NASA Astrophysics Data System (ADS)
Hwang, Jaeyeon; Lee, Heon; Lee, Jong-Ho; Yoon, Kyung Joong; Kim, Hyoungchul; Hong, Jongsup; Son, Ji-Won
2015-01-01
To obtain La1-xSrxGa1-yMgyO3-δ (LSGM) thin films with the appropriate properties, pulsed-laser deposition (PLD) is employed, and specific considerations regarding control of the deposition parameters is investigated. It is demonstrated that with a target of stoichiometric composition, appropriate LSGM thin films cannot be produced because of the deviation of the composition from the target to the thin film. Only after adjusting the target composition an LSGM thin film with an appropriate composition and phase can be obtained. The optimized LSGM thin film possesses an electrical conductivity close to that of the bulk LSGM. In contrast, non-optimized thin films do not yield any measurable electrical conductivity. The impact of the optimization of the LSGM thin-film electrolyte on the cell performance is quite significant, in that a solid-oxide fuel cell (SOFC) with an optimized LSGM thin-film electrolyte produces a maximum power density of 1.1 W cm-2 at 600 °C, whereas an SOFC with a non-optimal LSGM thin-film electrolyte is not operable.
NASA Astrophysics Data System (ADS)
Compant La Fontaine, A.; Courtois, C.; Lefebvre, E.; Bourgade, J. L.; Landoas, O.; Thorp, K.; Stoeckl, C.
2013-12-01
The interaction of a high intensity laser pulse on the preplasma of a high-Z solid target produced by the pulse's pedestal generates high-energy electrons. These electrons subsequently penetrate inside the solid target and produce bremsstrahlung photons, generating an x-ray source which can be used for photonuclear studies or to radiograph high area density objects. The source characteristics are compared for targets with thin (20 μm) and thick (100 μm) Au foils on the Omega EP laser at Laboratory for Laser Energetics. Simulations using the particle-in-cell code CALDER show that for a 20 μm thickness Au target, electrons perform multiple round-trips in the target under the effect of the laser ponderomotive potential and the target electrostatic potential. These relativistic electrons have random transverse displacements, with respect to the target normal, attributed to electrostatic fluctuation fields. As a result, the x-ray spot size is increased by a factor 2 for thin target compared to thick targets, in agreement with experimental results. In addition, the computed doses agree with the measured ones provided that electron recirculation in the thin target is taken into account. A dose increase by a factor 1.7 is then computed by allowing for recirculation. In the 100 μm target case, on the other hand, this effect is found to be negligible.
NASA Astrophysics Data System (ADS)
Nilson, P. M.; Solodov, A. A.; Davies, J. R.; Theobald, W.; Mileham, C.; Stoeckl, C.; Begishev, I. A.; Zuegel, J. D.; Froula, D. H.; Betti, R.; Meyerhofer, D. D.
2015-11-01
Time-resolved K α spectroscopy measurements from high-intensity laser interactions with thin-foil solid targets are reviewed. Thin Cu foils were irradiated with 1-10 J, 1 ps pulses at focused intensities from 1018 to 1019 W cm-2. The experimental data show K α -emission pulse widths from 3 to 6 ps, increasing with laser intensity. The time-resolved K α -emission data are compared to a hot-electron transport and K α -production model that includes collisional electron-energy coupling, resistive heating, and electromagnetic field effects. The experimental data show good agreement with the model when a reduced ponderomotive scaling is used to describe the initial mean hot-electron energy over the relevant intensity range.
Nilson, P. M.; Solodov, A. A.; Davies, J. R.; ...
2015-09-25
Time-resolved K α spectroscopy measurements from high-intensity laser interactions with thin-foil solid targets are reviewed. Thin Cu foils were irradiated with 1- to 10-J, 1-ps pulses at focused intensities from 10 18 to 10 19 W/cm 2. The experimental data show K α-emission pulse widths from 3 to 6 ps, increasing with laser intensity. The time-resolved K α-emission data are compared to a hot-electron transport and K α-production model that includes collisional electron-energy coupling, resistive heating, and electromagnetic field effects. The experimental data show good agreement with the model when a reduced ponderomotive scaling is used to describe the initialmore » mean hot-electron energy over the relevant intensity range.« less
Analytical model for release calculations in solid thin-foils ISOL targets
NASA Astrophysics Data System (ADS)
Egoriti, L.; Boeckx, S.; Ghys, L.; Houngbo, D.; Popescu, L.
2016-10-01
A detailed analytical model has been developed to simulate isotope-release curves from thin-foils ISOL targets. It involves the separate modeling of diffusion and effusion inside the target. The former has been modeled using both first and second Fick's law. The latter, effusion from the surface of the target material to the end of the ionizer, was simulated with the Monte Carlo code MolFlow+. The calculated delay-time distribution for this process was then fitted using a double-exponential function. The release curve obtained from the convolution of diffusion and effusion shows good agreement with experimental data from two different target geometries used at ISOLDE. Moreover, the experimental yields are well reproduced when combining the release fraction with calculated in-target production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ievleva, J.I.; Kolesnikov, V.P.; Mezhertisky, G.S.
1996-04-01
The main direction of science investigations for creation of efficient solid oxide fuel cells (SOFC) in IPPE are considered in this work. The development program of planar SOFC with thin-film electrolyte is shown. General design schemes of experimental SOFC units are presented. The flow design schemes of processes for initial materials and electrodes fabrication are shown. The results of investigations for creation thin-film solid oxide electrolyte at porous cathode by magnetron sputtering from complex metal target in oxidative environment are presented.
Thin-thick hydrogen target for nuclear physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gheller, J.-M.; Juster, F.-P.; Authelet, G.
In spectroscopic studies of unstable nuclei, hydrogen targets are of key importance. The CHyMENE Project aims to provide to the nuclear physics community a thin and pure solid windowless hydrogen or deuterium target. CHyMENE project must respond to this request for the production of solid Hydrogen. The solid hydrogen target is produced in a continuous flow (1 cm/s) by an extrusion technique (developed with the PELIN laboratory) in a vacuum chamber. The shape of the target is determined by the design of the nozzle at the extrusion process. For the purpose, the choice is a rectangular shape with a widthmore » of 10 mm and a thickness in the range of 30-50 microns necessary for the physics objectives. The cryostat is equipped with a GM Cryocooler with sufficient power for the solidification of the hydrogen in the lower portion of the extruder. In the higher part of the cryostat, the hydrogen gas is first liquefied and partially solidified. It is then compressed at 100 bars in the cooled extruder before expulsion of the film through the nozzle at the center of the reaction vacuum chamber. After the previous step, the solid hydrogen ribbon falls by gravity into a dedicated chamber where it sublimes and the gas is pumped and evacuated in a exhaust line. This paper deals with the design of the cryostat with its equipment, with the sizing of the thermal bridge (Aluminum and copper), with the results regarding the contact resistance as well as with the vacuum computations of the reaction and recovery hydrogen gas chambers.« less
Identifying Molecular Targets for Chemoprevention in a Rat Model
2007-06-01
accompanied by a reactive stromal proliferation resulting in a distinct thickening of the thin muscular layer surrounding individual glands. These...accompanied by reactive stromal proliferation, resulting in a distinct thickening of the thin muscular layer surrounding individual glands. These proliferations...epithelial cells forming solid bridges and circular apolar lumina. The lesions filled the glandular lumen but did not show distension with foci of
Electron transport in solid targets and in the active mixture of a CO2 laser amplifier
NASA Astrophysics Data System (ADS)
Galkowski, A.
The paper examines the use of the NIKE code for the Monte Carlo computation of the deposited energy profile and other characteristics of the absorption process of an electron beam in a solid target and the spatial distribution of primary ionization in the active mixture of a CO2 laser amplifier. The problem is considered in connection with the generation of intense electron beams and the acceleration of thin metal foils, as well as in connection with the electric discharge pumping of a CO2 laser amplifier.
Thin film coating process using an inductively coupled plasma
Kniseley, Richard N.; Schmidt, Frederick A.; Merkle, Brian D.
1990-01-30
Thin coatings of normally solid materials are applied to target substrates using an inductively coupled plasma. Particles of the coating material are vaporized by plasma heating, and pass through an orifice to a first vacuum zone in which the particles are accelerated to a velocity greater than Mach 1. The shock wave generated in the first vacuum zone is intercepted by the tip of a skimmer cone that provides a second orifice. The particles pass through the second orifice into a second zone maintained at a higher vacuum and impinge on the target to form the coating. Ultrapure coatings can be formed.
Solid hydrogen target for laser driven proton acceleration
NASA Astrophysics Data System (ADS)
Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.
2015-05-01
The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.
NASA Astrophysics Data System (ADS)
Zheng, Z. Y.; Zhang, S. Q.; Gao, L.; Gao, H.
2015-05-01
A "comb" structure of beam intensity distribution is designed and achieved to measure a target displacement of micrometer level in laser plasma propulsion. Base on the "comb" structure, the target displacement generated by nanosecond laser ablation solid target is measured and discussed. It is found that the "comb" structure is more suitable for a thin film target with a velocity lower than tens of millimeters per second. Combing with a light-electric monitor, the `comb' structure can be used to measure a large range velocity.
Godoy, Myrna C B; Kim, Tae Jung; White, Charles S; Bogoni, Luca; de Groot, Patricia; Florin, Charles; Obuchowski, Nancy; Babb, James S; Salganicoff, Marcos; Naidich, David P; Anand, Vikram; Park, Sangmin; Vlahos, Ioannis; Ko, Jane P
2013-01-01
The objective of our study was to evaluate the impact of computer-aided detection (CAD) on the identification of subsolid and solid lung nodules on thin- and thick-section CT. For 46 chest CT examinations with ground-glass opacity (GGO) nodules, CAD marks computed using thin data were evaluated in two phases. First, four chest radiologists reviewed thin sections (reader(thin)) for nodules and subsequently CAD marks (reader(thin) + CAD(thin)). After 4 months, the same cases were reviewed on thick sections (reader(thick)) and subsequently with CAD marks (reader(thick) + CAD(thick)). Sensitivities were evaluated. Additionally, reader(thick) sensitivity with assessment of CAD marks on thin sections was estimated (reader(thick) + CAD(thin)). For 155 nodules (mean, 5.5 mm; range, 4.0-27.5 mm)-74 solid nodules, 22 part-solid (part-solid nodules), and 59 GGO nodules-CAD stand-alone sensitivity was 80%, 95%, and 71%, respectively, with three false-positives on average (0-12) per CT study. Reader(thin) + CAD(thin) sensitivities were higher than reader(thin) for solid nodules (82% vs 57%, p < 0.001), part-solid nodules (97% vs 81%, p = 0.0027), and GGO nodules (82% vs 69%, p < 0.001) for all readers (p < 0.001). Respective sensitivities for reader(thick), reader(thick) + CAD(thick), reader(thick) + CAD(thin) were 40%, 58% (p < 0.001), and 77% (p < 0.001) for solid nodules; 72%, 73% (p = 0.322), and 94% (p < 0.001) for part-solid nodules; and 53%, 58% (p = 0.008), and 79% (p < 0.001) for GGO nodules. For reader(thin), false-positives increased from 0.64 per case to 0.90 with CAD(thin) (p < 0.001) but not for reader(thick); false-positive rates were 1.17, 1.19, and 1.26 per case for reader(thick), reader(thick) + CAD(thick), and reader(thick) + CAD(thin), respectively. Detection of GGO nodules and solid nodules is significantly improved with CAD. When interpretation is performed on thick sections, the benefit is greater when CAD marks are reviewed on thin rather than thick sections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brantov, A. V., E-mail: brantov@lebedev.ru; Bychenkov, V. Yu., E-mail: bychenk@lebedev.ru
2015-06-15
Optimal regimes of proton acceleration in the interaction of short high-power laser pulses with thin foils and low-density targets are determined by means of 3D numerical simulation. It is demonstrated that the maximum proton energy can be increased by using low-density targets in which ions from the front surface of the target are accelerated most efficiently. It is shown using a particular example that, for the same laser pulse, the energy of protons accelerated from a low-density target can be increased by one-third as compared to a solid-state target.
Fabrication of high-k dielectric Calcium Copper Titanate (CCTO) target by solid state route
NASA Astrophysics Data System (ADS)
Tripathy, N.; Das, K. C.; Ghosh, S. P.; Bose, G.; Kar, J. P.
2016-02-01
CaCu3Ti4O12 (CCTO) ceramic pellet of 10mm diameter has been synthesized by adopting solid state route. The structural and morphological characterization of the ceramics sample was carried out by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. XRD pattern revealed the CCTO phase formation, where as SEM micrograph shows the sample consisting of well defined grain and grain boundaries. The room temperature dielectric constant of the sample was found to be ∼ 5000 at 1kHz. After successful preparation of CCTO pellet, a 2 inch diameter CCTO sputtering target is also fabricated in order to deposit CCTO thin films for microelectronic applications.
Yan, Congqi; Mackay, Michael E.; Czymmek, Kirk; Nagarkar, Radhika P.; Schneider, Joel P.; Pochan, Darrin J.
2012-01-01
β-hairpin peptide-based hydrogels are a class of injectable solid hydrogels that can deliver encapsulated cells or molecular therapies to a target site via syringe or catheter injection as a carrier material. These physical hydrogels can shear-thin and consequently flow as a low-viscosity material under a sufficient shear stress but immediately recover back into a solid upon removal of the stress, allowing them to be injected as preformed gel solids. Hydrogel behavior during flow was studied in a cylindrical capillary geometry that mimicked the actual situation of injection through a syringe needle in order to quantify effects of shear-thin injection delivery on hydrogel flow behavior and encapsulated cell payloads. It was observed that all β-hairpin peptide hydrogels investigated displayed a promising flow profile for injectable cell delivery: a central wide plug flow region where gel material and cell payloads experienced little or no shear rate and a narrow shear zone close to the capillary wall where gel and cells were subject to shear deformation. The width of the plug flow region was found to be weakly dependent on hydrogel rigidity and flow rate. Live-dead assays were performed on encapsulated MG63 cells three hours after injection flow and revealed that shear-thin delivery through the capillary had little impact on cell viability and the spatial distribution of encapsulated cell payloads. These observations help us to fundamentally understand how the gels flow during injection through a thin catheter and how they immediately restore mechanically and morphologically relative to pre-flow, static gels. PMID:22390812
Ultra-intense laser interaction with specially-designed targets as a source of energetic protons
NASA Astrophysics Data System (ADS)
Psikal, J.; Matys, M.
2017-05-01
In this contribution, we discuss the optimization of laser driven proton acceleration efficiency by nanostructured targets, interpret the experimental results showing the manipulation of proton beam profiles by nanosctructured rear surface of the targets and investigate the acceleration of protons from hydrogen solid ribbon by PW-class lasers, with the help of multidimensional particle-in-cell simulations. Microstructured hollow targets are proposed to enhance the absorption of the laser pulse energy while keeping the target thickness to minimum, which is both favorable for enhanced efficiency of the acceleration of protons. Thin targets with grating structures of various configurations on their rear sides stretch the proton beams in the perpendicular direction to the grating orientation due to transverse electric fields generated inside the target grooves and can reduce the proton beam divergence in the parallel direction to the grating due to a lower density of the stretched beam compared with flat foils. Finally, it is shown that when multiPW laser pulse interacts with hydrogen solid ribbon, hole boring radiation pressure acceleration (RPA) dominates over the target normal sheath acceleration (TNSA).
Effect of target composition on proton acceleration in ultraintense laser-thin foil interaction
NASA Astrophysics Data System (ADS)
Liu, Qingcao; Liu, Meng; Yu, Tongpu; Ding, Pengji; Liu, Zuoye; Sun, Shaohua; Liu, Xiaoliang; Lu, Xing; Guo, Zeqin; Hu, Bitao
2012-09-01
The interactions of ultraintense circularly polarized laser pulses with a mixed solid target and a double-layer target are studied by two-dimensional particle-in-cell simulations. Different carbon and proton compositions in the targets are used in the simulations. It is shown that the proton acceleration mechanisms in both targets are very sensitive to the ion density ratios between protons and carbon ions. For a mixed solid target, a relatively low proton density gives rise to monoenergetic peaks in the proton energy spectrum while a high proton density leads to a large cut-off energy and wide energy spread. With the increase of the ratio, the so-called directed-Coulomb-explosion becomes dominated over the radiation pressure. Surprisingly, for a double-layer target with a front proton layer and an ultrathin rear carbon layer, a highly monoenergetic proton beam with a peak energy of 1.7 GeV/u, an energy spread of ˜4%, and a divergency angle of 2° can be obtained, which might have diverse applications in medical therepy and proton imaging in future.
Laser-driven proton acceleration with nanostructured targets
NASA Astrophysics Data System (ADS)
Vallières, Simon; Morabito, Antonia; Veltri, Simona; Scisciò, Massimiliano; Barberio, Marianna; Antici, Patrizio
2017-05-01
Laser-driven particle acceleration has become a growing field of research, in particular for its numerous interesting applications. One of the most common proton acceleration mechanism that is obtained on typically available multi-hundred TW laser systems is based on the irradiation of thin solid metal foils by the intense laser, generating the proton acceleration on its rear target surface. The efficiency of this acceleration scheme strongly depends on the type of target used. Improving the acceleration mechanism, i.e. enhancing parameters such as maximum proton energy, laminarity, efficiency, monocromaticy, and number of accelerated particles, is heavily depending on the laser-to-target absorption, where obviously cheap and easy to implement targets are best candidates. In this work, we present nanostructured targets that are able to increase the absorption of light compared to what can be achieved with a classical solid (non-nanostructured) target and are produced with a method that is much simpler and cheaper than conventional lithographic processes. Several layers of gold nanoparticles were deposited on solid targets (aluminum, Mylar and multiwalled carbon nanotube buckypaper) and allow for an increased photon absorption. This ultimately permits to increase the laser-to-particle energy transfer, and thus to enhance the yield in proton production. Experimental characterization results on the nanostructured films are presented (UV-Vis spectroscopy and AFM), along with preliminary experimental proton spectra obtained at the JLF-TITAN laser facility at LLNL.
Experimental evidence of beam-foil plasma creation during ion-solid interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Prashant, E-mail: prashant@iuac.res.in; Nandi, Tapan
2016-08-15
Charge state evolution of the energetic projectile ions during the passage through thin carbon foils has been revisited using the X-ray spectroscopy technique. Contributions from the bulk and the solid surface in the charge changing processes have been segregated by measuring the charge state distribution of the projectile ions in the bulk of the target during the ion–solid interaction. Interestingly, the charge state distribution measured in the bulk exhibits Lorentzian profile in contrast to the well-known Gaussian structure observed using the electromagnetic methods and the theoretical predictions. The occurrence of such behavior is a direct consequence of the imbalance betweenmore » charge changing processes, which has been seen in various cases of the laboratory plasma. It suggests that the ion-solid collisions constitute high-density, localized plasma in the bulk of the solid target, called the beam-foil plasma. This condensed beam-foil plasma is similar to the high-density solar and stellar plasma which may have practical implementations in various fields, in particular, plasma physics and nuclear astrophysics. The present work suggests further modification in the theoretical charge state distribution calculations by incorporating the plasma coupling effects during the ion–solid interactions. Moreover, the multi-electron capture from the target exit surface has been confirmed through comparison between experimentally measured and theoretically predicted values of the mean charge state of the projectile ions.« less
Optimum hot electron production with low-density foams for laser fusion by fast ignition.
Lei, A L; Tanaka, K A; Kodama, R; Kumar, G R; Nagai, K; Norimatsu, T; Yabuuchi, T; Mima, K
2006-06-30
We propose a foam cone-in-shell target design aiming at optimum hot electron production for the fast ignition. A thin low-density foam is proposed to cover the inner tip of a gold cone inserted in a fuel shell. An intense laser is then focused on the foam to generate hot electrons for the fast ignition. Element experiments demonstrate increased laser energy coupling efficiency into hot electrons without increasing the electron temperature and beam divergence with foam coated targets in comparison with solid targets. This may enhance the laser energy deposition in the compressed fuel plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, T.J.; Richard, P.; Gealy, G.
1979-04-01
Thin solid Al targets ranging in thickness from approx. 1 to 30 ..mu..g/cm/sup 2/ were bombarded by /sup 16/O ions wih incident energies from 0.25 to 2.25 MeV/amu. The effects of target thickness on the measured Al K x-ray yield for ions incident without an initial K-shell vacancy were determined. Comparisons of the data for Al K x-ray production in vanishingly thin targets (and 29-..mu..g/cm/sup 2/ targets) were made to perturbed-stationary-state calculations (PSS) for O ions on Al targets. The PSS calculations contained corrections for Coulomb deflection and binding energy (PSS(CB)) and for Coulomb deflection, binding energy, and polarization (PSS(CBP)).more » Further, two different PSS calculation procedures were employed: calculations without radial cutoffs employed in the binding-energy contribution (PSS), and calculations with radial cutoffs employed in the binding-energy correction (NPSS). The PSS(CBP) calculations agree with the measured Al K x-ray production cross section for data taken in the limit of a vanishingly thin target. The NPSS(CBP) calculations agree with the data taken for a 29-..mu..g/cm/sup 2/ Al target. The latter agreement is fortuitous, as the increase observed in the measured target x-ray yield for the 29-..mu..g/cm/sup 2/ target, in comparison to the yield extracted as rhox ..-->.. 0 at each bombarding energy, is due to K-shell--to--K-shell charge exchange. Comparisons are made with previously published data for /sup 16/O ions incident on finite-thickness Al targets.« less
MultiLayer solid electrolyte for lithium thin film batteries
Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping
2015-07-28
A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.
NASA Astrophysics Data System (ADS)
Sawicki, J. A.
1988-03-01
Differential cross-sections for recoil detection of tritons from elastic scattering of α-particles on tritium were measured at forward recoil angles from 10° and 40° and over incident 4He energies ranging from 0.5 to 2.5 MeV. Thin solid state targets consisted of about 10 16T {at.}/{cm 2} either absorbed in a thin film of titanium or implanted at low energy in the matrix of amorphous silicon. The recoil yields were normalized against the yields of the T(d, α)n reaction measured on the same targets. It is found that the cross sections obtained are considerably enhanced as compared to the Rutherford recoil cross section, what can be attributed to the combined effect of Coulomb and nuclear potentials and formation of compound 7Li nuclei. The applications of the elastic recoil detection as a means for depth profiling of tritium in materials are briefly considered. The measured dependence of the triton recoil cross section on the incident energy of 4He + ions allows profiling the concentration of tritium across a range ˜ l μm below the surface of solids.
Oxygen partial pressure influence on the character of InGaZnO thin films grown by PLD
NASA Astrophysics Data System (ADS)
Lu, Yi; Wang, Li
2012-11-01
The amorphous oxide semiconductors (AOSs) are promising for emerging large-area optoelectronic applications because of capability of large-area, uniform deposition at low temperatures such as room temperature (RT). Indium-gallium-zinc oxide (InGaZnO) thin film is a promising amorphous semiconductors material in thin film transistors (TFT) for its excellent electrical properties. In our work, the InGaZnO thin films are fabricated on the SiO2 glass using pulsed laser deposition (PLD) in the oxygen partial pressure altered from 1 to 10 Pa at RT. The targets were prepared by mixing Ga2O3, In2O3, and ZnO powder at a mol ratio of 1: 7: 2 before the solid-state reactions in a tube furnace at the atmospheric pressure. The targets were irradiated by an Nd:YAG laser(355nm). Finally, we have three films of 270nm, 230nm, 190nm thick for 1Pa, 5Pa, 10Pa oxygen partial pressure. The product thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), Hall-effect investigation. The comparative study demonstrated the character changes of the structure and electronic transport properties, which is probably occurred as a fact of the different oxygen partial pressure used in the PLD.
NASA Astrophysics Data System (ADS)
Psikal, J.; Matys, M.
2018-04-01
Laser-driven proton acceleration from novel cryogenic hydrogen target of the thickness of tens of microns irradiated by multiPW laser pulse is investigated here for relevant laser parameters accessible in near future. It is demonstrated that the efficiency of proton acceleration from relatively thick hydrogen solid ribbon largely exceeds the acceleration efficiency for a thinner ionized plastic foil, which can be explained by enhanced hole boring (HB) driven by laser ponderomotive force in the case of light ions and lower target density. Three-dimensional particle-in-cell (PIC) simulations of laser pulse interaction with relatively thick hydrogen target show larger energies of protons accelerated in the target interior during the HB phase and reduced energies of protons accelerated from the rear side of the target by quasistatic electric field compared with the results obtained from two-dimensional PIC calculations. Linearly and circularly polarized multiPW laser pulses of duration exceeding 100 fs show similar performance in terms of proton acceleration from both the target interior as well as from the rear side of the target. When ultrashort pulse (∼30 fs) is assumed, the number of accelerated protons from the target interior is substantially reduced.
NASA Astrophysics Data System (ADS)
Volpyas, V. A.; Tumarkin, A. V.; Mikhailov, A. K.; Kozyrev, A. B.; Platonov, R. A.
2016-07-01
A method of ion plasma deposition is proposed for obtaining thin multicomponent films with continuously graded composition in depth of the film. The desired composition-depth profile is obtained by varying the working gas pressure during deposition in the presence of an additional adsorbing screen in the drift space between a sputtered target and substrate. Efficiency of the proposed method is confirmed by Monte Carlo simulation of the deposition of thin films of Ba x Sr1- x TiO3 (BSTO) solid solution. It is demonstrated that, during sputtering of a Ba0.3Sr0.7TiO3 target, the parameter of composition stoichiometry in the growing BSTO film varies in the interval of x = 0.3-0.65 when the gas pressure is changed within 2-60 Pa.
Characterization of laser-driven shock waves in solids using a fiber optic pressure probe.
Cranch, Geoffrey A; Lunsford, Robert; Grün, Jacob; Weaver, James; Compton, Steve; May, Mark; Kostinski, Natalie
2013-11-10
Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry-Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry-Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. The peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.
NASA Astrophysics Data System (ADS)
Duff, M. J.; Capdessus, R.; Del Sorbo, D.; Ridgers, C. P.; King, M.; McKenna, P.
2018-06-01
The effects of the radiation reaction (RR) force on thin foils undergoing radiation pressure acceleration (RPA) are investigated. Using QED-particle-in-cell simulations, the influence of the RR force on the collective electron dynamics within the target can be examined. The magnitude of the RR force is found to be strongly dependent on the target thickness, leading to effects which can be observed on a macroscopic scale, such as changes to the distribution of the emitted radiation and the target dynamics. This suggests that such parameters may be controlled in experiments at multi-PW laser facilities. In addition, the effects of the RR force are characterized in terms of an average radiation emission angle. We present an analytical model which, for the first time, describes the effect of the RR force on the collective electron dynamics within the ‘light-sail’ regime of RPA. The predictions of this model can be tested in future experiments with ultra-high intensity lasers interacting with solid targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Susann; Czigany, Zsolt; Greczynski, Grzegorz
2013-01-15
The influence of inert gases (Ne, Ar, Kr) on the sputter process of carbon and carbon-nitride (CN{sub x}) thin films was studied using reactive high power pulsed magnetron sputtering (HiPIMS). Thin solid films were synthesized in an industrial deposition chamber from a graphite target. The peak target current during HiPIMS processing was found to decrease with increasing inert gas mass. Time averaged and time resolved ion mass spectroscopy showed that the addition of nitrogen, as reactive gas, resulted in less energetic ion species for processes employing Ne, whereas the opposite was noticed when Ar or Kr were employed as inertmore » gas. Processes in nonreactive ambient showed generally lower total ion fluxes for the three different inert gases. As soon as N{sub 2} was introduced into the process, the deposition rates for Ne and Ar-containing processes increased significantly. The reactive Kr-process, in contrast, showed slightly lower deposition rates than the nonreactive. The resulting thin films were characterized regarding their bonding and microstructure by x-ray photoelectron spectroscopy and transmission electron microscopy. Reactively deposited CN{sub x} thin films in Ar and Kr ambient exhibited an ordering toward a fullerene-like structure, whereas carbon and CN{sub x} films deposited in Ne atmosphere were found to be amorphous. This is attributed to an elevated amount of highly energetic particles observed during ion mass spectrometry and indicated by high peak target currents in Ne-containing processes. These results are discussed with respect to the current understanding of the structural evolution of a-C and CN{sub x} thin films.« less
Characterization of laser-driven shock waves in solids using a fiber optic pressure probe
Cranch, Geoffrey A.; Lunsford, Robert; Grun, Jacob; ...
2013-11-08
Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry–Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry–Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. As a result, the peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.
Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets
NASA Astrophysics Data System (ADS)
Vyskočil, Jiří; Klimo, Ondřej; Weber, Stefan
2018-05-01
Bremsstrahlung emission from interactions of short ultra-intense laser pulses with solid foils is studied using particle-in-cell (PIC) simulations. A module for simulating bremsstrahlung has been implemented in the PIC loop to self-consistently account for the dynamics of the laser–plasma interaction, plasma expansion, and the emission of gamma ray photons. This module made it possible to study emission from thin targets, where refluxing of hot electrons plays an important role. It is shown that the angular distribution of the emitted photons exhibits a four-directional structure with the angle of emission decreasing with the increase of the width of the target. Additionally, a collimated forward flash consisting of high energy photons has been identified in thin targets. The conversion efficiency of the energy of the laser pulse to the energy of the gamma rays rises with both the driving pulse intensity, and the thickness of the target. The amount of gamma rays also increases with the atomic number of the target material, despite a lower absorption of the driving laser pulse. The angular spectrum of the emitted gamma rays is directly related to the increase of hot electron divergence during their refluxing and its measurement can be used in experiments to study this process.
Method of synthesizing polymers from a solid electrolyte
Skotheim, Terje A.
1985-01-01
A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte wherein an assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.
Method of synthesizing polymers from a solid electrolyte
Skotheim, T.A.
1984-10-19
A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte is disclosed. An assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.
Khazaeinezhad, Reza; Hosseinzadeh Kassani, Sahar; Paulson, Bjorn; Jeong, Hwanseong; Gwak, Jiyoon; Rotermund, Fabian; Yeom, Dong-Il; Oh, Kyunghwan
2017-01-01
A new extraordinary application of deoxyribonucleic acid (DNA) thin-solid-film was experimentally explored in the field of ultrafast nonlinear photonics. Optical transmission was investigated in both linear and nonlinear regimes for two types of DNA thin-solid-films made from DNA in aqueous solution and DNA-cetyltrimethylammonium chloride (CTMA) in an organic solvent. Z-scan measurements revealed a high third-order nonlinearity with n2 exceeding 10−9 at a wavelength of 1570 nm, for a nonlinarity about five orders of magnitude larger than that of silica. We also demonstrated ultrafast saturable absorption (SA) with a modulation depth of 0.43%. DNA thin solid films were successfully deposited on a side-polished optical fiber, providing an efficient evanescent wave interaction. We built an organic-inorganic hybrid all-fiber ring laser using DNA film as an ultrafast SA and using Erbium-doped fiber as an efficient optical gain medium. Stable transform-limited femtosecond soliton pulses were generated with full width half maxima of 417 fs for DNA and 323 fs for DNA-CTMA thin-solid-film SAs. The average output power was 4.20 mW for DNA and 5.46 mW for DNA-CTMA. Detailed conditions for DNA solid film preparation, dispersion control in the laser cavity and subsequent characteristics of soliton pulses are discussed, to confirm unique nonlinear optical applications of DNA thin-solid-film. PMID:28128340
Drop dynamics on a thin film: Thin film rupture
NASA Astrophysics Data System (ADS)
Carlson, Andreas; Kim, Pilnam; Stone, Howard A.
2011-11-01
The spreading of a water drop on an oil film that covers a solid substrate is a common event in many industrial processes. We study in experiments the dynamics of a water drop on a thin silicone oil film and quantify its interaction with the solid substrate that supports the film. The oil film becomes unstable and ruptures for solids that are hydrophilic. We determine the ``waiting time,'' the time it takes the water drop to drain the silicone film. This timescale is found to highly depend on how well water wets the solid, illustrating the interplay between intermolecular and hydrodynamic forces in the phenomenon. A phase diagram for the thin film stability is extracted based on waters equilibrium contact angle on the solid, which shows that we can either promote or inhibit de-wetting. As water comes in direct contact with the solid, it spreads and peels off the silicone film. We show the influence of viscosity, equilibrium contact angle and film height on the opening radius of the hole formed as the solid de-wets.
Low-velocity ion stopping in a dense and low-temperature plasma target
NASA Astrophysics Data System (ADS)
Deutsch, Claude; Popoff, Romain
2007-07-01
We investigate the stopping specificities involved in the heating of thin foils irradiated by intense ion beams in the 0.3-3 MeV/amu energy range and in close vicinity of the Bragg peak. Considering a swiftly ionized target to eV temperatures before expansion while retaining solid-state density, a typical warm dense matter (WDM) situation thus arises. We stress low Vp stopping through ion diffusion in the given target plasma. This allows to include the case of a strongly magnetized target in a guiding center approximation. We also demonstrate that the ion projectile penetration depth in target is significantly affected by multiple scattering on target electrons. The given plasma target is taken weakly coupled with Maxwell electron either with no magnetic field ( B=0) or strongly magnetized ( B≠0). Dynamical coupling between ion projectiles energy losses and projectiles charge state will also be addressed.
In-situ formation of solidified hydrogen thin-membrane targets using a pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Astbury, S.; Bedacht, S.; Brummitt, P.; Carroll, D.; Clarke, R.; Crisp, S.; Hernandez-Gomez, C.; Holligan, P.; Hook, S.; Merchan, J. S.; Neely, D.; Ortner, A.; Rathbone, D.; Rice, P.; Schaumann, G.; Scott, G.; Spindloe, C.; Spurdle, S.; Tebartz, A.; Tomlinson, S.; Wagner, F.; Borghesi, M.; Roth, M.; Tolley, M. K.
2016-04-01
An account is given of the Central Laser Facility's work to produce a cryogenic hydrogen targetry system using a pulse tube cryocooler. Due to the increasing demand for low Z thin laser targets, CLF (in collaboration with TUD) have been developing a system which allows the production of solid hydrogen membranes by engineering a design which can achieve this remotely; enabling the gas injection, condensation and solidification of hydrogen without compromising the vacuum of the target chamber. A dynamic sealing mechanism was integrated which allows targets to be grown and then remotely exposed to open vacuum for laser interaction. Further research was conducted on the survivability of the cryogenic targets which concluded that a warm gas effect causes temperature spiking when exposing the solidified hydrogen to the outer vacuum. This effect was shown to be mitigated by improving the pumping capacity of the environment and reducing the minimum temperature obtainable on the target mount. This was achieved by developing a two-stage radiation shield encased with superinsulating blanketing; reducing the base temperature from 14 ± 0.5 K to 7.2 ± 0.2 K about the coldhead as well as improving temperature control stability following the installation of a high-performance temperature controller and sensor apparatus. The system was delivered experimentally and in July 2014 the first laser shots were taken upon hydrogen targets in the Vulcan TAP facility.
Apparatus and method for transient thermal infrared emission spectrometry
McClelland, John F.; Jones, Roger W.
1991-12-24
A method and apparatus for enabling analysis of a solid material (16, 42) by applying energy from an energy source (20, 70) top a surface region of the solid material sufficient to cause transient heating in a thin surface layer portion of the solid material (16, 42) so as to enable transient thermal emission of infrared radiation from the thin surface layer portion, and by detecting with a spectrometer/detector (28, 58) substantially only the transient thermal emission of infrared radiation from the thin surface layer portion of the solid material. The detected transient thermal emission of infrared radiation is sufficiently free of self-absorption by the solid material of emitted infrared radiation, so as to be indicative of characteristics relating to molecular composition of the solid material.
NASA Astrophysics Data System (ADS)
Sarkar, S.; Das, N. S.; Chattopadhyay, K. K.
2014-07-01
BiVO4 thin films have been prepared through radio frequency (rf) magnetron sputtering of a pre-fabricated BiVO4 target on ITO coated glass (ITO-glass) substrate and bare glass substrates. BiVO4 target material was prepared through solid-state reaction method by heating Bi2O3 and V2O5 mixture at 800 °C for 8 h. The films were characterized by X-ray diffraction, UV-Vis spectroscopy, LCR meter, field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy. BiVO4 thin films deposited on the ITO-glass substrate are much smoother compared to the thin films prepared on bare glass substrate. The rms surface roughness calculated from the AFM images comes out to be 0.74 nm and 4.2 nm for the films deposited on the ITO-glass substrate and bare glass substrate for the deposition time 150 min respectively. Optical constants and energy dispersion parameters of these extra-smooth BiVO4 thin films have been investigated in detail. Dielectric properties of the BiVO4 thin films on ITO-glass substrate were also investigated. The frequency dependence of dielectric constant of the BiVO4 thin films has been measured in the frequency range from 20 Hz to 2 MHz. It was found that the dielectric constant increased from 145 to 343 at 20 Hz as the film thickness increased from 90 nm to 145 nm (deposition time increased from 60 min to 150 min). It shows higher dielectric constant compared to the literature value of BiVO4.
Fusion energy with lasers, direct drive targets, and dry wall chambers
NASA Astrophysics Data System (ADS)
Sethian, J. D.; Friedman, M.; Lehmberg, R. H.; Myers, M.; Obenschain, S. P.; Giuliani, J.; Kepple, P.; Schmitt, A. J.; Colombant, D.; Gardner, J.; Hegeler, F.; Wolford, M.; Swanekamp, S. B.; Weidenheimer, D.; Welch, D.; Rose, D.; Payne, S.; Bibeau, C.; Baraymian, A.; Beach, R.; Schaffers, K.; Freitas, B.; Skulina, K.; Meier, W.; Latkowski, J.; Perkins, L. J.; Goodin, D.; Petzoldt, R.; Stephens, E.; Najmabadi, F.; Tillack, M.; Raffray, R.; Dragojlovic, Z.; Haynes, D.; Peterson, R.; Kulcinski, G.; Hoffer, J.; Geller, D.; Schroen, D.; Streit, J.; Olson, C.; Tanaka, T.; Renk, T.; Rochau, G.; Snead, L.; Ghoneim, N.; Lucas, G.
2003-12-01
A coordinated, focused effort is underway to develop Laser Inertial Fusion Energy. The key components are developed in concert with one another and the science and engineering issues are addressed concurrently. Recent advances include: target designs have been evaluated that show it could be possible to achieve the high gains (>100) needed for a practical fusion system.These designs feature a low-density CH foam that is wicked with solid DT and over-coated with a thin high-Z layer. These results have been verified with three independent one-dimensional codes, and are now being evaluated with two- and three-dimensional codes. Two types of lasers are under development: Krypton Fluoride (KrF) gas lasers and Diode Pumped Solid State Lasers (DPSSL). Both have recently achieved repetitive 'first light', and both have made progress in meeting the fusion energy requirements for durability, efficiency, and cost. This paper also presents the advances in development of chamber operating windows (target survival plus no wall erosion), final optics (aluminium at grazing incidence has high reflectivity and exceeds the required laser damage threshold), target fabrication (demonstration of smooth DT ice layers grown over foams, batch production of foam shells, and appropriate high-Z overcoats), and target injection (new facility for target injection and tracking studies).
NASA Astrophysics Data System (ADS)
Quarles, C. A.; Portillo, S.
1999-06-01
Calculations of the total bremsstrahlung spectrum including polarization bremsstrahlung (PB) for high energy electrons on atoms have been made recently by A. V. Korol, A. G. Lyalin and A. V. Solovy'ov. This has motivated us to look for the PB effect for 25 and 50 keV electrons on a variety of thin-film targets including C, Al, Cu, Ag, Tb and Au. PB is predicted to be a significant increase in radiated photon intensity at energies below the target K and L absorption edges. A good model of the thick-target bremsstrahlung background due to electrons elastically scattered into the detector window and a good understanding of the Ge and Si(Li) detector response are crucial for interpretation of the data. We have used a geometry in which the detector-window background is significantly reduced from that in prior experiments. We have analyzed the photon spectra from above 4 keV to the kinematic endpoint. The data are very well fit by normal bremsstrahlung alone. No PB contribution is seen in the data. Finally, we conclude with an argument why, in fact, we should not expect any PB effect when charged particles interact with solid film targets.
Modeling and experimental investigation of x-ray spectra from a liquid metal anode x-ray tube
NASA Astrophysics Data System (ADS)
David, Bernd R.; Thran, Axel; Eckart, Rainer
2004-11-01
This paper presents simulated and measured spectra of a novel type of x-ray tube. The bremsstrahlung generating principle of this tube is based on the interaction of high energetic electrons with a turbulently flowing liquid metal separated from the vacuum by a thin window. We simulated the interaction of 50-150 keV electrons with liquid metal targets composed of the elements Ga, In, Sn, as well as the solid elements C, W and Re used for the electron windows. We obtained x-ray spectra and energy loss curves for various liquid metal/window combinations and thicknesses of the window material. In terms of optimum heat transport a thin diamond window in combination with the liquid metal GaInSn is the best suited system. If photon flux is the optimization criteria, thin tungsten/rhenium windows cooled by GaInSn should be preferred.
Enhanced proton acceleration by intense laser interaction with an inverse cone target
NASA Astrophysics Data System (ADS)
Bake, Muhammad Ali; Aimidula, Aimierding; Xiaerding, Fuerkaiti; Rashidin, Reyima
2016-08-01
The generation and control of high-quality proton bunches using focused intense laser pulse on an inverse cone target is investigated with a set of particle-in-cell simulations. The inverse cone is a high atomic number conical frustum with a thin solid top and open base, where the laser impinges onto the top surface directly, not down the open end of the cone. Results are compared with a simple planar target, where the proton angular distribution is very broad because of transverse divergence of the electromagnetic fields behind the target. For a conical target, hot electrons along the cone wall surface induce a transverse focusing sheath field. This field can effectively suppress the spatial spreading of the protons, resulting in a high-quality small-emittance, low-divergence proton beam. A slightly lower proton beam peak energy than that of a conventional planar target was also found.
Enhanced proton acceleration by intense laser interaction with an inverse cone target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bake, Muhammad Ali; Aimidula, Aimierding, E-mail: amir@mail.bnu.edu.cn; Xiaerding, Fuerkaiti
The generation and control of high-quality proton bunches using focused intense laser pulse on an inverse cone target is investigated with a set of particle-in-cell simulations. The inverse cone is a high atomic number conical frustum with a thin solid top and open base, where the laser impinges onto the top surface directly, not down the open end of the cone. Results are compared with a simple planar target, where the proton angular distribution is very broad because of transverse divergence of the electromagnetic fields behind the target. For a conical target, hot electrons along the cone wall surface inducemore » a transverse focusing sheath field. This field can effectively suppress the spatial spreading of the protons, resulting in a high-quality small-emittance, low-divergence proton beam. A slightly lower proton beam peak energy than that of a conventional planar target was also found.« less
Ultrafiltration of thin stillage from conventional and e-mill dry grind processes.
Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Wang, Ping; Singh, Vijay; Tumbleson, M E; Rausch, Kent D
2011-05-01
We used ultrafiltration (UF) to evaluate membrane filtration characteristics of thin stillage and determine solids and nutrient compositions of filtered streams. To obtain thin stillage, corn was fermented using laboratory methods. UF experiments were conducted in batch mode under constant temperature and flow rate conditions. Two regenerated cellulose membranes (10 and 100 kDa molecular weight cutoffs) were evaluated with the objective of retaining solids as well as maximizing permeate flux. Optimum pressures for 10 and 100 kDa membranes were 207 and 69 kPa, respectively. Total solids, ash, and neutral detergent fiber contents of input TS streams of dry grind and E-Mill processes were similar; however, fat and protein contents were different (p < 0.05). Retentate obtained from conventional thin stillage fractionation had higher mean total solids contents (27.6% to 27.8%) compared to E-Mill (22.2% to 23.4%). Total solids in retentate streams were found similar to those from commercial evaporators used in industry (25% to 35% total solids). Fat contents of retentate streams ranged from 16.3% to 17.5% for the conventional process. A 2% increment in fat concentration was observed in the E-Mill retentate stream. Thin stillage ash content was reduced 60% in retentate streams.
Grain sorghum stillage recycling: Effect on ethanol yield and stillage quality.
Egg, R P; Sweeten, J M; Coble, C G
1985-12-01
Stillage obtained from ethanol production of grain sorghum was separated into two fractions: thin stillage and wet solids. A portion of the thin stillage was recycled as cooking water in subsequent fermentation runs using both bench- and full-scale ethanol production plants. When thin stillage replaced 50-75% of the cooking water, large increases occurred in solids content, COD, and EC of the resulting thin stillage. It was found that while the volume of thin stillage requiring treatment or disposal was reduced, there was little reduction in the total pollutant load. Stillage rcycling had little effect on the quality of the stillage wet solids fraction. At the high levels of stillage recycle used, ethanol yield was reduced after three to five runs of consecutive recycling.
Thin film production method and apparatus
Loutfy, Raouf O.; Moravsky, Alexander P.; Hassen, Charles N.
2010-08-10
A method for forming a thin film material which comprises depositing solid particles from a flowing suspension or aerosol onto a filter and next adhering the solid particles to a second substrate using an adhesive.
NASA Astrophysics Data System (ADS)
Luciu, I.; Duday, D.; Choquet, P.; Perigo, E. A.; Michels, A.; Wirtz, T.
2016-12-01
Magnetic coatings are used for a lot of applications from data storage in hard discs, spintronics and sensors. Meanwhile, magnetron sputtering is a process largely used in industry for the deposition of thin films. Unfortunately, deposition of magnetic coatings by magnetron sputtering is a difficult task due to the screening effect of the magnetic target lowering the magnetic field strength of the magnet positioned below the target, which is used to generate and trap ions in the vicinity of the target surface to be sputtered. In this work we present an efficient method to obtain soft magnetic thin films by reactive sputtering of a non-magnetic target. The aim is to recover the magnetic properties of Ni after dealloying of Ni and Cr due to the selective reactivity of Cr with the reactive nitrogen species generated during the deposition process. The effects of nitrogen content on the dealloying and DC magnetron sputtering (DCMS) deposition processes are studied here. The different chemical compositions, microstructures and magnetic properties of DCMS thin films obtained by sputtering in reactive gas mixtures with different ratios of Ar/N2 from a non-magnetic Ni-20Cr target have been determined. XPS data indicate that the increase of nitrogen content in the films has a strong influence on the NiCr phase decomposition into Ni and CrN, leading to ferromagnetic coatings due to the Ni phase. XRD results show that the obtained Ni-CrN films consist of a metallic fcc cubic Ni phase mixed with fcc cubic CrN. The lattice parameter decreases with the N2 content and reaches the theoretical value of the pure fcc-Ni, when Cr is mostly removed from the Ni-Cr phase. Dealloying of Cr from a Ni80-Cr20 solid solution is achieved in our experimental conditions and the deposition of Ni ferromagnetic coatings embedding CrN from a non-magnetic target is possible with reactive DC magnetron sputtering.
NASA Astrophysics Data System (ADS)
Challa, Ravi Kumar
The US fuel ethanol demand was 50.3 billion liters (13.3 billion gallons) in 2012. Corn ethanol was produced primarily by dry grind process. Heat transfer equipment fouling occurs during corn ethanol production and increases the operating expenses of ethanol plants. Following ethanol distillation, unfermentables are centrifuged to separate solids as wet grains and liquid fraction as thin stillage. Evaporator fouling occurs during thin stillage concentration to syrup and decreases evaporator performance. Evaporators need to be shutdown to clean the deposits from the evaporator surfaces. Scheduled and unscheduled evaporator shutdowns decrease process throughput and results in production losses. This research were aimed at investigating thin stillage fouling characteristics using an annular probe at conditions similar to an evaporator in a corn ethanol production plant. Fouling characteristics of commercial thin stillage and model thin stillage were studied as a function of bulk fluid temperature and heat transfer surface temperature. Experiments were conducted by circulating thin stillage or carbohydrate mixtures in a loop through the test section which consisted of an annular fouling probe while maintaining a constant heat flux by electrical heating and fluid flow rate. The change in fouling resistance with time was measured. Fouling curves obtained for thin stillage and concentrated thin stillage were linear with time but no induction periods were observed. Fouling rates for concentrated thin stillage were higher compared to commercial thin stillage due to the increase in solid concentration. Fouling rates for oil skimmed and unskimmed concentrated thin stillage were similar but lower than concentrated thin stillage at 10% solids concentration. Addition of post fermentation corn oil to commercial thin stillage at 0.5% increments increased the fouling rates up to 1% concentration but decreased at 1.5%. As thin stillage is composed of carbohydrates, protein, lipid, fiber and minerals, simulated thin stillage was prepared with carbohydrate mixtures and tested for fouling rates. Induction period, maximum fouling resistance and mean fouling rates were determined. Two experiments were performed with two varieties of starch, waxy and high amylose and short chain carbohydrates, corn syrup solids and glucose. Interaction effects of glucose with starch varieties were studied. In the first experiment, short chain carbohydrates individual and interaction effects with starch were studied. For mixtures prepared from glucose and corn syrup solids, no fouling was observed. Mixtures prepared from starch, a long glucose polymer, showed marked fouling. Corn syrup solids and glucose addition to pure starch decreased the mean fouling rates and maximum fouling resistances. Between corn syrup solids and glucose, starch fouling rates were reduced with addition of glucose. Induction periods of pure mixtures of either glucose or corn syrup solids were longer than the test period (5 h). Pure starch mixture had no induction period. Maximum fouling resistance was higher for mixtures with higher concentration of longer polymers. Waxy starch had a longer induction period than high amylose starch. Maximum fouling resistance was higher for waxy than high amylose starch. Addition of glucose to waxy or high amylose starch increased induction period of mixtures longer than 5 h test period. It appears that the bulk fluid temperature plays an important role on carbohydrate mixture fouling rates. Higher bulk fluid temperatures increased the initial fouling rates of the carbohydrate mixtures. Carbohydrate type, depending on the polymer length, influenced the deposit formation. Longer chain carbohydrate, starch, had higher fouling rates compared to shorter carbohydrates such as glucose and corn syrup solids. For insoluble carbohydrate mixtures, fouling was severe. As carbohydrate solubility increased with bulk fluid temperature, surface reaction increased at probe surface and resulted in deposit formation. Higher surface temperatures eliminated induction periods for thin stillage and fouling was rapid on probe surface.
Microchannel laminated mass exchanger and method of making
Martin, Peter M [Kennewick, WA; Bennett, Wendy D [Kennewick, WA; Matson, Dean W [Kennewick, WA; Stewart, Donald C [Richland, WA; Drost, Monte K [Pasco, WA; Wegeng, Robert S [Richland, WA; Perez, Joseph M [Richland, WA; Feng, Xiangdong [West Richland, WA; Liu, Jun [West Richland, WA
2003-03-18
The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.
Microchannel laminated mass exchanger and method of making
Martin, Peter M.; Bennett, Wendy D.; Matson, Dean W.; Stewart, Donald C.; Drost, Monte K.; Wegeng, Robert S.; Perez, Joseph M.; Feng, Xiangdong; Liu, Jun
2000-01-01
The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.
Microchannel laminated mass exchanger and method of making
Martin, Peter M [Kennewick, WA; Bennett, Wendy D [Kennewick, WA; Matson, Dean W [Kennewick, WA; Stewart, Donald C [Richland, WA; Drost, Monte K [Pasco, WA; Wegeng, Robert S [Richland, WA; Perez, Joseph M [Richland, WA; Feng, Xiangdong [West Richland, WA; Liu, Jun [West Richland, WA
2002-03-05
The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.
Finite Rotation Analysis of Highly Thin and Flexible Structures
NASA Technical Reports Server (NTRS)
Clarke, Greg V.; Lee, Keejoo; Lee, Sung W.; Broduer, Stephen J. (Technical Monitor)
2001-01-01
Deployable space structures such as sunshields and solar sails are extremely thin and highly flexible with limited bending rigidity. For analytical investigation of their responses during deployment and operation in space, these structures can be modeled as thin shells. The present work examines the applicability of the solid shell element formulation to modeling of deployable space structures. The solid shell element formulation that models a shell as a three-dimensional solid is convenient in that no rotational parameters are needed for the description of kinematics of deformation. However, shell elements may suffer from element locking as the thickness becomes smaller unless special care is taken. It is shown that, when combined with the assumed strain formulation, the solid shell element formulation results in finite element models that are free of locking even for extremely thin structures. Accordingly, they can be used for analysis of highly flexible space structures undergoing geometrically nonlinear finite rotations.
Thin-Film Solid Oxide Fuel Cells
NASA Technical Reports Server (NTRS)
Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex
2009-01-01
The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.
Thin Film Electrodes with an Integral Current Collection Grid for Use with Solid Electrolytes
NASA Technical Reports Server (NTRS)
Ryan, M. A.; Kisor, A.; Williams, R. M.; Jeffries-Nakamura, B.; O'Connor, D.
1994-01-01
Thin film, high performance electrodes which can operate in high temperature environments are necessary for many devices which use a solid electrolyte. Electrodes of rhodium-tungsten alloy have been deposited on solid electrolyte using photolytic chemical vapor deposition (PCVD). A technique for depositing electrodes and current collection grids simultaneously has been developed using the prenucleation characteristics of PCVD. This technique makes it possible to fabricate electrodes which allow vapor transport through the thin (<1 (micro)m) portions of the electrode while integral thick grid lines improve the electronic conductivity of the electrode, thus improving overall performance.
Heat transfer fouling characteristics of microfiltered thin stillage from the dry grind process.
Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Singh, Vijay; Tumbleson, M E; Rausch, Kent D
2010-08-01
We investigated effects of microfiltration (MF) on heat transfer fouling tendencies of thin stillage. A stainless steel MF membrane (0.1 micron pore size) was used to remove solids from thin stillage. At filtration conditions of 690kPa, the MF process effectively recovered total solids from thin stillage. Thin stillage was concentrated from 7.0% to 22.4% solids with average permeate flux rates of 180+/-30 L/m(2)/h at 75 degrees C. In retentate streams, protein and fat contents were increased from 23.5 and 16.7% db to 27.6 and 31.1% db, respectively, and ash content was reduced from 10.5% to 3.8% db. Removal of solids, protein and fat generated a microfiltration permeate (MFP) that was used as an input stream to the fouling probe system; MFP fouling tendencies were measured. An annular fouling probe was used to measure fouling tendencies of thin stillage from a commercial dry grind facility. When comparing diluted thin stillage (DTS) stream and MFP, a reduction in solids concentration was not the only reason of fouling decrement. Selective removal of protein and fat played an important role in mitigating the fouling. At t=10h, mean fouling rates of MFP were an order of magnitude lower when compared to thin stillage and diluted streams. When maximum probe temperature (200 degrees C) was reached, mean fouling rates for thin stillage, DTS and MFP were 7.1x10(-4), 4.2x10(-4) and 2.6x10(-4) m(2) degrees C/kW/min, respectively. In DTS and MFP, the induction period was prolonged by factors of 4.3 and 9.5, respectively, compared to the induction period for thin stillage fouling. Mean fouling rates were decreased by factors of 2.3 and 23.4 for DTS and MFP, respectively. Fouling of MFP took twice the time to reach a probe temperature of 200 degrees C than did thin stillage (22 h vs 10 h, respectively). A reduction in heat transfer fouling could be achieved by altering process stream composition using microfiltration. Copyright 2010 Elsevier Ltd. All rights reserved.
