Sample records for thin slab casting

  1. The Influence of Vanadium Microalloying on the Production of Thin Slab Casting and Direct Rolled Steel Strip

    NASA Astrophysics Data System (ADS)

    Li, Yu; Milbourn, David

    Vanadium microalloying is highly effective in high strength strip steels produced by thin slab casting and direct rolled process. Because of the high solubility of V(C,N) in austenite, vanadium is likely to remain in solution during casting, equalisation and rolling. Vanadium microalloyed steels have better hot ductility and are less prone to transverse cracking than niobium containing steels. Despite a coarse as-cast austenite grain size before rolling, significant grain refinement can be achieved in vanadium microalloyed steels by repeated recrystallization during rolling, resulting in a fine uniform ferrite microstructure in final strip. Almost all vanadium present in microalloyed steels is available to precipitate in ferrite as very fine particles, contributing to precipitation strengthening. Vanadium microalloyed steels show less sensitivity to rolling process variables and exhibit excellent combination of strength and toughness.

  2. Synthesis, Characterization and Cold Workability of Cast Copper-Magnesium-Tin Alloys

    NASA Astrophysics Data System (ADS)

    Bravo Bénard, Agustín Eduardo; Martínez Hernández, David; González Reyes, José Gonzalo; Ortiz Prado, Armando; Schouwenaars Franssens, Rafael

    2014-02-01

    The use of Mg as an alloying element in copper alloys has largely been overlooked in scientific literature and technological applications. Its supposed tribological compatibility with iron makes it an interesting option to replace Pb in tribological alloys. This work describes the casting process of high-quality thin slabs of Cu-Mg-Sn alloys with different compositions by means of conventional methods. The resulting phases were analyzed using X-ray diffraction, scanning electron microscopy, optical microscopy, and energy dispersive X-ray spectroscopy techniques. Typical dendritic α-Cu, eutectic Cu2Mg(Sn) and eutectoid non-equilibrium microstructures were found. Tensile tests and Vickers microhardness show the excellent hardening capability of Mg as compared to other copper alloys in the as-cast condition. For some of the slabs and compositions, cold rolling reductions of over 95 pct have been easily achieved. Other compositions and slabs have failed during the deformation process. Failure analysis after cold rolling reveals that one cause for brittleness is the presence of casting defects such as microshrinkage and inclusions, which can be eliminated. However, for high Mg contents, a high volume fraction of the intermetallic phase provides a contiguous path for crack propagation through the connected interdendritic regions.

  3. Vibrated and self-compacting fibre reinforced concrete: experimental investigation on the fibre orientation

    NASA Astrophysics Data System (ADS)

    Conforti, A.; Plizzari, G. A.; Zerbino, R.

    2017-09-01

    In addition to the fibre type and content, the residual properties of fibre reinforced concrete are influenced by fibre orientation. Consequently, the performance fibre reinforced concrete can be affected by its fresh properties (workability, flowing capacity) and by casting and compaction processes adopted. This paper focuses on the study of the orientation of steel or macro-synthetic fibres in two materials characterized by very different fresh properties: vibrated and self-compacting concrete. Four rectangular slabs 1800 mm long, 925 mm wide and 100 mm high were produced changing concrete and fibre type. From each slab, eighteen small prisms (550 mm long) were firstly cut either orthogonal or parallel to casting direction and, secondly, notched and tested in bending according to EN 14651. Experimental results showed that the toughness properties of a thin slab significantly varies both in vibrated and self-compacting concrete, even if in case of self-compacting concrete this variation resulted higher. Steel fibres led to greater variability of results compared to polymer one, underlining a different fibre orientation. A discussion on the relative residual capacity measured on the prisms sawn from the slabs and the parameters obtained from standard specimens is performed.

  4. Software Analytical Instrument for Assessment of the Process of Casting Slabs

    NASA Astrophysics Data System (ADS)

    Franěk, Zdeněk; Kavička, František; Štětina, Josef; Masarik, Miloš

    2010-06-01

    The paper describes the original proposal of ways of solution and function of the program equipment for assessment of the process of casting slabs. The program system LITIOS was developed and implemented in EVRAZ Vitkovice Steel Ostrava on the equipment of continuous casting of steel (further only ECC). This program system works on the data warehouse of technological parameters of casting and quality parameters of slabs. It enables an ECC technologist to analyze the course of casting melt and with using statistics methods to set the influence of single technological parameters on the duality of final slabs. The system also enables long term monitoring and optimization of the production.

  5. Infiltration of Slag Film into the Grooves on a Continuous Casting Mold

    NASA Astrophysics Data System (ADS)

    Cho, Jung-Wook; Jeong, Hee-Tae

    2013-02-01

    An analytical model is developed to clarify the slag film infiltration into grooves on a copper mold during the continuous casting of steel slabs. A grooved-type casting mold was applied to investigate the infiltration of slag film into the grooves of a pitch of 0.8 mm, width of 0.7 mm, and depth of 0.6 mm at the vicinity of a meniscus. The plant trial tests were carried out at a casting speed of 5.5 m min-1. The slag film captured at a commercial thin slab casting plant showed that both the overall and the liquid film thickness were decreased exponentially as the distance from the meniscus increases. In contrast, the infiltration of slag film into the grooves had been increased with increasing distance from the meniscus. A theoretic model has been derived based on the measured profile of slag film thickness to calculate the infiltration of slag film into the grooves. It successfully reproduces the empirical observation that infiltration ratio increased sharply along casting direction, about 80 pct at 50 mm and 95 pct at 150 mm below the meniscus. In the model calculation, the infiltration of slag film increases with increasing groove width and/or surface tension of the slag. The effect of groove depth is negligible when the width to depth ratio of the groove is larger than unity. It is expected that the developed model for slag film infiltration in this study will be widely utilized to optimize the design of groove dimensions in continuous casting molds.

  6. High-Temperature Creep Behaviour and Positive Effect on Straightening Deformation of Q345c Continuous Casting Slab

    NASA Astrophysics Data System (ADS)

    Guo, Long; Zhang, Xingzhong

    2018-03-01

    Mechanical and creep properties of Q345c continuous casting slab subjected to uniaxial tensile tests at high temperature were considered in this paper. The minimum creep strain rate and creep rupture life equations whose parameters are calculated by inverse-estimation using the regression analysis were derived based on experimental data. The minimum creep strain rate under constant stress increases with the increase of the temperature from 1000 °C to 1200 °C. A new casting machine curve with the aim of fully using high-temperature creep behaviour is proposed in this paper. The basic arc segment is cancelled in the new curve so that length of the straightening area can be extended and time of creep behaviour can be increased significantly. For the new casting machine curve, the maximum straightening strain rate at the slab surface is less than the minimum creep strain rate. So slab straightening deformation based on the steel creep behaviour at high temperature can be carried out in the process of Q345c steel continuous casting. The effect of creep property at high temperature on slab straightening deformation is positive. It is helpful for the design of new casting machine and improvement of old casting machine.

  7. Effective Process Design for the Production of HIC-Resistant Linepipe Steels

    NASA Astrophysics Data System (ADS)

    Nieto, J.; Elías, T.; López, G.; Campos, G.; López, F.; Garcia, R.; De, Amar K.

    2013-09-01

    Production of slabs for sour service applications requires stringent control in slab internal quality and secondary processing so as to guarantee resistance against hydrogen-induced cracking (HIC). ArcelorMittal Steelmaking facility at Lazaro Cardenas, Mexico had recently implemented key steelmaking and casting processing technologies for production of sound, centerline free slabs for catering to the growing API Linepipe and off-shore market for sour service applications. State-of-the-art steelmaking with use of residual-free Direct-reduced Iron and continuous casting facilities with dynamic soft reduction were introduced for the production of slabs with ultra clean centerline. Introduction of controlled cooling of slabs for atomic hydrogen control well below 2 ppm has enabled production of slabs suitable for excellent HIC-resistant plate processing. Substantial tonnages of slabs were produced for production of API X52-X65 grade plates and pipes for sour service. Stringent quality control at each stage of steelmaking, casting, and slab inspection ensured slabs with excellent internal quality suitable for HIC resistance to be guaranteed in final product (Plates & Pipes). Details of production steps which resulted in successful HIC-resistant slab production have been described in this article.

  8. Twin-belt continuous caster with containment and cooling of the exiting cast product for enabling high-speed casting of molten-center product

    DOEpatents

    Dykes, Charles D.; Daniel, Sabah S.; Wood, J. F. Barry

    1990-02-20

    In continuously casting molten metal into cast product by a twin-belt machine, it is desirable to achieve dramatic increases in speed (linear feet per minute) at which cast product exits the machine, particularly in installations where steel cast product is intended to feed a downstream regular rolling mill (as distinct from a planetary mill) operating in tandem with the twin-belt caster. Such high-speed casting produces product with a relatively thin shell and molten interior, and the shell tends to bulge outwardly due to metallostatic head pressure of the molten center. A number of cooperative features enable high-speed, twin-belt casting: (1) Each casting belt is slidably supported adjacent to the caster exit pulley for bulge control and enhanced cooling of cast product. (2) Lateral skew steering of each belt provides an effective increase in moving mold length plus a continuity of heat transfer not obtained with prior art belt steering apparatus. (3) The exiting slab is contained and supported downstream from the casting machine to prevent bulging of the shell of the cast product, and (4) spray cooling is incorporated in the exit containment apparatus for secondary cooling of cast product.

  9. Model Fe-Al Steel with Exceptional Resistance to High Temperature Coarsening. Part II: Experimental Validation and Applications

    NASA Astrophysics Data System (ADS)

    Zhou, Tihe; Zhang, Peng; O'Malley, Ronald J.; Zurob, Hatem S.; Subramanian, Mani

    2015-01-01

    In order to achieve a fine uniform grain-size distribution using the process of thin slab casting and directing rolling (TSCDR), it is necessary to control the grain-size prior to the onset of thermomechanical processing. In the companion paper, Model Fe- Al Steel with Exceptional Resistance to High Temperature Coarsening. Part I: Coarsening Mechanism and Particle Pinning Effects, a new steel composition which uses a small volume fraction of austenite particles to pin the growth of delta-ferrite grains at high temperature was proposed and grain growth was studied in reheated samples. This paper will focus on the development of a simple laboratory-scale setup to simulate thin-slab casting of the newly developed steel and demonstrate the potential for grain size control under industrial conditions. Steel bars with different diameters are briefly dipped into the molten steel to create a shell of solidified material. These are then cooled down to room temperature at different cooling rates. During cooling, the austenite particles nucleate along the delta-ferrite grain boundaries and greatly retard grain growth. With decreasing temperature, more austenite particles precipitate, and grain growth can be completely arrested in the holding furnace. Additional applications of the model alloy are discussed including grain-size control in the heat affected zone in welds and grain-growth resistance at high temperature.

  10. MULTIPLE SETS OF TWIN SLABS ON THE RUN OUT. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MULTIPLE SETS OF TWIN SLABS ON THE RUN OUT. THE RUN OUT INCLUDES THE TRAVELING TORCH WHICH CUTS SLABS TO DESIRED LENGTH, AN IDENTIFICATION SYSTEM TO INDICATE HEAT NUMBER AND TRACE IDENTITY OF EVERY SLAB, AND A DEBURRING DEVICE TO SMOOTH SLABS. AT LEFT OF ROLLS IS THE DUMMY BAR. DUMMY BAR IS INSERTED UP THROUGH CONTAINMENT SECTION INTO MOLD PRIOR TO START OF CAST. WHEN STEEL IS INTRODUCED INTO MOLD IT CONNECTS WITH BAR AS CAST BEGINS, AT RUN OUT DUMMY BAR DISCONNECTS AND IS STORED. - U.S. Steel, Fairfield Works, Continuous Caster, Fairfield, Jefferson County, AL

  11. MULTIPLE SETS OF TWIN SLABS ON THE RUN OUT. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MULTIPLE SETS OF TWIN SLABS ON THE RUN OUT. THE RUN OUT INCLUDES THE TRAVELING TORCH WHICH CUTS SLABS TO DESIRED LENGTH, AN IDENTIFICATION SYSTEM TO INDICATE HEAT NUMBER AND TRACE IDENTITY OF EVERY SLAB, AND A DEBURRING DEVICE TO SMOOTH SLABS. AT LEFT OF ROLLS IS THE DUMMY BAR. DUMMY BAR IS INSERTED UP THROUGH CONTAINMENT SECTION INTO MOLD PRIOR TO START OF CAST. WHEN STEEL IS INTRODUCED INTO MOLD IT CONNECTS WITH BAR AS CAST BEGINS, AT RUN OUT DUMMY BAR DISCONNECTS AND IS STORED - U.S. Steel, Fairfield Works, Continuous Caster, Fairfield, Jefferson County, AL

  12. A Study of the Cold Resistance of Pipe Coiled Stock Produced at Foundry-Rolling Works. Part 2

    NASA Astrophysics Data System (ADS)

    Bagmet, O. A.; Naumenko, V. V.; Smetanin, K. S.

    2018-03-01

    Results of a study of coiled stock from low-carbon steels alloyed with manganese and silicon and different additives of niobium and titanium are presented. The coiled stock is produced at foundry-rolling works by the method of direct rolling of thin slabs right after their continuous casting. The microdeformation of the crystal lattice and the crystallographic texture are determined. The conditions of formation of the most favorable structure and texture in the steels are specified.

  13. Spread prestressed concrete slab beam bridges.

    DOT National Transportation Integrated Search

    2015-04-01

    TxDOT uses prestressed slab beam bridges for short-span bridges ranging from approximately 3050 ft in : length. These bridges have precast, pretensioned slab beams placed immediately adjacent to one another : with a cast-in-place slab made composi...

  14. Bridge approach slabs for Missouri DOT field evaluation of alternative and cost efficient bridge approach slabs.

    DOT National Transportation Integrated Search

    2013-05-01

    Based on a recent study on cost efficient alternative bridge approach slab (BAS) designs (Thiagarajan et : al. 2010) has recommended three new BAS designs for possible implementation by MoDOT namely a) 20 feet cast-inplace : slab with sleeper slab (C...

  15. Physical and Clinical Evaluation of Hip Spica Cast applied with Three-slab Technique using Fibreglass Material

    PubMed Central

    Bitar, KM; Ferdhany, ME; Saw, A

    2016-01-01

    Introduction: Hip spica casting is an important component of treatment for developmental dysplasia of the hip (DDH) and popular treatment method for femur fractures in children. Breakage at the hip region is a relatively common problem of this cast. We have developed a three-slab technique of hip spica application using fibreglass as the cast material. The purpose of this review was to evaluate the physical durability of the spica cast and skin complications with its use. Methodology: A retrospective review of children with various conditions requiring hip spica immobilisation which was applied using our method. Study duration was from 1st of January 2014 until 31st December 2015. Our main outcomes were cast breakage and skin complications. For children with hip instability, the first cast would be changed after one month, and the second cast about two months later. Results: Twenty-one children were included, with an average age of 2.2 years. The most common indication for spica immobilisation was developmental dysplasia of the hip. One child had skin irritation after spica application. No spica breakage was noted. Conclusion: This study showed that the three-slab method of hip spica cast application using fibreglass material was durable and safe with low risk of skin complications. PMID:28553442

  16. Field evaluation of alternative and cost efficient bridge approach slabs.

    DOT National Transportation Integrated Search

    2013-11-01

    Based on a recent study on cost efficient alternative bridge approach slab (BAS) designs (Thiagarajan et al. 2010) has recommended : three new BAS designs for possible implementation by MoDOT namely a) 20 feet cast-inplace slab with sleeper slab (CIP...

  17. Effect of casting solvent on crystallinity of ondansetron in transdermal films.

    PubMed

    Pattnaik, Satyanarayan; Swain, Kalpana; Mallick, Subrata; Lin, Zhiqun

    2011-03-15

    The purpose of the present investigation is to assess the influence of casting solvent on crystallinity of ondansetron hydrochloride in transdermal polymeric matrix films fabricated using povidone and ethyl cellulose as matrix forming polymers. Various casting solvents like chloroform (CHL), dichloromethane (DCM), methanol (MET); and mixture of chloroform and ethanol (C-ETH) were used for fabrication of the transdermal films. Analytical tools like scanning electron microscopy (SEM), X-ray diffraction (XRD) studies, differential scanning calorimetry (DSC), etc. were utilized to characterize the crystalline state of ondansetron in the film. Recrystallisation was observed in all the transdermal films fabricated using the casting solvents other than chloroform. Long thin slab-looking, long wire-like or spherulite-looking crystals with beautiful impinged boundaries were observed in SEM. Moreover, XRD revealed no crystalline peaks of ondansetron hydrochloride in the transdermal films prepared using chloroform as casting solvent. The significantly decreased intensity and sharpness of the DSC endothermic peaks corresponding to the melting point of ondansetron in the formulation (specifically in CHL) indicated partial dissolution of ondansetron crystals in the polymeric films. The employed analytical tools suggested chloroform as a preferred casting solvent with minimum or practically absence of recrystallization indicating a relatively amorphous state of ondansetron in transdermal films. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. A computational study of low-head direct chill slab casting of aluminum alloy AA2024

    NASA Astrophysics Data System (ADS)

    Hasan, Mainul; Begum, Latifa

    2016-04-01

    The steady state casting of an industrial-sized AA2024 slab has been modeled for a vertical low-head direct chill caster. The previously verified 3-D CFD code is used to investigate the solidification phenomena of the said long-range alloy by varying the pouring temperature, casting speed and the metal-mold contact heat transfer coefficient from 654 to 702 °C, 60-180 mm/min, and 1.0-4.0 kW/(m2 K), respectively. The important predicted results are presented and thoroughly discussed.

  19. Research on Soft Reduction Amount Distribution to Eliminate Typical Inter-dendritic Crack in Continuous Casting Slab of X70 Pipeline Steel by Numerical Model

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Wang, Chang; Liu, Guo-liang; Ding, Ning; Sun, Qi-song; Tian, Zhi-hong

    2017-04-01

    To investigate the formation of one kind of typical inter-dendritic crack around triple point region in continuous casting(CC) slab during the operation of soft reduction, fully coupled 3D thermo-mechanical finite element models was developed, also plant trials were carried out in a domestic continuous casting machine. Three possible types of soft reduction amount distribution (SRAD) in the soft reduction region were analyzed. The relationship between the typical inter-dendritic cracks and soft reduction conditions is presented and demonstrated in production practice. Considering the critical strain of internal crack formation, a critical tolerance for the soft reduction amount distribution and related casing parameters have been proposed for better contribution of soft reduction to the internal quality of slabs. The typical inter-dendritic crack around the triple point region had been eliminated effectively through the application of proposed suggestions for continuous casting of X70 pipeline steel in industrial practice.

  20. Precast alternative for flat slab bridges : final report.

    DOT National Transportation Integrated Search

    2013-10-26

    The cast-in-place (CIP) concrete slab bridge and the hollow core flat slab bridge are two very common bridge types utilized by the : South Carolina Department of Transportation (SCDOT). The CIP bridge is durable but has a long construction time while...

  1. Reasonable Temperature Schedules for Cold or Hot Charging of Continuously Cast Steel Slabs

    NASA Astrophysics Data System (ADS)

    Li, Yang; Chen, Xin; Liu, Ke; Wang, Jing; Wen, Jin; Zhang, Jiaquan

    2013-12-01

    Some continuously cast steel slabs are sensitive to transverse fracture problems during transportation or handling away from their storage state, while some steel slabs are sensitive to surface transverse cracks during the following rolling process in a certain hot charging temperature range. It is revealed that the investigated steel slabs with high fracture tendency under room cooling condition always contain pearlite transformation delayed elements, which lead to the internal brittle bainitic structure formation, while some microalloyed steels exhibit high surface crack susceptibility to hot charging temperatures due to carbonitride precipitation. According to the calculated internal cooling rates and CCT diagrams, the slabs with high fracture tendency during cold charging should be slowly cooled after cutting to length from hot strand or charged to the reheating furnace directly above their bainite formation temperatures. Based on a thermodynamic calculation for carbonitride precipitation in austenite, the sensitive hot charging temperature range of related steels was revealed for the determination of reasonable temperature schedules.

  2. Experimental and finite element study of ultimate strength of continuous composite concrete slabs with steel decking

    NASA Astrophysics Data System (ADS)

    Gholamhoseini, Alireza

    2018-03-01

    Composite one-way concrete slabs with profiled steel decking as permanent formwork are commonly used in the construction industry. The steel decking supports the wet concrete of a cast in situ reinforced or post-tensioned concrete slab and, after the concrete sets, acts as external reinforcement. In this type of slab, longitudinal shear failure between the concrete and the steel decking is the most common type of failure at the ultimate load stage. Design codes require the experimental evaluation of the ultimate load capacity and longitudinal shear strength of each type of steel decking using full-scale tests on simple-span slabs. There is also no procedure in current design codes to evaluate the ultimate load capacity and longitudinal shear strength of continuous composite slabs and this is often assessed experimentally by full-scale tests. This paper presents the results of three full-scale tests up to failure on continuous composite concrete slabs cast with trapezoidal steel decking profile (KF70) that is widely used in Australia. Slab specimens were tested in four-point bending at each span with shear spans of span/4. The longitudinal shear failure of each slab is evaluated and the measured mid-span deflection, the end slip and the mid-span steel and concrete strains are also presented and discussed. Redistribution of bending moment in each slab is presented and discussed. A finite element model is proposed and verified by experimental data using interface element to model the bond properties between steel decking and concrete slab and investigate the ultimate strength of continuous composite concrete slabs.

  3. Face pumping of thin, solid-state slab lasers with laser diodes.

    PubMed

    Faulstich, A; Baker, H J; Hall, D R

    1996-04-15

    A new technique for face pumping of slab lasers uses transfer of light from 10 quasi-cw laser diode bars through a slotted mirror into a rectangular, highly ref lective pump chamber, giving efficient multipass pumping of a thin Nd:glass slab laser. A slope efficiency of 28% and a maximum pulse energy of 65 mJ have been obtained, and gain and loss measurements with thickness t = 0.45-1.04 mm have confirmed the 1/t scaling of gain in thin slabs and the high efficiency of pump light transfer.

  4. Experimental study of the continuous casting slab solidification microstructure by the dendrite etching method

    NASA Astrophysics Data System (ADS)

    Yang, X. G.; Xu, Q. T.; Wu, C. L.; Chen, Y. S.

    2017-12-01

    The relationship between the microstructure of the continuous casting slab (CCS) and quality defects of the steel products, as well as evolution and characteristics of the fine equiaxed, columnar, equiaxed zones and crossed dendrites of CCS were systematically investigated in this study. Different microstructures of various CCS samples were revealed. The dendrite etching method was proved to be quite efficient for the analysis of solidified morphologies, which are essential to estimate the material characteristics, especially the CCS microstructure defects.

  5. Detection and reconstruction of solidification cracks - Laser ultrasonic measurements during the continuous casting process of aluminum

    NASA Astrophysics Data System (ADS)

    Mitter, Thomas; Grün, Hubert; Roither, Jürgen; Betz, Andreas; Bozorgi, Salar; Reitinger, Bernhard; Burgholzer, Peter

    2014-05-01

    In the continuous casting process the avoidance and rapid detection of occurring solidification cracks in the slab is a crucial issue, in particular for the maintenance of a high quality level in further production processes. Due to the elevated temperatures of the slab surface a remote sensing non-destructive tool for quality inspection is required, which is also applicable for the harsh industrial environment. In this work the application of laser ultrasound (LUS) technique during the continuous casting process in industrial environment is shown. The proof of principle of the detection of the centered solidification cracks is shown by pulse-echo measurements with laser ultrasonic equipment for inline quality inspection. Preliminary examinations in the lab of different casted samples have shown the distinguishability of slabs with and without any solidification cracks. Furthermore the damping of the bulk wave has been used for the prediction of the dimension of the crack. With an adapted "synthetic aperture focusing technique" (SAFT) algorithm the image reconstruction of multiple measurements at different positions around the circumference has provided enough information for the estimation of the localization and extension of the centered solidification cracks. Subsequent first measurements using this laser ultrasonic setup during the continuous casting of aluminum were carried out and showed the proof of principle in an industrial environment with elevated temperatures, dust, cooling water and vibrations.

  6. Continuity diaphragm for skewed continuous span precast prestressed concrete girder bridges : technical summary report.

    DOT National Transportation Integrated Search

    2004-03-01

    Most highway bridges are built as cast-in-place : reinforced concrete slabs and prestressed concrete : girders. The shear connectors on the top of the girders : assure composite action between the slabs and : girders. The design guidelines for bridge...

  7. A New Predictive Model of Centerline Segregation in Continuous Cast Steel Slabs by Using Multivariate Adaptive Regression Splines Approach

    PubMed Central

    García Nieto, Paulino José; González Suárez, Victor Manuel; Álvarez Antón, Juan Carlos; Mayo Bayón, Ricardo; Sirgo Blanco, José Ángel; Díaz Fernández, Ana María

    2015-01-01

    The aim of this study was to obtain a predictive model able to perform an early detection of central segregation severity in continuous cast steel slabs. Segregation in steel cast products is an internal defect that can be very harmful when slabs are rolled in heavy plate mills. In this research work, the central segregation was studied with success using the data mining methodology based on multivariate adaptive regression splines (MARS) technique. For this purpose, the most important physical-chemical parameters are considered. The results of the present study are two-fold. In the first place, the significance of each physical-chemical variable on the segregation is presented through the model. Second, a model for forecasting segregation is obtained. Regression with optimal hyperparameters was performed and coefficients of determination equal to 0.93 for continuity factor estimation and 0.95 for average width were obtained when the MARS technique was applied to the experimental dataset, respectively. The agreement between experimental data and the model confirmed the good performance of the latter.

  8. INTERIOR OVERVIEW OF CONTINUOUS CASTER WITH NO. 12 LADLE. MOLTEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OVERVIEW OF CONTINUOUS CASTER WITH NO. 12 LADLE. MOLTEN STEEL IS POURED FROM LADLE THROUGH SHROUD TO TUNDISH. FROM TUNDISH STEEL ENTERS MOLD THROUGH SHROUD AND FORMATION OF SLAB SHELL BEGINS. AS SLAB PROGRESSES THROUGH CONTAINMENT SECTION IT IS COOLED WITH AIR MIST SPRAYS AND CONTINUES SOLIDIFICATION. UPON EXITING THE MACHINE THE SLABS ARE CUT TO DESIRED LENGTH AND IDENTIFIED. THE SLABS ARE STACKED, REMOVED FROM MACHINE AND PREPARED FOR SHIPMENT TO HOT STRIP MILL. CASTER HAS ABILITY TO PRODUCE SINGLE OR TWIN CASTS. SINGLE SLABS PRODUCED MAY BE UP TO 102 INCHES; DOUBLE SLABS UP TO 49 INCHES. - U.S. Steel, Fairfield Works, Continuous Caster, Fairfield, Jefferson County, AL

  9. Field verification for the effectiveness of continuity diaphragms for skewed continuous P/C P/S concrete girder bridges : tech summary.

    DOT National Transportation Integrated Search

    2009-10-01

    The majority of highway bridges are built as cast-in-place reinforced concrete slabs and prestressed concrete : girders. The simple-span precast, prestressed concrete girders made continuous through cast-in-place decks : and diaphragms have been wide...

  10. Equilibrium properties of simple metal thin films in the self-compressed stabilized jellium model.

    PubMed

    Mahmoodi, T; Payami, M

    2009-07-01

    In this work, we have applied the self-compressed stabilized jellium model to predict the equilibrium properties of isolated thin Al, Na and Cs slabs. To make a direct correspondence to atomic slabs, we have considered only those L values that correspond to n-layered atomic slabs with 2≤n≤20, for surface indices (100), (110), and (111). The calculations are based on the density functional theory and self-consistent solution of the Kohn-Sham equations in the local density approximation. Our results show that firstly, the quantum size effects are significant for slabs with sizes smaller than or near to the Fermi wavelength of the valence electrons λ(F), and secondly, some slabs expand while others contract with respect to the bulk spacings. Based on the results, we propose a criterion for realization of significant quantum size effects that lead to expansion of some thin slabs. For more justification of the criterion, we have tested it on Li slabs for 2≤n≤6. We have compared our Al results with those obtained from using all-electron or pseudo-potential first-principles calculations. This comparison shows excellent agreements for Al(100) work functions, and qualitatively good agreements for the other work functions and surface energies. These agreements justify the way we have used the self-compressed stabilized jellium model for the correct description of the properties of simple metal slab systems. On the other hand, our results for the work functions and surface energies of large- n slabs are in good agreement with those obtained from applying the stabilized jellium model for semi-infinite systems. In addition, we have performed the slab calculations in the presence of surface corrugation for selected Al slabs and have shown that the results are worsened.

  11. Novel Approach for Modeling of Nonuniform Slag Layers and Air Gap in Continuous Casting Mold

    NASA Astrophysics Data System (ADS)

    Wang, Xudong; Kong, Lingwei; Yao, Man; Zhang, Xiaobing

    2017-02-01

    Various kinds of surface defects on the continuous casting slab usually originate from nonuniform heat transfer and mechanical behavior, especially during the initial solidification inside the mold. In this article, a model-coupled inverse heat transfer problem incorporating the effect of slag layers and air gap is developed to study the nonuniform distribution of liquid slag, solid slag, and air gap layers. The model considers not only the formation and evolution of slag layers and air gap but also the temperatures in the mold copper as measured by thermocouples. The simulation results from the model and the measured temperatures from experiments are shown to be in good agreement with each other. At the casting speed of 0.65 m/min, the liquid slag film disappears and transforms into solid slag entirely at about 400 mm away from meniscus, and an air gap begins to form. Until the mold exit, the maximum thickness of the solid slag layer and air gap gradually increases to 1.34 and 0.056 mm, respectively. The results illustrate that the magnitude and nonuniform distribution of the slag layers and air gap along the cross direction, correlating with heat flux between the shell and mold, eventually determine the temperature profiles of the mold hot face and slab surface. The proposed model may provide a convenient approach for analyzing nonuniform heat transfer and mechanical behaviors between the mold and slab in the real casting process.

  12. Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor.

    PubMed

    Cheri, Mohammad Sadegh; Latifi, Hamid; Sadeghi, Jalal; Moghaddam, Mohammadreza Salehi; Shahraki, Hamidreza; Hajghassem, Hasan

    2014-01-21

    Real-time and accurate measurement of flow rate is an important reqirement in lab on a chip (LOC) and micro total analysis system (μTAS) applications. In this paper, we present an experimental and numerical investigation of a cantilever-based optofluidic flow sensor for this purpose. Two sensors with thin and thick cantilevers were fabricated by engraving a 2D pattern of cantilever/base on two polymethylmethacrylate (PMMA) slabs using a CO2 laser system and then casting a 2D pattern with polydimethylsiloxane (PDMS). The basic working principle of the sensor is the fringe shift of the Fabry-Pérot (FP) spectrum due to a changing flow rate. A Finite Element Method (FEM) is used to solve the three dimensional (3D) Navier-Stokes and structural deformation equations to simulate the pressure distribution, velocity and cantilever deflection results of the flow in the channel. The experimental results show that the thin and thick cantilevers have a minimum detectable flow change of 1.3 and 4 (μL min(-1)) respectively. In addition, a comparison of the numerical and experimental deflection of the cantilever has been done to obtain the effective Young's modulus of the thin and thick PDMS cantilevers.

  13. Mechanism of Macrosegregation Formation in Continuous Casting Slab: A Numerical Simulation Study

    NASA Astrophysics Data System (ADS)

    Jiang, Dongbin; Wang, Weiling; Luo, Sen; Ji, Cheng; Zhu, Miaoyong

    2017-12-01

    Solidified shell bulging is supposed to be the main reason for slab center segregation, while the influence of thermal shrinkage rarely has been considered. In this article, a thermal shrinkage model coupled with the multiphase solidification model is developed to investigate the effect of the thermal shrinkage, solidification shrinkage, grain sedimentation, and thermal flow on solute transport in the continuous casting slab. In this model, the initial equiaxed grains contract freely with the temperature decrease, while the coherent equiaxed grains and columnar phase move directionally toward the slab surface. The results demonstrate that the center positive segregation accompanied by negative segregation in the periphery zone is mainly caused by thermal shrinkage. During the solidification process, liquid phase first transports toward the slab surface to compensate for thermal shrinkage, which is similar to the case considering solidification shrinkage, and then it moves opposite to the slab center near the solidification end. It is attributed to the sharp decrease of center temperature and the intensive contract of solid phase, which cause the enriched liquid to be squeezed out. With the effect of grain sedimentation and thermal flow, the negative segregation at the external arc side (zone A1) and the positive segregation near the columnar-to-equiaxed transition at the inner arc side (position B1) come into being. Besides, it is found that the grain sedimentation and thermal flow only influence solute transport before equiaxed grains impinge with each other, while the solidification and thermal shrinkage still affect solute redistribution in the later stage.

  14. Jet Mixing in Direct-Chill Casting of Aluminum: Crater Effects and its Consequence on Centerline Segregation

    NASA Astrophysics Data System (ADS)

    Wagstaff, Samuel R.; Allanore, Antoine

    2017-08-01

    Recent reports have demonstrated the possibility of mitigating macrosegregation during the Direct-Chill casting of rolling slab ingots using an impinging jet. Herein, an analytical model is presented to predict the shape of the crater formed due to the impact of the jet on the slurry region. The model takes into account alloy composition, physical dimension, and casting speed on the distribution of forces and crater shape. The calculated shape of the crater profile is used to explain the centerline depletion in the impingement region previously reported.

  15. Studies on Punching Shear Resistance of Two Way Slab Specimens with Partial Replacement of Cement by GGBS with Different Edge Conditions

    NASA Astrophysics Data System (ADS)

    Nemani, Ravi Dakshina Murthy; Rao, M. V. S.; Grandhe, Veera Venkata Satya Naranyana

    2016-09-01

    The present work is an effort to quantify the punching shear load resistance effect on two way simply supported slab specimens with replacement of cement by Ground Granulated Blast Furnace Slag (GGBS) with different edge conditions at various replacement levels and evaluate its efficiency. GGBS replacement has emerged as a major alternative to conventional concrete and has rapidly drawn the concrete industry attention due to its cement savings, cost savings, environmental and socio-economic benefits. The two way slab specimens were subjected to punching shear load by in house fabricated apparatus. The slab specimens were cast using M30 grade concrete with HYSD bars. The cement was partially replaced with GGBS at different percentages i.e., 0 to 30 % at regular intervals of 10 %. The test results indicate that the two way slab specimens with partial replacement of cement by GGBS exhibit high resistance against punching shear when compared with conventional concretes slab specimens.

  16. Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study.

    PubMed

    Dawid, A; Górny, K; Wojcieszyk, D; Dendzik, Z; Gburski, Z

    2014-08-14

    The collision-induced light scattering many-body correlation functions and their spectra in thin xenon layer located between two parallel graphite slabs have been investigated by molecular dynamics computer simulations. The results have been obtained at three different distances (densities) between graphite slabs. Our simulations show the increased intensity of the interaction-induced light scattering spectra at low frequencies for xenon atoms in confined space, in comparison to the bulk xenon sample. Moreover, we show substantial dependence of the interaction-induced light scattering correlation functions of xenon on the distances between graphite slabs. The dynamics of xenon atoms in a confined space was also investigated by calculating the mean square displacement functions and related diffusion coefficients. The structural property of confined xenon layer was studied by calculating the density profile, perpendicular to the graphite slabs. Building of a fluid phase of xenon in the innermost part of the slot was observed. The nonlinear dependence of xenon diffusion coefficient on the separation distance between graphite slabs has been found. Copyright © 2014. Published by Elsevier B.V.

  17. A new type of anvil in the Acheulian of Gesher Benot Ya'aqov, Israel.

    PubMed

    Goren-Inbar, Naama; Sharon, Gonen; Alperson-Afil, Nira; Herzlinger, Gadi

    2015-11-19

    We report here on the identification and characterization of thin basalt anvils, a newly discovered component of the Acheulian lithic inventory of Gesher Benot Ya'aqov (GBY). These tools are an addition to the array of percussive tools (percussors, pitted stones and anvils) made of basalt, flint and limestone. The thin anvils were selected from particularly compact, horizontally fissured zones of basalt flows. This type of fissuring produces a natural geometry of thick and thin slabs. Hominins at GBY had multiple acquisition strategies, including the selection of thick slabs for the production of giant cores and cobbles for percussors. The selection of thin slabs was carried out according to yet another independent and targeted plan. The thinness of the anvils dictated a particular range of functions. The use of the anvils is well documented on their surfaces and edges. Two main types of damage are identified: those resulting from activities carried out on the surfaces of the anvils and those resulting from unintentional forceful blows (accidents de travaille). Percussive activities that may have been associated with the thin anvils include nut cracking and the processing of meat and bones, as well as plants. © 2015 The Author(s).

  18. Method and mold for casting thin metal objects

    DOEpatents

    Pehrson, Brandon P; Moore, Alan F

    2014-04-29

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  19. Method for casting thin metal objects

    DOEpatents

    Pehrson, Brandon P; Moore, Alan F

    2015-04-14

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  20. Delta-Ferrite Distribution in a Continuous Casting Slab of Fe-Cr-Mn Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Cheng, Guoguang

    2017-10-01

    The delta-ferrite distribution in a continuous casting slab of Fe-Cr-Mn stainless steel grade (200 series J4) was analyzed. The results showed that the ferrite fraction was less than 3 pct. The "M" type distribution was observed in the thickness direction. For the distribution at the centerline, the maximum ferrite content was found in the triangular zone of the macrostructure. In addition, in this zone, the carbon and sulfur were severely segregated. Furthermore, an equilibrium solidification calculation by Thermo-Calc® software indicates that the solidification mode of the composition in this triangular zone is the same as the solidification mode of the averaged composition, i.e., the FA (ferrite-austenite) mode. None of the nickel-chromium equivalent formulas combined with the Schaeffler-type diagram could predict the ferrite fraction of the Cr-Mn stainless steel grade in a reasonable manner. The authors propose that more attention should be paid to the development of prediction models for the ferrite fraction of stainless steels under continuous casting conditions.

  1. High frequency scattering from a thin lossless dielectric slab. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Burgener, K. W.

    1979-01-01

    A solution for scattering from a thin dielectric slab is developed based on geometrical optics and the geometrical theory of diffraction with the intention of developing a model for a windshield of a small private aircraft for incorporation in an aircraft antenna code. Results of the theory are compared with experimental measurements and moment method calculations showing good agreement. Application of the solution is also addressed.

  2. Subducting Slabs: Jellyfishes in the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Loiselet, C.; Braun, J.; Husson, L.; Le Carlier de Veslud, C.; Thieulot, C.; Yamato, P.; Grujic, D.

    2010-12-01

    The constantly improving resolution of geophysical data, seismic tomography and seismicity in particular, shows that the lithosphere does not subduct as a slab of uniform thickness but is rather thinned in the upper mantle and thickened around the transition zone between the upper and lower mantle. This observation has traditionally been interpreted as evidence for the buckling and piling of slabs at the boundary between the upper and lower mantle, where a strong contrast in viscosity may exist and cause resistance to the penetration of slabs into the lower mantle. The distribution and character of seismicity reveal, however, that slabs undergo vertical extension in the upper mantle and compression near the transition zone. In this paper, we demonstrate that during the subduction process, the shape of low viscosity slabs (1 to 100 times more viscous than the surrounding mantle) evolves toward an inverted plume shape that we coin jellyfish. Results of a 3D numerical model show that the leading tip of slabs deform toward a rounded head skirted by lateral tentacles that emerge from the sides of the jellyfish head. The head is linked to the body of the subducting slab by a thin tail. A complete parametric study reveals that subducting slabs may achieve a variety of shapes, in good agreement with the diversity of natural slab shapes evidenced by seismic tomography. Our work also suggests that the slab to mantle viscosity ratio in the Earth is most likely to be lower than 100. However, the sensitivity of slab shapes to upper and lower mantle viscosities and densities, which remain poorly constrained by independent evidence, precludes any systematic deciphering of the observations.

  3. Subducting slabs: Jellyfishes in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Loiselet, Christelle; Braun, Jean; Husson, Laurent; Le Carlier de Veslud, Christian; Thieulot, Cedric; Yamato, Philippe; Grujic, Djordje

    2010-08-01

    The constantly improving resolution of geophysical data, seismic tomography and seismicity in particular, shows that the lithosphere does not subduct as a slab of uniform thickness but is rather thinned in the upper mantle and thickened around the transition zone between the upper and lower mantle. This observation has traditionally been interpreted as evidence for the buckling and piling of slabs at the boundary between the upper and lower mantle, where a strong contrast in viscosity may exist and cause resistance to the penetration of slabs into the lower mantle. The distribution and character of seismicity reveal, however, that slabs undergo vertical extension in the upper mantle and compression near the transition zone. In this paper, we demonstrate that during the subduction process, the shape of low viscosity slabs (1 to 100 times more viscous than the surrounding mantle) evolves toward an inverted plume shape that we coin jellyfish. Results of a 3D numerical model show that the leading tip of slabs deform toward a rounded head skirted by lateral tentacles that emerge from the sides of the jellyfish head. The head is linked to the body of the subducting slab by a thin tail. A complete parametric study reveals that subducting slabs may achieve a variety of shapes, in good agreement with the diversity of natural slab shapes evidenced by seismic tomography. Our work also suggests that the slab to mantle viscosity ratio in the Earth is most likely to be lower than 100. However, the sensitivity of slab shapes to upper and lower mantle viscosities and densities, which remain poorly constrained by independent evidence, precludes any systematic deciphering of the observations.

  4. Size and Velocity Characteristics of Droplets Generated by Thin Steel Slab Continuous Casting Secondary Cooling Air-Mist Nozzles

    NASA Astrophysics Data System (ADS)

    Minchaca M, J. I.; Castillejos E, A. H.; Acosta G, F. A.

    2011-06-01

    Direct spray impingement of high temperature surfaces, 1473 K to 973 K (1200 °C to 700 °C), plays a critical role in the secondary cooling of continuously cast thin steel slabs. It is known that the spray parameters affecting the local heat flux are the water impact flux w as well as the droplet velocity and size. However, few works have been done to characterize the last two parameters in the case of dense mists ( i.e., mists with w in the range of 2 to 90 L/m2s). This makes it difficult to rationalize how the nozzle type and its operating conditions must be selected to control the cooling process. In the present study, particle/droplet image analysis was used to determine the droplet size and velocity distributions simultaneously at various locations along the major axis of the mist cross section at a distance where the steel strand would stand. The measurements were carried out at room temperature for two standard commercial air-assisted nozzles of fan-discharge type operating over a broad range of conditions of practical interest. To achieve statistically meaningful samples, at least 6000 drops were analyzed at each location. Measuring the droplet size revealed that the number and volume frequency distributions were fitted satisfactorily by the respective log-normal and Nukiyama-Tanasawa distributions. The correlation of the parameters of the distribution functions with the water- and air-nozzle pressures allowed for reasonable estimation of the mean values of the size of the droplets generated. The ensemble of measurements across the mist axis showed that the relationship between the droplet velocity and the diameter exhibited a weak positive correlation. Additionally, increasing the water flow rate at constant air pressure caused a decrease in the proportion of the water volume made of finer droplets, whereas the volume proportion of faster droplets augmented until the water flow reached a certain value, after which it decreased. Diminishing the air-to-water flow rates ratio, particularly below 10, resulted in mists of bigger and slower droplets with low impinging Weber numbers. However, increasing the air pressure maintaining a constant water flow rate caused a greater proportion of finer and faster drops with Weber numbers greater than 80, which suggests an increased probability of wet drop contact with a hot surface that would intensify heat extraction.

  5. Numerical Simulation of Bulging Deformation for Wide-Thick Slab Under Uneven Cooling Conditions

    NASA Astrophysics Data System (ADS)

    Wu, Chenhui; Ji, Cheng; Zhu, Miaoyong

    2018-06-01

    In the present work, the bulging deformation of a wide-thick slab under uneven cooling conditions was studied using finite element method. The non-uniform solidification was first calculated using a 2D heat transfer model. The thermal material properties were derived based on a microsegregation model, and the water flux distribution was measured and applied to calculate the cooling boundary conditions. Based on the solidification results, a 3D bulging model was established. The 2D heat transfer model was verified by the measured shell thickness and the slab surface temperature, and the 3D bulging model was verified by the calculated maximum bulging deflections using formulas. The bulging deformation behavior of the wide-thick slab under uneven cooling condition was then determined, and the effect of uneven solidification, casting speed, and roll misalignment were investigated.

  6. Numerical Simulation of Bulging Deformation for Wide-Thick Slab Under Uneven Cooling Conditions

    NASA Astrophysics Data System (ADS)

    Wu, Chenhui; Ji, Cheng; Zhu, Miaoyong

    2018-02-01

    In the present work, the bulging deformation of a wide-thick slab under uneven cooling conditions was studied using finite element method. The non-uniform solidification was first calculated using a 2D heat transfer model. The thermal material properties were derived based on a microsegregation model, and the water flux distribution was measured and applied to calculate the cooling boundary conditions. Based on the solidification results, a 3D bulging model was established. The 2D heat transfer model was verified by the measured shell thickness and the slab surface temperature, and the 3D bulging model was verified by the calculated maximum bulging deflections using formulas. The bulging deformation behavior of the wide-thick slab under uneven cooling condition was then determined, and the effect of uneven solidification, casting speed, and roll misalignment were investigated.

  7. Combination Of Investment And Centrifugal Casting

    NASA Technical Reports Server (NTRS)

    Creeger, Gordon A.

    1994-01-01

    Modifications, including incorporation of centrifugal casting, made in investment-casting process reducing scrap rate. Used to make first- and second-stage high-pressure-fuel-turbopump nozzles, containing vanes with thin trailing edges and other thin sections. Investment mold spun for short time while being filled, and stopped before solidification occurs. Centrifugal force drives molten metal into thin trailing edges, ensuring they are filled. With improved filling, preheat and pour temperatures reduced and solidification hastened so less hot tearing.

  8. Four-Pass Coupler for Laser-Diode-Pumped Solid-State Laser

    NASA Technical Reports Server (NTRS)

    Coyle, Donald B.

    2008-01-01

    A four-pass optical coupler affords increased (in comparison with related prior two-pass optical couplers) utilization of light generated by a laser diode in side pumping of a solid-state laser slab. The original application for which this coupler was conceived involves a neodymium-doped yttrium aluminum garnet (Nd:YAG) crystal slab, which, when pumped by a row of laser diodes at a wavelength of 809 nm, lases at a wavelength of 1,064 nm. Heretofore, typically, a thin laser slab has been pumped in two passes, the second pass occurring by virtue of reflection of pump light from a highly reflective thin film on the side opposite the side through which the pump light enters. In two-pass pumping, a Nd:YAG slab having a thickness of 2 mm (which is typical) absorbs about 84 percent of the 809-nm pump light power, leaving about 16 percent of the pump light power to travel back toward the laser diodes. This unused power can cause localized heating of the laser diodes, thereby reducing their lifetimes. Moreover, if the slab is thinner than 2 mm, then even more unused power travels back toward the laser diodes. The four-pass optical coupler captures most of this unused pump light and sends it back to the laser slab for two more passes. As a result, the slab absorbs more pump light, as though it were twice as thick. The gain and laser cavity beam quality of a smaller laser slab in conjunction with this optical coupler can thus be made comparable to those of a larger two-pass-pumped laser slab.

  9. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices.

    PubMed

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-12-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

  10. Effect of wet curing duration on durability parameters of hydraulic cement concretes.

    DOT National Transportation Integrated Search

    2010-01-01

    Hydraulic cement concrete slabs were cast and stored outdoors in Charlottesville, Virginia, to study the impact of wet curing duration on durability parameters. Concrete mixtures were produced using portland cement, portland cement with slag cement, ...

  11. Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device.

    PubMed

    Cole, Russell H; Tran, Tuan M; Abate, Adam R

    2015-12-25

    Double emulsions are useful in a number of biological and industrial applications in which it is important to have an aqueous carrier fluid. This paper presents a polydimethylsiloxane (PDMS) microfluidic device capable of generating water/oil/water double emulsions using a coaxial flow focusing geometry that can be fabricated entirely using soft lithography. Similar to emulsion devices using glass capillaries, double emulsions can be formed in channels with uniform wettability and with dimensions much smaller than the channel sizes. Three dimensional flow focusing geometry is achieved by casting a pair of PDMS slabs using two layer soft lithography, then mating the slabs together in a clamshell configuration. Complementary locking features molded into the PDMS slabs enable the accurate registration of features on each of the slab surfaces. Device testing demonstrates formation of double emulsions from 14 µm to 50 µm in diameter while using large channels that are robust against fouling and clogging.

  12. Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device

    PubMed Central

    Cole, Russell H.; Tran, Tuan M.; Abate, Adam R.

    2015-01-01

    Double emulsions are useful in a number of biological and industrial applications in which it is important to have an aqueous carrier fluid. This paper presents a polydimethylsiloxane (PDMS) microfluidic device capable of generating water/oil/water double emulsions using a coaxial flow focusing geometry that can be fabricated entirely using soft lithography. Similar to emulsion devices using glass capillaries, double emulsions can be formed in channels with uniform wettability and with dimensions much smaller than the channel sizes. Three dimensional flow focusing geometry is achieved by casting a pair of PDMS slabs using two layer soft lithography, then mating the slabs together in a clamshell configuration. Complementary locking features molded into the PDMS slabs enable the accurate registration of features on each of the slab surfaces. Device testing demonstrates formation of double emulsions from 14 µm to 50 µm in diameter while using large channels that are robust against fouling and clogging. PMID:26780079

  13. Analysis of Mold Friction in a Continuous Casting Using Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Fang, Bohan; Ding, Qiqi; Wang, Fangyin

    2018-04-01

    Mold friction (MDF) is an important parameter reflecting the lubrication condition between the initial shell and the mold during continuous casting. In this article, based on practical MDF from the slab continuous casting driven by a mechanical vibration device, the characteristics of friction were analyzed by continuous wavelet transform (CWT) and discrete wavelet transform (DWT) in different casting conditions, such as normal casting, level fluctuation, and alarming of the temperature measurement system. The results show that the CWT of friction accurately captures the subtle changes in friction force, such as the periodic characteristic of MDF during normal casting and the disordered feature of MDF during level fluctuation. Most important, the results capture the occurrence of abnormal casting and display the friction frequency characteristics at this abnormal time. In addition, in this article, there are some abnormal casting conditions, and the friction signal is stable until there is a sudden large change when abnormal casting, such as split breakout and submerged entry nozzle breakage, occurs. The DWT has a good ability to capture the friction characteristics for such abnormal situations. In particular, the potential abnormal features of MDF were presented in advance, which provides strong support for identifying abnormal casting and even preventing abnormal casting.

  14. Drug release from slabs and the effects of surface roughness.

    PubMed

    Kalosakas, George; Martini, Dimitra

    2015-12-30

    We discuss diffusion-controlled drug release from slabs or thin films. Analytical and numerical results are presented for slabs with flat surfaces, having a uniform thickness. Then, considering slabs with rough surfaces, the influence of a non-uniform slab thickness on release kinetics is numerically investigated. The numerical release profiles are obtained using Monte Carlo simulations. Release kinetics is quantified through the stretched exponential (or Weibull) function and the resulting dependence of the two parameters of this function on the thickness of the slab, for flat surfaces, and the amplitude of surface fluctuations (or the degree of thickness variability) in case of roughness. We find that a higher surface roughness leads to a faster drug release. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Investigation of Meniscus Region Behavior and Oscillation Mark Formation in Steel Continuous Casting Using a Transient Thermo-Fluid Model

    NASA Astrophysics Data System (ADS)

    Blaes, Carly

    In the continuous casting of steel, many complex phenomena in the meniscus region of the mold are responsible for the formation of oscillation marks. Oscillation marks are depressions found around the perimeter of continuously cast steel slabs, which if too large can lead to cracking in steel slabs. Therefore, knowledge on how to minimize the size of oscillation marks is very valuable. A computational model was created of the meniscus region, which includes transient multiphase fluid flow of slag and steel, with low-Reynolds turbulence, heat transfer in the mold, slag, and steel, steel shell solidification, mold oscillation, and temperature-dependent properties. This model was first validated using previous experimental and plant data. The model was then used to study the impact of varying casting parameters, including oscillation frequency, stroke, modification ratio, casting speed, molten steel level fluctuations, and temperature-dependent slag properties and surface tension on the oscillation mark shape, and other aspects of thermal-flow behavior during each oscillation cycle, including heat flux profile, slag consumption and mold friction. The first half of oscillation marks were formed during negative strip time as the slag rim pushed molten steel away from the mold wall and that the second half of oscillation marks were formed during positive strip time as the molten steel is drawn near the mold wall due to the upstroke of the mold. Oscillation mark depth was found to decrease with increasing frequency, modification ratio, casting speed, and slag viscosity, while oscillation mark depth was found to increase with increasing stroke. Oscillation mark width was only found to increase due to increases in pitch, which can be contributed to decreasing frequency or increasing casting speed. While many observations were made in this study, in general, oscillation mark depth and total slag consumption increase with increasing negative strip time, while the average heat flux and average mold friction decrease with increasing negative strip time.

  16. Influence of gating design on microstructure and fluidity of thin sections AA320.0 cast hypo-eutectic Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Ramadan, Mohamed

    2018-05-01

    Influence of gating design especially number of ingrates on microstructure and fluidity of thin sections of 2, 4, 6 mm AA320.0 cast hypo-eutectic Al-Si alloy was evaluated for sand casting molding technique. Increasing the number of ingates improves the microstructe to be fine and more globular. About 87 μm of α-Al grain size, 0.6 α-Al grain sphericity and 37 μm dendrite arm spacing DAS are achieved by using 4 ingates in gating system. Increasing the number of ingates up to 3 increases hardness, filling area and related fluditiy of all cast samples. The minimum thickness of 2.5 mm for each ingate should be considered in order to successfully production of high quality light weight thin sections castings in sand mold.

  17. An evaluation of controlled permeability formwork for long-term durability of structural concrete elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryavanshi, A.K.; Swamy, R.N.

    1997-07-01

    The long-term performance of a concrete slab (CPF slab) exposed to chloride ingress and atmospheric carbonation from the surface generated by controlled permeability formwork (CPF) is investigated. The results are compared with a similar slab exposed to long-term chloride ingress and atmospheric carbonation from the cast face (Control slab). Techniques such as X-ray diffraction (XRD) and differential thermal analyses (DTA) were employed to determine the resistance against carbonation while, mercury porosimetry was used for investigating the pore size distribution at the surface of the slabs. Amount of acid soluble chlorides was determined by using Volhard`s method. The CPF employed atmore » the bottom of the mould was not fully effective in its intended purpose of generating a permanent and dense impermeable concrete layer adjacent to it when the design water-cement (w/c) ration of the concrete mix was 0.60. This resulted in an almost similar extent of carbonation at the surface for both CPF and control slabs as shown by XRD and DTA studies. Similarly, there were no significant differences in the amount of chlorides and their depths of penetration for both CPF and control slabs, although the former was marginally superior in chloride penetration resistance at the surface.« less

  18. Manipulation of enhanced absorption with tilted hexagonal boron nitride slabs

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohu; Fu, Ceji

    2018-04-01

    The wavevector of electromagnetic wave propagation in a hexagonal boron nitride (hBN) slab can be controlled by tilting its optical axis. This property can be used to manipulate the absorption in a hBN slab. By carefully analyzing the dependence of the absorptivity of a thin hBN slab on the tilted angle of its optical axis, we propose a structure that can realize great absorptivity enhancement in a band by stacking hBN slabs of different tilted angles. Our numerical results show that the absorptivity of a structure made of 91 stacked hBN slabs can be achieved higher than 0.94 in the wavenumber range from 1367 to 1580 cm-1 when the tilted angles of the slabs are properly arranged. The strong absorption is attributed to the combination of impedance matching at the slab interfaces and enlarged wavevectors in the slabs. This work reveals a novel way to realize strong absorption with anisotropic materials for applications in areas such as thermal radiative energy harvesting and conversion.

  19. Elongated phase separation domains in spin-cast polymer blend thin films characterized using a panoramic image.

    PubMed

    Zhang, Hong; Okamura, Yosuke

    2018-02-14

    Polymer thin films with micro/nano-structures can be prepared by a solvent evaporation induced phase separation process via spin-casting a polymer blend, where the elongated phase separation domains are always inevitable. The striation defect, as a thickness nonunifomity in spin-cast films, is generally coexistent with the elongated domains. Herein, the morphologies of polymer blend thin films are recorded from the spin-cast center to the edge in a panoramic view. The elongated domains are inclined to appear at the ridge regions of striations with increasing radial distance and align radially, exhibiting a coupling between the phase separation morphology and the striation defect that may exist. We demonstrate that the formation of elongated domains is not attributed to shape deformation, but is accomplished in situ. A possible model to describe the initiation and evolution of the polymer blend phase separation morphology during spin-casting is proposed.

  20. How to Avoid Cast Saw Complications.

    PubMed

    Halanski, Matthew A

    2016-06-01

    As casts are routinely used in pediatric orthopaedics, casts saws are commonly used to remove such casts. Despite being a viewed as the "conservative" and therefore often assumed safest treatment modality, complications associated with the use of casts and cast saws occur. In this manuscript, we review the risk factors associated with cast saw injuries. Cast saw injuries are thermal or abrasive (or both) in nature. Thermal risk factors include: cast saw specifications (including a lack of attached vacuum), use of a dull blade, cutting in a concavity, too thin padding, and overly thick casting materials. Risk factors associated with abrasive injuries include: sharp blades, thin padding, and cutting over boney prominences. Because nearly all clinicians contact the skin with the blade during cast removal, appropriate "in-out technique" is critical. Such technique prevents a hot blade from remaining in contact with the skin for any significant time, diminishing the risk of burn. Similarly, using such technique prevents "dragging the blade" that may pull the skin taught, cutting it. It may be useful to teach proper technique as perforating a cast rather than cutting a cast.

  1. 5. VIEW OF THE FOUNDRY. IN THE FOUNDRY, ENRICHED URANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF THE FOUNDRY. IN THE FOUNDRY, ENRICHED URANIUM WAS CAST INTO SLABS OR INGOTS FROM WHICH WEAPONS COMPONENTS WERE FABRICATED. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  2. 4. VIEW OF THE FOUNDRY. IN THE FOUNDRY, ENRICHED URANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF THE FOUNDRY. IN THE FOUNDRY, ENRICHED URANIUM WAS CAST INTO SLABS OR INGOTS FROM WHICH WEAPONS COMPONENTS WERE FABRICATED. (5/17/62). - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  3. Effect of the multiple scattering of electrons in Monte Carlo simulation of LINACS.

    PubMed

    Vilches, Manuel; García-Pareja, Salvador; Guerrero, Rafael; Anguiano, Marta; Lallena, Antonio M

    2008-01-01

    Results obtained from Monte Carlo simulations of the transport of electrons in thin slabs of dense material media and air slabs with different widths are analyzed. Various general purpose Monte Carlo codes have been used: PENELOPE, GEANT3, GEANT4, EGSNRC, MCNPX. Non-negligible differences between the angular and radial distributions after the slabs have been found. The effects of these differences on the depth doses measured in water are also discussed.

  4. Thin wing corrections for phase-change heat-transfer data.

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Pitts, J. I.

    1971-01-01

    Since no methods are available for determining the magnitude of the errors incurred when the semiinfinite slab assumption is violated, a computer program was developed to calculate the heat-transfer coefficients to both sides of a finite, one-dimensional slab subject to the boundary conditions ascribed to the phase-change coating technique. The results have been correlated in the form of correction factors to the semiinfinite slab solutions in terms of parameters normally used with the technique.

  5. On Macrosegregation

    NASA Astrophysics Data System (ADS)

    Ludwig, Andreas; Wu, Menghuai; Kharicha, Abdellah

    2015-11-01

    Macrosegregations, namely compositional inhomogeneities at a scale much larger than the microstructure, are typically classified according to their metallurgical appearance. In ingot castings, they are known as `A' and `V' segregation, negative cone segregation, and positive secondary pipe segregation. There exists `inverse' segregation at casting surfaces and `centerline' segregation in continuously cast slabs and blooms. Macrosegregation forms if a relative motion between the solute-enriched or -depleted melt and dendritic solid structures occurs. It is known that there are four basic mechanisms for the occurrence of macrosegregation. In the recent years, the numerical description of the combination of these mechanisms has become possible and so a tool has emerged which can be effectively used to get a deeper understanding into the process details which are responsible for the formation of the above-mentioned different macrosegregation appearances. Based on the most sophisticated numerical models, we consequently associate the four basic formation mechanisms with the physical phenomena happening during (i) DC-casting of copper-based alloys, (ii) DC-casting of aluminum-based alloys, (iii) continuous casting of steel, and (iv) ingot casting of steel.

  6. Age of the Subducting Philippine Sea Slab and Mechanism of Low-Frequency Earthquakes

    NASA Astrophysics Data System (ADS)

    Hua, Yuanyuan; Zhao, Dapeng; Xu, Yixian; Liu, Xin

    2018-03-01

    Nonvolcanic low-frequency earthquakes (LFEs) usually occur in young and warm subduction zones under condition of near-lithostatic pore fluid pressure. However, the relation between the LFEs and the subducting slab age has never been documented so far. Here we estimate the lithospheric age of the subducting Philippine Sea (PHS) slab beneath the Nankai arc by linking seismic tomography and a plate reconstruction model. Our results show that the LFEs in SW Japan take place in young parts ( 17-26 Myr) of the PHS slab. However, no LFE occurs beneath the Kii channel where the PHS slab is very young ( 15 Myr) and thin ( 29 km), forming an LFE gap there. According to the present results and previous works, we think that the LFE gap at the Kii channel is caused by joint effects of several factors, including the youngest slab age, high temperature, low fluid content, high permeability of the overlying plate, a slab tear, and hot upwelling flow below the PHS slab.

  7. Plate deformation at depth under northern California: Slab gap or stretched slab?

    USGS Publications Warehouse

    ten Brink, Uri S.; Shimizu, N.; Molzer, P.C.

    1999-01-01

    Plate kinematic interpretations for northern California predict a gap in the underlying subducted slab caused by the northward migration of the Pacific-North America-Juan de Fuca triple junction. However, large-scale decompression melting and asthenospheric upwelling to the base of the overlying plate within the postulated gap are not supported by geophysical and geochemical observations. We suggest a model for the interaction between the three plates which is compatible with the observations. In this 'slab stretch' model the Juan de Fuca plate under coastal northern California deforms by stretching and thinning to fill the geometrical gap formed in the wake of the northward migrating Mendocino triple junction. The stretching is in response to boundary forces acting on the plate. The thinning results in an elevated geothermal gradient, which may be roughly equivalent to a 4 Ma oceanic lithosphere, still much cooler than that inferred by the slab gap model. We show that reequilibration of this geothermal gradient under 20-30 km thick overlying plate can explain the minor Neogene volcanic activity, its chemical composition, and the heat flow. In contrast to northern California, geochemical and geophysical consequences of a 'true' slab gap can be observed in the California Inner Continental Borderland offshore Los Angeles, where local asthenospheric upwelling probably took place during the Miocene as a result of horizontal extension and rotation of the overlying plate. The elevated heat flow in central California can be explained by thermal reequilibration of the stalled Monterey microplate under the Coast Ranges, rather than by a slab gap or viscous shear heating in the mantle.

  8. Plexus structure imaging with thin slab MR neurography: rotating frames, fly-throughs, and composite projections

    NASA Astrophysics Data System (ADS)

    Raphael, David T.; McIntee, Diane; Tsuruda, Jay S.; Colletti, Patrick; Tatevossian, Raymond; Frazier, James

    2006-03-01

    We explored multiple image processing approaches by which to display the segmented adult brachial plexus in a three-dimensional manner. Magnetic resonance neurography (MRN) 1.5-Tesla scans with STIR sequences, which preferentially highlight nerves, were performed in adult volunteers to generate high-resolution raw images. Using multiple software programs, the raw MRN images were then manipulated so as to achieve segmentation of plexus neurovascular structures, which were incorporated into three different visualization schemes: rotating upper thoracic girdle skeletal frames, dynamic fly-throughs parallel to the clavicle, and thin slab volume-rendered composite projections.

  9. Comparison of analytic and iterative digital tomosynthesis reconstructions for thin slab objects

    NASA Astrophysics Data System (ADS)

    Yun, J.; Kim, D. W.; Ha, S.; Kim, H. K.

    2017-11-01

    For digital x-ray tomosynthesis of thin slab objects, we compare the tomographic imaging performances obtained from the filtered backprojection (FBP) and simultaneous algebraic reconstruction (SART) algorithms. The imaging performance includes the in-plane molulation-transfer function (MTF), the signal difference-to-noise ratio (SDNR), and the out-of-plane blur artifact or artifact-spread function (ASF). The MTF is measured using a thin tungsten-wire phantom, and the SDNR and the ASF are measured using a thin aluminum-disc phantom embedded in a plastic cylinder. The FBP shows a better MTF performance than the SART. On the contrary, the SART outperforms the FBP with regard to the SDNR and ASF performances. Detailed experimental results and their analysis results are described in this paper. For a more proper use of digital tomosynthesis technique, this study suggests to use a reconstuction algorithm suitable for application-specific purposes.

  10. Detecting novel SNPs and breed-specific haplotypes at calpastatin gene in Iranian fat- and thin-tailed sheep breeds and their effects on protein structure.

    PubMed

    Aali, Mohsen; Moradi-Shahrbabak, Mohammad; Moradi-Shahrbabak, Hosein; Sadeghi, Mostafa

    2014-03-01

    Calpastatin has been introduced as a potential candidate gene for growth and meat quality traits. In this study, genetic variability was investigated in the exon 6 and its intron boundaries of ovine CAST gene by PCR-SSCP analysis and DNA sequencing. Also a protein sequence and structural analysis were performed to predict the possible impact of amino acid substitutions on physicochemical properties and structure of the CAST protein. A total of 487 animals belonging to four ancient Iranian sheep breeds with different fat metabolisms, Lori-Bakhtiari and Chall (fat-tailed), Zel-Atabay cross-bred (medium fat-tailed) and Zel (thin-tailed), were analyzed. Eight unique SSCP patterns, representing eight different sequences or haplotypes, CAST-1, CAST-2 and CAST-6 to CAST-11, were identified. Haplotypes CAST-1 and CAST-2 were most common with frequency of 0.365 and 0.295. The novel haplotype CAST-8 had considerable frequency in Iranian sheep breeds (0.129). All the consensus sequences showed 98-99%, 94-98%, 92-93% and 82-83% similarity to the published ovine, caprine, bovine and porcine CAST locus sequences, respectively. Sequence analysis revealed four SNPs in intron 5 (C24T, G62A, G65T and T69-) and three SNPs in exon 6 (c.197A>T, c.282G>T and c.296C>G). All three SNPs in exon 6 were missense mutations which would result in p.Gln 66 Leu, p.Glu 94 Asp and p.Pro 99 Arg substitutions, respectively, in CAST protein. All three amino acid substitutions affected the physicochemical properties of ovine CAST protein including hydrophobicity, amphiphilicity and net charge and subsequently might influence its structure and effect on the activity of Ca2+ channels; hence, they might regulate calpain activity and afterwards meat tenderness and growth rate. The Lori-Bakhtiari population showed the highest heterozygosity in the ovine CAST locus (0.802). Frequency difference of haplotypes CAST-10 and CAST-8 between Lori-Bakhtiari (fat-tailed) and Zel (thin-tailed) breeds was highly significant (P<0.001), indicating that these two haplotypes might be breed-specific haplotypes that distinguish between fat-tailed and thin-tailed sheep breeds. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Development of a Thin-Wall Magnesium side door Inner Panel for Automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jekl, J.; Auld, J.; Sweet, C.

    Cast magnesium side door inner panels can provide a good combination of weight, functional, manufacturing and economical requirements. However, several challenges exist including casting technology for thin-wall part design, multi-material incompatibility and relatively low strength vs steel. A project has been initiated, supported by the US Department of Energy, to design and develop a lightweight frame-under-glass door having a thin-wall, full die-cast, magnesium inner panel. This development project is the first of its kind within North America. Phase I of the project is now complete and the 2.0mm magnesium design, through casting process enablers, has met or exceeded all stiffnessmore » requirements, with significant mass reduction and part consolidation. In addition, a corrosion mitigation strategy has been established using industry-accepted galvanic isolation methods and coating technologies.« less

  12. Instabilities of convection patterns in a shear-thinning fluid between plates of finite conductivity

    NASA Astrophysics Data System (ADS)

    Varé, Thomas; Nouar, Chérif; Métivier, Christel

    2017-10-01

    Rayleigh-Bénard convection in a horizontal layer of a non-Newtonian fluid between slabs of arbitrary thickness and finite thermal conductivity is considered. The first part of the paper deals with the primary bifurcation and the relative stability of convective patterns at threshold. Weakly nonlinear analysis combined with Stuart-Landau equation is used. The competition between squares and rolls, as a function of the shear-thinning degree of the fluid, the slabs' thickness, and the ratio of the thermal conductivity of the slabs to that of the fluid is investigated. Computations of heat transfer coefficients are in agreement with the maximum heat transfer principle. The second part of the paper concerns the stability of the convective patterns toward spatial perturbations and the determination of the band width of the stable wave number in the neighborhood of the critical Rayleigh number. The approach used is based on the Ginzburg-Landau equations. The study of rolls stability shows that: (i) for low shear-thinning effects, the band of stable wave numbers is bounded by zigzag instability and cross-roll instability. Furthermore, the marginal cross-roll stability boundary enlarges with increasing shear-thinning properties; (ii) for high shear-thinning effects, Eckhaus instability becomes more dangerous than cross-roll instability. For square patterns, the wave number selection is always restricted by zigzag instability and by "rectangular Eckhaus" instability. In addition, the width of the stable wave number decreases with increasing shear-thinning effects. Numerical simulations of the planform evolution are also presented to illustrate the different instabilities considered in the paper.

  13. A Preliminary Experimental Study on Vibration Responses of Foamed Concrete Composite Slabs

    NASA Astrophysics Data System (ADS)

    Rum, R. H. M.; Jaini, Z. M.; Ghaffar, N. H. Abd; Rahman, N. Abd

    2017-11-01

    In recent years, composite slab has received utmost demand as a floor system in the construction industry. The composite slab is an economical type of structure and able to accelerate the construction process. Basically, the composite slab can be casting by using a combination of corrugated steel deck and normal concrete in which selfweight represents a very large proportion of the total action. Therefore, foamed concrete become an attractive alternative to be utilized as a replacement of normal concrete. However, foamed concrete has high flexibility due to the presence of large amount of air-void and low modulus elasticity. It may result in vibration responses being greater. Hence, this experimental study investigates the vibration responses of composite slab made of corrugated steel deck and foamed concrete. The specimens were prepared with dimension of 750mm width, 1600mm length and 125mm thickness. The hammer-impact test was conducted to obtain the acceleration-time history. The analysis revealed that the first natural frequency is around 27.97 Hz to 40.94 Hz, while the maximum acceleration reaches 1.31 m/s2 to 1.88 m/s2. The first mode shape depicts normal pattern and favourable agreement of deformation.

  14. Comparison of Slab and Cylinder Expansion Test Geometries for PBX 9501

    NASA Astrophysics Data System (ADS)

    Jackson, Scott; Anderson, Eric; Aslam, Tariq; Whitley, Von

    2017-06-01

    The slab expansion test or ``sandwich test'' is the two-dimensional analog of the axisymmetric cylinder expansion test. The test consists of a high-aspect-ratio rectangular cuboid of high explosive with the two large sides confined by a thin metal confiner. Analysis of the confiner motion after the passage of the detonation yields the detonation product isentrope, which is a specialized form of the product equation of state. The slab expansion geometry inherently exhibits a lower product expansion rate and lower plastic work on the confiner than the cylinder expansion geometry. The slab geometry does, however, have a shorter test time. We review recent slab and cylinder expansion data with PBX 9501, the associated equation of state analysis, and the advantages of each geometry for different applications.

  15. Analysis of Wave Propagation in Stratified Structures Using Circuit Analogues, with Application to Electromagnetic Absorbers

    ERIC Educational Resources Information Center

    Sjoberg, Daniel

    2008-01-01

    This paper presents an overview of how circuit models can be used for analysing wave propagation in stratified structures. Relatively complex structures can be analysed using models which are accessible to undergraduate students. Homogeneous slabs are modelled as transmission lines, and thin sheets between the slabs are modelled as lumped…

  16. Microstructure of Dense Thin Sheets of gamma-TiAl Fabricated by Hot Isostatic Pressing of Tape-Cast Monotapes (Preprint)

    DTIC Science & Technology

    2007-02-01

    fabrication of dense thin sheets of gamma titanium aluminide . Polarized light microscopy revealed a fine-grained microstructure but a few isolated...HIPed (near-gamma) microstructure occurred. 15. SUBJECT TERMS gamma titanium aluminide , thin sheet, tape casting, hot isostatic pressing 16...sheets (250–300 μm thick) of gamma titanium aluminide (γ-TiAl). Polarized light microscopy revealed a fine-grained microstructure (average grain

  17. Prediction on flexural strength of encased composite beam with cold-formed steel section

    NASA Astrophysics Data System (ADS)

    Khadavi, Tahir, M. M.

    2017-11-01

    A flexural strength of composite beam designed as boxed shaped section comprised of lipped C-channel of cold-formed steel (CFS) facing each other with reinforcement bars is proposed in this paper. The boxed shaped is kept restrained in position by a profiled metal decking installed on top of the beam to form a slab system. This profiled decking slab is cast by using self-compacting concrete where the concrete is in compression when load is applied to the beam. Reinforcement bars are used as shear connector between slab and CFS as beam. A numerical analysis method proposed by EC4 is used to predict the flexural strength of the proposed composite beam. It was assumed that elasto-plastic behaviour is developed in the cross -sectional of the proposed beam. The calculated predicted flexural strength of the proposed beam shows reasonable flexural strength for cold-formed composite beam.

  18. Thin Gauge Twin-Roll Casting, Process Capabilities and Product Quality

    NASA Astrophysics Data System (ADS)

    Daaland, O.; Espedal, A. B.; Nedreberg, M. L.; Alvestad, I.

    Traditionally industrial twin roll casters have been operated at gauges 6-10 mm, depending on the type of caster and the final product requirements. Over the past few years it has become apparent that a significant increase in productivity can be achieved when the casting gauge is reduced. Hydro Aluminium embarked on an extensive research and development, thin gauge casting programme, in the beginning of the 1990's and this paper presents some results from a five year lasting project (joint programme between Hydro Aluminium a.s. and Lauener Engineering). Based on more than 400 casting trials the major benefits and limitations of casting at reduced gauge and increased speed are outlined. Important aspects related to process development and product quality are discussed including: productivity and limitations, surface defects, microstructural characteristics, cooling rates and dendrite structure, segregation behaviour and mechanical properties after thermo-mechanical processing. Results for casting of several alloys are given. Additionally, numerical modelling results of the strip casting process are included.

