Stone wall and ornamental iron fence extending along Gray's Ferry ...
Stone wall and ornamental iron fence extending along Gray's Ferry Avenue between the north and south gate lodges, looking southwest. - U. S. Naval Asylum, Biddle Hall, Gray's Ferry Avenue, Philadelphia, Philadelphia County, PA
The effects of gypsy moth infestation on gray squirrel habitat and populations
David E. Samuel; Rob Silvester
1991-01-01
The overall objective of this project was to determine the effects of defoliation on gray squirrel habitat. We will evaluate the existing Habitat Suitability Index (HSI) Model for gray squirrels on the University Forest and determine the effects of thinning on HSI values computed for thinned and unthinned stands. Habitat variables used in the U. S. Fish and Wildlife...
Non-gray gas radiation effect on mixed convection in lid driven square cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherifi, Mohammed, E-mail: production1998@yahoo.fr; Benbrik, Abderrahmane, E-mail: abenbrik@umbb.dz; Laouar-Meftah, Siham, E-mail: laouarmeftah@gmail.com
A numerical study is performed to investigate the effect of non-gray radiation on mixed convection in a vertical two sided lid driven square cavity filled with air-H{sub 2}O-CO{sub 2} gas mixture. The vertical moving walls of the enclosure are maintained at two different but uniform temperatures. The horizontal walls are thermally insulated and considered as adiabatic walls. The governing differential equations are solved by a finite-volume method and the SIMPLE algorithm was adopted to solve the pressure–velocity coupling. The radiative transfer equation (RTE) is solved by the discrete ordinates method (DOM). The spectral line weighted sum of gray gases modelmore » (SLW) is used to account for non-gray radiation properties. Simulations are performed in configurations where thermal and shear forces induce cooperating buoyancy forces. Streamlines, isotherms, and Nusselt number are analyzed for three different values of Richardson’s number (from 0.1 to 10) and by considering three different medium (transparent medium, gray medium using the Planck mean absorption coefficient, and non-gray medium assumption).« less
Segment of brick perimeter wall extending around the naval asylum ...
Segment of brick perimeter wall extending around the naval asylum grounds at twenty-fourth street with Gray's Ferry Avenue branching to the left and Bainbridge Street to the right, looking southwest. - U. S. Naval Asylum, Biddle Hall, Gray's Ferry Avenue, Philadelphia, Philadelphia County, PA
Skeletonization of gray-scale images by gray weighted distance transform
NASA Astrophysics Data System (ADS)
Qian, Kai; Cao, Siqi; Bhattacharya, Prabir
1997-07-01
In pattern recognition, thinning algorithms are often a useful tool to represent a digital pattern by means of a skeletonized image, consisting of a set of one-pixel-width lines that highlight the significant features interest in applying thinning directly to gray-scale images, motivated by the desire of processing images characterized by meaningful information distributed over different levels of gray intensity. In this paper, a new algorithm is presented which can skeletonize both black-white and gray pictures. This algorithm is based on the gray distance transformation and can be used to process any non-well uniformly distributed gray-scale picture and can preserve the topology of original picture. This process includes a preliminary phase of investigation in the 'hollows' in the gray-scale image; these hollows are considered not as topological constrains for the skeleton structure depending on their statistically significant depth. This algorithm can also be executed on a parallel machine as all the operations are executed in local. Some examples are discussed to illustrate the algorithm.
Lake Michigan Bluff Dewatering and Stabilization Study - Allegan County, Michigan
2012-09-01
laminated to cross- bedded sand interbedded with reddish brown, often laminated clay; and reddish-brown to gray to blue-gray diamicton (till) containing...Till also is extremely variable in thickness and may be a thin gravel lens, or up to 44 ft of graded sand beds , planar and trough cross- beds , thin...lies lacustrine clay to below lake level. The in-place layers are nominally flat , behind the slumped bluff face. ERDC TR-12-11 12 Figure 8
... discharge usually is thin and dark or dull gray, but may have a greenish color. Itching is ... trichomoniasis? Signs of trichomoniasis may include a yellow-gray or green vaginal discharge. The discharge may have ...
Developing NanoFoil-Heated Thin-Film Thermal Battery
2013-09-01
buffer discs (in gray) sandwiching the NanoFoil disc (in yellow). Two Microtherm discs (in dark gray) bracketed the sandwich to prevent excessive heat...of the fuse strip with a Microtherm disc. Cathode Electrolyte Anode Microtherm Heat paper NanoFoil Buffer Agilent 34970A 606.5 Nichrome wire Maccor...gray) sandwiching the NanoFoil disc (in yellow). Two Microtherm discs (in dark gray) bracketed the sandwich to prevent excessive heat loss
Corrections to the thin wall approximation in general relativity
NASA Technical Reports Server (NTRS)
Garfinkle, David; Gregory, Ruth
1989-01-01
The question is considered whether the thin wall formalism of Israel applies to the gravitating domain walls of a lambda phi(exp 4) theory. The coupled Einstein-scalar equations that describe the thick gravitating wall are expanded in powers of the thickness of the wall. The solutions of the zeroth order equations reproduce the results of the usual Israel thin wall approximation for domain walls. The solutions of the first order equations provide corrections to the expressions for the stress-energy of the wall and to the Israel thin wall equations. The modified thin wall equations are then used to treat the motion of spherical and planar domain walls.
NASA Astrophysics Data System (ADS)
Sadeghi, Pegah; Safavinejad, Ali
2017-11-01
Radiative entropy generation through a gray absorbing, emitting, and scattering planar medium at radiative equilibrium with diffuse-gray walls is investigated. The radiative transfer equation and radiative entropy generation equations are solved using discrete ordinates method. Components of the radiative entropy generation are considered for two different boundary conditions: two walls are at a prescribed temperature and mixed boundary conditions, which one wall is at a prescribed temperature and the other is at a prescribed heat flux. The effect of wall emissivities, optical thickness, single scattering albedo, and anisotropic-scattering factor on the entropy generation is attentively investigated. The results reveal that entropy generation in the system mainly arises from irreversible radiative transfer at wall with lower temperature. Total entropy generation rate for the system with prescribed temperature at walls remarkably increases as wall emissivity increases; conversely, for system with mixed boundary conditions, total entropy generation rate slightly decreases. Furthermore, as the optical thickness increases, total entropy generation rate remarkably decreases for the system with prescribed temperature at walls; nevertheless, for the system with mixed boundary conditions, total entropy generation rate increases. The variation of single scattering albedo does not considerably affect total entropy generation rate. This parametric analysis demonstrates that the optical thickness and wall emissivities have a significant effect on the entropy generation in the system at radiative equilibrium. Considering the parameters affecting radiative entropy generation significantly, provides an opportunity to optimally design or increase overall performance and efficiency by applying entropy minimization techniques for the systems at radiative equilibrium.
2006-04-24
This approximately true-color image shows paper-thin layers of light-toned, jagged-edged rocks; a light gray rock with smooth, rounded edges atop and drifts; and several dark gray to black, angular rocks with vesicles typical of hardened lava
Gray-matter macrostructure in cognitively healthy older persons: Associations with age and cognition
Fleischman, Debra A.; Leurgans, Sue; Arfanakis, Konstantinos; Arvanitakis, Zoe; Barnes, Lisa L.; Boyle, Patricia A.; Han, S. Duke; Bennett, David A.
2013-01-01
A deeper understanding of brain macrostructure and its associations with cognition in persons who are considered cognitively healthy is critical to the early detection of persons at risk of developing dementia. Few studies have examined the associations of all three gray-matter macrostructural brain indices (volume, thickness, surface area) with age and cognition, in the same persons who are over the age of 65 and do not have cognitive impairment. We performed automated morphometric reconstruction of total gray matter, cortical gray matter, subcortical gray matter and 84 individual regions in 186 participants (60% over the age of 80) without cognitive impairment. Morphometric measures were scaled and expressed as difference per decade of age and an adjusted score was created to identify those regions in which there was greater atrophy per decade of age compared to cortical or subcortical brain averages. The results showed that there is substantial total volume loss and cortical thinning in cognitively healthy older persons. Thinning was more widespread than volume loss, but volume loss, particularly in temporoparietal and hippocampal regions, was more strongly associated with cognition. PMID:23955313
Spirit Scans Winter Haven False Color
2006-04-24
This false-color image shows paper-thin layers of light-toned, jagged-edged rocks; a light gray rock with smooth, rounded edges atop and drifts; and several dark gray to black, angular rocks with vesicles typical of hardened lava scattered across the sand
Interior view, firstfloor room extending between the north wall of ...
Interior view, first-floor room extending between the north wall of the rotunda and the rotunda extensions north exterior wall, looking southwest. The small doorway at center opens onto the vestibule letting onto the rotunda. - U. S. Naval Asylum, Biddle Hall, Gray's Ferry Avenue, Philadelphia, Philadelphia County, PA
Code of Federal Regulations, 2014 CFR
2014-01-01
... are excessively thin kernels and can have black, brown or gray surface with a dark interior color and the immaturity has adversely affected the flavor of the kernel. (2) Kernel spotting refers to dark brown or dark gray spots aggregating more than one-eighth of the surface of the kernel. (g) Serious...
Code of Federal Regulations, 2013 CFR
2013-01-01
... are excessively thin kernels and can have black, brown or gray surface with a dark interior color and the immaturity has adversely affected the flavor of the kernel. (2) Kernel spotting refers to dark brown or dark gray spots aggregating more than one-eighth of the surface of the kernel. (g) Serious...
Interior view, groundfloor dining hall extending across the rotunda extension ...
Interior view, ground-floor dining hall extending across the rotunda extension from it's northern exterior wall to its southern exterior wall, from the north. - U. S. Naval Asylum, Biddle Hall, Gray's Ferry Avenue, Philadelphia, Philadelphia County, PA
Standard surface grinder for precision machining of thin-wall tubing
NASA Technical Reports Server (NTRS)
Jones, A.; Kotora, J., Jr.; Rein, J.; Smith, S. V.; Strack, D.; Stuckey, D.
1967-01-01
Standard surface grinder performs precision machining of thin-wall stainless steel tubing by electrical discharge grinding. A related adaptation, a traveling wire electrode fixture, is used for machining slots in thin-walled tubing.
West wall of rotunda extension. The rotunda is positioned behind ...
West wall of rotunda extension. The rotunda is positioned behind the central ashlar coursed stone section. Rooms flanking the rotunda are bounded by the Verandahs. - U. S. Naval Asylum, Biddle Hall, Gray's Ferry Avenue, Philadelphia, Philadelphia County, PA
An assessment of some non-gray global radiation models in enclosures
NASA Astrophysics Data System (ADS)
Meulemans, J.
2016-01-01
The accuracy of several non-gray global gas/soot radiation models, namely the Wide-Band Correlated-K (WBCK) model, the Spectral Line Weighted-sum-of-gray-gases model with one optimized gray gas (SLW-1), the (non-gray) Weighted-Sum-of-Gray-Gases (WSGG) model with different sets of coefficients (Smith et al., Soufiani and Djavdan, Taylor and Foster) was assessed on several test cases from the literature. Non-isothermal (or isothermal) participating media containing non-homogeneous (or homogeneous) mixtures of water vapor, carbon dioxide and soot in one-dimensional planar enclosures and multi-dimensional rectangular enclosures were investigated. For all the considered test cases, a benchmark solution (LBL or SNB) was used in order to compute the relative error of each model on the predicted radiative source term and the wall net radiative heat flux.
Failure Behavior of Elbows with Local Wall Thinning
NASA Astrophysics Data System (ADS)
Lee, Sung-Ho; Lee, Jeong-Keun; Park, Jai-Hak
Wall thinning defect due to corrosion is one of major aging phenomena in carbon steel pipes in most plant industries, and it results in reducing load carrying capacity of the piping components. A failure test system was set up for real scale elbows containing various simulated wall thinning defects, and monotonic in-plane bending tests were performed under internal pressure to find out the failure behavior of them. The failure behavior of wall-thinned elbows was characterized by the circumferential angle of thinned region and the loading conditions to the piping system.
Shah, Dipan J.; Kim, Han W.; James, Olga; Parker, Michele; Wu, Edwin; Bonow, Robert O.; Judd, Robert M.; Kim, Raymond J.
2014-01-01
Importance Regional left ventricular (LV) wall thinning is believed to represent chronic transmural myocardial infarction and scar tissue. However, recent case reports using delayed-enhancement cardiovascular magnetic resonance (CMR) imaging raise the possibility that thinning may occur with little or no scarring. Objective To evaluate patients with regional myocardial wall thinning and to determine scar burden and potential for functional improvement. Design, Setting, and Patients Investigator-initiated, prospective, 3-center study conducted from August 2000 through January 2008 in 3 parts to determine (1) in patients with known coronary artery disease (CAD) undergoing CMR viability assessment, the prevalence of regional wall thinning (end-diastolic wall thickness ≤5.5 mm), (2) in patients with thinning, the presence and extent of scar burden, and (3) in patients with thinning undergoing coronary revascularization, any changes in myocardial morphology and contractility. Main Outcomes and Measures Scar burden in thinned regions assessed using delayed-enhancement CMR and changes in myocardial morphology and function assessed using cine-CMR after revascularization. Results Of 1055 consecutive patients with CAD screened, 201 (19% [95% CI, 17% to 21%]) had regional wall thinning. Wall thinning spanned a mean of 34% (95% CI, 32% to 37% [SD, 15%]) of LV surface area. Within these regions, the extent of scarring was 72% (95% CI, 69% to 76% [SD, 25%]); however, 18% (95% CI, 13% to 24%) of thinned regions had limited scar burden (≤50% of total extent). Among patients with thinning undergoing revascularization and follow-up cine-CMR (n=42), scar extent within the thinned region was inversely related to regional (r=−0.72, P<.001) and global (r=−0.53, P<.001) contractile improvement. End-diastolic wall thickness in thinned regions with limited scar burden increased from 4.4 mm (95% CI, 4.1 to 4.7) to 7.5 mm (95% CI, 6.9 to 8.1) after revascularization (P<.001), resulting in resolution of wall thinning. On multivariable analysis, scar extent had the strongest association with contractile improvement (slope coefficient, −0.03 [95% CI, −0.04 to −0.02]; P<.001) and reversal of thinning (slope coefficient, −0.05 [95% CI, −0.06 to −0.04]; P<.001). Conclusions and Relevance Among patients with CAD referred for CMR and found to have regional wall thinning, limited scar burden was present in 18% and was associated with improved contractility and resolution of wall thinning after revascularization. These findings, which are not consistent with common assumptions, warrant further investigation. PMID:23462787
Thin-wall approximation in vacuum decay: A lemma
NASA Astrophysics Data System (ADS)
Brown, Adam R.
2018-05-01
The "thin-wall approximation" gives a simple estimate of the decay rate of an unstable quantum field. Unfortunately, the approximation is uncontrolled. In this paper I show that there are actually two different thin-wall approximations and that they bracket the true decay rate: I prove that one is an upper bound and the other a lower bound. In the thin-wall limit, the two approximations converge. In the presence of gravity, a generalization of this lemma provides a simple sufficient condition for nonperturbative vacuum instability.
Thin and Slow Smoke Detection by Using Frequency Image
NASA Astrophysics Data System (ADS)
Zheng, Guang; Oe, Shunitiro
In this paper, a new method to detect thin and slow smoke for early fire alarm by using frequency image has been proposed. The correlation coefficient of the frequency image between the current stage and the initial stage are calculated, so are the gray image correlation coefficient of the color image. When the thin smoke close to transparent enters into the camera view, the correlation coefficient of the frequency image becomes small, while the gray image correlation coefficient of the color image hardly change and keep large. When something which is not transparent, like human beings, etc., enters into the camera view, the correlation coefficient of the frequency image becomes small, as well as that of color image. Based on the difference of correlation coefficient between frequency image and color image in different situations, the thin smoke can be detected. Also, considering the movement of the thin smoke, miss detection caused by the illustration change or noise can be avoided. Several experiments in different situations are carried out, and the experimental results show the effect of the proposed method.
NASA Astrophysics Data System (ADS)
Yao, Jiming; Lin, Bin; Guo, Yu
2017-01-01
Different from common thin-walled workpiece, in the process of milling of large-size thin-walled workpiece chatter in the axial direction along the spindle is also likely to happen because of the low stiffness of the workpiece in this direction. An analytical method for prediction of stability lobes of milling of large-size thin-walled workpiece is presented in this paper. In the method, not only frequency response function of the tool point but also frequency response function of the workpiece is considered.
Wojcik, Thaddeus A.
1978-01-01
Two abutting members are locked together by reaming a hole entirely through one member and at least partly through the other, machining a circular groove in each through hole just below the surface of the member, press fitting a dowel pin having a thin wall extension on at least one end thereof into the hole in both members, a thin wall extension extending into each through hole, crimping or snapping the thin wall extension into the grooves to positively lock the dowel pin in place and, if necessary, tack welding the end of the thin-wall extension in place.
View of the rotunda extension and west wall of the ...
View of the rotunda extension and west wall of the north wing from the north. The damage visible in the photograph resulted from both general neglect and a destructive fire in February 2003 set by arsonists - U. S. Naval Asylum, Biddle Hall, Gray's Ferry Avenue, Philadelphia, Philadelphia County, PA
Interior view, firstfloor room connecting with the rotunda through the ...
Interior view, first-floor room connecting with the rotunda through the door at the center of its south wall and extending through to the south exterior wall of the rotunda extension, from the north. - U. S. Naval Asylum, Biddle Hall, Gray's Ferry Avenue, Philadelphia, Philadelphia County, PA
NASA Astrophysics Data System (ADS)
Crnomarkovic, Nenad; Belosevic, Srdjan; Tomanovic, Ivan; Milicevic, Aleksandar
2017-12-01
The effects of the number of significant figures (NSF) in the interpolation polynomial coefficients (IPCs) of the weighted sum of gray gases model (WSGM) on results of numerical investigations and WSGM optimization were investigated. The investigation was conducted using numerical simulations of the processes inside a pulverized coal-fired furnace. The radiative properties of the gas phase were determined using the simple gray gas model (SG), two-term WSGM (W2), and three-term WSGM (W3). Ten sets of the IPCs with the same NSF were formed for every weighting coefficient in both W2 and W3. The average and maximal relative difference values of the flame temperatures, wall temperatures, and wall heat fluxes were determined. The investigation showed that the results of numerical investigations were affected by the NSF unless it exceeded certain value. The increase in the NSF did not necessarily lead to WSGM optimization. The combination of the NSF (CNSF) was the necessary requirement for WSGM optimization.
ERIC Educational Resources Information Center
Glick, Andrea
2005-01-01
Gabi Swiatkowska is giving a tour of her studio, a dark basement in a narrow wood-frame house in Greenpoint, an old working-class neighborhood in Brooklyn, NY. Her large worktable sits in a corner, facing exposed pipes and gray cinder-block walls. Apart from a painting propped against a wall and a hanging poster, there's little to suggest an…
Early effect of two successive thinnings in western hemlock.
George R. Staebler
1957-01-01
The Hemlock Experimental Forest near Grays Harbor in western Washington was established in 1949 in cooperation with the St. Regis Paper Company. A major effort in this cooperative research program is a study of commercial thinning in a stand of nearly pure, well stocked, even-aged western hemlock that originated in 1903, after logging.
Optimization of an asymmetric thin-walled tube in rotary draw bending process
NASA Astrophysics Data System (ADS)
Xue, Xin; Liao, Juan; Vincze, Gabriela; Gracio, Jose J.
2013-12-01
The rotary draw bending is one of the advanced thin-walled tube forming processes with high efficiency, low consumption and good flexibility in several industries such as automotive, aerospace and shipping. However it may cause undesirable deformations such as over-thinning and ovalization, which bring the weakening of the strength and difficulties in the assembly process respectively. Accurate modeling and effective optimization design to eliminate or reduce undesirable deformations in tube bending process have been a challenging topic. In this paper, in order to study the deformation behaviors of an asymmetric thin-walled tube in rotary draw bending process, a 3D elastic-plastic finite element model has been built under the ABAQUS environment, and the reliability of the model is validated by comparison with experiment. Then, the deformation mechanism of thin-walled tube in bending process was briefly analysis and the effects of wall thickness ratio, section height width ratio and mandrel extension on wall thinning and ovalization in bending process were investigated by using Response Surface Methodology. Finally, multi-objective optimization method was used to obtain an optimum solution of design variables based on simulation results.
NASA Astrophysics Data System (ADS)
Liu, Yang; Zhang, Jian; Pang, Zhicong; Wu, Weihui
2018-04-01
Selective laser melting (SLM) provides a feasible way for manufacturing of complex thin-walled parts directly, however, the energy input during SLM process, namely derived from the laser power, scanning speed, layer thickness and scanning space, etc. has great influence on the thin wall's qualities. The aim of this work is to relate the thin wall's parameters (responses), namely track width, surface roughness and hardness to the process parameters considered in this research (laser power, scanning speed and layer thickness) and to find out the optimal manufacturing conditions. Design of experiment (DoE) was used by implementing composite central design to achieve better manufacturing qualities. Mathematical models derived from the statistical analysis were used to establish the relationships between the process parameters and the responses. Also, the effects of process parameters on each response were determined. Then, a numerical optimization was performed to find out the optimal process set at which the quality features are at their desired values. Based on this study, the relationship between process parameters and SLMed thin-walled structure was revealed and thus, the corresponding optimal process parameters can be used to manufactured thin-walled parts with high quality.
Linear motion feed through with thin wall rubber sealing element
NASA Astrophysics Data System (ADS)
Mikhailov, V. P.; Deulin, E. A.
2017-07-01
The patented linear motion feedthrough is based on elastic thin rubber walls usage being reinforced with analeptic string fixed in the middle part of the walls. The pneumatic or hydro actuators create linear movement of stock. The length of this movement is two times more the rubber wall length. This flexible wall is a sealing element of feedthrough. The main advantage of device is negligible resistance force that is less then mentioned one in sealing bellows that leads to positioning error decreasing. Nevertheless, the thin wall rubber sealing element (TRE) of the feedthrough is the main unreliable element that was the reason of this element longevity research. The theory and experimental results help to create equation for TRE longevity calculation under vacuum or extra high pressure difference action. The equation was used for TRE longevity determination for hydraulic or vacuum equipment realization also as it helps for gas flow being leaking through the cracks in thin walls of rubber sealing element of linear motion feedthrough calculation.
Nonlinear fracture mechanics-based analysis of thin wall cylinders
NASA Technical Reports Server (NTRS)
Brust, Frederick W.; Leis, Brian N.; Forte, Thomas P.
1994-01-01
This paper presents a simple analysis technique to predict the crack initiation, growth, and rupture of large-radius, R, to thickness, t, ratio (thin wall) cylinders. The method is formulated to deal both with stable tearing as well as fatigue mechanisms in applications to both surface and through-wall axial cracks, including interacting surface cracks. The method can also account for time-dependent effects. Validation of the model is provided by comparisons of predictions to more than forty full scale experiments of thin wall cylinders pressurized to failure.
Hong, Jin Yong; Yun, Hyuk Jin; Sunwoo, Mun Kyung; Ham, Jee Hyun; Lee, Jong-Min; Sohn, Young H.; Lee, Phil Hyu
2015-01-01
Pure akinesia with gait freezing (PAGF) is considered a clinical phenotype of progressive supranuclear palsy. The brain atrophy and cognitive deficits in PAGF are expected to be less prominent than in classical Richardson's syndrome (RS), but this hypothesis has not been explored yet. We reviewed the medical records of 28 patients with probable RS, 19 with PAGF, and 29 healthy controls, and compared cortical thickness, subcortical gray matter volume, and neuropsychological performance among the three groups. Patients with PAGF had thinner cortices in frontal, inferior parietal, and temporal areas compared with controls; however, areas of cortical thinning in PAGF patients were less extensive than those in RS patients. In PAGF patients, hippocampal, and thalamic volumes were also smaller than controls, whereas subcortical gray matter volumes in PAGF and RS patients were comparable. In a comparison of neuropsychological tests, PAGF patients had better cognitive performance in executive function, visual memory, and visuospatial function than RS patients had. These results demonstrate that cognitive impairment, cortical thinning, and subcortical gray matter atrophy in PAGF patients resemble to those in RS patients, though the severity of cortical thinning and cognitive dysfunction is milder. Our results suggest that, PAGF and RS may share same pathology but that it appears to affect a smaller proportion of the cortex in PAGF. PMID:26483680
NASA Astrophysics Data System (ADS)
Kong, C. H.; Zhao, X. L.; Hagiwara, I. R.
2018-02-01
As an effective and representative origami structure, reverse spiral origami structure can be capable to effectively take up energy in a crash test. The origami structure has origami creases thus this can guide the deformation of structure and avoid of Euler buckling. Even so the origami creases also weaken the support force and this may cut the absorption of crash energy. In order to increase the supporting capacity of the reverse spiral origami structure, we projected a new local thickening reverse spiral origami thin-wall construction. The reverse spiral origami thin-wall structure with thickening areas distributed along the longitudinal origami crease has a higher energy absorption capacity than the ordinary reverse spiral origami thin-wall structure.
Inflated Sporopollenin Exine Capsules Obtained from Thin-Walled Pollen
NASA Astrophysics Data System (ADS)
Park, Jae Hyeon; Seo, Jeongeun; Jackman, Joshua A.; Cho, Nam-Joon
2016-06-01
Sporopollenin is a physically robust and chemically resilient biopolymer that comprises the outermost layer of pollen walls and is the first line of defense against harsh environmental conditions. The unique physicochemical properties of sporopollenin increasingly motivate the extraction of sporopollenin exine capsules (SECs) from pollen walls as a renewable source of organic microcapsules for encapsulation applications. Despite the wide range of different pollen species with varying sizes and wall thicknesses, faithful extraction of pollen-mimetic SECs has been limited to thick-walled pollen capsules with rigid mechanical properties. There is an unmet need to develop methods for producing SECs from thin-walled pollen capsules which constitute a large fraction of all pollen species and have attractive materials properties such as greater aerosol dispersion. Herein, we report the first successful extraction of inflated SEC microcapsules from a thin-walled pollen species (Zea mays), thereby overcoming traditional challenges with mechanical stability and loss of microstructure. Morphological and compositional characterization of the SECs obtained by the newly developed extraction protocol confirms successful protein removal along with preservation of nanoscale architectural features. Looking forward, there is excellent potential to apply similar strategies across a wide range of unexplored thin-walled pollen species.
Inflated Sporopollenin Exine Capsules Obtained from Thin-Walled Pollen
Park, Jae Hyeon; Seo, Jeongeun; Jackman, Joshua A.; Cho, Nam-Joon
2016-01-01
Sporopollenin is a physically robust and chemically resilient biopolymer that comprises the outermost layer of pollen walls and is the first line of defense against harsh environmental conditions. The unique physicochemical properties of sporopollenin increasingly motivate the extraction of sporopollenin exine capsules (SECs) from pollen walls as a renewable source of organic microcapsules for encapsulation applications. Despite the wide range of different pollen species with varying sizes and wall thicknesses, faithful extraction of pollen-mimetic SECs has been limited to thick-walled pollen capsules with rigid mechanical properties. There is an unmet need to develop methods for producing SECs from thin-walled pollen capsules which constitute a large fraction of all pollen species and have attractive materials properties such as greater aerosol dispersion. Herein, we report the first successful extraction of inflated SEC microcapsules from a thin-walled pollen species (Zea mays), thereby overcoming traditional challenges with mechanical stability and loss of microstructure. Morphological and compositional characterization of the SECs obtained by the newly developed extraction protocol confirms successful protein removal along with preservation of nanoscale architectural features. Looking forward, there is excellent potential to apply similar strategies across a wide range of unexplored thin-walled pollen species. PMID:27302853
Vesicular thick-walled swollen hyphae in pulmonary zygomycosis.
Kimura, Masatomo; Ito, Hiroyuki
2009-03-01
An autopsy case of pulmonary zygomycosis in a patient with rheumatoid arthritis on immunosuppressive therapy is presented herein. There was a pulmonary cavitated infarct caused by mycotic thrombosis. Thin-walled narrow hyphae and vesicular thick-walled swollen hyphae were found on the pleural surface and in the necrotic tissue at the periphery of the cavity. Findings of such shaped fungal elements may cause erroneous histopathological diagnosis because pauciseptate broad thin-walled hyphae are usually the only detectable fungal elements in zygomycosis tissue. Although immunohistochemistry confirmed these unusual elements to be zygomycetous in the present case, it is important for the differential diagnosis to be aware that zygomycetes can form thin narrow hyphae and vesicular thick-walled swollen hyphae.
An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Wenjun, E-mail: sun_wenjun@iapcm.ac.cn; Jiang, Song, E-mail: jiang@iapcm.ac.cn; Xu, Kun, E-mail: makxu@ust.hk
The solutions of radiative transport equations can cover both optical thin and optical thick regimes due to the large variation of photon's mean-free path and its interaction with the material. In the small mean free path limit, the nonlinear time-dependent radiative transfer equations can converge to an equilibrium diffusion equation due to the intensive interaction between radiation and material. In the optical thin limit, the photon free transport mechanism will emerge. In this paper, we are going to develop an accurate and robust asymptotic preserving unified gas kinetic scheme (AP-UGKS) for the gray radiative transfer equations, where the radiation transportmore » equation is coupled with the material thermal energy equation. The current work is based on the UGKS framework for the rarefied gas dynamics [14], and is an extension of a recent work [12] from a one-dimensional linear radiation transport equation to a nonlinear two-dimensional gray radiative system. The newly developed scheme has the asymptotic preserving (AP) property in the optically thick regime in the capturing of diffusive solution without using a cell size being smaller than the photon's mean free path and time step being less than the photon collision time. Besides the diffusion limit, the scheme can capture the exact solution in the optical thin regime as well. The current scheme is a finite volume method. Due to the direct modeling for the time evolution solution of the interface radiative intensity, a smooth transition of the transport physics from optical thin to optical thick can be accurately recovered. Many numerical examples are included to validate the current approach.« less
Cooling circuit for steam and air-cooled turbine nozzle stage
Itzel, Gary Michael; Yu, Yufeng
2002-01-01
The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.
Strength Tests on Thin-walled Duralumin Cylinders in Torsion
NASA Technical Reports Server (NTRS)
Lundquist, Eugene E
1932-01-01
This report is the first of a series presenting the results of strength tests on thin-walled cylinders and truncated cones of circular and elliptical section; it comprises the results obtained to date from torsion (pure shear) tests on 65 thin-walled duralumin cylinders of circular section with ends clamped to rigid bulkheads. The effect of variations in the length/radius and radius/thickness ratios on the type of failure is indicated, and a semi-empirical equation for the shearing stress at maximum load is given.
Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas
2018-04-23
How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.
Electroless-plating technique for fabricating thin-wall convective heat-transfer models
NASA Technical Reports Server (NTRS)
Avery, D. E.; Ballard, G. K.; Wilson, M. L.
1984-01-01
A technique for fabricating uniform thin-wall metallic heat-transfer models and which simulates a Shuttle thermal protection system tile is described. Two 6- by 6- by 2.5-in. tiles were fabricated to obtain local heat transfer rates. The fabrication process is not limited to any particular geometry and results in a seamless thin-wall heat-transfer model which uses a one-wire thermocouple to obtain local cold-wall heat-transfer rates. The tile is relatively fragile because of the brittle nature of the material and the structural weakness of the flat-sided configuration; however, a method was developed and used for repairing a cracked tile.
Cortical and subcortical gray matter bases of cognitive deficits in REM sleep behavior disorder.
Rahayel, Shady; Postuma, Ronald B; Montplaisir, Jacques; Génier Marchand, Daphné; Escudier, Frédérique; Gaubert, Malo; Bourgouin, Pierre-Alexandre; Carrier, Julie; Monchi, Oury; Joubert, Sven; Blanc, Frédéric; Gagnon, Jean-François
2018-05-15
To investigate cortical and subcortical gray matter abnormalities underlying cognitive impairment in patients with REM sleep behavior disorder (RBD) with or without mild cognitive impairment (MCI). Fifty-two patients with RBD, including 17 patients with MCI, were recruited and compared to 41 controls. All participants underwent extensive clinical assessments, neuropsychological examination, and 3-tesla MRI acquisition of T1 anatomical images. Vertex-based cortical analyses of volume, thickness, and surface area were performed to investigate cortical abnormalities between groups, whereas vertex-based shape analysis was performed to investigate subcortical structure surfaces. Correlations were performed to investigate associations between cortical and subcortical metrics, cognitive domains, and other markers of neurodegeneration (color discrimination, olfaction, and autonomic measures). Patients with MCI had cortical thinning in the frontal, cingulate, temporal, and occipital cortices, and abnormal surface contraction in the lenticular nucleus and thalamus. Patients without MCI had cortical thinning restricted to the frontal cortex. Lower patient performance in cognitive domains was associated with cortical and subcortical abnormalities. Moreover, impaired performance on olfaction, color discrimination, and autonomic measures was associated with thinning in the occipital lobe. Cortical and subcortical gray matter abnormalities are associated with cognitive status in patients with RBD, with more extensive patterns in patients with MCI. Our results highlight the importance of distinguishing between subgroups of patients with RBD according to cognitive status in order to better understand the neurodegenerative process in this population. © 2018 American Academy of Neurology.
High fidelity chemistry and radiation modeling for oxy -- combustion scenarios
NASA Astrophysics Data System (ADS)
Abdul Sater, Hassan A.
To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy Dissipation Concept (EDC) employing a 41-step detailed chemistry mechanism, the non-adiabatic extension of the equilibrium Probability Density Function (PDF) based mixture-fraction model and a two-step global finite rate chemistry model with modified rate constants proposed to work well in oxy-methane flames. Based on the results from this section, the equilibrium PDF model in conjunction with a high-fidelity non-gray model for the radiative properties of the gas-phase may be deemed as accurate to capture the major gas species concentrations, temperatures and flame lengths in oxy-methane flames. The third section examines the variations in radiative transfer predictions due to the choice of chemistry and gas-phase radiative property models. The radiative properties were estimated employing four weighted-sum-of-gray-gases models (WSGGM) that were formulated employing different spectroscopic/model databases. An average variation of 14 -- 17% in the wall incident radiative fluxes was observed between the EDC and equilibrium mixture fraction chemistry models, due to differences in their temperature predictions within the flame. One-dimensional, line-of-sight radiation calculations showed a 15 -- 25 % reduction in the directional radiative fluxes at lower axial locations as a result of ignoring radiation from CO and CH4. Under the constraints of fixed temperature and species distributions, the flame radiant power estimates and average wall incident radiative fluxes varied by nearly 60% and 11% respectively among the different WSGG models.
Earth Observation taken during the Expedition 37 mission
2013-09-30
ISS037-E-005104 (2 Oct. 2013) --- Upsala Glacier Retreat and Patagonia Icefield are featured in this image photographed by an Expedition 37 crew member on the International Space Station. This photograph highlights the snout of the Upsala Glacier (49.88S 73.3W) on the Argentine side of the North Patagonian Icefield. Ice flow in this glacier (white mass, left) is from the north (left). Dark lines of rocky moraine within the ice give a sense of the slow ice flow from left to right. A smaller side glacier joins Upsala at the present-day ice front—the wall from which masses of ice periodically collapse into Lake Argentino. In this image the 2.75-kilometer-long wall casts a thin, dark shadow. The surface of Lake Argentino is whitened by a mass of ice debris from a recent collapse of the ice wall. Larger icebergs that have calved appear as white dots on the lake surface at right. Remotely sensed data, including detailed astronaut images such as this, have recorded the position of the ice front over the years. Even though the ice actually flows slowly southward, comparison of this October 2013 image with older data (not shown) indicates that the ice wall of the glacier has moved backwards—upstream—an average of 3.6 kilometers since early 2002. This so-called “retreat” is believed by scientists to indicate local climatic warming in this part of South America. The warming not only causes the ice front to retreat but more importantly, causes overall thinning of the glacier ice mass, as a study of 63 glaciers in Patagonia has shown is now a general trend (Rignot et al. 2003). Ice-front retreat is now known to be related to volumetric loss due to melting. Water color is related to glacier flow. Lake Argentino receives most of the ice from the glacier and thus also receives most of the “rock flour” (rocks ground to white powder by the ice scraping against the rock floor of the valley) from underneath the glacier. Glacial flour turns the lake water a gray-green hue in this image. The darker blue of the smaller lakes (top) indicates that they are receiving much less rock flour.
Free vibrations of thin-walled semicircular graphite-epoxy composite frames
NASA Technical Reports Server (NTRS)
Carden, Huey D.; Noor, Ahmed K.; Peters, Jeanne M.
1990-01-01
A detailed study is made of the effects of variations in lamination and material parameters of thin walled composite frames on their vibrational characteristics. The structures considered are semicircular thin walled frames with I and J sections. The flanges and webs of the frames are modeled by using 2-D shell and plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frame. The frequencies and modes predicted by the 2-D finite element model are compared with those obtained from experiments, as well as with the predictions of a non-dimensional thin walled beam finite element model. A detailed study is made of the sensitivity of the vibrational response to variations in the fiber orientation, material properties of the individual layers, and boundary conditions.
Free vibrations of thin-walled semicircular graphite-epoxy composite frames
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Carden, Huey D.; Peters, Jeanne M.
1990-01-01
A detailed study is made of the effects of variations in lamination and material parameters of thin walled composite frames on their vibrational characteristics. The structures considered are semicircular thin walled frames with I and J sections. The flanges and webs of the frames are modelled by using 2-D shell and plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frames. The frequencies and modes predicted by the 2-D finite element model are compared with those obtained from experiments, as well as with the predictions of a 1-D thin walled beam finite element model. A detailed study is made of the sensitivity of the vibrational response to variations in the fiber orientation, material properties of the individual layers, and boundary conditions.
Fem and Experimental Analysis of Thin-Walled Composite Elements Under Compression
NASA Astrophysics Data System (ADS)
Różyło, P.; Wysmulski, P.; Falkowicz, K.
2017-05-01
Thin-walled steel elements in the form of openwork columns with variable geometrical parameters of holes were studied. The samples of thin-walled composite columns were modelled numerically. They were subjected to axial compression to examine their behavior in the critical and post-critical state. The numerical models were articulately supported on the upper and lower edges of the cross-section of the profiles. The numerical analysis was conducted only with respect to the non-linear stability of the structure. The FEM analysis was performed until the material achieved its yield stress. This was done to force the loss of stability by the structures. The numerical analysis was performed using the ABAQUS® software. The numerical analysis was performed only for the elastic range to ensure the operating stability of the tested thin-walled structures.
Calero-Bernal, Rafael; Cerqueira-Cézar, Camila K; Verma, Shiv Kumar; Mowery, Joseph; Carmena, David; Beckmen, Kimberlee; Dubey, Jitender P
2016-07-01
Sarcocystis sarcocysts are common in muscles of herbivores but are rare in muscles of carnivores. Here, we report sarcocysts in the muscles of a gray wolf (Canis lupus) from Alaska, USA, for the first time. Sarcocysts extracted from the tongue of the wolf were up to 900 μm long and slender and appeared to have a relatively thin wall by light microscope. By transmission electron microscopy, the sarcocyst wall most closely resembled "type 9c," and had a wavy parasitophorous vacuolar membrane folded as pleomorphic villar protrusions (vp), with anastomoses of tips. The vp and the ground substance (gs) layer were smooth without tubules or granules. The gs was up to 2.0 μm thick. The total width of the wall including vp and the gs was 3.5 μm. The vp were up to 1.5 μm long. Mature sarcocysts contained numerous bradyzoites and few metrocytes. The bradyzoites were 9.5 μm long and 1.5 μm wide, and contained all organelles found in Sarcocystis bradyzoites with at least two rhoptries. Molecular characterization showed the highest identity for 18S rRNA, 28S rRNA, ITS-1, and cox1 sequences of Sarcocystis arctica of the Arctic fox (Vulpes lagopus) from Norway. The ultrastructure of S. arctica from the fox is unknown. Here, we provide ultrastructure of S. arctica from the Alaskan wolf for the first time. The definitive host of S. arctica remains unknown.
Luby, Joan L; Belden, Andy C; Jackson, Joshua J; Lessov-Schlaggar, Christina N; Harms, Michael P; Tillman, Rebecca; Botteron, Kelly; Whalen, Diana; Barch, Deanna M
2016-01-01
The trajectory of cortical gray matter development in childhood has been characterized by early neurogenesis and volume increase, peaking at puberty followed by selective elimination and myelination, resulting in volume loss and thinning. This inverted U-shaped trajectory, as well as cortical thickness, has been associated with cognitive and emotional function. Synaptic pruning-based volume decline has been related to experience-dependent plasticity in animals. To date, there have been no data to inform whether and how childhood depression might be associated with this trajectory. To examine the effects of early childhood depression, from the preschool age to the school age period, on cortical gray matter development measured across 3 waves of neuroimaging from late school age to early adolescence. Data were collected in an academic research setting from September 22, 2003, to December 13, 2014, on 193 children aged 3 to 6 years from the St Louis, Missouri, metropolitan area who were observed for up to 11 years in a longitudinal behavioral and neuroimaging study of childhood depression. Multilevel modeling was applied to explore the association between the number of childhood depression symptoms and prior diagnosis of major depressive disorder and the trajectory of gray matter change across 3 scan waves. Data analysis was conducted from October 29, 2014, to September 28, 2015. Volume, thickness, and surface area of cortical gray matter measured using structural magnetic resonance imaging at 3 scan waves. Of the 193 children, 90 had a diagnosis of major depressive disorder; 116 children had 3 full waves of neuroimaging scans. Findings demonstrated marked alterations in cortical gray matter volume loss (slope estimate, -0.93 cm³; 95% CI, -1.75 to -0.10 cm³ per scan wave) and thinning (slope estimate, -0.0044 mm; 95% CI, -0.0077 to -0.0012 mm per scan wave) associated with experiencing an episode of major depressive disorder before the first magnetic resonance imaging scan. In contrast, no significant associations were found between development of gray matter and family history of depression or experiences of traumatic or stressful life events during this period. This study demonstrates an association between early childhood depression and the trajectory of cortical gray matter development in late school age and early adolescence. These findings underscore the significance of early childhood depression on alterations in neural development.
Thin-walled reinforcement lattice structure for hollow CMC buckets
de Diego, Peter
2017-06-27
A hollow ceramic matrix composite (CMC) turbine bucket with an internal reinforcement lattice structure has improved vibration properties and stiffness. The lattice structure is formed of thin-walled plies made of CMC. The wall structures are arranged and located according to high stress areas within the hollow bucket. After the melt infiltration process, the mandrels melt away, leaving the wall structure to become the internal lattice reinforcement structure of the bucket.
Method of fabricating thin-walled articles of tungsten-nickel-iron alloy
Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.
1982-01-01
The present invention relates to a method for fabricating thin-walled high-density structures oftungsten-nickel-iron alloys. A powdered blend of the selected alloy constituents is plasma sprayed onto a mandrel having the desired article configuration. The sprayed deposit is removed from the mandrel and subjected to liquid phase sintering to provide the alloyed structure. The formation of the thin-walled structure by plasma spraying significantly reduces shrinkage, and cracking while increasing physical properties of the structure over that obtainable by employing previously known powder metallurgical procedures.
Vibrational behavior of adaptive aircraft wing structures modelled as composite thin-walled beams
NASA Technical Reports Server (NTRS)
Song, O.; Librescu, L.; Rogers, C. A.
1992-01-01
The vibrational behavior of cantilevered aircraft wings modeled as thin-walled beams and incorporating piezoelectric effects is studied. Based on the converse piezoelectric effect, the system of piezoelectric actuators conveniently located on the wing yield the control of its associated vertical and lateral bending eigenfrequencies. The possibility revealed by this study enabling one to increase adaptively the eigenfrequencies of thin-walled cantilevered beams could play a significant role in the control of the dynamic response and flutter of wing and rotor blade structures.
Method of fabricating thin-walled articles of tungsten-nickel-iron alloy
Hovis, V.M. Jr.; Northcutt, W.G. Jr.
The present invention relates to a method for fabricating thin-walled high-density structures of tungsten-nickel-iron alloys. A powdered blend of the selected alloy constituents is plasma sprayed onto a mandrel having the desired article configuration. The sprayed deposit is removed from the mandrel and subjected to liquid phase sintering to provide the alloyed structure. The formation of the thin-walled structure by plasma spraying significantly reduces shrinkage, and cracking while increasing physical properties of the structure over that obtainable by employing previously known powder metallurgical procedures.
Stability of Thin-Walled Tubes Under Torsion
NASA Technical Reports Server (NTRS)
Donnell, L H
1935-01-01
In this report a theoretical solution is developed for the torsion on a round thin-walled tube for which the walls become unstable. The results of this theory are given by a few simple formulas and curves which cover all cases. The differential equations of equilibrium are derived in a simpler form than previously found, it being shown that many items can be neglected.
2011-01-01
Background Chest wall injury after stereotactic radiotherapy (SRT) for primary lung cancer has recently been reported. However, its detailed imaging findings are not clarified. So this study aimed to fully characterize the findings on computed tomography (CT), appearance time and frequency of chest wall injury after stereotactic radiotherapy (SRT) for primary lung cancer Materials and methods A total of 177 patients who had undergone SRT were prospectively evaluated for periodical follow-up thin-section CT with special attention to chest wall injury. The time at which CT findings of chest wall injury appeared was assessed. Related clinical symptoms were also evaluated. Results Rib fracture was identified on follow-up CT in 41 patients (23.2%). Rib fractures appeared at a mean of 21.2 months after the completion of SRT (range, 4 -58 months). Chest wall edema, thinning of the cortex and osteosclerosis were findings frequently associated with, and tending to precede rib fractures. No patients with rib fracture showed tumors > 16 mm from the adjacent chest wall. Chest wall pain was seen in 18 of 177 patients (10.2%), of whom 14 patients developed rib fracture. No patients complained of Grade 3 or more symptoms. Conclusion Rib fracture is frequently seen after SRT for lung cancer on CT, and is often associated with chest wall edema, thinning of the cortex and osteosclerosis. However, related chest wall pain is less frequent and is generally mild if present. PMID:21995807
On the interpretation of combined torsion and tension tests of thin-wall tubes
NASA Technical Reports Server (NTRS)
Prager, W
1948-01-01
General ways of testing thin-wall tubes under combined tension and torsion as a means of checking the various theories of plasticity are discussed. Suggestions also are given for the interpretation of the tests.