Cheng, Shuying; Rajarathnam, D; Meiling, Tan; Garland, Marc
2006-05-01
Thermal emission spectral data sets were collected for a thin solid film (parafilm) and a thin liquid film (isopropanol) on the interval of 298-348 K. The measurements were performed using a conventional Fourier transform infrared (FT-IR) spectrometer with external optical bench and in-house-designed emission cell. Both DTGS and MCT detectors were used. The data sets were analyzed with band-target entropy minimization (BTEM), which is a pure component spectral reconstruction program. Pure component emissivities of the parafilm, isopropanol, and thermal background were all recovered without any a priori information. Furthermore, the emissivities were obtained with increased signal-to-noise ratios, and the signals due to absorbance of thermal radiation by gas-phase moisture and CO2 were significantly reduced. As expected, the MCT results displayed better signal-to-noise ratios than the DTGS results, but the latter results were still rather impressive given the low temperatures used in this study. Comparison is made with spectral reconstruction using the orthogonal projection approach-alternating least squares (OPA-ALS) technique. This contribution introduces the primary equation for emission spectral reconstruction using BTEM and discusses some of the unusual characteristics of thermal emission and their impact on the analysis.
Studies of Ion Acceleration from Thin Solid-Density Targets on High-Intensity Lasers
NASA Astrophysics Data System (ADS)
Willis, Christopher R.
Over the past two decades, a number of experiments have been performed demonstrating the acceleration of ions from the interaction of an intense laser pulse with a thin, solid density target. These ions are accelerated by quasi-static electric fields generated by energetic electrons produced at the front of the target, resulting in ion energies up to tens of MeV. These ions have been widely studied for a variety of potential applications ranging from treatment of cancer to the production of neutrons for advanced radiography techniques. However, realization of these applications will require further optimization of the maximum energy, spectrum, or species of the accelerated ions, which has been a primary focus of research to date. This thesis presents two experiments designed to optimize several characteristics of the accelerated ion beam. The first of these experiments took place on the GHOST laser system at the University of Texas at Austin, and was designed to demonstrate reliable acceleration of deuterium ions, as needed for the most efficient methods of neutron generation from accelerated ions. This experiment leveraged cryogenically cooled targets coated in D2 O ice to suppress the protons which typically dominate the accelerated ions, producing as many as 2 x 1010 deuterium ions per 1 J laser shot, exceeding the proton yield by an average ratio of 5:1. The second major experiment in this work was performed on the Scarlet laser system at The Ohio State University, and studied the accelerated ion energy, yield, and spatial distribution as a function of the target thickness. In principle, the peak energy increases with decreasing target thickness, with the thinnest targets accessing additional acceleration mechanisms which provide favorable scaling with the laser intensity. However, laser prepulse characteristics provide a lower bound for the target thickness, yielding an optimum target thickness for ion acceleration which is dependent on the laser system. This experiment utilized new liquid crystal film targets developed at OSU, which may be formed at variable thicknesses from tens of nanometers to several microns. On this experiment, an optimum ion energy and flux was reached for targets of 600-900 nm, providing a peak proton energy of 24 MeV, and total ion flux of > 109 protons over 3.4 MeV from 5.5 J of laser energy at an intensity of 1 x 1020 W cm -2. The primary ion diagnostics for these two experiments are described in detail, including the analysis techniques needed to extract absolutely calibrated spatial and spectral distributions of the accelerated ions. Additionally, a new technique for target alignment is presented, providing repeatable target alignment on the micron scale. This allows for a repeatable laser intensity on target, allowing improved shot to shot consistency on high intensity experiments. In addition to these two experiments, work on the upgrade and characterization of the 400 TW Scarlet laser is discussed, including several calculations critical to the design and upgrade of the laser system, as well as prepulse characterization needed for experiments on thin targets.
High frequency material issues in scattering of sound by objects in water
NASA Astrophysics Data System (ADS)
Dudley, Christopher
Ray theoretic models were shown to predict scattering enhancements from laboratory scale cylindrical targets in water. Synthetic aperture sonar and acoustical holographic images were constructed from bistatic scattering. Targets of increasing complexity from material properties were investigated. Models range from simple ray optic style to corrections for transversely isotropic materials. To correctly model the complexity of anisotropic material such as fiberglass, the five independent elastic constants and the density were measured. In all of the cylindrical shells and solid targets, enhancements are observable for ka values ranging from 9 to 40 where k is the wavenumber and a is the cylinder radius. The simpler targets consist of a low sound speed fluid within a thin plastic or fiberglass shell (11 < ka < 40). Shells were taken to be sufficiently thin so that the shell dynamics could be neglected in the models. The fluid has a density near that of water with a sound speed less than water. It is straightforward to construct the location and length of bright features for the fluid filled shells. Solid finite cylinders of polystyrene (9 < ka < 23) and fiberglass (ka = 17 and 22) were found to have more structure in echoes than the fluid filled shells. Bright image features existed from longitudinal as well as shear wave propagation within the polystyrene. A model including shear and longitudinal wave components showed good agrement with experiments with respect to timing and length of features for RexoliteRTM. Fiberglass is the most complex due to the anisotropic symmetry of the material. The slowness matrix allowed for modeling of timing aspects of the solid fiberglass cylinder. For a flat polystyrene half-space there is predicted to be a prominent enhancement of the acoustic reflection for an angle of incidence near 40°. Measurements showed the existence of a related peak in the reflection from solid Rexolite cylinders with ka near 9. Related peaks in the reflection from coated cylinders were observed. The properties of sound transmitted by a stainless steel plate in water was investigated. The relevant S2b leaky Lamb waves have been previously demonstrated on spherical shells [Kaduchak et al., J. Acoust. Soc. Am. 96, 3704 (1994)]. Directional properties of guided waves excited on a stainless steel plate in water were observed. Guided waves could be excited on the plate having group and phase velocities oppositely directed and such waves could profoundly influence the transmission of sound.
Structural and optoelectronic properties of ZnGaO thin film by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Han, Xiaowei; Wang, Li; Li, Shufeng; Gao, Dongwen; Pan, Yong
2018-01-01
ZnO has attracted much attention because of its high-energy gap and exciton binding energy at room temperature. Compared to ZnO thin films, ZnGaO thin films are more resistive to oxidation and have smaller deformation of lattice. In this study, the high purity ZnSe and Ga2O3 powders were weighted at a molar ratio of 18:1. Se was oxidized to Se2O3 and separated from the mixture powders by using conventional solid state reaction method in air, and the ZnGaO ceramic target was prepared. We fabricated the ZnGaO films on silica glass by pulsed laser deposition (PLD) method under different oxygen pressure at room temperature. The as-grown films were tested by X-ray diffraction and atomic force microscope (AFM) to diagnose the crystal structure and surface morphology. Moreover, we obtained the optical transmittance of ZnGaO film and found that the electrical conductivity capacity varied with the increase of oxygen pressure.
Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.
Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei
2018-04-09
Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.
Overview on the target fabrication facilities at ELI-NP and ongoing strategies
NASA Astrophysics Data System (ADS)
Gheorghiu, C. C.; Leca, V.; Popa, D.; Cernaianu, M. O.; Stutman, D.
2016-10-01
Along with the development of petawatt class laser systems, the interaction between high power lasers and matter flourished an extensive research, with high-interest applications like: laser nuclear physics, proton radiography or cancer therapy. The new ELI-NP (Extreme Light Infrastructure - Nuclear Physics) petawatt laser facility, with 10PW and ~ 1023W/cm2 beam intensity, is one of the innovative projects that will provide novel research of fundamental processes during light-matter interaction. As part of the ELI-NP facility, Targets Laboratory will provide the means for in-house manufacturing and characterization of the required targets (mainly solid ones) for the experiments, in addition to the research activity carried out in order to develop novel target designs with improved performances. A description of the Targets Laboratory with the main pieces of equipment and their specifications are presented. Moreover, in view of the latest progress in the target design, one of the proposed strategies for the forthcoming experiments at ELI-NP is also described, namely: ultra-thin patterned foil of diamond-like carbon (DLC) coated with a carbon-based ultra-low density layer. The carbon foam which behaves as a near-critical density plasma, will allow the controlled-shaping of the laser pulse before the main interaction with the solid foil. Particular emphasis will be directed towards the target's design optimization, by simulation tests and tuning the key-properties (thickness/length, spacing, density foam, depth, periodicity etc.) which are expected to have a crucial effect on the laser-matter interaction process.
Vangelista, Silvia; Cinquanta, Eugenio; Martella, Christian; Alia, Mario; Longo, Massimo; Lamperti, Alessio; Mantovan, Roberto; Basset, Francesco Basso; Pezzoli, Fabio; Molle, Alessandro
2016-04-29
Large-scale integration of MoS2 in electronic devices requires the development of reliable and cost-effective deposition processes, leading to uniform MoS2 layers on a wafer scale. Here we report on the detailed study of the heterogeneous vapor-solid reaction between a pre-deposited molybdenum solid film and sulfur vapor, thus resulting in a controlled growth of MoS2 films onto SiO2/Si substrates with a tunable thickness and cm(2)-scale uniformity. Based on Raman spectroscopy and photoluminescence, we show that the degree of crystallinity in the MoS2 layers is dictated by the deposition temperature and thickness. In particular, the MoS2 structural disorder observed at low temperature (<750 °C) and low thickness (two layers) evolves to a more ordered crystalline structure at high temperature (1000 °C) and high thickness (four layers). From an atomic force microscopy investigation prior to and after sulfurization, this parametrical dependence is associated with the inherent granularity of the MoS2 nanosheet that is inherited by the pristine morphology of the pre-deposited Mo film. This work paves the way to a closer control of the synthesis of wafer-scale and atomically thin MoS2, potentially extendable to other transition metal dichalcogenides and hence targeting massive and high-volume production for electronic device manufacturing.
A stochastic model of solid state thin film deposition: Application to chalcopyrite growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovelett, Robert J.; Pang, Xueqi; Roberts, Tyler M.
Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. In this work, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We demonstratemore » the modeling approach with the example of chalcopyrite Cu(InGa)(SeS){sub 2} thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS){sub 2} thin films arises and persists. We believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.« less
A stochastic model of solid state thin film deposition: Application to chalcopyrite growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovelett, Robert J.; Pang, Xueqi; Roberts, Tyler M.
Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. Here, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We also demonstrate themore » modeling approach with the example of chalcopyrite Cu(InGa)(SeS) 2 thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS) 2 thin films arises and persists. Finally, we believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.« less
A stochastic model of solid state thin film deposition: Application to chalcopyrite growth
Lovelett, Robert J.; Pang, Xueqi; Roberts, Tyler M.; ...
2016-04-01
Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. Here, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We also demonstrate themore » modeling approach with the example of chalcopyrite Cu(InGa)(SeS) 2 thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS) 2 thin films arises and persists. Finally, we believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.« less
Self-Mixing Thin-Slice Solid-State Laser Metrology
Otsuka, Kenju
2011-01-01
This paper reviews the dynamic effect of thin-slice solid-state lasers subjected to frequency-shifted optical feedback, which led to the discovery of the self-mixing modulation effect, and its applications to quantum-noise-limited versatile laser metrology systems with extreme optical sensitivity. PMID:22319406
Numerical study of the influence of solid polarization on electrophoresis at finite Debye thickness.
Bhattacharyya, Somnath; De, Simanta
2015-09-01
The influence of solid polarization on the electrophoresis of a uniformly charged dielectric particle for finite values of the particle-to-fluid dielectric permittivity ratio is analyzed quantitatively without imposing the thin Debye length or weak-field assumption. Present analysis is based on the computation of the coupled Poisson-Nernst-Planck and Stokes equations in the fluid domain along with the Laplace equation within the solid. The electrophoretic velocity is determined through the balance of forces acting on the particle. The solid polarization of the charged particle produces a reduction on its electrophoretic velocity compared to a nonpolarizable particle of the same surface charge density. In accordance with the existing thin-layer analysis, our computed results for thin Debye layer shows that the solid polarization is important only when the applied electric field is strong. When the Debye length is in the order of the particle size, the electrophoretic velocity decreases with the rise of the particle permittivity and attains a saturation limit at large values of the permittivity. Our computed solution for electrophoretic velocity is in agreement with the existing asymptotic analyses based on a thin Debye layer for limiting cases.
Ultra-thin Solid-State Li-Ion Electrolyte Membrane Facilitated by a Self-Healing Polymer Matrix.
Whiteley, Justin M; Taynton, Philip; Zhang, Wei; Lee, Se-Hee
2015-11-18
Thin solid membranes are formed by a new strategy, whereby an in situ derived self-healing polymer matrix that penetrates the void space of an inorganic solid is created. The concept is applied as a separator in an all-solid-state battery with an FeS2 -based cathode and achieves tremendous performance for over 200 cycles. Processing in dry conditions represents a paradigm shift for incorporating high active-material mass loadings into mixed-matrix membranes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thin Film Solid Lubricant Development
NASA Technical Reports Server (NTRS)
Benoy, Patricia A.
1997-01-01
Tribological coatings for high temperature sliding applications are addressed. A sputter-deposited bilayer coating of gold and chromium is investigated as a potential solid lubricant for protection of alumina substrates during sliding at high temperature. Evaluation of the tribological properties of alumina pins sliding against thin sputtered gold films on alumina substrates is presented.
Rechargeable thin film battery and method for making the same
Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.
2006-01-03
A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.
Simões, Rodrigo Almeida; Bonato, Pierina Sueli; Mirnaghi, Fatemeh S; Bojko, Barbara; Pawliszyn, Janusz
2015-01-01
A high-throughput bioanalytical method using 96-blade thin film microextraction (TFME) and LC-MS/MS for the analysis of repaglinide (RPG) and two of its main metabolites was developed and used for an in vitro metabolism study. The target analytes were extracted from human microsomal medium by a 96-blade-TFME system employing the low-cost prototype 'SPME multi-sampler' using C18 coating. Method validation showed recoveries around 90% for all analytes and was linear over the concentration range of 2-1000 ng ml(-1) for RPG and of 2-500 ng ml(-1) for each RPG metabolite. The method was applied to an in vitro metabolism study of RPG employing human liver microsomes and proved to be very useful for this purpose.
NASA Astrophysics Data System (ADS)
Deng, Siwei; Yu, Jiang; Yang, Chun; Chang, Jiahua; Wang, Yizheng; Wang, Ping; Xie, Shiqian
2017-10-01
In this work, titanium dioxide thin films doped with different concentrations of gadolinium (Gd) and iodine (I) were synthesized using the sol-gel method and successfully coated on solid waste material (made in our lab) by dipping, resulting in the titanium dioxide thin-film-coated material (TiO2M). Then, the doped titanium dioxide thin films were characterized by X-ray diffraction (XRD), SEM, and UV-Vis spectroscopy; the optimum coating cycle was evaluated by removal rates of COD and ammonia nitrogen in raw wastewater and secondary effluent. Moreover, the photocatalytic activity was determined by degradation efficiency of methyl orange. The results showed that TiO2M had desirable reusability and the photocatalytic activity was attractive under ultraviolet light irradiation. Furthermore, it is found that the amount of dopant in TiO2 was a key parameter in increasing the photoactivity. 1% Gd-doped TiO2M exhibited the best photocatalytic activity for the degradation of methyl orange with the removal rate reaching 85.55%. The result was in good agreement with the observed smaller crystallite size and profitable crystal structure (anatase phase). Besides, the TiO2M (0.8% Gd-doped TiO2M, 1% Gd-doped TiO2M, 10% I-doped TiO2M, and 5% I-1% Gd-doped TiO2M) with desirable photocatalytic activity at ultraviolet light irradiation was selected for the visible light photocatalytic experiments with taking methyl orange as the target pollutants. The results showed that all of them exhibited the similar photocatalytic activity after 7 h of sunlight irradiation (around 90% removal effect). In general, this research developed a very effective and environmentally friendly photocatalyst for pollutant degradation.
Experimental Study of Proton Acceleration from Ultra Intense Laser Matter Interactions
NASA Astrophysics Data System (ADS)
Paudel, Yadab Kumar
This dissertation describes proton and ion acceleration measurements from high intensity (˜ 1019 Wcm-2) laser interactions with thin foil targets. Protons and ions accelerated from the back surface of a target driven by a high intensity laser are detected using solid-state nuclear track detector CR39. A simple digital imaging technique, with an adjustable halogen light source shined on CR39 and use of a digital camera with suitable f-number and exposure time, is used to detect particles tracks. This new technique improves the quality 2D image with vivid track patterns in CR39. Our technique allows us to quickly record and sort CR39 pieces for further analysis. This is followed by detailed quantitative information on the protons and ions. Protons and multicharged ions generated from high-intensity laser interactions with thin foil targets have been studied with a 100 TW laser system. Protons/ions with energies up to 10 MeV are accelerated either from the front or the rear surface of the target material. We have observed for the first time a self-radiograph of the target with a glass stalk holding the target itself in the stacked radiochromic films (RCF) placed behind the target. The self-radiography indicates that the fast ions accelerated backward, in a direction opposite to the laser propagation, are turning around in strong magnetic fields. This unique result is a signature of long-living (ns time scale) magnetic fields in the expanding plasma, which are important in energy transport during the intense laser irradiation and have never been considered in the previous studies. The magnetic fields induced by the main pulse near the absorption point expand rapidly with the backward accelerated protons in the pre-formed plasma. The protons are rotated by these magnetic fields and they are recorded in the RCF, making the self-radiography. Angular profiles of protons and multicharged ions accelerated from the target rear surface have been studied with the subpicosecond laser pulse produced by the 100 TW laser system. The protons/ions beam features recorded on CR39 show the hollow beam structure at the center of the beam pattern. This hollow structure in the proton/ion beam pattern associates to the electron transport inside the solid target, which affects the target's rear-surface emission or the electrostatic profile on the target rear-surface. The proton/ion beam filamentation has been seen clearly outside the hollow beam pattern in the CR39 images processed by the new digital imaging technique.
Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross
2014-11-04
The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.
Investigation of Surface Phenomena in Shocked Tin in Converging Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousculp, Christopher L.; Oro, David Michael; Griego, Jeffrey Randall
2016-03-21
There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer- Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface ismore » adjacent to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release. A conceptual cylindrical liner and target is shown in Figure 1.« less
NASA Astrophysics Data System (ADS)
Stoldt, Conrad R.; Bright, Victor M.
2006-05-01
A range of physical properties can be achieved in micro-electro-mechanical systems (MEMS) through their encapsulation with solid-state, ultra-thin coatings. This paper reviews the application of single source chemical vapour deposition and atomic layer deposition (ALD) in the growth of submicron films on polycrystalline silicon microstructures for the improvement of microscale reliability and performance. In particular, microstructure encapsulation with silicon carbide, tungsten, alumina and alumina-zinc oxide alloy ultra-thin films is highlighted, and the mechanical, electrical, tribological and chemical impact of these overlayers is detailed. The potential use of solid-state, ultra-thin coatings in commercial microsystems is explored using radio frequency MEMS as a case study for the ALD alloy alumina-zinc oxide thin film.
Current status of solid-state lithium batteries employing solid redox polymerization cathodes
NASA Astrophysics Data System (ADS)
Visco, S. J.; Doeff, M. M.; Dejonghe, L. C.
1991-03-01
The rapidly growing demand for secondary batteries having high specific energy and power has naturally led to increased efforts in lithium battery technology. Still, the increased safety risks associated with high energy density systems has tempered the enthusiasm of proponents of such systems for use in the consumer marketplace. The inherent advantages of all-solid-state batteries in regards to safety and reliability are strong factors in advocating their introduction to the marketplace. However, the low ionic conductivity of solid electrolytes relative to nonaqueous liquid electrolytes implies low power densities for solid state systems operating at ambient temperatures. Recent advances in polymer electrolytes have led to the introduction of solid electrolytes having conductivities in the range of 10(exp -4)/ohm cm at room temperature; this is still two orders of magnitude lower than liquid electrolytes. Although these improved ambient conductivities put solid state batteries in the realm of practical devices, it is clear that solid state batteries using such polymeric separators will be thin film devices. Fortunately, thin film fabrication techniques are well established in the plastics and paper industry, and present the possibility of continuous web-form manufacturing. This style of battery manufacture should make solid polymer batteries very cost-competitive with conventional secondary cells. In addition, the greater geometric flexibility of thin film solid state cells should provide benefits in terms of the end-use form factor in device design. This work discusses the status of solid redox polymerization cathodes.
Ward, W Kenneth; Slobodzian, Emily P; Tiekotter, Kenneth L; Wood, Michael D
2002-11-01
We addressed the effect of implant thickness, implant porosity, and polyurethane (PU) chemistry on angiogenesis and on the foreign body response in rats. The following materials were implanted subcutaneously for 7 weeks then excised for histologic analysis: a solid PU; a solid polyurethane with silicone and polyethylene oxide (PU-S-PEO); porous expanded polytetrafluoroethylene (ePTFE); and porous polyvinyl alcohol sponge (PVA). Two thicknesses of PU-S-PEO were compared: 300 microns (thin) and 2000 microns (thick). Foreign body capsule (FBC) thickness was much less in PU-S-PEO implants than in PU implants. In addition, FBC were thinner in thin implants than in thick implants. FBC was much more dense in solid implants than in porous implants. As compared with solid implants, porous implants (PVA and ePTFE) led to a marked increase in the number of microvessels that developed adjacent to the implant, as observed both with hematoxylin/eosin staining and with an immunohistochemical anti-endothelial stain. We conclude that the polyethylene oxide and silicone moieties in PU reduce the thickness of the subsequent FBC. In addition, thin implants lead to a thin FBC. Porous implants (PVA and ePTFE) cause more angiogenesis than solid implants. These results may have implications for the measurement of blood-derived analytes by biosensors.
Preparation and Properties of New Inorganic Glasses and Gel-Derived Solids
1991-04-01
route were examined, including the use of SiC and diamond powder as fillers and some triphasic , solids. Many ferroelectnic thin films were prepared...use of SiC and diamond powder as fillers and some triphasic solids. Many ferroelectric thin films were prepared and their properties measured. An...Exit Filter Mmrn Holder Filter He Gas Perforated Pyrolysis Reactor 00 0 00 00 00 00 0 0 0 0 Soutolution asWe Fi.8.Shmai darm fepeiena0yses I I I ci
USDA-ARS?s Scientific Manuscript database
Improved approaches are needed to rapidly and accurately assess the bioavailability of persistent, hydrophobic organic compounds in soils at contaminated sites. The performance of a thin-film solid-phase extraction (TF-SPE) assay using vials coated with ethylene vinyl acetate polymer was compared to...
Lightweight Target Generates Bright, Energetic X-Rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazi, A
Radiography with x rays is a long-established method to see inside objects, from human limbs to weapon parts. Livermore scientists have a continuing need for powerful x rays for such applications as backlighting, or illuminating, inertial confinement fusion (ICF) experiments and imaging still or exploding materials for the nation's Stockpile Stewardship Program. X-radiography is one of the prime diagnostics for ICF experiments because it captures the fine detail needed to determine what happens to nearly microscopic targets when they are compressed by laser light. For example, Livermore scientists participating in the National Ignition Facility's (NIF's) 18-month-long Early Light experimental campaign,more » which ended in 2004, used x rays to examine hydrodynamic instabilities in jets of plasma. In these experiments, one laser beam irradiated a solid target of titanium, causing it to form a high-temperature plasma that generated x rays of about 4.65 kiloelectronvolts (keV). These x rays backlit a jet of plasma formed when two other laser beams hit a plastic ablator and sent a shock to an aluminum washer. Livermore physicist Kevin Fournier of the Physics and Advanced Technologies Directorate leads a team that is working to increase the efficiency of converting laser energy into x rays so the resulting images provide more information about the object being illuminated. The main characteristics of x-ray sources are energy and brightness. ''As experimental targets get larger and as compression of the targets increases, the backlighter sources must be brighter and more energetic'', says Fournier. The more energetic the x rays, the further they penetrate an object. The brighter the source--that is, the more photons it has--the clearer the image. historically, researchers have used solid targets such as thin metal foils to generate x rays. however, when photon energies are greater than a few kiloelectronvolts, the conversion efficiency of solid targets is only a fraction of 1 percent. Solid targets have low efficiencies because much of the laser energy is deposited far from the target's x-ray emitting region, and the energy is carried by the relatively slow process of thermal conduction. ''The laser beam ablates material from the massive target, and that material moves away from the target's surface'', says Fournier. With a nanosecond pulse or longer, the laser interacts with the blow-off plasma rather than the remaining bulk sample. As a result, much of the laser's energy goes into the kinetic energy of the blow-off material, not into heating the bulk of the foil.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearse, Alexander J.; Schmitt, Thomas E.; Fuller, Elliot J.
Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO tBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li 2PO 2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph ofmore » LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10 -7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li +. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO 2 as the cathode and Si as the anode operating at up to 1 mA/cm 2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less
Pearse, Alexander J.; Schmitt, Thomas E.; Fuller, Elliot J.; ...
2017-04-10
Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO tBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li 2PO 2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph ofmore » LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10 -7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li +. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO 2 as the cathode and Si as the anode operating at up to 1 mA/cm 2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less
Bhandarkar, Suhas; Betcher, Jacob; Smith, Ryan; ...
2016-06-30
Targets for ICF shots on NIF typically use ~500nm thin polyimide films with a coating of 25nm of aluminum as windows that seal the laser entrance hole or LEH. Their role is to contain the hohlraum gas and minimize the extraneous infra-red radiation getting in. This is necessary to precisely control the hohlraum thermal environment for layering inside the capsule with solid deuterium-tritium at 18K. Here, we use our empirical data on the bulging behavior of these foils under various different conditions to develop models to capture the complex viscoelastic behavior of these films at both ambient and cryogenic temperatures.more » The constitutive equations derived from these models give us the ability to quantitatively specify the film’s behavior during the fielding of these targets and set the best parameters for new target designs.« less
Proton acceleration by multi-terawatt interaction with a near-critical density hydrogen jet
NASA Astrophysics Data System (ADS)
Goers, Andy; Feder, Linus; Hine, George; Salehi, Fatholah; Woodbury, Daniel; Su, J. J.; Papadopoulos, Dennis; Zigler, Arie; Milchberg, Howard
2016-10-01
We investigate the high intensity laser interaction with thin, near critical density plasmas as a means of efficient acceleration of MeV protons. A promising mechanism is magnetic vortex acceleration, where the ponderomotive force of a tightly focused laser pulse drives a relativistic electron current which generates a strong azimuthal magnetic field. The rapid expansion of this azimuthal magnetic field at the back side of the target can accelerate plasma ions to MeV scale energies. Compared to typical ion acceleration experiments utilizing a laser- thin solid foil interaction, magnetic vortex acceleration in near critical density plasma may be realized in a high density gas jet, making it attractive for applications requiring high repetition rates. We present preliminary experiments studying laser-plasma interaction and proton acceleration in a thin (< 200 μm) near-critical density hydrogen gas jet delivering electron densities 1020 -1021 cm-3 . This research was funded by the United States Department of Energy and the Defense Advanced Research Projects Agency (DARPA) under Contract Number W911-NF-15-C-0217, issued by the Army Research Office.
Method of lift-off patterning thin films in situ employing phase change resists
Bahlke, Matthias Erhard; Baldo, Marc A; Mendoza, Hiroshi Antonio
2014-09-23
Method for making a patterned thin film of an organic semiconductor. The method includes condensing a resist gas into a solid film onto a substrate cooled to a temperature below the condensation point of the resist gas. The condensed solid film is heated selectively with a patterned stamp to cause local direct sublimation from solid to vapor of selected portions of the solid film thereby creating a patterned resist film. An organic semiconductor film is coated on the patterned resist film and the patterned resist film is heated to cause it to sublime away and to lift off because of the phase change.
The recoil implantation technique developed at the U-120 cyclotron in Bucharest
NASA Astrophysics Data System (ADS)
Muntele, C. I.; Simil, L. Popa; Racolta, P. M.; Voiculescu, D.
1999-06-01
At the U-120 cyclotron in Bucharest was developed 15 years ago the thin layer activation (TLA) technique for radioactive labeling of metallic components on depths ranging between 100 μm and 300 μm, for wear/corrosion studies. Aiming to extend these kinds of studies on non-metallic components and at sub-micrometric level we were led to the development of the recoil implantation technique for ultra thin layer activation (UTLA) applications. Due to the low energy of the recoils obtained in a sacrificial target from a nuclear reaction, the surface layer of material to be labeled must be as thick as a few hundred nanometers. Also, since the radiotracer is externally created, there are no restrictions for the kind of material to be labeled, except to be a solid. In this paper we present some results of our studies concerning the actual status of this application at our accelerator.
Influence of Composition on the Thermoelectric Properties of Bi1- x Sb x Thin Films
NASA Astrophysics Data System (ADS)
Rogacheva, E. I.; Nashchekina, O. N.; Orlova, D. S.; Doroshenko, A. N.; Dresselhaus, M. S.
2017-07-01
Bi1- x Sb x solid solutions have attracted much attention as promising thermoelectric (TE) materials for cooling devices at temperatures below ˜200 K and as unique model materials for solid-state science because of a high sensitivity of their band structure to changes in composition, temperature, pressure, etc. Earlier, we revealed a non-monotonic behavior of the concentration dependences of TE properties for polycrystalline Bi1- x Sb x solid solutions and attributed these anomalies to percolation effects in the solid solution, transition to a gapless state, and to a semimetal-semiconductor transition. The goal of the present work is to find out whether the non-monotonic behavior of the concentration dependences of TE properties is observed in the thin film state as well. The objects of the study are Bi1- x Sb x thin films with thicknesses in the range d = 250-300 nm prepared by thermal evaporation of Bi1- x Sb x crystals ( x = 0-0.09) onto mica substrates. It was shown that the anomalies in the dependence of the TE properties on Bi1- x Sb x crystal composition are reproduced in thin films.
Solid oxide MEMS-based fuel cells
Jankowksi, Alan F.; Morse, Jeffrey D.
2007-03-13
A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.
Solid polymer MEMS-based fuel cells
Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Pleasant Hill, CA
2008-04-22
A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.
Studies of Atomic Free Radicals Stored in a Cryogenic Environment
NASA Technical Reports Server (NTRS)
Lee, David M.; Hubbard, Dorthy (Technical Monitor); Alexander, Glen (Technical Monitor)
2003-01-01
Impurity-Helium Solids are porous gel-like solids consisting of impurity atoms and molecules surrounded by thin layers of solid helium. They provide an ideal medium for matrix isolation of free radicals to prevent recombination and store chemical energy. In this work electron spin resonance, nuclear magnetic resonance, X-ray diffraction, and ultrasound techniques have all been employed to study the properties of these substances. Detailed studies via electron spin resonance of exchange tunneling chemical reactions involving hydrogen and deuterium molecular and atomic impurities in these solids have been performed and compared with theory. Concentrations of hydrogen approaching the quantum solid criterion have been produced. Structured studies involving X ray diffraction, ultrasound, and electron spin resonance have shown that the impurities in impurity helium solids are predominantly contained in impurity clusters, with each cluster being surrounded by thin layers of solid helium.
Sugiyama, Kazuo; Suzuki, Katsunori; Kuwasima, Shusuke; Aoki, Yosuke; Yajima, Tatsuhiko
2009-01-01
The decomposition of a poly(amide-imide) thin film coated on a solid copper wire was attempted using atmospheric pressure non-equilibrium plasma. The plasma was produced by applying microwave power to an electrically conductive material in a gas mixture of argon, oxygen, and hydrogen. The poly(amide-imide) thin film was easily decomposed by argon-oxygen mixed gas plasma and an oxidized copper surface was obtained. The reduction of the oxidized surface with argon-hydrogen mixed gas plasma rapidly yielded a metallic copper surface. A continuous plasma heat-treatment process using a combination of both the argon-oxygen plasma and argon-hydrogen plasma was found to be suitable for the decomposition of the poly(amide-imide) thin film coated on the solid copper wire.
Zhang, Huanhuan; Xu, Lin; Lai, Yuqing; Shi, Tongfei
2016-06-28
On a non-wetting solid substrate, the solvent annealing process of a thin polymer film includes the swelling process and the dewetting process. Owing to difficulties in the in situ analysis of the two processes simultaneously, a quantitative study on the solvent annealing process of thin polymer films on the non-wetting solid substrate is extremely rare. In this paper, we design an experimental method by combining spectroscopic ellipsometry with optical microscopy to achieve the simultaneous in situ study. Using this method, we investigate the influence of the structure of swollen film on its dewetting kinetics during the solvent annealing process. The results show that for a thin PS film with low Mw (Mw = 4.1 kg mol(-1)), acetone molecules can form an ultrathin enriched layer between the PS film and the solid substrate during the swelling process. The presence of the acetone enriched layer accounts for the exponential kinetic behavior in the case of a thin PS film with low Mw. However, the acetone enriched layer is not observed in the case of a thin PS film with high Mw (Mw = 400 kg mol(-1)) and the slippage effect of polymer chains is valid during the dewetting process.
Novel high-energy physics studies using intense lasers and plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leemans, Wim P.; Bulanov, Stepan; Esarey, Eric
2015-06-29
In the framework of the project “Novel high-energy physics studies using intense lasers and plasmas” we conducted the study of ion acceleration and “flying mirrors” with high intensity lasers in order to develop sources of ion beams and high frequency radiation for different applications. Since some schemes of laser ion acceleration are also considered a good source of “flying mirrors”, we proposed to investigate the mechanisms of “mirror” formation. As a result we were able to study the laser ion acceleration from thin foils and near critical density targets. We identified several fundamental factors limiting the acceleration in the RPAmore » regime and proposed the target design to compensate these limitations. In the case of near critical density targets, we developed a concept for the laser driven ion source for the hadron therapy. Also we studied the mechanism of “flying mirror” generation during the intense laser interaction with thin solid density targets. As for the laser-based positron creation and capture we initially proposed to study different regimes of positron beam generation and positron beam cooling. Since the for some of these schemes a good quality electron beam is required, we studied the generation of ultra-low emittance electron beams. In order to understand the fundamental physics of high energy electron beam interaction with high intensity laser pulses, which may affect the efficient generation of positron beams, we studied the radiation reaction effects.« less
Solid Lubricants for Oil-Free Turbomachinery
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher
2005-01-01
Recent breakthroughs in gas foil bearing solid lubricants and computer based modeling has enabled the development of revolulionary Oil-Free turbomachinery systems. These innovative new and solid lubricants at low speeds (start-up and shut down). Foil bearings are hydrodynamic, self acting fluid film bearings made from thin, flexible sheet metal foils. These thin foils trap a hydrodynamic lubricating air film between their surfaces and moving shaft surface. For low temperature applications, like ainrafl air cycle machines (ACM's), polymer coatings provide important solid lubrication during start-up and shut down prior to the development of the lubricating fluid film. The successful development of Oil-Free gas turbine engines requires bearings which can operate at much higher temperatures (greater than 300 C). To address this extreme solid lubrication need, NASA has invented a new family of compostie solid lubricant coatings, NASA PS300.
NASA Technical Reports Server (NTRS)
Mandeville, Jean Claude
1991-01-01
Part of the Long Duration Exposure Facility (LDEF) tray allocated to French experiments, known as FRECOPA payload, was devoted to the study of dust particles. Two passive experiments were flown: one composed of a set of glass and metallic samples and one composed of multilayer thin foils detectors. In addition to these experiments, a broad variety of materials were exposed to the bombardment of microparticles and provide more data. Thick target experiment comprises selected metallic (Al, Au, Cu, W, Stainless Steel) 250 microns thick and glass surfaces 1.5 mm thick. Crater size distribution from these thick target experiments enable, with the aid of lab calibrations by solid particle accelerators, the evaluation of the incident microparticle flux in the near earth environment. The aim of the multiple foil penetration and collection experiment is primarily to study the feasibility of multilayer thin film detectors acting as energy sorters in order to collect micrometeoroids, if not in their original shape, at least as 'breakup' fragments suitable for chemical analysis. Foil thicknesses range from 0.75 to 5 microns of Al.
Long-wave analysis and control of the viscous Rayleigh-Taylor instability with electric fields
NASA Astrophysics Data System (ADS)
Cimpeanu, Radu; Anderson, Thomas; Petropoulos, Peter; Papageorgiou, Demetrios
2016-11-01
We investigate the electrostatic stabilization of a viscous thin film wetting the underside of a solid surface in the presence of a horizontally acting electric field. The competition between gravity, surface tension and the nonlocal effect of the applied electric field is captured analytically in the form of a nonlinear evolution equation. A semi-spectral solution strategy is employed to resolve the dynamics of the resulting partial differential equation. Furthermore, we conduct direct numerical simulations (DNS) of the Navier-Stokes equations and assess the accuracy of the obtained solutions when varying the electric field strength from zero up to the point when complete stabilization at the target finite wavelengths occurs. We employ DNS to examine the limitations of the asymptotically derived behavior in the context of increasing liquid film heights, with agreement found to be excellent even beyond the target lengthscales. Regimes in which the thin film assumption is no longer valid and droplet pinch-off occurs are then analyzed. Finally, the asymptotic and computational approaches are used in conjunction to identify efficient active control mechanisms allowing the manipulation of the fluid interface in light of engineering applications at small scales, such as mixing.
NASA Astrophysics Data System (ADS)
Bychenkov, V. Yu.; Singh, P. K.; Ahmed, H.; Kakolee, K. F.; Scullion, C.; Jeong, T. W.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S.
2017-01-01
Ion acceleration resulting from the interaction of ultra-high intensity and ultra-high contrast (˜10-10) laser pulses with thin A l foil targets at 30° angle of laser incidence is studied. Proton maximum energies of 30 and 18 MeV are measured along the target normal rear and front sides, respectively, showing intensity scaling as Ib . For the target front bf r o n t= 0.5-0.6 and for the target rear br e a r= 0.7-0.8 is observed in the intensity range 1020-1021 W/cm2. The fast scaling from the target rear ˜I0.75 can be attributed enhancement of laser energy absorption as already observed at relatively low intensities. The backward acceleration of the front side protons with intensity scaling as ˜I0.5 can be attributed to the to the formation of a positively charged cavity at the target front via ponderomotive displacement of the target electrons at the interaction of relativistic intense laser pulses with a solid target. The experimental results are in a good agreement with theoretical predictions.
NASA Astrophysics Data System (ADS)
Kawano, H.; Morii, K.; Nakayama, Y.
1993-05-01
The possibilities for fabricating solid solutions of (Ba1-x,Srx)TiO3 (x≤0.5,1.0) by crystallization of amorphous films and for improving their dielectric properties by adjusting the Sr content were investigated. Thin amorphous films were prepared from powder targets consisting of mixtures of BaTiO3 and SrTiO3 by sputtering with a neutralized Ar-ion beam. The amorphous films crystallized into (Ba1-x, Srx)TiO3 solid solutions with a cubic perovskite-type structure after annealing in air at 923 K for more than 1 h. The Debye-type dielectric relaxation was observed for the amorphous films, whereas the crystallized films showed paraelectric behavior. The relative dielectric constants were of the order of 20 for the amorphous samples, but increased greatly after crystallization to about 60-200, depending on the composition; a larger increase in the dielectric constant was observed in the higher Sr content films, in the range x≤0.5, which could be correlated with an increase in the grain size of the crystallites. The crystallization processes responsible for the difference in the grain size are discussed based on the microstructural observations.
Scaling during capillary thinning of particle-laden drops
NASA Astrophysics Data System (ADS)
Thete, Sumeet; Wagoner, Brayden; Basaran, Osman
2017-11-01
A fundamental understanding of drop formation is crucial in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, the about-to-form drop is connected to the fluid hanging from the nozzle via a thinning filament. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids using theory, simulations, and experiments. In some of the applications however, the forming drop and hence the thinning filament may contain solid particles. The thinning dynamics of such particle-laden filaments differs radically from that of particle-free filaments. Moreover, our understanding of filament thinning in the former case is poor compared to that in the latter case despite the growing interest in pinch-off of particle-laden filaments. In this work, we go beyond similar studies and experimentally explore the impact of solid particles on filament thinning by measuring both the radial and axial scalings in the neck region. The results are summarized in terms of a phase diagram of capillary thinning of particle-laden filaments.
Inertial confinement fusion and fast ignitor studies
NASA Astrophysics Data System (ADS)
Willi, O.; Barringer, L.; Bell, A.; Borghesi, M.; Davies, J.; Gaillard, R.; Iwase, A.; MacKinnon, A.; Malka, G.; Meyer, C.; Nuruzzaman, S.; Taylor, R.; Vickers, C.; Hoarty, D.; Gobby, P.; Johnson, R.; Watt, R. G.; Blanchot, N.; Canaud, B.; Croso, H.; Meyer, B.; Miquel, J. L.; Reverdin, C.; Pukhov, A.; Meyer-ter-Vehn, J.
2000-03-01
Laser imprinting has been studied and, in particular, saturation of areal density perturbations induced by near single mode laser imprinting was observed. Several issues important for the foam buffered direct drive scheme have been investigated. These studies included measurements of the absolute levels of stimulated Brillouin and Raman scattering observed from laser irradiated low density foam targets, either bare or overcoated with a thin layer of gold. A novel scheme is proposed to increase the pressure in indirectly driven targets. By heating a foam supersonically that is attached to a solid target the pressure generated is not only the ablation pressure but also the combined pressure due to ablation at the foam-foil interface and the heated foam material. Planar brominated plastic foil targets overcoated with a low density foam were irradiated by a soft X ray pulse. The pressure was obtained by comparing the rear side trajectory of the driven target observed by soft X ray radiography with one dimensional radiation hydrodynamic simulations. Observations were also carried out of the transition from supersonic to subsonic propagation of an ionization front in low density chlorinated foam targets irradiated by an intense soft X ray pulse. The diagnostic for these measurements was K shell point projection absorption spectroscopy. In the fast ignitor area the channelling and guiding of picosecond laser pulses through underdense plasmas, preformed density channels and microtubes were investigated. It was observed that a large fraction of the incident laser energy can be propagated. Megagauss magnetic fields were measured, with a polarimetric technique, during and after propagation of intense picosecond pulses in preionized plasmas. Two types of toroidal fields, of opposite orientation, were detected. In addition, the production and propagation of an electron beam through solid glass targets irradiated at intensities above 1019W/cm2 were observed using optical probing techniques.
Cren(ulation)-1,2 Preshot Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousculp, Christopher L.; Oro, David Michael; Griego, Jeffrey Randall
2015-12-21
There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the RichtmyerMeshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacentmore » to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release.« less
Investigation of Surface Phenomena in Shocked Tin in Converging Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousculp, Christopher L.; Oro, David Michael; Margolin, Len G.
2015-08-06
There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer-Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacentmore » to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release.« less
NASA Astrophysics Data System (ADS)
Leung, Kevin
2015-03-01
Electrochemical reactions at electrode/electrolyte interfaces are critically dependent on the total electrochemical potential or voltage. In this presentation, we briefly review ab initio molecular dynamics (AIMD)-based estimate of voltages on graphite basal and edge planes, and then apply similar concepts to solid-solid interfaces relevant to lithium ion and Li-air batteries. Thin solid films on electrode surfaces, whether naturally occuring during power cycling (e.g., undesirable lithium carbonate on Li-air cathodes) or are artificially introduced, can undergo electrochemical reactions as the applied voltage varies. Here the onset of oxidation of lithium carbonate and other oxide thin films on model gold electrode surfaces is correlated with the electronic structure in the presence/absence of solvent molecules. Our predictions help determine whether oxidation first occurs at the electrode-thin film or electrolyte-thin film interface. Finally, we will critically compare the voltage estimate methodology used in the fuel cell community with the lithium cohesive energy calibration method broadly applied in the battery community, and discuss why they may yield different predictions. This work was supported by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deparment of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Solid-state nanopore localization by controlled breakdown of selectively thinned membranes
NASA Astrophysics Data System (ADS)
Carlsen, Autumn T.; Briggs, Kyle; Hall, Adam R.; Tabard-Cossa, Vincent
2017-02-01
We demonstrate precise positioning of nanopores fabricated by controlled breakdown (CBD) on solid-state membranes by spatially varying the electric field strength with localized membrane thinning. We show 100 × 100 nm2 precision in standard SiN x membranes (30-100 nm thick) after selective thinning by as little as 25% with a helium ion beam. Control over nanopore position is achieved through the strong dependence of the electric field-driven CBD mechanism on membrane thickness. Confinement of pore formation to the thinned region of the membrane is confirmed by TEM imaging and by analysis of DNA translocations. These results enhance the functionality of CBD as a fabrication approach and enable the production of advanced nanopore devices for single-molecule sensing applications.
Thin film ion conducting coating
Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George
1989-01-01
Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishiuchi, Mamiko; Pirozhkov, Alexander S.; Sakaki, Hironao
From the interaction between the high-contrast ({approx}more than 10{sup 10}) 130 TW Ti:sapphire laser pulse and Stainless Steel-2.5 um-thick tape target, proton beam with energies up to 23 MeV with the conversion efficiency of {approx}1% is obtained. After plasma mirror installation for contrast improvement, from the interaction between the 30 TW laser pulse and thin-foil target installed on the target holder with the hole whose shape is associated with the design of the well-known Wehnelt electrode of electron-gun, a 7 MeV intense proton beam is controlled dynamically and energy selected by the self-induced quasi-static electric field on the target holder.more » From the highly divergent beam having continuous spectrum, which are the typical features of the laser-driven proton beams from the interactions between the short-pulse laser and solid target, the spatial distribution of 7 MeV proton bunch is well manipulated to be focused to an small spots with an angular distribution of {approx}10 mrad. The number of protons included in the bunch is >10{sup 6}.« less
NASA Astrophysics Data System (ADS)
Stelter, Michael; Reinert, Andreas; Mai, Björn Erik; Kuznecov, Mihail
A solid oxide fuel cell (SOFC) stack module is presented that is designed for operation on diesel reformate in an auxiliary power unit (APU). The stack was designed using a top-down approach, based on a specification of an APU system that is installed on board of vehicles. The stack design is planar, modular and scalable with stamped sheet metal interconnectors. It features thin membrane electrode assemblies (MEAs), such as electrolyte supported cells (ESC) and operates at elevated temperatures around 800 °C. The stack has a low pressure drop in both the anode and the cathode to facilitate a simple system layout. An overview of the technical targets met so far is given. A stack power density of 0.2 kW l -1 has been demonstrated in a fully integrated, thermally self-sustaining APU prototype running with diesel and without an external water supply.
Studies on RF sputtered (WO3)1-x (V2O5)x thin films for smart window applications
NASA Astrophysics Data System (ADS)
Meenakshi, M.; Sivakumar, R.; Perumal, P.; Sanjeeviraja, C.
2016-05-01
V2O5 doped WO3 targets for RF sputtering thin film deposition were prepared for various compositions. Thin films of (WO3)1-x (V2O5)x were deposited on to glass substrates using these targets. Structural characteristics of the prepared targets and thin films were studied using X-ray diffraction. Laser Raman studies were carried out on the thin films to confirm the compound formation.
NASA Astrophysics Data System (ADS)
Jin, Chul Kyu; Jang, Chang Hyun; Kang, Chung Gil
2014-01-01
A thin plate (150 × 150 × 1.2 mm) with embedded corrugation is fabricated using the rheoforming method. Semisolid slurry is created using the electromagnetic stirring (EMS) system, and the thin plate is made with the forging die at the 200-ton hydraulic press. The cross sections and microstructures of the slurry with and without stirring are examined. To investigate the effect of the process parameters on the formability, microstructure, and mechanical properties of thin plate the slurry is subjected to 16 types of condition for the forging experiment. The 16 types included the following conditions: Whether the EMS is applied or not, three fractions of the solid phase at 35, 45 and 55 pct; two compression velocities at 30 and 300 mm s-1; and four different compression pressures—100, 150, 200 and 250 MPa. The thin plate's formability is enhanced at higher punch velocity for compressing the slurry, and fine solid particles are uniformly distributed, which in turn, enhances the plate's mechanical properties. The pressure between 150 and 200 MPa is an appropriate condition to form thin plates. A thin plate without defects can be created when the slurry at 35 pct of the solid fraction (f s) was applied at the compression velocity of 300 mm s-1 and 150 MPa of pressure. The surface state of thin plate is excellent with 220 MPa of tensile strength and 13.5 pct of elongation. The primary particles are fine over the entire plate, and there are no liquid segregation-related defects.
Thin stillage fractionation using ultrafiltration: resistance in series model.
Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Wang, Ping; Singh, Vijay; Tumbleson, M E; Rausch, Kent D
2009-02-01
The corn based dry grind process is the most widely used method in the US for fuel ethanol production. Fermentation of corn to ethanol produces whole stillage after ethanol is removed by distillation. It is centrifuged to separate thin stillage from wet grains. Thin stillage contains 5-10% solids. To concentrate solids of thin stillage, it requires evaporation of large amounts of water and maintenance of evaporators. Evaporator maintenance requires excess evaporator capacity at the facility, increasing capital expenses, requiring plant slowdowns or shut downs and results in revenue losses. Membrane filtration is one method that could lead to improved value of thin stillage and may offer an alternative to evaporation. Fractionation of thin stillage using ultrafiltration was conducted to evaluate membranes as an alternative to evaporators in the ethanol industry. Two regenerated cellulose membranes with molecular weight cut offs of 10 and 100 kDa were evaluated. Total solids (suspended and soluble) contents recovered through membrane separation process were similar to those from commercial evaporators. Permeate flux decline of thin stillage using a resistance in series model was determined. Each of the four components of total resistance was evaluated experimentally. Effects of operating variables such as transmembrane pressure and temperature on permeate flux rate and resistances were determined and optimum conditions for maximum flux rates were evaluated. Model equations were developed to evaluate the resistance components that are responsible for fouling and to predict total flux decline with respect to time. Modeling results were in agreement with experimental results (R(2) > 0.98).
NASA Astrophysics Data System (ADS)
Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Tanaka, Rei; Suda, Yoshiaki
2017-06-01
Tris(8-hydroxyquinolinato)aluminum (Alq3) thin films, for use in organic electroluminescence displays, were prepared by a sputtering deposition method using powder and pressed powder targets. Experimental results suggest that Alq3 thin films can be prepared using powder and pressed powder targets, although the films were amorphous. The surface color of the target after deposition became dark brown, and the Fourier transform infrared spectroscopy spectrum changed when using a pressed powder target. The deposition rate of the film using a powder target was higher than that using a pressed powder target. That may be because the electron and ion densities of the plasma generated using the powder target are higher than those when using pressed powder targets under the same deposition conditions. The properties of a thin film prepared using a powder target were almost the same as those of a film prepared using a pressed powder target.
NASA Astrophysics Data System (ADS)
Hsueh, T. H.; Yu, Y. Q.; Jan, D. J.; Su, C. H.; Chang, S. M.
2018-03-01
All-solid-state thin film lithium batteries (TFLBs) are the most competitive low-power sources to be applied in various kinds of micro-electro-mechanical systems and have been draw a lot of attention in academic research. In this paper, the checkerboard deposition of all-solid-state TFLB was composed of thin film lithium metal anode, lithium phosphorus oxynitride (LiPON) solid electrolyte, and checkerboard deposition of lithium manganese oxide spinel (LiMn2O4) cathode. The LiPON and LiMn2O4 were deposited by a radio frequency magnetron sputtering system, and the lithium metal was deposited by a thermal evaporation coater. The electrochemical characterization of this lithium battery showed the first discharge capacity of 107.8 μAh and the capacity retention was achieved 95.5% after 150 charge-discharge cycles between 4.3V and 3V at a current density of 11 μA/cm2 (0.5C). Obviously, the checkerboard of thin film increased the charge exchange rate; also this lithium battery exhibited high C-rate performance, with better capacity retention of 82% at 220 μA/cm2 (10C).
NASA Astrophysics Data System (ADS)
Klim, Adam; Morrison, J.; Orban, C.; Chowdhury, E.; Frische, K.; Feister, S.; Roquemore, M.
2017-10-01
The success of laser-accelerated ion experiments depends crucially on a number of factors including how thin the targets can be created. We present experimental results demonstrating extremely thin (under 200 nm) glycol sheet targets that can be used for ultra-intense laser-accelerated ion experiments conducted at the Air Force Research Laboratory at Wright-Patterson Air Force Base. Importantly, these experiments operate at a kHz repetition rate and the recovery time of the liquid targets is fast enough to allow the laser to interact with a refreshed, thin target on every shot. These thin targets can be used to produce energetic electrons, light ions, and neutrons as well as x-rays, we present results from liquid glycol targets which are useful for proton acceleration experiments via the mechanism of Target Normal Sheath Acceleration (TNSA). In future work, we will create thin sheets from deuterated water in order to perform laser-accelerated deuteron experiments. This research was sponsored by the Quantum and Non-Equilibrium Processes Division of the AFOSR, under the management of Dr. Enrique Parra, and support from the DOD HPCMP Internship Program.
Enhanced laser-energy coupling to dense plasmas driven by recirculating electron currents
NASA Astrophysics Data System (ADS)
Gray, R. J.; Wilson, R.; King, M.; Williamson, S. D. R.; Dance, R. J.; Armstrong, C.; Brabetz, C.; Wagner, F.; Zielbauer, B.; Bagnoud, V.; Neely, D.; McKenna, P.
