapy treatment replanning. Virtual phantoms with known DVFs serve as references and can provide a fair comparison when evaluating different DIRs. Demons and intensity-based DIRs were shown to have smaller geometric and dosimetric uncertainties than B-Spline. Z Shen: None; K Bzdusek: an employee of Philips Healthcare; J Greskovich: None; P Xia: received research grants from Philips Healthcare and Siemens Healthcare.« less
An iterative reconstruction method for high-pitch helical luggage CT
NASA Astrophysics Data System (ADS)
Xue, Hui; Zhang, Li; Chen, Zhiqiang; Jin, Xin
2012-10-01
X-ray luggage CT is widely used in airports and railway stations for the purpose of detecting contrabands and dangerous goods that may be potential threaten to public safety, playing an important role in homeland security. An X-ray luggage CT is usually in a helical trajectory with a high pitch for achieving a high passing speed of the luggage. The disadvantage of high pitch is that conventional filtered back-projection (FBP) requires a very large slice thickness, leading to bad axial resolution and helical artifacts. Especially when severe data inconsistencies are present in the z-direction, like the ends of a scanning object, the partial volume effect leads to inaccuracy value and may cause a wrong identification. In this paper, an iterative reconstruction method is developed to improve the image quality and accuracy for a large-spacing multi-detector high-pitch helical luggage CT system. In this method, the slice thickness is set to be much smaller than the pitch. Each slice involves projection data collected in a rather small angular range, being an ill-conditioned limited-angle problem. Firstly a low-resolution reconstruction is employed to obtain images, which are used as prior images in the following process. Then iterative reconstruction is performed to obtain high-resolution images. This method enables a high volume coverage speed and a thin reconstruction slice for the helical luggage CT. We validate this method with data collected in a commercial X-ray luggage CT.
Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Seki, Shinichiro; Obara, Makoto; van Cauteren, Marc; Takahashi, Masaya; Sugimura, Kazuro
2014-04-01
To assess the influence of ultrashort TE (UTE) intervals on pulmonary magnetic resonance imaging (MRI) with UTEs (UTE-MRI) for pulmonary functional loss assessment and clinical stage classification of smokers. A total 60 consecutive smokers (43 men and 17 women; mean age 70 years) with and without COPD underwent thin-section multidetector row computed tomography (MDCT), UTE-MRI, and pulmonary functional measurements. For each smoker, UTE-MRI was performed with three different UTE intervals (UTE-MRI A: 0.5 msec, UTE-MRI B: 1.0 msec, UTE-MRI C: 1.5 msec). By using the GOLD guidelines, the subjects were classified as: "smokers without COPD," "mild COPD," "moderate COPD," and "severe or very severe COPD." Then the mean T2* value from each UTE-MRI and CT-based functional lung volume (FLV) were correlated with pulmonary function test. Finally, Fisher's PLSD test was used to evaluate differences in each index among the four clinical stages. Each index correlated significantly with pulmonary function test results (P < 0.05). CT-based FLV and mean T2* values obtained from UTE-MRI A and B showed significant differences among all groups except between "smokers without COPD" and "mild COPD" groups (P < 0.05). UTE-MRI has a potential for management of smokers and the UTE interval is suggested as an important parameter in this setting. Copyright © 2013 Wiley Periodicals, Inc.
[Application of computed tomography (CT) examination for forensic medicine].
Urbanik, Andrzej; Chrzan, Robert
2013-01-01
The aim of the study is to present a own experiences in usage of post mortem CT examination for forensic medicine. With the help of 16-slice CT scanner 181 corpses were examined. Obtained during acquisition imaging data are later developed with dedicated programmes. Analyzed images were extracted from axial sections, multiplanar reconstructions as well as 3D reconstructions. Gained information helped greatly when classical autopsy was performed by making it more accurate. A CT scan images recorded digitally enable to evaluate corpses at any time, despite processes of putrefaction or cremation. If possible CT examination should precede classical autopsy.
An iodine supplementation of tomato fruits coated with an edible film of the iodide-doped chitosan.
Limchoowong, Nunticha; Sricharoen, Phitchan; Techawongstien, Suchila; Chanthai, Saksit
2016-06-01
In general, the risk of numerous thyroid cancers inevitably increases among people with iodine deficiencies. An iodide-doped chitosan (CT-I) solution was prepared for dipping tomatoes to coat the fresh surface with an edible film (1.5 μm), thereby providing iodine-rich fruits for daily intake. Characterisation of the thin film was conducted by FTIR and SEM. Stability of the CT-I film was studied via water immersion at various time intervals, and no residual iodide leached out due to intrinsic interactions between the cationic amino group of chitosan and iodide ions. Moreover, the iodide supplement exhibited no effect on the antioxidant activity of tomatoes. The iodine content in the film-coated tomato was determined by ICP-OES. The tomato coating with 1.5% (w/v) CT-I contained approximately 0.4 μg iodide per gram fresh weight. In addition, the freshness and storability of iodine-doped tomatoes were also maintained for shelf-life concerns. Copyright © 2016 Elsevier Ltd. All rights reserved.
Scott, Anna E.; Vasilescu, Dragos M.; Seal, Katherine A. D.; Keyes, Samuel D.; Mavrogordato, Mark N.; Hogg, James C.; Sinclair, Ian; Warner, Jane A.; Hackett, Tillie-Louise; Lackie, Peter M.
2015-01-01
Background Understanding the three-dimensional (3-D) micro-architecture of lung tissue can provide insights into the pathology of lung disease. Micro computed tomography (µCT) has previously been used to elucidate lung 3D histology and morphometry in fixed samples that have been stained with contrast agents or air inflated and dried. However, non-destructive microstructural 3D imaging of formalin-fixed paraffin embedded (FFPE) tissues would facilitate retrospective analysis of extensive tissue archives of lung FFPE lung samples with linked clinical data. Methods FFPE human lung tissue samples (n = 4) were scanned using a Nikon metrology µCT scanner. Semi-automatic techniques were used to segment the 3D structure of airways and blood vessels. Airspace size (mean linear intercept, Lm) was measured on µCT images and on matched histological sections from the same FFPE samples imaged by light microscopy to validate µCT imaging. Results The µCT imaging protocol provided contrast between tissue and paraffin in FFPE samples (15mm x 7mm). Resolution (voxel size 6.7 µm) in the reconstructed images was sufficient for semi-automatic image segmentation of airways and blood vessels as well as quantitative airspace analysis. The scans were also used to scout for regions of interest, enabling time-efficient preparation of conventional histological sections. The Lm measurements from µCT images were not significantly different to those from matched histological sections. Conclusion We demonstrated how non-destructive imaging of routinely prepared FFPE samples by laboratory µCT can be used to visualize and assess the 3D morphology of the lung including by morphometric analysis. PMID:26030902
Measurement of cardiac output from dynamic pulmonary circulation time CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, Seonghwan, E-mail: Seonghwan.Yee@Beaumont.edu; Scalzetti, Ernest M.
Purpose: To introduce a method of estimating cardiac output from the dynamic pulmonary circulation time CT that is primarily used to determine the optimal time window of CT pulmonary angiography (CTPA). Methods: Dynamic pulmonary circulation time CT series, acquired for eight patients, were retrospectively analyzed. The dynamic CT series was acquired, prior to the main CTPA, in cine mode (1 frame/s) for a single slice at the level of the main pulmonary artery covering the cross sections of ascending aorta (AA) and descending aorta (DA) during the infusion of iodinated contrast. The time series of contrast changes obtained for DA,more » which is the downstream of AA, was assumed to be related to the time series for AA by the convolution with a delay function. The delay time constant in the delay function, representing the average time interval between the cross sections of AA and DA, was determined by least square error fitting between the convoluted AA time series and the DA time series. The cardiac output was then calculated by dividing the volume of the aortic arch between the cross sections of AA and DA (estimated from the single slice CT image) by the average time interval, and multiplying the result by a correction factor. Results: The mean cardiac output value for the six patients was 5.11 (l/min) (with a standard deviation of 1.57 l/min), which is in good agreement with the literature value; the data for the other two patients were too noisy for processing. Conclusions: The dynamic single-slice pulmonary circulation time CT series also can be used to estimate cardiac output.« less
2013-01-01
Background In biomedical research, a huge variety of different techniques is currently available for the structural examination of small specimens, including conventional light microscopy (LM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), microscopic X-ray computed tomography (microCT), and many others. Since every imaging method is physically limited by certain parameters, a correlative use of complementary methods often yields a significant broader range of information. Here we demonstrate the advantages of the correlative use of microCT, light microscopy, and transmission electron microscopy for the analysis of small biological samples. Results We used a small juvenile bivalve mollusc (Mytilus galloprovincialis, approximately 0.8 mm length) to demonstrate the workflow of a correlative examination by microCT, LM serial section analysis, and TEM-re-sectioning. Initially these three datasets were analyzed separately, and subsequently they were fused in one 3D scene. This workflow is very straightforward. The specimen was processed as usual for transmission electron microscopy including post-fixation in osmium tetroxide and embedding in epoxy resin. Subsequently it was imaged with microCT. Post-fixation in osmium tetroxide yielded sufficient X-ray contrast for microCT imaging, since the X-ray absorption of epoxy resin is low. Thereafter, the same specimen was serially sectioned for LM investigation. The serial section images were aligned and specific organ systems were reconstructed based on manual segmentation and surface rendering. According to the region of interest (ROI), specific LM sections were detached from the slides, re-mounted on resin blocks and re-sectioned (ultrathin) for TEM. For analysis, image data from the three different modalities was co-registered into a single 3D scene using the software AMIRA®. We were able to register both the LM section series volume and TEM slices neatly to the microCT dataset, with small geometric deviations occurring only in the peripheral areas of the specimen. Based on co-registered datasets the excretory organs, which were chosen as ROI for this study, could be investigated regarding both their ultrastructure as well as their position in the organism and their spatial relationship to adjacent tissues. We found structures typical for mollusc excretory systems, including ultrafiltration sites at the pericardial wall, and ducts leading from the pericardium towards the kidneys, which exhibit a typical basal infolding system. Conclusions The presented approach allows a comprehensive analysis and presentation of small objects regarding both the overall organization as well as cellular and subcellular details. Although our protocol involves a variety of different equipment and procedures, we maintain that it offers savings in both effort and cost. Co-registration of datasets from different imaging modalities can be accomplished with high-end desktop computers and offers new opportunities for understanding and communicating structural relationships within organisms and tissues. In general, the correlative use of different microscopic imaging techniques will continue to become more widespread in morphological and structural research in zoology. Classical TEM serial section investigations are extremely time consuming, and modern methods for 3D analysis of ultrastructure such as SBF-SEM and FIB-SEM are limited to very small volumes for examination. Thus the re-sectioning of LM sections is suitable for speeding up TEM examination substantially, while microCT could become a key-method for complementing ultrastructural examinations. PMID:23915384
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z. M.; Laser Fusion Research Center, CAEP, Mianyang 621900; He, X. T.
A complex target (CT) configuration tailored for generating high quality proton bunch by circularly polarized laser pulses at intensities of 10{sup 20-21} W/cm{sup 2} is proposed. Two-dimensional particle-in-cell simulations show that both the collimation and mono-energetic qualities of the accelerated proton bunch obtained using a front-shaped thin foil can be greatly enhanced by the backside inhomogeneous plasma layer. The main mechanisms for improving the accelerated protons are identified and discussed. These include stabilization of the photon cavity, providing hole-boring supplementary acceleration and suppressing the thermal-electron effects. A theory for tailoring the CT parameters is also presented.
Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon
Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu
2017-01-01
Abstract Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results. Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon–oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images. Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects. Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images reflected pulmonary function. Xenon images obtained with xenon-enhanced CT using a single-breath-hold technique can qualitatively depict pulmonary ventilation. A larger study comprising only COPD patients should be conducted, as xenon-enhanced CT is expected to be a promising technique for the management of COPD. PMID:28099359
Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu
2017-01-01
Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results.Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon-oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images.Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects.Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images reflected pulmonary function. Xenon images obtained with xenon-enhanced CT using a single-breath-hold technique can qualitatively depict pulmonary ventilation. A larger study comprising only COPD patients should be conducted, as xenon-enhanced CT is expected to be a promising technique for the management of COPD.
Lischinsky, Julieta E.; Skocic, Jovanka; Clairman, Hayyah; Rovet, Joanne
2016-01-01
In rodents, insufficient thyroid hormone (TH) gestationally has adverse effects on cerebral cortex development. Comparable studies of humans examining how TH insufficiency affects cortical morphology are limited to children with congenital hypothyroidism or offspring of hypothyroxinemic women; effects on cortex of children born to women with clinically diagnosed hypothyroidism are not known. We studied archived MRI scans from 22 children aged 10–12 years born to women treated for preexisting or de novo hypothyroidism in pregnancy (HYPO) and 24 similar age and sex controls from euthyroid women. FreeSurfer Image Analysis Suite software was used to measure cortical thickness (CT) and a vertex-based approach served to compare HYPO versus control groups and Severe versus Mild HYPO subgroups as well as to perform regression analyses examining effects of trimester-specific maternal TSH on CT. Results showed that relative to controls, HYPO had multiple regions of both cortical thinning and thickening, which differed for left and right hemispheres. In HYPO, thinning was confined to medial and mid-lateral regions of each hemisphere and thickening to superior regions (primarily frontal) of the left hemisphere and inferior regions (particularly occipital and temporal) of the right. The Severe HYPO subgroup showed more thinning than Mild in frontal and temporal regions and more thickening in bilateral posterior and frontal regions. Maternal TSH values predicted degree of thinning and thickening within multiple brain regions, with the pattern and direction of correlations differing by trimester. Notably, some correlations remained when cases born to women with severe hypothyroidism were removed from the analyses, suggesting that mild variations of maternal TH may permanently affect offspring cortex. We conclude that maternal hypothyroidism during pregnancy has long-lasting manifestations on the cortical morphology of their offspring with specific effects reflecting both severity and timing of maternal TH insufficiency. PMID:26941710
Larsson, Emanuel; Martin, Sabine; Lazzarini, Marcio; Tromba, Giuliana; Missbach-Guentner, Jeannine; Pinkert-Leetsch, Diana; Katschinski, Dörthe M.; Alves, Frauke
2017-01-01
The small size of the adult and developing mouse heart poses a great challenge for imaging in preclinical research. The aim of the study was to establish a phosphotungstic acid (PTA) ex-vivo staining approach that efficiently enhances the x-ray attenuation of soft-tissue to allow high resolution 3D visualization of mouse hearts by synchrotron radiation based μCT (SRμCT) and classical μCT. We demonstrate that SRμCT of PTA stained mouse hearts ex-vivo allows imaging of the cardiac atrium, ventricles, myocardium especially its fibre structure and vessel walls in great detail and furthermore enables the depiction of growth and anatomical changes during distinct developmental stages of hearts in mouse embryos. Our x-ray based virtual histology approach is not limited to SRμCT as it does not require monochromatic and/or coherent x-ray sources and even more importantly can be combined with conventional histological procedures. Furthermore, it permits volumetric measurements as we show for the assessment of the plaque volumes in the aortic valve region of mice from an ApoE-/- mouse model. Subsequent, Masson-Goldner trichrome staining of paraffin sections of PTA stained samples revealed intact collagen and muscle fibres and positive staining of CD31 on endothelial cells by immunohistochemistry illustrates that our approach does not prevent immunochemistry analysis. The feasibility to scan hearts already embedded in paraffin ensured a 100% correlation between virtual cut sections of the CT data sets and histological heart sections of the same sample and may allow in future guiding the cutting process to specific regions of interest. In summary, since our CT based virtual histology approach is a powerful tool for the 3D depiction of morphological alterations in hearts and embryos in high resolution and can be combined with classical histological analysis it may be used in preclinical research to unravel structural alterations of various heart diseases. PMID:28178293
Basheer Ahamed, Shadir Bughari; Vanajassun, Purushothaman Pranav; Rajkumar, Kothandaraman; Mahalaxmi, Sekar
2018-04-01
Single cross-sectional nickel-titanium (NiTi) rotary instruments during continuous rotations are subjected to constant and variable stresses depending on the canal anatomy. This study was intended to create 2 new experimental, theoretic single-file designs with combinations of triple U (TU), triangle (TR), and convex triangle (CT) cross sections and to compare their bending stresses in simulated root canals with a single cross-sectional instrument using finite element analysis. A 3-dimensional model of the simulated root canal with 45° curvature and NiTi files with 5 cross-sectional designs were created using Pro/ENGINEER Wildfire 4.0 software (PTC Inc, Needham, MA) and ANSYS software (version 17; ANSYS, Inc, Canonsburg, PA) for finite element analysis. The NiTi files of 3 groups had single cross-sectional shapes of CT, TR, and TU designs, and 2 experimental groups had a CT, TR, and TU (CTU) design and a TU, TR, and CT (UTC) design. The file was rotated in simulated root canals to analyze the bending stress, and the von Mises stress value for every file was recorded in MPa. Statistical analysis was performed using the Kruskal-Wallis test and the Bonferroni-adjusted Mann-Whitney test for multiple pair-wise comparison with a P value <.05 (95 %). The maximum bending stress of the rotary file was observed in the apical third of the CT design, whereas comparatively less stress was recorded in the CTU design. The TU and TR designs showed a similar stress pattern at the curvature, whereas the UTC design showed greater stress in the apical and middle thirds of the file in curved canals. All the file designs showed a statistically significant difference. The CTU designed instruments showed the least bending stress on a 45° angulated simulated root canal when compared with all the other tested designs. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merzan, D; Bujila, R; Nowik, P
Purpose: To manufacture a phantom specifically designed for the purpose of evaluating the performance of the longitudinal and angular automatic tube current modulation (ATCM) on modern CT scanners. Methods: In order to evaluate angular ATCM, the phantom has an elliptical cross section (aspect ratio 3:2). To evaluate longitudinal ATCM, the phantom consists of 3 sections, with different major axes (25 cm, 30 cm and 35 cm). Each section is 15 cm long in the longitudinal direction. Between each section is a smooth transition. The phantom was milled from a solid block of PMMA. ATCM performance is evaluated by 1) analyzingmore » the applied tube current for each slice of the phantom and 2) analyzing the distribution of image noise (σ) along the scan direction at different positions in the phantom. A demonstration of the ATCM performance evaluation is given by investigating the effects of miscentering during a CT scan. Results: The developed phantom has proven useful for evaluating both the longitudinal and angular ATCM on modern CT scanners (spiral collimations ≥ 4 cm). Further benefits are the smooth transitions between the sections that prevent abnormal responses in the ATCM and the invariant sections that provide a means for investigating the stability of image noise. The homogeneity of the phantom makes image noise at different positions along the scan direction easy to quantify, which is crucial to understand how well the applied ATCM can produce a desired image quality. Conclusion: It is important to understand how the ATCM functions on CT scanners as it can directly affect dose and image quality. The phantom that has been developed is a most valuable tool to understand how different variables during a scan can affect the outcome of the longitudinal and angular ATCM.« less
Kim, Young Jin; Hur, Jin; Shim, Chi-Young; Lee, Hye-Jeong; Ha, Jong-Won; Choe, Kyu Ok; Heo, Ji Hoe; Choi, Eui-Young; Choi, Byoung Wook
2009-01-01
To evaluate the clinical feasibility and accuracy of 64-section multidetector computed tomography (CT) compared with transesophageal echocardiography (TEE) for diagnosis of a patent foramen ovale (PFO). Institutional review board approval was obtained for this retrospective study. The study included 152 consecutive stroke patients (mean age, 61.7 years; 98 men, 54 women) who underwent both cardiac multidetector CT and TEE. Electrocardiographically gated cardiac CT was performed with a 64-section CT scanner by using a saline-chaser contrast agent injection technique. A contrast agent jet from the contrast agent-filled left atrium (LA) to the saline-filled right atrium (RA) and channel-like appearance of the interatrial septum (IAS) were evaluated on axial and oblique sagittal CT images. Two-dimensional and Doppler TEE were performed to detect PFO. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of CT were obtained with TEE as the reference standard. A PFO was present in 26 patients at TEE. On CT images, a left-to-right contrast agent jet toward the inferior vena cava was noted in 21 patients (sensitivity, 73.1%; specificity, 98.4%; PPV, 90.5%; NPV, 94.7%). Channel-like appearance of the IAS was detected in 38 patients (sensitivity, 76.9%; specificity, 85.7%; PPV, 52.6%; NPV, 94.7%). Channel-like appearance of the IAS was noted in all patients who had a contrast agent jet. A contrast agent jet from LA to RA toward the inferior vena cava with channel-like appearance of the IAS on CT images confirms the presence of a PFO. (c) RSNA, 2008.
Taxonomic overview and tusk growth analyses of Ziegler Reservoir proboscideans
NASA Astrophysics Data System (ADS)
Fisher, Daniel C.; Cherney, Michael D.; Newton, Cody; Rountrey, Adam N.; Calamari, Zachary T.; Stucky, Richard K.; Lucking, Carol; Petrie, Lesley
2014-11-01
At an altitude of 2705 m in the Colorado Rockies (USA), the Ziegler Reservoir fossil site gives a rare look at a high-elevation ecosystem from the late Pleistocene (especially MIS 5) of North America. Remains of more than four mammoths and about 35 mastodons dominate the macrofossil assemblage. Mammoth remains are attributed to Mammuthus columbi, and mastodon remains are referred to the well-known, continent-wide Mammut americanum. Mastodon remains occur within and between several lake-margin slump deposits. Their deposition must therefore have occurred as events that were to some degree separate in time. We treat the mastodon assemblage in each stratigraphic unit as a source of information on environmental conditions during the lives of these individuals. Mastodon mandibular tusks are abundant at the site and represent both males and females, from calves to full-grown adults. This study presents the first attempt to use microCT, thin-section, and isotope records from mandibular tusks to reconstruct features of life-history. We recognize an up-section trend in δ18O profiles toward higher values, suggestive of warmer temperatures. Throughout this sequence, mastodon growth histories show low mean sensitivities suggestive of low levels of environmental stress. This work helps frame expectations for assessing environmental pressures on terminal Pleistocene populations.
Comparison of cross-sectional anatomy and computed tomography of the tarsus in horses.
Raes, Els V; Bergman, Eric H J; van der Veen, Henk; Vanderperren, Katrien; Van der Vekens, Elke; Saunders, Jimmy H
2011-09-01
To compare computed tomography (CT) images of equine tarsi with cross-sectional anatomic slices and evaluate the potential of CT for imaging pathological tarsal changes in horses. 6 anatomically normal equine cadaveric hind limbs and 4 tarsi with pathological changes. Precontrast CT was performed on 3 equine tarsi; sagittal and dorsal reconstructions were made. In all limbs, postcontrast CT was performed after intra-articular contrast medium injection of the tarsocrural, centrodistal, and tarsometatarsal joints. Images were matched with corresponding anatomic slices. Four tarsi with pathological changes underwent CT examination. The tibia, talus, calcaneus, and central, fused first and second, third, and fourth tarsal bones were clearly visualized as well as the long digital extensor, superficial digital flexor, lateral digital flexor (with tarsal flexor retinaculum), gastrocnemius, peroneus tertius, and tibialis cranialis tendons and the long plantar ligament. The lateral digital extensor, medial digital flexor, split peroneus tertius, and tibialis cranialis tendons and collateral ligaments could be located but not always clearly identified. Some small tarsal ligaments were identifiable, including plantar, medial, interosseus, and lateral talocalcaneal ligaments; interosseus talocentral, centrodistal, and tarsometatarsal ligaments; proximal and distal plantar ligaments; and talometatarsal ligament. Parts of the articular cartilage could be assessed on postcontrast images. Lesions were detected in the 4 tarsi with pathological changes. CT of the tarsus is recommended when radiography and ultrasonography are inconclusive and during preoperative planning for treatment of complex fractures. Images from this study can serve as a CT reference, and CT of pathological changes was useful.
Cometary particles - Thin sectioning and electron beam analysis
NASA Technical Reports Server (NTRS)
Bradley, J. P.; Brownlee, D. E.
1986-01-01
Thin sections (500 to 1000 angstroms thick) of individual micrometeorites (5 to 15 micrometers) have been prepared with an ultramicrotome equipped with a diamond knife. Electron microscope examination of these sections has revealed the internal structures of chondritic micrometeorites, and a subset of highly porous, fragile particles has been identified. Delicate meteoritic materials such as these are characteristic of debris from cometary meteors.
Grady, A T; Sosa, J A; Tanpitukpongse, T P; Choudhury, K R; Gupta, R T; Hoang, J K
2015-02-01
Variability in radiologists' reporting styles and recommendations for incidental thyroid nodules can lead to confusion among clinicians and may contribute to inconsistent patient care. Our aim was to describe reporting practices of radiologists for incidental thyroid nodules seen on CT and MR imaging and to determine factors that influence reporting styles. This is a retrospective study of patients with incidental thyroid nodules reported on CT and MR imaging between January and December 2011, identified by text search for "thyroid nodule" in all CT and MR imaging reports. The studies included CT and MR imaging scans of the neck, spine, and chest. Radiology reports were divided into those that mentioned the incidental thyroid nodules only in the "Findings" section versus those that reported the incidental thyroid nodules in the "Impression" section as well, because this latter reporting style gives more emphasis to the finding. Univariate and multivariate analyses were performed to identify radiologist, patient, and nodule characteristics that influenced reporting styles. Three hundred seventy-five patients met the criterion of having incidental thyroid nodules. One hundred thirty-eight (37%) patients had incidental thyroid nodules reported in the "Impression" section. On multivariate analysis, only radiologists' divisions and nodule size were associated with reporting in "Impression." Chest radiologists and neuroradiologists were more likely to report incidental thyroid nodules in the "Impression" section than their abdominal imaging colleagues, and larger incidental thyroid nodules were more likely to be reported in "Impression" (P ≤ .03). Seventy-three percent of patients with incidental thyroid nodules of ≥20 mm were reported in the "Impression" section, but higher variability in reporting was seen for incidental thyroid nodules measuring 10-14 mm and 15-19 mm, which were reported in "Impression" for 61% and 50% of patients, respectively. Reporting practices for incidental thyroid nodules detected on CT and MR imaging are predominantly influenced by nodule size and the radiologist's subspecialty. Reporting was highly variable for nodules measuring 10-19 mm; this finding can be partially attributed to different reporting styles among radiology subspecialty divisions. The variability demonstrated in this study further underscores the need to develop CT and MR imaging practice guidelines with the goal of standardizing reporting of incidental thyroid nodules and thereby potentially improving the consistency and quality of patient care. © 2015 by American Journal of Neuroradiology.
Pattmöller, Johanna; Wang, Jiong; Zemova, Elena; Seitz, Berthold; Eppig, Timo; Langenbucher, Achim; Szentmáry, Nóra
2015-09-01
To analyze corneal surface temperature profile in a young and healthy study population and to determine the impact of corneal thickness (CT), anterior chamber depth (ACD), and endothelial cell density (ECD) on surface temperature. In this prospective, single-center study 61 healthy right eyes of 61 subjects without tear film pathologies (mean age 24.9 ± 6.7 years) were recruited. Ocular surface temperature (OST) was measured with the Ocular Surface Thermographer TG-1000. From Pentacam HR CT and ACD, and from specular microscopy ECD and central corneal thickness (CCT) were acquired. From the raw measurement data (OST, CT and ACD) we extracted a) local OST the corneal center and 3mm away from the center at the 3, 6, and 9 o'clock positions, and b) Zernike parameters Z1, Z2 and Z3 to evaluate the general temperature profile within a 6mm circular area around the center. Overall, there was no correlation between OST and CT, ACD or ECD. Local OST did not correlate with CT at any measurement position. On average local OST was highest at measurement positions where CT was lowest, but without reaching statistical significance. Baseline OST was highest at thin corneal regions and temperature decay over time was smallest in those regions. Z1, Z2 and Z3 correlated well with CT. In healthy subjects corneal thickness, endothelial cell density and anterior chamber depth have no effect on corneal surface temperature. The general temperature profile seems to be influenced by the corneal thickness profile effecting a higher temperature and lower decay at thinner corneal regions. Copyright © 2014. Published by Elsevier GmbH.
A comparison of hepatic segmental anatomy as revealed by cross-sections and MPR CT imaging.
Liu, Xue-Jing; Zhang, Jian-Fei; Sui, Hong-Jin; Yu, Sheng-Bo; Gong, Jin; Liu, Jie; Wu, Le-Bin; Liu, Cheng; Bai, Jian; Shi, Bing-Yi
2013-05-01
To compare the areas of human liver horizontal sections with computed tomography (CT) images and to evaluate whether the subsegments determined by CT are consistent with the actual anatomy. Six human cadaver livers were made into horizontal slices with multislice spiral CT three-dimensional (3D) reconstruction was used during infusion process. Each liver segment was displayed using different color, and 3D images of the portal and hepatic vein were reconstructed. Each segmental area was measured on CT-reconstructed images, which were compared with the actual area on the sections of the same liver. The measurements were performed at four key levels namely: (1) the three hepatic veins, (2) the left, and (3) the right branch of portal vein (PV), and (4) caudal to the bifurcation of the PV. By dividing the sum of these areas by the total area of the liver, the authors got the percentage of the incorrectly determined subsegmental areas. In addition to these percentage values, the maximum distances of the radiologically determined intersegmental boundaries from the true anatomic boundaries were measured. On the four key levels, an average of 28.64 ± 10.26% of the hepatic area of CT images was attributed to an incorrect segment. The mean-maximum error between artificial segments on images and actual anatomical segments was 3.81 ± 1.37 cm. The correlation between radiological segmenting method and actual anatomy was poor. The hepatic segments being divided strictly according to the branching point of the PV could be more informative during liver segmental resection. Copyright © 2012 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Z; Koyfman, S; Xia, P
2015-06-15
Purpose: To evaluate geometric and dosimetric uncertainties of CT-CBCT deformable image registration (DIR) algorithms using digital phantoms generated from real patients. Methods: We selected ten H&N cancer patients with adaptive IMRT. For each patient, a planning CT (CT1), a replanning CT (CT2), and a pretreatment CBCT (CBCT1) were used as the basis for digital phantom creation. Manually adjusted meshes were created for selected ROIs (e.g. PTVs, brainstem, spinal cord, mandible, and parotids) on CT1 and CT2. The mesh vertices were input into a thin-plate spline algorithm to generate a reference displacement vector field (DVF). The reference DVF was applied tomore » CBCT1 to create a simulated mid-treatment CBCT (CBCT2). The CT-CBCT digital phantom consisted of CT1 and CBCT2, which were linked by the reference DVF. Three DIR algorithms (Demons, B-Spline, and intensity-based) were applied to these ten digital phantoms. The images, ROIs, and volumetric doses were mapped from CT1 to CBCT2 using the DVFs computed by these three DIRs and compared to those mapped using the reference DVF. Results: The average Dice coefficients for selected ROIs were from 0.83 to 0.94 for Demons, from 0.82 to 0.95 for B-Spline, and from 0.67 to 0.89 for intensity-based DIR. The average Hausdorff distances for selected ROIs were from 2.4 to 6.2 mm for Demons, from 1.8 to 5.9 mm for B-Spline, and from 2.8 to 11.2 mm for intensity-based DIR. The average absolute dose errors for selected ROIs were from 0.7 to 2.1 Gy for Demons, from 0.7 to 2.9 Gy for B- Spline, and from 1.3 to 4.5 Gy for intensity-based DIR. Conclusion: Using clinically realistic CT-CBCT digital phantoms, Demons and B-Spline were shown to have similar geometric and dosimetric uncertainties while intensity-based DIR had the worst uncertainties. CT-CBCT DIR has the potential to provide accurate CBCT-based dose verification for H&N adaptive radiotherapy. Z Shen: None; K Bzdusek: an employee of Philips Healthcare; S Koyfman: None; P Xia: received research grants from Philips Healthcare and Siemens Healthcare.« less
Structure and Assembly of Intracellular Mature Vaccinia Virus: Thin-Section Analyses
Griffiths, Gareth; Roos, Norbert; Schleich, Sybille; Locker, Jacomine Krijnse
2001-01-01
In the preceding study (see accompanying paper), we showed by a variety of different techniques that intracellular mature vaccinia virus (vaccinia IMV) is unexpectedly complex in its structural organization and that this complexity also extends to the underlying viral core, which is highly folded. With that analysis as a foundation, we now present different thin-section electron microscopy approaches for analyzing the IMV and the processes by which it is assembled in infected HeLa cells. We focus on conventional epoxy resin thin sections as well as cryosections to describe key intermediates in the assembly process. We took advantage of streptolysin O's ability to selectively permeabilize the plasma membrane of infected cells to improve membrane contrast, and we used antibodies against bone fide integral membrane proteins of the virus to unequivocally identify membrane profiles in thin sections. All of the images presented here can be rationalized with respect to the model put forward for the assembly of the IMV in the accompanying paper. PMID:11602745
Reduced Dimensionality Lithium Niobate Microsystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichenfield, Matt
2017-01-01
The following report describes work performed under the LDRD program at Sandia National Laboratories October 2014 and September 2016. The work presented demonstrates the ability of Sandia Labs to develop state-of-the-art photonic devices based on thin film lithium niobate (LiNbO 3 ). Section 1 provides an introduction to integrated LiNbO 3 devices and motivation for developing thin film nonlinear optical systems. Section 2 describes the design, fabrication, and photonic performance of thin film optical microdisks fabricated from bulk LiNbO 3 using a bulk implantation method developed at Sandia. Sections 3 and 4 describe the development of similar thin film LiNbOmore » 3 structures fabricated from LiNbO 3 on insulator (LNOI) substrates and our demonstration of optical frequency conversion with state-of-the-art efficiency. Finally, Section 5 describes similar microdisk resonators fabricated from LNOI wafers with a buried metal layer, in which we demonstrate electro-optic modulation.« less
NASA Astrophysics Data System (ADS)
Schneider, Wilfried; Bortfeld, Thomas; Schlegel, Wolfgang
2000-02-01
We describe a new method to convert CT numbers into mass density and elemental weights of tissues required as input for dose calculations with Monte Carlo codes such as EGS4. As a first step, we calculate the CT numbers for 71 human tissues. To reduce the effort for the necessary fits of the CT numbers to mass density and elemental weights, we establish four sections on the CT number scale, each confined by selected tissues. Within each section, the mass density and elemental weights of the selected tissues are interpolated. For this purpose, functional relationships between the CT number and each of the tissue parameters, valid for media which are composed of only two components in varying proportions, are derived. Compared with conventional data fits, no loss of accuracy is accepted when using the interpolation functions. Assuming plausible values for the deviations of calculated and measured CT numbers, the mass density can be determined with an accuracy better than 0.04 g cm-3 . The weights of phosphorus and calcium can be determined with maximum uncertainties of 1 or 2.3 percentage points (pp) respectively. Similar values can be achieved for hydrogen (0.8 pp) and nitrogen (3 pp). For carbon and oxygen weights, errors up to 14 pp can occur. The influence of the elemental weights on the results of Monte Carlo dose calculations is investigated and discussed.
Thin Film Ceramic Strain Sensor Development for High Temperature Environments
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M.; Laster, Kimala L.
2008-01-01
The need for sensors to operate in harsh environments is illustrated by the need for measurements in the turbine engine hot section. The degradation and damage that develops over time in hot section components can lead to catastrophic failure. At present, the degradation processes that occur in the harsh hot section environment are poorly characterized, which hinders development of more durable components, and since it is so difficult to model turbine blade temperatures, strains, etc, actual measurements are needed. The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in harsh environments. The effort at the NASA Glenn Research Center (GRC) to develop high temperature thin film ceramic static strain gauges for application in turbine engines is described, first in the fan and compressor modules, and then in the hot section. The near-term goal of this research effort was to identify candidate thin film ceramic sensor materials and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. A thorough literature search was conducted for ceramics that have the potential for application as high temperature thin film strain gauges chemically and physically compatible with the NASA GRCs microfabrication procedures and substrate materials. Test results are given for tantalum, titanium and zirconium-based nitride and oxynitride ceramic films.
NASA Astrophysics Data System (ADS)
Pastore, Z.; Church, N. S.; McEnroe, S. A.; Oda, H.; ter Maat, G. W.