Spirit Studies Rock Outcrop at Home Plate
2006-03-06
This image shows two flat-topped, layered rocks with angular edges almost side by side, except they are separated by a smaller rock and two thin channels of reddish-brown sand. The bare rock surfaces are a light blue-gray
Shastry, Tejas A; Seo, Jung-Woo T; Lopez, Josue J; Arnold, Heather N; Kelter, Jacob Z; Sangwan, Vinod K; Lauhon, Lincoln J; Marks, Tobin J; Hersam, Mark C
2013-01-14
By varying the evaporation conditions and the nanotube and surfactant concentrations, large-area, aligned single-walled carbon nanotube (SWCNT) thin films are fabricated from electronically monodisperse SWCNT solutions by evaporation-driven self-assembly with precise control over the thin film growth geometry. Tunability is possible from 0.5 μm stripes to continuous thin films. The resulting SWCNT thin films possess highly anisotropic electrical and optical properties that are well suited for transparent conductor applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Oocyst structure and problem of coccidian taxonomy].
Beĭer, T B; Svezhova, N V; Sidorenko, N V
2001-01-01
A comparative ultrastructural study was made of both thin- and thick-walled oocysts of Cryptosporidium parvum. According to the authors' findings, all the oocysts in C. parvum should be considered as thin-walled, since their walls have been composed of a single membrane or of two, closely apposed membranes without any additional substance in between. Despite the presence of two types of wall-forming bodies (WFB) in the maturing macrogamete or zygote, there is no evidence of their involvement in oocyst wall formation. In this concern, the function and destiny of WFB in C. parvum oocysts still remain obscure. Similar structure of the oocysts wall was reported elsewhere for thin-walled oocysts of fish coccidia of the genera Goussia and Eimeria. In C. parvum, the "thick-walled" oocysts differ from oocysts with thin walls in the availability in the former of a single sporocyst. The sporocyst wall consists of two unequal layers: a thin outer layer and a thicker inner one, in which a characteristic suture line is occasionally seen. By this feature the thick-walled oocysts of C. parvum bear similarities with oocysts of the cyst-forming coccidia (Cystoisospora, Toxoplasma, Sarcocystis) and of the genus Goussia: in all these the valves making up the sporocyst wall are joint just along the suture line. The literary and the authors' own data make it possible to suppose that the suture detected in C. parvum oocysts is located in the sporocyst wall, joining its valves, rather than in the oocyst wall proper, known to be composed of one or two, closely apposed unit membranes. Again, the availability of a suture (or sutures) in the sporocyst hardly provides enough reason to relate C. parvum with either cyst-forming, or fish coccidia, since this structure itself may be of a convergency character, rather than of systematic value. This may be substantiated, at least in part, by the authors' previous findings (Beyer, Sidorenko, 1984) of a similar structure, originally referred to as a "slit channel", in the intraerythrocytic capsule around gamont stage of haemogregarines--the adeleid coccidia of the genus Karyolysus. The suture-like structure could have originated in the evolution independently in different groups of parasitic protozoa to serve eventually as a suitable mechanism for immediate separation of elements involved in protective formation harbouring different developmental stages, including, for example, sporozoites in the eimeriid coccidia, or gamonts in the adeleid coccidia.
Finite element modelling of AA6063T52 thin-walled tubes under quasi-static axial loading
NASA Astrophysics Data System (ADS)
Othman, A.; Ismail, AE
2018-04-01
The behavior of aluminum alloy 6063T52 thin walled tubes have been present in this paper to determine absorbed energy under quasi-static axial loading. The correlation and comparison have been implemented for each experimental and finite element analysis results, respectively. Wall-thickness of 1.6 and 1.9 mm were selected and all specimen tested under room temperature standard. The length of each specimen were fixed at 125 mm as well as diameter as well as a width and diameter of the tube at 50.8 mm. The two types of tubular cross-section were examined whereas a round and square thin-walled profiles. The specific absorbed energy (SEA) and crush force efficiency (CFE) were analyzed for each specimen and model to see the behavior induced to failure under progressive collapse. Result showed that a correlation less than 5% different between both of comparison experimental and finite element model. It has been found that the thin walled round tube absorbed more energy rather than square profile in term of specific energy with both of either 1.6 or 1.9 of 23.93% and 35.36%, respectively. Overall for crush force efficiency (CFE) of each tube profile around 0.42 to 0.58 value. Indicated that the all specimen profile fail under progressive damage. The calibration between deformed model and experimental specimen were examined and discussed. It was found that the similarity failure mechanism observed for each thin walled profiles.
Cao, Xuan; Chen, Haitian; Gu, Xiaofei; Liu, Bilu; Wang, Wenli; Cao, Yu; Wu, Fanqi; Zhou, Chongwu
2014-12-23
Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V(-1) s(-1), on/off ratio of 10(4)∼10(5), minimal hysteresis, and low operation voltage (<10 V). In addition, outstanding mechanical flexibility of printed nanotube thin-film transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics.
NASA Astrophysics Data System (ADS)
Panasenko, N. N.; Sinelschikov, A. V.
2017-11-01
One of the main stages in the analysis of complex 3D structures and engineering constructions made of thin-walled open bars using FEM is a stiffness matrix developing. Taking into account middle surface shear deformation caused by the work of tangential stresses in the formula to calculate a potential energy of thin-walled open bars, the authors obtain an important correction at calculation of the bar deformation and fundamental frequencies. The results of the analysis of the free end buckling of a cantilever H-bar under plane bending differ from exact solution by 0.53%. In the course of comparison of the obtained results with the cantilever bar buckling regardless the middle surface shear deformation, an increase made 16.6%. The stiffness matrix of a thin-walled open bar developed in the present work can be integrated into any software suite using FEM for the analysis of complex 3-D structures and engineering constructions with n-freedoms.
Numerical study on injection parameters optimization of thin wall and biodegradable polymers parts
NASA Astrophysics Data System (ADS)
Santos, C.; Mendes, A.; Carreira, P.; Mateus, A.; Malça, C.
2017-07-01
Nowadays, the molds industry searches new markets, with diversified and added value products. The concept associated to the production of thin walled and biodegradable parts mostly manufactured by injection process has assumed a relevant importance due to environmental and economic factors. The growth of a global consciousness about the harmful effects of the conventional polymers in our life quality associated with the legislation imposed, become key factors for the choice of a particular product by the consumer. The target of this work is to provide an integrated solution for the injection of parts with thin walls and manufactured using biodegradable materials. This integrated solution includes the design and manufacture processes of the mold as well as to find the optimum values for the injection parameters in order to become the process effective and competitive. For this, the Moldflow software was used. It was demonstrated that this computational tool provides an effective responsiveness and it can constitute an important tool in supporting the injection molding of thin-walled and biodegradable parts.
NASA Astrophysics Data System (ADS)
Finkel, Peter
2008-03-01
We report on new nondestructive evaluation technique based on electromagnetic modulation of ultrasonic signal for detection of the small crack, flaws and inclusions in thin-walled parts. The electromagnetically induced high density current pulse produces stresses which alter the ultrasonic waves scanning the part with the defect and modulate ultrasonic signal. The excited electromagnetic field can produces crack-opening due to Lorentz forces that increase the ultrasonic reflection. The Joule heating associated with the high density current, and consequent thermal stresses may cause both crack-closure, as well as crack-opening, depending on various factors. Experimental data is presented here for the case of a small crack near holes in thin-walled structures. The measurements were taken at 2-10 MHz with a Lamb wave wedge transducer. It is shown that electromagnetic transient modulation of the ultrasonic echo pulse tone-burst suggest that this method could be used to enhance detection of small cracks and ferromagnetic inclusions in thin walled metallic structures.
Energy conditions and junction conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marolf, Donald; Yaida, Sho; Mathematics Department, UCSB, Santa Barbara, California 93106
2005-08-15
We consider the familiar junction conditions described by Israel for thin timelike walls in Einstein-Hilbert gravity. One such condition requires the induced metric to be continuous across the wall. Now, there are many spacetimes with sources confined to a thin wall for which this condition is violated and the Israel formalism does not apply. However, we explore the conjecture that the induced metric is in fact continuous for any thin wall which models spacetimes containing only positive energy matter. Thus, the usual junction conditions would hold for all positive energy spacetimes. This conjecture is proven in various special cases, includingmore » the case of static spacetimes with spherical or planar symmetry as well as settings without symmetry which may be sufficiently well approximated by smooth spacetimes with well-behaved null geodesic congruences.« less
The Pack Method for Compressive Tests of Thin Specimens of Materials Used in Thin-Wall Structures
NASA Technical Reports Server (NTRS)
Aitchison, C S; Tuckerman, L B
1939-01-01
The strength of modern lightweight thin-wall structures is generally limited by the strength of the compression members. An adequate design of these members requires a knowledge of the compressive stress-strain graph of the thin-wall material. The "pack" method was developed at the National Bureau of Standards with the support of the National Advisory Committee for Aeronautics to make possible a determination of compressive stress-strain graphs for such material. In the pack test an odd number of specimens are assembled into a relatively stable pack, like a "pack of cards." Additional lateral stability is obtained from lateral supports between the external sheet faces of the pack and outside reactions. The tests seems adequate for many problems in structural research.
Histogram-based adaptive gray level scaling for texture feature classification of colorectal polyps
NASA Astrophysics Data System (ADS)
Pomeroy, Marc; Lu, Hongbing; Pickhardt, Perry J.; Liang, Zhengrong
2018-02-01
Texture features have played an ever increasing role in computer aided detection (CADe) and diagnosis (CADx) methods since their inception. Texture features are often used as a method of false positive reduction for CADe packages, especially for detecting colorectal polyps and distinguishing them from falsely tagged residual stool and healthy colon wall folds. While texture features have shown great success there, the performance of texture features for CADx have lagged behind primarily because of the more similar features among different polyps types. In this paper, we present an adaptive gray level scaling and compare it to the conventional equal-spacing of gray level bins. We use a dataset taken from computed tomography colonography patients, with 392 polyp regions of interest (ROIs) identified and have a confirmed diagnosis through pathology. Using the histogram information from the entire ROI dataset, we generate the gray level bins such that each bin contains roughly the same number of voxels Each image ROI is the scaled down to two different numbers of gray levels, using both an equal spacing of Hounsfield units for each bin, and our adaptive method. We compute a set of texture features from the scaled images including 30 gray level co-occurrence matrix (GLCM) features and 11 gray level run length matrix (GLRLM) features. Using a random forest classifier to distinguish between hyperplastic polyps and all others (adenomas and adenocarcinomas), we find that the adaptive gray level scaling can improve performance based on the area under the receiver operating characteristic curve by up to 4.6%.
Validation of a Solid Rocket Motor Internal Environment Model
NASA Technical Reports Server (NTRS)
Martin, Heath T.
2017-01-01
In a prior effort, a thermal/fluid model of the interior of Penn State University's laboratory-scale Insulation Test Motor (ITM) was constructed to predict both the convective and radiative heat transfer to the interior walls of the ITM with a minimum of empiricism. These predictions were then compared to values of total and radiative heat flux measured in a previous series of ITM test firings to assess the capabilities and shortcomings of the chosen modeling approach. Though the calculated fluxes reasonably agreed with those measured during testing, this exercise revealed means of improving the fidelity of the model to, in the case of the thermal radiation, enable direct comparison of the measured and calculated fluxes and, for the total heat flux, compute a value indicative of the average measured condition. By replacing the P1-Approximation with the discrete ordinates (DO) model for the solution of the gray radiative transfer equation, the radiation intensity field in the optically thin region near the radiometer is accurately estimated, allowing the thermal radiation flux to be calculated on the heat-flux sensor itself, which was then compared directly to the measured values. Though the fully coupling the wall thermal response with the flow model was not attempted due to the excessive computational time required, a separate wall thermal response model was used to better estimate the average temperature of the graphite surfaces upstream of the heat flux gauges and improve the accuracy of both the total and radiative heat flux computations. The success of this modeling approach increases confidence in the ability of state-of-the-art thermal and fluid modeling to accurately predict SRM internal environments, offers corrections to older methods, and supplies a tool for further studies of the dynamics of SRM interiors.
One-dimensional analysis of filamentary composite beam columns with thin-walled open sections
NASA Technical Reports Server (NTRS)
Lo, Patrick K.-L.; Johnson, Eric R.
1986-01-01
Vlasov's one-dimensional structural theory for thin-walled open section bars was originally developed and used for metallic elements. The theory was recently extended to laminated bars fabricated from advanced composite materials. The purpose of this research is to provide a study and assessment of the extended theory. The focus is on flexural and torsional-flexural buckling of thin-walled, open section, laminated composite columns. Buckling loads are computed from the theory using a linear bifurcation analysis and a geometrically nonlinear beam column analysis by the finite element method. Results from the analyses are compared to available test data.
NASA Astrophysics Data System (ADS)
Librescu, Liviu; Song, Ohseop
1991-11-01
Several results concerning the refined theory of thin-walled beams of arbitrary closed cross-section incorporating nonclassical effects are presented. These effects are related both with the exotic properties characterizing the advanced composite material structures and the nonuniform torsional model. A special case of the general equations is used to study several problems of cantilevered thin-walled beams and to assess the influence of the incorporated effects. The results presented in this paper could be useful toward a more rational design of aeronautical or aerospace constructions, as well as of helicopter or tilt rotor blades constructed of advanced composite materials.
Isotropic thin-walled pressure vessel experiment
NASA Technical Reports Server (NTRS)
Denton, Nancy L.; Hillsman, Vernon S.
1992-01-01
The objectives are: (1) to investigate the stress and strain distributions on the surface of a thin walled cylinder subject to internal pressure and/or axial load; and (2) to relate stress and strain distributions to material properties and cylinder geometry. The experiment, supplies, and procedure are presented.
77 FR 41457 - Aging Management Associated With Wall Thinning Due to Erosion Mechanisms
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0170] Aging Management Associated With Wall Thinning Due... management program (AMP) in NUREG-1801, Revision 2, ``Generic Aging Lessons Learned (GALL) Report,'' and the NRC staff's aging management review procedure and acceptance criteria contained in NUREG-1800...
Solid oxide fuel cell having monolithic core
Ackerman, John P.; Young, John E.
1984-01-01
A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick.
Near-wall turbulence alteration through thin streamwise riblets
NASA Technical Reports Server (NTRS)
Wilkinson, Stephen P.; Lazos, Barry S.
1987-01-01
The possibility of improving the level of drag reduction associated with near-wall riblets is considered. The methodology involves the use of a hot-wire anemometer to study various surface geometries on small, easily constructed models. These models consist of small, adjacent rectangular channels on the wall aligned in the streamwise direction. The VITA technique is modified and applied to thin-element-array and smooth flat-plate data and the results are indicated schematically.
NASA Astrophysics Data System (ADS)
Linek, M.; Jungmann, M.; Berlage, T.; Clauser, C.
2005-12-01
Within the Ocean Drilling Program (ODP), image logging tools have been routinely deployed such as the Formation MicroScanner (FMS) or the Resistivity-At-Bit (RAB) tools. Both logging methods are based on resistivity measurements at the borehole wall and therefore are sensitive to conductivity contrasts, which are mapped in color scale images. These images are commonly used to study the structure of the sedimentary rocks and the oceanic crust (petrologic fabric, fractures, veins, etc.). So far, mapping of lithology from electrical images is purely based on visual inspection and subjective interpretation. We apply digital image analysis on electrical borehole wall images in order to develop a method, which augments objective rock identification. We focus on supervised textural pattern recognition which studies the spatial gray level distribution with respect to certain rock types. FMS image intervals of rock classes known from core data are taken in order to train textural characteristics for each class. A so-called gray level co-occurrence matrix is computed by counting the occurrence of a pair of gray levels that are a certain distant apart. Once the matrix for an image interval is computed, we calculate the image contrast, homogeneity, energy, and entropy. We assign characteristic textural features to different rock types by reducing the image information into a small set of descriptive features. Once a discriminating set of texture features for each rock type is found, we are able to discriminate the entire FMS images regarding the trained rock type classification. A rock classification based on texture features enables quantitative lithology mapping and is characterized by a high repeatability, in contrast to a purely visual subjective image interpretation. We show examples for the rock classification between breccias, pillows, massive units, and horizontally bedded tuffs based on ODP image data.
Method of fabricating an article with cavities. [with thin bottom walls
NASA Technical Reports Server (NTRS)
Dale, W. J.; Jurscaga, G. M. (Inventor)
1974-01-01
An article having a cavity with a thin bottom wall is provided by assembling a thin sheet, for example, a metal sheet, adjacent to the surface of a member having one or more apertures. A bonding adhesive is interposed between the thin sheet and the subadjacent member, and the thin sheet is subjected to a high fluid pressure. In order to prevent the differential pressure from being exerted against the thin sheet, the aperture is filled with a plug of solid material having a linear coefficient of thermal expansion higher than that of the member. When the assembly is subjected to pressure, the material is heated to a temperature such that its expansion exerts a pressure against the thin sheet thus reducing the differential pressure.
Extrusion of small-diameter, thin-wall tungsten tubing
NASA Technical Reports Server (NTRS)
Blankenship, C. P.; Gyorgak, C. A.
1967-01-01
Small-diameter, thin-wall seamless tubing of tungsten has been fabricated in lengths of up to 10 feet by hot extrusion over a floating mandrel. Extrusion of 0.50-inch-diameter tubing over 0.4-inch-diameter mandrels was accomplished at temperatures ranging from 3000 degrees to 4000 degrees F.
Simple method for forming thin-wall pressure vessels
NASA Technical Reports Server (NTRS)
Erickson, A. L.; Guist, L. R.
1972-01-01
Application of internal hydrostatic pressure to seam-welded circular cylindrical tanks having corner-welded, flat, circular ends forms large thin-walled high quality tanks. Form limits expansion of cylindrical portion of final tank while hemispherical ends develop freely; no external form or restraint is required to fabricate spherical tanks.
Silver plating technique seals leaks in thin wall tubing joints
NASA Technical Reports Server (NTRS)
Blenderman, W. H.
1966-01-01
Leaks in thin wall tubing joints are sealed by cleaning and silver plating the hot gas side of the joint in the leakage area. The pressure differential across the silver during hydrostatic test and subsequent use forces the ductile silver into the leak area and seals it.
Axial Crushing of Thin-Walled Columns with Octagonal Section: Modeling and Design
NASA Astrophysics Data System (ADS)
Liu, Yucheng; Day, Michael L.
This chapter focus on numerical crashworthiness analysis of straight thinwalled columns with octagonal cross sections. Two important issues in this analysis are demonstrated here: computer modeling and crashworthiness design. In the first part, this chapter introduces a method of developing simplified finite element (FE) models for the straight thin-walled octagonal columns, which can be used for the numerical crashworthiness analysis. Next, this chapter performs a crashworthiness design for such thin-walled columns in order to maximize their energy absorption capability. Specific energy absorption (SEA) is set as the design objective, side length of the octagonal cross section and wall thickness are selected as design variables, and maximum crushing force (Pm) occurs during crashes is set as design constraint. Response surface method (RSM) is employed to formulate functions for both SEA and Pm.
NASA Astrophysics Data System (ADS)
Polius, Jemilia R.
This thesis reports measurements of the temperature-dependent surface resistivity of multi-wall carbon nanotube doped polyvinyl alcohol (PVA) thin films. In the temperature range from 22°C to 40°C in a humidity controlled environment, it was found that the surface resistivity decreased initially but raised as the temperature continued to increase. I report surface resistivity measurements as a function of temperature of both multiwall and single-wall carbon nanotube doped PVA thin films, with comparison of the similarities and differences between the two types of film types. This research was conducted using the combined instrumentation of the KEITHLEY Model 6517 Electrometer and the KEITHLEY Model 8009 resistivity test fixture using both commercial and in-house produced organic thin films.
Emergence of Huge Negative Spin-Transfer Torque in Atomically Thin Co layers
NASA Astrophysics Data System (ADS)
Je, Soong-Geun; Yoo, Sang-Cheol; Kim, Joo-Sung; Park, Yong-Keun; Park, Min-Ho; Moon, Joon; Min, Byoung-Chul; Choe, Sug-Bong
2017-04-01
Current-induced domain wall motion has drawn great attention in recent decades as the key operational principle of emerging magnetic memory devices. As the major driving force of the motion, the spin-orbit torque on chiral domain walls has been proposed and is currently extensively studied. However, we demonstrate here that there exists another driving force, which is larger than the spin-orbit torque in atomically thin Co films. Moreover, the direction of the present force is found to be the opposite of the prediction of the standard spin-transfer torque, resulting in the domain wall motion along the current direction. The symmetry of the force and its peculiar dependence on the domain wall structure suggest that the present force is, most likely, attributed to considerable enhancement of a negative nonadiabatic spin-transfer torque in ultranarrow domain walls. Careful measurements of the giant magnetoresistance manifest a negative spin polarization in the atomically thin Co films which might be responsible for the negative spin-transfer torque.
Effects of an Inhomogenous Electric Field on an Evaporating Thin Film in a Microchannel
NASA Astrophysics Data System (ADS)
Liu, Xiuliang; Hu, Chen; Li, Huafeng; Yu, Fei; Kong, Xiaming
2018-03-01
In this paper, heat transfer enhancement in an evaporating thin film along the wall of a microchannel under an imposed inhomogenous electrostatic field is analyzed. The mathematical model, based on the augmented Young-Laplace equation with the inhomogenous electrostatic field taken into consideration, is developed. The 2D inhomogenous electric field with the curved liquid-vapor interface is solved by the lattice Boltzmann method. Numerical solutions for the thin film characteristics are obtained for both constant wall temperature and uniform wall heat flux boundary conditions. The numerical results show that the liquid film becomes thinner and the heat transfer coefficient increases under an imposed electric field. Both of octane and water are chosen as the working mediums, and similar result about the enhancement of heat transfer on evaporating thin film by imposing electric field is obtained. It is found that applying an electric field on the evaporating thin film can enhance evaporative heat transfer in a microchannel.
Calculation of Centrally Loaded Thin-Walled Columns Above the Buckling Limit
NASA Technical Reports Server (NTRS)
Reinitzhuber, F.
1945-01-01
When thin-walled columns formed from flanged sheet, such as used in airplane construction, are subjected to axial load, their behavior at failure varies according to the slenderness ratio. On long columns the axis deflects laterally while the cross section form is maintained; buckling results. The respective breaking load in the elastic range is computed by Euler's formula and for the plastic range by the Engesser- Karman formula. Its magnitude is essentially dependent upon the length. On intermediate length columns, especially where open sections are concerned, the cross section is distorted while the cross section form is preserved; twisting failure results. The buckling load in twisting is calculated according to Wagner and Kappus. On short columns the straight walls of low-bending resistance that form the column are deflected at the same time that the cross section form changes - buckling occurs without immediate failure. Then the buckling load of the total section computable from the buckling loads of the section walls is not the ultimate load; quite often, especially on thin-walled sections, it lies considerably higher and is secured by tests. Both loads, the buckling and the ultimate load are only in a small measure dependent upon length. The present report is an attempt to theoretically investigate the behavior of such short, thin-walled columns above the buckling load with the conventional calculating methods.
Pipe support for use in a nuclear system
Pollono, Louis P.; Mello, Raymond M.
1977-01-01
A pipe support for high temperature, thin-walled vertical piping runs used in a nuclear system. A cylindrical pipe transition member, having the same inside diameter as the thin-walled piping, replaces a portion of the piping where support is desired. The outside diameter of the pipe transition member varies axially along its vertical dimension. For a section of the axial length adjacent the upper and lower terminations of the pipe transition member, the outside diameter is the same as the outside diameter of the thin-walled piping to which it is affixed. Intermediate of the termination sections, the outside diameter increases from the top of the member to the bottom. Adjacent the lower termination section, the diameter abruptly becomes the same as the piping. Thus, the cylindrical transition member is formed to have a generally triangular shaped cross-section along the axial dimension. Load-bearing insulation is installed next to the periphery of the member and is kept in place by an outer ring clamp. The outer ring clamp is connected to pipe hangers, which provide the desired support for the vertical thin-walled piping runs.
NASA Astrophysics Data System (ADS)
Panasenko, N. N.; Sinelschikov, A. V.
2017-11-01
The finite element method is considered to be the most effective in relation to the calculation of strength and stability of buildings and engineering constructions. As a rule, for the modelling of supporting 3-D frameworks, finite elements with six degrees of freedom are used in each of the nodes. In practice, such supporting frameworks represent the thin-walled welded bars and hot-rolled bars of open and closed profiles in which cross-sectional deplanation must be taken into account. This idea was first introduced by L N Vorobjev and brought to one of the easiest variants of the thin-walled bar theory. The development of this approach is based on taking into account the middle surface shear deformation and adding the deformations of a thin-walled open bar to the formulas for potential and kinetic energy; these deformations depend on shearing stress and result in decreasing the frequency of the first tone of fluctuations to 13%. The authors of the article recommend taking into account this fact when calculating fail-proof dynamic systems.
NASA Astrophysics Data System (ADS)
Zhu, Dechao; Deng, Zhongmin; Wang, Xingwei
2001-08-01
In the present paper, a series of hierarchical warping functions is developed to analyze the static and dynamic problems of thin walled composite laminated helicopter rotors composed of several layers with single closed cell. This method is the development and extension of the traditional constrained warping theory of thin walled metallic beams, which had been proved very successful since 1940s. The warping distribution along the perimeter of each layer is expanded into a series of successively corrective warping functions with the traditional warping function caused by free torsion or free bending as the first term, and is assumed to be piecewise linear along the thickness direction of layers. The governing equations are derived based upon the variational principle of minimum potential energy for static analysis and Rayleigh Quotient for free vibration analysis. Then the hierarchical finite element method is introduced to form a numerical algorithm. Both static and natural vibration problems of sample box beams are analyzed with the present method to show the main mechanical behavior of the thin walled composite laminated helicopter rotor.
Quasi-static axial crushes on woven jute/polyester AA6063T52 composite tubes
NASA Astrophysics Data System (ADS)
Othman, A.; Ismail, AE
2018-04-01
Quasi-static axial loading have been studied in this paper to determine the behaviour of jute/polyester wrapped on aluminium alloy 6063T52. The filler material also was include into crush box specimen, which is polyurethane (PU) and polystyrene (PE) rigid foam at ranging 40 and 45 kg/m3 densities. All specimen profile was fabricated using hand layup techniques and the length of each specimen were fixed at 100 mm as well as diameter and width of the tube at 50.8 mm. The two types of tubular cross-section were studied of round and square thin-walled profiles and the angle of fibre at 450 were analysed for four layers. Thin walled of aluminium was 1.9 mm and end frontal of each specimen of composite were chamfered at 450 to prevent catastrophic failure mode. The specific absorbed energy (SEA) and crush force efficiency (CFE) were analyses for each specimen to see the behaviour on jute/polyester wrapped on metallic structure can give influence the energy management for automotive application. Result show that the four layers’ jute/polyester with filler material show significant value in term of specific absorbed energy compared empty and polyurethane profiles higher 26.66% for empty and 15.19% compared to polyurethane profiles. It has been found that the thin walled square profile of the jute/polyester tubes with polystyrene foam-filled is found higher respectively 27.42% to 13.13% than empty and polyurethane (PU) foam tubes. An introduce filler material onto thin walled composite profiles gave major advantage increases the mean axial load of 31.87% from 32.94 kN to 48.35 kN from empty to polystyrene thin walled round jute/polyester profiles and 31.7% from 23.11 KN to 33.84 kN from empty to polystyrene thin walled square jute/polyester profiles. Failure mechanisms of the axially loaded composite tubes were also observed and discussed.
Conduction at domain walls in insulating Pb(Zr0.2 Ti0.8)O3 thin films.
Guyonnet, Jill; Gaponenko, Iaroslav; Gariglio, Stefano; Paruch, Patrycja
2011-12-01
Domain wall conduction in insulating Pb(Zr(0.2) Ti(0.8))O(3) thin films is demonstrated. The observed electrical conduction currents can be clearly differentiated from displacement currents associated with ferroelectric polarization switching. The domain wall conduction, nonlinear and highly asymmetric due to the specific local probe measurement geometry, shows thermal activation at high temperatures, and high stability over time. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Brown, James L.; Naughton, Jonathan W.
1999-01-01
A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.
Koffka's effect is mediated by figure thickness at the joining region.
Huang, Abigail E; Hon, Alice J; Li, Xintong; McCormick, Meghan C; Patel, Dina A; Chubb, Charles; Altschuler, Eric L
2011-01-01
Three-quarters of a century ago Gestalt psychologist Kurt Koffka described a remarkable effect: when a contiguous gray ring is placed on a background half one shade of gray, half another, the ring appears homogeneous. However, if the ring is divided, the two halves of the ring appear different shades of gray, the half of the ring on the darker background appearing lighter than the half of the ring on the lighter background. The Gestalt principle of continuity is used to explain this effect. But what microscopic principles might be mediating this effect? Recently we found sufficiently thin rings (annuli) appear heterogeneous even when geometrically continuous. Here, using crescent-shaped figures instead of the circular annuli used for the traditional Koffka effect, we show that this effect of thickness of the ring is mediated by the thickness at the boundary of the region where the halves of the figure are joined.
Ahmed, Mohamed; Cannon, Dara M; Scanlon, Cathy; Holleran, Laurena; Schmidt, Heike; McFarland, John; Langan, Camilla; McCarthy, Peter; Barker, Gareth J; Hallahan, Brian; McDonald, Colm
2015-09-01
Despite evidence that clozapine may be neuroprotective, there are few longitudinal magnetic resonance imaging (MRI) studies that have specifically explored an association between commencement of clozapine treatment for schizophrenia and changes in regional brain volume or cortical thickness. A total of 33 patients with treatment-resistant schizophrenia and 31 healthy controls matched for age and gender underwent structural MRI brain scans at baseline and 6-9 months after commencing clozapine. MRI images were analyzed using SIENA (Structural Image Evaluation, using Normalization, of Atrophy) and FreeSurfer to investigate changes over time in brain volume and cortical thickness respectively. Significantly greater reductions in volume were detected in the right and left medial prefrontal cortex and in the periventricular area in the patient group regardless of treatment response. Widespread further cortical thinning was observed in patients compared with healthy controls. The majority of patients improved symptomatically and functionally over the study period, and patients who improved were more likely to have less cortical thinning of the left medial frontal cortex and the right middle temporal cortex. These findings demonstrate on-going reductions in brain volume and progressive cortical thinning in patients with schizophrenia who are switched to clozapine treatment. It is possible that this gray matter loss reflects a progressive disease process irrespective of medication use or that it is contributed to by switching to clozapine treatment. The clinical improvement of most patients indicates that antipsychotic-related gray matter volume loss may not necessarily be harmful or reflect neurotoxicity.
Twisting of thin walled columns perfectly restrained at one end
NASA Technical Reports Server (NTRS)
Lazzarino, Lucio
1938-01-01
Proceeding from the basic assumptions of the Batho-Bredt theory on twisting failure of thin-walled columns, the discrepancies most frequently encountered are analyzed. A generalized approximate method is suggested for the determination of the disturbances in the stress condition of the column, induced by the constrained warping in one of the end sections.
High Resolution X-Ray Micro-CT of Ultra-Thin Wall Space Components
NASA Technical Reports Server (NTRS)
Roth, Don J.; Rauser, R. W.; Bowman, Randy R.; Bonacuse, Peter; Martin, Richard E.; Locci, I. E.; Kelley, M.
2012-01-01
A high resolution micro-CT system has been assembled and is being used to provide optimal characterization for ultra-thin wall space components. The Glenn Research Center NDE Sciences Team, using this CT system, has assumed the role of inspection vendor for the Advanced Stirling Convertor (ASC) project at NASA. This article will discuss many aspects of the development of the CT scanning for this type of component, including CT system overview; inspection requirements; process development, software utilized and developed to visualize, process, and analyze results; calibration sample development; results on actual samples; correlation with optical/SEM characterization; CT modeling; and development of automatic flaw recognition software. Keywords: Nondestructive Evaluation, NDE, Computed Tomography, Imaging, X-ray, Metallic Components, Thin Wall Inspection
Investigation into the energy-absorbing properties of multilayered circular thin-walled tube
NASA Astrophysics Data System (ADS)
Qi, Aidong; Liu, Chuanhua; Hu, Gongli; Gu, Hongjun
2002-05-01
With the rise in collision accident and the increase in requirement for resistance of blastproof structures in recent years, people attach much importance to the research and application of energy-absorbing device. In this paper the author calculates the specific strength, the specific hardness and ultimate internal force of a circular thin-walled tube by theoretic calculations, discusses the feasibility of using circular thin-walled tube as an energy-absorbing element, analyzes the energy-absorbing properties and the energy-absorbing mechanism through the energy-absorbing experiments using various materials and forms of arrangement, reaches the conclusion that the load-bearing capacity and energy-absorbing properties of multilayered tubes are superior to that of single tube, and puts forward the concept of 'grading tube'.
Extraordinary Corrosion Protection from Polymer-Clay Nanobrick Wall Thin Films.
Schindelholz, Eric J; Spoerke, Erik D; Nguyen, Hai-Duy; Grunlan, Jaime C; Qin, Shuang; Bufford, Daniel C
2018-06-20
Metals across all industries demand anticorrosion surface treatments and drive a continual need for high-performing and low-cost coatings. Here we demonstrate polymer-clay nanocomposite thin films as a new class of transparent conformal barrier coatings for protection in corrosive atmospheres. Films assembled via layer-by-layer deposition, as thin as 90 nm, are shown to reduce copper corrosion rates by >1000× in an aggressive H 2 S atmosphere. These multilayer nanobrick wall coatings hold promise as high-performing anticorrosion treatment alternatives to costlier, more toxic, and less scalable thin films, such as graphene, hexavalent chromium, or atomic-layer-deposited metal oxides.
Botha, C E J
2013-01-01
There is a large body of information relating to the ontogeny, development and the vasculature of eudicotyledonous leaves. However, there is less information available concerning the vascular anatomy of monocotyledonous leaves. This is surprising, given that there are two uniquely different phloem systems present in large groups such as grasses and sedges. Monocotyledonous leaves contain marginal, large, intermediate, and small longitudinal veins that are interconnected by numerous transverse veins. The longitudinal veins contain two metaphloem sieve tube types, which, based upon their ontogeny and position within the phloem, are termed early (thin-walled) and late (thick-walled) sieve tubes. Early metaphloem comprises sieve tubes, companion cells and vascular parenchyma (VP) cells, whilst the late metaphloem, contains thick-walled sieve tubes (TSTs) that lack companion cells. TSTs are generally adjacent to, or no more than one cell removed from the metaxylem. Unlike thin-walled sieve tube (ST) -companion cell complexes, TSTs are connected to parenchyma by pore-plasmodesma units and are generally symplasmically isolated from the STs. This paper addresses key structural and functional differences between thin- and thick-walled sieve tubes and explores the unique advantages of alternate transport strategies that this 5-7 million years old dual system may offer. It would seem that these two systems may enhance, add to, or play a significant role in increasing the efficiency of solute retrieval as well as of assimilate transfer.
Botha, C. E. J.
2013-01-01
There is a large body of information relating to the ontogeny, development and the vasculature of eudicotyledonous leaves. However, there is less information available concerning the vascular anatomy of monocotyledonous leaves. This is surprising, given that there are two uniquely different phloem systems present in large groups such as grasses and sedges. Monocotyledonous leaves contain marginal, large, intermediate, and small longitudinal veins that are interconnected by numerous transverse veins. The longitudinal veins contain two metaphloem sieve tube types, which, based upon their ontogeny and position within the phloem, are termed early (thin-walled) and late (thick-walled) sieve tubes. Early metaphloem comprises sieve tubes, companion cells and vascular parenchyma (VP) cells, whilst the late metaphloem, contains thick-walled sieve tubes (TSTs) that lack companion cells. TSTs are generally adjacent to, or no more than one cell removed from the metaxylem. Unlike thin-walled sieve tube (ST) -companion cell complexes, TSTs are connected to parenchyma by pore-plasmodesma units and are generally symplasmically isolated from the STs. This paper addresses key structural and functional differences between thin- and thick-walled sieve tubes and explores the unique advantages of alternate transport strategies that this 5–7 million years old dual system may offer. It would seem that these two systems may enhance, add to, or play a significant role in increasing the efficiency of solute retrieval as well as of assimilate transfer. PMID:23964280
Nourollahi-Fard, Saeid R; Kheirandish, Reza; Sattari, Saeid
2015-06-01
Sarcocystosis is a zoonotic disease caused by Sarcocystis spp. with obligatory two host life cycle generally alternating between an herbivorous intermediate host and a carnivorous definitive host. Some species of this coccidian parasite can cause considerable morbidity and mortality in cattle. The present study was set to investigate the prevalence of Sarcocystis spp. and type of cyst wall in slaughtered cattle of Karaj abattoir, Iran. For this purpose 125 cattle (88 males and 37 females) were investigated for the presence of macroscopic and microscopic Sarcocystis cysts in muscular tissues. No macroscopic Sarcocystis cysts were found in any of the samples. In light microscopy, 121 out of 125 cattle (96.8 %) had thin-walled cysts of Sarcocystis cruzi, while 43 out of them (34.4 %) had thick-walled Sarcocystis cyst. In this survey, the most infected tissue was esophagus and heart and the less was diaphragm. Thin-walled cysts (S. cruzi) mostly found in heart and skeletal muscle showed the less. However, thick-walled cyst (S. hominis or S. hirsuta) mostly were detected in diaphragm, heart muscle showed no thick-walled cyst. No significant relation was observed between age and sex and the rate of infection. The results showed that Sarcocystis cyst is prevalent in cattle in the North part of Iran and the evaluation of infection potential can be useful when considering control programs.
Chun, Youngjae; Kealey, Colin P; Levi, Daniel S; Rigberg, David A; Chen, Yanfei; Tillman, Bryan W; Mohanchandra, K P; Shayan, Mahdis; Carman, Gregory P
2017-03-01
Sputter-deposited thin film nitinol constructs with various micropatterns were fabricated to evaluate their effect on the vessel wall in vivo when used as a covering for commercially available stents. Thin film nitinol constructs were used to cover stents and deployed in non-diseased swine arteries. Swine were sacrificed after approximately four weeks and the thin film nitinol-covered stents were removed for histopathologic evaluation. Histopathology revealed differences in neointimal thickness that correlated with the thin film nitinol micropattern. Devices covered with thin film nitinol with a lateral × vertical length = 20 × 40 µm diamond pattern had minimal neointimal growth with well-organized cell architecture and little evidence of ongoing inflammation. Devices covered with thin film nitinol with smaller fenestrations exhibited a relatively thick neointimal layer with inflammation and larger fenestrations showed migration of inflammatory and smooth muscle cells through the micro fenestrations. This "proof-of-concept" study suggests that there may be an ideal thin film nitinol porosity and pore geometry to encourage endothelialization and incorporation of the device into the vessel wall. Future work will be needed to determine the optimal pore size and geometry to minimize neointimal proliferation and in-stent stenosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jingfu, E-mail: jfwang@bjut.edu.cn; Xue, Yanqing; Zhang, Xinxin
Highlights: • A 3-D model for the MSW incinerator with preheated air was developed. • Gas radiative properties were obtained from a statistical narrow-band model. • Non-gray body radiation model can provide more accurate simulation results. - Abstract: Due to its advantages of high degree volume reduction, relatively stable residue, and energy reclamation, incineration becomes one of the best choices for Municipal Solid Waste (MSW) disposal. However, detailed measurements of temperature and gas species inside a furnace are difficulty by conventional experimental techniques. Therefore, numerical simulation of MSW incineration in the packed bed and gas flow field was applied. Inmore » this work, a three dimensional (3-D) model of incinerator system, including flow, heat transfer, detailed chemical mechanisms, and non-gray gas models, was developed. Radiation from the furnace wall and the flame formed above the bed is of importance for drying and igniting the waste. The preheated air with high temperature is used for the MSW combustion. Under the conditions of high temperature and high pressure, MSW combustion produces a variety of radiating gases. The wavelength-depend radiative properties of flame adopted in non-gray radiation model were obtained from a statistical narrow-band model. The influence of radiative heat transfer on temperature, flow field is researched by adiabatic model (without considering radiation), gray radiation model, and non-gray radiation model. The simulation results show that taking into account the non-gray radiation is essential.« less
Pulse wave velocity as a diagnostic index: The effect of wall thickness
NASA Astrophysics Data System (ADS)
Hodis, Simona
2018-06-01
Vascular compliance is a major determinant of wave propagation within the vascular system, and hence the measurement of pulse wave velocity (PWV) is commonly used clinically as a method of detecting vascular stiffening. The accuracy of that assessment is important because vascular stiffening is a major risk factor for hypertension. PWV is usually measured by timing a pressure wave as it travels from the carotid artery to the femoral or radial artery and estimating the distance that it traveled in each case to obtain the required velocity. A major assumption on which this technique is based is that the vessel wall thickness h is negligibly small compared with the vessel radius a . The extent to which this assumption is satisfied in the cardiovascular system is not known because the ratio h /a varies widely across different regions of the vascular tree and under different pathological conditions. Using the PWV as a diagnostic test without knowing the effect of wall thickness on the measurement could lead to error when interpreting the PWV value as an index of vessel wall compliance. The aim of the present study was to extend the validity of the current practice of assessing wall stiffness by developing a method of analysis that goes beyond the assumption of a thin wall. We analyzed PWVs calculated with different wall models, depending on the ratio of wall thickness to vessel radius and the results showed that PWV is not reliable when it is estimated with the classic thin wall theory if the vessel wall is not around 25% of vessel radius. If the arterial wall is thicker than 25% of vessel radius, then the wave velocity calculated with the thin wall theory could be overestimated and in the clinical setting, this could lead to a false positive. For thicker walls, a thick wall model presented here should be considered to account for the stresses within the wall thickness that become dominant compared with the wall inertia.
Method for preparing thin-walled ceramic articles of configuration
Holcombe, C.E.; Powell, G.L.
1975-11-01
A method for preparing a hollow thin-walled ceramic product is described. Ceramic powder is plasma-sprayed onto a concave surface of a substrate having a coefficient of thermal expansion less than that of the ceramic. The coated substrate is heated to sinter the ceramic and then cooled to effect a separation of the ceramic product from the substrate. (auth)
Luo, Ming; Liu, Dongsheng; Luo, Huan
2016-01-01
Thin-walled workpieces, such as aero-engine blisks and casings, are usually made of hard-to-cut materials. The wall thickness is very small and it is easy to deflect during milling process under dynamic cutting forces, leading to inaccurate workpiece dimensions and poor surface integrity. To understand the workpiece deflection behavior in a machining process, a new real-time nonintrusive method for deflection monitoring is presented, and a detailed analysis of workpiece deflection for different machining stages of the whole machining process is discussed. The thin-film polyvinylidene fluoride (PVDF) sensor is attached to the non-machining surface of the workpiece to copy the deflection excited by the dynamic cutting force. The relationship between the input deflection and the output voltage of the monitoring system is calibrated by testing. Monitored workpiece deflection results show that the workpiece experiences obvious vibration during the cutter entering the workpiece stage, and vibration during the machining process can be easily tracked by monitoring the deflection of the workpiece. During the cutter exiting the workpiece stage, the workpiece experiences forced vibration firstly, and free vibration exists until the amplitude reduces to zero after the cutter exits the workpiece. Machining results confirmed the suitability of the deflection monitoring system for machining thin-walled workpieces with the application of PVDF sensors. PMID:27626424
NASA Astrophysics Data System (ADS)
Kosevich, Yuriy A.; Goffaux, Cecile; Sánchez-Dehesa, Jose
2006-07-01
It is shown that the n=2 and 3 flexural shell vibration modes of thin-walled hollow cylinders result in Fano-like resonant enhancement of sound wave transmission through or reflection from two-dimensional periodic arrays of these cylinders in air. The frequencies of the resonant modes are well described by the analytical theory of flexural (circumferential) modes of thin-walled hollow cylinders and are confirmed by finite-difference time-domain simulations. When the modes are located in the band gaps of the phononic crystal, an enhancement of the band-gap widths is produced by the additional restoring forces caused by the flexural shell deformations. Our conclusions provide an alternative method for the vibration control of airborne phononic crystals.
Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature.
Huang, Yang; Bando, Yoshio; Tang, Chengchun; Zhi, Chunyi; Terao, Takeshi; Dierre, Benjamin; Sekiguchi, Takashi; Golberg, Dmitri
2009-02-25
Boron nitride (BN) microtubes were synthesized in a vertical induction furnace using Li(2)CO(3) and B reactants. Their structures and morphologies were investigated using x-ray diffraction, scanning and transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The microtubes have diameters of 1-3 microm, lengths of up to hundreds of micrometers, and well-structured ultrathin walls only approximately 50 nm thick. A mechanism combining the vapor-liquid-solid (VLS) and template self-sacrificing processes is proposed to explain the formation of these novel one-dimensional microstructures, in which the Li(2)O-B(2)O(3) eutectic reaction plays an important role. Cathodoluminescence studies show that even at room temperature the thin-walled BN microtubes can possess an intense band-edge emission at approximately 216.5 nm, which is distinct compared with other BN nanostructures. The study suggests that the thin-walled BN microtubes should be promising for constructing compact deep UV devices and find potential applications in microreactors and microfluidic and drug delivery systems.
NASA Astrophysics Data System (ADS)
Zaidel'man, F. R.; Stepantsova, L. V.; Nikiforova, A. S.; Krasin, V. N.; Dautokov, I. M.; Krasina, T. V.