2018-03-01
The absorption of laser energy and dynamics of energetic electrons in dense plasma is fundamental to a range of intense laser-driven particle and radiation generation mechanisms. We measure the total reflected and scattered laser energy as a function of intensity, distinguishing between the influence of pulse energy and focal spot size on total energy absorption, in the interaction with thin foils. We confirm a previously published scaling of absorption with intensity by variation of laser pulse energy, but find a slower scaling when changing the focal spot size. 2D particle-in-cell simulations show that the measured differences arise due to energetic electrons recirculating within the target and undergoing multiple interactions with the laser pulse, which enhances absorption in the case of large focal spots. This effect is also shown to be dependent on the laser pulse duration, the target thickness and the electron beam divergence. The parameter space over which this absorption enhancement occurs is explored via an analytical model. The results impact our understanding of the fundamental physics of laser energy absorption in solids and thus the development of particle and radiation sources driven by intense laser–solid interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meenakshi, M.; Perumal, P.; Sivakumar, R.
2016-05-23
V{sub 2}O{sub 5} doped WO{sub 3} targets for RF sputtering thin film deposition were prepared for various compositions. Thin films of (WO{sub 3}){sub 1-x} (V{sub 2}O{sub 5}){sub x} were deposited on to glass substrates using these targets. Structural characteristics of the prepared targets and thin films were studied using X-ray diffraction. Laser Raman studies were carried out on the thin films to confirm the compound formation.
NASA Astrophysics Data System (ADS)
Zhu, Guisheng; Zhi, Li; Yang, Huijuan; Xu, Huarui; Yu, Aibing
2012-09-01
In this paper, indium tin oxide (ITO) targets with different densities were used to deposit ITO thin films. The thin films were deposited from these targets at room temperature and annealed at 750°C. Microstructural, electrical, and optical properties of the as-prepared films were studied. It was found that the target density had no effect on the properties or deposition rate of radiofrequency (RF)-sputtered ITO thin films, different from the findings for direct current (DC)-sputtered films. Therefore, when using RF sputtering, the target does not require a high density and may be reused.
Preparation of redox polymer cathodes for thin film rechargeable batteries
Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.
1994-11-08
The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.
NASA Astrophysics Data System (ADS)
Mazaletskiy, L. A.; Lebedev, M. E.; Mironenko, A. A.; Naumov, V. V.; Novozhilova, A. V.; Fedorov, I. S.; Rudy, A. S.
2017-11-01
Results of studies of the solid electrolyte effect on capacitance of thin-film electrodes on the basis of Si-O-Al and VxOy nanocomposites are presented. The studies were carried out by comparing the charge-discharge characteristics of two pairs of the identical electrodes, one of which was covered by LiPON film, within prototypes with two lithium electrodes - the counter and the reference electrode.
Buckling of thin walled composite cylindrical shell filled with solid propellant
NASA Astrophysics Data System (ADS)
Dash, A. P.; Velmurugan, R.; Prasad, M. S. R.
2017-12-01
This paper investigates the buckling of thin walled composite cylindrical tubes that are partially filled with solid propellant equivalent elastic filler. Experimental investigation is conducted on thin composite tubes made out of S2-glass epoxy, which is made by using filament winding technique. The composite tubes are filled with elastic filler having similar mechanical properties as that of a typical solid propellant used in rocket motors. The tubes are tested for their buckling strength against the external pressure in the presence of the filler. Experimental data confirms the enhancement of external pressure carrying capacity of the composite tubes by up to three times as that of empty tubes for a volumetric loading fraction (VLF) of 0.9. Furthermore, the finite element based geometric nonlinearity analysis predicts the buckling behaviour of the partially filled composite tubes close to the experimental results.
Templated Solid-State Dewetting of Thin Silicon Films.
Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Delobbe, Anne; Ronda, Antoine; Berbezier, Isabelle; Abbarchi, Marco
2016-11-01
Thin film dewetting can be efficiently exploited for the implementation of functionalized surfaces over very large scales. Although the formation of sub-micrometer sized crystals via solid-state dewetting represents a viable method for the fabrication of quantum dots and optical meta-surfaces, there are several limitations related to the intrinsic features of dewetting in a crystalline medium. Disordered spatial organization, size, and shape fluctuations are relevant issues not properly addressed so far. This study reports on the deterministic nucleation and precise positioning of Si- and SiGe-based nanocrystals by templated solid-state dewetting of thin silicon films. The dewetting dynamics is guided by pattern size and shape taking full control over number, size, shape, and relative position of the particles (islands dimensions and relative distances are in the hundreds nm range and fluctuate ≈11% for the volumes and ≈5% for the positioning). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tajima, Kazuki; Shimoike, Mika; Li, Heng; Inagaki, Masumi; Izumi, Hitomi; Akiyama, Misaki; Matsushima, Yukiko; Ohta, Hidenobu
2013-04-01
We have fabricated a controllable light filter using an all-solid-state switchable mirror incorporating a Mg-Ir thin film for use in preterm infant incubators. The solid-state switchable mirror device was fabricated by depositing a multilayer on a glass substrate. The mixed hydride of MgH2 and Mg6Ir2H11 created from the Mg-Ir thin film is red in the transparent state. The optical switching speeds between the reflective and transparent red states depended on applied voltage. The device showed three states, namely, reflective, black, and transparent red, due to the properties of the switchable mirror material. These results suggest that the material could be used as a controllable light filter for preterm infant incubators, since it eliminates the light wavelength that disturbs regular sleep-wake cycles of preterm infants.
Hydrodynamic modeling of laser interaction with micro-structured targets
Velechovsky, Jan; Limpouch, Jiri; Liska, Richard; ...
2016-08-03
A model is developed for numerical simulations of laser absorption in plasmas made of porous materials, with particular interest in low-density foams. Laser absorption is treated on two spatial scales simultaneously. At the microscale, the expansion of a thin solid pore wall is modeled in one dimension and the information obtained is used in the macroscale fluid simulations for the description of the plasma homogenization behind the ionization front. This two-scale laser absorption model is implemented in the arbitrary Lagrangian–Eulerian hydrocode PALE. In conclusion, the numerical simulations of laser penetration into low-density foams compare favorably with published experimental data.
Investigation of self-induced transparency in laser-solid interaction
NASA Astrophysics Data System (ADS)
Paradkar, Bhooshan; Krasheninnikov, Sergei; Beg, Farhat
2017-10-01
Interaction of an intense laser beam with a thin (
NASA Technical Reports Server (NTRS)
Jiang, Ching-Biau; T'ien, James S.
1994-01-01
Excerpts from a paper describing the numerical examination of concurrent-flow flame spread over a thin solid in purely forced flow with gas-phase radiation are presented. The computational model solves the two-dimensional, elliptic, steady, and laminar conservation equations for mass, momentum, energy, and chemical species. Gas-phase combustion is modeled via a one-step, second order finite rate Arrhenius reaction. Gas-phase radiation considering gray non-scattering medium is solved by a S-N discrete ordinates method. A simplified solid phase treatment assumes a zeroth order pyrolysis relation and includes radiative interaction between the surface and the gas phase.
Parasitic oscillation suppression in solid state lasers using absorbing thin films
Zapata, L.E.
1994-08-02
A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber. 16 figs.
Solid-state dewetting of thin Au films studied with real-time, in situ spectroscopic ellipsometry
NASA Astrophysics Data System (ADS)
Magnozzi, M.; Bisio, F.; Canepa, M.
2017-11-01
We report the design and testing of a small, high vacuum chamber that allows real-time, in situ spectroscopic ellipsometry (SE) measurements; the chamber was designed to be easily inserted within the arms of a commercial ellipsometer. As a test application, we investigated the temperature-induced solid-state dewetting of thin (20 to 8 nm) Au layers on Si wafers. In situ SE measurements acquired in real time during the heating of the samples reveal features that can be related to the birth of a localized surface plasmon resonance (LSPR), and demonstrate the presence of a temperature threshold for the solid-state dewetting.
Parasitic oscillation suppression in solid state lasers using absorbing thin films
Zapata, Luis E.
1994-01-01
A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pollutants released to the atmosphere. (g) Facility means all thermal processing equipment, buildings, and... hazards by spreading the solid wastes in thin layers, compacting the solid wastes to the smallest...
Code of Federal Regulations, 2014 CFR
2014-07-01
... pollutants released to the atmosphere. (g) Facility means all thermal processing equipment, buildings, and... hazards by spreading the solid wastes in thin layers, compacting the solid wastes to the smallest...
Code of Federal Regulations, 2012 CFR
2012-07-01
... pollutants released to the atmosphere. (g) Facility means all thermal processing equipment, buildings, and... hazards by spreading the solid wastes in thin layers, compacting the solid wastes to the smallest...
Thin layer drying of cassava starch using continuous vibrated fluidized bed dryer
NASA Astrophysics Data System (ADS)
Suherman, Trisnaningtyas, Rona
2015-12-01
This paper present the experimental work and thin layer modelling of cassava starch drying in continuous vibrated fluidized bed dryer. The experimental data was used to validate nine thin layer models of drying curve. Cassava starch with 0.21 initial moisture content was dried in different air drying temperature (50°C, 55°C, 60°C, 65°C, 70°C), different weir height in bed (0 and 1 cm), and different solid feed flow (10 and 30 gr.minute-1). The result showed air dryer temperature has a significant effect on drying curve, while the weir height and solid flow rate are slightly. Based on value of R2, χ2, and RMSE, Page Model is the most accurate simulation for thin layer drying model of cassava starch.
Microstructural and mechanical characteristics of Ni–Cr thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petley, Vijay; Sathishkumar, S.; Thulasi Raman, K.H.
2015-06-15
Highlights: • Ni–Cr thin films of varied composition deposited by DC magnetron co-sputtering. • Thin film with Ni–Cr: 80–20 at% composition exhibits most distinct behavior. • The films were tensile tested and exhibited no cracking till the substrate yielding. - Abstract: Ni–Cr alloy thin films have been deposited using magnetron co-sputtering technique at room temperature. Crystal structure was evaluated using GIXRD. Ni–Cr solid solution upto 40 at% of Cr exhibited fcc solid solution of Cr in Ni and beyond that it exhibited bcc solid solution of Ni in Cr. X-ray diffraction analysis shows formation of (1 1 1) fiber texturemore » in fcc and (2 2 0) fiber texture in bcc Ni–Cr thin films. Electron microscopy in both in-plane and transverse direction of the film surface revealed the presence of columnar microstructure for films having Cr upto 40 at%. Mechanical properties of the films are evaluated using nanoindentation. The modulus values increased with increase of Cr at% till the film is fcc. With further increase in Cr at% the modulus values decreased. Ni–Cr film with 20 at% Ni exhibits reduction in modulus and is correlated to the poor crystallization of the film as reflected in XRD analysis. The Ni–Cr thin film with 80 at% Ni and 20 at% Cr exhibited the most distinct columnar structure with highest electrical resistivity, indentation hardness and elastic modulus.« less
NASA Astrophysics Data System (ADS)
Sailaja, P.; Kumar, N. Pavan; Rajalakshmi, R.; Kumar, R. Arockia; Ponpandian, N.; Prabahar, K.; Srinivas, A.
2018-05-01
Lead free ferroelectric thin films of {(0.5) BZT-(0.5) BCT} (termed as BCZT) were deposited on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition at four deposition temperatures 600, 650, 700, 750°C and at two oxygen pressures viz. 75mtorr and 100 mtorr using BCZT ceramic target (prepared by solid state sintering method). The effect of deposition temperature and oxygen pressure on the structure, microstructure and mechanical properties of BCZT films were studied. X-ray diffraction patterns of deposited films confirm tetragonal crystal symmetry and the crystallinity of the films increases with increasing deposition temperature. Variation in BCZT grain growth was observed when the films are deposited at different temperatures andoxygen pressures respectively. The mechanical properties viz. hardness and elastic modulus were also found to be high with increase in the deposition temperature and oxygen pressure. The results will be discussed.
The recoil implantation technique developed at the U-120 cyclotron in Bucharest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muntele, C. I.; Simil, L. Popa; Racolta, P. M.
1999-06-10
At the U-120 cyclotron in Bucharest was developed 15 years ago the thin layer activation (TLA) technique for radioactive labeling of metallic components on depths ranging between 100 {mu}m and 300 {mu}m, for wear/corrosion studies. Aiming to extend these kinds of studies on non-metallic components and at sub-micrometric level we were led to the development of the recoil implantation technique for ultra thin layer activation (UTLA) applications. Due to the low energy of the recoils obtained in a sacrificial target from a nuclear reaction, the surface layer of material to be labeled must be as thick as a few hundredmore » nanometers. Also, since the radiotracer is externally created, there are no restrictions for the kind of material to be labeled, except to be a solid. In this paper we present some results of our studies concerning the actual status of this application at our accelerator.« less
NASA Astrophysics Data System (ADS)
Kanetsyan, E. G.; Mkrtchyan, M. S.; Mkhitaryan, S. M.
2018-04-01
We consider a class of contact torsion problems on interaction of thin-walled elements shaped as an elastic thin washer – a flat circular plate of small height – with an elastic layer, in particular, with a half-space, and on interaction of thin cylindrical shells with a solid elastic cylinder, infinite in both directions. The governing equations of the physical models of elastic thin washers and thin circular cylindrical shells under torsion are derived from the exact equations of mathematical theory of elasticity using the Hankel and Fourier transforms. Within the framework of the accepted physical models, the solution of the contact problem between an elastic washer and an elastic layer is reduced to solving the Fredholm integral equation of the first kind with a kernel representable as a sum of the Weber–Sonin integral and some integral regular kernel, while solving the contact problem between a cylindrical shell and solid cylinder is reduced to a singular integral equation (SIE). An effective method for solving the governing integral equations of these problems are specified.
NASA Astrophysics Data System (ADS)
Bhattarai, Gyanendra; Dhungana, Shailesh; Nordell, Bradley J.; Caruso, Anthony N.; Paquette, Michelle M.; Lanford, William A.; King, Sean W.
2018-05-01
Analytical expressions describing ion-induced sputter or etch processes generally relate the sputter yield to the surface atomic binding energy (Usb) for the target material. While straightforward to measure for the crystalline elemental solids, Usb is more complicated to establish for amorphous and multielement materials due to composition-driven variations and incongruent sublimation. In this regard, we show that for amorphous multielement materials, the ion-driven yield can instead be better understood via a consideration of mechanical rigidity and network topology. We first demonstrate a direct relationship between Usb, bulk modulus, and ion sputter yield for the elements, and then subsequently prove our hypothesis for amorphous multielement compounds by demonstrating that the same relationships exist between the reactive ion etch (RIE) rate and nanoindentation Young's modulus for a series of a -Si Nx :H and a -Si OxCy :H thin films. The impact of network topology is further revealed via application of the Phillips-Thorpe theory of topological constraints, which directly relates the Young's modulus to the mean atomic coordination (
Medishetty, Raghavender; Zhang, Zongji; Sadlo, Alexander; Cwik, Stefan; Peeters, Daniel; Henke, Sebastian; Mangayarkarasi, Nagarathinam; Devi, Anjana
2018-05-17
Fabrication of three-dimensional metal-organic framework (MOF) thin films has been investigated for the first time through the conversion of a ZnO layer via a pure vapour-solid deposition reaction at ambient pressure. The fabrication of MOF thin films with a dicarboxylate linker, (DMA)2[Zn3(bdc)4] (1) (bdc = 1,4-benzenedicarboxylate), and a carboxy-pyrazolate linker, [Zn4O(dmcapz)6] (2) (dmcapz = 3,5-dimethyl-4-carboxypyrazole), involves the deposition of the linker and/or the preparation of a composite film preliminarily and its subsequent conversion into a MOF film using closed cell thermal treatment. Furthermore, it was possible to isolate thin films with a MOF-5 isotype structure grown along the [110] direction, using a carboxy-pyrazolate linker. This was achieved just by the direct reaction of the ZnO film and the organic linker vapors, employing a simple route that demonstrates the feasibility of MOF thin film fabrication using inexpensive routes at ambient pressure.
NASA Astrophysics Data System (ADS)
Klim, Adam; Morrison, J. T.; Orban, C.; Feister, S.; Ngirmang, G. K.; Smith, J.; Frische, K.; Peterson, A. C.; Chowdhury, E. A.; Freeman, R. R.; Roquemore, W. M.
2016-10-01
The success of laser-accelerated ion experiments depends crucially on a number of factors including how thin the targets can be created. We present experimental results demonstrating extremely thin (under 200 nm) water sheet targets that can be used for ultra-intense laser-accelerated ion experiments conducted at the Air Force Research Laboratory at Wright-Patterson Air Force Base. Importantly, these experiments operate at a kHz repetition rate and the recovery time of the liquid targets is fast enough to allow the laser to interact with a refreshed, thin target on every shot. We present results from liquid water targets which are useful for proton acceleration experiments via the mechanism of Target Normal Sheath Acceleration (TNSA). In future work, we will create thin sheets from deuterated water in order to perform laser-accelerated deuteron experiments. This research was sponsored by the Quantum and Non-Equilibrium Processes Division of the AFOSR, under the management of Dr. Enrique Parra, and support from the DOD HPCMP Internship Program.
NASA Astrophysics Data System (ADS)
de Souza, Victor Hugo Rodrigues; Oliveira, Marcela Mohallem; Zarbin, Aldo José Gorgatti
2014-08-01
The present work describes for the first time the synthesis and characterization of single wall carbon nanotubes/polyaniline (SWNTs/PAni) nanocomposite thin films in a liquid-liquid interface, as well as the subsequent construction of a flexible all-solid supercapacitor. Different SWNTs/PAni nanocomposites were prepared by varying the ratio of SWNT to aniline, and the samples were characterized by scanning and transmission electron microscopy, Raman and UV-Vis spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The pseudo-capacitive behavior of the nanocomposites was evaluated by charge/discharge galvanostatic measurements. The presence of the SWNTs affected the electronic and vibrational properties of the polyaniline and also improved the pseudo-capacitive behavior of the conducting polymer. A very thin and flexible all-solid device was manufactured using two electrodes (polyethylene terephthalate-PET covered with the SWNT/PAni nanocomposite separated by a H2SO4-PVA gel electrolyte). The pseudo-capacitive behavior was characterized by a volumetric specific capacitance of approximately 76.7 F cm-3, even under mechanical deformation, indicating that this nanocomposite has considerable potential for application in new-generation energy storage devices.
Proton deflectometry of laser-driven relativistic electron jet from thin foil target
NASA Astrophysics Data System (ADS)
Huang, Chengkun; Palaniyappan, S.; Gautier, D. C.; Johnson, R. P.; Shimada, T.; Fernandez, J. C.; Tsung, F. S.; Mori, W. B.
2017-10-01
Near critical density relativistic electron jets from laser solid interaction carry currents approaching the Alfvén-limit and tens of kilo-Tesla magnetic fields. Such jets are often found in kinetic simulations with low areal density targets, but have not been confirmed experimentally. They may be used for X/gamma-ray generation and is also important for the understanding of post-transparency plasma dynamics. With a short-pulse probe beam at the Trident laser facility, we employed proton deflectometry to infer the jet's properties, structure and the long-time dynamics. We develop corresponding GEANT4 simulation model of the proton deflectometry, with input from the kinetic PIC simulations in 2D and quasi-3D geometry, to compare with the experimental radiography images. Detail comparison of the experimental and simulation features in the deflectometry will be discussed. Work supported by the LDRD program at LANL.
NASA Astrophysics Data System (ADS)
Ortner, A.; Schumacher, D.; Cayzac, W.; Frank, A.; Basko, M. M.; Bedacht, S.; Blazevic, A.; Faik, S.; Kraus, D.; Rienecker, T.; Schaumann, G.; Tauschwitz, An.; Wagner, F.; Roth, M.
2016-03-01
We report on a new experimental setup for ion energy loss measurements in dense moderately coupled plasma which has recently been developed and tested at GSI Darmstadt. A partially ionized, moderately coupled carbon plasma (ne ≤ 0.8• 1022 cm-3, Te = 15 eV, z = 2.5, Γ = 0.5) is generated by volumetrical heating of two thin carbon foils with soft X-rays. This plasma is then probed by a bunched heavy ion beam. For that purpose, a special double gold hohlraum target of sub-millimeter size has been developed which efficiently converts intense laser light into thermal radiation and guarantees a gold-free interaction path for the ion beam traversing the carbon plasma. This setup allows to do precise energy loss measurements in non-ideal plasma at the level of 10 percent solid-state density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apollonio, M.; Chimenti, P.; Giannini, G.
2009-12-15
The HARP Collaboration has presented measurements of the double-differential {pi}{sup {+-}} production cross section in the range of momentum 100 MeV/c{<=}p{<=}800 MeV/c and angle 0.35 rad{<=}{theta}{<=}2.15 rad with proton beams hitting thin nuclear targets. In many applications the extrapolation to long targets is necessary. In this article the analysis of data taken with long (one interaction length) solid cylindrical targets made of carbon, tantalum, and lead is presented. The data were taken with the large-acceptance HARP detector in the T9 beam line of the CERN proton synchrotron. The secondary pions were produced by beams of protons with momenta of 5,more » 8, and 12GeV/c. The tracking and identification of the produced particles were performed using a small-radius cylindrical time projection chamber placed inside a solenoidal magnet. Incident protons were identified by an elaborate system of beam detectors. Results are obtained for the double-differential yields per target nucleon d{sup 2}{sigma}/dpd{theta}. The measurements are compared with predictions of the MARS and GEANT4 Monte Carlo simulations.« less
Solid state dewetting of thin plasmonic films under focused cw-laser irradiation
Abbott, William M.; Corbett, Simon; Cunningham, Graeme; ...
2017-12-21
Elevated temperatures and large thermal gradients are a significant source of component failure in microelectronics, and is the limiting factor in heat-assisted magnetic recording (HAMR). Here, we have investigated the effect of solid-state dewetting in Au thin films, as a function of local temperature, film thickness, and substrate adhesion. In this work, a localised temperature rise is induced in thin (≤ 50 nm) polycrystalline Au films on SiO 2 substrates via focused continuous-wave laser irradiation at 488 nm. The magnitude and distribution of the total temperature rise is measured using CCD-based thermoreflectance. This also allows a sensitive measurement of themore » temperature at which dewetting occurs, showing that for thin (≤ 50 nm) Au films without adhesion layers, rapid dewetting can occur at temperatures as low as 50° C. The time decay of the reflected light from the illuminating laser is used to monitor locally the dynamics of solid state dewetting. TEM diffraction analysis shows significant changes in the microstructure and crystallographic texture of the films as far as 10 µm away from the illuminated area. The use of a thin metallic adhesion layer (such as Ti or Cr) is shown to significantly improve the adhesion of the Au to the substrate and reduce the tendency towards dewetting, but does not entirely protect it from changes to the crystallographic texture.« less
Solid state dewetting of thin plasmonic films under focused cw-laser irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, William M.; Corbett, Simon; Cunningham, Graeme
Elevated temperatures and large thermal gradients are a significant source of component failure in microelectronics, and is the limiting factor in heat-assisted magnetic recording (HAMR). Here, we have investigated the effect of solid-state dewetting in Au thin films, as a function of local temperature, film thickness, and substrate adhesion. In this work, a localised temperature rise is induced in thin (≤ 50 nm) polycrystalline Au films on SiO 2 substrates via focused continuous-wave laser irradiation at 488 nm. The magnitude and distribution of the total temperature rise is measured using CCD-based thermoreflectance. This also allows a sensitive measurement of themore » temperature at which dewetting occurs, showing that for thin (≤ 50 nm) Au films without adhesion layers, rapid dewetting can occur at temperatures as low as 50° C. The time decay of the reflected light from the illuminating laser is used to monitor locally the dynamics of solid state dewetting. TEM diffraction analysis shows significant changes in the microstructure and crystallographic texture of the films as far as 10 µm away from the illuminated area. The use of a thin metallic adhesion layer (such as Ti or Cr) is shown to significantly improve the adhesion of the Au to the substrate and reduce the tendency towards dewetting, but does not entirely protect it from changes to the crystallographic texture.« less
Controlled Chemical Doping of Semiconductor Nanocrystals Using Redox Buffers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, Jesse H.; Surendranath, Yogesh; Alivisatos, Paul
Semiconductor nanocrystal solids are attractive materials for active layers in next-generation optoelectronic devices; however, their efficient implementation has been impeded by the lack of precise control over dopant concentrations. Herein we demonstrate a chemical strategy for the controlled doping of nanocrystal solids under equilibrium conditions. Exposing lead selenide nanocrystal thin films to solutions containing varying proportions of decamethylferrocene and decamethylferrocenium incrementally and reversibly increased the carrier concentration in the solid by 2 orders of magnitude from their native values. This application of redox buffers for controlled doping provides a new method for the precise control of the majority carrier concentrationmore » in porous semiconductor thin films.« less
Method and system for making integrated solid-state fire-sets and detonators
O'Brien, Dennis W.; Druce, Robert L.; Johnson, Gary W.; Vogtlin, George E.; Barbee, Jr., Troy W.; Lee, Ronald S.
1998-01-01
A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques.
Simultaneous reflectometry and interferometry for measuring thin-film thickness and curvature
NASA Astrophysics Data System (ADS)
Arends, A. A.; Germain, T. M.; Owens, J. F.; Putnam, S. A.
2018-05-01
A coupled reflectometer-interferometer apparatus is described for thin-film thickness and curvature characterization in the three-phase contact line region of evaporating fluids. Validation reflectometry studies are provided for Au, Ge, and Si substrates and thin-film coatings of SiO2 and hydrogel/Ti/SiO2. For interferometry, liquid/air and solid/air interferences are studied, where the solid/air samples consisted of glass/air/glass wedges, cylindrical lenses, and molded polydimethylsiloxane lenses. The liquid/air studies are based on steady-state evaporation experiments of water and isooctane on Si and SiO2/Ti/SiO2 wafers. The liquid thin-films facilitate characterization of both (i) the nano-scale thickness of the absorbed fluid layer and (ii) the macro-scale liquid meniscus thickness, curvature, and curvature gradient profiles. For our validation studies with commercial lenses, the apparatus is shown to measure thickness profiles within 4.1%-10.8% error.
High temperature solid electrolyte fuel cell configurations and interconnections
Isenberg, Arnold O.
1984-01-01
High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.
Heat Transfer to a Thin Solid Combustible in Flame Spreading at Microgravity
NASA Technical Reports Server (NTRS)
Bhattacharjee, S.; Altenkirch, R. A.; Olson, S. L.; Sotos, R. G.
1991-01-01
The heat transfer rate to a thin solid combustible from an attached diffusion flame, spreading across the surface of the combustible in a quiescent, microgravity environment, was determined from measurements made in the drop tower facility at NASA-Lewis Research Center. With first-order Arrhenius pyrolysis kinetics, the solid-phase mass and energy equations along with the measured spread rate and surface temperature profiles were used to calculate the net heat flux to the surface. Results of the measurements are compared to the numerical solution of the complete set of coupled differential equations that describes the temperature, species, and velocity fields in the gas and solid phases. The theory and experiment agree on the major qualitative features of the heat transfer. Some fundamental differences are attributed to the neglect of radiation in the theoretical model.
Albin, David S.; Carapella, Jeffrey J.; Tuttle, John R.; Contreras, Miguel A.; Gabor, Andrew M.; Noufi, Rommel; Tennant, Andrew L.
1995-07-25
A process for fabricating slightly Cu-poor thin-films of Cu(In,Ga)Se.sub.2 on a substrate for semiconductor device applications includes the steps of forming initially a slightly Cu-rich, phase separated, mixture of Cu(In,Ga)Se.sub.2 :Cu.sub.x Se on the substrate in solid form followed by exposure of the Cu(In,Ga)Se.sub.2 :Cu.sub.x Se solid mixture to an overpressure of Se vapor and (In,Ga) vapor for deposition on the Cu(In,Ga)Se.sub.2 :Cu.sub.x Se solid mixture while simultaneously increasing the temperature of the solid mixture toward a recrystallization temperature (about 550.degree. C.) at which Cu(In,Ga)Se.sub.2 is solid and Cu.sub.x Se is liquid. The (In,Ga) flux is terminated while the Se overpressure flux and the recrystallization temperature are maintained to recrystallize the Cu.sub.x Se with the (In, Ga) that was deposited during the temperature transition and with the Se vapor to form the thin-film of slightly Cu-poor Cu.sub.x (In,Ga).sub.y Se.sub.z. The initial Cu-rich, phase separated large grain mixture of Cu(In,Ga)Se.sub.2 :Cu.sub.x Se can be made by sequentially depositing or co-depositing the metal precursors, Cu and (In, Ga), on the substrate at room temperature, ramping up the thin-film temperature in the presence of Se overpressure to a moderate anneal temperature (about 450.degree. C.) and holding that temperature and the Se overpressure for an annealing period. A nonselenizing, low temperature anneal at about 100.degree. C. can also be used to homogenize the precursors on the substrates before the selenizing, moderate temperature anneal.
YSZ thin films with minimized grain boundary resistivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Edmund M.; Kleine-Boymann, Matthias; Janek, Juergen
2016-03-31
In recent years, interface engineering of solid electrolytes has been explored to increase their ionic conductivity and improve the performance of solid oxide fuel cells and other electrochemical power sources. It has been observed that the ionic conductivity of epitaxially grown thin films of some electrolytes is dramatically enhanced, which is often attributed to effects (e. g. strain-induced mobility changes) at the heterophase boundary with the substrate. Still largely unexplored is the possibility of manipulation of grain boundary resistivity in polycrystalline solid electrolyte films, clearly a limiting factor in their ionic conductivity. Here we report that the ionic conductivity ofmore » yttria stabilized zirconia thin films with nano- columnar grains grown on a MgO substrate nearly reaches that of the corresponding single crystal when the thickness of the films becomes less than roughly 8 nm (smaller by a factor of three at 500°C). Using impedance spectroscopy, the grain boundary resistivity was probed as a function of film thickness. The resistivity of the grain boundaries near the film- substrate interface and film surface (within 4 nm of each) was almost entirely eliminated. This minimization of grain boundary resistivity is attributed to Mg2+ diffusion from the MgO substrate into the YSZ grain boundaries, which is supported by time of flight secondary ion mass spectroscopy measurements. We suggest grain boundary “design” as an attractive method to obtain highly conductive solid electrolyte thin films.« less
YSZ thin films with minimized grain boundary resistivity
Mills, Edmund M.; Kleine-Boymann, Matthias; Janek, Juergen; ...
2016-03-31
In recent years, interface engineering of solid electrolytes has been explored to increase their ionic conductivity and improve the performance of solid oxide fuel cells and other electrochemical power sources. It has been observed that the ionic conductivity of epitaxially grown thin films of some electrolytes is dramatically enhanced, which is often attributed to effects (e.g. strain-induced mobility changes) at the heterophase boundary with the substrate. Still largely unexplored is the possibility of manipulation of grain boundary resistivity in polycrystalline solid electrolyte films, clearly a limiting factor in their ionic conductivity. Here in this paper, we report that the ionicmore » conductivity of yttria stabilized zirconia thin films with nano-columnar grains grown on a MgO substrate nearly reaches that of the corresponding single crystal when the thickness of the films becomes less than roughly 8 nm (smaller by a factor of three at 500 °C). Using impedance spectroscopy, the grain boundary resistivity was probed as a function of film thickness. The resistivity of the grain boundaries near the film–substrate interface and film surface (within 4 nm of each) was almost entirely eliminated. This minimization of grain boundary resistivity is attributed to Mg 2+ diffusion from the MgO substrate into the YSZ grain boundaries, which is supported by time of flight secondary ion mass spectroscopy measurements. We suggest grain boundary “design” as an attractive method to obtain highly conductive solid electrolyte thin films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jie Guan; Atul Verma; Nguyen Minh
2003-04-01
This document summarizes the technical progress from September 2002 to March 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. The causes have been identified for the unstable open circuit voltage (OCV) and low performance exhibited by the anode-supported lanthanum gallate based cells from the earlier development. Promising results have been obtained in the area of synthesis of electrolyte and cathode powders, which showed excellent sintering and densification at low temperatures. The fabrication of cells using tapecalendering process for anode-supported thin lanthanum gallate electrolyte cells and their performance optimizationmore » is in progress.« less
Process for forming a homogeneous oxide solid phase of catalytically active material
Perry, Dale L.; Russo, Richard E.; Mao, Xianglei
1995-01-01
A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.
Selective Individual Primary Cell Capture Using Locally Bio-Functionalized Micropores
Liu, Jie; Bombera, Radoslaw; Leroy, Loïc; Roupioz, Yoann; Baganizi, Dieudonné R.; Marche, Patrice N.; Haguet, Vincent; Mailley, Pascal; Livache, Thierry
2013-01-01
Background Solid-state micropores have been widely employed for 6 decades to recognize and size flowing unlabeled cells. However, the resistive-pulse technique presents limitations when the cells to be differentiated have overlapping dimension ranges such as B and T lymphocytes. An alternative approach would be to specifically capture cells by solid-state micropores. Here, the inner wall of 15-µm pores made in 10 µm-thick silicon membranes was covered with antibodies specific to cell surface proteins of B or T lymphocytes. The selective trapping of individual unlabeled cells in a bio-functionalized micropore makes them recognizable just using optical microscopy. Methodology/Principal Findings We locally deposited oligodeoxynucleotide (ODN) and ODN-conjugated antibody probes on the inner wall of the micropores by forming thin films of polypyrrole-ODN copolymers using contactless electro-functionalization. The trapping capabilities of the bio-functionalized micropores were validated using optical microscopy and the resistive-pulse technique by selectively capturing polystyrene microbeads coated with complementary ODN. B or T lymphocytes from a mouse splenocyte suspension were specifically immobilized on micropore walls functionalized with complementary ODN-conjugated antibodies targeting cell surface proteins. Conclusions/Significance The results showed that locally bio-functionalized micropores can isolate target cells from a suspension during their translocation throughout the pore, including among cells of similar dimensions in complex mixtures. PMID:23469221
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ying, Bo; Campbell, Robert B., E-mail: robert.campbell@mcphs.edu
2014-04-04
Highlights: • siRNA-lipid nanoparticles are solid particles not lipid bilayers with aqueous core. • High, but not low, PEG content can prevent nanoparticle encapsulation of siRNA. • PEG reduces cellular toxicity of cationic nanoparticles in vitro. • PEG reduces zeta potential while improving gene silencing of siRNA nanoparticles. • Kinesin spindle protein can be an effective target for tumor vascular targeting. - Abstract: The ideal siRNA delivery system should selectively deliver the construct to the target cell, avoid enzymatic degradation, and evade uptake by phagocytes. In the present study, we evaluated the importance of polyethylene glycol (PEG) on lipid-based carriermore » systems for encapsulating, and delivering, siRNA to tumor vessels using cellular models. Lipid nanoparticles containing different percentage of PEG were evaluated based on their physical chemical properties, density compared to water, siRNA encapsulation, toxicity, targeting efficiency and gene silencing in vitro. siRNA can be efficiently loaded into lipid nanoparticles (LNPs) when DOTAP is included in the formulation mixture. However, the total amount encapsulated decreased with increase in PEG content. In the presence of siRNA, the final formulations contained a mixed population of particles based on density. The major population which contains the majority of siRNA exhibited a density of 4% glucose, and the minor fraction associated with a decreased amount of siRNA had a density less than PBS. The inclusion of 10 mol% PEG resulted in a greater amount of siRNA associated with the minor fraction. Finally, when kinesin spindle protein (KSP) siRNA was encapsulated in lipid nanoparticles containing a modest amount of PEG, the proliferation of endothelial cells was inhibited due to the efficient knock down of KSP mRNA. The presence of siRNA resulted in the formation of solid lipid nanoparticles when prepared using the thin film and hydration method. LNPs with a relatively modest amount of PEG can sufficiently encapsulate siRNA, improve cellular uptake and the efficiency of gene silencing.« less
Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thirolf, P. G.; Gross, M.; Allinger, K.
We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N = 126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH{sub 2} layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the 'hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of {sup 232}Th with solid-state density can be generated from a Th target and a deuterated CD{sub 2} foil, both forming the production target assembly. Laser-accelerated Thmore » ions with about 7 MeV/u will pass through a thin CH{sub 2} layer placed in front of a thicker second Th foil (both forming the reaction target) closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD{sub 2} layer of the production target will be accelerated as well, inducing the fission process of {sup 232}Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 10{sup 14} times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. The high ion beam density may lead to a strong collective modification of the stopping power, leading to significant range and thus yield enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), order-of-magnitude estimates promise a fusion yield of about 10{sup 3} ions per laser pulse in the mass range of A = 180-190, thus enabling to approach the r-process waiting point at N = 126.« less
NASA Astrophysics Data System (ADS)
Darwish, Abdalla M.; Burkett, Allan; Blackwell, Ashley; Taylor, Keylantra; Walker, Vernell; Sarkisov, Sergey; Koplitz, Brent
2014-09-01
We report on fabrication and investigation of optical and morphological properties of highly efficient (a quantum yield of 1%) upconversion polymer-inorganic nanocomposite thin film emitters prepared by the new technique of double beam matrix assisted pulsed laser evaporation (DB-MAPLE). Polymer poly(methyl methacrylate) (PMMA) host was evaporated on a silicon substrate using a 1064-nm pulsed laser beam using a target made of frozen (to the temperature of liquid nitrogen) solution of PMMA in chlorobenzene. Concurrently, the second 532-nm pulsed beam from the same laser was used to impregnate the polymer host with the inorganic nanoparticulate made of the rare earth upconversion compounds NaYF4: Yb3+, Er3+, NaYF4: Yb3+, Ho3+, and NaYF4: Yb3+, Tm3+. The compounds were initially synthesized using the wet process, baked, and compressed in solid pellet targets. The proposed DB-MAPLE method has the advantage of making highly homogeneous nanocomposite films with precise control of the doping rate due to the optimized overlapping of the plumes produced by the ablation of the organic and inorganic target with the infrared and visible laser beams respectively. X-ray diffraction, electron and atomic force microscopy, and optical fluorescence spectroscopy indicated that the inorganic nanoparticulate preserved its crystalline structure and upconversion properties (strong emission in green, red, and blue bands upon illumination with 980-nm laser diode) after being transferred from the target in the polymer nanocomposite film. The produced films can be used in applications varying from the efficiency enhancement of the photovoltaic cells, optical sensors and biomarkers to anti-counterfeit labels.
Solid-state rechargeable magnesium battery
Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng
2016-09-06
Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.
Capillary bending of a thin polymer film floating on a liquid bath
NASA Astrophysics Data System (ADS)
Twohig, Timothy; Croll, Andrew B.
Thin elastic films and shells are very important in schemes for the encapsulation and protection of fluids from their environment. Capillary origami is a particularly poignant example of how useful fluid/film structures can be formed. The interactions of fluids on thin-films which themselves lie on another surface (fluid or low friction solid) need to be studied if the differences from fluid-fluid and fluid-solid film interfaces are to be fully appreciated. In this experiment, we examine the triple line that occurs when a fluid is resting on a thin polymer film which is itself floating on a second fluid. The top fluid has a high-energy air/fluid interface which can be minimized by deforming the film in a manner that reduces the total air/fluid interface. We create a one-dimensional experiment in order to isolate the basic physics that occurs as the tension of the top fluid pulls on the thin film. Notably, the 1D geometry removes all the complexity incurred by thin films in biaxial stress states (such as wrinkling, folding and crumpling) from the problem. AFOSR under the Young Investigator Program (FA9550-15-1-0168).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Gu Young; Noh, Seungtak; Lee, Yoon Ho
2016-01-15
Nanostructured ZrO{sub 2} thin films were prepared by thermal atomic layer deposition (ALD) and by plasma-enhanced atomic layer deposition (PEALD). The effects of the deposition conditions of temperature, reactant, plasma power, and duration upon the physical and chemical properties of ZrO{sub 2} films were investigated. The ZrO{sub 2} films by PEALD were polycrystalline and had low contamination, rough surfaces, and relatively large grains. Increasing the plasma power and duration led to a clear polycrystalline structure with relatively large grains due to the additional energy imparted by the plasma. After characterization, the films were incorporated as electrolytes in thin film solidmore » oxide fuel cells, and the performance was measured at 500 °C. Despite similar structure and cathode morphology of the cells studied, the thin film solid oxide fuel cell with the ZrO{sub 2} thin film electrolyte by the thermal ALD at 250 °C exhibited the highest power density (38 mW/cm{sup 2}) because of the lowest average grain size at cathode/electrolyte interface.« less
Method and system for making integrated solid-state fire-sets and detonators
O`Brien, D.W.; Druce, R.L.; Johnson, G.W.; Vogtlin, G.E.; Barbee, T.W. Jr.; Lee, R.S.
1998-03-24
A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques. 13 figs.
Transparent, flexible supercapacitors from nano-engineered carbon films.
Jung, Hyun Young; Karimi, Majid B; Hahm, Myung Gwan; Ajayan, Pulickel M; Jung, Yung Joon
2012-01-01
Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.
Transparent, flexible supercapacitors from nano-engineered carbon films
Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon
2012-01-01
Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications. PMID:23105970
Transparent, flexible supercapacitors from nano-engineered carbon films
NASA Astrophysics Data System (ADS)
Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon
2012-10-01
Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.
Park, Se-Chul; Biswas, Shantonu; Fang, Jun; Mozafari, Mahsa; Stauden, Thomas; Jacobs, Heiko O
2015-06-24
A millimeter thin rubber-like solid-state lighting module is reported. The fabrication of the lighting module incorporates assembly and electrical connection of light-emitting diodes (LEDs). The assembly is achieved using a roll-to-roll fluidic self-assembly. The LEDs are sandwiched in-between a stretchable top and bottom electrode to relieve the mechanical stress. The top contact is realized using a lamination technique that eliminates wire-bonding. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DNA based thin solid films and its application to optical fiber temperature sensor
NASA Astrophysics Data System (ADS)
Hong, Seongjin; Jung, Woohyun; Kim, Taeoh; Oh, Kyunghwan
2017-04-01
Temperature dependent refractive index of DNA-cetyltrimethylammonium chloride (CTMA) thin-solid-film was measured 20 to 90° to obtain its thermo-optic coefficient of -3.6×10-4 (dn/dT). DNA- CTMA film has high thermosoptic coefficient than other polymers. The film was deposited on coreless silica fiber (CSF) to serve as a multimode interferometer optical fiber temperature sensor. It is immersed in a water that changed temperature from 40 to 90°. It has sensitivity of 0.25nm/℃.
Solid-State Multimission Magnetometer (SSM(3)): Application to Groundwater Exploration on Mars
NASA Technical Reports Server (NTRS)
Grimm, Robert E.
2002-01-01
This report describes work to develop solid-state magnetometers using magnetoresistive thin films, low-frequency electric-field measurements, and methods for electromagnetic detection of water and ice in the subsurface of Mars.
NASA Astrophysics Data System (ADS)
Xie, J.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O.
LiCoPO 4 thin films were deposited on Li 1+ x+ yAl xTi 2- xSi yP 3- yO 12 (LATSP) solid electrolyte by radio frequency magnetron sputtering and were characterized by X-ray diffraction and scanning electron microscope. The films show a (1 1 1) preferred orientation upon annealing and are chemically stable with LATSP up to 600 °C in air. An all-solid-state Li/PEO 18-Li(CF 3SO 2) 2N/LATSP/LiCoPO 4/Au cell was fabricated to investigate the electrochemical performance and Li-ion chemical diffusion coefficients, D˜Li , of the LiCoPO 4 thin films. The potential dependence of D˜Li values of the LiCoPO 4 thin film was investigated by potentiostatic intermittent titration technique and was compared with those of the LiFePO 4 thin film. These results showed that the intercalation mechanism of Li-ion in LiCoPO 4 is different from that in LiFePO 4.
Zhang, Xurui; Tchoukov, Plamen; Manica, Rogerio; Wang, Louxiang; Liu, Qingxia; Xu, Zhenghe
2016-11-09
Interactions involving deformable surfaces reveal a number of distinguishing physicochemical characteristics that do not exist in interactions between rigid solid surfaces. A unique fully custom-designed instrument, referred to as integrated thin liquid film force apparatus (ITLFFA), was developed to study the interactions between one deformable and one solid surface in liquid. Incorporating a bimorph force sensor with interferometry, this device allows for the simultaneous measurement of the time-dependent interaction force and the corresponding spatiotemporal film thickness of the intervening liquid film. The ITLFFA possesses the specific feature of conducting measurement under a wide range of hydrodynamic conditions, with a displacement velocity of deformable surfaces ranging from 2 μm s -1 to 50 mm s -1 . Equipped with a high speed camera, the results of a bubble interacting with hydrophilic and partially hydrophobic surfaces in aqueous solutions indicated that ITLFFA can provide information on interaction forces and thin liquid film drainage dynamics not only in a stable film but also in films of the quick rupture process. The weak interaction force was extracted from a measured film profile. Because of its well-characterized experimental conditions, ITLFFA permits the accurate and quantitative comparison/validation between measured and calculated interaction forces and temporal film profiles.
Voltage-controlled quantum light from an atomically thin semiconductor
NASA Astrophysics Data System (ADS)
Chakraborty, Chitraleema; Kinnischtzke, Laura; Goodfellow, Kenneth M.; Beams, Ryan; Vamivakas, A. Nick
2015-06-01
Although semiconductor defects can often be detrimental to device performance, they are also responsible for the breadth of functionality exhibited by modern optoelectronic devices. Artificially engineered defects (so-called quantum dots) or naturally occurring defects in solids are currently being investigated for applications ranging from quantum information science and optoelectronics to high-resolution metrology. In parallel, the quantum confinement exhibited by atomically thin materials (semi-metals, semiconductors and insulators) has ushered in an era of flatland optoelectronics whose full potential is still being articulated. In this Letter we demonstrate the possibility of leveraging the atomically thin semiconductor tungsten diselenide (WSe2) as a host for quantum dot-like defects. We report that this previously unexplored solid-state quantum emitter in WSe2 generates single photons with emission properties that can be controlled via the application of external d.c. electric and magnetic fields. These new optically active quantum dots exhibit excited-state lifetimes on the order of 1 ns and remarkably large excitonic g-factors of 10. It is anticipated that WSe2 quantum dots will provide a novel platform for integrated solid-state quantum photonics and quantum information processing, as well as a rich condensed-matter physics playground with which to explore the coupling of quantum dots and atomically thin semiconductors.
NASA Astrophysics Data System (ADS)
Jones, Stephanie H.; King, Martin D.; Ward, Andrew D.
2014-09-01
A counter-propagating optical trap has been used to study thin organic films on the surface of solid particles levitated in air. Micron sized silica spheres have been trapped in air between opposed 1064 nm laser beams, and illuminated with a broadband white LED. Backscattered light from the trapped particle was collected to obtain a Mie spectrum over the 495-670 nm wavelength range and this was used to determine particle radius and wavelength dependent refractive index (Jones et al., 2013). The trapped particle was coated using a flow of organic vapour and the resultant thin film analysed using a coated sphere model. Resonance positions in the Mie spectrum were monitored with time in order to determine film formation, thickness and refractive index. Whilst thin films are believed to form naturally on atmospheric aerosols (Tervahattu et al., 2002), a debate remains as to whether the organic component completely coats the aerosol surface or partially engulfs it. Such films are readily oxidised in the atmosphere causing a change in aerosol properties and knowledge of aerosol properties is required to understand their effect on the climate. The use of optical trapping combined with Mie spectra acquisition to study and characterise coated solid particles is therefore an important step in atmospheric science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzanyan, A S; Kuzanyan, A A; Petrosyan, V A
The factors determining the efficiency of the target material utilisation for pulsed laser deposition of films are considered. The target volume is calculated, which is evaporated in the ablation process by the focused laser radiation having a rectangular form. The new device is suggested and developed for obtaining thin films by the method of laser deposition, which is specific in the employment of a simple optical system mounted outside a deposition chamber that comprises two lenses and the diaphragm and focuses the laser beam onto a target in the form of a sector-like spot. Thin films of CuO and YBaCuOmore » were deposited with this device. Several deposition cycles revealed that the target material is consumed uniformly from the entire surface of the target. A maximal spread of the target thickness was not greater than ±2% both prior to deposition and after it. The device designed provides a high coefficient of the target material utilisation efficiency. (laser deposition of thin films)« less
Solid state thin film battery having a high temperature lithium alloy anode
Hobson, David O.
1998-01-01
An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.
Pulsed Laser Deposition of High Temperature Protonic Films
NASA Technical Reports Server (NTRS)
Dynys, Fred W.; Berger, M. H.; Sayir, Ali
2006-01-01
Pulsed laser deposition has been used to fabricate nanostructured BaCe(0.85)Y(0.15)O3- sigma) films. Protonic conduction of fabricated BaCe(0.85)Y(0.15)O(3-sigma) films was compared to sintered BaCe(0.85)Y(0.15)O(3-sigma). Sintered samples and laser targets were prepared by sintering BaCe(0.85)Y(0.15)O(3-sigma) powders derived by solid state synthesis. Films 1 to 8 micron thick were deposited by KrF excimer laser on porous Al2O3 substrates. Thin films were fabricated at deposition temperatures of 700 to 950 C at O2 pressures up to 200 mTorr using laser pulse energies of 0.45 - 0.95 J. Fabricated films were characterized by X-ray diffraction, electron microscopy and electrical impedance spectroscopy. Single phase BaCe(0.85)Y(0.15)O(3-sigma) films with a columnar growth morphology are observed with preferred crystal growth along the [100] or [001] direction. Results indicate [100] growth dependence upon laser pulse energy. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 C to 900 C. Electrical conduction behavior was dependent upon film deposition temperature. Maximum conductivity occurs at deposition temperature of 900 oC; the electrical conductivity exceeds the sintered specimen. All other deposited films exhibit a lower electrical conductivity than the sintered specimen. Activation energy for electrical conduction showed dependence upon deposition temperature, it varied
Thin-film preparation by back-surface irradiation pulsed laser deposition using metal powder targets
NASA Astrophysics Data System (ADS)
Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Yamauchi, Makiko; Suda, Yoshiaki
2017-01-01
Several kinds of functional thin films were deposited using a new thin-film preparation method named the back-surface irradiation pulsed laser deposition (BIPLD) method. In this BIPLD method, powder targets were used as the film source placed on a transparent target holder, and then a visible-wavelength pulsed laser was irradiated from the holder side to the substrate. Using this new method, titanium oxide and boron nitride thin films were deposited on the silicon substrate. Surface scanning electron microscopy (SEM) images suggest that all of the thin films were deposited on the substrate with some large droplets irrespective of the kind of target used. The deposition rate of the films prepared by using this method was calculated from film thickness and deposition time to be much lower than that of the films prepared by conventional PLD. X-ray diffraction (XRD) measurement results suggest that rutile and anatase TiO2 crystal peaks were formed for the films prepared using the TiO2 rutile powder target. Crystal peaks of hexagonal boron nitride were observed for the films prepared using the boron nitride powder target. The crystallinity of the prepared films was changed by annealing after deposition.
Predoi, Daniela; Popa, Cristina Liana; Chapon, Patrick; Groza, Andreea; Iconaru, Simona Liliana
2016-01-01
The inhibitory and antimicrobial effects of silver particles have been known since ancient times. In the last few years, a major health problem has arisen due to pathogenic bacteria resistance to antimicrobial agents. The antibacterial activities of new materials including hydroxyapatite (HAp), silver-doped hydroxyapatite (Ag:HAp) and various types of antibiotics such as tetracycline (T-HAp and T-Ag:HAp) or ciprofloxacin (C-HAp and C-Ag:HAp) have not been studied so far. In this study we reported, for the first time, the preparation and characterization of various thin films based on hydroxyapatite and silver-doped hydroxyapatite combined with tetracycline or ciprofloxacin. The structural and chemical characterization of hydroxyapatite and silver-doped hydroxyapatite thin films has been evaluated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The morphological studies of the HAp, Ag:HAp, T-HAp, T-Ag:HAp, C-HAp and C-Ag:HAp thin solid films were performed using scanning electron microscopy (SEM). In order to study the chemical composition of the coatings, energy dispersive X-ray analysis (EDX) and glow discharge optical emission spectroscopy (GDOES) measurements have been used, obtaining information on the distribution of the elements throughout the film. These studies have confirmed the purity of the prepared hydroxyapatite and silver-doped hydroxyapatite thin films obtained from composite targets containing Ca10−xAgx(PO4)6(OH)2 with xAg = 0 (HAp) and xAg = 0.2 (Ag:HAp). On the other hand, the major aim of this study was the evaluation of the antibacterial activities of ciprofloxacin and tetracycline in the presence of HAp and Ag:HAp thin layers against Staphylococcus aureus and Escherichia coli strains. The antibacterial activities of ciprofloxacin and tetracycline against Staphylococcus aureus and Escherichia coli test strains increased in the presence of HAp and Ag:HAp thin layers. PMID:28773899
Lα and Mαβ X-ray production cross-sections of Bi by 6-30 keV electron impact
NASA Astrophysics Data System (ADS)
Liang, Y.; Xu, M. X.; Yuan, Y.; Wu, Y.; Qian, Z. C.; Chang, C. H.; Mei, C. S.; Zhu, J. J.; Moharram, K.
2017-12-01
In this paper, the Lα and Mαβ X-ray production cross-sections for Bi impacted by 6-30 keV electron have been measured. The experiments were performed at a Scanning Electron Microscope equipped with a silicon drift detector. The thin film with thick C substrate and the thin film deposited on self-supporting thin C film were both used as the targets to make a comparison. For the thick carbon substrate target, the Monte Carlo method has been used to eliminate the contribution of backscattering particles. The measured data are compared with the DWBA theoretical model and the experimental results in the literature. The experimental data for the thin film with thick C substrate target and the thin film deposited on self-supporting thin C film target are within reasonable gaps. The DWBA theoretical model gives good fit to the experimental data both for L- and M- shells. Besides, we also analyze the reasons why the discrepancies exist between our measurements and the experimental results in the literature.
Absolute Soft X-ray Emission Measurements at the Nike Laser
NASA Astrophysics Data System (ADS)
Weaver, J.; Atkin, R.; Boyer, C.; Colombant, D.; Feldman, U.; Fielding, D.; Gardner, J.; Holland, G.; Klapisch, M.; Mostovych, A. N.; Obenscain, S.; Seely, J. F.
2002-11-01
Recent experiments at the Nike laser facility have demonstrated that, when a low intensity prepulse ( 2main laser intensity) is used to heat a thin Au or Pd coating on a planar CH target, the growth of non-uniformities due to laser imprint can be reduced from the growth observed for an uncoated CH target. The absolute radiation intensity in the soft x-ray region (0.1-1 keV) has a important role in the energy balance for layered targets. There is an ongoing effort to characterize the soft x-ray emission using an absolutely calibrated transmission grating spectrometer and filtered diode modules. Measurements of the angular distribution of the emission from unlayered solid targets (Au, Pd, CH) have recently been made using an array of moveable filtered diode modules. The data from the angular distribution studies will be presented. A new absolutely calibrated, time-resolving transmission grating spectrometer has been installed at the Nike. The new version has improved spectral resolution, selectable transmission filters, and the potential for simultaneous temporal, spatial, and spectral resolution. Preliminary data from the new spectrometer will be presented and future experiments will be briefly discussed. *Work was supported by DoE
NASA Astrophysics Data System (ADS)
Kar, S.; Ahmed, H.; Nersisyan, G.; Brauckmann, S.; Hanton, F.; Giesecke, A. L.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.