2017-12-01
Rocks samples can have wide range of magnetic properties depending on composition, amount of ferromagnetic minerals, grain sizes and microstructures. These influence the magnetic anomalies from the micro to the global scale making the study of the magnetic properties of interest for multiple applications. Later geological processes such as serpentinization can significantly influence these properties and change the nature of the magnetic anomalies. Particularly, magnetic properties such as remanent magnetization and magnetic susceptibility are directly linked to the magnetic mineralogy composition and grain size and can provide useful information about the geological history of the source. Scanning magnetic microscopy is a highly sensitive and high-resolution magnetometric technique for mapping the magnetic field over a planar surface of a rock sample. The device measures the vertical component of the field above the thin sections and the technique offers a spatial resolution down to tens of micrometers and thus can be used to investigate discrete magnetic mineral grains or magnetic textures and structures, and the magnetic history of the sample. This technique allows a direct correlation between the mineral chemistry (through both electron and optical microscopy) and the magnetic properties. We present as case-study three thin section magnetic scans of two dunite samples from the Reinfjord Ultramafic complex, in northern Norway. The selected thin sections show different magnetic properties which reflect the magnetic petrology. One of the thin sections is from a pristine dunite sample; the other two are highly serpentinized with newly formed magnetite found in multiple, few micrometer thick, veins. We present the preliminary results obtained applying a forward modelling approach on the magnetic anomaly maps acquired over the thin sections. Modelling consists of uniformly-magnetized polygonal bodies whose geometry is constrained by the thickness of the thin section and by the shape of the magnetic grains. The NRM direction in each polygon is modelled to fit the NRM magnetic field. Modelling helps in determining the NRM directions and intensities of discrete magnetic sources inside the thin sections and thus contributes to the study of the link between the magnetic petrology and the magnetic anomalies.
Complete Tem-Tomography: 3D Structure of Gems Cluster
NASA Technical Reports Server (NTRS)
Matsuno, J.; Miyake, A.; Tsuchiyama, A.; Messenger, S.; Nakamura-Messenger, K.
2015-01-01
GEMS (glass with embedded metal and sulfide) grains in interplanetary dust particles (IDPs) are considered to be one of the ubiquitous and fundamental building blocks of solids in the Solar System. They have been considered to be interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk but the elemental and isotopic composition measurements suggest that most of them have been formed in the protoplanetary disk as condensates from high temperature gas. This formation model is also supported by the formation of GEMS-like grains with respect to the size, mineral assemblage, texture and infrared spectrum by condensation experiments from mean GEMS composition materials. Previous GEMS studies were performed only with 2D observation by transmission electron microscopy (TEM) or scanning TEM (STEM). However, the 3D shape and structure of GEMS grains and the spatial distribution of Fe/FeS's has critical information about their formation and origin. Recently, the 3D structure of GEMS grains in ultrathin sections of cluster IDPs was revealed by electron tomography using a TEM/STEM (JEM-2100F, JEOL). However, CT images of thin sections mounted on Cu grids acquired by conventional TEM-tomography are limited to low tilt angles (e. g., less than absolute value of 75 deg. In fact, previous 3D TEM observations of GEMS were affected by some artifacts related to the limited tilt range in the TEM used. Complete tomographic images should be acquired by rotating the sample tilt angle over a range of more than absolute value of 80 deg otherwise the CT images lose their correct structures. In order to constrain the origin and formation process of GEMS grains more clearly, we performed complete electron tomography for GEMS grains. Here we report the sample preparation method we have developed for this study, and the preliminary results.
Prakashini, K; Babu, Satish; Rajgopal, K V; Kokila, K Raja
2016-01-01
To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT) in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location. A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD) and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP) rate of CAD software was calculated. Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2%) and 202 (91.4%) by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4-10 mm (93.4%) and nodules in hilar (100%) and central (96.5%) location when compared to RAD's performance. CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD's performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time.
One-dimensional analysis of filamentary composite beam columns with thin-walled open sections
NASA Technical Reports Server (NTRS)
Lo, Patrick K.-L.; Johnson, Eric R.
1986-01-01
Vlasov's one-dimensional structural theory for thin-walled open section bars was originally developed and used for metallic elements. The theory was recently extended to laminated bars fabricated from advanced composite materials. The purpose of this research is to provide a study and assessment of the extended theory. The focus is on flexural and torsional-flexural buckling of thin-walled, open section, laminated composite columns. Buckling loads are computed from the theory using a linear bifurcation analysis and a geometrically nonlinear beam column analysis by the finite element method. Results from the analyses are compared to available test data.
Stretch force guides finger-like pattern of bone formation in suture
Kou, Xiao-Xing; Zhang, Ci; Zhang, Yi-Mei; Cui, Zhen; Wang, Xue-Dong; Liu, Yan; Liu, Da-Wei; Zhou, Yan-Heng
2017-01-01
Mechanical tension is widely applied on the suture to modulate the growth of craniofacial bones. Deeply understanding the features of bone formation in expanding sutures could help us to improve the outcomes of clinical treatment and avoid some side effects. Although there are reports that have uncovered some biological characteristics, the regular pattern of sutural bone formation in response to expansion forces is still unknown. Our study was to investigate the shape, arrangement and orientation of new bone formation in expanding sutures and explore related clinical implications. The premaxillary sutures of rat, which histologically resembles the sutures of human beings, became wider progressively under stretch force. Micro-CT detected new bones at day 3. Morphologically, these bones were forming in a finger-like pattern, projecting from the maxillae into the expanded sutures. There were about 4 finger-like bones appearing on the selected micro-CT sections at day 3 and this number increased to about 18 at day 7. The average length of these projections increased from 0.14 mm at day 3 to 0.81 mm at day 7. The volume of these bony protuberances increased to the highest level of 0.12 mm3 at day 7. HE staining demonstrated that these finger-like bones had thick bases connecting with the maxillae and thin fronts stretching into the expanded suture. Nasal sections had a higher frequency of finger-like bones occuring than the oral sections at day 3 and day 5. Masson-stained sections showed stretched fibers embedding into maxillary margins. Osteocalcin-positive osteoblasts changed their shapes from cuboidal to spindle and covered the surfaces of finger-like bones continuously. Alizarin red S and calcein deposited in the inner and outer layers of finger-like bones respectively, which showed that longer and larger bones formed on the nasal side of expanded sutures compared with the oral side. Interestingly, these finger-like bones were almost paralleling with the direction of stretch force. Inclined force led to inclined finger-like bones formation and deflection of bilateral maxillae. Additionally, heavily compressive force caused fracture of finger-like bones in the sutures. These data together proposed the special finger-like pattern of bone formation in sutures guided by stretch force, providing important implications for maxillary expansion. PMID:28472133
Calculation of Centrally Loaded Thin-Walled Columns Above the Buckling Limit
NASA Technical Reports Server (NTRS)
Reinitzhuber, F.
1945-01-01
When thin-walled columns formed from flanged sheet, such as used in airplane construction, are subjected to axial load, their behavior at failure varies according to the slenderness ratio. On long columns the axis deflects laterally while the cross section form is maintained; buckling results. The respective breaking load in the elastic range is computed by Euler's formula and for the plastic range by the Engesser- Karman formula. Its magnitude is essentially dependent upon the length. On intermediate length columns, especially where open sections are concerned, the cross section is distorted while the cross section form is preserved; twisting failure results. The buckling load in twisting is calculated according to Wagner and Kappus. On short columns the straight walls of low-bending resistance that form the column are deflected at the same time that the cross section form changes - buckling occurs without immediate failure. Then the buckling load of the total section computable from the buckling loads of the section walls is not the ultimate load; quite often, especially on thin-walled sections, it lies considerably higher and is secured by tests. Both loads, the buckling and the ultimate load are only in a small measure dependent upon length. The present report is an attempt to theoretically investigate the behavior of such short, thin-walled columns above the buckling load with the conventional calculating methods.
NASA Technical Reports Server (NTRS)
Richmond, J. H.
1974-01-01
Piecewise-sinusoidal expansion functions and Galerkin's method are employed to formulate a solution for an arbitrary thin-wire configuration in a homogeneous conducting medium. The analysis is performed in the real or complex frequency domain. In antenna problems, the solution determines the current distribution, impedance, radiation efficiency, gain and far-field patterns. In scattering problems, the solution determines the absorption cross section, scattering cross section and the polarization scattering matrix. The electromagnetic theory is presented for thin wires and the forward-scattering theorem is developed for an arbitrary target in a homogeneous conducting medium.
CT artifact recognition for the nuclear technologist.
Popilock, Robert; Sandrasagaren, Kumar; Harris, Lowell; Kaser, Keith A
2008-06-01
The goal of this article is to make the PET/CT and SPECT/CT operator aware of common artifacts found in CT. In diagnostic imaging, the ability to render an accurate diagnosis requires the technologist to take steps to optimize image quality and recognize when image quality has been compromised-that is, when there is an image artifact. One way these artifacts occur is through the inability of the CT linear attenuation image to precisely represent the linear attenuation map of a 2-dimensional section through the body. The reasons for this inability are multifold. First, CT is subject to the laws of x-ray quantum physics resulting in noise in all CT images. Moreover, all current CT x-ray systems generate a spectrum of energies. Also, CT scanners use detectors of finite dimension, as are the x-ray focal spots; reconstruct images from a finite number of samples distributed over a finite number of views; and acquire the data for each reconstruction over a finite period.
Dewland, Thomas A; Wintermark, Max; Vaysman, Anna; Smith, Lisa M; Tong, Elizabeth; Vittinghoff, Eric; Marcus, Gregory M
2013-01-01
Left atrial (LA) tissue characteristics may play an important role in atrial fibrillation (AF) induction and perpetuation. Although frequently used in clinical practice, computed tomography (CT) has not been employed to describe differences in LA wall properties between AF patients and controls. We sought to noninvasively characterize AF-associated differences in LA tissue using CT. CT images of the LA were obtained in 98 consecutive patients undergoing AF ablation and in 89 controls. A custom software algorithm was used to measure wall thickness and density in four prespecified regions of the LA. On average, LA walls were thinner (-15.5%, 95% confidence interval [CI] -23.2 to -7.8%, P < 0.001) and demonstrated significantly lower density (-19.7 Hounsfield Units [HU], 95% CI -27.0 to -12.5 HU, P < 0.001) in AF patients compared to controls. In linear mixed models adjusting for demographics, clinical variables, and other CT measurements, the average LA, interatrial septum, LA appendage, and anterior walls remained significantly thinner in AF patients. After adjusting for the same potential confounders, history of AF was associated with reduced density in the LA anterior wall and increased density below the right inferior pulmonary vein and in the LA appendage. Application of an automated measurement algorithm to CT imaging of the atrium identified significant thinning of the LA wall and regional alterations in tissue density in patients with a history of AF. These findings suggest differences in LA tissue composition can be noninvasively identified and quantified using CT. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.
Arterial wall perfusion measured with photon counting spectral x-ray CT
NASA Astrophysics Data System (ADS)
Jorgensen, Steven M.; Korinek, Mark J.; Vercnocke, Andrew J.; Anderson, Jill L.; Halaweish, Ahmed; Leng, Shuai; McCollough, Cynthia H.; Ritman, Erik L.
2016-10-01
Early atherosclerosis changes perfusion of the arterial wall due to localized proliferation of the vasa vasorum. When contrast agent passes through the artery, some enters the vasa vasorum and increases radiopacity of the arterial wall. Technical challenges to detecting changes in vasa vasorum density include the thin arterial wall, partial volume averaging at the arterial lumen/wall interface and calcification within the wall. We used a photon-counting spectral CT scanner to study carotid arteries of anesthetized pigs and micro-CT of these arteries to quantify vasa vasorum density. The left carotid artery wall was injected with autologous blood to stimulate vasa vasorum angiogenesis. The scans were performed at 25-120 keV; the tube-current-time product was 550 mAs. A 60 mL bolus of iodine contrast agent was injected into the femoral vein at 5mL/s. Two seconds post injection, an axial scan was acquired at every 3 s over 60 s (i.e., 20 time points). Each time point acquired 28 contiguous transaxial slices with reconstructed voxels 0.16 x 0.16 x 1 mm3. Regions-of-interest in the outer 2/3 of the arterial wall and in the middle 2/3 of the lumen were drawn and their enhancements plotted versus time. Lumenal CT values peaked several seconds after injection and then returned towards baseline. Arterial wall CT values peaked concurrent to the lumen. The peak arterial wall enhancement in the left carotid arterial wall correlated with increased vasa vasorum density observed in micro-CT images of the isolated arteries.
Arterial Wall Perfusion Measured with Photon Counting Spectral X-ray CT.
Jorgensen, Steven M; Korinek, Mark J; Vercnocke, Andrew J; Anderson, Jill L; Halaweish, Ahmed; Leng, Shuai; McCollough, Cynthia H; Ritman, Erik L
2016-08-28
Early atherosclerosis changes perfusion of the arterial wall due to localized proliferation of the vasa vasorum. When contrast agent passes through the artery, some enters the vasa vasorum and increases radiopacity of the arterial wall. Technical challenges to detecting changes in vasa vasorum density include the thin arterial wall, partial volume averaging at the arterial lumen/wall interface and calcification within the wall. We used a photon-counting spectral CT scanner to study carotid arteries of anesthetized pigs and micro-CT of these arteries to quantify vasa vasorum density. The left carotid artery wall was injected with autologous blood to stimulate vasa vasorum angiogenesis. The scans were performed at 25-120 keV; the tube-current-time product was 550 mAs. A 60 mL bolus of iodine contrast agent was injected into the femoral vein at 5mL/s. Two seconds post injection, an axial scan was acquired at every 3 s over 60 s (i.e., 20 time points). Each time point acquired 28 contiguous transaxial slices with reconstructed voxels 0.16 × 0.16 × 1 mm 3 . Regions-of-interest in the outer 2/3 of the arterial wall and in the middle 2/3 of the lumen were drawn and their enhancements plotted versus time. Lumenal CT values peaked several seconds after injection and then returned towards baseline. Arterial wall CT values peaked concurrent to the lumen. The peak arterial wall enhancement in the left carotid arterial wall correlated with increased vasa vasorum density observed in micro-CT images of the isolated arteries.
Scheel, Christian; Rotarska-Jagiela, Anna; Schilbach, Leonhard; Lehnhardt, Fritz G; Krug, Barbara; Vogeley, Kai; Tepest, Ralf
2011-09-15
Cortical thickness (CT) changes possibly contribute to the complex symptomatology of autism. The aberrant developmental trajectories underlying such differences in certain brain regions and their continuation in adulthood are a matter of intense debate. We studied 28 adults with high-functioning autism (HFA) and 28 control subjects matched for age, gender, IQ and handedness. A surface-based whole brain analysis utilizing FreeSurfer was employed to detect CT differences between the two diagnostic groups and to investigate the time course of age-related changes. Direct comparison with control subjects revealed thinner cortex in HFA in the posterior superior temporal sulcus (pSTS) of the left hemisphere. Considering the time course of CT development we found clusters around the pSTS and cuneus in the left and the paracentral lobule in the right hemisphere to be thinner in HFA with comparable age-related slopes in patients and controls. Conversely, we found clusters around the supramarginal gyrus and inferior parietal lobule (IPL) in the left and the precentral and postcentral gyrus in the right hemisphere to be thinner in HFA, but with different age-related slopes in patients and controls. In the latter regions CT showed a steady decrease in controls but no analogous thinning in HFA. CT analyses contribute in characterizing neuroanatomical correlates of HFA. Reduced CT is present in brain regions involved in social cognition. Furthermore, our results demonstrate that aberrant brain development leading to such differences is proceeding throughout adulthood. Discrepancies in prior morphometric studies may be induced by the complex time course of cortical changes. Copyright © 2011 Elsevier Inc. All rights reserved.
Strength Tests on Thin-walled Duralumin Cylinders in Torsion
NASA Technical Reports Server (NTRS)
Lundquist, Eugene E
1932-01-01
This report is the first of a series presenting the results of strength tests on thin-walled cylinders and truncated cones of circular and elliptical section; it comprises the results obtained to date from torsion (pure shear) tests on 65 thin-walled duralumin cylinders of circular section with ends clamped to rigid bulkheads. The effect of variations in the length/radius and radius/thickness ratios on the type of failure is indicated, and a semi-empirical equation for the shearing stress at maximum load is given.
NASA Astrophysics Data System (ADS)
Zhou, Xiangrong; Kano, Takuya; Koyasu, Hiromi; Li, Shuo; Zhou, Xinxin; Hara, Takeshi; Matsuo, Masayuki; Fujita, Hiroshi
2017-03-01
This paper describes a novel approach for the automatic assessment of breast density in non-contrast three-dimensional computed tomography (3D CT) images. The proposed approach trains and uses a deep convolutional neural network (CNN) from scratch to classify breast tissue density directly from CT images without segmenting the anatomical structures, which creates a bottleneck in conventional approaches. Our scheme determines breast density in a 3D breast region by decomposing the 3D region into several radial 2D-sections from the nipple, and measuring the distribution of breast tissue densities on each 2D section from different orientations. The whole scheme is designed as a compact network without the need for post-processing and provides high robustness and computational efficiency in clinical settings. We applied this scheme to a dataset of 463 non-contrast CT scans obtained from 30- to 45-year-old-women in Japan. The density of breast tissue in each CT scan was assigned to one of four categories (glandular tissue within the breast <25%, 25%-50%, 50%-75%, and >75%) by a radiologist as ground truth. We used 405 CT scans for training a deep CNN and the remaining 58 CT scans for testing the performance. The experimental results demonstrated that the findings of the proposed approach and those of the radiologist were the same in 72% of the CT scans among the training samples and 76% among the testing samples. These results demonstrate the potential use of deep CNN for assessing breast tissue density in non-contrast 3D CT images.
Magnetic resonance imaging, computed tomography, and gross anatomy of the canine tarsus.
Deruddere, Kirsten J; Milne, Marjorie E; Wilson, Kane M; Snelling, Sam R
2014-11-01
To describe the normal anatomy of the soft tissues of the canine tarsus as identified on computed tomography (CT) and magnetic resonance imaging (MRI) and to evaluate specific MRI sequences and planes for observing structures of diagnostic interest. Prospective descriptive study. Canine cadavers (n = 3). A frozen cadaver pelvic limb was used to trial multiple MRI sequences using a 1.5 T superconducting magnet and preferred sequences were selected. Radiographs of 6 canine cadaver pelvic limbs confirmed the tarsi were radiographically normal. A 16-slice CT scanner was used to obtain 1 mm contiguous slices through the tarsi. T1-weighted, proton density with fat suppression (PD FS) and T2-weighted MRI sequences were obtained in the sagittal plane, T1-weighted, and PD FS sequences in the dorsal plane and PD FS sequences in the transverse plane. The limbs were frozen for one month and sliced into 4-5 mm thick frozen sections. Anatomic sections were photographed and visually correlated to CT and MR images. Most soft tissue structures were easiest to identify on the transverse MRI sections with cross reference to either the sagittal or dorsal plane. Bony structures were easily identified on all CT, MR, and gross sections. The anatomy of the canine tarsus can be readily identified on MR imaging. © Copyright 2014 by The American College of Veterinary Surgeons.
Lee, Kyoung Ho; Hahn, Seokyung; Lee, Kyung Won; Lee, Hak Jong; Kim, Tae Jung; Kang, Sung-Bum; Shin, Joong Ho; Park, Byung Joo
2006-01-01
Objective To assess the added value of coronal reformation for radiologists and for referring physicians or surgeons in the CT diagnosis of acute appendicitis. Materials and Methods Contrast-enhanced CT was performed using 16-detector-row scanners in 110 patients, 46 of whom had appendicitis. Transverse (5-mm thickness, 4-mm increment), coronal (5-mm thickness, 4-mm increment), and combined transverse and coronal sections were interpreted by four radiologists, two surgeons and two emergency physicians. The area under the receiver operating characteristic curve (Az value), sensitivity, specificity (McNemar test), diagnostic confidence and appendiceal visualization (Wilcoxon signed rank test) were compared. Results For radiologists, the additional coronal sections tended to increase the Az value (0.972 vs. 0.986, p = 0.076) and pooled sensitivity (92% [95% CI: 88, 96] vs. 96% [93, 99]), and enhanced appendiceal visualization in true-positive cases (p = 0.031). For non-radiologists, no such enhancement was observed, and the confidence for excluding acute appendicitis declined (p = 0.013). Coronal sections alone were inferior to transverse sections for diagnostic confidence as well as appendiceal visualization for each reader group studied (p < 0.05). Conclusion The added value of coronal reformation is more apparent for radiologists compared to referring physicians or surgeons in the CT diagnosis of acute appendicitis. PMID:16799269
75 FR 29974 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-28
... portions of vertebrate and invertebrate organisms embedded in plastic resins and cut into thin sections... vertebrate and invertebrate organisms embedded in plastic resins and cut into thin sections mounted on... Use: The instrument will be used to examine portions of vertebrate and invertebrate organisms embedded...
Astronomy through the microscope: A workshop during the opening night of the 2016 IMC
NASA Astrophysics Data System (ADS)
Netjes, G. J.; de Vet, S.
2016-01-01
During the IMC workshop meteoritical thins sections were shown live with a microscope connected to the beamer. This article will provide a background to thin sections, what we can learn from them and the tour through the solar system we can take with them.
Hyodo, Tomoko; Hori, Masatoshi; Lamb, Peter; Sasaki, Kosuke; Wakayama, Tetsuya; Chiba, Yasutaka; Mochizuki, Teruhito; Murakami, Takamichi
2017-02-01
Purpose To assess the ability of fast-kilovolt-peak switching dual-energy computed tomography (CT) by using the multimaterial decomposition (MMD) algorithm to quantify liver fat. Materials and Methods Fifteen syringes that contained various proportions of swine liver obtained from an abattoir, lard in food products, and iron (saccharated ferric oxide) were prepared. Approval of this study by the animal care and use committee was not required. Solid cylindrical phantoms that consisted of a polyurethane epoxy resin 20 and 30 cm in diameter that held the syringes were scanned with dual- and single-energy 64-section multidetector CT. CT attenuation on single-energy CT images (in Hounsfield units) and MMD-derived fat volume fraction (FVF; dual-energy CT FVF) were obtained for each syringe, as were magnetic resonance (MR) spectroscopy measurements by using a 1.5-T imager (fat fraction [FF] of MR spectroscopy). Reference values of FVF (FVF ref ) were determined by using the Soxhlet method. Iron concentrations were determined by inductively coupled plasma optical emission spectroscopy and divided into three ranges (0 mg per 100 g, 48.1-55.9 mg per 100 g, and 92.6-103.0 mg per 100 g). Statistical analysis included Spearman rank correlation and analysis of covariance. Results Both dual-energy CT FVF (ρ = 0.97; P < .001) and CT attenuation on single-energy CT images (ρ = -0.97; P < .001) correlated significantly with FVF ref for phantoms without iron. Phantom size had a significant effect on dual-energy CT FVF after controlling for FVF ref (P < .001). The regression slopes for CT attenuation on single-energy CT images in 20- and 30-cm-diameter phantoms differed significantly (P = .015). In sections with higher iron concentrations, the linear coefficients of dual-energy CT FVF decreased and those of MR spectroscopy FF increased (P < .001). Conclusion Dual-energy CT FVF allows for direct quantification of fat content in units of volume percent. Dual-energy CT FVF was larger in 30-cm than in 20-cm phantoms, though the effect of object size on fat estimation was less than that of CT attenuation on single-energy CT images. In the presence of iron, dual-energy CT FVF led to underestimateion of FVF ref to a lesser degree than FF of MR spectroscopy led to overestimation of FVF ref . © RSNA, 2016 Online supplemental material is available for this article.
Ureilite Thin Section Preparation
NASA Technical Reports Server (NTRS)
Harrington, R.; Righter, K.
2014-01-01
Preparing thin and thick sections of ureilite type meteorites is a challenge that can confound even the most experienced section preparer. A common characteristic of these samples is the presence of carbon phases, particularly nanodiamonds, in the matrix along silicate grain boundaries, fractures, and cleavage plains [1]. The extreme hardness of the nanodiamonds presents a challenge to the section preparer in the form of high surface relief on the section. This hard material also causes considerable wear and tear on equipment and materials that are used for making the sections. These issues will be discussed and potentially helpful measures will be presented.
Charge-transfer excitons at organic semiconductor surfaces and interfaces.
Zhu, X-Y; Yang, Q; Muntwiler, M
2009-11-17
When a material of low dielectric constant is excited electronically from the absorption of a photon, the Coulomb attraction between the excited electron and the hole gives rise to an atomic H-like quasi-particle called an exciton. The bound electron-hole pair also forms across a material interface, such as the donor/acceptor interface in an organic heterojunction solar cell; the result is a charge-transfer (CT) exciton. On the basis of typical dielectric constants of organic semiconductors and the sizes of conjugated molecules, one can estimate that the binding energy of a CT exciton across a donor/acceptor interface is 1 order of magnitude greater than k(B)T at room temperature (k(B) is the Boltzmann constant and T is the temperature). How can the electron-hole pair escape this Coulomb trap in a successful photovoltaic device? To answer this question, we use a crystalline pentacene thin film as a model system and the ubiquitous image band on the surface as the electron acceptor. We observe, in time-resolved two-photon photoemission, a series of CT excitons with binding energies < or = 0.5 eV below the image band minimum. These CT excitons are essential solutions to the atomic H-like Schrodinger equation with cylindrical symmetry. They are characterized by principal and angular momentum quantum numbers. The binding energy of the lowest lying CT exciton with 1s character is more than 1 order of magnitude higher than k(B)T at room temperature. The CT(1s) exciton is essentially the so-called exciplex and has a very low probability of dissociation. We conclude that hot CT exciton states must be involved in charge separation in organic heterojunction solar cells because (1) in comparison to CT(1s), hot CT excitons are more weakly bound by the Coulomb potential and more easily dissociated, (2) density-of-states of these hot excitons increase with energy in the Coulomb potential, and (3) electronic coupling from a donor exciton to a hot CT exciton across the D/A interface can be higher than that to CT(1s) as expected from energy resonance arguments. We suggest a design principle in organic heterojunction solar cells: there must be strong electronic coupling between molecular excitons in the donor and hot CT excitons across the D/A interface.
Wan, Shi-yong; Lei, Wei; Wu, Zi-xiang; Lv, Rong; Wang, Jun; Fu, Suo-chao; Li, Bo; Zhan, Ce
2008-04-01
To investigate the properties of screw-bone interface of expansive pedicle screw (EPS) in osteoporotic sheep by micro-CT and histological observation. Six female sheep with bilateral ovariectomy-induced osteoporosis were employed in this experiment. After EPS insertion in each femoral condyle, the sheep were randomly divided into two groups: 3 sheep were bred for 3 months (Group A), while the other 3 were bred for 6 months (Group B). After the animals being killed, the femoral condyles with EPS were obtained, which were three-dimensionally-imaged and reconstructed by micro-CT. Histological evaluation was made thereafter. The trabecular microstructure was denser at the screw-bone interface than in the distant parts in expansive section, especially within the spiral marking. In the non-expansive section, however, there was no significant difference between the interface and the distant parts. The regions of interest (ROI) adjacent to EPS were reconstructed and analyzed by micro-CT with the same thresholds. The three-dimensional (3-D) parameters, including tissue mineral density (TMD), bone volume fraction (BVF, BV/TV), bone surface/bone volume (BS/BV) ratio, trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp), were significantly better in expansive sections than non-expansive sections (P less than 0.05). Histologically, newly-formed bony trabeculae crawled along the expansive fissures and into the center of EPS. The newly-formed bones, as well as the bones at the bone-screw interface, closely contacted with the EPS and constructed four compartments. The findings of the current study, based on micro-CT and histological evaluation, suggest that EPS can significantly provide stabilization in osteoporotic cancellous bones.
Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Hara, Takeshi; Fujita, Hiroshi
2017-10-01
We propose a single network trained by pixel-to-label deep learning to address the general issue of automatic multiple organ segmentation in three-dimensional (3D) computed tomography (CT) images. Our method can be described as a voxel-wise multiple-class classification scheme for automatically assigning labels to each pixel/voxel in a 2D/3D CT image. We simplify the segmentation algorithms of anatomical structures (including multiple organs) in a CT image (generally in 3D) to a majority voting scheme over the semantic segmentation of multiple 2D slices drawn from different viewpoints with redundancy. The proposed method inherits the spirit of fully convolutional networks (FCNs) that consist of "convolution" and "deconvolution" layers for 2D semantic image segmentation, and expands the core structure with 3D-2D-3D transformations to adapt to 3D CT image segmentation. All parameters in the proposed network are trained pixel-to-label from a small number of CT cases with human annotations as the ground truth. The proposed network naturally fulfills the requirements of multiple organ segmentations in CT cases of different sizes that cover arbitrary scan regions without any adjustment. The proposed network was trained and validated using the simultaneous segmentation of 19 anatomical structures in the human torso, including 17 major organs and two special regions (lumen and content inside of stomach). Some of these structures have never been reported in previous research on CT segmentation. A database consisting of 240 (95% for training and 5% for testing) 3D CT scans, together with their manually annotated ground-truth segmentations, was used in our experiments. The results show that the 19 structures of interest were segmented with acceptable accuracy (88.1% and 87.9% voxels in the training and testing datasets, respectively, were labeled correctly) against the ground truth. We propose a single network based on pixel-to-label deep learning to address the challenging issue of anatomical structure segmentation in 3D CT cases. The novelty of this work is the policy of deep learning of the different 2D sectional appearances of 3D anatomical structures for CT cases and the majority voting of the 3D segmentation results from multiple crossed 2D sections to achieve availability and reliability with better efficiency, generality, and flexibility than conventional segmentation methods, which must be guided by human expertise. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Thin Film Transistors On Plastic Substrates
Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.
2004-01-20
A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.
[Micro-computed tomography of the vasculature in parenchymal organs and lung alveoli].
Langheinrich, A C; Bohle, R M; Breithecker, A; Lommel, D; Rau, W S
2004-09-01
Micro-CT has become a powerful technique in non-destructive 3D imaging and morphometric analysis. First results were limited to the investigation of osteoporosis in cancellous bone. But the availability of systems with almost microscopic resolution and sufficient soft tissue contrast has opened up entirely new applications for laboratory investigation of blood vessels and soft tissues. This article gives an overview of micro-CT technology and the potential of three-dimensional imaging of the vessel wall and soft-tissue architecture imaging in different organs using different contrast perfusion and staining techniques. Micro-CT provides quantitative information on human plaque morphology equivalent to histomorphometric analysis. Based on differences in grey-scale attenuations, micro-CT also correctly identifies atherosclerotic lesions that are histologically classified as fibrous plaques, calcified lesions, fibroatheroma, and lipid rich lesions. Micro-CT is a promising method to visualize the architecture of the renal vasculature and, importantly, to separate cortex and medulla for the visualization of glomeruli and their afferent and efferent arterioles. Micro-CT can determine the vascular surface in a defined placental volume. Combining of micro-CT data and total placental volume enables an estimation of the approximate surface of the placental vasculature. The diameter of opacified vessels in the investigated samples ranged from 2 mm (chorion plate artery) to 14 micro m (smallest vessel diameter, terminal loop). Recognizing that lung parenchyma can only be visualized if the alveoli are completely expanded and the contrast of the thin alveolar walls is enhanced, we tested two preparation methods: (1) fixation of lung tissue with formalin vapour and staining with silver nitrate, and (2) intravenous injection of a barium sulfate-gelatine-thymol mixture in vivo in the anesthetized animal. We evaluated the ability of this mixture to enter the pulmonary microcirculation and the technical feasibility of micro-CT to assess lung micro-architecture.
Diagnostic imaging in ophthalmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, C.F.; Becker, M.H.; Flanagan, J.C.
There are three sections in the book. The first section is a discussion of imaging techniques, which includes plain film radiography and multidirectional tomography of the orbit, computed tomography (CT) of the orbit and its use in the evaluation of ocular motility disorders, ultrasonography of the eye and orbit, investigation of the orbit by contrast techniques (which includes a brief review of angiography), the lachrimal drainage system, foreign body localization, and magnetic resonance imaging of the eye and orbit. There is extensive discussion of CT throughout the book. The second section is devoted to the role of these imaging methodsmore » in the evaluation of ophthalmic disorders. A discussion of congenital anomalies is useful for those centers that are exposed to unusual congenital anomalies and syndromes. Also included is evaluation of exophthalmous and thyroid ophthamalopathy, orbital tumors, lesions involving the visual pathways, CT assessment of paraorbital pathology (including basal and squamous cell tumors of the face), infection of the orbit, and orbital trauma. The third section is an overview of radiation therapy and malignant intraoccular tumors.« less
Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation
NASA Astrophysics Data System (ADS)
Zeniya, T.; Takeda, T.; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T.
2001-07-01
We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.
Thick crystalline films on foreign substrates
Smith, Henry I.; Atwater, Harry A.; Geis, Michael W.
1986-01-01
To achieve a uniform texture, large crystalline grains or, in some cases, a single crystalline orientation in a thick (>1 .mu.m) film on a foreign substrate, the film is formed so as to be thin (<1 .mu.m) in a certain section. Zone-melting recrystallization is initiated in the thin section and then extended into the thick section. The method may employ planar constriction patterns of orientation filter patterns.
Thick crystalline films on foreign substrates
Smith, H.I.; Atwater, H.A.; Geis, M.W.
1986-03-18
To achieve a uniform texture, large crystalline grains or, in some cases, a single crystalline orientation in a thick (>1 [mu]m) film on a foreign substrate, the film is formed so as to be thin (<1 [mu]m) in a certain section. Zone-melting recrystallization is initiated in the thin section and then extended into the thick section. The method may employ planar constriction patterns of orientation filter patterns. 2 figs.
Three-dimensional surface reconstruction for industrial computed tomography
NASA Technical Reports Server (NTRS)
Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.
1985-01-01
Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.
Synthesized interstitial lung texture for use in anthropomorphic computational phantoms
NASA Astrophysics Data System (ADS)
Becchetti, Marc F.; Solomon, Justin B.; Segars, W. Paul; Samei, Ehsan
2016-04-01
A realistic model of the anatomical texture from the pulmonary interstitium was developed with the goal of extending the capability of anthropomorphic computational phantoms (e.g., XCAT, Duke University), allowing for more accurate image quality assessment. Contrast-enhanced, high dose, thorax images for a healthy patient from a clinical CT system (Discovery CT750HD, GE healthcare) with thin (0.625 mm) slices and filtered back- projection (FBP) were used to inform the model. The interstitium which gives rise to the texture was defined using 24 volumes of interest (VOIs). These VOIs were selected manually to avoid vasculature, bronchi, and bronchioles. A small scale Hessian-based line filter was applied to minimize the amount of partial-volumed supernumerary vessels and bronchioles within the VOIs. The texture in the VOIs was characterized using 8 Haralick and 13 gray-level run length features. A clustered lumpy background (CLB) model with added noise and blurring to match CT system was optimized to resemble the texture in the VOIs using a genetic algorithm with the Mahalanobis distance as a similarity metric between the texture features. The most similar CLB model was then used to generate the interstitial texture to fill the lung. The optimization improved the similarity by 45%. This will substantially enhance the capabilities of anthropomorphic computational phantoms, allowing for more realistic CT simulations.
Ito, M; Oishi, R; Fukunaga, M; Sone, T; Sugimoto, T; Shiraki, M; Nishizawa, Y; Nakamura, T
2014-03-01
Once-weekly administration of 56.5 μg teriparatide improved cortical bone parameters and biomechanical parameters at the proximal femur by CT geometry analysis. The aim of this study was to evaluate the effects of weekly administration of teriparatide [human PTH (1-34)] on bone geometry, volumetric bone mineral density (vBMD), and parameters of bone strength at the proximal femur which were longitudinally investigated using computed tomography (CT). The subjects were a subgroup of a recent, randomly assigned, double-blind study (578 subjects) comparing the anti-fracture efficacy of a once-weekly subcutaneous injection of 56.5 μg teriparatide with placebo (TOWER trial). Sixty-six ambulatory postmenopausal women with osteoporosis were enrolled at 15 study sites having multi-detector row CT, and included women injected with teriparatide (n = 29, 74.2 ± 5.1 years) or with placebo (n = 37, 74.8 ± 5.3 years). CT data were obtained at baseline and follow-up scans were performed at 48 and 72 weeks. The data were analyzed to obtain cross-sectional densitometric, geometric, and biomechanical parameters including the section modulus (SM) and buckling ratio (BR) of the femoral neck, inter-trochanter, and femoral shaft. We found that once-weekly teriparatide increased cortical thickness/cross-sectional area (CSA) and total area, and improved biomechanical properties (i.e., decreasing BR) at the femoral neck and shaft. Teriparatide did not change the cortical perimeter. Our longitudinal analysis of proximal femur geometry by CT revealed that once-weekly administration of 56.5 μg teriparatide improved cortical bone parameters at the femoral neck and shaft and also improved biomechanical parameters.