2018-04-01
Light gray soils of Tambov oblast mainly develop from sandy and loamy sandy parent materials; these are the least studied soils in this region. Despite their coarse texture, these soils are subjected to surface waterlogging. They are stronger affected by the agrogenic degradation in comparison with chernozems and dark gray soils. Morphology, major elements of water regime, physical properties, and productivity of loamy sandy light gray soils with different degrees of gleyzation have been studied in the northern part of Tambov Plain in order to substantiate the appropriate methods of their management. The texture of these soils changes at the depth of 70-100 cm. The upper part is enriched in silt particles (16-30%); in the lower part, the sand content reaches 80-85%. In the nongleyed variants, middle-profile horizons contain thin iron-cemented lamellae (pseudofibers); in surface-gleyed variants, iron nodules are present in the humus horizon. The removal of clay from the humus horizon and its accumulation at the lithological contact and in pseudofibers promote surface subsidence and formation of microlows in the years with moderate and intense winter precipitation. The low range of active moisture favors desiccation of the upper horizons to the wilting point in dry years. The yield of cereal crops reaches 3.5-4.5 t/ha in the years with high and moderate summer precipitation on nongleyed and slightly gleyed light gray soils and decreases by 20-50% on strongly gleyed light gray soils. On light gray soils without irrigation, crop yields are unstable, and productivity of pastures is low. High yields of cereals and vegetables can be obtained on irrigated soils. In this case, local drainage measures should be applied to microlows; liming can be recommended to improve soil productivity.
NASA Astrophysics Data System (ADS)
Jung, Joon Hee; Jang, Gang-Won; Shin, Dongil; Kim, Yoon Young
2018-03-01
This paper presents a method to analyze thin-walled beams with quadrilateral cross sections reinforced with diaphragms using a one-dimensional higher-order beam theory. The effect of a diaphragm is reflected focusing on the increase of static stiffness. The deformations on the beam-interfacing boundary of a thin diaphragm are described by using deformation modes of the beam cross section while the deformations inside the diaphragm are approximated in the form of complete cubic polynomials. By using the principle of minimum potential energy, its stiffness that significantly affects distortional deformation of a thin-walled beam can be considered in the one-dimensional beam analysis. It is shown that the accuracy of the resulting one-dimensional analysis is comparable with that by a shell element based analysis. As a means to demonstrate the usefulness of the present approach for design, position optimization problems of diaphragms for stiffness reinforcement of an automotive side frame are solved.
Kuchin, Igor V; Starov, Victor M
2016-05-31
A theory of contact angle hysteresis of a meniscus inside thin capillaries with smooth, homogeneous solid walls is developed in terms of surface forces (disjoining/conjoining pressure isotherm) using a quasi-equilibrium approach. The disjoining/conjoining pressure isotherm includes electrostatic, intermolecular, and structural components. The values of the static receding θr, advancing θa, and equilibrium θe contact angles in thin capillaries were calculated on the basis of the shape of the disjoining/conjoining pressure isotherm. It was shown that both advancing and receding contact angles depend on the capillary radius. The suggested mechanism of the contact angle hysteresis has a direct experimental confirmation: the process of receding is accompanied by the formation of thick β-films on the capillary walls. The effect of the transition from partial to complete wetting in thin capillaries is predicted and analyzed. This effect takes place in very thin capillaries, when the receding contact angle decreases to zero.
Field enhancement of electronic conductance at ferroelectric domain walls
Vasudevan, Rama K.; Cao, Ye; Laanait, Nouamane; ...
2017-11-06
Ferroelectric domain walls have continued to attract widespread attention due to both the novelty of the phenomena observed and the ability to reliably pattern them in nanoscale dimensions. But, the conductivity mechanisms remain in debate, particularly around nominally uncharged walls. Here, we posit a conduction mechanism relying on field-modification effect from polarization re-orientation and the structure of the reverse-domain nucleus. Through conductive atomic force microscopy measurements on an ultra-thin (001) BiFeO 3 thin film, in combination with phase-field simulations, we show that the field-induced twisted domain nucleus formed at domain walls results in local-field enhancement around the region of themore » atomic force microscope tip. In conjunction with slight barrier lowering, these two effects are sufficient to explain the observed emission current distribution. Our results suggest that different electronic properties at domain walls are not necessary to observe localized enhancement in domain wall currents.« less
View looking south along the main corridor on the third ...
View looking south along the main corridor on the third floor of the south wing. The openings along the top of the corridor walls allowed for the movement of air and light between the corridor and the resident rooms. - U. S. Naval Asylum, Biddle Hall, Gray's Ferry Avenue, Philadelphia, Philadelphia County, PA
The Twisting of Thin-walled, Stiffened Circular Cylinders
NASA Technical Reports Server (NTRS)
Schapitz, E
1938-01-01
On the basis of the present investigation of the twisting of thin-walled, stiffened cylinders the following conclusions can be reached: 1) there is as yet no generally applicable formula for the buckling moment of the skin; 2) the mathematical treatment of the condition of the shell after buckling of the skin is based on the tension-field theory, wherein the strain condition is considered homogenous.
Leakproof Swaged Joints in Thin-Wall Tubing
NASA Technical Reports Server (NTRS)
Stuckenberg, F. H.; Crockett, L. K.; Snyder, W. E.
1986-01-01
Tubular inserts reinforce joints, reducing incidence of leaks. In new swaging technique, tubular inserts placed inside ends of both tubes to be joined. Made from thicker-wall tubing with outside diameter that matches inside diameter of thin tubing swaged, inserts support tube ends at joint. They ensure more uniform contact between swage fitting and tubing. New swaging technique developed for Al/Ti/V-alloy hydraulic supply lines.
1987-10-01
34Gunite" to D/S face of C.O.T. in left abutment. Note gunite machine mounted on the flatbed trailer. B-17 Photo No. 35. "Gunite" being applied to D/S...GRAY, MOD. HARD. IN THIN BEDDED OR LAMINATED . A FL 52’a,9 S107 S1t’hIGERS El 524 8 a/ " 41/1 !J ! / / // / / / / / / / / ///."/// / // / A. 54-35.75B...82171LEGEND / ~I2 -PHOTOGRAPHS A=’ / 1 AULT MOVEMENT E502.3 _no 0 - DI aj STRIKE ARK GRAY, LAMINATED IIFC QUARTZ SEAMS I7 -cRIA FAC 700 Do~ 4 Zz1 1 C4-0 RE:RV
Microwave a.c. conductivity of domain walls in ferroelectric thin films
Tselev, Alexander; Yu, Pu; Cao, Ye; ...
2016-05-31
Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphologicalmore » roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. Finally, this demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale.« less
Microwave a.c. conductivity of domain walls in ferroelectric thin films
Tselev, Alexander; Yu, Pu; Cao, Ye; Dedon, Liv R.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro
2016-01-01
Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphological roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. This demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale. PMID:27240997
Gray matter trophism, cognitive impairment, and depression in patients with multiple sclerosis.
Pravatà, Emanuele; Rocca, Maria A; Valsasina, Paola; Riccitelli, Gianna C; Gobbi, Claudio; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo
2017-12-01
Cognitive impairment and depression frequently affects patients with multiple sclerosis (MS). However, the relationship between the occurrence of depression and cognitive impairment and the development of cortical atrophy has not been fully elucidated yet. To investigate the association of cortical and deep gray matter (GM) volume with depression and cognitive impairment in MS. Three-dimensional (3D) T1-weighted scans were obtained from 126 MS patients and 59 matched healthy controls. Cognitive impairment was assessed using the Brief Repeatable Battery of Neuropsychological Tests and depression with the Montgomery-Asberg Depression Rating Scale (MADRS). Using FreeSurfer and FIRST software, we assessed cortical thickness (CTh) and deep GM volumetry. Magnetic resonance imaging (MRI) variables explaining depression and cognitive impairment were investigated using factorial and classification analysis. Multivariate regression models correlated GM abnormalities with symptoms severity. Compared with controls, MS patients exhibited widespread bilateral cortical thinning involving all brain lobes. Depressed MS showed selective CTh decrease in fronto-temporal regions, whereas cognitive impairment MS exhibited widespread fronto-parietal cortical and subcortical GM atrophy. Frontal cortical thinning was the best predictor of depression ( C-statistic = 0.7), whereas thinning of the right precuneus and high T2 lesion volume best predicted cognitive impairment ( C-statistic = 0.8). MADRS severity correlated with right entorhinal cortex thinning, whereas cognitive impairment severity correlated with left entorhinal and thalamus atrophy. MS-related depression is linked to circumscribed CTh changes in areas deputed to emotional behavior, whereas cognitive impairment is correlated with cortical and subcortical GM atrophy of circuits involved in cognition.
Nonischemic left ventricular scar and cardiac sudden death in the young.
di Gioia, Cira R T; Giordano, Carla; Cerbelli, Bruna; Pisano, Annalinda; Perli, Elena; De Dominicis, Enrico; Poscolieri, Barbara; Palmieri, Vincenzo; Ciallella, Costantino; Zeppilli, Paolo; d'Amati, Giulia
2016-12-01
Nonischemic left ventricular scar (NLVS) is a pattern of myocardial injury characterized by midventricular and/or subepicardial gadolinium hyperenhancement at cardiac magnetic resonance, in absence of significant coronary artery disease. We aimed to evaluate the prevalence of NLVS in juvenile sudden cardiac death and to ascertain its etiology at autopsy. We examined 281 consecutive cases of sudden death of subjects aged 1 to 35 years. NLVS was defined as a thin, gray rim of subepicardial and/or midmyocardial scar in the left ventricular free wall and/or the septum, in absence of significant stenosis of coronary arteries. NLVS was the most frequent finding (25%) in sudden deaths occurring during sports. Myocardial scar was localized most frequently within the left ventricular posterior wall and affected the subepicardial myocardium, often extending to the midventricular layer. On histology, it consisted of fibrous or fibroadipose tissue. Right ventricular involvement was always present. Patchy lymphocytic infiltrates were frequent. Genetic and molecular analyses clarified the etiology of NLVS in a subset of cases. Electrocardiographic (ECG) recordings were available in more than half of subjects. The most frequent abnormality was the presence of low QRS voltages (<0.5 mV) in limb leads. In serial ECG tracings, the decrease in QRS voltages appeared, in some way, progressive. NLVS is the most frequent morphologic substrate of juvenile cardiac sudden death in sports. It can be suspected based on ECG findings. Autopsy study and clinical screening of family members are required to differentiate between arrhythmogenic right ventricular cardiomyopathy/dysplasia and chronic acquired myocarditis. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaurin, B.T.
The Beaufort Formation (BF) occurs in the inner coastal plain in a fault-bounded basin associated with the Graingers wrench zone. The unit disconformably overlies the Cretaceous Peedee Fm., and is overlain disconformably by either the Eocene Castle Hayne Limestone or younger units. Although the BF is only known to crop out along the western margin of the basin, approximately 36 core-holes penetrate the unit in the basin. Core-hole analysis indicates that the BF rapidly varies in thickness from 0--85 feet over a distance of several hundred feet. The BF is divided into the lower Jericho Run Member of Danian agemore » and an upper unnamed member of Thanetian age. The Jericho Run Member (JRM) is principally a light-gray to gray siliceous mudstone which in some places contains interbeds of very fine to coarse glauconitic quartz sand. The mudstone is often burrowed and can contain as much as 40% quartz and 15% glauconite usually concentrated in thin laminae or burrows. The JRM is the most widespread member of the BF obtaining a maximum thickness of 53 feet. Where present, it always lies disconformably on the Peedee Formation and is either overlain disconformably by the unnamed member or younger sediments. Planktic foraminifera assigned to the P1 zone indicate that the JRM is Danian in age. The unnamed member is characterized by a gray-green to dark green glauconitic sand with minor thin sandy carbonates. When the JRM is absent, the unnamed member disconformably overlies the Peedee Formation with the contact marked by a thin phosphate-pebble conglomerate. The unnamed member is not as widely distributed as the Danian member, but its thickness in some areas exceeds 78 feet. The unnamed member contains up to 10% more glauconite and larger amounts of phosphatic material than the JRM. Planktic foraminifera (P4) and calcareous nannofossils (NP6) indicate that the unnamed member is Thanetian in age.« less
Analysis of a thin-walled pressurized torus in contact with a plane. [aircraft tires study
NASA Technical Reports Server (NTRS)
Mack, M. J., Jr.; Gassman, P. M.; Baumgarten, J. R.
1983-01-01
Finite element analysis is applied to study the large deflection of a standing torus loaded by a plane. The internally pressurized thin-walled structure is found to have an elliptical footprint area. Considerable bulge occurs in the sidewall in the region of the load plane. Stress distributions throughout the torus are shown for various load levels and for various modeling strategies at a given load level. In large load ranges finite element calculations show compressive circumferential stress and negative curvature in the footprint region. Results are compared with inelastic wall analysis.
Hard X-ray Imaging for Measuring Laser Absorption Spatial Profiles on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewald, E L; Jones, O S; Landen, O L
2006-04-25
Hard x-ray (''Thin wall'') imaging will be employed on the National Ignition Facility (NIF) to spatially locate laser beam energy deposition regions on the hohlraum walls in indirect drive Inertial Confinement Fusion (ICF) experiments, relevant for ICF symmetry tuning. Based on time resolved imaging of the hard x-ray emission of the laser spots, this method will be used to infer hohlraum wall motion due to x-ray and laser ablation and any beam refraction caused by plasma density gradients. In optimizing this measurement, issues that have to be addressed are hard x-ray visibility during the entire ignition laser pulse with intensitiesmore » ranging from 10{sup 13} to 10{sup 15} W/cm{sup 2}, as well as simultaneous visibility of the inner and the outer laser drive cones. In this work we will compare the hard x-ray emission calculated by LASNEX and analytical modeling with thin wall imaging data recorded previously on Omega and during the first hohlraum experiments on NIF. Based on these calculations and comparisons the thin wall imaging will be optimized for ICF/NIF experiments.« less
Continuum mathematical modelling of pathological growth of blood vessels
NASA Astrophysics Data System (ADS)
Stadnik, N. E.; Dats, E. P.
2018-04-01
The present study is devoted to the mathematical modelling of a human blood vessel pathological growth. The vessels are simulated as the thin-walled circular tube. The boundary value problem of the surface growth of an elastic thin-walled cylinder is solved. The analytical solution is obtained in terms of velocities of stress strain state parameters. The condition of thinness allows us to study finite displacements of cylinder surfaces by means of infinitesimal deformations. The stress-strain state characteristics, which depend on the mechanical parameters of the biological processes, are numerically computed and graphically analysed.
Fiber pigtailed thin wall capillary coupler for excitation of microsphere WGM resonator.
Wang, Hanzheng; Lan, Xinwei; Huang, Jie; Yuan, Lei; Kim, Cheol-Woon; Xiao, Hai
2013-07-01
In this paper, we demonstrate a fiber pigtailed thin wall capillary coupler for excitation of Whispering Gallery Modes (WGMs) of microsphere resonators. The coupler is made by fusion-splicing an optical fiber with a capillary tube and consequently etching the capillary wall to a thickness of a few microns. Light is coupled through the peripheral contact between inserted microsphere and the etched capillary wall. The coupling efficiency as a function of the wall thickness was studied experimentally. WGM resonance with a Q-factor of 1.14 × 10(4) was observed using a borosilicate glass microsphere with a diameter of 71 μm. The coupler operates in the reflection mode and provides a robust mechanical support to the microsphere resonator. It is expected that the new coupler may find broad applications in sensors, optical filters and lasers.
NASA Astrophysics Data System (ADS)
Mitrofanov, O.; Pavelko, I.; Varickis, S.; Vagele, A.
2018-03-01
The necessity for considering both strength criteria and postbuckling effects in calculating the load-carrying capacity in compression of thin-wall composite structures with impact damage is substantiated. An original applied method ensuring solution of these problems with an accuracy sufficient for practical design tasks is developed. The main advantage of the method is its applicability in terms of computing resources and the set of initial data required. The results of application of the method to solution of the problem of compression of fragments of thin-wall honeycomb panel damaged by impacts of various energies are presented. After a comparison of calculation results with experimental data, a working algorithm for calculating the reduction in the load-carrying capacity of a composite object with impact damage is adopted.
Development of a Thin-Wall Magnesium side door Inner Panel for Automobiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jekl, J.; Auld, J.; Sweet, C.
Cast magnesium side door inner panels can provide a good combination of weight, functional, manufacturing and economical requirements. However, several challenges exist including casting technology for thin-wall part design, multi-material incompatibility and relatively low strength vs steel. A project has been initiated, supported by the US Department of Energy, to design and develop a lightweight frame-under-glass door having a thin-wall, full die-cast, magnesium inner panel. This development project is the first of its kind within North America. Phase I of the project is now complete and the 2.0mm magnesium design, through casting process enablers, has met or exceeded all stiffnessmore » requirements, with significant mass reduction and part consolidation. In addition, a corrosion mitigation strategy has been established using industry-accepted galvanic isolation methods and coating technologies.« less
Binder-free manganese oxide/carbon nanomaterials thin film electrode for supercapacitors.
Wang, Ning; Wu, Chuxin; Li, Jiaxin; Dong, Guofa; Guan, Lunhui
2011-11-01
A ternary thin film electrode was created by coating manganese oxide onto a network composed of single-walled carbon nanotubes and single-walled carbon nanohorns. The electrode exhibited a porous structure, which is a promising architecture for supercapacitors applications. The maximum specific capacitances of 357 F/g for total electrode at 1 A/g were achieved in 0.1 M Na(2)SO(4) aqueous solution.
Process for producing fine and ultrafine filament superconductor wire
Kanithi, H.C.
1992-02-18
A process for producing a superconductor wire made up of a large number of round monofilament rods is provided for, comprising assembling a multiplicity of round monofilaments inside each of a multiplicity of thin wall hexagonal tubes and then assembling a number of said thin wall hexagonal tubes within an extrusion can and subsequently consolidating, extruding and drawing the entire assembly down to the desired wire size. 8 figs.
Process for producing fine and ultrafine filament superconductor wire
Kanithi, Hem C.
1992-01-01
A process for producing a superconductor wire made up of a large number of round monofilament rods is provided for, comprising assembling a multiplicity of round monofilaments inside each of a multiplicity of thin wall hexagonal tubes and then assembling a number of said thin wall hexagonal tubes within an extrusion can and subsequently consolidating, extruding and drawing the entire assembly down to the desired wire size.
Experimental validation of tape springs to be used as thin-walled space structures
NASA Astrophysics Data System (ADS)
Oberst, S.; Tuttle, S. L.; Griffin, D.; Lambert, A.; Boyce, R. R.
2018-04-01
With the advent of standardised launch geometries and off-the-shelf payloads, space programs utilising nano-satellite platforms are growing worldwide. Thin-walled, flexible and self-deployable structures are commonly used for antennae, instrument booms or solar panels owing to their lightweight, ideal packaging characteristics and near zero energy consumption. However their behaviour in space, in particular in Low Earth Orbits with continually changing environmental conditions, raises many questions. Accurate numerical models, which are often not available due to the difficulty of experimental testing under 1g-conditions, are needed to answer these questions. In this study, we present on-earth experimental validations, as a starting point to study the response of a tape spring as a representative of thin-walled flexible structures under static and vibrational loading. Material parameters of tape springs in a singly (straight, open cylinder) and a doubly curved design, are compared to each other by combining finite element calculations, with experimental laser vibrometry within a single and multi-stage model updating approach. While the determination of the Young's modulus is unproblematic, the damping is found to be inversely proportional to deployment length. With updated material properties the buckling instability margin is calculated using different slenderness ratios. Results indicate a high sensitivity of thin-walled structures to miniscule perturbations, which makes proper experimental testing a key requirement for stability prediction on thin-elastic space structures. The doubly curved tape spring provides closer agreement with experimental results than a straight tape spring design.
NASA Astrophysics Data System (ADS)
Yuqing, XIONG; Hengjiao, GAO; Ni, REN; Zhongwei, LIU
2018-03-01
Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature, using copper(I)-N,N‧-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas. The influence of temperature, plasma power, mode of plasma, and pulse time, on the deposition rate of copper thin film, the purity of the film and the step coverage were studied. The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied. The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy, respectively. The square resistance of the thin film was also tested by a four-probe technique. On the basis of on-line diagnosis, a growth mechanism of copper thin film was put forward, and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films. A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.
Computational Study of In-Plane Phonon Transport in Si Thin Films
Wang, Xinjiang; Huang, Baoling
2014-01-01
We have systematically investigated the in-plane thermal transport in Si thin films using an approach based on the first-principles calculations and lattice dynamics. The effects of phonon mode depletion induced by the phonon confinement and the corresponding variation in interphonon scattering, which may be important for the thermal conductivities of ultra-thin films but are often neglected in precedent studies, are considered in this study. The in-plane thermal conductivities of Si thin films with different thicknesses have been predicted over a temperature range from 80 K to 800 K and excellent agreements with experimental results are found. The validities of adopting the bulk phonon properties and gray approximation of surface specularity in thin film studies have been clarified. It is found that in ultra-thin films, while the phonon depletion will reduce the thermal conductivity of Si thin films, its effect is largely offset by the reduction in the interphonon scattering rate. The contributions of different phonon modes to the thermal transport and isotope effects in Si films with different thicknesses under various temperatures are also analyzed. PMID:25228061
View looking south out the door opening from the south ...
View looking south out the door opening from the south side of the rotunda extension onto the "dog house" or vestibule positioned where the west Verandah of the south wing turns ninety degrees and continues along the south wall of the central pavilion. - U. S. Naval Asylum, Biddle Hall, Gray's Ferry Avenue, Philadelphia, Philadelphia County, PA
Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid
Li, G. -J.; Karimi, A.
2015-01-01
We numerically study the effect of solid boundaries on the swimming behavior of a motile microorganism in viscoelastic media. Understanding the swimmer-wall hydrodynamic interactions is crucial to elucidate the adhesion of bacterial cells to nearby substrates which is precursor to the formation of the microbial biofilms. The microorganism is simulated using a squirmer model that captures the major swimming mechanisms of potential, extensile, and contractile types of swimmers, while neglecting the biological complexities. A Giesekus constitutive equation is utilized to describe both viscoelasticity and shear-thinning behavior of the background fluid. We found that the viscoelasticity strongly affects the near-wall motion of a squirmer by generating an opposing polymeric torque which impedes the rotation of the swimmer away from the wall. In particular, the time a neutral squirmer spends at the close proximity of the wall is shown to increase with polymer relaxation time and reaches a maximum at Weissenberg number of unity. The shear-thinning effect is found to weaken the solvent stress and therefore, increases the swimmer-wall contact time. For a puller swimmer, the polymer stretching mainly occurs around its lateral sides, leading to reduced elastic resistance against its locomotion. The neutral and puller swimmers eventually escape the wall attraction effect due to a releasing force generated by the Newtonian viscous stress. In contrast, the pusher is found to be perpetually trapped near the wall as a result of the formation of a highly stretched region behind its body. It is shown that the shear-thinning property of the fluid weakens the wall-trapping effect for the pusher squirmer. PMID:26855446
Images and Ideals: Counselling Women and Girls in a "Thin-is-in" Culture
ERIC Educational Resources Information Center
Saraceni, Reana; Russell-Mayhew, Shelly
2007-01-01
Two well-cited studies (Garner, Garfinkel, Schwartz & Thompson, 1980; Wiseman, Gray, Mosimann, & Ahrens, 1992) examined the changing body shape of Playboy centrefolds from 1959 to 1988 and noted that their body weights were significantly lower than those of the average female. The current study updates and examines changes in body measurements and…
Generalized surface tension bounds in vacuum decay
NASA Astrophysics Data System (ADS)
Masoumi, Ali; Paban, Sonia; Weinberg, Erick J.
2018-02-01
Coleman and De Luccia (CDL) showed that gravitational effects can prevent the decay by bubble nucleation of a Minkowski or AdS false vacuum. In their thin-wall approximation this happens whenever the surface tension in the bubble wall exceeds an upper bound proportional to the difference of the square roots of the true and false vacuum energy densities. Recently it was shown that there is another type of thin-wall regime that differs from that of CDL in that the radius of curvature grows substantially as one moves through the wall. Not only does the CDL derivation of the bound fail in this case, but also its very formulation becomes ambiguous because the surface tension is not well defined. We propose a definition of the surface tension and show that it obeys a bound similar in form to that of the CDL case. We then show that both thin-wall bounds are special cases of a more general bound that is satisfied for all bounce solutions with Minkowski or AdS false vacua. We discuss the limit where the parameters of the theory attain critical values and the bound is saturated. The bounce solution then disappears and a static planar domain wall solution appears in its stead. The scalar field potential then is of the form expected in supergravity, but this is only guaranteed along the trajectory in field space traced out by the bounce.
NASA Astrophysics Data System (ADS)
Prasad, Ravindra; Samria, N. K.
1989-01-01
The problem considered has applications in the transient thermal analysis and time for attaining the steady state of the cylinder wall and cylinder head of an air-cooled internal-combustion engine. Numerical calculations based on finite difference approximations are carried out to assess the thermal response in a system of thin cylindrical and spherical shells having hot gases inside with convective boundary conditions. The outside surface is exposed to cooling medium where it looses heat by natural convection and radiation. As a special case, when radius is large, the surface may be considered to be a plane wall. The cylinder cover and cylinder wall of an internal-combustion engine are considered to be a plane wall for a comparatively higher ratio of cylinder diameter to the thickness of the wall, i.e., whend/δ varies from 80 to 100. A plot of temperature-time history and heat flow rates have been obtained.
NASA Astrophysics Data System (ADS)
Shepley, Philippa M.; Tunnicliffe, Harry; Shahbazi, Kowsar; Burnell, Gavin; Moore, Thomas A.
2018-04-01
We study the magnetic properties of perpendicularly magnetized Pt/Co/Ir thin films and investigate the domain-wall creep method of determining the interfacial Dzyaloshinskii-Moriya (DM) interaction in ultrathin films. Measurements of the Co layer thickness dependence of saturation magnetization, perpendicular magnetic anisotropy, and symmetric and antisymmetric (i.e., DM) exchange energies in Pt/Co/Ir thin films have been made to determine the relationship between these properties. We discuss the measurement of the DM interaction by the expansion of a reverse domain in the domain-wall creep regime. We show how the creep parameters behave as a function of in-plane bias field and discuss the effects of domain-wall roughness on the measurement of the DM interaction by domain expansion. Whereas modifications to the creep law with DM field and in-plane bias fields have taken into account changes in the energy barrier scaling parameter α , we find that both α and the velocity scaling parameter v0 change as a function of in-plane bias field.
Analysis of defects of overhead facade systems and other light thin-walled structures
NASA Astrophysics Data System (ADS)
Endzhievskiy, L.; Frolovskaia, A.; Petrova, Y.
2017-04-01
This paper analyzes the defects and the causes of contemporary design solutions with an example of overhead facade systems with ventilated air gaps and light steel thin-walled structures on the basis of field experiments. The analysis is performed at all stages of work: design, manufacture, including quality, construction, and operation. Practical examples are given. The main causes of accidents and the accident rate prediction are looked upon and discussed.
NASA Astrophysics Data System (ADS)
Altenbach, H.; Naumenko, K.; L'vov, G. I.; Pilipenko, S. N.
2003-05-01
A model which allows us to estimate the elastic properties of thin-walled structures manufactured by injection molding is presented. The starting step is the numerical prediction of the microstructure of a short-fiber-reinforced composite developed during the filling stage of the manufacturing process. For this purpose, the Moldflow Plastic Insight® commercial program is used. As a result of simulating the filling process, a second-rank orientation tensor characterizing the microstructure of the material is obtained. The elastic properties of the prepared material locally depend on the orientational distribution of fibers. The constitutive equation is formulated by means of orientational averaging for a given orientation tensor. The tensor of elastic material properties is computed and translated into the format for a stress-strain analysis based on the ANSYSÒ finite-element code. The numerical procedure and the convergence of results are discussed for a thin strip, a rectangular plate, and a shell of revolution. The influence of manufacturing conditions on the stress-strain state of statically loaded thin-walled elements is illustrated.
Behaviour of thin-walled cold-formed steel members in eccentric compression
NASA Astrophysics Data System (ADS)
Ungureanu, Viorel; Kotełko, Maria; Borkowski, Łukasz; Grudziecki, Jan
2018-01-01
Thin-walled cold-formed steel structures are usually made of members of class 4 cross-sections. Since these sections are prematurely prone to local or distortional buckling and due to the fact they do not have a real post-elastic capacity, the failure at ultimate stage of those members, either in compression or bending, always occurs by forming a local plastic mechanism. The present paper investigates the evolution of the plastic mechanisms and the possibility to use them to characterise the ultimate strength of short thin-walled cold-formed steel members subjected to eccentric compression about minor axis, particularly for members with lipped channel cross-section. Five different types of plastic mechanisms for members in compression with different eccentricities are identified and examined on the basis of FE numerical simulations. Preliminary results of experimental validation of numerical results are presented. The research is based on previous studies and some new investigations of the authors.
Coleman-de Luccia instanton in dRGT massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ying-li; Saito, Ryo; Yeom, Dong-han
2014-02-01
We study the Coleman-de Luccia (CDL) instanton characterizing the tunneling from a false vacuum to the true vacuum in a semi-classical way in dRGT (deRham-Gabadadze-Tolley) massive gravity theory, and evaluate the dependence of the tunneling rate on the model parameters. It is found that provided with the same physical Hubble parameters for the true vacuum H{sub T} and the false vacuum H{sub F} as in General Relativity (GR), the thin-wall approximation method implies the same tunneling rate as GR. However, deviations of tunneling rate from GR arise when one goes beyond the thin-wall approximation and they change monotonically until themore » Hawking-Moss (HM) case. Moreover, under the thin-wall approximation, the HM process may dominate over the CDL one if the value for the graviton mass is larger than the inverse of the radius of the bubble.« less
Technology of Producing the Contact Connections of Superconductor Metal-Sheathed Cable
NASA Astrophysics Data System (ADS)
Jakubowski, Andrzej
2017-06-01
The technology of producing the current contact connections on the superconductor cable edges is presented. This lead cable is used as one of the major elements of the magnetic system in thermonuclear reactor construction, actuality for modern world energy. The technology is realized by the radial draft of metal thin-walled tube on the conductor's package. The filling of various profiles by round section wire is optimized. Geometrical characteristics of the dangerous crosssection (as a broken ring) of thin-walled tube injured by the sector cut-out are accounted. The comparative strength calculation of the solid and injured tubes at a longitudinal compression and lateral bending is acted. The radial draft mechanism of cylindrical thin-walled sheath with the wire packing is designed. The necessity to use the nonlinear theory for the sheaths calculate is set. The resilient co-operation of wires as the parallel located cylinders with the contact stripes of rectangular form is considered.
Compound Walls For Vacuum Chambers
NASA Technical Reports Server (NTRS)
Frazer, Robert E.
1988-01-01
Proposed compound-wall configuration enables construction of large high-vacuum chambers without having to use thick layers of expensive material to obtain necessary strength. Walls enclose chambers more than 1 m in diameter and several kilometers long. Compound wall made of strong outer layer of structural-steel culvert pipe welded to thin layer of high-quality, low-outgassing stainless steel.
Size Control of Porous Silicon-Based Nanoparticles via Pore-Wall Thinning.
Secret, Emilie; Leonard, Camille; Kelly, Stefan J; Uhl, Amanda; Cozzan, Clayton; Andrew, Jennifer S
2016-02-02
Photoluminescent silicon nanocrystals are very attractive for biomedical and electronic applications. Here a new process is presented to synthesize photoluminescent silicon nanocrystals with diameters smaller than 6 nm from a porous silicon template. These nanoparticles are formed using a pore-wall thinning approach, where the as-etched porous silicon layer is partially oxidized to silica, which is dissolved by a hydrofluoric acid solution, decreasing the pore-wall thickness. This decrease in pore-wall thickness leads to a corresponding decrease in the size of the nanocrystals that make up the pore walls, resulting in the formation of smaller nanoparticles during sonication of the porous silicon. Particle diameters were measured using dynamic light scattering, and these values were compared with the nanocrystallite size within the pore wall as determined from X-ray diffraction. Additionally, an increase in the quantum confinement effect is observed for these particles through an increase in the photoluminescence intensity of the nanoparticles compared with the as-etched nanoparticles, without the need for a further activation step by oxidation after synthesis.
The effect of ethanol vapour exposure on atrial and ventricular walls of chick embryos.
Kamran, Kiran; Khan, Muhammad Yunus; Minhas, Liaqat Ali
2016-10-01
To study the effects of ethanol vapour exposure on atrial and ventricular walls of heart in chick embryo. The study design was experimental, conducted at Islamabad Centre of College of Physicians and Surgeons, Pakistan. One hundred and eighty chicken eggs were divided into two groups, experimental and control, of 90 eggs each. Each group was subdivided into three subgroups of 30 eggs each based on the day of sacrifice. Experimental group was exposed to ethanol vapours and then compared with age matched controls. The thickness of atrial and ventricular walls along with lengths of valvular cusps increased in hearts of day 7 and day 10 chick embryos in experimental group. There was thinning of walls and decreased length of valvular cusps in hearts of experimental chicks on hatching as compared to age matched controls. Ethanol vapour exposure during development causes cardiac and septal wall thickening during initial days of development followed by cardiac and septal wall thinning which is a classical picture of alcohol induced cardiomyopathies.
Horner, Harry T.
2012-01-01
Background and Aims Leaves of succulent Peperomia obtusifolia (Piperaceae), and its related species, contain a large multilayered hypodermis (epidermis) subtended by a very small single-layered photosynthetic palisade parenchyma, the latter containing spherical aggregates of crystals called druses. Each druse is in a central vacuole surrounded by chloroplasts. All hypodermal cell walls are thin, except for thick lowermost periclinal walls associated with the upper periclinal walls of the subtending palisade cells. These thick walls display ‘quilted’ impressions (mounds) formed by many subtending palisade cells. Conspicuous depressions occur in most mounds, and each depression contains what appear to be many plasmodesmata. These depressions are opposite similar regions in adjacent thin palisade periclinal walls, and they can be considered special pit fields that represent thin translucent regions (‘windows’ or ‘skylights’). Druses in the vacuoles of palisade cells occur below these pit field regions and are surrounded by conspicuous cytoplasmic chloroplasts with massive grana oriented perpendicular to the crystals, probably providing for an efficient photosynthetic system under low-intensity light. Methods Leaf clearings and fractures, light microscopy and crossed polarizers, general and histochemical staining, and transmission and scanning electron microscopy were used to examine these structures. Key Results Druses in the vacuoles of palisade cells occur below the thin pit field regions in the wall interface, suggesting an interesting physical relationship that could provide a pathway for light waves, filtered through the multiple hypodermis. The light waves pass into the palisade cells and are collected and dispersed by the druses to surrounding chloroplasts with large grana. Conclusions These results imply an intriguing possible efficient photosynthetic adaptation for species growing in low-light environments, and provide an opportunity for future research on how evolution through environmental adaptation aids plants containing crystals associated with photosynthetic tissues to exist under low-light intensity and with other stresses. PMID:22539541
Horner, Harry T
2012-06-01
Leaves of succulent Peperomia obtusifolia (Piperaceae), and its related species, contain a large multilayered hypodermis (epidermis) subtended by a very small single-layered photosynthetic palisade parenchyma, the latter containing spherical aggregates of crystals called druses. Each druse is in a central vacuole surrounded by chloroplasts. All hypodermal cell walls are thin, except for thick lowermost periclinal walls associated with the upper periclinal walls of the subtending palisade cells. These thick walls display 'quilted' impressions (mounds) formed by many subtending palisade cells. Conspicuous depressions occur in most mounds, and each depression contains what appear to be many plasmodesmata. These depressions are opposite similar regions in adjacent thin palisade periclinal walls, and they can be considered special pit fields that represent thin translucent regions ('windows' or 'skylights'). Druses in the vacuoles of palisade cells occur below these pit field regions and are surrounded by conspicuous cytoplasmic chloroplasts with massive grana oriented perpendicular to the crystals, probably providing for an efficient photosynthetic system under low-intensity light. Leaf clearings and fractures, light microscopy and crossed polarizers, general and histochemical staining, and transmission and scanning electron microscopy were used to examine these structures. Druses in the vacuoles of palisade cells occur below the thin pit field regions in the wall interface, suggesting an interesting physical relationship that could provide a pathway for light waves, filtered through the multiple hypodermis. The light waves pass into the palisade cells and are collected and dispersed by the druses to surrounding chloroplasts with large grana. These results imply an intriguing possible efficient photosynthetic adaptation for species growing in low-light environments, and provide an opportunity for future research on how evolution through environmental adaptation aids plants containing crystals associated with photosynthetic tissues to exist under low-light intensity and with other stresses.
Thin Film CuInS2 Prepared by Spray Pyrolysis with Single-Source Precursors
NASA Technical Reports Server (NTRS)
Jin, Michael H.; Banger, Kulinder K.; Harris, Jerry D.; Cowen, Jonathan E.; Hepp, Aloysius F.; Lyons, Valerie (Technical Monitor)
2002-01-01
Both horizontal hot-wall and vertical cold-wall atmospheric chemical spray pyrolysis processes deposited near single-phase stoichiometric CuInS2 thin films. Single-source precursors developed for ternary chalcopyrite materials were used for this study, and a new liquid phase single-source precursor was tested with a vertical cold-wall reactor. The depositions were carried out under an argon atmosphere, and the substrate temperature was kept at 400 C. Columnar grain structure was obtained with vapor deposition, and the granular structure was obtained with (liquid) droplet deposition. Conductive films were deposited with planar electrical resistivities ranging from 1 to 30 Omega x cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoelzer, David T.; Bunn, Jeffrey R.; Gussev, Maxim N.
The development of friction stir welding (FSW) for joining thin sections of the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy was initiated in Fuel Cycle Research and Development (FCRD), now the Nuclear Technology Research and Development (NTRD), in 2015. The first FSW experiment was conducted in late FY15 and successfully produced a bead-on-plate stir zone (SZ) on a 1 mm thick plate of 14YWT (SM13 heat). The goal of this research task is to ultimately demonstrate that FSW is a feasible method for joining thin wall (0.5 mm thick) tubing of 14YWT.
Domain switching of fatigued ferroelectric thin films
NASA Astrophysics Data System (ADS)
Tak Lim, Yun; Yeog Son, Jong; Shin, Young-Han
2014-05-01
We investigate the domain wall speed of a ferroelectric PbZr0.48Ti0.52O3 (PZT) thin film using an atomic force microscope incorporated with a mercury-probe system to control the degree of electrical fatigue. The depolarization field in the PZT thin film decreases with increasing the degree of electrical fatigue. We find that the wide-range activation field previously reported in ferroelectric domains result from the change of the depolarization field caused by the electrical fatigue. Domain wall speed exhibits universal behavior to the effective electric field (defined by an applied electric field minus the depolarization field), regardless of the degree of the electrical fatigue.
NASA Technical Reports Server (NTRS)
Lai, Chun-Liang; Greenberg, Paul S.; Chai, An-Ti
1988-01-01
To study thermocapillary flows in a two-dimensional thin liquid layer with heat fluxes imposed on the free surface experimentally, a long tray configuration was employed to simulate the infinite layer. The surface temperature distribution due to thermocapillary convective for different flow regimes was measured and compared with theoretical predictions. A short tray configuration was also employed to study the end wall effects (insulating or conducting). The results show that for a strong convection flow with an insulating wall as the boundary the surface temperature distribution became quite uniform. Consequently, the thermocapillary driving force was greatly reduced. On the other hand, a strong fluid motion always existed adjacent to the conducting wall because of the large surface temperature gradient near the wall.
NASA Technical Reports Server (NTRS)
2006-01-01
At least three different kinds of rocks await scientific analysis at the place where NASA's Mars Exploration Rover Spirit will likely spend several months of Martian winter. They are visible in this picture, which the panoramic camera on Spirit acquired during the rover's 809th sol, or Martian day, of exploring Mars (April 12, 2006). Paper-thin layers of light-toned, jagged-edged rocks protrude horizontally from beneath small sand drifts; a light gray rock with smooth, rounded edges sits atop the sand drifts; and several dark gray to black, angular rocks with vesicles (small holes) typical of hardened lava lie scattered across the sand. This view is an approximately true-color rendering that combines images taken through the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters.NASA Astrophysics Data System (ADS)
Jiang, Jun; Bai, Zi Long; Chen, Zhi Hui; He, Long; Zhang, David Wei; Zhang, Qing Hua; Shi, Jin An; Park, Min Hyuk; Scott, James F.; Hwang, Cheol Seong; Jiang, An Quan
2018-01-01
Erasable conductive domain walls in insulating ferroelectric thin films can be used for non-destructive electrical read-out of the polarization states in ferroelectric memories. Still, the domain-wall currents extracted by these devices have not yet reached the intensity and stability required to drive read-out circuits operating at high speeds. This study demonstrated non-destructive read-out of digital data stored using specific domain-wall configurations in epitaxial BiFeO3 thin films formed in mesa-geometry structures. Partially switched domains, which enable the formation of conductive walls during the read operation, spontaneously retract when the read voltage is removed, reducing the accumulation of mobile defects at the domain walls and potentially improving the device stability. Three-terminal memory devices produced 14 nA read currents at an operating voltage of 5 V, and operated up to T = 85 °C. The gap length can also be smaller than the film thickness, allowing the realization of ferroelectric memories with device dimensions far below 100 nm.
Wang, Li; Nie, Kun; Zhao, Xin; Feng, Shujun; Xie, Sifen; He, Xuetao; Ma, Guixian; Wang, Limin; Huang, Zhiheng; Huang, Biao; Zhang, Yuhu; Wang, Lijuan
2018-04-23
Semantic abstract reasoning(SAR) is an important executive domain that is involved in semantic information processing and enables one to make sense of the attributes of objects, facts and concepts in the world. We sought to investigate whether Parkinson's disease subjects(PDs) have difficulty in SAR and to examine the associated pattern of gray matter morphological changes. Eighty-six PDs and 30 healthy controls were enrolled. PDs were grouped into PD subjects with Similarities preservation(PDSP, n = 62) and PD subjects with Similarities impairment(PDSI, n = 24)according to their performance on the Similarities subtest of the Wechsler Adult Intelligence Scale. Brain structural images were captured with a 3T MRI scanner. Surface-based investigation of cortical thickness and automated segmentation of deep gray matter were conducted using FreeSurfer software. PDs performed notably worse on the Similarities test than controls(F = 13.56, P < 0.001).In the PDSI group, cortical thinning associated with Similarities scores was found in the left superior frontal, left superior parietal and left rostral middle frontal regions. Notable atrophy of the bilateral hippocampi was observed, but only the right hippocampus volume was positively correlated with the Similarities scores of the PDSI group. PDs have difficulty in SAR, and this limitation may be associated with impaired conceptual abstraction and generalization along with semantic memory deficits. Cortical thinning in the left frontal and parietal regions and atrophy in the right hippocampus may explain these impairments among Chinese PDs. Copyright © 2017 Elsevier B.V. All rights reserved.
Lithofacies of Spencer Formation, western Tualatin Valley, Oregon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Atta, R.O.
The Spencer Formation crops out in a narrow band that trends north-northwest on the western edge of the Willamette and Tualatin Valleys, Oregon. It apparently conformably overlies mud rocks of either the Yamhill or the Nestucca Formation and is conformably overlain by the Pittsburgh Bluff Formation. The Spencer Formation consists of two members (informal): a lower highly micaceous sandstone (800-1000 ft) and an upper member that is micaceous siltstone and mudstone (1000-1300 ft). The lower member includes an upper part that is light-gray to creamy-gray, silty to muddy, pebbly lithic arkose to feldspathic litharenite, with minor arkose. Sorting is poormore » and beds may be laminated to ripple cross-laminated or massive and bioturbated with abundant mollusk shells, carbonized wood, and burrows. The lower part of the lower member is medium-gray to greenish-gray, silty, pumiceous lithic arkose to feldspathic litharenite. The texture tends to be more uniform and better sorted than that of the upper part of the member. Bedding is commonly massive due to bioturbation. The upper member is medium to dark-gray mudstone with thin pebble-conglomerate lenses. It intertongues with the lower member. Bioturbation, burrows, and carbonized wood are common. The trend in depositional environments appears to be from outer to mid-neritic (lower part, lower member) to shallow neritic, nearshore, and lagoonal (upper part, lower member, and upper member). The provenance of the Spencer Formation includes both proximal volcanics and distant plutonic and high-grade metamorphics.« less
Dynamic depinning phase transition in magnetic thin film with anisotropy
NASA Astrophysics Data System (ADS)
Xiong, L.; Zheng, B.; Jin, M. H.; Wang, L.; Zhou, N. J.
2018-02-01
The dynamic pinning effects induced by quenched disorder are significant in manipulating the domain-wall motion in nano-magnetic materials. Through numerical simulations of the nonstationary domain-wall dynamics with the Landau-Lifshitz-Gilbert equation, we confidently detect a dynamic depinning phase transition in a magnetic thin film with anisotropy, which is of second order. The transition field, static and dynamic exponents are accurately determined, based on the dynamic scaling behavior far from stationary.
NASA Technical Reports Server (NTRS)
Lundquist, Eugene E; Stowell, Elbridge Z
1942-01-01
An analysis is presented of the results of tests made by the Massachusetts Institute of Technology and by the National Advisory Committee for Aeronautics on an investigation of the strength of thin-walled circular and elliptic cylinders in pure bending and in combined torsion and bending. In each of the loading conditions, the bending moments were applied in the plane of the major axis of the ellipse.
Universal Pinning Energy Barrier for Driven Domain Walls in Thin Ferromagnetic Films
NASA Astrophysics Data System (ADS)
Jeudy, V.; Mougin, A.; Bustingorry, S.; Savero Torres, W.; Gorchon, J.; Kolton, A. B.; Lemaître, A.; Jamet, J.-P.
2016-07-01
We report a comparative study of magnetic field driven domain wall motion in thin films made of different magnetic materials for a wide range of field and temperature. The full thermally activated creep motion, observed below the depinning threshold, is shown to be described by a unique universal energy barrier function. Our findings should be relevant for other systems whose dynamics can be modeled by elastic interfaces moving on disordered energy landscapes.
White and gray pumice in pyroclastic deposits. (Invited)
NASA Astrophysics Data System (ADS)
Wright, H. M.; Cashman, K. V.