2016-05-01
As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ˜20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from a laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Nersisyan, G.
As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ∼20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from amore » laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.« less
NASA Astrophysics Data System (ADS)
Saadeddin, I.; Hilal, H. S.; Decourt, R.; Campet, G.; Pecquenard, B.
2012-07-01
Indium oxide co-doped with tin and zinc (ITZO) ceramics have been successfully prepared by direct sintering of the powders mixture at 1300 °C. This allowed us to easily fabricate large highly dense target suitable for sputtering transparent conducting oxide (TCO) films, without using any cold or hot pressing techniques. Hence, the optimized ITZO ceramic reaches a high relative bulk density (˜ 92% of In2O3 theoretical density) and higher than the well-known indium oxide doped with tin (ITO) prepared under similar conditions. All X-ray diagrams obtained for ITZO ceramics confirms a bixbyte structure typical for In2O3 only. This indicates a higher solubility limit of Sn and Zn when they are co-doped into In2O3 forming a solid-solution. A very low value of electrical resistivity is obtained for [In2O3:Sn0.10]:Zn0.10 (1.7 × 10-3 Ω cm, lower than ITO counterpart) which could be fabricated to high dense ceramic target suing pressure-less sintering.
Wilson, L A; Tallents, G J; Pasley, J; Whittaker, D S; Rose, S J; Guilbaud, O; Cassou, K; Kazamias, S; Daboussi, S; Pittman, M; Delmas, O; Demailly, J; Neveu, O; Ros, D
2012-08-01
The accurate characterization of thermal electron transport and the determination of heating by suprathermal electrons in laser driven solid targets are both issues of great importance to the current experiments being performed at the National Ignition Facility, which aims to achieve thermonuclear fusion ignition using lasers. Ionization, induced by electronic heat conduction, can cause the opacity of a material to drop significantly once bound-free photoionization is no longer energetically possible. We show that this drop in opacity enables measurements of the transmission of extreme ultraviolet (EUV) laser pulses at 13.9 nm to act as a signature of the heating of thin (50 nm) iron layers with a 50-nm thick parylene-N (CH) overlay irradiated by 35-fs pulses at irradiance 3×10(16) Wcm(-2). Comparing EUV transmission measurements at different times after irradiation to fluid code simulations shows that the target is instantaneously heated by hot electrons (with approximately 10% of the laser energy), followed by thermal conduction with a flux limiter of ≈0.05.
Probing of high density plasmas using the multi-beam, high power TiSa laser system ARCTURUS
NASA Astrophysics Data System (ADS)
Willi, Oswald; Aktan, Esin; Brauckmann, Stephannie; Aurand, Bastian; Cerchez, Mirela; Prasad, Rajendra; Schroer, Anna Marie
2017-10-01
The understanding of relativistic laser plasma interaction at ultra-high intensities has advanced considerably during the last decade with the availability of multi-beam, high power TiSa laser systems. These laser systems allow pump-probe experiments to be carried out. The ARCTURUS laser at the University of Duesseldorf is ideally suited for various kinds of pump-probe experiments as it consists of two identical, high power beams with energies of 5J in 30 fs and a third beam for optical probing with energy of 30mJ in a 30fs pulse. All three beams are synchronised and have flexible time delays with respect to each other. Several different processes were studied where one of the beams was used as an interaction beam and the second one was incident on a thin solid gold foil to generate a proton beam. For example, thin foil targets were irradiated either with a linear or circular polarized pulse and probed with protons at different times. The expansion of foils for the two cases was clearly different consistent with numerical simulations. In addition, the interaction of gas targets was probed with protons and separately with an optical probe. With both diagnostics the formation of a channel was observed. In the presentation various two beam measurements will be discussed.
Sudo, S; Ohtomo, T; Otsuka, K
2015-08-01
We achieved a highly sensitive method for observing the motion of colloidal particles in a flowing suspension using a self-mixing laser Doppler velocimeter (LDV) comprising a laser-diode-pumped thin-slice solid-state laser and a simple photodiode. We describe the measurement method and the optical system of the self-mixing LDV for real-time measurements of the motion of colloidal particles. For a condensed solution, when the light scattered from the particles is reinjected into the solid-state laser, the laser output is modulated in intensity by the reinjected laser light. Thus, we can capture the motion of colloidal particles from the spectrum of the modulated laser output. For a diluted solution, when the relaxation oscillation frequency coincides with the Doppler shift frequency, fd, which is related to the average velocity of the particles, the spectrum reflecting the motion of the colloidal particles is enhanced by the resonant excitation of relaxation oscillations. Then, the spectral peak reflecting the motion of colloidal particles appears at 2×fd. The spectrum reflecting the motion of colloidal particles in a flowing diluted solution can be measured with high sensitivity, owing to the enhancement of the spectrum by the thin-slice solid-state laser.
Solid state thin film battery having a high temperature lithium alloy anode
Hobson, D.O.
1998-01-06
An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.
NASA Astrophysics Data System (ADS)
Hosseini, Somaye; Savaloni, Hadi; Gholipour-Shahraki, Mehran
2017-03-01
The wettability of solid surfaces is important from the aspects of both science and technology. The Mn nano-sculptured thin films were designed and fabricated by oblique angle deposition of Mn on glass substrates at room temperature. The obtained structure was characterized by field emission scanning electron microscopy and atomic force microscopy. The wettability of thin films samples was investigated by water contact angle (WCA). The 4-pointed helical star-shaped structure exhibits hydrophobicity with static WCAs of more than 133° for a 10-mg distilled water droplet. This sample also shows the rose petal effect with the additional property of high adhesion. The Mn nano-sculptured thin films also act as a sticky surface which is confirmed by hysteresis of the contact angle obtained from advancing and receding contact angles measurements. Physicochemical property of liquid phase could effectively change the contact angle, and polar solvents in contact with hydrophobic solid surfaces do not necessarily show high contact angle value.
Advanced Si solid phase crystallization for vertical channel in vertical NANDs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangsoo; Son, Yong-Hoon; Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung 445-701
The advanced solid phase crystallization (SPC) method using the SiGe/Si bi-layer structure is proposed to obtain high-mobility poly-Si thin-film transistors in next generation vertical NAND (VNAND) devices. During the SPC process, the top SiGe thin film acts as a selective nucleation layer to induce surface nucleation and equiaxial microstructure. Subsequently, this SiGe thin film microstructure is propagated to the underlying Si thin film by epitaxy-like growth. The initial nucleation at the SiGe surface was clearly observed by in situ transmission electron microscopy (TEM) when heating up to 600 °C. The equiaxial microstructures of both SiGe nucleation and Si channel layers weremore » shown in the crystallized bi-layer plan-view TEM measurements. Based on these experimental results, the large-grained and less-defective Si microstructure is expected to form near the channel region of each VNAND cell transistor, which may improve the electrical characteristics.« less
Kuchin, Igor V; Starov, Victor M
2016-05-31
A theory of contact angle hysteresis of a meniscus inside thin capillaries with smooth, homogeneous solid walls is developed in terms of surface forces (disjoining/conjoining pressure isotherm) using a quasi-equilibrium approach. The disjoining/conjoining pressure isotherm includes electrostatic, intermolecular, and structural components. The values of the static receding θr, advancing θa, and equilibrium θe contact angles in thin capillaries were calculated on the basis of the shape of the disjoining/conjoining pressure isotherm. It was shown that both advancing and receding contact angles depend on the capillary radius. The suggested mechanism of the contact angle hysteresis has a direct experimental confirmation: the process of receding is accompanied by the formation of thick β-films on the capillary walls. The effect of the transition from partial to complete wetting in thin capillaries is predicted and analyzed. This effect takes place in very thin capillaries, when the receding contact angle decreases to zero.
MEMS-based thin-film fuel cells
Jankowksi, Alan F.; Morse, Jeffrey D.
2003-10-28
A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.
Evaluation of Thin Kevlar-Epoxy Fabric Panels Subjected to Shear Loading
NASA Technical Reports Server (NTRS)
Baker, Donald J.
1996-01-01
The results of an analytical and experimental investigation of 4-ply Kevlar-49-epoxy panels loaded by in-plane shear are presented. Approximately one-half of the panels are thin-core sandwich panels and the other panels are solid-laminate panels. Selected panels were impacted with an aluminum sphere at a velocity of either 150 or 220 ft/sec. The strength of panels impacted at 150 ft/sec was not reduced when compared to the strength of the undamaged panels, but the strength of panels impacted at 220 ft/sec was reduced by 27 to 40 percent. Results are presented for panels that were cyclically loaded from a load less than the buckling load to a load in the postbuckling load range. The thin-core sandwich panels had a lower fatigue life than the solid panels. The residual strength of the solid and sandwich panels cycled more than one million cycles exceeded the baseline undamaged panel strengths. The effect of hysteresis in the response of the sandwich panels is not significant. Results of a nonlinear finite element analysis conducted for each panel design are presented.
Schaefer, Scott H; Sung, Shihwu
2008-02-01
Anaerobic digestion of corn ethanol thin stillage was tested at thermophilic temperature (55 degrees C) with two completely stirred tank reactors. The thin stillage wastestream was organically concentrated with 100 g/L total chemical oxygen demand and 60 g/L volatiles solids and a low pH of approximately 4.0. Steady-state was achieved at 30-, 20-, and 15-day hydraulic retention times (HRTs) and digester failure at a 12-day HRT. Significant reduction of volatile solids was achieved, with a maximum reduction (89.8%) at the 20-day HRT. Methane yield ranged from 0.6 to 0.7 L methane/g volatile solids removed during steady-state operation. Effluent volatile fatty acids below 200 mg/L as acetic acid were achieved at 20- and 30-day HRTs. Ultrasonic pretreatment was used for one digester, although no significant improvement was observed. Ethanol plant natural gas consumption could be reduced 43 to 59% with the methane produced, while saving an estimated $7 to $17 million ($10 million likely) for a facility producing 360 million L ethanol/y.
Amorphous lithium lanthanum titanate for solid-state microbatteries
Lee, Jungwoo Z.; Wang, Ziying; Xin, Huolin L.; ...
2016-12-16
Lithium lanthanum titanate (LLTO) is a promising solid state electrolyte for solid state batteries due to its demonstrated high bulk ionic conductivity. However, crystalline LLTO has a relatively low grain boundary conductivity, limiting the overall material conductivity. In this work, we investigate amorphous LLTO (a-LLTO) thin films grown by pulsed laser deposition (PLD). By controlling the background pressure and temperature we are able to optimize the ionic conductivity to 3 × 10 –4 S/cm and electronic conductivity to 5 × 10 –11 S/cm. XRD, TEM, and STEM/EELS analysis confirm that the films are amorphous and indicate that oxygen background gasmore » is necessary during the PLD process to decrease the oxygen vacancy concentration, decreasing the electrical conductivity. Amorphous LLTO is deposited onto high voltage LiNi 0.5Mn 1.5O 4 (LNMO) spinel cathode thin films and cycled up to 4.8 V vs. Li showing excellent capacity retention. Finally, these results demonstrate that a-LLTO has the potential to be integrated into high voltage thin film batteries.« less
Capillary Thinning of Particle-laden Drops
NASA Astrophysics Data System (ADS)
Wagoner, Brayden; Thete, Sumeet; Jahns, Matt; Doshi, Pankaj; Basaran, Osman
2015-11-01
Drop formation is central in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, a thinning filament is created between the about-to-form drop and the fluid hanging from the nozzle. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids. The thinning dynamics is, however, altered completely when the fluid contains particles, the physics of which is not well understood. In this work, we explore the impact of solid particles on filament thinning and drop formation by using a combination of experiments and numerical simulations.
Composite Solid Electrolyte For Lithium Cells
NASA Technical Reports Server (NTRS)
Peled, Emmanuel; Nagasubramanian, Ganesan; Halpert, Gerald; Attia, Alan I.
1994-01-01
Composite solid electrolyte material consists of very small particles, each coated with thin layer of Lil, bonded together with polymer electrolyte or other organic binder. Material offers significant advantages over other solid electrolytes in lithium cells and batteries. Features include high ionic conductivity and strength. Composite solid electrolyte expected to exhibit flexibility of polymeric electrolytes. Polymer in composite solid electrolyte serves two purposes: used as binder alone, conduction taking place only in AI2O3 particles coated with solid Lil; or used as both binder and polymeric electrolyte, providing ionic conductivity between solid particles that it binds together.
Various Silver Nanostructures on Sapphire Using Plasmon Self-Assembly and Dewetting of Thin Films
NASA Astrophysics Data System (ADS)
Kunwar, Sundar; Sui, Mao; Zhang, Quanzhen; Pandey, Puran; Li, Ming-Yu; Lee, Jihoon
2017-04-01
Silver (Ag) nanostructures demonstrate outstanding optical, electrical, magnetic, and catalytic properties and are utilized in photonic, energy, sensors, and biomedical devices. The target application and the performance can be inherently tuned by control of configuration, shape, and size of Ag nanostructures. In this work, we demonstrate the systematical fabrication of various configurations of Ag nanostructures on sapphire (0001) by controlling the Ag deposition thickness at different annealing environments in a plasma ion coater. In particular, the evolution of Ag particles (between 2 and 20 nm), irregular nanoclusters (between 30 and 60 nm), and nanocluster networks (between 80 and 200 nm) are found be depended on the thickness of Ag thin film. The results were systematically analyzed and explained based on the solid-state dewetting, surface diffusion, Volmer-Weber growth model, coalescence, and surface energy minimization mechanism. The growth behavior of Ag nanostructures is remarkably differentiated at higher annealing temperature (750 °C) due to the sublimation and temperature-dependent characteristic of dewetting process. In addition, Raman and reflectance spectra analyses reveal that optical properties of Ag nanostructures depend on their morphology.
Constantinescu, Adi; Golubović, Leonardo; Levandovsky, Artem
2013-09-01
Long range dewetting forces acting across thin films, such as the fundamental van der Waals interactions, may drive the formation of large clusters (tall multilayer islands) and pits, observed in thin films of diverse materials such as polymers, liquid crystals, and metals. In this study we further develop the methodology of the nonequilibrium statistical mechanics of thin films coarsening within continuum interface dynamics model incorporating long range dewetting interactions. The theoretical test bench model considered here is a generalization of the classical Mullins model for the dynamics of solid film surfaces. By analytic arguments and simulations of the model, we study the coarsening growth laws of clusters formed in thin films due to the dewetting interactions. The ultimate cluster growth scaling laws at long times are strongly universal: Short and long range dewetting interactions yield the same coarsening exponents. However, long range dewetting interactions, such as the van der Waals forces, introduce a distinct long lasting early time scaling behavior characterized by a slow growth of the cluster height/lateral size aspect ratio (i.e., a time-dependent Young angle) and by effective coarsening exponents that depend on cluster size. In this study, we develop a theory capable of analytically calculating these effective size-dependent coarsening exponents characterizing the cluster growth in the early time regime. Such a pronounced early time scaling behavior has been indeed seen in experiments; however, its physical origin has remained elusive to this date. Our theory attributes these observed phenomena to ubiquitous long range dewetting interactions acting across thin solid and liquid films. Our results are also applicable to cluster growth in initially very thin fluid films, formed by depositing a few monolayers or by a submonolayer deposition. Under this condition, the dominant coarsening mechanism is diffusive intercluster mass transport while the cluster coalescence plays a minor role, both in solid and in fluid films.
Nanostructural Tailoring to Induce Flexibility in Thermoelectric Ca3Co4O9 Thin Films
2017-01-01
Because of their inherent rigidity and brittleness, inorganic materials have seen limited use in flexible thermoelectric applications. On the other hand, for high output power density and stability, the use of inorganic materials is required. Here, we demonstrate a concept of fully inorganic flexible thermoelectric thin films with Ca3Co4O9-on-mica. Ca3Co4O9 is promising not only because of its high Seebeck coefficient and good electrical conductivity but also because of the abundance, low cost, and nontoxicity of its constituent raw materials. We show a promising nanostructural tailoring approach to induce flexibility in inorganic thin-film materials, achieving flexibility in nanostructured Ca3Co4O9 thin films. The films were grown by thermally induced phase transformation from CaO–CoO thin films deposited by reactive rf-magnetron cosputtering from metallic targets of Ca and Co to the final phase of Ca3Co4O9 on a mica substrate. The pattern of nanostructural evolution during the solid-state phase transformation is determined by the surface energy and strain energy contributions, whereas different distributions of CaO and CoO phases in the as-deposited films promote different nanostructuring during the phase transformation. Another interesting fact is that the Ca3Co4O9 film is transferable onto an arbitrary flexible platform from the parent mica substrate by etch-free dry transfer. The highest thermoelectric power factor obtained is above 1 × 10–4 W m–1 K–2 in a wide temperature range, thus showing low-temperature applicability of this class of materials. PMID:28699345
Surface Structure and Photocatalytic Activity of Nano-TiO2 Thin Film
Controlled titanium dioxide (TiO2) thin films were deposited on stainless steel surfaces using flame aerosol synthetic technique, which is a one-step coating process, that doesn’t require further calcination. Solid state characterization of the coatings was conducted by different...
Electrochromic Behavior of Ionically Self-Assembled Thin Films
NASA Astrophysics Data System (ADS)
Janik, J. A.; Heflin, J. R.; Marciu, D.; Miller, M. B.; Davis, R. M.
2001-03-01
Ionically self-assembled monolayers (ISAMs), fabricated by alternate adsorption of cationic and anionic components, yield exceptionally homogeneous thin films with sub-nanometer control of the thickness and relative special location of the component materials. Using organic electrochromic materials such as polyaniline, we report studies of electrochromic responses in ISAM films. Reversible changes in the absorption spectrum are observed with the application of voltages on the order of 1.0 V. Measurements are made using both liquid electrolytes and in all-solid state devices incorporating solid polyelectrolytes such as poly(2-acylamido 2-methyl propane sulfonic acid) (PAMPS).
1994-06-01
simultaneously expluiting the favorable characteristics of these materials include the thin film deposition of both pseudomorphic beterostructure and alloys ...diagram proposed by Zangvil and Ruh [10] shows a flat miscibility gap at =1900*C between -20 and 80 wt % AIN. Above this temperature, a 2H solid solution...was reported from >20 wt % AIN. For .20 wt % AIN, 8 I I solutions and two phase mixtures of 6H, 4H, and 2H were observed. Thin film solid solutions
NASA Astrophysics Data System (ADS)
Schmitt, W.; Drotbohm, P.; Rothe, J.; Hormes, J.; Ottermann, C. R.; Bange, K.
1995-05-01
Thickness measurements by the method of angle-resolved, self-ratio X-ray fluorescence spectrometry (AR/SR/XFS) have been carried out on thin solid films using monochromatized synchrotron radiation at the Bonn storage ring ELSA. Synchrotron radiation was monochromatized by means of a double-crystal monochromator and fluorescence radiation was detected by a Si(Li) semiconductor detector. The results for sample systems consisting of Au on Si, Cr on SiO2 and TiO2 on alkali-free glass are very satisfactory and agree well with results obtained by other methods.
Method of forming contacts for a back-contact solar cell
Manning, Jane
2013-07-23
Methods of forming contacts for back-contact solar cells are described. In one embodiment, a method includes forming a thin dielectric layer on a substrate, forming a polysilicon layer on the thin dielectric layer, forming and patterning a solid-state p-type dopant source on the polysilicon layer, forming an n-type dopant source layer over exposed regions of the polysilicon layer and over a plurality of regions of the solid-state p-type dopant source, and heating the substrate to provide a plurality of n-type doped polysilicon regions among a plurality of p-type doped polysilicon regions.
Pulsed x-ray imaging of high-density objects using a ten picosecond high-intensity laser driver
NASA Astrophysics Data System (ADS)
Rusby, D. R.; Brenner, C. M.; Armstrong, C.; Wilson, L. A.; Clarke, R.; Alejo, A.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Mirfayzi, S. R.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.
2016-10-01
Point-like sources of X-rays that are pulsed (sub nanosecond), high energy (up to several MeV) and bright are very promising for industrial and security applications where imaging through large and dense objects is required. Highly penetrating X-rays can be produced by electrons that have been accelerated by a high intensity laser pulse incident onto a thin solid target. We have used a pulse length of 10ps to accelerate electrons to create a bright x-ray source. The bremsstrahlung temperature was measured for a laser intensity from 8.5-12×1018 W/cm2. These x-rays have sequentially been used to image high density materials using image plate and a pixelated scintillator system.
Miniature hybrid microwave IC's using a novel thin-film technology
NASA Astrophysics Data System (ADS)
Eda, Kazuo; Miwa, Tetsuji; Taguchi, Yutaka; Uwano, Tomoki
1990-12-01
A novel thin-film technology for miniature hybrid microwave ICs is presented. All passive components, such as resistors and capacitors, are fully integrated on ordinary alumina ceramic substrates using the thin-film technology with very high yield. The numbers of parts and wiring processes were significantly reduced. This technology was applied to the fabrication of Ku-band solid-state power amplifiers. This thin-film technology offers the following advantages: (1) a very high yield fabrication process of thin-film capacitor having excellent electrical characteristics in the gigahertz range (Q = 230 at 12 GHz) and reliability: (2) two kinds of thin-film resistors having different temperature coefficients of resistivity and a lift-off process to integrate them with thin-film capacitors; and (3) a matching method using the thin-film capacitor.
Multilayer composites and manufacture of same
Holesinger, Terry G.; Jia, Quanxi
2006-02-07
The present invention is directed towards a process of depositing multilayer thin films, disk-shaped targets for deposition of multilayer thin films by a pulsed laser or pulsed electron beam deposition process, where the disk-shaped targets include at least two segments with differing compositions, and a multilayer thin film structure having alternating layers of a first composition and a second composition, a pair of the alternating layers defining a bi-layer wherein the thin film structure includes at least 20 bi-layers per micron of thin film such that an individual bi-layer has a thickness of less than about 100 nanometers.
Coating of plasma polymerized film
NASA Technical Reports Server (NTRS)
Morita, S.; Ishibashi, S.
1980-01-01
Plasma polymerized thin film coating and the use of other coatings is suggested for passivation film, thin film used for conducting light, and solid body lubrication film of dielectrics of ultra insulators for electrical conduction, electron accessories, etc. The special features of flow discharge development and the polymerized film growth mechanism are discussed.
NASA Astrophysics Data System (ADS)
Rao, A. M.; Moodera, J. S.
1991-04-01
The design of a target scanner that is inexpensive and easy to construct is described. Our target scanner system does not require an expensive personal computer to raster the laser beam uniformily over the target material, unlike the computer driven target scanners that are currently being used in the thin-film industry. The main components of our target scanner comprise a bidirectional motor, a two-position switch, and a standard optical mirror mount.
Ge, Aimin; Peng, Qiling; Qiao, Lin; Yepuri, Nageshwar R; Darwish, Tamim A; Matsusaki, Michiya; Akashi, Mitsuru; Ye, Shen
2015-07-21
Broadband phase-sensitive vibrational sum frequency generation (SFG) spectroscopy was utilized to study the molecular orientation of molecules adsorbed on dielectric solid substrates. A gold thin film was employed to generate a SFG signal as a local oscillator (LO). To simplify the phase measurement, a self-assembled monolayer (SAM) of octadecyltrichlorosilane (OTS) was used as a standard sample for phase correction of the phase-sensitive SFG measurements on the solid/air interface. It was demonstrated that the absolute orientation of molecules in the LB films on a fused quartz surface can be clearly distinguished by phase-sensitive SFG measurement. In addition, the observation on the SAM of d35-OTS reveals that the two C-H stretching modes for α-CH2 group are in opposite phase. Furthermore, by using the present phase-sensitive SFG setup, the orientation flipping of water molecules on positively and negatively charged solid/liquid interface can be distinguished.
NASA Astrophysics Data System (ADS)
Fat'yanov, O.; Asimow, P.
2013-06-01
In a continuous effort to determine experimentally the melting curve of MgO at 100-200 GPa, we extended our target preheating capability to 2300 K. The limit was primarily caused by intense sublimation of pure MgO in vacuum above ~2050 K. Completely redesigned Mo capsules holding ~20 mm long MgO crystals with controlled thermal gradients were impacted by thin Ta flyers launched at 6.5 to 7.5 km/s on the Caltech two-stage light-gas gun. Radiative shock temperatures and rarefaction overtake times were measured simultaneously by a 6-channel pyrometer with 3 ns time resolution, over 440-750 nm spectral range. All our experiments showed smooth pressure dependence of MgO sound speed consistent with the solid phase at 204-239 GPa. Observed temperatures are ~1000 K lower than those predicted by the solid phase model, but the plot of measured shock temperature versus pressure exhibits a pattern typical of shock melting at the highest pressure investigated. This may suggest that the Hugoniot of MgO preheated to 2300 K crosses its melting line at 220-240 GPa. Sound speed data indistinguishable from the solid phase model do not exclude the possibility of melting there.
Park, Jae -Cheol; Al-Jassim, Mowafak; Kim, Tae -Won
2017-02-01
Here, copper gallium selenide (CGS) thin films were fabricated using a combinatorial one-step sputtering process without an additional selenization process. The sample libraries as a function of vertical and lateral distance from the sputtering target were synthesized on a single soda-lime glass substrate at the substrate temperature of 500 °C employing a stoichiometric CGS single target. As we increased the vertical distance between the target and substrate, the CGS thin films had more stable and uniform characteristics in structural and chemical properties. Under the optimized conditions of the vertical distance (150 mm), the CGS thin films showed densely packed grainsmore » and large grain sizes up to 1 μm in scale with decreasing lateral distances. The composition ratio of Ga/[Cu+Ga] and Se/[Cu+Ga] showed 0.50 and 0.93, respectively, in nearly the same composition as the sputtering target. X-ray diffraction and Raman spectroscopy revealed that the CGS thin films had a pure chalcopyrite phase without any secondary phases such as Cu–Se or ordered vacancy compounds, respectively. In addition, we found that the optical bandgap energies of the CGS thin films are shifted from 1.650 to 1.664 eV with decreasing lateral distance, showing a near-stoichiometric region with chalcopyrite characteristics.« less
Multiple Beam Optical Processing
1989-12-01
the interference of multiple reflections between the two mirrors. The most promising optical bistable devices, at present, are very thin, solid Fabry...MEDIUM b) R - Ir ,, PMASE SHIFTr Figure 1.3 (a) Nonlinear Fabry-Perot etalon consisting of solid material with parallel surfaces with coatings of...instead of the solid planar structure [2.10]. Voids between columns cause an Inhomogeneous broadening and an exponential extension (Urbach tail) of the
Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Singh, Vijay; Tumbleson, M E; Rausch, Kent D
2010-06-01
The effectiveness of microfiltration (MF) and ultrafiltration (UF) for nutrient recovery from a thin stillage stream was determined. When a stainless steel MF membrane (0.1microm pore size) was used, the content of solids increased from 7.0% to 22.8% with a mean permeate flux rate of 45L/m(2)/h (LMH), fat increased and ash content decreased. UF experiments were conducted in batch mode under constant temperature and flow rate conditions. Permeate flux profiles were evaluated for regenerated cellulose membranes (YM1, YM10 and YM100) with molecular weight cut offs of 1, 10 and 100kDa. UF increased total solids, protein and fat and decreased ash in retentate stream. When permeate streams from MF were subjected to UF, retentate total solids concentrations similar to those of commercial syrup (23-28.8%) were obtained. YM100 had the highest percent permeate flux decline (70% of initial flux) followed by YM10 and YM1 membranes. Sequential filtration improved permeate flux rates of the YM100 membrane (32.6-73.4LMH) but the percent decline was also highest in a sequential MF+YM100 system. Protein recovery was the highest in YM1 retentate. Removal of solids, protein and fat from thin stillage may generate a permeate stream that may improve water removal efficiency and increase water recycling. Copyright 2010 Elsevier Ltd. All rights reserved.
Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement
NASA Astrophysics Data System (ADS)
Gupta, C. K.; Rohilla, Aman; Abhilash, S. R.; Kabiraj, D.; Singh, R. P.; Mehta, D.; Chamoli, S. K.
2014-11-01
A thin isotopic 94Zr target of thickness 520 μg /cm2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94Zr from peeling off, a very thin layer of gold has been evaporated on a 94Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94Zr target material was utilized for the fabrication of 94Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.
Megajoule Dense Plasma Focus Solid Target Experiments
NASA Astrophysics Data System (ADS)
Podpaly, Y. A.; Falabella, S.; Link, A.; Povilus, A.; Higginson, D. P.; Shaw, B. H.; Cooper, C. M.; Chapman, S.; Bennett, N.; Sipe, N.; Olson, R.; Schmidt, A. E.
2016-10-01
Dense plasma focus (DPF) devices are plasma sources that can produce significant neutron yields from beam into gas interactions. Yield increases, up to approximately a factor of five, have been observed previously on DPFs using solid targets, such as CD2 and D2O ice. In this work, we report on deuterium solid-target experiments at the Gemini DPF. A rotatable target holder and baffle arrangement were installed in the Gemini device which allowed four targets to be deployed sequentially without breaking vacuum. Solid targets of titanium deuteride were installed and systematically studied at a variety of fill pressures, bias voltages, and target positions. Target holder design, experimental results, and comparison to simulations will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344.
Deformation in Micro Roll Forming of Bipolar Plate
NASA Astrophysics Data System (ADS)
Zhang, P.; Pereira, M.; Rolfe, B.; Daniel, W.; Weiss, M.
2017-09-01
Micro roll forming is a new processing technology to produce bipolar plates for Proton Exchange Membrane Fuel Cells (PEMFC) from thin stainless steel foil. To gain a better understanding of the deformation of the material in this process, numerical studies are necessary before experimental implementation. In general, solid elements with several layers through the material thickness are required to analyse material thinning in processes where the deformation mode is that of bending combined with tension, but this results in high computational costs. This pure solid element approach is especially time-consuming when analysing roll forming processes which generally involves feeding a long strip through a number of successive roll stands. In an attempt to develop a more efficient modelling approach without sacrificing accuracy, two solutions are numerically analysed with ABAQUS/Explicit in this paper. In the first, a small patch of solid elements over the strip width and in the centre of the “pre-cut” sheet is coupled with shell elements while in the second approach pure shell elements are used to discretize the full sheet. In the first approach, the shell element enables accounting for the effect of material being held in the roll stands on material flow while solid elements can be applied to analyse material thinning in a small discrete area of the sheet. Experimental micro roll forming trials are performed to prove that the coupling of solid and shell elements can give acceptable model accuracy while using shell elements alone is shown to result in major deviations between numerical and experimental results.
ERIC Educational Resources Information Center
Vollmer, John J.
2000-01-01
Describes how to grow crystals of para-dichlorobenzene beginning with household mothballs. The crystals form through sublimation (solid to gas) and deposition (gas to solid). Also discusses demonstrations of evaporation and condensation and odor perception, which can support a study of the kinetic theory and phases of matter. (WRM)
NASA Astrophysics Data System (ADS)
Chen, Shumin; Gao, Ming; Wan, Yazhou; Du, Huiwei; Li, Yong; Ma, Zhongquan
2016-12-01
A silicon based ternary compound was supposed to be solid synthesized with In, Si and O elements by magnetron sputtering of indium tin oxide target (ITO) onto crystal silicon substrate at 250 °C. To make clear the configuration of the intermediate region, a potential method to obtain the chemical bonding of Si with other existing elements was exploited by X-ray photoelectron spectroscopy (XPS) instrument combined with other assisted techniques. The phase composition and solid structure of the interfacial region between ITO and Si substrate were investigated by X-ray diffraction (XRD) and high resolution cross sectional transmission electron microscope (HR-TEM). A photovoltaic device with structure of Al/Ag/ITO/SiOx/p-Si/Al was assembled by depositing ITO films onto the p-Si substrate by using magnetron sputtering. The new matter has been assumed to be a buffer layer for semiconductor-insulator-semiconductor (SIS) photovoltaic device and plays critical role for the promotion of optoelectronic conversion performance from the view point of device physics.
NASA Astrophysics Data System (ADS)
Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul
2016-07-01
Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solid platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in case of hydrophilic surface. The heat transfer rate is also much higher in case of hydrophilic surface.
NASA Astrophysics Data System (ADS)
Chen, Dengjie; Chen, Chi; Gao, Yang; Zhang, Zhenbao; Shao, Zongping; Ciucci, Francesco
2015-11-01
SrNb0.1Co0.9O3-δ (SNC) thin films prepared on single-crystal yttria-stabilized zirconia (YSZ) electrolytes are evaluated as promising cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Geometrically well-defined polycrystalline SNC thin films with low surface roughness and high surface oxygen vacancy concentration are successfully fabricated by pulsed laser deposition. The thin films are characterized by basic techniques, e.g., X-ray diffraction for phase structure identification, scanning electron microscopy and atomic force microscopy for microstructures measurement, and X-ray photoelectron spectroscopy for elements quantification. Electrochemical impedance spectroscopy (EIS) is used to investigate oxygen reduction reaction activities of SNC thin films in symmetric electrochemical cells. Current collectors (Ag paste, Ag strip, and Au strip) are found to have negligible impact on polarization resistances. A slight decrease of the electrode polarization resistances is observed after adding a samarium doped ceria (SDC) buffer layer between SNC and YSZ. SNC thin-film electrodes exhibit low electrode polarization resistances, e.g., 0.237 Ω cm2 (SNC/SDC/YSZ/SDC/SNC) and 0.274 Ω cm2 (SNC/YSZ/SNC) at 700 °C and 0.21 atm, demonstrating the promise of SNC materials for IT-SOFCs. An oxygen reduction reaction mechanism of SNC thin films is also derived by analyzing EIS at temperature of 550-700 °C under oxygen partial pressure range of 0.04-1 atm.
Method of fabricating an article with cavities. [with thin bottom walls
NASA Technical Reports Server (NTRS)
Dale, W. J.; Jurscaga, G. M. (Inventor)
1974-01-01
An article having a cavity with a thin bottom wall is provided by assembling a thin sheet, for example, a metal sheet, adjacent to the surface of a member having one or more apertures. A bonding adhesive is interposed between the thin sheet and the subadjacent member, and the thin sheet is subjected to a high fluid pressure. In order to prevent the differential pressure from being exerted against the thin sheet, the aperture is filled with a plug of solid material having a linear coefficient of thermal expansion higher than that of the member. When the assembly is subjected to pressure, the material is heated to a temperature such that its expansion exerts a pressure against the thin sheet thus reducing the differential pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saez-Beltran, M; Fernandez Gonzalez, F
2014-06-15
Purpose: To obtain an analytical empirical formula for the photon dose source term in forward direction from bremsstrahlung generated from laser-plasma accelerated electron beams in aluminum solid targets, with electron-plasma temperatures in the 10–100 keV energy range, and to calculate transmission factors for iron, aluminum, methacrylate, lead and concrete and air, materials most commonly found in vacuum chamber labs. Methods: Bremsstrahlung fluence is calculated from the convolution of thin-target bremsstrahlung spectrum for monoenergetic electrons and the relativistic Maxwell-Juettner energy distribution for the electron-plasma. Unattenuatted dose in tissue is calculated by integrating the photon spectrum with the mass-energy absorption coefficient. Formore » the attenuated dose, energy dependent absorption coefficient, build-up factors and finite shielding correction factors were also taken into account. For the source term we use a modified formula from Hayashi et al., and we fitted the proportionality constant from experiments with the aid of the previously calculated transmission factors. Results: The forward dose has a quadratic dependence on electron-plasma temperature: 1 joule of effective laser energy transferred to the electrons at 1 m in vacuum yields 0,72 Sv per MeV squared of electron-plasma temperature. Air strongly filters the softer part of the photon spectrum and reduce the dose to one tenth in the first centimeter. Exponential higher energy tail of maxwellian spectrum contributes mainly to the transmitted dose. Conclusion: A simple formula for forward photon dose from keV range temperature plasma is obtained, similar to those found in kilovoltage x-rays but with higher dose per dissipated electron energy, due to thin target and absence of filtration.« less
WE-E-18A-06: To Remove Or Not to Remove: Comfort Pads From Beneath Neonates for Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, X; Baad, M; Reiser, I
2014-06-15
Purpose: To obtain an analytical empirical formula for the photon dose source term in forward direction from bremsstrahlung generated from laser-plasma accelerated electron beams in aluminum solid targets, with electron-plasma temperatures in the 10–100 keV energy range, and to calculate transmission factors for iron, aluminum, methacrylate, lead and concrete and air, materials most commonly found in vacuum chamber labs. Methods: Bremsstrahlung fluence is calculated from the convolution of thin-target bremsstrahlung spectrum for monoenergetic electrons and the relativistic Maxwell-Juettner energy distribution for the electron-plasma. Unattenuatted dose in tissue is calculated by integrating the photon spectrum with the mass-energy absorption coefficient. Formore » the attenuated dose, energy dependent absorption coefficient, build-up factors and finite shielding correction factors were also taken into account. For the source term we use a modified formula from Hayashi et al., and we fitted the proportionality constant from experiments with the aid of the previously calculated transmission factors. Results: The forward dose has a quadratic dependence on electron-plasma temperature: 1 joule of effective laser energy transferred to the electrons at 1 m in vacuum yields 0,72 Sv per MeV squared of electron-plasma temperature. Air strongly filters the softer part of the photon spectrum and reduce the dose to one tenth in the first centimeter. Exponential higher energy tail of maxwellian spectrum contributes mainly to the transmitted dose. Conclusion: A simple formula for forward photon dose from keV range temperature plasma is obtained, similar to those found in kilovoltage x-rays but with higher dose per dissipated electron energy, due to thin target and absence of filtration.« less
One-dimensional analysis of plane and radial thin film flows including solid-body rotation
NASA Technical Reports Server (NTRS)
Thomas, S.; Hankey, W.; Faghri, A.; Swanson, T.
1989-01-01
The flow of a thin liquid film with a free surface along a horizontal plate which emanates from a pressurized vessel is examined by integrating the equations of motion across the thin liquid layer and discretizing the integrated equations using finite difference techniques. The effects of 0-g and solid-body rotation will be discussed. The two cases of interest are plane flow and radial flow. In plane flow, the liquid is considered to be flowing along a channel with no change in the width of the channel, whereas in radial flow the liquid spreads out radially over a disk, so that the area changes along the radius. It is desired to determine the height of the liquid film at any location along the plate of disk, so that the heat transfer from the plate or disk can be found. The possibility that the flow could encounter a hydraulic jump is accounted for.
Interfaces and thin films as seen by bound electromagnetic waves.
Knoll, W
1998-01-01
This contribution summarizes the use of plasmon surface polaritons and guided optical waves for the characterization of interfaces and thin organic films. After a short introduction to the theoretical background of evanescent wave optics, examples are given that show how this interfacial "light" can be employed to monitor thin coatings at a solid/air or solid/liquid interface. Examples are given for a very sensitive thickness determination of samples ranging from self-assembled monolayers, to multilayer assemblies prepared by the Langmuir/Blodgett/Kuhn technique or by the alternate polyelectrolyte deposition. These are complemented by the demonstration of the potential of the technique to also monitor time-dependent processes in a kinetic mode. Here, we put an emphasis on the combination set-up of surface plasmon optics with electrochemical techniques, allowing for the on-line characterization of various surface functionalization strategies, e.g. for (bio-) sensor purposes.
Roehrens, Daniel; Packbier, Ute; Fang, Qingping; Blum, Ludger; Sebold, Doris; Bram, Martin; Menzler, Norbert
2016-01-01
In this study we report on the development and operational data of a metal-supported solid oxide fuel cell with a thin film electrolyte under varying conditions. The metal-ceramic structure was developed for a mobile auxiliary power unit and offers power densities of 1 W/cm2 at 800 °C, as well as robustness under mechanical, thermal and chemical stresses. A dense and thin yttria-doped zirconia layer was applied to a nanoporous nickel/zirconia anode using a scalable adapted gas-flow sputter process, which allowed the homogeneous coating of areas up to 100 cm2. The cell performance is presented for single cells and for stack operation, both in lightweight and stationary stack designs. The results from short-term operation indicate that this cell technology may be a very suitable alternative for mobile applications. PMID:28773883
NASA Astrophysics Data System (ADS)
Jung, WooChul; Kim, Jae Jin; Tuller, Harry L.
2015-02-01
Highly porous Pt thin films, with nano-scale porosity, were fabricated by reactive sputtering. The strategy involved deposition of thin film PtOx at room temperature, followed by the subsequent decomposition of the oxide by rapid heat treatment. The resulting films exhibited percolating Pt networks infiltrated with interconnected nanosized pores, critical for superior solid oxide fuel cell cathode performance. This approach is particularly attractive for micro-fabricated solid oxide fuel cells, since it enables fabrication of the entire cell stack (anode/electrolyte/cathode) within the sputtering chamber, without breaking vacuum. In this work, the morphological, crystallographic and chemical properties of the porous electrode were systematically varied by control of deposition conditions. Oxygen reduction reaction kinetics were investigated by means of electrochemical impedance spectroscopy, demonstrating the critical role of nano-pores in achieving satisfactory micro-SOFC cathode performance.
NASA Astrophysics Data System (ADS)
Afanasiev, Pavel
2018-02-01
A novel inorganic-organic hybrid barium tungstate - ethylene glycol Ba(C2H6O2)W2O7 phase has been prepared by non-aqueous precipitation and characterized. According to powder X-ray diffraction, the solid has an orthorhombic lattice (a = b = 6.415 Å, c = 13.05 Å) and represents a derivative of the H2W2O7 lamellar acid. The Ba(C2H6O2)W2O7 hybrid material is a layered solid and crystallizes as thin plates, which can be further topotacticaly transformed to few-layer WS2 nanoplates. Tungsten sulfide as obtained possesses high specific surface area and increased defectness of layers. Thin-layer WS2 materials as prepared show advantageous properties as hydrogen evolution electrocatalysts, or in combination with TiO2 as co-catalysts for photo catalytic hydrogen production from methanol.
Localization through surface folding in solid foams under compression.
Reis, P M; Corson, F; Boudaoud, A; Roman, B
2009-07-24
We report a combined experimental and theoretical study of the compression of a solid foam coated with a thin elastic film. Past a critical compression threshold, a pattern of localized folds emerges with a characteristic size that is imposed by an instability of the thin surface film. We perform optical surface measurements of the statistical properties of these localization zones and find that they are characterized by robust exponential tails in the strain distributions. Following a hybrid continuum and statistical approach, we develop a theory that accurately describes the nucleation and length scale of these structures and predicts the characteristic strains associated with the localized regions.
Edge-defined film-fed growth of thin silicon sheets
NASA Technical Reports Server (NTRS)
Ettouney, H. M.; Kalejs, J. P.
1984-01-01
Finite element analysis was used on two length scales to understand crystal growth of thin silicon sheets. Thermal-capillary models of entire ribbon growth systems were developed. Microscopic modeling of morphological structure of melt/solid interfaces beyond the point of linear instability was carried out. The application to silicon system is discussed.
Pyrolysis kinetics and combustion of thin wood using advanced cone calorimetry test method
Mark A. Dietenberger
2011-01-01
Mechanistic pyrolysis kinetics analysis of extractives, holocellulose, and lignin in solid wood over entire heating regime was possible using specialized cone calorimeter test and new mathematical analysis tools. Added hardware components include: modified sample holder for thin specimen with tiny thermocouples, methane ring burner with stainless steel mesh above cone...
Fabrication and Characterization of Colloidal Crystal Thin Films
ERIC Educational Resources Information Center
Rodriguez, I.; Ramiro-Manzano, F.; Meseguer, F.; Bonet, E.
2011-01-01
We present a laboratory experiment that allows undergraduate or graduate students to get introduced to colloidal crystal research concepts in an interesting way. Moreover, such experiments and studies can also be useful in the field of crystallography or solid-state physics. The work concerns the growth of colloidal crystal thin films obtained…
1992-05-22
as semiconductor material. Impor- tant applications are thin film solar cells, thin film transistors for liquid crystal displays, photoreceptors for...171, 1989. 307-311 3 T.MINAMI, H.NANTO and S.TAKATA, Thin Solid Films, Vol.124, 1985. 43-47 4 D.Z.DA, F.R.ZHU and H.S.TANG, Acta Energiae Solaris
Lau, H W; Tan, O K; Liu, Y; Trigg, D A; Chen, T P
2006-08-28
In this work, we report on the fabrication of tetraethylorthosilicate (TEOS) thin dielectric film containing silicon nanocrystals (Si nc), synthesized by solid-state reaction, in a capacitor structure. A metal-insulator-semi-conductor (MIS) capacitor, with 28 nm thick Si nc in a TEOS thin film, has been fabricated. For this MIS, both electron and hole trapping in the Si nc are possible, depending on the polarity of the bias voltage. A V(FB) shift greater than 1 V can be experienced by a bias voltage of 16 V applied to the metal electrode for 1 s. Though there is no top control oxide, the discharge time for 10% of charges can be up to 4480 s when it is biased at 16 V for 1 s. It is further demonstrated that charging and discharging mechanisms are due to the Si nc rather than the TEOS oxide defects. This form of Si nc in a TEOS thin film capacitor provides the possibility of memory applications at low cost.
Yang, Clayton S-C; Jin, Feng; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Tripathi, Ashish; Samuels, Alan C
2017-04-01
Thin solid films made of high nitro (NO 2 )/nitrate (NO 3 ) content explosives were deposited on sand-blasted aluminum substrates and then studied using a mercury-cadmium-telluride (MCT) linear array detection system that is capable of rapidly capturing a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared region (LWIR; ∼5.6-10 µm). Despite the similarities of their chemical compositions and structures, thin films of three commonly used explosives (RDX, HMX, and PETN) studied in this work can be rapidly identified in the ambient air by their molecular LIBS emission signatures in the LWIR region. A preliminary assessment of the detection limit for a thin film of RDX on aluminum appears to be much lower than 60 µg/cm 2 . This LWIR LIBS setup is capable of rapidly probing and charactering samples without the need for elaborate sample preparation and also offers the possibility of a simultaneous ultraviolet visible and LWIR LIBS measurement.
Treatment of thin stillage in a high-rate anaerobic fluidized bed bioreactor (AFBR).
Andalib, Mehran; Hafez, Hisham; Elbeshbishy, Elsayed; Nakhla, George; Zhu, Jesse
2012-10-01
The primary objective of this work was to investigate the treatability of thin stillage as a by-product of bioethanol production plants using an anaerobic fluidized bed bioreactor (AFBR) employing zeolite with average diameter of (d(m)) of 425-610 μm and specific surface area (SSA) of 26.5m(2)/g as the carrier media. Despite the very high strength of thin stillage with chemical oxygen demand of 130,000 mg TCOD/L and suspended solids of 47,000 mg TSS/L, the AFBR showed up to 88% TCOD and 78% TSS removal at very high organic and solids loading rates (OLR and SLR) of 29 kg COD/m(3)d and 10.5 kg TSS/m(3)d respectively and hydraulic retention time (HRT) of 3.5 days. Methane production rates of up to 160 L/d at the steady state equivalent to 40 L(CH4)/L(thin stillage)d and biogas production rate per reactor volume of 15.8L(gas)/L(reactor)d were achieved. Copyright © 2012 Elsevier Ltd. All rights reserved.
Karimi, Shima; Talebpour, Zahra; Adib, Noushin
2016-06-14
A poly acrylate-ethylene glycol (PA-EG) thin film is introduced for the first time as a novel polar sorbent for sorptive extraction method coupled directly to solid-state spectrofluorimetry without the necessity of a desorption step. The structure, polarity, fluorescence property and extraction performance of the developed thin film were investigated systematically. Carvedilol was used as the model analyte to evaluate the proposed method. The entire procedure involved one-step extraction of carvedilol from plasma using PA-EG thin film sorptive phase without protein precipitation. Extraction variables were studied in order to establish the best experimental conditions. Optimum extraction conditions were the followings: stirring speed of 1000 rpm, pH of 6.8, extraction temperature of 60 °C, and extraction time of 60 min. Under optimal conditions, extraction of carvedilol was carried out in spiked human plasma; and the linear range of calibration curve was 15-300 ng mL(-1) with regression coefficient of 0.998. Limit of detection (LOD) for the method was 4.5 ng mL(-1). The intra- and inter-day accuracy and precision of the proposed method were evaluated in plasma sample spiked with three concentration levels of carvedilol; yielding a recovery of 91-112% and relative standard deviation of less than 8%, respectively. The established procedure was successfully applied for quantification of carvedilol in plasma sample of a volunteer patient. The developed PA-EG thin film sorptive phase followed by solid-state spectrofluorimetric method provides a simple, rapid and sensitive approach for the analysis of carvedilol in human plasma. Copyright © 2016 Elsevier B.V. All rights reserved.
Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S [Evergreen, CO; Leisch, Jennifer [Denver, CO; Taylor, Matthew [West Simsbury, CT; Stanbery, Billy J [Austin, TX
2011-09-20
Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.
Investigation of the High Mobility IGZO Thin Films by Using Co-Sputtering Method
Hsu, Chao-Ming; Tzou, Wen-Cheng; Yang, Cheng-Fu; Liou, Yu-Jhen
2015-01-01
High transmittance ratio in visible range, low resistivity, and high mobility of IGZO thin films were prepared at room temperature for 30 min by co-sputtering of Zn2Ga2O5 (Ga2O3 + 2 ZnO, GZO) ceramic and In2O3 ceramic at the same time. The deposition power of pure In2O3 ceramic target was fixed at 100 W and the deposition power of GZO ceramic target was changed from 80 W to 140 W. We chose to investigate the deposition power of GZO ceramic target on the properties of IGZO thin films. From the SEM observations, all of the deposited IGZO thin films showed a very smooth and featureless surface. From the measurements of XRD patterns, only the amorphous structure was observed. We aimed to show that the deposition power of GZO ceramic target had large effect on the Eg values, Hall mobility, carrier concentration, and resistivity of IGZO thin films. Secondary ion mass spectrometry (SIMS) analysis in the thicknesses’ profile of IGZO thin films found that In and Ga elements were uniform distribution and Zn element were non-uniform distribution. The SIMS analysis results also showed the concentrations of Ga and Zn elements increased and the concentrations of In element was almost unchanged with increasing deposition power.
Nano-sponge ionic liquid-polymer composite electrolytes for solid-state lithium power sources
NASA Astrophysics Data System (ADS)
Liao, Kang-Shyang; Sutto, Thomas E.; Andreoli, Enrico; Ajayan, Pulickel; McGrady, Karen A.; Curran, Seamus A.
Solid polymer gel electrolytes composed of 75 wt.% of the ionic liquid, 1- n-butyl-2,3-dimethylimidazolium bis-trifluoromethanesulfonylimide with 1.0 M lithium bis-trifluoromethanesulfonylimide and 25 wt.% poly(vinylidenedifluoro-hexafluoropropene) are characterized as the electrolyte/separator in solid-state lithium batteries. The ionic conductivity of these gels ranges from 1.5 to 2.0 mS cm -1, which is several orders of magnitude more conductive than any of the more commonly used solid polymers, and comparable to the best solid gel electrolytes currently used in industry. TGA indicates that these polymer gel electrolytes are thermally stable to over 280 °C, and do not begin to thermally decompose until over 300 °C; exhibiting a significant advancement in the safety of lithium batteries. Atomic force microscopy images of these solid thin films indicate that these polymer gel electrolytes have the structure of nano-sponges, with a sub-micron pore size. For these thin film batteries, 150 charge-discharge cycles are run for Li xCoO 2 where x is cycled between 0.95 down to 0.55. Minimal internal resistance effects are observed over the charging cycles, indicating the high ionic conductivity of the ionic liquid solid polymer gel electrolyte. The overall cell efficiency is approximately 98%, and no significant loss in battery efficiency is observed over the 150 cycles.
Stabilizing laser energy density on a target during pulsed laser deposition of thin films
Dowden, Paul C.; Jia, Quanxi
2016-05-31
A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.
NASA Astrophysics Data System (ADS)
Silva, H.; Cruz, J.; Sánchez-Benítez, A. M.; Santos, C.; Luís, H.; Fonseca, M.; Jesus, A. P.
2017-09-01
In recent decades, the processes of fusion of 16O were studied both theoretically and experimentally. However, the theoretical calculations are unable to fit both elastic scattering cross sections and fusion S-factors. The use of 16O thin transmission targets is required to measure the elastic forward scattering 16O + 16O reaction. The areal density of the target must be high to maximize the reaction products yields, but not so high as to allow a correct calculation of the effective beam energy. Besides this, the target must withstand beam interactions without noticeable deterioration, and contaminants must be minimal. In this study, the production of thin targets is performed with an innovative technique. Beam characterization and preliminary spectrum for the elastic scattering are also presented, showing the suitability of these targets for the proposed reaction.
Bonta, Maximilian; Frank, Johannes; Taibl, Stefanie; Fleig, Jürgen; Limbeck, Andreas
2018-02-13
Advanced materials such as complex metal oxides are used in a wide range of applications and have further promising perspectives in the form of thin films. The exact chemical composition essentially influences the electronic properties of these materials which makes correct assessment of their composition necessary. However, due to high chemical resistance and in the case of thin films low absolute analyte amounts, this procedure is in most cases not straightforward and extremely time-demanding. Commonly applied techniques either lack in ease of use (i.e., solution-based analysis with preceding sample dissolution), or adequately accurate quantification (i.e., solid sampling techniques). An analysis approach which combines the beneficial aspects of solution-based analysis as well as direct solid sampling is Laser Ablation of a Sample in Liquid (LASIL). In this work, it is shown that the analysis of major as well as minor sample constituents is possible using a novel online-LASIL setup, allowing sample analysis without manual sample handling after placing it in an ablation chamber. Strontium titanate (STO) thin layers with different compositions were analyzed in the course of this study. Precision of the newly developed online-LASIL method is comparable to conventional wet chemical approaches. With only about 15-20 min required for the analysis per sample, time demand is significantly reduced compared to often necessary fusion procedures lasting multiple hours. Copyright © 2017 Elsevier B.V. All rights reserved.
Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
Jankowski, A.F.; Makowiecki, D.M.; Rambach, G.D.; Randich, E.