  19. Understanding How Processing Additives Tune the Nanoscale Morphology of High Efficiency Organic Photovoltaic Blends: From Casting Solution to Spun-Cast Thin Film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Ming; Keum, Jong Kahk; Kumar, Rajeev

    2014-08-26

    Adding a small amount of a processing additive to the casting solution of photoactive organic blends has been demonstrated to be an effective method for achieving improved power conversion efficiency (PCE) in organic photovoltaics (OPVs). However, an understanding of the nano-structural evolution occurring in the transformation from casting solution to thin photoactive films is still lacking. In this report, the effects of the processing additive diiodooctane (DIO) on the morphology of the established blend of PBDTTT-C-T polymer and the fullerene derivative PC71BM used for OPVs are investigated, starting in the casting solution and tracing the effects in spun-cast thin filmsmore » by using neutron/X-ray scattering, neutron reflectometry, and other characterization techniques. The results reveal that DIO has no observable effect on the structures of PBDTTT-C-T and PC71BM in solution; however, in the spun-cast films, it significantly promotes their molecular ordering and phase segregation, resulting in improved PCE. Thermodynamic analysis based on Flory-Huggins theory provides a rationale for the effects of DIO on different characteristics of phase segregation due to changes in concentration resulting from evaporation of the solvent and additive during film formation. Such information may help improve the rational design of ternary blends to more consistently achieve improved PCE for OPVs.« less

  20. Understanding how processing additives tune nanoscale morphology of high efficiency organic photovoltaic blends: From casting solution to spun-cast thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Ming; Keum, Jong Kahk; Kumar, Rajeev

    2014-01-01

    Adding a small amount of a processing additive to the casting solution of organic blends has been demonstrated to be an effective method for achieving improved power conversion efficiency (PCE) in organic photovoltaics (OPVs). However, an understanding of the nano-structural evolution occurring in the transformation from casting solution to thin photoactive films is still lacking. In this report, we investigate the effects of the processing additive diiodooctane (DIO) on the morphology of OPV blend of PBDTTT-C-T and fullerene derivative, PC71BM in a casting solution and in spun-cast thin films by using neutron/x-ray scattering, neutron reflectometry and other characterization techniques. Themore » results reveal that DIO has no effect on the solution structures of PBDTTT-C-T and PC71BM. In the spun-cast films, however, DIO is found to promote significantly the molecular ordering of PBDTTT-C-T and PC71BM, and phase segregation, resulting in the improved PCE. Thermodynamic analysis based on Flory-Huggins theory provides a rationale for the effects of DIO on different characteristics of phase segregation as a solvent and due to evaporationg during the film formation. Such information may enable improved rational design of ternary blends to more consistently achieve improved PCE for OPVs.« less

  1. Casting Of Multilayer Ceramic Tapes

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1991-01-01

    Procedure for casting thin, multilayer ceramic membranes, commonly called tapes, involves centrifugal casting at accelerations of 1,800 to 2,000 times normal gravitational acceleration. Layers of tape cast one at a time on top of any previous layer or layers. Each layer cast from slurry of ground ceramic suspended in mixture of solvents, binders, and other components. Used in capacitors, fuel cells, and electrolytic separation of oxygen from air.

  2. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs

    PubMed Central

    Williamson, Ian A. D.; Mousavi, S. Hossein; Wang, Zheng

    2016-01-01

    Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100× wavelength reduction from graphene’s large kinetic inductance. The atomically thin graphene further leads to excellent out-of-plane confinement, and consequently photonic-crystal-slab band structures that closely resemble those of ideal two-dimensional photonic crystals, with broad band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crystals, graphene-cladded photonic crystal slabs confine light along line defects, forming waveguides with the propagation lengths on the order of tens of lattice constants. The proposed structure opens up the possibility to dramatically reduce the size of terahertz photonic systems by orders of magnitude. PMID:27143314

  3. Producing thin strips by twin-roll casting—part I: Process aspects and quality issues

    NASA Astrophysics Data System (ADS)

    Li, Ben Q.

    1995-05-01

    This two-part paper discusses recent advances in research and development for the direct production of coilable thin strips by twin-roll casting in both the aluminum and steel industries. While the former is empowering the casters to approach the theoretical productivity limit, the latter is striving to put pilot casters into commercial operation. These intensive R&D efforts are derived from the advantages, both economic and metallurgical, offered by the process. As twin-roll casting combines solidification and hot rolling into a single operation, the process requires low capital investment and low operational cost. Also, because of the high solidification rate attained in the process, the thin strips produced have a refined metallurgical structure, characterized by columnar and equiaxed zones with fine intermetallic particles. The enthusiasm about twin-roll casting is now being spread worldwide. This paper focuses on the process aspects and quality control of twin-roll casting. Part II, which will appear in the August issue, will review process modeling and pilot-plant development activities.

  4. Constitutive behavior of as-cast AA1050, AA3104, and AA5182

    NASA Astrophysics Data System (ADS)

    van Haaften, W. M.; Magnin, B.; Kool, W. H.; Katgerman, L.

    2002-07-01

    Recent thermomechanical modeling to calculate the stress field in industrially direct-chill (DC) cast-aluminum slabs has been successful, but lack of material data limits the accuracy of these calculations. Therefore, the constitutive behavior of three aluminum alloys (AA1050, AA3104, and AA5182) was determined in the as-cast condition using tensile tests at low strain rates and from room temperature to solidus temperature. The parameters of two constitutive equations, the extended Ludwik equation and a combination of the Sellars-Tegart equation with a hardening law, were determined. In order to study the effect of recovery, the constitutive behavior after prestraining at higher temperatures was also investigated. To evaluate the quantified constitutive equations, tensile tests were performed simulating the deformation and cooling history experienced by the material during casting. It is concluded that both constitutive equations perform well, but the combined hardening-Sellars-Tegart (HST) equation has temperature-independent parameters, which makes it easier to implement in a DC casting model. Further, the deformation history of the ingot should be taken into account for accurate stress calculations.

  5. Magnetic microparticle-polydimethylsiloxane composite for reversible microchannel bonding

    PubMed Central

    Tsao, Chia-Wen; Lee, Yueh-Pu

    2016-01-01

    Abstract In this study, an iron oxide magnetic microparticles and poly(dimethylsiloxane) (MMPs-PDMS) composite material was employed to demonstrate a simple high-strength reversible magnetic bonding method. This paper presents the casting of opaque-view (where optical inspection through the microchannels was impossible) and clear-view (where optical inspection through the microchannel was possible) MMPs-PDMS. The influence of the microchannel geometries on the casting of the opaque-view casting was limited, which is similar to standard PDMS casting. Clear-view casting performance was highly associated with the microchannel geometries. The effects of the microchannel layout and the gap between the PDMS cover layer and the micromold substrate were thoroughly investigated. Compared with the native PDMS bonding strength of 31 kPa, the MMPs-PDMS magnetic bonding experiments showed that the thin PDMS film with an MMPs-PDMS layer effectively reduced the surface roughness and enhanced MMPs-PDMS reversible magnetic bonding strength. A thin PDMS film-coated opaque-view MMPs-PDMS device exhibited the greatest bonding strength of 110 kPa, and a clear-view MMPs-PDMS device with a thin PDMS film attained a magnetic bonding strength of 81 kPa. PMID:27877852

  6. Shear Resistance between Concrete-Concrete Surfaces

    NASA Astrophysics Data System (ADS)

    Kovačovic, Marek

    2013-12-01

    The application of precast beams and cast-in-situ structural members cast at different times has been typical of bridges and buildings for many years. A load-bearing frame consists of a set of prestressed precast beams supported by columns and diaphragms joined with an additionally cast slab deck. This article is focused on the theoretical and experimental analyses of the shear resistance at an interface. The first part of the paper deals with the state-of-art knowledge of the composite behaviour of concrete-concrete structures and a comparison of the numerical methods introduced in the relevant standards. In the experimental part, a set of specimens with different interface treatments was tested until failure in order to predict the composite behaviour of coupled beams. The experimental part was compared to the numerical analysis performed by means of FEM basis nonlinear software.

  7. Fabrication of thin bulk ceramics for microwave circulator applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ings, J.B.; Simmins, J.J.; May, J.L.

    1995-09-01

    Planer MMIC circulator applications require the production of thin, flat garnet, spinel, and hexagonal ferrite circulator elements. Fabrication of cira 250 {mu}m circulator elements was done by tape casting and roll compaction. For the garnet, tape cast gave equivalent results to roll compaction. For the spinel and hexaferrite materials, which undergo magnetic flocculation, roll compaction was found to be the preferred fabrication method. Roll compacted lithium ferrite resulted in higher densities and lower {triangle}H and tan{delta} than did the tape case material. Roll compacted barium hexaferrite resulted in higher densities and remanent magnetization than did the tape cast material.

  8. Oxide-cladding aluminum nitride photonic crystal slab: Design and investigation of material dispersion and fabrication induced disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melo, E. G., E-mail: emerdemelo@usp.br; Alvarado, M. A.; Carreño, M. N. P.

    2016-01-14

    Photonic crystal slabs with a lower-index material surrounding the core layer are an attractive choice to circumvent the drawbacks in the fabrication of membranes suspended in air. In this work we propose a photonic crystal (PhC) slab structure composed of a triangular pattern of air holes in a multilayer thin film of aluminum nitride embedded in silicon dioxide layers designed for operating around 450 nm wavelengths. We show the design of an ideal structure and analyze the effects of material dispersion based on a first-order correction perturbation theory approach using dielectric functions obtained by experimental measurements of the thin film materials.more » Numerical methods were used to investigate the effects of fabrication induced disorder of typical nanofabrication processes on the bandgap size and spectral response of the proposed device. Deviation in holes radii and positions were introduced in the proposed PhC slab model with a Gaussian distribution profile. Impacts of slope in holes sidewalls that might result from the dry etching of AlN were also evaluated. The results show that for operation at the midgap frequency, slope in holes sidewalls is more critical than displacements in holes sizes and positions.« less

  9. Digital x-ray tomosynthesis with interpolated projection data for thin slab objects

    NASA Astrophysics Data System (ADS)

    Ha, S.; Yun, J.; Kim, H. K.

    2017-11-01

    In relation with a thin slab-object inspection, we propose a digital tomosynthesis reconstruction with fewer numbers of measured projections in combinations with additional virtual projections, which are produced by interpolating the measured projections. Hence we can reconstruct tomographic images with less few-view artifacts. The projection interpolation assumes that variations in cone-beam ray path-lengths through an object are negligible and the object is rigid. The interpolation is performed in the projection-space domain. Pixel values in the interpolated projection are the weighted sum of pixel values of the measured projections considering their projection angles. The experimental simulation shows that the proposed method can enhance the contrast-to-noise performance in reconstructed images while sacrificing the spatial resolving power.

  10. High-quality slab-based intermixing method for fusion rendering of multiple medical objects.

    PubMed

    Kim, Dong-Joon; Kim, Bohyoung; Lee, Jeongjin; Shin, Juneseuk; Kim, Kyoung Won; Shin, Yeong-Gil

    2016-01-01

    The visualization of multiple 3D objects has been increasingly required for recent applications in medical fields. Due to the heterogeneity in data representation or data configuration, it is difficult to efficiently render multiple medical objects in high quality. In this paper, we present a novel intermixing scheme for fusion rendering of multiple medical objects while preserving the real-time performance. First, we present an in-slab visibility interpolation method for the representation of subdivided slabs. Second, we introduce virtual zSlab, which extends an infinitely thin boundary (such as polygonal objects) into a slab with a finite thickness. Finally, based on virtual zSlab and in-slab visibility interpolation, we propose a slab-based visibility intermixing method with the newly proposed rendering pipeline. Experimental results demonstrate that the proposed method delivers more effective multiple-object renderings in terms of rendering quality, compared to conventional approaches. And proposed intermixing scheme provides high-quality intermixing results for the visualization of intersecting and overlapping surfaces by resolving aliasing and z-fighting problems. Moreover, two case studies are presented that apply the proposed method to the real clinical applications. These case studies manifest that the proposed method has the outstanding advantages of the rendering independency and reusability. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Effect of rheological approximations on slab detachment in 3D numerical simulations of continental collision

    NASA Astrophysics Data System (ADS)

    Pusok, Adina E.; Kaus, Boris; Popov, Anton

    2017-04-01

    It is commonly accepted that slab detachment results from the development of extensional stresses within the subducting slab. Subduction slowdown due to arrival of buoyant continental material at the trench is considered to cause such stress build up in the slab. Following slab detachment, slab pull partially or completely loses its strength and hot asthenosphere may flow through the slab window, which can have major consequences for continental collision. The dynamics of slab detachment has been extensively studied in 2D (i.e. analytical and numerical), but 3D models of slab detachment during continental collision remain largely unexplored. Some of the previous 3D models have investigated the role of an asymmetric margin on the propagation of slab detachment (van Hunen and Allen, 2011), the impact of slab detachment on the curvature of orogenic belts (Capitanio and Replumaz, 2013), the role of the collision rate on slab detachment depth (Li et al., 2013) or the effect of along-trench variations on slab detachment (Duretz et al., 2014). However, rheology of mantle and lithosphere is known to have a major influence on the dynamics of subduction. Here, we explore a range of different rheological approximations to understand their sensitivity on the possible scenarios. We employ the code LaMEM (Kaus et al., 2016) to perform 3D simulations of subduction/continental collision in an integrated lithospheric and upper-mantle scale model. The models exhibit a wide range of behaviours depending on the rheological law employed: from linear, to temperature-dependent visco-elasto-plastic rheology that takes into account both diffusion and dislocation creep. For example, we find that slab dynamics varies drastically between end member models: in viscous approximations, slab detachment is slow, dominated by viscous thinning, while for a non-linear visco-elasto-plastic rheology, slab detachment is relatively fast, dominated by plastic breaking and inducing strong mantle flow in the slab window. Moreover, in models of viscous approximation, slab break-off starts in the slab interior due tot the nature of slab necking, while in models of non-linear visco-elasto-plastic rheology, slab tear will first occur at the edges of the continental collision.

  12. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1995-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  13. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1993-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  14. Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete

    PubMed Central

    López-Uceda, Antonio; Ayuso, Jesús; Jiménez, José Ramón; Agrela, Francisco; Barbudo, Auxiliadora; De Brito, Jorge

    2016-01-01

    This research aims to produce non-structural concrete with mixed recycled aggregates (MRA) in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%), using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results) from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors’ knowledge, there have not been any upscaled applications of concrete with MRA and low cement content. PMID:28787892

  15. Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete.

    PubMed

    López-Uceda, Antonio; Ayuso, Jesús; Jiménez, José Ramón; Agrela, Francisco; Barbudo, Auxiliadora; De Brito, Jorge

    2016-02-02

    This research aims to produce non-structural concrete with mixed recycled aggregates (MRA) in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%), using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results) from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors' knowledge, there have not been any upscaled applications of concrete with MRA and low cement content.

  16. Precision cast vs. wrought superalloys

    NASA Technical Reports Server (NTRS)

    Tien, J. K.; Borofka, J. C.; Casey, M. E.

    1986-01-01

    While cast polycrystalline superalloys recommend themselves in virtue of better 'buy-to-fly' ratios and higher strengthening gamma-prime volume fractions than those of wrought superalloys, the expansion of their use into such critical superalloy applications as gas turbine hot section components has been slowed by insufficient casting process opportunities for microstructural control. Attention is presently drawn, however, to casting process developments facilitating the production of defect-tolerant superalloy castings having improved fracture reliability. Integrally bladed turbine wheel and thin-walled turbine exhaust case near-net-shape castings have been produced by these means.

  17. Big mantle wedge, anisotropy, slabs and earthquakes beneath the Japan Sea

    NASA Astrophysics Data System (ADS)

    Zhao, Dapeng

    2017-09-01

    The Japan Sea is a part of the western Pacific trench-arc-backarc system and has a complex bathymetry and intense seismic activities in the crust and upper mantle. Local seismic tomography revealed strong lateral heterogeneities in the crust and uppermost mantle beneath the eastern margin of the Japan Sea, which was determined using P and S wave arrival times of suboceanic earthquakes relocated precisely with sP depth phases. Ambient-noise tomography revealed a thin crust and a thin lithosphere beneath the Japan Sea and significant low-velocity (low-V) anomalies in the shallow mantle beneath the western and eastern margins of the Japan Sea. Observations with ocean-bottom seismometers and electromagnetometers revealed low-V and high-conductivity anomalies at depths of 200-300 km in the big mantle wedge (BMW) above the subducting Pacific slab, and the anomalies are connected with the low-V zone in the normal mantle wedge beneath NE Japan, suggesting that both shallow and deep slab dehydrations occur and contribute to the arc and back-arc magmatism. The Pacific slab has a simple geometry beneath the Japan Sea, and earthquakes occur actively in the slab down to a depth of ∼600 km beneath the NE Asian margin. Teleseismic P and S wave tomography has revealed that the Philippine Sea plate has subducted aseismically down to the mantle transition zone (MTZ, 410-660 km) depths beneath the southern Japan Sea and the Tsushima Strait, and a slab window is revealed within the aseismic Philippine Sea slab. Seismic anisotropy tomography revealed a NW-SE fast-velocity direction in the BMW, which reflects corner flows induced by the fast deep subduction of the Pacific slab. Large deep earthquakes (M > 7.0; depth > 500 km) occur frequently beneath the Japan Sea western margin, which may be related to the formation of the Changbai and Ulleung intraplate volcanoes. A metastable olivine wedge is revealed within the cold core of the Pacific slab at the MTZ depth, which may be related to the deep seismicity. However, many of these results are still preliminary, due to the lack of seismic stations in the Japan Sea. The key to resolving these critical geoscientific issues is seismic instrumentation in the Japan Sea, for which international cooperation of geoscience communities in the East Asian countries is necessary.

  18. Integrated waveguide and nanostructured sensor platform for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pearce, Stuart J.; Pollard, Michael E.; Oo, SweZin; Chen, Ruiqi; Kalsi, Sumit; Charlton, Martin D. B.

    2014-01-01

    Limitations of current sensors include large dimensions, sometimes limited sensitivity and inherent single-parameter measurement capability. Surface-enhanced Raman spectroscopy can be utilized for environment and pharmaceutical applications with the intensity of the Raman scattering enhanced by a factor of 10. By fabricating and characterizing an integrated optical waveguide beneath a nanostructured precious metal coated surface a new surface-enhanced Raman spectroscopy sensing arrangement can be achieved. Nanostructured sensors can provide both multiparameter and high-resolution sensing. Using the slab waveguide core to interrogate the nanostructures at the base allows for the emission to reach discrete sensing areas effectively and should provide ideal parameters for maximum Raman interactions. Thin slab waveguide films of silicon oxynitride were etched and gold coated to create localized nanostructured sensing areas of various pitch, diameter, and shape. These were interrogated using a Ti:Sapphire laser tuned to 785-nm end coupled into the slab waveguide. The nanostructured sensors vertically projected a Raman signal, which was used to actively detect a thin layer of benzyl mercaptan attached to the sensors.

  19. Producing Foils From Direct Cast Titanium Alloy Strip

    NASA Technical Reports Server (NTRS)

    Stuart, T. A.; Gaspar, T. A.; Sukonnik, I. M.; Semiatan, S. L.; Batawi, E.; Peters, J. A.; Fraser, H. L.

    1996-01-01

    This research was undertaken to demonstrate the feasibility of producing high-quality, thin-gage, titanium foil from direct cast titanium strip. Melt Overflow Rapid Solidification Technology (MORST) was used to cast several different titanium alloys into 500 microns thick strip, 10 cm wide and up to 3 m long. The strip was then either ground, hot pack rolled or cold rolled, as appropriate, into foil. Gamma titanium aluminide (TiAl) was cast and ground to approximately 100 microns thick foil and alpha-2 titanium aluminide (Ti3AI) was cast and hot pack rolled to approximately 70 microns thick foil. CP Ti, Ti6Al2Sn4Zr2Mo, and Ti22AI23Nb (Orthorhombic), were successfully cast and cold-rolled into good quality foil (less than 125 microns thick). The foils were generally fully dense with smooth surfaces, had fine, uniform microstructures, and demonstrated mechanical properties equivalent to conventionally produced titanium. By eliminating many manufacturing steps, this technology has the potential to produce thin gage, titanium foil with good engineering properties at significantly reduced cost relative to conventional ingot metallurgy processing.

  20. DETAIL OF THE PROMENADE SHOWING (FROM RIGHT TO LEFT) THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE PROMENADE SHOWING (FROM RIGHT TO LEFT) THE STAIRWAY TO BASEMENT, A WOOD FRAMED POSTER CASE, DOORWAYS TO THE FOYER, AND SMALL RAISED CONCRETE SLAB FOR THE FORMER TICKET BOOTH. IN THE BACKGROUND ARE THE CAST CONCRETE LOUVERS OF THE OFFICE. VIEW FACING SOUTHEAST - U.S. Naval Base, Pearl Harbor, Theater, Hornet Avenue between Enterprise & Pokomoke Streets, Pearl City, Honolulu County, HI

  1. Wrinkling Phenomena to Explain Vertical Fold Defects in DC-Cast Al-Mg4.5

    NASA Astrophysics Data System (ADS)

    Davis, J. Lee; Mendez, Patricio F.

    Some aluminum ingots cast by the direct chill method are subject to surface defects on the molten ingot head during casting while others are not. These defects -commonly called "vertical folds" -are frozen into the casting and must be removed prior to rolling. Vertical folds are found on top of the molten ingot surface where areas of thin oxide are (a) bounded by physical constraints and (b) stretched. Physical constraints include (1) substantially thicker oxide or (2) a refractory skim ring adjacent to the thin oxide. The mechanism of wrinkling is suggested for the formation of vertical folds. Wrinkling behavior is described by physical expressions for an elastic sheet in tension whose behavior depends upon thickness h, length L, Young's modulus E, and Poisson's ratio v. The depth and frequency of folds in the thin, elastic sheet parallel to the tensile axis between the two "constraints" can be calculated from these parameters. The observed frequency (and amplitude) of vertical folds in DC-cast aluminum has been found to obey similar wrinkling laws. The frequency-dependence (λ) is examined and found to be related to classic wrinkling parameters but with significant scaling deviations. These deviations may be related to the pseudo-plasticity (self-healing behavior) of the oxide film on the molten surface. A wrinkling model coupled with pseudo-plasticity predicts subtle behaviors in DC casting of Al-Mg4.5 that are not explained by other theories.

  2. Precursor-route ZnO films from a mixed casting solvent for high performance aqueous electrolyte-gated transistors.

    PubMed

    Althagafi, Talal M; Algarni, Saud A; Al Naim, Abdullah; Mazher, Javed; Grell, Martin

    2015-12-14

    We significantly improved the performance of precursor-route semiconducting zinc oxide (ZnO) films in electrolyte-gated thin film transistors (TFTs). We find that the organic precursor to ZnO, zinc acetate (ZnAc), dissolves more readily in a 1 : 1 mixture of ethanol (EtOH) and acetone than in pure EtOH, pure acetone, or pure isopropanol. XPS and SEM characterisation show improved morphology of ZnO films converted from a mixed solvent cast ZnAc precursor compared to the EtOH cast precursor. When gated with a biocompatible electrolyte, phosphate buffered saline (PBS), ZnO thin film transistors (TFTs) derived from mixed solvent cast ZnAc give 4 times larger field effect current than similar films derived from ZnAc cast from pure EtOH. The sheet resistance at VG = VD = 1 V is 30 kΩ □(-1), lower than for any organic TFT, and lower than for any electrolyte-gated ZnO TFT reported to date.

  3. Metamaterials with gradient negative index of refraction.

    PubMed

    Pinchuk, Anatoliy O; Schatz, George C

    2007-10-01

    We propose a new metamaterial with a gradient negative index of refraction, which can focus a collimated beam of light coming from a distant object. A slab of the negative refractive index metamaterial has a focal length that can be tuned by changing the gradient of the negative refractive index. A thin metal film pierced with holes of appropriate size or spacing between them can be used as a metamaterial with the gradient negative index of refraction. We use finite-difference time-domain calculations to show the focusing of a plane electromagnetic wave passing through a system of equidistantly spaced holes in a metal slab with decreasing diameters toward the edges of the slab.

  4. A quantitative study of ramped radio frequency, magnetization transfer, and slab thickness in three-dimensional time-of-flight magnetic resonance angiography in a patient population.

    PubMed

    Goodrich, K C; Blatter, D D; Parker, D L; Du, Y P; Meyer, K J; Bernstein, M A

    1996-06-01

    The authors compare the effectiveness of various magnetic resonance (MR) angiography acquisition strategies in enhancing the visibility of small intracranial vessels. Blood vessel contrast-to-noise ratio (CNR) in time-of-flight MR angiography was studied as a function of vessel size and several selectable imaging parameters. Contrast-to-noise measurements were made on 257 vessel segments ranging in size from 0.3 mm to 4.2 mm in patients who recently had undergone intraarterial cerebral angiography. Imaging parameters studied included magnetization transfer, spatially variable radio frequency (RF) pulse profile (ramped RF), and imaging slab thickness. The combination of thin slabs (16 slices/slab), ramped RF, and magnetization transfer resulted in the highest CNR for all but the smallest vessel sizes. The smallest vessels (< 0.5 mm) had the highest CNR, using the thick slab (64 slices/slab) with ramped RF and magnetization transfer. Magnetization transfer always improved vessel CNR, but the improvement diminished as the slab thickness was reduced. The CNR increased with a decrease in slab thickness for all but the smallest vessel sizes. Overall, the results provide a quantitative demonstration that inflow enhancement of blood is reduced for small vessels. Thus, whereas magnetization transfer is important at all vessel sizes, it becomes the primary factor in improving the visibility of the smallest vessels.

  5. Overturned Alboran slab beneath westernmost Mediterranean

    NASA Astrophysics Data System (ADS)

    Sun, D.; Miller, M. S.

    2017-12-01

    The geological evolution of the westernmost Mediterranean holds an important piece of the puzzle of how whole western Mediterranean evolved due to the convergence of Africa with Eurasia. The idea of continuous slab roll back acting a prominent force in this region is strongly supported by tomographic images with near vertical high velocity structure connecting the surface beneath the Alboran domain [Spakman and Wortel, 2004; Bezada et al., 2013]. However, the slab shape, width, and sharpness of its edges are not well resolved. Here, we use the waveforms recorded from the PICASSO (XB) array and IberArray (IA) for the deep 2010 earthquake beneath Granada to study the detailed Alboran slab structure. We found: (1) A low velocity structure (7 km thickness, δVs = -20%) surrounding the earthquake to explain the second arrivals observed in many stations at Spain. (2) A thin low velocity layer sits on the bottom of the high velocity slab-like structure to explain the high frequency second arrivals and long coda after the P and S arrivals on stations in the Rif Mountains of Morocco. The most feasible explanation of the low velocity structure is the dehydrated surface of the slab lithosphere extending from the 600 km to the shallow mantle. However, such geometry is contradictory with our observation, which the low velocity layer is at the bottom of the slab. We proposed that the Albora slab had undergone significant "roll-over" movement, which overturned the slab surface.

  6. Thin sheet casting with electromagnetic pressurization

    DOEpatents

    Walk, Steven R.; Slepian, R. Michael; Nathenson, Richard D.; Williams, Robert S.

    1991-01-01

    An apparatus, method and system for the casting of thin strips or strips of metal upon a moving chill block that includes an electromagnet located so that molten metal poured from a reservoir onto the chill block passes into the magnetic field produced by the electromagnet. The electromagnet produces a force on the molten metal on said chill block in the direction toward said chill block in order to enhance thermal contact between the molten metal and the chill block.

  7. Effect of Heat Treatment Parameters on the Characteristics of Thin Wall Austempered Ductile Iron Casting

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Rajat; Singh, K. K.; Kumar, Rajeev

    2018-03-01

    The technology of thin parts is necessary steps to designers for energy consuming equipment to choose accurate material based on material properties. Here austempering treatment process was utilized to acquire thin wall austempered ductile iron castings. The plate thickness (2-5) mm were austenitized at 900 °C for, 30 minutes took after by holding at 350°C, 400°C and 450°C inoculated by Ce-Ca-Al-S-O-FeSi,Zr-Mn-Ca-Al-Ba-FeSi and Sr-Al-Ca-FeSi at 0.2wt%,0.4wt% and 0.6wt% for 2,5 and 10 minutes for every temperature.The austempered samples are comparatively harder than the as-cast ductile iron plates. The micro hardness(HV20) also decreases with increase in austempering temperature for a given austempering time for thinner plates and also the micro hardness(HV20) is more for the samples treated at 350°C than those treated at 400°C and 450°C at 0.4wt% for a given austempering time. The yield strength and ultimate tensile strength of 2 mm thin wall austempered ductile iron are higher and ductility and impact strength are lower than that of as-cast 2 mm thin plate ductile iron inoculated by Ce-Ca-Al-S-O-FeSi compare to Zr-Mn-Ca-Al-Ba-FeSi and Sr-Al-Ca-FeSi at 0.4wt%. This may be attributed to the change in the structure change from ferrite-pearlite to austenite-bainite.

  8. Relocation of Intermediate-depth Seismicity in the Relic Alboran Slab: Clustering and Relationship to Tearing and Dehydration Embrittlement.

    NASA Astrophysics Data System (ADS)

    Sun, M.; Bezada, M.

    2017-12-01

    Intermediate-depth seismicity outside active subduction zones is rare. However, there is a well-known occurrence of such events in a N-S elongated volume between Spain and Morocco, within what most researchers consider to be the relic Alboran slab. Partial subduction of, and tearing from the adjoining continental lithosphere have been suggested in this area. We investigate whether dehydration embrittlement or shear instability is more consistent with the Alboran intermediate depth seismicity by considering their location relative to the expected thermal structure and expected areas of high strain rate associated with thinning or tearing of the slab. We use a dense temporary seismograph deployment in Spain and Morocco to relocate 65 intermediate-depth events occurring between 2010 and 2013 in this region. The relocation procedure is realized by a grid-search approach that minimizes the normalized misfit between the picked times and travel times calculated using a regional 3D velocity model. Results indicate that, compared with catalog results, hypocenters after relocation are more concentrated in space; they tend to shift southward and eastward while no systematic shift in depth is observed. Relocated hypocenters concentrate at a depth range between 50-100 km and along a narrow longitude range around 4.5W. Investigation of the earthquake density distribution indicates these earthquakes concentrate into several clusters. One such cluster sits above the spain-arm of the Alboran slab and beneath the Spain continental lithosphere, indicating that it is likely associated to the thinning process of the Alboran slab. The other four clusters all lie within the interior of the slab. Interestingly, two of them are near the middle of the subducted lithosphere and the other two lie near its base. This observation seems at odds with expectations based on the two leading hypotheses for enabling brittle failure at intermediate depths.

  9. Angular sensitivities of scintillator slab configurations for location of gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1976-01-01

    Thin flat scintillator slabs are a useful means of measuring the angular location of gamma ray fluxes of astronomical interest. A statistical estimate of position error was made of two scintillator systems suitable for gamma ray burst location from a balloon or satellite platform. A single rotating scintillator with associated flux monitor is compared with a pair of stationary orthogonal scintillators. Position error for a strong burst is of the order of a few arcmin if systematic errors are ignored.

  10. Real-time stereographic display of volumetric datasets in radiology

    NASA Astrophysics Data System (ADS)

    Wang, Xiao Hui; Maitz, Glenn S.; Leader, J. K.; Good, Walter F.

    2006-02-01

    A workstation for testing the efficacy of stereographic displays for applications in radiology has been developed, and is currently being tested on lung CT exams acquired for lung cancer screening. The system exploits pre-staged rendering to achieve real-time dynamic display of slabs, where slab thickness, axial position, rendering method, brightness and contrast are interactively controlled by viewers. Stereo presentation is achieved by use of either frame-swapping images or cross-polarizing images. The system enables viewers to toggle between alternative renderings such as one using distance-weighted ray casting by maximum-intensity-projection, which is optimal for detection of small features in many cases, and ray casting by distance-weighted averaging, for characterizing features once detected. A reporting mechanism is provided which allows viewers to use a stereo cursor to measure and mark the 3D locations of specific features of interest, after which a pop-up dialog box appears for entering findings. The system's impact on performance is being tested on chest CT exams for lung cancer screening. Radiologists' subjective assessments have been solicited for other kinds of 3D exams (e.g., breast MRI) and their responses have been positive. Objective estimates of changes in performance and efficiency, however, must await the conclusion of our study.

  11. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasoyinu, Yemi; Griffin, John A.

    2014-03-31

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their longmore » freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (≤ 3 mm) engineering components from both aluminum- and magnesium-base alloys.« less

  12. Theoretical description and design of nanomaterial slab waveguides: application to compensation of optical diffraction.

    PubMed

    Kivijärvi, Ville; Nyman, Markus; Shevchenko, Andriy; Kaivola, Matti

    2018-04-02

    Planar optical waveguides made of designable spatially dispersive nanomaterials can offer new capabilities for nanophotonic components. As an example, a thin slab waveguide can be designed to compensate for optical diffraction and provide divergence-free propagation for strongly focused optical beams. Optical signals in such waveguides can be transferred in narrow channels formed by the light itself. We introduce here a theoretical method for characterization and design of nanostructured waveguides taking into account their inherent spatial dispersion and anisotropy. Using the method, we design a diffraction-compensating slab waveguide that contains only a single layer of silver nanorods. The waveguide shows low propagation loss and broadband diffraction compensation, potentially allowing transfer of optical information at a THz rate.

  13. Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications.

    PubMed

    Min, Qiao; Chen, Chengkun; Berini, Pierre; Gordon, Reuven

    2010-08-30

    We show that long-range surface plasmons (LRSPs) are supported in a physically asymmetric thin film structure, consisting of a low refractive index medium on a metal slab, supported by a high refractive index dielectric layer (membrane) over air, as a suspended waveguide. For design purposes, an analytic formulation is derived in 1D yielding a transcendental equation that ensures symmetry of the transverse fields of the LRSP within the metal slab by constraining its thicknesses and that of the membrane. Results from the formulation are in quantitative agreement with transfer matrix calculations for a candidate slab waveguide consisting of an H(2)O-Au-SiO(2)-air structure. Biosensor-relevant figures of merit are compared for the asymmetric and symmetric structures, and it is found that the asymmetric structure actually improves performance, despite higher losses. The finite difference method is also used to analyse metal stripes providing 2D confinement on the structure, and additional constraints for non-radiative LRSP guiding thereon are discussed. These results are promising for sensors that operate with an aqueous solution that would otherwise require a low refractive index-matched substrate for the LRSP.

  14. Gating geometry studies of thin-walled 17-4PH investment castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maguire, M.C.; Zanner, F.J.

    1992-11-01

    The ability to design gating systems that reliably feed and support investment castings is often the result of ``cut-and-try`` methodology. Factors such as hot tearing, porosity, cold shuts, misruns, and shrink are defects often corrected by several empirical gating design iterations. Sandia National Laboratories is developing rules that aid in removing the uncertainty involved in the design of gating systems for investment castings. In this work, gating geometries used for filling of thin walled investment cast 17-4PH stainless steel flat plates were investigated. A full factorial experiment evaluating the influence of metal pour temperature, mold preheat temperature, and mold channelmore » thickness were conducted for orientations that filled a horizontal flat plate from the edge. A single wedge gate geometry was used for the edge-gated configuration. Thermocouples placed along the top of the mold recorded metal front temperatures, and a real-time x-ray imaging system tracked the fluid flow behavior during filling of the casting. Data from these experiments were used to determine the terminal fill volumes and terminal fill times for each gate design.« less

  15. Gating geometry studies of thin-walled 17-4PH investment castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maguire, M.C.; Zanner, F.J.

    1992-01-01

    The ability to design gating systems that reliably feed and support investment castings is often the result of cut-and-try'' methodology. Factors such as hot tearing, porosity, cold shuts, misruns, and shrink are defects often corrected by several empirical gating design iterations. Sandia National Laboratories is developing rules that aid in removing the uncertainty involved in the design of gating systems for investment castings. In this work, gating geometries used for filling of thin walled investment cast 17-4PH stainless steel flat plates were investigated. A full factorial experiment evaluating the influence of metal pour temperature, mold preheat temperature, and mold channelmore » thickness were conducted for orientations that filled a horizontal flat plate from the edge. A single wedge gate geometry was used for the edge-gated configuration. Thermocouples placed along the top of the mold recorded metal front temperatures, and a real-time x-ray imaging system tracked the fluid flow behavior during filling of the casting. Data from these experiments were used to determine the terminal fill volumes and terminal fill times for each gate design.« less

  16. Method of casting silicon into thin sheets

    DOEpatents

    Sanjurjo, Angel; Rowcliffe, David J.; Bartlett, Robert W.

    1982-10-26

    Silicon (Si) is cast into thin shapes within a flat-bottomed graphite crucible by providing a melt of molten Si along with a relatively small amount of a molten salt, preferably NaF. The Si in the resulting melt forms a spherical pool which sinks into and is wetted by the molten salt. Under these conditions the Si will not react with any graphite to form SiC. The melt in the crucible is pressed to the desired thinness with a graphite tool at which point the tool is held until the mass in the crucible has been cooled to temperatures below the Si melting point, at which point the Si shape can be removed.

  17. Phase-field modelling of microstructure formation during the solidification of continuously cast low carbon and HSLA steels

    NASA Astrophysics Data System (ADS)

    Böttger, B.; Apel, M.; Santillana, B.; Eskin, D. G.

    2012-07-01

    Cracking in continuous casting of steels has been one of the main problems for decades. Many of the cracks that occur during solidification are hot tears. To better understand the factors leading to this defect, microstructure formation is simulated for a low carbon (LCAK) and two high strength low alloyed (HSLA) steel grades during the initial stage of the process where the first solidified shell is formed inside the mould and where breakouts typically occur. 2D simulation is performed using the multiphase-field software MICRESS [1], which is coupled to the thermodynamic database TCFE6 [2] and the mobility database MOB2 [2], taking into account all elements which may have a relevant effect on the mechanical properties and structure formation during or subsequent to solidification. The use of a moving-frame boundary condition allows travelling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. A heterogeneous nucleation model is included to permit the description of morphological transitions between the initial solidification and the subsequent columnar growth region. Furthermore, a macroscopic one-dimensional temperature solver is integrated to account for the transient and nonlinear temperature field during the initial stage of continuous casting. The external heat flux boundary conditions for this process were derived from thermal process data of the industrial slab caster. The simulation results for the three steel grades have been validated by thickness measurements of breakout shells and microstructure observation of the corresponding grades. Furthermore, the primary dendrite spacing has been measured across the whole thickness of the shell and compared with the simulated microstructures. Significant microstructure differences between the steel grades are discussed and correlated with their hot-cracking behavior.

  18. The upper crust laid on its side: tectonic implications of steeply tilted crustal slabs for extension in the basin and range

    USGS Publications Warehouse

    Howard, Keith A.

    2005-01-01

    Tilted slabs expose as much as the top 8–15 km of the upper crust in many parts of the Basin and Range province. Exposures of now-recumbent crustal sections in these slabs allow analysis of pre-tilt depth variations in dike swarms, plutons, and thermal history. Before tilting the slabs were panels between moderately dipping, active Tertiary normal faults. The slabs and their bounding normal faults were tilted to piggyback positions on deeper footwalls that warped up isostatically beneath them during tectonic unloading. Stratal dips within the slabs are commonly tilted to vertical or even slightly overturned, especially in the southern Basin and Range where the thin stratified cover overlies similarly tilted basement granite and gneiss. Some homoclinal recumbent slabs of basement rock display faults that splay upward into forced folds in overlying cover sequences, which thereby exhibit shallower dips. The 15-km maximum exposed paleodepth for the slabs represents the base of the brittle upper crust, as it coincides with the depth of the modern base of the seismogenic zone and the maximum focal depths of large normal-fault earthquakes in the Basin and Range. Many upended slabs accompany metamorphic core complexes, but not all core complexes have corresponding thick recumbent hanging-wall slabs. The Ruby Mountains core complex, for example, preserves only scraps of upper-plate rocks as domed-up extensional klippen, and most of the thick crustal section that originally overlay the uplifted metamorphic core now must reside below little-tilted hanging-wall blocks in the Elko-Carlin area to the west. The Whipple and Catalina Mountains core complexes in contrast are footwall to large recumbent hanging-wall slabs of basement rock exposing 8-15 km paleodepths that originally roofed the metamorphic cores; the exposed paleodepths require that a footwall rolled up beneath the slabs.

  19. MOLDS FOR CASTING PLUTONIUM

    DOEpatents

    Anderson, J.W.; Miley, F.; Pritchard, W.C.

    1962-02-27

    A coated mold for casting plutonium comprises a mold base portion of a material which remains solid and stable at temperatures as high as the pouring temperature of the metal to be cast and having a thin coating of the order of 0.005 inch thick on the interior thereof. The coating is composed of finely divided calcium fluoride having a particle size of about 149 microns. (AEC)

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Routh, Prahlad K.; Nykypanchuk, Dmytro; Venkatesh, T. A.

    Large area, device relevant sized microporous thin films are formed with commercially available polythiophenes by the breath figure technique, a water-assisted micro patterning method, with such semitransparent thin films exhibiting periodicity and uniformity dictated by the length of the polymer side chain. Compared to drop casted thin films, the microporous thin films exhibit increased crystallinity due to stronger packing of the polymer inside the honeycomb frame.

  1. Design concepts for pressurized lunar shelters utilizing indigenous materials

    NASA Technical Reports Server (NTRS)

    Happel, John Amin; Willam, Kaspar; Shing, Benson

    1991-01-01

    The objective is to design a pressurized shelter build of indigenous lunar material. The topics are presented in viewgraph form and include the following: lunar conditions which impact design; secondary factors; review of previously proposed concepts; cross section of assembly facility; rationale for indigenous materials; indigenous material choices; cast basalt properties; design variables; design 1, cylindrical segments; construction sequence; design 2, arch-slabs with post-tensioned ring girders; and future research.

  2. An Integrated Study on the Evolution of Inclusions in EH36 Shipbuilding Steel with Mg Addition: From Casting to Welding

    NASA Astrophysics Data System (ADS)

    Zou, Xiaodong; Zhao, Dapeng; Sun, Jincheng; Wang, Cong; Matsuura, Hiroyuki

    2018-04-01

    Inclusion evolution behaviors, in terms of composition, size, and number density, and associated influence on the microstructures of the as-cast slabs, rolled plates, and simulated welded samples of plain EH36 and EH36-Mg shipbuilding steels have been systematically investigated. The results indicate that the inclusions in the as-cast plain EH36 are almost Al-Ca-S-O-(Mn) complex oxides with sizes ranging from 1.0 to 2.0 μm. After Mg addition, a large amount of individually fine MnS precipitates and Mg-containing Ti-Al-Mg-O-(Mn-S) complex inclusions are generated, which significantly refine the microstructure and are conducive to the nucleation of acicular ferrite in the rolled and welded sample. Moreover, after rolling and welding thermal simulation, the number of individual MnS decreases gradually due to its precipitation on the surface of Ti-Al-Mg-O oxides.

  3. Development of Aerogel Molds for Metal Casting Using Lunar and Martian Regolith

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the last few years NASA has set new priorities for research and development of technologies necessary to enable long-term presence on the Moon and Mars. Among these key technologies is what is known as in situ resource utilization, which defines all conceivable usage of mineral, liquid, gaseous, or biological resources on a visited planet. In response to this challenge, we have been focusing on developing and demonstrating the manufacturing of a specific product using Lunar and Martian soil simulants (i.e., a mold for the casting of metal and alloy parts) which will be an indispensable tool for the survival of outposts on the Moon and Mars. In addition, our purpose is to demonstrate the feasibility of using mesoporous materials such as aerogels to serve as efficient casting molds for high quality components in propulsion and other aerospace applications. The first part of the project consists of producing aerogels from the in situ resources available in Martian and Lunar soil. The approach we are investigating is to use chemical processes to solubilize silicates using organic reagents at low temperatures and then use these as precursors in the formation of aerogels for the fabrication of metal casting molds. One set of experiments consists of dissolving silica sources in basic ethylene glycol solution to form silicon glycolates. When ground silica aerogel was used as source material, a clear solution of silicon glycolate was obtained and reacted to form a gel thus proving the feasibility of this approach. The application of this process to Lunar and Martian simulants did not result in the formation of a gel; further study is in progress. In the second method acidified alcohol is reacted with the simulants to form silicate esters. Preliminary results indicate the presence of silicon alkoxide in the product distillation. However, no gel has been obtained so further characterization is ongoing. In the second part of the project, the focus has been on developing a series of aerogel plates suitable for thin plate metal casting and ingot metal castings. The influence of aerogels on thin wall metal castings was studied by placing aerogel plates into the cavities of thin sections of resin bonded sand molds. An 1 based commercial alloy ( 356) containing 7 percent Si was poured into these molds. Post-solidification studies provide evidence that aerogel inserts significantly reduce the cooling rate during solidification. The advantage of a lower rate using aerogel inserts was reflected in the reduction of casting defects such as shrinkage porosity. Quantitative results support the hypothesis that using aerogels as a mold material can offer definite advantages when used as casting thin sections. As a separate effort, silica aerogel with cylindrical cavities have been prepared and will be evaluated for casting commercial alloys.

  4. Water transportation ability of flat-lying slabs in the mantle transition zone and implications for craton destruction

    NASA Astrophysics Data System (ADS)

    Wang, Zhensheng; Kusky, Timothy M.; Capitanio, Fabio A.

    2018-01-01

    Water transported by deep subduction to the mantle transition zone (MTZ) that is eventually released and migrates upwards is invoked as a likely cause for hydroweakening and cratonic lithosphere destruction. The destruction of the North China Craton (NCC) during the Mesozoic has been proposed to be related to hydroweakening. However, the source of water related to large-scale craton destruction in the NCC is poorly constrained. Some suggest that the water was mainly released from a flat-lying (or stagnating) slab in the MTZ, whereas others posit that most water was released from a previously existing strongly hydrous MTZ then perturbed by the stagnating subduction in the MTZ layer. In this study, we use numerical modeling to evaluate the water carrying ability of flat-lying slabs in the MTZ with different slab ages and water contents to simulate its maximum value and discuss its potential role on large-scale hydroweakening and craton destruction. Our results reveal that a single flat-lying slab in the MTZ cannot provide enough water for large-scale cratonic lithosphere hydroweakening and thinning. Water estimates invoked for craton destruction as experienced by the NCC can only be the result of long-term piling of multiple slabs in the MTZ or penetrating deeper into the lower mantle.

  5. Self-stressed sandwich bridge decks.

    DOT National Transportation Integrated Search

    1971-01-01

    Proposed is an entirely new type of bridge deck, consisting of an unreinforced lightweight concrete slab made of expanding cement sandwiched between two thin plates of steel. The expanding core serves to prestress the panel. Laboratory tests were con...

  6. Fabrication process analysis and experimental verification for aluminum bipolar plates in fuel cells by vacuum die-casting

    NASA Astrophysics Data System (ADS)

    Jin, Chul Kyu; Kang, Chung Gil

    2011-10-01

    There are various methods for the fabrication of bipolar plates, but these are still limited to machining and stamping processes. High-pressure die casting (HPDC) is an ideal process for the manufacture of bipolar plates This study aims to investigate the formability of bipolar plates for polymer electrolyte membrane fuel cells (PEMFCs) fabricated by vacuum HPDC of an Al-Mg alloy (ALDC6). The cavity of the mold consisted of a thin-walled plate (200 mm × 200 mm × 0.8 mm) with a layer of serpentine channel (50 mm × 50 mm). The location and direction of the channel in the final mold design was determined by computational simulation (MAGMA soft). In addition, simulation results for different conditions of plunger stroke control were compared to those from actual die-casting experiments. Under a vacuum pressure of 35 kPa and for injection speeds of 0.3 and 2.5 m s-1 in the low and high speed regions, respectively, the samples had few casting defects. In addition, the hardness was higher and porosity in microstructure was less than those of the samples made under other injection speed conditions. In case of thin-walled plates, vacuum die casting is beneficial in terms of formability compared to conventional die casting.

  7. Deformation of the Tonga Slab: Evidence for Interaction with a Small-scale Secondary Plume in the Transition Zone

    NASA Astrophysics Data System (ADS)

    Billen, M. I.; Bikoba, J. Z.; Tarlow, S.

    2015-12-01

    Magali I. Billen and John Z. BikobaThe Tonga Slab is the most seismically active subduction zone providing a uniquely detailed picture of the internal deformation of the slab, with apparent warping and folding, from the surface through the transition zone. Here, we investigate the dynamical origin of a irregular feature in the seismicity within the transition zone located at 21-28oS, using 3D visualization and analysis of the seismicity and compression/tension (P/T) axis from the moment tensor solutions to characterize the geometry of, and the orientation of forces acting on, the slab. This irregular feature can be described as narrow region of upward deflection of the slab, with a gap in seismicity beyond (down-dip of) the deflected region, and flanked by two narrow V-shaped gaps in seismicity suggestive of tearing of the slab. The P/T axis show a dominate down-dip orientation of the P axis above the deflection point, which rotate to a nearly vertical orientation within the central region of the deflected slab. The adjacent attached regions (down-dip of the two flanking slab gaps) also have rotated and more heterogeneous P/T axis orientations. In contrast, the adjacent section of the slab to the north of 21oS has continuous seismicity throughout the transition zone, with a roughly uniform planar shape, and generally down-dip orientation of the P axis. We explore three possible hypothesis for the observed deformation including: 1) deflection due to a buoyant metastable olivine wedge, 2) a buckling feature in the slab as previously proposed by Myhill (GJI., 2013), and interaction with a small-scale, secondary plume upwelling below the slab. If the newly-observed gaps in seismicity indicate physical gaps or significant thinning of the slab, then these observations are not consistent with the buckling hypothesis. The lack of significant along-strike variation in slab age or subduction rate also suggests that a localized region of metastable olivine is unlikely. Therefore, we test the third hypothesis using a simple 3D geodynamical model of a planar dipping slab overlying a localized buoyant upwelling (radius < 150 km). We present comparisons of the observations to the model predictions for the subsequent deformation of the slab and orientations of principal stress axis within the slab.

  8. On the membrane approximation in isothermal film casting

    NASA Astrophysics Data System (ADS)

    Hagen, Thomas

    2014-08-01

    In this work, a one-dimensional model for isothermal film casting is studied. Film casting is an important engineering process to manufacture thin films and sheets from a highly viscous polymer melt. The model equations account for variations in film width and film thickness, and arise from thinness and kinematic assumptions for the free liquid film. The first aspect of our study is a rigorous discussion of the existence and uniqueness of stationary solutions. This objective is approached via the argument principle, exploiting the homotopy invariance of a family of analytic functions. As our second objective, we analyze the linearization of the governing equations about stationary solutions. It is shown that solutions for the associated boundary-initial value problem are given by a strongly continuous semigroup of bounded linear operators. To reach this result, we cast the relevant Cauchy problem in a more accessible form. These transformed equations allow us insight into the regularity of the semigroup, thus yielding the validity of the spectral mapping theorem for the semigroup and the spectrally determined growth property.

  9. Dimensional accuracy and surface property of titanium casting using gypsum-bonded alumina investment.

    PubMed

    Yan, Min; Takahashi, Hidekazu; Nishimura, Fumio

    2004-12-01

    The aim of the present study was to evaluate the dimensional accuracy and surface property of titanium casting obtained using a gypsum-bonded alumina investment. The experimental gypsum-bonded alumina investment with 20 mass% gypsum content mixed with 2 mass% potassium sulfate was used for five cp titanium castings and three Cu-Zn alloy castings. The accuracy, surface roughness (Ra), and reaction layer thickness of these castings were investigated. The accuracy of the castings obtained from the experimental investment ranged from -0.04 to 0.23%, while surface roughness (Ra) ranged from 7.6 to 10.3microm. A reaction layer of about 150 microm thickness under the titanium casting surface was observed. These results suggested that the titanium casting obtained using the experimental investment was acceptable. Although the reaction layer was thin, surface roughness should be improved.

  10. Relationship Between Solidification Microstructure and Hot Cracking Susceptibility for Continuous Casting of Low-Carbon and High-Strength Low-Alloyed Steels: A Phase-Field Study

    NASA Astrophysics Data System (ADS)

    Böttger, B.; Apel, M.; Santillana, B.; Eskin, D. G.

    2013-08-01

    Hot cracking is one of the major defects in continuous casting of steels, frequently limiting the productivity. To understand the factors leading to this defect, microstructure formation is simulated for a low-carbon and two high-strength low-alloyed steels. 2D simulation of the initial stage of solidification is performed in a moving slice of the slab using proprietary multiphase-field software and taking into account all elements which are expected to have a relevant effect on the mechanical properties and structure formation during solidification. To account for the correct thermodynamic and kinetic properties of the multicomponent alloy grades, the simulation software is online coupled to commercial thermodynamic and mobility databases. A moving-frame boundary condition allows traveling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. From the simulation results, significant microstructure differences between the steel grades are quantitatively evaluated and correlated with their hot cracking behavior according to the Rappaz-Drezet-Gremaud (RDG) hot cracking criterion. The possible role of the microalloying elements in hot cracking, in particular of traces of Ti, is analyzed. With the assumption that TiN precipitates trigger coalescence of the primary dendrites, quantitative evaluation of the critical strain rates leads to a full agreement with the observed hot cracking behavior.

  11. Thin Line, Broad Shadows

    NASA Image and Video Library

    2011-02-21

    Saturn rings appear as only a thin line seen edge-on in the middle of this view from NASA Cassini spacecraft, but the rings cast broad shadows on the southern hemisphere of the planet in the lower left of the image.

  12. Solid-State Densification of Spun-Cast Self-Assembled Monolayers for Use in Ultra-Thin Hybrid Dielectrics.

    PubMed

    Hutchins, Daniel O; Acton, Orb; Weidner, Tobias; Cernetic, Nathan; Baio, Joe E; Castner, David G; Ma, Hong; Jen, Alex K-Y

    2012-11-15

    Ultra-thin self-assembled monolayer (SAM)-oxide hybrid dielectrics have gained significant interest for their application in low-voltage organic thin film transistors (OTFTs). A [8-(11-phenoxy-undecyloxy)-octyl]phosphonic acid (PhO-19-PA) SAM on ultrathin AlO x (2.5 nm) has been developed to significantly enhance the dielectric performance of inorganic oxides through reduction of leakage current while maintaining similar capacitance to the underlying oxide structure. Rapid processing of this SAM in ambient conditions is achieved by spin coating, however, as-cast monolayer density is not sufficient for dielectric applications. Thermal annealing of a bulk spun-cast PhO-19-PA molecular film is explored as a mechanism for SAM densification. SAM density, or surface coverage, and order are examined as a function of annealing temperature. These SAM characteristics are probed through atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure spectroscopy (NEXAFS). It is found that at temperatures sufficient to melt the as-cast bulk molecular film, SAM densification is achieved; leading to a rapid processing technique for high performance SAM-oxide hybrid dielectric systems utilizing a single wet processing step. To demonstrate low-voltage devices based on this hybrid dielectric (with leakage current density of 7.7×10 -8 A cm -2 and capacitance density of 0.62 µF cm -2 at 3 V), pentacene thin-film transistors (OTFTs) are fabricated and yield sub 2 V operation and charge carrier mobilites of up to 1.1 cm 2 V -1 s -1 .

  13. Solid-State Densification of Spun-Cast Self-Assembled Monolayers for Use in Ultra-Thin Hybrid Dielectrics

    PubMed Central

    Hutchins, Daniel O.; Acton, Orb; Weidner, Tobias; Cernetic, Nathan; Baio, Joe E.; Castner, David G.; Ma, Hong; Jen, Alex K.-Y.

    2013-01-01

    Ultra-thin self-assembled monolayer (SAM)-oxide hybrid dielectrics have gained significant interest for their application in low-voltage organic thin film transistors (OTFTs). A [8-(11-phenoxy-undecyloxy)-octyl]phosphonic acid (PhO-19-PA) SAM on ultrathin AlOx (2.5 nm) has been developed to significantly enhance the dielectric performance of inorganic oxides through reduction of leakage current while maintaining similar capacitance to the underlying oxide structure. Rapid processing of this SAM in ambient conditions is achieved by spin coating, however, as-cast monolayer density is not sufficient for dielectric applications. Thermal annealing of a bulk spun-cast PhO-19-PA molecular film is explored as a mechanism for SAM densification. SAM density, or surface coverage, and order are examined as a function of annealing temperature. These SAM characteristics are probed through atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure spectroscopy (NEXAFS). It is found that at temperatures sufficient to melt the as-cast bulk molecular film, SAM densification is achieved; leading to a rapid processing technique for high performance SAM-oxide hybrid dielectric systems utilizing a single wet processing step. To demonstrate low-voltage devices based on this hybrid dielectric (with leakage current density of 7.7×10−8 A cm−2 and capacitance density of 0.62 µF cm−2 at 3 V), pentacene thin-film transistors (OTFTs) are fabricated and yield sub 2 V operation and charge carrier mobilites of up to 1.1 cm2 V−1 s−1. PMID:24288423

  14. Performance assessment of Wisconsin's whitetopping and ultra thin whitetopping projects.

    DOT National Transportation Integrated Search

    2010-03-01

    Whitetopping overlay is a concrete overlay on the prepared existing hot mix asphalt (HMA) pavement to : improve both the structural and functional capability. Its a relatively new rehabilitation technology for : deteriorated HMA. If the slab thick...

  15. Cartwheel projections of segmented pulmonary vasculature for the detection of pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Kiraly, Atilla P.; Naidich, David P.; Novak, Carol L.

    2005-04-01

    Pulmonary embolism (PE) detection via contrast-enhanced computed tomography (CT) images is an increasingly important topic of research. Accurate identification of PE is of critical importance in determining the need for further treatment. However, current multi-slice CT scanners provide datasets typically containing 600 or more images per patient, making it desirable to have a visualization method to help radiologists focus directly on potential candidates that might otherwise have been overlooked. This is especially important when assessing the ability of CT to identify smaller, sub-segmental emboli. We propose a cartwheel projection approach to PE visualization that computes slab projections of the original data aided by vessel segmentation. Previous research on slab visualization for PE has utilized the entire volumetric dataset, requiring thin slabs and necessitating the use of maximum intensity projection (MIP). Our use of segmentation within the projection computation allows the use of thicker slabs than previous methods, as well as the ability to employ visualization variations that are only possible with segmentation. Following automatic segmentation of the pulmonary vessels, slabs may be rotated around the X-, Y- or Z-axis. These slabs are rendered by preferentially using voxels within the lung vessels. This effectively eliminates distracting information not relevant to diagnosis, lessening both the chance of overlooking a subtle embolus and minimizing time on spent evaluating false positives. The ability to employ thicker slabs means fewer images need to be evaluated, yielding a more efficient workflow.

  16. Estimation of Heat Transfer Coefficient in Squeeze Casting of Magnesium Alloy AM60 by Experimental Polynomial Extrapolation Method

    NASA Astrophysics Data System (ADS)

    Sun, Zhizhong; Niu, Xiaoping; Hu, Henry

    In this work, a different wall-thickness 5-step (with thicknesses as 3, 5, 8, 12, 20 mm) casting mold was designed, and squeeze casting of magnesium alloy AM60 was performed in a hydraulic press. The casting-die interfacial heat transfer coefficients (IHTC) in 5-step casting were determined based on experimental thermal histories data throughout the die and inside the casting which were recorded by fine type-K thermocouples. With measured temperatures, heat flux and IHTC were evaluated using the polynomial curve fitting method. The results show that the wall thickness affects IHTC peak values significantly. The IHTC value for the thick step is higher than that for the thin steps.

  17. Two-dimensional models for the optical response of thin films

    NASA Astrophysics Data System (ADS)

    Li, Yilei; Heinz, Tony F.

    2018-04-01

    In this work, we present a systematic study of 2D optical models for the response of thin layers of material under excitation by normally incident light. The treatment, within the framework of classical optics, analyzes a thin film supported by a semi-infinite substrate, with both the thin layer and the substrate assumed to exhibit local, isotropic linear response. Starting from the conventional three-dimensional (3D) slab model of the system, we derive a two-dimensional (2D) sheet model for the thin film in which the optical response is described by a sheet optical conductivity. We develop criteria for the applicability of this 2D sheet model for a layer with an optical thickness far smaller than the wavelength of the light. We examine in detail atomically thin semi-metallic and semiconductor van-der-Waals layers and ultrathin metal films as representative examples. Excellent agreement of the 2D sheet model with the 3D slab model is demonstrated over a broad spectral range from the radio frequency limit to the near ultraviolet. A linearized version of system response for the 2D model is also presented for the case where the influence of the optically thin layer is sufficiently weak. Analytical expressions for the applicability and accuracy of the different optical models are derived, and the appropriateness of the linearized treatment for the materials is considered. We discuss the advantages, as well as limitations, of these models for the purpose of deducing the optical response function of the thin layer from experiment. We generalize the theory to take into account in-plane anisotropy, layered thin film structures, and more general substrates. Implications of the 2D model for the transmission of light by the thin film and for the implementation of half- and totally absorbing layers are discussed.

  18. Epitaxial Hexagonal Ferrites for Millimeter Wave Tunable Filters.

    DTIC Science & Technology

    1982-12-13

    form of thin films or slabs, the LPE format should be particularly suitable. Another potential advantage of the LPE format is that the insulating...flux (solvent). In effect, this emulates the successful LPE garnet (YIG) technology which employs this flux. In contrast to garnets , Pb atoms can be...member for a workshop entitled "Application of Garnet and Ferrite Thin Films to Microwave Devices." The principal investigator also attended the 6th

  19. The linear Boltzmann equation in slab geometry - Development and verification of a reliable and efficient solution

    NASA Technical Reports Server (NTRS)

    Stamnes, K.; Lie-Svendsen, O.; Rees, M. H.

    1991-01-01

    The linear Boltzmann equation can be cast in a form mathematically identical to the radiation-transport equation. A multigroup procedure is used to reduce the energy (or velocity) dependence of the transport equation to a series of one-speed problems. Each of these one-speed problems is equivalent to the monochromatic radiative-transfer problem, and existing software is used to solve this problem in slab geometry. The numerical code conserves particles in elastic collisions. Generic examples are provided to illustrate the applicability of this approach. Although this formalism can, in principle, be applied to a variety of test particle or linearized gas dynamics problems, it is particularly well-suited to study the thermalization of suprathermal particles interacting with a background medium when the thermal motion of the background cannot be ignored. Extensions of the formalism to include external forces and spherical geometry are also feasible.

  20. Assessing the role of slab rheology in coupled plate-mantle convection models

    NASA Astrophysics Data System (ADS)

    Bello, Léa; Coltice, Nicolas; Tackley, Paul J.; Dietmar Müller, R.; Cannon, John

    2015-11-01

    Reconstructing the 3D structure of the Earth's mantle has been a challenge for geodynamicists for about 40 yr. Although numerical models and computational capabilities have substantially progressed, parameterizations used for modeling convection forced by plate motions are far from being Earth-like. Among the set of parameters, rheology is fundamental because it defines in a non-linear way the dynamics of slabs and plumes, and the organization of lithosphere deformation. In this study, we evaluate the role of the temperature dependence of viscosity (variations up to 6 orders of magnitude) and the importance of pseudo-plasticity on reconstructing slab evolution in 3D spherical models of convection driven by plate history models. Pseudo-plasticity, which produces plate-like behavior in convection models, allows a consistent coupling between imposed plate motions and global convection, which is not possible with temperature-dependent viscosity alone. Using test case models, we show that increasing temperature dependence of viscosity enhances vertical and lateral coherence of slabs, but leads to unrealistic slab morphologies for large viscosity contrasts. Introducing pseudo-plasticity partially solves this issue, producing thin laterally and vertically more continuous slabs, and flat subduction where trench retreat is fast. We evaluate the differences between convection reconstructions employing different viscosity laws to be very large, and similar to the differences between two models with the same rheology but using two different plate histories or initial conditions.

  1. Manufacturing polymer thin films in a micro-gravity environment

    NASA Technical Reports Server (NTRS)

    Vera, Ivan

    1987-01-01

    This project represents Venezuela's first scientific experiment in space. The apparatus for the automatic casting of two polymer thin films will be contained in NASA's Payload No. G-559 of the Get Away Special program for a future orbital space flight in the U.S. Space Shuttle. Semi-permeable polymer membranes have important applications in a variety of fields, such as medicine, energy, and pharmaceuticals and in general fluid separation processes, such as reverse osmosis, ultrafiltration, and electrodialysis. The casting of semi-permeable membranes in space will help to identify the roles of convection in determining the structure of these membranes.

  2. Large structural, thin-wall castings made of metals subject to hot tearing, and their fabrication

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor)

    2001-01-01

    An article, such as a gas turbine engine mixer, is made by providing a mold structure defining a thin-walled, hollow article, and a base metal that is subject to hot tear cracking when cast in a generally equiaxed polycrystalline form, such as Rene' 108 and Mar-M247. The article is fabricated by introducing the molten base metal into the mold structure, and directionally solidifying the base metal in the mold structure to form a directionally oriented structure. The directionally oriented structure may be formed of a single grain or oriented multiple grains.

  3. Numerical modeling of Farallon Plate flat-slab subduction: Influence of lithosphere structure and rheology on slab dynamics

    NASA Astrophysics Data System (ADS)

    Liu, X.; Currie, C. A.

    2017-12-01

    The subducted Farallon plate is believed to have evolved to a flat geometry underneath North America plate during Late Cretaceous, triggering Laramide deformation within the continental interior. However, the mechanism that caused the oceanic slab to flatten and the factors that control the flat-slab depth remain uncertain. In this work, we use 2D thermal-mechanical models using the SOPALE code to study the subduction dynamics from 90 Ma to 50 Ma. During this period, an oceanic plateau (Shatsky Conjugate) is inferred to have subducted beneath western North America and interacted with the continental lithosphere, including areas of thicker lithosphere such as the Colorado Plateau and Wyoming Craton. Based on seismic tomography and plate reconstruction data sets, we built a set of models to examine the influence of the structure and rheology of the oceanic and continental plates on slab dynamics. Models include a 600 km wide oceanic plateau consisting of 18 km thick crust and a 36 km thick underlying harzburgite layer, and we ran a series of model experiments to test different continental thicknesses (80 km, 120 km, & 180 km) and continental mantle lithosphere strengths (approximating conditions from wet olivine to dry olivine). Consistent with earlier studies, we find that creation of a long flat slab requires a buoyant oceanic plateau (i.e., non-eclogitized crust) and trenchward motion of the continent. In addition, our models demonstrate the upper plate has an important control on slab dynamics. A flat slab requires either a thin continent or, if the continent is thick, its mantle lithosphere must be relatively weak so that it can be displaced by the flattening slab. The depth of the flat slab is mainly controlled by two factors: (1) the continental thickness and (2) the strength of the continental mantle lithosphere. For the same initial lithosphere thickness (120 km), a shallower flat slab ( 90 km depth) occurs for the weakest mantle lithosphere ( wet olivine) compared to 120 km depth for strong ( dry) mantle lithosphere because the flat slab removes the lowermost weak lithosphere. Moreover, an even deeper slab ( 130 km) can be found underneath the weakest but thicker continental lithosphere (180 km). Future models will focus on how the flat slab may induce hydration and deformation for the overriding continental plate.

  4. Fatigue Variability of a Single Crystal Superalloy at Elevated Temperature (Preprint)

    DTIC Science & Technology

    2009-03-01

    cast slabs of PWA 1484 with the primary longitudinal axis in the > direction (±5 °). The dogbone specimens had a 6 mm gage length and 4 mm...literature concerning the fatigue properties of PWA 1484. It has been reported that fatigue failures often start from eutectics and carbides [ 4 , 6 ...COVERED (From - To) March 2009 Journal Article Preprint 01 March 2009 – 01 March 2009 4 . TITLE AND SUBTITLE FATIGUE VARIABILITY OF A SINGLE CRYSTAL

  5. Long range self-assembly of polythiophene breath figures: Optical and morphological characterization

    DOE PAGES

    Routh, Prahlad K.; Nykypanchuk, Dmytro; Venkatesh, T. A.; ...

    2015-09-01

    Large area, device relevant sized microporous thin films are formed with commercially available polythiophenes by the breath figure technique, a water-assisted micro patterning method, with such semitransparent thin films exhibiting periodicity and uniformity dictated by the length of the polymer side chain. Compared to drop casted thin films, the microporous thin films exhibit increased crystallinity due to stronger packing of the polymer inside the honeycomb frame.

  6. Defect detection in slab surface: a novel dual Charge-coupled Device imaging-based fuzzy connectedness strategy.

    PubMed

    Zhao, Liming; Ouyang, Qi; Chen, Dengfu; Udupa, Jayaram K; Wang, Huiqian; Zeng, Yuebin

    2014-11-01

    To provide an accurate surface defects inspection system and make the automation of robust image segmentation method a reality in routine production line, a general approach is presented for continuous casting slab (CC-slab) surface defects extraction and delineation. The applicability of the system is not tied to CC-slab exclusively. We combined the line array CCD (Charge-coupled Device) traditional scanning imaging (LS-imaging) and area array CCD laser three-dimensional (3D) scanning imaging (AL-imaging) strategies in designing the system. Its aim is to suppress the respective imaging system's limitations. In the system, the images acquired from the two CCD sensors are carefully aligned in space and in time by maximum mutual information-based full-fledged registration schema. Subsequently, the image information is fused from these two subsystems such as the unbroken 2D information in LS-imaging and 3D depressed information in AL-imaging. Finally, on the basis of the established dual scanning imaging system the region of interest (ROI) localization by seed specification was designed, and the delineation for ROI by iterative relative fuzzy connectedness (IRFC) algorithm was utilized to get a precise inspection result. Our method takes into account the complementary advantages in the two common machine vision (MV) systems and it performs competitively with the state-of-the-art as seen from the comparison of experimental results. For the first time, a joint imaging scanning strategy is proposed for CC-slab surface defect inspection that allows a feasible way of powerful ROI delineation strategies to be applied to the MV inspection field. Multi-ROI delineation by using IRFC in this research field may further improve the results.

  7. Characterization of the punching shear capacity of thin ultra-high performance concrete slabs.

    DOT National Transportation Integrated Search

    2005-01-01

    Ultra-high performance concrete (UHPC) is a relatively new type of concrete that exhibits mechanical properties that are far superior to those of conventional concrete and in some cases rival those of steel. The main characteristics that distinguish ...

  8. The Coupling of Macrosegregation with Grain Nucleation, Growth and Motion in DC Cast Aluminum Alloy Ingots

    NASA Astrophysics Data System (ADS)

    Založnik, Miha; Kumar, Arvind; Combeau, Hervé; Bedel, Marie; Jarry, Philippe; Waz, Emmanuel

    The phenomena responsible for the formation of macrosegregations, and grain structures during solidification are closely intertwined. We present a model study of the formation of macrosegregation and grain structure in an industrial sized (350 mm thick) direct chill (DC) cast aluminum alloy slab. The modeling of these phenomena in DC casting is a challenging problem mainly due to the size of the products, the variety of the phenomena to be accounted for, and the non-linearities involved. We used a volume-averaged multiscale model that describes nucleation on grain refiner particles and grain growth, coupled with macroscopic transport: fluid flow driven by natural convection and shrinkage, transport of free-floating globular equiaxed grains, heat transfer, and solute transport. We analyze the heat and mass transfer in the slurry moving-grain zone that is a result of the coupling of the fluid flow and of the grain nucleation, growth and motion. We discuss the impact of the flow structure in the slurry zone and of the grain packing fraction on the macrosegregation.

  9. Production of footbridge with double curvature made of UHPC

    NASA Astrophysics Data System (ADS)

    Kolísko, J.; Čítek, D.; Tej, P.; Rydval, M.

    2017-09-01

    This article present a mix design, preparation and production of thin-walled footbridge made from UHPFRC. In this case an experimental pedestrian bridge was design and prepared. Bridge with span of 10 m and the clear width of 1.50 m designed as single-span bridge. Optimization of UHPFRC matrix and parameters of this material leads to the design of very thin structures. Total thickness of shell structure 30 - 45 mm. Bridge was cast as a prefabricated element in one piece. Self-compacting character of UHPFRC with high flowability allows the production of the final structure. Extensive research was done before production of footbridge. Experimental reached data were compared with extensive numerical analysis and the final design of structure and UHPFRC matrix were optimized in many details. Two versions of large scale mock-ups were casted and tested. According to the complexity of whole experiment a casting technology and production of formwork were tested and optimized many times.

  10. Air slab-correction for Γ-ray attenuation measurements

    NASA Astrophysics Data System (ADS)

    Mann, Kulwinder Singh

    2017-12-01

    Gamma (γ)-ray shielding behaviour (GSB) of a material can be ascertained from its linear attenuation coefficient (μ, cm-1). Narrow-beam transmission geometry is required for μ-measurement. In such measurements, a thin slab of the material has to insert between point-isotropic γ-ray source and detector assembly. The accuracy in measurements requires that sample's optical thickness (OT) remain below 0.5 mean free path (mfp). Sometimes it is very difficult to produce thin slab of sample (absorber), on the other hand for thick absorber, i.e. OT >0.5 mfp, the influence of the air displaced by it cannot be ignored during μ-measurements. Thus, for a thick sample, correction factor has been suggested which compensates the air present in the transmission geometry. The correction factor has been named as an air slab-correction (ASC). Six samples of low-Z engineering materials (cement-black, clay, red-mud, lime-stone, cement-white and plaster-of-paris) have been selected for investigating the effect of ASC on μ-measurements at three γ-ray energies (661.66, 1173.24, 1332.50 keV). The measurements have been made using point-isotropic γ-ray sources (Cs-137 and Co-60), NaI(Tl) detector and multi-channel-analyser coupled with a personal computer. Theoretical values of μ have been computed using a GRIC2-toolkit (standardized computer programme). Elemental compositions of the samples were measured with Wavelength Dispersive X-ray Fluorescence (WDXRF) analyser. Inter-comparison of measured and computed μ-values, suggested that the application of ASC helps in precise μ-measurement for thick samples of low-Z materials. Thus, this hitherto widely ignored ASC factor is recommended to use in similar γ-ray measurements.