2013-12-01
Many primary pyroclastic deposits contain at least two different colors of pumice, including volumetrically dominant white and subordinate gray. White pumice is vesicular, microlite-free, and in most cases represents direct samples of the principal magma reservoir. In contrast, subordinate gray pumice with lower vesicularity and/or more abundant microlites may sample either deep recharge OR shallow vanguard magma, where both may record information on eruption triggers. Pumice may appear gray for several reasons: 1. Gray pumice has a less-evolved bulk composition than white pumice. Presence of less-evolved (generally deep-derived) magma provides information about possible recharge magma and/or pre-eruptive compositional variation in the magma storage region. A well-known example of this difference is the 1912 eruption of Novarupta [Hildreth & Fierstein, 2012], which includes white (rhyolite) and gray (andesite and dacite) pumice. 2. Gray pumice contains elevated microlite number densities and/or microlite crystallinities and is compositionally similar to white pumice. a. Gray pumice contains abundant broken crystal fragments and lithic fragments. Broken crystals and incorporated white pumice indicate passage through the primary magma reservoir. Incorporated lithic fragments indicate breakage of wall rock and creation of new transport pathways. Microlites and breadcrusted surfaces indicate slow and/or episodic ascent at shallow levels. This textural association indicates that proto-gray pumice magma played an active role in creating a conduit to the surface. In some cases, small differences in chemistry may further indicate differences in magma batches (recharge pulses). This textural variation is found in the products of high-crystallinity large-volume (Plinian or boil-over style) eruptions, as in the Cerro Galan Ignimbrite, Argentina [Wright et al., 2011]. b. Gray pumice contains abundant microlites due to differences in decompression and/or cooling history. In this case, microlites indicate shallow degassing-induced crystallization, where proto-gray pumice forms vanguard magma or a shallow conduit plug. Gray pumice originating in a shallow conduit plug is common in Vulcanian and subPlinian silicic eruptions and is seen in the 1980 Plinian and subPlinian eruptions of Mount St. Helens [Klug & Cashman, 1994; Cashman & McConnell, 2005]. c. Gray pumice may record syn-eruptive changes in the magmatic system, often manifested as crystallization caused by either decompression or cooling [cf., Gurioli et al., 2005; Andrews & Gardner, 2010]. In summary, the compositional and textural complexities of gray pumice provide detail on pre- and syn-eruptive magmatic processes that may be impossible to obtain from (dominant) white pumice alone. Subtle compositional variations may characterize melts available to recharge and destabilize the upper magma reservoir, whereas crystal textures and compositions can be compared with experimental data to infer shallow magma ascent associated with conduit formation prior to climatic activity. Thus, analysis of gray pumice in pyroclastic deposits can yield new insight into the dynamics of eruptive processes.
NASA Technical Reports Server (NTRS)
Collins, J. Scott; Johnson, Eric R.
1989-01-01
Experiments were conducted to measure the three-dimensional static and free vibrational response of two graphite-epoxy, thin-walled, open section frames. The frames are semi-circular with a radius of three feet, and one specimen has an I cross section and the other has a channel cross section. The flexibility influence coefficients were measured in static tests for loads applied at midspan with the ends of the specimens clamped. Natural frequencies and modes were determined from vibrational tests for free and clamped end conditions. The experimental data is used to evaluate a new finite element which was developed specifically for the analysis of curved, thin-walled structures. The formulation of the element is based on a Vlasov-type, thin-walled, curved beam theory. The predictions from the finite element program generally correlated well with the experimental data for the symmetric I-specimen. Discrepancies in some of the data were found to be due to flexibility in the clamped end conditions. With respect to the data for the channel specimen, the correlation was less satisfactory. The finite element analysis predicted the out-of-plane response of the channel specimen reasonably well, but large discrepancies occurred between the predicted in-plane response and the experimental data. The analysis predicted a much more compliant in-plane response than was observed in the experiments.
Wall contraction in Bloch wall films
NASA Technical Reports Server (NTRS)
Bartran, D. S.; Bourne, H. C., Jr.
1972-01-01
The phenomenon of wall contraction characterized by a peak in the velocity field relationship and a region of negative differential mobility is observed. Uniaxial magnetic thin films of various compositions and magnetic properties are studied in careful interrupted pulse experiments. The observed results agree quite well with the theory for bulk samples.
Sleep Duration and Subsequent Cortical Thinning in Cognitively Normal Older Adults.
Spira, Adam P; Gonzalez, Christopher E; Venkatraman, Vijay K; Wu, Mark N; Pacheco, Jennifer; Simonsick, Eleanor M; Ferrucci, Luigi; Resnick, Susan M
2016-05-01
To determine the association between self-reported sleep duration and cortical thinning among older adults. We studied 122 cognitively normal participants in the Baltimore Longitudinal Study of Aging with a mean age = 66.6 y (range, 51-84) at baseline sleep assessment and 69.5 y (range, 56-86) at initial magnetic resonance imaging (MRI) scan. Participants reported average sleep duration and completed a mean of 7.6 1.5-T MRI scans (range, 3-11), with mean follow-up from initial scan of 8.0 y (range, 2.0-11.8). In analyses adjusted for age, sex, education, race, and interval between sleep assessment and initial MRI scan, participants reporting > 7 h sleep at baseline had thinner cortex in the inferior occipital gyrus and sulcus of the left hemisphere at initial MRI scan than those reporting 7 h (cluster P < 0.05). In adjusted longitudinal analyses, compared to those reporting 7 h of sleep, participants reporting < 7 h exhibited higher rates of subsequent thinning in the superior temporal sulcus and gyrus, inferior and middle frontal gyrus, and superior frontal sulcus of the left hemisphere, and in the superior frontal gyrus of the right hemisphere; those reporting > 7 h of sleep had higher rates of thinning in the superior frontal and middle frontal gyrus of the left hemisphere (cluster P < 0.05 for all). In sensitivity analyses, adjustment for apolipoprotein E (APOE) e4 genotype reduced or eliminated some effects but revealed others. When reports of < 7 h of sleep were compared to reports of 7 or 8 h combined, there were no significant associations with cortical thinning. Among cognitively normal older adults, sleep durations of < 7 h and > 7 h may increase the rate of subsequent frontotemporal gray matter atrophy. Additional studies, including those that use objective sleep measures and investigate mechanisms linking sleep duration to gray matter loss, are needed. © 2016 Associated Professional Sleep Societies, LLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mount, M E; O'Connell, W J
2005-06-03
Lawrence Livermore National Laboratory (LLNL) uses the LLNL passive-active neutron drum (PAN) shuffler (Canberra Model JCC-92) for accountability measurement of highly enriched uranium (HEU) oxide and HEU in mixed uranium-plutonium (U-Pu) oxide. In June 2002, at the 43rd Annual Meeting of the Institute of Nuclear Material Management, LLNL reported on an extensive effort to calibrate this shuffler, based on standards measurements and extensive simulations, for HEU oxides and mixed U-Pu oxides in thin-walled primary and secondary containers. In August 2002, LLNL began to also use DOE-STD-3013-2000 containers for HEU oxide and mixed U-Pu oxide. These DOE-STD-3013-2000 containers are comprised ofmore » a stainless steel convenience can enclosed in welded stainless steel primary and secondary containers. Compared to the double thin-walled containers, the DOE-STD-3013-2000 containers have substantially thicker walls, and the density of materials in these containers was found to extend over a greater range (1.35 g/cm{sup 3} to 4.62 g/cm{sup 3}) than foreseen for the double thin-walled containers. Further, the DOE-STD-3013-2000 Standard allows for oxides containing at least 30 wt% Pu plus U whereas the calibration algorithms for thin-walled containers were derived for virtually pure HEU or mixed U-Pu oxides. An initial series of Monte Carlo simulations of the PAN shuffler response to given quantities of HEU oxide and mixed U-Pu oxide in DOE-STD-3013-2000 containers was generated and compared with the response predicted by the calibration algorithms for thin-walled containers. Results showed a decrease on the order of 10% in the count rate, and hence a decrease in the calculated U mass for measured unknowns, with some varying trends versus U mass. Therefore a decision was made to develop a calibration algorithm for the PAN shuffler unique to the DOE-STD-3013-2000 container. This paper describes that effort and selected unknown item measurement results.« less
NASA Astrophysics Data System (ADS)
Fakkaew, Wichaphon; Cole, Matthew O. T.
2018-06-01
This paper investigates the vibration arising in a thin-walled cylindrical rotor subject to small non-circularity and coupled to discrete space-fixed radial bearing supports. A Fourier series description of rotor non-circularity is incorporated within a mathematical model for vibration of a rotating annulus. This model predicts the multi-harmonic excitation of the rotor wall due to bearing interactions. For each non-circularity harmonic there is a set of distinct critical speeds at which resonance can potentially arise due to flexural mode excitation within the rotor wall. It is shown that whether each potential resonance occurs depends on the multiplicity and symmetry of the bearing supports. Also, a sufficient number of evenly spaced identical supports will eliminate low order resonances. The considered problem is pertinent to the design and operation of thin-walled rotors with active magnetic bearing (AMB) supports, for which small clearances exist between the rotor and bearing and so vibration excitation must be limited to avoid contacts. With this motivation, the mathematical model is further developed for the case of a distributed array of electromagnetic actuators controlled by feedback of measured rotor wall displacements. A case study involving an experimental system with short cylindrical rotor and a single radial AMB support is presented. The results show that flexural mode resonance is largely avoided for the considered design topology. Moreover, numerical predictions based on measured non-circularity show good agreement with measurements of rotor wall vibration, thereby confirming the validity and utility of the theoretical model.
Brockwell, R.E.
1963-11-26
The design of hollow, porous-walled articles is presented. By this invention a hollow, porous-walled article is made by stacking thin, centrally apertured plates having grooves extending from their central aperture to their periphery. (AEC)
Current at domain walls, roughly speaking: nanoscales studies of disorder roughening and conduction
NASA Astrophysics Data System (ADS)
Paruch, Patrycja
2013-03-01
Domain walls in (multi)ferroic materials are the thin elastic interfaces separating regions with different orientations of magnetisation, electric polarisation, or spontaneous strain. Understanding their behaviour, and controlling domain size and stability, is key for their integration into applications, while fundamentally, domain walls provide an excellent model system in which the rich physics of disordered elastic interfaces can be accesses. In addition, domain walls can present novel properties, quite different from those of their parent materials, making them potentially useful as active components in future nano-devices. Here, we present our atomic force microscopy studies of ferroelectric domain walls in epitaxial Pb(Zr0.2Ti0.8)O3 and BiFeO3 thin films, in which we use piezorespose force microscopy to show unusual domain wall roughening behaviour, with very localised disorder regions in the sample leading to a complex, multi-affine scaling of the domain wall shape. We also show the effects of temperature, environmental conditions, and defects on switching dynamics and domain wall roughness. We combine these observations with parallel conductive-tip atomic force microscopy current measurements, which also show highly localised variations in conduction, and highlight the key role played by oxygen vacancies in the observed domain wall conduction.
Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels
NASA Astrophysics Data System (ADS)
Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.
2017-12-01
FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.
Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels
NASA Astrophysics Data System (ADS)
Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.
2018-02-01
FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.
Slat Heater Boxes for Thermal Vacuum Testing
NASA Technical Reports Server (NTRS)
Ungar, Eugene
2003-01-01
Slat heater boxes have been invented for controlling the sink temperatures of objects under test in a thermal vacuum chamber, the walls of which are cooled to the temperature of liquid nitrogen. A slat heater box (see Figure 1) includes a framework of struts that support electrically heated slats that are coated with a high-emissivity optically gray paint. The slats can be grouped together into heater zones for the purpose of maintaining an even temperature within each side. The sink temperature of an object under test is defined as the steady-state temperature of the object in the vacuum/ radiative environment during the absence of any internal heat source or sink. The slat heater box makes it possible to closely control the radiation environment to obtain a desired sink temperature. The slat heater box is placed inside the cold thermal vacuum chamber, and the object under test is placed inside (but not in contact with) the slat heater box. The slat heaters occupy about a third of the field of view from any point on the surface of the object under test, the remainder of the field of view being occupied by the cold chamber wall. Thus, the radiation environment is established by the combined effects of the slat heater box and the cold chamber wall. Given (1) the temperature of the chamber wall, (2) the fractions of the field of view occupied by the chamber wall and the slat heater box, and (3) the emissivities of the slats, chamber wall, and the surface of object under test, the slat temperature required to maintain a desired sink temperature can be calculated by solving the equations of gray-body radiation for the steady-state adiabatic case (equal absorption and emission by the object under test). Slat heater boxes offer an important advantage over the infrared lamps that have been previously used to obtain desired sink temperatures: In comparison with an infrared lamp, a slat heater box provides a greater degree of sink temperature uniformity for a test-object surface that includes multiple areas with differing optical properties.
Thin structured rigid body for acoustic absorption
NASA Astrophysics Data System (ADS)
Starkey, T. A.; Smith, J. D.; Hibbins, A. P.; Sambles, J. R.; Rance, H. J.
2017-01-01
We present a thin acoustic metamaterial absorber, comprised of only rigid metal and air, that gives rise to near unity absorption of airborne sound on resonance. This simple, easily fabricated, robust structure comprising a perforated metal plate separated from a rigid wall by a deeply subwavelength channel of air is an ideal candidate for a sound absorbing panel. The strong absorption in the system is attributed to the thermo-viscous losses arising from a sound wave guided between the plate and the wall, defining the subwavelength channel.
Elastic torsional buckling of thin-walled composite cylinders
NASA Technical Reports Server (NTRS)
Marlowe, D. E.; Sushinsky, G. F.; Dexter, H. B.
1974-01-01
The elastic torsional buckling strength has been determined experimentally for thin-walled cylinders fabricated with glass/epoxy, boron/epoxy, and graphite/epoxy composite materials and composite-reinforced aluminum and titanium. Cylinders have been tested with several unidirectional-ply orientations and several cross-ply layups. Specimens were designed with diameter-to-thickness ratios of approximately 150 and 300 and in two lengths of 10 in. and 20 in. The results of these tests were compared with the buckling strengths predicted by the torsional buckling analysis of Chao.
NASA Technical Reports Server (NTRS)
Jiang, Ching-Biau; T'ien, James S.
1994-01-01
Excerpts from a paper describing the numerical examination of concurrent-flow flame spread over a thin solid in purely forced flow with gas-phase radiation are presented. The computational model solves the two-dimensional, elliptic, steady, and laminar conservation equations for mass, momentum, energy, and chemical species. Gas-phase combustion is modeled via a one-step, second order finite rate Arrhenius reaction. Gas-phase radiation considering gray non-scattering medium is solved by a S-N discrete ordinates method. A simplified solid phase treatment assumes a zeroth order pyrolysis relation and includes radiative interaction between the surface and the gas phase.
Nouri-Borujerdi, Ali; Kazi, Salim Newaz
2014-01-01
In this study an expression for soot absorption coefficient is introduced to extend the weighted-sum-of-gray gases data to the furnace medium containing gas-soot mixture in a utility boiler 150 MWe. Heat transfer and temperature distribution of walls and within the furnace space are predicted by zone method technique. Analyses have been done considering both cases of presence and absence of soot particles at 100% load. To validate the proposed soot absorption coefficient, the expression is coupled with the Taylor and Foster's data as well as Truelove's data for CO2-H2O mixture and the total emissivities are calculated and compared with the Truelove's parameters for 3-term and 4-term gray gases plus two soot absorption coefficients. In addition, some experiments were conducted at 100% and 75% loads to measure furnace exit gas temperature as well as the rate of steam production. The predicted results show good agreement with the measured data at the power plant site. PMID:25143981
Gharehkhani, Samira; Nouri-Borujerdi, Ali; Kazi, Salim Newaz; Yarmand, Hooman
2014-01-01
In this study an expression for soot absorption coefficient is introduced to extend the weighted-sum-of-gray gases data to the furnace medium containing gas-soot mixture in a utility boiler 150 MWe. Heat transfer and temperature distribution of walls and within the furnace space are predicted by zone method technique. Analyses have been done considering both cases of presence and absence of soot particles at 100% load. To validate the proposed soot absorption coefficient, the expression is coupled with the Taylor and Foster's data as well as Truelove's data for CO2-H2O mixture and the total emissivities are calculated and compared with the Truelove's parameters for 3-term and 4-term gray gases plus two soot absorption coefficients. In addition, some experiments were conducted at 100% and 75% loads to measure furnace exit gas temperature as well as the rate of steam production. The predicted results show good agreement with the measured data at the power plant site.
The fabrication of PLGA microvessel scaffolds with nano-patterned inner walls.
Wang, Gou-Jen; Lin, Yan-Cheng; Hsu, Shan-Hui
2010-10-01
Poly (lactic-co-glycolic acid) (PLGA) is one of the most commonly used biodegradable, biocompatible materials. Nanostructured PLGA has immense potential for application in tissue engineering. In this article we discuss a novel approach for the fabrication of PLGA microvessel scaffolds with nanostructured inner walls. In this novel nano-patterning approach, the thermal reflow technique is first adapted to fabricate a semi-cylindrical photoresist master mold. A thin film of titanium and a thin film of aluminum are sputtered in sequence on the semi-cylindrical microvessel network. Aluminum foil anodization is then executed to transform the aluminum thin film into a porous anodic aluminum oxide (AAO) film. During the casting process a PLGA solution is cast on the AAO film to build up semi-cylindrical PLGA microstructures with nanostructured inner walls after which inductive coupled plasma (ICP) is implemented to assist bonding of the two PLGA structures. The result is the building of a network of microchannels with nano-patterned inner walls. Bovine endothelial cells (BECs) are carefully cultured in the scaffold via semi-dynamic seeding for 7 days. Observations show that the BECs grew more separately in a nano-patterned microvessel scaffold than they did in a smooth surface scaffold.
TUBEWALL: a passive solar thermo-siphoning, field-fabricated, water storage wall system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, F.; Hemker, P.
1980-01-01
The basic component of TUBEWALL is a water-filled thin-wall cylindrical tube with an insulating foam vertical partition insert that divides the inside of the tube into a thin collector water compartment (solar side) and a larger storage water compartment (room side). The two compartments are connected at the top and bottom by means of circulation holes in the foam partition. When the sun strikes the solar side of the tube, the thin layer of collector water is heated, thermosiphons through the top opening in the partition into the larger storage compartment on the room side, and is replaced with coolmore » water drawn from the bottom of the storage through the bottom hole in the partition. Night back-siphonage is prevented by a thin flap valve over the top circulation hole. The tubes may by used between wall studs having a low-cost fiberglass/tedlar double glazing. The tubes can be covered on the room side with drywall and heat transferred to the living space by indirect radiation, and either natural air convection through top and bottom vent slots or by fan. Alternatively, the tubes can be left exposed for direct radiation.« less
DETAIL OF TYPICAL WALL CONSTRUCTION IN COOLING ROOMS; TWO LAYERS ...
DETAIL OF TYPICAL WALL CONSTRUCTION IN COOLING ROOMS; TWO LAYERS OF CORK INSULATION ARE ATTACHED TO REINFORCED CONCRETE WALL WITH WOOD SLEEPERS AND ASPHALT MASTIC; THIN, GLAZED TERRA-COTTA TILES PROTECT THE INSULATION INSIDE THE COOLER - Rath Packing Company, Hog Cutting Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA
NASA Astrophysics Data System (ADS)
Heon Kim, Tae; Yoon, Jong-Gul; Hyub Baek, Seung; Park, Woong-Kyu; Mo Yang, Sang; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Won Noh, Tae
2015-07-01
Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields.
Kim, Tae Heon; Yoon, Jong-Gul; Baek, Seung Hyub; Park, Woong-kyu; Yang, Sang Mo; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Noh, Tae Won
2015-07-01
Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields.
Heon Kim, Tae; Yoon, Jong-Gul; Hyub Baek, Seung; Park, Woong-kyu; Mo Yang, Sang; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Won Noh, Tae
2015-01-01
Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields. PMID:26130159
Elastic properties of single-walled carbon nanotube thin film by nanoindentation test.
Tang, Xingling; El-Hami, Abdelkhalak; El-Hami, Khalil; Eid, Mohamed; Si, Chaorun
2017-09-12
This paper carries out a preliminary study for the elastic properties of single walled carbon nanotube (SWCNT) thin film. The SWCNT thin films (~250 nm) are prepared by a simple and cost effective method of spin-coating technology. Nanoindentation test with a Berkovich indenter is used to determine the hardness and elastic modulus of the SWCNT thin film. It is important to note that the elastic properties of SWCNT film are indirectly derived from the information of load and displacement of the indenter under certain assumptions, deviation of the 'test value' is inevitable. In this regard, uncertainty analysis is an effective process in guarantying the validity of the material properties. This paper carries out uncertainty estimation for the tested elastic properties of SWCNT film by nanoindentation. Experimental results and uncertainty analysis indicates that nanoindentation test could be an effective and reliable method in determine the elastic properties of SWCNT thin film. Moreover, the obtained values of hardness and elastic modulus can further benefit the design of SWCNT thin film based components.
NASA Astrophysics Data System (ADS)
Kanetsyan, E. G.; Mkrtchyan, M. S.; Mkhitaryan, S. M.
2018-04-01
We consider a class of contact torsion problems on interaction of thin-walled elements shaped as an elastic thin washer – a flat circular plate of small height – with an elastic layer, in particular, with a half-space, and on interaction of thin cylindrical shells with a solid elastic cylinder, infinite in both directions. The governing equations of the physical models of elastic thin washers and thin circular cylindrical shells under torsion are derived from the exact equations of mathematical theory of elasticity using the Hankel and Fourier transforms. Within the framework of the accepted physical models, the solution of the contact problem between an elastic washer and an elastic layer is reduced to solving the Fredholm integral equation of the first kind with a kernel representable as a sum of the Weber–Sonin integral and some integral regular kernel, while solving the contact problem between a cylindrical shell and solid cylinder is reduced to a singular integral equation (SIE). An effective method for solving the governing integral equations of these problems are specified.
Analysis of the electromagnetic scattering from an inlet geometry with lossy walls
NASA Technical Reports Server (NTRS)
Myung, N. H.; Pathak, P. H.; Chunang, C. D.
1985-01-01
One of the primary goals is to develop an approximate but sufficiently accurate analysis for the problem of electromagnetic (EM) plane wave scattering by an open ended, perfectly-conducting, semi-infinite hollow circular waveguide (or duct) with a thin, uniform layer of lossy or absorbing material on its inner wall, and with a simple termination inside. The less difficult but useful problem of the EM scattering by a two-dimensional (2-D), semi-infinite parallel plate waveguide with an impedance boundary condition on the inner walls was chosen initially for analysis. The impedance boundary condition in this problem serves to model a thin layer of lossy dielectric/ferrite coating on the otherwise perfectly-conducting interior waveguide walls. An approximate but efficient and accurate ray solution was obtained recently. That solution is presently being extended to the case of a moderately thick dielectric/ferrite coating on the walls so as to be valid for situations where the impedance boundary condition may not remain sufficiently accurate.
Lamb waves increase sensitivity in nondestructive testing
NASA Technical Reports Server (NTRS)
Di Novi, R.
1967-01-01
Lamb waves improve sensitivity and resolution in the detection of small defects in thin plates and small diameter, thin-walled tubing. This improvement over shear waves applies to both longitudinal and transverse flaws in the specimens.
Spirit Scans Winter Haven (False Color)
NASA Technical Reports Server (NTRS)
2006-01-01
At least three different kinds of rocks await scientific analysis at the place where NASA's Mars Exploration Rover Spirit will likely spend several months of Martian winter. They are visible in this picture, which the panoramic camera on Spirit acquired during the rover's 809th sol, or Martian day, of exploring Mars (April 12, 2006). Paper-thin layers of light-toned, jagged-edged rocks protrude horizontally from beneath small sand drifts; a light gray rock with smooth, rounded edges sits atop the sand drifts; and several dark gray to black, angular rocks with vesicles (small holes) typical of hardened lava lie scattered across the sand. This view is a false-color rendering that combines images taken through the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters.High pressure, energy, and impulse loading of the wall in a 1-GJ Laboratory Microfusion Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrach, R.J.
1989-07-24
A proposed Laboratory Microfusion Facility (LMF) must be able to withstand repeated, low-repetition-rate fusion explosions at the 1-GJ (one-quarter ton) yield level. The energy release will occur at the center of a chamber only a few meters in radius, subjecting the interior or first wall to severe levels of temperature, pressure, and impulse. We show by theory and computation that the wall loading can be ameliorated by interposing a spherical shell of low-Z material between the fuel and the wall. This sacrificial shield converts the source energy components that are most damaging to the wall (soft x-rays and fast ions)more » to more benign plasma kinetic energy from the vaporized shield, and stretches the time duration over which this energy is delivered to the wall from nanoseconds to microseconds. Numerical calculations emphasize thin, volleyball-sized plastic shields, and much thicker ones of frozen nitrogen. Wall shielding criteria of small (or no) amount of surface ablation, low impulse and pressure loading, minimal shrapnel danger, small expense, and convenience in handling all favor the thin plastic shields. 7 refs., 4 figs.« less
Tunable Gas Permeability of Polymer-Clay Nano Brick Wall Thin Film Assemblies
NASA Astrophysics Data System (ADS)
Gamboa, Daniel; Priolo, Morgan; Grunlan, Jaime
2010-03-01
Thin films of anionic natural montmorrilonite (MMT) clay and cationic polyethylenimine (PEI) have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient. After 40 polymer-clay layers have been deposited, the resulting transparent film exhibits an oxygen transmission rate (OTR) below 0.35 cm^3/m^2 . day when the pH of PEI solution is 10. This low permeability is due to a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall creates an extremely tortuous path at thicknesses below 250 nm and clay concentration above 80 wt%. A 70-bilayer PEI-MMT assembly has an undetectable OTR (< 0.005 cm^3/m^2 . day), which equates to a permeability below SiOx when multiplied by its film thickness of 231 nm. With optical transparency greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.
Local and global gravitational aspects of domain wall space-times
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cvetic, M.; Griffies, S.; Soleng, H.H.
1993-09-15
Local and global gravitational effects induced by eternal vacuum domain walls are studied. We concentrate on thin walls between nonequal and nonpositive cosmological constants on each side of the wall. The assumption of homogeneity, isotropy, and geodesic completeness of the space-time intrinsic to the wall as described in the comoving coordinate system and the constraint that the same symmetries hold in hypersurfaces parallel to the wall yield a general [ital Ansatz] for the line element of space-time. We restrict the problem further by demanding that the wall's surface energy density, [sigma], is positive and by requiring that the infinitely thinmore » wall represents a thin-wall limit of kinklike scalar field configuration. These vacuum domain walls fall in three classes depending on the value of their [sigma]: (1) extreme walls with [sigma]=[sigma][sub ext] are planar, static walls corresponding to supersymmetric configurations, (2) nonextreme walls with [sigma]=[sigma][sub non][gt][sigma][sub ext] correspond to expanding bubbles with observers on either side of the wall being [ital inside] the bubble, and (3) ultraextreme walls with [sigma]=[sigma][sub ultra][lt][sigma][sub ext] represent the bubbles of false vacuum decay. On the sides with less negative cosmological constant, the extreme, nonextreme, and ultraextreme walls exhibit no, repulsive, and attractive effective gravitational forces,'' respectively. These gravitational forces'' are global effects not caused by local curvature. Since the nonextreme wall encloses observers on both sides, the supersymmetric system has the lowest gravitational mass accessible to outside observers. It is conjectured that similar positive mass protection occurs in all physical systems and that no finite negative mass object can exist inside the universe.« less
ERIC Educational Resources Information Center
Gillespie, Jethro
2014-01-01
This article describes how High School Visual Arts Teacher Jethro Gillespie built a portable art gallery for his students--essentially an 8-foot cube made from plywood and lightweight boards that can be assembled with bolts and taken apart in sections. The ceiling pieces of the gallery have track lights, the interior walls have been painted gray,…
NASA Astrophysics Data System (ADS)
Mohruni, Amrifan Saladin; Yanis, Muhammad; Sharif, Safian; Yani, Irsyadi; Yuliwati, Erna; Ismail, Ahmad Fauzi; Shayfull, Zamree
2017-09-01
Thin-wall components as usually applied in the structural parts of aeronautical industry require significant challenges in machining. Unacceptable surface roughness can occur during machining of thin-wall. Titanium product such Ti6Al4V is mostly applied to get the appropriate surface texture in thin wall designed requirements. In this study, the comparison of the accuracy between Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) in the prediction of surface roughness was conducted. Furthermore, the machining tests were carried out under Minimum Quantity Lubrication (MQL) using AlCrN-coated carbide tools. The use of Coconut oil as cutting fluids was also chosen in order to evaluate its performance when involved in end milling. This selection of cutting fluids is based on the better performance of oxidative stability than that of other vegetable based cutting fluids. The cutting speed, feed rate, radial and axial depth of cut were used as independent variables, while surface roughness is evaluated as the dependent variable or output. The results showed that the feed rate is the most significant factors in increasing the surface roughness value followed by the radial depth of cut and lastly the axial depth of cut. In contrary, the surface becomes smoother with increasing the cutting speed. From a comparison of both methods, the ANN model delivered a better accuracy than the RSM model.
Sunwoo, Mun Kyung; Yun, Hyuk Jin; Song, Sook K.; Ham, Ji Hyun; Hong, Jin Yong; Lee, Ji E.; Lee, Hye S.; Sohn, Young H.; Lee, Jong-Min; Lee, Phil Hyu
2014-01-01
Multiple system atrophy (MSA) is an adult-onset, sporadic neurodegenerative disease. Because the prognosis of MSA is fatal, neuroprotective or regenerative strategies may be invaluable in MSA treatment. Previously, we obtained clinical and imaging evidence that mesenchymal stem cell (MSC) treatment could have a neuroprotective role in MSA patients. In the present study, we evaluated the effects of MSC therapy on longitudinal changes in subcortical deep gray matter volumes and cortical thickness and their association with cognitive performance. Clinical and imaging data were obtained from our previous randomized trial of autologous MSC in MSA patients. During 1-year follow-up, we assessed longitudinal differences in automatic segmentation-based subcortical deep gray matter volumes and vertex-wise cortical thickness between placebo (n = 15) and MSC groups (n = 11). Next, we performed correlation analysis between the changes in cortical thickness and changes in the Korean version of the Montreal Cognitive Assessment (MoCA) scores and cognitive performance of each cognitive subdomain using a multiple, comparison correction. There were no significant differences in age at baseline, age at disease onset, gender ratio, disease duration, clinical severity, MoCA score, or education level between the groups. The automated subcortical volumetric analysis revealed that the changes in subcortical deep gray matter volumes of the caudate, putamen, and thalamus did not differ significantly between the groups. The areas of cortical thinning over time in the placebo group were more extensive, including the frontal, temporal, and parietal areas, whereas these areas in the MSC group were less extensive. Correlation analysis indicated that declines in MoCA scores and phonemic fluency during the follow-up period were significantly correlated with cortical thinning of the frontal and posterior temporal areas and anterior temporal areas in MSA patients, respectively. In contrast, no significant correlations were observed in the MSC group. These results suggest that MSC treatment in patients with MSA may modulate cortical thinning over time and related cognitive performance, inferring a future therapeutic candidate for cognitive disorders. PMID:24982631
An improved gray lattice Boltzmann model for simulating fluid flow in multi-scale porous media
NASA Astrophysics Data System (ADS)
Zhu, Jiujiang; Ma, Jingsheng
2013-06-01
A lattice Boltzmann (LB) model is proposed for simulating fluid flow in porous media by allowing the aggregates of finer-scale pores and solids to be treated as 'equivalent media'. This model employs a partially bouncing-back scheme to mimic the resistance of each aggregate, represented as a gray node in the model, to the fluid flow. Like several other lattice Boltzmann models that take the same approach, which are collectively referred to as gray lattice Boltzmann (GLB) models in this paper, it introduces an extra model parameter, ns, which represents a volume fraction of fluid particles to be bounced back by the solid phase rather than the volume fraction of the solid phase at each gray node. The proposed model is shown to conserve the mass even for heterogeneous media, while this model and that model of Walsh et al. (2009) [1], referred to the WBS model thereafter, are shown analytically to recover Darcy-Brinkman's equations for homogenous and isotropic porous media where the effective viscosity and the permeability are related to ns and the relaxation parameter of LB model. The key differences between these two models along with others are analyzed while their implications are highlighted. An attempt is made to rectify the misconception about the model parameter ns being the volume fraction of the solid phase. Both models are then numerically verified against the analytical solutions for a set of homogenous porous models and compared each other for another two sets of heterogeneous porous models of practical importance. It is shown that the proposed model allows true no-slip boundary conditions to be incorporated with a significant effect on reducing errors that would otherwise heavily skew flow fields near solid walls. The proposed model is shown to be numerically more stable than the WBS model at solid walls and interfaces between two porous media. The causes to the instability in the latter case are examined. The link between these two GLB models and a generalized Navier-Stokes model [2] for heterogeneous but isotropic porous media are explored qualitatively. A procedure for estimating model parameter ns is proposed.
Doppler color imaging. Principles and instrumentation.
Kremkau, F W
1992-01-01
DCI acquires Doppler-shifted echoes from a cross-section of tissue scanned by an ultrasound beam. These echoes are then presented in color and superimposed on the gray-scale anatomic image of non-Doppler-shifted echoes received during the scan. The flow echoes are assigned colors according to the color map chosen. Usually red, yellow, or white indicates positive Doppler shifts (approaching flow) and blue, cyan, or white indicates negative shifts (receding flow). Green is added to indicate variance (disturbed or turbulent flow). Several pulses (the number is called the ensemble length) are needed to generate a color scan line. Linear, convex, phased, and annular arrays are used to acquire the gray-scale and color-flow information. Doppler color-flow instruments are pulsed-Doppler instruments and are subject to the same limitations, such as Doppler angle dependence and aliasing, as other Doppler instruments. Color controls include gain, TGC, map selection, variance on/off, persistence, ensemble length, color/gray priority. Nyquist limit (PRF), baseline shift, wall filter, and color window angle, location, and size. Doppler color-flow instruments generally have output intensities intermediate between those of gray-scale imaging and pulsed-Doppler duplex instruments. Although there is no known risk with the use of color-flow instruments, prudent practice dictates that they be used for medical indications and with the minimum exposure time and instrument output required to obtain the needed diagnostic information.
Nonlinear analysis of composite thin-walled helicopter blades
NASA Astrophysics Data System (ADS)
Kalfon, J. P.; Rand, O.
Nonlinear theoretical modeling of laminated thin-walled composite helicopter rotor blades is presented. The derivation is based on nonlinear geometry with a detailed treatment of the body loads in the axial direction which are induced by the rotation. While the in-plane warping is neglected, a three-dimensional generic out-of-plane warping distribution is included. The formulation may also handle varying thicknesses and mass distribution along the cross-sectional walls. The problem is solved by successive iterations in which a system of equations is constructed and solved for each cross-section. In this method, the differential equations in the spanwise directions are formulated and solved using a finite-differences scheme which allows simple adaptation of the spanwise discretization mesh during iterations.
Kocabas, Coskun; Hur, Seung-Hyun; Gaur, Anshu; Meitl, Matthew A; Shim, Moonsub; Rogers, John A
2005-11-01
A convenient process for generating large-scale, horizontally aligned arrays of pristine, single-walled carbon nanotubes (SWNTs) is described. The approach uses guided growth, by chemical vapor deposition (CVD), of SWNTs on miscut single-crystal quartz substrates. Studies of the growth reveal important relationships between the density and alignment of the tubes, the CVD conditions, and the morphology of the quartz. Electrodes and dielectrics patterned on top of these arrays yield thin-film transistors that use the SWNTs as effective thin-film semiconductors. The ability to build high-performance devices of this type suggests significant promise for large-scale aligned arrays of SWNTs in electronics, sensors, and other applications.
NASA Astrophysics Data System (ADS)
Chandra, Ramesh; Chopra, Inderjit
1992-08-01
The objective of the study was to predict the effect of elastic couplings on the free vibration characteristics of thin-walled composite box beams and to correlate the results with experimental data. The free vibration characteristics of coupled thin-walled composite beams under rotation were determined using the Galerkin method. The theoretical results were found to be in satisfactory agreement with experimental data obtained for graphite/epoxy, kevlar/epoxy, and glass/epoxy composite beams in an in-vacuo test facility at different rotational speeds.
Energy absorption capabilities of complex thin walled structures
NASA Astrophysics Data System (ADS)
Tarlochan, F.; AlKhatib, Sami
2017-10-01
Thin walled structures have been used in the area of energy absorption during an event of a crash. A lot of work has been done on tubular structures. Due to limitation of manufacturing process, complex geometries were dismissed as potential solutions. With the advancement in metal additive manufacturing, complex geometries can be realized. As a motivation, the objective of this study is to investigate computationally the crash performance of complex tubular structures. Five designs were considered. In was found that complex geometries have better crashworthiness performance than standard tubular structures used currently.
Stresses In And Near A Bend In A Thin-Walled Duct
NASA Technical Reports Server (NTRS)
Min, J. B.; Aggarwal, P. K.
1995-01-01
Report describes computational study of distributions of stresses in and near 90 degrees bend in thin-walled duct subject to various applied loads. Purpose of study to help satisfy need for more accurate knowledge of local concentrations of stresses caused by loads: such knowledge makes possible to design light-weight ducts to survive reasonably foreseeable operating conditions with some degree of reliability. Also guides selection of locations for mounting strain gauges to measure local stresses for comparison with computed values, contributing to refinement of theoretical concepts and computational techniques.
Computer-aided detection of bladder wall thickening in CT urography (CTU)
NASA Astrophysics Data System (ADS)
Cha, Kenny H.; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Weizer, Alon Z.; Gordon, Marshall N.; Samala, Ravi K.
2018-02-01
We are developing a computer-aided detection system for bladder cancer in CT urography (CTU). Bladder wall thickening is a manifestation of bladder cancer and its detection is more challenging than the detection of bladder masses. We first segmented the inner and outer bladder walls using our method that combined deep-learning convolutional neural network with level sets. The non-contrast-enhanced region was separated from the contrast-enhanced region with a maximum-intensity-projection-based method. The non-contrast region was smoothed and gray level threshold was applied to the contrast and non-contrast regions separately to extract the bladder wall and potential lesions. The bladder wall was transformed into a straightened thickness profile, which was analyzed to identify regions of wall thickening candidates. Volume-based features of the wall thickening candidates were analyzed with linear discriminant analysis (LDA) to differentiate bladder wall thickenings from false positives. A data set of 112 patients, 87 with wall thickening and 25 with normal bladders, was collected retrospectively with IRB approval, and split into independent training and test sets. Of the 57 training cases, 44 had bladder wall thickening and 13 were normal. Of the 55 test cases, 43 had wall thickening and 12 were normal. The LDA classifier was trained with the training set and evaluated with the test set. FROC analysis showed that the system achieved sensitivities of 93.2% and 88.4% for the training and test sets, respectively, at 0.5 FPs/case.
Gray's Ferry project: Phase II. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
A three-story rowhouse building was retrofitted to demonstrate solar heating and energy conservation in the Philadelphia, PA area. The retrofit included a solar greenhouse, a Trombe wall, and a solar hot water system. The Phase II Project funding was used for four specific endeavors: (1) tours; (2) brochures/literature; (3) a slide show presentation; and (4) signage showing the design of the active and passive solar systems. Three special workshops and more than fifteen tours of the building were given. A DOE funded study showed that a Trombe wall was the most cost-effective solar application for the 183,000 two-story brick rowmore » houses in the city. (BCS)« less
1981-01-01
in two dimensions have been studied experimentally by Gray and Rhudy (Ref. 3) and theoretically by Bloy and Georgeff (Ref. 4) and Carter (Ref. 5...Layer Separation at Supersonic and Hypersonic Speeds." AEDC-TR-70-235, March 1971. 4. Bloy , A. W. and Georgeff, M. P. "The Hypersonic Laminar
von Segesser, Ludwig Karl; Berdajs, Denis; Abdel-Sayed, Saad; Tozzi, Piergiorgio; Ferrari, Enrico; Maisano, Francesco
2016-01-01
Inadequate venous drainage during minimally invasive cardiac surgery becomes most evident when the blood trapped in the pulmonary circulation floods the surgical field. The present study was designed to assess the in vivo performance of new, thinner, virtually wall-less, venous cannulas designed for augmented venous drainage in comparison to traditional thin-wall cannulas. Remote cannulation was realized in 5 bovine experiments (74.0 ± 2.4 kg) with percutaneous venous access over the wire, serial dilation up to 18 F and insertion of either traditional 19 F thin wall, wire-wound cannulas, or through the same access channel, new, thinner, virtually wall-less, braided cannulas designed for augmented venous drainage. A standard minimal extracorporeal circuit set with a centrifugal pump and a hollow fiber membrane oxygenator, but no in-line reservoir was used. One hundred fifty pairs of pump-flow and required pump inlet pressure values were recorded with calibrated pressure transducers and a flowmeter calibrated by a volumetric tank and timer at increasing pump speed from 1500 RPM to 3500 RPM (500-RPM increments). Pump flow accounted for 1.73 ± 0.85 l/min for wall-less versus 1.17 ± 0.45 l/min for thin wall at 1500 RPM, 3.91 ± 0.86 versus 3.23 ± 0.66 at 2500 RPM, 5.82 ± 1.05 versus 4.96 ± 0.81 at 3500 RPM. Pump inlet pressure accounted for 9.6 ± 9.7 mm Hg versus 4.2 ± 18.8 mm Hg for 1500 RPM, -42.4 ± 26.7 versus -123 ± 51.1 at 2500 RPM, and -126.7 ± 55.3 versus -313 ± 116.7 for 3500 RPM. At the well-accepted pump inlet pressure of -80 mm Hg, the new, thinner, virtually wall-less, braided cannulas provide unmatched venous drainage in vivo. Early clinical analyses have confirmed these findings.
NASA Astrophysics Data System (ADS)
Jaeger, Valentin E.
1989-04-01
The geometrical accuracy and surface roughness of diamond-turned workpieces is influenced by several parameters: the properties of the machine tool, the cutting process and the environmental conditions. A thin-walled electrode made from an aluminium alloy (wall thickness: 1 mm, length: 169 mm, outer diameter: 126 mm) and intended for an electrostatic measuring instrument, serves as an example to show how quasi-optical surfaces with a surface roughness Rα < 10 nm and deviations from roundness of <= 5 μm can be achieved when some of these influence quantities are optimized. The cylindrical part of the electrode was turned by means of a rounded mirror-finish diamond tool, the width of the cutting edge being 2 mm, the rake angle -6° and the clearance angle 2°. Compliance with the tolerances of geometrical accuracy was particularly difficult. As age-hardened wrought aluminium alloys cannot be stress-relieved by annealing, or only insufficiently, the geometrical accuracy - in particular the roundness - of thin-walled, rotationally symmetric bodies decisively depends on the state of stress of the workpiece material, on the clamping fixture and on the balanced condition of this clamping fixture.
Paul G. Scowcroft; J.B. Friday; Travis Idol; Nicklos Dudley; Janis Haraguchi; Dean Meason
2007-01-01
Koa (Acacia koa A. Gray) is an endemic Hawaiian hardwood tree of high ecological, cultural and economic value. Despite its multiple values, research on the silviculture of koa has been minimal until recently because the preferred land-use was pasture for livestock, and logging was done mainly to facilitate and reduce the costs of conversion. This...
Towards a Viscous Wall Model for Immersed Boundary Methods
NASA Technical Reports Server (NTRS)
Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.
2016-01-01
Immersed boundary methods are frequently employed for simulating flows at low Reynolds numbers or for applications where viscous boundary layer effects can be neglected. The primary shortcoming of Cartesian mesh immersed boundary methods is the inability of efficiently resolving thin turbulent boundary layers in high-Reynolds number flow application. The inefficiency of resolving the thin boundary is associated with the use of constant aspect ratio Cartesian grid cells. Conventional CFD approaches can efficiently resolve the large wall normal gradients by utilizing large aspect ratio cells near the wall. This paper presents different approaches for immersed boundary methods to account for the viscous boundary layer interaction with the flow-field away from the walls. Different wall modeling approaches proposed in previous research studies are addressed and compared to a new integral boundary layer based approach. In contrast to common wall-modeling approaches that usually only utilize local flow information, the integral boundary layer based approach keeps the streamwise history of the boundary layer. This allows the method to remain effective at much larger y+ values than local wall modeling approaches. After a theoretical discussion of the different approaches, the method is applied to increasingly more challenging flow fields including fully attached, separated, and shock-induced separated (laminar and turbulent) flows.
Chalcogenide phase-change thin films used as grayscale photolithography materials.
Wang, Rui; Wei, Jingsong; Fan, Yongtao
2014-03-10
Chalcogenide phase-change thin films are used in many fields, such as optical information storage and solid-state memory. In this work, we present another application of chalcogenide phase-change thin films, i.e., as grayscale photolithgraphy materials. The grayscale patterns can be directly inscribed on the chalcogenide phase-change thin films by a single process through direct laser writing method. In grayscale photolithography, the laser pulse can induce the formation of bump structure, and the bump height and size can be precisely controlled by changing laser energy. Bumps with different height and size present different optical reflection and transmission spectra, leading to the different gray levels. For example, the continuous-tone grayscale images of lifelike bird and cat are successfully inscribed onto Sb(2)Te(3) chalcogenide phase-change thin films using a home-built laser direct writer, where the expression and appearance of the lifelike bird and cat are fully presented. This work provides a way to fabricate complicated grayscale patterns using laser-induced bump structures onto chalcogenide phase-change thin films, different from current techniques such as photolithography, electron beam lithography, and focused ion beam lithography. The ability to form grayscale patterns of chalcogenide phase-change thin films reveals many potential applications in high-resolution optical images for micro/nano image storage, microartworks, and grayscale photomasks.