1998-05-19
The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated. 8 figs.
Almadori, Y; Borowik, Ł; Chevalier, N; Barbé, J-C
2017-01-27
Thermally induced solid-state dewetting of ultra-thin films on insulators is a process of prime interest, since it is capable of easily forming nanocrystals. If no particular treatment is performed to the film prior to the solid-state dewetting, it is already known that the size, the shape and the density of nanocrystals is governed by the initial film thickness. In this paper, we report a novel approach to control the size and the surface density of silicon nanocrystals based on an argon-implantation preliminary surface treatment. Using 7.5 nm thin layers of silicon, we show that increasing the implantation dose tends to form smaller silicon nanocrystals with diameter and height lower than 50 nm and 30 nm, respectively. Concomitantly, the surface density is increased by a factor greater than 20, going from 5 μm -2 to values over 100 μm -2 .
Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte
NASA Astrophysics Data System (ADS)
Li, Qin; Ardebili, Haleh
2016-01-01
The development of high-performance flexible batteries is imperative for several contemporary applications including flexible electronics, wearable sensors and implantable medical devices. However, traditional organic liquid-based electrolytes are not ideal for flexible batteries due to their inherent safety and stability issues. In this study, a non-volatile, non-flammable and safe ionic liquid (IL)-based polymer electrolyte film with solid-like feature is fabricated and incorporated in a flexible lithium ion battery. The ionic liquid is 1-Ethyl-3-methylimidazolium dicyanamide (EMIMDCA) and the polymer is composed of poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP). The electrolyte exhibits good thermal stability (i.e. no weight loss up to 300 °C) and relatively high ionic conductivity (6 × 10-4 S cm-1). The flexible thin-film lithium ion battery based on solid-like electrolyte film is encapsulated using a thermal-lamination process and demonstrates excellent electrochemical performance, in both flat and bent configurations.
Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik
1999-01-01
The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.
Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik
1998-01-01
The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.
Enhancing Modulation of Thermal Conduction in Vanadium Dioxide Thin Film by Nanostructured Nanogaps
Choe, Hwan Sung; Suh, Joonki; Ko, Changhyun; ...
2017-08-02
Efficient thermal management at the nanoscale is important for reducing energy consumption and dissipation in electronic devices, lab-on-a-chip platforms and energy harvest/conversion systems. For many of these applications, it is much desired to have a solid-state structure that reversibly switches thermal conduction with high ON/OFF ratios and at high speed. We describe design and implementation of a novel, all-solid-state thermal switching device by nanostructured phase transformation, i.e., modulation of contact pressure an d area between two poly-silicon surfaces activated by microstructural change of a vanadium dioxide (VO 2 ) thin film. Our solid-state devices demonstrate large and reversible alteration ofmore » cross-plane thermal conductance as a function of temperature, achieving a conductance ratio of at least 2.5. This new approach using nanostructured phase transformation provides new opportunities for applications that require advanced temperature and heat regulations.« less
Enhancing Modulation of Thermal Conduction in Vanadium Dioxide Thin Film by Nanostructured Nanogaps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choe, Hwan Sung; Suh, Joonki; Ko, Changhyun
Efficient thermal management at the nanoscale is important for reducing energy consumption and dissipation in electronic devices, lab-on-a-chip platforms and energy harvest/conversion systems. For many of these applications, it is much desired to have a solid-state structure that reversibly switches thermal conduction with high ON/OFF ratios and at high speed. We describe design and implementation of a novel, all-solid-state thermal switching device by nanostructured phase transformation, i.e., modulation of contact pressure an d area between two poly-silicon surfaces activated by microstructural change of a vanadium dioxide (VO 2 ) thin film. Our solid-state devices demonstrate large and reversible alteration ofmore » cross-plane thermal conductance as a function of temperature, achieving a conductance ratio of at least 2.5. This new approach using nanostructured phase transformation provides new opportunities for applications that require advanced temperature and heat regulations.« less
Rawlence, M; Filippin, A N; Wäckerlin, A; Lin, T-Y; Cuervo-Reyes, E; Remhof, A; Battaglia, C; Rupp, J L M; Buecheler, S
2018-04-25
Replacing the liquid electrolyte in conventional lithium-ion batteries with thin-film solid-state lithium-ion conductors is a promising approach for increasing energy density, lifetime, and safety. In particular, Li 7 La 3 Zr 2 O 12 is appealing due to its high lithium-ion conductivity and wide electrochemical stability window. Further insights into thin-film processing of this material are required for its successful integration into solid-state batteries. In this work, we investigate the phase evolution of Li 7-3 x Ga x La 3 Zr 2 O 12 in thin films with various amounts of Li and Ga for stabilizing the cubic phase. Through this work, we gain valuable insights into the crystallization processes unique to thin films and are able to form dense Li 7-3 x Ga x La 3 Zr 2 O 12 layers stabilized in the cubic phase with high in-plane lithium-ion conductivities of up to 1.6 × 10 -5 S cm -1 at 30 °C. We also note the formation of cubic Li 7 La 3 Zr 2 O 12 at the relatively low temperature of 500 °C.
Fabrication, testing and simulation of all solid state three dimensional Li-ion batteries
Talin, Albert Alec; Ruzmetov, Dmitry; Kolmakov, Andrei; ...
2016-11-10
Realization of safe, long cycle life and simple to package solid-state rechargeable batteries with high energy and power density has been a long-standing goal of the energy storage community. [1,2] Much of the research activity has been focused on developing new solid electrolytes with high Li ionic conductivity. In addition, LiPON, the only solid electrolyte currently used in commercial thin film solid state Li-ion batteris (SSLIBs), has a conductivity of ~10 -6 S/cm, compared to ~0.01 S/cm typically observed for liquid organic electrolytes [3].
Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stradling, G.L.
New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 ..mu..g/cm/sup 2/) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolvedmore » x-ray diagnostic capability are applied to energy-transport investigations of 1.06-..mu..m laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10/sup 14/ W/cm/sup 2/ and 1 x 10/sup 15/ W/cm/sup 2/.« less
Ion-induced particle desorption in time-of-flight medium energy ion scattering
NASA Astrophysics Data System (ADS)
Lohmann, S.; Primetzhofer, D.
2018-05-01
Secondary ions emitted from solids upon ion impact are studied in a time-of-flight medium energy ion scattering (ToF-MEIS) set-up. In order to investigate characteristics of the emission processes and to evaluate the potential for surface and thin film analysis, experiments employing TiN and Al samples were conducted. The ejected ions exhibit a low initial kinetic energy of a few eV, thus, requiring a sufficiently high acceleration voltage for detection. Molecular and atomic ions of different charge states originating both from surface contaminations and the sample material are found, and relative yields of several species were determined. Experimental evidence that points towards a predominantly electronic sputtering process is presented. For emitted Ti target atoms an additional nuclear sputtering component is suggested.
NASA Astrophysics Data System (ADS)
Artemenko, I. I.; Golovanov, A. A.; Kostyukov, I. Yu.; Kukushkina, T. M.; Lebedev, V. S.; Nerush, E. N.; Samsonov, A. S.; Serebryakov, D. A.
2016-12-01
Studies of phenomena accompanying the interaction of superstrong electromagnetic fields with matter, in particular, the generation of an electron-positron plasma, acceleration of electrons and ions, and the generation of hard electromagnetic radiation are briefly reviewed. The possibility of using thin films to initiate quantum electrodynamics cascades in the field of converging laser pulses is analyzed. A model is developed to describe the formation of a plasma cavity behind a laser pulse in the transversely inhomogeneous plasma and the generation of betatron radiation by electrons accelerated in this cavity. Features of the generation of gamma radiation, as well as the effect of quantum electrodynamics effects on the acceleration of ions, at the interaction of intense laser pulses with solid targets are studied.
2009-11-25
34Nanoindentation Stress-Strain Curves of Plasma Enhanced Chemical Vapor Deposited Silicon Oxide Thin Films," Thin Solid Films, 516 (8) (2008) 1941-1951. 9. S...1604. 5. Z. Cao* and X. Zhang, "Measurement of Stress-Strain Curves of PECVD Silicon Oxide Thin Films by Means of Nanoindentation," in Processing...Microsystems (Transducers ), Lyon, France, June 10-14, 2007. 9. Z. Cao* and X. Zhang, “Measurement of Stress-strain Curves of PECVD Silicon Oxide
2015-08-05
to increased doping levels in indirect semiconductors [84]. The slope, and magnitude of the transmission curves continue to decrease alongside UL...periodically aluminium- doped zinc oxide thin films, Thin Solid Films 519 (2011) 2280–2286. [2] T. Minami, H. Nanto, S. Takata, Highly conductive and...transparent aluminum doped zinc oxide thin films prepared by RF magnetron sputtering, Jpn. J. Appl. Phys. 23 (1984) L280. [3] T. Minami, Present status of
Pyrolysis kinetics and combustion of thin wood by an advanced cone caorimetry test method
Mark Dietenberger
2012-01-01
Pyrolysis kinetics analysis of extractives, holocellulose, and lignin in the solid redwood over the entire heating regime was possible by specialized cone calorimeter test and new mathematical analysis tools. Added hardware components include: modified sample holder for the thin specimen with tiny thermocouples, the methane ring burner with stainless-steel mesh above...
Nernst Energy Conversion in Thin Films,
equations describing the performance of a Nernst energy converter were developed in a macroscopic analysis of irreversible conduction processes in...The feasibility of practical Nernst energy conversion was investigated. The galvanomagnetic and thermomagnetic effects were reviewed. The theoretical...solids. Semimetals were determined to be the best available materials for the Nernst application. A thin film Nernst generator was constructed from
USDA-ARS?s Scientific Manuscript database
Prescribed burning and thinning are gaining popularity as low-cost forest protection measures. Such field management practices could alter the chemical properties of soil organic matter (SOM), especially humic substances. In this work, we collected surface soil samples from the Bankhead National For...
Ca-48 targets - Home and abroad!
NASA Astrophysics Data System (ADS)
Greene, John P.; Carpenter, Michael; Janssens, Robert V. F.
2018-05-01
Using the method of reduction/distillation, high-purity films of robust and ductile calcium metal were prepared for use as targets in nuclear physics experiments. These targets, however, are extremely air-sensitive and procedures must be developed for their handling and use without exposure to the air. In most instances, the thin 48Ca target is used on a carrier foil (backing) and a thin covering film of similar material is employed to further reduce re-oxidation. Un-backed metallic targets are rarely produced due to these concerns. In addition, the low natural abundance of the isotope 48Ca provided an increased incentive for the best efficiencies available in their preparation. Here, we describe the preparation of 48Ca targets employing a gold backing and thin gold cover for use at home, Argonne National Laboratory (ANL), as well as abroad, at Osaka University. For the overseas shipments, much care and preparation were necessary to ensure good targets and safe arrival to the experimental facilities.
Wang, Louxiang; Sharp, David; Masliyah, Jacob; Xu, Zhenghe
2013-03-19
A novel device was designed to measure drainage dynamics of thin liquid films confined between a solid particle, an immiscible liquid droplet, and/or gas bubble. Equipped with a bimorph force sensor, a computer-interfaced video capture, and a data acquisition system, the newly designed integrated thin film drainage apparatus (ITFDA) allows for the direct and simultaneous measurements of force barrier, true film drainage time, and bubble/droplet deformation under a well-controlled external force, receding and advancing contact angles, capillary force, and adhesion (detachment) force between an air bubble or oil droplet and a solid, a liquid, or an air bubble in an immiscible liquid. Using the diaphragm of a high-frequency speaker as the drive mechanism for the air bubble or oil droplet attached to a capillary tube, this newly designed device is capable of measuring forces over a wide range of hydrodynamic conditions, including bubble approach and retract velocities up to 50 mm/s and displacement range up to 1 mm. The results showed that the ITFDA was capable of measuring hydrodynamic resistance, film drainage time, and other important physical parameters between air bubbles and solid particles in aqueous solutions. As an example of illustrating the versatility, the ITFDA was also applied to other important systems such as interactions between air bubble and oil droplet, two air bubbles, and two oil droplets in an aqueous solution.
Dense zig-zag microstructures in YSZ thin films by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Stender, Dieter; Schäuble, Nina; Weidenkaff, Anke; Montagne, Alex; Ghisleni, Rudy; Michler, Johann; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas
2015-01-01
The very brittle oxygen ion conductor yttria stabilized zirconia (YSZ) is a typical solid electrolyte for miniaturized thin film fuel cells. In order to decrease the fuel cell operating temperature, the thickness of yttria stabilized zirconia thin films is reduced. Often, these thin membranes suffer from mechanical failure and gas permeability. To improve these mechanical issues, a glancing angle deposition approach is used to grow yttria stabilized zirconia thin films with tilted columnar structures. Changes of the material flux direction during the deposition result in a dense, zigzag-like structure with columnar crystallites. This structure reduces the elastic modulus of these membranes as compared to columnar yttria stabilized zirconia thin films as monitored by nano-indentation which makes them more adaptable to applied stress.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2012-10-09
Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2008-04-01
Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.
Aines, Roger D; Bourcier, William L; Spadaccini, Christopher M; Stolaroff, Joshuah K
2015-02-03
A system for carbon dioxide capture from flue gas and other industrial gas sources utilizes microcapsules with very thin polymer shells. The contents of the microcapsules can be liquids or mixtures of liquids and solids. The microcapsules are exposed to the flue gas and other industrial gas and take up carbon dioxide from the flue gas and other industrial gas and eventual precipitate solids in the capsule.
Liquid film target impingement scrubber
McDowell, William J.; Coleman, Charles F.
1977-03-15
An improved liquid film impingement scrubber is provided wherein particulates suspended in a gas are removed by jetting the particle-containing gas onto a relatively small thin liquid layer impingement target surface. The impingement target is in the form of a porous material which allows a suitable contacting liquid from a pressurized chamber to exude therethrough to form a thin liquid film target surface. The gas-supported particles collected by impingement of the gas on the target are continuously removed and flushed from the system by the liquid flow through each of a number of pores in the target.
NASA Astrophysics Data System (ADS)
Smith, L.; Murphy, J. W.; Kim, J.; Rozhdestvenskyy, S.; Mejia, I.; Park, H.; Allee, D. R.; Quevedo-Lopez, M.; Gnade, B.
2016-12-01
Solid-state neutron detectors offer an alternative to 3He based detectors, but suffer from limited neutron efficiencies that make their use in security applications impractical. Solid-state neutron detectors based on single crystal silicon also have relatively high gamma-ray efficiencies that lead to false positives. Thin film polycrystalline CdTe based detectors require less complex processing with significantly lower gamma-ray efficiencies. Advanced geometries can also be implemented to achieve high thermal neutron efficiencies competitive with silicon based technology. This study evaluates these strategies by simulation and experimentation and demonstrates an approach to achieve >10% intrinsic efficiency with <10-6 gamma-ray efficiency.
Vapor-solid growth of one-dimensional layer-structured gallium sulfide nanostructures.
Shen, Guozhen; Chen, Di; Chen, Po-Chiang; Zhou, Chongwu
2009-05-26
Gallium sulfide (GaS) is a wide direct bandgap semiconductor with uniform layered structure used in photoelectric devices, electrical sensors, and nonlinear optical applications. We report here the controlled synthesis of various high-quality one-dimensional GaS nanostructures (thin nanowires, nanobelts, and zigzag nanobelts) as well as other kinds of GaS products (microbelts, hexagonal microplates, and GaS/Ga(2)O(3) heterostructured nanobelts) via a simple vapor-solid method. The morphology and structures of the products can be easily controlled by substrate temperature and evaporation source. Optical properties of GaS thin nanowires and nanobelts were investigated and both show an emission band centered at 580 nm.
Surface/interface effects on high-performance thin-film all-solid-state Li-ion batteries
Gong, Chen; Ruzmetov, Dmitry; Pearse, Alexander; ...
2015-10-05
The further development of all-solid-state batteries is still limited by the understanding/engineering of the interfaces formed upon cycling. Here, we correlate the morphological, chemical, and electrical changes of the surface of thin-film devices with Al negative electrodes. The stable Al–Li–O alloy formed at the stress-free surface of the electrode causes rapid capacity fade, from 48.0 to 41.5 μAh/cm 2 in two cycles. Surprisingly, the addition of a Cu capping layer is insufficient to prevent the device degradation. Furthermore, Si electrodes present extremely stable cycling, maintaining >92% of its capacity after 100 cycles, with average Coulombic efficiency of 98%.
The infrared spectrum of ammonia hydrate - Explanation for a reported ammonia phase
NASA Technical Reports Server (NTRS)
Still, G.; Fink, U.; Ferraro, J. R.
1981-01-01
A number of anomalous spectra of solid NH3 deposited from the vapor phase have appeared in the literature. These spectra have been ascribed to a new phase of NH3. In the experiment reported here these anomalous spectra were reproduced by depositing a thin film from a mixture of gaseous NH3 and H2O and annealing this film at a temperature of 162 K. The thin film spectra showed excellent agreement with recent data on NH3.H2O. The anomalous 'NH3' spectra are, therefore, seen to be caused by H2O contamination of solid NH3 with formation of NH3 hydrate.
Solid-state dewetting of magnetic binary multilayer thin films
NASA Astrophysics Data System (ADS)
Esterina, Ria; Liu, X. M.; Adeyeye, A. O.; Ross, C. A.; Choi, W. K.
2015-10-01
We examined solid-state dewetting behavior of magnetic multilayer thin film in both miscible (CoPd) and immiscible (CoAu) systems and found that CoPd and CoAu dewetting stages follow that of elemental materials. We established that CoPd alloy morphology and dewetting rate lie in between that of the elemental materials. Johnson-Mehl-Avrami analysis was utilized to extract the dewetting activation energy of CoPd. For CoAu, Au-rich particles and Co-rich particles are distinguishable and we are able to predict the interparticle spacings and particle densities for the particles that agree well with the experimental results. We also characterized the magnetic properties of CoPd and CoAu nanoparticles.
Influence of annealing time on pH sensitivity of ZnO sensing membrane for EGFET sensor
NASA Astrophysics Data System (ADS)
Zulkefle, M. A.; Rahman, R. A.; Yusoff, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.
2018-05-01
Solid-state materials have becomes essential in recent technological advancements. This study also utilized solid-state material but in form of thin films to sense hydrogen ions in solutions. Fabrication of ZnO thin film was done using sol-gel spin coating technique. In an attempt to increase the pH sensitivity of the produced film, prolonging of annealing time was done. It was found that the increase in annealing time from 15 minutes to 30 minutes had managed to improve the sensitivity by 4.35%. The optimum pH sensitivity and linearity obtained in this study is 50.40 mV/pH and 0.9911 respectively.
Gil, M; Esteruelas, M; González, E; Kontoudakis, N; Jiménez, J; Fort, F; Canals, J M; Hermosín-Gutiérrez, I; Zamora, F
2013-05-22
The influence of two treatments for reducing grape yield, cluster thinning and berry thinning, on red wine composition and quality were studied in a Vitis vinifera cv Syrah vineyard in AOC Penedès (Spain). Cluster thinning reduced grape yield per vine by around 40% whereas berry thinning only reduced it by around 20%. Cluster thinning grapes had higher soluble solids content than control grapes, and their resultant wines have greater anthocyanin and polysaccharide concentrations than the control wine. Wine obtained from berry thinning grapes had a higher total phenolic index, greater flavonol, proanthocyanidin, and polysaccharide concentrations, and lower titratable acidity than the control wine. Wines obtained from both treatments were sufficiently different from the control wine to be significantly distinguished by a trained panel in a triangular test. Even though both treatments seem to be effective at improving the quality of wine, berry thinning has the advantage because it has less impact on crop yield reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Mohammad Nasim, E-mail: nasim@me.buet.ac.bd.com; Shavik, Sheikh Mohammad, E-mail: shavik@me.buet.ac.bd.com; Rabbi, Kazi Fazle, E-mail: rabbi35.me10@gmail.com
2016-07-12
Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solidmore » platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in case of hydrophilic surface. The heat transfer rate is also much higher in case of hydrophilic surface.« less
Development of planar solid oxide fuel cells for power generation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minh, N.Q.
1996-04-01
Planar solid oxide fuel cells (SOFCs) are presently being developed for a variety of electric power generation application. The planar design offers simple cell geometry, high power density, and multiple fabrication and gas manifolding options. Planar SOFC technology has received much attention recently, and significant progress has been made in this area. Recent effort at AlliedSignal has focused on the development of high-performance, lightweight planar SOFCs, having thin-electrolyte films, that can be operated efficiently at reduced temperatures (< 1000{degrees}C). The advantages of reduced-temperature operation include wider material choice (including use of metallic interconnects), expected longer cell life, reduced thermal stress,more » improved reliability, and reduced fuel cell cost. The key aspect in the development of thin-film SIFCs is to incorporate the thin electrolyte layer into the desired structure of cells in a manner that yields the required characteristics. AlliedSignal has developed a simple and cost-effective method based on tape calendering for the fabrication of thin-electrolyte SOFCs. Thin-electrolyte cells made by tape calendering have shown extraordinary performance, e.g., producing more than 500mW/cm{sup 2} at 700{degrees}C and 800mW/cm{sup 2} at 800{degrees}C with hydrogen as fuel and air is oxidant. thin-electrolyte single cells have been incorporated into a compliant metallic stack structure and operated at reduced and operated at reduced-temperature conditions.« less
An introduction to fast dissolving oral thin film drug delivery systems: a review.
Kathpalia, Harsha; Gupte, Aasavari
2013-12-01
Many pharmaceutical companies are switching their products from tablets to fast dissolving oral thin films (OTFs). Films have all the advantages of tablets (precise dosage, easy administration) and those of liquid dosage forms (easy swallowing, rapid bioavailability). Statistics have shown that four out of five patients prefer orally disintegrating dosage forms over conventional solid oral dosages forms. Pediatric, geriatric, bedridden, emetic patients and those with Central Nervous System disorders, have difficulty in swallowing or chewing solid dosage forms. Many of these patients are non-compliant in administering solid dosage forms due to fear of choking. OTFs when placed on the tip or the floor of the tongue are instantly wet by saliva. As a result, OTFs rapidly hydrate and then disintegrate and/or dissolve to release the medication for local and/or systemic absorption. This technology provides a good platform for patent non- infringing product development and for increasing the patent life-cycle of the existing products. The application of fast dissolving oral thin films is not only limited to buccal fast dissolving system, but also expands to other applications like gastroretentive, sublingual delivery systems. This review highlights the composition including the details of various types of polymers both natural and synthetic, the different types of manufacturing techniques, packaging materials and evaluation tests for the OTFs.
Functional nucleic acid entrapment in sol-gel derived materials.
Carrasquilla, Carmen; Brennan, John D
2013-10-01
Functional nucleic acids (FNAs) are single-stranded DNA or RNA molecules, typically generated through in vitro selection, that have the ability to act as receptors for target molecules (aptamers) or perform catalysis of a chemical reaction (deoxyribozymes and ribozymes). Fluorescence-signaling aptamers and deoxyribozymes have recently emerged as promising biological recognition and signaling elements, although little has been done to evaluate their potential for solid-phase assays, particularly with species made of RNA due to their lack of chemical stability and susceptibility to nuclease attack. Herein, we present a detailed overview of the methods utilized for solid-phase immobilization of FNAs using a sol-gel entrapment method that can provide protection from nuclease degradation and impart long-term chemical stability to the FNA reporter systems, while maintaining their signaling capabilities. This article will also provide a brief review of the results of such entrapment studies involving fluorescence-signaling versions of a DNA aptamer, selected RNA-cleaving deoxyribozymes, and two different RNA aptamers in a series of sol-gel derived composites, ranging from highly polar silica to hydrophobic methylsilsesquioxane-based materials. Given the ability to produce sol-gel derived materials in a variety of configurations, particularly as thin film coatings on electrodes, optical fibers, and other devices, this entrapment method should provide a useful platform for numerous solid-phase FNA-based biosensing applications. Copyright © 2013 Elsevier Inc. All rights reserved.
Synthesis of Metal Oxide Nanomaterials for Chemical Sensors by Molecular Beam Epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T; Thevuthasan, Suntharampillai
2013-12-01
Since the industrial revolution, detection and monitoring of toxic matter, chemical wastes, and air pollutants has become an important environmental issue. Thus, it leads to the development of chemical sensors for various environmental applications. The recent disastrous oil spills over the near-surface of ocean due to the offshore drilling emphasize the use of chemical sensors for prevention and monitoring of the processes that might lead to these mishaps.1, 2 Chemical sensors operated on a simple principle that the sensing platform undergoes a detectable change when exposed to the target substance to be sensed. Among all the types of chemical sensors,more » solid state gas sensors have attracted a great deal of attention due to their advantages such as high sensitivity, greater selectivity, portability, high stability and low cost.3, 4 Especially, semiconducting metal oxides such as SnO2, TiO2, and WO3 have been widely used as the active sensing platforms in solid state gas sensors.5 For the enhanced properties of solid state gas sensors, finding new sensing materials or development of existing materials will be needed. Thus, nanostructured materials such as nanotubes,6-8 nanowires,9-11 nanorods,12-15 nanobelts,16, 17 and nano-scale thin films18-23 have been synthesized and studied for chemical sensing applications.« less
NASA Technical Reports Server (NTRS)
Cikmach, P.; Diociaiuti, M.; Fontana, A.; Giovannella, C.; Iannuzzi, M.; Lucchini, C.; Merlo, V.; Messi, R.; Paoluzi, L.; Scopa, L.
1991-01-01
The preparation procedure used to obtain superconducting thin films by radio frequency magnetron sputtering of a single mosaic target is described in detail. The single mosaic target is composed of (Y-Er), BaF2, and Cu.
Numerical Analysis of Solids at Failure
2011-08-20
failure analyses include the formulation of invariant finite elements for thin Kirchhoff rods, and preliminary initial studies of growth in...analysis of the failure of other structural/mechanical systems, including the finite element modeling of thin Kirchhoff rods and the constitutive...algorithm based on the connectivity graph of the underlying finite element mesh. In this setting, the discontinuities are defined by fronts propagating
USDA-ARS?s Scientific Manuscript database
The effectiveness of microfiltration (MF) and ultrafiltration (UF) for nutrient recovery from a thin stillage stream was determined. When a stainless steel MF membrane (0.1 um pore size) was used, the content of solids increased from 7.0% to 22.8% with a mean permeate flux rate of 45 L/m**2/h (LMH)...
Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; ...
2015-05-07
We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore » and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua
We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore » and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less
NASA Astrophysics Data System (ADS)
Wang, Biqiong; Liu, Jian; Sun, Qian; Li, Ruying; Sham, Tsun-Kong; Sun, Xueliang
2014-12-01
Atomic layer deposition (ALD) has been shown as a powerful technique to build three-dimensional (3D) all-solid-state microbattery, because of its unique advantages in fabricating uniform and pinhole-free thin films in 3D structures. The development of solid-state electrolyte by ALD is a crucial step to achieve the fabrication of 3D all-solid-state microbattery by ALD. In this work, lithium phosphate solid-state electrolytes were grown by ALD at four different temperatures (250, 275, 300, and 325 °C) using two precursors (lithium tert-butoxide and trimethylphosphate). A linear dependence of film thickness on ALD cycle number was observed and uniform growth was achieved at all four temperatures. The growth rate was 0.57, 0.66, 0.69, and 0.72 Å/cycle at deposition temperatures of 250, 275, 300, and 325 °C, respectively. Furthermore, x-ray photoelectron spectroscopy confirmed the compositions and chemical structures of lithium phosphates deposited by ALD. Moreover, the lithium phosphate thin films deposited at 300 °C presented the highest ionic conductivity of 1.73 × 10-8 S cm-1 at 323 K with ˜0.51 eV activation energy based on the electrochemical impedance spectroscopy. The ionic conductivity was calculated to be 3.3 × 10-8 S cm-1 at 26 °C (299 K).
Ti{sub 2}AlN thin films synthesized by annealing of (Ti+Al)/AlN multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabioch, Thierry, E-mail: Thierry.cabioch@univ-poitiers.fr; Alkazaz, Malaz; Beaufort, Marie-France
2016-08-15
Highlights: • Epitaxial thin films of the MAX phase Ti{sub 2}AlN are obtained by thermal annealing. • A new metastable (Ti,Al,N) solid solution with the structure of α-T is evidenced. • The formation of the MAX phase occurs at low temperature (600 °C). - Abstract: Single-phase Ti{sub 2}AlN thin films were obtained by annealing in vacuum of (Ti + Al)/AlN multilayers deposited at room temperature by magnetron sputtering onto single-crystalline (0001) 4H-SiC and (0001) Al{sub 2}O{sub 3} substrates. In-situ X-ray diffraction experiments combined with ex-situ cross-sectional transmission electron microscopy observations reveal that interdiffusion processes occur in the multilayer at amore » temperature of ∼400 °C leading to the formation of a (Ti, Al, N) solid solution, having the hexagonal structure of α-Ti, whereas the formation of Ti{sub 2}AlN occurs at 550–600 °C. Highly oriented (0002) Ti{sub 2}AlN thin films can be obtained after an annealing at 750 °C.« less
Characterization of thin solid films and surfaces by infrared spectroscopy
NASA Astrophysics Data System (ADS)
Grosse, Peter
Thin solid films and surfaces are characterized by means of IR-spectroscopy. Properties under consideration are geometric structures of layers and stacks of layers, chemical composition and incorporation of impurities, and parameters of free electrons and holes. The method is based on reflectance and transmittance measurements, in particular with polarized light at oblique incidence. Thus the interaction of the electromagnetic waves with thin films is enhanced and two independent data sets for s- and p-polarization are available. The interpretation of the measured spectra is carried out by a fit procedure, simulating the observed spectra by an adequate model. For fitting we use an ansatz of a dielectric function which is a sum of susceptibilities taking into account the contributions of valence electrons, optical phonons, free carriers, and of impurities. As examples for the method we discuss the following systems: insulating and percolating films of Ag deposited on glass, epitactic III-V-heterostructures, oxide films as used for MOS-structures, diffusion and implantation profiles, and adsorbates on metals. All examples are relevant for application in technology, as microelectronics, thin film technology, catalysis e.g. The reliability of the non-destructive IR-method is compared with other relevant analytic methods as SIMS, RBS, and AES.
Solid oxide fuel cell having monolithic core
Ackerman, John P.; Young, John E.
1984-01-01
A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick.
NASA Astrophysics Data System (ADS)
Suhandi, A.; Tayubi, Y. R.; Arifin, P.
2016-04-01
Metal Organic Chemical Vapor Deposition (MOCVD) is a method for growing a solid material (in the form of thin films, especially for semiconductor materials) using vapor phase metal organic sources. Studies on the growth mechanism of GaAs1-xSbx ternary alloy thin solid film in the range of miscibility-gap using metal organic sources trimethylgallium (TMGa), trisdimethylaminoarsenic (TDMAAs), and trisdimethylaminoantimony (TDMASb) on MOCVD reactor has been done to understand the physical and chemical processes involved. Knowledge of the processes that occur during alloy formation is very important to determine the couple of growth condition and growth parameters are appropriate for yield high quality GaAs1-xSbx alloy. The mechanism has been studied include decomposition of metal organic sources and chemical reactions that may occur, the incorporation of the alloy elements forming and the contaminants element that are formed in the gown thin film. In this paper presented the results of experimental data on the growth of GaAs1-xSbx alloy using Vertical-MOCVD reactor to demonstrate its potential in growing GaAs1-xSbx alloy in the range of its miscibility gap.
Preparation of osmium targets with carbon backing
NASA Astrophysics Data System (ADS)
Fremont, Georges; Ngono-Ravache, Yvette; Schmitt, Christelle; Stodel, Christelle
2018-05-01
For nuclear reaction studies, thin metallic osmium targets, either natural or isotopically enriched (Os-192) of 200-300 µg/cm2 thicknesses deposited on a thin carbon backing are required. A challenging method was successfully performed at GANIL involving firstly the preparation of an aqueous solution of osmium tetrachloride, then its electro-deposition onto a thick copper backing (100 µm); this process was followed by the evaporation of a thin carbon layer (≈40 µg/cm²) and finally the dissolution of the copper material.
Laser irradiation effects on thin aluminum plates subjected to surface flow
NASA Astrophysics Data System (ADS)
Jiang, Houman; Zhao, Guomin; Chen, Minsun; Peng, Xin
2016-10-01
The irradiation effects of LD laser on thin aluminum alloy plates are studied in experiments characterized by relatively large laser spot and the presence of 0.3Ma surface airflow. A high speed profilometer is used to record the profile change along a vertical line in the rear surface of the target, and the history of the displacement along the direction of thickness of the central point at the rear surface is obtained. The results are compared with those without airflow and those by C. D. Boley. We think that it is the temperature rise difference along the direction of thickness instead of the pressure difference caused by the airflow that makes the thin target bulge into the incoming beam, no matter whether the airflow is blown or not, and that only when the thin aluminum target is heated thus softened enough by the laser irradiation, can the aerodynamic force by the surface airflow cause non-ignorable localized plastic deformation and result a burn-through without melting in the target. However, though the target isn't softened enough in terms of the pressure difference, it might have experienced notable deformation as it is heated from room temperature to several hundred degree centigrade.
NASA Astrophysics Data System (ADS)
Shafer, Jacob
2011-10-01
The compressibility of nuclear matter (KA) is one of the constituent of the equation of state for nuclear matter which is important in the study Neutron Stars and Super Novae. The KA is proportional to the Giant Monopole Resonance (GMR) energy and is related by the equation EGMR = (h2/mr2) 1/2 *(AKA)1/2 , where ``m'' is the mass of a nucleon and ``r'' is the radius of the nucleus. The GMR in unstable nuclei is important because the KA is related to the ratio of protons to neutrons. For this reason, it is desirable to study unstable nuclei as well as stable nuclei. The study of the GMR in unstable nuclei will be done using inverse kinematics on a target of Lithium (6Li). A detector composed of two layers of thin strip scintillators and one layer of large block scintillators has been designed and constructed to give adequate energy and angular distribution over a large portion of the solid angle where decay particles from the ISGMR can be found. Attenuation of the light signal in the strip scintillators was measured using an Americium (241Am) alpha source. Gains in light collection efficiency due to various wrapping techniques were also measured. The thin strip scintillators are connected to the photomultiplier tube (PMT) via bundles of optical fiber. Losses in light calculation efficiency due to fiber bundles were measured as well. Funded by DOE and NSF-REU.
NASA Astrophysics Data System (ADS)
Torgovkin, A.; Chaudhuri, S.; Ruhtinas, A.; Lahtinen, M.; Sajavaara, T.; Maasilta, I. J.
2018-05-01
Superconducting titanium nitride (TiN) thin films were deposited on magnesium oxide, sapphire and silicon nitride substrates at 700 °C, using a pulsed laser deposition (PLD) technique, where infrared (1064 nm) pulses from a solid-state laser were used for the ablation from a titanium target in a nitrogen atmosphere. Structural studies performed with x-ray diffraction showed the best epitaxial crystallinity for films deposited on MgO. In the best films, superconducting transition temperatures, T C, as high as 4.8 K were observed, higher than in most previous superconducting TiN thin films deposited with reactive sputtering. A room temperature resistivity down to ∼17 μΩ cm and residual resistivity ratio up to 3 were observed in the best films, approaching reported single crystal film values, demonstrating that PLD is a good alternative to reactive sputtering for superconducting TiN film deposition. For less than ideal samples, the suppression of the film properties were correlated mostly with the unintended incorporation of oxygen (5–10 at%) in the film, and for high oxygen content films, vacuum annealing was also shown to increase the T C. On the other hand, superconducting properties were surprisingly insensitive to the nitrogen content, with high quality films achieved even in the highly nitrogen rich, Ti:N = 40/60 limit. Measures to limit oxygen exposure during deposition must be taken to guarantee the best superconducting film properties, a fact that needs to be taken into account with other deposition methods, as well.
Femtosecond pulsed laser deposition of amorphous, ultrahard boride thin films
NASA Astrophysics Data System (ADS)
Stock, Michael; Molian, Pal
2004-05-01
Amorphous thin films (300-500 nm) of ultrahard AlMgB10 with oxygen and carbon impurities were grown on Si (100) substrates at 300 K using a solid target of AlMgB14 containing a spinel phase (MgAl2O4) and using a 120 fs pulsed, 800 nm wavelength Ti:sapphire laser. The films were subsequently annealed in argon gas up to 1373 K for 2 h. Scanning electron microscopy (SEM) was used to examine the particulate formation, atomic force microscopy was employed to characterize the film surface topography, x-ray diffraction and transmission electron microscopy were used to determine the microstructure, x-ray photoelectron spectroscopy was performed to examine the film composition, and nanoindentation was employed to study the hardness of thin films. The as-deposited and postannealed films (up to 1273 K) had a stochiometry of AlMgB10 with a significant amount of oxygen and carbon impurities and exhibited amorphous structures for a maximum hardness of 40+/-3 GPa. However, postannealing at higher temperatures led to crystallization and transformation of the film to SiB6 with a substantial loss in hardness. Results are also compared with our previous study on 23 ns, 248 nm wavelength (KrF excimer) pulsed laser deposition of AlMgB14 reported in this journal [Y. Tian, A. Constant, C. C. H. Lo, J. W. Anderegg, A. M. Russell, J. E. Snyder, and P. A. Molian, J. Vac. Sci. Technol. A 21, 1055 (2003)]. .
Zhu, Guang; Su, Yuanjie; Bai, Peng; Chen, Jun; Jing, Qingshen; Yang, Weiqing; Wang, Zhong Lin
2014-06-24
Energy harvesting from ambient water motions is a desirable but underexplored solution to on-site energy demand for self-powered electronics. Here we report a liquid-solid electrification-enabled generator based on a fluorinated ethylene propylene thin film, below which an array of electrodes are fabricated. The surface of the thin film is charged first due to the water-solid contact electrification. Aligned nanowires created on the thin film make it hydrophobic and also increase the surface area. Then the asymmetric screening to the surface charges by the waving water during emerging and submerging processes causes the free electrons on the electrodes to flow through an external load, resulting in power generation. The generator produces sufficient output power for driving an array of small electronics during direct interaction with water bodies, including surface waves and falling drops. Polymer-nanowire-based surface modification increases the contact area at the liquid-solid interface, leading to enhanced surface charging density and thus electric output at an efficiency of 7.7%. Our planar-structured generator features an all-in-one design without separate and movable components for capturing and transmitting mechanical energy. It has extremely lightweight and small volume, making it a portable, flexible, and convenient power solution that can be applied on the ocean/river surface, at coastal/offshore areas, and even in rainy places. Considering the demonstrated scalability, it can also be possibly used in large-scale energy generation if layers of planar sheets are connected into a network.
Absorption coefficients of solid NH3 from 50 to 7000 per cm
NASA Technical Reports Server (NTRS)
Sill, G.; Fink, U.; Ferraro, J. R.
1980-01-01
Thin-film spectra of solid NH3 at a resolution of 1 per cm were used to determine its absorption coefficient over the range 50-7000 per cm. The thin films were formed inside a liquid N2 cooled dewar using a variety of substrates and dewar windows. The spectra were recorded with two Fourier spectrometers, one covering the range from 1 to 4 microns and the other from 2.6 to 200 microns. The thickness of the films was measured with a laser interference technique. The absorption coefficients were determined by application of Lambert's law and by a fitting procedure to the observed spectra using thin-film theory. Good agreement was found with the absorption coefficients recently determined by other investigators over a more restricted wavelength range. A metastable phase was observed near a temperature of 90 K and its absorption coefficient is reported. No other major spectral changes with temperature were noted for the range 88-120 K.
NASA Technical Reports Server (NTRS)
Thomas, S.; Hankey, W.; Faghri, A.; Swanson, T.
1990-01-01
The flow of a thin liquid film with a free surface along a horizontal plane that emanates from a pressurized vessel is examined numerically. In one g, a hydraulic jump was predicted in both plane and radial flow, which could be forced away from the inlet by increasing the inlet Froude number or Reynolds number. In zero g, the hydraulic jump was not predicted. The effect of solid-body rotation for radial flow in one g was to 'wash out' the hydraulic jump and to decrease the film height on the disk. The liquid film heights under one g and zero g were equal under solid-body rotation because the effect of centrifugal force was much greater than that of the gravitational force. The heat transfer to a film on a rotating disk was predicted to be greater than that of a stationary disk because the liquid film is extremely thin and is moving with a very high velocity.
Mn-doped Ge self-assembled quantum dots via dewetting of thin films
NASA Astrophysics Data System (ADS)
Aouassa, Mansour; Jadli, Imen; Bandyopadhyay, Anup; Kim, Sung Kyu; Karaman, Ibrahim; Lee, Jeong Yong
2017-03-01
In this study, we demonstrate an original elaboration route for producing a Mn-doped Ge self-assembled quantum dots on SiO2 thin layer for MOS structure. These magnetic quantum dots are elaborated using dewetting phenomenon at solid state by Ultra-High Vacuum (UHV) annealing at high temperature of an amorphous Ge:Mn (Mn: 40%) nanolayer deposed at very low temperature by high-precision Solid Source Molecular Beam Epitaxy on SiO2 thin film. The size of quantum dots is controlled with nanometer scale precision by varying the nominal thickness of amorphous film initially deposed. The magnetic properties of the quantum-dots layer have been investigated by superconducting quantum interference device (SQUID) magnetometry. Atomic force microscopy (AFM), x-ray energy dispersive spectroscopy (XEDS) and transmission electron microscopy (TEM) were used to examine the nanostructure of these materials. Obtained results indicate that GeMn QDs are crystalline, monodisperse and exhibit a ferromagnetic behavior with a Curie temperature (TC) above room temperature. They could be integrated into spintronic technology.
Thin thermoluminescent dosimeter and method of making same
Simons, Gale G.; DeBey, Timothy M.
1987-01-01
An improved thermoluminescent ionizing radiation dosimeter of solid, extremely thin construction for more accurate low energy beta dosimetry is provided, along with a method of fabricating the dosimeter. In preferred forms, the dosimeter is a composite including a backing support (which may be tissue equivalent) and a self-sustaining body of solid thermoluminescent material such as LiF having a thickness of less than about 0.25 millimeters and a volume of at least about 0.0125 mm.sup.3. In preferred fabrication procedures, an initially thick (e.g., 0.89 millimeters) TLD body is wet sanded using 600 grit or less sandpaper to a thickness of less than about 0.25 millimeters, followed by adhesively attaching the sanded body to an appropriate backing. The sanding procedure permits routine production of extremely thin (about 0.05 millimeters) TLD bodies, and moreover serves to significantly reduce non-radiation-induced thermoluminescence. The composite dosimeters are rugged in use and can be subjected to annealing temperatures for increased accuracy.
Effects of supercritical carbon dioxide on immobile bound polymer chains on solid substrates
NASA Astrophysics Data System (ADS)
Sen, Mani; Asada, Mitsunori; Jiang, Naisheng; Endoh, Maya K.; Akgun, Bulent; Satija, Sushil; Koga, Tadanori
2013-03-01
Adsorbed polymer layers formed on flat solid substrates have recently been the subject of extensive studies because it is postulated to control the dynamics of technologically relevant polymer thin films, for example, in lithography. Such adsorbed layers have been reported to hinder the mobility of polymer chains in thin films even at a large length scale. Consequently, this bound layer remains immobile regardless of processing techniques (i.e. thermal annealing, solvent dissolution, etc). Here, we investigate the use of supercritical carbon dioxide (scCO2) as a novel plasticizer for bound polystyrene layers formed on silicon substrates. In-situ swelling and interdiffusion experiments using neutron reflectivity were performed. As a result, we found the anomalous plasticization effects of scCO2 on the bound polymer layers near the critical point where the anomalous adsorption of CO2 molecules in polymer thin films has been reported previously. Acknowledgement: We acknowledge the financial support from NSF Grant No. CMMI-084626.
III-Vs at Scale: A PV Manufacturing Cost Analysis of the Thin Film Vapor-Liquid-Solid Growth Mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Maxwell; Horowitz, Kelsey; Woodhouse, Michael
The authors present a manufacturing cost analysis for producing thin-film indium phosphide modules by combining a novel thin-film vapor-liquid-solid (TF-VLS) growth process with a standard monolithic module platform. The example cell structure is ITO/n-TiO2/p-InP/Mo. For a benchmark scenario of 12% efficient modules, the module cost is estimated to be $0.66/W(DC) and the module cost is calculated to be around $0.36/W(DC) at a long-term potential efficiency of 24%. The manufacturing cost for the TF-VLS growth portion is estimated to be ~$23/m2, a significant reduction compared with traditional metalorganic chemical vapor deposition. The analysis here suggests the TF-VLS growth mode could enablemore » lower-cost, high-efficiency III-V photovoltaics compared with manufacturing methods used today and open up possibilities for other optoelectronic applications as well.« less
Zhitomirsky, David; Grossman, Jeffrey C
2016-10-05
There is tremendous growth in fields where small functional molecules and colloidal nanomaterials are integrated into thin films for solid-state device applications. Many of these materials are synthesized in solution and there often exists a significant barrier to transition them into the solid state in an efficient manner. Here, we develop a methodology employing an electrodepositable copolymer consisting of small functional molecules for applications in solar energy harvesting and storage. We employ azobenzene solar thermal fuel polymers and functionalize them to enable deposition from low concentration solutions in methanol, resulting in uniform and large-area thin films. This approach enables conformal deposition on a variety of conducting substrates that can be either flat or structured depending on the application. Our approach further enables control over film growth via electrodepsition conditions and results in highly uniform films of hundreds of nanometers to microns in thickness. We demonstrate that this method enables superior retention of solar thermal fuel properties, with energy densities of ∼90 J/g, chargeability in the solid state, and exceptional materials utilization compared to other solid-state processing approaches. This novel approach is applicable to systems such as photon upconversion, photovoltaics, photosensing, light emission, and beyond, where small functional molecules enable solid-state applications.
2014-11-24
layere, which was a thin plate bonded to a solid block of fused quartz. The plate was also made of fused quartz so the entire “assembly” may be... thin plate and a block of fused quartz. Residues of the lacquer Quartz plate Metal strip Epoxy layer Block of quartz Fig. 2.4.4. Specimen...depth therefore it was made as a combination of two pieces of fused quartz, a block and a thin plate , and a foreign inclusion between them. The plate was
Effects of rim thickness on spur gear bending stress
NASA Technical Reports Server (NTRS)
Bibel, G. D.; Reddy, S. K.; Savage, M.; Handschuh, R. F.
1991-01-01
Thin rim gears find application in high-power, light-weight aircraft transmissions. Bending stresses in thin rim spur gear tooth fillets and root areas differ from the stresses in solid gears due to rim deformations. Rim thickness is a significant design parameter for these gears. To study this parameter, a finite element analysis was conducted on a segment of a thin rim gear. The rim thickness was varied and the location and magnitude of the maximum bending stresses reported. Design limits are discussed and compared with the results of other researchers.
Face pumping of thin, solid-state slab lasers with laser diodes.
Faulstich, A; Baker, H J; Hall, D R
1996-04-15
A new technique for face pumping of slab lasers uses transfer of light from 10 quasi-cw laser diode bars through a slotted mirror into a rectangular, highly ref lective pump chamber, giving efficient multipass pumping of a thin Nd:glass slab laser. A slope efficiency of 28% and a maximum pulse energy of 65 mJ have been obtained, and gain and loss measurements with thickness t = 0.45-1.04 mm have confirmed the 1/t scaling of gain in thin slabs and the high efficiency of pump light transfer.
Sun, Yuhan; Qi, Peipei; Cang, Tao; Wang, Zhiwei; Wang, Xiangyun; Yang, Xuewei; Wang, Lidong; Xu, Xiahong; Wang, Qiang; Wang, Xinquan; Zhao, Changshan
2018-06-01
As a key representative organism, earthworms can directly illustrate the influence of pesticides on environmental organisms in soil ecosystems. The present work aimed to develop a high-throughput multipesticides residue analytical method for earthworms using solid-liquid extraction with acetonitrile as the solvent and magnetic material-based dispersive solid-phase extraction for purification. Magnetic Fe 3 O 4 nanoparticles were modified with a thin silica layer to form Fe 3 O 4 -SiO 2 nanoparticles, which were fully characterized by field-emission scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffractometry, and vibrating sample magnetometry. The Fe 3 O 4 -SiO 2 nanoparticles were used as the separation media in dispersive solid-phase extraction with primary secondary amine and ZrO 2 as the cleanup adsorbents to eliminate matrix interferences. The amounts of nanoparticles and adsorbents were optimized for the simultaneous determination of 44 pesticides and six metabolites in earthworms by liquid chromatography with tandem mass spectrometry. The method performance was systematically validated with satisfactory results. The limits of quantification were 20 μg/kg for all analytes studied, while the recoveries of the target analytes ranged from 65.1 to 127% with relative standard deviation values lower than 15.0%. The developed method was subsequently utilized to explore the bioaccumulation of bitertanol in earthworms exposed to contaminated soil, verifying its feasibility for real sample analysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method
Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela
2014-01-01
In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x Ag = 0.5 are effective against E. coli and S. aureus after 24 h. PMID:24523630
Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela
2014-01-01
In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x(Ag) = 0.5 are effective against E. coli and S. aureus after 24 h.
NASA Astrophysics Data System (ADS)
Ichihara, Fumihiko; Murata, Yuma; Ono, Hiroshi; Choo, Cheow-keong; Tanaka, Katsumi
2017-10-01
SrTiO3 (STO) and Co-doped SrTiO3 (Co-STO) sintered targets were synthesized and were Ar+ sputtered to elucidate the charge compensation effect between Sr, Ti and Co cations following the reduction by oxygen desorption. Following exposure of the Ar+-sputtered target to the air, charge transfer reactions occurred among Co2+, Ti3+, O2- and Sr2+ species which were studied by their XPS spectra. Pulsed laser ablation (PLA) of these targets was carried out in water to prepare the nanoparticles which could be supplied to the thin films with much higher surface reactivity expected for photocatalytic reactions. The roles of Co ions were studied for the stoichiometry and crystallinity of the nanoparticles which constituted the thin films. Photo-degradation of methylene blue was carried out on the PLA thin films under very weak visible light at 460 nm. The PLA thin films showed the photocatalytic activities, which were enhanced by the presence of Co ions. Such the effect of Co ions was considered from viewpoint of the d-d transition and the charge-transfer between Co ions and the ligand oxygen.
Experiments and PIC simulations on liquid crystal plasma mirrors for pulse contrast enhancement
NASA Astrophysics Data System (ADS)
Cochran, G. E.; Poole, P. L.; Krygier, A.; Foster, P. S.; Scott, G. G.; Wilson, L. A.; Bailey, J.; Bourgeois, N.; Hernandez-Gomez, C.; Heery, R.; Purcell, J.; Neely, D.; Rajeev, P. P.; Freeman, R. R.; Schumacher, D. W.
2016-10-01
High pulse contrast is crucial for performing many experiments on high intensity lasers in order to minimize modification of the target surface by pre-pulse. This is often achieved through the use of solid dielectric plasma mirrors which can limit laser shot rates. Liquid crystal films, originally developed as variable thickness ion acceleration targets, have been demonstrated as effective plasma mirrors for pulse cleaning, reaching peak reflectivities over 70%. These films were used as plasma mirrors in an ion acceleration experiment on the Scarlet laser and the resultant increase in peak proton energy and change in acceleration direction will be discussed. Also presented here are novel 2D3V, LSP particle-in-cell simulations of dielectric plasma mirror operation. By including multiphoton ionization and dimensionality corrections, an excellent match to experiment is obtained over 4 decades in intensity. Analysis of pulse shortening and plasma critical surface behavior in these simulations will be discussed. Formation of thin films at 1.5 Hz will also be presented. Performed with support from the DARPA PULSE program through AMRDEC, from NNSA, and from OSC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He Minqing; Shao Xi; Liu Chuansheng
Recent experiments and simulations have demonstrated effective CO{sub 2} laser acceleration of quasi-monoenergetic protons from thick gaseous hydrogen target (of thickness tens of laser wavelengths) via hole boring and shock accelerations. We present here an alternative novel acceleration scheme by combining laser radiation pressure acceleration with shock acceleration of protons in a thin gaseous target of thickness several laser wavelengths. The laser pushes the thin gaseous plasma forward while compressing it with protons trapped in it. We demonstrated the combined acceleration with two-dimensional particle-in-cell simulation and obtained quasi-monoenergetic protons {approx}44 MeV in a gas target of thickness twice of themore » laser wavelength irradiated by circularly polarized CO{sub 2} laser with normalized laser amplitude a{sub 0}=10.« less
New Solid Polymer Electrolytes for Improved Lithium Batteries
NASA Technical Reports Server (NTRS)
Hehemann, David G.
2002-01-01
The objective of this work was to identify, synthesize and incorporate into a working prototype, next-generation solid polymer electrolytes, that allow our pre-existing solid-state lithium battery to function better under extreme conditions. We have synthesized polymer electrolytes in which emphasis was placed on the temperature-dependent performance of these candidate electrolytes. This project was designed to produce and integrate novel polymer electrolytes into a lightweight thin-film battery that could easily be scaled up for mass production and adapted to different applications.
Microindentation hardness testing of coatings: techniques and interpretation of data
NASA Astrophysics Data System (ADS)
Blau, P. J.
1986-09-01
This paper addresses the problems and promises of micro-indentation testing of thin solid films. It has discussed basic penetration hardness testing philosophy, the peculiarities of low load-shallow penetration tests of uncoated metals, and it has compared coated with uncoated behavior so that some of the unique responses of coatings can be distinguished from typical hardness versus load behavior. As the uses of thin solid coatings with technological interest continue to proliferate, microindentation testing methodology will increasingly be challenged to provide useful tools for their characterization. The understanding of microindentation response must go hand-in-hand with machine design so that the capability of measurement precision does not outstrip our abilities to interpret test results in a meaningful way.
Repeated Solid-state Dewetting of Thin Gold Films for Nanogap-rich Plasmonic Nanoislands.
Kang, Minhee; Park, Sang-Gil; Jeong, Ki-Hun
2015-10-15
This work reports a facile wafer-level fabrication for nanogap-rich gold nanoislands for highly sensitive surface enhanced Raman scattering (SERS) by repeating solid-state thermal dewetting of thin gold film. The method provides enlarged gold nanoislands with small gap spacing, which increase the number of electromagnetic hotspots and thus enhance the extinction intensity as well as the tunability for plasmon resonance wavelength. The plasmonic nanoislands from repeated dewetting substantially increase SERS enhancement factor over one order-of-magnitude higher than those from a single-step dewetting process and they allow ultrasensitive SERS detection of a neurotransmitter with extremely low Raman activity. This simple method provides many opportunities for engineering plasmonics for ultrasensitive detection and highly efficient photon collection.