Carbon analyses of IDP's sectioned in sulfur and supported on beryllium films
NASA Technical Reports Server (NTRS)
Bradley, J. P.; Keller, L.; Thomas, K. L.; Vanderwood, T. B.; Brownlee, D. E.
1993-01-01
Carbon is the only major element in interplanetary dust whose abundance, distribution and chemical state are not well understood. Information about carbon could clarify the relationship between the various classes of IDP's, conventional meteorites, and sources (e.g., comets vs. asteroids). To date, the most reliable estimates of C abundance in Interplanetary Dust Particles (IDP's) have been obtained by analyzing particles on thick-flat Be substrates using thin-window energy-dispersive spectroscopy in the SEM. These estimates of C abundance are valid only if C is homogeneously distributed, because detected C x-rays originate from the outer 0.1 micrometers of the particle. An alternative and potentially more accurate method of measuring C abundances is to analyze multiple thin sections (each less than 0.1 less than 0.1 micrometers thick) of IDP's. These efforts however, have been stymied because of a lack of a suitable non-carbonaceous embedding medium and the availability of C-free conductive substrates. We have embedded and thin-sectioned IDP's in glassy sulfur, and transferred the thin sections to Be support films approximately 25 nm thick. The sections were then analyzed in a 200 KeV analytical TEM. S sublimes rapidly under vacuum in the TEM, leaving non-embedded sections supported on Be. Apart from quantitative C (and O) analyses, S sectioning dramatically expands the range of analytical measurements that can be performed on a single IDP.
[Mobile CT at neurointensive sections--it is possible].
Frost, Majbritt; Stenkær, Susanne; Kellenberger, Simone; Ehlers, Lars
2011-01-24
Intrahospital transportation can be complicated and hazardous. Mobile computerized tomography (CT) of the head performed at the neurointensive care unit is a new technique that minimizes the need for transportation of unstable patients. Even small changes in physiological parameters can be detrimental for these patients and cause secondary injury and thus affect their prognoses. The portable CT scanner in the neurointensive care unit holds great potential, but the high price level may limit its use.
[Quantification of pulmonary emphysema in multislice-CT using different software tools].
Heussel, C P; Achenbach, T; Buschsieweke, C; Kuhnigk, J; Weinheimer, O; Hammer, G; Düber, C; Kauczor, H-U
2006-10-01
The data records of thin-section MSCT of the lung with approx. 300 images are difficult to use in manual evaluation. A computer-assisted pre-diagnosis can help with reporting. Furthermore, post-processing techniques, for instance, for quantification of emphysema on the basis of three-dimensional anatomical information might be improved and the workflow might be further automated. The results of 4 programs (Pulmo, Volume, YACTA and PulmoFUNC) for the quantitative analysis of emphysema (lung and emphysema volume, mean lung density and emphysema index) of 30 consecutive thin-section MSCT datasets with different emphysema severity levels were compared. The classification result of the YACTA program for different types of emphysema was also analyzed. Pulmo and Volume have a median operating time of 105 and 59 minutes respectively due to the necessity for extensive manual correction of the lung segmentation. The programs PulmoFUNC and YACTA, which are automated to a large extent, have a median runtime of 26 and 16 minutes, respectively. The evaluation with Pulmo and Volume using 2 different datasets resulted in implausible values. PulmoFUNC crashed with 2 other datasets in a reproducible manner. Only with YACTA could all graphic datasets be evaluated. The lung volume, emphysema volume, emphysema index and mean lung density determined by YACTA and PulmoFUNC are significantly larger than the corresponding values of Volume and Pulmo (differences: Volume: 119 cm(3)/65 cm(3)/1 %/17 HU, Pulmo: 60 cm(3)/96 cm(3)/1 %/37 HU). Classification of the emphysema type was in agreement with that of the radiologist in 26 panlobular cases, in 22 paraseptalen cases and in 15 centrilobular emphysema cases. The substantial expenditure of time obstructs the employment of quantitative emphysema analysis in the clinical routine. The results of YACTA and PulmoFUNC are affected by the dedicated exclusion of the tracheobronchial system. These fully automatic tools enable not only fast quantification without manual interaction, but also a reproducible measurement without user dependence.
Pigmented Pheochromocytoma: an Unusual Variant of a Common Tumor.
Kakkar, Aanchal; Kaur, Kavneet; Kumar, Tarun; Cherian, Libin Babu; Kaushal, Rohit; Sharma, Mehar Chand; Dhar, Anita; Seth, Amlesh; Jain, Deepali
2016-03-01
Pheochromocytoma is a neuroendocrine tumor arising from the adrenal medulla. A number of variants of pheochromocytoma are known; however, pigmented pheochromocytoma is extremely rare, with only few cases reported in literature. We report the cases of two patients with pigmented pheochromocytoma. Case 1 was a 28-year-old female who presented with complaints of breathlessness, palpitations, and anxiety for 5 years, which had worsened over the last 8 months. Computed tomography (CT) abdomen showed a right suprarenal mass. Case 2 was that of an 18-year-old girl who presented with similar complaints and was diagnosed with hypertension. CT abdomen showed bilateral adrenal masses. Urinary vanillyl mandelic acid was raised in both patients. Sections examined from all three tumors showed cells arranged in Zellballen pattern, separated by thin fibrovascular septae. Tumor cells showed moderate to marked nuclear pleomorphism in case 1. Mitoses were, however, not seen. There was no evidence of capsular or vascular invasion. Many of the tumor cells showed intracytoplasmic black pigment, which was positive for Fontana-Masson and was bleach-labile, confirming it as melanin. Hemosiderin deposition was also identified. Large areas of hemorrhagic necrosis were seen in case 1. Tumor cells were immunopositive for chromogranin and synaptophysin, while they were negative for HMB-45. Electron microscopy was performed. A final diagnosis of pigmented pheochromocytoma was rendered in both cases. Pigmented pheochromocytoma is a very rare tumor, which needs to be differentiated from other pigmented tumors like malignant melanoma of adrenal gland and pigmented adrenal adenoma. Histochemistry and immunohistochemistry help in making this distinction.
Dong, J; Hayakawa, Y; Kober, C
2014-01-01
When metallic prosthetic appliances and dental fillings exist in the oral cavity, the appearance of metal-induced streak artefacts is not avoidable in CT images. The aim of this study was to develop a method for artefact reduction using the statistical reconstruction on multidetector row CT images. Adjacent CT images often depict similar anatomical structures. Therefore, reconstructed images with weak artefacts were attempted using projection data of an artefact-free image in a neighbouring thin slice. Images with moderate and strong artefacts were continuously processed in sequence by successive iterative restoration where the projection data was generated from the adjacent reconstructed slice. First, the basic maximum likelihood-expectation maximization algorithm was applied. Next, the ordered subset-expectation maximization algorithm was examined. Alternatively, a small region of interest setting was designated. Finally, the general purpose graphic processing unit machine was applied in both situations. The algorithms reduced the metal-induced streak artefacts on multidetector row CT images when the sequential processing method was applied. The ordered subset-expectation maximization and small region of interest reduced the processing duration without apparent detriments. A general-purpose graphic processing unit realized the high performance. A statistical reconstruction method was applied for the streak artefact reduction. The alternative algorithms applied were effective. Both software and hardware tools, such as ordered subset-expectation maximization, small region of interest and general-purpose graphic processing unit achieved fast artefact correction.
NASA Astrophysics Data System (ADS)
Lee, J.; Kim, M.; Son, Y.; Lee, W. K.
2017-12-01
Korean forests have recovered by the national-scale reforestation program and can contribute to the national greenhouse gas (GHG) mitigation goal. The forest carbon (C) sequestration is expected to change by climate change and forest management regime. In this context, estimating the changes in GHG mitigation potential of Korean forestry sector by climate and management is a timely issue. Thus, we estimated the forest C sequestration of Korea under four scenarios (2010-2050): constant temperature with no management (CT_No), representative concentration pathway (RCP) 8.5 with no management (RCP_No), constant temperature with thinning management (CT_Man), and RCP 8.5 with thinning management (RCP_Man). Dynamic stand growth model (KO-G-Dynamic; for biomass) and forest C model (FBDC model; for non-biomass) were used at approximately 64,000 simulation units (1km2). As model input data, the forest data (e.g., forest type and stand age) and climate data were spatially prepared from the national forest inventories and the RCP 8.5 climate data. The model simulation results showed that the mean annual C sequestrations during the period (Tg C yr-1) were 11.0, 9.9, 11.5, and 10.5, respectively, under the CT_No, RCP_No, CT_Man, and RCP_Man, respectively, at the national scale. The C sequestration decreased with the time passage due to the maturity of the forests. The climate change seemed disadvantageous to the C sequestration by the forest ecosystems (≒ -1.0 Tg C yr-1) due to the increase in organic matter decomposition. In particular, the decrease in C sequestration by the climate change was greater for the needle-leaved species, compared to the broad-leaved species. Meanwhile, the forest management enhanced forest C sequestration (≒ 0.5 Tg C yr-1). Accordingly, implementing appropriate forest management strategies for adaptation would contribute to maintaining the C sequestration by Korean forestry sector under climate change. Acknowledgement: This study was supported by Korean Ministry of Environment (2014001310008).
An Efficient Pipeline for Abdomen Segmentation in CT Images.
Koyuncu, Hasan; Ceylan, Rahime; Sivri, Mesut; Erdogan, Hasan
2018-04-01
Computed tomography (CT) scans usually include some disadvantages due to the nature of the imaging procedure, and these handicaps prevent accurate abdomen segmentation. Discontinuous abdomen edges, bed section of CT, patient information, closeness between the edges of the abdomen and CT, poor contrast, and a narrow histogram can be regarded as the most important handicaps that occur in abdominal CT scans. Currently, one or more handicaps can arise and prevent technicians obtaining abdomen images through simple segmentation techniques. In other words, CT scans can include the bed section of CT, a patient's diagnostic information, low-quality abdomen edges, low-level contrast, and narrow histogram, all in one scan. These phenomena constitute a challenge, and an efficient pipeline that is unaffected by handicaps is required. In addition, analysis such as segmentation, feature selection, and classification has meaning for a real-time diagnosis system in cases where the abdomen section is directly used with a specific size. A statistical pipeline is designed in this study that is unaffected by the handicaps mentioned above. Intensity-based approaches, morphological processes, and histogram-based procedures are utilized to design an efficient structure. Performance evaluation is realized in experiments on 58 CT images (16 training, 16 test, and 26 validation) that include the abdomen and one or more disadvantage(s). The first part of the data (16 training images) is used to detect the pipeline's optimum parameters, while the second and third parts are utilized to evaluate and to confirm the segmentation performance. The segmentation results are presented as the means of six performance metrics. Thus, the proposed method achieves remarkable average rates for training/test/validation of 98.95/99.36/99.57% (jaccard), 99.47/99.67/99.79% (dice), 100/99.91/99.91% (sensitivity), 98.47/99.23/99.85% (specificity), 99.38/99.63/99.87% (classification accuracy), and 98.98/99.45/99.66% (precision). In summary, a statistical pipeline performing the task of abdomen segmentation is achieved that is not affected by the disadvantages, and the most detailed abdomen segmentation study is performed for the use before organ and tumor segmentation, feature extraction, and classification.
A new method to measure electron density and effective atomic number using dual-energy CT images
NASA Astrophysics Data System (ADS)
Ramos Garcia, Luis Isaac; Pérez Azorin, José Fernando; Almansa, Julio F.
2016-01-01
The purpose of this work is to present a new method to extract the electron density ({ρ\\text{e}} ) and the effective atomic number (Z eff) from dual-energy CT images, based on a Karhunen-Loeve expansion (KLE) of the atomic cross section per electron. This method was used to calibrate a Siemens Definition CT using the CIRS phantom. The predicted electron density and effective atomic number using 80 kVp and 140 kVp were compared with a calibration phantom and an independent set of samples. The mean absolute deviations between the theoretical and calculated values for all the samples were 1.7 % ± 0.1 % for {ρ\\text{e}} and 4.1 % ± 0.3 % for Z eff. Finally, these results were compared with other stoichiometric method. The application of the KLE to represent the atomic cross section per electron is a promising method for calculating {ρ\\text{e}} and Z eff using dual-energy CT images.
NASA Technical Reports Server (NTRS)
Lofgren, G. E.; Lofgren, E. M.
1981-01-01
Megascopic descriptions of 133 basaltic rocks returned from the Moon are presented along with photographs of each rock and its thin section, if available. The major and trace element chemistry of each is included wherever possible.
Pipe support for use in a nuclear system
Pollono, Louis P.; Mello, Raymond M.
1977-01-01
A pipe support for high temperature, thin-walled vertical piping runs used in a nuclear system. A cylindrical pipe transition member, having the same inside diameter as the thin-walled piping, replaces a portion of the piping where support is desired. The outside diameter of the pipe transition member varies axially along its vertical dimension. For a section of the axial length adjacent the upper and lower terminations of the pipe transition member, the outside diameter is the same as the outside diameter of the thin-walled piping to which it is affixed. Intermediate of the termination sections, the outside diameter increases from the top of the member to the bottom. Adjacent the lower termination section, the diameter abruptly becomes the same as the piping. Thus, the cylindrical transition member is formed to have a generally triangular shaped cross-section along the axial dimension. Load-bearing insulation is installed next to the periphery of the member and is kept in place by an outer ring clamp. The outer ring clamp is connected to pipe hangers, which provide the desired support for the vertical thin-walled piping runs.
NASA Astrophysics Data System (ADS)
Bondarev, Igor; Popescu, Adrian
We develop an analytical theory for the intra-intermolecular exciton intermixing in periodic 1D chains of planar organic molecules with two isolated low-lying Frenkel exciton states, typical of copper phthalocyanine (CuPc) and other transition metal phthalocyanine molecules. We formulate the Hamiltonian and use the exact Bogoliubov diagonalization procedure to derive the eigen energy spectrum for the two lowest intramolecular Frenkel excitons coupled to the intermolecular charge transfer (CT) exciton state. By comparing our theoretical spectrum with available experimental CuPc absorption data, we obtain the parameters of the Frenkel-CT exciton intermixing in CuPc thin films. The two Frenkel exciton states here are spaced apart by 0.26 eV, and the charge transfer exciton state is 50 meV above the lowest Frenkel exciton. Both Frenkel excitons are strongly mixed with the CT exciton, showing the coupling constant 0.17 eV in agreement with earlier electron transport experiments. Our results can be used for the proper interpretation of the physical properties of crystalline phthalocyanines. DOE-DE-SC0007117 (I.B.), UNC-GA ROI Grant (A.P.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uzunyan, S. A.; Blazey, G.; Boi, S.
Northern Illinois University in collaboration with Fermi National Accelerator Laboratory (FNAL) and Delhi University has been designing and building a proton CT scanner for applications in proton treatment planning. The Phase II proton CT scanner consists of eight planes of tracking detectors with two X and two Y coordinate measurements both before and after the patient. In addition, a range stack detector consisting of a stack of thin scintillator tiles, arranged in twelve eight-tile frames, is used to determine the water equivalent path length (WEPL) of each track through the patient. The X-Y coordinates and WEPL are required input formore » image reconstruction software to find the relative (proton) stopping powers (RSP) value of each voxel in the patient and generate a corresponding 3D image. In this Note we describe tests conducted in 2015 at the proton beam at the Central DuPage Hospital in Warrenville, IL, focusing on the range stack calibration procedure and comparisons with the GEANT~4 range stack simulation.« less
Imaging of skull base lesions.
Kelly, Hillary R; Curtin, Hugh D
2016-01-01
Skull base imaging requires a thorough knowledge of the complex anatomy of this region, including the numerous fissures and foramina and the major neurovascular structures that traverse them. Computed tomography (CT) and magnetic resonance imaging (MRI) play complementary roles in imaging of the skull base. MR is the preferred modality for evaluation of the soft tissues, the cranial nerves, and the medullary spaces of bone, while CT is preferred for demonstrating thin cortical bone structure. The anatomic location and origin of a lesion as well as the specific CT and MR findings can often narrow the differential diagnosis to a short list of possibilities. However, the primary role of the imaging specialist in evaluating the skull base is usually to define the extent of the lesion and determine its relationship to vital neurovascular structures. Technologic advances in imaging and radiation therapy, as well as surgical technique, have allowed for more aggressive approaches and improved outcomes, further emphasizing the importance of precise preoperative mapping of skull base lesions via imaging. Tumors arising from and affecting the cranial nerves at the skull base are considered here. © 2016 Elsevier B.V. All rights reserved.
Thin oblique airfoils at supersonic speed
NASA Technical Reports Server (NTRS)
Jone, Robert T
1946-01-01
The well-known methods of thin-airfoil theory have been extended to oblique or sweptback airfoils of finite aspect ratio moving at supersonic speeds. The cases considered thus far are symmetrical airfoils at zero lift having plan forms bounded by straight lines. Because of the conical form of the elementary flow fields, the results are comparable in simplicity to the results of the two-dimensional thin-airfoil theory for subsonic speeds. In the case of untapered airfoils swept back behind the Mach cone the pressure distribution at the center section is similar to that given by the Ackeret theory for a straight airfoil. With increasing distance from the center section the distribution approaches the form given by the subsonic-flow theory. The pressure drag is concentrated chiefly at the center section and for long wings a slight negative drag may appear on outboard sections. (author)
Unusual cortical bone features in a patient with gorlin-goltz syndrome: a case report.
Tarnoki, Adam Domonkos; Tarnoki, David Laszlo; Klara Kiss, Katalin; Bata, Pal; Karlinger, Kinga; Banvolgyi, Andras; Wikonkal, Norbert; Berczi, Viktor
2014-12-01
Gorlin-Goltz syndrome (GGS) consists of ectodermal and mesodermal abnormalities. In this case report we will investigate lower extremity lesions of GGS. A 52-year-old man with GGS underwent skull and lower extremity computer tomography. Radiographic findings included cervical spondylosis, transparent areas with slurred margins, and cerebral falx calcification. Tibial and fibular specific cortical lesions (thin cortical and subcortical cystic lesions) were seen on the radiography, which was confirmed by computer tomography. To our knowledge, this is the first report of such a long lesion of the tibia and fibula. Specific lower extremity cortical lesions (thin cortical and subcortical cystic lesions) may occur and these abnormalities can be found on radiography or CT, which are most probably attributed to retinoid treatment.
Unusual Cortical Bone Features in a Patient with Gorlin-Goltz Syndrome: A Case Report
Tarnoki, Adam Domonkos; Tarnoki, David Laszlo; Klara Kiss, Katalin; Bata, Pal; Karlinger, Kinga; Banvolgyi, Andras; Wikonkal, Norbert; Berczi, Viktor
2014-01-01
Gorlin-Goltz syndrome (GGS) consists of ectodermal and mesodermal abnormalities. In this case report we will investigate lower extremity lesions of GGS. A 52-year-old man with GGS underwent skull and lower extremity computer tomography. Radiographic findings included cervical spondylosis, transparent areas with slurred margins, and cerebral falx calcification. Tibial and fibular specific cortical lesions (thin cortical and subcortical cystic lesions) were seen on the radiography, which was confirmed by computer tomography. To our knowledge, this is the first report of such a long lesion of the tibia and fibula. Specific lower extremity cortical lesions (thin cortical and subcortical cystic lesions) may occur and these abnormalities can be found on radiography or CT, which are most probably attributed to retinoid treatment. PMID:25780550
Fluid Dynamic and Stability Analysis of a Thin Liquid Sheet
NASA Technical Reports Server (NTRS)
McMaster, Matthew S.
1992-01-01
Interest in thin sheet flows has recently been renewed due to their potential application in space radiators. Theoretical and experimental studies of the fluid dynamics and stability of thin liquid sheet flows have been carried out in this thesis. A computer program was developed to determine the cross-sectional shape of the edge cylinder given the cross-sectional area of the edge cylinder. A stability analysis was performed on a non-planer liquid sheet. A study was conducted to determine the effects of air resistance on the sheet.
NASA Astrophysics Data System (ADS)
Romano, S. L.; Guillen, C. I.; Andrianarijaona, V. M.; Havener, C. C.
2011-10-01
The hydrogen - hydrogen (deuterium) molecular ion is the most fundamental ion-molecule two-electron system. Charge transfer (CT) for H2+ on H, which is one of the possible reaction paths for the (H-H2)+ system, is of special interest because of its contribution to H2 formation in the early universe, its exoergicity, and rich collision dynamics. Due to technical difficulty in making an atomic H target, the direct experimental investigations of CT for H2+ on H are sparse and generally limited to higher collision energies. The measurements of the absolute cross section of different CT paths for H2+ on H over a large range of collision energy are needed to benchmark theoretical calculations, especially the ones at low energies. The rate coefficient of CT at low energy is not known but may be comparable to other reaction rate coefficients in cold plasmas with H, H+, H2+, and H3+ as constituents. For instance, CT for H2+ on H and the following H3+ formation reaction H2+ + H2 → H + H3+ are clearly rate interdependent although it was always assumed that every ionization of H2 will lead to the formation of H3+. CT proceeds through dynamically coupled electronic, vibrational and rotational degrees of freedom. One can depict three paths, electronic CT, CT with nuclear substitution, and CT with dissociation. Electronic CT and CT with nuclear substitution in the H2+ on H collisions are not distinguishable by any quantum theory. Here we use the isotopic system (D2+ - H) to measure without ambiguity the electronic CT cross section by observing the H+ products. Using the ion-atom merged-beam apparatus at Oak Ridge National Laboratory, the absolute direct CT cross sections for D2+ + H from keV/u to meV/u collision energies have been measured. The molecular ions are extracted from an Electron-Cyclotron Resonance (ECR) ion source with a vibrational state distribution which is most likely determined by Frank-Condon transitions between ground state D2 and D2+. A ground-state H beam is obtained by photo-detachment of H-. Our first measurements are presented in Fig. 1 along with the theories and previous experiments. The collision is rovibrationally frozen at high energy where our measurements are seen to be in good agreement with the high energy theory. Both measurements and low energy theory increase toward low energies where the collision times are long enough to sample vibrational and rotational modes. This research is supported by the National Science Foundation through grant PHY-1068877 and by the Office of Fusion Energy Sciences and the Office of Basic Energy Sciences, U.S. DOE, Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.
Trotta, Brian M; Stolin, Alexander V; Williams, Mark B; Gay, Spencer B; Brody, Alan S; Altes, Talissa A
2007-06-01
The purpose of this study was to assess the compromise between CT technical parameters and the accuracy of CT quantification of lung attenuation. Materials that simulate water (0 H), healthy lung (-650 H), borderline emphysematous lung (-820 H), and severely emphysematous lung (-1,000 H) were placed at both the base and the apex of the lung of an anthropomorphic phantom and outside the phantom. Transaxial CT images through the samples were obtained while the effective tube current was varied from 440 to 10 mAs, kilovoltage from 140 to 80 kVp, and slice thickness from 0.625 to 10 mm. Mean +/- SD attenuation within the samples and the standard quantitative chest CT measurements, the percentage of pixels with attenuation less than -910 H and 15th percentile of attenuation, were computed. Outside the phantom, variations in CT parameters produced less than 2.0% error in all measurements. Within the anthropomorphic phantom at 30 mAs, error in measurements was much larger, ranging from zero to 200%. Below approximately 80 mAs, mean attenuation became increasingly biased. The effects were most pronounced at the apex of the lungs. Mean attenuation of the borderline emphysematous sample of apex decreased 55 H as the tube current was decreased from 300 to 30 mAs. Both the 15th percentile of attenuation and percentage of pixels with less than -910 H attenuation were more sensitive to variations in effective tube current than was mean attenuation. For example, the -820 H sample should have 0% of pixels less than -910 H, which was true at 400 mA. At 30 mA in the lung apex, however, the measurement was highly inaccurate, 51% of pixels being below this value. Decreased kilovoltage and slice thickness had analogous, but lesser, effects. The accuracy of quantitative chest CT is determined by the CT acquisition parameters. There can be significant decreases in accuracy at less than 80 mAs for thin slices in an anthropomorphic phantom, the most pronounced effects occurring in the lung apex.
Yun, Cheolmin; Oh, Jaeryung; Ahn, Jaemoon; Hwang, Soon-Young; Lee, Boram; Kim, Seong-Woo; Huh, Kuhl
2016-09-01
We aimed to compare changes in subfoveal and peripapillary choroidal thickness (CT) after intravitreal aflibercept or ranibizumab injections for neovascular age-related macular degeneration (AMD). Medical records of 54 treatment-naïve, consecutive patients (54 eyes) who were diagnosed with neovascular AMD and received three monthly injections of aflibercept (21 eyes) or ranibizumab (33 eyes) were reviewed. Subfoveal and peripapillary CT were measured with images obtained using spectral domain optical coherence tomography at baseline and at three months. Subfoveal CT decreased from 232.2 ± 94.4 μm at baseline to 207.1 ± 89.3 μm at three months in the aflibercept group (p < 0.001) and from 231.5 ± 102.9 μm to 220.0 ± 98.0 μm in the ranibizumab group (p = 0.006). The reduction was greater in the aflibercept group than in the ranibizumab group (p = 0.024). Peripapillary CT decreased from 157.2 ± 62.2 μm at baseline to 147.4 ± 62.2 μm at three months in the aflibercept group (p < 0.001). However, the change in peripapillary CT from 154.9 ± 46.5 μm at baseline to 152.3 ± 50.0 μm at three months was not significant in the ranibizumab group (p = 0.123). Intravitreally injected aflibercept significantly decreased subfoveal CT more than ranibizumab. Choroidal thinning after aflibercept injection was not limited to the subfoveal area, but extended beyond the macula as well.
CT differentiation of mucin-producing cystic neoplasms of the liver from solitary bile duct cysts.
Kim, Hyoung Jung; Yu, Eun Sil; Byun, Jae Ho; Hong, Seung-Mo; Kim, Kyoung Won; Lee, Jong Seok; Kim, So Yeon
2014-01-01
The purpose of this study was to identify the CT features required for differentiating mucin-producing cystic neoplasms of the liver (mucinous cystic neoplasms and cyst-forming intraductal papillary neoplasms of the bile duct) from solitary bile duct cysts. CT images of pathologically confirmed mucinous cystic neoplasms (n = 15), cyst-forming intraductal papillary neoplasms of the bile duct (n = 16), and solitary bile duct cysts (n = 31) were reviewed. Analysis of the CT findings included shape, presence of septa, location of septa (peripheral vs central), thickness of septa (thin vs thick), mosaic pattern, mural nodules, intracystic debris, calcification, upstream bile duct dilatation, downstream bile duct dilatation, and communication between a cystic lesion and the bile duct. The maximum size of a cystic lesion and the maximum size of the largest mural nodule were measured. The presence of septa, central septa, mural nodules, upstream bile duct dilatation, and downstream bile duct dilatation were found to be significant CT findings for differentiating mucinous cystic neoplasms and cyst-forming intraductal papillary neoplasms of the bile duct from solitary bile duct cysts (p < 0.05 for each finding). When two of these five criteria were used in combination, the sensitivity and specificity for diagnosing mucin-producing cystic neoplasms and cyst-forming intraductal papillary neoplasms of the bile duct were 87% (27 of 31) and 87% (27 of 31), respectively. When two of these five criteria were used in combination, the sensitivity and specificity for diagnosing mucinous cystic neoplasms and cyst-forming intraductal papillary neoplasms of the bile duct were 87% (27 of 31) and 87% (27 of 31), respectively [corrected]. With the use of specific CT criteria, mucin-producing cystic neoplasms of the liver can be differentiated from solitary bile duct cysts with a high degree of accuracy.
Effective doses to patients undergoing thoracic computed tomography examinations.
Huda, W; Scalzetti, E M; Roskopf, M
2000-05-01
The purpose of this study was to investigate how x-ray technique factors and effective doses vary with patient size in chest CT examinations. Technique factors (kVp, mAs, section thickness, and number of sections) were recorded for 44 patients who underwent a routine chest CT examination. Patient weights were recorded together with dimensions and mean Hounsfield unit values obtained from representative axial CT images. The total mass of directly irradiated patient was modeled as a cylinder of water to permit the computation of the mean patient dose and total energy imparted for each chest CT examination. Computed values of energy imparted during the chest CT examination were converted into effective doses taking into account the patient weight. Patient weights ranged from 4.5 to 127 kg, and half the patients in this study were children under 18 years of age. All scans were performed at 120 kVp with a 1 s scan time. The selected tube current showed no correlation with patient weight (r2=0.06), indicating that chest CT examination protocols do not take into account for the size of the patient. Energy imparted increased with increasing patient weight, with values of energy imparted for 10 and 70 kg patients being 85 and 310 mJ, respectively. The effective dose showed an inverse correlation with increasing patient weight, however, with values of effective dose for 10 and 70 kg patients being 9.6 and 5.4 mSv, respectively. Current CT technique factors (kVp/mAs) used to perform chest CT examinations result in relatively high patient doses, which could be reduced by adjusting technique factors based on patient size.
2017-01-01
Purpose Optical coherence tomography (OCT) is a noninvasive diagnostic technique that may be useful for both qualitative and quantitative analyses of the periodontium. Micro-computed tomography (micro-CT) is another noninvasive imaging technique capable of providing submicron spatial resolution. The purpose of this study was to present periodontal images obtained using ex vivo dental OCT and to compare OCT images with micro-CT images and histologic sections. Methods Images of ex vivo canine periodontal structures were obtained using OCT. Biologic depth measurements made using OCT were compared to measurements made on histologic sections prepared from the same sites. Visual comparisons were made among OCT, micro-CT, and histologic sections to evaluate whether anatomical details were accurately revealed by OCT. Results The periodontal tissue contour, gingival sulcus, and the presence of supragingival and subgingival calculus could be visualized using OCT. OCT was able to depict the surface topography of the dentogingival complex with higher resolution than micro-CT, but the imaging depth was typically limited to 1.2–1.5 mm. Biologic depth measurements made using OCT were a mean of 0.51 mm shallower than the histologic measurements. Conclusions Dental OCT as used in this study was able to generate high-resolution, cross-sectional images of the superficial portions of periodontal structures. Improvements in imaging depth and the development of an intraoral sensor are likely to make OCT a useful technique for periodontal applications. PMID:28261522
X-ray CT core imaging of Oman Drilling Project on D/V CHIKYU
NASA Astrophysics Data System (ADS)
Michibayashi, K.; Okazaki, K.; Leong, J. A. M.; Kelemen, P. B.; Johnson, K. T. M.; Greenberger, R. N.; Manning, C. E.; Harris, M.; de Obeso, J. C.; Abe, N.; Hatakeyama, K.; Ildefonse, B.; Takazawa, E.; Teagle, D. A. H.; Coggon, J. A.
2017-12-01
We obtained X-ray computed tomography (X-ray CT) images for all cores (GT1A, GT2A, GT3A and BT1A) in Oman Drilling Project Phase 1 (OmanDP cores), since X-ray CT scanning is a routine measurement of the IODP measurement plan onboard Chikyu, which enables the non-destructive observation of the internal structure of core samples. X-ray CT images provide information about chemical compositions and densities of the cores and is useful for assessing sample locations and the quality of the whole-round samples. The X-ray CT scanner (Discovery CT 750HD, GE Medical Systems) on Chikyu scans and reconstructs the image of a 1.4 m section in 10 minutes and produces a series of scan images, each 0.625 mm thick. The X-ray tube (as an X-ray source) and the X-ray detector are installed inside of the gantry at an opposing position to each other. The core sample is scanned in the gantry with the scanning rate of 20 mm/sec. The distribution of attenuation values mapped to an individual slice comprises the raw data that are used for subsequent image processing. Successive two-dimensional (2-D) slices of 512 x 512 pixels yield a representation of attenuation values in three-dimensional (3-D) voxels of 512 x 512 by 1600 in length. Data generated for each core consist of core-axis-normal planes (XY planes) of X-ray attenuation values with dimensions of 512 × 512 pixels in 9 cm × 9 cm cross-section, meaning at the dimensions of a core section, the resolution is 0.176 mm/pixel. X-ray intensity varies as a function of X-ray path length and the linear attenuation coefficient (LAC) of the target material is a function of the chemical composition and density of the target material. The basic measure of attenuation, or radiodensity, is the CT number given in Hounsfield units (HU). CT numbers of air and water are -1000 and 0, respectively. Our preliminary results show that CT numbers of OmanDP cores are well correlated to gamma ray attenuation density (GRA density) as a function of chemical composition and mineral density, so that their profiles with respect to the core depth provide quick lithological information such as mineral identification and phase boundary etc. Moreover, X-ray CT images can be used for 3-D fabric analyses of the whole core even after core cutting into halves for individual analyses.
CTEQ-TEA parton distribution functions and HERA Run I and II combined data
NASA Astrophysics Data System (ADS)
Hou, Tie-Jiun; Dulat, Sayipjamal; Gao, Jun; Guzzi, Marco; Huston, Joey; Nadolsky, Pavel; Pumplin, Jon; Schmidt, Carl; Stump, Daniel; Yuan, C.-P.
2017-02-01
We analyze the impact of the recent HERA Run I +II combination of inclusive deep inelastic scattering cross-section data on the CT14 global analysis of parton distribution functions (PDFs). New PDFs at next-to-leading order and next-to-next-to-leading order, called CT14 HERA 2 , are obtained by a refit of the CT14 data ensembles, in which the HERA Run I combined measurements are replaced by the new HERA Run I +II combination. The CT14 functional parametrization of PDFs is flexible enough to allow good descriptions of different flavor combinations, so we use the same parametrization for CT14 HERA 2 but with an additional shape parameter for describing the strange quark PDF. We find that the HERA I +II data can be fit reasonably well, and both CT14 and CT14 HERA 2 PDFs can describe equally well the non-HERA data included in our global analysis. Because the CT14 and CT14 HERA 2 PDFs agree well within the PDF errors, we continue to recommend CT14 PDFs for the analysis of LHC Run 2 experiments.
2001-09-01
The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images.
Landmark-Based 3D Elastic Registration of Pre- and Postoperative Liver CT Data
NASA Astrophysics Data System (ADS)
Lange, Thomas; Wörz, Stefan; Rohr, Karl; Schlag, Peter M.
The qualitative and quantitative comparison of pre- and postoperative image data is an important possibility to validate computer assisted surgical procedures. Due to deformations after surgery a non-rigid registration scheme is a prerequisite for a precise comparison. Interactive landmark-based schemes are a suitable approach. Incorporation of a priori knowledge about the anatomical structures to be registered may help to reduce interaction time and improve accuracy. Concerning pre- and postoperative CT data of oncological liver resections the intrahepatic vessels are suitable anatomical structures. In addition to using landmarks at vessel branchings, we here introduce quasi landmarks at vessel segments with anisotropic localization precision. An experimental comparison of interpolating thin-plate splines (TPS) and Gaussian elastic body splines (GEBS) as well as approximating GEBS on both types of landmarks is performed.
Adnet, J J; Pinteaux, A; Pousse, G; Caulet, T
1976-04-01
Three simple methods (adapted from optical techniques) for normal and pathological elastic tissue caracterisation in electron microscopy on thin and ultrathin sections are proposed. Two of these methods (orcein and fuchsin resorcin) seem to have a specificity for arterial and breast cancer elastic tissue. Weigert's method gives the best contrast.
Internal-external flow integration for a thin ejector-flapped wing section
NASA Technical Reports Server (NTRS)
Woolard, H. W.
1979-01-01
Thin airfoil theories of an ejector flapped wing section are reviewed. The global matching of the external airfoil flow with the ejector internal flow and the overall ejector flapped wing section aerodynamic performance are examined. Mathematical models of the external and internal flows are presented. The delineation of the suction flow coefficient characteristics are discussed. The idealized lift performance of an ejector flapped wing relative to a jet augmented flapped wing are compared.
NASA Astrophysics Data System (ADS)
Treverrow, Adam; Jun, Li; Jacka, Tim H.