NASA Astrophysics Data System (ADS)
Li, H; Yang, H; Zhan, M
2009-04-01
Thin-walled tube bending is an advanced technology for producing precision bent tube parts in aerospace, aviation and automobiles, etc. With increasing demands of bending tubes with a larger tube diameter and a smaller bending radius, wrinkling instability is a critical issue to be solved urgently for improving the bending limit and forming quality in this process. In this study, by using the energy principle, combined with analytical and finite element (FE) numerical methods, an energy-based wrinkling prediction model for thin-walled tube bending is developed. A segment shell model is proposed to consider the critical wrinkling region, which captures the deformation features of the tube bending process. The dissipation energy created by the reaction forces at the tube-dies interface for restraining the compressive instability is also included in the prediction model, which can be numerically calculated via FE simulation. The validation of the model is performed and its physical significance is evaluated from various aspects. Then the plastic wrinkling behaviors in thin-walled tube bending are addressed. From the energy viewpoint, the effect of the basic parameters including the geometrical and material parameters on the onset of wrinkling is identified. In particular, the influence of multi-tools constraints such as clearance and friction at various interfaces on the wrinkling instability is obtained. The study provides instructive understanding of the plastic wrinkling instability and the model may be suitable for the wrinkling prediction of a doubly-curved shell in the complex forming process with contact conditions.
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, T.G.; Thacker, L.H.; Fine, H.A.
1993-10-05
An instrument is described for the measurement of vacuum within sealed packets, the packets having a wall sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall, with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum reference plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A packet production line model is also described. 3 figures.
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan
1993-01-01
An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head 18 to achieve this initiation of movement is equal to the vacuum Within the packet 12. In a preferred embodiment a vacuum reference plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A packet production line model is also described.
Study on High Speed Lithium Jet For Neutron Source of Boron Neutron Capture Therapy (BNCT)
NASA Astrophysics Data System (ADS)
Takahashi, Minoru; Kobayashi, Tooru; Zhang, Mingguang; Mák, Michael; Štefanica, Jirí; Dostál, Václav; Zhao, Wei
The feasibility study of a liquid lithium type proton beam target was performed for the neutron source of the boron neutron capture therapy (BNCT). As the candidates of the liquid lithium target, a thin sheet jet and a thin film flow on a concave wall were chosen, and a lithium flow experiment was conducted to investigate the hydrodynamic stability of the targets. The surfaces of the jets and film flows with a thickness of 0.5 mm and a width of 50 mm were observed by means of photography. It has been found that a stable sheet jet and a stable film flow on a concave wall can be formed up to certain velocities by using a straight nozzle and a curved nozzle with the concave wall, respectively.
Dynamic analysis of horizontal axis wind turbine by thin-walled beam theory
NASA Astrophysics Data System (ADS)
Wang, Jianhong; Qin, Datong; Lim, Teik C.
2010-08-01
A mixed flexible-rigid multi-body mathematical model is applied to predict the dynamic performance of a wind turbine system. Since the tower and rotor are both flexible thin-walled structures, a consistent expression for their deformations is applied, which employs a successive series of transformations to locate any point on the blade and tower relative to an inertial coordinate system. The kinetic and potential energy terms of each flexible body and rigid body are derived for use in the Lagrange approach to formulate the wind turbine system's governing equation. The mode shapes are then obtained from the free vibration solution, while the distributions of dynamic stress and displacement of the tower and rotor are computed from the forced vibration response analysis. Using this dynamic model, the influence of the tower's stiffness on the blade tip deformation is studied. From the analysis, it is evident that the proposed model not only inherits the simplicity of the traditional 1-D beam element, but also able to provide detailed information about the tower and rotor response due to the incorporation of the flexible thin-walled beam theory.
Flexural-torsional vibration of a tapered C-section beam
NASA Astrophysics Data System (ADS)
Dennis, Scott T.; Jones, Keith W.
2017-04-01
Previous studies have shown that numerical models of tapered thin-walled C-section beams based on a stepped or piecewise prismatic beam approximation are inaccurate regardless of the number of elements assumed in the discretization. Andrade recently addressed this problem by extending Vlasov beam theory to a tapered geometry resulting in new terms that vanish for the uniform beam. (See One-Dimensional Models for the Spatial Behaviour of Tapered Thin-Walled Bars with Open Cross-Sections: Static, Dynamic and Buckling Analyses, PhD Thesis, University of Coimbra, Portugal, 2012, https://estudogeral.sib.uc.pt) In this paper, we model the coupled bending-twisting vibration of a cantilevered tapered thin-walled C-section using a Galerkin approximation of Andrade's beam equations resulting in an 8-degree-of-freedom beam element. Experimental natural frequencies and mode shapes for 3 prismatic and 2 tapered channel beams are compared to model predictions. In addition, comparisons are made to detailed shell finite element models and exact solutions for the uniform beams to confirm the validity of the approach. Comparisons to the incorrect stepped model are also presented.
Effect of bending on the dynamics and wrinkle formation for a capsule in shear flow
NASA Astrophysics Data System (ADS)
Salsac, Anne-Virginie; Dupont, Claire; Barthes-Biesel, Dominique; Vidrascu, Marina; Le Tallec, Patrick
2014-11-01
When microcapsules are subjected to an external flow, the droplets enclosed within a thin hyperelastic wall undergo large deformations, which often lead to buckling of the thin capsule wall. The objective is to study numerically an initially spherical capsule in shear flow and analyze the influence of the membrane bending rigidity on the capsule dynamics and wrinkle formation. The 3D fluid-structure interactions are modeled coupling a boundary integral method to solve for the internal and external Stokes flows with a thin shell finite element method to solve for the wall deformation. Hyperelastic constitutive laws are implemented to model the deformation of the capsule mid-surface and the generalized Hooke's law for the bending effects. We show that the capsule global motion and deformation are mainly governed by in-plane membrane tensions and are marginally influenced by the bending stiffness Ks. The bending stiffness, however, plays a role locally in regions of compressive tensions. The wrinkle wavelength depends on Ks following a power law, which provides an experimental technique to determine the value of Ks through inverse analysis.
Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes.
Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore
2017-03-01
The effect of pressurization stresses on helical guided waves in a thin-walled fluid-filled pipe is studied by modeling leaky Lamb waves in a stressed plate bordered by fluid. Fluid pressurization produces hoop and longitudinal stresses in a thin-walled pipe, which corresponds to biaxial in-plane stress in a plate waveguide model. The effect of stress on guided wave propagation is accounted for through nonlinear elasticity and finite deformation theory. Emphasis is placed on the stress dependence of the energy velocity of the guided wave modes. For this purpose, an expression for the energy velocity of leaky Lamb waves in a stressed plate is derived. Theoretical results are presented for the mode, frequency, and directional dependent variations in energy velocity with respect to stress. An experimental setup is designed for measuring variations in helical wave energy velocity in a thin-walled water-filled steel pipe at different levels of pressure. Good agreement is achieved between the experimental variations in energy velocity for the helical guided waves and the theoretical leaky Lamb wave solutions. Copyright © 2016 Elsevier B.V. All rights reserved.
Internal Corrosion Direct Assessment Detection of Water (WP #205)
DOT National Transportation Integrated Search
2010-12-12
Internal corrosion of natural gas pipelines is the result of interaction between the inside pipe wall and impurities in the product being transported. Such interactions can lead to an overall loss of material thereby thinning the pipe wall and thus r...
Paleosol sequences within Lower Permian cyclothems of Kansas: Evidence of climatic cyclicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, K.B.; McCahon, T.J.
The Lower Permian (Wolfcampian) cycles of Kansas are broadly similar to the better known Upper Pennsylvanian (Missourian) cyclothems of the midcontinent. The morphological features of paleosols within five successive variegated mudstone units of the Council Grove and Chase Groups have been described in detail. A consistent pattern has emerged with aridic paleosols near the bases of the mudstones intervals and vertic paleosols toward the tops. The lower paleosol profiles are typically calcareous with well-developed carbonate accumulation (Bk) horizons. These may contain carbonate nodules, rhizocretions, or less commonly calcretes (K-horizons). Drab haloed root races are a common feature of these grayishmore » reddish brown B horizons. The reddish color records oxidation under fairly well drained conditions, the underlying greenish gray horizons probably indicating the average position of the water table. Thin greenish gray to gray elluvial (E) horizons are preserved at the tops of many profiles. The upper paleosols within each variegated interval are characterized by well-developed vertic structures. Pedogenic slickensides, pseudoanticlines, and occasional gilgai result from the expansion and contraction of the soil such as occurs in a seasonal wet/dry environment. These paleosols are greenish gray to olive gray and often have abundant concertina root traces. The absence of a red oxidized horizon suggests more poorly drained conditions. The upward trend from drier, better drained soils to vertic, poorly drained soils could have been generated by short-term climate change toward increasing, though still seasonal, precipitation. If so, this observation suggests that cyclic climatic change may have been an important factor in generating Lower Permian cyclothems. Such a conclusion is consistent with other evidence that the limestone and shale facies of these cyclothems were deposited in consistently shallow depositional environments.« less
Siennicka, Aldona; Zuchowski, Marta; Kaczmarczyk, Mariusz; Cnotliwy, Miłosław; Clark, Jeremy Simon; Jastrzębska, Maria
2018-03-20
The hemostatic system cooperates with proteolytic degradation in processes allowing abdominal aortic aneurysm (AAA) formation. In previous studies, it has been suggested that aneurysm rupture depends on intraluminal thrombus (ILT) thickness, which varies across each individual aneurysm. We hypothesized that hemostatic components differentially accumulate in AAA tissue in relation to ILT thickness. Thick (A1) and thin (B1) segments of ILTs and aneurysm wall sections A (adjacent to A1) and B (adjacent to B1) from one aneurysm sac were taken from 35 patients undergoing elective repair. Factor levels were measured using enzyme-linked immunosorbent assay of protein extract. Tissue factor (TF) activities were significantly higher in thinner segments of AAA (B1 vs A1, P = .003; B vs A, P < .001; B vs A1, P < .001; B vs B1, P = .001). Significantly higher tissue plasminogen activator was found in thick thrombus-covered wall segments (A) than in B, A1, and B1 (P = .015, P < .001, and P < .001, respectively). Plasminogen concentrations were highest in ILT. Concentrations of α 2 -antiplasmin in thin ILT adjacent walls (B) were higher compared with wall (A) adjacent to thick ILT (P = .021) and thick ILT (A1; P < .001). Significant correlations between levels of different factors were mostly found in thick ILT (A1). However, no correlations were found at B sites, except for a correlation between plasmin and TF activities (r = 0.55; P = .004). These results suggest that higher TF activities are present in thinner AAA regions. These parameters and local fibrinolysis may be part of the processes leading to destruction of the aneurysm wall. Copyright © 2018 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Evaluation of age determination techniques for gray wolves
Landon, D.B.; Waite, C.A.; Peterson, R.O.; Mech, L.D.
1998-01-01
We evaluated tooth wear, cranial suture fusion, closure of the canine pulp cavity, and cementum annuli as methods of age determination for known- and unknown-age gray wolves (Canis lupus) from Alaska, Minnesota, Ontario, and Isle Royale, Michigan. We developed age classes for cranial suture closure and tooth wear. We used measurement data obtained from known-age captive and wild wolves to generate a regression equation to predict age based on the degree of closure of the canine pulp cavity. Cementum annuli were studied in known- and unknown-age animals, and calcified, unstained thin sections were found to provide clear annulus patterns under polarized transmitted light. Annuli counts varied among observers, partly because of variation in the pattern of annuli in different regions of the cementum. This variation emphasizes the need for standardized models of cementum analysis. Cranial suture fusion is of limited utility in age determination, while tooth wear can be used to estimate age of adult wolves within 4 years. Wolves lt 7 years old could be aged to within 13 years with the regression equation for closure of the canine pulp cavity. Although inaccuracy remains a problem, cementum-annulus counts were the most promising means of estimating age for gray wolves.
Stroke-model-based character extraction from gray-level document images.
Ye, X; Cheriet, M; Suen, C Y
2001-01-01
Global gray-level thresholding techniques such as Otsu's method, and local gray-level thresholding techniques such as edge-based segmentation or the adaptive thresholding method are powerful in extracting character objects from simple or slowly varying backgrounds. However, they are found to be insufficient when the backgrounds include sharply varying contours or fonts in different sizes. A stroke-model is proposed to depict the local features of character objects as double-edges in a predefined size. This model enables us to detect thin connected components selectively, while ignoring relatively large backgrounds that appear complex. Meanwhile, since the stroke width restriction is fully factored in, the proposed technique can be used to extract characters in predefined font sizes. To process large volumes of documents efficiently, a hybrid method is proposed for character extraction from various backgrounds. Using the measurement of class separability to differentiate images with simple backgrounds from those with complex backgrounds, the hybrid method can process documents with different backgrounds by applying the appropriate methods. Experiments on extracting handwriting from a check image, as well as machine-printed characters from scene images demonstrate the effectiveness of the proposed model.
Braestrup, C.B.; Mooney, R.T.
1964-01-21
This invention relates to a portable radiation monitor containing two concentric ionization chambers which permit the use of standard charging and reading devices. It is particularly adapted as a personnel x-ray dosimeter and to this end comprises a small thin walled, cylindrical conductor forming an inner energy dependent chamber, a small thin walled, cylindrical conductor forming an outer energy independent chamber, and polymeric insulation means which insulates said chambers from each other and holds the chambers together with exposed connections in a simple, trouble-free, and compact assembly substantially without variation in directional response. (AEC)
Large structural, thin-wall castings made of metals subject to hot tearing, and their fabrication
NASA Technical Reports Server (NTRS)
Smashey, Russell W. (Inventor)
2001-01-01
An article, such as a gas turbine engine mixer, is made by providing a mold structure defining a thin-walled, hollow article, and a base metal that is subject to hot tear cracking when cast in a generally equiaxed polycrystalline form, such as Rene' 108 and Mar-M247. The article is fabricated by introducing the molten base metal into the mold structure, and directionally solidifying the base metal in the mold structure to form a directionally oriented structure. The directionally oriented structure may be formed of a single grain or oriented multiple grains.
NASA Astrophysics Data System (ADS)
Kubit, Andrzej; Wydrzynski, Dawid; Bucior, Magdalena; Krasowski, Bogdan
2018-05-01
This paper presents the results of experimental tests on the fabrication of longitudinal stiffening ribs in 2024-T3 ALCLAD aluminum alloy sheet, which is widely used in the aircraft structures. The problem presented in this paper concerns the concept of rib-stiffening of the structure of aircraft skin. The ribs are intended to stiffen integral thin-walled structure. Different shapes and different parameters of the forming process were studied. The rib-stiffened samples of various depths of the ribs were tested experimentally in the buckling test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Ye; Chen, Long-Qing; Kalinin, Sergei V.
Ferroelectric and ferroelastic domain walls play important roles in ferroelectric properties. However, their couplings with flexoelectricity have been less understood. Here, we applied phase-field simulation to investigate the flexoelectric coupling with ferroelectric a/c twin structures in lead ziconate titanate thin films. Local stress gradients were found to exist near twin walls that created both lateral and vertical electric fields through the flexoelectric effect, resulting in polarization inclinations from either horizontal or normal orientation, polarization rotation angles deviated from 90°, and consequently highly asymmetric a/c twin walls. Furthermore, by tuning the flexoelectric strengths in a reasonable range from first-principles calculations, wemore » found that the transverse flexoelectric coefficient has a larger influence on the polarization rotation than longitudinal and shear coefficients. And as polar rotations that commonly occur at compositional morphotropic phase boundaries contribute to the piezoelectric enhancement, this work calls for further exploration of alternative strain-engineered polar rotations via flexoelectricity in ferroelectric thin films.« less
Cao, Ye; Chen, Long-Qing; Kalinin, Sergei V.
2017-05-16
Ferroelectric and ferroelastic domain walls play important roles in ferroelectric properties. However, their couplings with flexoelectricity have been less understood. Here, we applied phase-field simulation to investigate the flexoelectric coupling with ferroelectric a/c twin structures in lead ziconate titanate thin films. Local stress gradients were found to exist near twin walls that created both lateral and vertical electric fields through the flexoelectric effect, resulting in polarization inclinations from either horizontal or normal orientation, polarization rotation angles deviated from 90°, and consequently highly asymmetric a/c twin walls. Furthermore, by tuning the flexoelectric strengths in a reasonable range from first-principles calculations, wemore » found that the transverse flexoelectric coefficient has a larger influence on the polarization rotation than longitudinal and shear coefficients. And as polar rotations that commonly occur at compositional morphotropic phase boundaries contribute to the piezoelectric enhancement, this work calls for further exploration of alternative strain-engineered polar rotations via flexoelectricity in ferroelectric thin films.« less
Greiner, Leonard
1984-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Greiner, Leonard
1981-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Greiner, Leonard
1984-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Greiner, Leonard
1984-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Influence of Clay Platelet Spacing on Oxygen Permeability of Thin Film Assemblies
NASA Astrophysics Data System (ADS)
Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime
2010-03-01
Thin films of anionic natural montmorrilonite clay and various polyelectrolytes have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient in an effort to show the influence of clay platelet spacing on thin film permeability. After polymer-clay layers have been sequentially deposited, the resulting transparent films exhibit a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall forms an extremely tortuous path for a molecule to traverse, creating channels perpendicular to the concentration gradient that increase the molecule's diffusion length and delay its transmission. To a first approximation, greater clay spacing (i.e., reduced clay concentration) produces greater oxygen barrier. Oxygen transmission rates below 0.005 cm^3/m^2.day have been achieved for films with only eight clay layers (total thickness of only 200 nm). With optical transparencies greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.
NASA Astrophysics Data System (ADS)
Song, Y. Z.; Li, X.; Song, Y.; Cheng, Z. P.; Zhong, H.; Xu, J. M.; Lu, J. S.; Wei, C. G.; Zhu, A. F.; Wu, F. Y.; Xu, J.
2013-01-01
Gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode were prepared using electrochemical synthesis method. The thin films of gold Nanoparticles/multi-walled carbon nanotubes were characterized by scanning electron microscopy, powder X-ray diffraction, and cyclic voltammetry. Electrochemical behavior of adrenaline hydrochloride at gold nanoparticles/multi-walled carbon nanotube modified glassy carbon electrode was investigated. A simple, sensitive, and inexpensive method for determination of adrenaline hydrochloride was proposed.
Installation Restoration Program. Phase I. Records Search, Hancock Field, New York.
1982-07-01
purplish red, red, gray, green or black shale (major fraction) and shaly dolomite (minor fraction). The unit is poorly stra- tified and reaches a... fractured and jointed locally. At Hancock Field, the Vernon is typically overlain by a thin layer of glacial till. Test borings advanced at the Semi...the consolidated rock aquifer, composed of shales and dolomitic shales of the previously described Vernon Formation. Water is contained in this unit
Cost and Performance Report of Electrical Resistance Heating (ERH) for Source Treatment. Addendum
2008-09-29
and clay. The Upper Cretaceous Severn, Matawan, and Magothy Formations underlie the Brightseat Formation. The groundwater table at the site is...Table 1, the aquifers include, in descending order, the Aquia, the Monmouth, the Magothy , the Upper and Lower Patapsco and the Patuxent. The... Magothy Magothy Aquifer Sand, light-gray to white, with interbedded thin layers of organic clay. _-300(1) Confining Unit _-360(1) Upper Patapsco
Gray wolf (Canis lupus) is a natural definitive host for Neospora caninum.
Dubey, J P; Jenkins, M C; Rajendran, C; Miska, K; Ferreira, L R; Martins, J; Kwok, O C H; Choudhary, S
2011-09-27
The gray wolf (Canis lupus) was found to be a new natural definitive host for Neospora caninum. Neospora-like oocysts were found microscopically in the feces of three of 73 wolves from Minnesota examined at necropsy. N. caninum-specific DNA was amplified from the oocysts of all three wolves. Oocysts from one wolf were infective for the gamma interferon gene knock out (KO) mice. Viable N. caninum (designated NcWolfUS1) was isolated in cell cultures seeded with tissue homogenate from the infected mouse. Typical thick walled tissue cysts were found in outbred mice inoculated with the parasite from the KO mouse. Tissue stages in mice stained positively with N. caninum-specific polyclonal antibodies. Our observation suggests that wolves may be an important link in the sylvatic cycle of N. caninum. Copyright © 2011 Elsevier B.V. All rights reserved.
Cylindrical Shells Made of Stainless Steel - Investigation of Postbuckling
NASA Astrophysics Data System (ADS)
Stehr, Sebastian; Stranghöner, Natalie
2017-06-01
The relevant load case of open thin-walled shells is often wind loading during construction. Because of the missing stabilization effect of the roof they show a very high sensitivity to buckling which results into higher wall thicknesses. As part of the European RFCS research project BiogaSS the Institute for Metal and Lightweight Structures of the University of Duisburg-Essen carried out investigations on open thin-walled tanks made of austenitic and duplex stainless steels under wind load to study a possible economic advantage which might be gained from the consideration of the elastic postbuckling behaviour. This contribution presents not only experimental and numerical results but also first recommendations regarding the range of possible buckling reduction factors which might be incorporated in future revisions of EN 1993-1-6 and EN 1993-4-2.
A thin-walled pressurized sphere exposed to external general corrosion and nonuniform heating
NASA Astrophysics Data System (ADS)
Sedova, Olga S.; Pronina, Yulia G.; Kuchin, Nikolai L.
2018-05-01
A thin-walled spherical shell subjected to simultaneous action of internal and external pressure, nonuniform heating and outside mechanochemical corrosion is considered. It is assumed that the shell is homogeneous, isotropic and linearly elastic. The rate of corrosion is linearly dependent on the equivalent stress, which is the sum of mechanical and temperature stress components. Paper presents a new analytical solution, which takes into account the effect of the internal and external pressure values themselves, not only their difference. At the same time, the new solution has a rather simple form as compared to the results based on the solution to the Lame problem for a thick-walled sphere under pressure. The solution obtained can serve as a benchmark for numerical analysis and for a qualitative forecast of durability of the vessel.
Evidence for post-1620 Ma Proterozoic regional deformation, Lucy Gray Range, southern Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duebendorfer, E.M.; Christensen, C.H.; Shafiqullah, M.
1993-04-01
Major mylonite zones in the northern Lucy Gray Range, Nevada, deform and are spatially associated with the 1,425 Ma Beer Bottle Pass pluton, Mylonitic granite yielded a K-Ar biotite date of 1,400 [+-] 30 Ma and is overlain nonconformably by the Cambrian Tapeats Sandstone, thus constraining deformation to the Proterozoic. The mylonites may therefore represent an unrecognized period of Proterozoic deformation in the Southwest. Field and microstructural studies were undertaken to evaluate between 3 possible models for the apparent spatial association of granite and mylonites: (1) deformation directly related to pluton emplacement (ballooning); (2) synkinematic pluton emplacement; or (3) post-emplacementmore » deformation. Mylonite zones up to 50 meters thick strike north to northeast, dip moderately to steeply northwest, and contain a remarkably consistent west-plunging mineral lineation. Mylonites are present locally at the granite-wall rock contact; however, less than 30% of the exposed contact is mylonitic. The authors reject a pluton-emplacement origin for the mylonites because (1) mylonite zones within wall rocks locally strike at high angles to an undeformed pluton-wall rock contact, (2) the consistent (pluton-side-down) shear sense is more compatible with a uniform-sense simple shear zone than a ballooning pluton, (3) plane strain fabrics dominate over flattening fabrics, and (4) mylonites adjacent to pluton contacts lack annealing textures predicted by the ballooning model. If so, the conventional interpretation of 1,400 Ga granitoids as anorogenic may need to be re-evaluated. The authors cannot, however, rule out the possibility that the mylonites completely postdate intrusion of the Beer Bottle Pass pluton. Future work is planned to delimit the regional extent of this previously unrecognized Proterozoic deformational event.« less
Experimental Investigation of Compressed Thin-Walled Steel Members
NASA Astrophysics Data System (ADS)
Juhás, Pavol; Juhásová Šenitková, Ingrid
2017-10-01
The paper presents fundamental information about realized experimental-theoretical research to determinate the load-carrying capacities for thin-walled compressed steel members with quasi-homogenous and hybrid cross-sections. The webs of such members are stressed in the elastic-plastic region. This continuous research joins on previous research of the first author of the paper. The aim of this research is to investigate and analyse the elastic-plastic post-critical behaviour of thin web and its interaction with flanges. The experimental program, test members and their geometrical parameters and material properties are evident from table 1 and table 2 as well as from figure 1 and figure 2. The test arrangement and failures of the test members are illustrated on Figures 3, 4 and 5. Some partial results are presented in Table 3 of the paper, too.
Stress distribution in and equivalent width of flanges of wide, thin-wall steel beams
NASA Technical Reports Server (NTRS)
Winter, George
1940-01-01
The use of different forms of wide-flange, thin-wall steel beams is becoming increasingly widespread. Part of the information necessary for a national design of such members is the knowledge of the stress distribution in and the equivalent width of the flanges of such beams. This problem is analyzed in this paper on the basis of the theory of plane stress. As a result, tables and curves are given from which the equivalent width of any given beam can be read directly for use in practical design. An investigation is given of the limitations of this analysis due to the fact that extremely wide and thin flanges tend to curve out of their plane toward the neutral axis. A summary of test data confirms very satisfactorily the analytical results.
NASA Astrophysics Data System (ADS)
Upadhyaya, Rajat; Singh, K. K.; Kumar, Rajeev
2018-03-01
The technology of thin parts is necessary steps to designers for energy consuming equipment to choose accurate material based on material properties. Here austempering treatment process was utilized to acquire thin wall austempered ductile iron castings. The plate thickness (2-5) mm were austenitized at 900 °C for, 30 minutes took after by holding at 350°C, 400°C and 450°C inoculated by Ce-Ca-Al-S-O-FeSi,Zr-Mn-Ca-Al-Ba-FeSi and Sr-Al-Ca-FeSi at 0.2wt%,0.4wt% and 0.6wt% for 2,5 and 10 minutes for every temperature.The austempered samples are comparatively harder than the as-cast ductile iron plates. The micro hardness(HV20) also decreases with increase in austempering temperature for a given austempering time for thinner plates and also the micro hardness(HV20) is more for the samples treated at 350°C than those treated at 400°C and 450°C at 0.4wt% for a given austempering time. The yield strength and ultimate tensile strength of 2 mm thin wall austempered ductile iron are higher and ductility and impact strength are lower than that of as-cast 2 mm thin plate ductile iron inoculated by Ce-Ca-Al-S-O-FeSi compare to Zr-Mn-Ca-Al-Ba-FeSi and Sr-Al-Ca-FeSi at 0.4wt%. This may be attributed to the change in the structure change from ferrite-pearlite to austenite-bainite.
Stress failure of pulmonary capillaries: role in lung and heart disease
NASA Technical Reports Server (NTRS)
West, J. B.; Mathieu-Costello, O.
1992-01-01
Pulmonary capillaries have extremely thin walls to allow rapid exchange of respiratory gases across them. Recently it has been shown that the wall stresses become very large when the capillary pressure is raised, and in anaesthetised rabbits, ultrastructural damage to the walls is seen at pressures of 40 mm Hg and above. The changes include breaks in the capillary endothelial layer, alveolar epithelial layer, and sometimes all layers of the wall. The strength of the thin part of the capillary wall can be attributed to the type IV collagen in the extracellular matrix. Stress failure of pulmonary capillaries results in a high-permeability form of oedema, or even frank haemorrhage, and is apparently the mechanism of neurogenic pulmonary oedema and high-altitude pulmonary oedema. It also explains the exercise-induced pulmonary haemorrhage that occurs in all racehorses. Several features of mitral stenosis are consistent with stress failure. Overinflation of the lung also leads to stress failure, a common cause of increased capillary permeability in the intensive care environment. Stress failure also occurs if the type IV collagen of the capillary wall is weakened by autoantibodies as in Goodpasture's syndrome. Neutrophil elastase degrades type IV collagen and this may be the starting point of the breakdown of alveolar walls that is characteristic of emphysema. Stress failure of pulmonary capillaries is a hitherto overlooked and potentially important factor in lung and heart disease.
Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy
NASA Astrophysics Data System (ADS)
Domingo, N.; Farokhipoor, S.; Santiso, J.; Noheda, B.; Catalan, G.
2017-08-01
We measure the magnetotransport properties of individual 71° domain walls in multiferroic BiFeO3 by means of conductive—atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of the magnetoresistance depending on the relative orientation between the magnetic field and the domain wall plane. A consequence of this finding is that macroscopically averaged magnetoresistance measurements for domain wall bunches are likely to underestimate the magnetoresistance of each individual domain wall.
Cross-tie walls and magnetic singularities on the surface of permalloy films (abstract)
NASA Astrophysics Data System (ADS)
Lee, Y.; Kueny, A.; Koymen, A. R.
1997-04-01
An understanding of the surface magnetic microstructure of thin polycrystalline permalloy films is important for the development of improved magnetoresistive sensors. Scanning electron microscopy with polarization analysis (SEMPA) was used to image the surface magnetic domain structure of permalloy films in ultrahigh vacuum. The SEMPA system uses a compact Mott electron spin polarimeter with a Th foil (operating at 25 keV) that has been attached to the back of a hemispherical energy analyzer. Two orthogonal in-plane components of the electron spin polarization were measured to obtain magnetic domain images with excellent contrast. 350 Å Ni83Fe17 films, deposited by Honeywell-Micro Switch using dc magnetron sputtering, were studied. The samples were demagnetized along the easy axis by an ac magnetic field with decreasing amplitude. Using SEMPA, zigzag domain walls separating two large approximately head-on domains were observed. Cross-tie walls were observed with a periodic vortex structure along the straight edges of the zigzag domain walls. The cross-tie walls occur at the points where the magnetization is reversed by 180° across the straight edges of the wall. At high magnification, the elliptical and hyperbolic singularities at the cross-tie walls were clearly observed. In addition, the Néel part and the Bloch part of the cross-tie were distinguished This is a detailed study of cross-tie walls on sputter deposited thin permalloy films using SEMPA and our results are in good agreement with theoretical calculations.
Brown-headed cowbirds (Molothrus ater) harbor Sarcocystis neurona and act as intermediate hosts.
Mansfield, L S; Mehler, S; Nelson, K; Elsheikha, H M; Murphy, A J; Knust, B; Tanhauser, S M; Gearhart, P M; Rossano, M G; Bowman, D D; Schott, H C; Patterson, J S
2008-05-06
We tested the hypothesis that brown-headed cowbirds (Molothrus ater) harbor Sarcocystis neurona, the agent of equine protozoal myeloencephalitis (EPM), and act as intermediate hosts for this parasite. In summer 1999, wild caught brown-headed cowbirds were collected and necropsied to determine infection rate with Sarcocystis spp. by macroscopic inspection. Seven of 381 (1.8%) birds had grossly visible sarcocysts in leg muscles with none in breast muscles. Histopathology revealed two classes of sarcocysts in leg muscles, thin-walled and thick-walled suggesting two species. Electron microscopy showed that thick-walled cysts had characteristics of S. falcatula and thin-walled cysts had characteristics of S. neurona. Thereafter, several experiments were conducted to confirm that cowbirds had viable S. neurona that could be transmitted to an intermediate host and cause disease. Specific-pathogen-free opossums fed cowbird leg muscle that was enriched for muscle either with or without visible sarcocysts all shed high numbers of sporocysts by 4 weeks after infection, while the control opossum fed cowbird breast muscle was negative. These sporocysts were apparently of two size classes, 11.4+/-0.7 microm by 7.6+/-0.4 microm (n=25) and 12.6+/-0.6 microm by 8.0+/-0 microm (n=25). When these sporocysts were excysted and introduced into equine dermal cell tissue culture, schizogony occurred, most merozoites survived and replicated long term and merozoites sampled from the cultures with long-term growth were indistinguishable from known S. neurona isolates. A cowbird Sarcocystis isolate, Michigan Cowbird 1 (MICB1), derived from thin-walled sarcocysts from cowbirds that was passaged in SPF opossums and tissue culture went on to produce neurological disease in IFNgamma knockout mice indistinguishable from that of the positive control inoculated with S. neurona. This, together with the knowledge that S. falcatula does not cause lesions in IFNgamma knockout mice, showed that cowbird leg muscles had a Sarcocystis that fulfills the first aim of Koch's postulates to produce disease similar to S. neurona. Two molecular assays provided further support that both S. neurona and S. falcatula were present in cowbird leg muscles. In a blinded study, PCR-RFLP of RAPD-derived DNA designed to discriminate between S. neurona and S. falcatula showed that fresh sporocysts from the opossum feeding trial had both Sarcocystis species. Visible, thick-walled sarcocysts from cowbird leg muscle were positive for S. falcatula but not S. neurona; thin-walled sarcocysts typed as S. neurona. In 1999, DNA was extracted from leg muscles of 100 wild caught cowbirds and subjected to a PCR targeting an S. neurona specific sequence of the small subunit ribosomal RNA (SSU rRNA) gene. In control spiking experiments, this assay detected DNA from 10 S. neurona merozoites in 0.5g of muscle. In the 1999 experiment, 23 of 79 (29.1%) individual cowbird leg muscle samples were positive by this S. neurona-specific PCR. Finally, in June of 2000, 265 cowbird leg muscle samples were tested by histopathology for the presence of thick- and thin-walled sarcocysts. Seven percent (18/265) had only thick-walled sarcocysts, 0.8% (2/265) had only thin-walled sarcocysts and 1.9% (5/265) had both. The other half of these leg muscles when tested by PCR-RFLP of RAPD-derived DNA and SSU rRNA PCR showed a good correlation with histopathological results and the two molecular typing methods concurred; 9.8% (26/265) of cowbirds had sarcocysts in muscle, 7.9% (21/265) had S. falcatula sarcocysts, 1.1% (3/265) had S. neurona sarcocysts, and 0.8% (2/265) had both. These results show that some cowbirds have S. neurona as well as S. falcatula in their leg muscles and can act as intermediate hosts for both parasites.
Bark structure of southern upland oaks
E.T. Howard
1977-01-01
Bark structure of eleven oak species commonly found on southern pine sites was examined and described. In inner bark (phloem), groups of thick-walled lignified fibers and sclereids are interspersed among thin-walled cellulosic elements (parenchyma, sieve tube members, and companion cells). These fibers and sclereids greatly influence the bark's density, hardness,...
Heat-stressed structural components in combustion-engine design
NASA Technical Reports Server (NTRS)
Kraemer, Otto
1938-01-01
Heated structural parts alter their shape. Anything which hinders free heat expansion will give rise to heat stresses. Design rules are thus obtained for the heated walls themselves as well as for the adjoining parts. An important guiding principle is that of designing the heat-conducting walls as thin as possible.
Ultrasonic Measurement of Erosion/corrosion Rates in Industrial Piping Systems
NASA Astrophysics Data System (ADS)
Sinclair, A. N.; Safavi, V.; Honarvar, F.
2011-06-01
Industrial piping systems that carry aggressive corrosion or erosion agents may suffer from a gradual wall thickness reduction that eventually threatens pipe integrity. Thinning rates could be estimated from the very small change in wall thickness values measured by conventional ultrasound over a time span of at least a few months. However, measurements performed over shorter time spans would yield no useful information—minor signal distortions originating from grain noise and ultrasonic equipment imperfections prevent a meaningful estimate of the minuscule reduction in echo travel time. Using a Model-Based Estimation (MBE) technique, a signal processing scheme has been developed that enables the echo signals from the pipe wall to be separated from the noise. This was implemented in a laboratory experimental program, featuring accelerated erosion/corrosion on the inner wall of a test pipe. The result was a reduction in the uncertainty in the wall thinning rate by a factor of four. This improvement enables a more rapid response by system operators to a change in plant conditions that could pose a pipe integrity problem. It also enables a rapid evaluation of the effectiveness of new corrosion inhibiting agents under plant operating conditions.
Drop impact on thin liquid films using TIRM
NASA Astrophysics Data System (ADS)
Pack, Min; Ying Sun Team
2015-11-01
Drop impact on thin liquid films is relevant to a number of industrial processes such as pesticide spraying and repellent surface research such as self-cleaning applications. In this study, we systematically investigate the drop impact dynamics on thin liquid films on plain glass substrates by varying the film thickness, viscosity and impact velocity. High speed imaging is used to track the droplet morphology and trajectory over time as well as observing instability developments at high Weber number impacts. Moreover, the air layer between the drop and thin film upon drop impact is probed by total internal reflection microscopy (TIRM) where the grayscale intensity is used to measure the air layer thickness and spreading radius over time. For low We impact on thick films (We ~ 10), the effect of the air entrainment is pronounced where the adhesion of the droplet to the wall is delayed by the air depletion and liquid film drainage, whereas for high We impact (We >100) the air layer is no longer formed and instead, the drop contact with the wall is limited only to the film drainage for all film thicknesses. In addition, the maximum spreading radius of the droplet is analyzed for varying thin film thickness and viscosity.
Zamani, J; Soltani, B; Aghaei, M
2014-10-01
An elastic solution of cylinder-truncated cone shell intersection under internal pressure is presented. The edge solution theory that has been used in this study takes bending moments and shearing forces into account in the thin-walled shell of revolution element. The general solution of the cone equations is based on power series method. The effect of cone apex angle on the stress distribution in conical and cylindrical parts of structure is investigated. In addition, the effect of the intersection and boundary locations on the circumferential and longitudinal stresses is evaluated and it is shown that how quantitatively they are essential.
Ferrule and use thereof for cooling a melt spun hollow glass fiber as it emerges from a spinnerette
Brown, William E.
1977-01-01
An improvement in the process of melt spinning thin walled, hollow fibers from relatively low melting glasses results if cooling of the emerging fiber is accomplished by use of a thin layer of gas to transfer heat from the fiber to a ferrule which fits closely to the spinnerette face and the individual fiber. The ferrule incorporates or is in contact with a heat sink and is slotted or segmented so that it may be brought into position around the moving fiber. Thinner walled, more uniform fibers may be spun when this method of cooling is employed.
Some considerations on instability of combined loaded thin-walled tubes with a crack
NASA Astrophysics Data System (ADS)
Shariati, M.; Akbarpour, A.
2016-05-01
Instability of a thin-walled stainless steel tube with a crack-shaped defect under combined loading is studied in this paper. Furthermore, the effects of the tube length, crack orientation, and crack length on the buckling behavior of tubes are investigated. The behavior of tubes subjected to combined is analyzed by using the finite element method (by Abaqus software). For cracked tubes with a fixed thickness, the buckling load decreases as the tube length and the ratio of the tube length to its diameter increase. Moreover, the buckling load of cracked tubes under combined loading also decreases with increasing crack length.
Growth dependent magnetization reversal in Co2MnAl full Heusler alloy thin films
NASA Astrophysics Data System (ADS)
Barwal, Vineet; Husain, Sajid; Behera, Nilamani; Goyat, Ekta; Chaudhary, Sujeet
2018-02-01
Angular dependent magnetization reversal has been investigated in Co2MnAl (CMA) full Heusler alloy thin films grown on Si(100) at different growth temperatures (Ts) by DC-magnetron sputtering. An M -shaped curve is observed in the in-plane angular (0°-360°) dependent coercivity (ADC) by magneto-optical Kerr effect measurements. The dependence of the magnetization reversal on Ts is investigated in detail to bring out the structure-property correlation with regards to ADC in these polycrystalline CMA thin films. This magnetization reversal ( M -shaped ADC behavior) is well described by the two-phase model, which is a combination of Kondorsky (domain wall motion) and Stoner Wohlfarth (coherent rotation) models. In this model, magnetization reversal starts with depinning of domain walls, with their gradual displacement explained by the Kondorsky model, and at a higher field (when the domain walls merge), the system follows coherent rotation before reaching its saturation following the Stoner Wohlfarth model. Further, the analysis of angular dependent squareness ratio (Mr/Ms) indicates that our films clearly exhibited twofold uniaxial anisotropy, which is related to self-steering effect arising due to the obliquely incident flux during the film-growth.
NASA Astrophysics Data System (ADS)
Li, JianYing; Hu, QingChun; Zong, ChangFu; Zhu, TianJun; Zhang, ZeXing
2018-03-01
A dual-clutch and dual-speed planetary gears mechanism of a hybrid car coupled-system is taken as research subject, in which the ring gear of planet set II is a thin-walled structure and the clutch friction plates of planet set II are used as its elastic supports. Based on the lumped parameter-rigid elastic coupled dynamic model of two-stage planetary transmission system with thin-walled ring gear on elastic supports, the motion differential equations are established and the dynamic responses are solved by the Runge-Kutta method considering each stage internal and external time-varying mesh stiffness. The vibration displacements of each stage ring gear have been affected differently in time-domain, the translational vibration displacement of the ring gear of planet set I are obviously more than the torsional vibration displacement, but it is opposite for the ring gear of planet set II; The translational and torsional vibration responses of each stage ring gear arrive the peak in low-frequency. The analysis results of this paper can enrich the theoretical research of multistage planetary transmission and provide guidance for dynamic design.
NASA Astrophysics Data System (ADS)
Nagy, M.; Behúlová, M.
2017-11-01
Nowadays, the laser technology is used in a wide spectrum of applications, especially in engineering, electronics, medicine, automotive, aeronautic or military industries. In the field of mechanical engineering, the laser technology reaches the biggest increase in the automotive industry, mainly due to the introduction of automation utilizing 5-axial movements. Modelling and numerical simulation of laser welding processes has been exploited with many advantages for the investigation of physical principles and complex phenomena connected with this joining technology. The paper is focused on the application of numerical simulation to the design of welding parameters for the circumferential laser welding of thin-walled exhaust pipes from theAISI 304 steel for automotive industry. Using the developed and experimentally verified simulation model for laser welding of tubes, the influence of welding parameters including the laser velocity from 30 mm.s-1 to 60 mm.s-1 and the laser power from 500 W to 1200 W on the temperature fields and dimensions of fusion zone was investigated using the program code ANSYS. Based on obtained results, the welding schedule for the laser beam welding of thin-walled tubes from the AISI 304 steel was suggested.
NASA Astrophysics Data System (ADS)
Finkel, Peter
2007-03-01
It was recently shown that thermal or optical stimulation can be used to increase sensitivity of the conventional nondestructive ultrasonic detection of the small crack, flaws and inclusions in a ferromagnetic thin-walled parts. We proposed another method based on electromagnetic modulation of the ultrasonic scattered signal from the inclusions or defects. The electromagnetically induced high density current pulse produces stresses which alter the ultrasonic waves scanning the part with the defect and modulate ultrasonic signal. The excited electromagnetic field can produces crack-opening due to Lorentz forces that increase the ultrasonic reflection. The Joule heating associated with the high density current, and consequent thermal stresses may cause both crack-closure, as well as crack-opening, depending on various factors. Experimental data is presented here for the case of a small cracks near small holes in thin-walled structures. The measurements were taken at 2-10 MHz with a Lamb wave wedge transducer. It is shown that electromagnetic transient modulation of the ultrasonic echo pulse tone-burst suggest that this method could be used to enhance detection of small cracks and ferromagnetic inclusions in thin walled metallic structures.
Post-cast EDM method for reducing the thickness of a turbine nozzle wall
Jones, Raymond Joseph; Bojappa, Parvangada Ganapathy; Kirkpatrick, Francis Lawrence; Schotsch, Margaret Jones; Rajan, Rajiv; Wei, Bin
2002-01-01
A post-cast EDM process is used to remove material from the interior surface of a nozzle vane cavity of a turbine. A thin electrode is passed through the cavity between opposite ends of the nozzle vane and displaced along the interior nozzle wall to remove the material along a predetermined path, thus reducing the thickness of the wall between the cavity and the external surface of the nozzle. In another form, an EDM process employing a profile as an electrode is disposed in the cavity and advanced against the wall to remove material from the wall until the final wall thickness is achieved, with the interior wall surface being complementary to the profile surface.
A proposal for epitaxial thin film growth in outer space
NASA Technical Reports Server (NTRS)
Ignatiev, Alex; Chu, C. W.
1988-01-01
A new concept for materials processing in space exploits the ultravacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials. Advanced thin film materials to be epitaxially grown in space include semiconductors, magnetic materials, and thin film high temperature superconductors.
Epitaxial thin film growth in outer space
NASA Technical Reports Server (NTRS)
Ignatiev, Alex; Chu, C. W.
1988-01-01
A new concept for materials processing in space exploits the ultravacuum component of space for thin-film epitaxial growth. The unique LEO space environment is expected to yield 10-ftorr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume (about 100 cu m) without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and throughput of epitaxially grown materials, including semiconductors, magnetic materials, and thin-film high-temperature superconductors.
NASA Technical Reports Server (NTRS)
Fromme, J.; Golberg, M.
1978-01-01
The numerical calculation of unsteady two dimensional airloads which act upon thin airfoils in subsonic ventilated wind tunnels was studied. Neglecting certain quadrature errors, Bland's collocation method is rigorously proved to converge to the mathematically exact solution of Bland's integral equation, and a three way equivalence was established between collocation, Galerkin's method and least squares whenever the collocation points are chosen to be the nodes of the quadrature rule used for Galerkin's method. A computer program displayed convergence with respect to the number of pressure basis functions employed, and agreement with known special cases was demonstrated. Results are obtained for the combined effects of wind tunnel wall ventilation and wind tunnel depth to airfoil chord ratio, and for acoustic resonance between the airfoil and wind tunnel walls. A boundary condition is proposed for permeable walls through which mass flow rate is proportional to pressure jump.
Buckling of thin walled composite cylindrical shell filled with solid propellant
NASA Astrophysics Data System (ADS)
Dash, A. P.; Velmurugan, R.; Prasad, M. S. R.
2017-12-01
This paper investigates the buckling of thin walled composite cylindrical tubes that are partially filled with solid propellant equivalent elastic filler. Experimental investigation is conducted on thin composite tubes made out of S2-glass epoxy, which is made by using filament winding technique. The composite tubes are filled with elastic filler having similar mechanical properties as that of a typical solid propellant used in rocket motors. The tubes are tested for their buckling strength against the external pressure in the presence of the filler. Experimental data confirms the enhancement of external pressure carrying capacity of the composite tubes by up to three times as that of empty tubes for a volumetric loading fraction (VLF) of 0.9. Furthermore, the finite element based geometric nonlinearity analysis predicts the buckling behaviour of the partially filled composite tubes close to the experimental results.
Rechargeable thin-film electrochemical generator
Rouillard, Roger; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Ranger, Michel; Sudano, Anthony; Trice, Jennifer L.; Turgeon, Thomas A.
2000-09-15
An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.