Repeated Solid-state Dewetting of Thin Gold Films for Nanogap-rich Plasmonic Nanoislands
Kang, Minhee; Park, Sang-Gil; Jeong, Ki-Hun
2015-01-01
This work reports a facile wafer-level fabrication for nanogap-rich gold nanoislands for highly sensitive surface enhanced Raman scattering (SERS) by repeating solid-state thermal dewetting of thin gold film. The method provides enlarged gold nanoislands with small gap spacing, which increase the number of electromagnetic hotspots and thus enhance the extinction intensity as well as the tunability for plasmon resonance wavelength. The plasmonic nanoislands from repeated dewetting substantially increase SERS enhancement factor over one order-of-magnitude higher than those from a single-step dewetting process and they allow ultrasensitive SERS detection of a neurotransmitter with extremely low Raman activity. This simple method provides many opportunities for engineering plasmonics for ultrasensitive detection and highly efficient photon collection. PMID:26469768
Growth of fullerene-like carbon nitride thin solid films consisting of cross-linked nano-onions
NASA Astrophysics Data System (ADS)
Czigány, Zs.; Brunell, I. F.; Neidhardt, J.; Hultman, L.; Suenaga, K.
2001-10-01
Fullerene-like CNx (x≈0.12) thin solid films were deposited by reactive magnetron sputtering of graphite in a nitrogen and argon discharge on cleaved NaCl and Si(001) substrates at 450 °C. As-deposited films consist of 5 nm diam CNx nano-onions with shell sizes corresponding to Goldberg polyhedra determined by high-resolution transmission electron microscopy. Electron energy loss spectroscopy revealed that N incorporation is higher in the core of the onions than at the perimeter. N incorporation promotes pentagon formation and provides reactive sites for interlinks between shells of the onions. A model is proposed for the formation of CNx nano-onions by continuous surface nucleation and growth of hemispherical shells.
Evolution of the lithium morphology from cycling of thin film solid state batteries
Dudney, Nancy J.
2017-03-11
Thin film batteries with a Lipon electrolyte and Li metal anode can be cycled thousands of times. During this time there is a gradual redistribution of the lithium at the top surface; the morphology that develops depends on a number of factors but is largely driven by dewetting. In this work, this redistribution is characterized as functions of the cycle number, duty cycle, cathode composition, and protective coating over the lithium. Observations of wrinkled and pitted surfaces are discussed considering the effects of defects and diffusion in the lithium and influences of film stresses and surface energy. In conclusion, similarmore » processes may impact solid state lithium batteries with higher energy per active area.« less
Evolution of the lithium morphology from cycling of thin film solid state batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudney, Nancy J.
Thin film batteries with a Lipon electrolyte and Li metal anode can be cycled thousands of times. During this time there is a gradual redistribution of the lithium at the top surface; the morphology that develops depends on a number of factors but is largely driven by dewetting. In this work, this redistribution is characterized as functions of the cycle number, duty cycle, cathode composition, and protective coating over the lithium. Observations of wrinkled and pitted surfaces are discussed considering the effects of defects and diffusion in the lithium and influences of film stresses and surface energy. In conclusion, similarmore » processes may impact solid state lithium batteries with higher energy per active area.« less
Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition
An, Zhinan; Jia, Haoling; Wu, Yueying; ...
2015-05-04
The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.
Compact Radiative Control Structures for Millimeter Astronomy
NASA Technical Reports Server (NTRS)
Brown, Ari D.; Chuss, David T.; Chervenak, James A.; Henry, Ross M.; Moseley, s. Harvey; Wollack, Edward J.
2010-01-01
We have designed, fabricated, and tested compact radiative control structures, including antireflection coatings and resonant absorbers, for millimeter through submillimeter wave astronomy. The antireflection coatings consist of micromachined single crystal silicon dielectric sub-wavelength honeycombs. The effective dielectric constant of the structures is set by the honeycomb cell geometry. The resonant absorbers consist of pieces of solid single crystal silicon substrate and thin phosphorus implanted regions whose sheet resistance is tailored to maximize absorption by the structure. We present an implantation model that can be used to predict the ion energy and dose required for obtaining a target implant layer sheet resistance. A neutral density filter, a hybrid of a silicon dielectric honeycomb with an implanted region, has also been fabricated with this basic approach. These radiative control structures are scalable and compatible for use large focal plane detector arrays.
Vibrational Action Spectroscopy of Solids: New Surface-Sensitive Technique
NASA Astrophysics Data System (ADS)
Wu, Zongfang; Płucienik, Agata; Feiten, Felix E.; Naschitzki, Matthias; Wachsmann, Walter; Gewinner, Sandy; Schöllkopf, Wieland; Staemmler, Volker; Kuhlenbeck, Helmut; Freund, Hans-Joachim
2017-09-01
Vibrational action spectroscopy employing infrared radiation from a free-electron laser has been successfully used for many years to study the vibrational and structural properties of gas phase aggregates. Despite the high sensitivity of this method no relevant studies have yet been conducted for solid sample surfaces. We have set up an experiment for the application of this method to such targets, using infrared light from the free-electron laser of the Fritz Haber Institute. In this Letter, we present first results of this technique with adsorbed argon and neon atoms as messengers. We were able to detect surface-located vibrations of a thin V2O3(0 0 0 1 ) film on Au(111) as well as adsorbate vibrations, demonstrating that this method is highly surface sensitive. We consider that the dominant channel for desorption of the messenger atoms is direct inharmonic vibrational coupling, which is essentially insensitive to subsurface or bulk vibrations. Another channel is thermal desorption due to sample heating by absorption of infrared light. The high surface sensitivity of the nonthermal channel and its insensitivity to subsurface modes makes this technique an ideal tool for the study of surface-located vibrations.
Vibrational Action Spectroscopy of Solids: New Surface-Sensitive Technique.
Wu, Zongfang; Płucienik, Agata; Feiten, Felix E; Naschitzki, Matthias; Wachsmann, Walter; Gewinner, Sandy; Schöllkopf, Wieland; Staemmler, Volker; Kuhlenbeck, Helmut; Freund, Hans-Joachim
2017-09-29
Vibrational action spectroscopy employing infrared radiation from a free-electron laser has been successfully used for many years to study the vibrational and structural properties of gas phase aggregates. Despite the high sensitivity of this method no relevant studies have yet been conducted for solid sample surfaces. We have set up an experiment for the application of this method to such targets, using infrared light from the free-electron laser of the Fritz Haber Institute. In this Letter, we present first results of this technique with adsorbed argon and neon atoms as messengers. We were able to detect surface-located vibrations of a thin V_{2}O_{3}(0001) film on Au(111) as well as adsorbate vibrations, demonstrating that this method is highly surface sensitive. We consider that the dominant channel for desorption of the messenger atoms is direct inharmonic vibrational coupling, which is essentially insensitive to subsurface or bulk vibrations. Another channel is thermal desorption due to sample heating by absorption of infrared light. The high surface sensitivity of the nonthermal channel and its insensitivity to subsurface modes makes this technique an ideal tool for the study of surface-located vibrations.
Beug, M W; Bigwood, J
1981-03-27
Rapid quantification of psilocybin and psilocin in extracts of wild mushrooms is accomplished by reversed-phase high-performance liquid chromatography with paired-ion reagents. Nine solvent systems and three solid supports are evaluated for their efficiency in separating psilocybin, psilocin and other components of crude mushroom extracts by thin-layer chromatography.
Korte, C; Keppner, J; Peters, A; Schichtel, N; Aydin, H; Janek, J
2014-11-28
A phenomenological and analytical model for the influence of strain effects on atomic transport in columnar thin films is presented. A model system consisting of two types of crystalline thin films with coherent interfaces is assumed. Biaxial mechanical strain ε0 is caused by lattice misfit of the two phases. The conjoined films consist of columnar crystallites with a small diameter l. Strain relaxation by local elastic deformation, parallel to the hetero-interface, is possible along the columnar grain boundaries. The spatial extent δ0 of the strained hetero-interface regions can be calculated, assuming an exponential decay of the deformation-forces. The effect of the strain field on the local ionic transport in a thin film is then calculated by using the thermodynamic relation between (isostatic) pressure and free activation enthalpy ΔG(#). An expression describing the total ionic transport relative to bulk transport of a thin film or a multilayer as a function of the layer thickness is obtained as an integral average over strained and unstrained regions. The expression depends only on known material constants such as Young modulus Y, Poisson ratio ν and activation volume ΔV(#), which can be combined as dimensionless parameters. The model is successfully used to describe own experimental data from conductivity and diffusion studies. In the second part of the paper a comprehensive literature overview of experimental studies on (fast) ion transport in thin films and multilayers along solid-solid hetero-interfaces is presented. By comparing and reviewing the data the observed interface effects can be classified into three groups: (i) transport along interfaces between extrinsic ionic conductors (and insulator), (ii) transport along an open surface of an extrinsic ionic conductor and (iii) transport along interfaces between intrinsic ionic conductors. The observed effects in these groups differ by about five orders of magnitude in a very consistent way. The modified interface transport in group (i) is most probably caused by strain effects, misfit dislocations or disordered transition regions.
2013-01-01
Anode aluminum oxide-supported thin-film fuel cells having a sub-500-nm-thick bilayered electrolyte comprising a gadolinium-doped ceria (GDC) layer and an yttria-stabilized zirconia (YSZ) layer were fabricated and electrochemically characterized in order to investigate the effect of the YSZ protective layer. The highly dense and thin YSZ layer acted as a blockage against electron and oxygen permeation between the anode and GDC electrolyte. Dense GDC and YSZ thin films were fabricated using radio frequency sputtering and atomic layer deposition techniques, respectively. The resulting bilayered thin-film fuel cell generated a significantly higher open circuit voltage of approximately 1.07 V compared with a thin-film fuel cell with a single-layered GDC electrolyte (approximately 0.3 V). PMID:23342963
Inspecting Composites with Airborne Ultrasound: Through Thick and Thin
NASA Astrophysics Data System (ADS)
Hsu, David K.; Barnard, Daniel J.
2006-03-01
The inspection of composite materials and structures with air-coupled ultrasound has the obvious advantage that it is non-contact, non-contaminating, and free from couplants. However, the transmission efficiency from air to solid is extremely low due to the enormous difference in acoustic impedance. The development of more efficient airborne ultrasonic transducers over the years has made it possible, and even practical, to inspect composites with airborne ultrasound. It is now possible to drive newer, more efficient transducers with a portable ultrasonic flaw detector to inspect 2-inch thick solid CFRP in air. In this paper we describe our experience in applying air-coupled ultrasound to the inspection of a variety of composite structures, from honeycomb with thin composite facesheet to very thick solid laminates. General considerations for making airborne ultrasonic measurement in composite are given, and mechanism of transmission through honeycomb core, and resonance effects in transmitting through thick laminates will be described. NDE results of defects and damage in various composite structures will be presented.
Elastocapillarity: When Surface Tension Deforms Elastic Solids
NASA Astrophysics Data System (ADS)
Bico, José; Reyssat, Étienne; Roman, Benoît
2018-01-01
Although negligible at large scales, capillary forces may become dominant for submillimetric objects. Surface tension is usually associated with the spherical shape of small droplets and bubbles, wetting phenomena, imbibition, or the motion of insects at the surface of water. However, beyond liquid interfaces, capillary forces can also deform solid bodies in their bulk, as observed in recent experiments with very soft gels. Capillary interactions, which are responsible for the cohesion of sandcastles, can also bend slender structures and induce the bundling of arrays of fibers. Thin sheets can spontaneously wrap liquid droplets within the limit of the constraints dictated by differential geometry. This review aims to describe the different scaling parameters and characteristic lengths involved in elastocapillarity. We focus on three main configurations, each characterized by a specific dimension: three-dimensional (3D), deformations induced in bulk solids; 1D, bending and bundling of rod-like structures; and 2D, bending and stretching of thin sheets. Although each configuration deserves a detailed review, we hope our broad description provides a general view of elastocapillarity.
Atomically thin gallium layers from solid-melt exfoliation
Kochat, Vidya; Samanta, Atanu; Zhang, Yuan; Bhowmick, Sanjit; Manimunda, Praveena; Asif, Syed Asif S.; Stender, Anthony S.; Vajtai, Robert; Singh, Abhishek K.; Tiwary, Chandra S.; Ajayan, Pulickel M.
2018-01-01
Among the large number of promising two-dimensional (2D) atomic layer crystals, true metallic layers are rare. Using combined theoretical and experimental approaches, we report on the stability and successful exfoliation of atomically thin “gallenene” sheets on a silicon substrate, which has two distinct atomic arrangements along crystallographic twin directions of the parent α-gallium. With a weak interface between solid and molten phases of gallium, a solid-melt interface exfoliation technique is developed to extract these layers. Phonon dispersion calculations show that gallenene can be stabilized with bulk gallium lattice parameters. The electronic band structure of gallenene shows a combination of partially filled Dirac cone and the nonlinear dispersive band near the Fermi level, suggesting that gallenene should behave as a metallic layer. Furthermore, it is observed that the strong interaction of gallenene with other 2D semiconductors induces semiconducting to metallic phase transitions in the latter, paving the way for using gallenene as promising metallic contacts in 2D devices. PMID:29536039
Vibrational characterisation of a crystallised oligoaniline: a model compound of polyaniline
NASA Astrophysics Data System (ADS)
Quillard, Sophie; Corraze, Benoı̂t; Boyer, Marie Isabelle; Fayad, Elias; Louarn, Guy; Froyer, Gérard
2001-09-01
We present a detailed study on the vibrational properties of N,N‧-diphenyl-1,4-phenylenediamine in different crystalline forms. A new triclinic form of the molecule has been obtained through appropriate recrystallization procedure. This polymorphism of the crystalline state was associated to different vibrational features. These results are discussed with regards to the possible conformations of the molecule. In order to complete the study, thin solid films of these materials were also elaborated by vacuum sublimation of the molecule, upon selected conditions of rate, deposition and thickness. Spectroscopic measurements of these layers are showed and compared to those obtained on the crystalline solid forms. We performed convenient oxidation processes of this neutral N,N‧-diphenyl-1,4-phenylenediamine (powder and thin solid film) leading to the formation of the correspondent radical cation species. A comparison with radical cation generated in solution by electrochemical oxidative method is done. Vibrational characterisations of this doped oligomer were achieved in each case and finally, the observed differences are discussed in terms of conformation.
Mechanisms of microgravity flame spread over a thin solid fuel - Oxygen and opposed flow effects
NASA Technical Reports Server (NTRS)
Olson, S. L.
1991-01-01
Microgravity tests varying oxygen concentration and forced flow velocity have examined the importance of transport processes on flame spread over very thin solid fuels. Flame spread rates, solid phase temperature profiles and flame appearance for these tests are measured. A flame spread map is presented which indicates three distinct regions where different mechanisms control the flame spread process. In the near-quenching region (very low characteristic relative velocities) a new controlling mechanism for flame spread - oxidizer transport-limited chemical reaction - is proposed. In the near-limit, blowoff region, high opposed flow velocities impose residence time limitations on the flame spread process. A critical characteristic relative velocity line between the two near-limit regions defines conditions which result in maximum flammability both in terms of a peak flame spread rate and minimum oxygen concentration for steady burning. In the third region, away from both near-limit regions, the flame spread behavior, which can accurately be described by a thermal theory, is controlled by gas-phase conduction.
Wang, Ziying; Lee, Jungwoo Z.; Xin, Huolin L.; ...
2016-05-30
All-solid-state lithium-ion batteries have the potential to not only push the current limits of energy density by utilizing Li metal, but also improve safety by avoiding flammable organic electrolyte. However, understanding the role of solid electrolyte – electrode interfaces will be critical to improve performance. In this paper, we conducted long term cycling on commercially available lithium cobalt oxide (LCO)/lithium phosphorus oxynitride (LiPON)/lithium (Li) cells at elevated temperature to investigate the interfacial phenomena that lead to capacity decay. STEM-EELS analysis of samples revealed a previously unreported disordered layer between the LCO cathode and LiPON electrolyte. This electrochemically inactive layer grewmore » in thickness leading to loss of capacity and increase of interfacial resistance when cycled at 80 °C. Finally, the stabilization of this layer through interfacial engineering is crucial to improve the long term performance of thin-film batteries especially under thermal stress.« less
2007-08-01
Cognitive Psychology: New Directions (pp. 112-153). London: Routledge & Kegan Paul, 1980. Allport, D. A.; Antonis, B.; Reynolds, P. On the Division of...live-fire range. The target type presentations will be an enemy targets which will consist of equal sized solid green silhouettes. Friendly targets...will consist of the solid green silhouette with a gray 6-inch disk at the center-of-mass, or a solid brown silhouette. The target exposure times will
Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B
2015-02-24
A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.
Thin metal electrode for AMTEC
NASA Technical Reports Server (NTRS)
Williams, Roger M. (Inventor); Wheeler, Bob L. (Inventor); Jefferies-Nakamura, Barbara (Inventor); Lamb, James L. (Inventor); Bankston, C. Perry (Inventor); Cole, Terry (Inventor)
1989-01-01
An electrode having higher power output is formed of a thin, porous film (less than 1 micrometer) applied to a beta-alumina solid electrolyte (BASE). The electrode includes an open grid, current collector such as a series of thin, parallel, grid lines applied to the thin film and a plurality of cross-members such as loop of metal wire surrounding the BASE tube. The loops are electrically connected by a bus wire. The overall impedance of the electrode considering both the contributions from the bulk BASE and the porous electrode BASE interface is low, about 0.5 OHM/cm.sup.2 and power densities of over 0.3 watt/cm.sup.2 for extended periods.
Thin-film diffusion brazing of titanium alloys
NASA Technical Reports Server (NTRS)
Mikus, E. B.
1972-01-01
A thin film diffusion brazing technique for joining titanium alloys by use of a Cu intermediate is described. The method has been characterized in terms of static and dynamic mechanical properties on Ti-6Al-4V alloy. These include tensile, fracture toughness, stress corrosion, shear, corrosion fatigue, mechanical fatigue and acoustic fatigue. Most of the properties of titanium joints formed by thin film diffusion brazing are equal or exceed base metal properties. The advantages of thin film diffusion brazing over solid state diffusion bonding and brazing with conventional braze alloys are discussed. The producibility advantages of this process over others provide the potential for producing high efficiency joints in structural components of titanium alloys for the minimum cost.
Foley, Brian M.; Paisley, Elizabeth A.; DiAntonio, Christopher; ...
2017-05-23
This paper represents a thorough investigation of the thermal conductivity (κ) in both thin film and bulk PbZr 1–xTi xO 3 (PZT) across the compositional phase diagram. Given the technological importance of PZT as a superb piezoelectric and ferroelectric material in devices and systems impacting a wide array of industries, this research serves to fill the gap in knowledge regarding the thermal properties. The thermal conductivities of both thin film and bulk PZT are found to vary by a considerable margin as a function of composition x. Additionally, we observe a discontinuity in κ in the vicinity of the morphotropicmore » phase boundary (MPB, x = 0.48) where there is a 20%–25% decrease in κ in our thin film data, similar to that found in literature data for bulk PZT. The comparison between bulk and thin film materials highlights the sensitivity of κ to size effects such as film thickness and grain size even in disordered alloy/solid-solution materials. A model for the thermal conductivity of PZT as a function of composition (κ(x)) is presented, which enables the application of the virtual crystal approximation for alloy-type material systems with very different crystals structures, resulting in differing temperature trends for κ. We show that in the case of crystalline solid-solutions where the thermal conductivity of one of the parent materials exhibits glass-like temperature trends the compositional dependence of thermal conductivity is relatively constant for most values of x. Finally, this is in stark contrast with the typical trends of thermal conductivity with x in alloys, where the thermal conductivity increases dramatically as the composition of the alloy or solid-solution approaches that of a pure parent materials (i.e., as x = 0 or 1).« less
NASA Astrophysics Data System (ADS)
Cho, Kyu-Gong
2000-12-01
In order to investigate the effects of the film roughness with the fundamental luminance parameters of thin film phosphors, Y2 O3:Eu films with different thickness and roughness values were deposited on various substrate materials using a pulsed laser deposition technique under a controlled experimental procedure. The best luminous efficiency was observed from the Y2O3:Eu films on quartz substrates due to the smaller refractive index and low absorption characteristics of the quartz substrates which produce a larger amount of total internal reflection in the film and low loss of light intensity during the multiple internal reflections. The trapped light inside the film can escape the film more easily due to rougher film surface. The better epitaxial growth capability of the Y2O 3:Eu films with the LaAlO3 substrates resulted in higher luminous efficiency in the small surface roughness region. Higher luminous efficiency was observed in reflection mode than in transmission mode due to the contribution of diffusely scattered light at the air-film interface. A new theoretical model based on the diffraction scattering theory of light, the steady-state diffusion condition of carriers and the Kanaya-Okayama's electron- beam-solid interaction range satisfactorily explains all the experimental results mentioned above. The model also provides solid understandings on the cathodoluminescence properties of the thin film phosphors with the effects of other single or multiple luminance parameters. The parameters encountered for the model are surface roughness, electron-beam-solid interaction, surface recombination rate of carriers, charge carrier diffusion properties, multiple scattering at the interfaces (air- film, film-substrate, and substrate-air), optical properties of the material, film thickness, and substrate type. The model supplies a general solution in both qualitative and quantitative ways to estimate the luminance properties of the thin film phosphors and it can be utilized to optimize the thin film phosphor properties for the application of field emission flat panel displays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foley, Brian M.; Paisley, Elizabeth A.; DiAntonio, Christopher
This paper represents a thorough investigation of the thermal conductivity (κ) in both thin film and bulk PbZr 1–xTi xO 3 (PZT) across the compositional phase diagram. Given the technological importance of PZT as a superb piezoelectric and ferroelectric material in devices and systems impacting a wide array of industries, this research serves to fill the gap in knowledge regarding the thermal properties. The thermal conductivities of both thin film and bulk PZT are found to vary by a considerable margin as a function of composition x. Additionally, we observe a discontinuity in κ in the vicinity of the morphotropicmore » phase boundary (MPB, x = 0.48) where there is a 20%–25% decrease in κ in our thin film data, similar to that found in literature data for bulk PZT. The comparison between bulk and thin film materials highlights the sensitivity of κ to size effects such as film thickness and grain size even in disordered alloy/solid-solution materials. A model for the thermal conductivity of PZT as a function of composition (κ(x)) is presented, which enables the application of the virtual crystal approximation for alloy-type material systems with very different crystals structures, resulting in differing temperature trends for κ. We show that in the case of crystalline solid-solutions where the thermal conductivity of one of the parent materials exhibits glass-like temperature trends the compositional dependence of thermal conductivity is relatively constant for most values of x. Finally, this is in stark contrast with the typical trends of thermal conductivity with x in alloys, where the thermal conductivity increases dramatically as the composition of the alloy or solid-solution approaches that of a pure parent materials (i.e., as x = 0 or 1).« less
Stress singularities in a model of a wood disk under sinusoidal pressure
Jay A. Johnson; John C. Hermanson; Steven M. Cramer; Charles Amundson
2005-01-01
A thin, solid, circular wood disk, cut from the transverse plane of a tree stem, can be modeled as a cylindrically orthotropic elastic material. It is known that a stress singularity can occur at the center of a cylindrically orthotropic disk subjected to uniform pressure. If a solid cylindrically orthotropic disk is subjected to sinusoidal pressure distributions, then...
NASA Astrophysics Data System (ADS)
Katase, Takayoshi; Endo, Kenji; Ohta, Hiromichi
2016-02-01
Compared to state-of-the-art modulation techniques, protonation is the most ideal to control the electrical and optical properties of transition metal oxides (TMOs) due to its intrinsic non-volatile operation. However, the protonation of TMOs is not typically utilized for solid-state devices because of imperative high-temperature annealing treatment in hydrogen source. Although one solution for room temperature (RT) protonation of TMOs is liquid-phase electrochemistry, it is unsuited for practical purposes due to liquid-leakage problem. Herein we demonstrate solid-state RT-protonation of vanadium dioxide (VO2), which is a well-known thermochromic TMO. We fabricated the three terminal thin-film-transistor structure on an insulating VO2 film using a water-infiltrated nanoporous glass, which serves as a solid electrolyte. For gate voltage application, water electrolysis and protonation/deprotonation of VO2 film surface occurred, leading to reversible metal-insulator phase conversion of ~11-nm-thick VO2 layer. The protonation was clearly accompanied by the structural change from an insulating monoclinic to a metallic tetragonal phase. Present results offer a new route for the development of electro-optically active solid-state devices with TMO materials by engineering RT protonation.
Development of Thin-Film Battery Powered Transdermal Medical Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, J.B.; Sein, T.
1999-07-06
Research carried out at ORNL has led to the development of solid state thin-film rechargeable lithium and lithium-ion batteries. These unique devices can be fabricated in a variety of shapes and to any required size, large or small, on virtually any type of substrate. Because they have high energies per unit of volume and mass and because they are rechargeable, thin-film lithium batteries have potentially many applications as small power supplies in consumer and special electronic products. Initially, the objective of this project was to develop thin-film battery powered products. Initially, the objective of this project was to develop thin-filmmore » battery powered transdermal electrodes for recording electrocardiograms and electroencephalograms. These ''active'' electrode would eliminate the effect of interference and improve the reliability in diagnosing heart or brain malfunctions. Work in the second phase of this project was directed at the development of thin-film battery powered implantable defibrillators.« less
NASA Astrophysics Data System (ADS)
Nie, Y.; Schmidt, R.; Chetvertkova, V.; Rosell-Tarragó, G.; Burkart, F.; Wollmann, D.
2017-08-01
The conceptual design of the Future Circular Collider (FCC) is being carried out actively in an international collaboration hosted by CERN, for the post-Large Hadron Collider (LHC) era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV-50 TeV. Three beam sizes were studied for each energy, corresponding to typical values of the betatron function. Specifically for thin targets, comparisons between fluka simulations and analytical Bethe equation calculations were carried out, which showed that the damage potential of a few-millimeter-thick graphite target and submillimeter-thick copper foil can be well estimated directly by the Bethe equation. The paper provides a valuable reference for the quick evaluation of potential damage to accelerator elements over a large range of beam parameters when beam loss occurs.
Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna
A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO{sub 2}). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer et al. [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-filmmore » boundary conditions result in qualitatively different dispersion relationships especially in the limit as kh{sub o}<<1, where k is the wavenumber of the perturbation and h{sub o} is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably contribute to surface deformation. Hence, surface deformation caused by liquid phase instabilities is rapidly quenched-in during the cooling phase. This deformed state is further evolved by subsequent laser pulses. These results have implications to developing accurate computer simulations of thin-film dewetting by energetic beams aimed at the manufacturing of optically active nanoscale materials for applications including information processing, optical devices, and solar energy harvesting.« less
Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing
NASA Astrophysics Data System (ADS)
Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna
2007-11-01
A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO2). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer etal . [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-film boundary conditions result in qualitatively different dispersion relationships especially in the limit as kho≪1, where k is the wavenumber of the perturbation and ho is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably contribute to surface deformation. Hence, surface deformation caused by liquid phase instabilities is rapidly quenched-in during the cooling phase. This deformed state is further evolved by subsequent laser pulses. These results have implications to developing accurate computer simulations of thin-film dewetting by energetic beams aimed at the manufacturing of optically active nanoscale materials for applications including information processing, optical devices, and solar energy harvesting.
NASA Astrophysics Data System (ADS)
Aziz, Tareque; Rumaiz, Abdul
Titanium Nitride (TiNx) thin films were prepared by reactive dc sputtering in presence of Ar-N2 plasma. The thin films were grown on Quartz and pure Si surfaces. The Ar-N2 content ratio was gradually varied while the substrate and the Titanium target were kept at room temperature. Structural properties, optical and electrical properties of the thin films were studied by using X-ray Photoelectron Spectroscopy (XPS) and XRD and 4 probe resistivity measurement. Target poisoning of the Ti target was also studied by varying reactive gas concentration and measuring the target current. A study of target current vs growth rate of the films was performed to investigate the onset of ``poison'' mode.Although there was an insignificant drop in plasma current, we noticed a drop in the deposition rate. This result was tested against Monte Carlo simulations using SRIM simulations. Effects of annealing on the crystallinity and the sheet resistance will also be discussed. The work has been supported by BSA,DOE.
Dispersion of Projectile and Target Debris Upon Penetration of Thin Targets
NASA Astrophysics Data System (ADS)
Gwynn, D.; Bernhard, R. P.; See, T. H.; Horz, F.
1996-03-01
We continue to conduct penetration experiments of thin foils to support the development of cosmic-dust flight instruments that utilize thin films for the measurement of particle trajectories, or for the potential soft capture of hypervelocity impactors for subsequent compositional analysis upon retrieval to Earth. Each experiment is equipped with a witness plate, mounted to the rear of the target and fabricated from soft Aluminum-1100, ~30 x 30 cm in size and ranging from 2 to 5 mm thick; these witness plates essentially simulate the rear wall of a capture cell onto which the projectile material will plate out, including material that is being dislodged from the penetrated foil itself. Using compositionally contrasting projectile and foil materials in the laboratory, such as soda-lime glass impactors and aluminum targets, one produces two distinct populations of craters on the witness plates.
Generation of X-rays by electrons recycling through thin internal targets of cyclic accelerators
NASA Astrophysics Data System (ADS)
Kaplin, V.; Kuznetsov, S.; Uglov, S.
2018-05-01
The use of thin (< 10‑3 radiation length) internal targets in cyclic accelerators leads to multiple passes (recycling effect) of electrons through them. The multiplicity of electron passes (M) is determined by the electron energy, accelerator parameters, the thickness, structure and material of a target and leads to an increase in the effective target thickness and the efficiency of radiation generation. The increase of M leads to the increase in the emittance of electron beams which can change the characteristics of radiation processes. The experimental results obtained using the Tomsk synchrotron and betatron showed the possibility of increasing the yield and brightness of coherent X-rays generated by the electrons passing (recycling) through thin crystals and periodic multilayers placed into the chambers of accelerators, when the recycling effect did not influence on the spectral and angular characteristics of generated X-rays.
Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review
Riaz, Muhammad Kashif; Riaz, Muhammad Adil; Zhang, Xue; Lin, Congcong; Wong, Ka Hong; Chen, Xiaoyu; Lu, Aiping
2018-01-01
Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes) containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed. PMID:29315231
Diagnosis of energy transport in iron buried layer targets using an extreme ultraviolet laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahzad, M.; Culfa, O.; Rossall, A. K.
2015-02-15
We demonstrate the use of extreme ultra-violet (EUV) laboratory lasers in probing energy transport in laser irradiated solid targets. EUV transmission through targets containing a thin layer of iron (50 nm) encased in plastic (CH) after irradiation by a short pulse (35 fs) laser focussed to irradiances 3 × 10{sup 16} Wcm{sup −2} is measured. Heating of the iron layer gives rise to a rapid decrease in EUV opacity and an increase in the transmission of the 13.9 nm laser radiation as the iron ionizes to Fe{sup 5+} and above where the ion ionisation energy is greater than the EUV probe photon energy (89 eV).more » A one dimensional hydrodynamic fluid code HYADES has been used to simulate the temporal variation in EUV transmission (wavelength 13.9 nm) using IMP opacity values for the iron layer and the simulated transmissions are compared to measured transmission values. When a deliberate pre-pulse is used to preform an expanding plastic plasma, it is found that radiation is important in the heating of the iron layer while for pre-pulse free irradiation, radiation transport is not significant.« less
The Electrochemical Properties of Sr(Ti,Fe)O 3-δ for Anodes in Solid Oxide Fuel Cells
Nenning, Andreas; Volgger, Lukas; Miller, Elizabeth; ...
2017-02-18
Reduction-stable mixed ionic and electronic conductors such as Sr(Ti,Fe)O 3-δ (STF) are promising materials for application in anodes of solid oxide fuel cells. The defect chemistry of STF and its properties as solid oxide fuel cell (SOFC) cathode have been studied thoroughly, while mechanistic investigations of its electrochemical properties as SOFC anode material are still scarce. In this study, thin film model electrodes of STF with 30% and 70% Fe content were investigated in H 2+H 2O atmosphere by electrochemical impedance spectroscopy. Lithographically patterned thin film Pt current collectors were applied on top or beneath the STF thin films tomore » compensate for the low electronic conductivity under reducing conditions. Oxygen exchange resistances, electronic and ionic conductivities and chemical capacitances were quantified and discussed in a defect chemical model. Increasing Fe content increases the electro-catalytic activity of the STF surface as well as the electronic and ionic conductivity. Current collectors on top also increase the electrochemical activity due to a highly active Pt-atmosphere-STF triple phase boundary. Furthermore, the electrochemical activity depends decisively on the H 2:H 2O mixing ratio and the polarization. Lastly, Fe 0 nanoparticles may evolve on the surface in hydrogen rich atmospheres and increase the hydrogen adsorption rate.« less
Ramos, María Concepción; Romero, María Paz
2017-08-01
The present study investigated the potassium (K) levels in petiole and other grape tissues during ripening in Vitis vinifera Shiraz and Cabernet Sauvignon, grown in areas with differences in vigour, as well as with and without leaf thinning. Potassium levels in petiole, seeds, skin and flesh were related to grape pH, acidity, berry weight and total soluble solids. Differences in K levels in petiole were in accordance with the differences in soil K. Leaf thinning gave rise to higher K levels in petiole but, in grape tissues, the differences were not significant in all samplings, with greater differences at the end of the growing cycle. Potassium levels per berry in grape tissues increased from veraison to harvest, with K mainly accumulated in skins and, to a lesser extent, in flesh. Potassium levels in flesh positively correlated with pH and total soluble solids, whereas the correlation with titratable acidity was negative. Grape juice pH and total soluble solids positively correlated with K, whereas titratable acidity correlated negatively. Leaf thinning increased K levels in petiole, although differences in K levels in grape tissues were not significant. This suggests the need to consider the K berry concentration when aiming to optimise K fertilisation programmes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, L. G., E-mail: lingen.huang@hzdr.de; Kluge, T.; Cowan, T. E.
The dynamics of bulk heating and ionization is investigated both in simulations and theory, which determines the crucial plasma parameters such as plasma temperature and density in ultra-short relativistic laser-solid target interactions. During laser-plasma interactions, the solid density plasma absorbs a fraction of laser energy and converts it into kinetic energy of electrons. A portion of the electrons with relativistic kinetic energy goes through the solid density plasma and transfers energy into the bulk electrons, which results in bulk electron heating. The bulk electron heating is finally translated into the processes of bulk collisional ionization inside the solid target. Amore » simple model based on the Ohmic heating mechanism indicates that the local and temporal profile of bulk return current is essential to determine the temporal evolution of bulk electron temperature. A series of particle-in-cell simulations showing the local heating model is robust in the cases of target with a preplasma and without a preplasma. Predicting the bulk electron heating is then benefit for understanding the collisional ionization dynamics inside the solid targets. The connection of the heating and ionization inside the solid target is further studied using Thomas-Fermi model.« less
YIG based broad band microwave absorber: A perspective on synthesis methods
NASA Astrophysics Data System (ADS)
Sharma, Vinay; Saha, J.; Patnaik, S.; Kuanr, Bijoy K.
2017-10-01
The fabrication of a thin layer of microwave absorber that operates over a wide band of frequencies is still a challenging task. With recent advances in nanostructure synthesis techniques, considerable progress has been achieved in realizations of thin nanocomposite layer designed for full absorption of incident electromagnetic (EM) radiation covering S to K band frequencies. The primary objective of this investigation is to achieve best possible EM absorption with a wide bandwidth and attenuation >10 dB for a thin absorbing layer (few hundred of microns). Magnetic yttrium iron garnet (Y3Fe5O12; in short YIG) nanoparticles (NPs) were prepared by sol-gel (SG) as well as solid-state (SS) reaction methods to elucidate the effects of nanoscale finite size on the magnetic behavior of the particles and hence their microwave absorption capabilities. It is found that YIG prepared by these two methods are different in many ways. Magnetic properties investigated using vibrating sample magnetometry (VSM) exhibit that the coercivity (Hc) of solid-state NPs is much larger (72 Oe) than the sol-gel NPs (31 Oe). Microwave absorption properties were studied by ferromagnetic resonance (FMR) technique in field sweep mode at different fixed frequencies. A thin layer (∼300 μm) of YIG film was deposited using electrophoretic deposition (EPD) technique over a coplanar waveguide (CPW) transmission line made on copper coated RT/duroid® 5880 substrates. Temperature dependent magnetic properties were also investigated using VSM and FMR techniques. Microwave absorption properties were investigated at high temperatures (up to 300 °C) both for sol-gel and solid-state synthesized NPs and are related to skin depth of YIG films. It is observed that microwave absorption almost vanishes when the temperature reached the Néel temperature of YIG.
Dynamic Cluster Size Effects on the Glass Transition of Thin Films
NASA Astrophysics Data System (ADS)
Wool, Richard
2013-03-01
During cooling from the melt of amorphous materials, it has been shown experimentally that dynamic rigid clusters form in equilibrium with the liquid and their relaxation behavior determines the kinetic nature of Tg [Stanzione et al, J. Non Cryst Solids 357(2): 311-319 2011]. The fractal clusters of size R ~ 5-60 nm (polystyrene) have relaxation times τ ~ R1.8 (solid-to-liquid). They are analogous to sub critical size embryos during crystallization as the amorphous material tries to crystallize due to the strong intermolecular forces at T < Tm ; they are not related to density fluctuations or surface capillary waves. In free-standing thin films of thickness h, several important events occur: (a) The large clusters with R > h are excluded and the thin films have an average faster relaxation time compared to the bulk; consequently Tg decreases as h decreases. (b) The segmental dynamics at the 1 nm scale are largely not affected by nanoconfinement since Tg is determined only by the cluster dynamics with R >> 1 nm. (c) The mobile layer on the surface of free standing films is due to the presence of smaller clusters on the surface which will disappear with increasing rate of testing. (d) With adhesion to a solid substrate, the surface mobile layer disappears as the surface clusters size grow and the change in Tg is suppressed. (e) Physical aging is controlled by the relaxation of the rigid fractal clusters and in thin films, physical aging will occur more rapidly compared to the bulk. (f) The large effect of molecular weight M on Tg appears to be related to the effect on the cluster size distribution giving smaller clusters and faster relation times with increasing M. These results are in accord with the Twinkling Fractal theory of the glass transition.
On dewetting of thin films due to crystallization (crystallization dewetting).
Habibi, Mehran; Rahimzadeh, Amin; Eslamian, Morteza
2016-03-01
Drying and crystallization of a thin liquid film of an ionic or a similar solution can cause dewetting in the resulting thin solid film. This paper aims at investigating this type of dewetting, herein termed "crystallization dewetting", using PbI2 dissolved in organic solvents as the model solution. PbI2 solid films are usually used in X-ray detection and lead halide perovskite solar cells. In this work, PbI2 films are fabricated using spin coating and the effect of major parameters influencing the crystallization dewetting, including the type of the solvent, solution concentration, drying temperature, spin speed, as well as imposed vibration on the substrate are studied on dewetting, surface profile and coverage, using confocal scanning laser microscopy. Simplified hydrodynamic governing equations of crystallization in thin films are presented and using a mathematical representation of the process, it is phenomenologically demonstrated that crystallization dewetting occurs due to the absorption and consumption of the solution surrounding a growing crystal. Among the results, it is found that a low spin speed (high thickness), a high solution concentration and a low drying temperature promote crystal growth, and therefore crystallization dewetting. It is also shown that imposed vibration on the substrate can affect the crystal size and crystallization dewetting.
Self-assembly of a thin highly reduced graphene oxide film and its high electrocatalytic activity
NASA Astrophysics Data System (ADS)
Bai, Yan-Feng; Zhang, Yong-Fang; Zhou, An-Wei; Li, Hai-Wai; Zhang, Yu; Luong, John H. T.; Cui, Hui-Fang
2014-10-01
A thin highly reduced graphene oxide (rGO) film was self-assembled at the dimethyl formamide (DMF)-air interface through evaporation-induced water-assisted thin film formation at the pentane-DMF interface, followed by complete evaporation of pentane. The thin film was transferred onto various solid substrates for film characterization and electrochemical sensing. UV-visible spectrometry, scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemistry techniques were used to characterize the film. An rGO film showing 82.8% of the transmittance at 550 nm corresponds to a few layers of rGO nanosheets. The rGO nanosheets cross-stack with each other, lying approximately in the plane of the film. An rGO film collected on a glassy carbon (GC) electrode exhibited improved electrical conductivity compared to GC, with the electrode charge-transfer resistance (Rct) reduced from 31 Ω to 22 Ω. The as-formed rGO/GC electrode was mechanically very stable, exhibiting significantly enhanced electrocatalytic activity to H2O2 and dopamine. Multiple layers of the rGO films on the GC electrode showed even stronger electrocatalytic activity to dopamine than that of the single rGO film layer. The controllable formation of a stable rGO film on various solid substrates has potential applications for nanoelectronics and sensors/biosensors.
Bending impact on the performance of a flexible Li4Ti5O12-based all-solid-state thin-film battery.
Sepúlveda, Alfonso; Speulmanns, Jan; Vereecken, Philippe M
2018-01-01
The growing demand of flexible electronic devices is increasing the requirements of their power sources. The effect of bending in thin-film batteries is still not well understood. Here, we successfully developed a high active area flexible all-solid-state battery as a model system that consists of thin-film layers of Li 4 Ti 5 O 12 , LiPON, and Lithium deposited on a novel flexible ceramic substrate. A systematic study on the bending state and performance of the battery is presented. The battery withstands bending radii of at least 14 mm achieving 70% of the theoretical capacity. Here, we reveal that convex bending has a positive effect on battery capacity showing an average increase of 5.5%, whereas concave bending decreases the capacity by 4% in contrast with recent studies. We show that the change in capacity upon bending may well be associated to the Li-ion diffusion kinetic change through the electrode when different external forces are applied. Finally, an encapsulation scheme is presented allowing sufficient bending of the device and operation for at least 500 cycles in air. The results are meant to improve the understanding of the phenomena present in thin-film batteries while undergoing bending rather than showing improvements in battery performance and lifetime.
Impact of saccharides on the drying kinetics of agarose gels measured by in-situ interferometry
NASA Astrophysics Data System (ADS)
Mao, Bosi; Divoux, Thibaut; Snabre, Patrick
2017-01-01
Agarose gels are viscoelastic soft solids that display a porous microstructure filled with water at 90% w/w or more. Despite an extensive use in food industry and microbiology, little is known about the drying kinetics of such squishy solids, which suffers from a lack of time-resolved local measurements. Moreover, only scattered empirical observations are available on the role of the gel composition on the drying kinetics. Here we study by in-situ interferometry the drying of agarose gels of various compositions cast in Petri dishes. The gel thinning is associated with the displacement of interference fringes that are analyzed using an efficient spatiotemporal filtering method, which allows us to assess local thinning rates as low as 10 nm/s with high accuracy. The gel thinning rate measured at the center of the dish appears as a robust observable to quantify the role of additives on the gel drying kinetics and compare the drying speed of agarose gels loaded with various non-gelling saccharides of increasing molecular weights. Our work shows that saccharides systematically decrease the agarose gel thinning rate up to a factor two, and exemplifies interferometry as a powerful tool to quantify the impact of additives on the drying kinetics of polymer gels.
NASA Astrophysics Data System (ADS)
Amma, Shin-ichi; Tokumoto, Yuki; Edagawa, Keiichi; Shibata, Naoya; Mizoguchi, Teruyasu; Yamamoto, Takahisa; Ikuhara, Yuichi
2010-05-01
Conductive nanowires were fabricated in GaN thin film by selectively doping of Al along threading dislocations. Electrical current flow localized at the nanowires was directly measured by a contact mode atomic force microscope. The current flow at the nanowires was considered to be Frenkel-Poole emission mode, suggesting the existence of the deep acceptor level along the nanowires as a possible cause of the current flow. The results obtained in this study show the possibility for fabricating nanowires using pipe-diffusion at dislocations in solid thin films.
Chalcogenide thin films deposited by rfMS technique using a single quaternary target
NASA Astrophysics Data System (ADS)
Prepelita, P.; Stavarache, I.; Negrila, C.; Garoi, F.; Craciun, V.
2017-12-01
Thin films of chalcogenide, Cu(In,Ga)Se2 have been obtained using a single quaternary target by radio frequency magnetron sputtering method, with thickness in the range 750 nm to 1200 nm. X-ray photoelectron spectroscopy investigations showed, that the composition of Cu(In,Ga)Se2 thin films was very similar to that of the used target CuIn0.75Ga0.25Se2. Identification of the chemical composition of Cu(In,Ga)Se2 thin films by XPS performed in high vacuum, emphasized that the samples exhibit surface features suitable to be integrated into the structure of solar cells. Atomic Force Microscopy and Scanning Electron Microscopy investigations showed that surface morphology was influenced by the increase in thickness of the Cu(In,Ga)Se2 layer. From X-Ray Diffraction investigations it was found that all films were polycrystalline, having a tetragonal lattice with a preferential orientation along the (112) direction. The optical reflectance as a function of wavelength was measured for the studied samples. The increase in thickness of the Cu(In,Ga)Se2 absorber determined a decrease of its optical bandgap value from 1.53 eV to 1.44 eV. The results presented in this paper showed an excellent alternative of obtaining Cu(In,Ga)Se2 compound thin films from a single target.
NASA Astrophysics Data System (ADS)
Nikov, R. G.; Nedyalkov, N. N.; Atanasov, P. A.; Karashanova, D. B.
2018-03-01
The paper presents results on nanosecond laser ablation of thin films immersed in a liquid. The thin films were prepared by consecutive deposition of layers of different metals by thermal evaporation (first layer) and classical on-axis pulsed laser deposition (second layer); Ni/Au, Ag/Au and Ni/Ag thin films were thus deposited on glass substrates. The as-prepared films were then placed at the bottom of a glass vessel filled with double distilled water and irradiated by nanosecond laser pulses delivered by a Nd:YAG laser system at λ = 355 nm. This resulted in the formation of colloids of the thin films’ material. We also compared the processes of ablation of a bulk target and a thin film in the liquid by irradiating a Au target and a Au thin film by the same laser wavelength and fluence (λ = 355 nm, F = 5 J/cm2). The optical properties of the colloids were evaluated by optical transmittance measurements in the UV– VIS spectral range. Transmission electron microscopy was employed to estimate the particles’ size distribution.
Comparison of two thinning systems. Part 1. Stand and site impacts
Bobby L. Lanford; Bryce J. Stokes
1995-01-01
During the winter of 1991, a side-by-side comparison was made between two popular thinning systems:a feller-buncher, grapple skidder, loader/slasher system and a harvester, forwarder system. A first commercial thinning was conducted in an 18-year-old loblolly pine stand Test areas were cruised prior to thinning and remeasured after operations were completed The target...
Molecular dynamics simulations of Li transport between cathode crystals
NASA Astrophysics Data System (ADS)
Garofalini, S. H.
The molecular dynamics (MD) computer simulation technique has been used to study the effect of an amorphous intergranular film (IGF) present in a polycrystalline cathode on Li transport. The solid electrolyte is a model lithium silicate glass while the cathode is a nanocrystalline vanadia with an amorphous V 2O 5 IGF separating the crystals. Thin (˜1 to a few nanometer thick) IGFs are known to be present in most polycrystalline oxide materials. However, the role of such a film on Li transport in oxide cathodes has not been addressed. Current scanning probe microscopy (SPM) studies have shown that the orientation of the layered nanocrystalline vanadia crystals near the cathode/solid electrolyte interface is not optimized for Li ion transport. While the precise structure of the material between the crystals has not been identified, initially it can be initially considered as likely to be a thin non-crystalline (amorphous) film. This is based on the ubiquitous presence of such a structure in other polycrystalline oxides. Also, and with more relevance to the materials used in thin film batteries, an amorphous film can be expected to form between nanocrystals that crystallized from an amorphous matrix, as would be the case in a deposited thin film cathode. Consistent with simulations of Li transport in amorphous vanadia, the current simulations show that Li ions diffuse more rapidly into the amorphous intergranular thin film than into the layered vanadia with the (0 0 1) planes parallel to the cathode/electrolyte interface.
NASA Astrophysics Data System (ADS)
Lai, Bo-Kuai; Kerman, Kian; Ramanathan, Shriram
Microstructure and stresses in dense La 0.6Sr 0.4Co 0.8Fe 0.2O 3 (LSCF) ultra-thin films have been investigated to increase the physical thickness of crack-free cathodes and active area of thermo-mechanically robust micro-solid oxide fuel cell (μSOFC) membranes. Processing protocols employ low deposition rates to create a highly granular nanocrystalline microstructure in LSCF thin films and high substrate temperatures to produce linear temperature-dependent stress evolution that is dominated by compressive stresses in μSOFC membranes. Insight and trade-off on the synthesis are revealed by probing microstructure evolution and electrical conductivity in LSCF thin films, in addition to in situ monitoring of membrane deformation while measuring μSOFC performance at varying temperatures. From these studies, we were able to successfully fabricate failure-resistant square μSOFC (LSCF/YSZ/Pt) membranes with width of 250 μm and crack-free cathodes with thickness of ∼70 nm. Peak power density of ∼120 mW cm -2 and open circuit voltage of ∼0.6 V at 560 °C were achieved on a μSOFC array chip containing ten such membranes. Mechanisms affecting fuel cell performance are discussed. Our results provide fundamental insight to pathways of microstructure and stress engineering of ultra-thin, dense oxide cathodes and μSOFC membranes.
NASA Astrophysics Data System (ADS)
Pandey, Gaind P.; Klankowski, Steven A.; Liu, Tao; Wu, Judy; Li, Jun
2017-02-01
A novel solid-state battery-supercapacitor hybrid device is fabricated for high-performance electrical energy storage using a Si anode and a TiO2 cathode in conjunction with a flexible, solid-like gel polymer electrolyte film as the electrolyte and separator. The electrodes were fabricated as three-dimensional nanostructured vertical arrays by sputtering active materials as conformal shells on vertically aligned carbon nanofibers (VACNFs) which serve as the current collector and structural template. Such nanostructured vertical core-shell array-electrodes enable short Li-ion diffusion path and large pseudocapacitive contribution by fast surface reactions, leading to the hybrid features of batteries and supercapacitors that can provide high specific energy over a wide range of power rates. Due to the improved mechanical stability of the infiltrated composite structure, the hybrid cell shows excellent cycling stability and is able to retain more than 95% of the original capacity after 3500 cycles. More importantly, this solid-state device can stably operate in a temperature range from -20 to 60 °C with a very low self-discharge rate and an excellent shelf life. This solid-state architecture is promising for the development of highly stable thin-film hybrid energy storage devices for unconventional applications requiring largely varied power, wider operation temperature, long shelf-life and higher safety standards.
NASA Astrophysics Data System (ADS)
Gaspard, Pierre; Kapral, Raymond
2018-05-01
Nonequilibrium interfacial thermodynamics is formulated in the presence of surface reactions for the study of diffusiophoresis in isothermal systems. As a consequence of microreversibility and Onsager-Casimir reciprocal relations, diffusiophoresis, i.e., the coupling of the tangential components of the pressure tensor to the concentration gradients of solute species, has a reciprocal effect where the interfacial currents of solutes are coupled to the slip velocity. The presence of surface reactions is shown to modify the diffusiophoretic and reciprocal effects at the fluid-solid interface. The thin-layer approximation is used to describe the solution flowing near a reactive solid interface. Analytic formulas describing the diffusiophoretic and reciprocal effects are deduced in the thin-layer approximation and tested numerically for the Poiseuille flow of a solution between catalytic planar surfaces.
Solid-state curved focal plane arrays
NASA Technical Reports Server (NTRS)
Jones, Todd (Inventor); Nikzad, Shouleh (Inventor); Hoenk, Michael (Inventor)
2010-01-01
The present invention relates to curved focal plane arrays. More specifically, the present invention relates to a system and method for making solid-state curved focal plane arrays from standard and high-purity devices that may be matched to a given optical system. There are two ways to make a curved focal plane arrays starting with the fully fabricated device. One way, is to thin the device and conform it to a curvature. A second way, is to back-illuminate a thick device without making a thinned membrane. The thick device is a special class of devices; for example devices fabricated with high purity silicon. One surface of the device (the non VLSI fabricated surface, also referred to as the back surface) can be polished to form a curved surface.
Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes.
Yuksel, Recep; Sarioba, Zeynep; Cirpan, Ali; Hiralal, Pritesh; Unalan, Husnu Emrah
2014-09-10
We describe a simple process for the fabrication of transparent and flexible, solid-state supercapacitors. Symmetric electrodes made up of binder-free single walled carbon nanotube (SWCNT) thin films were deposited onto polydimethylsiloxane substrates by vacuum filtration followed by a stamping method, and solid-state supercapacitor devices were assembled using a gel electrolyte. An optical transmittance of 82% was found for 0.02 mg of SWCNTs, and a specific capacitance of 22.2 F/g was obtained. The power density can reach to 41.5 kW · kg(-1) and shows good capacity retention (94%) upon cycling over 500 times. Fabricated supercapacitors will be relevant for the realization of transparent and flexible devices with energy storage capabilities, displays and touch screens in particular.
Process for making dense thin films
Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.
2005-07-26
Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for firing of device substrate to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.
NASA Astrophysics Data System (ADS)
Rączka, P.; Dubois, J.-L.; Hulin, S.; Tikhonchuk, V.; Rosiński, M.; Zaraś-Szydłowska, A.; Badziak, J.
2017-12-01
Measurements are reported of the target neutralization current, the target charge, and the tangential component of the magnetic field generated as a result of laser-target interaction by pulses with the energy in the range of 45 mJ to 92 mJ on target and the pulse duration from 39 fs to 1000 fs. The experiment was performed at the Eclipse facility in CELIA, Bordeaux. The aim of the experiment was to extend investigations performed for the thick (mm scale) targets to the case of thin (micrometer thickness) targets in a way that would allow for a straightforward comparison of the results. We found that thin foil targets tend to generate 20 to 50 percent higher neutralization current and the target charge than the thick targets. The measurement of the tangential component of the magnetic field had shown that the initial spike is dominated by the 1 ns pulse consistent with the 1 ns pulse of the neutralization current, but there are some differences between targets of different type on sub-ns scale, which is an effect going beyond a simple picture of the target acting as an antenna. The sub-ns structure appears to be reproducible to surprising degree. We found that there is in general a linear correlation between the maximum value of the magnetic field and the maximum neutralization current, which supports the target-antenna picture, except for pulses hundreds of fs long.
Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering.
Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young
2014-08-29
Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10(-3) Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications.
Ray, Bahni; Reddy, Puchalapalli Dinesh Sankar; Bandyopadhyay, Dipankar; Joo, Sang W; Sharma, Ashutosh; Qian, Shizhi; Biswas, Gautam
2011-11-01
We consider the stability of a thin liquid film with a free charged surface resting on a solid charged substrate by performing a general Orr-Sommerfeld (O-S) analysis complemented by a long-wave (LW) analysis. An externally applied field generates an electroosmotic flow (EOF) near the solid substrate and an electrophoretic flow (EPF) at the free surface. The EPF retards the EOF when both the surfaces have the same sign of the potential and can even lead to the flow reversal in a part of the film. In conjunction with the hydrodynamic stress, the Maxwell stress is also considered in the problem formulation. The electrokinetic potential at the liquid-air and solid-liquid interfaces is modelled by the Poisson-Boltzmann equation with the Debye-Hückel approximation. The O-S analysis shows a finite-wavenumber shear mode of instability when the inertial forces are strong and an LW interfacial mode of instability in the regime where the viscous force dominates. Interestingly, both the modes are found to form beyond a critical flow rate. The shear (interfacial) mode is found to be dominant when the film is thick (thin), the electric field applied is strong (weak), and the zeta-potentials on the liquid-air and solid-liquid interfaces are high (small). The LW analysis predicts the presence of the interfacial mode, but fails to capture the shear mode. The change in the propagation direction of the interfacial mode with the zeta-potential is predicted by both O-S and LW analyses. The parametric range in which the LW analysis is valid is thus demonstrated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Paul, T.; Ghosh, A.
2017-04-01
We have studied the structure and electrical properties of La2Mo2O9 thin films of different thicknesses prepared by the laser deposition technique at different substrate temperatures. The structural properties of the thin films have been investigated using XRD, XPS, AFM, TEM, SEM, and Raman spectroscopy. The electrical transport properties of the thin films have been investigated in wide temperature and frequency ranges. The cubic nature of the thin films has been confirmed from structural analysis. An enhancement of the oxygen ion conductivity of the films up to five orders of magnitude is obtained compared to that of the bulk La2Mo2O9, suggesting usefulness of the thin films as electrolytes in micro-solid oxide fuel cells. The enhanced dc ionic conductivity of the thin films has been interpreted using the rule of the mixture model, while a power law model has been used to investigate the frequency and temperature dependences of the conductivity. The analysis of the results predicts the three-dimensional oxygen ion conduction in the thin films.
NASA Astrophysics Data System (ADS)
Keraudy, J.; Boyd, R. D.; Shimizu, T.; Helmersson, U.; Jouan, P.-Y.
2018-10-01
The precise control of the growth nanostructured thin films at low temperature is critical for the continued development of microelectronic enabled devices. In this study, nanocomposite Ni-Si-N thin films were deposited at low temperature by reactive high-power impulse magnetron sputtering. A composite Ni-Si target (15 at.% Si) in combination with a Ar/N2 plasma were used to deposit films onto Si(0 0 1) substrates, without any additional substrate heating or any post-annealing. The films microstructure changes from a polycrystalline to nanocomposite structure when the nitrogen content exceeds 16 at.%. X-ray diffraction and (scanning) transmission electron microscopy analyses reveal that the microstructure consists of nanocrystals, NixSi (x > 1) 7-8 nm in size, embedded in an amorphous SiNx matrix. It is proposed that this nanostructure is formed at low temperatures due to the repeated-nucleation of NixSi nanocrystals, the growth of which is restricted by the formation of the SiNx phase. X-ray photoelectron spectroscopy revealed the trace presence of a ternary solid solution mainly induced by the diffusion of Ni into the SiNx matrix. Four-probe electrical measurements reveal all the deposited films are electrically conducting.
NASA Astrophysics Data System (ADS)
Wu, Mengfei; Jean, Joel; Bulović, Vladimir; Baldo, Marc A.
2017-05-01
Infrared-to-visible photon upconversion has potential applications in photovoltaics, sensing, and bioimaging. We demonstrate a solid-state thin-film device that utilizes sensitized triplet-triplet exciton annihilation, converting infrared photons absorbed by colloidal lead sulfide nanocrystals (NCs) into visible photons emitted from a luminescent dopant in rubrene at low incident light intensities. A typical bilayer device consisting of a monolayer of NCs and a doped film of rubrene is limited by low infrared absorption in the thin NC film. Here, we augment the bilayer with an optical spacer layer and a silver-film back reflector, resulting in interference effects that enhance the optical field and thus the absorption in the NC film. The interference-enhanced device shows an order-of-magnitude increase in the upconverted emission at the wavelength of λ = 610 nm when excited at λ = 980 nm. At incident light intensities above 1.1 W/cm2, the device attains maximum efficiency, converting (1.6 ± 0.2)% of absorbed infrared photons into higher-energy singlet excitons in rubrene.
NASA Astrophysics Data System (ADS)
Wang, Weidong; Zhang, Haiyan; Tian, Conghui; Meng, Xiaojie
2015-04-01
Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.
Wang, Weidong; Zhang, Haiyan; Tian, Conghui; Meng, Xiaojie
2015-01-01
Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.
Droplet size effects on film drainage between droplet and substrate.
Steinhaus, Benjamin; Spicer, Patrick T; Shen, Amy Q
2006-06-06
When a droplet approaches a solid surface, the thin liquid film between the droplet and the surface drains until an instability forms and then ruptures. In this study, we utilize microfluidics to investigate the effects of film thickness on the time to film rupture for water droplets in a flowing continuous phase of silicone oil deposited on solid poly(dimethylsiloxane) (PDMS) surfaces. The water droplets ranged in size from millimeters to micrometers, resulting in estimated values of the film thickness at rupture ranging from 600 nm down to 6 nm. The Stefan-Reynolds equation is used to model film drainage beneath both millimeter- and micrometer-scale droplets. For millimeter-scale droplets, the experimental and analytical film rupture times agree well, whereas large differences are observed for micrometer-scale droplets. We speculate that the differences in the micrometer-scale data result from the increases in the local thin film viscosity due to confinement-induced molecular structure changes in the silicone oil. A modified Stefan-Reynolds equation is used to account for the increased thin film viscosity of the micrometer-scale droplet drainage case.
Synthesis of high-oxidation Y-Ba-Cu-O phases in superoxygenated thin films
NASA Astrophysics Data System (ADS)
Zhang, H.; Gauquelin, N.; McMahon, C.; Hawthorn, D. G.; Botton, G. A.; Wei, J. Y. T.
2018-03-01
It is known that solid-state reaction in high-pressure oxygen can stabilize high-oxidation phases of Y-Ba-Cu-O superconductors in powder form. We extend this superoxygenation concept of synthesis to thin films which, due to their large surface-to-volume ratio, are more reactive thermodynamically. Epitaxial thin films of YBa2Cu3O7 -δ grown by pulsed laser deposition are annealed at up to 700 atm O2 and 900 ∘C , in conjunction with Cu enrichment by solid-state diffusion. The films show the clear formation of Y2Ba4Cu7O15 -δ and Y2Ba4Cu8O16 as well as regions of YBa2Cu5O9 -δ and YBa2Cu6O10 -δ phases, according to scanning transmission electron microscopy, x-ray diffraction, and x-ray absorption spectroscopy. Similarly annealed YBa2Cu3O7 -δ powders show no phase conversion. Our results demonstrate a route of synthesis towards discovering more complex phases of cuprates and other superconducting oxides.
Applications of beam-foil spectroscopy to atomic collisions in solids
NASA Technical Reports Server (NTRS)
Sellin, I. A.
1976-01-01
Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.
Dynamics of solid lubrication as observed by optical microscopy
NASA Technical Reports Server (NTRS)
Sliney, H. E.
1976-01-01
A bench metallograph was converted into a micro contact imager by the addition of a tribometer employing a steel ball in sliding contact with a glass disk. The sliding contact was viewed in real time by means of projection microscope optics. The dynamics of abrasive particles and of solid lubricant particles within the contact were observed in detail. The contact was characterized by a constantly changing pattern of elastic strain with the passage of surface discontinuities and solid particles. Abrasive particles fragmented upon entering the contact, embedded in one surface and scratched the other; in contrast, the solid lubricant particles flowed plastically into thin films. The rheological behavior of the lubricating solids gave every appearance of a paste-like consistency within the Hertzian contact.
Janković, A; Eraković, S; Ristoscu, C; Mihailescu Serban, N; Duta, L; Visan, A; Stan, G E; Popa, A C; Husanu, M A; Luculescu, C R; Srdić, V V; Janaćković, Dj; Mišković-Stanković, V; Bleotu, C; Chifiriuc, M C; Mihailescu, I N
2015-01-01
We report on thin film deposition by matrix-assisted pulsed laser evaporation of simple hydroxyapatite (HA) or silver (Ag) doped HA combined with the natural biopolymer organosolv lignin (Lig) (Ag:HA-Lig). Solid cryogenic target of aqueous dispersions of Ag:HA-Lig composite and its counterpart without silver (HA-Lig) were prepared for evaporation using a KrF* excimer laser source. The expulsed material was assembled onto TiO2/Ti substrata or silicon wafers and subjected to physical-chemical investigations. Smooth, uniform films adherent to substratum were observed. The chemical analyses confirmed the presence of the HA components, but also evidenced traces of Ag and Lig. Deposited HA was Ca deficient, which is indicative of a film with increased solubility. Recorded X-ray Diffraction patterns were characteristic for amorphous films. Lig presence in thin films was undoubtedly proved by both X-ray Photoelectron and Fourier Transform Infra-Red Spectroscopy analyses. The microbiological evaluation showed that the newly assembled surfaces exhibited an inhibitory activity both on the initial steps of biofilm forming, and on mature bacterial and fungal biofilm development. The intensity of the anti-biofilm activity was positively influenced by the presence of the Lig and/or Ag, in the case of Staphylococcus aureus, Pseudomonas aeruginosa and Candida famata biofilms. The obtained surfaces exhibited a low cytotoxicity toward human mesenchymal stem cells, being therefore promising candidates for fabricating implantable biomaterials with increased biocompatibility and resistance to microbial colonization and further biofilm development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reilly, Sean Douglas; May, Iain; Copping, Roy
A process for minimizing waste and maximizing utilization of uranium involves recovering uranium from an irradiated solid target after separating the medical isotope product, molybdenum-99, produced from the irradiated target. The process includes irradiating a solid target comprising uranium to produce fission products comprising molybdenum-99, and thereafter dissolving the target and conditioning the solution to prepare an aqueous nitric acid solution containing irradiated uranium. The acidic solution is then contacted with a solid sorbent whereby molybdenum-99 remains adsorbed to the sorbent for subsequent recovery. The uranium passes through the sorbent. The concentrations of acid and uranium are then adjusted tomore » concentrations suitable for crystallization of uranyl nitrate hydrates. After inducing the crystallization, the uranyl nitrate hydrates are separated from a supernatant. The process results in the purification of uranyl nitrate hydrates from fission products and other contaminants. The uranium is therefore available for reuse, storage, or disposal.« less
[Preparation of large area Al-ZnO thin film by DC magnetron sputtering].
Jiao, Fei; Liao, Cheng; Han, Jun-Feng; Zhou, Zhen
2009-03-01
Solar cells of p-CIS/n-buffer/ZnO type, where CIS is (CuInS2, CuInSe2 or intermediates, are thin-film-based devices for the future high-efficiency and low-cost photovoltaic devices. As important thin film, the properties of Al-doped ZnO (AZO) directly affect the parameter of the cell, especially for large volume. In the present paper, AZO semiconductor transparent thin film on soda-lime glass was fabricated using cylindrical zinc-aluminum target, which can not only lower the cost of the target but also make the preparation of large area AZO thin film more easily. Using the DC magnet sputtering techniques and rolling target, high utilization efficiency of target was achieved and large area uniform and directional film was realized. An introduction to DC magnet sputtering techniques for large area film fabrication is given. With different measurement methods, such as X-ray diffraction (XRD) and scan electron microscope (SEM), we analyzed large size film's structure, appearance, and electrical and optical characteristics. The XRD spectrum indicated that the AZO film shows well zinc-blende structure with a preferred (002) growth and the c-axis is oriented normal to the substrate plane. The lattice constant is 5.603 9 nm and the mismatch with CdS thin film is only 2 percent. It absolutely satisfied the demand of the GIGS solar cell. The cross-section of the AZO thin film indicates the columnar structure and the surface morphology shows that the crystal size is about 50 nm that is consistent with the result of XRD spectrum. By the optical transmission curve, not only the high transmission rate over 85 percent in the visible spectrum between 400 nm and 700 nm was showed but also the band gap 3.1 eV was estimated. And all these parameters can meet the demand of the large area module of GIGS solar cell. The result is that using alloy target and Ar gas, and controlling the appropriate pressure of oxygen, we can get directional, condensed, uniform, high transmitting rate, low resistance and large size (300 mm x 300 mm) AZO film.
1983-07-01
Multilayer Thin Film materials M. S. Wrighton ...................................... 26 •.. Line Defects in Langmuir - Blodgett Films J. P. Hirth...of Langmuir and Blodgett can be used to prepare monolayers and multilayers of organic materials on a o, variety of substrates. The films of organic...references therein. * 2. Cf. Thin Solid Films, 99, (1982) from the proceedings of the "* . International Conference on Langmuir - Blodgett Films held
A conserved quantity in thin body dynamics
NASA Astrophysics Data System (ADS)
Hanna, J. A.; Pendar, H.
2016-02-01
Thin, solid bodies with metric symmetries admit a restricted form of reparameterization invariance. Their dynamical equilibria include motions with both rigid and flowing aspects. On such configurations, a quantity is conserved along the intrinsic coordinate corresponding to the symmetry. As an example of its utility, this conserved quantity is combined with linear and angular momentum currents to construct solutions for the equilibria of a rotating, flowing string, for which it is akin to Bernoulli's constant.
QED effects induced harmonics generation in extreme intense laser foil interaction
NASA Astrophysics Data System (ADS)
Yu, J. Y.; Yuan, T.; Liu, W. Y.; Chen, M.; Luo, W.; Weng, S. M.; Sheng, Z. M.
2018-04-01
A new mechanism of harmonics generation (HG) induced by quantum electrodynamics (QED) effects in extreme intense laser foil interaction is found and investigated by particle-in-cell (PIC) simulations. When two laser pulses with identical intensities of 1.6× {10}24 {{W}} {{{cm}}}-2 are counter-incident on a thin foil target, harmonics emission is observed in their reflected electromagnetic waves. Such harmonics radiation is excited due to transversely oscillating electric currents coming from the vibration of QED effect generated {e}-{e}+ pairs. The effects of laser intensity and polarization were studied. By distinguishing the cascade depth of generated photons and pairs, the influence of QED cascades on HG was analyzed. Although the current HG is not an efficient way for radiation source applications, it may provide a unique way to detect the QED processes in the near future ultra-relativistic laser solid interactions.
Progress in standoff surface contaminant detector platform
NASA Astrophysics Data System (ADS)
Dupuis, Julia R.; Giblin, Jay; Dixon, John; Hensley, Joel; Mansur, David; Marinelli, William J.
2017-05-01
Progress towards the development of a longwave infrared quantum cascade laser (QLC) based standoff surface contaminant detection platform is presented. The detection platform utilizes reflectance spectroscopy with application to optically thick and thin materials including solid and liquid phase chemical warfare agents, toxic industrial chemicals and materials, and explosives. The platform employs an ensemble of broadband QCLs with a spectrally selective detector to interrogate target surfaces at 10s of m standoff. A version of the Adaptive Cosine Estimator (ACE) featuring class based screening is used for detection and discrimination in high clutter environments. Detection limits approaching 0.1 μg/cm2 are projected through speckle reduction methods enabling detector noise limited performance. The design, build, and validation of a breadboard version of the QCL-based surface contaminant detector are discussed. Functional test results specific to the QCL illuminator are presented with specific emphasis on speckle reduction.
Ultra-fast switching of light by absorption saturation in vacuum ultra-violet region.
Yoneda, Hitoki; Inubushi, Yuichi; Tanaka, Toshihiro; Yamaguchi, Yuta; Sato, Fumiya; Morimoto, Shunsuke; Kumagai, Taisuke; Nagasono, Mitsuru; Higashiya, Atsushi; Yabashi, Makina; Ishikawa, Tetsuya; Ohashi, Haruhiko; Kimura, Hiroaki; Kitamura, Hikaru; Kodama, Ryosuke
2009-12-21
Advances in free electron lasers producing high energy photons [Nat. Photonics 2(9), 555-559 (2008)] are expected to open up a new science of nonlinear optics of high energy photons. Specifically, lasers of photon energy higher than the plasma frequency of a metal can show new interaction features because they can penetrate deeply into metals without strong reflection. Here we show the observation of ultra-fast switching of vacuum ultra-violet (VUV) light caused by saturable absorption of a solid metal target. A strong gating is observed at energy fluences above 6J/cm2 at wavelength of 51 nm with tin metal thin layers. The ratio of the transmission at high intensity to low intensity is typically greater than 100:1. This means we can design new nonlinear photonic devices such as auto-correlator and pulse slicer for the VUV region.
Investigation of resonances in 20Mg: Implications for astrophysics and nuclear forces
NASA Astrophysics Data System (ADS)
Randhawa, Jaspreet; Kanungo, Rituparna; Alcorta, Martin; Burbadge, Christina; Burke, Devin; Christian, Greg; Davids, Barry; Even, Julia; Hackman, Greg; Henderson, Jack; Ishimoto, Shigeru; Kaur, Satbir; Keefe, Matthew; Kruecken, Reiner; Lighthall, Jon; Moukaddam, Mohamad; Padilla-Rodal, Elizabeth; Smith, Jenna; Turko, Joseph; Workman, Orry
2016-09-01
18Ne(2p, γ)20Mg provides a possible pathway for breakout from the hot CNO cycles to the rp-process in type I X-ray bursts. This reaction rate is uncertain due to lack of any experimental information on the resonant states in 20Mg above proton emission threshold. Recent calculations using nuclear forces from chiral perturbation theory predict quite a different level structure for 20Mg with and without inclusion of three nucleon forces. These differences make study of 20Mg states important to constraint both nuclear theory and this reaction rate. We have investigated the excited states in 20Mg through inelastic deuteron scattering. The experiment was performed using the IRIS facility at TRIUMF, Canada. The 20Mg beam with an average intensity of 500 pps and energy of 8.5A MeV was directed at novel thin windowless solid deuteron target. Experiment and initial observations will be discussed.
Shock waves in molecular solids: ultrafast vibrational spectroscopy of the first nanosecond
NASA Astrophysics Data System (ADS)
Franken, J.; Hambir, S. A.; Hare, D. E.; Dlott, D. D.
A novel technique which uses a microfabricated shock target array assembly is described, where the passage of a shock front through a thin (0.5μm) polycrystalline layer and the subsequent unloading process is monitored in real time with ultrafast coherent Raman spectroscopy. Using a high repetition rate laser shock generation technique, high resolution, coherent Raman spectra are obtained in shocked anthracene and in a high explosive material, NTO, with time resolution of 50 ps. Spectroscopic measurements are presented which yield the shock pressure (up to 5 GPa), the shock velocity ( 4 km/s), the shock front risetime (tr < 25 ps), and the temperature ( 400°C). A brief discussion is presented, how this new technique can be used to determine the Hugoniot, the equation of state, the entropy increase across the shock front, and monitor shock induced chemical reactions in real time.
Detection of amines with extended distyrylbenzenes by strip assays.
Kumpf, Jan; Freudenberg, Jan; Fletcher, Katharyn; Dreuw, Andreas; Bunz, Uwe H F
2014-07-18
We herein describe the synthesis and property evaluation of three novel aldehyde-substituted pentameric phenylenevinylenes carrying branched oligo(ethylene glycol) (swallowtail, Sw) substituents. The targets were synthesized by a combination of Heck coupling and Wittig or Horner reactions of suitable precursor modules. If the pentameric phenylenevinylene carries only two of these Sw substituents, it is no longer water-soluble. When six of the Sw substituents are attached, regardless of their position, the pentameric phenylenevinylenes are well water-soluble. The dialdehydes were investigated with respect to their amine-sensing capabilities both in water as well as in the solid state, sprayed onto thin layer chromatography (TLC) plates (alox, silica gel, reversed phase silica gel). The recognition of amine vapors using the sprayed-on phenylenevinylene dialdehydes is superb and allows the identification of different amines on regular silica TLC plates via color changes, analyzed by a statistical tool, the multivariate analysis of variance (MANOVA) protocol.
TiCN thin films grown by reactive crossed beam pulsed laser deposition
NASA Astrophysics Data System (ADS)
Escobar-Alarcón, L.; Camps, E.; Romero, S.; Muhl, S.; Camps, I.; Haro-Poniatowski, E.
2010-12-01
In this work, we used a crossed plasma configuration where the ablation of two different targets in a reactive atmosphere was performed to prepare nanocrystalline thin films of ternary compounds. In order to assess this alternative deposition configuration, titanium carbonitride (TiCN) thin films were deposited. Two crossed plasmas were produced by simultaneously ablating titanium and graphite targets in an Ar/N2 atmosphere. Films were deposited at room temperature onto Si (100) and AISI 4140 steel substrates whilst keeping the ablation conditions of the Ti target constant. By varying the laser fluence on the carbon target it was possible to study the effect of the carbon plasma on the characteristics of the deposited TiCN films. The structure and composition of the films were analyzed by X-ray Diffraction, Raman Spectroscopy and non-Rutherford Backscattering Spectroscopy. The hardness and elastic modulus of the films was also measured by nanoindentation. In general, the experimental results showed that the TiCN thin films were highly oriented in the (111) crystallographic direction with crystallite sizes as small as 6.0 nm. It was found that the hardness increased as the laser fluence was increased, reaching a maximum value of about 33 GPa and an elastic modulus of 244 GPa. With the proposed configuration, the carbon content could be easily varied from 42 to 5 at.% by changing the laser fluence on the carbon target.
NASA Astrophysics Data System (ADS)
Moon, Eun-A.; Jun, Young-Kil; Kim, Nam-Hoon; Lee, Woo-Sun
2016-07-01
Photovoltaic applications require transparent conducting-oxide (TCO) thin films with high optical transmittance in the visible spectral region (380 - 780 nm), low resistivity, and high thermal/chemical stability. The ZnO thin film is one of the most common alternatives to the conventional indium-tin-oxide (ITO) thin film TCO. Highly transparent and conductive ZnO thin films can be prepared by doping with group III elements. Heavily-doped ZnO:Al (AZO) thin films were prepared by using the RF magnetron co-sputtering method with ZnO and Al targets to obtain better characteristics at a low cost. The RF sputtering power to each target was varied to control the doping concentration in fixed-thickness AZO thin films. The crystal structures of the AZO thin films were analyzed by using X-ray diffraction. The morphological microstructure was observed by using scanning electron microscopy. The optical transmittance and the band gap energy of the AZO thin films were examined with an UV-visible spectrophotometer in the range of 300 - 1800 nm. The resistivity and the carrier concentration were examined by using a Hall-effect measurement system. An excellent optical transmittance > 80% with an appropriate band gap energy (3.26 - 3.27 eV) and an improved resistivity (~10 -1 Ω·cm) with high carrier concentration (1017 - 1019 cm -3) were demonstrated in 350-nm-thick AZO thin films for thin-film photovoltaic applications.
Processing of sputter targets using current activated pressure assisted densification
NASA Astrophysics Data System (ADS)
Chaney, Neil Russell
Thin Film deposition is a process that has been around since the beginning of the twentieth century and has become an integral part of the microfabrication and nanofabrication industries. Sputter deposition is a method of physical vapor deposition (PVD) in which a target is bombarded with ions and atoms are ejected and deposited as a thin film on a substrate. Despite extensive research on the direct process of sputtering thin films from targets to substrates, not much work has been done on studying the effect of processing on the microstructure of a target. In the first part of this work, the development of a PVD chamber is explored along with a few modifications and improvements developed along the way. A multiple process PVD chamber was equipped with three different types of PVD processes: sputtering, evaporation, and electron-beam deposition. In the second part of this work, the effect of processing of sputter targets on deposited films is explored. Multiple targets of Copper and yttria stabilized zirconia were produced using CAPAD. The effect of the processing on the microstructure of the targets was determined. The targets were then sputtered into films to study the effects of the target grain size on their properties. The effect of power and pressure were also measured. Increased power led to increased deposition rates while higher vacuum caused deposition rates to decrease.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., thinly scattered spots over more than 10 percent of the fruit surface, or as solid scarring (not cracked... purple scale attached; (g) Sunburn which causes appreciable flattening of the fruit, drying of the skin...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., thinly scattered spots over more than 10 percent of the fruit surface, or as solid scarring (not cracked... purple scale attached; (g) Sunburn which causes appreciable flattening of the fruit, drying of the skin...
Thin Film Photovoltaic Cells on Flexible Substrates Integrated with Energy Storage
2012-07-01
selected mass-altered planes is varied, we have constructed a simple one-dimensional lattice that approximates the solids simulated previously with...to Sn atoms added to a silicon lattice). Development of Solid State Supercapacitors Integrated with Solar cells for Solar Electricity Storage This... supercapacitor for solar electricity storage. These areas and the major tasks therein are: (i) Supercapacitor Electrodes: We have investigated an approach to
Wetting Properties of EMIIm & its Relevance to Electrospray Design
2012-03-12
apparent surface area S Distance separating two grid apertures T Absolute temperature of the test liquid TC Critical temperature of the test liquid V...include the choice of solid materials being used as insulators, emitters or electrodes, thin film surface coatings that have a de- sired high or low...wettability, and changing the solid component surface roughness or temperature during operation.678 An electrospray thruster has been developed by
1989-12-05
during past decade. In order to understand the basic operation of these sensors, especially of the CHEMFET, the appropriate background information will...during the past decade for detecting organophosphorus compounds, the chemically- sensitive thin films investigated in this thesis, and finally, the...reactivate the phosphorylated cholinesterase enzyme. Solid State Chemical Sensors During the past decade, a number of solid state chemical sensors have been
B.L. Yashwanth; B. Shotorban; S. Mahalingam; C.W. Lautenberger; David Weise
2016-01-01
The effects of thermal radiation and moisture content on the pyrolysis and gas phase ignition of a solid fuel element containing high moisture content were investigated using the coupled Gpyro3D/FDS models. The solid fuel has dimensions of a typical Arctostaphylos glandulosa leaf which is modeled as thin cellulose subjected to radiative heating on...
Strategies to improve the electrochemical performance of electrodes for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Yang, Ming-Che
Lithium-ion batteries are widely used in consumer market because of their lightweight and rechargeable property. However, for the application as power sources of hybrid electric vehicles (HEVs), which need excellent cycling performance, high energy density, high power density, capacity, and low cost, new materials still need to be developed to meet the demands. In this dissertation work, three different strategies were developed to improve the properties of the electrode of lithium batteries. First, the voltage profile and lithium diffusion battier of LiM1/2Mn 3/2O4 (M=Ti, V, Cr, Fe, Co, Ni and Cu) were predicted by first principles theory. The computation results suggest that doping with Co or Cu can potentially lower Li diffusion barrier compared with Ni doping. Our experimental research has focused on LiNixCuyMn 2-x-yO4 (0
Surugaya, Naoki; Hiyama, Toshiaki; Verbruggen, André; Wellum, Roger
2008-02-01
A stable solid spike for the measurement of uranium and plutonium content in nitric acid solutions of spent nuclear fuel by isotope dilution mass spectrometry has been prepared at the European Commission Institute for Reference Materials and Measurements in Belgium. The spike contains about 50 mg of uranium with a 19.838% (235)U enrichment and 2 mg of plutonium with a 97.766% (239)Pu abundance in each individual ampoule. The dried materials were covered with a thin film of cellulose acetate butyrate as a protective organic stabilizer to resist shocks encountered during transportation and to eliminate flaking-off during long-term storage. It was found that the cellulose acetate butyrate has good characteristics, maintaining a thin film for a long time, but readily dissolving on heating with nitric acid solution. The solid spike containing cellulose acetate butyrate was certified as a reference material with certified quantities: (235)U and (239)Pu amounts and uranium and plutonium amount ratios, and was validated by analyzing spent fuel dissolver solutions of the Tokai reprocessing plant in Japan. This paper describes the preparation, certification and validation of the solid spike coated with a cellulose derivative.
A Holistic Approach to Understanding the Desorption of Phosphorus in Soils.
Menezes-Blackburn, Daniel; Zhang, Hao; Stutter, Marc; Giles, Courtney D; Darch, Tegan; George, Timothy S; Shand, Charles; Lumsdon, David; Blackwell, Martin; Wearing, Catherine; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Haygarth, Philip M
2016-04-05
The mobility and resupply of inorganic phosphorus (P) from the solid phase were studied in 32 soils from the UK. The combined use of diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the "DGT-induced fluxes in sediments" model (DIFS) were adapted to explore the basic principles of solid-to-solution P desorption kinetics in previously unattainable detail. On average across soil types, the response time (Tc) was 3.6 h, the desorption rate constant (k-1) was 0.0046 h(-1), and the desorption rate was 4.71 nmol l(-1) s(-1). While the relative DGT-induced inorganic P flux responses in the first hour is mainly a function of soil water retention and % Corg, at longer times it is a function of the P resupply from the soil solid phase. Desorption rates and resupply from solid phase were fundamentally influenced by P status as reflected by their high correlation with P concentration in FeO strips, Olsen, NaOH-EDTA and water extracts. Soil pH and particle size distribution showed no significant correlation with the evaluated mobility and resupply parameters. The DGT and DET techniques, along with the DIFS model, were considered accurate and practical tools for studying parameters related to soil P desorption kinetics.
Epitaxial strain relaxation by provoking edge dislocation dipoles
NASA Astrophysics Data System (ADS)
Soufi, A.; El-Hami, K.
2018-02-01
Thin solid films have been used in various devices and engineering systems such as rapid development of highly integrated electronic circuits, the use of surface coatings to protect structural materials in high temperature environments, and thin films are integral parts of many micro-electro-mechanical systems designed to serve as sensors, actuators. Among techniques of ultra-thin films deposition, the heteroepitaxial method becomes the most useful at nanoscale level to obtain performed materials in various applications areas. On the other hand, stresses that appeared during the elaboration of thin films could rise deformations and fractures in materials. The key solution to solve this problem at the nanoscale level is the nucleation of interface dislocations from free surfaces. By provoking edge dislocation dipoles we obtained a strain relaxation in thin films. Moreover, the dynamic of nucleation in edge dislocations from free lateral surfaces was also studied.
An acetate precursor process for BSCCO (2223) thin films and coprecipitated powders
NASA Technical Reports Server (NTRS)
Haertling, Gene H.
1992-01-01
Since the discovery of high temperature superconducting oxides much attention has been paid to finding better and useful ways to take advantage of the special properties exhibited by these materials. One such process is the development of thin films for engineering applications. Another such process is the coprecipitation route to producing superconducting powders. An acetate precursor process for use in thin film fabrication and a chemical coprecipitation route to Bismuth based superconducting materials has been developed. Data obtained from the thin film process were inconclusive to date and require more study. The chemical coprecipitation method of producing bulk material is a viable method, and is preferred over the previously used solid state route. This method of powder production appears to be an excellent route to producing thin section tape cast material and screen printed devices, as it requires less calcines than the oxide route to produce quality powders.
Estimating pore and cement volumes in thin section
Halley, R.B.
1978-01-01
Point count estimates of pore, grain and cement volumes from thin sections are inaccurate, often by more than 100 percent, even though they may be surprisingly precise (reproducibility + or - 3 percent). Errors are produced by: 1) inclusion of submicroscopic pore space within solid volume and 2) edge effects caused by grain curvature within a 30-micron thick thin section. Submicroscopic porosity may be measured by various physical tests or may be visually estimated from scanning electron micrographs. Edge error takes the form of an envelope around grains and increases with decreasing grain size and sorting, increasing grain irregularity and tighter grain packing. Cements are greatly involved in edge error because of their position at grain peripheries and their generally small grain size. Edge error is minimized by methods which reduce the thickness of the sample viewed during point counting. Methods which effectively reduce thickness include use of ultra-thin thin sections or acetate peels, point counting in reflected light, or carefully focusing and counting on the upper surface of the thin section.
Enhanced magnetic and thermoelectric properties in epitaxial polycrystalline SrRuO3 thin films.
Woo, Sungmin; Lee, Sang A; Mun, Hyeona; Choi, Young Gwan; Zhung, Chan June; Shin, Soohyeon; Lacotte, Morgane; David, Adrian; Prellier, Wilfrid; Park, Tuson; Kang, Won Nam; Lee, Jong Seok; Kim, Sung Wng; Choi, Woo Seok
2018-03-01
Transition metal oxide thin films show versatile electric, magnetic, and thermal properties which can be tailored by deliberately introducing macroscopic grain boundaries via polycrystalline solids. In this study, we focus on the modification of magnetic and thermal transport properties by fabricating single- and polycrystalline epitaxial SrRuO 3 thin films using pulsed laser epitaxy. Using the epitaxial stabilization technique with an atomically flat polycrystalline SrTiO 3 substrate, an epitaxial polycrystalline SrRuO 3 thin film with the crystalline quality of each grain comparable to that of its single-crystalline counterpart is realized. In particular, alleviated compressive strain near the grain boundaries due to coalescence is evidenced structurally, which induced the enhancement of ferromagnetic ordering of the polycrystalline epitaxial thin film. The structural variations associated with the grain boundaries further reduce the thermal conductivity without deteriorating the electronic transport, and lead to an enhanced thermoelectric efficiency in the epitaxial polycrystalline thin films, compared with their single-crystalline counterpart.
RF Magnetron Sputtering Deposited W/Ti Thin Film For Smart Window Applications
NASA Astrophysics Data System (ADS)
Oksuz, Lutfi; Kiristi, Melek; Bozduman, Ferhat; Uygun Oksuz, Aysegul
2014-10-01
Electrochromic (EC) devices can change reversible and persistent their optical properties in the visible region (400-800 nm) upon charge insertion/extraction according to the applied voltage. A complementary type EC is a device containing two electrochromic layers, one of which is anodically colored such as vanadium oxide (V2 O5) while the other cathodically colored such as tungsten oxide (WO3) which is separated by an ionic conduction layer (electrolyte). The use of a solid electrolyte such as Nafion eliminates the need for containment of the liquid electrolyte, which simplifies the cell design, as well as improves safety and durability. In this work, the EC device was fabricated on a ITO/glass slide. The WO3-TiO2 thin film was deposited by reactive RF magnetron sputtering using a 2-in W/Ti (9:1%wt) target with purity of 99.9% in a mixture gas of argon and oxygen. As a counter electrode layer, V2O5 film was deposited on an ITO/glass substrate using V2O3 target with the same conditions of reactive RF magnetron sputtering. Modified Nafion was used as an electrolyte to complete EC device. The transmittance spectra of the complementary EC device was measured by optical spectrophotometry when a voltage of +/-3 V was applied to the EC device by computer controlled system. The surface morphology of the films was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) (Fig. 2). The cyclic voltammetry (CV) for EC device was performed by sweeping the potential between +/-3 V at a scan rate of 50 mV/s.
NASA Astrophysics Data System (ADS)
Yoshimoto, Yuuki; Li, Jinwang; Shimoda, Tatsuya
2018-04-01
A gel state exists in the solution-solid conversion process. We found that solidification can be promoted by irradiating the gel with ultraviolet (UV) light. In this study, a patterning method without using a vacuum system or employing photoresist materials has been proposed wherein solidification was applied to a gel by UV irradiation. Indium oxide gel, indium gallium oxide gel, lanthanum zirconium oxide gel, and lanthanum ruthenium oxide gels were successfully patterned by using our technique. Moreover, an oxide thin-film transistor was fabricated by our novel patterning method and was successfully operated.
Bioplasmonic Alloyed Nanoislands Using Dewetting of Bilayer Thin Films.
Kang, Minhee; Ahn, Myeong-Su; Lee, Youngseop; Jeong, Ki-Hun
2017-10-25
Unlike monometallic materials, bimetallic plasmonic materials offer extensive benefits such as broadband tuning capability or high environmental stability. Here we report a broad range tuning of plasmon resonance of alloyed nanoislands by using solid-state dewetting of gold and silver bilayer thin films. Thermal dewetting after successive thermal evaporation of thin metal double-layer films readily forms AuAg-alloyed nanoislands with a precise composition ratio. The complete miscibility of alloyed nanoislands results in programmable tuning of plasmon resonance wavelength in a broadband visible range. Such extraordinary tuning capability opens up a new direction for plasmonic enhancement in biophotonic applications such as surface-enhanced Raman scattering or plasmon-enhanced fluorescence.
Neuromorphic transistor achieved by redox reaction of WO3 thin film
NASA Astrophysics Data System (ADS)
Tsuchiya, Takashi; Jayabalan, Manikandan; Kawamura, Kinya; Takayanagi, Makoto; Higuchi, Tohru; Jayavel, Ramasamy; Terabe, Kazuya
2018-04-01
An all-solid-state neuromorphic transistor composed of a WO3 thin film and a proton-conducting electrolyte was fabricated for application to next-generation information and communication technology including artificial neural networks. The drain current exhibited a 4-order-of-magnitude increment by redox reaction of the WO3 thin film owing to proton migration. Learning and forgetting characteristics were well tuned by the gate control of WO3 redox reactions owing to the separation of the current reading path and pulse application path in the transistor structure. This technique should lead to the development of versatile and low-power-consumption neuromorphic devices.
NASA Astrophysics Data System (ADS)
Nag, Jadupati; Ray, Nirat
2018-05-01
Yttrium Iron Garnet (Y3Fe5O12) was synthesized by solid state/ceramic process. Thin films of YIG were deposited on SiO2 substrate at room temperature(RT) and at substrate temperature (Ts) 700 °C using pulsed laser deposition (PLD) technique. RT deposited thin films are amorphous in nature and non-magnetic. After annealing at temperature 800 ° RT deposited thin films showed X-ray peaks as well as the magnetic order. Magnetic ordering is enhanced by annealing temperature(Ta ≥ 750 °C) and resulted good quality of films with high magnetization value.
Chemical surface deposition of ultra-thin semiconductors
McCandless, Brian E.; Shafarman, William N.
2003-03-25
A chemical surface deposition process for forming an ultra-thin semiconducting film of Group IIB-VIA compounds onto a substrate. This process eliminates particulates formed by homogeneous reactions in bath, dramatically increases the utilization of Group IIB species, and results in the formation of a dense, adherent film for thin film solar cells. The process involves applying a pre-mixed liquid coating composition containing Group IIB and Group VIA ionic species onto a preheated substrate. Heat from the substrate causes a heterogeneous reaction between the Group IIB and VIA ionic species of the liquid coating composition, thus forming a solid reaction product film on the substrate surface.
NASA Astrophysics Data System (ADS)
Dutz, Hartmut; Goertz, Stefan; Meyer, Werner
2017-01-01
The polarized solid state target is an indispensable experimental tool to study single and double polarization observables at low intensity particle beams like tagged photons. It was one of the major components of the Crystal-Barrel experiment at ELSA. Besides the operation of the 'CB frozen spin target' within the experimental program of the Crystal-Barrel collaboration both collaborative groups of the D1 project, the polarized target group of the Ruhr Universität Bochum and the Bonn polarized target group, have made significant developments in the field of polarized targets within the CRC16. The Bonn polarized target group has focused its work on the development of technically challenging polarized solid target systems towards the so called '4π continuous mode polarized target' to operate them in combination with 4π-particle detection systems. In parallel, the Bochum group has developed various highly polarized deuterated target materials and high precision NMR-systems, in the meantime used for polarization experiments at CERN, JLAB and MAMI, too.
Proton and Ion Acceleration on the Contrast Upgraded Texas Petawatt Laser
NASA Astrophysics Data System (ADS)
McCary, Edward; Roycroft, Rebecca; Jiao, Xuejing; Kupfer, Rotem; Tiwari, Ganesh; Wagner, Craig; Yandow, Andrew; Franke, Philip; Dyer, Gilliss; Gaul, Erhard; Toncian, Toma; Ditmire, Todd; Hegelich, Bjorn; CenterHigh Energy Density Science Team
2016-10-01
Recent upgrades to the Texas Petawatt (TPW) laser system have eliminated pre-pulses and reduced the laser pedestal, resulting in improved laser contrast. Previously unwanted pre-pulses and amplified spontaneous emission (ASE) would ionize targets thinner than 1 micron, leaving an under-dense plasma which was not capable of accelerating ions to high energies. After the upgrade the contrast was drastically improved allowing us to successfully shoot targets as thin as 20 nm without plasma mirrors. We have also observed evidence of relativistic transparency and Break-Out Afterburner (BOA) ion acceleration when shooting ultra-thin, nanometer scale targets. Data taken with a wide angle ion spectrometer (IWASP) showed the characteristic asymmetry of BOA in the plane orthogonal to the laser polarization on thin targets but not on micron scale targets. Thick micron scale targets saw improvement as well; shots on 2 μm thick gold targets saw ions with energies up to 100 MeV, which broke the former record proton energy on the TPW. Switching the focusing optic from an f/3 parabolic mirror to an f/40 spherical mirror showed improvement in the number of low energy protons created, and provided a source for hundreds of picosecond heating of aluminum foils for warm dense matter measurements.
... an opening called a stoma in your belly. Waste will pass through the stoma into a pouch that collects ... ileostomy is thin or thick liquid. It is not solid like the stool that came from your rectum. ...
Improved Fabrication of Lithium Films Having Micron Features
NASA Technical Reports Server (NTRS)
Whitacre, Jay
2006-01-01
An improved method has been devised for fabricating micron-dimension Li features. This approach is intended for application in the fabrication of lithium-based microelectrochemical devices -- particularly solid-state thin-film lithium microbatteries.
Kim, Kun Joong; Park, Byung Hyun; Kim, Sun Jae; Lee, Younki; Bae, Hongyeul; Choi, Gyeong Man
2016-01-01
Miniaturized solid oxide fuel cells (micro-SOFCs) are being extensively studied as a promising alternative to Li batteries for next generation portable power. A new micro-SOFC is designed and fabricated which shows enhanced thermal robustness by employing oxide-based thin-film electrode and porous stainless steel (STS) substrate. To deposit gas-tight thin-film electrolyte on STS, nano-porous composite oxide is proposed and applied as a new contact layer on STS. The micro-SOFC fabricated on composite oxide- STS dual layer substrate shows the peak power density of 560 mW cm−2 at 550 °C and maintains this power density during rapid thermal cycles. This cell may be suitable for portable electronic device that requires high power-density and fast thermal cycling. PMID:26928921
Kim, Kun Joong; Park, Byung Hyun; Kim, Sun Jae; Lee, Younki; Bae, Hongyeul; Choi, Gyeong Man
2016-03-01
Miniaturized solid oxide fuel cells (micro-SOFCs) are being extensively studied as a promising alternative to Li batteries for next generation portable power. A new micro-SOFC is designed and fabricated which shows enhanced thermal robustness by employing oxide-based thin-film electrode and porous stainless steel (STS) substrate. To deposit gas-tight thin-film electrolyte on STS, nano-porous composite oxide is proposed and applied as a new contact layer on STS. The micro-SOFC fabricated on composite oxide- STS dual layer substrate shows the peak power density of 560 mW cm(-2) at 550 °C and maintains this power density during rapid thermal cycles. This cell may be suitable for portable electronic device that requires high power-density and fast thermal cycling.
Andrade, Natasha A.; Centofanti, Tiziana; McConnell, Laura L.; Hapeman, Cathleen J.; Torrents, Alba; Anh, Nguyen; Beyer, W. Nelson; Chaney, Rufus L.; Novak, Jeffrey M.; Anderson, Marya O.; Cantrell, Keri B.
2014-01-01
Improved approaches are needed to assess bioavailability of hydrophobic organic compounds in contaminated soils. Performance of thin-film solid-phase extraction (TF-SPE) using vials coated with ethylene vinyl acetate was compared to earthworm bioassay (Lumbricus terrestris). A DDT and dieldrin contaminated soil was amended with four organic carbon materials to assess the change in bioavailability. Addition of organic carbon significantly lowered bioavailability for all compounds except for 4,4′-DDT. Equilibrium concentrations of compounds in the polymer were correlated with uptake by earthworms after 48d exposure (R2 = 0.97; p 40yr of aging. Results show that TF-SPE can be useful in examining potential risks associated with contaminated soils and to test effectiveness of remediation efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serra, A.; Rossi, M.; Buccolieri, A.
2014-06-19
The structural and morphological evolution of nanostructured thin films obtained from thermal evaporation of polycrystalline Sn-Se starting charge as a function of the subsequent annealing temperature in an oxygen flow has been analysed. High-resolution transmission electron microscopy, small area electron diffraction, digital image processing, x-ray diffraction and Raman spectroscopy have been employed in order to investigate the structure and the morphology of the obtained films. The results evidenced, in the temperature range from RT to 500°C, the transition of the material from a homogeneous mixture of SnSe and SnSe{sub 2} nanocrystals, towards a homogeneous mixture of SnO{sub 2} and SeO{submore » 2} nanocrystals, with an intermediate stage in which only SnSe{sub 2} nanocrystals are present.« less
Indentation-induced solid-state dewetting of thin Au(Fe) films
NASA Astrophysics Data System (ADS)
Kosinova, Anna; Schwaiger, Ruth; Klinger, Leonid; Rabkin, Eugen
2017-07-01
We studied the effect of local plastic deformation on the thermal stability and solid-state dewetting of thin homogeneous Au(Fe) films deposited on sapphire substrates. The films with ordered square arrays of indents produced by nanoindentation were annealed at the temperature of 700 °C in a forming gas atmosphere. The behavior of the film in the region of shallow indents (reaching a depth up to one half of the film thickness) was very different from the one in the region of deep indents (with depths greater than one half of the film thickness). In the first case, the grain growth in indented and unperturbed regions of the film proceeded quite similarly, and nearly complete healing of the indents was observed. In the latter case, a recrystallization process in the vicinity of the indents resulted in the formation of small new grains with misorientation angles that were not present in the as-deposited film. The thermal grooving along the corresponding new high-energy grain boundaries caused an increase of the depth of the indents and the formation of the dewetting holes. The morphology of these holes and their size were different compared to the holes formed randomly in the unperturbed regions of the same films. In particular, the interaction between the individual indents of an array led to the preferential formation of holes at the periphery of the arrays. These findings shed a new light on the process of nucleation of the solid-state dewetting in thin films.
A New All Solid State Approach to Gaseous Pollutant Detection
NASA Technical Reports Server (NTRS)
Brown, V.; Tamstorf, K.
1971-01-01
Recent efforts in our laboratories have concentrated on the development of an all solid state gas sensor, by combining solid electrolyte (ion exchange membrane) technology with advanced thin film deposition processes. With the proper bias magnitude and polarity these miniature electro-chemical,cells show remarkable current responses for many common pollution gases. Current activity is now focused on complementing a multiple array (matrix) of these solid state sensors, with a digital electronic scanner device possessing "scan-compare-identify-alarm: capability. This innovative approach to multi-component pollutant gas analysis may indeed be the advanced prototype for the "third generation" class of pollution analysis instrumentation so urgently needed in the decade ahead.
Integrated structure vacuum tube
NASA Technical Reports Server (NTRS)
Dimeff, J.; Kerwin, W. J. (Inventor)
1976-01-01
High efficiency, multi-dimensional thin film vacuum tubes suitable for use in high temperature, high radiation environments are described. The tubes are fabricated by placing thin film electrode members in selected arrays on facing interior wall surfaces of an alumina substrate envelope. Cathode members are formed using thin films of triple carbonate. The photoresist used in photolithography aids in activation of the cathodes by carbonizing and reacting with the reduced carbonates when heated in vacuum during forming. The finely powdered triple carbonate is mixed with the photoresist used to delineate the cathode locations in the conventional solid state photolithographic manner. Anode and grid members are formed using thin films of refractory metal. Electron flow in the tubes is between grid elements from cathode to anode as in a conventional three-dimensional tube.
Features of the rupture of free hanging liquid film under the action of a thermal load
NASA Astrophysics Data System (ADS)
Ovcharova, Alla S.
2011-10-01
We consider a deformation and a rupture of a thin liquid film which is hanging between two solid flat walls under the action of concentrated thermal load action. A two-dimensional model is applied to describe the motion of thin layers of viscous non-isothermal liquid under micro-gravity conditions. For flow simulation, two-dimensional Navier-Stokes equations are used. A computational analysis of the influence of thermal loads on the deformation and the rupture behavior of the thin freely hanging film is carried out. It is shown that the rupture of the thin film with generation of a droplet can occur under the thermal beam of specific width acting on the free surface of the film. The results of the model problem solutions are presented.
Liang, Junsheng; Li, Pengfei; Wang, Dazhi; Fang, Xu; Ding, Jiahong; Wu, Junxiong; Tang, Chang
2016-01-19
Dense and crack-free barium titanate (BaTiO₃, BTO) thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet) deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film.
Rambabu, A; Senthilkumar, B; Sada, K; Krupanidhi, S B; Barpanda, P
2018-03-15
Sodium-ion thin-film micro-batteries form a niche sector of energy storage devices. Sodium titanate, Na 2 Ti 6 O 13 (NTO) thin films were deposited by pulsed laser deposition (PLD) using solid-state synthesized polycrystalline Na 2 Ti 6 O 13 compound. The phase-purity and crystallinity of NTO in bulk and thin-film forms were confirmed by Rietveld refinement. Electron microscopy and atomic force microscopy revealed the formation of uniform ∼100 nm thin film with roughness of ∼4 nm consisting of homogeneous nanoscale grains. These PLD-deposited NTO thin-films, when tested in Na-half cell architecture, delivered a near theoretical reversible capacity close to 42 mA h g -1 involving Ti 4+ /Ti 3+ redox activity along with good cycling stability and rate kinetics. Na 2 Ti 6 O 13 can work as an efficient and safe anode in designing sodium-ion thin-film micro-batteries. Copyright © 2017 Elsevier Inc. All rights reserved.
A Thick Target for Synchrotrons and Betatrons
DOE R&D Accomplishments Database
McMillan, E. M.
1950-09-19
If a wide x-ray beam from an electron synchrotron or betatron is desired, in radiographic work with large objects for example, the usually very thin target may be replaced by a thick one, provided the resulting distortion of the x-ray spectrum due to multiple radiative processes is permissible. It is difficult to make the circulating electron beam traverse a thick target directly because of the small spacing between successive turns. Mounting a very thin beryllium, or other low-z material, fin on the edge of the thick target so that the fin projects into the beam will cause the beam to lose sufficient energy, and therefore radium, to strike the thick target the next time around. Sample design calculations are given.
Effect of Longitudinal Oscillations on Downward Flame Spread over Thin Solid Fuels
NASA Technical Reports Server (NTRS)
Nayagam, Vedha; Sacksteder, Kurt
2013-01-01
Downward flame spread rates over vertically vibrated thin fuel samples are measured in air at one atmospheric pressure under normal gravity. Unlike flame spread against forced-convective flows, the present results show that with increasing vibration acceleration the flame spread rate increases before being blown off at high acceleration levels causing flame extinction. A simple scaling analysis seems to explain this phenomenon, which may have important implications to flammability studies including in microgravity environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herz, A., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Franz, A.; Theska, F.
2016-03-15
Self-assembly of ultrathin Au, W, and Au-W bilayer thin films is investigated using a rapid thermal annealing technique in an inert ambient. The solid-state dewetting of Au films is briefly revisited in order to emphasize the role of initial film thickness. W films deposited onto SiO{sub 2} evolve into needle-like nanocrystals rather than forming particle-like agglomerates upon annealing at elevated temperatures. Transmission electron microscopy reveals that such nanocrystals actually consist of tungsten (VI) oxide (WO{sub 3}) which is related to an anisotropic oxide crystal growth out of the thin film. The evolution of W films is highly sensitive to themore » presence of any residual oxygen. Combination of both the dewetting of Au and the oxide crystal growth of WO{sub 3} is realized by using various bilayer film configurations of the immiscible Au and W. At low temperature, Au dewetting is initiated while oxide crystal growth is still suppressed. Depending on the stacking sequence of the Au-W bilayer thin film, W acts either as a substrate or as a passivation layer for the dewetting of Au. Being the ground layer, W changes the wettability of Au which clearly modifies its initial state for the dewetting. Being the top layer, W prevents Au from dewetting regardless of Au film thickness. Moreover, regular pattern formation of Au-WO{sub 3} nanoparticles is observed at high temperature demonstrating how bilayer thin film dewetting can create unique nanostructure arrangements.« less
Nonflat equilibrium liquid shapes on flat surfaces.
Starov, Victor M
2004-01-15
The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.
NASA Astrophysics Data System (ADS)
Zhang, Zhengguo; Shi, Chengwu; Chen, Junjun; Xiao, Guannan; Li, Long
2017-07-01
Considering the balance of the hole diffusion length and the loading quantity of quantum-dots, the rutile TiO2 nanorod array with the length of 600 nm, the diameter of 20 nm, and the areal density of 500 μm-2 is successfully prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 105 min. The compact PbS quantum-dot thin film on the TiO2 nanorod array is firstly obtained by the spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol (EDT). The result reveals that the strong interaction between lead and EDT is very important to control the crystallite size of PbS quantum-dots and obtain the compact PbS quantum-dot thin film on the TiO2 nanorod array. The all solid-state sensitized solar cell with the combination of the short-length, high-density TiO2 nanorod array and the compact PbS quantum-dot thin film achieves the photoelectric conversion efficiency of 4.10%, along with an open-circuit voltage of 0.52 V, a short-circuit photocurrent density of 13.56 mA cm-2 and a fill factor of 0.58.
Bending impact on the performance of a flexible Li4Ti5O12-based all-solid-state thin-film battery
Vereecken, Philippe M.