2016-06-01
We present measurements of crystal c-axis orientations and mean grain area from the Dome Summit South (DSS) ice core drilled on Law Dome, East Antarctica. All measurements were made on location at the borehole site during drilling operations. The data are from 185 individual thin sections obtained between a depth of 117 m below the surface and the bottom of the DSS core at a depth of 1196 m. The median number of c-axis orientations recorded in each thin section was 100, with values ranging from 5 through to 111 orientations. The data from all 185 thin sections are provided in a single comma-separated value (csv) formatted file which contains the c-axis orientations in polar coordinates, depth information for each core section from which the data were obtained, the mean grain area calculated for each thin section and other data related to the drilling site. The data set is also available as a MATLAB™ structure array. Additionally, the c-axis orientation data from each of the 185 thin sections are summarized graphically in figures containing a Schmidt diagram, histogram of c-axis colatitudes and rose plot of c-axis azimuths. All these data are referenced by doi:10.4225/15/5669050CC1B3B and are available free of charge at https://data.antarctica.gov.au.<
7. SECTION VIEW EAST, WEST END OF DAM, DECEMBER 1995, ...
7. SECTION VIEW EAST, WEST END OF DAM, DECEMBER 1995, SHOWING 1915 CRIBBING; 1882 MASONRY ON LEFT - Norwich Water Power Company, Dam, West bank of Shetucket River opposite Fourteenth Street, Greenville section, Norwich, New London County, CT
Wallace, James D; Calvo, Richard Y; Lewis, Paul R; Brill, Jason B; Shackford, Steven R; Sise, Michael J; Sise, C Beth; Bansal, Vishal
2017-01-01
Sarcopenia, or age-related loss of muscle mass, is measurable by computed tomography (CT). In elderly trauma patients, increased mortality is associated with decreased psoas muscle cross-sectional area (P-Area) on abdominal CT. Fall is the leading cause of injury in the elderly, and head CT is more often obtained. Masseter muscle cross-sectional area (M-Area) is readily measured on head CT. Hypothesizing that M-Area is a satisfactory surrogate for P-Area, we compared the two as markers of sarcopenia and increased mortality in elderly trauma patients. All blunt-injured patients aged 65 years or older admitted to our trauma center during 2010 were included. Two-year postdischarge mortality was identified by matching records to county, state, and national death indices. Bilateral M-Area was measured on admission head CT at 2 cm below the zygomatic arch. Bilateral P-Area was measured on abdominal CT at the fourth vertebral body. Average M-Area and P-Area values were calculated for each patient. Cox proportional hazards models evaluated the relationship of M-Area and P-Area with mortality. Model predictive performance was calculated using concordance statistics. Among 487 patients, 357 with M-Area and 226 with P-Area were identified. Females had smaller M-Area (3.43 cm vs 4.18 cm; p < 0.050) and P-Area (6.50 cm vs 10.9 cm; p < 0.050) than males. Masseter muscle cross-sectional area correlated with P-Area (rho, 0.38; p < 0.001). Adjusted Cox regression models revealed decreased survival associated with declining M-Area (hazard ratio, 0.76; 95% confidence interval, 0.60-0.96) and P-Area (hazard ratio, 0.68; 95% confidence interval, 0.46-1.00). Masseter muscle cross-sectional area and P-Area discriminated equally well in best-fit models. In elderly trauma patients, M-Area is an equally valid and more readily available marker of sarcopenia and 2-year mortality than P-Area. Future study should validate M-Area as a metric to identify at-risk patients who may benefit from early intervention. Prognostic study, level III.
Rebaudi, Alberto; Trisi, Paolo; Pagni, Giorgio; Wang, Hom-Lay
The purpose of this study was to compare microcomputed tomography (microCT) and histologic analysis outcomes of a periodontal regeneration of a human defect treated with a polylactic- and polyglycolic-acid copolymer. At 11 months following the grafting procedure, the root with the surrounding periodontal tissues was removed and analyzed using microCT and histologic techniques. The results suggest that microCT three-dimensional analysis may be used in synergy with two-dimensional histologic sections to provide additional information for studying the regeneration outcomes normally reported by histologic biopsies in humans. Additional data is needed to validate these findings.
Comparing two quantitative methods for studying remineralization of artificial caries.
Lo, E C M; Zhi, Q H; Itthagarun, A
2010-04-01
To compare the detection of changes before and after remineralization of artificial enamel and dentin caries by microCT scanning, polarized light microscopy (PLM) and transverse microradiography (TMR). Fourteen extracted premolars were cut into tooth blocks and painted with an acid-resistant varnish leaving one enamel and one dentin surface exposed. The tooth blocks were immersed into demineralizing solution for 4 days to produce artificial caries-like lesions and scanned by microCT. Then the 14 tooth blocks were randomly allocated into two groups. Seven tooth blocks in Group I were cut longitudinally through the exposed surface into 100-150 microm thick sections and microradiographs were taken. The other seven tooth blocks in Group II were left intact. All the tooth blocks and sections were then immersed into remineralizing solution for 5 days. PLM and TMR of the tooth sections in Group I were taken again. Depth of the lesion on the TMR was measured. Tooth blocks in Group II were scanned by microCT. Mean lesion depth in Group I reduced by 13.0% and 8.2% after remineralization for enamel and dentin, respectively (paired t-test, P<0.001). In Group II, linear attenuation coefficient (LAC) of the region of interest (ROI) increased by 11.1% and 23.8% after remineralization for enamel and dentin lesions, respectively (paired t-test, P<0.001). Both microCT and microradiography are able to detect a change of similar magnitude in the artificial caries lesions after remineralization. MicroCT may be used to substitute TMR and PLM in in vitro studies about caries. Copyright 2010 Elsevier Ltd. All rights reserved.
Assessment of anterior shoulder instability by CT arthrography.
Yang, S O; Cho, K J; Kim, M J; Ro, I W
1987-09-01
Computed tomography (CT) immediately after double-contrast shoulder arthrography was taken in twenty-two young male patients with anterior shoulder instability including recurrent dislocation and subluxation. This recently developed technique called CT arthrography can provide significant information about patients with glenohumeral instability which is difficult to obtain by conventional arthrography. Information about glenoid labrum pathology is useful for proper management of the shoulder with instability. Lesions identified in this study include anterior labral defects (attenuation, tear, displacement), anterior capsular distension and/or detachment, Hill-Sachs lesion, anterior glenoid rim compression fracture, and fracture of scapula. This article describes the method used in CT arthrography of the glenohumeral joint, reviews the normal cross-sectional anatomy, and emphasizes the importance of the application of CT arthrography in the shoulder disorder with instability. CT arthrography of the glenohumeral joint is easy to perform, is accurate, and has lower radiation dose than arthrotomography.
Furuya, Ken; Akiyama, Shinji; Nambu, Atushi; Suzuki, Yutaka; Hasebe, Yuusuke
2017-01-01
We aimed to apply the pediatric abdominal CT protocol of Donnelly et al. in the United States to the pediatric abdominal CT-AEC. Examining CT images of 100 children, we found that the sectional area of the hepatic portal region (y) was strongly correlated with the body weight (x) as follows: y=7.14x + 84.39 (correlation coefficient=0.9574). We scanned an elliptical cone phantom that simulates the human body using a pediatric abdominal CT scanning method of Donnelly et al. in, and measured SD values. We further scanned the same phantom under the settings for adult CT-AEC scan and obtained the relationship between the sectional areas (y) and the SD values. Using these results, we obtained the following preset noise factors for CT-AEC at each body weight range: 6.90 at 4.5-8.9 kg, 8.40 at 9.0-17.9 kg, 8.68 at 18.0-26.9 kg, 9.89 at 27.0-35.9 kg, 12.22 at 36.0-45.0 kg, 13.52 at 45.1-70.0 kg, 15.29 at more than 70 kg. From the relation between age, weight and the distance of liver and tuber ischiadicum of 500 children, we obtained the CTDI vol values and DLP values under the scanning protocol of Donnelly et al. Almost all of DRL from these values turned out to be smaller than the DRL data of IAEA and various countries. Thus, by setting the maximum current values of CT-AEC to be the Donnelly et al.'s age-wise current values, and using our weight-wise noise factors, we think we can perform pediatric abdominal CT-AEC scans that are consistent with the same radiation safety and the image quality as those proposed by Donnelly et al.
Obtaining Magnetic Properties of Meteorites Using Magnetic Scanner
NASA Astrophysics Data System (ADS)
Kletetschka, G.; Nabelek, L.; Mazanec, M.; Simon, K.; Hruba, J.
2015-12-01
Magnetic images of Murchison meteorite's and Chelyabinsk meteorite's thin section have been obtained from magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses (Nabelek et al., 2015). Nabelek, L., Mazanec, M., Kdyr, S., and Kletetschka, G., 2015, Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section: Meteoritics & Planetary Science.
Atelectasis observed by computerized tomography after Caesarean section.
Meira, M N C; Carvalho, C R R; Galizia, M S; Borges, J B; Kondo, M M; Zugaib, M; Vieira, J E
2010-06-01
Atelectasis after either vaginal or Caesarean delivery has not been adequately quantified. This study addresses the hypothesis that atelectasis may be worse in women who undergo Caesarean section when compared with vaginal delivery under regional anaesthesia. Twenty healthy non-smoking women submitted to a chest computed tomography (CT) 2 h after delivery in a University Hospital, who had experienced vaginal delivery (n=10) under combined spinal-epidural analgesia or a Caesarean section (n=10) under spinal anaesthesia, were evaluated. The percentage cross-sectional area of atelectasis in dependent lung regions were measured from the CT images obtained at cross-section of the xiphoid process and the top of the diaphragm. The percentage cross-sectional area of atelectasis was 3.95% in the vaginal delivery group and 14.1% in the Caesarean group (P<0.001, Mann-Whitney rank sum test). These results suggested that pulmonary atelectasis is greater after Caesarean section delivery under spinal anaesthesia than after vaginal delivery with combined spinal-epidural analgesia.
Particle Shape Characterization of Lunar Regolith using Reflected Light Microscopy
NASA Astrophysics Data System (ADS)
McCarty, C. B.; Garcia, G. C.; Rickman, D.
2014-12-01
Automated identification of particles in lunar thin sections is necessary for practical measurement of particle shape, void characterization, and quantitative characterization of sediment fabric. This may be done using image analysis, but several aspects of the lunar regolith make such automations difficult. For example, many of the particles are shattered; others are aggregates of smaller particles. Sieve sizes of the particles span 5 orders of magnitude. The physical thickness of a thin section, at a nominal 30 microns, is large compared to the size of many of the particles. Image acquisition modes, such as SEM and reflected light, while superior to transmitted light, still have significant ambiguity as to the volume being sampled. It is also desirable to have a technique that is inexpensive, not resource intensive, and analytically robust. To this end, we have developed an image acquisition and processing protocol that identifies and delineates resolvable particles on the front surface of a lunar thin section using a petrographic microscope in reflected light. For a polished thin section, a grid is defined covering the entire thin section. The grid defines discrete images taken with 20% overlap, minimizing the number of particles that intersect image boundaries. In reflected light mode, two images are acquired at each grid location, with a closed aperture diaphragm. One image, A, is focused precisely on the front surface of the thin section. The second image, B, is made after the stage is brought toward the objective lens just slightly. A bright fringe line, analogous to a Becke line, appears inside all transparent particles at the front surface of the section in the second image. The added light in the bright line corresponds to a deficit around the particles. Particle identification is done using ImageJ and uses multiple steps. A hybrid 5x5 median filter is used to make images Af and Bf. This primarily removes very small particles just below the front surface of the section. Bf - (Bf/Af) is then computed. The division strongly enhances the fringe and the deficit, while minimizing the correlated information in A and B. The subtraction emphasizes the particle-epoxy boundaries. The resulting image is converted to binary, and then holes are filled. Cracks are removed using a median-based operator.
Electrocardiographically gated 16-section CT of the thorax: cardiac motion suppression.
Hofmann, Lars K; Zou, Kelly H; Costello, Philip; Schoepf, U Joseph
2004-12-01
Thirty patients underwent 16-section multi-detector row computed tomographic (CT) angiography of the thorax with retrospective electrocardiographic gating. Institutional review board approval was obtained for retrospective analysis of CT scan data and records; patient informed consent was not required. Images reconstructed at six different time points (0%, 20%, 40%, 50%, 60%, 80%) within the R-R interval on the electrocardiogram were analyzed by two radiologists for diagnostic quality, to identify suitable reconstruction intervals for optimal suppression of cardiac motion. Five regions of interest (left coronary artery, aortic root, ascending and descending aorta, pulmonary arteries) were evaluated. Best image quality was achieved by referencing image reconstruction to middiastole (50%-60%) for the left coronary artery, aortic root, and ascending aorta. The pulmonary arteries are best displayed during mid- to late diastole (80%). (c) RSNA, 2004
Computed Tomography of the Normal Bovine Tarsus.
Hagag, U; Tawfiek, M; Brehm, W; Gerlach, K
2016-12-01
The objective of this study was to provide a detailed multiplanar computed tomographic (CT) anatomic reference for the bovine tarsus. The tarsal regions from twelve healthy adult cow cadavers were scanned in both soft and bone windows via a 16-slice multidetector CT scanner. Tarsi were frozen at -20 o C and sectioned to 10-mm-thick slices in transverse, dorsal and sagittal planes respecting the imaging protocol. The frozen sections were cleaned and then photographed. Anatomic structures were identified, labelled and compared with the corresponding CT images. The sagittal plane was indispensable for evaluation of bone contours, the dorsal plane was valuable in examination of the collateral ligaments, and both were beneficial for assessment of the tarsal joint articulations. CT images allowed excellent delineation between the cortex and medulla of bones, and the trabecular structure was clearly depicted. The tarsal soft tissues showed variable shades of grey, and the synovial fluid was the lowest attenuated structure. This study provided full assessment of the clinically relevant anatomic structures of the bovine tarsal joint. This technique may be of value when results from other diagnostic imaging techniques are indecisive. Images presented in this study should serve as a basic CT reference and assist in the interpretation of various bovine tarsal pathology. © 2016 Blackwell Verlag GmbH.
Hobson, David O.; Snyder, Jr., William B.
1995-01-01
A method and system for manufacturing a thin-film battery and a battery structure formed with the method utilizes a plurality of deposition stations at which thin battery component films are built up in sequence upon a web-like substrate as the substrate is automatically moved through the stations. At an initial station, cathode and anode current collector film sections are deposited upon the substrate, and at another station, a thin cathode film is deposited upon the substrate so to overlie part of the cathode current collector section. At another station, a thin electrolyte film is deposited upon so as to overlie the cathode film and part of the anode current collector film, at yet another station, a thin lithium film is deposited upon so as to overlie the electrolyte film and an additional part of the anode current collector film. Such a method accommodates the winding of a layup of battery components into a spiral configuration to provide a thin-film, high capacity battery and also accommodates the build up of thin film battery components onto a substrate surface having any of a number of shapes.
El-Shazly, Amany A; Farweez, Yousra A; ElSebaay, Marwa E; El-Zawahry, Walid M A
2017-08-30
To assess the choroidal thickness in different degrees of myopia using enhanced depth imaging optical coherence tomography (EDI-OCT) compared with healthy subjects. We included 240 patients with myopia and 60 emmetropes as controls. Participants underwent full ophthalmologic examination, axial length measurement, and EDI-OCT imaging of the choroid. Choroidal thickness (CT) was measured at 5 locations, including subfoveal (SFCT), 2 mm nasal, temporal, upper, and lower to fovea. Choroidal thickness was significantly lower in myopic eyes compared to controls. Regardless of the degree of myopia, nasal regions showed the lowest CT with decremental pattern with advance of myopia (low myopia 279.00 ± 24.50 µm, moderate myopia 269.58 ± 20.69 µm, high myopia 189.58 ± 25.95 µm, advanced myopia 96.75 ± 24.83 µm). Highest CT was variable according to the degree of myopia with decremental pattern with advance of myopia (low myopia in subfoveal region 354.40 ± 35.14 µm, moderate myopia in temporal region 337.87 ± 35.75 µm, high myopia in lower region 312.15 ± 38.90 µm, and advanced myopia in upper region 201.25 ± 18.27 µm). Axial length showed significant negative correlation with SFCT and CT in different studied regions. Different degrees of myopia showed thinner choroidal thickness than that of normal control eyes with decremental thinning with progress of myopia. This might be secondary to the longer axial length, which was the determining factor in some locations such as subfoveal, nasal, and upper CT.
NASA Astrophysics Data System (ADS)
Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K.; Yashar, Catheryn M.; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura
2015-04-01
Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based ‘thin-plate-spline robust point matching’ algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.
Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K; Yashar, Catheryn M; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura
2015-04-07
Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based 'thin-plate-spline robust point matching' algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.
Last, Anna R; Burr, Sarah E; Harding-Esch, Emma; Cassama, Eunice; Nabicassa, Meno; Roberts, Chrissy H; Mabey, David C W; Holland, Martin J; Bailey, Robin L
2017-12-28
Trachoma, a neglected tropical disease, is caused by ocular infection with Chlamydia trachomatis (Ct). The World Health Organization (WHO) recommends three annual rounds of community mass drug treatment with azithromycin (MDA) if the prevalence of follicular trachoma in 1-9 year olds (TF 1-9 ) exceeds 10% at district level to achieve an elimination target of district-level TF 1-9 below 5% after. To evaluate this strategy in treatment-naïve trachoma-endemic island communities in Guinea Bissau, we conducted a cross-sectional population-based trachoma survey on four islands. The upper tarsal conjunctivae of each participant were clinically assessed for trachoma and conjunctival swabs were obtained (n = 1507). We used a droplet digital PCR assay to detect Ct infection and estimate bacterial load. We visited the same households during a second cross-sectional survey and repeated the ocular examination and obtained conjunctival swabs from these households one year after MDA (n = 1029). Pre-MDA TF 1-9 was 22.0% (136/618). Overall Ct infection prevalence (CtI) was 18.6% (25.4% in 1-9 year olds). Post-MDA (estimated coverage 70%), TF 1-9 and CtI were significantly reduced (7.4% (29/394, P < 0.001) and 3.3% (34/1029, P < 0.001) (6.6% in 1-9 year olds, P < 0.001), respectively. Median ocular Ct load was reduced from 2038 to 384 copies/swab (P < 0.001). Following MDA cases of Ct infection were highly clustered (Moran's I 0.27, P < 0.001), with fewer clusters of Ct infection overall, fewer clusters of cases with high load infections and less severe disease. Despite a significant reduction in the number of clusters of Ct infection, mean Ct load, disease severity and presence of clusters of cases of high load Ct infection suggesting the beginning of trachoma control in isolated island communities, following a single round of MDA we demonstrate that transmission is still ongoing. These detailed data are useful in understanding the epidemiology of ocular Ct infection in the context of MDA and the tools employed may have utility in determining trachoma elimination and surveillance activities in similar settings.
33 CFR 100.102 - Great Connecticut River Raft Race, Middletown, CT.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Great Connecticut River Raft Race, Middletown, CT. 100.102 Section 100.102 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.102 Great Connecticut River...
33 CFR 100.102 - Great Connecticut River Raft Race, Middletown, CT.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Great Connecticut River Raft Race... Raft Race, Middletown, CT. (a) Regulated Area. That section of the Connecticut River between Dart.... (1) The Coast Guard patrol commander may delay, modify, or cancel the race as conditions or...
Fornai, Cinzia; Benazzi, Stefano; Svoboda, Jiří; Pap, Ildikó; Harvati, Katerina; Weber, Gerhard W
2014-11-01
Enamel thickness and dental tissue proportions have been recognized as effective taxonomic discriminators between Neanderthal and modern humans teeth. However, most of the research on this topic focused on permanent teeth, and little information is available for the deciduous dentition. Moreover, although worn teeth are more frequently found than unworn teeth, published data for worn teeth are scarce and methods for the assessment of their enamel thickness need to be developed. Here, we addressed this issue by studying the 2D average enamel thickness (AET) and 2D relative enamel thickness (RET) of Neanderthal and modern humans unworn to moderately worn upper first deciduous molars (dm(1)s) and upper second deciduous molars (dm(2)s). In particular, we used 3D μCT data to investigate the mesial section for dm(1)s and both mesial and buccal sections for dm(2)s. Our results confirmed previous findings of an Neanderthal derived condition of thin enamel, and thinner enamel in dm(1)s than dm(2)s in both Neanderthal and modern humans. We demonstrated that the Neanderthal 2D RET indices are significantly lower than those of modern humans at similar wear stages in both dm(1)s and dm(2)s (p < 0.05). The discriminant analysis showed that using 2D RET from dm(1) and dm(2) sections at different wear stages up to 93% of the individuals are correctly classified. Moreover, we showed that the dm(2) buccal sections, although non-conventionally used, might have an advantage on mesial sections since they distinguish as well as mesial sections but tend to be less worn. Therefore, the 2D analysis of enamel thickness is suggested as a means for taxonomic discrimination between modern humans and Neanderthal unworn to moderately worn upper deciduous molars. Copyright © 2014 Elsevier Ltd. All rights reserved.
Histologic evaluation of autogenous connective tissue and acellular dermal matrix grafts in humans.
Cummings, Lewis C; Kaldahl, Wayne B; Allen, Edward P
2005-02-01
The clinical success of root coverage with autogenous connective tissue (CT) or acellular dermal matrix (ADM) has been well documented. However, limited histological results of CT grafts have been reported, and a case report of a human block section has been published documenting an ADM graft. The purpose of this study is to document the histological results of CT grafts, ADM grafts, and coronally advanced flaps to cover denuded roots in humans. This study included four patients previously treatment planned for extractions of three or more anterior teeth. Three teeth in each patient were selected and randomly designated to receive either a CT or ADM graft beneath a coronally advanced flap (tests) or coronally advanced flap alone (control). Six months postoperatively block section extractions were performed and the teeth processed for histologic evaluation with hematoxylin-eosin and Verhoeff's stains. Histologically, both the CT and ADM were well incorporated within the recipient tissues. New fibroblasts, vascular elements, and collagen were present throughout the ADM, while retention of the transplanted elastic fibers was apparent. No effect on the keratinization or connective tissue organization of the overlying alveolar mucosa was evident with either graft. For both materials, areas of cemental deposition were present within the root notches, the alveolar bone was essentially unaffected, and the attachments to the root surfaces were similar. Although CT and ADM have a slightly different histological appearance, both can successfully be used to cover denuded roots with similar attachments and no adverse healing.
A “loop” shape descriptor and its application to automated segmentation of airways from CT scans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pu, Jiantao; Jin, Chenwang, E-mail: jcw76@163.com; Yu, Nan
2015-06-15
Purpose: A novel shape descriptor is presented to aid an automated identification of the airways depicted on computed tomography (CT) images. Methods: Instead of simplifying the tubular characteristic of the airways as an ideal mathematical cylindrical or circular shape, the proposed “loop” shape descriptor exploits the fact that the cross sections of any tubular structure (regardless of its regularity) always appear as a loop. In implementation, the authors first reconstruct the anatomical structures in volumetric CT as a three-dimensional surface model using the classical marching cubes algorithm. Then, the loop descriptor is applied to locate the airways with a concavemore » loop cross section. To deal with the variation of the airway walls in density as depicted on CT images, a multiple threshold strategy is proposed. A publicly available chest CT database consisting of 20 CT scans, which was designed specifically for evaluating an airway segmentation algorithm, was used for quantitative performance assessment. Measures, including length, branch count, and generations, were computed under the aid of a skeletonization operation. Results: For the test dataset, the airway length ranged from 64.6 to 429.8 cm, the generation ranged from 7 to 11, and the branch number ranged from 48 to 312. These results were comparable to the performance of the state-of-the-art algorithms validated on the same dataset. Conclusions: The authors’ quantitative experiment demonstrated the feasibility and reliability of the developed shape descriptor in identifying lung airways.« less
Memristive Properties of Thin Film Cuprous Oxide
2011-03-01
Equation Chapter 1 Section 1 MEMRISTIVE PROPERTIES OF THIN FILM CUPROUS OXIDE THESIS Brett C...Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this thesis are those of the...MEMRISTIVE PROPERTIES OF THIN FILM CUPROUS OXIDE THESIS Presented to the Faculty Department of Engineering Physics Graduate School of
7 CFR 29.2438 - Thin Leaf (C Group).
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Thin Leaf (C Group). 29.2438 Section 29.2438... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2438 Thin Leaf (C Group). This group consists of leaves usually grown at the center portion of the stalk. These leaves normally have a rounded tip, are thinner in...
7 CFR 29.2438 - Thin Leaf (C Group).
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Thin Leaf (C Group). 29.2438 Section 29.2438... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2438 Thin Leaf (C Group). This group consists of leaves usually grown at the center portion of the stalk. These leaves normally have a rounded tip, are thinner in...
7 CFR 29.2438 - Thin Leaf (C Group).
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Thin Leaf (C Group). 29.2438 Section 29.2438... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2438 Thin Leaf (C Group). This group consists of leaves usually grown at the center portion of the stalk. These leaves normally have a rounded tip, are thinner in...
7 CFR 29.2438 - Thin Leaf (C Group).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Thin Leaf (C Group). 29.2438 Section 29.2438... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2438 Thin Leaf (C Group). This group consists of leaves usually grown at the center portion of the stalk. These leaves normally have a rounded tip, are thinner in...
7 CFR 29.2438 - Thin Leaf (C Group).
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Thin Leaf (C Group). 29.2438 Section 29.2438... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2438 Thin Leaf (C Group). This group consists of leaves usually grown at the center portion of the stalk. These leaves normally have a rounded tip, are thinner in...
Lα and Mαβ X-ray production cross-sections of Bi by 6-30 keV electron impact
NASA Astrophysics Data System (ADS)
Liang, Y.; Xu, M. X.; Yuan, Y.; Wu, Y.; Qian, Z. C.; Chang, C. H.; Mei, C. S.; Zhu, J. J.; Moharram, K.
2017-12-01
In this paper, the Lα and Mαβ X-ray production cross-sections for Bi impacted by 6-30 keV electron have been measured. The experiments were performed at a Scanning Electron Microscope equipped with a silicon drift detector. The thin film with thick C substrate and the thin film deposited on self-supporting thin C film were both used as the targets to make a comparison. For the thick carbon substrate target, the Monte Carlo method has been used to eliminate the contribution of backscattering particles. The measured data are compared with the DWBA theoretical model and the experimental results in the literature. The experimental data for the thin film with thick C substrate target and the thin film deposited on self-supporting thin C film target are within reasonable gaps. The DWBA theoretical model gives good fit to the experimental data both for L- and M- shells. Besides, we also analyze the reasons why the discrepancies exist between our measurements and the experimental results in the literature.
Improved Image Quality in Head and Neck CT Using a 3D Iterative Approach to Reduce Metal Artifact.
Wuest, W; May, M S; Brand, M; Bayerl, N; Krauss, A; Uder, M; Lell, M
2015-10-01
Metal artifacts from dental fillings and other devices degrade image quality and may compromise the detection and evaluation of lesions in the oral cavity and oropharynx by CT. The aim of this study was to evaluate the effect of iterative metal artifact reduction on CT of the oral cavity and oropharynx. Data from 50 consecutive patients with metal artifacts from dental hardware were reconstructed with standard filtered back-projection, linear interpolation metal artifact reduction (LIMAR), and iterative metal artifact reduction. The image quality of sections that contained metal was analyzed for the severity of artifacts and diagnostic value. A total of 455 sections (mean ± standard deviation, 9.1 ± 4.1 sections per patient) contained metal and were evaluated with each reconstruction method. Sections without metal were not affected by the algorithms and demonstrated image quality identical to each other. Of these sections, 38% were considered nondiagnostic with filtered back-projection, 31% with LIMAR, and only 7% with iterative metal artifact reduction. Thirty-three percent of the sections had poor image quality with filtered back-projection, 46% with LIMAR, and 10% with iterative metal artifact reduction. Thirteen percent of the sections with filtered back-projection, 17% with LIMAR, and 22% with iterative metal artifact reduction were of moderate image quality, 16% of the sections with filtered back-projection, 5% with LIMAR, and 30% with iterative metal artifact reduction were of good image quality, and 1% of the sections with LIMAR and 31% with iterative metal artifact reduction were of excellent image quality. Iterative metal artifact reduction yields the highest image quality in comparison with filtered back-projection and linear interpolation metal artifact reduction in patients with metal hardware in the head and neck area. © 2015 by American Journal of Neuroradiology.
Osawa, Atsushi; Miwa, Kenta; Wagatsuma, Kei; Takiguchi, Tomohiro; Tamura, Shintaro; Akimoto, Kenta
2012-01-01
The image quality in (18)FDG PET/CT often degrades as the body size increases. The purpose of this study was to evaluate the relationship between image quality and the body size using original phantoms of variable cross-sectional areas in PET/CT. We produced five water phantoms with different cross-sectional areas. The long axis of phantom was 925 mm, and the cross-sectional area was from 324 to 1189 cm(2). These phantoms with the sphere (diameter 10 mm) were filled with (18)F-FDG solution. The radioactivity concentration of background in the phantom was 1.37, 2.73, 4.09 and 5.46 kBq/mL. The scanning duration was 30 min in list mode acquisition for each measurement. Background variability (N(10 mm)), noise equivalent count rates (NECR(phantom)), hot sphere contrast (Q(H,10 mm)) as physical evaluation and visual score of sphere detection were measured, respectively. The relationship between image quality and the various cross-sectional areas was also analyzed under the above-mentioned conditions. As cross-sectional area increased, NECR(phantom) progressively decreased. Furthermore, as cross-sectional area increased, N(10 mm) increased and Q(H,10 mm) decreased. Image quality became degraded as body weight increased because noise and contrast contributed to image quality. The visual score of sphere detection deteriorated in high background radioactivity concentration because a false positive detection in cross-sectional area of the phantom increased. However, additional increases in scanning periods could improve the visual score. We assessed tendencies in the relationship between image quality and body size in PET/CT. Our results showed that time adjustment was more effective than dose adjustment for stable image quality of heavier patients in terms of the large cross-sectional area.
Stirling, C A
1978-09-01
Molten (328 K) 20% gelatin is used as a 'glue' to hold together separate tissue elements or tissue elements that may be separated when cutting small blocks of tissue for plastic embedding. Standard aldehyde and osmium fixation, dehydration and epoxy embedding are compatible with this as is semi-thin sectioning for light microscopy or thin sectioning for electron microscopy.
NASA Technical Reports Server (NTRS)
Miller, James G.
1997-01-01
In this Progress Report, we describe our further development of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns transmitted through water only and transmitted through water and a thin woven composite. All images of diffraction patterns have been included on the accompanying CD-ROM in the JPEG format and Adobe TM Portable Document Format (PDF), in addition to the inclusion of hardcopies of the images contained in this report. In our previous semi-annual Progress Report (NAG 1-1848, December, 1996), we proposed a simple model to simulate the effect of a thin woven composite on an insonifying ultrasonic pressure field. This initial approach provided an avenue to begin development of a robust measurement method for nondestructive evaluation of anisotropic materials. In this Progress Report, we extend that work by performing experimental measurements on a single layer of a five-harness biaxial woven composite to investigate how a thin, yet architecturally complex, material interacts with the insonifying ultrasonic field. In Section 2 of this Progress Report we describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. We also briefly describe the thin composite specimen investigated. Section 3 details the analysis of the experimental data followed by the experimental results in Section 4. Finally, a discussion of the observations and conclusions is found in Section 5.
2001-01-01
The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images. In this photograph, a patient undergoes an open MRI.
Minami, Yasunori; Kitai, Satoshi; Kudo, Masatoshi
2012-03-01
Virtual CT sonography using magnetic navigation provides cross sectional images of CT volume data corresponding to the angle of the transducer in the magnetic field in real-time. The purpose of this study was to clarify the value of this virtual CT sonography for treatment response of radiofrequency ablation for hepatocellular carcinoma. Sixty-one patients with 88 HCCs measuring 0.5-1.3 cm (mean±SD, 1.0±0.3 cm) were treated by radiofrequency ablation. For early treatment response, dynamic CT was performed 1-5 days (median, 2 days). We compared early treatment response between axial CT images and multi-angle CT images using virtual CT sonography. Residual tumor stains on axial CT images and multi-angle CT images were detected in 11.4% (10/88) and 13.6% (12/88) after the first session of RFA, respectively (P=0.65). Two patients were diagnosed as showing hyperemia enhancement after the initial radiofrequency ablation on axial CT images and showed local tumor progression shortly because of unnoticed residual tumors. Only virtual CT sonography with magnetic navigation retrospectively showed the residual tumor as circular enhancement. In safety margin analysis, 10 patients were excluded because of residual tumors. The safety margin more than 5 mm by virtual CT sonographic images and transverse CT images were determined in 71.8% (56/78) and 82.1% (64/78), respectively (P=0.13). The safety margin should be overestimated on axial CT images in 8 nodules. Virtual CT sonography with magnetic navigation was useful in evaluating the treatment response of radiofrequency ablation therapy for hepatocellular carcinoma. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Gavin, Carson T; Ali, Sohrab N; Tailly, Thomas; Olvera-Posada, Daniel; Alenezi, Husain; Power, Nicholas E; Hou, Jinqiang; St. Amant, Andre H; Luyt, Leonard G; Wood, Stephen; Wu, Charles; Razvi, Hassan; Leong, Hon S
2016-01-01
Accurate determination of urinary stone composition has significant bearing on understanding pathophysiology, choosing treatment modalities and preventing recurrence. A need exists for improved methods to determine stone composition. Urine of 31 patients with known renal calculi was examined with nanoscale flow cytometry and the calculi collected during surgery subsequently underwent petrographic thin sectioning with polarized and fluorescent microscopy. Fluorescently labeled bisphosphonate probes (Alendronate-fluorescein/Alendronate-Cy5) were developed for nanoscale flow cytometry to enumerate nanocrystals that bound the fluorescent probes. Petrographic sections of stones were also imaged by fluorescent and polarized light microscopy with composition analysis correlated to alendronate +ve nanocrystal counts in corresponding urine samples. Urine samples from patients with Ca2+ and Mg2+ based calculi exhibited the highest alendronate +ve nanocrystal counts, ranging from 100–1000 nm in diameter. This novel urine based assay was in agreement with composition determined by petrographic thin sections with Alendronate probes. In some cases, high alendronate +ve nanocrystal counts indicated a Ca2+ or Mg2+ composition, as confirmed by petrographic analysis, overturning initial spectrophotometric diagnosis of stone composition. The combination of nanoscale flow cytometry and petrographic thin sections offer an alternative means for determining stone composition. Nanoscale flow cytometry of alendronate +ve nanocrystals alone may provide a high-throughput means of evaluating stone burden. PMID:26771074
Influence of the autonomic nervous system on calcium homeostasis in the rat.
Stern, J E; Cardinali, D P
1994-01-01
The local surgical manipulation of sympathetic and parasympathetic nerves innervating the thyroid-parathyroid territory was employed to search for the existence of a peripheral neuroendocrine link controlling parathyroid hormone (PTH) and calcitonin (CT) release. From 8 to 24 h after superior cervical ganglionectomy (SCGx), at the time of wallerian degeneration of thyroid-parathyroid sympathetic nerve terminals, an alpha-adrenergic inhibition, together with a minor beta-adrenergic stimulation, of hypercalcemia-induced CT release, and an alpha-adrenoceptor inhibition of hypocalcemia-induced PTH release were found. In chronically SCGx rats PTH response to EDTA was slower, and after CaCl2 injection, serum calcium attained higher levels in face of normal CT levels. SCGx blocked the PTH increase found in sham-operated rats stressed by a subcutaneous injection of turpentine oil, but did not affect the greater response to EDTA. The higher hypocalcemia seen after turpentine oil was no longer observed in SCGx rats. The effects of turpentine oil stress on calcium and CT responses to a bolus injection of CaCl2 persisted in rats subjected to SCGx 14 days earlier. Interruption of thyroid-parathyroid parasympathetic input conveyed by the thyroid nerves (TN) and the inferior laryngeal nerves (ILN) caused a fall in total serum calcium, an increase of PTH levels and a decrease of CT levels, when measured 10 days after surgery. Greater responses of serum CT and PTH were detected in TN-sectioned, and in TN- or ILN-sectioned rats, respectively. Physiological concentrations of CT decreased, and those of PTH increased, in vitro cholinergic activity in rat SCG, measured as specific choline uptake, and acetylcholine synthesis and release. The results indicate that cervical autonomic nerves constitute a pathway through which the brain modulates calcium homeostasis.
Accuracy of limited four-slice CT-scan in diagnosis of chronic rhinosinusitis.