  11. Capillary sample introduction of polymerase chain reaction (PCR) products separated in ultrathin slab gels.

    PubMed

    Bullard, K M; Hietpas, P B; Ewing, A G

    1998-01-01

    Polymerase chain reaction (PCR) amplified short tandem repeat (STR) samples from the HUMVWF locus have been analyzed using a unique sample introduction and separation technique. A single capillary is used to transfer samples onto an ultrathin slab gel (57 microm thin). This ultrathin nondenaturing polyacrylamide gel is used to separate the amplified fragments, and laser-induced fluorescence with ethidium bromide is used for detection. The feasibility of performing STR analysis using this system has been investigated by examining the reproducibility for repeated samples. Reproducibility is examined by comparing the migration of the 14 and 17 HUMVWF alleles on three consecutive separations on the ultrathin slab gel. Using one locus, separations match in migration time with the two alleles 42 s apart for each of the three consecutive separations. This technique shows potential to increase sample throughput in STR analysis techniques although separation resolution still needs to be improved.

  12. Slab rupture and delamination under the Betics and Rif constrained from receiver functions

    NASA Astrophysics Data System (ADS)

    Mancilla, Flor de Lis; Booth-Rea, Guillermo; Stich, Daniel; Pérez-Peña, José Vicente; Morales, José; Azañón, José Miguel; Martin, Rosa; Giaconia, Flavio

    2015-11-01

    We map the lithospheric structure under the westernmost Mediterranean convergent setting interpreting P-receiver functions obtained from a dense seismic network. No orogenic root occurs under the eastern and great part of the central Betics. However, the subducted South Iberian continental lithosphere is found beneath the western Betics where the Iberian Moho reaches depths of approximately 65 km, dipping gently towards the SE. Meanwhile, at the Rif, strong crustal and lithospheric thickness contrasts occur across the Nekor NW-SE sinistral fault that overlies the region of present slab tearing. East of the Nekor fault there is no orogenic root and the crust has been thinned to approximately 22 km, whilst to the west the crust reaches 55 km thickness and the Maghrebian continental lithosphere is attached to the lithospheric slab imaged by tomography under the Alboran basin. These data suggest that subduction rollback under the Alboran and Algerian basins, together with continental slab tearing or detachment producing edge delamination under the Betics and Rif have been the main tectonic mechanisms driving extension, magmatism and regional uplift in the westernmost Mediterranean since the Late Miocene until present. The surface expression of edge-delamination and slab tearing is marked by regional uplift, denudation of HP rocks in elongated core-complex type domes, late Miocene volcanism in the Eastern Betics and Rif, and by large NE-SW strike-slip transfer faults like the Alpujarras, Crevillente, Torcal or Nekor faults that accommodate strong gradients in crustal displacements. The Iberian slab is still attached to the oceanic slab imaged under the Alboran basin at the western Betics where intermediate depth seismicity, recent dextral strike-slip faulting and folding, could reflect slab tearing. Meanwhile, active faulting and differential GPS-measured displacements would mark slab tearing beneath the Rif coinciding with the trace of the sinistral Nekor fault.

  13. Fabrication of thin film TiO2 nanotube arrays on Co-28Cr-6Mo alloy by anodization.

    PubMed

    Ni, Jiahua; Frandsen, Christine J; Noh, Kunbae; Johnston, Gary W; He, Guo; Tang, Tingting; Jin, Sungho

    2013-04-01

    Titanium oxide (TiO2) nanotube arrays were prepared by anodization of Ti/Au/Ti trilayer thin film DC sputtered onto forged and cast Co-28Cr-6Mo alloy substrate at 400 °C. Two different types of deposited film structures (Ti/Au/Ti trilayer and Ti monolayer), and two deposition temperatures (room temperature and 400 °C) were compared in this work. The concentrations of ammonium fluoride (NH4F) and H2O in glycerol electrolyte were varied to study their effect on the formation of TiO2 nanotube arrays on a forged and cast Co-28Cr-6Mo alloy. The results show that Ti/Au/Ti trilayer thin film and elevated temperature sputtered films are favorable for the formation of well-ordered nanotube arrays. The optimized electrolyte concentration for the growth of TiO2 nanotube arrays on forged and cast Co-28Cr-6Mo alloy was obtained. This work contains meaningful results for the application of a TiO2 nanotube coating to a CoCr alloy implant for potential next-generation orthopedic implant surface coatings with improved osseointegrative capabilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Mechanical and physicochemical properties study on gellan gum thin film prepared using film casting method

    NASA Astrophysics Data System (ADS)

    Ismail, Nur Arifah; Razali, Mohd Hasmizam; Amin, Khairul Anuar Mat

    2017-09-01

    The GG thin films were prepared by film casting technique using gelzan (GG1) and kelcogel (GG2) respectively. The physical appearances of the thin films were observed and their mechanical and chemical properties were investigated. Chemical characterizations were done by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), UV-Vis Spectroscopy, and Scanning Electron Microscopy (SEM). Based on the ATR-FTIR result, GG1 and GG2 thin films show a broad peak in the range of 3600-3200 cm-1 assigned to -OH functional group. A broad peaks also was observed at 3000-2600 cm-1 and 1800-1600 cm-1 which are belong to -CH and C=O functional group, respectively. The UV-Vis Spectroscopy analysis shows that single absorption peak was observed at 260 nm for both films. For mechanical properties, GG1 thin film has high tensile strength (80±12), but low strain at break (2±1), on the other hand GG2 thin film has low tensile strength (3±0.08) but high strain at break (13±0.58). The Water Vapour Transmission Rates (WVTR) and swelling of GG1 and GG2 thin films were (422±113, 415±26) and (987±113, 902±63), respectively.

  15. Trench-parallel spreading ridge subduction and its consequences for the geological evolution of the overriding plate: Insights from analogue models and comparison with the Neogene subduction beneath Patagonia

    NASA Astrophysics Data System (ADS)

    Salze, Méline; Martinod, Joseph; Guillaume, Benjamin; Kermarrec, Jean-Jacques; Ghiglione, Matias C.; Sue, Christian

    2018-07-01

    A series of 3-D asthenospheric-scale analogue models have been conducted in the laboratory in order to simulate the arrival of a spreading ridge at the trench and understand its effect on plate kinematics, slab geometry, and on the deformation of the overriding plate. These models are made of a two-layered linearly viscous system simulating the lithosphere and asthenosphere. We reproduce the progressive decrease in thickness of the oceanic lithosphere at the trench. We measure plate kinematics, slab geometry and upper plate deformation. Our experiments reveal that the subduction of a thinning plate beneath a freely moving overriding continent favors a decrease of the subduction velocity and an increase of the oceanic slab dip. When the upper plate motion is imposed by lateral boundary conditions, the evolution of the subducting plate geometry largely differs depending on the velocity of the overriding plate: the larger its trenchward velocity, the smaller the superficial dip of the oceanic slab. A slab flattening episode may occur resulting from the combined effect of the subduction of an increasingly thinner plate and the trenchward motion of a fast overriding plate. Slab flattening would be marked by an increase of the distance between the trench and the volcanic arc in nature. This phenomenon may explain the reported Neogene eastward motion of the volcanic arc in the Southern Patagonia that occurred prior to the subduction of the Chile Ridge.

  16. Spiral Microstrip Antenna with Resistance

    NASA Technical Reports Server (NTRS)

    Shively, David G. (Inventor)

    1998-01-01

    A spiral microstrip antenna having resistor elements embedded in each of the spiral arms is provided. The antenna is constructed using a conductive back plane as a base. The back plane supports a dielectric slab having a thickness between one-sixteenth and one-quarter of an inch. A square spiral, having either two or four arms, is attached to the dielectric slab. Each arm of the spiral has resistor elements thereby dissipating an excess energy not already emitted through radiation. The entire configuration provides a thin, flat, high gain, wide bandwidth antenna which requires no underlying cavity. The configuration allows the antenna to be mounted conformably on an aircraft surface.

  17. Scattering by a slab containing randomly located cylinders: comparison between radiative transfer and electromagnetic simulation.

    PubMed

    Roux, L; Mareschal, P; Vukadinovic, N; Thibaud, J B; Greffet, J J

    2001-02-01

    This study is devoted to the examination of scattering of waves by a slab containing randomly located cylinders. For the first time to our knowledge, the complete transmission problem has been solved numerically. We have compared the radiative transfer theory with a numerical solution of the wave equation. We discuss the coherent effects, such as forward-scattering dip and backscattering enhancement. It is seen that the radiative transfer equation can be used with great accuracy even for optically thin systems whose geometric thickness is comparable with the wavelength. We have also shown the presence of dependent scattering.

  18. Spontaneous emission in semiconductor laser amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnaud, J.; Coste, F.; Fesqueet, J.

    1985-06-01

    In a mode matched configuration, spontaneous emission in semiconductor laser amplifiers is enhanced by a factor which is larger than unity but which is significantly smaller than the K-factor calculated by Petermann. Using thin-slab model, we find that in typical situations, the factor is about K/2.

  19. Bias of air void system data from fly ash concretes.

    DOT National Transportation Integrated Search

    1983-01-01

    Hollow censopheres of fly ash may have walls so thin that they will appear to be air voids when they appear on a polished slab prepared for air void determination by ASTM C457. Therefore the following precautions are recommended. 1. The operator of t...

  20. Using Polarized Spectroscopy to Investigate Order in Thin-Films of Ionic Self-Assembled Materials Based on Azo-Dyes

    PubMed Central

    Ahmad, Mariam; Andersen, Frederik; Brend Bech, Ári; Bendixen, H. Krestian L.; Nawrocki, Patrick R.; Bloch, Anders J.; Bora, Ilkay; Bukhari, Tahreem A.; Bærentsen, Nicolai V.; Carstensen, Jens; Chima, Smeeah; Colberg, Helene; Dahm, Rasmus T.; Daniels, Joshua A.; Dinckan, Nermin; El Idrissi, Mohamed; Erlandsen, Ricci; Førster, Marc; Ghauri, Yasmin; Gold, Mikkel; Hansen, Andreas; Hansen, Kenn; Helmsøe-Zinck, Mathias; Henriksen, Mathias; Hoffmann, Sophus V.; Hyllested, Louise O. H.; Jensen, Casper; Kallenbach, Amalie S.; Kaur, Kirandip; Khan, Suheb R.; Kjær, Emil T. S.; Kristiansen, Bjørn; Langvad, Sylvester; Lund, Philip M.; Munk, Chastine F.; Møller, Theis; Nehme, Ola M. Z.; Nejrup, Mathilde Rove; Nexø, Louise; Nielsen, Simon Skødt Holm; Niemeier, Nicolai; Nikolajsen, Lasse V.; Nøhr, Peter C. T.; Skaarup Ovesen, Jacob; Paustian, Lucas; Pedersen, Adam S.; Petersen, Mathias K.; Poulsen, Camilla M.; Praeger-Jahnsen, Louis; Qureshi, L. Sonia; Schiermacher, Louise S.; Simris, Martin B.; Smith, Gorm; Smith, Heidi N.; Sonne, Alexander K.; Zenulovic, Marko R.; Winther Sørensen, Alma; Vogt, Emil; Væring, Andreas; Westermann, Jonas; Özcan, Sevin B.

    2018-01-01

    Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained. PMID:29462883

  1. Using Polarized Spectroscopy to Investigate Order in Thin-Films of Ionic Self-Assembled Materials Based on Azo-Dyes.

    PubMed

    Kühnel, Miguel R Carro-Temboury Martin; Ahmad, Mariam; Andersen, Frederik; Bech, Ári Brend; Bendixen, H Krestian L; Nawrocki, Patrick R; Bloch, Anders J; Bora, Ilkay; Bukhari, Tahreem A; Bærentsen, Nicolai V; Carstensen, Jens; Chima, Smeeah; Colberg, Helene; Dahm, Rasmus T; Daniels, Joshua A; Dinckan, Nermin; Idrissi, Mohamed El; Erlandsen, Ricci; Førster, Marc; Ghauri, Yasmin; Gold, Mikkel; Hansen, Andreas; Hansen, Kenn; Helmsøe-Zinck, Mathias; Henriksen, Mathias; Hoffmann, Sophus V; Hyllested, Louise O H; Jensen, Casper; Kallenbach, Amalie S; Kaur, Kirandip; Khan, Suheb R; Kjær, Emil T S; Kristiansen, Bjørn; Langvad, Sylvester; Lund, Philip M; Munk, Chastine F; Møller, Theis; Nehme, Ola M Z; Nejrup, Mathilde Rove; Nexø, Louise; Nielsen, Simon Skødt Holm; Niemeier, Nicolai; Nikolajsen, Lasse V; Nøhr, Peter C T; Orlowski, Dominik B; Overgaard, Marc; Ovesen, Jacob Skaarup; Paustian, Lucas; Pedersen, Adam S; Petersen, Mathias K; Poulsen, Camilla M; Praeger-Jahnsen, Louis; Qureshi, L Sonia; Ree, Nicolai; Schiermacher, Louise S; Simris, Martin B; Smith, Gorm; Smith, Heidi N; Sonne, Alexander K; Zenulovic, Marko R; Sørensen, Alma Winther; Sørensen, Karina; Vogt, Emil; Væring, Andreas; Westermann, Jonas; Özcan, Sevin B; Sørensen, Thomas Just

    2018-02-15

    Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained.

  2. Revealing topological Dirac fermions at the surface of strained HgTe thin films via quantum Hall transport spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Crauste, O.; Haas, B.; Jouneau, P.-H.; Bäuerle, C.; Lévy, L. P.; Orignac, E.; Carpentier, D.; Ballet, P.; Meunier, T.

    2017-12-01

    We demonstrate evidences of electronic transport via topological Dirac surface states in a thin film of strained HgTe. At high perpendicular magnetic fields, we show that the electron transport reaches the quantum Hall regime with vanishing resistance. Furthermore, quantum Hall transport spectroscopy reveals energy splittings of relativistic Landau levels specific to coupled Dirac surface states. This study provides insights in the quantum Hall effect of topological insulator (TI) slabs, in the crossover regime between two- and three-dimensional TIs, and in the relevance of thin TI films to explore circuit functionalities in spintronics and quantum nanoelectronics.

  3. Shear Wave Velocities in the Pampean Flat Slab Region from Rayleigh Wave Tomography: Implications for Crustal Composition and Upper Mantle Hydration

    NASA Astrophysics Data System (ADS)

    Porter, R. C.; Gilbert, H. J.; Zandt, G.; Beck, S. L.; Warren, L. M.; Calkins, J. A.; Alvarado, P. M.; Anderson, M. L.

    2011-12-01

    The Pampean flat slab region, located in Chile and western Argentina between 29° and 34° S, is characterized by the subducting Nazca plate assuming a sub-horizontal geometry for ~300 km laterally before resuming a more "normal" angle of subduction. The onset of flat slab subduction is associated with the cessation of regional arc related volcanism and the migration of deformation inboard from the high Andes into the thin-skinned Precordillera and thick-skinned Sierras Pampeanas. Developing a better understanding of this region's geology is of particular importance, as it is an ideal area to study flat slab subduction and serves as a modern analogue to Laramide flat slab subduction in the western US. To study the crustal and mantle structure in the region, we combine ambient noise tomography and ballistic surface wave tomography to produce a regional 3D shear wave velocity model that encompasses flat slab subduction in the north and normal subduction geometry in the south, allowing for a comparison of the two. Results from this work show that shear velocities within the upper crust are largely determined by composition, with sedimentary basins and areas with active volcanism exhibiting slower velocities than basement cored uplifts and other bedrock exposures. Though surface waves are not particularly sensitive to the depth of sharp velocity contrasts, we observe an eastward increase in shear velocity at depth that correlates with an eastward decrease in crustal thickness. In both the slab and overlying mantle, we observe significant variations in shear wave velocity. North of 32° S, where flat slab subduction is occurring, the Nazca plate contains low-velocity zones (LVZs) beneath the high Andes and Precordillera that are not present in the east beneath the Sierras Pampeanas. An opposite transition is observed in the overlying mantle, which changes from fast in the west to slow in the east. Both of these observations are consistent with an initially hydrated slab dehydrating and releasing water into the overlying mantle. Within this region we also observe a LVZ immediately above the slab as the subduction angle steepens. This zone potentially represents asthenosphere or hydrated lithospheric mantle. South of 32° S, where subduction is occurring at a more normal angle, the slab is visible as a high-velocity body with a low-velocity mantle wedge present beneath the arc and back arc. The variations in slab and upper mantle shear velocities are consistent with a hydrated flat slab and the presence of a LVZ above the flat slab as it steepens suggests that water is being transported to a significant depth or that an asthenospheric wedge is present between the slab and cratonic lithosphere.

  4. Silica coatings formed on noble dental casting alloy by the sol-gel dipping process.

    PubMed

    Yoshida, K; Tanagawa, M; Kamada, K; Hatada, R; Baba, K; Inoi, T; Atsuta, M

    1999-08-01

    The sol-gel dipping process, in which liquid silicon alkoxide is transformed into the solid silicon-oxygen network, can produce a thin film coating of silica (SiO2). The features of this method are high homogeneity and purity of the thin SiO2 film and a low sinter temperature, which are important in preparation of coating films that can protect from metallic ion release from the metal substrate and prevent attachment of dental plaque. We evaluated the surface characteristics of the dental casting silver-palladium-copper-gold (Ag-Pd-Cu-Au) alloy coated with a thin SiO2 film by the sol-gel dipping process. The SiO2 film bonded strongly (over 40 MPa) to Ti-implanted Ag-Pd-Cu-Au alloy substrate as demonstrated by a pull test. Hydrophobilization of Ti-implanted/SiO2-coated surfaces resulted in a significant increase of the contact angle of water (80.5 degrees) compared with that of the noncoated alloy specimens (59.3 degrees). Ti-implanted/SiO2-coated specimens showed the release of many fewer metallic ions (192 ppb/cm2) from the substrate than did noncoated specimens (2,089 ppb/cm2). The formation of a thin SiO2 film by the sol-gel dipping process on the surface of Ti-implanted Ag-Pd-Cu-Au alloy after casting clinically may be useful for minimizing the possibilities of the accumulation of dental plaque and metal allergies caused by intraoral metal restorations.

  5. In Situ Observation of Rock Spalling in the Deep Tunnels of the China Jinping Underground Laboratory (2400 m Depth)

    NASA Astrophysics Data System (ADS)

    Feng, Xia-Ting; Xu, Hong; Qiu, Shi-Li; Li, Shao-Jun; Yang, Cheng-Xiang; Guo, Hao-Sen; Cheng, Yuan; Gao, Yao-Hui

    2018-04-01

    To study rock spalling in deep tunnels at China Jinping Underground Laboratory Phase II (CJPL-II), photogrammetry method and digital borehole camera were used to quantify key features of rock spalling including orientation, thickness of slabs and the depth of spalling. The failure mechanism was analysed through scanning electron microscope and numerical simulation based on FLAC3D. Observation results clearly showed the process of rock spalling failure: a typical spalling pattern around D-shaped tunnels after top-heading and bottom bench were discovered. The orientation and thickness of the slabs were obtained. The slabs were parallel to the excavated surfaces of the tunnel and were related to the shape of the tunnel surface and orientation of the principal stress. The slabs were alternately thick and thin, and they gradually increased in thickness from the sidewall inwards. The form and mechanism of spalling at different locations in the tunnels, as influenced by stress state and excavation, were analysed. The result of this study was helpful to those rethinking the engineering design, including the excavation and support of tunnels, or caverns, at high risk of spalling.

  6. Grindability of cast Ti-Cu alloys.

    PubMed

    Kikuchi, Masafumi; Takada, Yukyo; Kiyosue, Seigo; Yoda, Masanobu; Woldu, Margaret; Cai, Zhuo; Okuno, Osamu; Okabe, Toru

    2003-07-01

    The purpose of the present study was to evaluate the grindability of a series of cast Ti-Cu alloys in order to develop a titanium alloy with better grindability than commercially pure titanium (CP Ti), which is considered to be one of the most difficult metals to machine. Experimental Ti-Cu alloys (0.5, 1.0, 2.0, 5.0, and 10.0 mass% Cu) were made in an argon-arc melting furnace. Each alloy was cast into a magnesia mold using a centrifugal casting machine. Cast alloy slabs (3.5 mm x 8.5 mm x 30.5 mm), from which the hardened surface layer (250 microm) was removed, were ground using a SiC abrasive wheel on an electric handpiece at four circumferential speeds (500, 750, 1000, or 1250 m/min) at 0.98 N (100 gf). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1min. Data were compared to those for CP Ti and Ti-6Al-4V. For all speeds, Ti-10% Cu alloy exhibited the highest grindability. For the Ti-Cu alloys with a Cu content of 2% or less, the highest grindability corresponded to an intermediate speed. It was observed that the grindability increased with an increase in the Cu concentration compared to CP Ti, particularly for the 5 or 10% Cu alloys at a circumferential speed of 1000 m/min or above. By alloying with copper, the cast titanium exhibited better grindability at high speed. The continuous precipitation of Ti(2)Cu among the alpha-matrix grains made this material less ductile and facilitated more effective grinding because small broken segments more readily formed.

  7. Optimization to Develop Multiple Response Microstructure and Hardness of Ductile Iron Casting by using GRA

    NASA Astrophysics Data System (ADS)

    Kabnure, Bahubali Bhupal; Shinde, Vasudev Dhondiram; Kolhapure, Rakesh Ramchandra

    2018-05-01

    Ductile irons are important engineering materials because of its high strength to weight ratio and castability. The ductile iron castings are used widely for automobile applications due to their wide spectrum of property range. Weight reduction is important in automobile to improve its fuel efficiency which can be achieved by thinning down the casting sections without altering its functionality. Generally, automobile castings are having varying section thickness. Varying thickness castings offers different cooling rates while solidification of the casting. The solidification cooling rate decides the final microstructure of the cast components. Cooling rate was found to affect directly the amount of pearlite and ultimately the as cast properties in varying thickness ductile iron castings. In view of this, the automobile impeller casting is selected for study in the present work as it consists of varying section thickness in which small sections are connected to central hub. The casting solidification simulations were performed and analyzed. The solidification cooling rates were analyzed further to correlate the experimental processing parameters. The samples from poured castings were analyzed for microstructure and hardness at different section thickness. Multiple response optimization of microstructure and hardness was carried out by combined Taguchi and Grey Relational Analysis (GRA). Contribution of input variables on the output variables is attained using ANOVA.

  8. Molecular organization in MAPLE-deposited conjugated polymer thin films and the implications for carrier transport characteristics

    DOE PAGES

    Dong, Ban Xuan; Li, Anton; Strzalka, Joseph; ...

    2016-09-18

    The morphological structure of poly(3-hexylthiophene) (P3HT) thin films deposited by both Matrix Assisted Pulsed Laser Evaporation (MAPLE) and solution spin-casting methods are investigated. We found that the MAPLE samples possessed a higher degree of disorder, with random orientations of polymer crystallites along the side-chain stacking, π-π stacking, and conjugated backbone directions. Furthermore, the average molecular orientations and relative degrees of crystallinity of MAPLE-deposited polymer films are insensitive to the chemistries of the substrates onto which they were deposited; this is in stark contrast to the films prepared by the conventional spin-casting technique. In spite of the seemingly unfavorable molecular orientations andmore » the highly disordered morphologies, the in-plane charge carrier transport characteristics of the MAPLE samples are comparable to those of spin-cast samples, exhibiting similar transport activation energies (56 meV versus 54 meV) to those reported in the literature for high mobility polymers.« less

  9. Molecular organization in MAPLE-deposited conjugated polymer thin films and the implications for carrier transport characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Ban Xuan; Li, Anton; Strzalka, Joseph

    The morphological structure of poly(3-hexylthiophene) (P3HT) thin films deposited by both Matrix Assisted Pulsed Laser Evaporation (MAPLE) and solution spin-casting methods are investigated. We found that the MAPLE samples possessed a higher degree of disorder, with random orientations of polymer crystallites along the side-chain stacking, π-π stacking, and conjugated backbone directions. Furthermore, the average molecular orientations and relative degrees of crystallinity of MAPLE-deposited polymer films are insensitive to the chemistries of the substrates onto which they were deposited; this is in stark contrast to the films prepared by the conventional spin-casting technique. In spite of the seemingly unfavorable molecular orientations andmore » the highly disordered morphologies, the in-plane charge carrier transport characteristics of the MAPLE samples are comparable to those of spin-cast samples, exhibiting similar transport activation energies (56 meV versus 54 meV) to those reported in the literature for high mobility polymers.« less

  10. Innovative forming and fabrication technologies : new opportunities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.; Hryn, J.; Energy Systems

    2008-01-31

    The advent of light metal alloys and advanced materials (polymer, composites, etc.) have brought the possibility of achieving important energy reductions into the full life cycle of these materials, especially in transportation applications. 1 These materials have gained acceptance in the aerospace industry but use of light metal alloys needs to gain wider acceptance in other commercial transportation areas. Among the main reasons for the relatively low use of these materials are the lack of manufacturability, insufficient mechanical properties, and increased material costs due to processing inefficiencies. Considering the enormous potential energy savings associated with the use of light metalmore » alloys and advanced materials in transportation, there is a need to identify R&D opportunities in the fields of materials fabrication and forming aimed at developing materials with high specific mechanical properties combined with energy efficient processes and good manufacturability. This report presents a literature review of the most recent developments in the areas of fabrication and metal forming focusing principally on aluminum alloys. In the first section of the document, the different sheet manufacturing technologies including direct chill (DC) casting and rolling, spray forming, spray rolling, thin slab, and strip casting are reviewed. The second section of the document presents recent research on advanced forming processes. The various forming processes reviewed are: superplastic forming, electromagnetic forming, age forming, warm forming, hydroforming, and incremental forming. Optimization of conventional forming processes is also discussed. Potentially interesting light metal alloys for high structural efficiency including aluminum-scandium, aluminum-lithium, magnesium, titanium, and amorphous metal alloys are also reviewed. This section concludes with a discussion on alloy development for manufacturability. The third section of the document reviews the latest developments in fiber-reinforced composite materials. Emerging curing processes are presented along with a discussion on the possible developments in biocomposite materials. The fourth section presents recent developments in the fabrication of bulk nanomaterials and nanoparticles reinforced materials. Advanced joining technologies are presented in the fifth section. Future research is proposed in the last section.« less

  11. Glacitectonic deformation around the retreating margin of the last Irish ice sheet

    NASA Astrophysics Data System (ADS)

    Knight, J.

    2008-12-01

    Evidence for ice-marginal glacitectonic shunting and deformation of bedrock slabs is described from three sites around the west coast of Ireland. These sites (Brandon Bay, County Kerry; Pigeon Point, County Mayo; Inishcrone, County Sligo) are all locations where the late Devensian ice margin retreated on land and was confined to within limestone bedrock embayments. At these sites, flat-lying bedrock slabs (< 8 m long) have been dissociated from rockhead and moved seaward (in the direction of ice flow) by glacitectonic shunting. At all of the sites, bedrock slabs have been variously stacked, rotated, deformed into open folds, and brecciated. Separating the bedrock slabs is either a thin layer (< 20 cm) of brecciated and mylonitised cemented bedrock that shows internal folding; or a thicker (< 50 cm) normally-graded diamicton with a fine matrix. Together, the presence of these features suggests oscillation of a polythermal and clean basal ice margin that was strongly associated with basal freeze-on and the presence of proglacial permafrost. Subglacial sediment-laden meltwater was focused from behind the ice margin and through permafrost taliks. It is suggested that hydrofracturing under high hydraulic pressure, and through a frozen-bed ice margin, forced sediment injection into bedrock fractures and bedding planes and away from the ice margin, and that bedrock slabs were moved in part by hydraulic lift as well as thrust-style ice-marginal tectonics. The presence of a mosaic of warm and frozen ice-bed patches, in combination with strong geologic control and meltwater generation from behind the ice margin, can help explain formation of these unusual bedrock slab features.

  12. Effect of Starting As-cast Structure on the Microstructure-Texture Evolution During Subsequent Processing and Finally Ridging Behavior of Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Modak, Pranabananda; Patra, Sudipta; Mitra, Rahul; Chakrabarti, Debalay

    2018-03-01

    Effect of the initial as-cast structure on the microstructure-texture evolution during thermomechanical processing of 409L grade ferritic stainless steel was studied. Samples from the regions of cast slab having `columnar,' `equiaxed,' and a mixture of `columnar' and `equiaxed' grains were subjected to two different processing schedules: one with intermediate hot-band annealing before cold-rolling followed by final annealing, and another without any hot-band annealing. EBSD study reveals that large columnar crystals with cube orientation are very difficult to deform and recrystallize uniformly. Resultant variations in ferrite grain structure and retention of cube-textured band in cold-rolled and annealed sheet contribute to ridging behavior during stretch forming. Initial equiaxed grain structure is certainly beneficial to reduce or even eliminate ridging defect by producing uniform ferrite grain structure, free from any texture banding. Application of hot-band annealing treatment is also advantageous as it can maximize the evolution of beneficial gamma-fiber texture and eliminate the ridging defect in case of completely `equiaxed' starting structure. Such treatment reduces the severity of ridging even if the initial structure contains typically mixed `columnar-equiaxed' grains.

  13. Effect of Starting As-cast Structure on the Microstructure-Texture Evolution During Subsequent Processing and Finally Ridging Behavior of Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Modak, Pranabananda; Patra, Sudipta; Mitra, Rahul; Chakrabarti, Debalay

    2018-06-01

    Effect of the initial as-cast structure on the microstructure-texture evolution during thermomechanical processing of 409L grade ferritic stainless steel was studied. Samples from the regions of cast slab having `columnar,' `equiaxed,' and a mixture of `columnar' and `equiaxed' grains were subjected to two different processing schedules: one with intermediate hot-band annealing before cold-rolling followed by final annealing, and another without any hot-band annealing. EBSD study reveals that large columnar crystals with cube orientation are very difficult to deform and recrystallize uniformly. Resultant variations in ferrite grain structure and retention of cube-textured band in cold-rolled and annealed sheet contribute to ridging behavior during stretch forming. Initial equiaxed grain structure is certainly beneficial to reduce or even eliminate ridging defect by producing uniform ferrite grain structure, free from any texture banding. Application of hot-band annealing treatment is also advantageous as it can maximize the evolution of beneficial gamma-fiber texture and eliminate the ridging defect in case of completely `equiaxed' starting structure. Such treatment reduces the severity of ridging even if the initial structure contains typically mixed `columnar-equiaxed' grains.

  14. Thermal annealing effect on structural and thermoelectric properties of hexagonal Bi2Te3 nanoplate thin films by drop-casting technique

    NASA Astrophysics Data System (ADS)

    Hosokawa, Yuichi; Wada, Kodai; Tanaka, Masaki; Tomita, Koji; Takashiri, Masayuki

    2018-02-01

    High-purity hexagonal bismuth telluride (Bi2Te3) nanoplates were prepared by a solvothermal synthesis method, followed by the fabrication of nanoplate thin films by the drop-casting technique. The Bi2Te3 nanoplates exhibited a single-crystalline phase with a rhombohedral crystal structure. The nanoplates had a flat surface with edge sizes ranging from 500 to 2000 nm (average size of 1000 nm) and a thickness of less than 50 nm. The resulting Bi2Te3 nanoplate thin films were composed of well-aligned hexagonal nanoplates along the surface direction with an approximate film thickness of 40 µm. To tightly connect the nanoplates together within the thin films, thermal annealing was performed at different temperatures. We found that the thermoelectric properties, especially the Seebeck coefficient, were very sensitive to the annealing temperature. Finally, the optimum annealing temperature was determined to be 250 °C and the Seebeck coefficient and power factor were -300 µV/K and 3.5 µW/(cm·K2), respectively.

  15. The Solnhofen Limestone: A stony heritage of many uses

    NASA Astrophysics Data System (ADS)

    Kölbl-Ebert, Martina; Kramar, Sabina; Cooper, Barry J.

    2016-04-01

    High above the valley of the River Altmühl (Bavaria, Germany), between Solnhofen to the west and Kelheim to the east, numerous quarries give access to thinly plated limestone from the Upper Jurassic, some 150 million years before the present. The main quarry areas lie around the town of Eichstätt and between the villages of Solnhofen, Langenaltheim and Mörnsheim. Here limestone slabs have been quarried for several hundred years, some even in Roman times. Solnhofen Limestone is famous worldwide; not only because it is a beautiful building stone of high quality, but also because of the exceptionally well-preserved fossils it contains -among them the early bird Archaeopteryx. The quarry industry between Solnhofen and Eichstätt has shaped a cultural landscape, with old and new quarries sunk into the plain and numerous spoil heaps rising above it, for the rock is not all economically useful. But many of the spoil heaps and the old quarries are environmentally protected as they provide a habitat for some rare plants and animals. It is not necessary to cut the Solnhofen Limestone with a saw: it is split by hand into thin and even slabs or sheets which are used for flagstones and wall covers, which since centuries are sold world-wide. Locally it also serves as roof tiles for traditional houses. Thick slabs of especially fine quality may be found near Solnhofen and Mörnsheim and are used for lithography printing.

  16. Quantum resonances of Landau damping in the electromagnetic response of metallic nanoslabs.

    PubMed

    Castillo-López, S G; Makarov, N M; Pérez-Rodríguez, F

    2018-05-15

    The resonant quantization of Landau damping in far-infrared absorption spectra of metal nano-thin films is predicted within the Kubo formalism. Specifically, it is found that the discretization of the electromagnetic and electron wave numbers inside a metal nanoslab produces quantum nonlocal resonances well-resolved at slab thicknesses smaller than the electromagnetic skin depth. Landau damping manifests itself precisely as such resonances, tracing the spectral curve obtained within the semiclassical Boltzmann approach. For slab thicknesses much greater than the skin depth, the classical regime emerges. Here the results of the quantum model and the Boltzmann approach coincide. Our analytical study is in perfect agreement with corresponding numerical simulations.

  17. Lithosphere thickness in the Gulf of California region

    NASA Astrophysics Data System (ADS)

    Fernández, Alejandra; Pérez-Campos, Xyoli

    2017-11-01

    The Gulf of California has a long tectonic history. Before the subduction of the Guadalupe and Magdalena plates ceased, extension of the Gulf began to the east, at the Basin and Range province. Later, it was focused west of the Sierra Madre Occidental and the opening of the Gulf started. Currently, the Gulf rifting has different characteristics to the north than to the south. In this study, we analyze the lithosphere thickness in the Gulf of California region by means of P-wave and S-wave receiver functions. We grouped our lithosphere-thickness estimates into five froups: 1) North of the Gulf, with a thin lithosphere ( 50 km) related to the extension observed in the Salton Through region; 2) the northwestern part of Baja California, with a thicker lithosphere ( 80 km), thinning towards the Gulf due to the extension and opening processes ( 65 km); 3) central Baja California, with no converted phase corresponding to the lithosphere-asthenosphere boundary but evidence of the presence of a slab remnant; 4) the southern Baja California peninsula, showing a shallow lithosphere-astenosphere boundary (LAB) (< 55 km) and a lithosphere thinning towards the Gulf; and 5) the eastern Gulf margin with lithosphere thinning towards the south. These groups can be further assembled into three regions: A) The northernmost Gulf, where both margins of the Gulf show a relatively constant lithosphere thickness, consistent with an old basement in Sonora and the presence of the Peninsular Ranges batholith in northern Baja California, thinning up towards the axis of the rift in the northernmost Gulf. B) Central and southern Gulf, where the lithosphere thickness in this region ranges from 40 to 55 km, which is consistent with the presence of a younger crust. C) Central Baja California peninsula, where LAB is not detected; but there is evidence of a slab remnant.

  18. Process for forming a long gas turbine engine blade having a main wall with a thin portion near a tip

    DOEpatents

    Campbell, Christian X; Thomaidis, Dimitrios

    2014-05-13

    A process is provided for forming an airfoil for a gas turbine engine involving: forming a casting of a gas turbine engine airfoil having a main wall and an interior cavity, the main wall having a wall thickness extending from an external surface of the outer wall to the interior cavity, an outer section of the main wall extending from a location between a base and a tip of the airfoil casting to the tip having a wall thickness greater than a final thickness. The process may further involve effecting movement, using a computer system, of a material removal apparatus and the casting relative to one another such that a layer of material is removed from the casting at one or more radial portions along the main wall of the casting.

  19. Anisotropic contribution to the van der Waals and the Casimir-Polder energies for CO2 and CH4 molecules near surfaces and thin films

    NASA Astrophysics Data System (ADS)

    Thiyam, Priyadarshini; Parashar, Prachi; Shajesh, K. V.; Persson, Clas; Schaden, Martin; Brevik, Iver; Parsons, Drew F.; Milton, Kimball A.; Malyi, Oleksandr I.; Boström, Mathias

    2015-11-01

    In order to understand why carbon dioxide (CO2) and methane (CH4) molecules interact differently with surfaces, we investigate the Casimir-Polder energy of a linearly polarizable CO2 molecule and an isotropically polarizable CH4 molecule in front of an atomically thin gold film and an amorphous silica slab. We quantitatively analyze how the anisotropy in the polarizability of the molecule influences the van der Waals contribution to the binding energy of the molecule.

  20. Difference of the seismic structure between the Hyuga-nada and the Nankai seismogenic segments

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Obana, K.; Takahashi, T.; Nakanishi, A.; Kodaira, S.; Kaneda, Y.

    2010-12-01

    In the Nankai Trough, three major seismogenic zones of megathrust earthquake exist (Tokai, Tonankai and Nankai earthquake regions). The Hyuga-nada region was distinguished from these seismogenic zones because of the lack of megathrust earthquake. In the Hyuga-nada region, interplate earthquakes of M~7 occur repeatedly at intervals of about 20 years whereas no megathrust (M > 8) earthquakes had been recognized up to now. However, recent studies show the possibility of simultaneous rupture of the Tokai, Tonankai, Nankai and Hyuga-nada segments was also pointed out [e.g., Hori et al., 2009 AOGS]. To understand the possibility of seismic linkage of Nankai and Hyuga-nada segments, Japan Agency for Marine-Earth Science and Technology has been carried out a wide-angle active source survey and local seismic observation in the western end of the Nankai seismogenic zone, as a part of Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. Nakanishi et al [2009, AGU] showed that subducting Philippine Sea Plate can be divided into three zones and there is the zone of the thin oceanic crust of the subducting Philippine Sea Plate between Nankai segment and Kyushu-Palau Ridge segment by analyzing of the active source survey. Deep structure of the subducting slab is also important to consider the possibility of the seismic linkage and the location of the boundary among three zones described above. To obtain the deep seismic image, we performed a three-dimensional seismic tomography using the local seismic data recorded on 158 ocean bottom seismographs and 105 land seismic stations. From these data, we could detect 1141 earthquakes in the Hyuga-nada region. From the result of hypocenter relocation, microseismicity near the trough axis is active on the western part of the ‘thin oceanic crust’, whereas inactive on the eastern part. Besides, velocity structure of the uppermost part of the subducting slab mantle shows spatial heterogeneities. In the thin oceanic crust zone, high velocity slab mantle is imaged from near the trough to coastline. On the other hands, there is low velocity zone in the slab mantle near the trough axis in the Kyusyu-Palau Ridge segment. This low velocity zone may be related to the location of the eastern end of subducted Kyusyu-Palau Ridge.

  1. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey, Devon J.; Page McAdams, H.; Dobbins, James T. III

    2013-02-15

    Purpose: Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Methods: Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes,more » three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. Results: For scan angles of 20 Degree-Sign and 5 mm plane separation, seven MITS planes must be averaged to sufficiently remove partial-pixel artifacts. MITSa7 does appear to subtly reduce the contrast of high-frequency 'edge' information, but the removal of partial-pixel artifacts makes the appearance of low-contrast, fine-detail anatomy even more conspicuous in MITSa7 slices. MITSa7 also appears to render simulated subtle 5 mm pulmonary nodules with greater visibility than MITS alone, in both the open lung and regions overlying the mediastinum. Finally, the MITSa7 technique reduces stochastic image variance, though the in-plane stochastic SNR (for very thin objects which do not span multiple MITS planes) is only improved at spatial frequencies between 0.05 and 0.20 cycles/mm. Conclusions: The MITSa7 method is an improvement over traditional single-plane MITS for thoracic imaging and the pulmonary nodule detection task, and thus the authors plan to use the MITSa7 approach for all future MITS research at the authors' institution.« less

  2. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis.

    PubMed

    Godfrey, Devon J; McAdams, H Page; Dobbins, James T

    2013-02-01

    Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. For scan angles of 20° and 5 mm plane separation, seven MITS planes must be averaged to sufficiently remove partial-pixel artifacts. MITSa7 does appear to subtly reduce the contrast of high-frequency "edge" information, but the removal of partial-pixel artifacts makes the appearance of low-contrast, fine-detail anatomy even more conspicuous in MITSa7 slices. MITSa7 also appears to render simulated subtle 5 mm pulmonary nodules with greater visibility than MITS alone, in both the open lung and regions overlying the mediastinum. Finally, the MITSa7 technique reduces stochastic image variance, though the in-plane stochastic SNR (for very thin objects which do not span multiple MITS planes) is only improved at spatial frequencies between 0.05 and 0.20 cycles∕mm. The MITSa7 method is an improvement over traditional single-plane MITS for thoracic imaging and the pulmonary nodule detection task, and thus the authors plan to use the MITSa7 approach for all future MITS research at the authors' institution.

  3. Precast concrete pavement - systems and performance review

    NASA Astrophysics Data System (ADS)

    Novak, Josef; Kohoutková, Alena; Křístek, Vladimír; Vodička, Jan

    2017-09-01

    Long-term traffic restrictions belong to the key disadvantages of conventional cast-in-plane concrete pavements which have been used for technical structures such as roads, parking place and airfield pavements. As a consequence, the pressure is put on the development of such systems which have short construction time, low production costs, long-term durability, low maintenance requirements etc.. The paper presents the first step in the development of an entirely new precast concrete pavement (PCP) system applicable to airfield and highway pavements. The main objective of the review of PCP systems is to acquire a better understanding of the current systems and design methods used for transport infrastructure. There is lack of information on using PCP systems for the construction of entirely new pavements. To most extensive experience is dated back to the 20th century when hexagonal slab panels and system PAG were used in the Soviet Union for the military airfields. Since cast-in-situ pavements became more common, the systems based on precast concrete panels have been mainly utilized for the removal of damaged sections of existing structures including roads, highways etc.. Namely, it concerns Fort Miller Super Slab system, Michigan system, Uretek Stitch system and Kwik system. The presented review indicates several issues associated with the listed PCP systems and their applications to the repair and rehabilitation of existing structures. Among others, the type of manufacturing technology, particularly the position of slots for dowel bars, affects the durability and performance of the systems. Gathered information serve for the development of a new system for airfield and highway pavement construction.

  4. Influence of Turbulent Flows in the Nozzle on Melt Flow Within a Slab Mold and Stability of the Metal-Flux Interface

    NASA Astrophysics Data System (ADS)

    Calderon-Ramos, Ismael; Morales, R. D.

    2016-06-01

    The design of the ports of a casting nozzle has profound effects on the fluid flow patterns in slab molds. The influence of these outlets have also considerable effects on the turbulent flow and turbulence variables inside the nozzle itself. To understand the effects of nozzle design, three approaches were employed: a theoretical analysis based on the turbulent viscosity hypothesis, dimensional analysis (both analyses aided by computer fluid dynamics), and experiments using particle image velocimetry. The first approach yields a linear relation between calculated magnitudes of scalar fields of ɛ (dissipation rate of kinetic energy) and k 2 (square of the turbulent kinetic energy), which is derived from the wall and the logarithmic-wall laws in the boundary layers. The smaller the slope of this linear relation is, the better the performance of a given nozzle is for maintaining the stability of the melt-flux interface. The second approach yields also a linear relation between flow rate of liquid metal and the cubic root of the dissipation rate of kinetic energy. In this case, the larger the slope of the linear relation is, the better the performance of a given nozzle is for maintaining the stability of the melt-flux interface. Finally, PIV measurements in a mold water model, together with equations for estimation of critical melt velocities for slag entrainment, were used to quantify the effects of nozzle design on the dynamics of the metal-slag interface. The three approaches agree in the characterization of turbulent flows in continuous casting molds using different nozzles.

  5. Application of RNAMlet to surface defect identification of steels

    NASA Astrophysics Data System (ADS)

    Xu, Ke; Xu, Yang; Zhou, Peng; Wang, Lei

    2018-06-01

    As three main production lines of steels, continuous casting slabs, hot rolled steel plates and cold rolled steel strips have different surface appearances and are produced at different speeds of their production lines. Therefore, the algorithms for the surface defect identifications of the three steel products have different requirements for real-time and anti-interference. The existing algorithms cannot be adaptively applied to surface defect identification of the three steel products. A new method of adaptive multi-scale geometric analysis named RNAMlet was proposed. The idea of RNAMlet came from the non-symmetry anti-packing pattern representation model (NAM). The image is decomposed into a set of rectangular blocks asymmetrically according to gray value changes of image pixels. Then two-dimensional Haar wavelet transform is applied to all blocks. If the image background is complex, the number of blocks is large, and more details of the image are utilized. If the image background is simple, the number of blocks is small, and less computation time is needed. RNAMlet was tested with image samples of the three steel products, and compared with three classical methods of multi-scale geometric analysis, including Contourlet, Shearlet and Tetrolet. For the image samples with complicated backgrounds, such as continuous casting slabs and hot rolled steel plates, the defect identification rate obtained by RNAMlet was 1% higher than other three methods. For the image samples with simple backgrounds, such as cold rolled steel strips, the computation time of RNAMlet was one-tenth of the other three MGA methods, while the defect identification rates obtained by RNAMlet were higher than the other three methods.

  6. A Thermal Paradox: Which Gets Warmer?

    ERIC Educational Resources Information Center

    Salazar, Agustin; Apinaniz, Estibaliz; Mendioroz, Arantza; Oleaga, Alberto

    2010-01-01

    In this paper we address a common misconception concerning the thermal behaviour of matter, namely that the front surface of a very thin plate, uniformly illuminated by a constant light beam, reaches a higher temperature than the front surface of a very thick slab made out of the same material. We present analytical solutions for the temperature…

  7. Method and apparatus for powering an electrodeless lamp with reduced radio frequency interference

    DOEpatents

    Simpson, James E.

    1999-01-01

    An electrodeless lamp waveguide structure includes tuned absorbers for spurious RF signals. A lamp waveguide with an integral frequency selective attenuation includes resonant absorbers positioned within the waveguide to absorb spurious out-of-band RF energy. The absorbers have a negligible effect on energy at the selected frequency used to excite plasma in the lamp. In a first embodiment, one or more thin slabs of lossy magnetic material are affixed to the sidewalls of the waveguide at approximately one quarter wavelength of the spurious signal from an end wall of the waveguide. The positioning of the lossy material optimizes absorption of power from the spurious signal. In a second embodiment, one or more thin slabs of lossy magnetic material are used in conjunction with band rejection waveguide filter elements. In a third embodiment, one or more microstrip filter elements are tuned to the frequency of the spurious signal and positioned within the waveguide to couple and absorb the spurious signal's energy. All three embodiments absorb negligible energy at the selected frequency and so do not significantly diminish the energy efficiency of the lamp.

  8. Method and apparatus for powering an electrodeless lamp with reduced radio frequency interference

    DOEpatents

    Simpson, J.E.

    1999-06-08

    An electrodeless lamp waveguide structure includes tuned absorbers for spurious RF signals. A lamp waveguide with an integral frequency selective attenuation includes resonant absorbers positioned within the waveguide to absorb spurious out-of-band RF energy. The absorbers have a negligible effect on energy at the selected frequency used to excite plasma in the lamp. In a first embodiment, one or more thin slabs of lossy magnetic material are affixed to the sidewalls of the waveguide at approximately one quarter wavelength of the spurious signal from an end wall of the waveguide. The positioning of the lossy material optimizes absorption of power from the spurious signal. In a second embodiment, one or more thin slabs of lossy magnetic material are used in conjunction with band rejection waveguide filter elements. In a third embodiment, one or more microstrip filter elements are tuned to the frequency of the spurious signal and positioned within the waveguide to couple and absorb the spurious signal's energy. All three embodiments absorb negligible energy at the selected frequency and so do not significantly diminish the energy efficiency of the lamp. 18 figs.

  9. SMALL-SCALE SOLAR WIND TURBULENCE DUE TO NONLINEAR ALFVÉN WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sanjay; Moon, Y.-J.; Sharma, R. P., E-mail: sanjaykumar@khu.ac.kr

    We present an evolution of wave localization and magnetic power spectra in solar wind plasma using kinetic Alfvén waves (AWs) and fast AWs. We use a two-fluid model to derive the dynamical equations of these wave modes and then numerically solve these nonlinear dynamical equations to analyze the power spectra and wave localization at different times. The ponderomotive force associated with the kinetic AW (or pump) is responsible for the wave localization, and these thin slabs (or sheets) become more chaotic as the system evolves with time until the modulational instability (or oscillating two-stream instability) saturates. From our numerical results,more » we notice a steepening of the spectra from the inertial range (k{sup −1.67}) to the dispersion range (k{sup −3.0}). The steepening of the spectra could be described as the energy transference from longer to smaller scales. The formation of complex magnetic thin slabs and the change of the spectral index may be considered to be the main reason for the charged particles acceleration in solar wind plasma.« less

  10. Buckling and stretching of thin viscous sheets

    NASA Astrophysics Data System (ADS)

    O'Kiely, Doireann; Breward, Chris; Griffiths, Ian; Howell, Peter; Lange, Ulrich

    2016-11-01

    Thin glass sheets are used in smartphone, battery and semiconductor technology, and may be manufactured by producing a relatively thick glass slab and subsequently redrawing it to a required thickness. The resulting sheets commonly possess undesired centerline ripples and thick edges. We present a mathematical model in which a viscous sheet undergoes redraw in the direction of gravity, and show that, in a sufficiently strong gravitational field, buckling is driven by compression in a region near the bottom of the sheet, and limited by viscous resistance to stretching of the sheet. We use asymptotic analysis in the thin-sheet, low-Reynolds-number limit to determine the centerline profile and growth rate of such a viscous sheet.

  11. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Kirby, Stephen H.; Stein, Seth; Okal, Emile A.; Rubie, David C.

    1996-05-01

    Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine → spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes should cease at depths near 700 km, because the seismogenic phase transformations in the slab are completed or can no longer occur. Substantial metastability is expected only in old, cold slabs, consistent with the observed restriction of deep earthquakes to those settings. Earthquakes should be restricted to the cold cores of slabs, as in any model in which the seismicity is temperature controlled, via the distribution of metastability. However, the geometries of recent large deep earthquakes pose a challenge for any such models. Transformational faulting may give insight into why deep shocks lack appreciable aftershocks and why their source characteristics, including focal mechanisms indicating localized shear failure rather than implosive deformation, are so similar to those of shallow earthquakes. Finally, metastable phase changes in slabs would produce an internal source of stress in addition to those due to the weight of the sinking slab. Such internal stresses may explain the occurrence of earthquakes in portions of lithosphere which have foundered to the bottom of the transition zone and/or are detached from subducting slabs. Metastability in downgoing slabs could have considerable geodynamic significance. Metastable wedges would reduce the negative buoyancy of slabs, decrease the driving force for subduction, and influence the state of stress in slabs. Heat released by metastable phase changes would raise temperatures within slabs and facilitate the transformation of spinel to the lower mantle mineral assemblage, causing slabs to equilibrate more rapidly with the ambient mantle and thus contribute to the cessation of deep seismicity. Because wedge formation should occur only for fast subducting slabs, it may act as a "parachute" and contribute to regulating plate speeds. Wedge formation would also have consequences for mantle evolution because the density of a slab stagnated near the bottom of the transition zone would increase as it heats up and the wedge transforms to denser spinel, favoring the subsequent sinking of the slab into the lower mantle.

  12. High-resolution Imaging of the Philippine Sea Plate subducting beneath Central Japan

    NASA Astrophysics Data System (ADS)

    Padhy, S.; Furumura, T.

    2016-12-01

    Thermal models predict that the oceanic crust of the young (<20 Ma) and warmer Philippine-sea plate (PHP) is more prone to melting. Deriving a high-resolution image of the PHP, including slab melting and other features of the subduction zone, is a key to understand the basics of earthquake occurrence and origin of magma in complex subduction zone like central Japan, where both the PHP and Pacific (PAC) Plates subduct. To this purpose, we analyzed high-resolution waveforms of moderate sized (M 4-6), intermediate-to-deep (>150 km) PAC earthquakes occurring in central Japan and conducted numerical simulation to derive a fine-scale PHP model, which is not constrained in earlier studies. Observations show spindle-shaped seismograms with strong converted phases and extended coda with very slow decay from a group of PAC events occurring in northern part of central Japan and recorded by high-sensitivity seismograph network (Hi-net) stations in the region. We investigate the mechanism of propagation of these anomalous waveforms using the finite difference method (FDM) simulation of wave propagation through the subduction zone. We examine the effects on waveform changes of major subduction zone features, such as the melting of oceanic crust in PHP, serpentinized mantle wedge, hydrated layer on the PAC due to slab dehydration, and anomaly in upper mantle between the PAC and PHP. Simulation results show that the waveform anomaly is primarily explained by strong scattering and absorption of high-frequency energy by the low-velocity anomalous mantle structure, with a strong coda excitation yielding spindle-shaped waveforms. The data are secondarily explained by melting of PHP in the basaltic crust. The location of the mantle anomaly is tightly constrained by the observation and evidence of PAC thinning in the region; these localized low-velocity structures aid in ascending the slab-derived fluids around the slab thinning. We expect that the results of this study will enhance our present understanding on the mechanism of intermediate to deep earthquakes in the region.

  13. The temporal evolution of a subducting plate in the lower mantle

    NASA Astrophysics Data System (ADS)

    Loiselet, C.; Grujic, D.; Braun, J.; Fullsack, P.; Thieulot, C.; Yamato, P.

    2009-04-01

    It is now widely accepted that some subducting slabs may cross the lower/upper mantle boundary to ground below the 660 km discontinuity. Indeed, geophysical data underline long and narrow traces of fast materials, associated with subducting slabs, from the upper mantle transition zone to mid-mantle depths that are visible beneath North and South America and southern Asia (Li et al, 2008). Furthermore, seismic tomography data (Van der Hilst et al., 1997; Karason and van der Hilst, 2000, 2001) show a large variety of slab geometries and of mantle flow patterns around subducting plate boundaries (e.g. the slab geometry in the lower mantle in the Tonga subduction zone). However, seismic tomography does not elucidate the temporal evolution of the slab behaviour and geometry during its descent through the upper and lower mantle. In this work, we therefore propose to study the deformation of a thin plate (slab) falling in a viscous fluid (mantle) by means of both analogue and numerical modelling. The combination of both analogue and numerical experiments provides important insights into the shape and attitude evolution of subducting slabs. Models bring information into the controls exerted by the rheology of the slab and the mantle and other physical parameters such as the density contrast between the slab and the surrounding mantle, on the rate at which this deformation takes place. We show that in function of a viscosity ratios between the plate and the surrounding fluid, the plate will acquire a characteristic shape. For the isoviscous case, the plate shape tends toward a bubble with long tails: a "jellyfish" form. The time necessary for the plate to acquire this shape is a function of the viscosity and density contrast between the slab and the mantle. To complete our approach, we have developed a semi-analytical model based on the solution of the Hadamar-Rybinski equations for the problem of a dense, yet isoviscous and thus deforming sphere. This model helps to better describe flow processes around the downgoing plate and, simultaneously, to characterize its deformation. In this way, we were able to calculate the velocities in the mantle, the forces exerted by the fluid on the plate, and the dissipated energy in the surrounding fluid. Experimental results will be correlated with geophysical data.

  14. The Temporal Evolution Of A Subducting Plate In The Lower Mantle

    NASA Astrophysics Data System (ADS)

    Loiselet, C.; Grujic, D.; Fullsack, P.; Thieulot, C.; Yamato, P.; Braun, J.

    2008-12-01

    It is now widely accepted that some subducting slabs may cross the lower/upper mantle boundary to ground below the 660 km discontinuity. Indeed, geophysical data underline long and narrow traces of fast materials, associated with subducting slabs, from the upper mantle transition zone to mid-mantle depths that are visible beneath North and South America and southern Asia (Li et al, 2008). Furthermore, seismic tomography data (Van der Hilst et al., 1997; Karason and van der Hilst, 2000, 2001)) show a large variety of slab geometries and of mantle flow patterns around subducting plate boundaries (e.g. the slab geometry in the lower mantle in the Tonga subduction zone). However, seismic tomography does not elucidate the temporal evolution of the slab behaviour and geometry during its descent through the upper and lower mantle. In this work, we therefore propose to study the deformation of a thin plate (slab) falling in a viscous fluid (mantle). The combination of both analogue and numerical experiments provides important insights into the shape and attitude evolution of subducting slabs. Models bring information into the controls exerted by the rheology of the slab and the mantle and other physical parameters such as the density contrast between the slab and the surrounding mantle, on the rate at which this deformation takes place. We show that in function of a viscosity ratios between the plate and the surrounding fluid, the plate will acquire a characteristic shape. For the isoviscous case, the plate shape tends toward a bubble with long tails: a jellyfish form. The time necessary for the plate to acquire this shape is a function of the viscosity and density contrast between the slab and the mantle. To complete our approach, we have developed a semi-analytical model based on the solution of the Hadamar-Rybinski equations for the problem of a dense, yet isoviscous and thus deforming sphere. This model helps to better describe flow processes around the downgoing plate and, simultaneously, to characterize its deformation. In this way, we were able to calculate the velocities in the mantle, the forces exerted by the fluid on the plate, and the dissipated energy in the surrounding fluid. Experimental results will be correlated with geophysical data.

  15. Mesoporous-silica films, fibers, and powders by evaporation

    DOEpatents

    Bruinsma, Paul J.; Baskaran, Suresh; Bontha, Jagannadha R.; Liu, Jun

    2008-05-06

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).

  16. Mesoporous-silica films, fibers, and powders by evaporation

    DOEpatents

    Bruinsma, Paul J.; Baskaran, Suresh; Bontha, Jagannadha R.; Liu, Jun

    1999-01-01

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).

  17. Mesoporous-silica films, fibers, and powders by evaporation

    DOEpatents

    Bruinsma, P.J.; Baskaran, S.; Bontha, J.R.; Liu, J.

    1999-07-13

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s). 24 figs.

  18. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere

    USGS Publications Warehouse

    Kirby, S.H.; Stein, S.; Okal, E.A.; Rubie, David C.

    1996-01-01

    Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine ??? spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes should cease at depths near 700 km, because the seismogenic phase transformations in the slab are completed or can no longer occur. Substantial metastability is expected only in old, cold slabs, consistent with the observed restriction of deep earthquakes to those settings. Earthquakes should be restricted to the cold cores of slabs, as in any model in which the seismicity is temperature controlled, via the distribution of metastability. However, the geometries of recent large deep earthquakes pose a challenge for any such models. Transformational faulting may give insight into why deep shocks lack appreciable aftershocks and why their source characteristics, including focal mechanisms indicating localized shear failure rather than implosive deformation, are so similar to those of shallow earthquakes. Finally, metastable phase changes in slabs would produce an internal source of stress in addition to those due to the weight of the sinking slab. Such internal stresses may explain the occurrence of earthquakes in portions of lithosphere which have foundered to the bottom of the transition zone and/or are detached from subducting slabs. Metastability in downgoing slabs could have considerable geodynamic significance. Metastable wedges would reduce the negative buoyancy of slabs, decrease the driving force for subduction, and influence the state of stress in slabs. Heat released by metastable phase changes would raise temperatures within slabs and facilitate the transformation of spinel to the lower mantle mineral assemblage, causing slabs to equilibrate more rapidly with the ambient mantle and thus contribute to the cessation of deep seismicity. Because wedge formation should occur only for fast subducting slabs, it may act as a "parachute" and contribute to regulating plate speeds. Wedge formation would also have consequences for mantle evolution because the density of a slab stagnated near the bottom of the transition zone would increase as it heats up and the wedge tra

  19. Morphology and structure of borides in as-cast titanium and gamma-titanium aluminide-based alloys

    NASA Astrophysics Data System (ADS)

    Kitkamthorn, Usanee

    In this study, the morphology and structure of the borides in boron-modified Ti- and gamma-TiAl-based alloys have been investigated using SEM, TEM, and HRTEM. A variety of different boride morphologies was observed including plates, needles, and ribbons. For the plate and needle borides, the major boride phase is B27 TiB. The needle borides have their major axis parallel to [010], and are bounded by (100) and {101} type-facets. The plate borides develop the same types of facets as the needles and have habit planes parallel to the (100). There are high densities of intrinsic stacking faults on (100) in these borides and these correspond to thin embedded layers of the Bf structure. The plate borides do not exhibit well-defined ORs with respect to the surrounding phases, suggesting that they develop in the liquid melt and were then trapped by the growing solid. Needle borides are observed mostly at boundaries between lamellar colonies: these needles tend to occur in groups lying nearly parallel to one another and, in some cases, to adopt well-defined ORs with respect to the surrounding phases. Cored borides with metallic phases such as beta, alpha, o and alpha 2+gamma in the center are frequently observed, especially in the Ti-based alloy. These core phases usually adopt well-defined ORs with respect to the surrounding boride which enable low-energy coherent interfaces to form between the phases. The ribbon borides are comprised of thin boride flakes interspersed with thin metallic layers. The major boride phase in these flakes is Bf TiB. The habit plane of the flakes is (010) and there are high densities of faults on this plane corresponding to intergrowths of the Ti3B 4 and TiB2 phases, together with thin layers or occluded pockets of metallic B2 phase. Occasional faults are observed on {110} corresponding to embedded slabs of B27 TiB. There is a well-defined OR between the boride flakes and the B2 phase within the ribbons, but not with the surrounding matrix. The characteristics of these various borides are consistent with them forming as eutectic reaction products, with the exception of the finest needles and plates observed in Ti-based alloy.

  20. Beryllium-aluminum alloys for investment castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nachtrab, W.T.; Levoy, N.

    1997-05-01

    Beryllium-aluminum alloys containing greater than 60 wt % beryllium are very favorable materials for applications requiring light weight and high stiffness. However, when produced by traditional powder metallurgical methods, these alloys are expensive and have limited applications. To reduce the cost of making beryllium-aluminum components, Nuclear Metals Inc. (NMI) and Lockheed Martin Electronics and Missiles have recently developed a family of patented beryllium-aluminum alloys that can be investment cast. Designated Beralcast, the alloys can achieve substantial weight savings because of their high specific strength and stiffness. In some cases, weight has been reduced by up to 50% over aluminum investmentmore » casting. Beralcast is now being used to make thin wall precision investment castings for several advanced aerospace applications, such as the RAH-66 Comanche helicopter and F-22 jet fighter. This article discusses alloy compositions, properties, casting method, and the effects of cobalt additions on strength.« less

  1. Equilibrium Slab Models of Lyman-Alpha Clouds

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.; Salpeter, Edwin E.; Hogan, Craig J.

    1993-01-01

    We model the L(sub y(alpha)) clouds as slabs of hydrogen with an ionizing extragalactic radiation field incident from both sides. In general, the equilibrium configuration of a slab at redshift z approx. less than 5 is determined by a balance of the gas pressure, gravity (including the effects of a dark matter halo), and the pressure exerted by the inter-galactic medium, P(sub ext). These models have been used to make predictions of the number of slabs as a function of the neutral hydrogen column density, N(sub H). A break in the curve is predicted at the transition between regimes where gravity and pressure are the dominant confining forces, with a less rapid decrease at larger N(sub H). The transition from optically thin to optically thick slabs leads to a gap in the distribution, whose location is governed largely by the spectrum of ionizing radiation. There are certain parallels between lines of sight through the outer HI disk of spiral galaxy with increasing radius, and the progression from damped, to Lyman limit, to forest clouds. We discuss briefly the possibility that at least some of the observed low z forest clouds may be a separate population, associated with galaxies, as suggested by the observations of Bahcall et al. This population could dominate the forest at present if the dark matter attached to galaxies should lead to gravity confinement for this disk population, while the isolated clouds remain pressure confined. The formalism developed in this paper will allow a more detailed study. We also discuss a more general parameter study of the equilibrium configuration of slabs, including mock gravity and L(sub y(alpha)) photon trapping.

  2. Quantitative evaluation of the oral biofilm-removing capacity of a dental water jet using an electron-probe microanalyzer.

    PubMed

    Kato, Kazuo; Tamura, Kiyomi; Nakagaki, Haruo

    2012-01-01

    This study was conducted to evaluate the oral biofilm-removing capacity of a dental water jet (DWJ) by measuring biofilm thickness using an electron-probe microanalyzer (EPMA). Thirty consenting subjects wore in situ plaque-generating devices, which consisted of a pair of 4mm(2) enamel slabs attached to the upper molars for 2 days. Each device removed from the mouth was clamped, and one of the slab surfaces was treated with the DWJ, irrigating it for 5s. The devices were randomly assigned to three different pressure settings of 707, 350 or 102kPa. Another slab with no treatment served as a control. Each slab was freeze-dried, sputter-coated with platinum, and examined using secondary-electron imaging. The slabs were then embedded in methacrylate and cross-sectioned in the centre. Their surfaces were polished, coated with carbon, and examined using backscattered electron compositional (COMPO) imaging. The area between the enamel and the outer biofilm surface, indicated by a thin platinum layer, was measured by COMPO imaging to calculate the average thickness of the biofilm on the specimen. The removal capacity of biofilm by irrigation was estimated using a reduced rate of biofilm thickness, which was calculated from the differences between a pair of treated and control slabs. The reduced rates were 85.5% at 707kPa, 85.1% at 350kPa and 63.4% at 102kPa, indicating that biofilm thickness was significantly reduced at every pressure setting. The results suggest that irrigation using a DWJ would be an effective means of plaque control. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Permanent Mold Casting of JIS-AC4C Aluminum Alloy Using a Low-Temperature Mold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamagata, Hiroshi; Nikawa, Makoto

    2011-01-17

    Permanent mold casting using mold temperatures below 200 deg. C was conducted to obtain a high-strength, thin-walled casting. Al-7.36 mass% Si -0.18 Cu- 0.27Mg-0.34Fe alloy JIS-AC4C was cast using a bottom pouring cast plan. The product had a rectangular tube shape (70 mm W x 68 mm D x 180 mm H) with wall thicknesses of 1, 3 and 5 mm. The effect of heat insulation at the melt path was compared when using a sand runner insert and when using a steel runner insert as well as a powder mold release agent. Fine microstructures were observed in the casting.more » The smaller the thickness, the higher the hardness with smaller secondary dendrite arm spacing (SDAS). However, the hardness and the SDAS were unaffected by the mold temperature. It was proposed that the avoidance of the formation of primary {alpha} dendrite at the melt path generates a higher strength casting with adequate mold filling.« less

  4. Magmatic and Seismic Evidence for the Neogene Evolution of the Subducting Slab and Crustal and Mantle Lithosphere under the Central Andes

    NASA Astrophysics Data System (ADS)

    Kay, S. M.; Sandvol, E. A.

    2017-12-01

    Geophysical models coupled with the distribution, chemistry and age of magmatic rocks provide powerful tools for reconstructing the thermal and material balance and deformational history of the Central Andean crust and lithosphere in time and space. Two examples are given. In the first, a model for changing slab geometry, delamination (foundering) of the crust and mantle and forearc subduction erosion beneath the southern Puna plateau comes from studies of Miocene to Recent magmatic rocks linked with seismic studies. The distribution and chemistry (e.g., Sm/Yb, La/Ta, Ba/La, isotopes) of the volcanic rocks support an 18-7 Ma period of slab shallowing, followed by slab steepening and forearc subduction erosion linked with backarc crustal and lithospheric delamination and eruption of large ignimbrites. Support for delamination comes from seismic attenuation and Vs tomographic images that reveal an 100 km wide high velocity anomaly associated with an irregular shear wave splitting pattern, which is interpreted as a delaminated block above a nearly aseismic segment of the subducting slab at a depth of 150-200 km (Calixto et al., 2013, 2014; Liang et al. 2014). This block underlies the < 7 Ma giant Cerro Galan dacitic ignimbrites and bordering mafic flows and glassy andesites and dacites to the east. The characteristics of the flows support equilibration of basaltic magmas at > 1350°C at 2 Gpa followed by fractionation and mixing with melts of garnet-pyroxene-amphibole bearing crust (Risse et al., 2013). In accord, the lavas are over a region where receiver functions indicate a lithosphere-asthenosphere boundary at 60-80 km and a regionally thin 45-55 km thick crust with a low Vp/Vs (< 1.70) ratio (Heit et al., 2014). Calculations of crustal loss and gain allow up to 10% of the southern Puna lower crust to have been lost in the last 10 Ma. A second region where the characteristics of the magmatic rocks provide clues to the timing of slab shallowing and proposed slab tears (e.g., Lynner et al, 2017) is over and on the margins of the Chilean flat-slab). In this case, shallowing of the slab as the trench normal portion of the Juan Fernandez Ridge began to subduct at 11-10 Ma correlates well with the magmatic and deformational history. If the magmatism on the margins of the flat slab corresponds to slab tears, these tears also began at 10 Ma.

  5. Along-strike slab segmentation under Greece from a 500 km long teleseismic receiver-function swath profile : control on large earthquakes, upper plate motion, and surface morphology

    NASA Astrophysics Data System (ADS)

    Sachpazi, M.; Laigle, M.; Diaz, J.; Gesret, A.; Charalampakis, M.; Kissling, E. H.; Hirn, A.

    2010-12-01

    Observations from teleseismic converted waves recorded at 100 sites in Greece from Crete to North Aegean in a 500 km swath along the slab strike during the EU project “Thales was right” allow imaging its top in 3D. Multiscale analysis brings high-resolution to interface imaging at depth which resolved for the first time a thin, oceanic, crust for the slab under southern Greece. This first indication of its large negative buoyancy suggests its roll-back and is consistent with the upper plate trenchward motion with the highest velocities there, as shown by GPS. With respect to up to now subduction zone surveys with receivers deployed along the presumed dip to get a cross-section of the downgoing slab, our swath was instead perpendicular, that is along strike. This was in order to track down lateral changes in slab attitude along the subduction zone, that is a possible segmentation. The expected subduction strike at shallow depth, as approximated by a line from SW of Crete to W of the Ionian Islands is about N 135°E. Instead, the slab top is found along an almost N-S line at several places, at 60-70 km depth. However the slab depth contours deviate from it in-between. Their broad correspondance with the Aegean coastline or extensional domain suggests a possible control on surface morphology, and on upper plate deformation as mirrored in the topography of its crust-mantle boundary. Indeed, this first image recovered with such a high lateral resolution reveals that several slab segments can be defined dipping N 60°E, that is with a N 160 °E strike, and that these are juxtaposed through domains of strong localized variations along-strike that suggest warping or tearing of the slab. Apart their strong bearing on geodynamic reconstructions, and the continental/oceanic nature of the slab fragments, these 3D images reach the high-resolution for their discussion with respect to major earthquakes. The attitude of the slab, the dip of its upper part and its buoyancy force enter the balance controlling the degree of seismic coupling, of the seismogenic interplate fault, as well as its along dip extent as discussed earlier for the Ionian Islands. The segmented nature revealed at depth suggests a possible segmentation of the shallower interplate seismogenic zone. The precise location of the stronger intermediate-depth earthquakes occurred during the deployment appears also related to this deep structural and tectonic control.

  6. Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Jon T.; Wang, Gerry; Luo, Alan

    The purpose of this project was to develop a process and product which would utilize magnesium die casting and result in energy savings when compared to the baseline steel product. The specific product chosen was a side door inner panel for a mid-size car. The scope of the project included: re-design of major structural parts of the door, design and build of the tooling required to make the parts, making of parts, assembly of doors, and testing (both physical and simulation) of doors. Additional work was done on alloy development, vacuum die casting, and overcasting, all in order to improvemore » the performance of the doors and reduce cost. The project achieved the following objectives: 1. Demonstrated ability to design a large thin-wall magnesium die casting. 2. Demonstrated ability to manufacture a large thin-wall magnesium die casting in AM60 alloy. 3. Tested via simulations and/or physical tests the mechanical behavior and corrosion behavior of magnesium die castings and/or lightweight experimental automotive side doors which incorporate a large, thin-wall, powder coated, magnesium die casting. Under some load cases, the results revealed cracking of the casting, which can be addressed with re-design and better material models for CAE analysis. No corrosion of the magnesium panel was observed. 4. Using life cycle analysis models, compared the energy consumption and global warming potential of the lightweight door with those of a conventional steel door, both during manufacture and in service. Compared to a steel door, the lightweight door requires more energy to manufacture but less energy during operation (i.e., fuel consumption when driving vehicle). Similarly, compared to a steel door, the lightweight door has higher global warming potential (GWP) during manufacture, but lower GWP during operation. 5. Compared the conventional magnesium die casting process with the “super-vacuum” die casting process. Results achieved with cast tensile bars suggest some improvement in tensile properties with vacuum casting. Plant trials with large castings revealed cavity fill issues attributed to cooling and partial solidification of metal in the shot sleeve while waiting for vacuum to be established in the die cavity. 6. Developed age-hardenable Mg-based alloys as potential alternatives to the AM60 and AZ91 alloys typically used in automotive applications. Mg-7%Al-based alloys having Sn or Sn+Si additions exhibited significant age hardening, but more work is needed to demonstrate significant improvement in tensile properties. Corrosion behavior of these alloys is between those of AM60 and AZ91 alloys. 7. Evaluated the die casting of magnesium directly onto either steel or aluminum tubes as a potential process to make large lightweight subassemblies. Samples were free of gross defects, but additional work is needed to increase the interfacial shear strength. Overall, the project demonstrated that an automotive door-in-white design incorporating a die cast magnesium inner panel and a stamped aluminum outer panel can achieve approximately 50% mass reduction compared to the stamped steel baseline door-in-white. This leads to reduced energy consumption when driving the vehicle, which should more than offset the increased embedded energy of manufacture associated with the lighter metals. However, additional design work would be needed in order to meet the mechanical performance required of a door. Development of high-strength, high-ductility magnesium alloy castings would help make this technology more attractive for potential use in the side doors on automobiles. Also, increased use of recycled magnesium and aluminum would reduce the embedded energy and greenhouse gas emissions associated with the manufacture of this type of lightweight door. Commercialization planning of the type of lightweight door technology addressed in this project would be contingent upon the doors meeting all technical performance requirements of the car maker. The specific lightweight door developed in this project didn’t meet some of those requirements, but a preliminary business case study was conducted anyhow. This study considered the ratio of cost increase to mass decrease when the lightweight door is compared to a baseline steel door. The ratio was found to be in an acceptable range for some vehicle programs, especially if the number of such vehicles to be produced is equal to or slightly less than the estimated 250,000-shot life of the die set. This would allow for the investment in the dies to be spread across many parts and thereby help minimize the cost increase.« less

  7. The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone

    NASA Astrophysics Data System (ADS)

    Ferrari, Luca; Orozco-Esquivel, Teresa; Manea, Vlad; Manea, Marina

    2012-02-01

    The Trans-Mexican Volcanic Belt (TMVB) is a 1000 km long Neogene continental arc showing a large variation in composition and volcanic style, and an intra-arc extensional tectonics. It overlies the Rivera and Cocos slabs, which display marked changes in geometry. Geophysical studies indicate that lithospheric mantle is very thin or absent beneath the forearc and arc, the fluids from the slab are released in a 40 to 100 km wide belt beneath the frontal part of the arc, and the lower crust beneath the arc is partially molten. East of 101°W the TMVB is built on a Precambrian to Paleozoic crust with thickness of 50-55 km. West of 101°W the TMVB is underlain by Jurassic to Cenozoic marine and continental arcs with a 35-40 km thick crust. The evolution of the TMVB occurred in four stages: 1) from ~ 20 to 10 Ma the initial andesitic arc moved inland showing progressively drier melting and, eventually, slab melting, suggesting flattening of the subducted slab; 2) since ~ 11 Ma a pulse of mafic volcanism migrated from west to east reaching the Gulf of Mexico by 7 Ma. This mafic lavas marks the lateral propagation of a slab tear, triggered by cessation of subduction beneath Baja California; 3) thereafter, the volcanic front started moving trenchward, with a marked phase of silicic volcanism between 7.5 and 3 Ma, local emplacement of small volume intraplate-like basalts since 5 Ma, and development of extensional faulting. These features are related to slab rollback, enhancing asthenophere flux into the mantle wedge and promoting partial melting of the crust; 4) the modern arc consists of a frontal belt dominated by flux and slab melting, and a rear belt characterized by more differentiated rocks or by mafic lavas with little or no evidence of subduction fluids but higher asthenosphere fingerprint.