2018-01-01
Abstract The growing demand of flexible electronic devices is increasing the requirements of their power sources. The effect of bending in thin-film batteries is still not well understood. Here, we successfully developed a high active area flexible all-solid-state battery as a model system that consists of thin-film layers of Li4Ti5O12, LiPON, and Lithium deposited on a novel flexible ceramic substrate. A systematic study on the bending state and performance of the battery is presented. The battery withstands bending radii of at least 14 mm achieving 70% of the theoretical capacity. Here, we reveal that convex bending has a positive effect on battery capacity showing an average increase of 5.5%, whereas concave bending decreases the capacity by 4% in contrast with recent studies. We show that the change in capacity upon bending may well be associated to the Li-ion diffusion kinetic change through the electrode when different external forces are applied. Finally, an encapsulation scheme is presented allowing sufficient bending of the device and operation for at least 500 cycles in air. The results are meant to improve the understanding of the phenomena present in thin-film batteries while undergoing bending rather than showing improvements in battery performance and lifetime. PMID:29868149
NASA Astrophysics Data System (ADS)
Redel, Engelbert; Wang, Zhengbang; Walheim, Stefan; Liu, Jinxuan; Gliemann, Hartmut; Wöll, Christof
2013-08-01
We determine the optical constants of two highly porous, crystalline metal-organic frameworks (MOFs). Since it is problematic to determine the optical constants for the standard powder modification of these porous solids, we instead use surface-anchored metal-organic frameworks (SURMOFs). These MOF thin films are grown using liquid phase epitaxy (LPE) on modified silicon substrates. The produced SURMOF thin films exhibit good optical properties; these porous coatings are smooth as well as crack-free, they do not scatter visible light, and they have a homogenous interference color over the entire sample. Therefore, spectroscopic ellipsometry (SE) can be used in a straightforward fashion to determine the corresponding SURMOF optical properties. After careful removal of the solvent molecules used in the fabrication process as well as the residual water adsorbed in the voids of this highly porous solid, we determine an optical constant of n = 1.39 at a wavelength of 750 nm for HKUST-1 (stands for Hong Kong University of Science and Technology-1; and was first discovered there) or [Cu3(BTC)2]. After exposing these SURMOF thin films to moisture/EtOH atmosphere, the refractive index (n) increases to n = 1.55-1.6. This dependence of the optical properties on water/EtOH adsorption demonstrates the potential of such SURMOF materials for optical sensing.
NASA Astrophysics Data System (ADS)
Suliyanti, Maria M.; Hidayah, Affi Nur; Kurniawan, K. H.
2012-06-01
Study about thin film production using technique pulsed laser deposition have been done. The Pulsed Laser Deposition (PLD) method has been used for growing thin film of ZrO2 on silicon wafer substrate (111 single crystal, thickness 400μm and diameter 7.5 cm). The target made from Zirconia oxide powder mixing with PVA and press using pressure 100kgN. The laser beam was focused by a lens (f = 100mm) through a quartz window onto the sample surface and the substrate was placed in parallel line with target. The distance between the target and the substrate is about 1 cm. The early results of this synthesis using 75 mJ Nd-YAG second harmonic laser pulse (532 nm Nd-YAG) and low pressure chamber surrounding gas 5 Torr. The irradiation of laser take around 6000 shoots or 10 minutes using frequencies laser 10 Hz. The micro thickness of film can be produced on silicon wafer using this technique. The results of ZrO2 thin film on substrate about 26.92%.
Fabrication of Quench Condensed Thin Films Using an Integrated MEMS Fab on a Chip
NASA Astrophysics Data System (ADS)
Lally, Richard; Reeves, Jeremy; Stark, Thomas; Barrett, Lawrence; Bishop, David
Atomic calligraphy is a microelectromechanical systems (MEMS)-based dynamic stencil nanolithography technique. Integrating MEMS devices into a bonded stacked array of three die provides a unique platform for conducting quench condensed thin film mesoscopic experiments. The atomic calligraphy Fab on a Chip process incorporates metal film sources, electrostatic comb driven stencil plate, mass sensor, temperature sensor, and target surface into one multi-die assembly. Three separate die are created using the PolyMUMPs process and are flip-chip bonded together. A die containing joule heated sources must be prepared with metal for evaporation prior to assembly. A backside etch of the middle/central die exposes the moveable stencil plate allowing the flux to pass through the stencil from the source die to the target die. The chip assembly is mounted in a cryogenic system at ultra-high vacuum for depositing extremely thin films down to single layers of atoms across targeted electrodes. Experiments such as the effect of thin film alloys or added impurities on their superconductivity can be measured in situ with this process.
M-shell electron capture and direct ionization of gold by 25-MeV carbon and 32-MeV oxygen ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M.C.; McDaniel, F.D.; Duggan, J.L.
1984-01-01
M-shell x-ray production cross sections have been measured for thin solid targets of Au for 25 MeV /sup 12/C/sup q+/ (q = 4, 5, 6) and for 32 MeV /sup 16/O/sup q+/ (q = 5, 7, 8). The microscopic cross sections were determined from measurements made with targets ranging in thickness from 0.5 to 100 ..mu..g/cm/sup 2/. For projectiles with one or two K-shell vacancies, the M-shell x-ray production cross sections are found to be enhanced over those by projectiles without a K-shell vacancy. The sum of direct ionization to the continuum (DI) and electron capture (EC) to the L,more » M, N ... shells and EC to the K-shell of the projectile have been extracted from the data. The results are compared to the predictions of first Born theories i.e. PWBA for DI and OBK of Nikolaev for EC and the ECPSSR approach that accounts for energy loss, Coulomb deflection and relativistic effects in the perturbed stationary state theory. 25 references, 3 figures, 1 table.« less
Three-Dimensional Solid-State Lithium-Ion Batteries Fabricated by Conformal Vapor-Phase Chemistry.
Pearse, Alexander; Schmitt, Thomas; Sahadeo, Emily; Stewart, David M; Kozen, Alexander; Gerasopoulos, Konstantinos; Talin, A Alec; Lee, Sang Bok; Rubloff, Gary W; Gregorczyk, Keith E
2018-05-22
Three-dimensional thin-film solid-state batteries (3D TSSB) were proposed by Long et al. in 2004 as a structure-based approach to simultaneously increase energy and power densities. Here, we report experimental realization of fully conformal 3D TSSBs, demonstrating the simultaneous power-and-energy benefits of 3D structuring. All active battery components-electrodes, solid electrolyte, and current collectors-were deposited by atomic layer deposition (ALD) onto standard CMOS processable silicon wafers microfabricated to form arrays of deep pores with aspect ratios up to approximately 10. The cells utilize an electrochemically prelithiated LiV 2 O 5 cathode, a very thin (40-100 nm) Li 2 PO 2 N solid electrolyte, and a SnN x anode. The fabrication process occurs entirely at or below 250 °C, promising compatibility with a variety of substrates as well as integrated circuits. The multilayer battery structure enabled all-ALD solid-state cells to deliver 37 μAh/cm 2 ·μm (normalized to cathode thickness) with only 0.02% per-cycle capacity loss. Conformal fabrication of full cells over 3D substrates increased the areal discharge capacity by an order of magnitude while simulteneously improving power performance, a trend consistent with a finite element model. This work shows that the exceptional conformality of ALD, combined with conventional semiconductor fabrication methods, provides an avenue for the successful realization of long-sought 3D TSSBs which provide power performance scaling in regimes inaccessible to planar form factor cells.
NASA Astrophysics Data System (ADS)
Boukhris, N.; Lallouche, S.; Debili, M. Y.; Draissia, M.
2009-03-01
The materials under consideration are binary aluminium-copper alloys (10 at% to 90.3 at%Cu) produced by HF melting and RF magnetron sputtering. The resulting micro structures have been observed by standard metallographic techniques, X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. Vickers microhardness of bulk Al-Cu alloys reaches a maximum of 1800 MPa at 70.16 at%Cu. An unexpected metastable θ ' phase has been observed within aluminium grain in Al-37 at%Cu. The mechanical properties of a family of homogeneous Al{1-x}Cu{x} (0 < x < 0.92) thin films made by radiofrequency (13.56 MHz) cathodic magnetron sputtering from composite Al-Cu targets have been investigated. The as-deposited microstructures for all film compositions consisted of a mixture of the two expected face-centred-cubic (fcc) Al solid solution and tetragonal θ (Al{2}Cu) phases. The microhardness regularly increases and the grain size decreases both with copper concentration. This phenomenon of significant mechanical strengthening of aluminium by means of copper is essentially due to a combination between solid solution effects and grain size refinement. This paper reports some structural features of different Al-Cu alloys prepared by HF melting and RF magnetron on glass substrate sputtering.
Production and partial purification of tannase from Aspergillus ficuum Gim 3.6.
Ma, Wan-liang; Zhao, Fen-fen; Ye, Qin; Hu, Zhen-xing; Yan, Dong; Hou, Jie; Yang, Yang
2015-01-01
A novel fungal strain, Aspergillus ficuum Gim 3.6, was evaluated for its tannase-producing capability in a wheat bran-based solid-state fermentation. Thin-layer chromatography (TLC) analysis revealed that the strain was able to degrade tannic acid to gallic acid and pyrogallol during the fermentation process. Quantitation of enzyme activity demonstrated that this strain was capable of producing a relatively high yield of extracellular tannase. Single-factor optimization of process parameters resulted in high yield of tannase after 60 hr of incubation at a pH of 5.0 at 30°C, 1 mL of inoculum size, and 1:1 solid-liquid ratio in the presence of 2.0% (w/v) tannic acid as inducer. The potential of aqueous two-phase extraction (ATPE) for the purification of tannase was investigated. Influence of various parameters such as phase-forming salt, molecular weight of polyethylene glycol (PEG), pH, and stability ratio on tannase partition and purification was studied. In all the systems, the target enzyme was observed to preferentially partition to the PEG-rich top phase, and the best result of purification (2.74-fold) with an enzyme activity recovery of 77.17% was obtained in the system containing 17% (w/w) sodium citrate and 18.18% (w/w) PEG1000, at pH 7.0.
Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors.
Xiao, Xu; Peng, Xiang; Jin, Huanyu; Li, Tianqi; Zhang, Chengcheng; Gao, Biao; Hu, Bin; Huo, Kaifu; Zhou, Jun
2013-09-25
High-performance all-solid-state supercapacitors (SCs) are fabricated based on thin, lightweight, and flexible freestanding MVNN/CNT hybrid electrodes. The device shows a high volume capacitance of 7.9 F/cm(3) , volume energy and power density of 0.54 mWh/cm(3) and 0.4 W/cm(3) at a current density of 0.025 A/cm(3) . By being highly flexible, environmentally friendly, and easily connectable in series and parallel, the all-solid-state SCs promise potential applications in portable/wearable electronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solid-dielectric compound parabolic concentrators: on their use with photovoltaic devices.
Goodman, N B; Ignatius, R; Wharton, L; Winston, R
1976-10-01
Prototype solid dielectric compound parabolic concentrators have been made and tested. By means of the geometry and refractive properties of a transparent solid they provide a technique for increasing the power output of silicon solar cells exposed to the sun by an amount nearly equal to the increase in effective collecting area. The response is uniform over a large angle which eliminates the necessity of diurnal tracking of the sun. The technique can be applied to the construction of thin panels and has the potential for significantly reducing, their cost per unit area.
NASA Astrophysics Data System (ADS)
Parvathy Venu, M.; Shrisha B., V.; Balakrishna, K. M.; Naik, K. Gopalakrishna
2017-05-01
Undoped ZnO and Al doped ZnO thin films were deposited on glass and p-Si(100) substrates by RF magnetron sputtering technique at room temperature using homemade targets. ZnO target containing 5 at% of Al2O3 as doping source was used for the growth of Al doped ZnO thin films. XRD revealed that the films have hexagonal wurtzite structure with high crystallinity. Morphology and chemical composition of the films have been indicated by FESEM and EDAX studies. A blue shift of the band gap energy and higher optical transmittance has been observed in the case of Al doped ZnO (ZnO:Al) thin films with respect to the ZnO thin films. The as deposited films on p-Si were used to fabricate n-ZnO/p-Si(100) and n-ZnO:Al/p-Si(100) heterojunction diodes and their room temperature current-voltage characteristics were studied.
Transferable and flexible thin film devices for engineering applications
NASA Astrophysics Data System (ADS)
Mutyala, Madhu Santosh K.; Zhou, Jingzhou; Li, Xiaochun
2014-05-01
Thin film devices can be of significance for manufacturing, energy conversion systems, solid state electronics, wireless applications, etc. However, these thin film sensors/devices are normally fabricated on rigid silicon substrates, thus neither flexible nor transferrable for engineering applications. This paper reports an innovative approach to transfer polyimide (PI) embedded thin film devices, which were fabricated on glass, to thin metal foils. Thin film thermocouples (TFTCs) were fabricated on a thin PI film, which was spin coated and cured on a glass substrate. Another layer of PI film was then spin coated again on TFTC/PI and cured to obtain the embedded TFTCs. Assisted by oxygen plasma surface coarsening of the PI film on the glass substrate, the PI embedded TFTC was successfully transferred from the glass substrate to a flexible copper foil. To demonstrate the functionality of the flexible embedded thin film sensors, they were transferred to the sonotrode tip of an ultrasonic metal welding machine for in situ process monitoring. The dynamic temperatures near the sonotrode tip were effectively measured under various ultrasonic vibration amplitudes. This technique of transferring polymer embedded electronic devices onto metal foils yield great potentials for numerous engineering applications.
Rechargeable sodium all-solid-state battery
Zhou, Weidong; Li, Yutao; Xin, Sen; ...
2017-01-03
A reversible plating/stripping of a dendrite-free metallic-sodium anode with a reduced anode/ceramic interfacial resistance is created by a thin interfacial interlayer formed in situ or by the introduction of a dry polymer film. Wetting of the sodium on the interfacial interlayer suppresses dendrite formation and growth at different discharge/charge C-rates. Furthermore, all-solid-state batteries were obtained with a high cycling stability and Coulombic efficiency at 65 °C.
Multiphase flow in geometrically simple fracture intersections
Basagaoglu, H.; Meakin, P.; Green, C.T.; Mathew, M.; ,
2006-01-01
A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-film flow on smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.
Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics.
Jin, Yongdong; Honig, Tal; Ron, Izhar; Friedman, Noga; Sheves, Mordechai; Cahen, David
2008-11-01
Interfacing functional proteins with solid supports for device applications is a promising route to possible applications in bio-electronics, -sensors, and -optics. Various possible applications of bacteriorhodopsin (bR) have been explored and reviewed since the discovery of bR. This tutorial review discusses bR as a medium for biomolecular optoelectronics, emphasizing ways in which it can be interfaced, especially as a thin film, solid-state current-carrying electronic element.
Rechargeable Sodium All-Solid-State Battery
2017-01-01
A reversible plating/stripping of a dendrite-free metallic-sodium anode with a reduced anode/ceramic interfacial resistance is created by a thin interfacial interlayer formed in situ or by the introduction of a dry polymer film. Wetting of the sodium on the interfacial interlayer suppresses dendrite formation and growth at different discharge/charge C-rates. All-solid-state batteries were obtained with a high cycling stability and Coulombic efficiency at 65 °C. PMID:28149953
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammann, Blake A.; Marsh, David A.; Ma, Zayd L.
Solid-state {sup 71}Ga NMR was used to characterize a series of [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15} “Ga{sub 13}” molecular clusters synthesized by multiple methods. These molecular clusters are precursors to thin film electronics and may be employed in energy applications. The synthetic routes provide varying levels of impurities in the solid phase, and these impurities often elude traditional characterization techniques such as powder X-ray diffraction and Raman spectroscopy. Solid-state NMR can provide a window into the gallium species even in amorphous phases. This information is vital in order to prevent the impurities from causing defect sitesmore » in the corresponding thin films upon gelation and condensation (polymerization) of the Ga{sub 13} clusters. This work demonstrates the resolving power of solid-state NMR to evaluate structure and synthetic quality in the solid state, and the application of high-field NMR to study quadrupolar species, such as {sup 71}Ga. - Graphical abstract: The various synthetic routes and {sup 71}Ga solid-state NMR spectra of the nanoscale inorganic cluster [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15}. - Highlights: • Solid-state {sup 71}Ga NMR of hydroxo-aquo metal clusters and the impurities present. • High-field NMR capability allows for quadrupolar species, such as {sup 71}Ga, to be routinely studied. • Efficient and environmentally friendly synthetic routes have been developed to prepare hydroxo-aquo metal clusters.« less
NASA Astrophysics Data System (ADS)
Zhang, Yu; Xu, Jun; Wang, You-Nian; Choi, Chi Kyu; Zhou, Da-Yu
2016-03-01
Amorphous hafnium dioxide (HfO2) film was prepared on Si (100) by facing-target mid-frequency reactive magnetron sputtering under different oxygen/argon gas ratio at room temperature with high purity Hf target. 3D surface profiler results showed that the deposition rates of HfO2 thin film under different O2/Ar gas ratio remain unchanged, indicating that the facing target midfrequency magnetron sputtering system provides effective approach to eliminate target poisoning phenomenon which is generally occurred in reactive sputtering procedure. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) demonstrated that the gradual reduction of oxygen vacancy concentration and the densification of deposited film structure with the increase of oxygen/argon (O2/Ar) gas flow ratio. Atomic force microscopy (AFM) analysis suggested that the surface of the as-deposited HfO2 thin film tends to be smoother, the root-meansquare roughness (RMS) reduced from 0.876 nm to 0.333 nm while O2/Ar gas flow ratio increased from 1/4 to 1/1. Current-Voltage measurements of MOS capacitor based on Au/HfO2/Si structure indicated that the leakage current density of HfO2 thin films decreased by increasing of oxygen partial pressure, which resulted in the variations of pore size and oxygen vacancy concentration in deposited thin films. Based on the above characterization results the leakage current mechanism for all samples was discussed systematically.
Diffusive and martensitic nucleation kinetics in solid-solid transitions of colloidal crystals
NASA Astrophysics Data System (ADS)
Peng, Yi; Li, Wei; Wang, Feng; Still, Tim; Yodh, Arjun G.; Han, Yilong
2017-05-01
Solid-solid transitions between crystals follow diffusive nucleation, or various diffusionless transitions, but these kinetics are difficult to predict and observe. Here we observed the rich kinetics of transitions from square lattices to triangular lattices in tunable colloidal thin films with single-particle dynamics by video microscopy. Applying a small pressure gradient in defect-free regions or near dislocations markedly transform the diffusive nucleation with an intermediate-stage liquid into a martensitic generation and oscillation of dislocation pairs followed by a diffusive nucleus growth. This transformation is neither purely diffusive nor purely martensitic as conventionally assumed but a combination thereof, and thus presents new challenges to both theory and the empirical criterion of martensitic transformations. We studied how pressure, density, grain boundary, triple junction and interface coherency affect the nucleus growth, shape and kinetic pathways. These novel microscopic kinetics cast new light on control solid-solid transitions and microstructural evolutions in polycrystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auciello, O.; Ameen, M.S.; Kingon, A.I.
1989-01-01
Results from computer simulation and experiments on ion scattering and sputtering processes in ion beam sputter deposition of high Tc superconducting and ferroelectric thin films are presented. It is demonstrated that scattering of neutralized ions from the targets can result in undesirable erosion of, and inert gas incorporation in, the growing films, depending on the ion/target atom ass ratio and ion beam angle of incidence/target/substrate geometry. The studies indicate that sputtering Kr{sup +} or Xe{sup +} ions is preferable to the most commonly used Ar{sup +} ions, since the undesirable phenomena mentioned above are minimized for the first two ions.more » These results are used to determine optimum sputter deposition geometry and ion beam parameters for growing multicomponent oxide thin films by ion beam sputter-deposition. 10 refs., 5 figs.« less
High-speed nanoscale characterization of dewetting via dynamic transmission electron microscopy
NASA Astrophysics Data System (ADS)
Hihath, Sahar; Santala, Melissa K.; Campbell, Geoffrey; van Benthem, Klaus
2016-08-01
The dewetting of thin films can occur in either the solid or the liquid state for which different mass transport mechanisms are expected to control morphological changes. Traditionally, dewetting dynamics have been examined on time scales between several seconds to hours, and length scales ranging between nanometers and millimeters. The determination of mass transport mechanisms on the nanoscale, however, requires nanoscale spatial resolution and much shorter time scales. This study reports the high-speed observation of dewetting phenomena for kinetically constrained Ni thin films on crystalline SrTiO3 substrates. Movie-mode Dynamic Transmission Electron Microscopy (DTEM) was used for high-speed image acquisition during thin film dewetting at different temperatures. DTEM imaging confirmed that the initial stages of film agglomeration include edge retraction, hole formation, and growth. Finite element modeling was used to simulate temperature distributions within the DTEM samples after laser irradiation with different energies. For pulsed laser irradiation at 18 μJ, experimentally observed hole growth suggests that Marangoni flow dominates hole formation in the liquid nickel film. After irradiation with 13.8 μJ, however, the observations suggest that dewetting was initiated by nucleation of voids followed by hole growth through solid-state surface diffusion.
Effect of spin-orbit coupling on excitonic levels in layered chalcogenide-fluorides
NASA Astrophysics Data System (ADS)
Zakutayev, Andriy; Kykyneshi, Robert; Kinney, Joseph; McIntyre, David H.; Schneider, Guenter; Tate, Janet
2008-03-01
BaCuChF (Ch=S,Se,Te) comprise a family of wide-bandgap p-type semiconductors. Due to their high transparency and conductivity, they have potential applications as components of transparent thin-film transistors, solar cells and light-emitting devices. Thin films of BaCuChF have been deposited on MgO by pulsed laser deposition (PLD). Solid solutions BaCuS1-xSexTeF and BaCuSe1-xTex have been prepared by PLD of alternating thin BaCuChF layers. All films were deposited at elevated substrate temperatures. They are preferentially c-axis oriented, conductive and transparent in the visible part of the spectrum. Double excitonic peaks have been observed in the absorption spectrum of these films in the temperature range from 80 to 300K. The separation between the peaks in the doublet increases with the increase of atomic mass of the chalcogen. It also increases with the increase of the heavy chalcogen component x in the solid solutions. This separation most likely is caused by the effect of spin-orbit coupling in the chalcogen atoms on excitonic levels in BaCuChF.
Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Haydn, Markus; Ortner, Kai; Franco, Thomas; Uhlenbruck, Sven; Menzler, Norbert H.; Stöver, Detlev; Bräuer, Günter; Venskutonis, Andreas; Sigl, Lorenz S.; Buchkremer, Hans-Peter; Vaßen, Robert
2014-06-01
A key to the development of metal-supported solid oxide fuel cells (MSCs) is the manufacturing of gas-tight thin-film electrolytes, which separate the cathode from the anode. This paper focuses the electrolyte manufacturing on the basis of 8YSZ (8 mol.-% Y2O3 stabilized ZrO2). The electrolyte layers are applied by a physical vapor deposition (PVD) gas flow sputtering (GFS) process. The gas-tightness of the electrolyte is significantly improved when sequential oxidic and metallic thin-film multi-layers are deposited, which interrupt the columnar grain structure of single-layer electrolytes. Such electrolytes with two or eight oxide/metal layers and a total thickness of about 4 μm obtain leakage rates of less than 3 × 10-4 hPa dm3 s-1 cm-2 (Δp: 100 hPa) at room temperature and therefore fulfill the gas tightness requirements. They are also highly tolerant with respect to surface flaws and particulate impurities which can be present on the graded anode underground. MSC cell tests with double-layer and multilayer electrolytes feature high power densities more than 1.4 W cm-2 at 850 °C and underline the high potential of MSC cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jahangir, S.; Cheng, Xuan; Huang, H. H.
2014-10-28
Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materialsmore » characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.« less
Orally disintegrating dosage forms and taste-masking technologies; 2010.
Douroumis, Dennis
2011-05-01
In the last decade the development of orally disintegrating tablets (ODTs) and thin-film platforms has grown enormously in the field of pharmaceutical industry. A wide variety of new masking technologies combined with the aforementioned platforms have been developed in order to mask the taste of bitter active substances and achieve patient compliance. The commercial success and viability of such products requires the development of robust formulations with excellent palatability, disintegration times, physicochemical stability and pharmacokinetic profiles. In this review, emerging taste-masking technologies applied to solid dosage form manufacturing are summarized. The unique features and principles of taste-masking approaches used with ODT platforms are discussed, including the advantages and limitations of each technology. A brief discussion is also included on the taste masking of thin-film technologies, owing to their similar applications and requirements. This review elucidates the unique features of current commercially available or highly promising ODT and thin-film technologies, along with taste-masking approaches used in the manufacturing of oral solid dosage forms. A better understanding of these drug delivery approaches will help researchers to select the appropriate platform, or to develop innovative products with improved safety, compliance and clinical value.
Computational design of high efficiency release targets for use at ISOL facilities
NASA Astrophysics Data System (ADS)
Liu, Y.; Alton, G. D.; Middleton, J. W.
1999-06-01
This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated vitreous carbon fiber (RVCF) or carbon-bonded-carbon-fiber (CBCF) to form highly permeable composite target matrices. Computational studies which simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected targets and thermal analyses of temperature distributions within a prototype target/heat-sink system subjected to primary ion beam irradiation will be presented in this report.
High-efficiency-release targets for use at ISOL facilities: computational design
NASA Astrophysics Data System (ADS)
Liu, Y.; Alton, G. D.
1999-12-01
This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat-removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated-vitreous-carbon fiber (RVCF) or carbon-bonded-carbon fiber (CBCF) to form highly permeable composite target matrices. Computational studies that simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected targets and thermal analyses of temperature distributions within a prototype target/heat-sink system subjected to primary ion beam irradiation are presented in this report.
Fabrication of Thin Electrolytes for Second-Generation Solid Oxide Fuel Cells
1999-05-05
stabilized zirconia but are equally applicable to components, have been developed. Halogen com- other oxide electrolytes. pounds such as ZrCl4 and YC13...substrates. They used ZrCl4 and an oxygen source reactant. EVD is a two-step YC13 vapor mixtures as the metal compound sources process. The first step...thin zirconia layers on ited film. In this step oxygen ions formed on the porous alumina substrates. ZrCl4 and YC13 vapor water vapor side of the
Miniaturized Nanocomposite Piezoelectric Microphones for UAS Applications
2012-10-22
volume fraction for three different materials: ZnO/SU-8 composite, ZnO thin film, and PZT thin film. This was computed for a microphone of outer...radius, 2 400R mμ= , and a thickness 1t mμ= . Note the significant increase in sensitivity compared to a solid ZnO or PZT film. This arises because, as...predicted range. An optimal volume fraction of 0.3 yielded a 17-fold increase in sensitivity over ZnO and a 49-fold increase over PZT . Figure 6
NASA Astrophysics Data System (ADS)
Khan, Pritam; Barik, A. R.; Vinod, E. M.; Sangunni, K. S.; Adarsh, K. V.
2015-02-01
We experimentally demonstrate photobleaching (PB) in Ge22As22Se56 thin films, when illuminated with a diode pumped solid state laser (DPSSL) of wavelength 671 nm, which is far below the optical bandgap of the sample. Interestingly, we found that PB is a slow process and occurs even at moderate pump beam intensity of 0.2 W/cm2, however the kinetics remain rather different.
[Study on the ingredients of reserpine by TLC-FT-SERS].
Wang, Y; Zi, F; Wang, Y; Zhao, Y; Zhang, X; Weng, S
1999-12-01
A new method for analysing the ingredients of reserpine by thin layer chromatography (TLC) and surface-enhanced Raman spectroscopy (SERS) is reported in this paper. The results show that the characteristic spectral bands of reserpine satuated at the thin layer with the amount of sample about 2 microg were obtained. The difference between SERS and solid spectra was found. An absorption model of reserpine and silver sol was proposed. This method can be used to analyse the chemical ingredients with high sensitivity.
Electron Dynamics During High-Power, Short-Pulsed Laser Interactions with Solids and Interfaces
2016-06-28
classified information, stamp classification level on the top and bottom of this page. 17. LIMITATION OF ABSTRACT. This block must be completed...mechanisms in thin gold films. Applied Physics Letters, 103(21):211910, 2013. 6) A. Giri, B. M. Foley, and P. E. Hopkins. Influence of hot electron...July 14 – 19, 2013. 7) Giri, A., Foley, B.M., Duda, J.C., Hopkins, P.E., “Influence of hot electron scattering on electron-phonon equilibrium in thin
Essa, B M; Sakr, T M; Khedr, Mohammed A; El-Essawy, F A; El-Mohty, A A
2015-08-30
Lactoperoxidase (LPO) inhibitors are very selective for solid tumor due to their high binding affinity to the LPO enzyme. A computational study was used to select top-ranked LPO inhibitor (alone and in complex with (99m)Tc) with high in silico affinity. The novel prepared (99m)Tc-amitrole complex demonstrated both in silico and in vivo high affinity toward solid tumors.(99m)Tc-amitrole was radio-synthesized with a high radiochemical yield (89.7±3.25). It showed in vitro stability for up to 6h. Its preclinical evaluation in solid tumor-bearing mice showed high retention and biological accumulation in solid tumor cells with a high Target/Non-Target (T/NT) ratio equal to 4.9 at 60min post-injection. The data described previously could recommend (99m)Tc-amitrole as potential targeting scintigraphic probe for solid tumor imaging. Copyright © 2015 Elsevier B.V. All rights reserved.
Drug-targeting methodologies with applications: A review
Kleinstreuer, Clement; Feng, Yu; Childress, Emily
2014-01-01
Targeted drug delivery to solid tumors is a very active research area, focusing mainly on improved drug formulation and associated best delivery methods/devices. Drug-targeting has the potential to greatly improve drug-delivery efficacy, reduce side effects, and lower the treatment costs. However, the vast majority of drug-targeting studies assume that the drug-particles are already at the target site or at least in its direct vicinity. In this review, drug-delivery methodologies, drug types and drug-delivery devices are discussed with examples in two major application areas: (1) inhaled drug-aerosol delivery into human lung-airways; and (2) intravascular drug-delivery for solid tumor targeting. The major problem addressed is how to deliver efficiently the drug-particles from the entry/infusion point to the target site. So far, most experimental results are based on animal studies. Concerning pulmonary drug delivery, the focus is on the pros and cons of three inhaler types, i.e., pressurized metered dose inhaler, dry powder inhaler and nebulizer, in addition to drug-aerosol formulations. Computational fluid-particle dynamics techniques and the underlying methodology for a smart inhaler system are discussed as well. Concerning intravascular drug-delivery for solid tumor targeting, passive and active targeting are reviewed as well as direct drug-targeting, using optimal delivery of radioactive microspheres to liver tumors as an example. The review concludes with suggestions for future work, considereing both pulmonary drug targeting and direct drug delivery to solid tumors in the vascular system. PMID:25516850
The ratio of microwaves to X-rays in solar flares: The case for the thick target model
NASA Technical Reports Server (NTRS)
Lu, Edward T.; Petrosian, Vahe
1988-01-01
The expected ratio of synchrotron microwave radiation to bremsstrahlung X-rays for thick target, thin target, and multithermal solar flare models is calculated. The calculations take into account the variation of the microwave to X-ray ratio with X-ray spectral index. The theoretical results are compared with observed ratios of a sample of 51 solar flares with well known spectral index. From this it is concluded that the nonthermal thick target model with a loop length of and order of 10 to the 9th power cm and a magnetic field of 500 + or - 200 G provides the best fit to the data. The thin target and multithermal models require unreasonably large density or pressure and/or low magnetic field to match the data.
Manson, Joseph H; Gervais, Matthew M; Bryant, Gregory A
2018-01-01
Little is known about people's ability to detect subclinical psychopathy from others' quotidian social behavior, or about the correlates of variation in this ability. This study sought to address these questions using a thin slice personality judgment paradigm. We presented 108 undergraduate judges (70.4% female) with 1.5 minute video thin slices of zero-acquaintance triadic conversations among other undergraduates (targets: n = 105, 57.1% female). Judges completed self-report measures of general trust, caution, and empathy. Target individuals had completed the Levenson Self-Report Psychopathy (LSRP) scale. Judges viewed the videos in one of three conditions: complete audio, silent, or audio from which semantic content had been removed using low-pass filtering. Using a novel other-rating version of the LSRP, judges' ratings of targets' primary psychopathy levels were significantly positively associated with targets' self-reports, but only in the complete audio condition. Judge general trust and target LSRP interacted, such that judges higher in general trust made less accurate judgments with respect to targets higher in primary and total psychopathy. Results are consistent with a scenario in which psychopathic traits are maintained in human populations by negative frequency dependent selection operating through the costs of detecting psychopathy in others.
Aokage, Keiju; Miyoshi, Tomohiro; Ishii, Genichiro; Kusumoto, Masahiro; Nomura, Shogo; Katsumata, Shinya; Sekihara, Keigo; Hishida, Tomoyuki; Tsuboi, Masahiro
2017-09-01
The aim of this study was to validate the new eighth edition of the TNM classification and to elucidate whether radiological solid size corresponds to pathological invasive size incorporated in this T factor. We analyzed the data on 1792 patients who underwent complete resection from 2003 to 2011 at the National Cancer Center Hospital East, Japan. We reevaluated preoperative thin-section computed tomography (TSCT) to determine solid size and pathological invasive size using the fourth edition of the WHO classification and reclassified them according to the new TNM classification. The discriminative power of survival curves by the seventh edition was compared with that by the eighth edition by using concordance probability estimates and Akaike's information criteria calculated using a univariable Cox regression model. Pearson's correlation coefficient was calculated to elucidate the correlation between radiological solid size using TSCT and pathological invasive size. The overall survival curves in the eighth edition were well distinct at each clinical and pathological stage. The 5-year survival rates of patients with clinical and pathological stage 0 newly defined were both 100%. The concordance probability estimate and Akaike's information criterion values of the eighth edition were higher than those of the seventh edition in discriminatory power for overall survival. Solid size on TSCT scan and pathological invasive size showed a positive linear relationship, and Pearson's correlation coefficient was calculated as 0.83, which indicated strong correlation. This TNM classification will be feasible regarding patient survival, and radiological solid size correlates significantly with pathological invasive size as a new T factor. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Rapid amplification/detection of nucleic acid targets utilizing a HDA/thin film biosensor.
Jenison, Robert; Jaeckel, Heidi; Klonoski, Joshua; Latorra, David; Wiens, Jacinta
2014-08-07
Thin film biosensors exploit a flat, optically coated silicon-based surface whereupon formation of nucleic acid hybrids are enzymatically transduced in a molecular thin film that can be detected by the unaided human eye under white light. While the limit of sensitivity for detection of nucleic acid targets is at sub-attomole levels (60 000 copies) many clinical specimens containing bacterial pathogens have much lower levels of analyte present. Herein, we describe a platform, termed HDA/thin film biosensor, which performs helicase-dependant nucleic acid amplification on a thin film biosensor surface to improve the limit of sensitivity to 10 copies of the mecA gene present in methicillin-resistant strains of Staphylococcus. As double-stranded DNA is unwound by helicase it was either bound by solution-phase DNA primers to be copied by DNA polymerase or hybridized to surface immobilized probe on the thin film biosensor surface to be detected. Herein, we show that amplification reactions on the thin film biosensor are equivalent to in standard thin wall tubes, with detection at the limit of sensitivity of the assay occurring after 30 minutes of incubation time. Further we validate the approach by detecting the presence of the mecA gene in methicillin-resistant Staphylococcus aureus (MRSA) from positive blood culture aliquots with high specificity (signal/noise ratio of 105).
Molecular Strategies for Morphology Control in Semiconducting Polymers for Optoelectronics.
Rahmanudin, Aiman; Sivula, Kevin
2017-06-28
Solution-processable semiconducting polymers have been explored over the last decades for their potential applications in inexpensively fabricated transistors, diodes and photovoltaic cells. However, a remaining challenge in the field is to control the solid-state self-assembly of polymer chains in thin films devices, as the aspects of (semi)crystallinity, grain boundaries, and chain entanglement can drastically affect intra-and inter-molecular charge transport/transfer and thus device performance. In this short review we examine how the aspects of molecular weight and chain rigidity affect solid-state self-assembly and highlight molecular engineering strategies to tune thin film morphology. Side chain engineering, flexibly linking conjugation segments, and block co-polymer strategies are specifically discussed with respect to their effect on field effect charge carrier mobility in transistors and power conversion efficiency in solar cells. Example systems are taken from recent literature including work from our laboratories to illustrate the potential of molecular engineering semiconducting polymers.
Electromagnetic augmentation for casting of thin metal sheets
Hull, J.R.
1987-10-28
Thin metal sheets are cast by magnetically levitating molten metal deposited in a model within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. 8 figs.
A potential-energy scaling model to simulate the initial stages of thin-film growth
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.; Outlaw, R. A.; Walker, G. H.
1983-01-01
A solid on solid (SOS) Monte Carlo computer simulation employing a potential energy scaling technique was used to model the initial stages of thin film growth. The model monitors variations in the vertical interaction potential that occur due to the arrival or departure of selected adatoms or impurities at all sites in the 400 sq. ft. array. Boltzmann ordered statistics are used to simulate fluctuations in vibrational energy at each site in the array, and the resulting site energy is compared with threshold levels of possible atomic events. In addition to adsorption, desorption, and surface migration, adatom incorporation and diffusion of a substrate atom to the surface are also included. The lateral interaction of nearest, second nearest, and third nearest neighbors is also considered. A series of computer experiments are conducted to illustrate the behavior of the model.
Computation of turbulent flow in a thin liquid layer of fluid involving a hydraulic jump
NASA Technical Reports Server (NTRS)
Rahman, M. M.; Faghri, A.; Hankey, W. L.
1991-01-01
Numerically computed flow fields and free surface height distributions are presented for the flow of a thin layer of liquid adjacent to a solid horizontal surface that encounters a hydraulic jump. Two kinds of flow configurations are considered: two-dimensional plane flow and axisymmetric radial flow. The computations used a boundary-fitted moving grid method with a k-epsilon model for the closure of turbulence. The free surface height was determined by an optimization procedure which minimized the error in the pressure distribution on the free surface. It was also checked against an approximate procedure involving integration of the governing equations and use of the MacCormack predictor-corrector method. The computed film height also compared reasonably well with previous experiments. A region of recirculating flow was found to be present adjacent to the solid boundary near the location of the jump, which was caused by a rapid deceleration of the flow.
Nanowire growth from the viewpoint of the thin film polylayer growth theory
NASA Astrophysics Data System (ADS)
Kashchiev, Dimo
2018-03-01
The theory of polylayer growth of thin solid films is employed for description of the growth kinetics of single-crystal nanowires. Expressions are derived for the dependences of the height h and radius r of a given nanowire on time t, as well as for the h(r) dependence. These dependences are applicable immediately after the nanowire nucleation on the substrate and thus include the period during which the nucleated nanowire changes its shape from that of cap to that of column. The analysis shows that the nanowire cap-to-column shape transition is continuous and makes it possible to kinetically define the nanowire shape-transition radius by means of the nanowire radial and axial growth rates. The obtained h(t), r(t) and h(r) dependences are found to provide a good description of available experimental data for growth of self-nucleated GaN nanowires by the vapor-solid mechanism.
Cloud and surface textural features in polar regions
NASA Technical Reports Server (NTRS)
Welch, Ronald M.; Kuo, Kwo-Sen; Sengupta, Sailes K.
1990-01-01
The study examines the textural signatures of clouds, ice-covered mountains, solid and broken sea ice and floes, and open water. The textural features are computed from sum and difference histogram and gray-level difference vector statistics defined at various pixel displacement distances derived from Landsat multispectral scanner data. Polar cloudiness, snow-covered mountainous regions, solid sea ice, glaciers, and open water have distinguishable texture features. This suggests that textural measures can be successfully applied to the detection of clouds over snow-covered mountains, an ability of considerable importance for the modeling of snow-melt runoff. However, broken stratocumulus cloud decks and thin cirrus over broken sea ice remain difficult to distinguish texturally. It is concluded that even with high spatial resolution imagery, it may not be possible to distinguish broken stratocumulus and thin clouds from sea ice in the marginal ice zone using the visible channel textural features alone.
Coherent diffractive imaging of solid state reactions in zinc oxide crystals
NASA Astrophysics Data System (ADS)
Leake, Steven J.; Harder, Ross; Robinson, Ian K.
2011-11-01
We investigated the doping of zinc oxide (ZnO) microcrystals with iron and nickel via in situ coherent x-ray diffractive imaging (CXDI) in vacuum. Evaporated thin metal films were deposited onto the ZnO microcrystals. A single crystal was selected and tracked through annealing cycles. A solid state reaction was observed in both iron and nickel experiments using CXDI. A combination of the shrink wrap and guided hybrid-input-output phasing methods were applied to retrieve the electron density. The resolution was 33 nm (half order) determined via the phase retrieval transfer function. The resulting images are nevertheless sensitive to sub-angstrom displacements. The exterior of the microcrystal was found to degrade dramatically. The annealing of ZnO microcrystals coated with metal thin films proved an unsuitable doping method. In addition the observed defect structure of one crystal was attributed to the presence of an array of defects and was found to change upon annealing.
Fabrication of solid oxide fuel cell by electrochemical vapor deposition
Brian, Riley; Szreders, Bernard E.
1989-01-01
In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.
Hong, Seongjin; Jung, Woohyun; Nazari, Tavakol; Song, Sanggwon; Kim, Taeoh; Quan, Chai; Oh, Kyunghwan
2017-05-15
We report unique thermo-optical characteristics of DNA-Cetyl tri-methyl ammonium (DNA-CTMA) thin solid film with a large negative thermo-optical coefficient of -3.4×10-4/°C in the temperature range from 20°C to 70°C without any observable thermal hysteresis. By combining this thermo-optic DNA film and fiber optic multimode interference (MMI) device, we experimentally demonstrated a highly sensitive compact temperature sensor with a large spectral shift of 0.15 nm/°C. The fiber optic MMI device was a concatenated structure with single-mode fiber (SMF)-coreless silica fiber (CSF)-single mode fiber (SMF) and the DNA-CTMA film was deposited on the CSF. The spectral shifts of the device in experiments were compared with the beam propagation method, which showed a good agreement.
Serially connected solid oxide fuel cells having monolithic cores
Herceg, Joseph E.
1987-01-01
A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick. Between 2 and 50 cell segments may be connected in series.
Surface Brillouin scattering of opaque solids and thin supported films
Comins; Every; Stoddart; Zhang; Crowhurst; Hearne
2000-03-01
Surface Brillouin scattering (SBS) has been used successfully for the study of acoustic excitations in opaque solids and thin supported films, at both ambient and high temperatures. A number of different systems have been investigated recently by SBS including crystalline silicon, amorphous silicon layers produced by ion bombardment and their high temperature recrystallisation, vanadium carbides, and a nickel-based superalloy. The most recent development includes the measurement of a supported gold film at high pressure. The extraction of the elastic constants is successfully accomplished by a combination of the angular dependence of surface wave velocities and the longitudinal wave threshold within the Lamb shoulder. The application of surface Green's function methods successfully reproduces the experimental SBS spectra. The discrepancies often observed between surface wave velocities and by ultrasonics measurements have been investigated and a detailed correction procedure for the SBS measurements has been developed.
Thin-film Rechargeable Lithium Batteries for Implantable Devices
DOE R&D Accomplishments Database
Bates, J. B.; Dudney, N. J.
1997-05-01
Thin films of LiCoO{sub 2} have been synthesized in which the strongest x ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001%/cycle or less. The reliability and performance of Li LiCoO{sub 2} thin film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.
Thin-film rechargeable lithium batteries for implantable devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, J.b.; Dudney, N.J.
1997-05-01
Thin films of LiCoO{sub 2} have been synthesized in which the strongest x-ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin-film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001 %/cycle or less. The reliability and performance of Li-LiCoO{sub 2} thin-film batteries make themmore » attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.« less
NASA Technical Reports Server (NTRS)
Poppa, H.
1976-01-01
Existing work on gas-solid reactions making use of thin film technologies is reviewed. The discussion concentrates on two major areas of gas-metal interactions: chemisorption and the early stages of oxidation of metals (characterized by a non-volatile reaction product) and catalytic surface reactions (featuring volatile reaction products). A brief survey of oxide formation on metals is presented. Here it is of importance to distinguish between reactions on continuous thin film substrates and reactions on particulate deposits. Small particle-gas interactions also affect the nucleation, growth and sintering processes of thin films. It is shown that various combinations of UHV and high resolution electron microscopy techniques, which include in situ experimentation, can provide the appropriate tools for studying angstrom particle chemistry.
Effects of die quench forming on sheet thinning and 3-point bend testing of AA7075-T6
NASA Astrophysics Data System (ADS)
Kim, Samuel; Omer, Kaab; Rahmaan, Taamjeed; Butcher, Clifford; Worswick, Michael
2017-10-01
Lab-scaled AA7075 aluminum side impact beams were manufactured using the die quenching technique in which the sheet was solutionized and then quenched in-die during forming to a super saturated solid state. Sheet thinning measurements were taken at various locations throughout the length of the part and the effect of lubricant on surface scoring and material pick-up on the die was evaluated. The as-formed beams were subjected to a T6 aging treatment and then tested in three-point bending. Simulations were performed of the forming and mechanical testing experiments using the LS-DYNA finite element code. The thinning and mechanical response was predicted well.
Transparent SiO2-Ag core-satellite nanoparticle assembled layer for plasmonic-based chemical sensors
NASA Astrophysics Data System (ADS)
Chen, Tsung-Han; Jean, Ren-Der; Chiu, Kuo-Chuang; Chen, Chun-Hua; Liu, Dean-Mo
2012-05-01
We discovered a promising sensing capability of SiO2@Ag core-satellite nanoparticles with respect to organic melamine when they were consolidated into a solid-type thin-film entity. A series of theoretical models were proposed which provided calculation outcomes superior to those of existing models for the localized surface plasmon resonance spectra of the solid-state assemblies. We envisioned not only that such a SiO2@Ag film is a potential candidate for a transparent solid-state optical nanosensor for the detection of organic molecules but also that the resulting plasmonic resonance model facilitates a better understanding of such a solid-state nanosensor used for a number of sensory applications.
NASA Astrophysics Data System (ADS)
Gupta, Sanju; Price, Carson
2015-10-01
Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL) assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO)1, (PPy/ErGO)1, (PAni/GO)1 and (PPy/GO)1. The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS) with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, Cs, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent Cs of ≥350 F g-1 as compared with constituents (˜70 F g-1) at discharge current density of 0.3 A g-1 that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM) technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting) and conducting polymers (semiconducting) backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine electrochemical (re)activity of surface ion adsorption sites density at solid/liquid interface.
Pan, Chensong; Xu, Songyun; Zou, Hanfa; Guo, Zhong; Zhang, Yu; Guo, Baochuan
2005-02-01
A method with carbon nanotubes functioning both as the adsorbent of solid-phase extraction (SPE) and the matrix for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) to analyze small molecules in solution has been developed. In this method, 10 microL suspensions of carbon nanotubes in 50% (vol/vol) methanol were added to the sample solution to extract analytes onto surface of carbon nanotubes because of their dramatic hydrophobicity. Carbon nanotubes in solution are deposited onto the bottom of tube with centrifugation. After removing the supernatant fluid, carbon nanotubes are suspended again with dispersant and pipetted directly onto the sample target of the MALDI-MS to perform a mass spectrometric analysis. It was demonstrated by analysis of a variety of small molecules that the resolution of peaks and the efficiency of desorption/ionization on the carbon nanotubes are better than those on the activated carbon. It is found that with the addition of glycerol and sucrose to the dispersant, the intensity, the ratio of signal to noise (S/N), and the resolution of peaks for analytes by mass spectrometry increased greatly. Compared with the previously reported method by depositing sample solution onto thin layer of carbon nanotubes, it is observed that the detection limit for analytes can be enhanced about 10 to 100 times due to solid-phase extraction of analytes in solution by carbon nanotubes. An acceptable result of simultaneously quantitative analysis of three analytes in solution has been achieved. The application in determining drugs spiked into urine has also been realized.
Solid oxide fuel cell operable over wide temperature range
Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.
2001-01-01
Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.
Interfacial material for solid oxide fuel cell
Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.
1999-01-01
Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook
1987-01-01
Various experimental, analytical, and numerical analysis methods for flow-solid interaction of a nest of cylinders subjected to cross flows are reviewed. A nest of cylinders subjected to cross flows can be found in numerous engineering applications including the Space Shuttle Maine Engine-Main Injector Assembly (SSME-MIA) and nuclear reactor heat exchangers. Despite its extreme importance in engineering applications, understanding of the flow-solid interaction process is quite limited and design of the tube banks are mostly dependent on experiments and/or experimental correlation equations. For future development of major numerical analysis methods for the flow-solid interaction of a nest of cylinders subjected to cross flow, various turbulence models, nonlinear structural dynamics, and existing laminar flow-solid interaction analysis methods are included.
1977-08-15
Reflectivity of CdGeAs, G.D. Holah* A. Miller* W. D. Dunnett* G.W. Iseler Solid State Commun. 23, 75 (1977) 4726 Thin-Film VO2 Submillimeter- Wave...Measure- ments 4439 X-Ray Lithographic and Pro- cessing Technologies for Fabricating Surface Relief Gratings with Profile Control < 400 A S. A...stripe-geometry lasers. The stripe width is 1 3 |i.m, and the cavity length is typically 3 80 to 400 |im. Ohmic contacts were made by
Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Liu, Yuan; Huang, Yu; Duan, Xiangfeng
2013-05-28
Flexible solid-state supercapacitors are of considerable interest as mobile power supply for future flexible electronics. Graphene or carbon nanotubes based thin films have been used to fabricate flexible solid-state supercapacitors with high gravimetric specific capacitances (80-200 F/g), but usually with a rather low overall or areal specific capacitance (3-50 mF/cm(2)) due to the ultrasmall electrode thickness (typically a few micrometers) and ultralow mass loading, which is not desirable for practical applications. Here we report the exploration of a three-dimensional (3D) graphene hydrogel for the fabrication of high-performance solid-state flexible supercapacitors. With a highly interconnected 3D network structure, graphene hydrogel exhibits exceptional electrical conductivity and mechanical robustness to make it an excellent material for flexible energy storage devices. Our studies demonstrate that flexible supercapacitors with a 120 μm thick graphene hydrogel thin film can exhibit excellent capacitive characteristics, including a high gravimetric specific capacitance of 186 F/g (up to 196 F/g for a 42 μm thick electrode), an unprecedented areal specific capacitance of 372 mF/cm(2) (up to 402 mF/cm(2) for a 185 μm thick electrode), low leakage current (10.6 μA), excellent cycling stability, and extraordinary mechanical flexibility. This study demonstrates the exciting potential of 3D graphene macrostructures for high-performance flexible energy storage devices.
Rotary target method to prepare thin films of CdS/SiO 2 by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Wang, H.; Zhu, Y.; Ong, P. P.
2000-12-01
Thin films of CdS-doped SiO 2 glass were prepared by using the conventional pulsed laser deposition (PLD) technique. The laser target consisted of a specially constructed rotary wheel which provided easy control of the exposure-area ratio to expose alternately the two materials to the laser beam. The physical target assembly avoided the potential complications inherent in chemically mixed targets such as in the sol-gel method. Time-of-flight (TOF) spectra confirmed the existence of the SiO 2 and CdS components in the thin-film samples so produced. X-ray diffraction (XRD) and atomic force microscopy(AFM) results showed the different sizes and structures of the as-deposited and annealed films. The wurtzite phase of CdS was found in the 600 oC-annealed sample, while the as-deposited film showed a cubic-hexagonal mixed structure. In the corresponding PL (photoluminescence) spectra, a red shift of the CdS band edge emission was found, which may be a result of the interaction between the CdS nanocrystallite and SiO 2 at their interface.
NASA Astrophysics Data System (ADS)
Vianna, S. D. B.; Lin, F. Y.; Plum, M. A.; Duran, H.; Steffen, W.
2017-05-01
Using non-invasive, marker-free resonance enhanced dynamic light scattering, the dynamics of capillary waves on ultrathin polystyrene films' coupling to the viscoelastic and mechanical properties have been studied. The dynamics of ultrathin polymer films is still debated. In particular the question of what influence either the solid substrate and/or the fluid-gas interface has on the dynamics and the mechanical properties of films of glass forming liquids as polymers is in the focus of the present research. As a consequence, e.g., viscosity close to interfaces and thus the average viscosity of very thin films are prone to change. This study is focused on atactic, non-entangled polystyrene thin films on the gold surface. A slow dynamic mode was observed with Vogel-Fulcher-Tammann temperature dependence, slowing down with decreasing film thickness. We tentatively attribute this relaxation mode to overdamped capillary waves because of its temperature dependence and the dispersion with a wave vector which was found. No signs of a more mobile layer at the air/polymer interface or of a "dead layer" at the solid/polymer interface were found. Therefore we investigated the influence of an artificially created dead layer on the capillary wave dynamics by introducing covalently bound polystyrene polymer brushes as anchors. The dynamics was slowed down to a degree more than expected from theoretical work on the increase of density close to the solid liquid interface—instead of a "dead layer" of 2 nm, the interaction seems to extend more than 10 nm into the polymer.
Aytug, Tolga; Rager, Matthew S; Higgins, Wesley; Brown, Forrest G; Veith, Gabriel M; Rouleau, Christopher M; Wang, Hui; Hood, Zachary D; Mahurin, Shannon M; Mayes, Richard T; Joshi, Pooran C; Kuruganti, Teja
2018-04-04
Simple and easily integrated design of flexible and transparent electrode materials affixed to polymer-based substrates hold great promise to have a revolutionary impact on the functionality and performance of energy storage devices for many future consumer electronics. Among these applications are touch sensors, roll-up displays, photovoltaic cells, health monitors, wireless sensors, and wearable communication devices. Here, we report an environmentally friendly, simple, and versatile approach to produce optically transparent and mechanically flexible all-solid-state supercapacitor devices. These supercapacitors were constructed on tin-doped indium oxide coated polyethylene terephthalate substrates by intercalation of a polymer-based gel electrolyte between two reduced graphene oxide (rGO) thin-film electrodes. The rGO electrodes were fabricated simply by drop-casting of graphene oxide (GO) films, followed by a novel low-temperature (≤250 °C) vacuum-assisted annealing approach for the in situ reduction of GO to rGO. A trade-off between the optical transparency and electrochemical performance is determined by the concentration of the GO in the initial dispersion, whereby the highest capacitance (∼650 μF cm -2 ) occurs at a relatively lower optical transmittance (24%). Notably, the all-solid-state supercapacitors demonstrated excellent mechanical flexibility with a capacity retention rate above 90% under various bending angles and cycles. These attributes underscore the potential of the present approach to provide a path toward the realization of thin-film-based supercapacitors as flexible and transparent energy storage devices for a variety of practical applications.