Zojaji, R; Nekooei, S; Naghibi, S; Mazloum Farsi Baf, M; Jalilian, R; Masoomi, M
2015-12-01
Chronic rhinosinusitis (CRS) is a common chronic health condition worldwide. Standard CT-scan is the method of choice for diagnosis of CRS but its high price and considerable radiation exposure have limited its application. The main goal of this study was to evaluate the accuracy of limited four-slice coronal CT-scan in the diagnosis of CRS. This cross-sectional study was conducted on 46 patients with CRS, for one year, based on American Society of Head and Neck Surgery criteria. All patients received the preoperative standard and four-slice CT-scans, after which endoscopic sinus surgery was performed. Findings of four-slice CT-scans were compared with those of conventional CT-scan and the sensitivity and specificity of four-slice CT-scan and its agreement with conventional CT-scan was calculated. In this study, 46 patients including 32 males (69.6%) and 14 females (30.46%) with a mean age of 33 and standard deviation of 9 years, were evaluated. Sensitivity and specificity of four-slice CT-scan were 97.5% and 100%, respectively. Also, positive predictive value (PPV) and negative predictive value (NPV) of four-slice CT was 100% and 85.71%, respectively. There was a strong agreement between four-slice CT and conventional CT findings. Considering the high sensitivity and specificity of four-slice CT-scan and strong agreement with conventional CT-scan in the diagnosis of CRS and the lower radiation exposure and cost, application of this method is suggested for both diagnosis and treatment follow-up in CRS. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Recurrent pulmonary embolism due to echinococcosis secondary to hepatic surgery for hydatid cysts.
Damiani, Mario Francesco; Carratù, Pierluigi; Tatò, Ilaria; Vizzino, Heleanna; Florio, Carlo; Resta, Onofrio
2012-01-01
We describe the case of a 53-year-old man with recurrent pulmonary embolism due to intra-arterial cysts from Echinococcus. Both the patient's medical history and the computed tomographic (CT) scan abnormalities led to the diagnosis. The CT scan, performed during hospitalization in our ward, showed cystic masses in the left main pulmonary artery and in the descending branch of the right pulmonary artery. Within cystic masses, thin septa were visible, giving a chambered appearance, which was suggestive of a group of daughter cysts. In the past, our patient underwent multiple operations for recurring echinococcal cysts of the liver. After the last intervention, 4 years earlier, his postoperative course was complicated by pulmonary embolism: a CT scan showed a filling defect in the descending branch of the right pulmonary artery, which was caused by the same cystic mass as 4 years later, although smaller. This mass, not properly treated, increased in diameter. Moreover, after 4 years, there has been a new episode of embolism, which involved the left main pulmonary artery. This is the first case in which there are repeated episodes of pulmonary embolism echinococcosis after hepatic surgery for removal of hydatid cysts.
Localized air foci in the lower thorax in the patients with pneumothorax: skip pneumothoraces.
Higuchi, Takeshi; Takahashi, Naoya; Kiguchi, Takao; Shiotani, Motoi; Maeda, Haruo
2013-08-01
To investigate the characteristics and imaging features of localized air foci in the lower thorax in patients with pneumothorax using thin-section multidetector computed tomography. Of 10,547 consecutive CT examinations comprising the chest, the CT scans of 146 patients with ordinary pneumothoraces were identified and retrospectively evaluated. The study group included 110 male and 36 female patients (mean age, 50 years; range, 1-93 years). All examinations were performed at our institution between January 2009 and December 2009. Cause of pneumothorax was classified as traumatic or non-traumatic. Localized air foci in the lower thorax were defined as being localized air collections in the lower thorax that did not appear to be adjacent to the lung. If these criteria were met, the shape, size, location laterality, and number of foci were evaluated. Associations with trauma, sex, severity of the pneumothorax, and laterality were evaluated using the χ(2) test. All P values <0.05 were considered significant. Localized air foci in the lower thorax presented as slit-like or small ovoid air collections in the lowest part of the pleural space. These foci were observed in 79/146 (54.1%) patients. The traumatic pneumothoraces group showed a higher prevalence of these features than the non-traumatic group. Some foci that were situated in the anterior part mimicked the appearance of free intraperitoneal air. Patients with pneumothorax commonly had localized air foci in the lower thorax. Because such foci can mimic pneumoperitoneum, accurate recognition of them is required to avoid confusion with free intraperitoneal air, especially in traumatic cases. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Watari, Chinatsu; Matsuhiro, Mikio; Näppi, Janne J.; Nasirudin, Radin A.; Hironaka, Toru; Kawata, Yoshiki; Niki, Noboru; Yoshida, Hiroyuki
2018-03-01
We investigated the effect of radiomic texture-curvature (RTC) features of lung CT images in the prediction of the overall survival of patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD). We retrospectively collected 70 RA-ILD patients who underwent thin-section lung CT and serial pulmonary function tests. After the extraction of the lung region, we computed hyper-curvature features that included the principal curvatures, curvedness, bright/dark sheets, cylinders, blobs, and curvature scales for the bronchi and the aerated lungs. We also computed gray-level co-occurrence matrix (GLCM) texture features on the segmented lungs. An elastic-net penalty method was used to select and combine these features with a Cox proportional hazards model for predicting the survival of the patient. Evaluation was performed by use of concordance index (C-index) as a measure of prediction performance. The C-index values of the texture features, hyper-curvature features, and the combination thereof (RTC features) in predicting patient survival was estimated by use of bootstrapping with 2,000 replications, and they were compared with an established clinical prognostic biomarker known as the gender, age, and physiology (GAP) index by means of two-sided t-test. Bootstrap evaluation yielded the following C-index values for the clinical and radiomic features: (a) GAP index: 78.3%; (b) GLCM texture features: 79.6%; (c) hypercurvature features: 80.8%; and (d) RTC features: 86.8%. The RTC features significantly outperformed any of the other predictors (P < 0.001). The Kaplan-Meier survival curves of patients stratified to low- and high-risk groups based on the RTC features showed statistically significant (P < 0.0001) difference. Thus, the RTC features can provide an effective imaging biomarker for predicting the overall survival of patients with RA-ILD.
Petermann, Holger; Sander, Martin
2013-04-01
Since the 19th century, identification of muscle attachment sites on bones has been important for muscle reconstructions, especially in fossil tetrapods, and therefore has been the subject of numerous biological and paleontological studies. At the microscopic level, in histological thin sections, the only features that can be used reliably for identifying tendon-bone or muscle-tendon-bone interactions are Sharpey's fibers. Muscles, however, do not only attach to the bone indirectly with tendons, but also directly. Previous studies failed to provide new indicators for muscle attachment, or to address the question of whether muscles with direct attachment can be identified histologically. However, histological identification of direct muscle attachments is important because these attachments do not leave visible marks (e.g. scars and rugosities) on the bone surface. We dissected the right hind limb and mapped the muscle attachment sites on the femur of one rabbit (Oryctolagus cuniculus), one Alligator mississippiensis, and one turkey (Meleagris cuniculus). We then extracted the femur and prepared four histological thin sections for the rabbit and the turkey and five histological thin sections for the alligator. Sharpey's fibers, vascular canal orientation, and a frayed periosteal margin can be indicators for indirect but also direct muscle attachment. Sharpey's fibers can be oriented to the cutting plane of the thin section at high angles, and two Sharpey's fibers orientations can occur in one area, possibly indicating a secondary force axis. However, only about 60% of mapped muscle attachment sites could be detected in thin sections, and frequently histological features suggestive of muscle attachment occurred outside mapped sites. While these insights should improve our ability to successfully identify and reconstruct muscles in extinct species, they also show the limitations of this approach. © 2013 The Authors Journal of Anatomy © 2013 Anatomical Society.
Petermann, Holger; Sander, Martin
2013-01-01
Since the 19th century, identification of muscle attachment sites on bones has been important for muscle reconstructions, especially in fossil tetrapods, and therefore has been the subject of numerous biological and paleontological studies. At the microscopic level, in histological thin sections, the only features that can be used reliably for identifying tendon–bone or muscle–tendon-bone interactions are Sharpey's fibers. Muscles, however, do not only attach to the bone indirectly with tendons, but also directly. Previous studies failed to provide new indicators for muscle attachment, or to address the question of whether muscles with direct attachment can be identified histologically. However, histological identification of direct muscle attachments is important because these attachments do not leave visible marks (e.g. scars and rugosities) on the bone surface. We dissected the right hind limb and mapped the muscle attachment sites on the femur of one rabbit (Oryctolagus cuniculus), one Alligator mississippiensis, and one turkey (Meleagris cuniculus). We then extracted the femur and prepared four histological thin sections for the rabbit and the turkey and five histological thin sections for the alligator. Sharpey's fibers, vascular canal orientation, and a frayed periosteal margin can be indicators for indirect but also direct muscle attachment. Sharpey's fibers can be oriented to the cutting plane of the thin section at high angles, and two Sharpey's fibers orientations can occur in one area, possibly indicating a secondary force axis. However, only about 60% of mapped muscle attachment sites could be detected in thin sections, and frequently histological features suggestive of muscle attachment occurred outside mapped sites. While these insights should improve our ability to successfully identify and reconstruct muscles in extinct species, they also show the limitations of this approach. PMID:23439026
Radiation exposure in whole body CT screening.
Suresh, Pamidighantam; Ratnam, S V; Rao, K V J
2011-04-01
Using a technology that "takes a look" at people's insides and promises early warnings of cancer, cardiac disease, and other abnormalities, clinics and medical imaging facilities nationwide are touting a new service for health conscious people: "Whole body CT screening" this typically involves scanning the body from the chin to below the hips with a form of x-ray imaging that produces cross-sectional images. In USA direct-to-consumer marketing of whole body CT is occurring today in many metropolitan areas. Free standing CT screening centres are being sited in shopping malls and other high density public areas, and these centres are being advertised in the electronic and print media. In this context the present article discussed the pros and cons of having such centres in India with the advent of multislice CT leading to fast scan times.
Evaporation thermal anslysis of Swallow-tailed Axial-grooved Heat Pipe
NASA Astrophysics Data System (ADS)
Zhang, Renping
2018-03-01
A detailed mathematical model that describes evaporating characteristics through thin liquid film at the evaporator section of swallow-tailed axial-grooved heat pipe was developed. The numerical simulation results about thin film profile, liquid-vapour interface temperature, evaporating rate and heat flux at the evaporating thin film region were given by the current investigation and the effect of superheat on the liquid-vapour interface temperature, evaporating mass rate and heat flux was discussed. Meanwhile, thermal model of the meniscus region at the evaporating section was developed to calculate the rate of heat transfer. The ratio of the heat conduction in the evaporating thin liquid film region and total heat rate were also discussed. It is indicated that the thickness of thin liquid film rises in a nearly linear fashion. The disjoining pressure can be neglected with increasing the liquid film thickness, tends to be negligibly small. The heat transfer rate at the intrinsic meniscus cannot be compared with that of the evaporating liquid film region.
Yamashiro, Tsuneo; Tsubakimoto, Maho; Nagatani, Yukihiro; Moriya, Hiroshi; Sakuma, Kotaro; Tsukagoshi, Shinsuke; Inokawa, Hiroyasu; Kimoto, Tatsuya; Teramoto, Ryuichi; Murayama, Sadayuki
2015-01-01
The purpose of this study was to evaluate the feasibility of continuous quantitative measurement of the proximal airways, using dynamic ventilation computed tomography (CT) and our research software. A porcine lung that was removed during meat processing was ventilated inside a chest phantom by a negative pressure cylinder (eight times per minute). This chest phantom with imitated respiratory movement was scanned by a 320-row area-detector CT scanner for approximately 9 seconds as dynamic ventilatory scanning. Obtained volume data were reconstructed every 0.35 seconds (total 8.4 seconds with 24 frames) as three-dimensional images and stored in our research software. The software automatically traced a designated airway point in all frames and measured the cross-sectional luminal area and wall area percent (WA%). The cross-sectional luminal area and WA% of the trachea and right main bronchus (RMB) were measured for this study. Two radiologists evaluated the traceability of all measurable airway points of the trachea and RMB using a three-point scale. It was judged that the software satisfactorily traced airway points throughout the dynamic ventilation CT (mean score, 2.64 at the trachea and 2.84 at the RMB). From the maximum inspiratory frame to the maximum expiratory frame, the cross-sectional luminal area of the trachea decreased 17.7% and that of the RMB 29.0%, whereas the WA% of the trachea increased 6.6% and that of the RMB 11.1%. It is feasible to measure airway dimensions automatically at designated points on dynamic ventilation CT using research software. This technique can be applied to various airway and obstructive diseases.
Das Neves Borges, Patricia; Vincent, Tonia L; Marenzana, Massimo
2017-01-01
The degradation of articular cartilage, which characterises osteoarthritis (OA), is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods. OA was induced by destabilisation of the medial meniscus (DMM) in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed. Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments. Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies.
Vincent, Tonia L.; Marenzana, Massimo
2017-01-01
Objective The degradation of articular cartilage, which characterises osteoarthritis (OA), is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods. Methods OA was induced by destabilisation of the medial meniscus (DMM) in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed. Results Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments. Conclusion Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies. PMID:28334010
Lee, E J; Lee, S K; Agid, R; Howard, P; Bae, J M; terBrugge, K
2009-10-01
The combined automatic tube current modulation (ATCM) technique adapts and modulates the x-ray tube current in the x-y-z axis according to the patient's individual anatomy. We compared image quality and radiation dose of the combined ATCM technique with those of a fixed tube current (FTC) technique in craniocervical CT angiography performed with a 64-section multidetector row CT (MDCT) system. A retrospective review of craniocervical CT angiograms (CTAs) by using combined ATCM (n = 25) and FTC techniques (n = 25) was performed. Other CTA parameters, such as kilovolt (peak), matrix size, FOV, section thickness, pitch, contrast agent, and contrast injection techniques, were held constant. We recorded objective image noise in the muscles at 2 anatomic levels: radiation exposure doses (CT dose index volume and dose-length product); and subjective image quality parameters, such as vascular delineation of various arterial vessels, visibility of small arterial detail, image artifacts, and certainty of diagnosis. The Mann-Whitney U test was used for statistical analysis. No significant difference was detected in subjective image quality parameters between the FTC and combined ATCM techniques. Most subjects in both study groups (49/50, 98%) had acceptable subjective artifacts. The objective image noise values at shoulder level did not show a significant difference, but the noise value at the upper neck was higher with the combined ATCM (P < .05) technique. Significant reduction in radiation dose (18% reduction) was noted with the combined ATCM technique (P < .05). The combined ATCM technique for craniocervical CTA performed at 64-section MDCT substantially reduced radiation exposure dose but maintained diagnostic image quality.
40 CFR Appendix A to Part 97 - Final Section 126 Rule: EGU Allocations, 2004-2007
Code of Federal Regulations, 2010 CFR
2010-07-01
... W H WEATHERSPOON 2716 CT-2 3 NC W H WEATHERSPOON 2716 CT-3 2 NC W H WEATHERSPOON 2716 CT-4 4 NJ B L... KY COOPER 1384 1 183 KY COOPER 1384 2 367 KY DALE 1385 3 161 KY DALE 1385 4 158 KY E W BROWN 1355 1 193 KY E W BROWN 1355 10 37 KY E W BROWN 1355 2 317 KY E W BROWN 1355 3 863 KY E W BROWN 1355 8 34 KY...
Porosity characterization for heterogeneous shales using integrated multiscale microscopy
NASA Astrophysics Data System (ADS)
Rassouli, F.; Andrew, M.; Zoback, M. D.
2016-12-01
Pore size distribution analysis plays a critical role in gas storage capacity and fluid transport characterization of shales. Study of the diverse distribution of pore size and structure in such low permeably rocks is withheld by the lack of tools to visualize the microstructural properties of shale rocks. In this paper we try to use multiple techniques to investigate the full pore size range in different sample scales. Modern imaging techniques are combined with routine analytical investigations (x-ray diffraction, thin section analysis and mercury porosimetry) to describe pore size distribution of shale samples from Haynesville formation in East Texas to generate a more holistic understanding of the porosity structure in shales, ranging from standard core plug down to nm scales. Standard 1" diameter core plug samples were first imaged using a Versa 3D x-ray microscope at lower resolutions. Then we pick several regions of interest (ROIs) with various micro-features (such as micro-cracks and high organic matters) in the rock samples to run higher resolution CT scans using a non-destructive interior tomography scans. After this step, we cut the samples and drill 5 mm diameter cores out of the selected ROIs. Then we rescan the samples to measure porosity distribution of the 5 mm cores. We repeat this step for samples with diameter of 1 mm being cut out of the 5 mm cores using a laser cutting machine. After comparing the pore structure and distribution of the samples measured form micro-CT analysis, we move to nano-scale imaging to capture the ultra-fine pores within the shale samples. At this stage, the diameter of the 1 mm samples will be milled down to 70 microns using the laser beam. We scan these samples in a nano-CT Ultra x-ray microscope and calculate the porosity of the samples by image segmentation methods. Finally, we use images collected from focused ion beam scanning electron microscopy (FIB-SEM) to be able to compare the results of porosity measurements from all different imaging techniques. These multi-scale characterization techniques are then compared with traditional analytical techniques such as Mercury Porosimetry.
ERIC Educational Resources Information Center
Stapleton, Paul
2011-01-01
The term "critical thinking" (CT) is frequently found in educational policy documents in sections outlining curriculum goals. Despite this frequency, however, precise understandings among teachers of what CT really means are lacking. In this study, 72 high school teachers in Hong Kong were surveyed and interviewed on their beliefs about…
Kochis-Jennings, Karen Ann; Finnegan, Eileen M; Hoffman, Henry T; Jaiswal, Sanyukta; Hull, Darcey
2014-09-01
Headmix and head registers use cricothyroid (CT) muscle dominant voicing, whereas chest and chestmix registers use thyroarytenoid (TA) muscle dominant voicing. Cross-sectional study. CT and TA electromyographic data obtained from five untrained singers and two trained singers were analyzed to determine CT and TA muscle dominance as a function of register. Simultaneous recordings of TA and CT muscle activity and audio were obtained during production of pitch glides and a variety of midrange and upper pitches in chest, chestmix, headmix, and head registers. TA dominant phonation was only observed for chest productions and headmix/head register productions below 300 Hz. All phonation above 300 Hz, regardless of register, showed CT:TA muscle activity ratios that were CT dominant or close to 1, indicating nearly equal CT and TA muscle activity. This was true for all subjects on all vocal tasks. For the subjects sampled in this study, pitch level appeared to have a greater effect on TA and CT muscle dominance than vocal register. Preliminary findings regarding CT and TA dominance and register control do not support the assumption that all chest and chestmix production has greater TA muscle activity than CT muscle activity or that all headmix and head production require greater CT muscle activity than TA muscle activity. The data indicate that pitch level may play a greater role in determining TA and CT dominance than register. Copyright © 2014 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Axial Crushing of Thin-Walled Columns with Octagonal Section: Modeling and Design
NASA Astrophysics Data System (ADS)
Liu, Yucheng; Day, Michael L.
This chapter focus on numerical crashworthiness analysis of straight thinwalled columns with octagonal cross sections. Two important issues in this analysis are demonstrated here: computer modeling and crashworthiness design. In the first part, this chapter introduces a method of developing simplified finite element (FE) models for the straight thin-walled octagonal columns, which can be used for the numerical crashworthiness analysis. Next, this chapter performs a crashworthiness design for such thin-walled columns in order to maximize their energy absorption capability. Specific energy absorption (SEA) is set as the design objective, side length of the octagonal cross section and wall thickness are selected as design variables, and maximum crushing force (Pm) occurs during crashes is set as design constraint. Response surface method (RSM) is employed to formulate functions for both SEA and Pm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sardashti, Kasra; Haight, Richard; Anderson, Ryan
2016-06-22
Cryogenic focused ion beam (Cryo-FIB) milling at near-grazing angles is employed to fabricate cross-sections on thin Cu(In,Ga)Se2 with >8x expansion in thickness. Kelvin probe force microscopy (KPFM) on sloped cross sections showed reduction in grain boundaries potential deeper into the film. Cryo Fib-KPFM enabled the first determination of the electronic structure of the Mo/CIGSe back contact, where a sub 100 nm thick MoSey assists hole extraction due to 45 meV higher work function. This demonstrates that CryoFIB-KPFM combination can reveal new targets of opportunity for improvement in thin-films photovoltaics such as high-work-function contacts to facilitate hole extraction through the backmore » interface of CIGS.« less
NASA Astrophysics Data System (ADS)
Ramadan, Mohamed
2018-05-01
Influence of gating design especially number of ingrates on microstructure and fluidity of thin sections of 2, 4, 6 mm AA320.0 cast hypo-eutectic Al-Si alloy was evaluated for sand casting molding technique. Increasing the number of ingates improves the microstructe to be fine and more globular. About 87 μm of α-Al grain size, 0.6 α-Al grain sphericity and 37 μm dendrite arm spacing DAS are achieved by using 4 ingates in gating system. Increasing the number of ingates up to 3 increases hardness, filling area and related fluditiy of all cast samples. The minimum thickness of 2.5 mm for each ingate should be considered in order to successfully production of high quality light weight thin sections castings in sand mold.
Kesch, Claudia; Vinsensia, Maria; Radtke, Jan P; Schlemmer, Heinz P; Heller, Martina; Ellert, Elena; Holland-Letz, Tim; Duensing, Stefan; Grabe, Nils; Afshar-Oromieh, Ali; Wieczorek, Kathrin; Schäfer, Martin; Neels, Oliver C; Cardinale, Jens; Kratochwil, Clemens; Hohenfellner, Markus; Kopka, Klaus; Haberkorn, Uwe; Hadaschik, Boris A; Giesel, Frederik L
2017-11-01
68 Ga-prostate-specific membrane antigen (PSMA)-11 PET/CT represents an advanced method for the staging of primary prostate cancer (PCa) and diagnosis of recurrent or metastatic PCa. However, because of the narrow availability of 68 Ga the development of alternative tracers is of high interest. The objective of this study was to examine the value of the new PET tracer 18 F-PSMA-1007 for the staging of local disease by comparing it with multiparametric MRI (mpMRI) and radical prostatectomy (RP) histopathology. Methods: In 2016, 18 F-PSMA-1007 PET/CT was performed in 10 men with biopsy-confirmed high-risk PCa. Nine patients underwent mpMRI in the process of primary diagnosis. Consecutively, RP was performed in all 10 men. Agreement analysis was performed retrospectively. PSMA staining was added for representative sections in RP specimen slices. Localization and agreement analysis of 18 F-PSMA-1007 PET/CT, mpMRI, and RP specimens was performed by dividing the prostate into 38 sections as described in the prostate imaging reporting and data system (PI-RADS) (version 2). Sensitivity, specificity, positive predictive values, negative predictive values (NPVs), and accuracy were calculated for total and near-total agreement. Results: 18 F-PSMA-1007 PET/CT had an NPV of 68% and an accuracy of 75%, and mpMRI had an NPV of 88% and an accuracy of 73% for total agreement. Near-total agreement analysis resulted in an NPV of 91% and an accuracy of 93% for 18 F-PSMA-1007 PET/CT and 91% and 87% for mpMRI, respectively. Retrospective combination of mpMRI and PET/CT had an accuracy of 81% for total and 93% for near-total agreement. Conclusion: Comparison with RP histopathology demonstrates that 18 F-PSMA-1007 PET/CT is promising for accurate local staging of PCa. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Rau, Cheng-Shyuan; Liu, Hang-Tsung; Hsu, Shiun-Yuan; Cho, Tzu-Yu; Hsieh, Ching-Hua
2014-01-01
Objectives To provide an overview of the demographic characteristics of patients with positive blood alcohol concentration (BAC) and to investigate the performance of brain CT scans in these patients. Design Cross-sectional study. Setting Taiwan. Participants 2192 patients who had undergone a test for blood alcohol of 13 233 patients registered in the Trauma Registry System between 1 January 2009 and 31 December 2012. A BAC level of 50 mg/dL was defined as the cut-off value. Detailed information was retrieved from the patients with positive BAC (n=793) and was compared with information from those with a negative BAC (n=1399). Main outcome measures Glasgow Coma Scale (GCS) and Injury Severity Score (ISS) as well as the performance and findings of obtained brain CT scans. Results Patients with positive BAC had a higher rate of face injury, but a lower GCS score, a lower rate of head and neck injury, a lower ISS and New Injury Severity Score. Alcohol use was associated with a shorter length of hospital stay (8.6 vs 11.4 days, p=0.000) in patients with an ISS of <16. Of 496 patients with positive BAC who underwent brain CT, 164 (33.1%) showed positive findings on CT scan. In contrast, of 891 patients with negative BAC who underwent brain CT, 389 (43.7%) had positive findings on CT scan. The lower percentage of positive CT scan findings in patients with positive BAC was particularly evident in patients with an ISS <16 (18.0% vs 28.8%, p=0.001). Conclusions Patients who consumed alcohol tended to have a low GCS score and injuries that were less severe. However, given the significantly low percentage of positive findings, brain CT might be overused in these patients with less severe injuries. PMID:25361838
Ultrastructure and synaptic organization of the spinal accessory nucleus of the rat.
Hayakawa, Tetsu; Takanaga, Akinori; Tanaka, Koichi; Maeda, Seishi; Seki, Makoto
2002-06-01
The accessory nucleus is composed of neurons in the medial column that innervate the sternocleidomastoid muscle, and neurons in the lateral column that innervate the trapezius muscle. We retrogradely labeled these neurons by injection of cholera toxin conjugated horseradish peroxidase into the sternomastoid (SM) or the clavotrapezius (CT) muscles, and investigated fine structure and synaptology of these neurons. Almost all SM and CT motoneurons had the appearance of alpha-motoneurons, i.e., large, oval or polygonal cells containing well-developed organelles, Nissl bodies, and a prominent spherical nucleus. More than 60% of the somatic membrane was covered with terminals. The SM motoneurons (34.4 x 52.2 microm, 1,363.1 microm(2) in a section) were slightly larger than the CT motoneurons (32.8 x 54.2 microm, 1,180.8 microm(2)). The average number of axosomatic terminals in a section was 52.2 for the SM, and 54.2 for the CT motoneurons. More than half of them (58.0%) contained pleomorphic vesicles and made symmetric synaptic contacts (Gray's type II) with the SM motoneurons, while 57.9% of them contained round vesicles and made asymmetric synaptic contacts (Gray's type I) with the CT motoneurons. A few C-terminals were present on the SM (3.5) and the CT (3.7) motoneurons. About 60% of the axodendritic terminals were Gray's type I in both the SM and the CT motoneurons. A few labeled small motoneurons were also found among the SM and the CT motoneurons. They were small (19.2 x 26.2 microm, 367.0 microm(2)), round cells containing poorly developed organelles with a few axosomatic terminals (9.3). Only 20% of the somatic membrane was covered with the terminals. Thus, these neurons were presumed to be gamma-motoneurons. These results indicate that the motoneurons in the medial and the lateral column of the accessory nucleus have different ultrastructural characteristics.
Hu, Zhi-Jun; He, Jian; Zhao, Feng-Dong; Fang, Xiang-Qian; Zhou, Li-Na; Fan, Shun-Wu
2011-06-01
A reliability study was conducted. To estimate the intra- and intermeasurement errors in the measurements of functional cross-sectional area (FCSA), density, and T2 signal intensity of paraspinal muscles using computed tomography (CT) scan and magnetic resonance imaging (MRI). CT scan and MRI had been used widely to measure the cross-sectional area and degeneration of the back muscles in spine and muscle research. But there is still no systemic study to analyze the reliability of these measurements. This study measured the FCSA and fatty infiltration (density on CT scan and T2 signal intensity on MRI) of the paraspinal muscles at L3-L4, L4-L5, and L5-S1 in 29 patients with chronic low back pain. Two experienced musculoskeletal radiologists and one superior spine surgeon traced the region of interest twice within 3 weeks for measurement of the intra- and interobserver reliability. The intraclass correlation coefficients (ICCs) of the intra-reliability ranged from fair to excellent for FCSA, and good to excellent for fatty infiltration. The ICCs of the inter-reliability ranged from fair to excellent for FCSA, and good to excellent for fatty infiltration. There were no significant differences between CT scan and MRI in reliability results, except in the relative standard error of fatty infiltration measurement. The ICCs of the FCSA measurement between CT scan and MRI ranged from poor to good. The reliabilities of the CT scan and MRI for measuring the FCSA and fatty infiltration of the atrophied lumbar paraspinal muscles were acceptable. It was reliable for using uniform one image method for a single paraspinal muscle evaluation study. And the authors preferred to advise the MRI other than CT scan for paraspinal muscles measurements of FCSA and fatty infiltration.
MO-F-CAMPUS-J-04: One-Year Analysis of Elekta CBCT Image Quality Using NPS and MTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakahara, S; Tachibana, M; Watanabe, Y
2015-06-15
Purpose: To compare quantitative image quality (IQ) evaluation methods using Noise Power Spectrum (NPS) and Modulation Transfer Function (MTF) with standard IQ analyses for minimizing the observer subjectivity of the standard methods and maximizing the information content. Methods: For our routine IQ tests of Elekta XVI Cone-Beam CT, image noise was quantified by the standard deviation of CT number (CT#) (Sigma) over a small area in an IQ test phantom (CatPhan), and the high spatial resolution (HSR) was evaluated by the number of line-pairs (LP#) visually recognizable on the image. We also measured the image uniformity, the low contrast resolutionmore » ratio, and the distances of two points for geometrical accuracy. For this study, we did additional evaluation of the XVI data for 12 monthly IQ tests by using NPS for noise, MTF for HSR, and the CT#-to-density relationship. NPS was obtained by applying Fourier analysis in a small area on the uniformity test section of CatPhan. The MTF analysis was performed by applying the Droege-Morin (D-M) method to the line pairs on the phantom. The CT#-to-density was obtained for inserts in the low-contrast test section of the phantom. Results: All the quantities showed a noticeable change over the one-year period. Especially the noise level changed significantly after a repair of the imager. NPS was more sensitive to the IQ change than Sigma. MTF could provide more quantitative and objective evaluation of the HSR. The CT# was very different from the expected CT#; but, the CT#-to-density curves were constant within 5% except two months. Conclusion: Since the D-M method is easy to implement, we recommend using MTF instead of the LP# even for routine periodic QA. The month-to-month variation of IQ was not negligible; hence a routine IQ test must be performed, particularly after any modification of hardware including detector calibration.« less
1986-01-01
A technique has been developed for localizing hybrids formed in situ on semi-thin and ultrathin sections of Lowicryl K4M-embedded tissue. Biotinylated dUTP (Bio-11-dUTP and/or Bio-16-dUTP) was incorporated into mitochondrial rDNA and small nuclear U1 probes by nick- translation. The probes were hybridized to sections of Drosophila ovaries and subsequently detected with an anti-biotin antibody and protein A-gold complex. On semi-thin sections, probe detection was achieved by amplification steps with anti-protein A antibody and protein A-gold with subsequent silver enhancement. At the electron microscope level, specific labeling was obtained over structures known to be the site of expression of the appropriate genes (i.e., either over mitochondria or over nuclei). The labeling pattern at the light microscope level (semi-thin sections) was consistent with that obtained at the electron microscope level. The described nonradioactive procedures for hybrid detection on Lowicryl K4M-embedded tissue sections offer several advantages: rapid signal detection: superior morphological preservation and spatial resolution; and signal-to-noise ratios equivalent to radiolabeling. PMID:3084498
Comparison of standard radiography and computed tomography in 21 dogs with maxillary masses.
Ghirelli, Carolina O; Villamizar, Lenin A; Pinto, Ana Carolina B C Fonseca
2013-01-01
Imaging of patients with oral cancer is required to determine tumor extension in order to assist in prognosis and surgical planning. Conventional screen-film radiography (SFR) used to be the most common method for oral assessment, but computed tomography (CT) has become more available and is being used for obtaining complementary information. CT examinations eliminate superimposition by acquiring cross-sectional images of the region of interest. The objective of this study was to determine the diagnostic value of SFR compared with CT examinations for evaluation of oral masses in dogs. Twenty-one dogs received head and thorax SFR, and pre- and post-contrast head CT. Bony changes were observed in 80.9% and 95.2% of the cases in SFR and CT studies, respectively. Invasion of adjacent structures (i.e. nasal cavity, frontal and sphenoidal sinuses, orbit, maxillary recess, nasopharynx) was observed in only 30% of cases with SFR while CT showed 90.4% involvement. CT is an important preoperative examination modality and is more effective in identifying bone changes and tumor invasion of adjacent structures compared with SFR.
Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section
NASA Astrophysics Data System (ADS)
Nabelek, Ladislav; Mazanec, Martin; Kdyr, Simon; Kletetschka, Gunther
2015-06-01
Magnetic images of Chelyabinsk meteorite's (fragment F1 removed from Chebarkul lake) thin section have been unraveled by a magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses. Bcr of magnetic sources in Chelyabinsk meteorite ranges between 4 and 7 mT. These magnetic sources enter their saturation states when applying 40 mT external magnetic field pulse.
Effect of dropped plies on the strength of graphite-epoxy laminates
NASA Technical Reports Server (NTRS)
Curry, James M.; Johnson, Eric R.; Starnes, James H., Jr.
1987-01-01
The reduction in the compressive and tensile strengths of graphite-epoxy laminates with thickness discontinuities due to dropped plies was studied by experiment and analysis. The specimens were fabricated with all the dropped plies lumped together in the center of a sixteen-ply quasi-isotropic layup, such that one surface was flat and the slope of the opposite surface changed abruptly at the dropped ply location to accommodate the thickness change. Even though the thick and thin sections are symmetrically laminated, there exists bending-extension coupling due to the geometric eccentricity of the middle planes of the thick and thin sections. Experiments were conducted on fifty-four specimens that differed in the configuration of the dropped plies only. The strength of a laminate with dropped plies is less than the strength of its thin section, and the compressive strength of a laminate with dropped plies is less than its tensile strength. The reduction in strength is directly related to the axial stiffness change between the thick and thin sections. To examine the mechanism of failure, the three-dimensional state of stress in the dropped ply region was evaluated by the finite element method. A tensile interlaminar criterion predicted the correct location of failure, but underestimated the failure load.
Erovic, Boban M; Chan, Harley H L; Daly, Michael J; Pothier, David D; Yu, Eugene; Coulson, Chris; Lai, Philip; Irish, Jonathan C
2014-01-01
Conventional computed tomography (CT) imaging is the standard imaging technique for temporal bone diseases, whereas cone-beam CT (CBCT) imaging is a very fast imaging tool with a significant less radiation dose compared with conventional CT. We hypothesize that a system for intraoperative cone-beam CT provides comparable image quality to diagnostic CT for identifying temporal bone anatomical landmarks in cadaveric specimens. Cross-sectional study. University tertiary care facility. Twenty cadaveric temporal bones were affixed into a head phantom and scanned with both a prototype cone-beam CT C-arm and multislice helical CT. Imaging performance was evaluated by 3 otologic surgeons and 1 head and neck radiologist. Participants were presented images in a randomized order and completed landmark identification questionnaires covering 21 structures. CBCT and multislice CT have comparable performance in identifying temporal structures. Three otologic surgeons indicated that CBCT provided statistically equivalent performance for 19 of 21 landmarks, with CBCT superior to CT for the chorda tympani and inferior for the crura of the stapes. Subgroup analysis showed that CBCT performed superiorly for temporal bone structures compared with CT. The radiologist rated CBCT and CT as statistically equivalent for 18 of 21 landmarks, with CT superior to CBCT for the crura of stapes, chorda tympani, and sigmoid sinus. CBCT provides comparable image quality to conventional CT for temporal bone anatomical sites in cadaveric specimens. Clinical applications of low-dose CBCT imaging in surgical planning, intraoperative guidance, and postoperative assessment are promising but require further investigation.
Fayad, Laura M; Johnson, Pamela; Fishman, Elliot K
2005-01-01
Computed tomography (CT) plays an important role in the evaluation of musculoskeletal disease in the pediatric patient. With the advent of high-performance 16-section multidetector CT, images can be produced with subsecond gantry rotation times and with submillimeter acquisition, which yields true isotropic high-resolution volume data sets; these features are not attainable with older spiral CT technology. Such capabilities are particularly helpful in the evaluation of pediatric patients by virtually eliminating the need for sedation and minimizing dependence on patient cooperation. The role of three-dimensional (3D) volume imaging in the evaluation of pediatric musculoskeletal disease continues to evolve, with this technique becoming increasingly important in detection and characterization of lesions as well as in decisions about patient care. Specific designs and protocols for multidetector CT studies can be selected to minimize radiation dose to the patient. Principal clinical applications of 3D CT in evaluation of the pediatric musculoskeletal system include developmental abnormalities, trauma, neoplasms, and postoperative imaging.