  8. Controlling microstructure of pentacene derivatives by solution processing: impact of structural anisotropy on optoelectronic properties.

    PubMed

    James, David T; Frost, Jarvist M; Wade, Jessica; Nelson, Jenny; Kim, Ji-Seon

    2013-09-24

    The consideration of anisotropic structural properties and their impact on optoelectronic properties in small-molecule thin films is vital to understand the performance of devices incorporating crystalline organic semiconductors. Here we report on the important relationship between structural and optoelectronic anisotropy in aligned, functionalized-pentacene thin films fabricated using the solution-based zone-casting technique. The microstructure of thin films composed of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) and 6,13-bis(triethylsilylethynyl)pentacene (TES-pentacene) is systematically controlled by varying the casting speed. By controlling the structural alignment, we were able to experimentally decouple, for the first time in these films, an intramolecular absorption transition dipole (at ∼440 nm) oriented close to the pentacene short axis and an intermolecular absorption transition dipole (at ∼695 nm) oriented predominantly along the conjugated pentacene-pentacene core stacking axis (crystallographic a-axis) in both films. Using the intermolecular absorption as a signature for intermolecular delocalization, much higher optical dichroism was obtained in TES-pentacene (16 ± 6) than TIPS-pentacene (3.2 ± 0.1), which was attributed to the 1D packing structure of TES-pentacene compared to the 2D packing structure of TIPS-pentacene. This result was also supported by field-effect mobility anisotropy measurements of the films, with TES-pentacene exhibiting a higher anisotropy (∼21-47, depending on the casting speed) than TIPS-pentacene (∼3-10).

  9. Diffusive Propagation of Exciton-Polaritons through Thin Crystal Slabs

    PubMed Central

    Zaitsev, D. A.; Il’ynskaya, N. D.; Koudinov, A. V.; Poletaev, N. K.; Nikitina, E. V.; Egorov, A. Yu.; Kavokin, A. V.; Seisyan, R. P.

    2015-01-01

    If light beam propagates through matter containing point impurity centers, the amount of energy absorbed by the media is expected to be either independent of the impurity concentration N or proportional to N, corresponding to the intrinsic absorption or impurity absorption, respectively. Comparative studies of the resonant transmission of light in the vicinity of exciton resonances measured for 15 few-micron GaAs crystal slabs with different values of N, reveal a surprising tendency. While N spans almost five decimal orders of magnitude, the normalized spectrally-integrated absorption of light scales with the impurity concentration as N1/6. We show analytically that this dependence is a signature of the diffusive mechanism of propagation of exciton-polaritons in a semiconductor. PMID:26088555

  10. Spiral microstrip antenna with resistance

    NASA Technical Reports Server (NTRS)

    Shively, David G. (Inventor)

    1994-01-01

    The present invention relates to microstrip antennas, and more particularly to wide bandwidth spiral antennas with resistive loading. A spiral microstrip antenna having resistor element embedded in each of the spiral arms is provided. The antenna is constructed using a conductive back plane as a base. The back plane supports a dielectric slab having a thickness between one-sixteenth and one-quarter of an inch. A square spiral, having either two or four arms, is attached to the dielectric slab. Each arm of the spiral has resistor elements thereby dissipating an excess energy not already emitted through radiation. The entire configuration provides a thin, flat, high gain, wide bandwidth antenna which requires no underlying cavity. The configuration allows the antenna to be mounted conformably on an aircraft surface.

  11. Effect of temperature on optical properties of PMMA/SiO2 composite thin film

    NASA Astrophysics Data System (ADS)

    Soni, Gyanesh; Srivastava, Subodh; Soni, Purushottam; Kalotra, Pankaj; Vijay, Y. K.

    2018-05-01

    Effect of temperature on PMMA/SiO2 composites thin films were investigated. Nanocomposite flexible thin films of 60 µm thicknesses with different loading of SiO2 nanoparticles were prepared using solution casting method. SEM images show that SiO2 nanoparticles are distributed uniformly in PMMA matrix without any lumps on the surface, and PMMA/SiO2 nano composite thin films had a smoother and regular morphology. UV-Vis and optical band gap measurements revealed that both the concentration of SiO2 nanoparticles and temperature affect the optical properties of the composite thin film in comparison to the pure PMMA film.

  12. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties

    PubMed Central

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-01-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties. PMID:27245687

  13. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.

    PubMed

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-06-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  14. Thin-skinned deformation of sedimentary rocks in Valles Marineris, Mars

    USGS Publications Warehouse

    Metz, Joannah; Grotzinger, John P.; Okubo, Chris; Milliken, Ralph

    2010-01-01

    Deformation of sedimentary rocks is widespread within Valles Marineris, characterized by both plastic and brittle deformation identified in Candor, Melas, and Ius Chasmata. We identified four deformation styles using HiRISE and CTX images: kilometer-scale convolute folds, detached slabs, folded strata, and pull-apart structures. Convolute folds are detached rounded slabs of material with alternating dark- and light-toned strata and a fold wavelength of about 1 km. The detached slabs are isolated rounded blocks of material, but they exhibit only highly localized evidence of stratification. Folded strata are composed of continuously folded layers that are not detached. Pull-apart structures are composed of stratified rock that has broken off into small irregularly shaped pieces showing evidence of brittle deformation. Some areas exhibit multiple styles of deformation and grade from one type of deformation into another. The deformed rocks are observed over thousands of kilometers, are limited to discrete stratigraphic intervals, and occur over a wide range in elevations. All deformation styles appear to be of likely thin-skinned origin. CRISM reflectance spectra show that some of the deformed sediments contain a component of monohydrated and polyhydrated sulfates. Several mechanisms could be responsible for the deformation of sedimentary rocks in Valles Marineris, such as subaerial or subaqueous gravitational slumping or sliding and soft sediment deformation, where the latter could include impact-induced or seismically induced liquefaction. These mechanisms are evaluated based on their expected pattern, scale, and areal extent of deformation. Deformation produced from slow subaerial or subaqueous landsliding and liquefaction is consistent with the deformation observed in Valles Marineris.

  15. Method of producing thin cellulose nitrate film

    DOEpatents

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  16. Enhanced Performance Consistency in Nanoparticle/TIPS Pentacene-Based Organic Thin Film Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhengran; Xiao, Kai; Durant, William Mark

    2011-01-01

    In this study, inorganic silica nanoparticles are used to manipulate the morphology of 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS pentacene) thin films and the performance of solution-processed organic thin-film transistors (OTFTs). This approach is taken to control crystal anisotropy, which is the origin of poor consistency in TIPS pentacene based OTFT devices. Thin film active layers are produced by drop-casting mixtures of SiO{sub 2} nanoparticles and TIPS pentacene. The resultant drop-cast films yield improved morphological uniformity at {approx}10% SiO{sub 2} loading, which also leads to a 3-fold increase in average mobility and nearly 4 times reduction in the ratio of measured mobility standard deviationmore » ({mu}{sub Stdev}) to average mobility ({mu}{sub Avg}). Grazing-incidence X-ray diffraction, scanning and transmission electron microscopy as well as polarized optical microscopy are used to investigate the nanoparticle-mediated TIPS pentacene crystallization. The experimental results suggest that the SiO{sub 2} nanoparticles mostly aggregate at TIPS pentacene grain boundaries, and 10% nanoparticle concentration effectively reduces the undesirable crystal misorientation without considerably compromising TIPS pentacene crystallinity.« less

  17. Fabrication and characterization of a planar gradient-index, plasma-enhanced chemical vapor deposition lens.

    PubMed

    Beltrami, D R; Love, J D; Durandet, A; Samo, A; Cogswell, C J

    1997-10-01

    A thin, one-dimensional, gradient-index slab lens with a parabolic profile was designed and fabricated in fluorine-doped silica by use of plasma-enhanced chemical vapor deposition in a Helicon plasma reactor. The refractive-index profile of the fabricated lens was determined by the application of an inversion technique to the values of modal effective index measured with a prism coupler. The periodic refocusing property of the lens and the independence of the wavelength were measured with the fluorescence of a specially doped, thin polymer layer spin-coated onto the surface of the lens.

  18. Developments in convective heat transfer models featuring seamless and selected detail surfaces, employing electroless plating

    NASA Technical Reports Server (NTRS)

    Stalmach, C. J., Jr.

    1975-01-01

    Several model/instrument concepts employing electroless metallic skin were considered for improvement of surface condition, accuracy, and cost of contoured-geometry convective heat transfer models. A plated semi-infinite slab approach was chosen for development and evaluation in a hypersonic wind tunnel. The plated slab model consists of an epoxy casting containing fine constantan wires accurately placed at specified surface locations. An electroless alloy was deposited on the plastic surface that provides a hard, uniformly thick, seamless skin. The chosen alloy forms a high-output thermocouple junction with each exposed constantan wire, providing means of determining heat transfer during tunnel testing of the model. A selective electroless plating procedure was used to deposit scaled heatshield tiles on the lower surface of a 0.0175-scale shuttle orbiter model. Twenty-five percent of the tiles were randomly selected and plated to a height of 0.001-inch. The purpose was to assess the heating effects of surface roughness simulating misalignment of tiles that may occur during manufacture of the spacecraft.

  19. Numerical study of coupled turbulent flow and solidification for steel slab casters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aboutalebi, M.R.; Hasan, M.; Guthrie, R.I.L.

    1995-09-01

    A two-dimensional numerical modeling study was undertaken to account for coupled turbulent flow and heat transfer with solidification in the mold and submold regions of a steel slab coaster. Liquid steel is introduced into a water-cooled mold through a bifurcated submerged entry nozzle. Turbulence phenomena in the melt pool of the caster were accounted for, using a modified version of the low-Reynolds-number {kappa}-{epsilon} turbulence model of Launder and Sharma. The mushy region solidification, in the presence of turbulence, was taken into account by modifying the standard enthalpy-porosity technique, which is presently popular for modeling solidification problems. Thermocapillary and buoyancy effectsmore » have been considered in this model to evaluate the influences of the liquid surface tension gradient at the meniscus surface, and natural convection on flow patterns in the liquid pool. Parametric studies were carried out to evaluate the effects of typical variables, such as inlet superheat and casting speed, on the fluid flow and heat transfer results. The numerical predictions were compared with available experimental data.« less

  20. Flexible Blades for Wind Turbines

    NASA Astrophysics Data System (ADS)

    Collins, Madeline Carlisle; Macphee, David; Harris, Caleb

    2016-11-01

    Previous research has shown that windmills with flexible blades are more efficient than those with rigid blades. Flexibility offers passive pitch control, preferable to active pitch control which is costly and requires maintenance. Flexible blades morph such that the blade more closely resembles its design point at part load and over load. The lift-to-drag ratios on individual blades was investigated. A mold was designed and machined from an acrylic slab for the casting of blades with a NACA 0012 cross section. A flexible blade was cast from silicone and a rigid blade was cast from polyurethane. Each of these blades was tested in a wind tunnel, cantilever mounted, spanning the whole test section. The angle of attack was varied by rotating the mount. All tests were performed at the same wind speed. A load cell within the mount measured forces on the blade, from which the lift and drag forces were calculated. The stall point for the flexible blade occurred later than for the rigid blade, which agrees with previous research. Lift-to-drag ratios were larger for the flexible blade at all angles of attack tested. Flexible blades seem to be a viable option for passive pitch control. Future research will include different airfoil cross sections, wind speeds, and blade materials. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  1. Engineering study for a melting, casting, rolling and fabrication facility for recycled contaminated stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This Preliminary Report is prepared to study the facilities required for recycling contaminated stainless steel scrap into plate which will be fabricated into boxes suitable for the storage of contaminated wastes and rubble. The study is based upon the underlying premise that the most cost effective way to produce stainless steel is to use the same processes employed by companies now in production of high quality stainless steel. Therefore, the method selected for this study for the production of stainless steel plate from scrap is conventional process using an Electric Arc Furnace for meltdown to hot metal, a Continuous Castermore » for production of cast slabs, and a Reversing Hot Mill for rolling the slabs into plate. The fabrication of boxes from the plate utilizes standard Shears, Punch Presses and welding equipment with Robotic Manipulators. This Study presumes that all process fumes, building dusts and vapors will be cycled through a baghouse and a nuclear grade HEPA filter facility prior to discharge. Also, all process waste water will be evaporated into the hot flue gas stream from the furnace utilizing a quench tank; so there will be no liquid discharges from the facility and all vapors will be processed through a HEPA filter. Even though HEPA filters are used today in controlling radioactive contamination from nuclear facilities there is a sparsity of data concerning radioactivity levels and composition of waste that may be collected from contaminated scrap steel processing. This report suggests some solutions to these problems but it is recommended that additional study must be given to these environmental problems.« less

  2. Aseismic Slip of a Thin Slab Due to a Fluid Source

    NASA Astrophysics Data System (ADS)

    Aubin, P. W.; Viesca, R. C.

    2017-12-01

    We explore the effects of an increase of pore pressure on the frictional interface along the base of a thin slab. The thin slab approximation corresponds to a layer overriding a substrate in which variations along the layer's length occur over distances much greater than the layer thickness. We consider deformation that may be in-plane or anti-plane, but approximately uniform in depth, such that spatial variations of displacement (and hence, slip) occur only along one direction parallel to the interface. Such a thin-sheet model may well represent the deformation of landslides and glacial ice streams, and also serves as a first-pass for fault systems, which, while better represented by elastic half-spaces in frictional contact, nonetheless show qualitatively similar behavior. We consider that the friction coefficient at the layer's interface remains (approximately) constant, and that aseismic slip is initiated by a (line) source of fluid at constant pressure, with one-dimensional diffusion parallel to the interface. As posed, the problem yields a self-similar expansion of slip, whose extent grows proportionally to (α * t)^(1/2) (where α is the hydraulic diffusivity) and can either lag behind or outpace the fluid diffusion front. The problem is controlled by a single parameter, accounting for the friction coefficient and the initial (pre-injection) states of stress and pore pressure. The problem solution consists of the self-similar slip profile and the coefficient of proportionality for the crack-front motion. Within the problem parameter range, two end-member scenarios result: one in which the initial level of shear stress on the interface is close to the value of the pre-injection strength (critically stressed) or another in which fluid pressure is just enough to induce slip (marginally pressurized). For the critically stressed and marginally pressurized cases, the aseismic slip front lies far ahead or far behind, respectively, the fluid diffusion front. We find closed-form solutions for both end-members, and in the former case, via matched asymptotics. These solutions provide a basis to solve the general problem, which we also solve numerically for comparison. The solutions also provide a starting point for examining the progression of slip and locking following the shutoff of the fluid source.

  3. An ab-initio coupled mode theory for near field radiative thermal transfer.

    PubMed

    Chalabi, Hamidreza; Hasman, Erez; Brongersma, Mark L

    2014-12-01

    We investigate the thermal transfer between finite-thickness planar slabs which support surface phonon polariton modes (SPhPs). The thickness-dependent dispersion of SPhPs in such layered materials provides a unique opportunity to manipulate and enhance the near field thermal transfer. The key accomplishment of this paper is the development of an ab-initio coupled mode theory that accurately describes all of its thermal transfer properties. We illustrate how the coupled mode parameters can be obtained in a direct fashion from the dispersion relation of the relevant modes of the system. This is illustrated for the specific case of a semi-infinite SiC substrate placed in close proximity to a thin slab of SiC. This is a system that exhibits rich physics in terms of its thermal transfer properties, despite the seemingly simple geometry. This includes a universal scaling behavior of the thermal conductance with the slab thickness and spacing. The work highlights and further increases the value of coupled mode theories in rapidly calculating and intuitively understanding near-field transfer.

  4. Organic Thin Films for Photonics Applications. Volume 14

    DTIC Science & Technology

    1997-01-01

    progress of the polymer optical fiber (POF) and related photonics polymer for high-speed telecommunication is reviewed. The high-bandwidth perfluorinated ...silicon. In the waveguide spectrometry studies described above, ab- sorption was measured on slab waveguides where fabrication imperfections are... compound in scries I[//| and II|//| , we have determined in solution: - the ground-state dipole /{ using capacitive measurements - the static

  5. Refractory Inclusion Size Distribution and Fabric Measured in a Large Slab of the Allende CV3 Chondrite

    NASA Technical Reports Server (NTRS)

    Srinivasan, P.; Simon, Justin I.; Cuzzi, J. N.

    2013-01-01

    Aggregate textures of chondrites reflect accretion of early-formed particles in the solar nebula. Explanations for the size and density variations of particle populations found among chondrites are debated. Differences could have risen out of formation in different locations in the nebula, and/or they could have been caused by a sorting process [1]. Many ideas on the cause of chondrule sorting have been proposed; some including sorting by mass [2,3], by X-winds [4], turbulent concentration [5], and by photophoresis [6]. However, few similar studies have been conducted for Ca-, Al-rich inclusions (CAIs). These particles are known to have formed early, and their distribution could attest to the early stages of Solar System (ESS) history. Unfortunately, CAIs are not as common in chondrites as chondrules are, reducing the usefulness of studies restricted to a few thin sections. Furthermore, the largest sizes of CAIs are generally much larger than chondrules, and therefore rarely present in most studied chondrite thin sections. This study attempts to perform a more representative sampling of the CAI population in the Allende chondrite by investigating a two decimeter-sized slab.

  6. Common-path conoscopic interferometry for enhanced picosecond ultrasound detection

    NASA Astrophysics Data System (ADS)

    Liu, Liwang; Guillet, Yannick; Audoin, Bertrand

    2018-05-01

    We report on a common-path implementation of conoscopic interferometry in picosecond pump-probe reflectometry for simple and efficient detection of picosecond ultrasounds. The interferometric configuration proposed here is greatly simplified, involving only the insertion of a birefringent crystal in a standard reflectometry setup. Our approach is demonstrated by the optical detection of coherent acoustic phonons propagating through thin metal films under two representative geometries, one a particular case where the crystal slab is part of a sample as substrate of a metal film, and the other a more general case where the crystal slab is independent of the sample as part of the detection system. We first illustrate the former with a 300 nm thin film of polycrystalline titanium, deposited by physical vapor deposition on top of a 1 mm-thick uniaxial (0001) sapphire crystal. A signal-to-noise ratio (SNR) enhancement of more than 15 dB is achieved compared to conventional reflectometry. Next, the general case is demonstrated with a 900 nm-tungsten film sputtered on a silicon wafer substrate. More echoes can be discriminated by using the reported approach compared to standard reflectometry, which confirms the improvement in SNR and suggests broad applications for the reported method.

  7. Lithospheric structure of Iberia and Morocco using finite-frequency Rayleigh wave tomography from earthquakes and seismic ambient noise

    NASA Astrophysics Data System (ADS)

    Palomeras, I.; Villaseñor, A.; Thurner, S.; Levander, A.; Gallart, J.; Harnafi, M.

    2017-05-01

    We present a new 3-D shear velocity model of the western Mediterranean from the Pyrenees, Spain, to the Atlas Mountains, Morocco, and the estimated crustal and lithospheric thickness. The velocity model shows different crustal and lithospheric velocities for the Variscan provinces, those which have been affected by Alpine deformation, and those which are actively deforming. The Iberian Massif has detectable differences in crustal thickness that can be related to the evolution of the Variscan orogen in Iberia. Areas affected by Alpine deformation have generally lower velocities in the upper and lower crust than the Iberian Massif. Beneath the Gibraltar Strait and surrounding areas, the crustal thickness is greater than 50 km, below which a high-velocity anomaly (>4.5 km/s) is mapped to depths greater than 200 km. We identify this as a subducted remnant of the NeoTethys plate referred to as the Alboran and western Mediterranean slab. Beneath the adjacent Betic and Rif Mountains, the Alboran slab is still attached to the base of the crust, depressing it, and ultimately delaminating the lower crust and mantle lithosphere as the slab sinks. Under the adjacent continents, the Alboran slab is surrounded by low upper mantle shear wave velocities (Vs < 4.3) that we interpret as asthenosphere that has replaced the continental margin lithosphere which was viscously removed by Alboran plate subduction. The southernmost part of the model features an anomalously thin lithosphere beneath the Atlas Mountains that could be related to lateral flow induced by the Alboran slab.

  8. Nanofiber based triple layer hydro-philic/-phobic membrane - a solution for pore wetting in membrane distillation

    PubMed Central

    Prince, J. A.; Rana, D.; Matsuura, T.; Ayyanar, N.; Shanmugasundaram, T. S.; Singh, G.

    2014-01-01

    The innovative design and synthesis of nanofiber based hydro-philic/phobic membranes with a thin hydro-phobic nanofiber layer on the top and a thin hydrophilic nanofiber layer on the bottom of the conventional casted micro-porous layer which opens up a solution for membrane pore wetting and improves the pure water flux in membrane distillation. PMID:25377488

  9. The Effects of Fracture Origin Size on Fatigue Properties of Ductile Cast Iron with Small Chill Structures

    NASA Astrophysics Data System (ADS)

    Sameshima, Daigo; Nakamura, Takashi; Horikawa, Noritaka; Oguma, Hiroyuki; Endo, Takeshi

    Reducing the weight of a machine structure is an increasingly important consideration both for the conservation of resources during production and for the energy saving during operation. With these objectives in mind, thin-walled ductile cast iron has recently been developed. Because rapid cooling could result in brittle microstructure of cementite (chill) in this cast iron, it is necessary to investigate the effect of cementite on the fatigue properties. Therefore, fatigue tests were carried out on a ductile cast iron of block castings which contained a relatively small amount of cementite. Fracture surface observation indicated that the fracture origins were located at graphite clusters and cast shrinkage porosity, not at cementite. It appears that when the size of the cementite is smaller than that of the graphite, the cementite does not affect the fatigue properties of ductile cast iron. Not surprisingly, the fatigue lives were found to increase with decrease in the size of the fatigue fracture origin. The threshold initial stress intensity factor range ΔKini,th for fatigue failure was found to be about 3-4MPa√m, independent of microstructure.

  10. Investigation of the influence of the chemical composition of HSLA steel grades on the microstructure homogeneity during hot rolling in continuous rolling mills using a fast layer model

    NASA Astrophysics Data System (ADS)

    Schmidtchen, M.; Rimnac, A.; Warczok, P.; Kozeschnik, E.; Bernhard, C.; Bragin, S.; Kawalla, R.; Linzer, B.

    2016-03-01

    The newly developed LaySiMS simulation tool provides new insight for inhomogeneous material flow and microstructure evolution in an endless strip production (ESP) plant. A deepened understanding of the influence of inhomogeneities in initial material state, temperature profile and material flow and their impact on the finished product can be reached e.g. by allowing for variable layer thickness distributions in the roll gap. Coupling temperature, deformation work and work hardening/recrystallization phenomena accounts for covering important effects in the roll gap. The underlying concept of the LaySiMS approach will be outlined and new insight gained regarding microstructural evolution, shear and inhomogeneous stress and strain states in the roll gap as well as local residual stresses will be presented. For the case of thin slab casting and direct rolling (TSDR) the interrelation of inhomogeneous initial state, micro structure evolution and dissolution state of micro alloying elements within the roughing section of an ESP line will be discussed. Special emphasis is put on the influence of the local chemical composition arising from direct charging on throughthickness homogeneity of the final product. It is concluded that, due to the specific combination of large reductions in the high reduction mills (HRM) and the highly inhomogeneous inverse temperature profile, the ESP-concept provides great opportunities for homogenizing the microstructure across the strip thickness.

  11. Innovative ceramic slab lasers for high power laser applications

    NASA Astrophysics Data System (ADS)

    Lapucci, Antonio; Ciofini, Marco

    2005-09-01

    Diode Pumped Solid State Lasers (DPSSL) are gaining increasing interest for high power industrial application, given the continuous improvement in high power diode laser technology reliability and affordability. These sources open new windows in the parameter space for traditional applications such as cutting , welding, marking and engraving for high reflectance metallic materials. Other interesting applications for this kind of sources include high speed thermal printing, precision drilling, selective soldering and thin film etching. In this paper we examine the most important DPSS laser source types for industrial applications and we describe in details the performances of some slab laser configurations investigated at our facilities. The different architectures' advantages and draw-backs are briefly compared in terms of performances, system complexity and ease of scalability to the multi-kW level.

  12. Photonic crystals for improving light absorption in organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duché, D., E-mail: david.duche@im2np.fr; Le Rouzo, J.; Masclaux, C.

    2015-02-07

    We theoretically and experimentally study the structuration of organic solar cells in the shape of photonic crystal slabs. By taking advantage of the optical properties of photonic crystals slabs, we show the possibility to couple Bloch modes with very low group velocities in the active layer of the cells. These Bloch modes, also called slow Bloch modes (SBMs), allow increasing the lifetime of photons within the active layer. Finally, we present experimental demonstration performed by using nanoimprint to directly pattern the standard poly-3-hexylthiophène:[6,6]-phenyl-C61-butiryc acid methyl ester organic semiconductor blend in thin film form in the shape of a photonic crystalmore » able to couple SBMs. In agreement with the model, optical characterizations will demonstrate significant photonic absorption gains.« less

  13. Fixture for forming evaporative pattern (EPC) process patterns

    DOEpatents

    Turner, Paul C.; Jordan, Ronald R.; Hansen, Jeffrey S.

    1993-01-01

    A method of casting metal using evaporative pattern casting process patterns in combination with a fixture for creating and maintaining a desired configuration in flexible patterns. A pattern is constructed and gently bent to the curvature of a suitable fixture. String or thin wire, which burns off during casting, is used to tie the pattern to the fixture. The fixture with pattern is dipped in a commercially available refractory wash to prevent metal adherence and sticking to the fixture. When the refractory wash is dry, the fixture and pattern are placed in a flask, and sand is added and compacted by vibration. The pattern remains in position, restrained by the fixture. Metal that is poured directly into the pattern replaces the pattern exactly but does not contact or weld to the fixture due to the protective refractory layer. When solid, the casting is easily separated from the fixture. The fixture can be cleaned for reuse in conventional casting cleaning equipment.

  14. Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high-resolution results

    NASA Astrophysics Data System (ADS)

    Gans, Christine R.; Beck, Susan L.; Zandt, George; Gilbert, Hersh; Alvarado, Patricia; Anderson, Megan; Linkimer, Lepolt

    2011-07-01

    The Pampean flat slab of central Chile and Argentina (30°-32°S) has strongly influenced Cenozoic tectonics in western Argentina, which contains both the thick-skinned, basement-cored uplifts of the Sierras Pampeanas and the thin-skinned Andean Precordillera fold and thrust belt. In this region of South America, the Nazca Plate is subducting nearly horizontally beneath the South American Plate at ˜100 km depth. To gain a better understanding of the deeper structure of this region, including the transition from flat to 'normal' subduction to the south, three IRIS-PASSCAL arrays of broad-band seismic stations have been deployed in central Argentina. Using the dense SIEMBRA array, combined with the broader CHARGE and ESP arrays, the flat slab is imaged for the first time in 3-D detail using receiver function (RF) analysis. A distinct pair of RF arrivals consisting of a negative pulse that marks the top of the oceanic crust, followed by a positive pulse, which indicates the base of the oceanic crust, can be used to map the slab's structure. Depths to Moho and oceanic crustal thicknesses estimated from RF results provide new, more detailed regional maps. An improved depth to continental Moho map shows depths of more than 70 km in the main Cordillera and ˜50 km in the western Sierras Pampeanas, that shallow to ˜35 km in the eastern Sierras Pampeanas. Depth to Moho contours roughly follow terrane boundaries. Offshore, the hotspot seamount chain of the Juan Fernández Ridge (JFR) is thought to create overthickened oceanic crust, providing a mechanism for flat slab subduction. By comparing synthetic RFs, based on various structures, to the observed RF signal we determine that the thickness of the oceanic crust at the top of the slab averages at least ˜13-19 km, supporting the idea of a moderately overthickened crust to provide the additional buoyancy for the slab to remain flat. The overthickened region is broader than the area directly aligned with the path of the JFR, however, and indicates, along with the slab earthquake locations, that the flat slab area is wider than the JFR volcanic chain observed in the offshore bathymetry. Further, RFs indicate that the subducted oceanic crust in the region directly along the path of the subducted ridge is broken by trench-parallel faults. One explanation for these faults is that they are older structures within the oceanic crust that were created when the slab subducted. Alternatively, it is possible that faults formed recently from tectonic underplating caused by increased interplate coupling in the flat slab region.

  15. Trench dynamics: Effects of dynamically migrating trench on subducting slab morphology and characteristics of subduction zones systems

    NASA Astrophysics Data System (ADS)

    Yoshida, Masaki

    2017-07-01

    Understanding the mechanisms of trench migration (retreat or advance) is crucial to characterizing the driving forces of Earth's tectonics plates, the origins of subducting slab morphologies in the deep mantle, and identifying the characteristics of subduction zones systems, which are among the fundamental issues of solid Earth science. A series of numerical simulations of mantle convection, focusing on plate subduction in a three-dimensional (3-D) regional spherical shell coordinate system, was performed to examine subduction zone characteristics, including geodynamic relationships among trench migration, back-arc stress, and slab morphology. The results show that a subducting slab tends to deflect around the base of the mantle transition zone and form a sub-horizontal slab because its front edge (its 'toe') is subject to resistance from the highly viscous lower mantle. As the sub-horizontal slab starts to penetrate into the lower mantle from its 'heel,' the toe of the slab is drawn into the lower mantle. The results for models with dynamically migrating trenches suggest that trench retreat is the dynamically self-consistent phenomenon in trench migration. The reason for this is that the strong lateral mantle flow that is generated as a sequence of events leading from corner flow at the subduction initiation to return flow of the formation of a sub-horizontal slab in the shallower part of mantle wedge produces the retreat of the subducting slab. In fact, a 'mantle suction force,' which is generated in the mantle wedge to fill space left by the retreating subducting plate, is enhanced by the subsequent trench retreat. Even when upwelling flow with significant positive buoyancy originates just above a mantle phase boundary at a depth of 410 km (as inferred from independent seismic tomographic, geodynamic, geochemical, and mineral physics), reaches the base of the overriding plate, and the overriding plate is slightly thinned, lithospheric stress tends to be compressed above the upwelling flow. The reason for this is that the strong lateral mantle flow originating from the upwelling flow generates resistance drag force at the base of the overriding plates. This situation may apply to a case of East Asia, under which the typical morphology of sub-horizontal slabs can be seen by seismic tomography. The strong lateral velocity observed in the shallower mantle wedge in the present numerical simulation may account for both the compressional subduction tectonics and back arc compression in the Japan-Kuril-Kamchatka, Aleutian, and South Chile trenches, as well as for weak plate-slab coupling, strong seismic coupling, and the possibility of great earthquakes along these trenches.

  16. Assessment of doses caused by electrons in thin layers of tissue-equivalent materials, using MCNP.

    PubMed

    Heide, Bernd

    2013-10-01

    Absorbed doses caused by electron irradiation were calculated with Monte Carlo N-Particle transport code (MCNP) for thin layers of tissue-equivalent materials. The layers were so thin that the calculation of energy deposition was on the border of the scope of MCNP. Therefore, in this article application of three different methods of calculation of energy deposition is discussed. This was done by means of two scenarios: in the first one, electrons were emitted from the centre of a sphere of water and also recorded in that sphere; and in the second, an irradiation with the PTB Secondary Standard BSS2 was modelled, where electrons were emitted from an (90)Sr/(90)Y area source and recorded inside a cuboid phantom made of tissue-equivalent material. The speed and accuracy of the different methods were of interest. While a significant difference in accuracy was visible for one method in the first scenario, the difference in accuracy of the three methods was insignificant for the second one. Considerable differences in speed were found for both scenarios. In order to demonstrate the need for calculating the dose in thin small zones, a third scenario was constructed and simulated as well. The third scenario was nearly equal to the second one, but a pike of lead was assumed to be inside the phantom in addition. A dose enhancement (caused by the pike of lead) of ∼113 % was recorded for a thin hollow cylinder at a depth of 0.007 cm, which the basal-skin layer is referred to in particular. Dose enhancements between 68 and 88 % were found for a slab with a radius of 0.09 cm for all depths. All dose enhancements were hardly noticeable for a slab with a cross-sectional area of 1 cm(2), which is usually applied to operational radiation protection.

  17. X-radiography of trace fossils in limestones and dolostones from the Jurassic Smackover Formation, south Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esposito, R.A.; Castleman, S.P.; King, D.T. Jr.

    X-radiography has been useful in studying biogenic sedimentary structures in unconsolidated sediments but the technique has not been applied often to the study of hard carbonate rock. The authors have applied x-radiography to the study of the lower part of the Smackover to enhance the complete petrologic description of the rock. The lower Smackover has many dense micrite intervals and intervals of monotonous, thin graded beds. Parts of the lower Smackover is also dolomitized. None of the above rocks contains significant amount of skeletal debris and trace fossils are not generally obvious in an etched slab of core. In limestone,more » they have detected well-preserved trace fossils by x-radiography, however. The dolostones show no traces using our method. In limestones, the traces are marked by minute amounts of finely divided iron sulfides. This causes a slight density difference resulting in greater x-ray absorption. They recognize two main trace-fossil types: a Thalassinoides best seen in slabs cut parallel to bedding and a Zoophycos best seen in slabs cut perpendicular to bedding. The technique requires a slab cut 8 mm thick with parallel flat surfaces and a medical x-ray unit using accelerating voltages of 66 kV and 10 mas. Traces are most successfully imaged on industrial-quality films.« less

  18. Strategies to reduce mass and photons transfer limitations in heterogeneous photocatalytic processes: Hexavalent chromium reduction studies.

    PubMed

    Marinho, Belisa A; Cristóvão, Raquel O; Djellabi, Ridha; Caseiro, Ana; Miranda, Sandra M; Loureiro, José M; Boaventura, Rui A R; Dias, Madalena M; Lopes, José Carlos B; Vilar, Vítor J P

    2018-07-01

    The current work presents different approaches to overcome mass and photon transfer limitations in heterogeneous photocatalytic processes applied to the reduction of hexavalent chromium to its trivalent form in the presence of a sacrificial agent. Two reactor designs were tested, a monolithic tubular photoreactor (MTP) and a micro-meso-structured photoreactor (NETmix), both presenting a high catalyst surface area per reaction liquid volume. In order to reduce photon transfer limitations, the tubular photoreactor was packed with transparent cellulose acetate monolithic structures (CAM) coated with the catalyst by a dip-coating method. For the NETmix reactor, a thin film of photocatalyst was uniformly deposited on the front glass slab (GS) or on the network of channels and chambers imprinted in the back stainless steel slab (SSS) using a spray system. The reaction rate for the NETmix photoreactor was evaluated for two illumination sources, solar light or UVA-LEDs, using the NETmix with the front glass slab or/and back stainless steel slab coated with TiO 2 -P25. The reusability of the photocatalytic films on the NETmix walls was also evaluated for three consecutive cycles using fresh Cr(VI) solutions. The catalyst reactivity in combination with the NETmix-SSS photoreactor is almost 70 times superior to one obtained with the MTP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Seismic constraints of thinning and fragmenting continental lithosphere beneath the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kim, S.; Tauzin, B.; Tkalcic, H.; Rhie, J.

    2017-12-01

    Modification of the continental lithosphere is still an enigmatic process. The Korean Peninsula (KP) is one of ideal place to depict the process by interactions with subducting oceanic slabs. We detect a significant thickness change (>50 km) of the continental lithosphere beneath the KP that is confirmed by two independent approaches: (1) 3D imaging using ambient noise analysis and (2) receiver function CCP stacking. A series of transdimensional and hierarchical Bayesian joint inversions is performed to obtain a high-resolution 3D model from different types of surface wave dispersion data. For the stacking of receiver function waveforms, the coda waveforms of crustal multi-modes (PpPs and PpSs) are combined together to better image the lithosphere-asthenosphere boundary. We estimate the relatively deeper rooted lithosphere (>100 km) in the southwestern part of the KP compared to shallower surrounding regions. The lithospheric structure is underlain by lower velocity anomalies (Vs<4.1 km/s), which extends from back-arc regions near subducting slabs horizontally and connects to low velocity anomalies in the deeper upper mantle vertically. The imaged features clearly show that the effect of the oceanic slab subduction is a key factor controlling the modification process. We further examine the implication for the occurrence of intraplate volcanoes and the relationship to the mantle transition zone heterogeneities due to stagnant slabs in the northeast Asia.

  20. Characterization of New Materials for Photovoltaic Thin Films: Aggregation Phenomena in Self-Assembled Perylene-Based Diimides

    DTIC Science & Technology

    2005-07-21

    or solution-based methods such as spin casting or drop casting,’ 1ś󈧖 self-assembly,1922 Langmuir - Blodgett techniques,23 or electrochemical methods...and Langmuir - exist. Molecules containing a perylene diimide core have Blodgett techniques.’ 8 In many situations, the molecules also been proposed for...remain soluble in the W. J. Langmuir 1996, 12, 2169. absence of other ionic species. These systems represent (35) Antonietti, M.; Conrad, J. Angew

  1. Electroslag Processing for Marine Application. Summary Report on a Workshop Held in Annapolis, Maryland on 5-6 March 1985.

    DTIC Science & Technology

    1985-03-01

    the ESC process technology to private industry. The task emphasizes four major areas: (1) advancement of ESC technology , (2) preparation of castings (by...to advance the technology . This can possibly be best accomplished by industry or by industry in cooperation with one or more Government agencies... Technology ( CANMET ) has been involved with electroslag casting for the past 4 years. Recently this equipment has been modified to produce thin-wall hollow

  2. ScienceCast 238: Southern Hemisphere Solar Eclipse

    NASA Image and Video Library

    2017-02-24

    On Sunday, February 26th, the moon will pass in front of the sun, transforming rays of sunlight across parts of South America, southern Africa and Antarctica into fat crescents and thin rings of light.

  3. Development of TRIP-Aided Lean Duplex Stainless Steel by Twin-Roll Strip Casting and Its Deformation Mechanism

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Zhang, Weina; Liu, Xin; Liu, Zhenyu; Wang, Guodong

    2016-12-01

    In the present work, twin-roll strip casting was carried out to fabricate thin strip of a Mn-N alloyed lean duplex stainless steel with the composition of Fe-19Cr-6Mn-0.4N, in which internal pore defects had been effectively avoided as compared to conventional cast ingots. The solidification structure observed by optical microscope indicated that fine Widmannstatten structure and coarse-equiaxed crystals had been formed in the surface and center, respectively, with no columnar crystal structures through the surface to center of the cast strip. By applying hot rolling and cold rolling, thin sheets with the thickness of 0.5 mm were fabricated from the cast strips, and no edge cracks were formed during the rolling processes. With an annealing treatment at 1323 K (1050 °C) for 5 minutes after cold rolling, the volume fractions of ferrite and austenite were measured to be approximately equal, and the distribution of alloying elements in the strip was further homogenized. The cold-rolled and annealed sheet exhibited an excellent combination of strength and ductility, with the ultimate tensile strength and elongation having been measured to be 1000 MPa and 65 pct, respectively. The microstructural evolution during deformation was investigated by XRD, EBSD, and TEM, indicating that ferrite and austenite had different deformation mechanisms. The deformation of ferrite phase was dominated by dislocation slipping, and the deformation of austenite phase was mainly controlled by martensitic transformation in the sequence of γ→ ɛ-martensite→ α'-martensite, leading to the improvement of strength and plasticity by the so-called transformation-induced plasticity (TRIP) effect. By contrast, lean duplex stainless steels of Fe-21Cr-6Mn-0.5N and Fe-23Cr-7Mn-0.6N fabricated by twin-roll strip casting did not show TRIP effects and exhibited lower strength and elongation as compared to Fe-19Cr-6Mn-0.4N.

  4. Optical, mechanical and structural properties of PMMA/SiO2 nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Soni, Gyanesh; Srivastava, Subodh; Soni, Purushottam; Kalotra, Pankaj; Vijay, Y. K.

    2018-01-01

    We have fabricated PMMA/SiO2 nanocomposite flexible thin films of 60 μm thicknesses by using solution casting method in the presence of transverse electric field. In this paper, we have investigated the effect of SiO2 nanoparticle (NP) loading on optical and mechanical properties of the composite thin film. The SEM images show that nanocomposite thin films have a smoother and uniform morphology. The transmittance peak near 1103 cm-1 in FT-IR spectrum confirms the presence of SiO2 NPs in the composite thin film. It is observed that optical bandgap decreases with an increase in the SiO2 NP concentration. Dynamic mechanical analysis shows that presence of SiO2 NP enhances the mechanical strength of the composite thin film.

  5. Experimental study and thermodynamic modelling of the calcium oxide-silicon oxide-aluminum oxide-calcium fluoride system

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Geun

    Mould flux for the continuous casting process is a major concern for the steelmaking industry. Nowadays, more than 90 % of steel is being produced by the continuous casting process, which requires mould flux as an essential additive. The development of mould flux has been achieved by the conventional trial and error approach since it was first introduced in industry in the 1960s. Recently, the interest on the properties of fluorine has increased a lot since it is reported that fluorine has important functions such as playing a critical role on the crystallization behavior, and decreasing the melting point and viscosity of slag. However, the conventional way to find a suitable mould flux is not efficient to face the increasingly stringent requirements of the continuous casting process such as thin slab casting and higher casting speed. Therefore, fundamental phase diagram study on mould flux systems is clearly necessary, and thermodynamic modeling is the most effective way to design new mould flux in terms of time and money saving. The major components of mould flux, the CaO-SiO2-Al2O 3-CaF2 system, are investigated in this study as these four constituents will mostly affect the largest numbers of properties. Unfortunately, fluorine has high volatility at high temperature and high reactivity with other materials. Therefore, the results of previous experiments on F-containing systems are characterized by large discrepancies due to composition alteration and unexpected reactions during the experiment. As literature data show inconsistent results between each other, key phase diagram experiments were performed in this study. The phase diagram experiments were conducted with the quenching method in sealed Pt capsules to prevent fluorine loss during the experiment. The analyses were performed using a FE-SEM equipped with an EDS system, and a newly developed technique which produces more precise quantitative results for the equilibrium phase composition. The CaO liquidus of the CaO-CaF 2 binary system, which the literature data differ from each other by up to 50 mol %, was confirmed. The CaO solubility in solid CaF2 was found for the first time and reaches about 5 mol % at the eutectic temperature. The liquidus of the CaO-Al2O3-CaF2 and CaO-SiO 2-CaF2 systems were carefully studied and the miscibility gap in the CaO-Al2O3-CaF2 system was proved to be much smaller than that reported in literature. Also, thermal analysis was performed using DSC in a Pt crucible. The eutectic temperatures of the CaO-CaF2 and CaAl2O4-CaF2 systems were successfully measured and the alpha to beta-CaF2 polymorphic transition was confirmed. Based on the new experimental data and reliable literature data, thermodynamic modeling of the CaO-SiO2-Al 2O3-CaF2 system was also carried out. The results of thermodynamic calculation can be very beneficial for new mould flux design.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayala, Alicia; Corral, Erica L.; Loehman, Ronald E.

    A tape casting procedure for fabricating ceramic magnesium oxide tapes has been developed as a method to produce flat sheets of sintered MgO that are thin and porous. Thickness of single layer tapes is in the range of 200-400 {micro}m with corresponding surface roughness values in the range of 10-20 {micro}m as measured by laser profilometry. Development of the tape casting technique required optimization of pretreatment for the starting magnesium oxide (MgO) powder as well as a detailed study of the casting slurry preparation and subsequent heat treatments for sintering and final tape flattening. Milling time of the ceramic powder,more » plasticizer, and binder mixture was identified as a primary factor affecting surface morphology of the tapes. In general, longer milling times resulted in green tapes with a noticeably smoother surface. This work demonstrates that meticulous control of the entire tape casting operation is necessary to obtain high-quality MgO tapes.« less

  7. Fabrication of hydroxyapatite ceramics with controlled pore characteristics by slip casting.

    PubMed

    Yao, Xiumin; Tan, Shouhong; Jiang, Dongliang

    2005-02-01

    Porous hydroxyapatite (HAp) ceramics with controlled pore characteristics were fabricated using slip casting method by mixing PMMA with HAp powder. The optimum conditions of HAp slip for slip casting was achieved by employing various experimental techniques, zeta potential and sedimentation, as a function of pH of the slips in the pH range of 4-12. HAp suspensions displayed an absolute maximum in zeta potential values and a minimum in sedimentation height at pH 11.5. The optimal amount of dispersant for the HAp suspensions was found at 1.0 wt% according to the viscosity of 25 vol% HAp slurry. The rheological behaviour of HAp slurry displays a shear-thinning behavior without thixotropy, which is needed in slip casting processing. The pore characteristics of sintered porous hydroxyapatite bioceramics can be controlled by added PMMA particle size and volume. The obtained ceramics exhibit higher strength than those obtained by dry pressing.

  8. Stress distribution calculations through a snow slab of varying elastic modulus; comparison with stability evaluation in the field

    NASA Astrophysics Data System (ADS)

    Swinkels, Laura; Borstad, Chris

    2017-04-01

    Field observations are the main tools for assessing the snow stability concerning dry snow slab avalanche release. Often, theoretical studies cannot directly be translated into useful information for avalanche recreationists and forecasters in the field, and vice versa; field observations are not always objective and quantifiable for theoretical studies. Moreover, numerical models often simplify the snowpack and generally use an isotropic single layer slab which is not representative of the real-life situation. The aim of this study is to investigate the stress distribution in a snowpack with an elastic modulus that continuously varies with depth. The focus lies on the difference between a slab with a gradient in hardness and a slab with isotropic hardness and the effect on the calculated maximum stress and the stability evaluation in the field. Approximately 20 different snow pits were evaluated in the mountains around Tromsø, Norway and Longyearbyen, Svalbard. In addition to the standard snowpack observations, the hardness was measured using a thin-blade gauge. Extended column tests were executed for stability evaluation. Measurements from the field were used as input for stress calculations for each snow pit using a line load solution for a sloping half space with a non-homogeneous elastic modulus. The hardness measurements were used to calculate the elastic modulus and a power law relation was fit through the modulus in the slab. The calculated shear stress was compared to the estimated stability and character of the specific snowpack The results show that the approach used for this study improves the calculation of stress at a given depth, although many assumptions and simplifications were still needed. Comparison with the snow profiles indicate that calculated stresses correlate well with the observed snowpack properties and stability. The calculated shear stresses can be introduced in the standard stability index and give a better indication for the snowpack stability. Further research is required to delimit the stresses needed for propagation of a weak layer fracture.

  9. First-principles study on the bulk and (1 1 1) surface half-metallicity of KS and RbS in CsCl structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lei; Lei, Gang; Gao, Qiang

    2015-08-15

    Graphical abstract: Spin-polarized total and atomic DOS at S-(1 1 1) terminated slab and bulk in CsCl-type RbS. - Highlights: • The half metallic properties of CsCl-type RbS and KS have been studied. • The RbS's and KS's (1 1 1) slabs have been investigated. • Surface energy of RbS's and KS's (1 1 1) slabs are calculated. - Abstract: The electronic and magnetic properties of RbS and KS in CsCl structure have been investigated by using the full-potential local-orbital minimum-basis method. Calculating the relation between the total energies and lattice parameters for RbS and KS, we find out thatmore » the equilibrium lattice parameters are 4.02 Å and 3.84 Å for RbS and KS, respectively. According to our calculations in generalized gradient approximation approximation, both RbS and KS are half-metallic ferromagnets with the magnetic moments of 1 μ{sub B} per formula unit, and band gap of 4.287 eV for RbS and 4.395 eV for KS. We also have studied the electronic and magnetic properties of (1 1 1) surfaces of RbS and KS, and have found out that the half-metallicity of their bulk is preserved in all of those surfaces. Finally, through the calculations of formation energy of RbS and KS, it is found that their thin films are stable in the equilibrium conditions, and the Rb-terminated (1 1 1) slab of RbS and the K-terminated (1 1 1) slab of KS are more stable than their S-terminated (1 1 1) slabs. All of the above properties lead the compounds of RbS and KS in CsCl structure to be promising candidates for spintronic applications.« less

  10. Novel Processing of a Poly(phenyleneoxide) - b –Poly(vinylbenzyltrimethylammonium) Copolymer Anion Exchange Membrane; The Effect On Mechanical And Transport Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Tara P.; Seifert, Soenke; Yang, Yating

    2016-12-01

    A poly(2,6 dimethyl 1,4-phenylene oxide)-b-poly(vinyl benzyl) chloride copolymer membranes was processed by solvent casting followed by melt pressing (SCMP) to provide uniformly thin films, 25 +/- 5 mu m, with improved conductivity, mechanical strength, water uptake, dimensional swelling, and chemical stability under 1 M KOH and 80 degrees C. These properties depended strongly on the length of the melt-pressing time. The solvent cast membranes melt pressing time was optimized to provided highly conductive membranes (high OH- conductivity of 75 +/- 25 mS cm(-1) for an IEC of 1.8 mmol g(-1) at room temperature in water). Membranes that were only solventmore » cast and not melt-pressed swelled excessively and had insufficient mechanical integrity for detailed study. When the copolymer powder was melt pressed (without prior solvent casting) at 240 degrees C and ca. 30 MPa for 20 minutes, membranes with high mechanical strength (tensile stress at break of 32 +/- 6 MPa at 25% RH and 29 +/- 3 MPa when 95% RH at 60 degrees C), high conductivity (Cl conductivity of 80 mS/cm at 90 degrees C and 95% RH), and lower water uptake were formed. However, melt pressing alone did not give larger then 5 cm x 5 cm area films, homogeneously thin (< 60 mu m), or mechanical defect-free membranes. The SCMP membranes were uniformly thin, and thermally crosslinked. The mass loss via dehydrochlorination indicated by TGA and elemental analysis confirmed the crosslinking via thermal melt pressing. The SCMP membranes thickness could be reduced by more than 50% (25 +/- 5 mu m) compared to melt pressing alone, and the Cl conductivity increased by 44% at 90 degrees C and 95% RH. The tensile stress at break of the SCMP membranes, however, was reduced by 50% at 25% RH.« less

  11. Thermal State, Slab Metamorphism, and Interface Seismicity in the Cascadia Subduction Zone Based On 3-D Modeling

    NASA Astrophysics Data System (ADS)

    Ji, Yingfeng; Yoshioka, Shoichi; Banay, Yuval A.

    2017-09-01

    Giant earthquakes have repeatedly ruptured the Cascadia subduction zone, and similar earthquakes will likely also occur there in the near future. We employ a 3-D time-dependent thermomechanical model that incorporates an up-to-date description of the slab geometry to study the Cascadia subduction thrust. Results show a distinct band of 3-D slab dehydration that extends from Vancouver Island to the Seattle Basin and farther southward to the Klamath Mountains in northern California, where episodic tremors cluster. This distribution appears to include a region of increased dehydration in northern Cascadia. The phenomenon of heterogeneous megathrust seismicity associated with oblique subduction suggests that the presence of fluid-rich interfaces generated by slab dehydration favors megathrust seismogenesis in the northern part of this zone. The thin, relatively weakly metamorphosed Explorer, Juan de Fuca, and Gorda Plates are associated with an anomalous lack of thrust earthquakes, and metamorphism that occurs at temperatures of 500-700°C near the Moho discontinuity may represent a key factor in explaining the presence of the associated episodic tremor and slip (ETS), which requires a young oceanic plate to subduct at a small dip angle, as is the case in Cascadia and southwestern Japan. The 3-D intraslab dehydration distribution suggests that the metamorphosed plate environment is more complex than had previously been believed, despite the existence of channeling vein networks. Slab amphibolization and eclogitization near the continental Moho depth is thus inferred to account for the resultant overpressurization at the interface, facilitating the generation of ETS and the occurrence of small to medium thrust earthquakes beneath Cascadia.

  12. A geochemical and geochronological section through the Eastern Aegean

    NASA Astrophysics Data System (ADS)

    Boehm, Katharina; Kuiper, Klaudia; Vroon, Pieter; Wijbrans, Jan

    2017-04-01

    The convergence of Africa and Eurasia and the subduction of a oceanic lithosphere of narrow basins between Gondwana terranes has controlled the geological evolution of the Eastern Mediterranean region since the Cretaceous. This resulted in back-arc extension and lithospheric thinning caused by slab roll-back together with the westward extrusion of Anatolia, in the southwards retreat and stepwise development of the subduction system and also in a low velocity seismic anomaly gap between the Cyprus and Hellenic slab and other slab segments. However, the exact timing of all these events in the Eastern Mediterranean region is still a matter of debate, and the purpose of this study is therefore to disentangle when terrains collided and slab detached in the last 30Ma. In a N-S transect magmatic rocks of the Aegean plate are studied, including volcanics from the islands Nisyros, Kos, Patmos, Chios, Lesbos and Samothraki. Major- and trace elements as well as Sr-Nd-Hf-Pb-O isotopes are used to interpret the different features of the Aegean subduction zone. With this geochemical approach the extend of upwelling hot asthenospheric material from the slab tear can be traced in the recent to Eocene volcanic rocks. The volcanic rocks give a wide scatter in classification diagrams and pose for example the question how the sodium rich volcanic products of Patmos can be explained. On the other hand Chios seems to play a key role around 15 Ma years in a phase of relatively low volcanic activity. To get a reliable timeline of the subduction in the Aegean since the Eocene we are aiming to tie our chemical and isotopic data to parallel obtained geochronological ages. New 40Ar/39Ar data will allow us to get the needed resolution for this time span and material.

  13. Electromagnetic augmentation for casting of thin metal sheets

    DOEpatents

    Hull, J.R.

    1987-10-28

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a model within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. 8 figs.

  14. The casting and mechanism of formation of semi-permeable polymer membranes in a microgravity environment

    NASA Astrophysics Data System (ADS)

    Vera, I.

    The National Electric Company of Venezuela, C.A.D.A.F.E., is sponsoring the development of this experiment which represents Venezuela's first scientific experiment in space. The apparatus for the automatic casting of polymer thin films will be contained in NASA's payload No. G-559 of the Get Away Special program for a future orbital space flight in the U.S. Space Shuttle. Semi-permeable polymer membranes have important applications in a variety of fields, such as medecine, energy, and pharmaceuticals, and in general fluid separation processes such as reverse osmosis, ultra-filtration, and electro-dialysis. The casting of semi-permeable membranes in space will help to identify the roles of convection in determining the strucutre of these membranes.

  15. Casting Control of Floating-films into Ribbon-shape Structure by modified Dynamic FTM

    NASA Astrophysics Data System (ADS)

    Tripathi, A.; Pandey, M.; Nagamatsu, S.; Pandey, S. S.; Hayase, S.; Takashima, W.

    2017-11-01

    We have developed a new method to obtain Ribbon-shaped floating films via dynamic casting of floating-film and transfer method (dynamic-FTM). Dynamic-FTM is a unique method to prepare oriented thin-film of conjugated polymers (CPs) which is quick and easy. This method has several advantages as compared to the other conventional casting procedure to prepare oriented CP films. In the conventional dynamic FTM appearance of large scale circular orientation poses difficulty not only for practical applications but also hinders the detailed analysis of the orientation mechanism. In this present work, pros and cons of this newly proposed ribbon-shaped floating-film have been discussed in detail from those of the conventional floating-film prepared by dynamic-FTM.

  16. Bound exciton and free exciton states in GaSe thin slab.

    PubMed

    Wei, Chengrong; Chen, Xi; Li, Dian; Su, Huimin; He, Hongtao; Dai, Jun-Feng

    2016-09-22

    The photoluminescence (PL) and absorption experiments have been performed in GaSe slab with incident light polarized perpendicular to c-axis of sample at 10 K. An obvious energy difference of about 34 meV between exciton absorption peak and PL peak (the highest energy peak) is observed. By studying the temperature dependence of PL and absorption spectra, we attribute it to energy difference between free exciton and bound exciton states, where main exciton absorption peak comes from free exciton absorption, and PL peak is attributed to recombination of bound exciton at 10 K. This strong bound exciton effect is stable up to 50 K. Moreover, the temperature dependence of integrated PL intensity and PL lifetime reveals that a non-radiative process, with activation energy extracted as 0.5 meV, dominates PL emission.

  17. Triple Plate Mold Final Report: Optimization of the Mold Design and Casting Parameters for a Thin U-10mo Fuel Casting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aikin, Jr., Robert M.

    This work describes the experiments and modeling that have been performed to improve and try to optimize the simultaneous casting of three plates of U-10wt%Mo in a single coil vacuum induction melting (VIM) furnace. The plates of interest are 280 mm wide by 203 mm tall by 5 mm thick (11" x 8" x 0.2"). The initial mold design and processing parameters were supplied by Y-12. The mold and casting cavity were instrumented with a number of thermocouples, and the casting performed to determine the thermal history of the mold and casting. The resulting cast plates were radiographed and numerousmore » defects identified. Metallography was performed to help identify the nature of the radiographically observed defects. This information was then used to validate a mold filling and solidification model of that casting. Based on the initial casting, good casting design practice, and process simulation of several design alternatives, a revised design was developed with the goal of minimizing casting defects such as porosity. The redesigned mold had a larger hot-top and had its long axis along the horizontal direction. These changes were to try to develop a strong thermal gradient conducive to good feeding and minimization of micro- and macroporosity in the cast plates. An instrumented casting was then performed with the revised mold design and a linear distributor. This design yielded cast plates with significantly less radiographically identified defects. Unfortunately, there was significant variation in plate weight and metal content in their hot-tops. Fluid flow simulations were then performed on this mold/distributor design. This helped identify the issue with this linear distributor design. Additional simulations were then performed on candidate distributor redesigns and a preferred distributor annular design was identified. This improved annular design was used to produce a third instrumented casting with favorable results. These refined designs and their radiographic characterization are compared to the initial design.« less

  18. A Detailed 3D Seismic Velocity Structure of the Subducting Pacific Slab Beneath Hokkaido, Tohoku and Kanto, Japan, by Double-Difference Tomography

    NASA Astrophysics Data System (ADS)

    Tsuji, Y.; Nakajima, J.; Kita, S.; Okada, T.; Matsuzawa, T.; Hasegawa, A.

    2007-12-01

    Three-dimensional heterogeneous structure beneath northeastern (NE) Japan has been investigated by previous studies and an inclined seismic low-velocity zone is imaged in the mantle wedge sub-parallel to the down-dip direction of the subducting slab (Zhao et al., 1992, Nakajima et al., 2001). However, the heterogeneous structure within the slab has not been well studied even though it is very important to understand the whole process of water transportation from the slab to the surface. Here we show a detailed 3D seismic velocity structure within the subducted Pacific slab around Japan and propose a water-transportation path from the slab to the mantle wedge. In this study, we estimated 3D velocity structure within the Pacific slab by the double-difference tomography (Zhang and Thurber, 2003). We divided the study area, from Hokkaido to Kanto, into 6 areas due to the limitation of memory and computation time. In each area, arrival-time data of 7,500-17,000 events recorded at 70-170 stations were used in the analysis. The total number of absolute travel-time data was about 140,000-312,000 for P wave and 123,000-268,000 for S wave, and differential data were about 736,000-1,920,000 for P wave and 644,000-1,488,000 for S wave. Horizontal and vertical grid separations are 10-25 km and 6.5 km, respectively. RMS residuals of travel times for P wave decreased from 0.23s to 0.09s and for S wave from 0.35s to 0.13s. The obtained results are as follows: (1) a remarkable low-Vs zone exists in the uppermost part of the subducting slab, (2) it extends down to a depth of about 80 km, (3) the termination of this low-Vs zone almost corresponds to the "seismic belt" recently detected in the upper plane of the double seismic zone (Kita et al.,2006; Hasegawa et al., 2007), (4) at depths deeper than 80 km, a low-Vs and high-Vp/Vs zone is apparently distributed in the mantle wedge, immediately above the slab crust. We consider that these features reflect water-transportation processes from the slab to the mantle wedge. A low- Vs zone in the uppermost part of the subducting slab corresponds to the hydrous oceanic crust since its absolute velocity is about 4.0 km/s, comparable to that expected for the oceanic crust (Hacker et al., 2003). Dehydration reactions occur in the oceanic crust as temperature and pressure increase, and a relatively large amount of water is released at depths of about 80-100 km. The water generated by dehydration reactions could migrate upward and react peridotite at the base of the mantle wedge, forming a thin-serpentine layer there. Then, the layer is dragged by the subducting slab to deeper depths (e.g. Iwamori, 1998). Such water-transportation processes from the slab to the mantle wedge are partly constrained by a recent receiver function analysis (Kawakatsu and Watada, 2007). We further found an along-arc variation of the termination depth of the low-velocity oceanic crust, suggesting the along-arc variation in the amount of fluids released from the slab.

  19. Mid-Infrared Spectroscopy Platform Based on GaAs/AlGaAs Thin-Film Waveguides and Quantum Cascade Lasers.

    PubMed

    Sieger, Markus; Haas, Julian; Jetter, Michael; Michler, Peter; Godejohann, Matthias; Mizaikoff, Boris

    2016-03-01

    The performance and versatility of GaAs/AlGaAs thin-film waveguide technology in combination with quantum cascade lasers for mid-infrared spectroscopy in comparison to conventional FTIR spectroscopy is presented. Infrared radiation is provided by a quantum cascade laser (QCL) spectrometer comprising four tunable QCLs providing a wavelength range of 5-11 μm (1925-885 cm(-1)) within a single collimated beam. Epitaxially grown GaAs slab waveguides serve as optical transducer for tailored evanescent field absorption analysis. A modular waveguide mounting accessory specifically designed for on-chip thin-film GaAs waveguides is presented serving as a flexible analytical platform in lieu of conventional attenuated total reflection (ATR) crystals uniquely facilitating macroscopic handling and alignment of such microscopic waveguide structures in real-world application scenarios.

  20. Control of Low Melting Point Mno-Sio2-Al2o3 Inclusions in Low Carbon Thin-Strip Continuous Casting Steel

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Zhu, Qing; Huang, Di; Zheng, Shaobo; Zhang, Jieyu; Li, Huigai

    2017-09-01

    There is a significant difference in the demand for molten steel quality between thin-strip continuous casting and traditional continuous casting. In order to make sure the better surface quality of the thin strips, to generate an oxidation film on the surface of cooling roller is required. This will require that the higher oxygen potential in molten steel and inclusions with low melting point. In this article, the possibility of producing low-melting inclusions which is mainly consisted of SiO2 and MnO is studied by controlling the initial oxygen potential and addition order of deoxidizing alloys. The interaction activity between each component in the ternary system of Al2O3-SiO2-MnO is obtained by Action Concentration model. The equal [Mn], [Si], [O], [Al] curve under the temperature of 1823K and equilibrium condition in ternary system of Al2O3-SiO2-MnO is obtained by relative thermodynamic calculation as well. The control method for getting the low-melting point inclusion is as below. While the weight percentage of Si is 0.35% and the one of Mn is 0.90%, in order to maintain the melting point of inclusion around 1200°C, the free oxygen potential in melted steel F[O] should be maintained between 0.002% ∼ 0.004%. On the contrary, the requirement for acid dissolved [Al] content in melted steel is as low as 0.0001% ∼ 0.0005%.

  1. Ponderomotive force on solitary structures created during radiation pressure acceleration of thin foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Vipin K.; Sharma, Anamika

    2013-05-15

    We estimate the ponderomotive force on an expanded inhomogeneous electron density profile, created in the later phase of laser irradiated diamond like ultrathin foil. When ions are uniformly distributed along the plasma slab and electron density obeys the Poisson's equation with space charge potential equal to negative of ponderomotive potential, φ=−φ{sub p}=−(mc{sup 2}/e)(γ−1), where γ=(1+|a|{sup 2}){sup 1/2}, and |a| is the normalized local laser amplitude inside the slab; the net ponderomotive force on the slab per unit area is demonstrated analytically to be equal to radiation pressure force for both overdense and underdense plasmas. In case electron density is takenmore » to be frozen as a Gaussian profile with peak density close to relativistic critical density, the ponderomotive force has non-monotonic spatial variation and sums up on all electrons per unit area to equal radiation pressure force at all laser intensities. The same result is obtained for the case of Gaussian ion density profile and self consistent electron density profile, obeying Poisson's equation with φ=−φ{sub p}.« less

  2. Instrumentation by accelerometers and distributed optical fiber sensors of a real ballastless track structure

    NASA Astrophysics Data System (ADS)

    Chapeleau, Xavier; Cottineau, Louis-Marie; Sedran, Thierry; Cailliau, Joël; Gueguen, Ivan; Dumoulin, Jean

    2015-04-01

    While relatively expensive to build, ballastless track structures are presently seen as an attractive alternative to conventional ballast. Firstly, they are built quickly since the slabs can be cast in place in an automated fashion by a slipform paver. Secondly, with its service life of at least 60 years, they requires little maintenance and hence they offers great availability. Other reasons for using ballastless tracks instead of ballasted tracks are the lack of suitable ballast material and the need of less noise and vibration for high-speed, in particularly. In the framework of a FUI project (n° 072906053), a new ballastless track structure based on concrete slabs was designed and its thermal-mechanical behavior in fatigue under selected mechanical and thermal conditions was tested on a real scale mockup in our laboratory [1,2]. By applying to the slabs both together mechanical stresses and thermal gradients, finite elements simulation and experimental results show that the weather conditions influence significantly the concrete slabs curvatures and by the way, the contact conditions with the underlaying layers. So it is absolutely necessary to take into account this effect in the design of the ballastless track structures in order to guarantee a long target life of at least of 50 years. After design and experimental tests in laboratory, a real ballastless track structure of 1km was built in France at the beginning of year 2013. This structure has 2 tracks on which several trains circulate every day since the beginning of year 2014. Before the construction, it was decided to monitor this structure to verify that the mechanical behavior is conform to the simulations. One part of the instrumentation is dedicated to monitor quasi-continuously the evolution of the curvature of a concrete slab. For this, 2 accelerometers were fixed on the slab under the track. One was placed on the edge and the other in the middle of the slab. The acquisition of the signals by a nano computer (called Pegase and developed at Ifsttar for data acquisition [3]) were performed automatically every time that a threshold is exceeded due to the passage of a train. These data are then send to a web server via a 3G Wireless Network. Many data was thus stored daily for several months. Moreover, several thermocouples were embedded at different depths in order to measure thermal gradients into the track slab. From the accelerometers signals, the deflection of the track slab are then obtained and compared to the measurements of thermal gradients. This comparison show clearly the daily evolution of the curvature with the thermal gradient changes as estimated by the simulation. This result was confirmed indirectly by strain profile measurements obtained by the Rayleigh fiber optic sensing technique. Two fiber optics embedded in the upper and lower part of the foundation slab show that contact conditions between the foundation slab and the track slab change with thermal gradient. 1 - X. Chapeleau, T. Sedran, L.-M. Cottineau, J. Cailliau, F. Taillade, I. Gueguen, J.-M. Henault. Study of ballastless track structure monitoring by distributed optical fiber sensors on a real-scale mockup in laboratory. Engineering Structures, 2013, 56, pp. 1751-1757. 2 - X. Chapeleau, L.-M. Cottineau, T. Sedran, J. Cailliau, I. Gueguen. Instrumentation by distributed optical fiber sensors of a new ballastless track structure. EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-8946 3 - V. Le Cam, L. Lemarchand, L-M. Cottineau and F. Bourquin. Design of a generic smart and wireless sensors network - benefits of emerging technologies. Structural Health Monitoring 2008, 1(1), pp. 598-605.

  3. Antimicrobial activity of biopolymer-antibiotic thin films fabricated by advanced pulsed laser methods

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Popescu, C.; Dorcioman, G.; Miroiu, F. M.; Socol, G.; Mihailescu, I. N.; Gittard, S. D.; Miller, P. R.; Narayan, R. J.; Enculescu, M.; Chrisey, D. B.

    2013-08-01

    We report on thin film deposition by matrix assisted pulsed laser evaporation (MAPLE) of two polymer-drug composite thin film systems. A pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) was used to deposit composite thin films of poly(D,L-lactide) (PDLLA) containing several gentamicin concentrations. FTIR spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical structures similar to those of drop cast materials. Scanning electron microscopy data indicated that MAPLE may be used to fabricate thin films of good morphological quality. The activity of PDLLA-gentamicin composite thin films against Staphylococcus aureus bacteria was demonstrated using drop testing. The influence of drug concentration on microbial viability was also assessed. Our studies indicate that polymer-drug composite thin films prepared by MAPLE may be used to impart antimicrobial activity to implants, medical devices, and other contact surfaces.

  4. Hierarchical Approach to 'Atomistic' 3-D MOSFET Simulation

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Brown, Andrew R.; Davies, John H.; Saini, Subhash

    1999-01-01

    We present a hierarchical approach to the 'atomistic' simulation of aggressively scaled sub-0.1 micron MOSFET's. These devices are so small that their characteristics depend on the precise location of dopant atoms within them, not just on their average density. A full-scale three-dimensional drift-diffusion atomistic simulation approach is first described and used to verify more economical, but restricted, options. To reduce processor time and memory requirements at high drain voltage, we have developed a self-consistent option based on a solution of the current continuity equation restricted to a thin slab of the channel. This is coupled to the solution of the Poisson equation in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison to the full self-consistent solution. At low drain voltage, a single solution of the nonlinear Poisson equation is sufficient to extract the current with satisfactory accuracy. In this case, the current is calculated by solving the current continuity equation in a drift approximation only, also in a thin slab containing the MOSFET channel. The regions of applicability for the different components of this hierarchical approach are illustrated in example simulations covering the random dopant-induced threshold voltage fluctuations, threshold voltage lowering, threshold voltage asymmetry, and drain current fluctuations.

  5. Analysis of Meniscus Fluctuation in a Continuous Casting Slab Mold

    NASA Astrophysics Data System (ADS)

    Zhang, Kaitian; Liu, Jianhua; Cui, Heng; Xiao, Chao

    2018-06-01

    A water model of slab mold was established to analyze the microscopic and macroscopic fluctuation of meniscus. The fast Fourier transform and wavelet entropy were adopted to analyze the wave amplitude, frequency, and components of fluctuation. The flow patterns under the meniscus were measured by using particle image velocimetry measurement and then the mechanisms of meniscus fluctuation were discussed. The results reflected that wavelet entropy had multi-scale and statistical properties, and it was suitable for the study of meniscus fluctuation details both in time and frequency domain. The basic wave, frequency of which exceeding 1 Hz in the condition of no mold oscillation, was demonstrated in this work. In fact, three basic waves were found: long-wave with low frequency, middle-wave with middle frequency, and short-wave with high frequency. In addition, the upper roll flow in mold had significant effect on meniscus fluctuation. When the position of flow impinged was far from the meniscus, long-wave dominated the fluctuation and the stability of meniscus was enhanced. However, when the velocity of flow was increased, the short-wave dominated the meniscus fluctuation and the meniscus stability was decreased.

  6. Anisotropic membranes for gas separation

    DOEpatents

    Gollan, A.Z.

    1987-07-21

    A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7--25 C and then air dried at ambient temperature, typically 10--30 C. 2 figs.

  7. Thin sol-gel-derived silica coatings on dental pure titanium casting.

    PubMed

    Yoshida, K; Kamada, K; Sato, K; Hatada, R; Baba, K; Atsuta, M

    1999-01-01

    The sol-gel dipping process, in which liquid silicon alkoxide is transformed into a solid silicon-oxygen network, can produce a thin film coating of silica (SiO(2)). The features of this method are high homogeneity and purity of the thin SiO(2) film and a low sinter temperature, which are important in the preparation of coating films that can protect metallic ion release from the metal substrate and prevent attachment of dental plaque. We evaluated the surface properties of dental pure titanium casting coated with a thin SiO(2) or SiO(2)/F-hybrid film by the sol-gel dipping process. The metal specimens were pretreated by dipping in isopropylalcohol solution containing 10 wt% 3-aminopropyl trimethoxysilane and treated by dipping in the silica precursor solution for 5 min, withdrawal at a speed of 2 mm/min, air-drying for 20 min at room temperature, heating at 120 degrees C for 20 min, and then storing at room temperature. Both SiO(2) and SiO(2)/F films bonded strongly (above 55 MPa) to pure titanium substrate by a tensile test. SiO(2(-)) and SiO(2)/F-coated specimens immersed in 1 wt% of lactic acid solution for two weeks showed significantly less release of titanium ions (30. 5 ppb/cm(2) and 9.5 ppb/cm(2), respectively) from the substrate than noncoated specimens (235.2 ppb/cm(2)). Hydrophobilization of SiO(2(-)) and SiO(2)/F-coated surfaces resulted in significant increases of contact angle of water (81.6 degrees and 105.7 degrees, respectively) compared with noncoated metal specimens (62.1 degrees ). The formation of both thin SiO(2) and SiO(2)/F-hybrid films by the sol-gel dipping process on the surface of dental pure titanium casting may be useful clinically in enhancing the bond strength of dental resin cements to titanium, preventing titanium ions release from the substrate, and reducing the accumulation of dental plaque attaching to intraoral dental restorations. Copyright 1999 John Wiley & Sons, Inc.