Liang, Yu Teng; Vijayan, Baiju K.; Gray, Kimberly A.; Hersam, Mark C.
2016-07-19
In one aspect, a method of making non-covalently bonded carbon-titania nanocomposite thin films includes: forming a carbon-based ink; forming a titania (TiO.sub.2) solution; blade-coating a mechanical mixture of the carbon-based ink and the titania solution onto a substrate; and annealing the blade-coated substrate at a first temperature for a first period of time to obtain the carbon-based titania nanocomposite thin films. In certain embodiments, the carbon-based titania nanocomposite thin films may include solvent-exfoliated graphene titania (SEG-TiO.sub.2) nanocomposite thin films, or single walled carbon nanotube titania (SWCNT-TiO.sub.2) nanocomposite thin films.
Chung, Yoonho; Haut, Kristen; He, George; Van Erp, Theo; McEwen, Sarah; Addington, Jean; Bearden, Carrie; Cadenhead, Kristin; Cornblatt, Barbara; Mathalon, Daniel; McGlashan, Thomas; Perkins, Diana; Seidman, Larry; Tsuang, Ming; Walker, Elaine; Woods, Scott; Cannon, Tyrone
2017-01-01
Abstract Background: In a recent prospective longitudinal neuroimaging study, clinical high-risk (CHR) individuals who later developed full-blown psychosis showed an accelerated rate of gray matter thinning in superior and medial prefrontal cortex (PFC) and expansion of the ventricular system after applying a stringent correction for multiple comparisons. Although cortical and subcortical volume loss and enlarged ventricles are well characterized structural brain abnormalities among patients with schizophrenia, no prior study has evaluated whether these progressive changes of neuroanatomical indicators are linked in time prior to onset of psychosis. Therefore, we investigated the relationship between the changes in cortical gray matter thickness and ventricular volume using the longitudinal neuroimaging data from the North American Prodrome Longitudinal Study (NAPLS) at the whole-brain level. Methods: MRI structural data were acquired at baseline and 12-month follow-up, and follow-up scans for those who developed fully psychotic symptoms were assessed at the point of conversion. In total, 37 CHR cases who converted to psychosis, 230 CHR cases who did not convert (nonconverters), and 132 healthy comparison subjects had usable baseline and second time point scans. Imaging measures were first transformed to annualized rates of percent change (ARCH) in each cortical vertex. Interval is the time between BL and FU scans in years. Relationships between ARCH of total ventricle volume and ARCH of cortical gray matter values were tested vertex-wise using the general linear model. Among the subjects with BL and 12-FU data available, 125 CHR cases and 66 controls were followed to an additional third time point for a 24-month MRI assessment. For the purpose of testing the replicability of our main hypotheses, neuroanatomical ARCH measures between the 12 and 24 month follow-ups were also computed with a parallel set of statistical tests as described earlier. Results: The results showed that ventricular expansion is linked in time to progressive reduction of gray matter, rather than to structural changes in proximal subcortical regions, in a broadly distributed set of cortical regions among CHR youth, including superior, medial, lateral, and inferior PFC, superior temporal gyrus, and parietal cortices. In contrast, the healthy controls did not show the same pattern of associations. The main findings were further replicated using a third assessment wave of MRI scans in a subset of study participants who were followed for an additional year. Conclusion: In summary, expansion of the ventricular spaces is linked in time with an accelerated rate of widespread cortical thinning prior to psychosis onset. The cortical regions experiencing altered maturation during the psychosis prodrome may be more widespread than the regionally specific clusters that have been identified in previous case–control studies
Manufacture of thin-walled clad tubes by pressure welding of roll bonded sheets
NASA Astrophysics Data System (ADS)
Schmidt, Hans Christian; Grydin, Olexandr; Stolbchenko, Mykhailo; Homberg, Werner; Schaper, Mirko
2017-10-01
Clad tubes are commonly manufactured by fusion welding of roll bonded metal sheets or, mechanically, by hydroforming. In this work, a new approach towards the manufacture of thin-walled tubes with an outer diameter to wall thickness ratio of about 12 is investigated, involving the pressure welding of hot roll bonded aluminium-steel strips. By preparing non-welded edges during the roll bonding process, the strips can be zip-folded and (cold) pressure welded together. This process routine could be used to manufacture clad tubes in a continuous process. In order to investigate the process, sample tube sections with a wall thickness of 2.1 mm were manufactured by U-and O-bending from hot roll bonded aluminium-stainless steel strips. The forming and welding were carried out in a temperature range between RT and 400°C. It was found that, with the given geometry, a pressure weld is established at temperatures starting above 100°C. The tensile tests yield a maximum bond strength at 340°C. Micrograph images show a consistent weld of the aluminium layer over the whole tube section.
Solid oxide fuel cell having monolithic core
Ackerman, J.P.; Young, J.E.
1983-10-12
A solid oxide fuel cell is described for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick.
A modification of Murray's law for shear-thinning rheology.
McGah, Patrick M; Capobianchi, Massimo
2015-05-01
This study reformulates Murray's well-known principle of minimum work as applied to the cardiovascular system to include the effects of the shear-thinning rheology of blood. The viscous behavior is described using the extended modified power law (EMPL), which is a time-independent, but shear-thinning rheological constitutive equation. The resulting minimization problem is solved numerically for typical parameter ranges. The non-Newtonian analysis still predicts the classical cubic diameter dependence of the volume flow rate and the cubic branching law. The current analysis also predicts a constant wall shear stress throughout the vascular tree, albeit with a numerical value about 15-25% higher than the Newtonian analysis. Thus, experimentally observed deviations from the cubic branching law or the predicted constant wall shear stress in the vasculature cannot likely be attributed to blood's shear-thinning behavior. Further differences between the predictions of the non-Newtonian and the Newtonian analyses are highlighted, and the limitations of the Newtonian analysis are discussed. Finally, the range and limits of applicability of the current results as applied to the human arterial tree are also discussed.
Shao, Huifeng; Ke, Xiurong; Liu, An; Sun, Miao; He, Yong; Yang, Xianyan; Fu, Jianzhong; Liu, Yanming; Zhang, Lei; Yang, Guojing; Xu, Sanzhong; Gou, Zhongru
2017-04-12
Three-dimensional (3D) printing bioactive ceramics have demonstrated alternative approaches to bone tissue repair, but an optimized materials system for improving the recruitment of host osteogenic cells into the bone defect and enhancing targeted repair of the thin-wall craniomaxillofacial defects remains elusive. Herein we systematically evaluated the role of side-wall pore architecture in the direct-ink-writing bioceramic scaffolds on mechanical properties and osteogenic capacity in rabbit calvarial defects. The pure calcium silicate (CSi) and dilute Mg-doped CSi (CSi-Mg6) scaffolds with different layer thickness and macropore sizes were prepared by varying the layer deposition mode from single-layer printing (SLP) to double-layer printing (DLP) and then by undergoing one-, or two-step sintering. It was found that the dilute Mg doping and/or two-step sintering schedule was especially beneficial for improving the compressive strength (∼25-104 MPa) and flexural strength (∼6-18 MPa) of the Ca-silicate scaffolds. The histological analysis for the calvarial bone specimens in vivo revealed that the SLP scaffolds had a high osteoconduction at the early stage (4 weeks) but the DLP scaffolds displayed a higher osteogenic capacity for a long time stage (8-12 weeks). Although the DLP CSi scaffolds displayed somewhat higher osteogenic capacity at 8 and 12 weeks, the DLP CSi-Mg6 scaffolds with excellent fracture resistance also showed appreciable new bone tissue ingrowth. These findings demonstrate that the side-wall pore architecture in 3D printed bioceramic scaffolds is required to optimize for bone repair in calvarial bone defects, and especially the Mg doping wollastontie is promising for 3D printing thin-wall porous scaffolds for craniomaxillofacial bone defect treatment.
Erickson, Kirk I.; Suever, Barbara L.; Shaurya Prakash, Ruchika; Colcombe, Stanley J.; McAuley, Edward; Kramer, Arthur F.
2008-01-01
Previous studies have reported that high concentrations of homocysteine and lower concentrations of vitamin B6, B12, and folate increase the risk for cognitive decline and pathology in aging populations. In this cross-sectional study, high-resolution magnetic resonance imaging (MRI) scans and a 3-day food diary were collected on 32 community-dwelling adults between the ages of 59 and 79. We examined the relation between vitamin B6, B12, and folate intake on cortical volume using an optimized voxel-based morphometry (VBM) method and global gray and white matter volume after correcting for age, sex, body mass index, calorie intake, and education. All participants met or surpassed the recommended daily intake for these vitamins. In the VBM analysis, we found that adults with greater vitamin B6 intake had greater gray matter volume along the medial wall, anterior cingulate cortex, medial parietal cortex, middle temporal gyrus, and superior frontal gyrus, whereas people with greater B12 intake had greater volume in the left and right superior parietal sulcus. These effects were driven by vitamin supplementation and were negated when only examining vitamin intake from diet. Folate had no effect on brain volume. Furthermore, there was no relationship between vitamin B6, B12, or folate intake on global brain volume measures, indicating that VBM methods are more sensitive for detecting localized differences in gray matter volume than global measures. These results are discussed in relation to a growing literature on vitamin intake on age-related neurocognitive deterioration. PMID:18281020
Discrete ordinates solutions of nongray radiative transfer with diffusely reflecting walls
NASA Technical Reports Server (NTRS)
Menart, J. A.; Lee, Haeok S.; Kim, Tae-Kuk
1993-01-01
Nongray gas radiation in a plane parallel slab bounded by gray, diffusely reflecting walls is studied using the discrete ordinates method. The spectral equation of transfer is averaged over a narrow wavenumber interval preserving the spectral correlation effect. The governing equations are derived by considering the history of multiple reflections between two reflecting wails. A closure approximation is applied so that only a finite number of reflections have to be explicitly included. The closure solutions express the physics of the problem to a very high degree and show relatively little error. Numerical solutions are obtained by applying a statistical narrow-band model for gas properties and a discrete ordinates code. The net radiative wail heat fluxes and the radiative source distributions are obtained for different temperature profiles. A zeroth-degree formulation, where no wall reflection is handled explicitly, is sufficient to predict the radiative transfer accurately for most cases considered, when compared with increasingly accurate solutions based on explicitly tracing a larger number of wail reflections without any closure approximation applied.
Thinner retinal layers are associated with changes in the visual pathway: A population-based study.
Mutlu, Unal; Ikram, Mohammad K; Roshchupkin, Gennady V; Bonnemaijer, Pieter W M; Colijn, Johanna M; Vingerling, Johannes R; Niessen, Wiro J; Ikram, Mohammad A; Klaver, Caroline C W; Vernooij, Meike W
2018-06-23
Increasing evidence shows that thinner retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL), assessed on optical coherence tomography (OCT), are reflecting global brain atrophy. Yet, little is known on the relation of these layers with specific brain regions. Using voxel-based analysis, we aimed to unravel specific brain regions associated with these retinal layers. We included 2,235 persons (mean age: 67.3 years, 55% women) from the Rotterdam Study (2007-2012) who had gradable retinal OCT images and brain magnetic resonance imaging (MRI) scans, including diffusion tensor (DT) imaging. Thicknesses of peripapillary RNFL and perimacular GCL were measured using an automated segmentation algorithm. Voxel-based morphometry protocols were applied to process DT-MRI data. We investigated the association between retinal layer thickness with voxel-wise gray matter density and white matter microstructure by performing linear regression models. We found that thinner RNFL and GCL were associated with lower gray matter density in the visual cortex, and with lower fractional anisotropy and higher mean diffusivity in white matter tracts that are part of the optic radiation. Furthermore, thinner GCL was associated with lower gray matter density of the thalamus. Thinner RNFL and GCL are associated with gray and white matter changes in the visual pathway suggesting that retinal thinning on OCT may be specifically associated with changes in the visual pathway rather than with changes in the global brain. These findings may serve as a basis for understanding visual symptoms in elderly patients, patients with Alzheimer's disease, or patients with posterior cortical atrophy. © 2018 Wiley Periodicals, Inc.
Nanosphere lithography applied to magnetic thin films
NASA Astrophysics Data System (ADS)
Gleason, Russell
Magnetic nanostructures have widespread applications in many areas of physics and engineering, and nanosphere lithography has recently emerged as promising tool for the fabrication of such nanostructures. The goal of this research is to explore the magnetic properties of a thin film of ferromagnetic material deposited onto a hexagonally close-packed monolayer array of polystyrene nanospheres, and how they differ from the magnetic properties of a typical flat thin film. The first portion of this research focuses on determining the optimum conditions for depositing a monolayer of nanospheres onto chemically pretreated silicon substrates (via drop-coating) and the subsequent characterization of the deposited nanosphere layer with scanning electron microscopy. Single layers of permalloy (Ni80Fe20) are then deposited on top of the nanosphere array via DC magnetron sputtering, resulting in a thin film array of magnetic nanocaps. The coercivities of the thin films are measured using a home-built magneto-optical Kerr effect (MOKE) system in longitudinal arrangement. MOKE measurements show that for a single layer of permalloy (Py), the coercivity of a thin film deposited onto an array of nanospheres increases compared to that of a flat thin film. In addition, the coercivity increases as the nanosphere size decreases for the same deposited layer. It is postulated that magnetic exchange decoupling between neighboring nanocaps suppresses the propagation of magnetic domain walls, and this pinning of the domain walls is thought to be the primary source of the increase in coercivity.
Anatomical differences in the mirror neuron system and social cognition network in autism.
Hadjikhani, Nouchine; Joseph, Robert M; Snyder, Josh; Tager-Flusberg, Helen
2006-09-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder associated with impaired social and emotional skills, the anatomical substrate of which is still unknown. In this study, we compared a group of 14 high-functioning ASD adults with a group of controls matched for sex, age, intelligence quotient, and handedness. We used an automated technique of analysis that accurately measures the thickness of the cerebral cortex and generates cross-subject statistics in a coordinate system based on cortical anatomy. We found local decreases of gray matter in the ASD group in areas belonging to the mirror neuron system (MNS), argued to be the basis of empathic behavior. Cortical thinning of the MNS was correlated with ASD symptom severity. Cortical thinning was also observed in areas involved in emotion recognition and social cognition. These findings suggest that the social and emotional deficits characteristic of autism may reflect abnormal thinning of the MNS and the broader network of cortical areas subserving social cognition.
Heat Transfer in the LCCM Thermal Reserve Battery
2009-09-01
and Molded Sheet 3M Corporation, Elkhart IN 46516 Microtherm Sheet Microtherm Inc., Alcoa TN 37701 AR5401 Flexible Blanket Aspen Aerogels, Inc...heated Microtherm side wall and axial thermal insulation 90.9 GPS9I 04/27/07 All batteries after GPS9H used six silicone rubber gaskets to form...pressure before ignition. Thin Microtherm side wrap next to cell stack. No pre- compression of any side wall insulation or side wall heat paper (– 40
Surface Structure of Yeast Protoplasts
Streiblová, Eva
1968-01-01
The fine structure of the yeast cell wall during protoplast formation was studied by means of phase-contrast microscopy and the freeze-etching technique. The freeze-etching results indicated that at least in some cases the entire wall substance was not removed from the surface of the protoplasts. After a treatment of 30 min to 3 hr with 2% snail enzymes, an innermost thin wall layer as well as remnants of the fibrillar middle layer sometimes could be demonstrated. Images PMID:4867751
Rawlings, T A
1990-12-01
Intraspecific variation in the morphology of egg capsules is ideal for assessing the costs and benefits of encapsulation, yet little is known about the extent of such variation among populations of a single species. In the present study, I compared capsule morphology among three populations of the intertidal gastropod, Nucella emarginata. Significant differences were found both in capsule wall thickness and capsule strength. Mean capsule wall thickness varied as much as 25% among populations, with the dry weight of capsular cases differing accordingly. Capsule strength, measured as resistance to puncturing and squeezing forces, also varied among populations, but did not directly reflect differences in capsule wall thickness. Despite extensive variation in capsule morphology within this species, the number and size of eggs contained within capsules of equal volume did not differ significantly among populations. I also compared the type of capsule-eating predators that were present at each site. Shore crabs, Hemigrapsus spp., were abundant at all three sites; however, the predatory isopods Idotea wosnesenskii were only present at sites containing relatively thick-walled capsules. Although Hemigrapsus and Idotea were able to chew through both thick- and thin-walled capsules, laboratory experiments revealed that Idotea preferentially opened thin-walled capsules. These results suggest that variation in capsule morphology among populations of N. emarginata may, at least in part, reflect selection for the protection of embryos against predation.
Molecular and Electronic Structure of Thin Films of Protoporphyrin(IX)Fe(III)C1
1991-11-10
Union Carbide). Electrical contact to the back side of the HOPG sample was made with a copper wire and conductive epoxy (Epo-tek H20E, Epoxy Technology...analysis of the contrast in STM images of copper phthalocyanine [641 and by Zheng and Tsong in their analysis of resonant tunneling via tip-localized...Electroanal. Chem. 1980, 110, 369. 71. Makinen, M.W.; Churg A.K. Iron Porphyri ns-P art One; Lever, A.B.P.; Gray, H.B., Eds.; Physical Bioinorganic
Installation Restoration Program. Phase 1. Records Search Andrews AFB. Maryland
1985-06-01
red to silvery-qrey, functions ma a conf ining bed. Formation. ~Va plastics thin lonses of pole gray silt. Ann"a Formation. ye (0-210 sand, qrsenieh...the Nanjemoy Formation (a clayey glauconi- tic sand, two to thirty feet thick) and the Marlboro Clay (a plastic clay with silt partings, two to... plastics , empty 55-gallon drums, waste lumber, tires, pipes, and hospital wastes such as unused needles and chemical reagents. In the past, Site D-4 was
Campbell, Christian X; Thomaidis, Dimitrios
2014-05-13
A process is provided for forming an airfoil for a gas turbine engine involving: forming a casting of a gas turbine engine airfoil having a main wall and an interior cavity, the main wall having a wall thickness extending from an external surface of the outer wall to the interior cavity, an outer section of the main wall extending from a location between a base and a tip of the airfoil casting to the tip having a wall thickness greater than a final thickness. The process may further involve effecting movement, using a computer system, of a material removal apparatus and the casting relative to one another such that a layer of material is removed from the casting at one or more radial portions along the main wall of the casting.
NASA Astrophysics Data System (ADS)
Khosla, Ajit
2017-04-01
This talk focuses on preparation, characterization and micropatterning of electrically conducting KETJENBLACK carbon black nanoparticle (80 nm-diameter) doped Polydimethylsiloxane (PDMS) by employing extrusion mixing. Previously, we had reported fabrication of various micropatternable nanocomposites for wearable sensing applications vis solvent assisted ultrasonic mixing technique[1-16] . Extrusion mixing has an advantage as no organic solvents are used and homogenous dispersion of carbon nanoparticles is observed, which is confirmed by SEM analysis. The developed nanocomposite can be micropatterened using standard microfabrication techniques. It is also observed that percolation threshold occurs at 0.51 wt% of carbon nanoparticles in polymer matrix. Examples of developed nano-composites for wearable sensing applications for precision medicine will also be discussed. References: 1.http://summit.sfu.ca/item/12017 A. Khosla. Micropatternable multifunctional nanocomposite polymers for flexible soft MEMS applications. Diss. Applied Science: School of Engineering Science, 2011. 2. A. Khosla ; B. L. Gray; Fabrication of multiwalled carbon nanotube polydimethylsiloxne nanocomposite polymer flexible microelectrodes for microfluidics and MEMS. Proc. SPIE 7642, Electroactive Polymer Actuators and Devices (EAPAD) 2010, 76421V (April 09, 2010); doi:10.1117/12.847292. 3. Ang Li ; Ajit Khosla ; Connie Drewbrook ; Bonnie L. Gray; Fabrication and testing of thermally responsive hydrogel-based actuators using polymer heater elements for flexible microvalves. Proc. SPIE 7929, Microfluidics, BioMEMS, and Medical Microsystems IX, 79290G (February 14, 2011); doi:10.1117/12.873197. 4. Khosla, A. and Gray, B. L. (2010), Preparation, Micro-Patterning and Electrical Characterization of Functionalized Carbon-Nanotube Polydimethylsiloxane Nanocomposite Polymer. Macromol. Symp., 297: 210-218. doi:10.1002/masy.200900165 5. A. Khosla ; D. Hilbich ; C. Drewbrook ; D. Chung ; B. L. Gray; Large scale micropatterning of multi-walled carbon nanotube/polydimethylsiloxane nanocomposite polymer on highly flexible 12×24 inch substrates. Proc. SPIE 7926, Micromachining and Microfabrication Process Technology XVI, 79260L (February 15, 2011); doi:10.1117/12.876738. 6. A. Khosla, and Bonnie L. Gray. "(Invited) Micropatternable Multifunctional Nanocomposite Polymers for Flexible Soft NEMS and MEMS Applications." ECS Transactions 45.3 (2012): 477-494. doi: 10.1149/1.3700913 7. Khosla, Ajit. "Nanoparticle-doped electrically-conducting polymers for flexible nano-micro Systems." Electrochemical Society Interface 21.3-4 (2012): 67-70. 8. Ajit Khosla; Smart garments in chronic disease management: progress and challenges. Proc. SPIE 8548, Nanosystems in Engineering and Medicine, 85482O (October 24, 2012); doi:10.1117/12.979667. 9. D. Chung ; A. Khosla ; B. L. Gray; Screen printable flexible conductive nanocomposite polymer with applications to wearable sensors. Proc. SPIE 9060, Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2014, 90600U (April 16, 2014); doi:10.1117/12.2046548. 10. Daehan Chung ; Sam Seyfollahi ; Ajit Khosla ; Bonnie Gray ; Ash Parameswaran ; Ramani Ramaseshan ; Kirpal Kohli; Initial experiments with flexible conductive electrodes for potential applications in cancer tissue screening. Proc. SPIE 7929, Microfluidics, BioMEMS, and Medical Microsystems IX, 79290Z (February 14, 2011); doi:10.1117/12.875563. 11. A. Khosla ; B. L. Gray; New technologies for large-scale micropatterning of functional nanocomposite polymers. Proc. SPIE 8344, Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2012, 83440W (April 26, 2012); doi:10.1117/12.915178. 12. A. Khosla, B.L. Gray, Preparation, characterization and micromolding of multi-walled carbon nanotube polydimethylsiloxane conducting nanocomposite polymer, Materials Letters, Volume 63, Issues 13-14, 31 May 2009, Pages 1203-1206, ISSN 0167-577X, http://dx.doi.org/10.1016/j.matlet.2009.02.043. 13. Giassa, M., Khosla, A., Gray, B. et al. J Electron Test (2010) 26: 139. doi:10.1007/s10836-009-5125-3 14.Ozhikandathil, Jayan, Ajit Khosla, and Muthukumaran Packirisamy. "Electrically Conducting PDMS Nanocomposite Using In Situ Reduction of Gold Nanostructures and Mechanical Stimulation of Carbon Nanotubes and Silver Nanoparticles." ECS Journal of Solid State Science and Technology 4.10 (2015): S3048-S3052. doi:10.1149/2.0091510jss 15. Kassegne, Sam, Maria Vomero, Roberto Gavuglio, Mieko Hirabayashi, Emre Özyilmaz, Sebastien Nguyen, Jesus Rodriguez, Eda Özyilmaz, Pieter van Niekerk, and Ajit Khosla. "Electrical impedance, electrochemistry, mechanical stiffness, and hardness tunability in glassy carbon MEMS μECoG electrodes." Microelectronic Engineering 133 (2015): 36-44. 16. A. Khosla ; B. L. Gray; Fabrication and properties of conductive micromoldable thermosetting polymer for electronic routing in highly flexible microfluidic systems. Proc. SPIE 7593, Microfluidics, BioMEMS, and Medical Microsystems VIII, 759314 (February 17, 2010); doi:10.1117/12.840911.
Predicting Print-thru for the Sub-scale Beryllium Mirror Demonstrator (SBMD)
NASA Technical Reports Server (NTRS)
Craig, Larry; J. Kevin Russell (Technical Monitor)
2002-01-01
This document presents a finite element method for predicting print-thru or quilting for a lightweight mirror in a low temperature environment. The mirror is represented with quadrilateral and triangular plate finite elements. The SBMD (Sub-scale Beryllium Mirror Demonstrator) is circular with a diameter of 50 cm and one flat side. The mirror structure is a thin-wall triangular cell core with a single facesheet. There is a 4 mm radius fillet between the facesheet and cell walls. It is made entirely of Beryllium. It is assumed that polishing the mirror surface creates a thin surface layer with different material properties. Finite element results are compared with measured values at cryogenic temperatures.
Consistent cosmic bubble embeddings
NASA Astrophysics Data System (ADS)
Haque, S. Shajidul; Underwood, Bret
2017-05-01
The Raychaudhuri equation for null rays is a powerful tool for finding consistent embeddings of cosmological bubbles in a background spacetime in a way that is largely independent of the matter content. We find that spatially flat or positively curved thin wall bubbles surrounded by a cosmological background must have a Hubble expansion that is either contracting or expanding slower than the background, which is a more stringent constraint than those obtained by the usual Israel thin-wall formalism. Similarly, a cosmological bubble surrounded by Schwarzschild space, occasionally used as a simple "swiss cheese" model of inhomogenities in an expanding universe, must be contracting (for spatially flat and positively curved bubbles) and bounded in size by the apparent horizon.
Coercivity of domain wall motion in thin films of amorphous rare earth-transition metal alloys
NASA Technical Reports Server (NTRS)
Mansuripur, M.; Giles, R. C.; Patterson, G.
1991-01-01
Computer simulations of a two dimensional lattice of magnetic dipoles are performed on the Connection Machine. The lattice is a discrete model for thin films of amorphous rare-earth transition metal alloys, which have application as the storage media in erasable optical data storage systems. In these simulations, the dipoles follow the dynamic Landau-Lifshitz-Gilbert equation under the influence of an effective field arising from local anisotropy, near-neighbor exchange, classical dipole-dipole interactions, and an externally applied field. Various sources of coercivity, such as defects and/or inhomogeneities in the lattice, are introduced and the subsequent motion of domain walls in response to external fields is investigated.
A Simplified Finite Element Simulation for Straightening Process of Thin-Walled Tube
NASA Astrophysics Data System (ADS)
Zhang, Ziqian; Yang, Huilin
2017-12-01
The finite element simulation is an effective way for the study of thin-walled tube in the two cross rolls straightening process. To determine the accurate radius of curvature of the roll profile more efficiently, a simplified finite element model based on the technical parameters of an actual two cross roll straightening machine, was developed to simulate the complex straightening process. Then a dynamic simulation was carried out using ANSYS LS-DYNA program. The result implied that the simplified finite element model was reasonable for simulate the two cross rolls straightening process, and can be obtained the radius of curvature of the roll profile with the tube’s straightness 2 mm/m.
The yield and post-yield behavior of high-density polyethylene
NASA Technical Reports Server (NTRS)
Semeliss, M. A.; Wong, R.; Tuttle, M. E.
1990-01-01
An experimental and analytical evaluation was made of the yield and post-yield behavior of high-density polyethylene, a semi-crystalline thermoplastic. Polyethylene was selected for study because it is very inexpensive and readily available in the form of thin-walled tubes. Thin-walled tubular specimens were subjected to axial loads and internal pressures, such that the specimens were subjected to a known biaxial loading. A constant octahederal shear stress rate was imposed during all tests. The measured yield and post-yield behavior was compared with predictions based on both isotropic and anisotropic models. Of particular interest was whether inelastic behavior was sensitive to the hydrostatic stress level. The major achievements and conclusions reached are discussed.
Microwave background distortions from domain walls
NASA Technical Reports Server (NTRS)
Goetz, Guenter; Noetzold, Dirk
1990-01-01
Domain walls arising in a cosmic phase transition after decoupling were recently proposed as seeds for the formation of large scale structure. The distortion induced in the microwave background radiation is calculated in dependence of the wall thickness, surface density, scalar field potential, cosmic redshift and the velocity of the wall. It was found that the maximal redshift distortion for both spherical and planar walls is of the order pi G sigma H(sup -1)(sub 0), where sigma is the surface energy density and H(sup -1)(sub 0) the Hubble parameter. It was also found that, for a wall thickness smaller than the horizon, walls can be treated as infinitely thin, i.e., the redshift distortion is independent of the wall thickness and the specific form of the scalar potential. For planar walls moving with a Lorentz-factor gamma the redshift distortion is enhanced by gamma cubed.
Free form hemispherical shaped charge
Haselman, L.C. Jr.
1996-06-04
A hemispherical shaped charge has been modified such that one side of the hemisphere is spherical and the other is aspherical allowing a wall thickness variation in the liner. A further modification is to use an elongated hemispherical shape. The liner has a thick wall at its pole and a thin wall at the equator with a continually decreasing wall thickness from the pole to the equator. The ratio of the wall thickness from the pole to the equator varies depending on liner material and HE shape. Hemispherical shaped charges have previously been limited to spherical shapes with no variations in wall thicknesses. By redesign of the basic liner thicknesses, the jet properties of coherence, stability, and mass distribution have been significantly improved. 8 figs.
Free form hemispherical shaped charge
Haselman, Jr., Leonard C.
1996-01-01
A hemispherical shaped charge has been modified such that one side of the hemisphere is spherical and the other is aspherical allowing a wall thickness variation in the liner. A further modification is to use an elongated hemispherical shape. The liner has a thick wall at its pole and a thin wall at the equator with a continually decreasing wall thickness from the pole to the equator. The ratio of the wall thickness from the pole to the equator varies depending on liner material and HE shape. Hemispherical shaped charges have previously been limited to spherical shapes with no variations in wall thicknesses. By redesign of the basic liner thicknesses, the jet properties of coherence, stability, and mass distribution have been significantly improved.
Proal, Erika; Reiss, Philip T.; Klein, Rachel G.; Mannuzza, Salvatore; Gotimer, Kristin; Ramos-Olazagasti, Maria A.; Lerch, Jason P.; He, Yong; Zijdenbos, Alex; Kelly, Clare; Milham, Michael P.; Castellanos, F. Xavier
2013-01-01
Context Volumetric studies have reported relatively decreased cortical thickness and gray matter volumes in adults with Attention-Deficit/Hyperactivity Disorder (ADHD) whose childhood status was retrospectively recalled. We present the first prospective study combining cortical thickness and voxel-based morphometry (VBM) in adults diagnosed with ADHD in childhood. Objective In adults who had Combined Type ADHD in childhood, to 1) test whether they exhibit cortical thinning and decreased gray matter in regions hypothesized related to ADHD, and 2) test whether anatomic differences are associated with current ADHD diagnosis, including persistence versus remission. Design Cross-sectional analysis embedded in a 33-year prospective follow-up at mean age 41. Setting Research outpatient center. Participants ADHD probands were from a cohort of 207 6–12 year old Caucasian boys; male comparison subjects (n=178) had been free of ADHD in childhood. We obtained MRI scans in 59 probands and 80 comparisons (28% and 45% of original samples, respectively). Main Outcome Measure Whole-brain VBM and vertex-wise cortical thickness analyses. Results Cortex was significantly thinner in ADHD probands than comparisons in the dorsal attentional network and limbic areas (FDR<0.05, corrected). Additionally, gray matter was significantly decreased in probands in right caudate, right thalamus and bilateral cerebellar hemispheres. Probands with persistent ADHD (n=17) did not differ significantly from remitters (n=26) at FDR<0.05. At uncorrected p<0.05, remitters had thicker cortex relative to those with persistent ADHD in medial occipital cortex, insula, parahippocampus, and prefrontal regions. Conclusions We observed anatomic gray matter reductions in adults with childhood ADHD, regardless of current diagnosis. The most affected regions underpin top-down control of attention and regulation of emotion and motivation. Exploratory analyses suggest that diagnostic remission may result from compensatory maturation of prefrontal, cerebellar, and thalamic circuitry. PMID:22065528
NASA Technical Reports Server (NTRS)
Rembaum, A.; Yen, S. P. S.; Klein, E. (Inventor)
1976-01-01
An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, crosslinked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.
Cost-Effective Systems for Atomic Layer Deposition
ERIC Educational Resources Information Center
Lubitz, Michael; Medina, Phillip A., IV; Antic, Aleks; Rosin, Joseph T.; Fahlman, Bradley D.
2014-01-01
Herein, we describe the design and testing of two different home-built atomic layer deposition (ALD) systems for the growth of thin films with sub-monolayer control over film thickness. The first reactor is a horizontally aligned hot-walled reactor with a vacuum purging system. The second reactor is a vertically aligned cold-walled reactor with a…
USDA-ARS?s Scientific Manuscript database
Cattle (Bos taurus) are intermediate hosts for four species of Sarcocystis, S. cruzi, S. hirsuta, S. hominis, and S. rommeli. Of these four species, mature sarcocysts of S. cruzi are thin-walled (< 1µm) whereas S. hirsuta, S. hominis, and S. rommeli have thick walls (4 µm or more). Here we describe ...
Dynamic Stiffness Modeling of Composite Plate and Shell Assemblies
2013-12-09
FA8655-10-1-3084 Report 6 Dynamic Stiffness Modelling of Plate and Shell Assemblies 4 Introduction Aerospace structures are generally made up of thin ...Sound and Vibration, 294(1- 2):131–161, 2006. [23] Y. F. Xing and B. Liu. New exact solutions for free vibrations of thin orthotropic rectangular plates ...Structures, 89(5–6):467–475, 2011. [80] A.Y.T. Leung. Dynamic stiffness analysis of laminated composite plates . Thin - Walled Structures, 25:109–133, 1996
NASA Astrophysics Data System (ADS)
Ahmadi, Habiburrahman
Thin-walled structures are major components in many engineering applications. When a thin-walled slender beam is subjected to lateral loads, causing moments, the beam may buckle by a combined lateral bending and twisting of cross-section, which is called lateral-torsional buckling. A generalized analytical approach for lateral-torsional buckling of anisotropic laminated, thin-walled, rectangular cross-section composite beams under various loading conditions (namely, pure bending and concentrated load) and boundary conditions (namely, simply supported and cantilever) was developed using the classical laminated plate theory (CLPT), with all considered assumptions, as a basis for the constitutive equations. Buckling of such type of members has not been addressed in the literature. Closed form buckling expressions were derived in terms of the lateral, torsional and coupling stiffness coefficients of the overall composite. These coefficients were obtained through dimensional reduction by static condensation of the 6x6 constitutive matrix mapped into an effective 2x2 coupled weak axis bending-twisting relationship. The stability of the beam under different geometric and material parameters, like length/height ratio, ply thickness, and ply orientation, was investigated. The analytical formulas were verified against finite element buckling solutions using ABAQUS for different lamination orientations showing excellent accuracy.
NASA Astrophysics Data System (ADS)
Kumaraswamidhas, L. A.; Rajak, Dipen Kumar; Das, S.
2016-08-01
The objective of this research is to produce superior quality aluminum alloy foam with low relative density and higher resistance against compression deformation. This investigation has studied crash energy capacities of unfilled and filled aluminum alloy foams in mild steel tubes. The foam has been prepared by the melt route process with an addition of 5wt.% silicon carbide particles. The fabricated aluminum alloy foams were characterized by field emission scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, and Material Pro analyzer. It was observed that the foam-filled tubes could absorb more energy as compared to the unfilled tubes before reaching the complete densification point. Also, the aluminum alloy foams had better energy absorption capacity during the crash or impact loading. This article demonstrates the excellent ability of aluminum alloy foam application in the field where there is a need to absorb crash energy. It is to be noted that the amount of energy absorption will be greater for low-density foam filled in thin-wall rectangular section tubes. We have seen an increasing trend in the application of aluminum foams inside the thin-wall mild steel tubes for maximum energy absorption.
Manipulation of Magnetic Textures in Thin Films and Devices
NASA Astrophysics Data System (ADS)
Tolley, Robert Douglas
Control and manipulation of magnetic textures is promising for the development of next-generation data storage, memory and processing technologies. Towards this goal, domain wall manipulation in two materials systems are presented here and thoroughly evaluated. Domain walls in ferrimagnetic Cobalt-Terbium alloys and multilayers are created, moved and stabilized via thermal gradients and a static magnetic field and exploit the unique properties of the system across the magnetic compensation point. The response of the systems to thermal gradients is observed via Kerr microscopy and used to determine the positioning of domain walls within patterned devices. Magnetic skyrmions are discovered in thin-film multilayered stacks using an Pt/Co/Os/Pt heterostructures where the thin Osmium layer is used to break interfacial symmetry and enhance the Dzyaloshinskii-Moriya interaction. The resulting skyrmions are manipulated using temperature, magnetic field, and electric current, and special attention is paid to their motion and nucleation behavior. Skyrmions are observed to be formed by low applied currents from nucleation sites and by collapse of stripe textures. Patterned wires allow for the observation of skyrmion nucleation behavior in free space, as well as defect sites, and real-time Kerr microscopy imaging is presented of skyrmion and stripe dynamics. These systems are evaluated from a perspective of their growth, patterning, measurement, and the novel behavior of the magnetic textures.
Scope of inextensible frame hypothesis in local action analysis of spherical reservoirs
NASA Astrophysics Data System (ADS)
Vinogradov, Yu. I.
2017-05-01
Spherical reservoirs, as objects perfect with respect to their weight, are used in spacecrafts, where thin-walled elements are joined by frames into multifunction structures. The junctions are local, which results in origination of stress concentration regions and the corresponding rigidity problems. The thin-walled elements are reinforced by frame to decrease the stresses in them. To simplify the analysis of the mathematical model of common deformation of the shell (which is a mathematical idealization of the reservoir) and the frame, the assumption that the frame axial line is inextensible is used widely (in particular, in the manual literature). The unjustified use of this assumption significantly distorts the concept of the stress-strain state. In this paper, an example of a lens-shaped structure formed as two spherical shell segments connected by a frame of square profile is used to carry out a numerical comparative analysis of the solutions with and without the inextensible frame hypothesis taken into account. The scope of the hypothesis is shown depending on the structure geometric parameters and the load location degree. The obtained results can be used to determine the stress-strain state of the thin-walled structure with an a priori prescribed error, for example, in research and experimental design of aerospace systems.
Influence of Mn contents in 0Cr18Ni10Ti thin wall stainless steel tube on TIG girth weld quality
NASA Astrophysics Data System (ADS)
Liu, Bo
2017-03-01
Three kinds of cold worked 0Cr18Ni10Ti thin wall stainless steel tubes with the manganese contents of 1.27%, 1.35% and 1.44% and the cold worked 0Cr18Ni10Ti stainless steel end plug with manganese content of 1.35% were used for TIG girth welding in the present investigation. The effect of different manganese contents in stainless steel tube on weld quality was studied. The results showed that under the same welding conditions, the metallographic performance of the girth weld for the thin wall stainless steel tube with the manganese element content 1.44% welded with end plug was the best. Under the appropriate welding conditions, the quality of the girth weld increased with the increase of the manganese content till 1.44%. It was found that in the case of the Mn content of 1.44%, and under the proper welding condition the welding defects, such as welding cracks were effectively avoided, and the qualified weld penetration can be obtained.. It is concluded that the appropriate increase of the manganese content can significantly improve the TIG girth weld quality of the cold worked 0Cr18Ni10Ti stainless steel tube.
Asymmetry in the Discrimination of Length During Spatial Learning
2013-01-01
The ability of rats to solve a discrimination between two objects that differ in length was investigated in five experiments. Using a rectangular swimming pool, Experiment 1 revealed it is easier to locate a submerged platform when it is near the center of a long rather than a short wall. For Experiments 2–4, the objects were black or white panels pasted onto the gray walls of a square pool, with two long panels pasted to two opposing walls and two short panels pasted to the remaining walls. The platform was easier to locate when it was placed near the middle of a long rather than a short panel. This effect was found when the long panels were twice (Experiments 2–4) or four times the length of the short panels (Experiment 4). Experiment 5 demonstrated that rats can solve a discrimination between panels of length 15 and 45 cm more readily than when they are 70 and 100 cm. The results are consistent with the claim that generalization gradients based on stimulus magnitude are steeper for stimuli that are weaker rather than stronger than the stimulus used for the original training. PMID:23668184
Location on chitin in the cyst wall of Entamoeba invadens with colloidal gold tracers.
Arroyo-Begovich, A; Cárabez-Trejo, A
1982-04-01
Chitin was located in the cyst wall of Entamoeba invadens with colloidal gold-linked wheat germ agglutinin. Cysts stained differentially from trophozoites when encysting cultures were treated with the gold tracer; cysts acquired a wine-red coloration while, in general trophozoites remained unstained. Observation of cells with the electron microscope revealed that the tracer particles were bound specifically to the walls of the surface of the cyst when cells were exposed in suspension, and to the cyst wall cross-section, when cells were exposed to the tracer in thin section, indicating that chitin fibers were distributed on the surface as well as throughout the matrix of the cyst wall.
Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey
2016-08-04
High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.
NASA Astrophysics Data System (ADS)
Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey
2016-08-01
High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.
Cheng, Yanping; Gasior, Pawel; Xia, Jing-Gang; Ramzipoor, Kamal; Lee, Chang; Estrada, Edward A; Dokko, Daniell; McGregor, Jenn C; Conditt, Gerard B; McAndrew, Thomas; Kaluza, Greg L; Granada, Juan F
2017-07-01
Mechanical strength of bioresorbable scaffolds (BRS) is highly dependent on strut dimensions and polymer features. To date, the successful development of thin-walled BRS has been challenging. We compared the biomechanical behavior and vascular healing profile of a novel thin-walled (115 µm) sirolimus-eluting ultrahigh molecular weight amorphous poly-l-lactic acid-based BRS (APTITUDE, Amaranth Medical [AMA]) to Absorb (bioresorbable vascular scaffold [BVS]) using different experimental models. In vitro biomechanical testing showed no fractures in the AMA-BRS when overexpanded 1.3 mm above nominal dilatation values (≈48%) and lower number of fractures on accelerated cycle testing over time (at 21 K cycles=20.0 [19.5-20.5] in BVS versus 4.0 [3.0-4.3] in AMA-BRS). In the healing response study, 35 AMA-BRS and 23 BVS were implanted in 58 coronary arteries of 23 swine and followed-up to 180 days. Scaffold strut healing was evaluated in vivo using weekly optical coherence tomography analysis. At 14 days, the AMA-BRS demonstrated a higher percentage of embedded struts (71.0% [47.6, 89.1] compared with BVS 40.3% [20.5, 63.2]; P =0.01). At 21 days, uncovered struts were still present in the BVS group (3.8% [2.1, 10.2]). Histopathology revealed lower area stenosis (AMA-BRS, 21.0±6.1% versus BVS 31.0±4.5%; P =0.002) in the AMA-BRS at 28 days. Neointimal thickness and inflammatory scores were comparable between both devices at 180 days. A new generation thinned wall BRS displayed a more favorable biomechanical behavior and strut healing profile compared with BVS in normal porcine coronary arteries. This novel BRS concept has the potential to improve the clinical outcomes of current generation BRS. © 2017 American Heart Association, Inc.
Máca, Ondřej
2012-06-01
Examination of faecal samples from semi-captive western Derby elands Taurotragus derbianus derbianus Gray, in the Bandia and Fathala Reserves of Senegal, revealed the presence of oöcysts of the genus Eimeria Schneider, 1875 that we considered to represent a new species, Eimeria derbiani n. sp. The new species possesses nearly ellipsoidal oöcysts (length/width ratio 1.3) with a bi-layered wall and an average size of 27.6 × 21.5 μm. E. derbiani possesses a micropyle covered by a micropylar cap and ovoidal, single-layered sporocysts with an average size of 14.9 × 7.7 μm, each with a Stieda body. Sporozoites of E. derbiani possess a large refractile body and a nucleus. Sporulation lasted for 2 days at 23°C. The new species is differentiated from the two species parasitising Taurotragus oryx Pallas, E. canna Triffitt, 1924 and E. triffittae Yakimoff, 1934.
Radiative energy transfer in molecular gases
NASA Technical Reports Server (NTRS)
Tiwari, Surendra N.
1992-01-01
Basic formulations, analyses, and numerical procedures are presented to study radiative interactions in gray as well as nongray gases under different physical and flow conditions. After preliminary fluid-dynamical considerations, essential governing equations for radiative transport are presented that are applicable under local and nonlocal thermodynamic equilibrium conditions. Auxiliary relations for relaxation times and spectral absorption models are also provided. For specific applications, several simple gaseous systems are analyzed. The first system considered consists of a gas bounded by two parallel plates having the same temperature. Within the gas there is a uniform heat source per unit volume. For this system, both vibrational nonequilibrium effects and radiation conduction interactions are studied. The second system consists of fully developed laminar flow and heat transfer in a parallel plate duct under the boundary condition of a uniform surface heat flux. For this system, effects of gray surface emittance are studied. With the single exception of a circular geometry, the third system is considered identical to the second system. Here, the influence of nongray walls is also studied.
Akkerman, M; Franssen-Verheijen, M A W; Immerzeel, P; Hollander, L D E N; Schel, J H N; Emons, A M C
2012-07-01
Cellulose is the most abundant biopolymer on earth, and has qualities that make it suitable for biofuel. There are new tools for the visualisation of the cellulose synthase complexes in living cells, but those do not show their product, the cellulose microfibrils (CMFs). In this study we report the characteristics of cell wall textures, i.e. the architectures of the CMFs in the wall, of root hairs of Arabidopsis thaliana, Medicago truncatula and Vicia sativa and compare the different techniques we used to study them. Root hairs of these species have a random primary cell wall deposited at the root hair tip, which covers the outside of the growing and fully grown hair. The secondary wall starts between 10 (Arabidopsis) and 40 (Vicia) μm from the hair tip and the CMFs make a small angle, Z as well as S direction, with the long axis of the root hair. CMFs are 3-4 nm wide in thin sections, indicating that single cellulose synthase complexes make them. Thin sections after extraction of cell wall matrix, leaving only the CMFs, reveal the type of wall texture and the orientation and width of CMFs, but CMF density within a lamella cannot be quantified, and CMF length is always underestimated by this technique. Field emission scanning electron microscopy and surface preparations for transmission electron microscopy reveal the type of wall texture and the orientation of individual CMFs. Only when the orientation of CMFs in subsequent deposited lamellae is different, their density per lamella can be determined. It is impossible to measure CMF length with any of the EM techniques. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.