System matrix computation vs storage on GPU: A comparative study in cone beam CT.
Matenine, Dmitri; Côté, Geoffroi; Mascolo-Fortin, Julia; Goussard, Yves; Després, Philippe
2018-02-01
Iterative reconstruction algorithms in computed tomography (CT) require a fast method for computing the intersection distances between the trajectories of photons and the object, also called ray tracing or system matrix computation. This work focused on the thin-ray model is aimed at comparing different system matrix handling strategies using graphical processing units (GPUs). In this work, the system matrix is modeled by thin rays intersecting a regular grid of box-shaped voxels, known to be an accurate representation of the forward projection operator in CT. However, an uncompressed system matrix exceeds the random access memory (RAM) capacities of typical computers by one order of magnitude or more. Considering the RAM limitations of GPU hardware, several system matrix handling methods were compared: full storage of a compressed system matrix, on-the-fly computation of its coefficients, and partial storage of the system matrix with partial on-the-fly computation. These methods were tested on geometries mimicking a cone beam CT (CBCT) acquisition of a human head. Execution times of three routines of interest were compared: forward projection, backprojection, and ordered-subsets convex (OSC) iteration. A fully stored system matrix yielded the shortest backprojection and OSC iteration times, with a 1.52× acceleration for OSC when compared to the on-the-fly approach. Nevertheless, the maximum problem size was bound by the available GPU RAM and geometrical symmetries. On-the-fly coefficient computation did not require symmetries and was shown to be the fastest for forward projection. It also offered reasonable execution times of about 176.4 ms per view per OSC iteration for a detector of 512 × 448 pixels and a volume of 384 3 voxels, using commodity GPU hardware. Partial system matrix storage has shown a performance similar to the on-the-fly approach, while still relying on symmetries. Partial system matrix storage was shown to yield the lowest relative performance. On-the-fly ray tracing was shown to be the most flexible method, yielding reasonable execution times. A fully stored system matrix allowed for the lowest backprojection and OSC iteration times and may be of interest for certain performance-oriented applications. © 2017 American Association of Physicists in Medicine.
Prakashini, K; Babu, Satish; Rajgopal, KV; Kokila, K Raja
2016-01-01
Aims and Objectives: To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT) in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location. Materials and Methods: A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD) and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP) rate of CAD software was calculated. Observations and Results: Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2%) and 202 (91.4%) by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4–10 mm (93.4%) and nodules in hilar (100%) and central (96.5%) location when compared to RAD's performance. Conclusion: CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD's performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time. PMID:27578931
Computer aided stress analysis of long bones utilizing computer tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marom, S.A.
1986-01-01
A computer aided analysis method, utilizing computed tomography (CT) has been developed, which together with a finite element program determines the stress-displacement pattern in a long bone section. The CT data file provides the geometry, the density and the material properties for the generated finite element model. A three-dimensional finite element model of a tibial shaft is automatically generated from the CT file by a pre-processing procedure for a finite element program. The developed pre-processor includes an edge detection algorithm which determines the boundaries of the reconstructed cross-sectional images of the scanned bone. A mesh generation procedure than automatically generatesmore » a three-dimensional mesh of a user-selected refinement. The elastic properties needed for the stress analysis are individually determined for each model element using the radiographic density (CT number) of each pixel with the elemental borders. The elastic modulus is determined from the CT radiographic density by using an empirical relationship from the literature. The generated finite element model, together with applied loads, determined from existing gait analysis and initial displacements, comprise a formatted input for the SAP IV finite element program. The output of this program, stresses and displacements at the model elements and nodes, are sorted and displayed by a developed post-processor to provide maximum and minimum values at selected locations in the model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsitt, Mitchell M.; Christodoulou, Emmanuel G.; Larson, Sandra C.
2011-04-15
Purpose: This study was performed to investigate the accuracies of the synthesized monochromatic images and effective atomic number maps obtained with the new GE Discovery CT750 HD CT scanner. Methods: A Gammex-RMI model 467 tissue characterization phantom and the CT number linearity section of a Phantom Laboratory Catphan 600 phantom were scanned using the dual energy (DE) feature on the GE CT750 HD scanner. Synthesized monochromatic images at various energies between 40 and 120 keV and effective atomic number (Z{sub eff}) maps were generated. Regions of interest were placed within these images/maps to measure the average monochromatic CT numbers andmore » average Z{sub eff} of the materials within these phantoms. The true Z{sub eff} values were either supplied by the phantom manufacturer or computed using Mayneord's equation. The linear attenuation coefficients for the true CT numbers were computed using the NIST XCOM program with the input of manufacturer supplied elemental compositions and densities. The effects of small variations in the assumed true densities of the materials were also investigated. Finally, the effect of body size on the accuracies of the synthesized monochromatic CT numbers was investigated using a custom lumbar section phantom with and without an external fat-mimicking ring. Results: Other than the Z{sub eff} of the simulated lung inserts in the tissue characterization phantom, which could not be measured by DECT, the Z{sub eff} values of all of the other materials in the tissue characterization and Catphan phantoms were accurate to 15%. The accuracies of the synthesized monochromatic CT numbers of the materials in both phantoms varied with energy and material. For the 40-120 keV range, RMS errors between the measured and true CT numbers in the Catphan are 8-25 HU when the true CT numbers were computed using the nominal plastic densities. These RMS errors improve to 3-12 HU for assumed true densities within the nominal density {+-}0.02 g/cc range. The RMS errors between the measured and true CT numbers of the tissue mimicking materials in the tissue characterization phantom over the 40-120 keV range varied from about 6 HU-248 HU and did not improve as dramatically with small changes in assumed true density. Conclusions: Initial tests indicate that the Z{sub eff} values computed with DECT on this scanner are reasonably accurate; however, the synthesized monochromatic CT numbers can be very inaccurate, especially for dense tissue mimicking materials at low energies. Furthermore, the synthesized monochromatic CT numbers of materials still depend on the amount of the surrounding tissues especially at low keV, demonstrating that the numbers are not truly monochromatic. Further research is needed to develop DE methods that produce more accurate synthesized monochromatic CT numbers.« less
Shams, S; Martola, J; Cavallin, L; Granberg, T; Shams, M; Aspelin, P; Wahlund, L O; Kristoffersen-Wiberg, M
2015-06-01
Cerebral microbleeds are thought to have potentially important clinical implications in dementia and stroke. However, the use of both T2* and SWI MR imaging sequences for microbleed detection has complicated the cross-comparison of study results. We aimed to determine the impact of microbleed sequences on microbleed detection and associated clinical parameters. Patients from our memory clinic (n = 246; 53% female; mean age, 62) prospectively underwent 3T MR imaging, with conventional thick-section T2*, thick-section SWI, and conventional thin-section SWI. Microbleeds were assessed separately on thick-section SWI, thin-section SWI, and T2* by 3 raters, with varying neuroradiologic experience. Clinical and radiologic parameters from the dementia investigation were analyzed in association with the number of microbleeds in negative binomial regression analyses. Prevalence and number of microbleeds were higher on thick-/thin-section SWI (20/21%) compared with T2*(17%). There was no difference in microbleed prevalence/number between thick- and thin-section SWI. Interrater agreement was excellent for all raters and sequences. Univariate comparisons of clinical parameters between patients with and without microbleeds yielded no difference across sequences. In the regression analysis, only minor differences in clinical associations with the number of microbleeds were noted across sequences. Due to the increased detection of microbleeds, we recommend SWI as the sequence of choice in microbleed detection. Microbleeds and their association with clinical parameters are robust to the effects of varying MR imaging sequences, suggesting that comparison of results across studies is possible, despite differing microbleed sequences. © 2015 by American Journal of Neuroradiology.
Sanders, Michelle; Arduca, Yolanda; Karamitsios, Mary; Boots, Marilyn; Vance, Alasdair
2005-05-01
Internalizing and externalizing disorders are frequently comorbid with attention deficit hyperactivity disorder, combined type (ADHD-CT) and dysthymic disorder (DD) in referred primary school-age children, yet there has been relatively little systematic research of the nature of these comorbid disorders. We describe the characteristics of parent- and child-reported internalizing and externalizing disorders in primary school-age children with ADHD-CT and DD. A cross-sectional study of 45 clinically referred medication naive children with ADHD-CT and DD, examining parent and child reports of internalizing and externalizing disorders, defined categorically and dimensionally. Generalized anxiety disorder and separation anxiety disorder were increased in the DD groups, whether ADHD-CT was present or not. Major depressive disorder was increased in the ADHD-CT and DD group compared to the ADHD-CT alone and the DD alone groups. Conduct disorder was increased in the ADHD-CT alone group compared to the DD with and without ADHD-CT groups. Verbal and fullscale IQ were increased in the DD groups, whether ADHD-CT was present or not, compared to the ADHD-CT alone group. There is emerging evidence that DD and anxiety may represent a different phenotypic expression of a common underlying aetiological process, while the co-occurrence of ADHD-CT and anxiety disorders remains unclear. Only the ADHD-CT and DD group is significantly associated with major depressive disorder, which suggests an additive effect. In contrast, conduct disorder and decreased verbal and fullscale IQ are only associated with the ADHD-CT group, which may suggest a protective effect of DD when comorbid with ADHD-CT. From a research perspective, it is important to confirm these found associations in larger samples derived from epidemiological populations.
Ryan, William R; Ramachandra, Tara; Hwang, Peter H
2011-03-01
To determine correlations between symptoms, nasal endoscopy findings, and computed tomography (CT) scan findings in post-surgical chronic rhinosinusitis (CRS) patients. Cross-sectional. A total of 51 CRS patients who had undergone endoscopic sinus surgery (ESS) completed symptom questionnaires, underwent endoscopy, and received an in-office sinus CT scan during one clinic visit. For metrics, we used the Sinonasal Outcomes Test-20 (SNOT-20) questionnaire, visual analog symptom scale (VAS), Lund-Kennedy endoscopy scoring scale, and Lund-MacKay (LM) CT scoring scale. We determined Pearson correlation coefficients, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) between scores for symptoms, endoscopy, and CT. The SNOT-20 score and most VAS symptoms had poor correlation coefficients with both endoscopy and CT scores (0.03-0.24). Nasal drainage of pus, nasal congestion, and impaired sense of smell had moderate correlation coefficients with endoscopy and CT (0.24-0.42). Endoscopy had a strong correlation coefficient with CT (0.76). Drainage, edema, and polyps had strong correlation coefficients with CT (0.80, 0.69, and 0.49, respectively). Endoscopy had a PPV of 92.5% and NPV of 45.5% for detecting an abnormal sinus CT (LM score ≥1). In post-ESS CRS patients, most symptoms do not correlate well with either endoscopy or CT findings. Endoscopy and CT scores correlate well. Abnormal endoscopy findings have the ability to confidently rule in the presence of CT opacification, thus validating the importance of endoscopy in clinical decision making. However, a normal endoscopy cannot assure a normal CT. Thus, symptoms, endoscopy, and CT are complementary in the evaluation of the post-ESS CRS patient. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc., Rhinological, and Otological Society, Inc.
Visualization of scoliotic spine using ultrasound-accessible skeletal landmarks
NASA Astrophysics Data System (ADS)
Church, Ben; Lasso, Andras; Schlenger, Christopher; Borschneck, Daniel P.; Mousavi, Parvin; Fichtinger, Gabor; Ungi, Tamas
2017-03-01
PURPOSE: Ultrasound imaging is an attractive alternative to X-ray for scoliosis diagnosis and monitoring due to its safety and inexpensiveness. The transverse processes as skeletal landmarks are accessible by means of ultrasound and are sufficient for quantifying scoliosis, but do not provide an informative visualization of the spine. METHODS: We created a method for visualization of the scoliotic spine using a 3D transform field, resulting from thin-spline interpolation of a landmark-based registration between the transverse processes that we localized in both the patient's ultrasound and an average healthy spine model. Additional anchor points were computationally generated to control the thin-spline interpolation, in order to gain a transform field that accurately represents the deformation of the patient's spine. The transform field is applied to the average spine model, resulting in a 3D surface model depicting the patient's spine. We applied ground truth CT from pediatric scoliosis patients in which we reconstructed the bone surface and localized the transverse processes. We warped the average spine model and analyzed the match between the patient's bone surface and the warped spine. RESULTS: Visual inspection revealed accurate rendering of the scoliotic spine. Notable misalignments occurred mainly in the anterior-posterior direction, and at the first and last vertebrae, which is immaterial for scoliosis quantification. The average Hausdorff distance computed for 4 patients was 2.6 mm. CONCLUSIONS: We achieved qualitatively accurate and intuitive visualization to depict the 3D deformation of the patient's spine when compared to ground truth CT.
Characterization of compact-toroid injection during formation, translation, and field penetration
NASA Astrophysics Data System (ADS)
Matsumoto, T.; Roche, T.; Allfrey, I.; Sekiguchi, J.; Asai, T.; Gota, H.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M.; Tajima, T.
2016-11-01
We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ˜1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.
Characterization of compact-toroid injection during formation, translation, and field penetration.
Matsumoto, T; Roche, T; Allfrey, I; Sekiguchi, J; Asai, T; Gota, H; Cordero, M; Garate, E; Kinley, J; Valentine, T; Waggoner, W; Binderbauer, M; Tajima, T
2016-11-01
We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ∼1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.
Godar, Sean C; Mosher, Laura J; Strathman, Hunter J; Gochi, Andrea M; Jones, Cori M; Fowler, Stephen C; Bortolato, Marco
2016-07-01
The D1CT-7 mouse is one of the best known animal models of Tourette syndrome (TS), featuring spontaneous tic-like behaviours sensitive to standard TS therapies; these characteristics ensure a high face and predictive validity of this model, yet its construct validity remains elusive. To address this issue, we studied the responses of D1CT-7 mice to two critical components of TS pathophysiology: the exacerbation of tic-like behaviours in response to stress and the presence of sensorimotor gating deficits, which are thought to reflect the perceptual alterations causing the tics. D1CT-7 and wild-type (WT) littermates were subjected to a 20 min session of spatial confinement (SC) within an inescapable, 10 cm wide cylindrical enclosure. Changes in plasma corticosterone levels, tic-like behaviours and other spontaneous responses were measured. SC-exposed mice were also tested for the prepulse inhibition (PPI) of the startle response (a sensorimotor gating index) and other TS-related behaviours, including open-field locomotion, novel object exploration and social interaction and compared with non-confined counterparts. SC produced a marked increase in corticosterone concentrations in both D1CT-7 and WT mice. In D1CT-7, but not WT mice, SC exacerbated tic-like and digging behaviours, and triggered PPI deficits and aggressive responses. Conversely, SC did not modify locomotor activity or novel object exploration in D1CT-7 mice. Both tic-like behaviours and PPI impairments in SC-exposed D1CT-7 mice were inhibited by standard TS therapies and D1 dopamine receptor antagonism. These findings collectively support the translational and construct validity of D1CT-7 mice with respect to TS. This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc. © 2015 The British Pharmacological Society.
Electrical contacts to thin layers of Bi2Sr2CaCu2O8+δ
NASA Astrophysics Data System (ADS)
Suzuki, Shota; Taniguchi, Hiroki; Kawakami, Tsukasa; Cosset-Cheneau, Maxen; Arakawa, Tomonori; Miyasaka, Shigeki; Tajima, Setsuko; Niimi, Yasuhiro; Kobayashi, Kensuke
2018-05-01
Thin layers of Bi2Sr2CaCu2O8+δ (Bi2212) were fabricated using the mechanical exfoliation technique. Good electrical contacts to the thin Bi2212 films with low contact resistance were realized by depositing Ag and Au electrodes onto the Bi2212 films and annealing them with an oxygen flow at 350 °C for 30 min. We observed cross-section images of the Bi2212 thin film device using a transmission electron microscope to characterize the diffusion of Ag and Au atoms into the Bi2212 thin film.
Anatomic study of cranial nerve emergence and associated skull foramina in cats using CT and MRI.
Gomes, Eymeric; Degueurce, Christophe; Ruel, Yannick; Dennis, Ruth; Begon, Dominique
2009-01-01
Magnetic resonance (MR) images of the brain of four normal cats were reviewed retrospectively to assess the emergence and course of the cranial nerves (CNs). Two-millimeter-thick images were obtained in transverse, sagittal, and dorsal planes using a 1.5 T unit. CN skull foramina, as anatomic landmarks for MR imaging, were identified by computed tomography performed on an isolated cat skull using thin wire within each skull foramen. Thin slice (1 mm slice thickness) images were obtained with a high-resolution bone filter scan protocol. The origins of CNs II, V, VII, and VIII and the group of IX, X, XI, and XII could be identified. The pathway and proximal divisions of CNs V were described. CNs III, IV, and VI were not distinguished from each other but could be seen together in the orbital fissure. CN V was characterized by slight contrast enhancement.
Two imaging techniques for 3D quantification of pre-cementation space for CAD/CAM crowns.
Rungruanganunt, Patchanee; Kelly, J Robert; Adams, Douglas J
2010-12-01
Internal three-dimensional (3D) "fit" of prostheses to prepared teeth is likely more important clinically than "fit" judged only at the level of the margin (i.e. marginal "opening"). This work evaluates two techniques for quantitatively defining 3D "fit", both using pre-cementation space impressions: X-ray microcomputed tomography (micro-CT) and quantitative optical analysis. Both techniques are of interest for comparison of CAD/CAM system capabilities and for documenting "fit" as part of clinical studies. Pre-cementation space impressions were taken of a single zirconia coping on its die using a low viscosity poly(vinyl siloxane) impression material. Calibration specimens of this material were fabricated between the measuring platens of a micrometre. Both calibration curves and pre-cementation space impression data sets were obtained by examination using micro-CT and quantitative optical analysis. Regression analysis was used to compare calibration curves with calibration sets. Micro-CT calibration data showed tighter 95% confidence intervals and was able to measure over a wider thickness range than for the optical technique. Regions of interest (e.g., lingual, cervical) were more easily analysed with optical image analysis and this technique was more suitable for extremely thin impression walls (<10-15μm). Specimen preparation is easier for micro-CT and segmentation parameters appeared to capture dimensions accurately. Both micro-CT and the optical method can be used to quantify the thickness of pre-cementation space impressions. Each has advantages and limitations but either technique has the potential for use as part of clinical studies or CAD/CAM protocol optimization. Copyright © 2010 Elsevier Ltd. All rights reserved.
Shalabi, Manal M; Wolke, Johannes G C; Cuijpers, Vincent M J I; Jansen, John A
2007-10-01
High-resolution three-dimensional data about the bone response to oral implants can be obtained by using microfocus computer tomography. However, a disadvantage is that metallic implants cause streaking artifacts due to scattering of X-rays, which prevents an accurate evaluation of the interfacial bone-to-implant contact. It has been suggested that the use of thin titanium coatings deposited on polymeric implants can offer an alternative option for analyzing bone contact using micro-CT imaging. Consequently, the aim of the current study was to investigate bone behavior to titanium-coated polymethylmethacrylate (PMMA) implants by micro-CT and histological evaluation. For the experiment titanium-coated PMMA implants were used. The implants had a machined threaded appearance and were provided with a 400-500 nm thick titanium coating. The implants were inserted in the right or left tibia of 10 goats. After an implantation period of 12 weeks the implants were retrieved and prepared for micro-computer tomography (microCT), light microscopy, and X-ray microanalysis. The micro-CT showed that the screw-threads and typical implant configuration were well maintained through the installation procedure. Overall, histological responses showed that the titanium-coated implants were well tolerated and caused no atypical tissue response. In addition, the bone was seen in direct contact with the titanium-coated layer. The X-ray microanalysis results confirmed the light microscopical data. In conclusion, the obtained results proof the final use of titanium-coated PMMA implants for evaluation of the bone-implant response using microCT. However, this study also confirms that for a proper analysis of the bone-implant interface the additional use of microscopical techniques is still required.
Mair, Grant; Boyd, Elena V; Chappell, Francesca M; von Kummer, Rüdiger; Lindley, Richard I; Sandercock, Peter; Wardlaw, Joanna M
2015-01-01
In acute ischemic stroke, the hyperdense artery sign (HAS) on noncontrast computed tomography (CT) is thought to represent intraluminal thrombus and, therefore, is a surrogate of arterial obstruction. We sought to assess the accuracy of HAS as a marker of arterial obstruction by thrombus. The Third International Stroke Trial (IST-3) was a randomized controlled trial testing the use of intravenous thrombolysis for acute ischemic stroke in patients who did not clearly meet the prevailing license criteria. Some participating IST-3 centers routinely performed CT or MR angiography at baseline. One reader assessed all relevant scans independently, blinded to all other data; we checked observer reliability. We combined IST-3 data with a systematic review and meta-analysis of all studies that assessed the accuracy of HAS using angiography (any modality). IST-3 had 273 patients with baseline CT or MR angiography and was the largest study of HAS accuracy. The meta-analysis (n=902+273=1175, including IST-3) found sensitivity and specificity of HAS for arterial obstruction on angiography to be 52% and 95%, respectively. HAS was more commonly identified in proximal than distal arteries (47% versus 37%; P=0.015), and its sensitivity increased with thinner CT slices (r=-0.73; P=0.001). Neither extent of obstruction nor time after stroke influenced HAS accuracy. When present in acute ischemic stroke, HAS indicates a high likelihood of arterial obstruction, but its absence indicates only a 50/50 chance of normal arterial patency. Thin-slice CT improves sensitivity of HAS detection. http://www.controlled-trials.com/ISRCTN25765518. Unique identifier: ISRCTN25765518. © 2014 American Heart Association, Inc.
Is there a relationship between outer retinal destruction and choroidal changes in cone dystrophy?
Ayyildiz, Onder; Ozge, Gokhan; Kucukevcilioglu, Murat; Ozgonul, Cem; Mumcuoglu, Tarkan; Durukan, Ali Hakan; Mutlu, Fatih Mehmet
2016-01-01
The aim of the present study was to use enhanced depth imaging optical coherence tomography (EDI-OCT) to investigate choroidal changes in patients with cone dystrophy (CD) and to correlate these findings with clinical and electroretinography (ERG) findings. This case-control study included 40 eyes of 20 patients with CD and 40 eyes of 40 age- and refraction-matched healthy individuals. Choroidal thickness (CT) measurements were obtained under the foveal center and at 500 and 1,500 μm from the nasal and temporal regions to the center of the fovea, respectively. EDI-OCT and ERG data were analyzed, and the correlations of CT with the best-corrected visual acuity (BCVA) and the central foveal thickness (CFT) were evaluated. The mean subfoveal CTs in the CD and control groups were 240.70 ± 70.78 and 356.18 ± 48.55 μm, respectively. The subfoveal CT was significantly thinner in patients with CD than in the controls (p<0.001). The patients with CD also had significantly thinner choroids than the controls at each measurement location relative to the fovea (p<0.001). The subfoveal CT in the CD group correlated with CFT (p=0.012), but no significant correlation was found between the subfoveal CT and BCVA or photopic ERG responses. The present study demonstrated a significant thinning of the choroid in patients with CD. EDI-OCT is a useful technique for describing the choroidal changes occurring in CD. Future studies investigating the association between choroidal changes and outer retinal destruction or the disease stage may provide a better understanding of the pathophysiology of CD.
Lee, Hye-Jeong; Uhm, Jae-Sun; Joung, Boyoung; Hong, Yoo Jin; Hur, Jin; Choi, Byoung Wook; Kim, Young Jin
2016-04-01
Myocardial dyskinesia caused by the accessory pathway and related reversible heart failure have been well documented in echocardiographic studies of pediatric patients with Wolff-Parkinson-White (WPW) syndrome. However, the long-term effects of dyskinesia on the myocardium of adult patients have not been studied in depth. The goal of the present study was to evaluate regional myocardial abnormalities on cardiac CT examinations of adult patients with WPW syndrome. Of 74 patients with WPW syndrome who underwent cardiac CT from January 2006 through December 2013, 58 patients (mean [± SD] age, 52.2 ± 12.7 years), 36 (62.1%) of whom were men, were included in the study after the presence of combined cardiac disease was excluded. Two observers blindly evaluated myocardial thickness and attenuation on cardiac CT scans. On the basis of CT findings, patients were classified as having either normal or abnormal findings. We compared the two groups for other clinical findings, including observations from ECG, echocardiography, and electrophysiologic study. Of the 58 patients studied, 16 patients (27.6%) were found to have myocardial abnormalities (i.e., abnormal wall thinning with or without low attenuation). All abnormal findings corresponded with the location of the accessory pathway. Patients with abnormal findings had statistically significantly decreased left ventricular function, compared with patients with normal findings (p < 0.001). The frequency of regional wall motion abnormality was statistically significantly higher in patients with abnormal findings (p = 0.043). However, echocardiography documented structurally normal hearts in all patients. A relatively high frequency (27.6%) of regional myocardial abnormalities was observed on the cardiac CT examinations of adult patients with WPW syndrome. These abnormal findings might reflect the long-term effects of dyskinesia, suggesting irreversible myocardial injury that ultimately causes left ventricular dysfunction.
Can clinical CT data improve forensic reconstruction?
Schuh, P; Scheurer, E; Fritz, K; Pavlic, M; Hassler, E; Rienmüller, R; Yen, K
2013-05-01
In accidents resulting in severe injuries, a clinical forensic examination is generally abandoned in the initial phase due to high-priority clinical needs. However, in many cases, data from clinical computed tomography (CT) examinations are available. The goals of this prospective study were (a) to evaluate clinical CT data as a basis for forensic reconstruction of the sequence of events, (b) to assess if forensic radiological follow-up reading improves the forensic diagnostic benefit compared to the written clinical radiological reports, and (c) to evaluate if full data storage including additional reconstructed 0.6-mm slices enhances forensic analysis. Clinical CT data of 15 living individuals with imaging of at least the head, thorax, and abdomen following polytrauma were examined regarding the forensic evaluation of the sequence of events. Additionally, 0.6-mm slices and 3D images were reconstructed for forensic purposes and used for the evaluation. At the forensic radiological readings, additional traumatic findings were observed in ten of the 15 patients. The main weakness of the clinical reports was that they were not detailed enough, particularly regarding the localization of injuries and description of wound morphology. In seven cases, however, forensic conclusions were possible on the basis of the written clinical reports, whereas in five cases forensic reconstruction required specific follow-up reading. The additional 0.6-mm slices were easily available and with improved 3D image quality and forensic diagnostics. In conclusion, the use of clinical CT data can considerably support forensic expertise regarding reconstruction issues. Forensic follow-up reading as well as the use of additional thin slices for 3D analysis can further improve its benefit for forensic reconstruction purposes.
Handling Density Conversion in TPS.
Isobe, Tomonori; Mori, Yutaro; Takei, Hideyuki; Sato, Eisuke; Tadano, Kiichi; Kobayashi, Daisuke; Tomita, Tetsuya; Sakae, Takeji
2016-01-01
Conversion from CT value to density is essential to a radiation treatment planning system. Generally CT value is converted to the electron density in photon therapy. In the energy range of therapeutic photon, interactions between photons and materials are dominated with Compton scattering which the cross-section depends on the electron density. The dose distribution is obtained by calculating TERMA and kernel using electron density where TERMA is the energy transferred from primary photons and kernel is a volume considering spread electrons. Recently, a new method was introduced which uses the physical density. This method is expected to be faster and more accurate than that using the electron density. As for particle therapy, dose can be calculated with CT-to-stopping power conversion since the stopping power depends on the electron density. CT-to-stopping power conversion table is also called as CT-to-water-equivalent range and is an essential concept for the particle therapy.
40 CFR Appendix A to Part 97 - Final Section 126 Rule: EGU Allocations, 2004-2007
Code of Federal Regulations, 2011 CFR
2011-07-01
... NC L V SUTTON 2713 3 717 NC L V SUTTON 2713 CT2B 2 NC LEE 2709 1 129 NC LEE 2709 2 142 NC LEE 2709 3 414 NC LEE 2709 CT4 1 NC LINCOLN 7277 1 33 NC LINCOLN 7277 10 31 NC LINCOLN 7277 11 33 NC LINCOLN 7277...
Diagnostic imaging in uterine incisional necrosis/dehiscence complicating cesarean section.
Rivlin, Michel E; Patel, Rameshkumar B; Carroll, C Shannon; Morrison, John C
2005-12-01
To review the diagnostic imaging studies in patients with surgically proven uterine incisional necrosis/dehiscence complicating cesarean section and to compare these studies with the findings at surgery. Over a 6-year period, the records of 7 patients with imaging studies prior to surgery for uterine incisional necrosis/dehiscence complicating cesarean delivery were reviewed and compared with the findings at surgery. Four cases underwent computed tomography (CT) and sonography, 1 underwent CT only, and 2 underwent sonography only. Abnormal findings included abdominal free fluid in 4, pleural effusions in 3, dilated bowel in 3, possible bladder flap hematoma in 2 and single instances of liver abscess and retained products of conception. In no cases were all the studies normal, and necrosis/dehiscence was not demonstrated in any patient. Abdominal free fluid, bowel distension, pleural effusion and bladder flap hematoma seen on CT or sonogram in the postcesarean context suggest the possibility of uterine incisional necrosis/dehiscence. Magnetic resonance imaging (MRI) might then be indicated since MRI may be superior to CT in evaluating complications at the incisional site because of its multiplanar capability and greater degree of soft tissue contrast.
Visualization of superparamagnetic nanoparticles in vascular tissue using XμCT and histology.
Tietze, Rainer; Rahn, Helene; Lyer, Stefan; Schreiber, Eveline; Mann, Jenny; Odenbach, Stefan; Alexiou, Christoph
2011-02-01
In order to increase the dose of antineoplastic agents in the tumor area, the concept of magnetic drug targeting (MDT) has been developed. Magnetic nanoparticles consisting of iron oxide and a biocompatible cover layer suspended in an aqueous solution (ferrofluid) serve as carriers for chemotherapeutics being enriched by an external magnetic field after intra-arterial application in desired body compartments (i.e., tumor). We established an ex vivo model to simulate in vivo conditions in a circulating system consisting of magnetic iron oxide nanoparticles passing an intact bovine artery and being focused by an external magnetic field to study their distribution in the vessel. Micro-computed X-ray tomography (XμCT) and histology can elucidate the arrangement of these particles after application. XμCT-analysis has been performed on arterial sections after MDT in order to determine the distribution of the nanoparticles. These measurements have been carried out with a cone X-ray source and corresponding histological sections were stained with Prussian blue. It could be shown that combining XμCT and histology offers the opportunity for a better understanding of the mechanisms of nanoparticle deposition in the vascular system after MDT.
Antarctic Meteorite Newsletter, volume 8, number 1
NASA Technical Reports Server (NTRS)
1985-01-01
Preliminary descriptions and classifications of meteorites examined since the July 1984 newsletter are presented. Each macroscopic description summarizes features that were visible to the eye (with, at most, 50X magnification). Each thin section description represents features that were found in a survey-level examination of a polished thin section that was prepared from a small (usually extrior) chip of the meteorite. Classification is based on microscopic petrography and reconnaissance-level electron-probe microanalyses.
Computer program for thin-wire structures in a homogeneous conducting medium
NASA Technical Reports Server (NTRS)
Richmond, J. H.
1974-01-01
A computer program is presented for thin-wire antennas and scatters in a homogeneous conducting medium. The anaylsis is performed in the real or complex frequency domain. The program handles insulated and bare wires with finite conductivity and lumped loads. The output data includes the current distribution, impedance, radiation efficiency, gain, absorption cross section, scattering cross section, echo area and the polarization scattering matrix. The program uses sinusoidal bases and Galerkin's method.
Behaviour of thin-walled cold-formed steel members in eccentric compression
NASA Astrophysics Data System (ADS)
Ungureanu, Viorel; Kotełko, Maria; Borkowski, Łukasz; Grudziecki, Jan
2018-01-01
Thin-walled cold-formed steel structures are usually made of members of class 4 cross-sections. Since these sections are prematurely prone to local or distortional buckling and due to the fact they do not have a real post-elastic capacity, the failure at ultimate stage of those members, either in compression or bending, always occurs by forming a local plastic mechanism. The present paper investigates the evolution of the plastic mechanisms and the possibility to use them to characterise the ultimate strength of short thin-walled cold-formed steel members subjected to eccentric compression about minor axis, particularly for members with lipped channel cross-section. Five different types of plastic mechanisms for members in compression with different eccentricities are identified and examined on the basis of FE numerical simulations. Preliminary results of experimental validation of numerical results are presented. The research is based on previous studies and some new investigations of the authors.
Applications of Blue Light-curing Acrylic Resin to Forensic Sample Preparation and Microtomy.
Groves, Ethan; Palenik, Christopher S
2016-03-01
This study discusses the results of an evaluation of a one-part blue light-curing acrylic resin for embedding trace evidence prior to the preparation of thin sections with a microtome. Through a comparison to several epoxy resins, the physical properties relevant to both trace evidence examination and analytical microscopy in general, including as viscosity, clarity, color, hardness, and cure speed, were explored. Finally, thin sections from paint samples embedded in this acrylic resin were evaluated to determine if, through smearing or impregnation, the resin contributed to the infrared spectra. The results of this study show that blue light-curing acrylic resins provide the desired properties of an embedding medium, generate high-quality thin sections, and can significantly simplify the preparation of paint chips, fibers and a multitude of other types of microscopic samples in the forensic trace evidence laboratory. © 2015 American Academy of Forensic Sciences.
Quantitative myocardial perfusion from static cardiac and dynamic arterial CT
NASA Astrophysics Data System (ADS)
Bindschadler, Michael; Branch, Kelley R.; Alessio, Adam M.
2018-05-01
Quantitative myocardial blood flow (MBF) estimation by dynamic contrast enhanced cardiac computed tomography (CT) requires multi-frame acquisition of contrast transit through the blood pool and myocardium to inform the arterial input and tissue response functions. Both the input and the tissue response functions for the entire myocardium are sampled with each acquisition. However, the long breath holds and frequent sampling can result in significant motion artifacts and relatively high radiation dose. To address these limitations, we propose and evaluate a new static cardiac and dynamic arterial (SCDA) quantitative MBF approach where (1) the input function is well sampled using either prediction from pre-scan timing bolus data or measured from dynamic thin slice ‘bolus tracking’ acquisitions, and (2) the whole-heart tissue response data is limited to one contrast enhanced CT acquisition. A perfusion model uses the dynamic arterial input function to generate a family of possible myocardial contrast enhancement curves corresponding to a range of MBF values. Combined with the timing of the single whole-heart acquisition, these curves generate a lookup table relating myocardial contrast enhancement to quantitative MBF. We tested the SCDA approach in 28 patients that underwent a full dynamic CT protocol both at rest and vasodilator stress conditions. Using measured input function plus single (enhanced CT only) or plus double (enhanced and contrast free baseline CT’s) myocardial acquisitions yielded MBF estimates with root mean square (RMS) error of 1.2 ml/min/g and 0.35 ml/min/g, and radiation dose reductions of 90% and 83%, respectively. The prediction of the input function based on timing bolus data and the static acquisition had an RMS error compared to the measured input function of 26.0% which led to MBF estimation errors greater than threefold higher than using the measured input function. SCDA presents a new, simplified approach for quantitative perfusion imaging with an acquisition strategy offering substantial radiation dose and computational complexity savings over dynamic CT.
[Investigation of fat in the dural sinus].
Tokiguchi, S
1991-08-25
Detection of fat in the cranium usually indicates the presence of a fat-containing tumor such as lipoma, dermoid cyst or teratoma. However, since 1982, Hasso et al demonstrated with CT the presence of normal adipose tissue in the cavernous sinus, the mere existence of fat in the cranium does not necessarily mean the presence of a fatty tumor. The author first described fat deposition in the superior sagittal sinus and torcular Herophili following a CT study performed in 1986. The purpose of this study was to investigate the distribution, frequency, and anatomical correlations of fat in the dural sinus as demonstrated on CT. Fat was detected in the cavernous sinus in 20% of all cases (492/2408), and occurred more frequently (25%) in those older than 50 years. Fat was less frequent in the other dural sinuses (3%; 75/2296). The most common location was the torcular Herophili, followed in decreasing order of frequency by the straight sinus, inferior sagittal sinus, superior sagittal sinus and transverse sinus. Pathological examination was performed in three cases. Fat deposition was composed of normal adipose tissue and was devoid of fibrous encapsulation or infiltration. In one case, the fat seemed to be partly exposed to the subarachnoid space on CT, whereas on autopsy, thin dura mater covering the fat nodule was confirmed. Fat in the dural sinus must be differentiated from cavernous nodule or sinus thrombosis. The Hounsfield unit may be helpful in making a definitive diagnosis.