  8. The Hikurangi Plateau: Tectonic Ricochet and Accretion

    NASA Astrophysics Data System (ADS)

    Willis, David; Moresi, Louis; Betts, Peter; Whittaker, Joanne

    2015-04-01

    80 million years between interactions with different subduction systems provided time for the Hikurangi Plateau and Pacific Ocean lithosphere to cool, densify and strengthen. Neogene subduction of the Hikurangi Plateau occurring orthogonal to its Cretaceous predecessor, provides a unique opportunity to explore how changes to the physical properties of oceanic lithosphere affect subduction dynamics. We used Underworld to build mechanically consistent collision models to understand the dynamics of the two Hikurangi collisions. The Hikurangi Plateau is a ~112 Ma, 15km thick oceanic plateau that has been entrained by subduction zones immediately preceding the final break-up of Eastern Gondwana and currently within the active Hikurangi Margin. We explore why attempted subduction of the plateau has resulted in vastly different dynamics on two separate occasions. Slab break-off occured during the collision with Gondwana, currently there is apparent subduction of the plateau underneath New Zealand. At ~100Ma the young, hot Hikurangi Plateau, positively buoyant with respect to the underlying mantle, impacted a Gondwana Margin under rapid extension after the subduction of an mid-ocean ridge 10-15Ma earlier. Modelling of plateaus within young oceanic crust indicates that subduction of the thickened crust was unlikely to occur. Frontal accretion of the plateau and accompanying slab break-off is expected to have occured rapidly after its arrival. The weak, young slab was susceptible to lateral propagation of the ~1500 km window opened by the collision, and break-off would have progressed along the subduction zone inhibiting the "step-back" of the trench seen in older plates. Slab break-off coincided with a world-wide reorganisation of plate velocites, and orogenic collapse along the Gondwana margin characterised by rapid extension and thinning of the over-riding continental plate from ~60 to 30km. Following extension, Zealandia migrated to the NW until the Miocene allowing the oceanic crust time to densify and strengthen. At ~23Ma, the inception of the Hikurangi Subduction Zone drove the scissor rotation of the Australian and Pacific Plates creating displacement along the Alpine Fault. The Hikurangi Plateau was once again drawn into the subduction system, this time with subduction occurring orthogonal to the Cretaceous suture. The northern margin of the plateau has begun to subduct, but towards the southern terminus, the trench appears to be pinned. The result of the locked subduction zone is the asymmetric roll-back of the Hikurangi-Kermadec-Tonga subduction system around the point where the trench transitions from roll-back to shortening. The oceanic Pacific lithosphere is now signficantly negatively buoyant while the thickened lithosphere of the plateau maintains a slight positive buoyancy. The oceanic crust provides sufficient slab pull to drive subduction of the northern plateau, aided by the thin ~500km width of the plateaus subducting front. The increased strength profile of the older subducting lithosphere allows buoyancy forces to be transmitted to the over-riding plate, allowing continued convergence and hindering slab-breakoff.

  9. The fabrication of PLGA microvessel scaffolds with nano-patterned inner walls.

    PubMed

    Wang, Gou-Jen; Lin, Yan-Cheng; Hsu, Shan-Hui

    2010-10-01

    Poly (lactic-co-glycolic acid) (PLGA) is one of the most commonly used biodegradable, biocompatible materials. Nanostructured PLGA has immense potential for application in tissue engineering. In this article we discuss a novel approach for the fabrication of PLGA microvessel scaffolds with nanostructured inner walls. In this novel nano-patterning approach, the thermal reflow technique is first adapted to fabricate a semi-cylindrical photoresist master mold. A thin film of titanium and a thin film of aluminum are sputtered in sequence on the semi-cylindrical microvessel network. Aluminum foil anodization is then executed to transform the aluminum thin film into a porous anodic aluminum oxide (AAO) film. During the casting process a PLGA solution is cast on the AAO film to build up semi-cylindrical PLGA microstructures with nanostructured inner walls after which inductive coupled plasma (ICP) is implemented to assist bonding of the two PLGA structures. The result is the building of a network of microchannels with nano-patterned inner walls. Bovine endothelial cells (BECs) are carefully cultured in the scaffold via semi-dynamic seeding for 7 days. Observations show that the BECs grew more separately in a nano-patterned microvessel scaffold than they did in a smooth surface scaffold.

  10. Origin of back-arc basins and effects of western Pacific subduction systems on eastern China geology

    NASA Astrophysics Data System (ADS)

    Niu, Y.

    2013-12-01

    Assuming that subduction initiation is a consequence of lateral compositional buoyancy contrast within the lithosphere [1], and recognizing that subduction initiation within normal oceanic lithosphere is unlikely [1], we can assert that passive continental margins that are locations of the largest compositional buoyancy contrast within the lithosphere are the loci of future subduction zones [1]. We hypothesize that western Pacific back-arc basins were developed as and evolved from rifting at passive continental margins in response to initiation and continuation of subduction zones. This hypothesis can be tested by demonstrating that intra-oceanic island arcs must have basement of continental origin. The geology of the Islands of Japan supports this. The highly depleted forearc peridotites (sub-continental lithosphere material) from Tonga and Mariana offer independent lines of evidence for the hypothesis [1]. The origin and evolution of the Okinawa Trough (back-arc basin) and Ryukyu Arc/Trench systems represents the modern example of subduction initiation and back-arc basin formation along a (Chinese) continental margin. The observation why back-arc basins exit behind some subduction zones (e.g., western Pacific) but not others (e.g., in South America) depends on how the overlying plate responds to subduction, slab-rollback and trench retreat. In the western Pacific, trench retreat towards east results in the development of extension in the upper Eurasian plate and formation of back-arc basins. In the case of South America, where no back-arc basins form because trench retreat related extension is focused at the 'weakest' South Mid-Atlantic Ridge. It is thus conceptually correct that the South Atlantic is equivalent to a huge 'back-arc basin' although its origin may be different. Given the negative Clayperon slope of the Perovskite-ringwoodite phase transition at the 660 km mantle seismic discontinuity (660-D), slab penetration across the 660-D is difficult and trench retreat in the western Pacific readily result in the horizontal stagnation of the Pacific plate in the transition zone beneath eastern Asian continent [2]. Dehydration of this slab supplies water, which rises and results in 'basal hydration weakening' of the eastern China lithosphere and its thinning by converting it into weak material of asthenospheric property [3]. We note the proposal that multiple subduction zones with more water (i.e., subduction of the South China Block beneath the North China Craton, NCC; subduction of the Siberian/Mongolian block beneath the NCC) all contribute to the lithosphere thinning beneath the NCC [4]. However, 'South China-NCC' and 'Siberian/Mongolian-NCC' represent two collisional tectonics involving no trench retreat, causing no transition-zone slab stagnation, supplying no water, and thus contributing little to lithosphere thinning beneath the NCC. Furthermore, lithosphere thinning happened to the entire eastern China, not just limited to the NCC, emphasizing the effects of the western Pacific subduction system on eastern China geology. References: [1] Niu et al., 2003, Journal of Petrology, 44, 851-866. [2] Kárason & van der Hilst, R., 2000, Geophysical Monograph, 121, 277-288. [3] Niu, 2005, Geological Journal of China Universities, 11, 9-46. [4] Windley et al., 2010, American Journal of Science, 310, 1250-1293.

  11. Gas expanded polymer process to anneal nanoparticle dispersion in thin films

    DOE PAGES

    Ambuken, Preejith V.; Stretz, Holly A.; Dadmun, Mark; ...

    2015-04-21

    A spin-coating solution comprising poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) nanoparticles used to create organic photovoltaic (OPV) active layers have been shown to adopt a non-uniform concentration profile across the thin film dimension. This inhomogeneous distribution can reduce the efficiency of the device. For our new process, gas expanded polymer (GXP) annealing, is applied to P3HT/PCBM thin film blends, enabling the distribution of the PCBM nanoparticles to be manipulated by varying the GXP processing conditions. Films of 50 nm thickness (nominally) created by spin casting a blend of P3HT mixed with PCBM were annealed by oscillatory GXP andmore » GXP at constant pressure using high pressure CO 2. An increase in P3HT crystallinity (detected by X-ray diffraction and UV-vis spectroscopy) along with a more uniform distribution of PCBM nanoparticles in the thickness dimension, as interpreted from neutron reflectivity measurements, were observed after oscillatory GXP annealing. In addition, static water contact angles suggest that the film/air interface is enriched in PCBM relative to the as-cast film. Finally, these results demonstrate that GXP annealing, which is commercially scalable, can be successfully used to create a uniform distribution of PCBM nanoparticles across the thickness dimension in a P3HT thin film.« less

  12. Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Kyoo Sil; Li, Dongsheng; Sun, Xin

    2013-06-01

    In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) Magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses tomore » induce the fracture by element removal, leading to the prediction of ductility. The results in this study show that the ductility monotonically decreases as the pore volume fraction increases and that the effect of ‘skin region’ on the ductility is noticeable under the condition of same local pore volume fraction in the center region of the sample and its existence can be beneficial for the improvement of ductility. The further synthetic microstructure-based 3D finite element analyses are planned to investigate the effects of pore size and pore size distribution.« less

  13. A Scalable Route to Nanoporous Large-Area Atomically Thin Graphene Membranes by Roll-to-Roll Chemical Vapor Deposition and Polymer Support Casting.

    PubMed

    Kidambi, Piran R; Mariappan, Dhanushkodi D; Dee, Nicholas T; Vyatskikh, Andrey; Zhang, Sui; Karnik, Rohit; Hart, A John

    2018-03-28

    Scalable, cost-effective synthesis and integration of graphene is imperative to realize large-area applications such as nanoporous atomically thin membranes (NATMs). Here, we report a scalable route to the production of NATMs via high-speed, continuous synthesis of large-area graphene by roll-to-roll chemical vapor deposition (CVD), combined with casting of a hierarchically porous polymer support. To begin, we designed and built a two zone roll-to-roll graphene CVD reactor, which sequentially exposes the moving foil substrate to annealing and growth atmospheres, with a sharp, isothermal transition between the zones. The configurational flexibility of the reactor design allows for a detailed evaluation of key parameters affecting graphene quality and trade-offs to be considered for high-rate roll-to-roll graphene manufacturing. With this system, we achieve synthesis of uniform high-quality monolayer graphene ( I D / I G < 0.065) at speeds ≥5 cm/min. NATMs fabricated from the optimized graphene, via polymer casting and postprocessing, show size-selective molecular transport with performance comparable to that of membranes made from conventionally synthesized graphene. Therefore, this work establishes the feasibility of a scalable manufacturing process of NATMs, for applications including protein desalting and small-molecule separations.

  14. Effect of Hot Rolling Process on Microstructure and Properties of Low-Carbon Al-Killed Steels Produced Through TSCR Technology

    NASA Astrophysics Data System (ADS)

    Paul, S. K.; Ahmed, U.; Megahed, G. M.

    2011-10-01

    Low-carbon Al-killed hot rolled strips for direct forming, cold rolling, and galvanizing applications are produced from the similar chemistry at Ezz Flat Steel (EFS) through thin slab casting and rolling (TSCR) technology. The desired mechanical and microstructural properties in hot bands for different applications are achieved through control of hot rolling parameters, which in turn control the precipitation and growth of AlN. Nitrogen in solid solution strongly influences the yield strength (YS), ductility, strain aging index (SAI), and other formability properties of steel. The equilibrium solubility of AlN in austenite at different temperatures and its isothermal precipitation have been studied. To achieve the formability properties for direct forming, soluble nitrogen is fixed as AlN by coiling the strip at higher temperatures. For stringent cold forming, boron was added below the stoichiometric ratio with nitrogen, which improved the formability properties dramatically. The requirements of hot band for processing into cold rolled and annealed deep drawing sheets are high SAI and fine-grain microstructure. Higher finish rolling and low coiling temperatures are used to achieve these. Fully processed cold rolled sheets from these hot strips at customer's end have shown good formability properties. Coil break marks observed in some coils during uncoiling were found to be associated with yielding phenomenon. The spike height (difference between upper and lower yield stresses) and yield point elongation (YPE) were found to be the key material parameters for the break marks. Factors affecting these parameters have been studied and the coiling temperature optimized to overcome the problem.

  15. Effect of Tunable Surface Potential on the Structure of Spin-Cast Polymeric Blend Films

    NASA Astrophysics Data System (ADS)

    Hawker, C.; Huang, E.; Russell, T. P.

    1998-03-01

    The demixing of binary polymeric mixtures has been studied with various surface potentials. This was performed by spin casting polystyrene/poly(methyl methacrylate) mixtures on to silicon substrates that had been modified with an end-grafted random copolymer brush layer. The composition of the random copolymer brush, containing the same monomeric components as the homopolymers can be varied in a precise manner over the entire concentration range. Atomic force and optical microscopy were used to study the morphology formed during spin casting and after annealing. Further insight into the structure was gained by rinsing these films with preferential solvents to remove one of the constituents and by performing the microscopy measurements. Finally, x-ray photoelectron spectroscopy, XPS, was used to elucidate the composition of the film near the air/polymer interface. Our data show that the resulting thin film structure depends strongly on the composition of the end grafted random copolymer film. Furthermore, the effect of thickness, solvent used in casting, and annealing conditions will be addressed.

  16. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films

    PubMed Central

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles—yet size–effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector. PMID:26165185

  17. An Electron Microscopy Study of Graphite Growth in Nodular Cast Irons

    NASA Astrophysics Data System (ADS)

    Laffont, L.; Jday, R.; Lacaze, J.

    2018-04-01

    Growth of graphite during solidification and high-temperature solid-state transformation has been investigated in samples cut out from a thin-wall casting which solidified partly in the stable (iron-graphite) and partly in the metastable (iron-cementite) systems. Transmission electron microscopy has been used to characterize graphite nodules in as-cast state and in samples having been fully graphitized at various temperatures in the austenite field. Nodules in the as-cast material show a twofold structure characterized by an inner zone where graphite is disoriented and an outer zone where it is well crystallized. In heat-treated samples, graphite nodules consist of well-crystallized sectors radiating from the nucleus. These observations suggest that the disoriented zone appears because of mechanical deformation when the liquid contracts during its solidification in the metastable system. During heat-treatment, the graphite in this zone recrystallizes. In turn, it can be concluded that nodular graphite growth mechanism is the same during solidification and solid-state transformation.

  18. Numerical modeling of the thin shallow solar dynamo

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Jarboe, T. R.

    2017-10-01

    Nonlinear, numerical computation with the NIMROD code is used to explore and validate the thin shallow solar dynamo model [T.R. Jarboe et al. 2017], which explains the observed global temporal evolution (e.g. magnetic field reversal) and local surface structures (e.g. sunspots) of the sun. The key feature of this model is the presence and magnetic self-organization of global magnetic structures (GMS) lying just below the surface of the sun, which resemble 1D radial Taylor states of size comparable to the supergranule convection cells. First, we seek to validate the thin shallow solar dynamo model by reproducing the 11 year timescale for reversal of the solar magnetic field. Then, we seek to model formation of GMS from convection zone turbulence. Our computations simulate a slab covering a radial depth 3Mm and include differential rotation and gravity. Density, temperature, and resistivity profiles are taken from the Christensen-Dalsgaard model.

  19. Self-assembled ordered structures in thin films of HAT5 discotic liquid crystal.

    PubMed

    Morales, Piero; Lagerwall, Jan; Vacca, Paolo; Laschat, Sabine; Scalia, Giusy

    2010-05-20

    Thin films of the discotic liquid crystal hexapentyloxytriphenylene (HAT5), prepared from solution via casting or spin-coating, were investigated by atomic force microscopy and polarizing optical microscopy, revealing large-scale ordered structures substantially different from those typically observed in standard samples of the same material. Thin and very long fibrils of planar-aligned liquid crystal were found, possibly formed as a result of an intermediate lyotropic nematic state arising during the solvent evaporation process. Moreover, in sufficiently thin films the crystallization seems to be suppressed, extending the uniform order of the liquid crystal phase down to room temperature. This should be compared to the bulk situation, where the same material crystallizes into a polymorphic structure at 68 °C.

  20. Predictive Model for the Meniscus-Guided Coating of High-Quality Organic Single-Crystalline Thin Films.

    PubMed

    Janneck, Robby; Vercesi, Federico; Heremans, Paul; Genoe, Jan; Rolin, Cedric

    2016-09-01

    A model that describes solvent evaporation dynamics in meniscus-guided coating techniques is developed. In combination with a single fitting parameter, it is shown that this formula can accurately predict a processing window for various coating conditions. Organic thin-film transistors (OTFTs), fabricated by a zone-casting setup, indeed show the best performance at the predicted coating speeds with mobilities reaching 7 cm 2 V -1 s -1 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Two Subduction Zones of the Southern Caribbean: Lithosphere Tearing and Continental Margin Recycling in the East, Flat Slab Subduction and Laramide-Style Uplifts in the West

    NASA Astrophysics Data System (ADS)

    Levander, A.; Bezada, M. J.; Niu, F.; Schmitz, M.

    2015-12-01

    The southern Caribbean plate boundary is a complex strike-slip fault system bounded by oppositely vergent subduction zones, the Antilles subduction zone in the east, and a currently locked Caribbean-South American subduction zone in the west (Bilham and Mencin, 2013). Finite-frequency teleseismic P-wave tomography images both the Atlanic (ATL) and the Caribbean (CAR) plates subducting steeply in opposite directions to transition zone depths under northern South America. Ps receiver functions show a depressed 660 discontinuity and thickened transition zone associated with each subducting plate. In the east the oceanic (ATL) part of the South American (SA) plate subducts westward beneath the CAR, initiating the El Pilar-San Sebastian strike slip system, a subduction-transform edge propagator (STEP) fault (Govers and Wortel, 2005). The point at which the ATL tears away from SA as it descends into the mantle is evidenced by the Paria cluster seismicity at depths of 60-110 km (Russo et al, 1993). Body wave tomography and lithosphere-asthenosphere boundary (LAB) thickness determined from Sp and Ps receiver functions and Rayleigh waves suggest that the descending ATL also viscously removes the bottom third to half of the SA continental margin lithospheric mantle as it descends. This has left thinned continental lithosphere under northern SA in the wake of the eastward migrating Antilles subduction zone. The thinned lithosphere occupies ~70% of the length of the El Pilar-San Sebastian fault system, from ~64oW to ~69oW, and extends inland several hundred kilometers. In northwestern SA the CAR subducts east-southeast at low angle under northern Colombia and western Venezuela. The subducting CAR is at least 200 km wide, extending from northernmost Colombia as far south as the Bucaramanga nest seismicity. The CAR descends steeply under Lake Maracaibo and the Merida Andes. This flat slab is associated with three Neogene basement cored, Laramide-style uplifts: the Santa Marta block, the Perija Range, and the Merida Andes (Kellogg and Bonini, 1982). The steep descent of the CAR under Maracaibo implies that the CAR plate is torn somewhere between the Merida Andes and the Caribbean Sea, where it forms the ocean floor. An upcoming broadband seismic experiment will examine the CAR flat slab and the suspected slab tear in detail.

  2. Transitional flow in thin tubes for space station freedom radiator

    NASA Technical Reports Server (NTRS)

    Loney, Patrick; Ibrahim, Mounir

    1995-01-01

    A two dimensional finite volume method is used to predict the film coefficients in the transitional flow region (laminar or turbulent) for the radiator panel tubes. The code used to perform this analysis is CAST (Computer Aided Simulation of Turbulent Flows). The information gathered from this code is then used to augment a Sinda85 model that predicts overall performance of the radiator. A final comparison is drawn between the results generated with a Sinda85 model using the Sinda85 provided transition region heat transfer correlations and the Sinda85 model using the CAST generated data.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.H.

    A simple modified tape casting procedure has been developed for application to ceramic joining when the joining materials are in powder form. The method involves preparation of a slurry from the powder, solvent, and thermoplastic binder, and then casting directly onto the joining surface using a moving doctor blade. Handling of the tape prior to joining is not necessary: therefore, binder content is minimized, plasticizers are not required, and viscosity is controlled by solvent content. The utility of this technique for producing joints with thin, uniform interlayers is demonstrated for silicon carbide materials joined with TiC + Ni and SiCmore » + Si.« less

  4. Tomography of the subducting Cocos plate in central Mexico using data from the installation of a prototype wireless seismic network: Images of a truncated slab

    NASA Astrophysics Data System (ADS)

    Husker, Allen Leroy, Jr.

    The central Mexican subduction zone exhibits an oblique strike of the volcanic arc, the Trans-Mexican Volcanic Belt (TMVB), with respect to the trench, flat-slab subduction, and has no Wadati-Benioff zone. The oblique strike of the TMVB is explained by the changing rate of subduction at the trench. The shape of the slab beyond the flat slab section has been unknown until now due to a lack of seismicity, but inferred by the position of the volcanic arc. Here we use data from the Middle America Seismic Experiment (MASE) to image the slab both with tomography and inverting for a slab temperature model. MASE is a collaboration between the Center for Embedded Networked Sensing (CENS) at UCLA, the Universidad Nacional Autonoma de Mexico (UNAM), and the California Institute of Technology (CIT). The data used in this study was from the MASE seismic network. It consisted of 100 seismic stations running, in a line, every 5-6 km from Acapulco, north through TMVB, and to almost the Gulf of Mexico. Half of the seismic stations were the typical standalone style station. These stations were visited once a month to change memory disks and for maintenance. The other 50 stations were developed to send data wirelessly through the network to a base station where the data is linked to the Internet. The 50 stations, called the Wirelessly Linked Seismological Network (WiLSoN), utilize standard Internet tools and protocols to make it both robust and portable to other systems. WiLSoN is described and compared to the standalone stations. The time to permit and install WiLSoN was double that of the standalone network. However, the benefits of WiLSoN included near real-time data and knowledge of system health as compared to only once a month visits to collect data from the standalone stations. However, the data collected from the standalone sites was more complete than that collected from WiLSoN. The lack of data completeness is attributed to the development of both software and hardware for WiLSoN during the MASE experiment. The MASE data is used to perform a 2D P-wave tomography of the subducting Cocos plate. A seismicity study by Pardo and Suarez (1995) mapped a flat Cocos slab under the North America plate to 190 km inland. Our tomography shows the slab subduction continues from 250 km inland at a much steeper angle of 75°. The slab stops somewhere between 450 km and 550 km depth under the northern Trans-Mexican Volcanic Belt. The Farallon plate, from which the Cocos plate presumably broke, is not seen. P-wave travel times are also inverted for a 2D temperature model of the Cocos slab under Mexico. The temperature model from Davies and Stevenson (1992) is found to have unrealistic values in the case of a thin slab, so the diffusion equation is solved with their initial conditions to correct their solution to remove this limitation. The dipping portion of the slab begins 230 km inland, dip at an angle of 74 degrees from the surface, extend to 500 km depth, and have a thickness of 40 km. The model is extended to 21/2D by assuming the slab is infinite along its width. The strike of the slab is then solved for with the full 3D rays found from ray tracing through the iasp91 model. The strike of the dipping slab is found to be 108° clockwise from north, very similar to the strike of the TMVB. A model of the tectonic history is presented that combines those proposed by Ferrari (2004) and Gorbatov and Fukao (2005). At 25 Ma the volcanic arc moved inland marking the beginning of flat-slab subduction. At the same time a tear between the Cocos and Farallon initiated. The torsion from the tear squeezed the Cocos plate causing a flat-slab geometry. At 12.5 Ma another tear propagated along the flat Cocos slab removing the torsion causing uplift. The removal of the uplift caused the upper portion of the Cocos slab to sink and start rolling back until it reached the position where it is imaged in this study. The lack of a Wadati-Benioff zone is due to no deeper slab end which would normally elevate the deviatoric stress to levels that generate earthquakes.

  5. Low-head feeding system for thin section castings

    DOEpatents

    Daniel, Sabah S.; Kleeb, Thomas R.; Lewis, Thomas W.; McDermott, John F.; Ozgu, Mustafa R.; Padfield, Ralph C.; Rego, Donovan N.; Vassilicos, Achilles

    1990-01-01

    A feed system is provided for conveying molten metal to a thin section caster having mold surfaces moving exclusively in the direction of casting. The feed system has a passage of circular cross section adjacent to one end thereof for receiving molten metal and a rectangular cross section at the delivery end thereof adjacent to the caster. The feed system is designed for supplying molten metal to the caster at low pressure for "closed-pool" type caster operation. The point of highest elevation in the metal flow passage of the feed system is on the upper surface of a transition portion where the cross section changes from circular to rectangular adjacent to the nozzle. The level or height of the high point above the centerline of the nozzle exit is selected so as to be less than the pressure of the metal measured in inches at the nozzle exit. This feature enables the maintenance of positive pressure in the metal within the feed system so that ingress of air into the metal is prevented.

  6. 3D lithospheric mapping of the Iberian Peninsula and surrounding Atlantic and Mediterranean margins from 3D joint inversion of potential field and elevation data.

    NASA Astrophysics Data System (ADS)

    Torne, Montserrat; Zeyen, Hermann; Jimenez-Munt, Ivone; Fernandez, Manel; Vergés, Jaume

    2017-04-01

    We investigate the lithospheric density structure of the Iberian Peninsula and the surrounding Atlantic and Mediterranean margins from a 3D joint inversion of free-air, geoid and elevation data, based on a Bayesian approach. In addition, the crustal structure has been further constrained by incorporating about 750 Moho values from DSS investigations and RF analysis covering the entire region. Our preliminary results shows a significant lithospheric deformation along the plate boundaries, the Bay of Biscay-Pyrenees to the North and the Azores-Gibraltar to the south, where the CMB and LAB are located at depths more than 45 and 150 km, respectively. Noteworthy is the arcuate lithospheric thickening located at the westernmost end of the Gibraltar Arc system showing the presence of the NW-to-Westward retreated Gibraltar Arc slab that has given rise to the formation of the Betics-Rif Alpine belt system and the back arc Alboran basin. To the west, the stable-slightly deformed Iberian massif shows a quasi-flat CMB and LAB topography (30 to 32 km and about 110 km, respectively). The crust and mantle lithosphere thin towards the Mediterranean and Atlantic margins, with the exception of its northern margin where lithospheric thickening extends offshore to the Gulf of Biscay. In the western Mediterranean the SE-Neogene slab retreat has resulted in a significant thinning of the crust and mantle lithosphere. Thin lithosphere is also observed in the Tagus-Horseshoe abyssal plain region where the LAB shallows to less than 90 km. This work has been funded by the Spanish projects MITE (CGL2014-59516-P) and WEME-CSIC project 201330E11.

  7. A rapid method to map the crustal and lithospheric thickness using elevation, geoid anomaly and thermal analysis. Application to the Gibraltar Arc System, Atlas Mountains and adjacent zones

    NASA Astrophysics Data System (ADS)

    Fullea, J.; Fernàndez, M.; Zeyen, H.; Vergés, J.

    2007-02-01

    We present a method based on the combination of elevation and geoid anomaly data together with thermal field to map crustal and lithospheric thickness. The main assumptions are local isostasy and a four-layered model composed of crust, lithospheric mantle, sea water and the asthenosphere. We consider a linear density gradient for the crust and a temperature dependent density for the lithospheric mantle. We perform sensitivity tests to evaluate the effect of the variation of the model parameters and the influence of RMS error of elevation and geoid anomaly databases. The application of this method to the Gibraltar Arc System, Atlas Mountains and adjacent zones reveals the presence of a lithospheric thinning zone, SW-NE oriented. This zone affects the High and Middle Atlas and extends from the Canary Islands to the eastern Alboran Basin and is probably linked with a similarly trending zone of thick lithosphere constituting the western Betics, eastern Rif, Rharb Basin, and Gulf of Cadiz. A number of different, even mutually opposite, geodynamic models have been proposed to explain the origin and evolution of the study area. Our results suggest that a plausible slab-retreating model should incorporate tear and asymmetric roll-back of the subducting slab to fit the present-day observed lithosphere geometry. In this context, the lithospheric thinning would be caused by lateral asthenospheric flow. An alternative mechanism responsible for lithospheric thinning is the presence of a hot magmatic reservoir derived from a deep ancient plume centred in the Canary Island, and extending as far as Central Europe.

  8. Anisotropic membranes for gas separation

    DOEpatents

    Gollan, Arye Z.

    1987-01-01

    A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7.degree.-25.degree. C. and then air dried at ambient temperature, typically 10.degree.-30.degree. C.

  9. Finite-Element Analysis of Melt Flow in Horizontal Twin-Roll Casting of Magnesium Alloy AZ31

    NASA Astrophysics Data System (ADS)

    Park, Jong-Jin

    Twin-roll casting has been useful in production of thin strips of metals. Especially, the process of horizontal twin-roll casting is often used for magnesium and aluminum alloys, which are lighter in weight and smaller in specific heat as well as latent heat in comparison to steel. In the present investigation, where magnesium alloy AZ31 was targeted, asymmetric behavior of the melt flow due to the gravity was examined in terms of contact length and pressure, and the nozzle for melt ejection was modified for its shape and location. Variations of the melt flow including vortexes were investigated in consideration of heterogeneous nucleation and uniform microstructure. The melt flow was further examined in the perspective of possible randomness of the grain orientation through thickness under differential speeds of rolls.

  10. Development of Thin Section Zinc Die Casting Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, Frank

    2013-10-31

    A new high fluidity zinc high pressure die casting alloy, termed the HF alloy, was developed during laboratory trials and proven in industrial production. The HF alloy permits castings to be achieved with section thicknesses of 0.3 mm or less. Technology transfer activities were conducted to develop usage of the HF high fluidity alloy. These included production of a brochure and a one-hour webinar on the HF alloy. The brochure was then sent to 1,184 product designers in the Interzinc database. There was excellent reception to this mailing, and from this initial contact 5 technology transfer seminars were conducted formore » 81 participants from 30 companies across a wide range of business sectors. Many of the successful applications to date involve high quality surface finishes. Design and manufacturing assistance was given for development of selected applications.« less

  11. The Sapphire (0001) Surface, Clean and with d-metal Overlayers: Density Functional - LDA Results

    NASA Astrophysics Data System (ADS)

    Verdozzi, C.; Jennison, D. R.; Schultz, P. A.; Sears, M. P.

    1998-03-01

    Previous theoretical work for the a-Al2O3(0001) surface mostly used very thin slabs, and limited theoretical information is available on the binding of metal overlayers. Also, no systematic information is available about the dependence of the metal-ceramic interaction on metal coverage. We present here results using the local density approximation for the structural and electronic properties of the a-Al2O3(0001) surface, with and without d-metal overlayers Pt, Ag, Cu, and with sufficiently thick slabs to find the bottom of the unusually large and deep surface relaxation in this material. Our thick slab site-optimized calculations are performed for 1, 2/3 and 1/3 monolayer (ML) coverage. The adhesion energy and the nature of the interfacial bond vary greatly with metal coverage and can be understood in terms of the relative roles of the surface Madelung potential and the strength of the lateral metal-metal bond. Our study should in principle succeed in bracketing the phenomenology of adhesion and wetting at least for the right-most part of the d-metal periodic table. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. Corresponding author: claudio@sandia.gov.

  12. Electron beam transport in heterogeneous slab media from MeV down to eV.

    PubMed

    Yousfi, M; Leger, J; Loiseau, J F; Held, B; Eichwald, O; Defoort, B; Dupillier, J M

    2006-01-01

    An optimized Monte Carlo method based on the null collision technique and on the treatment of individual interactions is used for the simulation of the electron transport in multilayer materials from high energies (MeV or several hundred of keV) down to low cutoff energies (between 1 and 10 eV). In order to better understand the electron transport and the energy deposition at the interface in the composite application framework, two layer materials are considered (carbon and polystyrene with densities of 1.7 g cm(-3) and 1.06 g cm(-3), respectively) under two slab or three slab configurations as, e.g. a thin layer of carbon sandwiched between two polystyrene layers. The electron-matter cross-sections (electron-carbon and electron-polystyrene) used in the case of pure material (carbon and polystyrene) as well as our Monte-Carlo code have been first validated. The boundary interface layer is considered without any mean free path truncation and with a rigorous treatment of the backscattered and also the forward scattered electrons from one layer to another. The large effect of the choice of a low cutoff energy and the dissociation process consideration are also clearly shown in the heterogeneous multi-layer media more particularly on the secondary electron emission, inelastic collision number and energy spectra.

  13. Optimization of Casting Design Parameters on Fabrication of Reliable Semi-Solid Aluminum Suspension Control Arm

    NASA Astrophysics Data System (ADS)

    Ragab, Kh. A.; Bouaicha, A.; Bouazara, M.

    2017-09-01

    The semi-solid casting process has the advantage of providing reliable mechanical aluminum parts that work continuously in dynamic as control arm of the suspension system in automotive vehicles. The quality performance of dynamic control arm is related to casting mold and gating system designs that affect the fluidity of semi-solid metal during filling the mold. Therefore, this study focuses on improvement in mechanical performance, depending on material characterization, and casting design optimization, of suspension control arms made of A357 aluminum semi-solid alloys. Mechanical and design analyses, applied on the suspension arm, showed the occurrence of mechanical failures at unexpected weak points. Metallurgical analysis showed that the main reason lies in the difficult flow of semi-solid paste through the thin thicknesses of a complex geometry. A design modification procedure is applied to the geometry of the suspension arm to avoid this problem and to improve its quality performance. The design modification of parts was carried out by using SolidWorks design software, evaluation of constraints with ABAQUS, and simulation of flow with ProCast software. The proposed designs showed that the modified suspension arm, without ribs and with a central canvas designed as Z, is considered as a perfect casting design showing an increase in the structural strength of the component. In this case, maximum von Mises stress is 199 MPa that is below the yield strength of the material. The modified casting mold design shows a high uniformity and minim turbulence of molten metal flow during semi-solid casting process.

  14. A Physical Model to Study the Effects of Nozzle Design on Dispersed Two-Phase Flows in a Slab Mold Casting Ultra-Low-Carbon Steels

    NASA Astrophysics Data System (ADS)

    Salazar-Campoy, María M.; Morales, R. D.; Nájera-Bastida, A.; Calderón-Ramos, Ismael; Cedillo-Hernández, Valentín; Delgado-Pureco, J. C.

    2018-04-01

    The effects of nozzle design on dispersed, two-phase flows of the steel-argon system in a slab mold are studied using a water-air model with particle image velocimetry and ultrasound probe velocimetry techniques. Three nozzle designs were tested with the same bore size and different port geometries, including square (S), special bottom design with square ports (U), and circular (C). The meniscus velocities of the liquid increase two- or threefold in two-phase flows regarding one-phase flows using low flow rates of the gas phase. This effect is due to the dragging effects on bubbles by the liquid jets forming two-way coupled flows. Liquid velocities (primary phase) along the narrow face of the mold also are higher for two-phase flows. Flows using nozzle U are less dependent on the effects of the secondary phase (air). The smallest bubble sizes are obtained using nozzle U, which confirms that bubble breakup is dependent on the strain rates of the fluid and dissipation of kinetic energy in the nozzle bottom and port edges. Through dimensionless analysis, it was found that the bubble sizes are inversely proportional to the dissipation rate of the turbulent kinetic energy, ɛ 0.4. A simple expression involving ɛ, surface tension, and density of metal is derived to scale up bubble sizes in water to bubble sizes in steel with different degrees of deoxidation. The validity of water-air models to study steel-argon flows is discussed. Prior works related with experiments to model argon bubbling in steel slab molds under nonwetting conditions are critically reviewed.

  15. Putting the slab back: First steps of creating a synthetic seismic section of subducted lithosphere

    NASA Astrophysics Data System (ADS)

    Zertani, S.; John, T.; Tilmann, F. J.; Leiss, B.; Labrousse, L.; Andersen, T. B.

    2016-12-01

    Imaging subducted lithosphere is a difficult task which is usually tackled with geophysical methods. To date, the most promising method is receiver function imaging (RF), which concentrates on first order conversions from p- to s-waves at boundaries (e.g. lithological and structural) with contrasting seismic velocities. The resolution is high for the upper parts of the subducting material. However, in greater depths (40-80 km) the visualization of the subducted slab becomes increasingly blurry, until the slab cannot be distinguished from Earth's mantle anymore, rendering a visualization impossible. This blurry zone is thought to occur due to advancing eclogitization of the subducting slab. However, it is not well understood how micro- to macro-scale structures related to progressive eclogitization affect RF signals. The island of Holsnoy in the Bergen Arcs of western Norway represents a partially eclogitized formerly subducted block of lower crust and serves as an analogue to the aforementioned blurry zone in RF images. This eclogitization can be observed in static fluid induced eclogitization patches or fingers, but is mainly present in localized shear zones of variable sizes (mm to 100s of meters). We mapped the area to gain a better understanding of the geometries of such shear zones, which could possibly function as seismic reflectors. Further, we calculated seismic velocities from thermodynamic modelling on the basis of XRF whole rock analysis and compared these results to velocities calculated from a combination of thin section information, EMPA and physical mineral properties (Voigt-Reuss-Hill averaging). Both methods yield consistent results for p- and s-wave velocities of eclogites and granulites from Holsnoy. In combination with X-ray measurements to identify the microtextures of the characteristic samples to incorporate seismic anisotropy caused by e.g. foliation or lineation, these seismic velocities are used as an input for seismic models to reconstruct the progressive eclogitization of a subducting slab as seen in many RF-images (i.e. blurry zone).

  16. Use of mussel casts from archaeological sites as paleoecological indicators: An example from CA-MRN-254, Marin County, Alta California

    USGS Publications Warehouse

    McGann, Mary; Starratt, Scott W.; Powell, Charles L.; Bieling, David G

    2016-01-01

    Archaeological investigations at prehistoric site CA-MRN-254 at the Dominican University of California in Marin County, California, revealed evidence of Native American occupation spanning the past 1,800 years. A dominant source of food for the inhabitants in the San Francisco Bay area was the intertidal, quiet-water dwelling blue mussel (Mytilus trossulus), although rare occurrences of the open coast-dwelling California mussel (Mytilus californianus) suggest that this species was also utilized sporadically. On rare occasions, cultural horizons at this site contain abundant sediment-filled casts of the smaller mussel Modiolus sp. These casts were formed soon after death when the shells filled with sediment and were roasted along with living bivalve shellfish for consumption. Thin sections of these mussel casts display sedimentological and microbiological constituents that shed light on the paleoenvironmental conditions when they were alive. Fine-grained sediment and pelletal muds comprising these casts suggest that the mussels were collected in a low energy, inner bay environment. The rare presence of the diatoms Triceratium dubium and Thalassionema nitzschioides indicate more normal marine (35 psu) and possibly warmer conditions than presently exist in San Francisco Bay. Radiocarbon dating of charcoal associated with the mussel casts containing these diatoms correlates with a 600-year period of warming from ca. A.D. 700–1300, known as the Medieval Climatic Anomaly. Results of this mussel cast study demonstrate that they have great potential for providing paleoenvironmental information at this and other archaeological sites.

  17. Food equipment manufacturer takes a slice out of its scrap rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, D.; Hannahs, J.; Carter, M.

    1996-09-01

    The PMI Food Equipment Group began manufacturing circular slicer knives for its commercial Hobart line of slicers in the early 1930s. The company manufacturers the only cast knife in the food industry. The cast knives offer superior edge retention and overall corrosion resistance. The slicer knives are cast in PMI`s foundry. The casting process sometimes produces shrinkage voids or gas bubbles in the knife blank. Surface discontinuities often do not appear until rough cutting or final machining, i.e., after several hours of value-added manufacturing. Knife blanks with these discontinuities were scrapped and sent back to the foundry for remelting. Tomore » scrap the knives at that point meant the cost for casting plus the value-added machining added up to a considerable amount. Weld repair allows the recovery of casting and machining expenses equal to a significant percentage of the total manufacturing cost of slicer knives. Repair costs include welding, grinding, shipping, surface finishing and material handling. Other good applications for this GMAW-P process include repair of jet engine components, rotating process industry equipment, and hardfacing of cutting tools and dies. In addition, dissimilar metals and any material that is heat treated to develop its properties such as precision investment castings are excellent applications. The low resultant distortion, elimination of postweld heat treatment and non-line-of-site welding capability solves thin wall, limited access and precision machined component repair challenges.« less

  18. Fabrication and characterization of nickel oxide nanoparticles/silicon NiO NPS/Si

    NASA Astrophysics Data System (ADS)

    Shuihab, Aliyah; Khalf, Surour

    2018-05-01

    In this study, (NiO) thin film which prepared by chemical method and deposited by drop casting technique on glass. The structural, optical and chemical analyses have been investigated. X-ray diffraction (XRD) measurements relieve that the (NiO) thin film was polycrystalline, cubic structure and there is no trace of the other material. UV-Vis measurements reveal that the energy gap of (NiO) thin film was found 1.8 eV. The Fourier Transform Infrared Spectroscopy (FTIR) spectrum of (NiO) thin film shows NiO nanoparticles had its IR peak of Ni-O stretching vibration and shifted to blue direction. Due to their quantum size effect and spherical nanostructures, the FTIR absorption of NiO nanoparticles is blue-shifted compared to that of the bulk form.

  19. Study of the Mechanism of Liquid Slag Infiltration for Lubrication in Slab Continuous Casting

    NASA Astrophysics Data System (ADS)

    Zhang, Shaoda; Wang, Qiangqiang; He, Shengping; Wang, Qian

    2018-04-01

    Consistent and uniform lubrication of the solidifying shell, especially in the meniscus, is crucial for the smooth continuous casting operation and production of strands free of surface defects. Thus, the current study established a coupled model to study the inflow behavior of liquid slag to the mold-strand channel, taking the solidification of steel and slag and the periodic oscillation of mold into account. The difficulties and solutions for the simulation were described in detail. The predicted profiles of the slag rim and initial shell were in good agreement with the reports. The main results indicated that liquid slag could be squeezed out and back into the slag pool in a negative strip period while a large amount of liquid slag could infiltrate into the mold-strand channel. Thus, the amount of slag consumed in the negative strip period was relatively small compared with that in the positive strip period. The predicted variation of slag consumption during mold oscillation was periodic, and the average value was 0.274 kg/m2, which agreed well with the slag consumption in industrial practice. The current model can predict and optimize the oscillation parameters aiming at stable lubrication conditions.

  20. Tribo-mechanical properties of thin boron coatings deposited on polished cobalt alloy surfaces for orthopedic applications

    PubMed Central

    Klepper, C. C.; Williams, J. M.; Truhan, J.J.; Qu, J.; Riester, L.; Hazelton, R. C.; Moschella, J.J.; Blau, P.J.; Anderson, J.P.; Popoola, O.O.; Keitz, M.D.

    2008-01-01

    This paper presents experimental evidence that thin (<∼200 nm) boron coatings, deposited with a (vacuum) cathodic arc technique on pre-polished Co-Cr-Mo surfaces, could potentially extend the life of metal-on-polymer orthopedic devices using cast Co-Cr-Mo alloy for the metal component. The primary tribological test used a linear, reciprocating pin-on-disc arrangement, with pins made of ultra-high molecular weight polyethylene. The disks were cast Co-Cr-Mo samples that were metallographically polished and then coated with boron at a substrate bias of 500 V and at about 100 °C. The wear tests were carried out in a saline solution to simulate the biological environment. The improvements were manifested by the absence of a detectable wear track scar on the coated metal component, while significant polymer transfer film was detected on the uncoated (control) samples tested under the same conditions. The polymer transfer track was characterized with both profilometry and Rutherford Backscattering Spectroscopy. Mechanical characterization of the thin films included nano-indentation, as well as additional pin-on-disk tests with a steel ball to demonstrate adhesion, using ultra-high frequency acoustic microscopy to probe for any void occurrence at the coating-substrate interface. PMID:19340285

  1. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    NASA Astrophysics Data System (ADS)

    Puthirath, Anand B.; Methattel Raman, Shijeesh; Varma, Sreekanth J.; Jayalekshmi, S.

    2016-04-01

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.

  2. Nanocomposite Nd-Y-Fe-B-Mo bulk magnets prepared by injection casting technique

    NASA Astrophysics Data System (ADS)

    Tao, Shan; Ahmad, Zubair; Zhang, Pengyue; Yan, Mi; Zheng, Xiaomei

    2017-09-01

    The phase composition, magnetic and microstructural properties of Nd2Fe14B/(α-Fe, Fe3B) nanocomposite magnets produced by injection casting technique have been studied. Magnetic hysteresis loop of the Nd7Y6Fe61B22Mo4 permanent magnet demonstrates the coercivity as high as 1289 kA/m. Electron microscopy elucidates a microstructure composed of magnetically soft α-Fe, Fe3B and hard Nd2Fe14B/Y2Fe14B nanograins (20-50 nm) separated by ultra-thin grain boundary layer. The Henkel plot curve of the Nd7Y6Fe61B22Mo4 magnet yields the existence of exchange coupling interactions between soft and hard phases. Macroscopically large size sheet magnet is obtained due to high glass forming ability of the Nd7Y6Fe61B22Mo4 alloy derived from large atomic radius mismatch and negative enthalpy of alloy constituent elements. The high coercivity of the magnet is attributed to the magnetically hard phase increment, nucleation of reverse domains and the presence of thin grain boundary phase. Good magnetic properties such as remanence of 0.51 T, coercivity of 1289 kA/m and maximum energy product of 46.2 kJ/m3 are obtained in directly casted Nd7Y6Fe61B22Mo4 sheet magnets.

  3. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puthirath, Anand B.; Varma, Sreekanth J.; Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in

    2016-04-18

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra canmore » be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.« less

  4. An acetate precursor process for BSCCO (2223) thin films and coprecipitated powders

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H.

    1992-01-01

    Since the discovery of high temperature superconducting oxides much attention has been paid to finding better and useful ways to take advantage of the special properties exhibited by these materials. One such process is the development of thin films for engineering applications. Another such process is the coprecipitation route to producing superconducting powders. An acetate precursor process for use in thin film fabrication and a chemical coprecipitation route to Bismuth based superconducting materials has been developed. Data obtained from the thin film process were inconclusive to date and require more study. The chemical coprecipitation method of producing bulk material is a viable method, and is preferred over the previously used solid state route. This method of powder production appears to be an excellent route to producing thin section tape cast material and screen printed devices, as it requires less calcines than the oxide route to produce quality powders.

  5. Long-term prediction of creep strains of mineral wool slabs under constant compressive stress

    NASA Astrophysics Data System (ADS)

    Gnip, Ivan; Vaitkus, Saulius; Keršulis, Vladislovas; Vėjelis, Sigitas

    2012-02-01

    The results obtained in determining the creep strain of mineral wool slabs under compressive stress, used for insulating flat roofs and facades, cast-in-place floors, curtain and external basement walls, as well as for sound insulation of floors, are presented. The creep strain tests were conducted under a compressive stress of σ c =0.35 σ 10%. Interval forecasting of creep strain was made by extrapolating the creep behaviour and approximated in accordance with EN 1606 by a power equation and reduced to a linear form using logarithms. This was performed for a lead time of 10 years. The extension of the range of the confidence interval due to discount of the prediction data, i.e. a decrease in their informativity was allowed for by an additional coefficient. Analysis of the experimental data obtained from the tests having 65 and 122 days duration showed that the prediction of creep strains for 10 years can be made based on data obtained in experiments with durations shorter than the 122 days as specified by EN 13162. Interval prediction of creep strains (with a confidence probability of 90%) was based on using the mean square deviation of the actual direct observations of creep strains in logarithmic form to have the linear trend in a retrospective area.

  6. Crustal structure in the Falcón Basin area, northwestern Venezuela, from seismic and gravimetric evidence

    NASA Astrophysics Data System (ADS)

    Bezada, Maximiliano J.; Schmitz, Michael; Jácome, María Inés; Rodríguez, Josmat; Audemard, Franck; Izarra, Carlos; The Bolivar Active Seismic Working Group

    2008-05-01

    The Falcón Basin in northwestern Venezuela has a complex geological history driven by the interactions between the South American and Caribbean plates. Igneous intrusive bodies that outcrop along the axis of the basin have been associated with crustal thinning, and gravity modeling has shown evidence for a significantly thinned crust beneath the basin. In this study, crustal scale seismic refraction/wide-angle reflection data derived from onshore/offshore active seismic experiments are interpreted and forward-modeled to generate a P-wave velocity model for a ˜450 km long profile. The final model shows thinning of the crust beneath the Falcón Basin where depth to Moho decreases to 27 km from a value of 40 km about 100 km to the south. A deeper reflected phase on the offshore section is interpreted to be derived from the downgoing Caribbean slab. Velocity values were converted to density and the resulting gravimetric response was shown to be consistent with the regional gravity anomaly. The crustal thinning proposed here supports a rift origin for the Falcón Basin.

  7. SEPARATION OF VOLATILE ORGANIC COMPOUNDS FROM AQUEOUS SOLUTIONS BY PERVAPORATION USING S-B-S BLOCK COPOLYMER MEMBRANES.

    EPA Science Inventory

    Composite membranes of a block copolymer of styrene and butadiene (S-B-S) were cast on highly porous, hydrophobic thin films of PTFE, and used for the separation and recovery of volatile organic compounds (VOCs) from aqueous solutions by pervaporation. Trichloroethane, trichloroe...

  8. SEPARATION OF VOLATILE ORGANIC COMPOUNDS FROM AQUEOUS SOLUTIONS BY PERVAPORATION USING S-B-S BLOCK COPOLYMER MEMBRANES

    EPA Science Inventory

    Composite membranes of a block copolymer of styrene and butadiene (S-B-S) were cast on highly porous, hydrophobic thin films of PTFE and used for the separation and recovery of volatile organic compounds (VOCs) from aqueous solutions by pervaporation. Trichloroethane, trichloroe...

  9. Cracking in Concrete near Joints in Steelconcrete Composite Slab / Zarysowanie Płyty Żelbetowej W Strefie Przywęzłowej Stropu Zespolonego

    NASA Astrophysics Data System (ADS)

    Niedośpiał, Marcin; Knauff, Michał; Barcewicz, Wioleta

    2015-03-01

    In this paper results of the experimental tests of four full-scale composite steel-concrete elements are reported. In the steel-concrete composite elements, a steel beam was connected with a slab cast on profiled sheeting, by shear studs. The end-plates were (the thickness of 8 mm, 10 mm and 12 mm) thinner than in ordinary design. Joints between the column and the beams have been designed as semi-rigid, i.e. the deformations of endplates affect the distribution of forces in the adjacent parts of the slab. The paper presents the theory of cracking in reinforced concrete and steel-concrete composite members (according to the codes), view of crack pattern on the surface of the slabs and a comparison of the tests results and the code calculations. It was observed, that some factors influencing on crack widths are not taken in Eurocode 4 (which is based on Eurocode 2 with taking into account the phenomenon called "tension stiffening"). W artykule przedstawiono wyniki badań czterech elementów zespolonych. Kształtownik stalowy połączony był z betonowym stropem wykonanym na blasze fałdowej. W modelu zastosowano cienkie blachy czołowe (o grubości 8 mm, 10 mm i 12 mm), cieńsze niż zwykle przyjmowane w praktyce projektowej. Połączenie to zaprojektowano jako podatne tzn. takie, w którym odkształcenia blach czołowych mają istotny wpływ na rozkład sił w połączeniu. Przedstawiono normową teorię dotyczącą zarysowania elementów żelbetowych i zespolonych, obraz zarysowania stropu oraz porównano otrzymane wyniki z obliczeniami wykonanymi wg aktualnych norm. Zauważono, iż nie wszystkie czynniki obliczania szerokości rys w konstrukcjach zespolonych są zdefiniowane w normie projektowania konstrukcji zespolonych (która w tej kwestii odwołuje się do normy projektowania konstrukcji żelbetowych z uwzględnieniem zjawiska "tension stiffening").

  10. Improving uniformity and nanostructure of solution-processed thin films using ultrasonic substrate vibration post treatment (SVPT).

    PubMed

    Wang, Qin; Eslamian, Morteza

    2016-04-01

    The main goal of this paper is to introduce a novel mechanical method herein terms as substrate vibration post treatment (SVPT) technique, powered by ultrasonic vibration imposed on the substrate to enhance the characteristics and functionality of spun-on thin films or thin films made by similar casting techniques, such as drop and dip coating. In this technique, the as-casted wet films are placed on a substrate vibrated by an ultrasonic transducer with controlled power and duration to improve the film characteristics, such as uniformity and nanostructure. The performance of this technique is examined on spun-on PSS thin films used in polymer and perovskite solar cells and unprecedented results are presented. We first explore the influence of the vibration duration time on the characteristics of the films made by pristine PSS solution, where it is found that the optimized vibration duration for the pristine PSS film is about 10s, resulting in significant increase in the film electrical conductivity and lowered thickness and roughness. In order to further test the generality and merit of the method, thin films made using PSS solution modified with various types of surfactants and cured by the SVPT are studied. The results show that the application of the SVPT method combined with surfactant modification leads to an impressive twelve-fold increase in the conductivity of the PSS thin films compared with that of the pristine non-vibrated PSS thin films. The sole effect of the SVPT is a four-fold increase in the conductivity of pristine PSS film compared with that of the non-vibrated film. This remarkable enhancement in conductivity is further explained by the AFM phase images of PSS films, showing that the ultrasonic energy could loosen the Coulomb forces between PEDOT and PSS chains, resulting in phase separation and localized reordering of the conducting PEDOT chains leading to an increase in the electrical conductivity of the film. Highly conductive PSS thin film is a viable candidate as electrodes in emerging solution-processed solar cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Development of high-efficiency solar cells on thin silicon through design optimization and defect passivation

    NASA Astrophysics Data System (ADS)

    Sheoran, Manav

    The focus of this research is to investigate the potential of lower quality cast multicrystalline Si (mc-Si) as well as thin single and mc-Si cells. The overall goal of this research is to improve fundamental understanding of the hydrogen passivation of defects in low-cost Si and the fabrication of high-efficiency solar cells on thin crystalline silicon through low-cost technology development. This is addressed by a combination of five research tasks. The key results of these tasks are summarized below. A novel method was developed to determine the concentration and flux of H diffusing into the Si. The understanding of defect passivation acquired in task 1 was used to fabricate high-efficiency solar cells on cast mc-Si wafers. An optimized co-firing process was developed, which resulted in ˜17% efficient 4 cm2 screen-printed solar cells with single-layer AR coating, and no surface texturing or selective emitter. The HEM mc-Si wafer gave an average efficiency of 16.5%, with a maximum of 16.9%. The identical process applied to the un-textured Float zone (FZ) wafers gave an efficiency of 17.2%. These cells were fabricated using the same simple, manufacturable process involving POCl3 diffusion for a 45 O/sq emitter, PECVD SiNx:H deposition for single-layer antireflection coating and rapid co-firing of a Ag grid, an Al back contact, and Al-BSF formation in a belt furnace. A high-efficiency of 17.1% was achieved on high sheet-resistance HEM mc-Si with good quality contacts. The effects of changing several device parameters on the efficiency of the solar cells was modeled with PC1D and guidelines were established to improve the efficiency from ˜17% to over 20% cells on low lifetime (100 mus), thin (140 mum) silicon wafers. The understanding of enhanced defect hydrogenation and the optimized fabrication sequence was applied to fabricate high-efficiency solar cells on top, middle, and bottom regions of several mc-Si ingots. Screen-printed solar cells were fabricated on different regions of four boron doped ingots and one gallium doped ingot. High post-diffusion and post-hydrogenation lifetime values were obtained, which resulted in high-screen printed cell efficiencies of . 15.9% for wafers from all the regions and ingots, except for the bottom region of the lower-resistivity boron-doped ingot and the gallium-doped ingot. Using a lower-resistivity boron-doped mc-Si ingot did not improve the efficiency. Solar cells fabricated on the first two ingots grown by a novel process, which produced single-crystal Si wafers by HEM casting method, achieved efficiencies of 16% and 17.2% on planar and textured surfaces, respectively. Lifetime in the middle region of both the ingots exceeded 100 mus after cell processing; however top and bottom regions had lower lifetimes due to the impurities that could not be gettered or passivated. Due to the single-crystal nature of the mono-cast ingots, the wafers were textured easily, which decreased the front surface reflectance from 11.8 to 5.3% and resulted in an enhanced Jsc by ˜3mA/cm2. Large area (100 cm2) solar cells fabricated from the middle regions of this novel mono-cast material achieved an efficiency of 16.5%. The mono-cast grown by the HEM process is still under optimization, however, these results show that the material has a great potential for achieving high-efficiencies at a lower cost. Since the cost of Si material alone is ˜50% in a PV module, attempts were made to fabricate thin Si cells with full area Al-BSF and to identify the key factors responsible for efficiency loss in thin cells with conventional Al-BSF. It was found that the high BSRV (300-400 cm/s) and low back surface reflectance (BSR) (63-70%) associated with the full area Al-BSF were the major reasons for the reduced performance of thin cells. Model calculations showed that a BSRV of . 100 cm/s and BSR of ≤ 95% can virtually eliminate the efficiency gap between 300 mum and 115 mum thick cells for these ≥ 200 mus bulk lifetime wafers. Manufacturing cost modeling showed that reducing the mc-Si wafer thickness from 300 mum to 115-150 mum reduces the module manufacturing cost in spite of ˜1% lower cell efficiency. Full area Al-BSF cells suffered efficiency loss upon thinning due to a relatively higher BSRV and poor BSR of Al-BSF. Therefore, in attempts were made to fabricate, characterize and model, a device structure with local back-surface field. Thin solar cells, without any bowing, were fabricated using the dielectric passivated structure and screen-printed contacts. (Abstract shortened by UMI.)

  12. Thin Films of Novel Linear-Dendritic Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Iyer, Jyotsna; Hammond, Paula

    1998-03-01

    A series of diblock copolymers with one linear block and one dendrimeric block have been synthesized with the objective of forming ultrathin film nanoporous membranes. Polyethyleneoxide serves as the linear hydrophilic portion of the diblock copolymer. The hyperbranched dendrimeric block consists of polyamidoamine with functional end groups. Thin films of these materials made by spin casting and the Langmuir-Blodgett techniques are being studied. The effect of the polyethylene oxide block size and the number and chemical nature of the dendrimer end group on the nature and stability of the films formed willbe discussed.

  13. Analysis of surface scale on the Ni-based superalloy CMSX-10N and proposed mechanism of formation

    NASA Astrophysics Data System (ADS)

    Simmonds, S.; D'Souza, N.; Ryder, K. S.; Dong, H.

    2012-01-01

    There is a continuing demand to raise the operating temperature of jet engine turbine blades to meet the need for higher turbine entry temperatures (TET) in order to increase thermal efficiency and thrust. Modern, high-pressure turbine blades are made from Ni-based superalloys in single-crystal form via the investment casting process. One important post-cast surface defect, known as 'surface scale', has been investigated on the alloy CMSX-10N. This is an area of distinct discolouration of the aerofoil seen after casting. Auger electron and X-ray photoelectron spectroscopy analysis were carried out on both scaled and un-scaled areas. In the scaled region, a thin layer (~800nm) of Ni oxide is evident. In the un-scaled regions there is a thicker Al2O3 layer. It is shown that, as the blade cools during casting, differential thermal contraction of mould and alloy causes the solid blade to 'detach' from the mould in these scaled areas. The formation of Ni Oxides is facilitated by this separation.

  14. High Cycle Fatigue Crack Initiation Study of Case Blade Alloy Rene 125

    NASA Technical Reports Server (NTRS)

    Kantzos, P.; Gayda, J.; Miner, R. V.; Telesman, J.; Dickerson, P.

    2000-01-01

    This study was conducted in order to investigate and document the high cycle fatigue crack initiation characteristics of blade alloy Rene 125 as cast by three commercially available processes. This alloy is typically used in turbine blade applications. It is currently being considered as a candidate alloy for high T3 compressor airfoil applications. This effort is part of NASA's Advanced Subsonic Technology (AST) program which aims to develop improved capabilities for the next generation subsonic gas turbine engine for commercial carriers. Wrought alloys, which are customarily used for airfoils in the compressor, cannot meet the property goals at the higher compressor exit temperatures that would be required for advanced ultra-high bypass engines. As a result cast alloys are currently being considered for such applications. Traditional blade materials such as Rene 125 have the high temperature capabilities required for such applications. However, the implementation of cast alloys in compressor airfoil applications where airfoils are typically much thinner does raise some issues of concern such as thin wall castability, casting cleaningness, and susceptibility to high-cycle fatigue (HCF) loading.

  15. Hidden symmetries in plasmonic gratings

    NASA Astrophysics Data System (ADS)

    Huidobro, P. A.; Chang, Y. H.; Kraft, M.; Pendry, J. B.

    2017-04-01

    Plasmonic gratings constitute a paradigmatic instance of the wide range of applications enabled by plasmonics. While subwavelength metal gratings find applications in optical biosensing and photovoltaics, atomically thin gratings achieved by periodically doping a graphene monolayer perform as metasurfaces for the control of terahertz radiation. In this paper we show how these two instances of plasmonic gratings inherit their spectral properties from an underlying slab with translational symmetry. We develop an analytical formalism to accurately derive the mode spectrum of the gratings that provides a great physical insight.

  16. The estimation of galactic cosmic ray penetration and dose rates

    NASA Technical Reports Server (NTRS)

    Burrell, M. O.; Wright, J. J.

    1972-01-01

    This study is concerned with approximation methods that can be readily applied to estimate the absorbed dose rate from cosmic rays in rads - tissue or rems inside simple geometries of aluminum. The present work is limited to finding the dose rate at the center of spherical shells or behind plane slabs. The dose rate is calculated at tissue-point detectors or for thin layers of tissue. This study considers cosmic-rays dose rates for both free-space and earth-orbiting missions.

  17. Emission properties of body-centered cubic elemental metal photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tuo; Rickman, Benjamin L., E-mail: brickm2@uic.edu; Schroeder, W. Andreas

    2015-04-07

    A first principles analysis of photoemission is developed to explain the lower than expected rms transverse electron momentum measured using the solenoid scan technique for the body-centered cubic Group Vb (V, Nb, and Ta) and Group VIb (Cr, Mo, and W) metallic photocathodes. The density functional theory based analysis elucidates the fundamental role that the electronic band structure (and its dispersion) plays in determining the emission properties of solid-state photocathodes and includes evaluation of work function anisotropy using a thin-slab method.

  18. Demonstration of pulse controlled all-optical switch/modulator.

    PubMed

    Akin, Osman; Dinleyici, M S

    2014-03-15

    An all-optical pulse controlled switch/modulator based on evanescent coupling between a polymer slab waveguide and a single mode fiber is demonstrated. Very fast all-optical modulation/switching is achieved via Kerr effect of the nonlinear polymer placed in the evanescent region of the optical fiber. Local refractive index perturbation (Δn=-1.45612×10(-5)) on the thin film leads to 0.374 nW power modulation at the fiber output, which results in a switching efficiency of ≈1.5%.

  19. Thin-layer voltammetry of soluble species on screen-printed electrodes: proof of concept.

    PubMed

    Botasini, S; Martí, A C; Méndez, E

    2016-10-17

    Thin-layer diffusion conditions were accomplished on screen-printed electrodes by placing a controlled-weight onto the cast solution and allowing for its natural spreading. The restricted diffusive conditions were assessed by cyclic voltammetry at low voltage scan rates and electrochemical impedance spectroscopy. The relationship between the weight exerted over the drop and the thin-layer thickness achieved was determined, in such a way that the simple experimental set-up designed for this work could be developed into a commercial device with variable control of the thin-layer conditions. The experimental results obtained resemble those reported for the voltammetric features of electroactive soluble species employing electrodes modified with carbon nanotubes or graphene layers, suggesting that the attainment of the benefits reported for these nanomaterials could be done simply by forcing the solution to spread over the screen-printed electrodic system to form a thin layer solution. The advantages of thin-layer voltammetry in the kinetic characterization of quasi-reversible and irreversible processes are highlighted.

  20. The ratioed image film thickness meter

    NASA Astrophysics Data System (ADS)

    Husen, Nicholas M.; Liu, Tianshu; Sullivan, John P.

    2018-06-01

    A technique for measuring the thickness of a fluorescent oil film is presented. Incident light is cast upon the oil film and the intensity of the luminescent signal from the fluorescent dye is ratioed with the intensity of the incident light which is scattered from the surface of the model. The quotient is independent of the intensity of the incident light and proportional to the film thickness. Experiments are presented supporting that for sufficiently thin films the ratio is independent of the intensity of the incident light as well as independent of the angle from which the experiment is imaged and the angle from which the incident light is cast.

  1. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Clean Steel Casting Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuyucak, Selcuk; Li, Delin

    2013-12-31

    Inclusions in steel castings can cause rework, scrap, poor machining, and reduced casting performance, which can obviously result in excess energy consumption. Significant progress in understanding inclusion source, formation and control has been made. Inclusions can be defined as non-metallic materials such as refractory, sand, slag, or coatings, embedded in a metallic matrix. This research project has focused on the mold filling aspects to examine the effects of pouring methods and gating designs on the steel casting cleanliness through water modeling, computer modeling, and melting/casting experiments. Early in the research project, comprehensive studies of bottom-pouring water modeling and low-alloy steelmore » casting experiments were completed. The extent of air entrainment in bottom-poured large castings was demonstrated by water modeling. Current gating systems are designed to prevent air aspiration. However, air entrainment is equally harmful and no prevention measures are in current practice. In this study, new basin designs included a basin dam, submerged nozzle, and nozzle extension. The entrained air and inclusions from the gating system were significantly reduced using the new basin method. Near the end of the project, there has been close collaboration with Wescast Industries Inc., a company manufacturing automotive exhaust components. Both computer modeling using Magma software and melting/casting experiments on thin wall turbo-housing stainless steel castings were completed in this short period of time. Six gating designs were created, including the current gating on the pattern, non-pressurized, partially pressurized, naturally pressurized, naturally pressurized without filter, and radial choke gating without filter, for Magma modeling. The melt filling velocity and temperature were determined from the modeling. Based on the simulation results, three gating designs were chosen for further melting and casting experiments on the same casting pattern using the lip pouring method. It was observed again that gating designs greatly influenced the melt filling velocity and the number of inclusion defects. The radial choked gating showed improvements in casting cleanliness and yield over the other gatings, even though no mold filters were used in the gating system.« less

  2. Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate

    NASA Astrophysics Data System (ADS)

    Hawley, William B.; Allen, Richard M.; Richards, Mark A.

    2016-09-01

    The boundary between Earth’s strong lithospheric plates and the underlying mantle asthenosphere corresponds to an abrupt seismic velocity decrease and electrical conductivity increase with depth, perhaps indicating a thin, weak layer that may strongly influence plate motion dynamics. The behavior of such a layer at subduction zones remains unexplored. We present a tomographic model, derived from on- and offshore seismic experiments, that reveals a strong low-velocity feature beneath the subducting Juan de Fuca slab along the entire Cascadia subduction zone. Through simple geodynamic arguments, we propose that this low-velocity feature is the accumulation of material from a thin, weak, buoyant layer present beneath the entire oceanic lithosphere. The presence of this feature could have major implications for our understanding of the asthenosphere and subduction zone dynamics.

  3. Theory of Earth

    NASA Astrophysics Data System (ADS)

    Anderson, D. L.

    2014-12-01

    Earth is an isolated, cooling planet that obeys the 2nd law. Interior dynamics is driven from the top, by cold sinking slabs. High-resolution broad-band seismology and geodesy has confirmed that mantle flow is characterized by narrow downwellings and ~20 broad slowly rising updrafts. The low-velocity zone (LVZ) consists of a hot melange of sheared peridotite intruded with aligned melt-rich lamellae that are tapped by intraplate volcanoes. The high temperature is a simple consequence of the thermal overshoot common in large bodies of convecting fluids. The transition zone consists of ancient eclogite layers that are displaced upwards by slabs to become broad passive, and cool, ridge feeding updrafts of ambient mantle. The physics that is overlooked in canonical models of mantle dynamics and geochemistry includes; the 2nd law, convective overshoots, subadiabaticity, wave-melt interactions, Archimedes' principle, and kinetics (rapid transitions allow stress-waves to interact with melting and phase changes, creating LVZs; sluggish transitions in cold slabs keep eclogite in the TZ where it warms up by extracting heat from mantle below 650 km, creating the appearance of slab penetration). Canonical chemical geodynamic models are the exact opposite of physics and thermodynamic based models and of the real Earth. A model that results from inverting the assumptions regarding initial and boundary conditions (hot origin, secular cooling, no external power sources, cooling internal boundaries, broad passive upwellings, adiabaticity and whole-mantle convection not imposed, layering and self-organization allowed) results in a thick refractory-yet-fertile surface layer, with ancient xenoliths and cratons at the top and a hot overshoot at the base, and a thin mobile D" layer that is an unlikely plume generation zone. Accounting for the physics that is overlooked, or violated (2nd law), in canonical models, plus modern seismology, undermines the assumptions and conclusions of these models.

  4. Effect of severe plastic deformation on microstructure of squeeze-cast magnesium alloy AZ31 plate

    NASA Astrophysics Data System (ADS)

    Fong, Kai Soon; Tan, Ming Jen; Atsushi, Danno; Chua, Beng Wah; Ho, Meng Kwong

    2016-10-01

    High cost and poor room temperature formability of magnesium alloy sheet are the key factors that limit its application as a feedstock material for press forming. Production of Mg plates by squeeze casting with further processing by severe plastic deformation (SPD) is a potential method to reduce cost and improve formability. In this study, AZ31 Mg plate of dimension 96×96×4 mm was successfully produced by squeeze casting, using a novel melt transfer technique, at a forging force and speed of 180 Ton and 200 mm/sec respectively. The effect of severe plastic deformation (SPD) using groove pressing on the mechanical properties of squeeze-casted Mg plate after partial homogenization was subsequently investigated. Observation of the microstructure after two cycles of groove pressing, under decreasing temperature from 543K to 493K, shows a significant grain refinement from 39 to 4.7 µm. The Vickers hardness increased by approximately 25% from 56 to 74.1 which suggests an improvement in mechanical strength as a result of both the grain refinement and work hardening. The result shows that squeeze casting combined with groove pressing is potentially an effective method for preparation of thin magnesium alloy plate with fine-grained structure and improved mechanical properties.

  5. Solutocapillary Convection Effects on Polymeric Membrane Morphology

    NASA Technical Reports Server (NTRS)

    Krantz, William B.; Todd, Paul W.; Kinagurthu, Sanjay

    1996-01-01

    Macro voids are undesirable large pores in membranes used for purification. They form when membranes are cast as thin films on a smooth surface by evaporating solvent (acetone) from a polymer solution. There are two un-tested hypotheses explaining the growth of macro voids. One states that diffusion of the non-solvent (water) is solely responsible, while the other states that solutocapillary convection is the primary cause of macro void growth. Solutocapillary convection is flow-caused by a concentration induced surface-tension gradient. Macrovoid growth in the former hypothesis is gravity independent, while in the latter it is opposed by gravity. To distinguish between these two hypotheses, experiments were designed to cast membranes in zero-gravity. A semi-automated apparatus was designed and built for casting membranes during the 20 secs of zero-g time available in parabolic aircraft flight such as NASA's KC-135. The phase changes were monitored optically, and membrane morphology was evaluated by scanning electron microscopy (SEM). These studies appear to be the first quantitative studies of membrane casting in micro-gravity which incorporate real-time data acquisition. Morphological studies of membranes cast at 0, 1, and 1.8 g revealed the presence of numerous, sparse and no macrovoids respectively. These results are consistent with the predictions of the solutocapillary hypothesis of macrovoid growth.

  6. Novel twin-roll-cast Ti/Al clad sheets with excellent tensile properties.

    PubMed

    Kim, Dae Woong; Lee, Dong Ho; Kim, Jung-Su; Sohn, Seok Su; Kim, Hyoung Seop; Lee, Sunghak

    2017-08-14

    Pure Ti or Ti alloys are recently spot-lighted in construction industries because they have excellent resistance to corrosions, chemicals, and climates as well as various coloring characteristics, but their wide applications are postponed by their expensiveness and poor formability. We present a new fabrication process of Ti/Al clad sheets by bonding a thin Ti sheet on to a 5052 Al alloy melt during vertical-twin-roll casting. This process has merits of reduced production costs as well as improved tensile properties. In the as-twin-roll-cast clad sheet, the homogeneously cast microstructure existed in the Al alloy substrate side, while the Ti/Al interface did not contain any reaction products, pores, cracks, or lateral delamination, which indicated the successful twin-roll casting. When this sheet was annealed at 350 °C~600 °C, the metallurgical bonding was expanded by interfacial diffusion, thereby leading to improvement in tensile properties over those calculated by a rule of mixtures. The ductility was also improved over that of 5052-O Al alloy (25%) or pure Ti (25%) by synergic effect of homogeneous deformation due to excellent Ti/Al bonding. This work provides new applications of Ti/Al clad sheets to lightweight-alloy clad sheets requiring excellent formability and corrosion resistance as well as alloy cost saving.

  7. 60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform.

    PubMed

    Zou, Zhi; Zhou, Linjie; Li, Xinwan; Chen, Jianping

    2015-08-10

    We demonstrate integrated basic photonic components and Bragg gratings using 60-nm-thick silicon-on-insulator strip waveguides. The ultra-thin waveguides exhibit a propagation loss of 0.61 dB/cm and a bending loss of approximately 0.015 dB/180° with a 30 μm bending radius (including two straight-bend waveguide junctions). Basic structures based on the ultra-thin waveguides, including micro-ring resonators, 1 × 2 MMI couplers, and Mach-Zehnder interferometers are realized. Upon thinning-down, the waveguide effective refractive index is reduced, making the fabrication of Bragg gratings possible using the standard 248-nm deep ultra-violet (DUV) photolithography process. The Bragg grating exhibits a stopband width of 1 nm and an extinction ratio of 35 dB, which is practically applicable as an optical filter or a delay line. The transmission spectrum can be thermally tuned via an integrated resistive micro-heater formed by a heavily doped silicon slab beside the waveguide.

  8. Thin-film magnetless Faraday rotators for compact heterogeneous integrated optical isolators

    NASA Astrophysics Data System (ADS)

    Karki, Dolendra; Stenger, Vincent; Pollick, Andrea; Levy, Miguel

    2017-06-01

    This report describes the fabrication, characterization, and transfer of ultra-compact thin-film magnetless Faraday rotators to silicon photonic substrates. Thin films of magnetization latching bismuth-substituted rare-earth iron garnets were produced from commercially available materials by mechanical lapping, dice polishing, and crystal-ion-slicing. Eleven- μ m -thick films were shown to retain the 45 ° Faraday rotation of the bulk material to within 2 ° at 1.55 μ m wavelength without re-poling. Anti-reflection coated films evince 0.09 dB insertion loses and better than -20 dB extinction ratios. Lower extinction ratios than the bulk are ascribed to multimode propagation. Significantly larger extinction ratios are predicted for single-mode waveguides. Faraday rotation, extinction ratios, and insertion loss tests on He-ion implanted slab waveguides of the same material yielded similar results. The work culminated with bond alignment and transfer of 7 μ m -thick crystal-ion-sliced 50 × 480 μ m 2 films onto silicon photonic substrates.