A pore-level scenario for the development of mixed-wettability in oil reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovscek, A.R.; Wong, H.; Radke, C.J.
Understanding the role of thin films in porous media is vital if wettability is to be elucidated at the pore level. The type and thickness of films coating pore walls determines reservoir wettability and whether or not reservoir rock can be altered from its initial state of wettability. Pore shape, especially pore wall curvature, is an important factor in determining wetting-film thicknesses. Yet, pore shape and the physics of thin wetting films are generally neglected in models of flow in porous rocks. This paper incorporates thin-film forces into a collection of star-shaped capillary tubes model to describe the geological developmentmore » of mixed-wettability in reservoir rock. Here, mixed-wettability refers to continuous and distinct oil and water-wetting surfaces coexisting in the porous medium. The proposed model emphasizes the remarkable role of thin films. New pore-level fluid configurations arise that are quite unexpected. For example, efficient water displacement of oil (i.e, low residual oil saturation) characteristic of mixed-wettability porous media is ascribed to interconnected oil lenses or rivulets which bridge the walls adjacent to a pore corner. Predicted residual oil saturations are approximately 35 % less in mixed-wet rock compared to completely water-wet rock. Calculated capillary pressure curves mimic those of mixed-wet porous media in the primary drainage of water, imbibition of water, and secondary drainage modes. Amott-Harvey indices range from {minus}0.18 to 0.36 also in good agreement with experimental values. (Morrow et al, 1986; Judhunandan and Morrow, 1991).« less
Formation and evolution of bubbly screens in confined oscillating bubbly liquids.
Shklyaev, Sergey; Straube, Arthur V
2010-01-01
We consider the dynamics of dilute monodisperse bubbly liquid confined by two plane solid walls and subject to small-amplitude high-frequency oscillations normal to the walls. The initial state corresponds to the uniform distribution of bubbles and motionless liquid. The period of external driving is assumed much smaller than typical relaxation times for a single bubble but larger than the period of volume eigenoscillations. The time-averaged description accounting for the two-way coupling between the liquid and the bubbles is applied. We show that the model predicts accumulation of bubbles in thin sheets parallel to the walls. These singular structures, which are formally characterized by infinitely thin width and infinitely high concentration, are referred to as bubbly screens. The formation of a bubbly screen is described analytically in terms of a self-similar solution, which is in agreement with numerical simulations. We study the evolution of bubbly screens and detect a one-dimensional stationary state, which is shown to be unconditionally unstable.
Formation and evolution of bubbly screens in confined oscillating bubbly liquids
NASA Astrophysics Data System (ADS)
Shklyaev, Sergey; Straube, Arthur V.
2010-01-01
We consider the dynamics of dilute monodisperse bubbly liquid confined by two plane solid walls and subject to small-amplitude high-frequency oscillations normal to the walls. The initial state corresponds to the uniform distribution of bubbles and motionless liquid. The period of external driving is assumed much smaller than typical relaxation times for a single bubble but larger than the period of volume eigenoscillations. The time-averaged description accounting for the two-way coupling between the liquid and the bubbles is applied. We show that the model predicts accumulation of bubbles in thin sheets parallel to the walls. These singular structures, which are formally characterized by infinitely thin width and infinitely high concentration, are referred to as bubbly screens. The formation of a bubbly screen is described analytically in terms of a self-similar solution, which is in agreement with numerical simulations. We study the evolution of bubbly screens and detect a one-dimensional stationary state, which is shown to be unconditionally unstable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, T.Q.; Walker, J.S.; Picologlou, B.F.
1988-07-01
Magnetohydrodynamic flows of liquid metals in rectangular ducts with thin conducting walls in the presence of strong nonuniform transverse magnetic fields are examined. The interaction parameter and Hartmann number are assumed to be large, whereas the magnetic Reynolds number is assumed to be small. Under these assumptions, viscous and inertial effects are confined in very thin boundary layers adjacent to the walls. A significant fraction of the fluid flow is concentrated in the boundary layers adjacent to the side walls which are parallel to the magnetic field. This paper describes the analysis and numerical methods for obtaining 3-D solutions formore » flow parameters outside these layers, without solving explicitly for the layers themselves. Numerical solutions are presented for cases which are relevant to the flows of liquid metals in fusion reactor blankets. Experimental results obtained from the ALEX experiments at Argonne National Laboratory are used to validate the numerical code. In general, the agreement is excellent. 5 refs., 14 figs.« less
Han, Myung-Geun; Garlow, Joseph A.; Bugnet, Matthieu; ...
2016-09-02
Polar discontinuity at interfaces plays deterministic roles in charge transport, magnetism, and even superconductivity of functional oxides. To date, most polar discontinuity problems have been explored in hetero-interfaces between two dissimilar materials. Here, we show that charged domain walls (CDWs) in epitaxial thin films of ferroelectric PbZr 0.2Ti 0.8O 3 are strongly coupled to polar interfaces through the formation of ½<101>{h0l} type crystallographic shear planes (CSPs). Using atomic resolution imaging and spectroscopy we illustrate that the CSPs consist of both conservative and nonconservative segments when coupled to the CDWs, where necessary compensating charges for stabilizing the CDWs are associated withmore » vacancies at the CSPs. Lasly, the CDW/CSP coupling yields an atomically narrow domain walls, consisting of a single atomic layer of oxygen. This study shows that the CDW/CSP coupling is a fascinating venue to develop emergent material properties.« less
Estimation of aneurysm wall stresses created by treatment with a shape memory polymer foam device
Hwang, Wonjun; Volk, Brent L.; Akberali, Farida; Singhal, Pooja; Criscione, John C.
2012-01-01
In this study, compliant latex thin-walled aneurysm models are fabricated to investigate the effects of expansion of shape memory polymer foam. A simplified cylindrical model is selected for the in-vitro aneurysm, which is a simplification of a real, saccular aneurysm. The studies are performed by crimping shape memory polymer foams, originally 6 and 8 mm in diameter, and monitoring the resulting deformation when deployed into 4-mm-diameter thin-walled latex tubes. The deformations of the latex tubes are used as inputs to physical, analytical, and computational models to estimate the circumferential stresses. Using the results of the stress analysis in the latex aneurysm model, a computational model of the human aneurysm is developed by changing the geometry and material properties. The model is then used to predict the stresses that would develop in a human aneurysm. The experimental, simulation, and analytical results suggest that shape memory polymer foams have potential of being a safe treatment for intracranial saccular aneurysms. In particular, this work suggests oversized shape memory foams may be used to better fill the entire aneurysm cavity while generating stresses below the aneurysm wall breaking stresses. PMID:21901546
Corrosion monitoring on a large steel pressure vessel by thin-layer activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, G.; Boulton, L.H.; Hodder, D.
1989-12-01
Thin-layer activation (TLA) is a technique in which a surface is irradiated by a nuclear accelerator and thereby labeled with an accurate depth profile of low-level radioactivity. By monitoring this activity it is possible to calculate how much of that surface has been removed by corrosion. As the radioactivity is marked by the emission of penetrating gamma rays, it is possible to monitor this corrosion remotely through several centimeters of steel. This technique has been used to monitor erosion-corrosion occurring on the inner carbon steel wall of a continuous Kraft pulp digester at a paper mill. Representative coupons of themore » same steel as the digester wall were irradiated and fixed to the walls in the liquor extraction zone during a maintenance shutdown. The loss of metal over the six months was measured by external monitoring of gamma radiation through the vessel wall, and converted to a corrosion rate. Subsequent weight-loss measurements and comparison with ultrasonic thickness measurements established that the corrosion rate measured gave accurate results over a much shorter time scale. TLA thus enables current, rather than historical corrosion rates to be measured in a large steel pressure vessel.« less
High-Temperature Oxidation of Fe3Al Intermetallic Alloy Prepared by Additive Manufacturing LENS
Łyszkowski, Radosław
2015-01-01
The isothermal oxidation of Fe-28Al-5Cr (at%) intermetallic alloy microalloyed with Zr and B (<0.08 at%) in air atmosphere, in the temperature range of 1000 to 1200 °C, was studied. The investigation was carried out on the thin-walled (<1 mm) elements prepared by Laser Engineered Net Shaping (LENS) from alloy powder of a given composition. Characterization of the specimens, after the oxidation, was conducted using X-ray diffraction (XRD) and scanning electron microscopy (SEM, with back-scatter detector (BSE) and energy-dispersive X-ray spectroscopy (EDS) attachments). The investigation has shown, that the oxidized samples were covered with a thin, homogeneous α-Al2O3 oxide layers. The intensity of their growth indicates that the material lost its resistance to oxidation at 1200 °C. Structural analysis of the thin-walled components’ has not shown intensification of the oxidation process at the joints of additive layers. PMID:28788014
Method for transferring thermal energy and electrical current in thin-film electrochemical cells
Rouillard, Roger [Beloeil, CA; Domroese, Michael K [South St. Paul, MN; Hoffman, Joseph A [Minneapolis, MN; Lindeman, David D [Hudson, WI; Noel, Joseph-Robert-Gaetan [St-Hubert, CA; Radewald, Vern E [Austin, TX; Ranger, Michel [Lachine, CA; Sudano, Anthony [Laval, CA; Trice, Jennifer L [Eagan, MN; Turgeon, Thomas A [Fridley, MN
2003-05-27
An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.
Banimuslem, Hikmat; Hassan, Aseel; Basova, Tamara; Durmuş, Mahmut; Tuncel, Sinem; Esenpinar, Aliye Asli; Gürek, Ayşe Gül; Ahsen, Vefa
2015-03-01
Thin films of non-covalently hybridized single-walled carbon nanotubes (SWCNT) and tetra-substituted copper phthalocyanine (CuPcR4) molecules have been produced from their solutions in dimethylformamide (DMF). FTIR spectra revealed the 7π-7π interaction between SWCNTs and CuPcR4 molecules. DC conductivity of films of acid-treated SWCNT/CuPcR4 hybrid has increased by more than three orders of.magnitude in comparison with conductivity of CuPcR4 films. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements have shown that films obtained from the acid-treated SWCNTs/CuPcR4 hybrids demonstrated more homogenous surface which is ascribed to the highly improved solubility of the hybrid powder in DMF Using total internal reflection ellipsometry spectroscopy (TIRE), thin films of the new hybrid have been examined as an optical sensing membrane for the detection of benzo[a]pyrene in water to demonstrate the sensing properties of the hybrid.
NASA Technical Reports Server (NTRS)
Crate, Harold; Batdorf, S B; Baab, George W
1944-01-01
The results of a series of tests to determine the effect of internal pressure on the buckling load of a thin cylinder under an applied torque indicated that internal pressure raises the shear buckling stress. The experimental results were analyzed with the aid of previously developed theory and a simple interaction formula was derived. (author)
NASA Astrophysics Data System (ADS)
de Souza, Victor Hugo Rodrigues; Oliveira, Marcela Mohallem; Zarbin, Aldo José Gorgatti
2014-08-01
The present work describes for the first time the synthesis and characterization of single wall carbon nanotubes/polyaniline (SWNTs/PAni) nanocomposite thin films in a liquid-liquid interface, as well as the subsequent construction of a flexible all-solid supercapacitor. Different SWNTs/PAni nanocomposites were prepared by varying the ratio of SWNT to aniline, and the samples were characterized by scanning and transmission electron microscopy, Raman and UV-Vis spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The pseudo-capacitive behavior of the nanocomposites was evaluated by charge/discharge galvanostatic measurements. The presence of the SWNTs affected the electronic and vibrational properties of the polyaniline and also improved the pseudo-capacitive behavior of the conducting polymer. A very thin and flexible all-solid device was manufactured using two electrodes (polyethylene terephthalate-PET covered with the SWNT/PAni nanocomposite separated by a H2SO4-PVA gel electrolyte). The pseudo-capacitive behavior was characterized by a volumetric specific capacitance of approximately 76.7 F cm-3, even under mechanical deformation, indicating that this nanocomposite has considerable potential for application in new-generation energy storage devices.
Garment sizes in perception of body size.
Fan, Jintu; Newton, Edward; Lau, Lilian; Liu, Fu
2003-06-01
This paper reports an experimental investigation of the effect of garment size on perceived body size. The perceived body sizes of three Chinese men (thin, medium, and obese build) wearing different sizes of white T-shirts were assessed using Thompson and Gray's 1995 Nine-figural Scale in 1 (thinnest) to 9 (obese) grade and a newly-proposed method. Within the limit of commercially available T-shirt sizes, for thin and medium persons, perceived body sizes are bigger when wearing T-shirts of larger sizes. For an obese person, however, wearing a large size T-shirt tends to make him look thinner. The study also showed that the newly proposed comparative method is more reliable in comparing body size perception but without measuring the magnitude of the change in body-size grade. The figural scale and the comparative method can be complementary.
NASA Astrophysics Data System (ADS)
Shin, Min-Seok; Jo, Yun-Rae; Kwon, Oh-Kyong
2011-03-01
In this paper, we propose a driving method for compensating the electrical instability of hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs) and the luminance degradation of organic light-emitting diode (OLED) devices for large active matrix OLED (AMOLED) displays. The proposed driving method senses the electrical characteristics of a-Si:H TFTs and OLEDs using current integrators and compensates them by an external compensation method. Threshold voltage shift is controlled a using negative bias voltage. After applying the proposed driving method, the measured error of the maximum emission current ranges from -1.23 to +1.59 least significant bit (LSB) of a 10-bit gray scale under the threshold voltage shift ranging from -0.16 to 0.17 V.
NASA Technical Reports Server (NTRS)
Finger, R. W.
1976-01-01
This experimental program was undertaken to investigate the crack growth behavior of deep surface flaws in 2219 aluminum. The program included tests of uniaxially loaded surface flaw and center crack panels at temperatures ranging from 20K (-423 F) to ambient. The tests were conducted on both the base metal and as-welded weld metal material. The program was designed to provide data on the mechanisms of failure by ligament penetration, and the residual cyclic life, after proof-testing, of a vessel which has been subjected to incipient penetration by the proof test. The results were compared and analyzed with previously developed data to develop guidelines for the proof testing of thin walled 2219 pressure vessels.
Displaced electrode process for welding
Heichel, L.J.
1975-08-26
A method is described for the butt-welding of a relatively heavy mass to a relatively small mass such as a thin-wall tube. In butt-welding heat is normally applied at the joint between the two pieces which are butt-welded together. The application of heat at the joint results in overheating the tube which causes thinning of the tube walls and porosity in the tube material. This is eliminated by displacing the welding electrode away from the seam toward the heavier mass so that heat is applied to the heavy mass and not at the butt seam. Examples of the parameters used in welding fuel rods are given. The cladding and end plugs were made of Zircalloy. The electrode used was of 2 percent thoriated tungsten. (auth)
NASA Astrophysics Data System (ADS)
SONG, O.; JEONG, N.-H.; LIBRESCU, L.
2000-10-01
A number of issues related to the modelling, vibration and stability of anisotropic pretwisted beams rotating at constant angular speed about the longitudinal body-axis fixed in the inertial space are investigated. The analysis is carried out in the framework of a refined theory of thin-walled anisotropic composite beams featuring bending-bending elastic coupling, and encompassing a number of non-classical features such as transverse-shear, anisotropy and pretwist. Special attention is paid to the effect of the spinning speed, pretwist angle, axial compressive load and symmetry/non-symmetry of the beam cross-section on natural frequencies and instability of the structural system. Numerical illustrations highlighting their implication on vibration and stability are displayed and pertinent conclusions are outlined.
Method for fabricating beryllium structures
Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.
1977-01-01
Thin-walled beryllium structures are prepared by plasma spraying a mixture of beryllium powder and about 2500 to 4000 ppm silicon powder onto a suitable substrate, removing the plasma-sprayed body from the substrate and placing it in a sizing die having a coefficient of thermal expansion similar to that of the beryllium, exposing the plasma-sprayed body to a moist atmosphere, outgassing the plasma-sprayed body, and then sintering the plasma-sprayed body in an inert atmosphere to form a dense, low-porosity beryllium structure of the desired thin-wall configuration. The addition of the silicon and the exposure of the plasma-sprayed body to the moist atmosphere greatly facilitate the preparation of the beryllium structure while minimizing the heretofore deleterious problems due to grain growth and grain orientation.
Metal Injection Molding of Thin-Walled Titanium Glasses Arms: A Case Study
NASA Astrophysics Data System (ADS)
Ye, Shulong; Mo, Wei; Lv, Yonghu; Li, Xia; Kwok, Chi Tat; Yu, Peng
2018-02-01
Commercially pure titanium (CP Ti) and Ti-6Al-4V arms for a new brand of augmented reality smart glasses, which are over 170 mm in length, with thin wall structures and extremely complex surfaces, have been successfully fabricated via metal injection molding. After sintering, both the metal injection-molded (MIMed) CP Ti and Ti-6Al-4V can reach relative densities of over 95% with an oxygen content 2200 ppm, thus imparting mechanical properties comparable to cast alloys. The ductility of the MIMed CP Ti and Ti-6Al-4V are about 15% and 8%, respectively. This is a good example of applying metal injection molding to mass production of precise Ti alloy parts with complicated shapes.
Nuclear reactor composite fuel assembly
Burgess, Donn M.; Marr, Duane R.; Cappiello, Michael W.; Omberg, Ronald P.
1980-01-01
A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.
Elastohydrodynamics of a free cylinder near a soft wall
NASA Astrophysics Data System (ADS)
Mahadevan, L.; Salez, Thomas
2015-11-01
We consider the motion of a fluid-immersed negatively buoyant particle in the vicinity of a thin compressible elastic wall. We use scaling arguments to establish different regimes of settling, sliding, rolling and complement these estimates using thin-film lubrication dynamics to determine an asymptotic theory for the sedimentation, sliding, and spinning motions of a cylinder. Numerical integration of the resulting equations confirms our scaling relations and further yields a range of behaviours such as spontaneously oscillations when sliding, lift via a Magnus-like effect, a spin-induced reversal effect, and an unusual sedimentation singularity. Our description also allows us to address a sedimentation-sliding transition that can lead to the particle coasting over very long distances, similar to certain geophysical phenomena.
Effects of spatially engineered Dzyaloshinskii-Moriya interaction in ferromagnetic films
NASA Astrophysics Data System (ADS)
Mulkers, Jeroen; Van Waeyenberge, Bartel; Milošević, Milorad V.
2017-04-01
The Dzyaloshinskii-Moriya interaction (DMI) is a chiral interaction that favors formation of domain walls. Recent experiments and ab initio calculations show that there are multiple ways to modify the strength of the interfacially induced DMI in thin ferromagnetic films with perpendicular magnetic anisotropy. In this paper we reveal theoretically the effects of spatially varied DMI on the magnetic state in thin films. In such heterochiral 2D structures we report several emergent phenomena, ranging from the equilibrium spin canting at the interface between regions with different DMI, over particularly strong confinement of domain walls and skyrmions within high-DMI tracks, to advanced applications such as domain tailoring nearly at will, design of magnonic waveguides, and much improved skyrmion racetrack memory.
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)
1980-01-01
An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)
1977-01-01
An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.
Tank Inspection NDE Results for Fiscal Year 2014, Waste Tanks 26, 27, 28 and 33
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elder, J.; Vandekamp, R.
2014-09-29
Ultrasonic nondestructive examinations (NDE) were performed on waste storage tanks 26, 27, 28 and 33 at the Savannah River Site as a part of the “In-Service Inspection (ISI) Program for High Level Waste Tanks.” No reportable conditions were identified during these inspections. The results indicate that the implemented corrosion control program continues to effectively mitigate corrosion in the SRS waste tanks. Ultrasonic inspection (UT) is used to detect general wall thinning, pitting and interface attack, as well as vertically oriented cracks through inspection of an 8.5 inch wide strip extending over the accessible height of the primary tank wall andmore » accessible knuckle regions. Welds were also inspected in tanks 27, 28 and 33 with no reportable indications. In a Type III/IIIA primary tank, a complete vertical strip includes scans of five plates (including knuckles) so five “plate/strips” would be completed at each vertical strip location. In FY 2014, a combined total of 79 plate/strips were examined for thickness mapping and crack detection, equating to over 45,000 square inches of area inspected on the primary tank wall. Of the 79 plate/strips examined in FY 2014 all but three have average thicknesses that remain at or above the construction minimum thickness which is nominal thickness minus 0.010 inches. There were no service induced reportable thicknesses or cracking encountered. A total of 2 pits were documented in 2014 with the deepest being 0.032 inches deep. One pit was detected in Tank 27 and one in Tank 33. No pitting was identified in Tanks 26 or 28. The maximum depth of any pit encountered in FY 2014 is 5% of nominal thickness, which is less than the minimum reportable criteria of 25% through-wall for pitting. In Tank 26 two vertical strips were inspected, as required by the ISI Program, due to tank conditions being outside normal chemistry controls for more than 3 months. Tank 28 had an area of localized thinning on the exterior wall of the secondary tank noted during the initial inspections in 2005. That area was inspected again in 2014 and found to be larger and slightly deeper. The deepest area of thinning in the secondary wall is less than 20% wall loss. The maximum length of thinning is less than 24 inches and does not impact structural or leak integrity per WSRC-TR-2002-00063. Inspection results were presented to the In-service Inspection Review Committee (ISIRC) where it was determined that no additional data was required to complete these inspections.« less
Williams, Victoria; Hayes, Jasmeet P.; Forman, Daniel E.; Salat, David H.; Sperling, Reisa A.; Verfaellie, Mieke; Hayes, Scott M.
2016-01-01
Aging is associated with reductions in gray matter volume and cortical thickness. One factor that may play a role in mitigating age-associated brain decline is cardiorespiratory fitness (CRF). Although previous work has identified a positive association between CRF and gray matter volume, the relationship between CRF and cortical thickness, which serves as a more sensitive indicator of gray matter integrity, has yet to be assessed in healthy young and older adults. To address this gap in the literature, 32 young and 29 older adults completed treadmill-based progressive maximal exercise testing to assess CRF (peak VO2), and structural magnetic resonance imaging (MRI) to determine vertex-wise surface-based cortical thickness metrics. Results indicated a significant CRF by age group interaction such that Peak VO2 was associated with thicker cortex in older adults but with thinner cortex in young adults. Notably, the majority of regions demonstrating a positive association between peak VO2 and cortical thickness in older adults overlapped with brain regions showing significant age-related cortical thinning. Further, when older adults were categorized as high or low fit based on normative data, we observed a stepwise pattern whereby cortex was thickest in young adults, intermediate in high fit older adults and thinnest in low fit older adults. Overall, these results support the notion that CRF-related neuroplasticity may reduce although not eliminate age-related cortical atrophy. PMID:27989841
Williams, Victoria J; Hayes, Jasmeet P; Forman, Daniel E; Salat, David H; Sperling, Reisa A; Verfaellie, Mieke; Hayes, Scott M
2017-02-01
Aging is associated with reductions in gray matter volume and cortical thickness. One factor that may play a role in mitigating age-associated brain decline is cardiorespiratory fitness (CRF). Although previous work has identified a positive association between CRF and gray matter volume, the relationship between CRF and cortical thickness, which serves as a more sensitive indicator of gray matter integrity, has yet to be assessed in healthy young and older adults. To address this gap in the literature, 32 young and 29 older adults completed treadmill-based progressive maximal exercise testing to assess CRF (peak VO 2 ), and structural magnetic resonance imaging (MRI) to determine vertex-wise surface-based cortical thickness metrics. Results indicated a significant CRF by age group interaction such that Peak VO 2 was associated with thicker cortex in older adults but with thinner cortex in young adults. Notably, the majority of regions demonstrating a positive association between peak VO 2 and cortical thickness in older adults overlapped with brain regions showing significant age-related cortical thinning. Further, when older adults were categorized as high or low fit based on normative data, we observed a stepwise pattern whereby cortex was thickest in young adults, intermediate in high fit older adults and thinnest in low fit older adults. Overall, these results support the notion that CRF-related neuroplasticity may reduce although not eliminate age-related cortical atrophy. Published by Elsevier Inc.
Detection of honeycomb cell walls from measurement data based on Harris corner detection algorithm
NASA Astrophysics Data System (ADS)
Qin, Yan; Dong, Zhigang; Kang, Renke; Yang, Jie; Ayinde, Babajide O.
2018-06-01
A honeycomb core is a discontinuous material with a thin-wall structure—a characteristic that makes accurate surface measurement difficult. This paper presents a cell wall detection method based on the Harris corner detection algorithm using laser measurement data. The vertexes of honeycomb cores are recognized with two different methods: one method is the reduction of data density, and the other is the optimization of the threshold of the Harris corner detection algorithm. Each cell wall is then identified in accordance with the neighboring relationships of its vertexes. Experiments were carried out for different types and surface shapes of honeycomb cores, where the proposed method was proved effective in dealing with noise due to burrs and/or deformation of cell walls.
Direct Imaging of the Relaxation of Individual Ferroelectric Interfaces in a Tensile-Strained Film
Li, Linglong; Cao, Ye; Somnath, Suhas; ...
2017-03-15
Understanding the dynamic behavior of interfaces in ferroic materials is an important field of research with widespread practical implications, as the motion of domain walls and phase boundaries are associated with substantial increases in dielectric and piezoelectric effects. Although commonly studied in the macroscopic regime, the local dynamics of interfaces have received less attention, with most studies limited to domain growth and/or reversal by piezoresponse force microscopy (PFM). Here, spatial mapping of local domain wall-related relaxation in a tensile-strained PbTiO 3 thin film using time-resolved band-excitation PFM is demonstrated, which allows exploring of the field-induced strain (piezoresponse) as a functionmore » of applied voltage and time. Through multivariate statistical analysis on the resultant 4-dimensional dataset (x,y,V,t) with functional fitting, it is determined that the relaxation is strongly correleated with the distance to the domain walls, and varies based on the type of domain wall present in the probed volume. Phase-field modeling shows the relaxation behavior near and away from the interfaces, and confirms the modulation of the z-component of polarization by wall motion, yielding the observed piezoresponse relaxation. Lastly, these studies shed light on the local dynamics of interfaces in ferroelectric thin films, and are therefore important for the design of ferroelectric-based components in microelectromechanical systems.« less
Interior view, from ground floor up one of two mirrorimage ...
Interior view, from ground floor up one of two mirror-image stairways in buildings central pavilion. This one is located at the southwestern corner of the crossing of the main corridor and the central east-west passage, looking south. The staircase is composed of marble steps cantilevered out from the wall, each resting top of the stair below. The damage visible in this photograph stemmed from vandals pushing a piece of mechanical equipment off the second-story landing. - U. S. Naval Asylum, Biddle Hall, Gray's Ferry Avenue, Philadelphia, Philadelphia County, PA
Motion of a Spherical Domain Wall and the Large-Scale Structure Formation
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Tomita, K.
1991-11-01
The evolution of a wall-like structure in the universe is investigated by assuming a simplified model of a domain wall. The domain wall is approximated as a thin spherical shell with domain wall-like matter, which is assumed to interact with dust-like dark matter in an entirely inelastic manner, and its motion in an expanding universe is numerically studied in the general-relativistic treatment. We evaluate the lifetime of the wall, which is defined as the characteristic time for the wall to shrink due to its own tension. It is necessary that this time is not smaller than the cosmic age, in order that the walls avoid the collapse to the present time and play an important role in the structure formation of the universe. It is shown that, in spite of the above interaction, the strong restriction is imposed on the surface density of the domain walls and the allowed values are too small to have any influences on the background model.
Phase equilibria in polymer blend thin films: A Hamiltonian approach
NASA Astrophysics Data System (ADS)
Souche, M.; Clarke, N.
2009-12-01
We propose a Hamiltonian formulation of the Flory-Huggins-de Gennes theory describing a polymer blend thin film. We then focus on the case of 50:50 polymer blends confined between antisymmetric walls. The different phases of the system and the transitions between them, including finite-size effects, are systematically studied through their relation with the geometry of the Hamiltonian flow in phase space. This method provides an easy and efficient way, with strong graphical insight, to infer the qualitative physical behavior of polymer blend thin films.
2016-09-26
statistical analysis is done by not only examining the SSH forecast error across the entire do- main, but also by concentrating on the areamost densely covered...over (b) entire GoM domain and (d) GLAD region only. Statistics shown for FR (thin black), SSH1 (thick black), and VEL (gray) experiment 96-h SSH...coefficient. To statistically FIG. 9. Sea surface height (m) for AVISO (a) 1 Aug, (b) 20 Aug, (c) 10 Sep, and (d) 30 Sep; for SSH1 experiment (e) 1
1988-12-01
called soapstone . The third member of the Niagaran Series, the Laurel Dolomite, is thinly bedded, bluish-gray in color, and approximately 5 to 9 feet...slopes of hills. This m formation has a total thickness of 250 feet, and includes beds of limestone, soft shale, clay, or soapstone . The shales...INTERBEDDED. IRON [mineral] - A heavy, magnetic , malleable and ductile, and chemically active mineral, the native metallic element Fe. JP-4 - A type
Evaluation of oxide-coated iridium-rhenium chambers
NASA Astrophysics Data System (ADS)
Reed, Brian D.
1994-03-01
Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide coatings are better suited for repeated thermal cycling than the thick-walled coating, while thicker coatings may be required for operation in aggressively oxidizing environments.
Evaluation of oxide-coated iridium-rhenium chambers
NASA Technical Reports Server (NTRS)
Reed, Brian D.
1994-01-01
Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide coatings are better suited for repeated thermal cycling than the thick-walled coating, while thicker coatings may be required for operation in aggressively oxidizing environments.
Testing and evaluation of oxide-coated iridium/rhenium chambers
NASA Technical Reports Server (NTRS)
Reed, Brian D.
1993-01-01
Iridium-coated rhenium provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase iridium/rhenium rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated iridium/rhenium, 22 N rocket chambers were tested on gaseous hydrogen/gaseous oxygen propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia or zirconia. Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of zirconia infiltrated with sol gel hafnia. The other chamber had a coating composed of an iridium/oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. The iridium/oxide composite coated chamber included testing for over 29 minutes at mixture ratio 16. The thicker-walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner-walled coatings did not experience the macrocracking and chipping of the chambers seen with the thick, monolithic coatings. However, burnthroughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stochiometric. The burn-throughs were probably the result of oxygen-diffusion through the oxide coating that allowed the underlying iridium and rhenium layers to be oxidized. The results of this test program indicated that the thin-walled oxide coatings are better suited for repeated thermal cycling than the thick-walled coating, while thicker coatings may be required for operation in aggressively oxidizing environments.
NASA Astrophysics Data System (ADS)
Zsirka, Balázs; Horváth, Erzsébet; Szabó, Péter; Juzsakova, Tatjána; Szilágyi, Róbert K.; Fertig, Dávid; Makó, Éva; Varga, Tamás; Kónya, Zoltán; Kukovecz, Ákos; Kristóf, János
2017-03-01
Surface modification of the halloysite-10 Å mineral with tubular morphology can be achieved by slightly modified procedures developed for the delamination of kaolinite minerals. The resulting delaminated halloysite nanoparticles have unexpected surface/morphological properties that display, new potentials in catalyst development. In this work, a four-step intercalation/delamination procedure is described for the preparation of thin-walled nanoscrolls from the multi-layered hydrated halloysite mineral that consists of (1) intercalation of halloysite with potassium acetate, (2) replacement intercalation with ethylene glycol, (3) replacement intercalation with hexylamine, and (4) delamination with toluene. The intercalation steps were followed by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption, thermogravimetry, and infrared spectroscopy. Delamination eliminated the crystalline order and the crystallite size along the 'c'-axis, increased the specific surface area, greatly decreased the thickness of the mineral tubes to a monolayer, and shifted the pore diameter toward the micropore region. Unexpectedly, the removal of residual organics from intercalation steps adsorbed at the nanoscroll surface with a peroxide treatment resulted in partial recovery of crystallinity and increase of crystallite size along the 'c'-crystal direction. The d(001) value showed a diffuse pattern at 7.4-7.7 Å due to the rearrangement of the thin-walled nanoscrolls toward the initial tubular morphology of the dehydrated halloysite-7 Å mineral.
Synthesis and energy applications of oriented metal oxide nanoporous films
NASA Astrophysics Data System (ADS)
Wu, Qingliu
This dissertation mainly addresses the synthesis of well-ordered mesoporous titania thin films by dip coating with PEO-PPO-PEO triblock copolymer surfactant template P123. Because P123 is composed of poly(ethylene oxide) [PEO] and poly(propylene oxide) [PPO] blocks, concentrations of ingredients are adjusted to tune the films' wall thickness, pore size and mesophase. Structural changes are consistent with partitioning of species among PEO blocks, PPO blocks, and the PEO/PPO interface. Titanates localize near PEO and increase wall thickness (by 5 nm to 7 nm). Depending on aging temperature, PPG either swells the PPO cores (when it is hydrophobic) or introduces large (>200 nm) voids (when it is hydrophilic but phase separates during heating). 1-butanol localizes at the PEO/PPO interface to favor a 3D hexagonal mesostructure. In another approach, anodizing Ti foils yields vertically aligned titania nanotubes arrays with exceptional stabilities as anodes in lithium ion batteries; they maintain capacities of 130-230 mAhg-1 over 200 cycles. No microstructural changes are induced by battery cycling and good electrical contact is maintained. A diffusion induced stress model suggests that thin-walled nanotubes arrays should be stable under testing conditions, and that ordered hexagonal columnar pore arrays should have both high charge/discharge rates and low stress development. KEY WORDS: materials synthesis, porous, thin film, alternative energy, self-assembly
NASA Astrophysics Data System (ADS)
Hu, Shuopeng; Wang, Yue; Wang, Qiang; Xing, Cheng; Yan, Yinzhou; Jiang, Yijian
2018-06-01
ZnO has attracted considerable attention in fundamental studies and practical applications for the past decade due to its outstanding performance in gas sensing, photocatalytic degradation, light harvesting, UV-light emitting/lasing, etc. The large-sized thin-walled ZnO (TW-ZnO) microtube with stable and rich VZn-related acceptors grown by optical vapor supersaturated precipitation (OVSP) is a novel multifunctional optoelectronic material. Unfortunately, the OVSP cannot achieve doping due to the vapor growth process. To obtain doped TW-ZnO microtubes, a solid state method is introduced in this work to achieve thin-walled Al-doping ZnO (TW-ZnO:Al) microtubes with high electrical conductivity. The morphology and microstructures of ZnO:Al microtubes are similar to undoped ones. The Al3+ ions are confirmed to substitute Zn2+ sites and Zn(0/-1) vacancies in the lattice of ZnO by EDS, XRD, Raman and temperature-dependent photoluminescence analyses. The Al dopant acting as a donor level offers massive free electrons to increase the carrier concentrations. The resistivity of the ZnO:Al microtube is reduced down to ∼10-3 Ω·cm, which is one order of magnitude lower than that of the undoped microtube. The present work provides a simple way to achieve doped ZnO tubular components for potential device applications in optoelectronics.
Effective description of domain wall strings
NASA Astrophysics Data System (ADS)
Rodrigues, Davi R.; Abanov, Ar.; Sinova, J.; Everschor-Sitte, K.
2018-04-01
The analysis of domain wall dynamics is often simplified to one-dimensional physics. For domain walls in thin films, more realistic approaches require the description as two-dimensional objects. This includes the study of vortices and curvatures along the domain walls as well as the influence of boundary effects. Here we provide a theory in terms of soft modes that allows us to analytically study the physics of extended domain walls and their stability. By considering irregularly shaped skyrmions as closed domain walls, we analyze their plasticity and compare their dynamics with those of circular skyrmions. Our theory directly provides an analytical description of the excitation modes of magnetic skyrmions, previously accessible only through sophisticated micromagnetic numerical calculations and spectral analysis. These analytical expressions provide the scaling behavior of the different physics on parameters that experiments can test.
Additive erosion reduction influences in the turbulent boundary layer
NASA Astrophysics Data System (ADS)
Buckingham, A. C.
1981-05-01
Results of a sequence of flow, heat and mass transfer calculations are presented which theoretically characterize the erosive environment at the wall surface of refractory metal coated and uncoated gun barrels. The theoretical results include analysis of the wall surface temperature, heat flux, and shear stress time histories on thin (10 mil.) Cr, Mo, Nb, and Ta plated steel barrel walls as uncoated steel walls. The calculations combine effects of a number of separate processes which were previously (and purposely) studied individually. These include solid particle additive concentrations, gas wall thermochemical influences, and transient turbulent wall boundary layer flow with multicomponent molecular diffusion and reactions from interaction of propellant combustion and the eroding surface. The boundary layer model includes particulate additive concentrations as well as propellant combustion products, considered for the present to be in the local thermochemical equilibrium.
Boiler Tube Corrosion Characterization with a Scanning Thermal Line
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Jacobstein, Ronald; Reilly, Thomas
2001-01-01
Wall thinning due to corrosion in utility boiler water wall tubing is a significant operational concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. Unfortunately, ultrasonic inspection is very manpower intense and slow. Therefore, thickness measurements are typically taken over a relatively small percentage of the total boiler wall and statistical analysis is used to determine the overall condition of the boiler tubing. Other inspection techniques, such as electromagnetic acoustic transducer (EMAT), have recently been evaluated, however they provide only a qualitative evaluation - identifying areas or spots where corrosion has significantly reduced the wall thickness. NASA Langley Research Center, in cooperation with ThermTech Services, has developed a thermal NDE technique designed to quantitatively measure the wall thickness and thus determine the amount of material thinning present in steel boiler tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed and accuracy for large structures such as boiler water walls. A theoretical basis for the technique will be presented to establish the quantitative nature of the technique. Further, a dynamic calibration system will be presented for the technique that allows the extraction of thickness information from the temperature data. Additionally, the results of the application of this technology to actual water wall tubing samples and in-situ inspections will be presented.
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Winfree, William P.
2000-01-01
Localized wall thinning due to corrosion in utility boiler water-wall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. This technique has proven to be very manpower and time intensive. This has resulted in a spot check approach to inspections, documenting thickness measurements over a relatively small percentage of the total boiler wall area. NASA Langley Research Center has developed a thermal NDE technique designed to image and quantitatively characterize the amount of material thinning present in steel tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed for large structures such as boiler water-walls. A theoretical basis for the technique will be presented which explains the quantitative nature of the technique. Further, a dynamic calibration system will be presented for the technique that allows the extraction of thickness information from the temperature data. Additionally, the results of applying this technology to actual water-wall tubing samples and in situ inspections will be presented.
Composition and diameter modulation of magnetic nanowire arrays fabricated by a novel approach
NASA Astrophysics Data System (ADS)
Shaker Salem, Mohamed; Tejo, Felipe; Zierold, Robert; Sergelius, Philip; Montero Moreno, Josep M.; Goerlitz, Detlef; Nielsch, Kornelius; Escrig, Juan
2018-02-01
Straight magnetic nanowires composed of nickel and permalloy segments having different diameters are synthesized using a promising approach. This approach involves the controlled electrodeposition of each magnetic material into specially designed diameter-modulated porous alumina templates. Standard alumina templates are exposed to pore widening followed by a protective coating of the pore wall with ultrathin silica and further anodization. Micromagnetic simulations are employed to investigate the process of magnetization reversal in the fabricated nanowires when the magnetic materials exchange their places in the thick and thin segments. It is found that the magnetization reversal occurs by the propagation of transverse domain wall (DW) when the thick segment is composed of permalloy. However, the reversal process proceeds by the propagation of vortex DW when permalloy is located at the thin segment.
Encapsulation of high temperature thermoelectric modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvador, James R.; Sakamoto, Jeffrey; Park, Youngsam
A method of encapsulating a thermoelectric device and its associated thermoelectric elements in an inert atmosphere and a thermoelectric device fabricated by such method are described. These thermoelectric devices may be intended for use under conditions which would otherwise promote oxidation of the thermoelectric elements. The capsule is formed by securing a suitably-sized thin-walled strip of oxidation-resistant metal to the ceramic substrates which support the thermoelectric elements. The thin-walled metal strip is positioned to enclose the edges of the thermoelectric device and is secured to the substrates using gap-filling materials. The strip, substrates and gap-filling materials cooperatively encapsulate the thermoelectricmore » elements and exclude oxygen and water vapor from atmospheric air so that the elements may be maintained in an inert, non-oxidizing environment.« less
Examination of Buckling Behavior of Thin-Walled Al-Mg-Si Alloy Extrusions
NASA Astrophysics Data System (ADS)
Vazdirvanidis, Athanasios; Koumarioti, Ioanna; Pantazopoulos, George; Rikos, Andreas; Toulfatzis, Anagnostis; Kostazos, Protesilaos; Manolakos, Dimitrios
To achieve the combination of improved crash tolerance and maximum strength in aluminium automotive extrusions, a research program was carried out. The main objective was to study AA6063 alloy thin-walled square tubes' buckling behavior under axial quasi-static load after various artificial aging treatments. Variables included cooling rate after solid solution treatment, duration of the 1st stage of artificial aging and time and temperature of the 2nd stage of artificial aging. Metallography and tensile testing were employed for developing deeper knowledge on the effect of the aging process parameters. FEM analysis with the computer code LS-DYNA was supplementary applied for deformation mode investigation and crashworthiness prediction. Results showed that data from actual compression tests and numerical modeling were in considerable agreement.
Electromagnetically induced acoustic emission—novel NDT technique for damage evaluation
NASA Astrophysics Data System (ADS)
Finkel, P.; Godinez, V.; Miller, R.; Finlayson, R.
2001-04-01
A recently developed electromagnetically induced acoustic emission technique (EM AE) which can be used for damage assessment of thin walled conducting structures is described. This technique allows a structure to be loaded locally by applying an electromagnetic field in order to produce an AE response, which may be captured by conventional or fiber optic (FO) AE sensors. The advantage of this technique is that the localized dynamic stresses induced by a short current pulse in the presence of an external magnetic field aid in the detection of cracks. Also, it is shown that electromagnetic stimulation can be applied to enhance conventional ultrasonics by modulation of the scattered signal from the defect (EM UT). Experimental data is presented for the case of a fatigue crack near rivet holes in thin walled aluminum structures.
Glow discharge plasma deposition of thin films
Weakliem, Herbert A.; Vossen, Jr., John L.
1984-05-29
A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.
Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes.
Yuksel, Recep; Sarioba, Zeynep; Cirpan, Ali; Hiralal, Pritesh; Unalan, Husnu Emrah
2014-09-10
We describe a simple process for the fabrication of transparent and flexible, solid-state supercapacitors. Symmetric electrodes made up of binder-free single walled carbon nanotube (SWCNT) thin films were deposited onto polydimethylsiloxane substrates by vacuum filtration followed by a stamping method, and solid-state supercapacitor devices were assembled using a gel electrolyte. An optical transmittance of 82% was found for 0.02 mg of SWCNTs, and a specific capacitance of 22.2 F/g was obtained. The power density can reach to 41.5 kW · kg(-1) and shows good capacity retention (94%) upon cycling over 500 times. Fabricated supercapacitors will be relevant for the realization of transparent and flexible devices with energy storage capabilities, displays and touch screens in particular.
NASA Astrophysics Data System (ADS)
Yao, Yanbo; Duan, Xiaoshuang; Luo, Jiangjiang; Liu, Tao
2017-11-01
The use of the van der Pauw (VDP) method for characterizing and evaluating the piezoresistive behavior of carbon nanomaterial enabled piezoresistive sensors have not been systematically studied. By using single-wall carbon nanotube (SWCNT) thin films as a model system, herein we report a coupled electrical-mechanical experimental study in conjunction with a multiphysics finite element simulation as well as an analytic analysis to compare the two-probe and VDP testing configuration in evaluating the piezoresistive behavior of carbon nanomaterial enabled piezoresistive sensors. The key features regarding the sample aspect ratio dependent piezoresistive sensitivity or gauge factor were identified for the VDP testing configuration. It was found that the VDP test configuration offers consistently higher piezoresistive sensitivity than the two-probe testing method.
Thin Wall Pipe Ultrasonic Inspection through Paint Coating
NASA Astrophysics Data System (ADS)
Predoi, Mihai Valentin; Petre, Cristian Cătălin
Classical ultrasonic inspection of welds is currently done for plates thicker than 8 mm. The inspection of but welds in thin walled pipes has considerable implementation difficulties, due to guided waves dominating ultrasonic pulses propagation. Generation of purely symmetric modes, either torsional or longitudinal, requires a circumferential uniform distribution of transducers and dedicated inspection equipment, which are increasing the inspection costs. Moreover, if the surface is paint coated, the received signals are close to the detection level. The present work implies a single transducer, coupled to the painted surface. The proper choice of the guided mode and frequency range, allows the detection of a standard, small diameter through thickness hole. In this way, the inspection of pipe welds can use the same equipment as for thick materials, with only wedge adaptation.
Effect of damage on elastically tailored composite laminates
NASA Technical Reports Server (NTRS)
Armanios, Erian; Badir, Ashraf; Berdichevsky, Victor
1991-01-01
A variationally consistent theory is derived in order to predict the response of anisotropic thin-walled closed sections subjected to axial load, torsion and bending. The theory is valid for arbitrary cross-sections made of laminated composite materials with variable thickness and stiffness. Closed form expressions for the stiffness coefficients are provided as integrals in terms of lay-ups parameters and cross-sectional geometry. A comparison of stiffness coefficients and response with finite element predictions and a closed form solution is performed. The theory is applied to the investigation of the effect of damage on the extension-twist coupling in a thin-walled closed section beam. The damage is simulated as a progressive ply-by-ply failure. Results show that damage can have a significant effect on the extension-twist coupling.
Dzyaloshinskii-Moriya interaction in the presence of Rashba and Dresselhaus spin-orbit coupling
NASA Astrophysics Data System (ADS)
Valizadeh, Mohammad M.; Satpathy, S.