NASA Technical Reports Server (NTRS)
Bradley, J. P.; Germani, M. S.; Brownlee, D. E.
1989-01-01
An AEM apparatus equipped with digital beam control has obtained quantitative point-count analyses of thin sections taken from eight anhydrous chondritic interplanetary dust particles (IDPs); between 200 and 500 X-ray analyses were collected from each thin section and analyzed for Mg, Al, Si, S, Ca, Cr, Mn, Fe, and Ni. Two types of anhydrous chondritic aggregates were observed in the eight IDPs: one highly porous, the other less so. The eight anhydrous IDPs are characterizable as mixtures of fine- and coarse-grained aggregates, large mineral grains, glass, and carbonaceous materials. Their elemental concentrations follow those of solar abundances, suggesting that they are unperturbed by aqueous alteration.
Rasgado-Flores, Hector; Krishna Mandava, Vamsi; Siman, Homayoun; Van Driessche, Willy; Pilewski, Joseph M; Randell, Scott H; Bridges, Robert J
2013-12-01
Hypertonic saline (HS) inhalation therapy benefits cystic fibrosis (CF) patients [Donaldson SH, Bennet WD, Zeman KL, Knowles MR, Tarran R, Boucher RC. N Engl J Med 354: 241-250, 2006; Elkins MR, Robinson M, Rose BR, Harbour C, Moriarty CP, Marks GB, Belousova EG, Xuan W, Bye PT; the National Hypertonic Saline in Cystic Fibrosis (NHSCF) Study Group. N Engl J Med 354: 229-240, 2006]. Surprisingly, these benefits are long-lasting and are diminished by the epithelial Na(+) channel blocker amiloride (Donaldson SH, Bennet WD, Zeman KL, Knowles MR, Tarran R, Boucher RC. N Engl J Med 354: 241-250, 2006). Our aim was to explain these effects. Human bronchial epithelial (hBE) cells from CF lungs were grown in inserts and were used in three experimental approaches: 1) Ussing chambers to measure amiloride-sensitive short-circuit currents (INa); 2) continuous perfusion Ussing chambers; and 3) near "thin-film" conditions in which the airway surface of the inserts was exposed to a small volume (30 μl) of isosmotic or HS solution as the inserts were kept in their incubation tray and were subsequently used to measure INa under isosmotic conditions (near thin-film experiments; Tarran R, Boucher RC. Methods Mol Med 70: 479-492, 2002). HS solutions (660 mosmol/kgH2O) were prepared by adding additional NaCl to the isosmotic buffer. The transepithelial short-circuit current (ISC), conductance (GT), and capacitance (CT) were measured by transepithelial impedance analysis (Danahay H, Atherton HC, Jackson AD, Kreindler JL, Poll CT, Bridges RJ. Am J Physiol Lung Cell Mol Physiol 290: L558-L569, 2006; Singh AK, Singh S, Devor DC, Frizzell RA, van Driessche W, Bridges RJ. Methods Mol Med 70: 129-142, 2002). Exposure to apical HS inhibited INa, GT, and CT. The INa inhibition required 60 min of reexposure to the isosmotic solution to recover 75%. The time of exposure to HS required to inhibit INa was <2.5 min. Under near thin-film conditions, apical exposure to HS inhibited INa, but as osmotically driven water moved to the apical surface, the aqueous apical volume increased, leading to an amiloride-insensitive decrease in its osmolality and to recovery of INa that lagged behind the osmotic recovery. Amiloride significantly accelerated the recovery of INa following exposure to HS. Our conclusions are that exposure to HS inhibits hBE INa and that amiloride diminishes this effect.
Computed tomographic and cross-sectional anatomy of the normal pacu (Colossoma macroponum).
Carr, Alaina; Weber, E P Scott; Murphy, Chris J; Zwingenberger, Alison
2014-03-01
The purpose of this study was to compare and define the normal cross-sectional gross and computed tomographic (CT) anatomy for a species of boney fish to better gain insight into the use of advanced diagnostic imaging for future clinical cases. The pacu (Colossoma macropomum) was used because of its widespread presence in the aquarium trade, its relatively large body size, and its importance in the research and aquaculture settings. Transverse 0.6-mm CT images of three cadaver fish were obtained and compared to corresponding frozen cross sections of the fish. Relevant anatomic structures were identified and labeled at each level; the Hounsfield unit density of major organs was established. The images presented good anatomic detail and provide a reference for future research and clinical investigation.
Cross-sectional TEM specimen preparation for W/B{sub 4}C multilayer sample using FIB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondal, Puspen, E-mail: puspen@rrcat.gov.in; Pradhan, P. C.; Tiwari, Pragya
2016-05-23
A recent emergence of a cross-beam scanning electron microscopy (SEM)/focused-ion-beam (FIB) system have given choice to fabricate cross-sectional transmission electron microscopy (TEM) specimen of thin film multilayer sample. A 300 layer pair thin film multilayer sample of W/B{sub 4}C was used to demonstrate the specimen lift-out technique in very short time as compared to conventional cross-sectional sample preparation technique. To get large area electron transparent sample, sample prepared by FIB is followed by Ar{sup +} ion polishing at 2 kV with grazing incident. The prepared cross-sectional sample was characterized by transmission electron microscope.
50. PIPING FOR SUBMARINE SECTION, Y&D No. 107728 Scale 3/8' ...
50. PIPING FOR SUBMARINE SECTION, Y&D No. 107728 Scale 3/8' = 1'; August 26, 1929 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertesz, Vilmos; Weiskittel, Taylor M.; Vavek, Marissa
Currently, absolute quantitation aspects of droplet-based surface sampling for thin tissue analysis using a fully automated autosampler/HPLC-ESI-MS/MS system are not fully evaluated. Knowledge of extraction efficiency and its reproducibility is required to judge the potential of the method for absolute quantitation of analytes from thin tissue sections. Methods: Adjacent thin tissue sections of propranolol dosed mouse brain (10- μm-thick), kidney (10- μm-thick) and liver (8-, 10-, 16- and 24- μm-thick) were obtained. Absolute concentration of propranolol was determined in tissue punches from serial sections using standard bulk tissue extraction protocols and subsequent HPLC separations and tandem mass spectrometric analysis. Thesemore » values were used to determine propranolol extraction efficiency from the tissues with the droplet-based surface sampling approach. Results: Extraction efficiency of propranolol using 10- μm-thick brain, kidney and liver thin tissues using droplet-based surface sampling varied between ~45-63%. Extraction efficiency decreased from ~65% to ~36% with liver thickness increasing from 8 μm to 24 μm. Randomly selecting half of the samples as standards, precision and accuracy of propranolol concentrations obtained for the other half of samples as quality control metrics were determined. Resulting precision ( ±15%) and accuracy ( ±3%) values, respectively, were within acceptable limits. In conclusion, comparative quantitation of adjacent mouse thin tissue sections of different organs and of various thicknesses by droplet-based surface sampling and by bulk extraction of tissue punches showed that extraction efficiency was incomplete using the former method, and that it depended on the organ and tissue thickness. However, once extraction efficiency was determined and applied, the droplet-based approach provided the required quantitation accuracy and precision for assay validations. Furthermore, this means that once the extraction efficiency was calibrated for a given tissue type and drug, the droplet-based approach provides a non-labor intensive and high-throughput means to acquire spatially resolved quantitative analysis of multiple samples of the same type.« less
Kertesz, Vilmos; Weiskittel, Taylor M.; Vavek, Marissa; ...
2016-06-22
Currently, absolute quantitation aspects of droplet-based surface sampling for thin tissue analysis using a fully automated autosampler/HPLC-ESI-MS/MS system are not fully evaluated. Knowledge of extraction efficiency and its reproducibility is required to judge the potential of the method for absolute quantitation of analytes from thin tissue sections. Methods: Adjacent thin tissue sections of propranolol dosed mouse brain (10- μm-thick), kidney (10- μm-thick) and liver (8-, 10-, 16- and 24- μm-thick) were obtained. Absolute concentration of propranolol was determined in tissue punches from serial sections using standard bulk tissue extraction protocols and subsequent HPLC separations and tandem mass spectrometric analysis. Thesemore » values were used to determine propranolol extraction efficiency from the tissues with the droplet-based surface sampling approach. Results: Extraction efficiency of propranolol using 10- μm-thick brain, kidney and liver thin tissues using droplet-based surface sampling varied between ~45-63%. Extraction efficiency decreased from ~65% to ~36% with liver thickness increasing from 8 μm to 24 μm. Randomly selecting half of the samples as standards, precision and accuracy of propranolol concentrations obtained for the other half of samples as quality control metrics were determined. Resulting precision ( ±15%) and accuracy ( ±3%) values, respectively, were within acceptable limits. In conclusion, comparative quantitation of adjacent mouse thin tissue sections of different organs and of various thicknesses by droplet-based surface sampling and by bulk extraction of tissue punches showed that extraction efficiency was incomplete using the former method, and that it depended on the organ and tissue thickness. However, once extraction efficiency was determined and applied, the droplet-based approach provided the required quantitation accuracy and precision for assay validations. Furthermore, this means that once the extraction efficiency was calibrated for a given tissue type and drug, the droplet-based approach provides a non-labor intensive and high-throughput means to acquire spatially resolved quantitative analysis of multiple samples of the same type.« less
Zoccolillo, L; Morelli, D; Cincotti, F; Muzzioli, L; Gobbetti, T; Paolucci, S; Iosa, M
2015-12-01
Previous studies reported controversial results about the efficacy of video-game based therapy (VGT) in improving neurorehabilitation outcomes in children with cerebral palsy (CP). Primary aim was to investigate the effectiveness of VGT with respect to conventional therapy (CT) in improving upper limb motor outcomes in a group of children with CP. Secondary aim was to quantify if VGT leads children to perform a higher number of movements. A cross-over randomized controlled trial (RCT) for investigating the primary aim and a cross-sectional study for investigating the secondary aim of this study. Outpatients. clinical diagnosis of CP, age between 4 and 14 years, level of GMFC between I and IV. QI<35, severe comorbidities, incapacity to stand even with an external support. Twenty-two children with CP (6.89±1.91-year old) were enrolled in a cross-over RCT with 16 sessions of VGT (using Xbox with Kinect device) and then 16 of CT or vice versa. Upper limb functioning was assessed using the Quality of Upper Extremities Skills Test (QUEST) and hand abilities using Abilhand-kids score. According to the secondary aim of this study a secondary cross-sectional study has been performed. Eight children with CP (6.50±1.60-year old) were enrolled into a trial in which five wireless triaxial accelerometers were positioned on their forearms, legs and trunk for quantifying the physical activity during VGT vs. CT. QUEST scores significantly improved only after VGT (P=0.003), and not after CT (P=0.056). The reverse occurred for Abilhand-kids scores (P=0.165 vs. P=0.013, respectively). Quantity of performed movements was three times higher in VGT than in CT (+198%, P=0.027). VGT resulted effective in improving the motor functions of upper limb extremities in children with CP, conceivably for the increased quantity of limb movements, but failed in improving the manual abilities for performing activities of daily living which benefited more from CT. VGT performed using the X-Box with Kinect device could enhance the number of upper limb movements in children with CP during rehabilitation and in turn improving upper limb motor skills, but CT remained superior for improving performances in manual activities of daily living.
Characterization of Dilatant Shear Bands in Castlegate Sandstone Using Micro-Computed Tomography
NASA Astrophysics Data System (ADS)
Rosenthal, R. E.; Issen, K. A.; Richards, M. C.; Ingraham, M. D.
2016-12-01
Deformation bands in granular rock are thin tabular zones of localized shear and/or volumetric strain, which affect permeability and can impact fluid flow, extraction and storage. The present work characterizes dilatant shear bands formed in Castlegate sandstone (a high porosity reservoir analog) during true triaxial laboratory testing (Ingraham et al., 2013a) at low mean stresses. X-ray micro-computed tomography (micro-CT) scans produced 3-dimensional voxel files containing density information of tested specimens. Micro-CT data were thresholded to extract the least dense voxels, corresponding to pore space and localized dilation. Plane fits were determined by a custom algorithm that calculated the angle between the band normal and maximum compression direction. For tests at the same mean stress, the band angle is lower when intermediate principal stress approaches minimum compression and higher when it approaches maximum compression. Micro-CT band angles were compared to angles from the specimen jackets (Ingraham et al., 2013a), and band angles from plane fits through located acoustic emissions (AE) events (Ingraham et al. 2013b). For non-axisymmetric stress states (three unique principal stresses), one primary dilatant shear band formed in each specimen. Occasionally, secondary bands traversing part of the specimen were also identified. The principal band angles from the micro-CT scans were on average within 3 degrees of the jacket angles and within 9 degrees of AE angles. For axisymmetric stress states (intermediate principal stress equal to maximum or minimum compression) micro-CT results reveal multiple conjugate and/or parallel bands. Each jacket angle correlated to a micro-CT angle within 4 degrees. Micro-CT results also reveal that, regardless of stress state, each band is comprised of a network of interconnected pore space pathways meandering between grain clusters, as opposed to an opening fracture/joint. Ingraham MD, KA Issen, DJ Holcomb, 2013a, J. Geophys. Res. Solid Earth, Vol. 118, pp. 536-552, doi:10.1002/jgrb.50084. Ingraham MD, KA Issen, DJ Holcomb, 2013b, Acta Geotech., Vol. 8, Iss. 6, pp. 645-663, DOI: 10.1007/s11440-013-0275-y.
Better Finite-Element Analysis of Composite Shell Structures
NASA Technical Reports Server (NTRS)
Clarke, Gregory
2007-01-01
A computer program implements a finite-element-based method of predicting the deformations of thin aerospace structures made of isotropic materials or anisotropic fiber-reinforced composite materials. The technique and corresponding software are applicable to thin shell structures in general and are particularly useful for analysis of thin beamlike members having open cross-sections (e.g. I-beams and C-channels) in which significant warping can occur.
Dahele, M.; Hwang, D.; Peressotti, C.; Sun, L.; Kusano, M.; Okhai, S.; Darling, G.; Yaffe, M.; Caldwell, C.; Mah, K.; Hornby, J.; Ehrlich, L.; Raphael, S.; Tsao, M.; Behzadi, A.; Weigensberg, C.; Ung, Y.C.
2008-01-01
Background Understanding the three-dimensional (3D) volumetric relationship between imaging and functional or histopathologic heterogeneity of tumours is a key concept in the development of image-guided radiotherapy. Our aim was to develop a methodologic framework to enable the reconstruction of resected lung specimens containing non-small-cell lung cancer (nsclc), to register the result in 3D with diagnostic imaging, and to import the reconstruction into a radiation treatment planning system. Methods and Results We recruited 12 patients for an investigation of radiology–pathology correlation (rpc) in nsclc. Before resection, imaging by positron emission tomography (pet) or computed tomography (ct) was obtained. Resected specimens were formalin-fixed for 1–24 hours before sectioning at 3-mm to 10-mm intervals. To try to retain the original shape, we embedded the specimens in agar before sectioning. Consecutive sections were laid out for photography and manually adjusted to maintain shape. Following embedding, the tissue blocks underwent whole-mount sectioning (4-μm sections) and staining with hematoxylin and eosin. Large histopathology slides were used to whole-mount entire sections for digitization. The correct sequence was maintained to assist in subsequent reconstruction. Using Photoshop (Adobe Systems Incorporated, San Jose, CA, U.S.A.), contours were placed on the photographic images to represent the external borders of the section and the extent of macroscopic disease. Sections were stacked in sequence and manually oriented in Photoshop. The macroscopic tumour contours were then transferred to MATLAB (The Mathworks, Natick, MA, U.S.A.) and stacked, producing 3D surface renderings of the resected specimen and embedded gross tumour. To evaluate the microscopic extent of disease, customized “tile-based” and commercial confocal panoramic laser scanning (TISSUEscope: Biomedical Photometrics, Waterloo, ON) systems were used to generate digital images of whole-mount histopathology sections. Using the digital whole-mount images and imaging software, we contoured the gross and microscopic extent of disease. Two methods of registering pathology and imaging were used. First, selected pet and ct images were transferred into Photoshop, where they were contoured, stacked, and reconstructed. After importing the pathology and the imaging contours to MATLAB, the contours were reconstructed, manually rotated, and rigidly registered. In the second method, MATLAB tumour renderings were exported to a software platform for manual registration with the original pet and ct images in multiple planes. Data from this software platform were then exported to the Pinnacle radiation treatment planning system in dicom (Digital Imaging and Communications in Medicine) format. Conclusions There is no one definitive method for 3D volumetric rpc in nsclc. An innovative approach to the 3D reconstruction of resected nsclc specimens incorporates agar embedding of the specimen and whole-mount digital histopathology. The reconstructions can be rigidly and manually registered to imaging modalities such as ct and pet and exported to a radiation treatment planning system. PMID:19008992
Banzato, Tommaso; Selleri, Paolo; Veladiano, Irene A; Martin, Andrea; Zanetti, Emanuele; Zotti, Alessandro
2012-05-11
Radiology and computed tomography are the most commonly available diagnostic tools for the diagnosis of pathologies affecting the head and skull in veterinary practice. Nevertheless, accurate interpretation of radiographic and CT studies requires a thorough knowledge of the gross and the cross-sectional anatomy. Despite the increasing success of reptiles as pets, only a few reports over their normal imaging features are currently available. The aim of this study is to describe the normal cadaveric, radiographic and computed tomographic features of the heads of the green iguana, tegu and bearded dragon. 6 adult green iguanas, 4 tegus, 3 bearded dragons, and, the adult cadavers of: 4 green iguana, 4 tegu, 4 bearded dragon were included in the study. 2 cadavers were dissected following a stratigraphic approach and 2 cadavers were cross-sectioned for each species. These latter specimens were stored in a freezer (-20°C) until completely frozen. Transversal sections at 5 mm intervals were obtained by means of an electric band-saw. Each section was cleaned and photographed on both sides. Radiographs of the head of each subject were obtained. Pre- and post- contrast computed tomographic studies of the head were performed on all the live animals. CT images were displayed in both bone and soft tissue windows. Individual anatomic structures were first recognised and labelled on the anatomic images and then matched on radiographs and CT images. Radiographic and CT images of the skull provided good detail of the bony structures in all species. In CT contrast medium injection enabled good detail of the soft tissues to be obtained in the iguana whereas only the eye was clearly distinguishable from the remaining soft tissues in both the tegu and the bearded dragon. The results provide an atlas of the normal anatomical and in vivo radiographic and computed tomographic features of the heads of lizards, and this may be useful in interpreting any imaging modality involving these species.
2012-01-01
Background Radiology and computed tomography are the most commonly available diagnostic tools for the diagnosis of pathologies affecting the head and skull in veterinary practice. Nevertheless, accurate interpretation of radiographic and CT studies requires a thorough knowledge of the gross and the cross-sectional anatomy. Despite the increasing success of reptiles as pets, only a few reports over their normal imaging features are currently available. The aim of this study is to describe the normal cadaveric, radiographic and computed tomographic features of the heads of the green iguana, tegu and bearded dragon. Results 6 adult green iguanas, 4 tegus, 3 bearded dragons, and, the adult cadavers of : 4 green iguana, 4 tegu, 4 bearded dragon were included in the study. 2 cadavers were dissected following a stratigraphic approach and 2 cadavers were cross-sectioned for each species. These latter specimens were stored in a freezer (−20°C) until completely frozen. Transversal sections at 5 mm intervals were obtained by means of an electric band-saw. Each section was cleaned and photographed on both sides. Radiographs of the head of each subject were obtained. Pre- and post- contrast computed tomographic studies of the head were performed on all the live animals. CT images were displayed in both bone and soft tissue windows. Individual anatomic structures were first recognised and labelled on the anatomic images and then matched on radiographs and CT images. Radiographic and CT images of the skull provided good detail of the bony structures in all species. In CT contrast medium injection enabled good detail of the soft tissues to be obtained in the iguana whereas only the eye was clearly distinguishable from the remaining soft tissues in both the tegu and the bearded dragon. Conclusions The results provide an atlas of the normal anatomical and in vivo radiographic and computed tomographic features of the heads of lizards, and this may be useful in interpreting any imaging modality involving these species. PMID:22578088
Sonnenblick, Emily B; Salvatore, Mary; Szabo, Janet; Lee, Karen A; Margolies, Laurie R
2016-08-01
The purpose of this study was to determine whether additional breast imaging is clinically valuable in the evaluation of patients with gynecomastia incidentally observed on CT of the chest. In a retrospective analysis, 62 men were identified who had a mammographic diagnosis of gynecomastia and had also undergone CT within 8 months (median, 2 months). We compared the imaging findings of both modalities and correlated them with the clinical outcome. Gynecomastia was statistically significantly larger on mammograms than on CT images; however, there was a high level of concordance in morphologic features and distribution of gynecomastia between mammography and CT. In only one case was gynecomastia evident on mammographic but not CT images, owing to cachexia. Two of the 62 men had ductal carcinoma, which was obscured by gynecomastia. Both of these patients had symptoms suggesting malignancy. The appearance of gynecomastia on CT scans and mammograms was highly correlated. Mammography performed within 8 months of CT is unlikely to reveal cancer unless there is a suspicious clinical finding or a breast mass eccentric to the nipple. Men with clinical symptoms of gynecomastia do not need additional imaging with mammography to confirm the diagnosis if they have undergone recent cross-sectional imaging.
Learning of Cross-Sectional Anatomy Using Clay Models
ERIC Educational Resources Information Center
Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon
2009-01-01
We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…
Ohno, Yoshiharu; Koyama, Hisanobu; Yoshikawa, Takeshi; Matsumoto, Keiko; Takahashi, Masaya; Van Cauteren, Marc; Sugimura, Kazuro
2011-08-01
The purpose of this study was to determine the usefulness of MRI with ultrashort TEs on a 3-T system and of thin-section MDCT for pulmonary function assessment and clinical stage classification of chronic obstructive pulmonary disease (COPD) in smokers. Forty smokers (24 men and 16 women; mean age ± SD, 68.0 ± 9.3 years) underwent MRI with ultrashort TEs and thin-section MDCT. Pulmonary function testing was also performed to determine the following: the ratio of forced expiratory volume in 1 second to forced vital capacity (percentage predicted) (FEV(1/)FVC%), percentage predicted forced expiratory volume in 1 second (%FEV(1)), and percentage predicted diffusing capacity of lung for carbon monoxide corrected for alveolar volume (%DLCO/V(A)). All subjects were classified into one of four groups as follows: smokers without COPD, with mild COPD, with moderate COPD, and with severe or very severe COPD. T2(*) maps were expressed using proprietary software. Regional T2(*) values were determined by region of interest measurements and were averaged to determine a mean T2(*) value for each subject. CT-based functional lung volume and the ratio of the wall area to the total airway area were also determined. All indexes were statistically correlated with pulmonary function parameters. Then, all indexes were compared among all groups by means of Tukey's honest significance test. All indexes had significant correlation with FEV(1)/FVC%, %FEV(1), and % DLCO/V(A) (p < 0.05). All indexes except WA% of smokers without COPD and smokers with mild COPD differed significantly from those of smokers with moderate COPD and smokers with severe or very severe COPD (p < 0.05). Moreover, the mean T2(*) value of the moderate COPD group was significantly different from that of the severe or very severe COPD group (p < 0.05). MRI with ultrashort TEs is potentially as useful as quantitatively assessed MDCT for pulmonary function loss assessment and clinical stage classification of COPD in smokers.
NASA Technical Reports Server (NTRS)
Collins, J. Scott; Johnson, Eric R.
1989-01-01
Experiments were conducted to measure the three-dimensional static and free vibrational response of two graphite-epoxy, thin-walled, open section frames. The frames are semi-circular with a radius of three feet, and one specimen has an I cross section and the other has a channel cross section. The flexibility influence coefficients were measured in static tests for loads applied at midspan with the ends of the specimens clamped. Natural frequencies and modes were determined from vibrational tests for free and clamped end conditions. The experimental data is used to evaluate a new finite element which was developed specifically for the analysis of curved, thin-walled structures. The formulation of the element is based on a Vlasov-type, thin-walled, curved beam theory. The predictions from the finite element program generally correlated well with the experimental data for the symmetric I-specimen. Discrepancies in some of the data were found to be due to flexibility in the clamped end conditions. With respect to the data for the channel specimen, the correlation was less satisfactory. The finite element analysis predicted the out-of-plane response of the channel specimen reasonably well, but large discrepancies occurred between the predicted in-plane response and the experimental data. The analysis predicted a much more compliant in-plane response than was observed in the experiments.
Lung cancer mimicking lung abscess formation on CT images.
Taira, Naohiro; Kawabata, Tsutomu; Gabe, Atsushi; Ichi, Takaharu; Kushi, Kazuaki; Yohena, Tomofumi; Kawasaki, Hidenori; Yamashiro, Toshimitsu; Ishikawa, Kiyoshi
2014-01-01
Male, 64 FINAL DIAGNOSIS: Lung pleomorphic carcinoma Symptoms: Cough • fever - Clinical Procedure: - Specialty: Oncology. Unusual clinical course. The diagnosis of lung cancer is often made based on computed tomography (CT) image findings if it cannot be confirmed on pathological examinations, such as bronchoscopy. However, the CT image findings of cancerous lesions are similar to those of abscesses.We herein report a case of lung cancer that resembled a lung abscess on CT. We herein describe the case of 64-year-old male who was diagnosed with lung cancer using surgery. In this case, it was quite difficult to distinguish between the lung cancer and a lung abscess on CT images, and a lung abscess was initially suspected due to symptoms, such as fever and coughing, contrast-enhanced CT image findings showing a ring-enhancing mass in the right upper lobe and the patient's laboratory test results. However, a pathological diagnosis of lung cancer was confirmed according to the results of a rapid frozen section biopsy of the lesion. This case suggests that physicians should not suspect both a lung abscesses and malignancy in cases involving masses presenting as ring-enhancing lesions on contrast-enhanced CT.
Laboratory Measurements of Charge Transfer on Atomic Hydrogen at Thermal Energies
NASA Technical Reports Server (NTRS)
Havener, C. C.; Vane, C. R.; Krause, H. F.; Stancil, P. C.; Mroczkowski, T.; Savin, D. W.
2002-01-01
We describe our ongoing program to measure velocity dependent charge transfer (CT) cross sections for selected ions on atomic hydrogen using the ion-aloin merged-beams apparatus at Oak Ridge Natioiial Laboralory. Our focus is on those ions for which CT plays an important role in determining the ionization structure, line emis sion, and thermal structure of observed cosmic photoionized plasmas.
Ultrafast CT scanning of an oak log for internal defects
Francis G. Wagner; Fred W. Taylor; Douglas S. Ladd; Charles W. McMillin; Fredrick L. Roder
1989-01-01
Detecting internal defects in sawlogs and veneer logs with computerized tomographic (CT) scanning is possible, but has been impractical due to the long scanning time required. This research investigated a new scanner able to acquire 34 cross-sectional log scans per second. This scanning rate translates to a linear log feed rate of 85 feet (25.91 m) per minute at one...
Fillinger, Mark F; Racusin, Jessica; Baker, Robert K; Cronenwett, Jack L; Teutelink, Arno; Schermerhorn, Marc L; Zwolak, Robert M; Powell, Richard J; Walsh, Daniel B; Rzucidlo, Eva M
2004-06-01
The purpose of this study was to analyze anatomic characteristics of patients with ruptured abdominal aortic aneurysms (AAAs), with conventional two-dimensional computed tomography (CT), including comparison with control subjects matched for age, gender, and size. Records were reviewed to identify all CT scans obtained at Dartmouth-Hitchcock Medical Center or referring hospitals before emergency AAA repair performed because of rupture or acute severe pain (RUP group). CT scans obtained before elective AAA repair (ELEC group) were reviewed for age and gender match with patients in the RUP group. More than 40 variables were measured on each CT scan. Aneurysm diameter matching was achieved by consecutively deleting the largest RUP scan and the smallest ELEC scan to prevent bias. CT scans were analyzed for 259 patients with AAAs: 122 RUP and 137 ELEC. Patients were well matched for age, gender, and other demographic variables or risk factors. Maximum AAA diameter was significantly different in comparisons of all patients (RUP, 6.5 +/- 2 cm vs ELEC, 5.6 +/- 1 cm; P <.0001), and mean diameter of ruptured AAAs was 5 mm smaller in female patients (6.1 +/- 2 cm vs 6.6 +/- 2 cm; P =.007). Two hundred patients were matched for diameter, gender, and age (100 from each group; maximum AAA diameter, 6.0 +/- 1 cm vs 6.0 +/- 1 cm). Analysis of diameter-matched AAAs indicated that most variables were statistically similar in the two groups, including infrarenal neck length (17 +/- 1 mm vs 19 +/- 1 mm; P =.3), maximum thrombus thickness (25 +/- 1 mm vs 23 +/- 1 mm, P =.4), and indices of body habitus, such as [(maximum AAA diameter)/(normal suprarenal aorta diameter)] or [(maximum AAA diameter)/(L3 transverse diameter)]. Multivariate analysis controlling for gender indicated that the most significant variables for rupture were aortic tortuosity (odds ratio [OR] 3.3, indicating greater risk with no or mild tortuosity), diameter asymmetry (OR, 3.2 for a 1-cm difference in major-minor axis), and current smoking (OR, 2.7, with the greater risk in current smokers). When matched for age, gender, and diameter, ruptured AAAs tend to be less tortuous, yet have greater cross-sectional diameter asymmetry. On conventional two-dimensional CT axial sections, it appears that when diameter asymmetry is associated with low aortic tortuosity, the larger diameter on axial sections more accurately reflects rupture risk, and when diameter asymmetry is associated with moderate or severe aortic tortuosity, the smaller diameter on axial sections more accurately reflects rupture risk. Current smoking is significantly associated with rupture, even when controlling for gender and AAA anatomy.
Characterization of compact-toroid injection during formation, translation, and field penetration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, T., E-mail: cstd14003@g.nihon-u.ac.jp; Sekiguchi, J.; Asai, T.
2016-11-15
We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ∼1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation,more » ejection/translation from the MCPG, and penetration into transverse magnetic fields.« less
Design of free-space optical transmission system in computer tomography equipment
NASA Astrophysics Data System (ADS)
Liu, Min; Fu, Weiwei; Zhang, Tao
2018-04-01
Traditional computer tomography (CT) based on capacitive coupling cannot satisfy the high data rate transmission requirement. We design and experimentally demonstrate a free-space optical transmission system for CT equipment at a data rate of 10 Gb / s. Two interchangeable sections of 12 pieces of fiber with equal length is fabricated and tested by our designed laser phase distance measurement system. By locating the 12 collimators in the edge of the circle wheel evenly, the optical propagation characteristics for the 12 wired and wireless paths are similar, which can satisfy the requirement of high-speed CT transmission system. After bit error rate (BER) measurement in several conditions, the BER performances are below the value of 10 - 11, which has the potential in the future application scenario of CT equipment.
[µCT analysis of mandibular molars before and after instrumentation by Reciproc files].
Ametrano, Gianluca; Riccitiello, Francesco; Amato, Massimo; Formisano, Anna; Muto, Massimo; Grassi, Roberta; Valletta, Alessandra; Simeone, Michele
2013-01-01
Cleaning and shaping are important section for the root canal treatment. A number of different methodologies have been developed to overcome these problems, including the introduction of rotary instruments nickel-titanium (NiTi). In endodontics NiTi have been shown to significantly reduce procedural errors compared to manual techniques of instrumentation. The efficiency of files is related to many factor. Although previous investigations that have used µCT analysis were hampered by insufficient resolution or projection incorrect. The new generation of μCT performance best offer, as micron resolution and accurate measurement software for evaluating the accurate anatomy of the root canal. The aim the paper was to evaluate the efficiency of Reciproc files in root canal treatment, evaluated before and after instrumentation by using μ-CT analysis.
Flexural-torsional vibration of a tapered C-section beam
NASA Astrophysics Data System (ADS)
Dennis, Scott T.; Jones, Keith W.
2017-04-01
Previous studies have shown that numerical models of tapered thin-walled C-section beams based on a stepped or piecewise prismatic beam approximation are inaccurate regardless of the number of elements assumed in the discretization. Andrade recently addressed this problem by extending Vlasov beam theory to a tapered geometry resulting in new terms that vanish for the uniform beam. (See One-Dimensional Models for the Spatial Behaviour of Tapered Thin-Walled Bars with Open Cross-Sections: Static, Dynamic and Buckling Analyses, PhD Thesis, University of Coimbra, Portugal, 2012, https://estudogeral.sib.uc.pt) In this paper, we model the coupled bending-twisting vibration of a cantilevered tapered thin-walled C-section using a Galerkin approximation of Andrade's beam equations resulting in an 8-degree-of-freedom beam element. Experimental natural frequencies and mode shapes for 3 prismatic and 2 tapered channel beams are compared to model predictions. In addition, comparisons are made to detailed shell finite element models and exact solutions for the uniform beams to confirm the validity of the approach. Comparisons to the incorrect stepped model are also presented.
Choi, Jongsoo; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R
2017-10-01
Use of a thin-film piezoelectric microactuator for axial scanning during multi-photon vertical cross-sectional imaging is described. The actuator uses thin-film lead-zirconate-titanate (PZT) to generate upward displacement of a central mirror platform, micro-machined from a silicon-on-insulator (SOI) wafer to dimensions compatible with endoscopic imaging instruments. Device modeling in this paper focuses on existence of frequencies near device resonance producing vertical motion with minimal off-axis tilt even in the presence of multiple vibration modes and non-uniformity in fabrication outcomes. Operation near rear resonance permits large stroke lengths at low voltages relative to other vertical microactuators. Highly uniform vertical motion of the mirror platform is a key requirement for vertical cross-sectional imaging in the remote scan architecture being used for multi-photon instrument prototyping. The stage is installed in a benchtop testbed in combination with an electrostatic mirror that performs in-plane scanning. Vertical sectional images are acquired from 15 μm diameter beads and excised mouse colon tissue.
Quantitative CT scans of lung parenchymal pathology in premature infants ages 0-6 years.
Spielberg, David R; Walkup, Laura L; Stein, Jill M; Crotty, Eric J; Rattan, Mantosh S; Hossain, Md Monir; Brody, Alan S; Woods, Jason C
2018-03-01
Bronchopulmonary dysplasia (BPD) is a common, heterogeneous disease in premature infants. We hypothesized that quantitative CT techniques could assess lung parenchymal heterogeneity in BPD patients across a broad age range and demonstrate how pathologies change over time. A cross-sectional, retrospective study of children age 0-6 years with non-contrast chest CT scans was conducted. BPD subjects met NICHD/NHLBI diagnostic criteria for BPD and were excluded for congenital lung/airway abnormalities or other known/suspected pulmonary diagnoses; control subjects were not premature and had normal CT scan findings. Radiologic opacities, lucencies, and spatial heterogeneity were quantified via: 1) thresholding using CT-attenuation (HU); 2) manual segmentation; and 3) Ochiai reader-scoring system. Clinical outcomes included BPD severity by NICHD/NHLBI criteria, respiratory support at NICU discharge, wheezing, and respiratory exacerbations. Heterogeneity (standard deviation) of lung attenuation in BPD was significantly greater than in controls (difference 36.4 HU [26.1-46.7 HU], P < 0.001); the difference between the groups decreased 0.58 HU per month of age (0.08-1.07 HU per month, P = 0.02). BPD patients had greater amounts of opacities and lucencies than controls except with automated quantification of lucencies. Cross-sectionally, lucencies per Ochiai score and opacities per manual segmentation decreased with time. No approach measured a statistically significant relationship to BPD clinical severity. Opacities, lucencies, and overall heterogeneity of lungs via quantitative CT can distinguish BPD patients from healthy controls, and these abnormalities decrease with age across BPD patients. Defining BPD severity by clinical outcomes such as respiratory support at several time points (vs a single time point, per current guidelines) may be meaningful. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wardlaw, Graeme M; Martel, Narine
Purpose: The Canadian Computed (CT) Tomography Survey sought to collect CT technology and dose index data (CTDI and DLP) at the national level in order to establish national diagnostic reference levels (DRLs) for seven common CT examinations of standard-sized adults and pediatric patients. Methods: A single survey booklet (consisting of four sections) was mailed to and completed for each participating CT scanner. Survey sections collected data on (i) General facility and scanner information, (ii) routine protocols (as available), (iii) individual patient data (as applied) and (iv) manual CTDI measurements. Results: Dose index (CTDIvol and DLP) and associated patient data frommore » 24 280 individual patient exam sequences was analyzed for seven common CT examinations performed in Canada: Adult Head, Chest, Abdomen/Pelvis, and Chest/Abdomen/Pelvis, and Pediatric Head, Chest, and Abdomen. Pediatric examination data was sub-divided into three age ranges: 0–3, 3–7 and 7–13 years. DRLs (75th percentile of dose index distributions) were found for all thirteen groups. Further analysis also permitted segmentation of examination data into 8 sub-groups, whose dose index data was displayed along with group histograms – showing relative contribution of axial vs. helical, contrast use (C+ vs. C-), and application of fixed current vs. dose reduction (DR) – 75th percentiles of DR sub-groups were, in almost all cases, lower than whole group (examination) DRLs. Conclusions: The analysis and summaries presented in the pending survey report can serve to aid local CT imaging optimization efforts within Canada and also contribute further to international efforts in radiation protection of patients.« less
Thin bonded P.C.C. resurfacing : final report.