  9. Role of solution structure in self-assembly of conjugated block copolymer thin films

    DOE PAGES

    Brady, Michael A.; Ku, Sung -Yu; Perez, Louis A.; ...

    2016-10-24

    Conjugated block copolymers provide a pathway to achieve thermally stable nanostructured thin films for organic solar cells. We characterized the structural evolution of poly(3-hexylthiophene)- block-poly(diketopyrrolopyrrole–terthiophene) (P3HT- b-DPPT-T) from solution to nanostructured thin films. Aggregation of the DPPT-T block of P3HT- b-DPPT-T was found in solution by small-angle X-ray scattering with the P3HT block remaining well-solvated. The nanostructure in thin films was determined using a combination of wide and small-angle X-ray scattering techniques as a function of processing conditions. The structure in solution controlled the initial nanostructure in spin-cast thin films, allowing subsequent thermal annealing processes to further improve the ordering.more » In contrast to the results for thin films, nanostructural ordering was not observed in the bulk samples by small-angle X-ray scattering. Finally, these results suggest the importance of controlling solvent induced aggregation in forming nanostructured thin films of conjugated block copolymers.« less

  10. Role of solution structure in self-assembly of conjugated block copolymer thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, Michael A.; Ku, Sung -Yu; Perez, Louis A.

    Conjugated block copolymers provide a pathway to achieve thermally stable nanostructured thin films for organic solar cells. We characterized the structural evolution of poly(3-hexylthiophene)- block-poly(diketopyrrolopyrrole–terthiophene) (P3HT- b-DPPT-T) from solution to nanostructured thin films. Aggregation of the DPPT-T block of P3HT- b-DPPT-T was found in solution by small-angle X-ray scattering with the P3HT block remaining well-solvated. The nanostructure in thin films was determined using a combination of wide and small-angle X-ray scattering techniques as a function of processing conditions. The structure in solution controlled the initial nanostructure in spin-cast thin films, allowing subsequent thermal annealing processes to further improve the ordering.more » In contrast to the results for thin films, nanostructural ordering was not observed in the bulk samples by small-angle X-ray scattering. Finally, these results suggest the importance of controlling solvent induced aggregation in forming nanostructured thin films of conjugated block copolymers.« less

  11. Modeling of Quasi-Four-Phase Flow in Continuous Casting Mold Using Hybrid Eulerian and Lagrangian Approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Sun, Zhenbang; Li, Baokuan

    2017-04-01

    Lagrangian tracking model combined with Eulerian multi-phase model is employed to predict the time-dependent argon-steel-slag-air quasi-four-phase flow inside a slab continuous casting mold. The Eulerian approach is used for the description of three phases (molten steel, liquid slag, and air at the top of liquid slag layer). The dispersed argon bubble injected from the SEN is treated in the Lagrangian way. The complex interfacial momentum transfers between various phases are considered. Validation is supported by the measurement data of cold model experiments and industrial practice. Close agreements were achieved for the gas volume fraction, liquid flow pattern, level fluctuation, and exposed slag eye phenomena. Many known phenomena and new predictions were successfully reproduced using this model. The vortex slag entrapment phenomenon at the slag-steel interface was obtained using this model, some small slag drops are sucked deep into the liquid pool of molten steel. Varying gas flow rates have a large effect on the steel flow pattern in the upper recirculation zone. Three typical flow patterns inside the mold with different argon gas flow rates have been obtained: double roll, three roll, and single roll. Effects of argon gas flow rate, casting speed, and slag layer thickness on the exposed slag eye and level fluctuation at the slag-steel interface were studied. A dimensionless value of H ave/ h was proposed to describe the time-averaged level fluctuation of slag-steel interface. The exposed slag eye near the SEN would be formed when the value of H ave/ h is larger than 0.4.

  12. Characteristics of nonlinear imaging of broadband laser stacked by chirped pulses

    NASA Astrophysics Data System (ADS)

    Wang, Youwen; You, Kaiming; Chen, Liezun; Lu, Shizhuan; Dai, Zhiping; Ling, Xiaohui

    2014-11-01

    Nanosecond-level pulses of specific shape is usually generated by stacking chirped pulses for high-power inertial confinement fusion driver, in which nonlinear imaging of scatterers may damage precious optical elements. We present a numerical study of the characteristics of nonlinear imaging of scatterers in broadband laser stacked by chirped pulses to disclose the dependence of location and intensity of images on the parameters of the stacked pulse. It is shown that, for sub-nanosecond long sub-pulses with chirp or transform-limited sub-pulses, the time-mean intensity and location of images through normally dispersive and anomalously dispersive self-focusing medium slab are almost identical; While for picosecond-level short sub-pulses with chirp, the time-mean intensity of images for weak normal dispersion is slightly higher than that for weak anomalous dispersion through a thin nonlinear slab; the result is opposite to that for strong dispersion in a thick nonlinear slab; Furthermore, for given time delay between neighboring sub-pulses, the time-mean intensity of images varies periodically with chirp of the sub-pulse increasing; for a given pulse width of sub-pulse, the time-mean intensity of images decreases with the time delay between neighboring sub-pulses increasing; additionally, there is a little difference in the time-mean intensity of images of the laser stacked by different numbers of sub-pulses. Finally, the obtained results are also given physical explanations.

  13. DYNAMIC PROPERTIES OF SHOCK LOADED THIN URANIUM FOILS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, D. L.; Kelly, A. M.; Alexander, D. J.

    A series of spall experiments has been completed with thin depleted uranium targets, nominally 0.1 mm thick. The first set of uranium spall targets was cut and ground to final thickness from electro-refined, high-purity, cast uranium. The second set was rolled to final thickness from low purity uranium. The impactors for these experiments were laser-launched 0.05-mm thick copper flyers, 3 mm in diameter. Laser energies were varied to yield a range of flyer impact velocities. This resulted in varying degrees of damage to the uranium spall targets, from deformation to complete spall or separation at the higher velocities. Dynamic measurementsmore » of the uranium target free surface velocities were obtained with dual velocity interferometers. Uranium targets were recovered and sectioned after testing. Free surface velocity profiles were similar for the two types of uranium, but spall strengths (estimated from the magnitude of the pull-back signal) are higher for the high-purity cast uranium. Velocity profiles and microstructural evidence of spall from the sectioned uranium targets are presented.« less

  14. Responsivity boosting in FIR TiN LEKIDs using phonon recycling: simulations and array design

    NASA Astrophysics Data System (ADS)

    Fyhrie, Adalyn; McKenney, Christopher; Glenn, Jason; LeDuc, Henry G.; Gao, Jiansong; Day, Peter; Zmuidzinas, Jonas

    2016-07-01

    To characterize further the cosmic star formation history at high redshifts, a large-area survey by a cryogenic 4-6 meter class telescope with a focal plane populated by tens of thousands of far-infrared (FIR, 30-300 μm) detectors with broadband detector noise equivalent powers (NEPs) on the order of 3×10-9 W/√ Hz is needed. Ideal detectors for such a surveyor do not yet exist. As a demonstration of one technique for approaching the ultra-low NEPs required by this surveyor, we present the design of an array of 96 350 µm KIDs that utilize phonon recycling to boost responsivity. Our KID array is fabricated with TiN deposited on a silicon-on-insulator (SOI) wafer, which is a 2 μm thick layer of silicon bonded to a thicker slab of silicon by a thin oxide layer. The backside thick slab is etched away underneath the absorbers so that the inductors are suspended on just the 2 μm membrane. The intent is that quasiparticle recombination phonons are trapped in the thin membrane, thereby increasing their likelihood of being re-absorbed by the KID to break additional Cooper pairs and boost responsivity. We also present a Monte-Carlo simulation that predicts the amount of signal boost expected from phonon recycling given different detector geometries and illumination strategies. For our current array geometry, the simulation predicts a measurable 50% boost in responsivity.

  15. Mechanical properties of thin films of laser-welded titanium and their associated welding defects.

    PubMed

    Wu, Yulu; Xin, Haitao; Zhang, Chunbao; Tang, Zhongbin; Zhang, Zhiyuan; Wang, Weifeng

    2014-11-01

    The aim of this study was to evaluate the mechanical properties of thin films of laser-welded cast titanium using an interference strain/displacement gauge (ISDG) and to analyze factors that affect laser welding. Dog-bone-shaped small specimens of cast titanium were prepared by wire cutting after they were laser-welded. The specimens were divided into three groups according to the gap distance of the laser weld; the control was non-welded titanium. Small specimens without cast defects detected by X-ray screening were measured by a tensile test machine using ISDG, and stress-strain curves were drawn. Finally, the fracture texture was analyzed. The ultimate tensile strengths (UTSs) of specimens with a gap distance of 0.00, 0.25, and 0.50 mm were 492.16 ± 33.19, 488.09 ± 43.18, and 558.45 ± 10.80 MPa, respectively. There were no significant differences in UTS between the test groups and the control group (p > 0.05). However, the plastic deformation and the percent elongation increased as the gap distance increased. Incomplete penetration defects appeared in groups that had small gap distances, which may have affected the properties of the laser-welded titanium. However, the welding material was still pure titanium. These results suggest that an appropriate gap distance should be maintained to improve the application of dental laser welding.

  16. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  17. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  18. Superalloy Lattice Block Developed for Use in Lightweight, High-Temperature Structures

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Whittenberger, J. Daniel; Krause, David L.

    2003-01-01

    Successful development of advanced gas turbine engines for aircraft will require lightweight, high-temperature components. Currently titanium-aluminum- (TiAl) based alloys are envisioned for such applications because of their lower density (4 g/cm3) in comparison to superalloys (8.5 g/cm3), which have been utilized for hot turbine engine parts for over 50 years. However, a recently developed concept (lattice block) by JAMCORP, Inc., of Willmington, Massachusetts, would allow lightweight, high-temperature structures to be directly fabricated from superalloys and, thus, take advantage of their well-known, characterized properties. In its simplest state, lattice block is composed of thin ligaments arranged in a three dimensional triangulated trusslike configuration that forms a structurally rigid panel. Because lattice block can be fabricated by casting, correctly sized hardware is produced with little or no machining; thus very low cost manufacturing is possible. Together, the NASA Glenn Research Center and JAMCORP have extended their lattice block methodology for lower melting materials, such as Al alloys, to demonstrate that investment casting of superalloy lattice block is possible. This effort required advances in lattice block pattern design and assembly, higher temperature mold materials and mold fabrication technology, and foundry practice suitable for superalloys (ref. 1). Lattice block panels have been cast from two different Ni-base superalloys: IN 718, which is the most commonly utilized superalloy and retains its strength up to 650 C; and MAR M247, which possesses excellent mechanical properties to at least 1100 C. In addition to the open-cell lattice block geometry, same-sized lattice block panels containing a thin (1-mm-thick) solid face on one side have also been cast from both superalloys. The elevated-temperature mechanical properties of the open cell and face-sheeted superalloy lattice block panels are currently being examined, and the microstructure is being characterized in terms of casting defects. In addition, a small study (ref. 3) is being undertaken with GE Aircraft Engines to determine the suitability of superalloy lattice block for engine components.

  19. Examination of the influence of coatings on thin superalloy sections. Volume 2: Detailed procedures and data. [corrosion resistance

    NASA Technical Reports Server (NTRS)

    Kaufman, M.

    1974-01-01

    The effects of an aluminide coating, Codep B-1, and of section thickness were investigated on two cast nickel base superalloys, Rene 80 and Rene 120. Cast section thicknesses ranged from 0.038 cm to 0.15 cm. Simulated engine exposures for 1000 hours at 899C or 982C in a jet fuel burner rig with cyclic air cooling were studied, as were the effects of surface machining before coating and re-machining and re-coating after exposures. The properties evaluated included tensile at room temperature., 871C and 982C, stress rupture at 760C, 871C, 982C and 1093C, high cycle mechanical fatigue at room temperature., and thermal fatigue with a 1093C peak temperature. Thin sections had tensile strengths similar to standard size bars up to 871C and lower strengths at 982C and above, with equivalent elongation, and stress rupture life was lower for thin sections at all test conditions. The aluminide coating lowered tensile and rupture strengths up to 871C, with greater effects on thinner specimens. Elevated temperature exposure lowered tensile and rupture strengths of thinner specimens at the lower test temperatures. Surface machining had little effect on properties, but re-machining after exposure reduced thickness and increased metallurgical changes enough to lower properties at most test conditions.

  20. Electron transport in ultra-thin films and ballistic electron emission microscopy

    NASA Astrophysics Data System (ADS)

    Claveau, Y.; Di Matteo, S.; de Andres, P. L.; Flores, F.

    2017-03-01

    We have developed a calculation scheme for the elastic electron current in ultra-thin epitaxial heterostructures. Our model uses a Keldysh’s non-equilibrium Green’s function formalism and a layer-by-layer construction of the epitaxial film. Such an approach is appropriate to describe the current in a ballistic electron emission microscope (BEEM) where the metal base layer is ultra-thin and generalizes a previous one based on a decimation technique appropriated for thick slabs. This formalism allows a full quantum mechanical description of the transmission across the epitaxial heterostructure interface, including multiple scattering via the Dyson equation, which is deemed a crucial ingredient to describe interfaces of ultra-thin layers properly in the future. We introduce a theoretical formulation needed for ultra-thin layers and we compare with results obtained for thick Au(1 1 1) metal layers. An interesting effect takes place for a width of about ten layers: a BEEM current can propagate via the center of the reciprocal space (\\overlineΓ ) along the Au(1 1 1) direction. We associate this current to a coherent interference finite-width effect that cannot be found using a decimation technique. Finally, we have tested the validity of the handy semiclassical formalism to describe the BEEM current.

  1. Geodynamic Evolution of Subduction to Collision to Escape in Central Anatolia From Surface to Mantle - Results From the CD-CAT Project

    NASA Astrophysics Data System (ADS)

    Darin, Michael

    2017-04-01

    Despite significant progress toward understanding the kinematics of modern tectonic escape in Anatolia, considerable uncertainty remains regarding the dynamics of the transition from collision to escape. Because of the relatively small size of the Anatolia microplate, regional-scale studies spanning the plate margins and interior are well-suited to investigate the driving forces and space-time evolution of this unique tectonic transition in collisional orogens. CD-CAT (Continental Dynamics-Central Anatolia Tectonics) is a five-year (2011-2016) project funded by the National Science Foundation (USA) designed to explore the surface-to-mantle dynamics of Anatolia during the Cenozoic subduction-collision-escape transition in central Anatolia. Our approach integrates results from a diversity of methods including: structural, stratigraphic, and geomorphic analyses; magnetostratigraphy; low-temperature thermochronometry; Ar/Ar geochronology; geochemistry; passive seismic experiments (71 stations over two years); magnetotellurics; and numerical modeling. The principal results from this project include: recognition of a margin-wide magmatic lull from 40-20 Ma, followed by a southwestward migration of the initiation of magmatism toward and within the Central Anatolia Volcanic Province (CAVP); an early Miocene switch from contraction/transpression to extension/transtension in the Kırşehir and Niǧde Massifs, while contraction changed to late Miocene strike-slip deformation east of the Central Anatolian fault zone (CAFZ); rain shadow development due to uplift of the central Taurides 11-5 Ma; thin to absent lithospheric mantle beneath central Anatolia; the lack of an Arabia slab shallower than 800 km depth; and a change in the Cyprus slab from horizontal beneath the central Taurides and apparently fragmented beneath the CAVP, to very steeply dipping beneath the eastern Isparta Angle. The CAFZ lies along part of the Inner Tauride Suture (ITS) and represents a fundamental inherited lithosphere-scale structure that has accommodated contrasting magnitudes and styles of deformation to the east and west since Arabia collision. The coincidence of a similarly NNE-oriented lower plate boundary (Africa COB) or STEP fault between the Cyprus and Arabia slabs may have amplified the role of the CAFZ in controlling differential upper plate deformation. These findings support the following tectonic scenario: the first stage involved late Eocene to early Miocene horizontal subduction of the Afro-Arabia slab from central Anatolia to the Zagros, culminating in the final suturing of the Taurides and Pontides in Anatolia. The second stage occurred during the Miocene and involved the segmentation of the downgoing slab at the longitude of the CAFZ to form the Arabia slab in the east and the Cyprus slab in the west. North of Arabia, early Miocene rollback and foundering of the Arabia slab resulted in widespread volcanism, slab delamination beneath the eastern Taurides and eventual break-off and rapid sinking into the lower mantle starting at 15-10 Ma. North of Cyprus, initial rollback, steepening and breakup of the Cyprus slab are recorded by early Miocene upper plate extension and exhumation, followed by middle Miocene voluminous CAVP magmatism and uplift of the southern Taurides margin. The final stage involved a transition from diffuse to localized strain along transcurrent structures that have facilitated the westward escape of Anatolia since the latest Miocene-Pliocene.

  2. Registration of segmented histological images using thin plate splines and belief propagation

    NASA Astrophysics Data System (ADS)

    Kybic, Jan

    2014-03-01

    We register images based on their multiclass segmentations, for cases when correspondence of local features cannot be established. A discrete mutual information is used as a similarity criterion. It is evaluated at a sparse set of location on the interfaces between classes. A thin-plate spline regularization is approximated by pairwise interactions. The problem is cast into a discrete setting and solved efficiently by belief propagation. Further speedup and robustness is provided by a multiresolution framework. Preliminary experiments suggest that our method can provide similar registration quality to standard methods at a fraction of the computational cost.

  3. Enhanced absorption with quantum dots, metal nanoparticles, and 2D materials

    NASA Astrophysics Data System (ADS)

    Simsek, Ergun; Mukherjee, Bablu; Guchhait, Asim; Chan, Yin Thai

    2016-03-01

    We fabricate and characterize mono- and few- layers of MoS2 and WSe2 on glass and SiO2/Si substrates. PbS quantum dots and/or Au nanoparticles are deposited on the fabricated thin metal dichalcogenide films by controlled drop casting and electron beam evaporation techniques. The reflection spectra of the fabricated structures are measured with a spatially resolved reflectometry setup. Both experimental and numerical results show that surface functionalization with metal nanoparticles can enhance atomically thin transition metal dichalcogenides' absorption and scattering capabilities, however semiconducting quantum dots do not create such effect.

  4. Thin polymer etalon arrays for high-resolution photoacoustic imaging

    PubMed Central

    Hou, Yang; Huang, Sheng-Wen; Ashkenazi, Shai; Witte, Russell; O’Donnell, Matthew

    2009-01-01

    Thin polymer etalons are demonstrated as high-frequency ultrasound sensors for three-dimensional (3-D) high-resolution photoacoustic imaging. The etalon, a Fabry-Perot optical resonator, consists of a thin polymer slab sandwiched between two gold layers. It is probed with a scanning continuous-wave (CW) laser for ultrasound array detection. Detection bandwidth of a 20-μm-diam array element exceeds 50 MHz, and the ultrasound sensitivity is comparable to polyvinylidene fluoride (PVDF) equivalents of similar size. In a typical photoacoustic imaging setup, a pulsed laser beam illuminates the imaging target, where optical energy is absorbed and acoustic waves are generated through the thermoelastic effect. An ultrasound detection array is formed by scanning the probing laser beam on the etalon surface in either a 1-D or a 2-D configuration, which produces 2-D or 3-D images, respectively. Axial and lateral resolutions have been demonstrated to be better than 20 μm. Detailed characterizations of the optical and acoustical properties of the etalon, as well as photoacoustic imaging results, suggest that thin polymer etalon arrays can be used as ultrasound detectors for 3-D high-resolution photoacoustic imaging applications. PMID:19123679

  5. Process-scale modelling of microstructure in direct chill casting of aluminium alloys

    NASA Astrophysics Data System (ADS)

    Bedel, M.; Heyvaert, L.; Založnik, M.; Combeau, H.; Daloz, D.; Lesoult, G.

    2015-06-01

    The mechanical properties of an alloy being related to its microstructure, the understanding of the mechanisms responsible for the grain structure formation in direct chill casting is crucial. However, the grain size prediction by modelling is difficult since a variety of multi-scale coupled phenomena have to be considered. Nucleation and growth of the grains are interrelated, and the macroscopic transport phenomena such as the motion of grains and inoculant particles with the flow impact the nucleation-gowth competition. Thus we propose to study the grain size distribution of a 5182 alloy industrial scale slab of 510 mm thickness, both non-inoculated and inoculated with Al-3Ti-1B, for which experimental grain size measurements are available. We use a volume-averaged two-phase multi-scale model that describes nucleation from inoculant particles and grain growth, fully coupled with macroscopic transport phenomena: fluid flow induced by natural convection and solidification shrinkage, heat, mass and solute mass transport, grains and inoculant particles motion. We analyze the effect of liquid and grain motion as the effect of grain morphology on microstructure formation and we show in which extent those phenomena are responsible for the grain size distribution observed experimentally. The effect of the refiner level is also studied.

  6. Lithospheric structure of an incipient rift basin: Results from receiver function analysis of Bransfield Strait, NW Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Biryol, C. Berk; Lee, Stephen J.; Lees, Jonathan M.; Shore, Michael J.

    2018-06-01

    Bransfield Basin (BB), located northwest of the Antarctic Peninsula (AP) and southeast of the South Shetland Islands (SSI), is the most active section of the Antarctic continental margin. The region has long been (50 Ma) a convergent plate boundary where the Phoenix plate was subducting beneath the Antarctic Plate and is characterized by long-lived arc magmatism and accretion. However, the collision of the Antarctic-Phoenix spreading center with the subduction front near SSI (ca. 4 Ma) gave way to the opening of slab windows and dramatic decrease in the subduction rate of the Phoenix plate beneath AP and SSI. Consequently, the Phoenix slab began to rollback slowly along the South Shetland Trench (SST), giving way to slow extension in the back-arc region and rifting along the BB. Although there is consensus on the factors that control the current deformation and extension of the BB, the origin of the BB and the tectonic configuration of the basin are still unclear. Most of the controversy stems from uncertainties regarding the crustal thickness of the BB. Hence, we computed teleseismic receiver functions for 10 broadband stations in the region that belong to existing permanent and temporary deployments in order obtain robust constraints on the lithospheric structure and crustal thickness of the BB, as well as the AP and SSI. Our results indicate that the crust is thinning from 30 km to 26 km from the AP towards the South Shetland trench and Central BB showing the asymmetrical character of the rift basin. The crustal thickness and Vp/Vs variations are less pronounced along the AP but very significant across the SSB indicating the lithospheric scale segmentation of the South Shetland Block (SSB) and the incipient rift basin under the control of the opening of slab window and the roll-back of stalled Phoenix slab. High Vp/Vs ratios (∼1.9) beneath BB and SSI, agree well with the nascent rift character of BB, the presence of a steep Phoenix slab and consequently a wider mantle wedge characterized by the presence of underplating partial melts beneath SSI and BB.

  7. Waveform inversion for 3-D S-velocity structure of D'' beneath the Northern Pacific: possible evidence for a remnant slab and a passive plume

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuki; Kawai, Kenji; Geller, Robert J.; Borgeaud, Anselme F. E.; Konishi, Kensuke

    2016-12-01

    We conduct waveform inversion to infer the three-dimensional (3-D) S-velocity structure in the lowermost 400 km of the mantle (the D'' region) beneath the Northern Pacific region. Our dataset consists of about 20,000 transverse component broadband body-wave seismograms observed at North American stations for 131 intermediate and deep earthquakes which occurred beneath the western Pacific subduction region. We use S, ScS, and other phases that arrive between them. Resolution tests indicate that our methods and dataset can resolve the velocity structure in the target region with a horizontal scale of about 150 km and a vertical scale of about 50 km. The 3-D S-velocity model obtained in this study shows three prominent features: (1) prominent sheet-like lateral high-velocity anomalies up to ˜3% faster than the Preliminary Reference Earth Model (PREM) with a thickness of ˜200 km, whose lower boundary is ˜150 km above the core-mantle boundary (CMB). (2) A prominent low-velocity anomaly block located to the west of the Kamchatka peninsula, which is ˜2.5% slower than PREM, immediately above the CMB beneath the high-velocity anomalies. (3) A relatively thin (˜300 km) low-velocity structure continuous from the low-velocity anomaly "(2)" to at least 400 km above the CMB. We also detect a continuous low-velocity anomaly from the east of the Kamchatka peninsula at an altitude of 50 km above the CMB to the far east of the Kuril islands at an altitude of 400 km above the CMB. We interpret these features respectively as: (1) remnants of slab material where the bridgmanite to Mg-post-perovskite phase transition may have occurred within the slab, (2, 3) large amounts of hot and less dense materials beneath the cold Kula or Pacific slab remnants just above the CMB which ascend and form a passive plume upwelling at the edge of the slab remnants.[Figure not available: see fulltext.

  8. Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate.

    PubMed

    Hawley, William B; Allen, Richard M; Richards, Mark A

    2016-09-23

    The boundary between Earth's strong lithospheric plates and the underlying mantle asthenosphere corresponds to an abrupt seismic velocity decrease and electrical conductivity increase with depth, perhaps indicating a thin, weak layer that may strongly influence plate motion dynamics. The behavior of such a layer at subduction zones remains unexplored. We present a tomographic model, derived from on- and offshore seismic experiments, that reveals a strong low-velocity feature beneath the subducting Juan de Fuca slab along the entire Cascadia subduction zone. Through simple geodynamic arguments, we propose that this low-velocity feature is the accumulation of material from a thin, weak, buoyant layer present beneath the entire oceanic lithosphere. The presence of this feature could have major implications for our understanding of the asthenosphere and subduction zone dynamics. Copyright © 2016, American Association for the Advancement of Science.

  9. Predicting Stress vs. Strain Behaviors of Thin-Walled High Pressure Die Cast Magnesium Alloy with Actual Pore Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Kyoo Sil; Barker, Erin; Cheng, Guang

    2016-01-06

    In this paper, a three-dimensional (3D) microstructure-based finite element modeling method (i.e., extrinsic modeling method) is developed, which can be used in examining the effects of porosity on the ductility/fracture of Mg castings. For this purpose, AM60 Mg tensile samples were generated under high-pressure die-casting in a specially-designed mold. Before the tensile test, the samples were CT-scanned to obtain the pore distributions within the samples. 3D microstructure-based finite element models were then developed based on the obtained actual pore distributions of the gauge area. The input properties for the matrix material were determined by fitting the simulation result to themore » experimental result of a selected sample, and then used for all the other samples’ simulation. The results show that the ductility and fracture locations predicted from simulations agree well with the experimental results. This indicates that the developed 3D extrinsic modeling method may be used to examine the influence of various aspects of pore sizes/distributions as well as intrinsic properties (i.e., matrix properties) on the ductility/fracture of Mg castings.« less

  10. Analysis of prestressed concrete slab-and-beam structures

    NASA Astrophysics Data System (ADS)

    Sapountzakis, E. J.; Katsikadelis, J. T.

    In this paper a solution to the problem of prestressed concrete slab-and-beam structures including creep and shrinkage effect is presented. The adopted model takes into account the resulting inplane forces and deformations of the plate as well as the axial forces and deformations of the beam, due to combined response of the system. The analysis consists in isolating the beams from the plate by sections parallel to the lower outer surface of the plate. The forces at the interface, which produce lateral deflection and inplane deformation to the plate and lateral deflection and axial deformation to the beam, are established using continuity conditions at the interface. The influence of creep and shrinkage effect relative with the time of the casting and the time of the loading of the plate and the beams is taken into account. The estimation of the prestressing axial force of the beams is accomplished iteratively. Both instant (e.g. friction, slip of anchorage) and time dependent losses are encountered. The solution of the arising plate and beam problems, which are nonlinearly coupled, is achieved using the analog equation method (AEM). The adopted model, compared with those ignoring the inplane forces and deformations, describes better the actual response of the plate-beams system and permits the evaluation of the shear forces at the interfaces, the knowledge of which is very important in the design of prefabricated ribbed plates.

  11. The Oceanic Contribution to Atlantic Multi-Decadal Variability

    NASA Astrophysics Data System (ADS)

    Wills, R. C.; Armour, K.; Battisti, D. S.; Hartmann, D. L.

    2017-12-01

    Atlantic multi-decadal variability (AMV) is typically associated with variability in ocean heat transport (OHT) by the Atlantic Meridional Overturning Circulation (AMOC). However, recent work has cast doubt on this connection by showing that slab-ocean climate models, in which OHT cannot vary, exhibit similar variability. Here, we apply low-frequency component analysis to isolate the variability of Atlantic sea-surface temperatures (SSTs) that occurs on decadal and longer time scales. In observations and in pre-industrial control simulations of comprehensive climate models, we find that AMV is confined to the extratropics, with the strongest temperature anomalies in the North Atlantic subpolar gyre. We show that warm subpolar temperatures are associated with a strengthened AMOC, increased poleward OHT, and local heat fluxes from the ocean into the atmosphere. In contrast, the traditional index of AMV based on the basin-averaged SST anomaly shows warm temperatures preceded by heat fluxes from the atmosphere into the ocean, consistent with the atmosphere driving this variability, and shows a weak relationship with AMOC. The autocorrelation time of the basin-averaged SST index is 1 year compared to an autocorrelation time of 5 years for the variability of subpolar temperatures. This shows that multi-decadal variability of Atlantic SSTs is sustained by OHT variability associated with AMOC, while atmosphere-driven SST variability, such as exists in slab-ocean models, contributes primarily on interannual time scales.

  12. Structural aspects of cold-formed steel section designed as U-shape composite beam

    NASA Astrophysics Data System (ADS)

    Saggaff, Anis; Tahir, Mahmood Md.; Azimi, Mohammadamin; Alhajri, T. M.

    2017-11-01

    Composite beam construction usually associated with old-style Hot-Rolled Steel Section (HRSS) has proven to act much better in compare with Cold-Formed Steel Section (CFSS) sections due to thicker section. Due, it's getting popular to replace HRSS with CFSS in some aspects as a composite beam. The advantages such as lightweight, cost effective and easy to install have contributed to the apply CFSS as a preferred construction material for composite beam. There is a few technical data available regarding the application of the usage of CFSS as a composite system, despite the potentials use for residential and light-weight industrial constructions. This paper presents an experimental tests results which have been conducted using CFSS as composite beam. Composite action of CFSS arranged as double beam with Self-Compacting Concrete (SCC) slab are integrated together with bolted shear connectors were used. A full-scale test comprised of 3 proposed composite beam specimens with bolted shear connector spaced at 300 mm interval of grade 8.8 was using single nut with washer on flange of CFS, cast to the slab and loaded until failed. The test show that the bolted shear connector yielded better capacity of ultimate strength and ultimate moment for the proposed composite beam. It can be concluded that, bolted shear connectors of 16 mm in diameter performed better than the other diameter size of bolted shear connectors.

  13. Printable Single-Crystal Silicon Micro/Nanoscale Ribbons, Platelets and Bars Generated from Bulk Wafers

    DTIC Science & Technology

    2007-08-28

    enables high yield integration onto wafers, glass plates, plastic sheets, rubber slabs or other surfaces. As one application example, bottom gate thin... EPDMS 1m2Si ESi 1m2PDMS 23 is the critical strain for buck- ling, epre is the degree of prestrain, k0 and A0 are...Young’s modulus of Si and PDMS. The following values were used to yield the calcualted value of it (i.e., 84 lm): ESi = 160 GPa, EPDMS = 2 MPa, mPDMS

  14. Enhancement of the transverse magneto-optical Kerr effect via resonant tunneling in trilayers containing magneto-optical metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girón-Sedas, J. A.; Centro de Investigación e Innovación en Bioinformática y Fotónica - CIBioFI, AA 25360 Cali; Mejía-Salazar, J. R., E-mail: jrmejia3146@gmail.com

    We propose a way to enhance the transverse magneto-optical Kerr effect, by the excitation of resonant tunneling modes, in subwavelength trilayer structures featuring a dielectric slab sandwiched between two magneto-optical metallic layers. Depending on the magneto-optical layer widths, the proposed system may exhibit an extraordinary transverse magneto-optical Kerr effect, which makes it very attractive for the design and engineering of thin-film magneto-optical-based devices for future photonic circuits or fiber optical-communication systems.

  15. 7. VIEW OF TRICOMPOSITE ROOF STRUCTURE. TOP CHORDS ARE TIMBER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF TRICOMPOSITE ROOF STRUCTURE. TOP CHORDS ARE TIMBER. TENSION RODS (THIN METAL RODS EXTENDING DIAGONALLY FROM THE HORIZONTAL TIMBER BRACE) ARE WROUGHT IRON. SOLID CRUCIFORM SHAPED COMPRESSION MEMBERS EXTENDING DOWNWARD FROM THE TIMBER TOP CHORD ARE MADE OF CAST IRON - North Central Railroad, Baltimore Freight House, Guilford & Centre Streets, Baltimore, Independent City, MD

  16. Silvical characteristics of paper birch (Betula papyrifera

    Treesearch

    Russell J. Hutnik; Frank E. Cunningham

    1961-01-01

    Paper birch (Betula papyrifera Marsh) is commonly known also as white birch. The bark, which gives not only name but also unique character to this tree, is distinguishable from the white bark of other species by its pearly surface, its creamy cast, and its chalky whiteness that rubs off onto clothing. This bark separates easily into papery thin...

  17. Defect-free ultrahigh flux asymmetric membranes

    DOEpatents

    Pinnau, Ingo; Koros, William J.

    1990-01-01

    Defect-free, ultrahigh flux integrally-skinned asymmetric membranes having extremely thin surface layers (<0.2 .mu.m) comprised of glassy polymers are disclosed. The membranes are formed by casting an appropriate drope followed by forced convective evaporation of solvent to obtain a dry phase separated asymmetrical structure. The structure is then washed in a precipitation liquid and dried.

  18. Chitosan-Sodium Phytate Films with a Strong Water Barrier and Antimicrobial Properties Produced via One-Step-Consecutive-Stripping and Layer-by-Layer-Casting Technologies.

    PubMed

    Yang, Jie; Xiong, Liu; Li, Man; Sun, Qingjie

    2018-06-20

    The pursuit of sustainable functional materials requires the development of materials based on renewable resources and efficient fabrication methods. Here, we first fabricated chitosan-sodium phytate films via one-step-stripping and layer-by-layer-casting technologies. The proposed film-fabrication methods are general, facile, environmentally benign, cost-effective, and easy to scale up. The resultant one-step-stripped film was thin (9 ± 1 μm), soft, transparent, and strong, whereas the thickness of the layer-by-layer-cast film was 70 ± 3 μm. FTIR analysis of the films indicated the formation of interactions between the phosphoric groups in sodium phytate and the amino groups in chitosan. More importantly, the water-vapor-permeability values of the one-step-stripped and cast films were 4-5 orders of magnitude lower than chitosan films reported before. Layer-by-layer-cast films in particular exhibited high tensile strength (49.21 ± 1.12 MPa) and were more than three times stronger than other polyelectrolyte multilayer films. Both types of films remained stable in an acidic environment. Furthermore, the layer-by-layer-assembled films presented greater antimicrobial activity than the stripped films. The developed chitosan-sodium phytate films can enhance several biomedical and environmental applications, such as packaging, drug delivery, diagnostics, microfluidics, and biosensing.

  19. Corrosion resistance of cast irons and titanium alloys as reference engineered metal barriers for use in basalt geologic storage: a literature assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charlot, L.A.; Westerman, R.E.

    A survey and assessment of the literature on the corrosion resistance of cast irons and low-alloy titanium are presented. Selected engineering properties of cast iron and titanium are briefly described; however, the corrosion resistance of cast iron and titanium in aqueous solutions or in soils and their use in a basalt repository are emphasized. In evaluating the potential use of cast iron and titanium as structural barrier materials for long-lived nuclear waste packages, it is assumed that titanium has the general corrosion resistance to be used in relatively thin cross sections whereas the cost and availability of cast iron allowsmore » its use even in very thick cross sections. Based on this assumption, the survey showed that: The uniform corrosion of low-alloy titanium in a basalt environment is expected to be extremely low. A linear extrapolation of general corrosion rates with an added corrosion allowance suggests that a 3.2- to 6.4-mm-thick wall may have a life of 1000 yr. Pitting and crevice corrosion are not likely corrosion modes in basalt ground waters. It is also unlikely that stress corrosion cracking (SCC) will occur in the commercially pure (CP) titanium alloy or in palladiumor molybdenum-alloyed titanium materials. Low-alloy cast irons may be used as barrier metals if the environment surrounding the metal keeps the alloy in the passive range. The solubility of the corrosion product and the semipermeable nature of the oxide film allow significant uniform corrosion over long time periods. A linear extrapolation of high-temperature corrosion rates on carbon steels and corrosion rates of cast irons in soils gives an estimated metal penetration of 51 to 64 mm after 1000 yr. A corrosion allowance of 3 to 5 times that suggests that an acceptable cast iron wall may be from 178 to 305 mm thick. Although they cannot be fully assessed, pitting and crevice corrosion should not affect cast iron due to the ground-water chemistry of basalt.« less

  20. Modeling of thermomechanical and metallurgical phenomena in steel strip during hot direct rolling and runout table cooling of thin-cast slabs

    NASA Astrophysics Data System (ADS)

    Muojekwu, Cornelius Anaedu

    The present research was directed at adequate prediction of the temperature, deformation behavior (roll force, flow stress, strain and strain rate) and microstructural evolution (recovery, recrystallization, grain growth, austenite and ferrite grain sizes) during rolling in the Compact Strip Production (CSP) process, as well as the final mechanical properties of the hot rolled strips. This was accomplished with the aid of integrated process modeling, involving mathematical simulation, laboratory experiments and industrial campaigns. The study covered two conventional plain carbon steel grades, the A36 (AISI 1018, 0.17C-0.74Mn) and DQSK (AISI 1005, 0.038C-0.3Mn), and a range of plain carbon steel grades (0.06-0.09 C, 0.16-0.9 Mn) produced at HYLSA's CSP mill at Monterrey, Mexico. In the laboratory, compression tests (both single and double-hits) were carried out on the Gleeble 1500 thermomechanical simulator in order to elucidate the effect of coarse austenite grain size on the flow stress and recrystallization behavior of the plain carbon steels. It was found that coarse grain size not only decreased the flow stress at a given strain but also substantially reduced the tendency toward dynamic recrystallization. An increase in grain size from 244 to 1110 mum which is typical of the first stands of a conventional finishing mill and CSP hot-strip mill respectively, resulted in up to a 30 MPa decrease in the flow stress of both A36 and DQSK steel grades at similar operating conditions of temperature, strain and strain rate. In order to validate the model and laboratory results with mill measurements from an operating CSP plant, an industrial trial was carried out at HYLSA's CSP mill in Monterrey, Mexico. During the industrial campaign, intermediate temperature measurements were made, CSP slab and coil samples were acquired, and all measured and recorded mill data and practices were obtained. Comprehensive mathematical modeling of the rolling process was carried out employing finite difference and finite element analysis. The CSP mill measurements were utilized to validate model predictions of temperature, roll force, grain size and mechanical properties. Good agreement was obtained between prediction and measurement in most of the cases. An estimate of the heat extraction from the various mill sub-units was conducted from the validated calculations. It was found that heat loss by radiation accounted for 48-51 percent of the total heat loss, the work rolls accounted for 41-44 percent, the descaling unit accounted for 4-6 percent and the interstand sprays accounted for the remaining 3-4 percent. It was found that the uniform strain model consistently predicts lower temperatures than the target exit temperature for thin gauges due to a low estimate of deformation heat. Model results captured the details of heat transfer, deformation, recrystallization and austenite decomposition in the CSP mill. The effect of various mill parameters were elucidated, and the similarities and differences between conventional cold-charge rolling and CSP rolling were highlighted. (Abstract shortened by UMI.)

  1. The Wettability of LaRC Colorless Polyimide Resins on Casting Surfaces

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Stoakley, Diane M.; St.Clair, Anne K.; Gierow, Paul A.; Bates, Kevin

    1997-01-01

    Two colorless polyimides developed at NASA Langley Research Center, LaRC -CP1 and LaRC -CP2, are noted for being optically transparent, resistant to radiation, and soluble in the imide form. These materials may be used to make transparent, thin polymer films for building large space reflector/collector inflatable antennas, solar arrays, radiometers, etc. Structures such as these require large area, seamless films produced via spin casting or spray coating the soluble imide on a variety of substrates. The ability of the soluble imide to wet and spread over the mandrel or casting substrate is needed information for processing these structures with minimum waste and reprocessing, thereby, reducing the production costs. The wettability of a liquid is reported as the contact angle of the solid/liquid system. This fairly simple measurement is complicated by the porosity and the amount of contamination of the solid substrate. This work investigates the effect of inherent viscosity, concentration of polyimide solids, and solvent type on the wettability of various curing surfaces.

  2. Effect of minor chemistry elements on GTA weld fusion zone characteristics of a commercial grade titanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marya, S.K.

    1996-06-01

    Gas Tungsten Arc Welding (GTAW) is the most common technique employed in the fabrication of rolled thin tubes. One of the major manufacturing problems concerns the stability of weld fusion zone on materials from different casts, notwithstanding stringent monitoring of the process parameters -- current, voltage and travel speed. These parameters determine the theoretical weld heat and are expected to control the instantaneous mass of melt. According to the data compiled by Sahoo et al., oxygen is known to reduce the surface tension of most of the metals. However, investigations on the role of minor changes in concentrations of elementsmore » like sulphur, oxygen, selenium, bismuth, aluminium, and titanium in steels have very often attributed the cast to cast variations to different temperature gradients of surface tension over the weldpool. To the author`s knowledge, no reported work so far has revealed changing weld profiles in autogeneous mechanized GTA welds on titanium due to minor composition changes.« less

  3. The Work Softening by Deformation-Induced Disordering and Cold Rolling of 6.5 wt pct Si Steel Thin Sheets

    NASA Astrophysics Data System (ADS)

    Wang, Xianglong; Li, Haoze; Zhang, Weina; Liu, Zhenyu; Wang, Guodong; Luo, Zhonghan; Zhang, Fengquan

    2016-09-01

    As-cast strip of 6.5 wt pct Si steel was fabricated by twin-roll strip casting. After hot rolling at 1323 K (1050 °C), thin sheets with the thickness of 0.35 mm were produced by warm rolling at 373 K (100 °C) with rolling reductions of 15, 25, 35, 45, 55, and 65 pct. Influence of warm rolling reduction on ductility was investigated by room temperature bending test. The measurement of macro-hardness showed that "work softening" could begin when the warm rolling reduction exceeded 35 pct. The room temperature ductility of the thin sheets gradually increased with the increase of warm rolling reductions, and the plastic deformation during bending began to form when the warm rolling reduction was greater than 45 pct, the 65 pct rolled thin sheet exhibited the maximum plastic deformation of about 0.6 pct during bending at room temperature, with a few small dimples having been observed on the fracture surfaces. B2-ordered domains were formed in the 15, 25, 35, 45, and 55 pct rolled specimens, and their average size decreased with the increase of warm rolling reductions. By contrast, no B2-ordered domain could be found in the 65 pct rolled specimen. It had been observed that large-ordered domains could be split into several small parts by the slip of partial super-dislocations during warm rolling, which led to significant decrease of the order degree to cause the phenomenon of deformation-induced disordering. On the basis of these results, cold rolling schedule was developed to successfully fabricate 0.25-mm-thick sheets with good surface qualities and magnetic properties from warm rolled sheets.

  4. An Investigation of the Mold-Flux Performance for the Casting of Cr12MoV Steel Using a Mold Simulator Technique

    NASA Astrophysics Data System (ADS)

    Zhou, Lejun; Wang, Wanlin; Xu, Chao; Zhang, Chen

    2017-08-01

    Mold flux plays important roles in the process of continuous casting. In this article, the performance of mold flux for the casting of Cr12MoV steel was investigated by using a mold simulator. The results showed that the slag film formed in the gap between the initial shell and mold hot surface is thin and discontinuous during the casting process with the Flux BM, due to the absorption of chromic oxide inclusions into the liquid slag, while the slag film formed in the case of the optimized Flux NEW casting process is uniform. The main precipitated crystals in Flux BM slag film are cuspidine (Ca4Si2O7F2) and Cr3O4, but only Ca4Si2O7F2 precipitated in the Flux NEW case. Besides, both the responding temperature and heat flux in the case of Flux BM are relatively higher and fluctuate in a larger amplitude. The surface of the shell obtained in the case of the Flux BM experiment is quite uneven, and many severe depressions, cracks, and entrapped slags are observed in the surface due to the lack of lubrication. However, the obtained shell surface in the case of the Flux NEW shows good surface quality due to the addition of B2O3 and the adjustment of basicity, which can compensate for the negative effects of the mold-flux properties caused by the absorption of chromic oxide during the casting process.

  5. Artifacts in slab average-intensity-projection images reformatted from JPEG 2000 compressed thin-section abdominal CT data sets.

    PubMed

    Kim, Bohyoung; Lee, Kyoung Ho; Kim, Kil Joong; Mantiuk, Rafal; Kim, Hye-ri; Kim, Young Hoon

    2008-06-01

    The objective of our study was to assess the effects of compressing source thin-section abdominal CT images on final transverse average-intensity-projection (AIP) images. At reversible, 4:1, 6:1, 8:1, 10:1, and 15:1 Joint Photographic Experts Group (JPEG) 2000 compressions, we compared the artifacts in 20 matching compressed thin sections (0.67 mm), compressed thick sections (5 mm), and AIP images (5 mm) reformatted from the compressed thin sections. The artifacts were quantitatively measured with peak signal-to-noise ratio (PSNR) and a perceptual quality metric (High Dynamic Range Visual Difference Predictor [HDR-VDP]). By comparing the compressed and original images, three radiologists independently graded the artifacts as 0 (none, indistinguishable), 1 (barely perceptible), 2 (subtle), or 3 (significant). Friedman tests and exact tests for paired proportions were used. At irreversible compressions, the artifacts tended to increase in the order of AIP, thick-section, and thin-section images in terms of PSNR (p < 0.0001), HDR-VDP (p < 0.0001), and the readers' grading (p < 0.01 at 6:1 or higher compressions). At 6:1 and 8:1, distinguishable pairs (grades 1-3) tended to increase in the order of AIP, thick-section, and thin-section images. Visually lossless threshold for the compression varied between images but decreased in the order of AIP, thick-section, and thin-section images (p < 0.0001). Compression artifacts in thin sections are significantly attenuated in AIP images. On the premise that thin sections are typically reviewed using an AIP technique, it is justifiable to compress them to a compression level currently accepted for thick sections.

  6. [Skin diseases and sensitization to metals in construction workers engaged in the production of pre-cast cellular concrete slabs].

    PubMed

    Kieć-Swierczyńska, M; Woźniak, H; Wojtczak, J

    1989-01-01

    The study involved 461 building workers exposed to ashes, cement and ash-cement mixtures in direct production and at auxiliary posts (fitters, welders, mechanics, electricians etc.). In addition, all those workers were exposed to lubricants ans machine oils, as well as anti-adhesive oils used to lubricate moulds. All the subjects underwent patch tests. Dermatitis was found in 18.9%, whereas oil acne in 7.4% of subjects, 23.0% exhibited chromium allergy, 15.2% - cobalt allergy and 5.0% - nickel allergy. Two workers were ++hypersensitive to zinc. No differences were found in the rates of dermatitis, oil acne and metal allergy between production workers and auxiliary ones. Airborne dust concentrations at those workplaces were similar. Cement and ashes contained compounds of chromium, cobalt and nickel.

  7. Aeroheating model advancements featuring electroless metallic plating

    NASA Technical Reports Server (NTRS)

    Stalmach, C. J., Jr.; Goodrich, W. D.

    1976-01-01

    Discussed are advancements in wind tunnel model construction methods and hypersonic test data demonstrating the methods. The general objective was to develop model fabrication methods for improved heat transfer measuring capability at less model cost. A plated slab model approach was evaluated with cast models containing constantan wires that formed single-wire-to-plate surface thermocouple junctions with a seamless skin of electroless nickel alloy. The surface of a space shuttle orbiter model was selectively plated with scaled tiles to simulate, with high fidelity, the probable misalignments of the heatshield tiles on a flight vehicle. Initial, Mach 8 heating results indicated a minor effect of tile misalignment roughness on boundary layer transition, implying a possible relaxation of heatshield manufacturing tolerances. Some loss of the plated tiles was experienced when the model was tested at high heating rates.

  8. In-situ resource utilization in the design of advanced lunar facilities

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Resource utilization will play an important role in the establishment and support of a permanently manned lunar base. At the University of Houston - College of Architecture and the Sasakawa International Center for Space Architecture, a study team recently investigated the potential use of lunar in-situ materials in the design of lunar facilities. The team identified seven potential lunar construction materials; concrete, sulfur concrete, cast basalt, sintered basalt, glass, fiberglass, and metals. Analysis and evaluation of these materials with respect to their physical properties, processes, energy requirements, resource efficiency, and overall advantages and disadvantages lead to the selection of basalt materials as the more likely construction material for initial use on a lunar base. Basalt materials can be formed out of in-situ lunar regolith, with minor material beneficiation, by a simple process of heating and controlled cooling. The team then conceptualized a construction system that combines lunar regolith sintering and casting to make pressurized structures out of lunar resources. The design uses a machine that simultaneously excavates and sinters the lunar regolith to create a cylindrical hole, which is then enclosed with cast basalt slabs, allowing the volume to be pressurized for use as a living or work environment. Cylinder depths of up to 4 to 6 m in the lunar mare or 10 to 12 m in the lunar highlands are possible. Advantages of this construction system include maximum resource utilization, relatively large habitable volumes, interior flexibility, and minimal construction equipment needs. Conclusions of this study indicate that there is significant potential for the use of basalt, a lunar resource derived construction material, as a low cost alternative to Earth-based materials. It remains to be determined when in lunar base phasing this construction method should be implemented.

  9. Feasibility of Steel Fiber-Reinforced Rubberized Concrete in Cold Regions for High Volume Intersections

    NASA Astrophysics Data System (ADS)

    Abou Eid, Mahear A.

    There are many challenges faced with the use of Portland Cement Concrete (PCC) in cold regions, but with the inclusion of new technologies such as steel fibers and recycled tire crumb rubber efficient construction may be possible. Research was conducted on a modified concrete material that included both steel fibers and crumb rubber. The composite material was called Steel Fiber-Reinforced Rubberized Concrete (SFRRC). The objective of this investigation was to provide evidence showing that SFRRC can reduce tire rutting compared to asphaltic pavement. In addition, the research showed that the SFRRC could withstand freeze-thaw cycles and increase service life of roadways. Several tests were performed to determine the characteristics of the material. Freeze-thaw testing was performed to determine compressive strength loss and visual deterioration of the material. Wheel tracker rut testing was performed both with the standard steel wheel and with a modified studded rubber tire to determine plastic deformation and rut resistance. An experimental test slab was cast in place on a public approach to observe the construction procedures, the effects of studded tire wear and the frost actions in cold region conditions. Based on freeze-thaw and wheel tracker test results and observations of the experimental test slab, the SFRRC material shows viability in cold regions for resisting freeze-thaw actions. The freeze-thaw testing resulted in increased compressive strength after 300 freeze-thaw cycles and very low deterioration of material compared to standard PCC. The wheel tracker testing resulted in very low plastic deformation and minor material rutting with use of the studded rubber tire. The test slab showed very minor surface wear, no freeze-thaw cracking and no rutting after one winter of use. It is recommended that further testing of the material be conducted by means of a large-scale trial section. This would provide information with respect to cost analysis and integration of the material into the Department of Transportation construction program.

  10. S-to-P Conversions from Mid-mantle Slow Scatterers in Slab Regions: Observations of Deep/Stagnated Oceanic Crust?

    NASA Astrophysics Data System (ADS)

    He, Xiaobo; Zheng, Yixian

    2018-02-01

    The fate of a subducted slab is a key ingredient in the context of plate tectonics, yet it remains enigmatic especially in terms of its crustal component. In this study, our efforts are devoted to resolve slab-related structures in the mid-mantle below eastern Indonesia, the Izu-Bonin region, and the Peru area by employing seismic array analysing techniques on high-frequency waveform data from F-net in Japan and the Alaska regional network and the USArray in North America. A pronounced arrival after the direct P wave is observed in the recordings of four deep earthquakes (depths greater than 400 km) from three subduction systems including the Philippines, the Izu-Bonin, and the Peru. This later arrival displays a slightly lower slowness compared to the direct P wave and its back-azimuth deviates somewhat from the great-circle direction. We explain it as an S-to-P conversion at a deep scatterer below the sources in the source region. In total, five scatterers are seen at depths ranging from 930 to 1500 km. Those scatterers appear to be characterised by an 7 km-thick low-velocity layer compared to the ambient mantle. Combined evidence from published mineral physical analysis suggests that past subducted oceanic crust, possibly fragmented, is most likely responsible for these thin-layer compositional heterogeneities trapped in the mid-mantle beneath the study regions. Our observations give a clue to the potential fate of subducted oceanic crust.

  11. Observation of reflected electrons driven quasi- longitudinal (QL) whistlers in large laboratory plasma

    NASA Astrophysics Data System (ADS)

    Sanyasi, A. K.; Awasthi, L. M.; Srivastava, P. K.; Mattoo, S. K.; Sharma, D.; Singh, R.; Paikaray, R.; Kaw, P. K.

    2017-10-01

    This paper reports experimental and theoretical investigations on plasma turbulence in the source plasma of a Large Volume Plasma Device. It is shown that a highly asymmetrical localized thin rectangular slab of strong plasma turbulence is excited by loss cone instability. The position of the slab coincides with the injection line of the primary ionizing energetic electrons. Outside the slab, in the core, the turbulence is weaker by a factor of 30 . The plasma turbulence consists of oblique [ θ=tan-1(k⊥/k||)≈87 ° ] Quasi-Longitudinal (QL) electromagnetic whistlers in a broad band of 40 kHz

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.K.; Zambrano, E.

    The Trujillo Formation, overlying the Paleocene Cerro Verde and Valle Hondo formations, reveals a turbiditic origin in a lowstand shelf-edge and bathyal setting in two excellent road sections on the Valera-Carache road and many creek sections. The basal outcrop shows well developed fining upward (FU) sequences of proximal channel turbidite and overbank origin (abandonment phase) and minor coarsening upward (CU) sequences representing progradational pulse in overbank areas. The FU (and thinning-upward) sequence, overlying a shale, consists of: (a) basal stacked conglomeratic arenites (probably inner fan channels) with graded beds, imbricate casts and transported shells; (b) a sand/shale alternating unit (channelmore » margin/interchannel) with flame structure, lenticular bedding, infrequent Tb-d Sequence, rippled flats, and rare Planolites; and (c) a dark shale (overbank-interchannel lows) with scarce Chondrites and Scaladtuba traces. The CU sequence consists of thickening-upward heterolithic facies overlain by lenticular stacked pebbly arenites. The upper unit exposed near Puente Gomez is a typical progradational lobe starting with a basal shale, with intraformational diastems and slumped beds, and Tb-d and Tb-e sequences in thin intercalated sandstones; a heterolithic facies with flute/groove casts, Planolites, Thalassinoides and Neonereites occurs between the shale and a thick cross-stratified sandstone at the top. This CU lobe sequence is discordantly(?) overlain by a thin wedge of massive bedded pebbly sandstones of Middle Eocene(?) Misoa Formation. Unlike the southwesterly sourced subsurface turbidites, those in this area were probably sourced from both the south and north, though locally the southern source might have been more important.« less

  13. Conjugation of bioactive groups to poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)] films.

    PubMed

    Prime, Emma L; Cooper-White, Justin J; Qiao, Greg G

    2007-12-06

    A novel PLA-based polymer containing reactive pendent ketone or hydroxyl groups was synthesized by the copolymerization of L-lactide with epsilon-caprolactone-based monomers. The polymer was activated with NPC, resulting in an amine-reactive polymer which was then cast into thin polymeric films, either alone or as part of a blend with PLGA, before immersion into a solution of the cell adhesion peptide GRGDS in PBS buffer allowed for conjugation of GRGDS to the film surfaces. Subsequent 3T3 fibroblast cell adhesion studies demonstrated an increase in cellular adhesion and spreading over films cast from unmodified PLGA. Hence the new polymer can be used to obtain covalent linkage of amine-containing molecules to polymer surfaces.

  14. Cold-air performance of compressor-drive turbine of Department of Energy upgraded automobile gas turbine engine. 2: Stage performance

    NASA Technical Reports Server (NTRS)

    Roelke, R. J.; Haas, J. E.

    1982-01-01

    The aerodynamic performance of the compressor-drive turbine of the DOE upgraded gas turbine engine was determined in low temperature air. The as-received cast rotor blading had a significantly thicker profile than design and a fairly rough surface finish. Because of these blading imperfections a series of stage tests with modified rotors were made. These included the as-cast rotor, a reduced-roughness rotor, and a rotor with blades thinned to near design. Significant performance changes were measured. Tests were also made to determine the effect of Reynolds number on the turbine performance. Comparisons are made between this turbine and the compressor-drive turbine of the DOE baseline gas turbine engine.

  15. Post-cast EDM method for reducing the thickness of a turbine nozzle wall

    DOEpatents

    Jones, Raymond Joseph; Bojappa, Parvangada Ganapathy; Kirkpatrick, Francis Lawrence; Schotsch, Margaret Jones; Rajan, Rajiv; Wei, Bin

    2002-01-01

    A post-cast EDM process is used to remove material from the interior surface of a nozzle vane cavity of a turbine. A thin electrode is passed through the cavity between opposite ends of the nozzle vane and displaced along the interior nozzle wall to remove the material along a predetermined path, thus reducing the thickness of the wall between the cavity and the external surface of the nozzle. In another form, an EDM process employing a profile as an electrode is disposed in the cavity and advanced against the wall to remove material from the wall until the final wall thickness is achieved, with the interior wall surface being complementary to the profile surface.

  16. Automatic detection of pulmonary nodules at spiral CT: first clinical experience with a computer-aided diagnosis system

    NASA Astrophysics Data System (ADS)

    Wormanns, Dag; Fiebich, Martin; Wietholt, Christian; Diederich, Stefan; Heindel, Walter

    2000-06-01

    We evaluated the practical application of a Computer-Aided Diagnosis (CAD) system for viewing spiral computed tomography (CT) of the chest low-dose screening examinations which includes an automatic detection of pulmonary nodules. A UNIX- based CAD system was developed including a detection algorithm for pulmonary nodules and a user interface providing an original axial image, the same image with nodules highlighted, a thin-slab MIP, and a cine mode. As yet, 26 CT examinations with 1625 images were reviewed in a clinical setting and reported by an experienced radiologist using both the CAD system and hardcopies. The CT studies exhibited 19 nodules found on the hardcopies in consensus reporting of 2 experienced radiologists. Viewing with the CAD system was more time consuming than using hardcopies (4.16 vs. 2.92 min) due to analyzing MIP and cine mode. The algorithm detected 49% (18/37) pulmonary nodules larger than 5 mm and 30% (21/70) of all nodules. It produced an average of 6.3 false positive findings per CT study. Most of the missed nodules were adjacent to the pleura. However, the program detected 6 nodules missed by the radiologists. Automatic nodule detection increases the radiologists's awareness of pulmonary lesions. Simultaneous display of axial image and thin-slab MIP makes the radiologist more confident in diagnosis of smaller pulmonary nodules. The CAD system improves the detection of pulmonary nodules at spiral CT. Lack of sensitivity and specificity is still an issue to be addressed but does not prevent practical use.

  17. The subresolution DaTSCAN phantom: a cost-effective, flexible alternative to traditional phantom technology.

    PubMed

    Taylor, Jonathan C; Vennart, Nicholas; Negus, Ian; Holmes, Robin; Bandmann, Oliver; Lo, Christine; Fenner, John

    2018-03-01

    The Alderson striatal phantom is frequently used to assess I-FP-CIT (Ioflupane) image quality and to test semi-quantification software. However, its design is associated with a number of limitations, in particular: unrealistic image appearances and inflexibility. A new physical phantom approach is proposed on the basis of subresolution phantom technology. The design incorporates thin slabs of attenuating material generated through additive manufacturing, and paper sheets with radioactive ink patterns printed on their surface, created with a conventional inkjet printer. The paper sheets and attenuating slabs are interleaved before scanning. Use of thin layers ensures that they cannot be individually resolved on reconstructed images. An investigation was carried out to demonstrate the performance of such a phantom in producing simplified I-FP-CIT uptake patterns. Single photon emission computed tomography imaging was carried out on an assembled phantom designed to mimic a healthy patient. Striatal binding ratio results and linear striatal dimensions were calculated from the reconstructed data and compared with that of 22 clinical patients without evidence of Parkinsonian syndrome, determined from clinical follow-up. Striatal binding ratio results for the fully assembled phantom were: 3.1, 3.3, 2.9 and 2.6 for the right caudate, left caudate, right putamen and right caudate, respectively. All were within two SDs of results derived from a cohort of clinical patients. Medial-lateral and anterior-posterior dimensions of the simulated striata were also within the range of values seen in clinical data. This work provides the foundation for the generation of a range of more clinically realistic, physical phantoms.

  18. Water Adsorption on Clean and Defective Anatase TiO2 (001) Nanotube Surfaces: A Surface Science Approach.

    PubMed

    Kenmoe, Stephane; Lisovski, Oleg; Piskunov, Sergei; Bocharov, Dmitry; Zhukovskii, Yuri F; Spohr, Eckhard

    2018-05-31

    We use ab initio molecular dynamics simulations to study the adsorption of thin water films with 1 and 2 ML coverage on anatase TiO 2 (001) nanotubes. The nanotubes are modeled as 2D slabs, which consist of partially constrained and partially relaxed structural motifs from nanotubes. The effect of anion doping on the adsorption is investigated by substituting O atoms with N and S impurities on the nanotube slab surface. Due to strain-induced curvature effects, water adsorbs molecularly on defect-free surfaces via weak bonds on Ti sites and H bonds to surface oxygens. While the introduction of an S atom weakens the interaction of the surface with water, which adsorbs molecularly, the presence of an N impurity renders the surface more reactive to water, with a proton transfer from the water film and the formation of an NH group at the N site. At 2 ML coverage, a further surface-assisted proton transfer takes place in the water film, resulting in the formation of an OH - group and an NH 2 + cationic site on the surface.

  19. Detection of nanoscale embedded layers using laboratory specular X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beekman, Matt, E-mail: matt.beekman@oit.edu; Rodriguez, Gabriel; Atkins, Ryan

    Unusual specular X-ray diffraction patterns have been observed from certain thin film intergrowths of metal monochalcogenide (MX) and transition metal dichalcogenide (TX{sub 2}) structures. These patterns exhibit selective “splitting” or broadening of selected (00l) diffraction peaks, while other (00l) reflections remain relatively unaffected [Atkins et al., Chem. Mater. 24, 4594 (2012)]. Using a simplified optical model in the kinematic approximation, we illustrate that these peculiar and somewhat counterintuitive diffraction features can be understood in terms of additional layers of one of the intergrowth components, MX or TX{sub 2}, interleaved between otherwise “ideal” regions of MX-TX{sub 2} intergrowth. The interpretation ismore » in agreement with scanning transmission electron microscope imaging, which reveals the presence of such stacking “defects” in films prepared from non-ideal precursors. In principle, the effect can be employed as a simple, non-destructive laboratory probe to detect and characterize ultrathin layers of one material, e.g., 2-dimensional crystals, embedded between two slabs of a second material, effectively using the two slabs as a highly sensitive interferometer of their separation distance.« less

  20. Optimal width of quasicrystalline slabs of dielectric cylinders to microwave radiation transmission contrast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andueza, Ángel; Sevilla, Joaquín; Smart Cities Institute, Universidad Pública de Navarra, 31006 Pamplona

    2016-08-28

    Light confinement induced by resonant states in aperiodic photonic structures is interesting for many applications. A particular case of these resonances can be found in 2D quasicrystalline arrangements of dielectric cylinders. These systems present a rather isotropic band gap as well as isolated in-gap photonic states (as a result of spatially localized resonances). These states are built by high symmetry polygonal clusters that can be regarded as photonic molecules. In this paper, we study the transmission properties of a slab of glass cylinders arranged in approximants of the decagonal quasicrystalline structure. In particular, we investigate the influence of the slabmore » width in the transmission contrast between the states and the gap. The study is both experimental and numerical in the microwave regime. We find that the best transmission contrast is found for a width of around three times the radiation wavelength. The transmission in the band gap region is mediated by the resonances of the photonic molecules. If the samples are thin enough, they become transparent except around a resonance of the photonic molecule which reflects the incoming light.« less

  1. Solubility- and temperature-driven thin film structures of polymeric thiophene derivatives for high performance OFET applications

    NASA Astrophysics Data System (ADS)

    LeFevre, Scott W.; Bao, Zhenan; Ryu, Chang Y.; Siegel, Richard W.; Yang, Hoichang

    2007-09-01

    It has been shown that high charge mobility in solution-processible organic semiconductor-based field effect transistors is due in part to a highly parallel π-π stacking plane orientation of the semiconductors with respect to gate-dielectric. Fast solvent evaporation methods, generally, exacerbate kinetically random crystal orientations in the films deposited, specifically, from good solvents. We have investigated solubility-driven thin film structures of thiophene derivative polymers via spin- and drop-casting with volatile solvents of a low boiling point. Among volatile solvents examined, marginal solvents, which have temperature-dependent solubility for the semiconductors (e.g. methylene chloride for regioregular poly(3-alkylthiophene)s), can be used to direct the favorable crystal orientation regardless of solvent drying time, when the temperature of gate-dielectrics is held to relatively cooler than the warm solution. Grazing-incidence X-ray diffraction and atomic force microscopy strongly support that significant control of crystal orientation and mesoscale morphology using a "cold" substrate holds true for both drop and spin casting. The effects of physiochemical post-modificaiton on film crystal structures and morphologies of poly(9,9-dioctylfluorene-co-bithiophene) have also been investigated.

  2. Glass transition in thin supported polystyrene films probed by temperature-modulated ellipsometry in vacuum.

    PubMed

    Efremov, Mikhail Yu; Kiyanova, Anna V; Last, Julie; Soofi, Shauheen S; Thode, Christopher; Nealey, Paul F

    2012-08-01

    Glass transition in thin (1-200 nm thick) spin-cast polystyrene films on silicon surfaces is probed by ellipsometry in a controlled vacuum environment. A temperature-modulated modification of the method is used alongside a traditional linear temperature scan. A clear glass transition is detected in films with thicknesses as low as 1-2 nm. The glass transition temperature (T(g)) shows no substantial dependence on thickness for coatings greater than 20 nm. Thinner films demonstrate moderate T(g) depression achieving 18 K for thicknesses 4-7 nm. Less than 4 nm thick samples are excluded from the T(g) comparison due to significant thickness nonuniformity (surface roughness). The transition in 10-20 nm thick films demonstrates excessive broadening. For some samples, the broadened transition is clearly resolved into two separate transitions. The thickness dependence of the glass transition can be well described by a simple 2-layer model. It is also shown that T(g) depression in 5 nm thick films is not sensitive to a wide range of experimental factors including molecular weight characteristics of the polymer, specifications of solvent used for spin casting, substrate composition, and pretreatment of the substrate surface.

  3. Ceramic membrane by tape casting and sol-gel coating for microfiltration and ultrafiltration application

    NASA Astrophysics Data System (ADS)

    Das, Nandini; Maiti, H. S.

    2009-11-01

    Alumina membrane filters in the form of thin (0.3-0.8 mm) discs of 25-30 mm diameter suitable for microfiltration application have been fabricated by tape-casting technique. Further using this microfiltration membrane as substrate, boehmite sol coating was applied on it and ultrafiltration membrane with very small thickness was formed. The pore size of the microfiltration membrane could be varied in the range of 0.1-0.7 μm through optimisation of experimental parameter. In addition, each membrane shows a very narrow pore size distribution. The most important factor, which determines the pore size of the membrane, is the initial particle size and its distribution of the ceramic powder. The top thin ultrafiltration, boehmite layer was prepared by sol-gel method, with a thickness of 0.5 μm. Particle size of the sol was approximately 30-40 nm. The structure and formation of the layer was analysed through TEM. At 550 °C formation of the top layer was completed. The pore size of the ultrafiltration membrane measured from TEM micrograph was almost 10 nm. Results of microbial (Escherichia coli—smallest-sized water-borne bacteria) test confirm the possibility of separation through this membrane

  4. Method of preparing thin porous sheets of ceramic material

    DOEpatents

    Swarr, Thomas E.; Nickols, Richard C.; Krasij, Myron

    1987-03-24

    A method of forming thin porous sheets of ceramic material for use as electrodes or other components in a molten carbonate fuel cell is disclosed. The method involves spray drying a slurry of fine ceramic particles in liquid carrier to produce generally spherical agglomerates of high porosity and a rough surface texture. The ceramic particles may include the electrode catalyst and the agglomerates can be calcined to improve mechanical strength. After slurrying with suitable volatile material and binder tape casting is used to form sheets that are sufficiently strong for further processing and handling in the assembly of a high temperature fuel cell.

  5. Functionally graded alumina-based thin film systems

    DOEpatents

    Moore, John J.; Zhong, Dalong

    2006-08-29

    The present invention provides coating systems that minimize thermal and residual stresses to create a fatigue- and soldering-resistant coating for aluminum die casting dies. The coating systems include at least three layers. The outer layer is an alumina- or boro-carbide-based outer layer that has superior non-wettability characteristics with molten aluminum coupled with oxidation and wear resistance. A functionally-graded intermediate layer or "interlayer" enhances the erosive wear, toughness, and corrosion resistance of the die. A thin adhesion layer of reactive metal is used between the die substrate and the interlayer to increase adhesion of the coating system to the die surface.

  6. Method of preparing thin porous sheets of ceramic material

    DOEpatents

    Swarr, T.E.; Nickols, R.C.; Krasij, M.

    1984-05-23

    A method of forming thin porous sheets of ceramic material for use as electrodes or other components in a molten carbonate fuel cell is disclosed. The method involves spray drying a slurry of fine ceramic particles in liquid carrier to produce generally spherical agglomerates of high porosity and a rough surface texture. The ceramic particles may include the electrode catalyst and the agglomerates can be calcined to improve mechanical strength. After slurrying with suitable volatile material and binder tape casting is used to form sheets that are sufficiently strong for further processing and handling in the assembly of a high temperature fuel cell.

  7. Evolution of a Directional Wave Spectrum in a 3D Marginal Ice Zone with Random Floe Size Distribution

    NASA Astrophysics Data System (ADS)

    Montiel, F.; Squire, V. A.

    2013-12-01

    A new ocean wave/sea-ice interaction model is proposed that simulates how a directional wave spectrum evolves as it travels through a realistic marginal ice zone (MIZ), where wave/ice dynamics are entirely governed by coherent conservative wave scattering effects. Field experiments conducted by Wadhams et al. (1986) in the Greenland Sea generated important data on wave attenuation in the MIZ and, particularly, on whether the wave spectrum spreads directionally or collimates with distance from the ice edge. The data suggest that angular isotropy, arising from multiple scattering by ice floes, occurs close to the edge and thenceforth dominates wave propagation throughout the MIZ. Although several attempts have been made to replicate this finding theoretically, including by the use of numerical models, none have confronted this problem in a 3D MIZ with fully randomised floe distribution properties. We construct such a model by subdividing the discontinuous ice cover into adjacent infinite slabs of finite width parallel to the ice edge. Each slab contains an arbitrary (but finite) number of circular ice floes with randomly distributed properties. Ice floes are modeled as thin elastic plates with uniform thickness and finite draught. We consider a directional wave spectrum with harmonic time dependence incident on the MIZ from the open ocean, defined as a continuous superposition of plane waves traveling at different angles. The scattering problem within each slab is then solved using Graf's interaction theory for an arbitrary incident directional plane wave spectrum. Using an appropriate integral representation of the Hankel function of the first kind (see Cincotti et al., 1993), we map the outgoing circular wave field from each floe on the slab boundaries into a directional spectrum of plane waves, which characterizes the slab reflected and transmitted fields. Discretizing the angular spectrum, we can obtain a scattering matrix for each slab. Standard recursive techniques are then used to solve the problem for the full MIZ. Wave attenuation data are obtained using ensemble averaging and preliminary comparisons with field experiment data will be given in the presentation. The model also offers important insights in regards to the spreading of the directional wave spectrum as it penetrates deeper into the MIZ. Cincotti, G., Gori, F., Santarsiero, M., Frezza, F., Furno, F., and Schettini, G. (1993). Plane wave expansion of cylindrical functions. Opt. Commun., 95(4):192-198. Wadhams, P., Squire, V. A., Ewing, J. A., and Pascal, R. W. (1986). The effect of the marginal ice zone on the directional wave spectrum of the ocean. J. Phys. Oceanogr., 16:358-376.

  8. Characterizing wet slab and glide slab avalanche occurrence along the Going-to-the-Sun Road, Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.; Reardon, Blase

    2010-01-01

    Wet slab and glide slab snow avalanches are dangerous and yet can be particularly difficult to predict. Both wet slab and glide slab avalanches are thought to depend upon free water moving through the snowpack but are driven by different processes. In Glacier National Park, Montana, both types of avalanches can occur in the same year and affect the Going-to-the-Sun Road (GTSR). Both wet slab and glide slab avalanches along the GTSR from 2003-2010 are investigated. Meteorological data from two high-elevation weather stations and one SNOTEL site are used in conjunction with an avalanche database and snowpit profiles. These data were used to characterize years when only glide slab avalanches occurred and those years when both glide slab and wet slab avalanches occurred. Results of 168 glide slab and 57 wet slab avalanches along the GTSR suggest both types of avalanche occurrence depend on sustained warming periods with intense solar radiation (or rain on snow) to produce free water in the snowpack. Differences in temperature and net radiation metrics between wet slab and glide slab avalanches emerge as one moves from one day to seven days prior to avalanche occurrence. On average, a more rapid warming precedes wet slab avalanche occurrence. Glide slab and wet slab avalanches require a similar amount of net radiation. Wet slab avalanches do not occur every year, while glide slab avalanches occur annually. These results aim to enhance understanding of the required meteorological conditions for wet slab and glide slab avalanches and aid in improved wet snow avalanche forecasting.

  9. Close or not so close? Provenance studies of megalithic monuments from Alentejo (Portugal)

    NASA Astrophysics Data System (ADS)

    Boaventura, R.; Moita, P.

    2012-04-01

    There has been a significant amount of studies about megalithic tombs conducted in the Alentejo region. However the geological provenance of monoliths used in the construction of those tombs usually was not a priority among researchers with rare exceptions (Dehn, Kalb and Vortisch, 1991; Boaventura, 2000). Recent studies of dolmens (Oliveira, 1997 and 2006; Gonçalves, 2003) refer only to a brief characterization of rocks, such as "granite or schist slabs", highlighting certain types if the geological stratum is identical or not to the stone blocks. On the other hand, when the type of raw material appears to be similar with the bedrock, it is common and empirically assumed its local provenance. With the aim of testing and expand the knowledge about the provenance of the slabs used in the construction of megalithic tombs, several lithic samples from dolmen slabs and outcrops in their surroundings were collected for analysis and comparison. The samples were characterized by petrographic studies in thin section as well with a geochemical analyses performed by XRF that gives major elements as well some trace elements. The dolmens tested for this project are located roughly between the northeast to west of the town of Monforte (Upper region of Alentejo, Portugal) and are named, from south to north, as Serrinha, Rabuje group (1 to 5), Geodésico de Besteiros 3 and Velho. The field work and petrographic studies revealed that the slabs are constituted mainly by several types of granitoids (gnaissic, red, white, tonalitic), amphibolites and mottled schist shale. The comparison of chemical analyses between slabs and selected outcrops revealed that the provenances are in most of the cases from the nearby geological stratum. In fact, major elements (e.g. MgO, SiO2, CaO) as well trace elements (e.g. Sr, Y, Zr, Nb) compositions are similar on slab samples and in rocks from the outcrops. If in terms of major elements a similarity was already expectable, or easier to obtain, the trace elements (namely immobile elements such as Y or Nb) compositions corroborated that slabs and geological bedrock were alike. The capstone slab that covers the dolmen of Rabuje 1 group does not belong to the nearby geological stratum. Nevertheless, a probable matching source-outcrop was located sampled and characterized in terms of geochemistry and petrograpphy and compared with the megalithic capstone. This work allowed a better characterization of the rocks used in megalithic tombs as well as corroborat a pragmatic attitude of Neolithic populations in the search of the appropriate slabs for construction as proposed previously (Boaventura, 2000). When available, the megalithic stones were likely collected from the nearby stratum and therefore the distances traveled were small (in situ or less than 1-2 km). Nevertheless, when the type of stone needed was not available in the vicinity (e.g fracturing provided only smaller stones) it would be necessary to travel longer distances, up to 8 km (Boaventura, 2000), as in the case of the dolmen of Rabuje 1. Boaventura, R. (2000) - A geologia das Antas de Rabuje (Monforte, Alentejo), Revista Portuguesa de Arquelogia.Vol. 3;2.pp-15-23. Dehn, W. Kalb, P. and Vortich, W. (1991) - Geologisch-Petrographische Untersuchungen an Megalithgräbern Portugals. Madrider Mitteilungen, 32, p. 1-28. Oliveira, J. (1997) - Monumentos megalíticos da bacia hidrográfica do Rio Sever. Ibn Maruan. Castelo de Vide. Special Edition. Oliveira, J. (2006) - Património arqueológico da Coudelaria de Alter e as primeiras comunidades agropastoris. [Évora]: Colibri.

  10. The hydrological cycle response to cirrus cloud thinning

    NASA Astrophysics Data System (ADS)

    Kristjánsson, Jón Egill; Muri, Helene; Schmidt, Hauke

    2015-12-01

    Recent multimodel studies have shown that if one attempts to cancel increasing CO2 concentrations by reducing absorbed solar radiation, the hydrological cycle will weaken if global temperature is kept unchanged. Using a global climate model, we investigate the hydrological cycle response to "cirrus cloud thinning (CCT)," which is a proposed climate engineering technique that seeks to enhance outgoing longwave radiation. Investigations of the "fast response" in experiments with fixed sea surface temperatures reveal that CCT causes a significant enhancement of the latent heat flux and precipitation. This is due to enhanced radiative cooling of the troposphere, which is opposite to the effect of increased CO2 concentrations. By combining CCT with CO2 increase in multidecadal simulations with a slab ocean, we demonstrate a systematic enhancement of the hydrological cycle due to CCT. This leads to enhanced moisture availability in low-latitude land regions and a strengthening of the Indian monsoon.

  11. Microwave inversion of leaf area and inclination angle distributions from backscattered data

    NASA Technical Reports Server (NTRS)

    Lang, R. H.; Saleh, H. A.

    1985-01-01

    The backscattering coefficient from a slab of thin randomly oriented dielectric disks over a flat lossy ground is used to reconstruct the inclination angle and area distributions of the disks. The disks are employed to model a leafy agricultural crop, such as soybeans, in the L-band microwave region of the spectrum. The distorted Born approximation, along with a thin disk approximation, is used to obtain a relationship between the horizontal-like polarized backscattering coefficient and the joint probability density of disk inclination angle and disk radius. Assuming large skin depth reduces the relationship to a linear Fredholm integral equation of the first kind. Due to the ill-posed nature of this equation, a Phillips-Twomey regularization method with a second difference smoothing condition is used to find the inversion. Results are obtained in the presence of 1 and 10 percent noise for both leaf inclination angle and leaf radius densities.

  12. Collapsing Radiative Shocks in Xenon Gas on the Omega Laser

    NASA Astrophysics Data System (ADS)

    Reighard, A. B.; Glendinning, S. G.; Knauer, J.; Bouquet, S.; Koenig, M.

    2005-10-01

    A number of astrophysical systems involve radiative shocks that collapse spatially in response to energy lost through radiation, producing thin shells believed to be Vishniac unstable. We report experiments intended to study such collapsing shocks. The Omega laser drives a thin slab of material at >100 km/s through Xe gas. Simulations predict a collapsed layer in which the density reaches 45 times initial density. X-ray backlighting techniques have yielded images of a collapsed shock compressed to <1/25 its initial thickness (45 μm) at a speed of ˜100 km/s when the shock has traveled 1.3 mm. Optical depth before and behind the shock is important for comparison to astrophysical systems. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.

  13. The Last Word

    NASA Astrophysics Data System (ADS)

    Anderson, D. L.

    2014-12-01

    Earth is an isolated, cooling planet, that obeys the 2nd law of thermodynamics. Interior dynamics is driven from the top, by cold sinking slabs. High-resolution broad-band seismology and geodesy have confirmed that mantle flow is characterized by narrow downwellings and ~20 broad slowly rising updrafts. The low-velocity zone (LVZ) consists of a hot melange of sheared peridotite intruded with aligned melt-rich lamellae that are tapped by intraplate volcanoes. The high temperature is a simple consequence of the thermal overshoot common in large bodies of convecting fluids. The transition zone consists of ancient eclogite layers that are displaced upwards by slabs to become broad, passive, cool ridge-feeding updrafts of ambient mantle. The physics that is overlooked in canonical models of mantle dynamics and geochemistry includes; the 2nd law of thermodynamics, convective overshoots, subadiabaticity, wave-melt interactions, Archimedes principle, and kinetics. Rapid transitions allow stress-waves to interact with melting and phase changes, creating LVZs; sluggish transitions in cold slabs keep eclogite in the transition zone where it warms up by extracting heat from mantle below 650 km, creating the appearance of slab penetration. Canonical chemical geodynamic models are the exact opposite of physics- and thermodynamic-based models and of the real Earth. A model that results from inverting the assumptions regarding initial and boundary conditions (hot origin, secular cooling, no external power sources, cooling internal boundaries, broad passive upwellings, adiabaticity and whole-mantle convection not imposed, layering and self-organization allowed) results in a thick refractory-yet-fertile surface layer, with ancient xenoliths and cratons at the top and a hot overshoot at the base. A thin mobile D" layer results, that is an unlikely plume-generation zone. Accounting for the physics that is overlooked or violated (the 2nd law of thermodynamics) in canonical models, plus modern seismology, undermines the assumptions and conclusions of these models.

  14. Rock-avalanche and ocean-resurge deposits in the late Eocene Chesapeake Bay impact structure: Evidence from the ICDP-USGS Eyreville cores, Virginia, USA

    USGS Publications Warehouse

    Gohn, G.S.; Powars, D.S.; Dypvik, H.; Edwards, L.E.

    2009-01-01

    An unusually thick section of sedimentary breccias dominated by target-sediment clasts is a distinctive feature of the late Eocene Chesapeake Bay impact structure. A cored 1766-m-deep section recovered from the central part of this marine-target structure by the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) drilling project contains 678 m of these breccias and associated sediments and an intervening 275-m-thick granite slab. Two sedimentary breccia units consist almost entirely of Cretaceous nonmarine sediments derived from the lower part of the target sediment layer. These sediments are present as coherent clasts and as autoclastic matrix between the clasts. Primary (Cretaceous) sedimentary structures are well preserved in some clasts, and liquefaction and fluidization structures produced at the site of deposition occur in the clasts and matrix. These sedimentary breccias are interpreted as one or more rock avalanches from the upper part of the transient-cavity wall. The little-deformed, unshocked granite slab probably was transported as part of an extremely large slide or avalanche. Water-saturated Cretaceous quartz sand below the slab was transported into the seafloor crater prior to, or concurrently with, the granite slab. Two sedimentary breccia units consist of polymict diamictons that contain cobbles, boulders, and blocks of Cretaceous nonmarine target sediments and less common shocked-rock and melt ejecta in an unsorted, unstratified, muddy, fossiliferous, glauconitic quartz matrix. Much of the matrix material was derived from Upper Cretaceous and Paleogene marine target sediments. These units are interpreted as the deposits of debris flows initiated by the resurge of ocean water into the seafloor crater. Interlayering of avalanche and debris-flow units indicates a partial temporal overlap of the earlier avalanche and later resurge processes. A thin unit of stratified turbidite deposits and overlying laminated fine-grained deposits at the top of the section represents the transition to normal shelf sedimentation. ?? 2009 The Geological Society of America.

  15. Graphene and water-based elastomers thin-film composites by dip-moulding.

    PubMed

    Iliut, Maria; Silva, Claudio; Herrick, Scott; McGlothlin, Mark; Vijayaraghavan, Aravind

    2016-09-01

    Thin-film elastomers (elastic polymers) have a number of technologically significant applications ranging from sportswear to medical devices. In this work, we demonstrate that graphene can be used to reinforce 20 micron thin elastomer films, resulting in over 50% increase in elastic modulus at a very low loading of 0.1 wt%, while also increasing the elongation to failure. This loading is below the percolation threshold for electrical conductivity. We demonstrate composites with both graphene oxide and reduced graphene oxide, the reduction being undertaken in-situ or ex-situ using a biocompatible reducing agent in ascorbic acid. The ultrathin films were cast by dip moulding. The transparency of the elastomer films allows us to use optical microscopy image and confirm the uniform distribution as well as the conformation of the graphene flakes within the composite.

  16. "Black art" of thin film coating: why this term is used and how to change this mind-set

    NASA Astrophysics Data System (ADS)

    Jansen, S. W.; Hatchett, Philip J.; Hughes, S. W.; Jones, D. Paul; Gibson, Desmond R.

    1996-08-01

    The words 'black art' are often associated with thin film coating. We cast our spell on a coating plant and, as if by magic, the glass is transformed. The problem is that the spell sometimes fails and we end up with stone instead of gold. When we ask the magician (coating technician) what went wrong, the answer is all too often 'I did it exactly the same way as the last time'. This creates the perception that thin film coating is a black art because clearly something different did happen. What we don't know is which of the multitude of parameters went wrong, and often the only way to find out is through a process of elimination. This is very costly to the industry both in monetary value and image.

  17. Secondary Al-Si-Mg High-pressure Die Casting Alloys with Enhanced Ductility

    NASA Astrophysics Data System (ADS)

    Bösch, Dominik; Pogatscher, Stefan; Hummel, Marc; Fragner, Werner; Uggowitzer, Peter J.; Göken, Mathias; Höppel, Heinz Werner

    2015-03-01

    Al-Si-Mg-based secondary cast alloys are attractive candidates for thin-walled high-pressure die castings for applications in the transport industry. The present study investigates the effect of manganese additions at high cooling rates on microstructure, mechanical properties, and on the dominating fracture mechanisms of alloy AlSi10Mg with an elevated iron concentration. Systematic variations of the Mn content from 0.20 to 0.85 wt pct at a constant Fe content of 0.55 wt pct illustrate the key changes in type, phase fraction, and shape of the Fe-containing intermetallic phases, and the corresponding influence on the alloy's ductility. For high-pressure die casting (HPDC), an optimal range of the Mn content between 0.40 and 0.60 wt pct, equivalent to a Mn/Fe ratio of approximately 1, has been identified. At these Mn and Fe contents, the high cooling rates obtained in HPDC result in the formation of fine and homogeneously distributed α-Al15(Fe,Mn)3Si2 phase, and crack initiation is transferred from AlFeSi intermetallics to eutectic silicon. The study interprets the microstructure-property relationship in the light of thermodynamic calculations which reveal a significant increase in undercooling of the α-Al15(Fe,Mn)3Si2 phase with increased Mn content. It concludes that the interdependence of the well-defined Mn/Fe ratio and the high cooling rate in HPDC can generate superior ductility in secondary AlSi10Mg cast alloys.

  18. Dewetting of Thin Polymer Films

    NASA Astrophysics Data System (ADS)

    Dixit, P. S.; Sorensen, J. L.; Kent, M.; Jeon, H. S.

    2001-03-01

    DEWETTING OF THIN POLYMER FILMS P. S. Dixit,(1) J. L. Sorensen,(2) M. Kent,(2) H. S. Jeon*(1) (1) Department of Petroleum and Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, jeon@nmt.edu (2) Department 1832, Sandia National Laboratories, Albuquerque, NM. Dewetting of thin polymer films is of technological importance for a variety of applications such as protective coatings, dielectric layers, and adhesives. Stable and smooth films are required for the above applications. Above the glass transition temperature (Tg) the instability of polymer thin films on a nonwettable substrate can be occurred. The dewetting mechanism and structure of polypropylene (Tg = -20 ^circC) and polystyrene (Tg = 100 ^circC) thin films is investigated as a function of film thickness (25 Åh < 250 Åand quenching temperature. Contact angle measurements are used in conjunction with optical microscope to check the surface homogeneity of the films. Uniform thin films are prepared by spin casting the polymer solutions onto silicon substrates with different contact angles. We found that the stable and unstable regions of the thin films as a function of the film thickness and quenching temperature, and then constructed a stability diagram for the dewetting of thin polymer films. We also found that the dewetting patterns of the thin films are affected substantially by the changes of film thickness and quenching temperature.

  19. Variations in Melt Generation and Migration along the Aleutian Arc (Invited)

    NASA Astrophysics Data System (ADS)

    Plank, T. A.; Van Keken, P. E.

    2013-12-01

    The generation and ascent of mantle melt beneath volcanic arcs sets the course for how magmas differentiate to form the continental crust and erupt explosively from volcanoes. Although the basic framework of melting at subduction zones is understood to involve the convective influx of hot mantle (Tp ≥ 1300°C) and advective transport of water-rich fluids from the subducting slab, the P-T paths that melts follow during melt generation and migration are still not well known. The Aleutian Arc provides an opportunity to explore the conditions of mantle melting in the context of volcanoes that span an unusually large range in the depth to the slab, from Seguam island, with among the shallowest depths to the slab worldwide (~65 km, [1]) to Bogoslof island, behind the main volcanic front and twice the depth to the slab (~130 km). Here we combine thermal models tuned to Aleutian subduction parameters [after 2] with petrological estimates of the T and P of mantle-melt equilibration, using a major element geothermometer [3] and estimates of H2O and fO2 from olivine-hosted melt inclusion measurements [4] for basaltic magmas from 6 volcanoes in the central Aleutians (Korovin, Seguam, Bogoslof, Pakushin, Akutan, Shishaldin). We find mantle-melt equilibration conditions to vary systematically as a function of the depth to the slab, from 30 km and 1220°C (for Seguam) to 60 km and 1300°C (for Bogoslof). Such shallow depths, which extend up to the Moho, define a region perched well above the hot core of the mantle wedge predicted from thermal models, even considering the shallow depths of slab-mantle coupling (< 60 km) required to supply hot mantle beneath Seguam. Thus, even though the greatest melt production will occur in the hot core of the wedge (50-100 km depth), melts apparently ascend and re-equilibrate in the shallowest mantle. Volcanoes that overlie the greatest depth to the slab, and lie furthest from the wedge corner, stall at greater depths (~60 km), at the base of the conductive upper plate (i.e., lithosphere). The conductive lid and isotherms shallow toward the wedge corner. This leads to shallower depths of melt equilibration at shallower depths to the slab. A second effect is infiltration of melt into the thinning lithosphere, likely due to the increase in strain-rate toward the wedge corner, which favors melt segregation, migration, and shallow equilibration [5]. Such a process is developed most beneath Seguam, where melts collect at the Moho (~ 30km), but are still > 1200°C. Such equilibration depths in the uppermost mantle (30-60 km) and temperatures typical of the base of the conductive lid appear to characterize most modeled primary arc magmas [6], and point to a final re-setting point in the mantle that controls the composition of bulk arc crust. [1] Syracuse & Abers, 2006, G3. [2] Syracuse, van Keken, Abers, (2010) PEPI. [3] Lee, Luffi, Plank, Dalton, Leeman (2009) EPSL. [4] Zimmer et al. (2010) J.Pet. [5] Holzman & Kendall (2010). [6] Ruscitto et al. (2012) G3.

  20. Method for Fabricating Soft Tissue Implants with Microscopic Surface Roughness

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1999-01-01

    A method for fabricating soft tissue implants using a mold. The cavity surface of an initially untextured mold. made of an organic material such as epoxy. is given a thin film coating of material that has pinholes and is resistant to atomic particle bombardment. The mold cavity surface is then subjected to atomic particle bombardment, such as when placed in an isotropic atomic oxygen environment. Microscopic depressions in the mold cavity surface are created at the pinhole sites on the thin film coating. The thin film coating is removed and the mold is then used to cast the soft tissue implant. The thin film coating having pinholes may be created by chilling the mold below the dew point such that water vapor condenses upon it; distributing particles, that can partially dissolve and become attached to the mold cavity surface, onto the mold cavity surface; removing the layer of condensate, such as by evaporation; applying the thin film coating over the entire mold surface; and, finally removing the particles, such as by dissolving or brushing it off. Pinholes are created in the thin film coating at the sites previously occupied by the particles.

  1. Air-Flow Navigated Crystal Growth for TIPS Pentacene-Based Organic Thin-Film Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhengran; Chen, Jihua; Sun, Zhenzhong

    2012-01-01

    6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) is a promising active channel material of organic thin-film transistors (OTFTs) due to its solubility, stability, and high mobility. However, the growth of TIPS pentacene crystals is intrinsically anisotropic and thus leads to significant variation in the performance of OTFTs. In this paper, air flow is utilized to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs, and the resulted films are examined with optical microscopy, grazing-incidence X-ray diffraction, and thin-film transistor measurements. Under air-flow navigation (AFN), TIPS pentacene drop-cast from toluene solution has been observed to form thin films with improved crystalmore » orientation and increased areal coverage on substrates, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency defined by the ratio of average mobility to the standard deviation of the field-effect mobilities.« less

  2. Thin lead sheets in the decorative features in Pavia Charterhouse.

    PubMed

    Colombo, Chiara; Realini, Marco; Sansonetti, Antonio; Rampazzi, Laura; Casadio, Francesca

    2006-01-01

    The facade of the church of the Pavia Charterhouse, built at the end of the 15th century, shows outstanding decorative features made of different stone materials, such as marbles, breccias and sandstones. Magnificent ornamental elements are made of thin lead sheets, and some marble slabs are inlaid with them. Metal elements are shaped in complex geometric and phytomorphic design, to form a Greek fret in black contrasting with the white Carrara marble. Lead pins were fixed to the back of the thin lead sheets with the aim of attaching the metal elements to the marble; in so doing the pins and the lead sheets constitute a single piece of metal. In some areas, lead elements have been lost, and they have been substituted with a black plaster, matching the colour of the metal. To the authors' knowledge, this kind of decorative technique is rare, and confirms the refinement of Renaissance Lombard architecture. This work reports on the results of an extensive survey of the white, orange and yellowish layers, which are present on the external surface of the lead. The thin lead sheets have been characterized and their state of conservation has been studied with the aid of Optical Microscopy, SEM-EDS, FTIR and Raman analyses. Lead sulphate, lead carbonates and oxides have been identified as decay products.

  3. Nonreciprocal reflection-beam isolators for far-infrared use

    NASA Technical Reports Server (NTRS)

    Kanda, M.; May, W. G.

    1973-01-01

    Magnetoplasma reflection-beam isolators for submillimeter-wave use are discussed in theory and experiment. The basic device uses the Kerr transverse magnetooptic effect (plane of polarization of the EM wave in the plane of incidence, which is perpendicular to a dc magnetic field) in InSb near room temperature. When the semiconductor slab is covered with a thin dielectric layer acting as a matching transformer, improved performance is predicted and observed at 337 microns, and very efficient isolator performance is predicted for 118 microns. Physical arguments are presented to explain the nonreciprocal phenomenon and lead to better device design.

  4. HiLASE: development of fully diode pumped disk lasers with high average power

    NASA Astrophysics Data System (ADS)

    Divoky, M.; Smrz, M.; Chyla, M.; Sikocinski, P.; Severova, P.; Novák, O.; Huynh, J.; Nagisetty, S. S.; Miura, T.; Liberatore, C.; Pilař, J.; Slezak, O.; Sawicka, M.; Jambunathan, V.; Gemini, L.; Vanda, J.; Svabek, R.; Endo, A.; Lucianetti, A.; Rostohar, D.; Mason, P. D.; Phillips, P. J.; Ertel, K.; Banerjee, S.; Hernandez-Gomez, C.; Collier, J. L.; Mocek, T.

    2015-02-01

    An overview of Czech national R&D project HiLASE (High average power pulsed LASEr) is presented. The HiLASE project aims at development of pulsed DPSSL for hi-tech industrial applications. HiLASE will be a user oriented facility with several laser systems with output parameters ranging from a few picosecond pulses with energy of 5 mJ to 0.5 J and repetition rate of 1-100 kHz (based on thin disk technology) to systems with 100 J output energy in nanosecond pulses with repetition rate of 10 Hz (based on multi-slab technology).

  5. Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5 wt.% Si electrical steel doped with cerium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hao-Ze, E-mail: lhzqq83@163.com; Liu, Hai-Tao; Liu, Zhen-Yu, E-mail: zyliu@mail.neu.edu.cn

    A 0.3 mm thick non-oriented 6.5 wt.% Si electrical steel sheet doped with cerium is produced by twin-roll strip casting, hot rolling, warm rolling and annealing. A detailed study of the cerium precipitates in the as-cast strip, microstructure and texture evolution at different processing stages is carried out by electron probe micro-analysis, optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. Grain interior distributing precipitates identified as Ce-oxides, Ce-oxysulfides and Ce-phosphides, and boundary distributing Ce-oxides and Ce-phosphides are observed in the as-cast strip. The initial as-cast strip is characterized by a much finer solidification microstructure and dominated by obvious //ND texture through the strip thickness. After hot and warm rolling, inhomogeneous microstructure containing large amounts of in-grain shear bands is characterized by mixed < 110 >//RD and < 111 >//ND textures. The texture of the annealed sheet with a relatively large average grain size is far more optimized by the domination of the beneficial cube, rotated cube, (001)< 120 > to (001)< 130 > and Goss texture components, and the elimination of the detrimental γ-fiber texture, leading to a superior magnetic induction and improved iron loss. - Highlights: • An Fe–6.5 wt.% Si as-cast strip doped with cerium was produced. • A thin warm rolled sheet with limited edge cracks was obtained. • Microstructure and texture evolution at each stage were investigated. • Strong λ-fiber and Goss recrystallization textures were formed. • The magnetic properties of the annealed sheet were significantly improved.« less

  6. In Situ Cross-Linking of Polyvinyl Alcohol Films

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Shu, L. C.; May, C. E.

    1984-01-01

    Films or impregnated matrices readily made from aqueous polyvinyl alcohol solution. Controlled thickness films made by casting precise quantities of aqueous polymer solution on smooth surface, allowing water to evaporate and then removing film. Composite separators formed in similar fashion by impregnating cloth matrix with polyvinyl alcohol solution and drying composite. Insoluble thin hydrophilic membranes made from aqueous systems, and use of undesirable organic solvents not required.

  7. Modeling crown structural responses to competing vegetation control, thinning, fertilization, and Swiss needle cast in coastal Douglas-fir of the Pacific Northwest, USA.

    Treesearch

    A.R. Weiskittel; D.A. Maguire; R.A. Monserud

    2007-01-01

    Crown structure is a key variable influencing stand productivity, but its reported response to various stand factors has differed. This can be partially attributed to lack of a unified study on crown response to intensive management or stand health. In this analysis of several Douglas-fir (Pseudotsuga menziesii var. menziesii [...

  8. Engineered Film Surfaces Via Spontaneous Phase Segregation

    DTIC Science & Technology

    2004-12-01

    constituents of a Langmuir Blodgett thin Figure 1: Contact angles w/ H2O Contact angles determined from cast films of TPU with (right) 1% wt/wt...Synn, D.; Stelzle, M.; Rabolt, J. F., 2000: Characterization of Orientation of Perfluorostearic Acid Langmuir - Blodgett Multilayers by Infrared...Natick Soldier Center Materials Science Team Natick, MA 01760 ABSTRACT A series of hyperbranched materials have been developed that allow

  9. Experimental investigation of dynamic performance of a prototype hybrid tuned mass damper under human excitation

    NASA Astrophysics Data System (ADS)

    Noormohammadi, Nima; Reynolds, Paul

    2013-04-01

    Current sport stadia designs focus mainly on maximizing audience capacity and providing a clear view for all spectators. Hence, incorporation of one or more cantilevered tiers is typical in these designs. However, employing such cantilevered tiers, usually with relatively low damping and natural frequencies, can make grandstands more susceptible to excitation by human activities. This is caused by the coincidence between the activity frequencies (and their lowest three harmonics) and the structural natural frequencies hence raising the possibility of resonant vibration. This can be both a vibration serviceability and a safety issue. Past solutions to deal with observed or anticipated vibration serviceability problems have been mainly passive methods, such as tuned mass dampers (TMDs). These techniques have exhibited problems such as lack of performance and offtuning caused by human-structure interaction. To address this issue, research is currently underway to investigate the possible application of hybrid TMDs (HTMDs), which are a combination of active and passive control, to improve the vibration serviceability of such structures under human excitation. The work presented here shows a comparative experimental investigation of a passive TMD and a prototype HTMD applied on a slab strip structure. The most effective control algorithm to enhance the performance of the HTMD and also deal with the off-tuning problem is investigated. The laboratory structure used here is an in-situ cast simply-supported post-tensioned slab strip excited by forces from a range of human activities.

  10. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  11. Fundamental phenomena on fuel decomposition and boundary layer combustion processes with applications to hybrid rocket motors

    NASA Technical Reports Server (NTRS)

    Kuo, Kenneth K.; Lu, Y. C.; Chiaverini, Martin J.; Harting, George C.

    1994-01-01

    An experimental study on the fundamental processes involved in fuel decomposition and boundary layer combustion in hybrid rocket motors is being conducted at the High Pressure Combustion Laboratory of the Pennsylvania State University. This research should provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high pressure slab motor has been designed and manufactured for conducting experimental investigations. Oxidizer (LOX or GOX) supply and control systems have been designed and partly constructed for the head-end injection into the test chamber. Experiments using HTPB fuel, as well as fuels supplied by NASA designated industrial companies will be conducted. Design and construction of fuel casting molds and sample holders have been completed. The portion of these items for industrial company fuel casting will be sent to the McDonnell Douglas Aerospace Corporation in the near future. The study focuses on the following areas: observation of solid fuel burning processes with LOX or GOX, measurement and correlation of solid fuel regression rate with operating conditions, measurement of flame temperature and radical species concentrations, determination of the solid fuel subsurface temperature profile, and utilization of experimental data for validation of a companion theoretical study (Part 2) also being conducted at PSU.

  12. Silkworm protein: its possibility as an actuator

    NASA Astrophysics Data System (ADS)

    Jin, Hyoung-Joon; Myung, Seung Jun; Kim, Heung Soo; Jung, Woochul; Kim, Jaehwan

    2006-03-01

    The possibility of silkworm (Bombyx mori) protein as a base material of biomimetic actuator was investigated in this paper. Silkworm films were prepared from high concentrations of regenerated fibroin in aqueous solution. Films with thickness of about 100 μm were prepared for coating electrodes. The cast silk films were coated by very thin gold electrode on both sides of the film. Tensile test of cast film showed bi-modal trend, which is typical stress-strain relation of polymeric film. As the test of a possible biomimetic actuator, silkworm film actuator provides bending deformations according to the magnitude and frequency of the applied electric filed. Although the present bending deformation of silkworm film actuator is smaller than that of Electro-Active Paper actuator, it provides the possibility of biomimetic actuator.

  13. Thickness of the Descending Philippine Sea Plate Estimated from Tomographic Images beneath the Kumano Basin, along the Nankai Trough, Southwestern Japan

    NASA Astrophysics Data System (ADS)

    Kamiya, S.; Suzuki, K.; Takahashi, N.

    2015-12-01

    The Philippine Sea plate subducts northwestward beneath the Japanese islands from the south. The average thickness of the overall Philippine Sea plate has been investigated in the oceanic area using surface wave analyses [e.g. Abe and Kanamori, 1970], suggesting a thin (30-40 km thick) plate. On the other hand, several studies have indicated a thicker Philippine Sea plate based on source mechanisms and seismicity in the eastern rim of the plate [Seno, 1987; Moriyama et al., 1989]. From tomographic images, Kamiya and Kobayashi [2007] pointed out that the subducting Philippine Sea slab has thickness variation with a stepwise offset east of Izu Peninsula. The eastern (the Kanto district) and western (north of Izu Peninsula and the Tokai district) regions have respective thicknesses of 60 and 25 km. In the Kumano basin, the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) developed the Dense Oceanfloor Network System for Earthquakes and Tsunami (DONET) in order to monitor seismic activity [Kaneda et al., 2009; Kawaguchi et al., 2010]. DONET ocean-bottom stations are connected with an optical fiber cable, and data are transferred in real time to our laboratory at JAMSTEC. The present study obtains three-dimensional P-wave and S-wave seismic velocity models beneath the Kumano basin by employing an travel time tomography technique. We pick arrival times of P and S waves from the waveform data recorded by the DONET system during the period from January 2011 to December 2014. In order to improve the resolution in the deeper regions than the seismic area inside of the descending slab, we also pick arrival times from the seismic events occurred outside of this district. We use these picked arrival times adding to the JMA catalogue data in seismic tomography. From the obtained tomographic images, we find high velocity anomalies corresponding to the descending Philippine Sea slab. We also find low velocity anomalies under the high velocity slab clearly. There seems to be a sharp velocity contrast between the anomalies. We can estimate the thickness of the descending slab at about 30 km, which is almost consistent with the thickness beneath the Tokai district estimated by Kamiya and Kobayashi [2007] and comparable to the effective elastic thickness beneath the eastern part of the Shikoku basin estimated by Yoshioka and Ito [2001].

  14. Phase slips in superconducting weak links

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmel, Gregory; Glatz, Andreas; Aranson, Igor S.

    2017-01-01

    Superconducting vortices and phase slips are primary mechanisms of dissipation in superconducting, superfluid, and cold-atom systems. While the dynamics of vortices is fairly well described, phase slips occurring in quasi-one- dimensional superconducting wires still elude understanding. The main reason is that phase slips are strongly nonlinear time-dependent phenomena that cannot be cast in terms of small perturbations of the superconducting state. Here we study phase slips occurring in superconducting weak links. Thanks to partial suppression of superconductivity in weak links, we employ a weakly nonlinear approximation for dynamic phase slips. This approximation is not valid for homogeneous superconducting wires andmore » slabs. Using the numerical solution of the time-dependent Ginzburg-Landau equation and bifurcation analysis of stationary solutions, we show that the onset of phase slips occurs via an infinite period bifurcation, which is manifested in a specific voltage-current dependence. Our analytical results are in good agreement with simulations.« less

  15. Evaluation of a bonded particle cartridge filtration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, W.; Krug, H.P.; Dopp, V.

    1996-10-01

    Metal cleanliness is a major issue in today`s aluminum casthouse, especially in the production of critical products such as canstock, litho sheet and foil. Bonded particle cartridge filters are widely regarded as the most effective means available for inclusion removal from critical production items. V.A.W. and Foseco have carried out a joint program of evaluation of a cartridge filter system in conjunction with ceramic foam filters and an in-line degassing unit--in various configurations. The ceramic foam filters ranged from standard, coarse pore types to new generation all-ceramic bonded, fine pore types. Metal cleanliness was assessed using LiMCA, PoDFA, and LAISmore » sampling techniques, as well as metallographic and scanning electron microscope examinations. This paper outlines the findings of this work which was carried out a V.A.W.`s full scale experimental D.C. slab casting unit as Neuss in Germany.« less

  16. Modeling Production Plant Forming Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhee, M; Becker, R; Couch, R

    2004-09-22

    Engineering has simulation tools and experience in modeling forming processes. Y-12 personnel have expressed interest in validating our tools and experience against their manufacturing process activities such as rolling, casting, and forging etc. We have demonstrated numerical capabilities in a collaborative DOE/OIT project with ALCOA that is nearing successful completion. The goal was to use ALE3D to model Alcoa's slab rolling process in order to demonstrate a computational tool that would allow Alcoa to define a rolling schedule that would minimize the probability of ingot fracture, thus reducing waste and energy consumption. It is intended to lead to long-term collaborationmore » with Y-12 and perhaps involvement with other components of the weapons production complex. Using simulations to aid in design of forming processes can: decrease time to production; reduce forming trials and associated expenses; and guide development of products with greater uniformity and less scrap.« less

  17. Constraints of subducted slab geometries on trench migration and subduction velocities: flat slabs and slab curtains in the mantle under Asia

    NASA Astrophysics Data System (ADS)

    Wu, J. E.; Suppe, J.; Renqi, L.; Lin, C.; Kanda, R. V.

    2013-12-01

    The past locations, shapes and polarity of subduction trenches provide first-order constraints for plate tectonic reconstructions. Analogue and numerical models of subduction zones suggest that relative subducting (Vs) and overriding (Vor) plate velocities may strongly influence final subducted slab geometries. Here we have mapped the 3D geometries of subducted slabs in the upper and lower mantle of Asia from global seismic tomography. We have incorporated these slabs into plate tectonic models, which allows us to infer the subducting and overriding plate velocities. We describe two distinct slab geometry styles, ';flat slabs' and ';slab curtains', and show their implications for paleo-trench positions and subduction geometries in plate tectonic reconstructions. When compared to analogue and numerical models, the mapped slab styles show similarities to modeled slabs that occupy very different locations within Vs:Vor parameter space. ';Flat slabs' include large swaths of sub-horizontal slabs in the lower mantle that underlie the well-known northward paths of India and Australia from Eastern Gondwana, viewed in a moving hotspot reference. At India the flat slabs account for a significant proportion of the predicted lost Ceno-Tethys Ocean since ~100 Ma, whereas at Australia they record the existence of a major 8000km by 2500-3000km ocean that existed at ~43 Ma between East Asia, the Pacific and Australia. Plate reconstructions incorporating the slab constraints imply these flat slab geometries were generated when continent overran oceanic lithosphere to produce rapid trench retreat, or in other words, when subducting and overriding velocities were equal (i.e. Vs ~ Vor). ';Slab curtains' include subvertical Pacific slabs near the Izu-Bonin and Marianas trenches that extend from the surface down to 1500 km in the lower mantle and are 400 to 500 km thick. Reconstructed slab lengths were assessed from tomographic volumes calculated at serial cross-sections. The ';slab curtain' geometry and restored slab lengths indicate a nearly stationary Pacific trench since ~43 Ma. In contrast to the flat slabs, here the reconstructed subduction zone had large subducting plate velocities relative to very small overriding plate velocities (i.e. Vs >> Vor). In addition to flat slabs and slab curtains, we also find other less widespread local subduction settings that lie at other locations in Vs:Vor parameter space or involved other processes. Slabs were mapped using Gocad software. Mapped slabs were restored to a spherical model Earth surface by two approaches: unfolding (i.e. piecewise flattening) to minimize shape and area distortions, and by evaluated mapped slab volumes. Gplates software was used to integrate the mapped slabs with plate tectonic reconstructions.

  18. The dynamics of double slab subduction

    NASA Astrophysics Data System (ADS)

    Holt, A. F.; Royden, L. H.; Becker, T. W.

    2017-04-01

    We use numerical models to investigate the dynamics of two interacting slabs with parallel trenches. Cases considered are: a single slab reference, outward dipping slabs (out-dip), inward dipping slabs (in-dip) and slabs dipping in the same direction (same-dip). Where trenches converge over time (same-dip and out-dip systems), large positive dynamic pressures in the asthenosphere are generated beneath the middle plate and large trench-normal extensional forces are transmitted through the middle plate. This results in slabs that dip away from the middle plate at depth, independent of trench geometry. The single slab, the front slab in the same-dip case and both out-dip slabs undergo trench retreat and exhibit stable subduction. However, slabs within the other double subduction systems tend to completely overturn at the base of the upper mantle, and exhibit either trench advance (rear slab in same-dip), or near-stationary trenches (in-dip). For all slabs, the net slab-normal dynamic pressure at 330 km depth is nearly equal to the slab-normal force induced by slab buoyancy. For double subduction, the net outward force on the slabs due to dynamic pressure from the asthenosphere is effectively counterbalanced by the net extensional force transmitted through the middle plate. Thus, dynamic pressure at depth, interplate coupling and lithospheric stresses are closely linked and their effects cannot be isolated. Our results provide insights into both the temporal evolution of double slab systems on Earth and, more generally, how the various components of subduction systems, from mantle flow/pressure to interplate coupling, are dynamically linked.

  19. Method for making thick and/or thin film

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2004-11-02

    A method to make thick or thin films a very low cost. The method is generally similar to the conventional tape casting techniques while being more flexible and versatile. The invention involves preparing a slip (solution) of desired material and including solvents such as ethanol and an appropriate dispersant to prevent agglomeration. The slip is then sprayed on a substrate to be coated using an atomizer which spreads the slip in a fine mist. Upon hitting the substrate, the solvent evaporates, leaving a green tape containing the powder and other additives, whereafter the tape may be punctured, cut, and heated for the desired application. The tape thickness can vary from about 1 .mu.m upward.

  20. Boron desorption and fractionation in Subduction Zone Fore Arcs: Implications for the sources and transport of deep fluids

    NASA Astrophysics Data System (ADS)

    Saffer, Demian M.; Kopf, Achim J.

    2016-12-01

    At many subduction zones, pore water geochemical anomalies at seafloor seeps and in shallow boreholes indicate fluid flow and chemical transport from depths of several kilometers. Identifying the source regions for these fluids is essential toward quantifying flow pathways and volatile fluxes through fore arcs, and in understanding their connection to the loci of excess pore pressure at depth. Here we develop a model to track the coupled effects of boron desorption, smectite dehydration, and progressive consolidation within sediment at the top of the subducting slab, where such deep fluid signals likely originate. Our analysis demonstrates that the relative timing of heating and consolidation is a dominant control on pore water composition. For cold slabs, pore water freshening is maximized because dehydration releases bound water into low porosity sediment, whereas boron concentrations and isotopic signatures are modest because desorption is strongly sensitive to temperature and is only partially complete. For warmer slabs, freshening is smaller, because dehydration occurs earlier and into larger porosities, but the boron signatures are larger. The former scenario is typical of nonaccretionary margins where insulating sediment on the subducting plate is commonly thin. This result provides a quantitative explanation for the global observation that signatures of deeply sourced fluids are generally strongest at nonaccretionary margins. Application of our multitracer approach to the Costa Rica, N. Japan, N. Barbados, and Mediterranean Ridge subduction zones illustrates that desorption and dehydration are viable explanations for observed geochemical signals, and suggest updip fluid migration from these source regions over tens of km.

  1. Growth directions of C8-BTBT thin films during drop-casting

    NASA Astrophysics Data System (ADS)

    Iizuka, Naoki; Zanka, Tomohiko; Onishi, Yosuke; Fujieda, Ichiro

    2016-02-01

    Because charge transport in a single crystal is anisotropic, control of its orientation is important for enhancing electrical characteristics and reducing variations among devices. For growing an organic thin film, a solution process such as inkjet printing offers advantages in throughput. We have proposed to apply an external temperature gradient during drop-casting and to control the direction of solvent evaporation. In experiment, a temperature gradient was generated in a bare Si substrate by placing it on a Si plate bridging two heat stages. When a solution containing 2,7-dioctyl [1]benzothieno[3,2-b]benzothiophene (C8-BTBT) was dropped on the substrate, evaporation started at the hotter side of the droplet and proceeded toward the colder side. The front line of the liquid was not pinned and the solution extended toward the colder region. As a result, a thin film was formed in a 7mm-long region. The peripheral region of the film was significantly thicker due to the coffee ring effect. The surface of the rest of the film was mostly smooth and terrace structures with 2.6nm steps were observed. The step roughly corresponds to the length of the C8-BTBT molecule. The film thickness varied from 20nm to 50nm over the distance of 3mm. Another film was grown on a glass substrate under a similar condition. Observation of the film with a polarizing microscope revealed that fan-shaped domains were formed in the film and that their optical axes were mostly along the directions of the solvent evaporation.

  2. Behaviour of reinforced concrete slabs with steel fibers

    NASA Astrophysics Data System (ADS)

    Baarimah, A. O.; Syed Mohsin, S. M.

    2017-11-01

    This paper investigates the potential effect of steel fiber added into reinforced concrete slabs. Four-point bending test is conducted on six slabs to investigate the structural behaviour of the slabs by considering two different parameters; (i) thickness of slab (ii) volume fraction of steel fiber. The experimental work consists of six slabs, in which three slabs are designed in accordance to Eurocode 2 to fulfil shear capacity characteristic, whereas, the other three slabs are designed with 17% less thickness, intended to fail in shear. Both series of slabs are added with steel fiber with a volume fraction of Vf = 0%, Vf = 1% and Vf = 2% in order to study the effect and potential of fiber to compensate the loss in shear capacity. The slab with Vf = 0% steel fiber and no reduction in thickness is taken as the control slab. The experimental result suggests promising improvement of the load carrying capacity (up to 32%) and ductility (up to 87%) as well as delayed in crack propagation for the slabs with Vf = 2%. In addition, it is observed that addition of fibers compensates the reduction in the slab thickness as well as changes the failure mode of the slab from brittle to a more ductile manner.

  3. A relative-intensity two-color phosphor thermography system

    NASA Technical Reports Server (NTRS)

    Merski, N. Ronald

    1991-01-01

    The NASA LaRC has developed a relative-intensity two-color phosphor thermography system. This system has become a standard technique for acquiring aerothermodynamic data in LaRC Hypersonic Facilities Complex (HFC). The relative intensity theory and its application to the LaRC phosphor thermography system is discussed along with the investment casting technique which is critical to the utilization of the phosphor method for aerothermodynamic studies. Various approaches to obtaining quantitative heat transfer data using thermographic phosphors are addressed and comparisons between thin-film data and thermographic phosphor data on an orbiter-like configuration are presented. In general, data from these two techniques are in good agreement. A discussion is given on the application of phosphors to integration heat transfer data reduction techniques (the thin film method) and preliminary heat transfer data obtained on a calibration sphere using thin-film equations are presented. Finally, plans for a new phosphor system which uses target recognition software are discussed.

  4. A chlorine precursor route (CPR) to poly(p-phenylene vinylene) light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heieh, B.R.; Antoniadis, H.; Bland, D.C.

    1995-12-01

    We use a chlorine precursor route (CPR) to fabricate PPV based electroluminescent (EL) devices. 1,4- Bis(chloromethyl)-2,3-diphenylbenzene was polymerized with one equivalent amount of potassium t-butoxide (t-BuOK) to give the corresponding chlorine precursor polymer with very high molecular weights. This polymer is soluble in common organic solvents and is highly stable in the solid state and in solution. Thin films of the precursor polymer were spin cast on indiumtin-oxide (ITO) coated glass substrates followed by thermal conversion at 300{degrees}C for 2 h to give DP-PPV thin films. We found that CPR is more convenient and reliable than sulfonium precursor route formore » the fabrication of PPV thin film EL devices. Efficient emission of green light (500 nm) was observed for Mg/DP-PPV/ITO and Al/DP-PPV/ITO single layer devices.« less

  5. Analysis of thickness dependent on crystallization kinetics in thin isotactic-polysterene films

    NASA Astrophysics Data System (ADS)

    Khairuddin

    2016-11-01

    Crystalliaztion kinetics of thin film of Isotactic Polysterene (it-PS) films has been studied. Thin PET films having thickness of 338, 533, 712, 1096, 1473, and 2185 A° were prepared by using spin-cast technique. The it-PS crystals were grown on Linkam-hostage in the temperature range 130-240°C with an interval of 10°C. The crystal growths are measured by optical microscopy in lateral direction. It was found that a substantial thickness dependence on crystallisation rate. The analysis using fitting technique based on theory crystal growth of Lauritzen-Hoffman showed that the fitting technique could not resolve to predict the mechanism controlling the thickness dependence on the rate of crystallisation. The possible reasons were due to the crystallisation rate varies with the type of crystals (smooth, rough, overgrowth terrace), and the crystallisation rate changes with the time of crystallisation.

  6. Dynamic Modeling of Back-arc Extension in the Aegean Sea and Western Anatolia

    NASA Astrophysics Data System (ADS)

    Mazlum, Ziya; Göğüş, Oğuz H.; Sözbilir, Hasan; Karabulut, Hayrullah; Pysklywec, Russell N.

    2015-04-01

    Western Anatolian-Aegean regions are characterized by large-scale lithospheric thinning and extensional deformation. While many geological observations suggest the formation of rift basins, normal faulting, exhumation of metamorphic rocks, and back-arc volcanism, the primary cause and the geodynamic driving mechanisms for the lithospheric thinning and extension are not well understood. Previous studies suggest three primary geodynamic hypotheses to address the extension in the Aegean-west Anatolia: 1) Slab retreat/roll-back model, inferred by the southward younging magmatism and metamorphic exhumations; 2) Gravitational collapse of the overthickened (post orogenic) lithosphere, interpreted by the structural studies that suggests tectonic mode switching from contraction to extension; 3) Lateral extrusion (escape tectonics) associated with the continental collision in East Anatolia. We use 2-D thermo-mechanical numerical subduction experiments to investigate how subduction retreat and related back-arc basin opening are controlled by a) changing length and thickness of the subducting plate, b) the dip angle of the subducting slab and c) various thickness and thermal properties of the back-arc lithosphere. Subsequently, we explore the surface response to the subduction retreat model in conjunction with the gravitational (orogenic) collapse in the presumed back-arc region. Quantitative model predictions (e.g., crustal thickness, extension rate) are tested against a wide range of available geological and geophysical observations from the Aegean and west Anatolia regions and these results are reconciled with regional tectonic observations. Our model results are interpreted in the context of different surface response in the extensional regime (back-arc) for the Aegean and western Anatolia, where these two regions have been presumably segmented by the right lateral transfer fault system (Izmir-Balıkesir transfer zone).

  7. Sequence stratigraphic principles applied to the Miocene Hawthorn Group, west-central Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, V.L.; Randazzo, A.F.

    1993-03-01

    Sequence boundaries for the Miocene Hawthorn Group in the ROMP 20 drill core from Osprey, Sarasota County, FL were generally delineated by lithologic variations recognized from core slabs, thin section analysis, and geophysical logs. At least six depositional sequences representing third order sea level fluctuations were identified. Depositional environments were determined on the basis of the characteristic lithologic constituents including rip-up clasts, pellets, fossils, laminations, burrow, degree of induration, and grain sorting. The sequence boundaries appear to have formed when the rate of the eustatic fall exceeded basin subsidence rates producing a relative sea level fall at a depositional shorelinemore » break. As a result of the basinward facies shift associated with this sequence type, peritidal facies may directly overlie deeper water facies. Subaerial exposure and erosion can be expected. The sequence of facies representing progressively deeper water depositional environments, followed by a progressive shallowing, were present between bounding surfaces. Among the six sequences recognized, four were clearly delineated as representative of regression, subaerial exposure, and subsequent transgression. Two sequences were less clearly defined and probably represent transitional facies which had exposure surfaces developed. Comparison of the petrologically established sequence stratigraphy with published sea level curves resulted in a strong correlation between the number of sequences recognized and the number of coastal on-lap/off-lap cycles depicted for the early to middle Miocene. This correlation suggests that petrologic examination of core slabs, with supplemental thin section data, can provide useful information regarding the recognition of stratigraphic sequences and relative sea level fluctuations, particularly, in situations where seismic data may not be available.« less

  8. Creating a Driven, Collapsed Radiative Shock in the Laboratory

    NASA Astrophysics Data System (ADS)

    Reighard, Amy

    2006-10-01

    We report details of the first experimental campaign to create a driven, planar, radiatively collapsed in laboratory experiment. Radiation hydrodynamics experiments are challenging to realize in a laboratory setting, requiring high temperatures in a system of sufficient extent. The Omega laser at ˜10^15 W/cm^2 drives a thin slab of low-Z material at >100 km/s gas via laser ablation pressure. This slab initially shocks, then continues driving a shock through a cylindrical volume of Xe gas at 6 mg/cc. Simulations predict a collapsed layer in which the density reaches ˜45 times initial density. Side-on x-ray backlighting was the principal diagnostic. We have successfully imaged shocks with average velocities between 95-205 km/sec, with measured thicknesses of 45-150 μm in experiments lasting up to 20 ns and spanning up 2.5 mm in extent. Comparison of the shock position as a function of time from these experiments to 1D radiation hydrodynamic simulation results show some discrepancy, which will be explored. Optical depth before and behind the shock is important for meaningful comparison to these astrophysical systems. This shock is optically thin to emitted radiation in the unshocked region and optically thick to radiation in the shocked, dense region. We compare this system to collapsed shocks in astrophysical systems with similar optical depth profiles. An experiment using a Thomson scattering diagnostic across the shock front is also discussed. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.

  9. Slab-pull and slab-push earthquakes in the Mexican, Chilean and Peruvian subduction zones

    NASA Astrophysics Data System (ADS)

    Lemoine, A.; Madariaga, R.; Campos, J.

    2002-09-01

    We studied intermediate depth earthquakes in the Chile, Peru and Mexican subduction zones, paying special attention to slab-push (down-dip compression) and slab-pull (down-dip extension) mechanisms. Although, slab-push events are relatively rare in comparison with slab-pull earthquakes, quite a few have occurred recently. In Peru, a couple slab-push events occurred in 1991 and one slab-pull together with several slab-push events occurred in 1970 near Chimbote. In Mexico, several slab-push and slab-pull events occurred near Zihuatanejo below the fault zone of the 1985 Michoacan event. In central Chile, a large M=7.1 slab-push event occurred in October 1997 that followed a series of four shallow Mw>6 thrust earthquakes on the plate interface. We used teleseismic body waveform inversion of a number of Mw>5.9 slab-push and slab-pull earthquakes in order to obtain accurate mechanisms, depths and source time functions. We used a master event method in order to get relative locations. We discussed the occurrence of the relatively rare slab-push events in the three subduction zones. Were they due to the geometry of the subduction that produces flexure inside the downgoing slab, or were they produced by stress transfer during the earthquake cycle? Stress transfer can not explain the occurence of several compressional and extensional intraplate intermediate depth earthquakes in central Chile, central Mexico and central Peru. It seemed that the heterogeneity of the stress field produced by complex slab geometry has an important influence on intraplate intermediate depth earthquakes.

  10. Oppositely directed pairs of propagating rifts in back-arc basins: Double saloon door seafloor spreading during subduction rollback

    NASA Astrophysics Data System (ADS)

    Martin, A. K.

    2006-06-01

    When a continent breaks up into two plates, which then separate from each other about a rotation pole, it can be shown that if initial movement is taken up by lithospheric extension, asthenospheric breakthrough and oceanic accretion propagate toward the pole of rotation. Such a propagating rift model is then applied to an embryonic centrally located rift which evolves into two rifts propagating in opposite directions. The resultant rhombic shape of the modeled basin, initially underlain entirely by thinned continental crust, is very similar to the Oligocene to Burdigalian back-arc evolution of the Valencia Trough and the Liguro-Provencal Basin in the western Mediterranean. Existing well and seismic stratigraphic data confirm that a rift did initiate in the Gulf of Lion and propagated southwest into the Valencia Trough. Similarly, seismic refraction, gravity, and heat flow data demonstrate that maximum extension within the Valencia Trough/Liguro-Provencal Basin occurred in an axial position close to the North Balearic Fracture Zone. The same model of oppositely propagating rifts, when applied to the Burdigalian/Langhian episode of back-arc oceanic accretion within the Liguro-Provencal and Algerian basins, predicts a number of features which are borne out by existing geological and geophysical, particularly magnetic data. These include the orientation of subparallel magnetic anomalies, presumed to be seafloor spreading isochrons, in both basins; concave-to-the-west fracture zones southwest of the North Balearic Fracture Zone, and concave-to-the-east fracture zones to its northeast; a spherical triangular area of NW oriented seafloor spreading isochrons southwest of Sardinia; the greater NW extension of the central (youngest?) magnetic anomaly within this triangular area, in agreement with the model-predicted northwestward propagation of a rift in this zone; successively more central (younger) magnetic anomalies abutting thinned continental crust nearer to the pole of rotation in the Liguro-Provencal Basin. The latter feature demonstrates that a rift also propagated northeast in the Liguro-Provencal Basin, at least in its oceanic accretion phase of development. An adaptation of an existing model for subduction slab detachment occurring along the North African margin in the late Burdigalian/Langhian, proposes propagation in opposite directions of the slab tear. The resultant rhombic slab detachment is closely associated in space and time with the rhombic form of the Algerian/Liguro-Provencal basins, suggesting a cause and effect relationship.

  11. Coarse mesh and one-cell block inversion based diffusion synthetic acceleration

    NASA Astrophysics Data System (ADS)

    Kim, Kang-Seog

    DSA (Diffusion Synthetic Acceleration) has been developed to accelerate the SN transport iteration. We have developed solution techniques for the diffusion equations of FLBLD (Fully Lumped Bilinear Discontinuous), SCB (Simple Comer Balance) and UCB (Upstream Corner Balance) modified 4-step DSA in x-y geometry. Our first multi-level method includes a block Gauss-Seidel iteration for the discontinuous diffusion equation, uses the continuous diffusion equation derived from the asymptotic analysis, and avoids void cell calculation. We implemented this multi-level procedure and performed model problem calculations. The results showed that the FLBLD, SCB and UCB modified 4-step DSA schemes with this multi-level technique are unconditionally stable and rapidly convergent. We suggested a simplified multi-level technique for FLBLD, SCB and UCB modified 4-step DSA. This new procedure does not include iterations on the diffusion calculation or the residual calculation. Fourier analysis results showed that this new procedure was as rapidly convergent as conventional modified 4-step DSA. We developed new DSA procedures coupled with 1-CI (Cell Block Inversion) transport which can be easily parallelized. We showed that 1-CI based DSA schemes preceded by SI (Source Iteration) are efficient and rapidly convergent for LD (Linear Discontinuous) and LLD (Lumped Linear Discontinuous) in slab geometry and for BLD (Bilinear Discontinuous) and FLBLD in x-y geometry. For 1-CI based DSA without SI in slab geometry, the results showed that this procedure is very efficient and effective for all cases. We also showed that 1-CI based DSA in x-y geometry was not effective for thin mesh spacings, but is effective and rapidly convergent for intermediate and thick mesh spacings. We demonstrated that the diffusion equation discretized on a coarse mesh could be employed to accelerate the transport equation. Our results showed that coarse mesh DSA is unconditionally stable and is as rapidly convergent as fine mesh DSA in slab geometry. For x-y geometry our coarse mesh DSA is very effective for thin and intermediate mesh spacings independent of the scattering ratio, but is not effective for purely scattering problems and high aspect ratio zoning. However, if the scattering ratio is less than about 0.95, this procedure is very effective for all mesh spacing.

  12. Imaging the Peruvian flat slab with Rayliegh wave tomography

    NASA Astrophysics Data System (ADS)

    Knezevic Antonijevic, Sanja

    In subduction zones the oceanic plates descend at a broad range of dip angles. A "flat slab" is an oceanic plate that starts to subduct steeply, but bends at 100 km depth and continues almost horizontally for several hundred kilometers. This unusual slab geometry has been linked to various geologic features, including the cessation of arc volcanism, basement core uplifts removed far from subducting margins, and the formation of high plateaus. Despite the prevalence of flat slabs worldwide since the Proterozoic, questions on how flat slabs form, persist, and re-steepen remains a topic of ongoing research. Even less clear is how this phenomenon relates to unusual features observed at the surface. To better understand the causes and consequences of slab flattening I focus on the Peruvian flat slab. This is not only the biggest flat slab region today, but due to the oblique angle at which the Nazca Plate subducts under the South American Plate, it also provides unique opportunity to get insights into the temporal evolution of the flat slab. Using ambient noise and earthquake-generated Rayleigh waves recorded at several contemporary dense seismic networks, I was able to perform unprecedentedly high resolution imaging of the subduction zone in southern Peru. Surprisingly, instead of imaging a vast flat slab region as expected, I found that the flat slab tears and re-steepens north of the subducting Nazca Ridge. The change in slab geometry is associated with variations in the slab's internal strain along strike, as inferred from slab-related anisotropy. Based on newly-discovered features I discuss the critical role of the subducting ridges in the formation and longevity of flat slabs. The slab tear created a new mantle pathway between the torn slab and the flat slab remnant to the east, and is possibly linked to the profound low velocity anomaly located under the eastern corner of the flat slab. Finally, I re-evaluate the connection between slab flattening and volcanic patterns at the surface. These findings have important implications for all present-day and paleo-flat slab regions, such as the one proposed for the western United States during the Laramide orogeny 80-55 Ma.

  13. Orogenic delamination - dynamics, effects, and geological expression

    NASA Astrophysics Data System (ADS)

    Ueda, Kosuke; Gerya, Taras

    2010-05-01

    Unbundling of continental lithosphere and removal of its mantle portion have been described by two mutually rather exclusive models, convective thinning and integral delamination. Either disburdens the remaining lithosphere, weakens the remainder, and causes uplift and extension. Increased heat flux is likely to promote high-degree crustal melting, and has been viewed as a source for voluminous granitic intrusions in late or collapsing orogenic settings. Collapse may be driven by any of gravitational potential differences from orogen to foreland, by stress inversion in the unburdened domain, or by suction of a retreating trench. In this study, we investigate prerequisites, mechanism, and development paths for orogeny-related mantle lithosphere removal. Our experiments numerically reproduce delamination which self-consistently results from the dynamics of a decoupling collision zone. In particular, it succeeds without a seed facilitating initial separation of layers. External shortening of a continent - ocean - continent assembly, such as to initiate oceanic subduction, is lifted before the whole oceanic part is consumed, leaving slab pull to govern further convergence. Once buoyant continental crust enters, the collision zone locks, and convergence diminishes. Under favourable conditions, delamination then initiates close to the edge of the mantle wedge and at deep crustal levels. While it initially separates upper crust from lower crust according to the weakness minimum in the lithospheric strength profile, the lower crust is eventually also delaminated from the subducting lithospheric mantle, owing to buoyancy differences. The level of delamination within the lithosphere seems thus first rheology-controlled, then density-controlled. Subduction-coupled delamination is contingent on retreat and decoupling of the subducting slab, which in turn is dependent on effective rheological weakening of the plate contact. Weakening is a function of shear-heating and hereby of collision rate, melting and hydration, the latter two incorporating the effects of sediment subduction and phase changes. The drag available for slab retreat scales with the age of the descending oceanic lithosphere; integrated strength of the lithosphere and activation volume for mantle creep additionally control angle and depth of the descent. Fully developed delamination is observed from between 10 to 15 Ma after collision ceases, with following trenchward migration of the delamination front. Consequently, the main maximum extension migrates, while local, partly intermittent compression can be observed on smaller scale. Across the orogen, extension thus has a strongly diachronous main component. We track common surface observables such as heat flow, partially melted rocks (domal migmatites), and predicted geo-/thermochronological ages over the evolving plate boundary. Geochemical projections of our observations confirm potential contamination of reservoirs - although the net delamination level follows the Moho, some crustal remnants along the old slab still sink through the 660-discontinuity. On the other hand, the base of the delaminated domain is not as plain a contact as in concept. Where the contact of asthenosphere with delaminated crust is the location of high-degree melting, also traces of original lithospheric mantle can be entangled. Our results do not fully support the conceptual distinction between convective thinning and blockwise delamination. While the foundering portion initially retains a fairly coherent, slab-like perimeter, the actual separation of layers in a limited process-zone occurs in smaller -scale eddies. Also, convection of the whole uprising asthenosphere wedge is dynamically not discernible from the latter and crucial for the removal of lithospheric mantle. The removed lithosphere does initially not convect, but subsequently shows an increasing tendency to drip down. In the presented case, extension in the axial zone of the orogen is not (only) caused by unsupported gravitational potential of the core domain itself, but actively driven by slab retreat with a shallow mantle dynamic contribution.

  14. Method of making carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  15. Fabrication Process of Silicone-based Dielectric Elastomer Actuators

    PubMed Central

    Rosset, Samuel; Araromi, Oluwaseun A.; Schlatter, Samuel; Shea, Herbert R.

    2016-01-01

    This contribution demonstrates the fabrication process of dielectric elastomer transducers (DETs). DETs are stretchable capacitors consisting of an elastomeric dielectric membrane sandwiched between two compliant electrodes. The large actuation strains of these transducers when used as actuators (over 300% area strain) and their soft and compliant nature has been exploited for a wide range of applications, including electrically tunable optics, haptic feedback devices, wave-energy harvesting, deformable cell-culture devices, compliant grippers, and propulsion of a bio-inspired fish-like airship. In most cases, DETs are made with a commercial proprietary acrylic elastomer and with hand-applied electrodes of carbon powder or carbon grease. This combination leads to non-reproducible and slow actuators exhibiting viscoelastic creep and a short lifetime. We present here a complete process flow for the reproducible fabrication of DETs based on thin elastomeric silicone films, including casting of thin silicone membranes, membrane release and prestretching, patterning of robust compliant electrodes, assembly and testing. The membranes are cast on flexible polyethylene terephthalate (PET) substrates coated with a water-soluble sacrificial layer for ease of release. The electrodes consist of carbon black particles dispersed into a silicone matrix and patterned using a stamping technique, which leads to precisely-defined compliant electrodes that present a high adhesion to the dielectric membrane on which they are applied. PMID:26863283

  16. Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings

    PubMed Central

    Raphel, Jordan; Parisi-Amon, Andreina; Heilshorn, Sarah

    2012-01-01

    Photocrosslinkable, protein-engineered biomaterials combine a rapid, controllable, cytocompatible crosslinking method with a modular design strategy to create a new family of bioactive materials. These materials have a wide range of biomedical applications, including the development of bioactive implant coatings, drug delivery vehicles, and tissue engineering scaffolds. We present the successful functionalization of a bioactive elastin-like protein with photoreactive diazirine moieties. Scalable synthesis is achieved using a standard recombinant protein expression host followed by site-specific modification of lysine residues with a heterobifunctional N-hydroxysuccinimide ester-diazirine crosslinker. The resulting biomaterial is demonstrated to be processable by spin coating, drop casting, soft lithographic patterning, and mold casting to fabricate a variety of two- and three-dimensional photocrosslinked biomaterials with length scales spanning the nanometer to millimeter range. Protein thin films proved to be highly stable over a three-week period. Cell-adhesive functional domains incorporated into the engineered protein materials were shown to remain active post-photo-processing. Human adipose-derived stem cells achieved faster rates of cell adhesion and larger spread areas on thin films of the engineered protein compared to control substrates. The ease and scalability of material production, processing versatility, and modular bioactive functionality make this recombinantly engineered protein an ideal candidate for the development of novel biomaterial coatings, films, and scaffolds. PMID:23015764

  17. Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings.

    PubMed

    Raphel, Jordan; Parisi-Amon, Andreina; Heilshorn, Sarah

    2012-10-07

    Photocrosslinkable, protein-engineered biomaterials combine a rapid, controllable, cytocompatible crosslinking method with a modular design strategy to create a new family of bioactive materials. These materials have a wide range of biomedical applications, including the development of bioactive implant coatings, drug delivery vehicles, and tissue engineering scaffolds. We present the successful functionalization of a bioactive elastin-like protein with photoreactive diazirine moieties. Scalable synthesis is achieved using a standard recombinant protein expression host followed by site-specific modification of lysine residues with a heterobifunctional N-hydroxysuccinimide ester-diazirine crosslinker. The resulting biomaterial is demonstrated to be processable by spin coating, drop casting, soft lithographic patterning, and mold casting to fabricate a variety of two- and three-dimensional photocrosslinked biomaterials with length scales spanning the nanometer to millimeter range. Protein thin films proved to be highly stable over a three-week period. Cell-adhesive functional domains incorporated into the engineered protein materials were shown to remain active post-photo-processing. Human adipose-derived stem cells achieved faster rates of cell adhesion and larger spread areas on thin films of the engineered protein compared to control substrates. The ease and scalability of material production, processing versatility, and modular bioactive functionality make this recombinantly engineered protein an ideal candidate for the development of novel biomaterial coatings, films, and scaffolds.

  18. Slab interactions in 3-D subduction settings: The Philippine Sea Plate region

    NASA Astrophysics Data System (ADS)

    Holt, Adam F.; Royden, Leigh H.; Becker, Thorsten W.; Faccenna, Claudio

    2018-05-01

    The importance of slab-slab interactions is manifested in the kinematics and geometry of the Philippine Sea Plate and western Pacific subduction zones, and such interactions offer a dynamic basis for the first-order observations in this complex subduction setting. The westward subduction of the Pacific Sea Plate changes, along-strike, from single slab subduction beneath Japan, to a double-subduction setting where Pacific subduction beneath the Philippine Sea Plate occurs in tandem with westward subduction of the Philippine Sea Plate beneath Eurasia. Our 3-D numerical models show that there are fundamental differences between single slab systems and double slab systems where both subduction systems have the same vergence. We find that the observed kinematics and slab geometry of the Pacific-Philippine subduction can be understood by considering an along-strike transition from single to double subduction, and is largely independent from the detailed geometry of the Philippine Sea Plate. Important first order features include the relatively shallow slab dip, retreating/stationary trenches, and rapid subduction for single slab systems (Pacific Plate subducting under Japan), and front slabs within a double slab system (Philippine Sea Plate subducting at Ryukyu). In contrast, steep to overturned slab dips, advancing trench motion, and slower subduction occurs for rear slabs in a double slab setting (Pacific subducting at the Izu-Bonin-Mariana). This happens because of a relative build-up of pressure in the asthenosphere beneath the Philippine Sea Plate, where the asthenosphere is constrained between the converging Ryukyu and Izu-Bonin-Mariana slabs. When weak back-arc regions are included, slab-slab convergence rates slow and the middle (Philippine) plate extends, which leads to reduced pressure build up and reduced slab-slab coupling. Models without back-arcs, or with back-arc viscosities that are reduced by a factor of five, produce kinematics compatible with present-day observations.

  19. Improved Nazca slab structure from teleseismic P-wave tomography along the Andean margin

    NASA Astrophysics Data System (ADS)

    Portner, D. E.; Beck, S. L.; Scire, A. C.; Zandt, G.

    2017-12-01

    South America marks the longest continuous ocean-continent subduction zone. As such, there is significant along-strike variability in the subducting Nazca slab structure and the tectonics of the South American margin. Most notably two gaps in the otherwise continuous volcanic arc are correlated with regions of flat slab subduction, indicating that the structure of the Nazca slab plays a controlling role in South American tectonics. Traditionally in subduction zones, our knowledge of slab structure is defined by Wadati-Benioff zone earthquakes. While this method allows for the determination of large-scale variations in Nazca slab structure such as regions of flat slab subduction, a scarcity of intermediate-depth earthquakes hinders our ability to observe the smaller-scale structural variations in the slab that may be critical to our understanding of the geologic record. We use an updated, larger dataset for finite-frequency teleseismic P-wave tomography including relative arrival times from >700 seismic stations along the Andean margin to image the detailed Nazca slab structure throughout the upper mantle and uppermost lower mantle between latitudes 5°S and 45°S. Our results show prominent variations in slab character along the margin. Slab dip varies significantly, from sub-vertical inboard of the Peruvian flat slab segment to 30° dip south of the Pampean flat slab, while the slab's velocity anomaly amplitude changes dramatically near the Pampean flat slab region. High slab velocities north of the Pampean region relative to the south indicate variable slab thermal structures that correspond roughly with the locations of deep (>500 km depth) earthquakes that also occur exclusively north of the Pampean region. Additionally, a wider regional footprint increases our sampling of the upper-lower mantle boundary, improving constraints on the slab's interaction with the 660 km discontinuity along strike. We see that the Nazca slab appears to penetrate into the lower mantle along the majority of the margin.

  20. Subduction Drive of Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.

    2003-12-01

    Don Anderson emphasizes that plate tectonics is self-organizing and is driven by subduction, which rights the density inversion generated as oceanic lithosphere forms by cooling of asthenosphere from the top. The following synthesis owes much to many discussions with him. Hinge rollback is the key to kinematics, and, like the rest of actual plate behavior, is incompatible with bottom-up convection drive. Subduction hinges (which are under, not in front of, thin leading parts of arcs and overriding plates) roll back into subducting plates. The Pacific shrinks because bounding hinges roll back into it. Colliding arcs, increasing arc curvatures, back-arc spreading, and advance of small arcs into large plates also require rollback. Forearcs of overriding plates commonly bear basins which preclude shortening of thin plate fronts throughout periods recorded by basin strata (100 Ma for Cretaceous and Paleogene California). This requires subequal rates of advance and rollback, and control of both by subduction. Convergence rate is equal to rates of rollback and advance in many systems but is greater in others. Plate-related circulation probably is closed above 650 km. Despite the popularity of concepts of plumes from, and subduction into, lower mantle, there is no convincing evidence for, and much evidence against, penetration of the 650 in either direction. That barrier not only has a crossing-inhibiting negative Clapeyron slope but also is a compositional boundary between fractionated (not "primitive"), sluggish lower mantle and fertile, mobile upper mantle. Slabs sink more steeply than they dip. Slabs older than about 60 Ma when their subduction began sink to, and lie down on and depress, the 650-km discontinuity, and are overpassed, whereas younger slabs become neutrally buoyant in mid-upper mantle, into which they are mixed as they too are overpassed. Broadside-sinking old slabs push all upper mantle, from base of oceanic lithosphere down to the 650, back under shrinking oceans, forcing rapid Pacific spreading. Slabs suck forward overriding arcs and continental lithosphere, plus most subjacent mantle above the transition zone. Changes in sizes of oceans result primarily from transfer of oceanic lithosphere, so backarcs and expanding oceans spread only slowly. Lithosphere parked in, or displaced from, the transition zone, or mixed into mid-upper mantle, is ultimately recycled, and regional variations in age of that submerged lithosphere may account for some regional contrasts in MORB. Plate motions make no kinematic sense in either the "hotspot" reference frame (HS; the notion of fixed plumes is easily disproved) or the no-net-rotation frame (NNR) In both, for example, many hinges roll forward, impossible with gravity drive. Subduction-drive predictions are fulfilled, and paleomagnetic data are satisfied (as they are not in HS and NNR), in the alternative framework of propulsionless Antarctica fixed relative to sluggish lower mantle. Passive ridges migrate away from Antarctica on all sides, and migration of these and other ridges permits tapping fresh asthenosphere. (HS and NNR tend to fix ridges). Ridge migration and spreading rates accord with subduction drive. All trenches roll back when allowance is made for back-arc spreading and intracontinental deformation. Africa rotates slowly toward subduction systems in the NE, instead of moving rapidly E as in HS and NNR. Stable NW Eurasia is nearly stationary, instead of also moving rapidly, and S and E Eurasian deformation relates to subduction and rollback. The Americas move Pacificward at almost the full spreading rates of passive ridges behind them. Lithosphere has a slow net westward drift. Reference: W.B. Hamilton, An alternative Earth, GSA Today, in press.

  1. On the possibility of an alpha-sq omega-type dynamo in a thin layer inside the sun

    NASA Technical Reports Server (NTRS)

    Choudhuri, Arnab Rai

    1990-01-01

    If the solar dynamo operates in a thin layer of 10,000-km thickness at the interface between the convection zone and the radiative core, using the facts that the dynamo should have a period of 22 years and a half-wavelength of 40 deg in the theta-direction, it is possible to impose restrictions on the values which various dynamo parameters are allowed to have. It is pointed out that the dynamo should be of alpha-sq omega nature, and kinematical calculations are presented for free dynamo waves and for dynamos in thin rectangular slabs with appropriate boundary conditions. An alpha-sq omega dynamo is expected to produce a significant poloidal field which does not leak to the solar surface. It is found that the turbulent diffusity eta and alpha-coefficient are restricted to values within about a factor of 10, the median values being eta of about 10 to the 10th sq cm/sec and alpha of about 10 cm/sec. On the basis of mixing length theory, it is pointed out that such values imply a reasonable turbulent velocity of the order 30 m/s, but rather small turbulent length scales like 300 km.

  2. Ultra-thin grain-oriented silicon steel sheet fabricated by a novel way: Twin-roll strip casting and two-stage cold rolling

    NASA Astrophysics Data System (ADS)

    Wang, Yin-Ping; Liu, Hai-Tao; Song, Hong-Yu; Liu, Jia-Xin; Shen, Hui-Ying; Jin, Yang; Wang, Guo-Dong

    2018-04-01

    0.05-0.15 mm-thick ultra-thin grain-oriented silicon steel sheets were successfully produced by a novel processing route including strip casting, hot rolling, normalizing, two-stage cold rolling with intermediate annealing, primary recrystallization annealing and secondary recrystallization annealing. The evolutions of microstructure, texture and inhibitor along the processing were briefly investigated. The results showed that the initial Goss orientation originated due to the heterogenous nucleation of δ-ferrite grains during solidification. Because of the lack of shear deformation, only a few Goss grains were observed in the hot rolled sheet. After the first cold rolling and intermediate annealing, Goss texture was enhanced and distributed in the whole thickness. A small number of Goss grains having a high fraction of high energy boundaries exhibited in the primary recrystallization annealed sheet. A large number of fine and dispersed MnS and AlN and a few co-precipitates MnS and AlN with the size range of 10-70 nm were also observed. Interestingly, a well-developed secondary recrystallization microstructure characterized by 10-60 mm grains and a sharp Goss texture were finally produced in the 0.05-0.15 mm-thick ultra-thin sheets. A magnetic induction B8 of 1.72-1.84 T was obtained. Another new finding was that a few {2 3 0}〈0 0 1〉 and {2 1 0}〈1 2 7〉 grains also can grow up abnormally because of the high fraction of high energy boundaries and the size and number advantage, respectively. These non-Goss grains finally deteriorated the magnetic properties of the ultra-thin sheets. In addition, low surface energies of {hk0} planes may also contribute to the abnormal growth of Goss, {2 3 0}〈0 0 1〉 and {2 1 0}〈1 2 7〉 grains.