DOT National Transportation Integrated Search
1982-06-01
After the successful experimentation in Iowa with thin-bonded concrete overlays as an alternative to bituminous overlay, the Louisiana DOTD decided to resurface a short section of US 61, north of Baton Rouge, using this technique during April 1981. T...
Deep 3D convolution neural network for CT brain hemorrhage classification
NASA Astrophysics Data System (ADS)
Jnawali, Kamal; Arbabshirani, Mohammad R.; Rao, Navalgund; Patel, Alpen A.
2018-02-01
Intracranial hemorrhage is a critical conditional with the high mortality rate that is typically diagnosed based on head computer tomography (CT) images. Deep learning algorithms, in particular, convolution neural networks (CNN), are becoming the methodology of choice in medical image analysis for a variety of applications such as computer-aided diagnosis, and segmentation. In this study, we propose a fully automated deep learning framework which learns to detect brain hemorrhage based on cross sectional CT images. The dataset for this work consists of 40,367 3D head CT studies (over 1.5 million 2D images) acquired retrospectively over a decade from multiple radiology facilities at Geisinger Health System. The proposed algorithm first extracts features using 3D CNN and then detects brain hemorrhage using the logistic function as the last layer of the network. Finally, we created an ensemble of three different 3D CNN architectures to improve the classification accuracy. The area under the curve (AUC) of the receiver operator characteristic (ROC) curve of the ensemble of three architectures was 0.87. Their results are very promising considering the fact that the head CT studies were not controlled for slice thickness, scanner type, study protocol or any other settings. Moreover, the proposed algorithm reliably detected various types of hemorrhage within the skull. This work is one of the first applications of 3D CNN trained on a large dataset of cross sectional medical images for detection of a critical radiological condition
[Virtual otoscopy--technique, indications and initial experiences with multislice spiral CT].
Klingebiel, R; Bauknecht, H C; Lehmann, R; Rogalla, P; Werbs, M; Behrbohm, H; Kaschke, O
2000-11-01
We report the standardized postprocessing of high-resolution CT data acquired by incremental CT and multi-slice CT in patients with suspected middle ear disorders to generate three-dimensional endoluminal views known as virtual otoscopy. Subsequent to the definition of a postprocessing protocol, standardized endoluminal views of the middle ear were generated according to their otological relevance. The HRCT data sets of 26 ENT patients were transferred to a workstation and postprocessed to 52 virtual otoscopies. Generation of predefined endoluminal views from the HRCT data sets was possible in all patients. Virtual endoscopic views added meaningful information to the primary cross-sectional data in patients suffering from ossicular pathology, having contraindications for invasive tympanic endoscopy or being assessed for surgery of the tympanic cavity. Multi slice CT improved the visualization of subtle anatomic details such as the stapes suprastructure and reduced the scanning time. Virtual endoscopy allows for the non invasive endoluminal visualization of various tympanic lesions. Use of the multi-slice CT technique reduces the scanning time and improves image quality in terms of detail resolution.
Online course design for teaching critical thinking.
Schaber, Patricia; Shanedling, Janet
2012-01-01
Teaching critical thinking (CT) skills, a goal in higher education, is seldom considered in the primary design of either classroom or online courses, and is even less frequently measured in student learning. In health professional education, CT along with clinical reasoning skills is essential for the development of clinical practitioners. This study, measuring CT skill development in an online theory course, supports using a cyclical course design to build higher level processes in student thinking. Eighty-six Masters of Occupational Therapy students in four sections of an occupation-based theory course were evaluated on elements in the Paul and Elder CT Model throughout the course and surveyed for their perceptions in their ability to think critically at course completion. Results of this study demonstrated that the online theory course design contributed to improving critical thinking skills and student's perceived CT skill development as applicable to their future professional practice. In a focus group, eight students identified four effective course design features that contributed to their CT skill development: highly structured learning, timely feedback from instructor, repetition of assignments, and active engagement with the material.
Chest tomosynthesis: technical principles and clinical update.
Dobbins, James T; McAdams, H Page
2009-11-01
Digital tomosynthesis is a radiographic technique that can produce an arbitrary number of section images of a patient from a single pass of the X-ray tube. It utilizes a conventional X-ray tube, a flat-panel detector, a computer-controlled tube mover, and special reconstruction algorithms to produce section images. While it does not have the depth resolution of computed tomography (CT), tomosynthesis provides some of the tomographic benefits of CT but at lower cost and radiation dose than CT. Compared to conventional chest radiography, chest tomosynthesis results in improved visibility of normal structures such as vessels, airway and spine. By reducing visual clutter from overlying normal anatomy, it also enhances detection of small lung nodules. This review article outlines the components of a tomosynthesis system, discusses results regarding improved lung nodule detection from the recent literature, and presents examples of nodule detection from a clinical trial in human subjects. Possible implementation strategies for use in clinical chest imaging are discussed.
CT analysis of nasal volume changes after surgically-assisted rapid maxillary expansion.
Tausche, Eve; Deeb, Wayel; Hansen, Lars; Hietschold, Volker; Harzer, Winfried; Schneider, Matthias
2009-07-01
Aim of this study was to detect the changes in nasal volume due to bone-borne, surgically-assisted rapid palatal expansion (RPE) with the Dresden Distractor using computed tomography (CT). 17 patients (mean age 28.8) underwent axial CT scanning before and 6 months after RPE. The nasal bone width was examined in the coronal plane. Cross-sectional images of the nasal cavity were taken of the area surrounding the piriform aperture, choanae and in between. Bony nasal volume was computed by connecting the three cross-sectional areas. All but two patients showed a 4.8% increase in nasal volume (SD 4.6%). The highest value, 33.3% (SD 45.1%), was measured anteriorly at the level of the nasal floor. This correlated with the midpalatal suture's V-shaped opening. There was no significant correlation between an increase in nasal volume and transverse dental arch expansion. As most of the air we breathe passes the lower nasal floor, an improvement in nasal breathing is likely.
Cross-sectional study on risk factors of HIV among female commercial sex workers in Cambodia.
Ohshige, K.; Morio, S.; Mizushima, S.; Kitamura, K.; Tajima, K.; Ito, A.; Suyama, A.; Usuku, S.; Saphonn, V.; Heng, S.; Hor, L. B.; Tia, P.; Soda, K.
2000-01-01
To describe epidemiological features on HIV prevalence among female commercial sex workers (CSWs), a cross-sectional study on sexual behaviour and serological prevalence was carried out in Cambodia. The CSWs were interviewed on their demographic characters and behaviour and their blood samples were taken for testing on sexually transmitted diseases, including HIV, Chlamydia trachomatis, syphilis, and hepatitis B. Associations between risk factors and HIV seropositivity were analysed. High seroprevalence of HIV and Chlamydia trachomatis IgG antibody (CT-IgG-Ab) was shown among the CSWs (54 and 81.7%, respectively). Univariate logistic regression analyses showed an association between HIV seropositivity and age, duration of prostitution, the number of clients per day and CT-IgG-Ab. Especially, high-titre chlamydial seropositivity showed a strong significant association with HIV prevalence. In multiple logistic regression analyses, CT-IgG-Ab with higher titre was significantly independently related to HIV infection. These suggest that existence of Chlamydia trachomatis is highly related to HIV prevalence. PMID:10722142
Lifton, Joseph J; Malcolm, Andrew A; McBride, John W
2015-01-01
X-ray computed tomography (CT) is a radiographic scanning technique for visualising cross-sectional images of an object non-destructively. From these cross-sectional images it is possible to evaluate internal dimensional features of a workpiece which may otherwise be inaccessible to tactile and optical instruments. Beam hardening is a physical process that degrades the quality of CT images and has previously been suggested to influence dimensional measurements. Using a validated simulation tool, the influence of spectrum pre-filtration and beam hardening correction are evaluated for internal and external dimensional measurements. Beam hardening is shown to influence internal and external dimensions in opposition, and to have a greater influence on outer dimensions compared to inner dimensions. The results suggest the combination of spectrum pre-filtration and a local gradient-based surface determination method are able to greatly reduce the influence of beam hardening in X-ray CT for dimensional metrology.
Grut, Harald; Revheim, Mona-Elisabeth; Line, Pål-Dag; Dueland, Svein
2018-04-20
The aim of this study was to evaluate fluorine-18-fluorodeoxyglucose (F-FDG) PET/CT for the selection of patients with nonresectable colorectal liver metastases (NCLM) for liver transplantation (LT). In the secondary cancer study, we reported an improved 5-year overall survival in patients treated with LT for NCLM (56%) compared with chemotherapy (9%). However, many patients were rejected for LT owing to the detection of extrahepatic disease at preoperative imaging. F-FDG PET/CT and contrast-enhanced computed tomography (ceCT) examinations before tentative LT for NCLM were assessed, and findings contraindicating LT were registered. Maximum, mean and peak standardized uptake values; tumor-to-background ratio; metabolic tumor volume; and total lesion glycolysis were measured and calculated for all liver metastases. Overall survival was calculated by the Kaplan-Meier method. Thirty-two patients excluded by F-FDG PET/CT and/or ceCT before tentative LT for NCLM were identified. F-FDG PET/CT from 20 of the 32 excluded patients revealed extrahepatic disease. Eight of the other 12 patients had a negative F-FDG PET/CT finding but were excluded by ceCT. Ten patients were excluded by F-FDG PET/CT only. Four patients were excluded owing to detected malignancy from frozen sections at the start of the intended transplant operation. Tumor-to-background ratio of the liver metastases was significantly higher in patients where F-FDG PET/CT detected extrahepatic disease (P=0.03). The median (range) survival after exclusion was 16 (0-52) months. The ability of F-FDG PET/CT to detect extrahepatic disease before LT for NCLM is vital to establish LT as a treatment option.
NASA Astrophysics Data System (ADS)
Abbas, K.; Alaie, S.; Ghasemi Baboly, M.; Elahi, M. M. M.; Anjum, D. H.; Chaieb, S.; Leseman, Z. C.
2016-01-01
The mechanical behavior of polycrystalline Pt thin films is reported for thicknesses of 75 nm, 100 nm, 250 nm, and 400 nm. These thicknesses correspond to transitions between nanocrystalline grain morphology types as found in TEM studies. Thinner samples display a brittle behavior, but as thickness increases the grain morphology evolves, leading to a ductile behavior. During evolution of the morphology, dramatic differences in elastic moduli (105-160 GPa) and strengths (560-1700 MPa) are recorded and explained by the variable morphology. This work suggests that in addition to the in-plane grain size of thin films, the transitions in cross-sectional morphologies of the Pt films significantly affect their mechanical behavior.
Dynamic three-dimensional model of the coronary circulation
NASA Astrophysics Data System (ADS)
Lehmann, Glen; Gobbi, David G.; Dick, Alexander J.; Starreveld, Yves P.; Quantz, M.; Holdsworth, David W.; Drangova, Maria
2001-05-01
A realistic numerical three-dimensional (3D) model of the dynamics of human coronary arteries has been developed. High- resolution 3D images of the coronary arteries of an excised human heart were obtained using a C-arm based computed tomography (CT) system. Cine bi-plane coronary angiograms were then acquired from a patient with similar coronary anatomy. These angiograms were used to determine the vessel motion, which was applied to the static 3D coronary tree. Corresponding arterial bifurcations were identified in the 3D CT image and in the 2D angiograms. The 3D positions of the angiographic landmarks, which were known throughout the cardiac cycle, were used to warp the 3D image via a non-linear thin-plate spline algorithm. The result was a set or 30 dynamic volumetric images sampling a complete cardiac cycle. To the best of our knowledge, the model presented here is the first dynamic 3D model that provides a true representation of both the geometry and motion of a human coronary artery tree. In the future, similar models can be generated to represent different coronary anatomy and motion. Such models are expected to become an invaluable tool during the development of dynamic imaging techniques such as MRI, multi-slice CT and 3D angiography.
Quality response of even-aged 80-year-old white oak trees after thinning
David L. Sonderman
1984-01-01
Stem defects were studied over an 18-year period to determine the effect of thinning intensity on quality development of 80-year-old white oak trees. Seventy-nine white oak trees from a thinning study in Kentucky were analyzed from stereo photographs taken in 1960 and 1978. Stem-related defects were measured on the butt 8-foot and second 8-foot sections of each tree....
Normal Modes of Vibration of the PHALANX Gun
1993-06-01
Clamps Bricks, Thin Shells, Rigid Elements Mid-Barrel Clamps Bricks, Rigid Elements Barrels Beams with tubular cross-section Stub Rotor Bricks, Thin...Shells Rotor Bricks Needle Bearing Bricks, Springs Casing Thin Shells Thrust Bearing Bricks, Springs Recoil Adapters Bricks, Rigid Elements, Springs... rigid elements were used to connect the barrels to the clamps and stub rotor and the recoil adapter springs to 48 the gun body. "End release codes
Effect of thinning on growth and potential quality of young white oak crop trees
Martin E. Dale; David L. Sonderman
1984-01-01
Relative change in several types of stem defects were studied over a 16-year period to determine the effect of thinning intensity on the development of tree quality. We studied quality changes on sample white oak crop trees that were selected from five density levels created in a 1961 thinning. Branch-related and other stem defects on the butt 16-foot section were...
NASA Astrophysics Data System (ADS)
Toppi, M.; Abou-Haidar, Z.; Agodi, C.; Alvarez, M. A. G.; Aumann, T.; Balestra, F.; Battistoni, G.; Bocci, A.; Böhlen, T. T.; Boudard, A.; Brunetti, A.; Carpinelli, M.; Cirio, R.; Cirrone, G. A. P.; Cortes-Giraldo, M. A.; Cuttone, G.; de Napoli, M.; Durante, M.; Fernández-García, J. P.; Finck, Ch.; Golosio, B.; Iarocci, E.; Iazzi, F.; Ickert, G.; Introzzi, R.; Juliani, D.; Krimmer, J.; Kummali, A. H.; Kurz, N.; Labalme, M.; Leifels, Y.; Le Fèvre, A.; Leray, S.; Marchetto, F.; Monaco, V.; Morone, M. C.; Nicolosi, D.; Oliva, P.; Paoloni, A.; Piersanti, L.; Pleskac, R.; Randazzo, N.; Rescigno, R.; Romano, F.; Rossi, D.; Rosso, V.; Rousseau, M.; Sacchi, R.; Sala, P.; Salvador, S.; Sarti, A.; Scheidenberger, C.; Schuy, C.; Sciubba, A.; Sfienti, C.; Simon, H.; Sipala, V.; Spiriti, E.; Tropea, S.; Vanstalle, M.; Younis, H.; Patera, V.; FIRST Collaboration
2016-06-01
A detailed knowledge of the light ions interaction processes with matter is of great interest in basic and applied physics. As an example, particle therapy and space radioprotection require highly accurate fragmentation cross-section measurements to develop shielding materials and estimate acute and late health risks for manned missions in space and for treatment planning in particle therapy. The Fragmentation of Ions Relevant for Space and Therapy experiment at the Helmholtz Center for Heavy Ion research (GSI) was designed and built by an international collaboration from France, Germany, Italy, and Spain for studying the collisions of a 12C ion beam with thin targets. The collaboration's main purpose is to provide the double-differential cross-section measurement of carbon-ion fragmentation at energies that are relevant for both tumor therapy and space radiation protection applications. Fragmentation cross sections of light ions impinging on a wide range of thin targets are also essential to validate the nuclear models implemented in MC simulations that, in such an energy range, fail to reproduce the data with the required accuracy. This paper presents the single differential carbon-ion fragmentation cross sections on a thin gold target, measured as a function of the fragment angle and kinetic energy in the forward angular region (θ ≲6° ), aiming to provide useful data for the benchmarking of the simulation softwares used in light ions fragmentation applications. The 12C ions used in the measurement were accelerated at the energy of 400 MeV/nucleon by the SIS (heavy ion synchrotron) GSI facility.
Tracy, Saoirse R; Gómez, José Fernández; Sturrock, Craig J; Wilson, Zoe A; Ferguson, Alison C
2017-01-01
Accurate floral staging is required to aid research into pollen and flower development, in particular male development. Pollen development is highly sensitive to stress and is critical for crop yields. Research into male development under environmental change is important to help target increased yields. This is hindered in monocots as the flower develops internally in the pseudostem. Floral staging studies therefore typically rely on destructive analysis, such as removal from the plant, fixation, staining and sectioning. This time-consuming analysis therefore prevents follow up studies and analysis past the point of the floral staging. This study focuses on using X-ray µCT scanning to allow quick and detailed non-destructive internal 3D phenotypic information to allow accurate staging of Arabidopsis thaliana L. and Barley ( Hordeum vulgare L.) flowers. X-ray µCT has previously relied on fixation methods for above ground tissue, therefore two contrast agents (Lugol's iodine and Bismuth) were observed in Arabidopsis and Barley in planta to circumvent this step. 3D models and 2D slices were generated from the X-ray µCT images providing insightful information normally only available through destructive time-consuming processes such as sectioning and microscopy. Barley growth and development was also monitored over three weeks by X-ray µCT to observe flower development in situ. By measuring spike size in the developing tillers accurate non-destructive staging at the flower and anther stages could be performed; this staging was confirmed using traditional destructive microscopic analysis. The use of X-ray micro computed tomography (µCT) scanning of living plant tissue offers immense benefits for plant phenotyping, for successive developmental measurements and for accurate developmental timing for scientific measurements. Nevertheless, X-ray µCT remains underused in plant sciences, especially in above-ground organs, despite its unique potential in delivering detailed non-destructive internal 3D phenotypic information. This work represents a novel application of X-ray µCT that could enhance research undertaken in monocot species to enable effective non-destructive staging and developmental analysis for molecular genetic studies and to determine effects of stresses at particular growth stages.
16. INTERIOR VIEW OF SUBMARINE SECTION AT 110FOOT LEVEL, ESCAPE ...
16. INTERIOR VIEW OF SUBMARINE SECTION AT 110-FOOT LEVEL, ESCAPE TRAINING TANK, SHOWING LADDER TO ESCAPE TANK, LOOKING SOUTH - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT
49. DETAILS OF SUBMARINE SECTION, Y&D No. 107727 Scale 3/8' ...
49. DETAILS OF SUBMARINE SECTION, Y&D No. 107727 Scale 3/8' and 1-1/2' = 1'; July 2, 1929 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humbert, Ludovic, E-mail: ludohumberto@gmail.com; Hazrati Marangalou, Javad; Rietbergen, Bert van
Purpose: Cortical thickness and density are critical components in determining the strength of bony structures. Computed tomography (CT) is one possible modality for analyzing the cortex in 3D. In this paper, a model-based approach for measuring the cortical bone thickness and density from clinical CT images is proposed. Methods: Density variations across the cortex were modeled as a function of the cortical thickness and density, location of the cortex, density of surrounding tissues, and imaging blur. High resolution micro-CT data of cadaver proximal femurs were analyzed to determine a relationship between cortical thickness and density. This thickness-density relationship was usedmore » as prior information to be incorporated in the model to obtain accurate measurements of cortical thickness and density from clinical CT volumes. The method was validated using micro-CT scans of 23 cadaver proximal femurs. Simulated clinical CT images with different voxel sizes were generated from the micro-CT data. Cortical thickness and density were estimated from the simulated images using the proposed method and compared with measurements obtained using the micro-CT images to evaluate the effect of voxel size on the accuracy of the method. Then, 19 of the 23 specimens were imaged using a clinical CT scanner. Cortical thickness and density were estimated from the clinical CT images using the proposed method and compared with the micro-CT measurements. Finally, a case-control study including 20 patients with osteoporosis and 20 age-matched controls with normal bone density was performed to evaluate the proposed method in a clinical context. Results: Cortical thickness (density) estimation errors were 0.07 ± 0.19 mm (−18 ± 92 mg/cm{sup 3}) using the simulated clinical CT volumes with the smallest voxel size (0.33 × 0.33 × 0.5 mm{sup 3}), and 0.10 ± 0.24 mm (−10 ± 115 mg/cm{sup 3}) using the volumes with the largest voxel size (1.0 × 1.0 × 3.0 mm{sup 3}). A trend for the cortical thickness and density estimation errors to increase with voxel size was observed and was more pronounced for thin cortices. Using clinical CT data for 19 of the 23 samples, mean errors of 0.18 ± 0.24 mm for the cortical thickness and 15 ± 106 mg/cm{sup 3} for the density were found. The case-control study showed that osteoporotic patients had a thinner cortex and a lower cortical density, with average differences of −0.8 mm and −58.6 mg/cm{sup 3} at the proximal femur in comparison with age-matched controls (p-value < 0.001). Conclusions: This method might be a promising approach for the quantification of cortical bone thickness and density using clinical routine imaging techniques. Future work will concentrate on investigating how this approach can improve the estimation of mechanical strength of bony structures, the prevention of fracture, and the management of osteoporosis.« less
Thin bonded P.C.C. resurfacing : interim report No. 1.
DOT National Transportation Integrated Search
1982-06-01
After the successful experimentation in Iowa with thin-bonded concrete overlays as an alternative to bituminous overlay, the Louisiana DOTD decided to resurface a short section of US 61, north of Baton Rouge, using this technique during April 1981. T...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buck, E.C.; Dietz, N.L.; Bates, J.K.
Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.
Analysis of asymmetric property with DC bias current on thin-film magnetoimpedance element
NASA Astrophysics Data System (ADS)
Kikuchi, Hiroaki; Sumida, Chihiro
2018-05-01
We theoretically analyzed the magnetoimpedance profile of a thin-film element with a DC bias current using the bias susceptibility theory and Maxwell's equations. Although the analysis model predicts that an element with a rectangular cross section shows symmetric impedance property with respect to the Z-axis with DC bias current, the experimental results showed asymmetric properties. Taking the shape imbalance and trapezoidal cross section of the element into account, we explained the asymmetric impedance properties qualitatively.
Casey, M B; Pearson, G R; Perkins, J D; Tremaine, W H
2015-09-01
The most prevalent type of equine dental pulpitis due to apical infection is not associated with coronal fractures or periodontal disease. The pathogenesis of this type of pulpitis is not fully understood. Computed tomography (CT) is increasingly used to investigate equine dental disorders. However, gross, tomographic and histopathological changes in equine dental pulpitis have not been compared previously. To compare gross, CT and histological appearances of sectioned mandibular cheek teeth extracted from horses with clinical signs of pulpitis without coronal fractures or periodontal disease. To contribute to understanding the pathogenesis of equine dental pulpitis. Descriptive study using diseased and healthy teeth. Mandibular cheek teeth extracted from horses with clinical signs of pulpitis (cases), and from cadavers with no history of dental disease (controls), were compared using CT in the transverse plane at 1 mm intervals. Teeth were then sectioned transversely, photographed and processed for histopathological examination. Tomographs were compared with corresponding gross and histological sections. Cement, dentine and bone had similar ranges of attenuation (550-2000 Hounsfield Units, HU) in tomographs but could be differentiated from pulp (-400 to 500 HU) and enamel (> 2500 HU). Twelve discrete dental lesions were identified grossly, 10 of which were characterised histologically. Reactive and reparative dentinogenesis and extensive pulpar mineralisation, previously undescribed, were identified. Pulpar oedema, neutrophilic inflammation, cement and enamel defects, and reactive cemental deposition were also observed. The CT and pathological findings corresponded well where there was mineralised tissue deposited, defects in mineralised tissue, or food material in the pulpar area. Pulpar and dentinal necrosis and cement destruction, evident grossly and histologically, did not correspond to CT changes. Computed tomography is useful for identifying deposition and defects of mineralised material but less useful for identifying inflammation and tissue destruction. The equine dentine-pulp complex responds to insult with reactive and reparative changes. © 2014 EVJ Ltd.
Dixon, P M; Savill, D; Horbyl, A; Reardon, R J M; Liuti, T
2014-06-01
Infundibular caries of the equine maxillary cheek teeth is an important disorder that can lead to dental fracture or apical infection. Treatment by removing food debris and carious dental tissue from affected infundibulae using high-pressure abrasion with aluminium hydroxide micro-particles, followed by filling the cleaned defect with endodontic restorative materials is a recommended treatment. However, although anecdotally considered a successful treatment option, there is currently no objective evidence to support this claim. Forty maxillary cheek teeth (CT) that contained 55 infundibulae with caries (mainly grade 2) were extracted post-mortem from 21 adult horses. Five of the CT were sectioned prior to treatment to facilitate visual examination of the carious infundibulae. The remaining carious infundibulae were cleaned using high-pressure abrasion with aluminium hydroxide particles and five CT were sectioned to assess the efficacy of this cleaning process. The remaining 30 CT containing 39 carious infundibulae were then filled with a composite restorative material. The efficacy of this restoration was assessed by computed tomography imaging followed by direct visual examination after sectioning the teeth. Only 46% (18/39) of restored infundibulae, all with shallow (mean 9.6 mm deep) defects, were fully cleaned of food debris and carious material, and filled with restorative material to their full depth. Of these 18, 11 had peripheral defects around the restoration, leaving just 18% (7/39) of restorations without any gross defects. The remaining 54% (21/39) of infundibulae (mean depth of infundibular caries defect, 18.3 mm) still contained food debris and/or carious material in more apical locations, with infundibulae with the deepest caries defects being the least effectively cleaned. The findings of this study indicate that high-pressure micro-particle abrasion is only effective in cleaning food debris from shallow, carious CT infundibulae and consequently, the majority of subsequent infundibular restorations are imperfect. Copyright © 2014. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Walton, Lucy A.; Bradley, Robert S.; Withers, Philip J.; Newton, Victoria L.; Watson, Rachel E. B.; Austin, Clare; Sherratt, Michael J.
2015-05-01
Characterisation and quantification of tissue structures is limited by sectioning-induced artefacts and by the difficulties of visualising and segmenting 3D volumes. Here we demonstrate that, even in the absence of X-ray contrast agents, X-ray computed microtomography (microCT) and nanotomography (nanoCT) can circumvent these problems by rapidly resolving compositionally discrete 3D tissue regions (such as the collagen-rich adventitia and elastin-rich lamellae in intact rat arteries) which in turn can be segmented due to their different X-ray opacities and morphologies. We then establish, using X-ray tomograms of both unpressurised and pressurised arteries that intra-luminal pressure not only increases lumen cross-sectional area and straightens medial elastic lamellae but also induces profound remodelling of the adventitial layer. Finally we apply microCT to another human organ (skin) to visualise the cell-rich epidermis and extracellular matrix-rich dermis and to show that conventional histological and immunohistochemical staining protocols are compatible with prior X-ray exposure. As a consequence we suggest that microCT could be combined with optical microscopy to characterise the 3D structure and composition of archival paraffin embedded biological materials and of mechanically stressed dynamic tissues such as the heart, lungs and tendons.
Walton, Lucy A.; Bradley, Robert S.; Withers, Philip J.; Newton, Victoria L.; Watson, Rachel E. B.; Austin, Clare; Sherratt, Michael J.
2015-01-01
Characterisation and quantification of tissue structures is limited by sectioning-induced artefacts and by the difficulties of visualising and segmenting 3D volumes. Here we demonstrate that, even in the absence of X-ray contrast agents, X-ray computed microtomography (microCT) and nanotomography (nanoCT) can circumvent these problems by rapidly resolving compositionally discrete 3D tissue regions (such as the collagen-rich adventitia and elastin-rich lamellae in intact rat arteries) which in turn can be segmented due to their different X-ray opacities and morphologies. We then establish, using X-ray tomograms of both unpressurised and pressurised arteries that intra-luminal pressure not only increases lumen cross-sectional area and straightens medial elastic lamellae but also induces profound remodelling of the adventitial layer. Finally we apply microCT to another human organ (skin) to visualise the cell-rich epidermis and extracellular matrix-rich dermis and to show that conventional histological and immunohistochemical staining protocols are compatible with prior X-ray exposure. As a consequence we suggest that microCT could be combined with optical microscopy to characterise the 3D structure and composition of archival paraffin embedded biological materials and of mechanically stressed dynamic tissues such as the heart, lungs and tendons. PMID:25975937
NASA Astrophysics Data System (ADS)
Katsuyama, Kozo; Nagamine, Tsuyoshi; Matsumoto, Shin-ichiro; Sato, Seichi
2007-02-01
The central void formations and deformations of fuel pins were investigated in fuel assemblies irradiated to high burn-up, using a non-destructive X-ray CT (computer tomography) technique. In this X-ray CT, the effect of strong gamma ray activity could be reduced to a negligible degree by using the pulse of a high energy X-ray source and detecting the intensity of the transmitted X-rays in synchronization with the generated X-rays. Clear cross-sectional images of fuel assemblies irradiated to high burn-up in a fast breeder reactor were successively obtained, in which the wrapping wires, cladding, pellets and central voids could be distinctly seen. The diameter of a typical central void measured by X-ray CT agreed with the one obtained by ceramography within an error of 0.1 mm. Based on this result, the dependence of the central void diameter on the linear heating rate was analyzed. In addition, the deformation behavior of a fuel pin along its axial direction could be analyzed from 20 stepwise X-ray cross-sectional images obtained in a small interval, and the results obtained showed a good agreement with the predictions calculated by two computer codes.
[Analysis of 163 rib fractures by imaging examination].
Song, Tian-fu; Wang, Chao-chao
2014-12-01
To explore the applications of imaging examination on rib fracture sites in forensic identification. Features including the sites, numbers of the processed imaging examination and the first radiological technology at diagnosis in 56 cases of rib fractures from 163 injuries were retrospectively analyzed. The detection rate of the rib fractures within 14 days was 65.6%. The initial detection rate of anterior rib fracture proceeded by X-ray was 76.2%, then 90.5% detected at a second time X-ray, while the detection rate of CT was 66.7% and 80.0%, respectively. The initial detec- tion rate of rib fracture in axillary section proceeded by X-ray was 27.6%, then 58.6% detected at a second time X-ray, while the detection rate of CT was 54.3% and 80.4%, respectively. The initial detection rate of posterior rib fracture proceeded by X-ray was 63.6%, then 81.8% detected at a second time X-ray, while the detection rate of CT was 50.0% and 70.0%, respectively. It is important to pay attention to the use of combined imaging examinations and the follow-up results. In the cases of suspicious for rib fracture in axillary section, CT examination is suggested in such false X-ray negative cases.
Ekizoglu, Oguzhan; Inci, Ercan; Hocaoglu, Elif; Sayin, Ibrahim; Kayhan, Fatma Tulin; Can, Ismail Ozgur
2014-05-01
Gender determination is an important step in identification. For gender determination, anthropometric evaluation is one of the main forensic evaluations. In the present study, morphometric analysis of maxillary sinuses was performed to determine gender. For morphometric analysis, coronal and axial paranasal sinus computed tomography (CT) scan with 1-mm slice thickness was used. For this study, 140 subjects (70 women and 70 men) were enrolled (age ranged between 18 and 63). The size of each subject's maxillary sinuses was measured in anteroposterior, transverse, cephalocaudal, and volume directions. In each measurement, the size of the maxillary sinus is significantly small in female gender (P < 0.001). When discrimination analysis was performed, the accuracy rate was detected as 80% for women and 74.3% for men with an overall rate of 77.15%. With the use of 1-mm slice thickness CT, morphometric analysis of maxillary sinuses will be helpful for gender determination.
Photon-counting CT with silicon detectors: feasibility for pediatric imaging
NASA Astrophysics Data System (ADS)
Yveborg, Moa; Xu, Cheng; Fredenberg, Erik; Danielsson, Mats
2009-02-01
X-ray detectors made of crystalline silicon have several advantages including low dark currents, fast charge collection and high energy resolution. For high-energy x-rays, however, silicon suffers from its low atomic number, which might result in low detection efficiency, as well as low energy and spatial resolution due to Compton scattering. We have used a monte-carlo model to investigate the feasibility of a detector for pediatric CT with 30 to 40 mm of silicon using x-ray spectra ranging from 80 to 140 kVp. A detection efficiency of 0.74 was found at 80 kVp, provided the noise threshold could be set low. Scattered photons were efficiently blocked by a thin metal shielding between the detector units, and Compton scattering in the detector could be well separated from photo absorption at 80 kVp. Hence, the detector is feasible at low acceleration voltages, which is also suitable for pediatric imaging. We conclude that silicon detectors may be an alternative to other designs for this special case.
NASA Astrophysics Data System (ADS)
Leszczynska, Karolina; Boreham, Julie; Boreham, Steve
2013-04-01
In the 'Hidden Ice Worlds' research project a novel systematic approach for thin-section description (Leszczynska et al., 2011) is applied to analyse the internal structure of 8 m thick periglacially disturbed sequence from the Royal Oak Pit - a small disused quarry in East Anglia, Essex, east of Chelmsford, near Danbury. Danbury Hill is situated on the south-eastern margin of the Elsterian (Anglian) till sheet. This area was glaciated only once, during the Pleistocene, Elsterian (Anglian) glaciation (480-420 ka BP), however two local ice-sheet margin fluctuations are envisaged (inter alia Turner, 1970 and others). The stratigraphical sequence of the Royal Oak Pit comprises: massive gravel, arranged in sheets, overlain by fine silty-clay and silty-sand with ripple marks and planar cross beds, overlain by a 50 cm thick unit of massive gravel gradually changing into periglacially disturbed silty-clayey-gravel with the bottom 50 cm of fine laminated silty clay. This sequence is situated on the lee side of Danbury Hill, at over 50 m OD. This is an atypical location for the periglacially disturbed deposits of such a substantial thickness (up to 8 m), which usually occur in the lower areas. The deposits at this site were investigated at a macro-scale using field-section logging, ground penetrating radar survey, clast lithology, clay mineralogy analysis and loss-on-ignition and at a micro-scale using thin-section analysis. There are two main aims of the project presented: • To describe the genesis and to discern the main processes associated with the formation of the unusually thick periglacially disturbed unit at the Danbury Hill slope and • To test the novel, tree-based, systematic approach as a guiding tool for thin for thin-section description of Quaternary deposits (Leszczynska et al., 2011). The results of the micromorphological analyses of the deposits from the Royal Oak Pit allow a new hypothesis for the origin of the sequence to be put forward. The main process responsible for the evolution of the deposits consist of multiple phases of freezing and thawing of the deposit and associated physical reworking, subsequent to Elsterian (Anglian). Inversion of the topography is proposed as a necessary condition for the formation and preservation of the periglacially disturbed sequence on hill slope at such elevated location. The novel systematic approach proved to be a useful tool in guiding the thin-section description, regardless of the type of the deposit and the aim of the research. Reference: Leszczynska, K., Boreham, J. and Boreham, S., 2011. A novel methodological approach for thin-section description and its application to periglacially disturbed Pleistocene deposits from Danbury, Essex, UK. Netherlands Journal of Geosciences 90: 271-291. Turner, C., 1970. Middle Pleistocene deposits at Marks Tey, Essex. Philosophical Transactions of the Royal Society of London, series B 257: 373-440.