  3. Mantle Response to Collision, Slab Breakoff & Lithospheric Tearing in Anatolian Orogenic Belts, and Cenozoic Geodynamics of the Aegean-Eastern Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Dilek, Yildirim; Altunkaynak, Safak

    2010-05-01

    The geochemical and temporal evolution of the Cenozoic magmatism in the Aegean, Western Anatolian and peri-Arabian regions shows that plate tectonic events, mantle dynamics, and magmatism were closely linked in space and time. The mantle responded to collision-driven crustal thickening, slab breakoff, delamination, and lithospheric tearing swiftly, within geologically short time scales (few million years). This geodynamic continuum resulted in lateral mantle flow, whole-sale extension and accompanying magmatism that in turn caused the collapse of tectonically and magmatically weakened orogenic crust. Initial stages of post-collisional magmatism (~45 Ma) thermally weakened the orogenic crust in Tethyan continental collision zones, giving way into large-scale extension and lower crustal exhumation via core complex formation starting around 25-23 Ma. Slab breakoff was the most common driving force for the early stages of post-collisional magmatism in the Tethyan mountain belts in the eastern Mediterranean region. Magmatic rocks produced at this stage are represented by calc-alkaline-shoshonitic to transitional (in composition) igneous suites. Subsequent lithospheric delamination or partial convective removal of the sub-continental lithospheric mantle in collision-induced, overthickened orogenic lithosphere caused decompressional melting of the upwelling asthenosphere that in turn resulted in alkaline basaltic magmatism (<12 Ma). Attendant crustal extension and widespread thinning of the lithosphere facilitated rapid ascent of basaltic (OIB) magmas without much residence time in the crust and hence the eruption of relatively uncontaminated, asthenosphere-derived magmas at the surface (i.e. Kula lavas in SW Anatolia). Subduction of the Tethyan mantle lithosphere northward beneath Eurasia was nearly continuous since the latest Cretaceous, only temporarily punctuated by the collisional accretion of several ribbon continents (i.e. Pelagonia, Sakarya, Tauride-South Armenian) to the southern margin of Eurasia, and by related slab breakoff events. Exhumation of middle to lower crustal rocks and the formation of extensional metamorphic domes occurred in the backarc region of this progressively southward-migrated trench and the Tethyan (Afro-Arabian) slab throughout the Cenozoic. Thus, slab retreat played a major role in the Cenozoic geodynamic evolution of the Aegean and Western Anatolian regions. However, the subducting African lithospheric slab beneath the Aegean-Western Anatolian region is delimited to the east by a subduction-transform edge propagator (STEP) fault, which corresponds to the sharp cusp between the Hellenic and Cyprus trenches whose surface expression is marked by the Isparta Angle in the Western Taurides. This lithospheric tear in the downgoing African plate allowed the mantle to rise beneath SW Anatolia, inducing decompressional melting of shallow asthenosphere and producing linearly distributed alkaline magmatism younging in the direction of tear propagation (southward). The N-S-trending potassic and ultra-potassic volcanic fields stretching from the Kirka and Afyon-Suhut region (~17 Ma) in the north to the Isparta-Gölcük area (4.6 Ma-Recent) in the south are the result of this melting of the sub-slab (asthenospheric) mantle, which was metasomatized by recent subduction events in the region. Asthenospheric low velocities detected through Pn tomographic imaging in this region support the existence of shallow asthenosphere beneath the Isparta Angle at present. These observations suggest that currently there is no active subduction underneath much of Western Anatolia.

  4. Mechanical Testing of IN718 Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Whittenberger, John D.; Kantzos, Pete T.; Hebsur, Mohan G.

    2002-01-01

    Lattice block construction produces a flat, structurally rigid panel composed of thin ligaments of material arranged in a three-dimensional triangulated truss-like structure. Low-cost methods of producing cast metallic lattice block panels are now available that greatly expand opportunities for using this unique material system in today's high-performance structures. Additional advances are being made in NASA's Ultra Efficient Engine Technology (UEET) program to extend the lattice block concept to superalloy materials. Advantages offered by this combination include high strength, light weight, high stiffness, and elevated temperature capabilities. Recently under UEET, the nickel-based superalloy Inconel 718 (IN718) was investment cast into lattice block panels with great success. To evaluate casting quality and lattice block architecture merit, individual ligaments, and structural subelement specimens were extracted from the panels. Tensile tests, structural compression, and bending strength tests were performed on these specimens. Fatigue testing was also completed for several bend test specimens. This paper first presents metallurgical and optical microscopy analysis of the castings. This is followed by mechanical test results for the tensile ligament tests and the subelement compression and bending strength tests, as well as for the fatigue tests that were performed. These tests generally showed comparable properties to base IN718 with the same heat treatment, and they underscored the benefits offered by lattice block materials. These benefits might be extended with improved architecture such as face sheets.

  5. Foot pressures during gait: a comparison of techniques for reducing pressure points.

    PubMed

    Lawless, M W; Reveal, G T; Laughlin, R T

    2001-07-01

    Various methods have been used to redistribute plantar surface foot pressure in patients with foot ulcers. This study was conducted to determine the effectiveness of four modalities (fracture walker, fracture walker with insert, and open and closed toe total contact casts) in reducing plantar foot pressure. Ten healthy, normal volunteer subjects had an F-scan sensor (ultra thin shoe insert pressure monitor) placed under the right foot. They then ambulated on a flat surface, maintaining their normal gait. Dynamic plantar pressures were averaged over 10 steps at four different sites (plantar surface of great toe, first metatarsal head, base of fifth metatarsal, and plantar heel). All subjects repeated this sequence under five different testing conditions (barefoot, with a fracture walker, fracture walker with arch support insert, open and closed toe total contact cast). Each subject's barefoot pressures were then compared with the pressures during the different modalities. All four treatment modalities significantly reduced (p < 0.05) plantar pressure at the first metatarsal head (no method was superior). The fracture walker, fracture walker with insert, and open toe total contact cast significantly reduced pressure at the heel. Pressures at the base of the fifth metatarsal and great toe were not significantly reduced with any treatment form. The fracture walker, with and without arch support, and total contact cast can effectively reduce plantar pressure at the heel and first metatarsal head.

  6. Finite Element Analysis of Laser Engineered Net Shape (LENS™) Tungsten Clad Squeeze Pins

    NASA Astrophysics Data System (ADS)

    Sakhuja, Amit; Brevick, Jerald R.

    2004-06-01

    In the aluminum high-pressure die-casting and indirect squeeze casting processes, local "squeeze" pins are often used to minimize internal solidification shrinkage in heavy casting sections. Squeeze pins frequently fail in service due to molten aluminum adhering to the H13 tool steel pins ("soldering"). A wide variety of coating materials and methods have been developed to minimize soldering on H13. However, these coatings are typically very thin, and experience has shown their performance on squeeze pins is highly variable. The LENS™ process was employed in this research to deposit a relatively thick tungsten cladding on squeeze pins. An advantage of this process was that the process parameters could be precisely controlled in order to produce a satisfactory cladding. Two fixtures were designed and constructed to enable the end and outer diameter (OD) of the squeeze pins to be clad. Analyses were performed on the clad pins to evaluate the microstructure and chemical composition of the tungsten cladding and the cladding-H13 substrate interface. A thermo-mechanical finite element analysis (FEA) was performed to assess the stress distribution as a function of cladding thickness on the pins during a typical casting thermal cycle. FEA results were validated via a physical test, where the clad squeeze pins were immersed into molten aluminum. Pins subjected to the test were evaluated for thermally induced cracking and resistance to soldering of the tungsten cladding.

  7. Real-time measurement system for tracking birefringence, weight, thickness, and surface temperature during drying of solution cast coatings and films

    NASA Astrophysics Data System (ADS)

    Unsal, E.; Drum, J.; Yucel, O.; Nugay, I. I.; Yalcin, B.; Cakmak, M.

    2012-02-01

    This paper describes the design and performance of a new instrument to track temporal changes in physical parameters during the drying behavior of solutions, as well as curing of monomers. This real-time instrument follows in-plane and out-of-plane birefringence, weight, thickness, and surface temperature during the course of solidification of coatings and films through solvent evaporation and thermal or photocuring in a controlled atmosphere. It is specifically designed to simulate behavior of polymer solutions inside an industrial size, continuous roll-to-roll solution casting line and other coating operations where resins are subjected to ultraviolet (UV) curing from monomer precursors. Controlled processing parameters include air speed, temperature, initial cast thickness, and solute concentration, while measured parameters are thickness, weight, film temperature, in-plane and out-of-plane birefringence. In this paper, we illustrate the utility of this instrument with solution cast and dried poly (amide-imide)/DMAc (Dimethylacetamide) solution, water based black paint, and organo-modified clay/NMP (N-Methylpyrrolidone) solution. In addition, the physical changes that take place during UV photo polymerization of a monomer are tracked. This instrument is designed to be generic and it can be used for tracking any drying/swelling/solidification systems including paper, foodstuffs such as; grains, milk as well as pharmaceutical thin paste and slurries.

  8. Casimir forces on a bi-anisotropic absorbing magneto-dielectric slab between two parallel conducting plates

    NASA Astrophysics Data System (ADS)

    Amooshahi, Majid; Shoughi, Ali

    2018-05-01

    A fully canonical quantization of electromagnetic field in the presence of a bi-anisotropic absorbing magneto-dielectric slab is demonstrated. The electric and the magnetic polarization densities of the magneto-dielectric slab are defined in terms of the dynamical variables modeling the slab and the coupling tensors that couple the electromagnetic field to the slab. The four susceptibility tensors of the bi-anisotropic magneto-dielectric slab are expressed in terms of the coupling tensors that couple an electromagnetic field to the slab. It is shown that the four susceptibility tensors of the bi-anisotropic magneto-dielectric slab satisfy Kramers-Kronig relations. The Maxwell’s equations are exactly solved in the presence of the bi-anisotropic magneto-dielectric slab. The tangential and the normal components of the Casimir forces exerted on the bi-anisotropic magnet-dielectric slab exactly are calculated in the vacuum state and thermal state of the total system. It is shown that the tangential components of the Casimir forces vanish when the bi-anisotropic slab is converted to an isotropic slab.

  9. Electromagnetic scattering by a straight thin wire

    NASA Technical Reports Server (NTRS)

    Shamansky, Harry T.; Dominek, Allen K.; Peters, Leon, Jr.

    1989-01-01

    The traveling-wave energy, which multiply diffracts on a straight thin wire, is represented as a sum of terms, each with a distinct physical meaning, that can be individually examined in the time domain. Expressions for each scattering mechanism on a straight thin wire are cast in the form of four basic electromagnetic wave concepts: diffraction, attachment, launch, and reflection. Using the basic mechanisms from P. Ya. Ufimtsev (1962), each of the scattering mechanisms is included into the total scattered field for the straight thin wire. Scattering as a function of angle and frequency is then compared to the moment-method solution. These analytic expressions are then extended to a lossy wire with a simple approximate modification using the propagation velocity on the wire as derived from the Sommerfeld wave on a straight lossy wire. Both the perfectly conducting and lossy wire solutions are compared to moment-method results, and excellent agreement is found. As is common with asymptotic solutions, when the electrical length of wire is smaller than 0.2 lambda the results lose accuracy. The expressions modified to approximate the scattering for the lossy thin wire yield excellent agreement even for lossy wires where the wire radius is on the order of skin depth.

  10. Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9).

    PubMed

    Zhao, Dapeng; Fujisawa, Moeto; Toyokuni, Genti

    2017-03-15

    On 30 May 2015 an isolated deep earthquake (~670 km, Mw 7.9) occurred to the west of the Bonin Islands. To clarify its causal mechanism and its relationship to the subducting Pacific slab, we determined a detailed P-wave tomography of the deep earthquake source zone using a large number of arrival-time data. Our results show that this large deep event occurred within the subducting Pacific slab which is penetrating into the lower mantle. In the Izu-Bonin region, the Pacific slab is split at ~28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north the slab becomes stagnant in the mantle transition zone, whereas in the south the slab is directly penetrating into the lower mantle. This deep earthquake was caused by joint effects of several factors, including the Pacific slab's fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, and complex interactions between the slab and the ambient mantle.

  11. Poly/vinyl alcohol/ membranes for reverse osmosis

    NASA Technical Reports Server (NTRS)

    Katz, M. G.; Wydeven, T., Jr.

    1981-01-01

    A description is presented of the results of studies of the water and salt transport properties of PVA membranes, taking into account radiation crosslinked PVA membranes, diffusive salt permeability through PVA membranes, and heat treated PVA membranes. The experimental findings support an occurrence of independent water, and salt permeation processes. It is suggested that the salt permeation is governed by a solution-diffusion transport mechanism. The preparation of thin skinned, asymmetric PVA membranes is also discussed. The employed method has a certain similarity to the classical phase inversion method, which is widely applied in the casting of asymmetric reverse osmosis membranes. Instead of using a gelling bath composed of a nonsolvent for the membrane material and miscible with the solvent from which the membrane is cast, a 'complexing' bath is used, which is a solution of a complexing agent in water.

  12. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells.

    PubMed

    Li, Da-Wei; He, Jin; He, Feng-Li; Liu, Ya-Li; Liu, Yang-Yang; Ye, Ya-Jing; Deng, Xudong; Yin, Da-Chuan

    2018-04-01

    As a biodegradable polymer thin film, silk fibroin/chitosan composite film overcomes the defects of pure silk fibroin and chitosan films, respectively, and shows remarkable biocompatibility, appropriate hydrophilicity and mechanical properties. Silk fibroin/chitosan thin film can be used not only as metal implant coating for bone injury repair, but also as tissue engineering scaffold for skin, cornea, adipose, and other soft tissue injury repair. However, the biocompatibility of silk fibroin/chitosan thin film for mesenchymal stem cells, a kind of important seed cell of tissue engineering and regenerative medicine, is rarely reported. In this study, silk fibroin/chitosan film was prepared by solvent casting method, and the rat bone marrow-derived mesenchymal stem cells were cultured on the silk fibroin/chitosan thin film. Osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells were induced, respectively. The proliferation ability, osteogenic and adipogenic differentiation abilities of rat bone marrow-derived mesenchymal stem cells were systematically compared between silk fibroin/chitosan thin film and polystyrene tissue culture plates. The results showed that silk fibroin/chitosan thin film not only provided a comparable environment for the growth and proliferation of rat bone marrow-derived mesenchymal stem cells but also promoted their osteogenic and adipogenic differentiation. This work provided information of rat bone marrow-derived mesenchymal stem cells behavior on silk fibroin/chitosan thin film and extended the application of silk fibroin/chitosan thin film. Based on the results, we suggested that the silk fibroin/chitosan thin film could be a promising material for tissue engineering of bone, cartilage, adipose, and skin.

  13. Lithospheric Contributions to Arc Magmatism: Isotope Variations Along Strike in Volcanoes of Honshu, Japan

    PubMed

    Kersting; Arculus; Gust

    1996-06-07

    Major chemical exchange between the crust and mantle occurs in subduction zone environments, profoundly affecting the chemical evolution of Earth. The relative contributions of the subducting slab, mantle wedge, and arc lithosphere to the generation of island arc magmas, and ultimately new continental crust, are controversial. Isotopic data for lavas from a transect of volcanoes in a single arc segment of northern Honshu, Japan, have distinct variations coincident with changes in crustal lithology. These data imply that the relatively thin crustal lithosphere is an active geochemical filter for all traversing magmas and is responsible for significant modification of primary mantle melts.

  14. Design and simulation of a planar micro-optic free-space receiver

    NASA Astrophysics Data System (ADS)

    Nadler, Brett R.; Hallas, Justin M.; Karp, Jason H.; Ford, Joseph E.

    2017-11-01

    We propose a compact directional optical receiver for free-space communications, where a microlens array and micro-optic structures selectively couple light from a narrow incidence angle into a thin slab waveguide and then to an edge-mounted detector. A small lateral translation of the lenslet array controls the coupled input angle, enabling the receiver to select the transmitter source direction. We present the optical design and simulation of a 10mm x 10mm aperture receiver using a 30μm thick silicon waveguide able to couple up to 2.5Gbps modulated input to a 10mm x 30μm wide detector.

  15. Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pala, Ragip A.; Butun, Serkan; Aydin, Koray

    2016-09-19

    Light trapping in planar ultrathin-film solar cells is limited due to a small number of optical modes available in the thin-film slab. A nanostructured thin-film design could surpass this limit by providing broadband increase in the local density of states in a subwavelength volume and maintaining efficient coupling of light. Here we report a broadband metasurface design, enabling efficient and broadband absorption enhancement by direct coupling of incoming light to resonant modes of subwavelength scale Mie nanoresonators defined in the thin-film active layer. Absorption was investigated both theoretically and experimentally in prototypes consisting of lithographically patterned, two-dimensional periodic arrays ofmore » silicon nanoresonators on silica substrates. A crossed trapezoid resonator shape of rectangular cross section is used to excite broadband Mie resonances across visible and near-IR spectra. Our numerical simulations, optical absorption measurements and photocurrent spectral response measurements demonstrate that crossed trapezoidal Mie resonant structures enable angle-insensitive, broadband absorption. A short circuit current density of 12.0 mA/cm 2 is achieved in 210 nm thick patterned Si films, yielding a 4-fold increase compared to planar films of the same thickness. As a result, it is suggested that silicon metasurfaces with Mie resonator arrays can provide useful insights to guide future ultrathin-film solar cell designs incorporating nanostructured thin active layers.« less

  16. Tomographic imaging of the effects of Peruvian flat slab subduction on the Nazca slab and surrounding mantle under central and southern Peru

    NASA Astrophysics Data System (ADS)

    Scire, A. C.; Zandt, G.; Beck, S. L.; Bishop, B.; Biryol, C. B.; Wagner, L. S.; Long, M. D.; Minaya, E.; Tavera, H.

    2014-12-01

    The modern central Peruvian Andes are dominated by a laterally extensive region of flat slab subduction. The Peruvian flat slab extends for ~1500 km along the strike of the Andes, correlating with the subduction of the Nazca Ridge in the south and the theorized Inca Plateau in the north. We have used data from the CAUGHT and PULSE experiments for finite frequency teleseismic P- and S-wave tomography to image the Nazca slab in the upper mantle below 95 km depth under central Peru between 10°S and 18°S as well as the surrounding mantle. Since the slab inboard of the subducting Nazca Ridge is mostly aseismic, our results provide important constraints on the geometry of the subducting Nazca slab in this region. Our images of the Nazca slab suggest that steepening of the slab inboard of the subducting Nazca Ridge locally occurs ~100 km further inland than was indicated in previous studies. The region where we have imaged the steepening of the Nazca slab inboard of the Nazca Ridge correlates with the location of the Fitzcarrald Arch, a long wavelength upper plate topographic feature which has been suggested to be a consequence of ridge subduction. When the slab steepens inboard of the flat slab region, it does so at a very steep (~70°) angle. The transition from the Peruvian flat slab to the more normally dipping slab south of 16°S below Bolivia is characterized by an abrupt bending of the slab anomaly in the mantle in response to the shift from flat to normal subduction. The slab anomaly appears to be intact south of the Nazca Ridge with no evidence for tearing of the slab in response to the abrupt change in slab dip. A potential tear in the slab is inferred from an observed offset in the slab anomaly north of the Nazca Ridge extending subparallel to the ridge axis between 130 and 300 km depth. A high amplitude (-5-6%) slow S-wave velocity anomaly is observed below the projection of the Nazca Ridge. This anomaly appears to be laterally confined to the mantle directly below projection of the Nazca Ridge but descends to ~300 km depth in the mantle. This sub-slab slow anomaly may correlate with vertical mantle flow induced by movement of material through the inferred tear in the slab north of the Nazca Ridge or alternately may represent a long-lived feature of the sub-slab mantle possibly associated with the development of the Nazca Ridge at the Easter Island hot spot.

  17. Metal Injection Molding of Thin-Walled Titanium Glasses Arms: A Case Study

    NASA Astrophysics Data System (ADS)

    Ye, Shulong; Mo, Wei; Lv, Yonghu; Li, Xia; Kwok, Chi Tat; Yu, Peng

    2018-02-01

    Commercially pure titanium (CP Ti) and Ti-6Al-4V arms for a new brand of augmented reality smart glasses, which are over 170 mm in length, with thin wall structures and extremely complex surfaces, have been successfully fabricated via metal injection molding. After sintering, both the metal injection-molded (MIMed) CP Ti and Ti-6Al-4V can reach relative densities of over 95% with an oxygen content 2200 ppm, thus imparting mechanical properties comparable to cast alloys. The ductility of the MIMed CP Ti and Ti-6Al-4V are about 15% and 8%, respectively. This is a good example of applying metal injection molding to mass production of precise Ti alloy parts with complicated shapes.

  18. Finite Element Modeling of the Deformation of a Thin Magnetoelastic Film Compared to a Membrane Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barham, M; White, D; Steigmann, D

    2009-04-08

    Recently a new class of biocompatible elastic polymers loaded with small ferrous particles (magnetoelastomer) was developed at Lawrence Livermore National Laboratory. This new material was formed as a thin film using spin casting. The deformation of this material using a magnetic field has many possible applications to microfluidics. Two methods will be used to calculate the deformation of a circular magneto-elastomeric film subjected to a magnetic field. The first method is an arbitrary Lagrangian-Eulerian (ALE) finite element method (FEM) and the second is based on nonlinear continuum electromagnetism and continuum elasticity in the membrane limit. The comparison of these twomore » methods is used to test/validate the finite element method.« less

  19. New Ultra-Low Permittivity Composites for Use in Ceramic Packaging of Ga:As Integrated Circuits

    DTIC Science & Technology

    1986-08-11

    200 400 600 800 1000 SOAK TEMPERATURE (-C) Figure 8. Effect of leaching and heat treatment on relative permittivity of porous vycor glass. measured by...thermal treatment in strength, shrinkage and dielectric properties. 22 -𔃼 The feasibility of tape casting calcium aluminate cement into thin substrates...materials. (3) Vibro-compaction and calandering of cements containing microspheres. (4) Heat treatment of the polymer-containing materials. 23 V

  20. Rail Outloading Capability Study, Fort Polk, Louisiana,

    DTIC Science & Technology

    1977-06-01

    regardless of experience, to avoid wasted man -hours. The main problem at Fort Polk is that no blocking and bracing material stockpile exists and no...ti1 hottul only thtrough the 0111crinost hole; to defect within 20 days after it is determined to -tuit Owt ttrtk in tuse. III thle caste of classes 3...wheels, slipping, or similar trak (meh causes. 1 -------------------- (12) " Shelly spots" means a condition 2 ------------------------ % where a thin

  1. Orientation Control in Thin Films of a High-χ Block Copolymer with a Surface Active Embedded Neutral Layer.

    PubMed

    Zhang, Jieqian; Clark, Michael B; Wu, Chunyi; Li, Mingqi; Trefonas, Peter; Hustad, Phillip D

    2016-01-13

    Directed self-assembly (DSA) of block copolymers (BCPs) is an attractive advanced patterning technology being considered for future integrated circuit manufacturing. By controlling interfacial interactions, self-assembled microdomains in thin films of polystyrene-block-poly(methyl methacrylate), PS-b-PMMA, can be oriented perpendicular to surfaces to form line/space or hole patterns. However, its relatively weak Flory interaction parameter, χ, limits its capability to pattern sub-10 nm features. Many BCPs with higher interaction parameters are capable of forming smaller features, but these "high-χ" BCPs typically have an imbalance in surface energy between the respective blocks that make it difficult to achieve the required perpendicular orientation. To address this challenge, we devised a polymeric surface active additive mixed into the BCP solution, referred to as an embedded neutral layer (ENL), which segregates to the top of the BCP film during casting and annealing and balances the surface tensions at the top of the thin film. The additive comprises a second BCP with a "neutral block" designed to provide matched surface tensions with the respective polymers of the main BCP and a "surface anchoring block" with very low surface energy that drives the material to the air interface during spin-casting and annealing. The surface anchoring block allows the film to be annealed above the glass transition temperature of the two materials without intermixing of the two components. DSA was also demonstrated with this embedded neutral top layer formulation on a chemical patterned template using a single step coat and simple thermal annealing. This ENL technology holds promise to enable the use of high-χ BCPs in advanced patterning applications.

  2. Seismological observations at the Northern Andean region of Colombia: Evidence for a shallowly subducting Caribbean Slab and an extensional regime in the upper plate

    NASA Astrophysics Data System (ADS)

    Monsalve, G.; Cardona, A.; Yarce, J.; Alvira, D.; Poveda, E.

    2013-05-01

    A number of seismological observations, among which we can mention teleseismic travel time residuals, P to S receiver functions and Pn velocity quantification, suggest a clear distinction between the seismic structure of the crust and uppermost mantle between the plains on the Caribbean coast of Colombia and the mountains at the Northern Andean region. Absolute and relative travel time residuals indicate the presence of a seismically fast material in the upper mantle beneath northern Colombia; preliminary results of Pn studies show a region of relatively slow Pn velocities (between 7.8 and 7.9 km/s) underneath the Caribbean coast, contrasting with values greater than 8 km/s beneath the Central and Western cordilleras of Colombia, and the Pacific coast; receiver functions suggest a significantly thinner crust beneath the Caribbean coast, with a crustal thickness between 25 and 30 km, than beneath the Northern Andean zone at the cordilleras of Colombia, where it exceeds 40 km and reaches about 57 km at the location of Bogota. Besides the obviuos discrepancies that appear in response to different topography, we think that the seismological observations are a consequence of the presence of two very distinct slab segments beneath Colombia and contrasting behaviors of the upper plate, which correspond to Caribbean and Nazca subductions. Our seismic observations can be explained by a shallowly subducting Caribbean Plate, in the absence of an asthenospheric wedge, that steepens at about the location of the Bucaramanga nest, and a thinned continental crust that reflects an extensional component linked to oblique convergence of the Caribbean, which contrasts with the crustal thickening in the Andean Cordillera linked to crustal shortening and Nazca plate subuction. These new data are consistent with the idea of of a relatively warm Nazca slab of Neogene age which seems to have a relatively frontal convergence, and a colder, more buoyant Caribbean slab which represents an oceanic plateau of Cretaceous age that is characterized by an oblique convergence relation that has promoted extensional tectonics in the upper plate.

  3. The Role of a Weak Layer at the Base of an Oceanic Plate on Subduction Dynamics

    NASA Astrophysics Data System (ADS)

    Carluccio, R.; Moresi, L. N.; Kaus, B. J. P.

    2017-12-01

    Plate tectonics relies on the concept of an effectively rigid lithospheric lid moving over a weaker asthenosphere. In this model, the lithosphere asthenosphere boundary (LAB) is a first-order discontinuity that accommodates differential motion between tectonic plates and the underlying mantle. Recent seismic studies have revealed the existence of a low velocity and high electrical conductivity layer at the base of subducting tectonic plates. This thin layer has been interpreted as being weak and slightly buoyant and it has the potential to influence the dynamics of subducting plates. However, geodynamically, the role of a weak layer at the base of the lithosphere remains poorly studied, especially at subduction zones. Here, we use numerical models to investigate the first-order effects of a weak buoyant layer at the LAB on subduction dynamics. We employ both 2-D and 3-D models in which the slab and the mantle are either linear viscous or have a more realistic temperature-dependent, visco-elastic-plastic rheology and we vary the properties of the layer at the base of the oceanic lithosphere. Our results show that the presence of a weak layer affects the dynamics of plates, primarily by increasing the subduction speed and also influences the morphology of subducting slab. For moderate viscosity contrasts (<100) and a layer thickness of ˜30 km, it increases the plate velocity but not the overall shape of the slab. However, for larger viscosity contrasts (>1000), it can also change the morphology of the subduction itself and for thinner and more buoyant layers, the overall effect is reduced. The overall impact of this effects may depend on the effective contrast between the properties of the slab and the weak layer + mantle systems, and so, by the layer characteristics modelled such as its viscosity, density, thickness and rheology. In this study, we show and summarise this impact consistently with the recent seismological constraints and observations, for example, a pile-up of weak material in the bending zone of the subducting plate.

  4. Transition from slab to slabless: Results from the 1993 Mendocino triple junction seismic experiment

    USGS Publications Warehouse

    Beaudoin, B.C.; Godfrey, N.J.; Klemperer, S.L.; Lendl, C.; Trehu, A.M.; Henstock, T.J.; Levander, A.; Holl, J.E.; Meltzer, A.S.; Luetgert, J.H.; Mooney, W.D.

    1996-01-01

    Three seismic refraction-reflection profiles, part of the Mendocino triple junction seismic experiment, allow us to compare and contrast crust and upper mantle of the North American margin before and after it is modified by passage of the Mendocino triple junction. Upper crustal velocity models reveal an asymmetric Great Valley basin overlying Sierran or ophiolitic rocks at the latitude of Fort Bragg, California, and overlying Sierran or Klamath rocks near Redding, California. In addition, the upper crustal velocity structure indicates that Franciscan rocks underlie the Klamath terrane east of Eureka, California. The Franciscan complex is, on average, laterally homogeneous and is thickest in the triple junction region. North of the triple junction, the Gorda slab can be traced 150 km inboard from the Cascadia subduction zone. South of the triple junction, strong precritical reflections indicate partial melt and/or metamorphic fluids at the base of the crust or in the upper mantle. Breaks in these reflections are correlated with the Maacama and Bartlett Springs faults, suggesting that these faults extend at least to the mantle. We interpret our data to indicate tectonic thickening of the Franciscan complex in response to passage of the Mendocino triple junction and an associated thinning of these rocks south of the triple junction due to assimilation into melt triggered by upwelling asthenosphere. The region of thickened Franciscan complex overlies a zone of increased scattering, intrinsic attenuation, or both, resulting from mechanical mixing of lithologies and/or partial melt beneath the onshore projection of the Mendocino fracture zone. Our data reveal that we have crossed the southern edge of the Gorda slab and that this edge and/or the overlying North American crust may have fragmented because of the change in stress presented by the edge.

  5. Late Paleozoic-Early Mesozoic tectonic evolution of the Paleo-Asian Ocean: geochronological and geochemical evidence from granitoids in the northern margin of Alxa, Western China

    NASA Astrophysics Data System (ADS)

    Sha, Xin; Wang, Jinrong; Chen, Wanfeng; Liu, Zheng; Zhai, Xinwei; Ma, Jinlong; Wang, Shuhua

    2018-03-01

    The Paleo-Asian Ocean (Southern Mongolian Ocean) ophiolitic belts and massive granitoids are exposed in the Alxa block, in response to oceanic subduction processes. In this work, we report petrographic, geochemical, and zircon U-Pb age data of some granitoid intrusions from the northern Alxa. Zircon U-Pb dating for the quartz diorite, tonalite, monzogranite, and biotite granite yielded weighted mean 206Pb/238U ages of 302±9.2 Ma, 246.5±4.6 Ma, 235±4.4 Ma, and 229.5±5.6 Ma, respectively. The quartz diorites ( 302 Ma) exhibit geochemical similarities to adakites, likely derived from partial melting of the initially subducted Chaganchulu back-arc oceanic slab. The tonalites ( 246.5 Ma) display geochemical affinities of I-type granites. They were probably derived by fractional crystallization of the modified lithospheric mantle-derived basaltic magmas in a volcanic arc setting. The monzogranites ( 235 Ma) are characterized by low Al2O3, but high Y and Yb with notably negative Eu anomalies. In contrast, the biotite granites ( 229.5 Ma) show high Al2O3 but low Y and Yb with steep HREE patterns and the absence of negative Eu anomalies. Elemental data suggested that the biotite granites were likely derived from a thickened lower crust, but the monzogranites originated from a thin crust. Our data suggested that the initial subduction of the Chaganchulu oceanic slab towards the Alxa block occurred at 302 Ma. This subduction process continued to the Early Triassic ( 246 Ma) and the basin was finally closed before the Middle Triassic ( 235 Ma). Subsequently, the break-off of the subducted slab triggered asthenosphere upwelling (240-230 Ma).

  6. How mantle slabs drive plate tectonics.

    PubMed

    Conrad, Clinton P; Lithgow-Bertelloni, Carolina

    2002-10-04

    The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction.

  7. Plate tectonic reconstruction of the northeast Eurasian margin and Alaska since 50 Ma using subducted slab constraints

    NASA Astrophysics Data System (ADS)

    Wu, J. E.; Suppe, J.; Chen, Y. W.

    2016-12-01

    Seismic tomographic studies have revealed a swath of flat slab anomalies in the mantle transition zone at 410 to 660 km depths under Japan, Korea and NE China that continue northwards at deeper depths under the Russian Far East. These slab anomalies are remarkable because they appear to be continuous from their western edge far inland (>2000 km) under the NE Eurasian margin to the present-day NW Pacific subduction zones, which suggests they are Pacific slabs that were subducted in the Cenozoic. Other studies have proposed that some of these slabs were subducted at an ancient subduction zone during the Mesozoic or earlier. Here we discuss the fate of these slabs and their implications for the plate tectonic reconstruction of the NW Pacific margin along NE Asia and Alaska. We present both new and recently published slab mapping (Wu et al., 2016; JGR Solid Earth) including 30 major and minor slabs mapped in 3D from MITP08 global seismic tomography. We unfolded our mapped slabs to a spherical Earth model to estimate their pre-subduction size, shape and locations. The slab constraints were input into GPlates software to constrain a new regional NW Pacific plate tectonic reconstruction in the Cenozoic. Mapped slabs included the Marianas, Izu-Bonin, Japan and Kuril slabs, the Philippine Sea slabs and Aleutian slabs under the Bering Sea. Our mapped western Pacific slabs between the southernmost Izu-Bonin trench and the western Aleutians had unfolded E-W lengths of 3400 to 4900 km. Our plate model shows that these slabs are best reconstructed as Pacific slabs that were subducted in the Cenozoic and account for fast Pacific subduction along the NE Eurasian margin since plate reorganization at 50 Ma. Our mapped northern Kuril slab edge near the western Aleutians and a southern edge at the southernmost Izu-Bonin trench are roughly east-west and consistent with the orientations of Pacific absolute motions since 50 Ma. We interpret these long E-W slab edges as STEP fault-type transforms (i.e. lithospheric tears that progressively formed during subduction). We further discuss our plate model against the opening of the NW Pacific marginal basins in the Cenozoic, including the Japan Sea, Kuril Basin and Okhotsk Sea.

  8. Stress regime in the Philippine Sea slab beneath Kanto, Japan

    NASA Astrophysics Data System (ADS)

    Nakajima, Junichi; Hasegawa, Akira; Hirose, Fuyuki

    2011-08-01

    We determine the focal mechanisms of earthquakes within the Philippine Sea slab beneath the Tokyo metropolitan area, and perform stress tensor inversions to investigate the detailed stress field within the slab. The results show a characteristic spatial variation in earthquake-generating stress. Slab stress in northeastern part of the PHS slab is characterized by down-dip tension (DDT), except for the uppermost tip of the seismic portion of the slab where down-dip compression (DDC) stress is dominant. We interpret that DDT is caused by the net slab pull and DDC is attributable to local resistance to subduction at the tip of the slab. In southwestern part of the PHS slab, σ1 and σ3 are generally rotated oblique to the dip of the slab, suggesting that earthquakes occur under stress conditions of neither DDC nor DDT. The rotations in σ1 and σ3 may be related to stress accumulation by the slip deficit along the asperity of the 1923 Kanto earthquake (M7.9).

  9. Micromechanical Characterization and Texture Analysis of Direct Cast Titanium Alloys Strips

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This research was conducted to determine a post-processing technique to optimize mechanical and material properties of a number of Titanium based alloys and aluminides processed via Melt Overflow Solidification Technique (MORST). This technique was developed by NASA for the development of thin sheet titanium and titanium aluminides used in high temperature applications. The materials investigated in this study included conventional titanium alloy strips and foils, Ti-1100, Ti-24Al-11Nb (Alpha-2), and Ti-48Al-2Ta (Gamma). The methodology used included micro-characterization, heat-treatment, mechanical processing and mechanical testing. Characterization techniques included optical, electron microscopy, and x-ray texture analysis. The processing included heat-treatment and mechanical deformation through cold rolling. The initial as-cast materials were evaluated for their microstructure and mechanical properties. Different heat-treatment and rolling steps were chosen to process these materials. The properties were evaluated further and a processing relationship was established in order to obtain an optimum processing condition. The results showed that the as-cast material exhibited a Widmanstatten (fine grain) microstructure that developed into a microstructure with larger grains through processing steps. The texture intensity showed little change for all processing performed in this investigation.

  10. Formation Mechanism of Surface Crack in Low Pressure Casting of A360 Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Shan-Guang; Cao, Fu-Yang; Ying, Tao; Zhao, Xin-Yi; Liu, Jing-Shun; Shen, Hong-Xian; Guo, Shu; Sun, Jian-Fei

    2017-12-01

    A surface crack defect is normally found in low pressure castings of Al alloy with a sudden contraction structure. To further understand the formation mechanism of the defect, the mold filling process is simulated by a two-phase flow model. The experimental results indicate that the main reason for the defect deformation is the mismatching between the height of liquid surface in the mold and pressure in the crucible. In the case of filling, a sudden contraction structure with an area ratio smaller than 0.5 is obtained, and the velocity of the liquid front increases dramatically with the influence of inertia. Meanwhile, the pressurizing speed in the crucible remains unchanged, resulting in the pressure not being able to support the height of the liquid level. Then the liquid metal flows back to the crucible and forms a relatively thin layer solidification shell on the mold wall. With the increasing pressure in the crucible, the liquid level rises again, engulfing the shell and leading to a surface crack. As the filling velocity is characterized by the damping oscillations, surface cracks will form at different heights. The results shed light on designing a suitable pressurizing speed for the low pressure casting process.

  11. Investigation on the Effect of Mold Constraints and Cooling Rate on Residual Stress During the Sand-Casting Process of 1086 Steel by Employing a Thermomechanical Model

    NASA Astrophysics Data System (ADS)

    Baghani, Amir; Davami, Parviz; Varahram, Naser; Shabani, Mohsen Ostad

    2014-06-01

    In this study, the effects of mold constraints and cooling rate on residual stress were analyzed during the shaped casting process. For this purpose, an H-shaped sample was designed in which the contraction of its middle portion is highly restricted by the mold during the cooling process. The effects of an increasing cooling rate combined with mold constraints were analyzed by reducing the thickness of the middle portion in the second sample. A three-dimensional coupled temperature-displacement analysis was performed in finite-element code ABAQUS to simulate residual stress distribution, and then numerical results were verified by the hole-drilling strain-gauge method. It was concluded that the mold constraints have a greater effect on the values of residual stress than the cooling rate (thin section) in steel sand casting. Increasing the cooling rate would increase the amount of residual stress, only in the presence of mold constraints. It is also suggested that employing the elastic-plastic stress model for the sand mold will satisfy the experimental results and avoid exaggerated values of residual stress in simulation.

  12. Computational Design of a Novel Medium-Carbon, Low-Alloy Steel Microalloyed with Niobium

    NASA Astrophysics Data System (ADS)

    Javaheri, Vahid; Nyyssönen, Tuomo; Grande, Bjørnar; Porter, David

    2018-04-01

    The design of a new steel with specific properties is always challenging owing to the complex interactions of many variables. In this work, this challenge is dealt with by combining metallurgical principles with computational thermodynamics and kinetics to design a novel steel composition suitable for thermomechanical processing and induction heat treatment to achieve a hardness level in excess of 600 HV with the potential for good fracture toughness. CALPHAD-based packages for the thermodynamics and kinetics of phase transformations and diffusion, namely Thermo-Calc® and JMatPro®, have been combined with an interdendritic segregation tool (IDS) to optimize the contents of chromium, molybdenum and niobium in a proposed medium-carbon low-manganese steel composition. Important factors taken into account in the modeling and optimization were hardenability and as-quenched hardness, grain refinement and alloying cost. For further investigations and verification, the designed composition, i.e., in wt.% 0.40C, 0.20Si, 0.25Mn, 0.90Cr, 0.50Mo, was cast with two nominal levels of Nb: 0 and 0.012 wt.%. The results showed that an addition of Nb decreases the austenite grain size during casting and after slab reheating prior to hot rolling. Validation experiments showed that the predicted properties, i.e., hardness, hardenability and level of segregation, for the designed composition were realistic. It is also demonstrated that the applied procedure could be useful in reducing the number of experiments required for developing compositions for other new steels.

  13. Lateral evolution of the deep crustal structure of the Lesser Antilles Island arc from wide-angle seismic modelling.

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, F.; Laurencin, M.; Marcaillou, B.; Graindorge, D.; Evain, M.; Lebrun, J. F.

    2016-12-01

    One of the goals of the Antithesis cruises (2013 and 2016) was investigating the deep structure of the Lesser Antilles subduction zone in order to: 1) constrain the possible along-strike variations of deep margin structures and slab geometry, 2) assess the nature of the crust and 3) discuss the potential impact of these structures on seismic hazard. Four combined wide-angle and multichannel seismic profiles were acquired between Barbuda and the Virgin Islands using 66 ocean bottom seismometers, a 4.5 km digital streamer and a 7200 cu inch seismic source. Along every line, we performed forward modelling of the wide-angle seismic data, gravity models and synthetic data calculations. The 5-7-km-thick subducting Atlantic oceanic plate is modelled with a single layer along every profile. The sedimentary prism fill is globally thin with maximal 5 km thick and 20-30 km wide. The 18-km-thick Caribbean crust is subdivided in 2 or 3 layers interpreted, from top to bottom, as following. A 2 to 4 km thick upper layer with velocity ranging from 2.5 to 3.5 km/s possibly consists of consolidate sediments or a carbonate platform. The underlying 4 to 6 km thick layer, with velocity ranging from 4.7 to 6.15 km/s might correspond to volcanic products. The lower 15 km thick lower crustal layer shows velocity up to 7.4 km/s, typical of basal velocities in oceanic crust. The structure and velocity model is thus closely consistent with a possibly overthickened oceanic crust. Our southernmost model, offshore of Barbuda, reveal a general crust structure and slab geometry which appear very to those described South of Guadeloupe along a line proposed by Kopp et al. (2011). It suggests an overall homogeneity for these structural features within the central segment of the Lesser Antilles (Martinique - Antigua). When the overall structure of the Caribbean plate is stable, the deep structure of the frontal margin and slab geometry is evolving from south to north. The wideness and thickness of the prism decrease toward the north as a consequence of the presence of blocking ridges and less sediment inputs. Frontal bending of the slab is also decreasing toward the north leading to a less steep slab within the first 30 kilometers as a consequence of increasing obliquity of subduction in the northern Antilles. This phenomena may increase the wideness of a seismogenic zone?

  14. Centrifugal casting of ZA8 zinc alloy and composite A356/silicon carbide: Study and modeling of phases' and particles' segregation

    NASA Astrophysics Data System (ADS)

    Balout, Bahaa

    Centrifugation is a casting technology that allows the production of cylindrical and graduated parts with different mechanical properties through the section. The need for materials with good quality and specific mechanical properties has been driven this technology in order to produce different types of materials such as zinc alloys and graduated metal matrix composites reinforced by hard and wear resistant particles. The goal of this research project is to study and model the eutectic macrosegregation, the solidification speed, and the speeds of solidification fronts during centrifugal casting of ZA8 zinc-aluminum alloy in order to improve the part quality and increase its strength and field reliability. Moreover, the segregation of the particles during centrifugal casting of an aluminum matrix composite reinforced by silicon carbide particles (A356/SiC) is also studied to improve and control the graduation of the parts. The cooling rate, the speed, acceleration/deceleration, displacement, and segregation of the particles across the section will be modeled by discretization of Stokes' law in time in order to take into consideration the change in the centrifugal radius and melt viscosity during cooling process. This study will allow the control of the graduation degree of particles across the section in order to improve the properties and wear resistance of the composite. This composite can be used in systems where friction is critical and load is high (reinforcements of parts for the cylinders of pneumatic systems). The results show that the maximum macrosegregation zone of the eutectic across the casting section corresponds to the last point of solidification. The eutectic macrosegregation produced during centrifugal casting of thin walled part is a normal segregation which varies depending on the solidification speed and the ratio between the speeds of solidification fronts. On the other hand, it was found that the position and volume fraction of the particles on the outer/inner casting surface and across the section varies whether the viscosity of the liquid metal used and the centrifugal radius are considered constant or variable during the modeling. Modeling the particles' segregation while discretizing, in time, the particles' velocities gives more consistent results compared to those obtained experimentally. Key-words: centrifugal casting, composite, macrosegregation, solidification.

  15. Biomimetic membrane arrays on cast hydrogel supports.

    PubMed

    Roerdink Lander, Monique; Ibragimova, Sania; Rein, Christian; Vogel, Jörg; Stibius, Karin; Geschke, Oliver; Perry, Mark; Hélix-Nielsen, Claus

    2011-06-07

    Lipid bilayers are intrinsically fragile and require mechanical support in technical applications based on biomimetic membranes. Tethering the lipid bilayer membranes to solid substrates, either directly through covalent or ionic substrate-lipid links or indirectly on substrate-supported cushions, provides mechanical support but at the cost of small molecule transport through the membrane-support sandwich. To stabilize biomimetic membranes while allowing transport through a membrane-support sandwich, we have investigated the feasibility of using an ethylene tetrafluoroethylene (ETFE)/hydrogel sandwich as the support. The sandwich is realized as a perforated surface-treated ETFE film onto which a hydrogel composite support structure is cast. We report a simple method to prepare arrays of lipid bilayer membranes with low intrinsic electrical conductance on the highly permeable, self-supporting ETFE/hydrogel sandwiches. We demonstrate how the ETFE/hydrogel sandwich support promotes rapid self-thinning of lipid bilayers suitable for hosting membrane-spanning proteins.

  16. Low cost silicon solar array project silicon materials task: Establishment of the feasibility of a process capable of low-cost, high volume production of silane (step 1) and the pyrolysis of silane to semiconductor-grade silicon (step 2)

    NASA Technical Reports Server (NTRS)

    Breneman, W. C.; Farrier, E. G.; Rexer, J.

    1977-01-01

    Extended operation of a small process-development unit routinely produced high quality silane in 97+% yield from dichlorosilane. The production rate was consistent with design loadings for the fractionating column and for the redistribution reactor. A glass fluid-bed reactor was constructed for room temperature operation. The behavior of a bed of silcon particles was observed as a function of various feedstocks, component configurations, and operating conditions. For operating modes other than spouting, the bed behaved in an erratic and unstable manner. A method was developed for casting molten silicon powder into crack-free solid pellets for process evaluation. The silicon powder was melted and cast into thin walled quartz tubes that sacrificially broke on cooling.

  17. Reinforcement of Existing Cast-Iron Structural Elements by Means of Fiber Reinforced Composites / Wzmacnianie Istniejących, Żeliwnych Elementów Konstrukcyjnych za Pomocą Włóknokompozytów

    NASA Astrophysics Data System (ADS)

    Marcinowski, Jakub; Różycki, Zbigniew

    2016-03-01

    The paperdeals with tubular, cast-iron columns which should be reinforced due to the planned new structural function of these elements. According to the requirements of the monument conservator the general appearance of columns should not be altered significantly. Reinforcement with an external, thin coating (sleeve or jacket) made of composite (carbon fibre reinforced polymer - CFRP) was proposed. Details of the proposedtechniquewerepresented. The reinforcementeffect was verifiedin destructivetestsperformed on two columns without reinforcement and the two other columns reinforced with the chosentechnique. Due to the expected very high load capacity of the axially loaded column, the test rig was designed in such a manner that the force could be applied on big eccentricity. For this purpose a specialbase was prepared(comp. Fig. 1). Destructivetests have confirmed the high effectiveness of the adopted strengthening technique.

  18. Performance of CAD/CAM fabricated fiber posts in oval-shaped root canals: An in vitro study.

    PubMed

    Tsintsadze, Nino; Juloski, Jelena; Carrabba, Michele; Tricarico, Marella; Goracci, Cecilia; Vichi, Alessandro; Ferrari, Marco; Grandini, Simone

    2017-10-01

    To assess the push-out strength, the cement layer thickness and the interfacial nanoleakage of prefabricated fiber posts, CAD/CAM fiber posts and metal cast posts cemented into oval-shaped root canals. Oval-shaped post spaces were prepared in 30 single-rooted premolars. Roots were randomly assigned to three groups (n=10), according to the post type to be inserted: Group 1: Prefabricated fiber post (D.T. Light-Post X-RO Illusion); Group 2: Cast metal post; Group 3: CAD/CAM-fabricated fiber post (experimental fiber blocks). In Group 3, post spaces were sprayed with scan powder (VITA), scanned with an inEos 4.2 scanner, and fiber posts were milled using an inLab MC XL CAD/CAM milling unit. All posts were cemented using Gradia Core dual-cure resin cement in combination with Gradia core self-etching bond (GC). After 24 hours, the specimens were sectioned perpendicular to the long axis into six 1 mm-thick sections, which were differentiated by the root level. Sections from six roots per group were used to measure the cement thickness and subsequently for the thin-slice push-out test, whereas the sections from the remaining four teeth were assigned to interfacial nanoleakage test. The cement thickness around the posts was measured in micrometers (µm) on the digital images acquired with a digital microscope using the Digimizer software. Thin-slice push-out test was conducted using a universal testing machine at the crosshead speed of 0.5 mm/minute and the bond strength was expressed in megaPascals (MPa). The interfacial nanoleakage was observed under light microscope and quantified by scoring the depth of silver nitrate penetration along the post-cement-dentin interfaces. The obtained results were statistically analyzed by Kruskal-Wallis ANOVA, followed by the Dunn's Multiple Range test for post hoc comparisons. The level of significance was set at P< 0.05. Statistically significant differences were found among the groups in push-out bond strength, cement thickness and interfacial nanoleakage (P< 0.05). CAD/CAM-fabricated fiber posts achieved retention that was comparable to that of cast metal posts and significantly higher than that of prefabricated fiber posts. The cement layer thickness around CAD/CAM-fabricated fiber posts was significantly lower than around prefabricated fiber posts, but higher than that around cast metal posts. Root level was not a significant factor for push-out strength in any of the groups, whereas it significantly affected cement layer thickness only in the prefabricated fiber post group. No differences were observed in interfacial nanoleakage between CAD/CAM fabricated and prefabricated fiber posts, while nanoleakage recorded in cast metal posts was significantly lower. CAD/CAM fabricated fiber posts could represent a valid alternative to traditionally used posts in the restoration of endodontically-treated teeth with oval or wide root canals, offering the advantages of better esthetics, retention, and cement thickness values that are comparable to cast post and cores.

  19. Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9)

    PubMed Central

    Zhao, Dapeng; Fujisawa, Moeto; Toyokuni, Genti

    2017-01-01

    On 30 May 2015 an isolated deep earthquake (~670 km, Mw 7.9) occurred to the west of the Bonin Islands. To clarify its causal mechanism and its relationship to the subducting Pacific slab, we determined a detailed P-wave tomography of the deep earthquake source zone using a large number of arrival-time data. Our results show that this large deep event occurred within the subducting Pacific slab which is penetrating into the lower mantle. In the Izu-Bonin region, the Pacific slab is split at ~28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north the slab becomes stagnant in the mantle transition zone, whereas in the south the slab is directly penetrating into the lower mantle. This deep earthquake was caused by joint effects of several factors, including the Pacific slab’s fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, and complex interactions between the slab and the ambient mantle. PMID:28295018

  20. Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9)

    NASA Astrophysics Data System (ADS)

    Zhao, Dapeng; Fujisawa, Moeto; Toyokuni, Genti

    2017-03-01

    On 30 May 2015 an isolated deep earthquake (~670 km, Mw 7.9) occurred to the west of the Bonin Islands. To clarify its causal mechanism and its relationship to the subducting Pacific slab, we determined a detailed P-wave tomography of the deep earthquake source zone using a large number of arrival-time data. Our results show that this large deep event occurred within the subducting Pacific slab which is penetrating into the lower mantle. In the Izu-Bonin region, the Pacific slab is split at ~28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north the slab becomes stagnant in the mantle transition zone, whereas in the south the slab is directly penetrating into the lower mantle. This deep earthquake was caused by joint effects of several factors, including the Pacific slab’s fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, and complex interactions between the slab and the ambient mantle.

  1. Low-Impedance Compact Modulators Capable of Generating Intense Ultra-fast Rising Nanosecond Waveforms

    DTIC Science & Technology

    2006-10-31

    spark gap is shown in Fig. 1. The Blumleins were constructed from copper plates separated by laminated layered Kapton (polyimide) dielectrics. Scaling... convolution factor. The diamond/GaAs heterojunction response is limited to a very thin layer across the cross section between amorphic diamond and GaAs...were fastened to electrode mounts and passed through the cast material of the base before it hardened. A thick kapton laminate 1.2 cm wide separated

  2. Microstructure of Haynes® 282® Superalloy after Vacuum Induction Melting and Investment Casting of Thin-Walled Components.

    PubMed

    Matysiak, Hubert; Zagorska, Malgorzata; Andersson, Joel; Balkowiec, Alicja; Cygan, Rafal; Rasinski, Marcin; Pisarek, Marcin; Andrzejczuk, Mariusz; Kubiak, Krzysztof; Kurzydlowski, Krzysztof J

    2013-11-01

    The aim of this work was to characterize the microstructure of the as-cast Haynes ® 282 ® alloy. Observations and analyses were carried out using techniques such as X-ray diffraction (XRD), light microscopy (LM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray spectroscopy (EDS), wave length dispersive X-ray spectroscopy (WDS), auger electron spectroscopy (AES) and electron energy-loss spectrometry (EELS). The phases identified in the as-cast alloy include: γ (gamma matrix), γ' (matrix strengthening phase), (TiMoCr)C (primary carbide), TiN (primary nitride), σ (sigma-TCP phase), (TiMo)₂SC (carbosulphide) and a lamellar constituent consisting of molybdenum and chromium rich secondary carbide phase together with γ phase. Within the dendrites the γ' appears mostly in the form of spherical, nanometric precipitates (74 nm), while coarser (113 nm) cubic γ' precipitates are present in the interdendritic areas. Volume fraction content of the γ' precipitates in the dendrites and interdendritic areas are 9.6% and 8.5%, respectively. Primary nitrides metallic nitrides (MN), are homogeneously dispersed in the as-cast microstructure, while primary carbides metallic carbides (MC), preferentially precipitate in interdendritic areas. Such preference is also observed in the case of globular σ phase. Lamellar constituents characterized as secondary carbides/γ phases were together with (TiMo)₂SC phase always observed adjacent to σ phase precipitates. Crystallographic relations were established in-between the MC, σ, secondary carbides and γ/γ' matrix.

  3. Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting

    PubMed Central

    Mun, Jiwon; Ju, Jaehyung; Thurman, James

    2016-01-01

    One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique. PMID:27214495

  4. Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting.

    PubMed

    Mun, Jiwon; Ju, Jaehyung; Thurman, James

    2016-05-14

    One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique.

  5. Thermoelectric properties of bismuth telluride nanoplate thin films determined using combined infrared spectroscopy and first-principles calculation

    NASA Astrophysics Data System (ADS)

    Wada, Kodai; Tomita, Koji; Takashiri, Masayuki

    2018-06-01

    The thermoelectric properties of bismuth telluride (Bi2Te3) nanoplate thin films were estimated using combined infrared spectroscopy and first-principles calculation, followed by comparing the estimated properties with those obtained using the standard electrical probing method. Hexagonal single-crystalline Bi2Te3 nanoplates were first prepared using solvothermal synthesis, followed by preparing Bi2Te3 nanoplate thin films using the drop-casting technique. The nanoplates were joined by thermally annealing them at 250 °C in Ar (95%)–H2 (5%) gas (atmospheric pressure). The electronic transport properties were estimated by infrared spectroscopy using the Drude model, with the effective mass being determined from the band structure using first-principles calculations based on the density functional theory. The electrical conductivity and Seebeck coefficient obtained using the combined analysis were higher than those obtained using the standard electrical probing method, probably because the contact resistance between the nanoplates was excluded from the estimation procedure of the combined analysis method.

  6. Experimental sensitivity analysis of subsoil-slab behaviour regarding degree of fibre-concrete slab reinforcement

    NASA Astrophysics Data System (ADS)

    Hrubesova, E.; Lahuta, H.; Mohyla, M.; Quang, T. B.; Phi, N. D.

    2018-04-01

    The paper is focused on the sensitivity analysis of behaviour of the subsoil – foundation system as regards the variant properties of fibre-concrete slab resulting into different relative stiffness of the whole cooperating system. The character of slab and its properties are very important for the character of external load transfer, but the character of subsoil cannot be neglected either because it determines the stress-strain behaviour of the all system and consequently the bearing capacity of structure. The sensitivity analysis was carried out based on experimental results, which include both the stress values in soil below the foundation structure and settlements of structure, characterized by different quantity of fibres in it. Flat dynamometers GEOKON were used for the stress measurements below the observed slab, the strains inside slab were registered by tensometers, the settlements were monitored geodetically. The paper is focused on the comparison of soil stresses below the slab for different quantity of fibres in structure. The results obtained from the experimental stand can contribute to more objective knowledge of soil – slab interaction, to the evaluation of real carrying capacity of the slab, to the calibration of corresponding numerical models, to the optimization of quantity of fibres in the slab, and finally, to higher safety and more economical design of slab.

  7. Tomographic Signatures of Ridge Subduction Along Western North America: Implications for Northern Cordillera Plate Tectonics Since the Cretaceous

    NASA Astrophysics Data System (ADS)

    Lin, Y. A.; Wu, J.

    2017-12-01

    A number of northern Cordillera plate reconstructions have predicted subduction of the Kula-Farallon ridge and possibly other ridges along western North America after the late Mesozoic. The timing and location of these predicted ridge subduction events have been controversial, with implications for rapid northward terrane motions (i.e. the Baja-British Columbia hypothesis). In contrast, Sigloch and Mihalynuk (2013) proposed an archipelago-style plate model that placed one or several Jurassic-Cretaceous ocean basins between the Farallon plate and western North America, which apparently would preclude any sustained Kula-Farallon ridge subduction along western North America. In this study we test the viability of these models by mapping and unfolding subducted slabs from MITP08 tomography (Li et al., 2008) between Alaska and California within the upper 1500 km mantle. Our aim was to locate significant slab gaps that might be related to ancient ridge subduction `slab windows'. Tomographic velocities were extracted and displayed on our mapped slabs following the methods of Wu et al. (2016) to assist with the identification of slab gaps or windows. Near Alaska, we mapped the Aleutian slab and a detached slab that was previously identified as the `K slab' by Sigloch and Mihalynuk (2013). When unfolded these slabs apparently account for Pacific-Kula convergence towards Alaska since the late Cretaceous. We did not find evidence for a ridge subduction-related slab gap under the Alaskan region. Between northern Canada to California, we mapped the Juan de Fuca slab and several detached slabs at 1000 to 1500 km depths that were previously identified by Sigloch and Mihalynuk (2013). The velocity perturbations within our mapped slabs revealed slower P-wavespeed `slab gaps' under southernmost Alaska, Yukon, and British Columbia between the mapped Kula and Juan de Fuca plate. We did not find evidence of the hypothesized Resurrection plate. We compare our mapped slab gaps to predicted slab window geometries from previous studies and discuss their implications for plate tectonic reconstructions of the northern Cordillera and surrounding area.

  8. Dense and Dry Mantle Between the Continental Crust and the Oceanic Slab: Folding, Faulting and Tearing in the Slab in the Pampean Flat Slab, Southern Central Andes Evidenced by 3D Body Wave Tomography Along the 2015 Illapel, Chile Earthquake Rupture Area

    NASA Astrophysics Data System (ADS)

    Comte, D.; Farías, M.; Roecker, S. W.; Brandon, M. T.

    2017-12-01

    The 2015 Illapel interplate earthquake Mw 8.4 generated a large amount of aftershocks that was recorded by the Chile-Illapel Aftershock Experiment (CHILLAX) during a year after the mainshock. Using this database, along with previous seismological campaigns, an improved 3D body wave tomographic image was obtained, allowing us to visualize first-order lithospheric discontinuities. This new analysis confirms not only the presence of this dense block, but also that the Benioff zone extends with a 30° dip even below the 100 km depth, where the Nazca plate has been interpreted to be flat. Recent results of seismic anisotropy show that the oceanic plate has been detached at depths greater than 300 km. We propose that: i) The dry, cold mantle beneath the continental crust is an entrapped mantle, cooled by the slab flattening, while the western part would be hydrated by slab-derived fluid; ii) The Nazca plate would be faulted and is now subducting with a normal dip beneath the flattened slab segment. Considering that the slab segment is detached from deeper part of the subducted plate, slab pull on the flat segment would be reduced, decreasing its eastward advance. In the western side, the flat segment of the slab has been observed to be slightly folded. We propose that the current normal subduction is related to the slab break-off resulting from the loss of a slab-pull force, producing the accretion of the slab beneath the dry and cold mantle. Considering that the flat slab segment does not occur at depths shallower than 100 km, rollback of the slab is not expected. In turn, suction forces would have induced the shortening in the flat segment considering its eastward slowing down due to slab break-off, thus producing a breakthrough faulting. This proposition implies that the underplated flat slab segment, along with the overlying dense and dry mantle may be delaminated by gravitional instabilities and ablative subduction effects.

  9. Polymer mediated layer-by-layer assembly of different shaped gold nanoparticles.

    PubMed

    Budy, Stephen M; Hamilton, Desmond J; Cai, Yuheng; Knowles, Michelle K; Reed, Scott M

    2017-02-01

    Gold nanoparticles (GNPs) have a wide range of properties with potential applications in electronics, optics, catalysis, and sensing. In order to demonstrate that dense, stable, and portable samples could be created for these applications, multiple layers of GNPs were assembled via drop casting on glass substrates by layer-by-layer (LBL) techniques. Two cationic polyelectrolytes, poly(diallyldimethylammonium chloride) and polyethyleneimine, one anionic polyelectrolyte, poly(sodium 4-styrene sulfonate), and one neutral polymer, polyvinylpyrrolidone, were combined with four different shapes of GNPs (spherical, rod, triangular prismatic, and octahedral) to prepare thin films. A subset of these polymer nanoparticle combinations were assembled into thin films. Synthesized GNPs were characterized via dynamic light scattering, UV-vis spectroscopy, and transmission electron microscopy and the LBL thin films were characterized using UV-vis spectroscopy and atomic force microscopy. Sensing applications of the nanoparticles in solution and thin films were tested by monitoring the localized surface plasmon resonance of the GNPs. LBL thin films were prepared ranging from 25 to 100 layers with optical densities at plasmon from 0.5 to 3.0. Sensitivity in solutions ranged from 14 to 1002nm/refractive index units (RIU) and films ranged from 18.8 to 135.1nm/RIU suggesting reduced access to the GNPs within the films. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Long-life slab replacement concrete.

    DOT National Transportation Integrated Search

    2015-03-01

    This research was initiated following reports of high incidence of cracking on FDOT concrete pavement replacement : slab projects. Field slabs were instrumented for data acquisition from high-early-strength concrete pavement : replacement slabs place...

  11. Receiver Functions Imaging of the Moho and LAB in the Southern Caribbean plate boundary and Venezuela

    NASA Astrophysics Data System (ADS)

    Masy, J.; Levander, A.; Niu, F.

    2011-12-01

    We have made teleseismic Ps and Sp receiver functions from data recorded from 2003 to 2009 by the permanent national seismic network of Venezuela, the BOLIVAR (Broadband Onshore-offshore Lithospheric Investigation of Venezuela and the Antilles arc Region) and WAVE (Western Array for Venezuela) experiments. The receiver functions show rapid variations in Moho and lithosphere-asthenosphere boundary (LAB) depths both across and along the southern Caribbean plate boundary region. We used a total of 69 events with Mw > 6 occurring at epicentral distances from 30° to 90° for the Ps receiver functions, and 43 events with Mw > 5.7 from 55° to 85° to make Sp receiver functions. For CCP stacking we constructed a 3D velocity model from numerous active source profiles (Schmitz et al., 2001; Bezada et al., 2007; Clark et al., 2008; Guedez, 2008; Magnani et al., 2009), from finite-frequency P wave upper mantle tomography model of Bezada et al., (2010) and the Rayleigh wave tomography model of Miller et al., (2009). The Moho ranges in depth from ~25 km beneath the Caribbean Large Igneous Provinces to ~55 km beneath the Mérida Andes in western Venezuela. These results are consistent with previous receiver functions studies (Niu et al., 2007) and the available active source profiles. Beneath the Maracaibo Block in northwestern Venezuela, we observe a strong positive signal at 40 to 60 km depth dipping ~6° towards the continent. We interpret this as the Moho of the Caribbean slab subducting beneath northernmost South America from the west. Beneath northern Colombia and northwestern Venezuela the top of this slab has been previously inferred from intermediate depth seismicity (Malavé and Suarez, 1995), which indicates a slab dipping between 20° - 30° beneath Lake Maracaibo. Our results could indicate that the slab is tearing beneath Lake Maracaibo as suggested previously by Masy et al. (2011). The deeper (> 100 km depth) part of the slab has been imaged using P-wave tomography (Bezada et al, 2010). Like others we attribute the uplift of the Mérida Andes to flat Caribbean slab subduction (for example Kellogg and Bonini, 1982). In central Venezuela beneath the Cordillera de la Costa we observe a positive signal shallower than the Moho at <30 km depth beneath the entire range. We interpret this as a detachment surface beneath Caribbean & arc terranes thrust onto the SA margin (Bezada et al., 2010). The lithosphere-asthenosphere boundary (LAB) beneath the Mérida Andes is shallow, ~65km depth, and parallels the range. In the plate boundary region under the Cordillera de la Costa the lithosphere is also thin, ~65km, beneath the Cariaco basin the lithosphere thickens to 85 km. In the far east under Serranía del Interior the lithosphere is ~75 km. Cratonic lithosphere thickness varies from 85 to 100 km.

  12. The Ophiolite Problem, Is It Really a Problem?

    NASA Astrophysics Data System (ADS)

    Casey, J. F.; Dewey, J. F.

    2009-12-01

    Ophiolites and ophiolite complexes have been recognized as having an oceanic affinity or origin since the classic work of Ian Gass in the 1950’s on the Troodos Complex. A problem has been that the term ophiolite has included a very diverse range of meanings from obscure slivers of mafic and ultramafic rocks of doubtful origin in orogenic belts to large obducted slabs with the full range (Coleman, 1972), from base to top, of lherzolite/ariegite, harzburgite, dunite, gabbro, sheeted dyke complex, pillow basalts, and sediments, commonly with a two-pyroxene mafic granulite as a thin aureole attached to the base of the complex. Large obducted ophiolite slabs are mainly early Ordovician and mid-Cretaceous. The principal enigma of these obducted slabs is that they clearly must have been generated by some form of organized sea-floor spreading/plate-accretion, such as may be envisioned for the oceanic ridges, yet the volcanics commonly have arc affinity (Miyashiro) with boninites (high-temperature/low-pressure, high Mg and Si andesites), which suggest a forearc origin. Our model hinges on the PT conditions under which boninites form. Many ophiolites have complexly-deformed associated assemblages that suggest fracture zone/transform geology, which in turn has led to models involving the nucleation of subduction zones on fracture zones/transforms. Hitherto, arc-related sea-floor-spreading has been considered to be either pre-arc (fore-arc boninites) or post-arc (classic Karig-style back arc basins that split arcs). We propose a new model with syn-arc boninites that involves a stable ridge/trench/trench triple junction, the ridge being between the two upper plates. The direction of subduction must be oblique with a different sense in the two subduction zones and the oblique subduction cannot be partitioned into trench orthogonal and parallel strike-slip components. As the ridge spreads, new oceanic lithosphere is created within the forearc, the arc and fore-arc lengthen significantly, and a syn-arc ophiolite complex is generated that ages along arc-strike; a distinctive diachronous boninite/arc volcanic stratigraphy develops. Dikes in the ophiolite are oblique to the trench as are magnetic anomalies in the “back-arc” basin. Boninites and high-mg andesites are generated in the fore-arc under the aqueous, low pressure/high temperature, regime at the ridge above the dehydrating slab or where a ridge subducts beneath the forearc. The mafic protolith, garnet/two pyroxene, aureole is generated in and sliced from the subducting slab and attached to the base of the overriding lithosphere at about 1000°C, ten to twelve million years from the ridge axis, where the SSZ ophiolite is about ten to twelve kilometers thick, at which thickness of the ophiolite is buffered by the subducting slab. Obduction of the SSZ ophiolite with its subjacent aureole occurs whenever the oceanic arc attempts subduction of a stable continental margin.

  13. Subducted Slab Dynamics: Toward Understanding the Causes of Slab Stagnation

    NASA Astrophysics Data System (ADS)

    King, S. D.; Frost, D. J.; Rubie, D. C.

    2013-12-01

    The evolution and dynamics of subducted slabs are controlled by a number of factors, including rheology and composition. The correlation of the transformations from olivine to wadslayite and ringwoodite to perovskite plus magnesiowüstite with the seismic velocity discontinuities at 410 and 660 km depth, along with the density changes have been extensively investigated in terms of their impact on slab dynamics. Owing to the relatively smaller changes in density extending over a broader depth range, the impact of the pyroxene-garnet system has received less attention. Recent experimental work has found that the majorite component in garnet--a product of the transition from pyroxene into garnet--is one of the slowest-diffusing components in Earth's mantle. At the relatively low temperatures of the slab, this slow diffusion inhibits the dissolution of pyroxene into garnet, so that the slab remains buoyant relative to the ambient mantle and stagnates. We present dynamic subduction calculations that illustrate the effect of the non-equilibrium pyroxene to garnet transition on slab dynamics. If the transition between equilibrium and non-equilibrium behavior is below 1000 K, we find no impact on slab dynamics. If the transition occurs at 1200 K, it is enough to cause the slab to thicken and stagnate in the transition zone for an extended period of time. Our analysis suggests that cold slabs should be more likely to stagnate in the transition zone and we will compare a global compilation of slab geometries with slab thermal structure to evaluate.

  14. FIDDLE: A Computer Code for Finite Difference Development of Linear Elasticity in Generalized Curvilinear Coordinates

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    2005-01-01

    A three-dimensional numerical solver based on finite-difference solution of three-dimensional elastodynamic equations in generalized curvilinear coordinates has been developed and used to generate data such as radial and tangential stresses over various gear component geometries under rotation. The geometries considered are an annulus, a thin annular disk, and a thin solid disk. The solution is based on first principles and does not involve lumped parameter or distributed parameter systems approach. The elastodynamic equations in the velocity-stress formulation that are considered here have been used in the solution of problems of geophysics where non-rotating Cartesian grids are considered. For arbitrary geometries, these equations along with the appropriate boundary conditions have been cast in generalized curvilinear coordinates in the present study.

  15. Growth of thin film containing high density ZnO nanorods with low temperature calcinated seed layer

    NASA Astrophysics Data System (ADS)

    Panda, Rudrashish; Samal, Rudranarayan; Khatua, Lizina; Das, Susanta Kumar

    2018-05-01

    In this work we demonstrate the growth of thin film containing high density ZnO nanorods by using drop casting of the seed layer calcinated at a low temperature of 132 °C. Chemical bath deposition (CBD) method is used to grow the nanorods. X-ray diffraction (XRD) analysis and Field Emission Scanning Electron Microscopy (FESEM) are performed for the structural and morphological characterizations of the nanorods. The average diameter and length of nanorods are found to be 33 nm and 270 nm respectively. The bandgap of the material is estimated to be 3.2 eV from the UV-Visible absorption spectroscopy. The reported method is much more cost-effective and can be used for growth of ZnO nanorods for various applications.

  16. Solutions to Three-Dimensional Thin-Layer Navier-Stokes Equations in Rotating Coordinates for Flow Through Turbomachinery

    NASA Technical Reports Server (NTRS)

    Ghosh, Amrit Raj

    1996-01-01

    The viscous, Navier-Stokes solver for turbomachinery applications, MSUTC has been modified to include the rotating frame formulation. The three-dimensional thin-layer Navier-Stokes equations have been cast in a rotating Cartesian frame enabling the freezing of grid motion. This also allows the flow-field associated with an isolated rotor to be viewed as a steady-state problem. Consequently, local time stepping can be used to accelerate convergence. The formulation is validated by running NASA's Rotor 67 as the test case. results are compared between the rotating frame code and the absolute frame code. The use of the rotating frame approach greatly enhances the performance of the code with respect to savings in computing time, without degradation of the solution.

  17. Picosecond time scale dynamics of short pulse laser-driven shocks in tin

    NASA Astrophysics Data System (ADS)

    Grigsby, W.; Bowes, B. T.; Dalton, D. A.; Bernstein, A. C.; Bless, S.; Downer, M. C.; Taleff, E.; Colvin, J.; Ditmire, T.

    2009-05-01

    The dynamics of high strain rate shock waves driven by a subnanosecond laser pulse in thin tin slabs have been investigated. These shocks, with pressure up to 1 Mbar, have been diagnosed with an 800 nm wavelength ultrafast laser pulse in a pump-probe configuration, which measured reflectivity and two-dimensional interferometry of the expanding rear surface. Time-resolved rear surface expansion data suggest that we reached pressures necessary to shock melt tin upon compression. Reflectivity measurements, however, show an anomalously high drop in the tin reflectivity for free standing foils, which can be attributed to microparticle formation at the back surface when the laser-driven shock releases.

  18. 0-6722 : spread prestressed concrete slab beam bridges.

    DOT National Transportation Integrated Search

    2014-08-01

    The Texas Department of Transportation uses : precast prestressed concrete slab beam bridges for : shorter-span bridges of approximately 3050 ft in : length. Conventional slab beam bridges have slab : beams placed immediately adjacent to one anoth...

  19. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding

    PubMed Central

    Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao

    2017-01-01

    A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting. PMID:28772519

  20. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding.

    PubMed

    Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao

    2017-02-10

    A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting.

Top