2018-03-01
Chiral order in magnetic structures is currently an area of considerable interest and leads to skyrmion structures and domain walls with certain chirality. The chiral structure originates from the Dzyaloshinskii-Moriya interaction caused by broken inversion symmetry and the spin-orbit interaction. In addition to the Rashba or Dresselhaus interactions, there may also exist substantial spin polarization in magnetic thin films. Here, we study the exchange interaction between two localized magnetic moments in the spin-polarized electron gas with both Rashba and Dresselhaus spin-orbit interaction present. Analytical expressions are found in certain limits in addition to what is known in the literature. The stability of the Bloch and Néel domain walls in magnetic thin films is discussed in light of our results.
Thermal modeling and analysis of thin-walled structures in micro milling
NASA Astrophysics Data System (ADS)
Zhang, J. F.; Ma, Y. H.; Feng, C.; Tang, W.; Wang, S.
2017-11-01
The numerical analytical model has been developed to predict the thermal effect with respect to thin walled structures by micro-milling. In order to investigate the temperature distribution around micro-edge of cutter, it is necessary to considering the friction power, the shearing power, the shear area between the tool micro-edge and materials. Due to the micro-cutting area is more difficult to be measured accurately, the minimum chip thickness as one of critical factors is also introduced. Finite element-based simulation was employed by the Advantedge, which was determined from the machining of Ti-6Al-4V over a range of the uncut chip thicknesses. Results from the proposed model have been successfully accounted for the effects of thermal softening for material.
A new Eimeria species (Protozoa: Eimeriidae) from caribou in Ameralik, West Greenland.
Skirnisson, K; Cuyler, C
2016-04-01
Fecal samples of 11 calves shot in the Ameralik area, West Greenland, in August-September 2014 were examined for coccidian parasites. The calves belonged to a population of interbreeding indigenous caribou Rangifer tarandus groenlandicus and feral semi-domestic Norwegian reindeer Rangifer tarandus tarandus. Two coccidian species were found: Eimeria rangiferis and a coccidium that was identified and described as a new species. The latter's sporulated oocyst is spherical or slightly subspherical. Average size is 25.6 × 24.8 μm. The oocyst has two distinct walls. Wall thickness is ∼1.4 μm. The unicolored outer wall is brown, the inner wall is dark gray. The oocysts contain a small polar granule but are devoid of a microphyle. The oocysts enclose four ovoid-shaped sporocysts with a rounded end opposite to the Stieda body. The average size of sporocysts is 15.2 × 7.8 μm. Sporocysts contain a granular sporocyst residuum that forms a spherical cluster between the sporocysts, one large refractile body is present in each sporozoite. The spherical form easily distinguishes oocysts of the new species from the seven previously described eimerid species in R. tarandus. This is the first eimerid described as a new species to the sciences from caribou in the Nearctic.
Cell wall evolution and diversity
Fangel, Jonatan U.; Ulvskov, Peter; Knox, J. P.; Mikkelsen, Maria D.; Harholt, Jesper; Popper, Zoë A.; Willats, William G.T.
2012-01-01
Plant cell walls display a considerable degree of diversity in their compositions and molecular architectures. In some cases the functional significance of a particular cell wall type appears to be easy to discern: secondary cells walls are often reinforced with lignin that provides durability; the thin cell walls of pollen tubes have particular compositions that enable their tip growth; lupin seed cell walls are characteristically thickened with galactan used as a storage polysaccharide. However, more frequently the evolutionary mechanisms and selection pressures that underpin cell wall diversity and evolution are unclear. For diverse green plants (chlorophytes and streptophytes) the rapidly increasing availability of transcriptome and genome data sets, the development of methods for cell wall analyses which require less material for analysis, and expansion of molecular probe sets, are providing new insights into the diversity and occurrence of cell wall polysaccharides and associated biosynthetic genes. Such research is important for refining our understanding of some of the fundamental processes that enabled plants to colonize land and to subsequently radiate so comprehensively. The study of cell wall structural diversity is also an important aspect of the industrial utilization of global polysaccharide bio-resources. PMID:22783271
Electro-optical switching and memory display device
Skotheim, T.A.; O'Grady, W.E.; Linkous, C.A.
1983-12-29
An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuits means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.
Electro-optical switching and memory display device
Skotheim, Terje A.; O'Grady, William E.; Linkous, Clovis A.
1986-01-01
An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuit means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.
The rollup of a vortex layer near a wall
NASA Technical Reports Server (NTRS)
Jimenez, Javier; Orlandi, Paolo
1993-01-01
The behavior of an inviscid vortex layer of non-zero thickness near a wall is studied, both through direct numerical simulation of the two-dimensional vorticity equation at high Reynolds numbers, and using an approximate ordinary nonlinear integro-differential equation which is satisfied in the limit of a thin layer under long-wavelength perturbations. For appropriate initial conditions the layer rolls up and breaks into compact vortices which move along the wall at constant speed. Because of the effect of the wall, they correspond to equilibrium counter-rotating vortex dipoles. This breakup can be related to the disintegration of the initial conditions of the approximate nonlinear dispersive equation into solitary waves. The study is motivated by the formation of longitudinal vortices from vortex sheets in the wall region of a turbulent channel.
Domain and rim growth kinetics in stratifying foam films
NASA Astrophysics Data System (ADS)
Zhang, Yiran; Yilixiati, Subinuer; Sharma, Vivek
Foam films are freely standing thin liquid films that typically consist of two surfactant-laden surfaces that are ~5 nm - 10 micron apart. Sandwiched between these interfacial layers is a fluid that drains primarily under the influence of viscous and interfacial forces, including disjoining pressure. Interestingly, a layered ordering of micelles inside the foam films (thickness <100 nm) leads to a stepwise thinning phenomena called stratification, which results in a thickness-dependent variation in reflected light intensity, visualized as progressively darker shades of gray. Thinner, darker domains spontaneously grow within foam films. During the initial expansion, a rim forms near the contact line between the growing thinner domain and the surrounding region, which influences the dynamics of domain growth as well as stratification Using newly developed interferometry digitial imaging optical microscopy (IDIOM) technique, we capture the rim evolution dynamics. Finally, we also develop a theoretical model to describe both rim evolution and domain growth dynamics.
Cloud and surface textural features in polar regions
NASA Technical Reports Server (NTRS)
Welch, Ronald M.; Kuo, Kwo-Sen; Sengupta, Sailes K.
1990-01-01
The study examines the textural signatures of clouds, ice-covered mountains, solid and broken sea ice and floes, and open water. The textural features are computed from sum and difference histogram and gray-level difference vector statistics defined at various pixel displacement distances derived from Landsat multispectral scanner data. Polar cloudiness, snow-covered mountainous regions, solid sea ice, glaciers, and open water have distinguishable texture features. This suggests that textural measures can be successfully applied to the detection of clouds over snow-covered mountains, an ability of considerable importance for the modeling of snow-melt runoff. However, broken stratocumulus cloud decks and thin cirrus over broken sea ice remain difficult to distinguish texturally. It is concluded that even with high spatial resolution imagery, it may not be possible to distinguish broken stratocumulus and thin clouds from sea ice in the marginal ice zone using the visible channel textural features alone.
SVM-based classification of LV wall motion in cardiac MRI with the assessment of STE
NASA Astrophysics Data System (ADS)
Mantilla, Juan; Garreau, Mireille; Bellanger, Jean-Jacques; Paredes, José Luis
2015-01-01
In this paper, we propose an automated method to classify normal/abnormal wall motion in Left Ventricle (LV) function in cardiac cine-Magnetic Resonance Imaging (MRI), taking as reference, strain information obtained from 2D Speckle Tracking Echocardiography (STE). Without the need of pre-processing and by exploiting all the images acquired during a cardiac cycle, spatio-temporal profiles are extracted from a subset of radial lines from the ventricle centroid to points outside the epicardial border. Classical Support Vector Machines (SVM) are used to classify features extracted from gray levels of the spatio-temporal profile as well as their representations in the Wavelet domain under the assumption that the data may be sparse in that domain. Based on information obtained from radial strain curves in 2D-STE studies, we label all the spatio-temporal profiles that belong to a particular segment as normal if the peak systolic radial strain curve of this segment presents normal kinesis, or abnormal if the peak systolic radial strain curve presents hypokinesis or akinesis. For this study, short-axis cine- MR images are collected from 9 patients with cardiac dyssynchrony for which we have the radial strain tracings at the mid-papilary muscle obtained by 2D STE; and from one control group formed by 9 healthy subjects. The best classification performance is obtained with the gray level information of the spatio-temporal profiles using a RBF kernel with 91.88% of accuracy, 92.75% of sensitivity and 91.52% of specificity.
Propagation of Flexural Mode AE Signals in GR/EP Composite Plates
NASA Technical Reports Server (NTRS)
Prosser, W. H.; Gorman, M. R.
1992-01-01
It has been documented that AE signals propagate in thin plates as extensional and flexural plate modes. This was demonstrated using simulated AE sources (pencil lead breaks) by Gorman on thin aluminum and gr/ep composite plates and by Gorman and Prosser on thin aluminum plates. A typical signal from a pencil lead break source which identifies these two modes is shown. AE signals from transverse matrix cracking sources in gr/ep composite plates were also shown to propagate as plate modes by Gorman and Ziola. Smith showed that crack growth events in thin aluminum plates under spectrum fatigue loading produced signals that propagated as plate modes. Additionally, Prosser et al. showed that AE signals propagated as plate modes in a thin walled composite tube.
Injector-Wall Interactions in Gas-Centered Swirl Coaxial Injectors
2011-10-05
and cavitating venturis, respectively. The nozzles, venturis and associated pressure transducers have been calibrated so that the error in mass...from movement of titanium dioxide on thin oil films, a measure of shear at the wall. The important finding, then, is that using the single-phase...Journal 24(12):1964-(1986). 6. Bernal, L.P., and Madnia, K., in Proceedings of the Seventeenth Symposium on Naval Hydrodynamics , National Academies
Fabrication of trough-shaped solar collectors
Schertz, William W.
1978-01-01
There is provided a radiant energy concentration and collection device formed of a one-piece thin-walled plastic substrate including a plurality of nonimaging troughs with certain metallized surfaces of the substrate serving as reflective side walls for each trough. The one-piece plastic substrate is provided with a seating surface at the bottom of each trough which conforms to the shape of an energy receiver to be seated therein.
Episodic vein formation in Gale crater, Mars: evidence for an extended history of liquid water
NASA Astrophysics Data System (ADS)
Kronyak, R. E.; Fedo, C.; Banham, S.; Edgett, K. S.; Newsom, H. E.; Nachon, M.; Kah, L. C.
2017-12-01
The sedimentary rock record of Gale crater is consistent with deposition in an ancient lake basin. These strata represent aqueous and potentially habitable past conditions that existed over a relatively small part of Mars' geologic history. Post-depositional fluid migration is recorded by the presence of veins, which have been prevalent features throughout Curiosity's mission. These veins record later episodes of fluid flow and represent an extended history of liquid water stability, and perhaps habitability. White Ca-sulfate veins are observed in the Bradbury (Yellowknife Bay), Mount Sharp (Murray formation), and Siccar Point (Stimson formation) groups across a range of lithologies. At Yellowknife Bay and in the Stimson, Ca-sulfate veins characteristically exhibit mm-scale thicknesses. In the Pahrump Hills (PH) area, 62% of measured veins in the Murray formation are <3 mm thick. However, PH also contains a population of veins that range from 1-5 cm thick that commonly contain gray inclusions and are crosscut by thinner white veins. Similar gray material occurs along the interface between wall rock and Ca-sulfate and is interpreted as a precursor vein fill. Gray veins at PH are more erosionally resistant relative to Ca-sulfate and average 1 mm in width. Additionally, gray veins exhibit elevated Mg and depleted Ca, distinguishing them compositionally from Ca-sulfate veins. Veins continue locally throughout the stratigraphic section. The lowermost Stimson sandstones at the Missoula outcrop contain white clasts and elevated Ca-sulfate, suggesting the formation of Murray veins prior to the deposition of the Stimson formation. Near the Old Soaker outcrop, bedding-parallel sulfate may represent syndepositional gypsum precipitation. In the context of time, the multiple vein systems identified in the Gale crater sedimentary fill shed light on the sequence and evolution of fluids responsible for their deposition. It is envisioned that sulfates first precipitated contemporaneously with the deposition of the Murray formation, followed by burial, lithification, and fracturing to form the earliest gray and sulfate veins. The Murray was then exhumed and eroded, followed by deposition and lithification of the Stimson formation, fracturing, and precipitation of the latest sulfate veins.
Histologic change of arteriovenous malformations of the face and scalp after free flap transfer.
Tark, K C; Chung, S
2000-07-01
In three patients with long-standing vascular malformations of the face and scalp, radial forearm free flaps were transferred after a near-total excision of the lesion. All patients had typical high-flow malformations with thrill and bruit. The onset and progression of the malformations were analyzed through clinical and histologic studies. After free flap transfer, the vascular malformations were followed up grossly and histologically for between 4 and 9 years. There was no recurrence of arteriovenous malformation after free flap transfer. The portion of the residual lesion adjacent to the transferred free flap disappeared, and the remaining discoloration also vanished grossly. Histologic comparison of immediate postoperative and 4-month postoperative specimens from the margin and residual lesion using Victoria blue staining showed that the typical preoperative findings for arteriovenous malformation-an intermingling of thick-walled vessels with abundant elastic fibers and thin-walled vessels without elastic fibers-had undergone change, resulting in the disappearance of the thick-walled vessels and leaving only homogeneous, thin-walled vasculature. The highly vascularized free flap, which does not contain abnormal fistulas, impacted the histologic change of the arteriovenous malformation by blocking the vicious cycle of ischemia and anatomic replacement of disfigured skin and subcutaneous tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whalen, Scott A.; Joshi, Vineet V.; Overman, Nicole R.
Shear Assisted Processing and Extrusion (ShAPE) has been scaled-up and applied to direct extrusion of thin-walled magnesium tubing. Using ShAPE, billets of ZK60A-T5 were directly extruded into round tubes having an outer diameter of 50.8 mm and wall thickness of 1.52 mm. The severe shearing conditions inherent to ShAPE resulted in microstructural refinement with an average grain size of 3.8μm measured at the midpoint of the tube wall. Tensile testing per ATSM E-8 on specimens oriented parallel to the extrusion direction gave an ultimate tensile strength of 254.4 MPa and elongation of 20.1%. Specimens tested perpendicular to the extrusion directionmore » had an ultimate tensile strength of 297.2 MPa and elongation of 25.0%. Due to material flow effects resulting from the simultaneous linear and rotational shear intrinsic to ShAPE, ram force and electrical power consumption during extrusion were just 40 kN and 11.5 kW respectively. This represents a significant reduction in ram force and power consumption compared to conventional extrusion. As such, there is potential for ShAPE to offer a scalable, lower cost extrusion option with potentially improved bulk mechanical properties.« less
Shiozaki, H
1993-01-25
The usefulness of cine magnetic resonance (MR) imaging was evaluated in 41 patients with acute (4 cases), subacute (21 cases) and chronic (16 cases) myocardial infarctions on the basis of the findings of thallium-201 myocardial SPECT. The overall rate of diagnostic accordance between cine MR imaging and SPECT was 85.0% (408/480). It was highest at the middle of the left ventricle (89.0%, 146/164) and lowest at the base (82.7%, 129/156). Measurement of wall thickness using the images printed on films was possible in 87.1% of segments (418/480). There was a significant difference in end-diastolic wall thickness and %-thickening between the infarcted and non-infarcted sites except for the base of the left ventricle. However, diastolic wall thinning was not remarkable in acute cases of less than one week after onset. In these cases %-thickening may be useful. Partial volume averaging on MR imaging and the inaccuracy of SPECT findings at the base also made meaningful comparison difficult. The most important diagnostic findings of myocardial infarction on cine MR imaging were end-diastolic wall thinning and abnormal motion such as akinesis and dyskinesis. It is concluded that cine MR imaging is a useful noninvasive examination method for evaluating the status of cardiac function in myocardial infarction.
NASA Astrophysics Data System (ADS)
Benchirouf, Abderrahmane; Müller, Christian; Kanoun, Olfa
2016-01-01
In this paper, we propose strain-sensitive thin films based on chemically reduced graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) without adding any further surfactants. In spite of the insulating properties of the thin-film-based GO due to the presence functional groups such as hydroxyl, epoxy, and carbonyl groups in its atomic structure, a significant enhancement of the film conductivity was reached by chemical reduction with hydro-iodic acid. By optimizing the MWCNT content, a significant improvement of electrical and mechanical thin film sensitivity is realized. The optical properties and the morphology of the prepared thin films were studied using ultraviolet-visible spectroscopy (UV-Vis) and scanning electron microscope (SEM). The UV-Vis spectra showed the ability to tune the band gap of the GO by changing the MWCNT content, whereas the SEM indicated that the MWCNTs were well dissolved and coated by the GO. Investigations of the piezoresistive properties of the hybrid nanocomposite material under mechanical load show a linear trend between the electrical resistance and the applied strain. A relatively high gauge factor of 8.5 is reached compared to the commercial metallic strain gauges. The self-assembled hybrid films exhibit outstanding properties in electric conductivity, mechanical strength, and strain sensitivity, which provide a high potential for use in strain-sensing applications.
Benchirouf, Abderrahmane; Müller, Christian; Kanoun, Olfa
2016-12-01
In this paper, we propose strain-sensitive thin films based on chemically reduced graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) without adding any further surfactants. In spite of the insulating properties of the thin-film-based GO due to the presence functional groups such as hydroxyl, epoxy, and carbonyl groups in its atomic structure, a significant enhancement of the film conductivity was reached by chemical reduction with hydro-iodic acid. By optimizing the MWCNT content, a significant improvement of electrical and mechanical thin film sensitivity is realized. The optical properties and the morphology of the prepared thin films were studied using ultraviolet-visible spectroscopy (UV-Vis) and scanning electron microscope (SEM). The UV-Vis spectra showed the ability to tune the band gap of the GO by changing the MWCNT content, whereas the SEM indicated that the MWCNTs were well dissolved and coated by the GO. Investigations of the piezoresistive properties of the hybrid nanocomposite material under mechanical load show a linear trend between the electrical resistance and the applied strain. A relatively high gauge factor of 8.5 is reached compared to the commercial metallic strain gauges. The self-assembled hybrid films exhibit outstanding properties in electric conductivity, mechanical strength, and strain sensitivity, which provide a high potential for use in strain-sensing applications.
NASA Astrophysics Data System (ADS)
Wang, J.; Tang, H. P.; Yang, K.; Liu, N.; Jia, L.; Qian, M.
2018-03-01
Many novel designs for additive manufacturing (AM) contain thin-walled (≤ 3 mm) sections in different orientations. Selective electron beam melting (SEBM) is particularly suited to AM of such thin-walled titanium components because of its high preheating temperature and high vacuum. However, experimental data on SEBM of Ti-6Al-4V thin sections remains scarce because of the difficulty and high cost of producing long, thin and smooth strip tensile specimens (see Fig. 1). In this study, 80 SEBM Ti-6Al-4V strips (180 mm long, 42 mm wide, 3 mm thick) were built both vertically (V-strips) and horizontally (H-strips). Their density, microstructure and tensile properties were investigated. The V-strips showed clearly higher tensile strengths but lower elongation than the H-strips. Hot isostatic pressing (HIP) produced the same lamellar α-β microstructures in terms of the average α-lath thickness in both types of strips. The retained prior-β columnar grain boundaries after HIP showed no measurable influence on the tensile properties, irrespective of their length and orientation, because of the formation of randomly distributed fine α-laths.[Figure not available: see fulltext.
Method and apparatus for detecting irregularities on or in the wall of a vessel
Bowling, Michael Keith
2000-09-12
A method of detecting irregularities on or in the wall of a vessel by detecting localized spatial temperature differentials on the wall surface, comprising scanning the vessel surface with a thermal imaging camera and recording the position of the or each region for which the thermal image from the camera is indicative of such a temperature differential across the region. The spatial temperature differential may be formed by bacterial growth on the vessel surface; alternatively, it may be the result of defects in the vessel wall such as thin regions or pin holes or cracks. The detection of leaks through the vessel wall may be enhanced by applying a pressure differential or a temperature differential across the vessel wall; the testing for leaks may be performed with the vessel full or empty, and from the inside or the outside.
Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films
Damodaran, Anoop; Okatan, M. B.; Kacher, J.; ...
2016-02-15
Domains and domain walls are critical in determining the response of ferroelectrics, and the ability to controllably create, annihilate, or move domains is essential to enable a range of next-generation devices. Whereas electric-field control has been demonstrated for ferroelectric 180° domain walls, similar control of ferroelastic domains has not been achieved. Here, using controlled composition and strain gradients, we demonstrate deterministic control of ferroelastic domains that are rendered highly mobile in a controlled and reversible manner. Through a combination of thin-film growth, transmission-electron-microscopy-based nanobeam diffraction and nanoscale band-excitation switching spectroscopy, we show that strain gradients in compositionally graded PbZr 1-xTimore » xO 3 heterostructures stabilize needle-like ferroelastic domains that terminate inside the film. These needle-like domains are highly labile in the out-of-plane direction under applied electric fields, producing a locally enhanced piezoresponse. This work demonstrates the efficacy of novel modes of epitaxy in providing new modalities of domain engineering and potential for as-yet-unrealized nanoscale functional devices.« less
Lao, Zhao-Xin; Hu, Yan-Lei; Pan, Deng; Wang, Ren-Yan; Zhang, Chen-Chu; Ni, Jin-Cheng; Xu, Bing; Li, Jia-Wen; Wu, Dong; Chu, Jia-Ru
2017-06-01
Long microchannels with thin walls, small width, and nanoholes or irregular shaped microgaps, which are similar to capillaries or cancerous vessels, are urgently needed to simulate the physiological activities in human body. However, the fabrication of such channels remains challenging. Here, microchannels with designable holes are manufactured by combining laser printing with line-contact capillary-force assembly. Two microwalls are first printed by femtosecond laser direct-writing, and subsequently driven to collapse into a channel by the capillary force that arises in the evaporation of developer. The channel can remain stable in solvent due to the enhanced Van der Waals' force caused by the line-contact of microwalls. Microchannels with controllable nanoholes and almost arbitrary patterns can be fabricated without any bonding or multistep processes. As-prepared microchannels, with wall thicknesses less than 1 µm, widths less than 3 µm, lengths more than 1 mm, are comparable with human capillaries. In addition, the prepared channels also exhibit the ability to steer the flow of liquid without any external pump. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damodaran, Anoop; Okatan, M. B.; Kacher, J.
Domains and domain walls are critical in determining the response of ferroelectrics, and the ability to controllably create, annihilate, or move domains is essential to enable a range of next-generation devices. Whereas electric-field control has been demonstrated for ferroelectric 180° domain walls, similar control of ferroelastic domains has not been achieved. Here, using controlled composition and strain gradients, we demonstrate deterministic control of ferroelastic domains that are rendered highly mobile in a controlled and reversible manner. Through a combination of thin-film growth, transmission-electron-microscopy-based nanobeam diffraction and nanoscale band-excitation switching spectroscopy, we show that strain gradients in compositionally graded PbZr 1-xTimore » xO 3 heterostructures stabilize needle-like ferroelastic domains that terminate inside the film. These needle-like domains are highly labile in the out-of-plane direction under applied electric fields, producing a locally enhanced piezoresponse. This work demonstrates the efficacy of novel modes of epitaxy in providing new modalities of domain engineering and potential for as-yet-unrealized nanoscale functional devices.« less
NASA Astrophysics Data System (ADS)
Ishimori, Hiroyuki; Kawata, Yoshiki; Niki, Noboru; Nakaya, Yoshihiro; Ohmatsu, Hironobu; Matsui, Eisuke; Fujii, Masashi; Moriyama, Noriyuki
2007-03-01
We have developed a Micro CT system for understanding lung function at a high resolution of the micrometer order (up to 5µm in spatial resolution). Micro CT system enables the removal specimen of lungs to be observed at micro level, has expected a big contribution for micro internal organs morphology and the image diagnosis study. In this research, we develop system to visualize lung microstructures in three dimensions from micro CT images and analyze them. They characterize in that high CT value of the noise area is, and the difficulty of only using threshold processing to extract the alveolar wall of micro CT images. Thus, we are developing a method of extracting the alveolar wall with surface thinning algorithm. In this report, we propose the method which reduces the excessive degeneracy of figure which caused by surface thinning process. And, we apply this algorithm to the micro CT image of the actual pulmonary specimen. It is shown that the extraction of the alveolus wall becomes possible in the high precision.
NASA Astrophysics Data System (ADS)
Jurendic, S.; Anderson, D.
2017-09-01
Finite element simulations are used extensively to refine the forming steps of draw and wall iron (DWI) aluminum bottles; therefore, accurate material data is required Unfortunately, the material properties of the base sheet cannot presently be used for simulation of the later forming stages due to preceding significant deformation (ironing) and thermal treatments. Measuring the stress-strain response using traditional methods (e.g. tensile test) becomes increasingly difficult at later stages of the bottle forming process due to a significant diameter reduction of the bottle neck from successive die-necking stages. Moreover, failure during forming tends to occur in the final deformation stages when the bottle opening is rolled over, creating a brim roll, at which point brim roll splits may occur. Knowledge of the stress-strain response prior to the roll over may lead to improved product design, reduced waste, and an optimized product. Therefore, this work details a flaring apparatus and data analysis method to determine the stress-strain response in the die-necked region of thin-walled aluminum bottles fabricated from AA3104 sheet metal.
Fabrication of seamless calandria tubes by cold pilgering route using 3-pass and 2-pass schedules
NASA Astrophysics Data System (ADS)
Saibaba, N.
2008-12-01
Calandria tube is a large diameter, extremely thin walled zirconium alloy tube which has diameter to wall thickness ratio as high as 90-95. Such tubes are conventionally produced by the 'welded route', which involves extrusion of slabs followed by a series of hot and cold rolling passes, intermediate anneals, press forming of sheets into circular shape and closing the gap by TIG welding. Though pilgering is a well established process for the fabrication of seamless tubes, production of extremely thin walled tubes offers several challenges during pilgering. Nuclear fuel complex (NFC), Hyderabad, has successfully developed a process for the production of Zircaloy-4 calandria tubes by adopting the 'seamless route' which involves hot extrusion of mother blanks followed by three-pass pilgering or two-pass pilgering schedules. This paper deals with standardization of the seamless route processes for fabrication of calandria tubes, comparison between the tubes produced by 2-pass and 3-pass pilgering schedules, role of ultrasonic test charts for control of process parameters, development of new testing methods for burst testing and other properties.
Automating data analysis during the inspection of boiler tubes using line scanning thermography
NASA Astrophysics Data System (ADS)
Ley, Obdulia; Momeni, Sepand; Ostroff, Jason; Godinez, Valery
2012-05-01
Failures in boiler waterwalls can occur when a relatively small amount of corrosion and loss of metal have been experienced. This study presents our efforts towards the application of Line Scanning Thermography (LST) for the analysis of thinning in boiler waterwall tubing. LST utilizes a line heat source to thermally excite the surface to be inspected and an infrared detector to record the transient surface temperature increase observed due to the presence of voids, thinning or other defects. In waterwall boiler tubes the defects that can be detected using LST correspond to corrosion pitting, hydrogen damage and wall thinning produced by inadequate burner heating or problems with the water chemistry. In this paper we discuss how the LST technique is implemented to determine thickness from the surface temperature data, and we describe our efforts towards developing a semiautomatic analysis tool to speed up the time between scanning, reporting and implementing repairs. We compare the density of data produced by the common techniques used to assess wall thickness and the data produced by LST.
Pulsed photonic fabrication of nanostructured metal oxide thin films
NASA Astrophysics Data System (ADS)
Bourgeois, Briley B.; Luo, Sijun; Riggs, Brian C.; Adireddy, Shiva; Chrisey, Douglas B.
2017-09-01
Nanostructured metal oxide thin films with a large specific surface area are preferable for practical device applications in energy conversion and storage. Herein, we report instantaneous (milliseconds) photonic synthesis of three-dimensional (3-D) nanostructured metal oxide thin films through the pulsed photoinitiated pyrolysis of organometallic precursor films made by chemical solution deposition. High wall-plug efficiency-pulsed photonic irradiation (xenon flash lamp, pulse width of 1.93 ms, fluence of 7.7 J/cm2 and frequency of 1.2 Hz) is used for scalable photonic processing. The photothermal effect of subsequent pulses rapidly improves the crystalline quality of nanocrystalline metal oxide thin films in minutes. The following paper highlights pulsed photonic fabrication of 3-D nanostructured TiO2, Co3O4, and Fe2O3 thin films, exemplifying a promising new method for the low-cost and high-throughput manufacturing of nanostructured metal oxide thin films for energy applications.
NASA Astrophysics Data System (ADS)
Xie, Qi
Heat transfer in a turbulent boundary layer downstream of junction with a cylinder has many engineering applications including controlling heat transfer to the endwall in gas turbine passages and cooling of protruding electronic chips. The main objective of this research is to study the fundamental process of heat transport and wall heat transfer in a turbulent three-dimensional flow superimposed with local large-scale periodic unsteadiness generated by vortex shedding from the cylinder. Direct measurements of the Reynolds heat fluxes (/line{utheta},\\ /line{vtheta}\\ and\\ /line{wtheta}) and time-resolved wall heat transfer rate will provide insight into unsteady flow behavior and data for advanced turbulence models for numerical simulation of complex engineering flows. Experiments were conducted in an open-circuit, low-speed wind tunnel. Reynolds stresses and heat fluxes were obtained from turbulent heat-flux probes which consisted of two hot wires, arranged in an X-wire configuration, and a cold wire located in front of the X-wire. Thin-film surface heat flux sensors were designed for measuring time-resolved wall heat flux. A reference probe and conditional-sampling technique connected the flow field dynamics to wall heat transfer. An event detecting and ensemble-averaging method was developed to separate effects of unsteadiness from those of background turbulence. Results indicate that unsteadiness affects both heat transport and wall heat transfer. The flow behind the cylinder can be characterized by three regions: (1) Wake region, where unsteadiness is observed to have modest effect; (2) Unsteady region, where the strongest unsteadiness effect is found; (3) Outer region, where the flow approaches the two-dimensional boundary-layer behavior. Vortex shedding from both sides of the cylinder contributes to mixing enhancement in the wake region. Unsteadiness contributes up to 51% of vertical and 59% of spanwise turbulent heat fluxes in the unsteady region. The instantaneous wall Stanton number increased up to 100% compared with an undisturbed flow. Large-scale fluctuations of wall Stanton number were due to the periodic thinning and thickening of the thermal layer caused by periodic vertical velocity fluctuations. This suggests that the outerlayer motion affects near-wall flow behavior and wall heat transfer.
NASA Astrophysics Data System (ADS)
Samson, Kurt; Mossa-Basha, Mahmud; Yuan, Chun; Canton, Maria De Gador; Aliseda, Alberto
2017-11-01
Intracranial vascular pathologies are evaluated with angiography, conventional digital subtraction angiography or non-invasive (MRI, CT). Current techniques present limitations on the resolution with which the vessel wall characteristics can be measured, presenting a major challenge to differential diagnostic of cerebral vasculopathies. A new combined approach is presented that incorporates patient-specific image-based CFD models with intracranial vessel-wall MRI (VWMRI). Comparisons of the VWMRI measurements, evaluated for the presence of wall enhancement and thin-walled regions, against CFD metrics such as wall shear stress (WSS), and oscillatory shear index (OSI) are used to understand how the new imaging technique developed can predict the influence of hemodynamics on the deterioration of the aneurysmal wall, leading to rupture. Additionally, histology of each resected aneurysm, evaluated for inflammatory infiltration and wall thickness features, is used to validate the analysis from VWMRI and CFD. This data presents a solid foundation on which to build a new framework for combined VWMRI-CFD to predict unstable wall changes in unruptured intracranial aneurysms, and support clinical monitoring and intervention decisions.
Theory of Current-Driven Domain Wall Motion
NASA Astrophysics Data System (ADS)
Tatara, Gen
2004-03-01
Current-induced motion of a domain wall is studied starting from a microscopic Hamiltonian with an exchange interaction between conduction electrons and spins of the wall [1]. With a key observation that the position X and the angle φ0 the wall magnetization forms with the easy plane are the proper collective coordinates to describe its dynamics, it follows straightforwardly that the electric current affects the wall motion in two different ways, in agreement with Berger's pioneering observations[2]. The first is as a force, or momentum transfer, due to the reflection of conduction electrons. This force is proportional to the charge current j and wall resistivity ρ_w, and hence becomes important in thin walls. The other is as a spin torque or spin transfer[3], which is dominant for thick walls where the spin of conduction electron follows the magnetization adiabatically. The motion of a domain wall under a steady current is studied in two limiting cases. In the adiabatic case, we show that even without a pinning force, there is a threshold spin current, j_s^cr∝ K_⊥λ, below which the wall does not move (K_⊥ and λ being the hard-axis magnetic anisotropy and wall thickness, respectively). Below the threshold, the transferred angular momentum is used to shift φ0 and not to the wall motion. The pinning potential V0 affects j_s^cr only if it is very strong, V0 > K_⊥/α, where α is the damping parameter in the Landau-Lifshits-Gilbert equation. Therefore, the critical current for the adiabatic wall does not suffer very much from weak pinning, which is consistent with experimental observations[4]. The wall velocity after depinning is found to be
Daniele, Scarponi; Landau, Bernard; Janssen, Ronald; Morgenroth, Holly; Bella, Giano Della
2014-11-12
Bela Leach in Gray is a misapplied and broadly defined genus within the family Mangeliidae Fischer, 1883. Examination of material from the Montagu collection at the Royal Albert Memorial Museum & Art Gallery (RAMM) in Exeter (UK) led to the discovery of six specimens of Murex nebula Montagu 1803 (the type species of Bela). This material is considered to belong to the original lot used by Montagu to define his species. We selected the best-preserved specimen as a lectotype. The lectotype and paralectotypes deposited at the RAMM are fully described and illustrated. Furthermore, diagnostic characters for recognizing B. nebula specimens are presented: protoconch shows weak ornamentation; teleoconch is fusiform with slightly convex whorls characterized by broad, suture-to-suture ribs and dense but weak spiral elements; outer lip is thin; anal sinus is shallow, placed on the shoulder ramp. These key features are of basic importance for: i) restricting the usage of the genus Bela and promoting its stability and consistent usage in literature and ii) separating two allied (and sometimes interchanged) genera: Bela and Mangelia Risso 1826.
Cavalcanti, ThaynÃ; Santos, George Garcia; Pinheiro, Ulisses
2018-02-28
Eurypon Gray, 1867 comprises 49 valid species distributed worldwide, and in an extensive bathymetric range. Three Eurypon species are known for Brazil, all endemic from the Northeast region. Here, we describe three new species of Eurypon. Two of which are recorded from shallow waters (down to 100 m) off Pernambuco and Paraíba States, and one species is from deep waters (157 m) off Rio Grande do Norte State. Eurypon oxychaetum sp. nov. has large subtylostyles (1025-2125 µm, length), styles, two categories of acanthostyles and oxychaetes; Eurypon potiguaris sp. nov. has large tylostyles (1000-2315 µm, length), two categories of acanthostyles, and thin oxeas; Eurypon verticillatum sp. nov. is a blue sponge with exclusive verticillate acanthostyles. The new species were compared with all other Atlantic species of the genus. A replacement name for the secondary homonym Eurypon topsenti is proposed: Eurypon pulitzeri nom. nov. The presence of verticillate acanthostyles and oxychaetes spicules are reported for the first time in Table 1 genus.
The mineralogy, petrology, and composition of anomalous eucrite Emmaville
NASA Astrophysics Data System (ADS)
Barrett, T. J.; Mittlefehldt, D. W.; Greenwood, R. C.; Charlier, B. L. A.; Hammond, S. J.; Ross, D. K.; Anand, M.; Franchi, I. A.; Abernethy, F. A. J.; Grady, M. M.
2017-04-01
The Emmaville eucrite is a relatively poorly studied basaltic achondrite with an anomalous oxygen isotope signature. In this study, we report comprehensive mineralogical, petrographic, and geochemical data from Emmaville in order to understand its petrogenesis and relationship with the basaltic eucrites. Emmaville is an unusually fine-grained, hornfelsic-textured metabasalt with pervasive impact melt veins and mineral compositions similar to those of typical basaltic eucrites. The major and trace element bulk composition of Emmaville is also typical of a basaltic eucrite. Three separated individual lithologies were also analyzed for O isotopes; a dark gray fraction (E1), a shocked lithology (E2), and a lighter gray portion (E3). Fractions E1 and E2 shared similar O isotope compositions to the bulk sample (E-B), whereas the lighter gray portion (E3) is slightly elevated in Δ17O and significantly elevated in δ18O compared to bulk. No evidence for any exogenous material is observed in the thin sections, coupled with the striking compositional similarity to typical basaltic eucrites, appears to preclude a simple impact-mixing hypothesis. The O-isotopes of Emmaville are similar to those of Bunburra Rockhole, A-881394, and EET 92023, and thus distinct from the majority of the HEDs, despite having similarities in petrology, mineral, and bulk compositions. It would, therefore, seem plausible that all four of these samples are derived from a single HED-like parent body that is isotopically distinct from that of the HEDs (Vesta) but similar in composition.
Robust ferromagnetism carried by antiferromagnetic domain walls
NASA Astrophysics Data System (ADS)
Hirose, Hishiro T.; Yamaura, Jun-Ichi; Hiroi, Zenji
2017-02-01
Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics.
Néel walls between tailored parallel-stripe domains in IrMn/CoFe exchange bias layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueltzhöffer, Timo, E-mail: timo.ueltzhoeffer@physik.uni-kassel.de; Schmidt, Christoph; Ehresmann, Arno
Tailored parallel-stripe magnetic domains with antiparallel magnetizations in adjacent domains along the long stripe axis have been fabricated in an IrMn/CoFe Exchange Bias thin film system by 10 keV He{sup +}-ion bombardment induced magnetic patterning. Domain walls between these domains are of Néel type and asymmetric as they separate domains of different anisotropies. X-ray magnetic circular dichroism asymmetry images were obtained by x-ray photoelectron emission microscopy at the Co/Fe L{sub 3} edges at the synchrotron radiation source BESSY II. They revealed Néel-wall tail widths of 1 μm in agreement with the results of a model that was modified in order to describemore » such walls. Similarly obtained domain core widths show a discrepancy to values estimated from the model, but could be explained by experimental broadening. The rotation senses in adjacent walls were determined, yielding unwinding domain walls with non-interacting walls in this layer system.« less
Robust ferromagnetism carried by antiferromagnetic domain walls
Hirose, Hishiro T.; Yamaura, Jun-ichi; Hiroi, Zenji
2017-01-01
Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics. PMID:28195565
Decontamination Of Bacterial Spores by a Peptide-Mimic
2006-11-01
consisting of a thin cell wall and the outer cortex. The cell wall guarantees the maintenance of cellular integrity after germination. Lytic- enzymes ...percent of the water content of the vegetative cell. The enzymes contained in the core become active on germination. All minerals (mainly Ca2+, Mn2+ and...such as amino acids and sugars, by enzymes , by high hydrostatic pressure and by some non-nutrient chemicals such as dodecylamine (see next section
Investigating the Catalytic Growth of Carbon Nanotubes with In Situ Raman Monitoring
2015-06-01
single-walled carbon nanotube growth using cobalt deposited on Si/SiO2 as a model system. In situ Raman studies revealed that thin catalyst layers... cobalt thickness were studied. Surface analyses showed that during the catalyst preparation, catalyst atoms at the interface with silica form small...nanostructures. However, highly-reducing conditions are required to reduce the small silicate domains into small cobalt particles able to grow single-walled
Malignant Mesothelioma—Patient Version
Malignant mesothelioma is a cancer of the thin tissue (mesothelium) that lines the lung, chest wall, and abdomen. The major risk factor for mesothelioma is asbestos exposure. Start here to find information on malignant mesothelioma treatment.
Low voltage FCC for home and business
NASA Technical Reports Server (NTRS)
Wolf, L.
1972-01-01
A thin pressure-sensitive FCC for low voltage usage is described. It is recommended for installing in speakers, intercoms, doorbells, burglar alarms, and clocks, without running wires between walls. The specifications are given.
Hu, Hongping; Hu, Yuantai; Chen, Chuanyao; Wang, Ji
2008-10-01
A system to wirelessly convey electric energy through a thin metal wall is proposed in the paper, where 2 piezoelectric transducers are used to realize energy transformation between electric and mechanical, and a rechargeable battery is employed to store the transmitted energy. To integrate them as a whole, an interface of a modulating circuit is applied between the transducer system and the storage battery. In addition, a synchronized switch harvesting on inductor in parallel with the transducer system is introduced to artificially extend the closed interval of the modulating circuit. The process of transmitting energy is computed, and the performance of the transducer system is optimized in detail for a prescribed external electric source. The results obtained are useful for understanding and designing wireless energy supply systems.
NASA Technical Reports Server (NTRS)
Roddy, D. J.
1979-01-01
The geologic and core drilling studies described in the present paper show that the Flynn Creek crater has such distinctive morphological features as a broad flat hummocky floor; large central peak; locally terraced crater walls; uplifted, as well as flat-lying rim segments; and a surrounding ejecta blanket. The major structural features include a shallow depth of total brecciation and excavation as compared with apparent crater diameter; a thin breccia lens underlain by a thin zone of disrupted strata; concentric ring fault zones in inner rim, beneath crater wall, and outer crater floor regions; a large central uplift underlain by a narrow dipping zone of deeply disrupted strata; faulted, folded, brecciated, and fractured rim strata; and uplifted rim strata, which dip away from the crater, and flat-lying rim strata, which terminate as inward dipping rocks.
NASA Astrophysics Data System (ADS)
Teter, Andrzej; Kolakowski, Zbigniew
2018-01-01
The numerical modelling of a plate structure was performed with the finite element method and a one-mode approach based on Koiter's method. The first order approximation of Koiter's method enables one to solve the eigenvalue problem. The second order approximation describes post-buckling equilibrium paths. In the finite element analysis, the Lanczos method was used to solve the linear problem of buckling. Simulations of the non-linear problem were performed with the Newton-Raphson method. Detailed calculations were carried out for a short Z-column made of general laminates. Configurations of laminated layers were non-symmetric. Due to possibilities of its application, the general laminate is very interesting. The length of the samples was chosen to obtain the lowest value of local buckling load. The amplitude of initial imperfections was 10% of the wall thickness. Thin-walled structures were simply supported on both ends. The numerical results were verified in experimental tests. A strain-gauge technique was applied. A static compression test was performed on a universal testing machine and a special grip, which consisted of two rigid steel plates and clamping sleeves, was used. Specimens were obtained with an autoclave technique. Tests were performed at a constant velocity of the cross-bar equal to 2 mm/min. The compressive load was less than 150% of the bifurcation load. Additionally, soft and thin pads were used to reduce inaccuracy of the sample ends.
Krifka, Stephanie; Stangl, Martin; Wiesbauer, Sarah; Hiller, Karl-Anton; Schmalz, Gottfried; Federlin, Marianne
2009-09-01
No information is available to date about cusp design of thin (1.0 mm) non-functional cusps and its influence upon (1) marginal integrity of ceramic inlays (CI) and partial ceramic crowns (PCC) and (2) crack formation of dental tissues. The aim of this in vitro study was to investigate the effect of cusp coverage of thin non-functional cusps on marginal integrity and enamel crack formation. CI and PCC preparations were performed on extracted human molars. Non-functional cusps were adjusted to 1.0-mm wall thickness and 1.0-mm wall thickness with horizontal reduction of about 2.0 mm. Ceramic restorations (Vita Mark II, Cerec3 System) were adhesively luted with Excite/Variolink II. The specimens were exposed to thermocycling and central mechanical loading. Marginal integrity was assessed by evaluating dye penetration after thermal cycling and mechanical loading. Enamel cracks were documented under a reflective-light microscope. The data were statistically analysed with the Mann-Whitney U test, the Fishers exact test (alpha = 0.05) and the error rates method. PCC with horizontal reduction of non-functional cusps showed statistically significant less microleakage than PCC without such a cusp coverage. Preparation designs with horizontal reduction of non-functional cusps showed a tendency to less enamel crack formation than preparation designs without cusp coverage. Thin non-functional cusp walls of adhesively bonded restorations should be completely covered or reduced to avoid enamel cracks and marginal deficiency.
The inviscid stability of supersonic flow past heated or cooled axisymmetric bodies
NASA Technical Reports Server (NTRS)
Shaw, Stephen J.; Duck, Peter W.
1992-01-01
The inviscid, linear, nonaxisymmetric, temporal stability of the boundary layer associated with the supersonic flow past axisymmetric bodies (with particular emphasis on long thin, straight circular cylinders), subject to heated or cooled wall conditions is investigated. The eigenvalue problem is computed in some detail for a particular Mach number or 3.8, revealing that the effect of curvature and the choice of wall conditions both have a significant effect on the stability of the flow. Both the asymptotic, large azimuthal wavenumber solution and the asymptotic, far downstream solution are obtained for the stability analysis and compared with numerical results. Additionally, asymptotic analyses valid for large radii of curvature with cooled/heated wall conditions are presented. In general, important differences were found to exist between the wall temperature conditions imposed and the adiabatic wall conditions considered previously.
The inviscid stability of supersonic flow past heated or cooled axisymmetric bodies
NASA Technical Reports Server (NTRS)
Shaw, Stephen J.; Duck, Peter W.
1990-01-01
The inviscid, linear, nonaxisymmetric, temporal stability of the boundary layer associated with the supersonic flow past axisymmetric bodies (with particular emphasis on long thin, straight circular cylinders), subject to heated or cooled wall conditions is investigated. The eigenvalue problem is computed in some detail for a particular Mach number or 3.8, revealing that the effect of curvature and the choice of wall conditions both have a significant effect on the stability of the flow. Both the asymptotic, large azimuthal wavenumber solution and the asymptotic, far downstream solution are obtained for the stability analysis and compared with numerical results. Additionally, asymptotic analyses valid for large radii of curvature with cooled/heated wall conditions, are presented. In general, important differences were found to exist between the wall temperature conditions imposed and the adiabatic wall conditions considered previously.
Commercial aspects of epitaxial thin film growth in outer space
NASA Technical Reports Server (NTRS)
Ignatiev, Alex; Chu, C. W.
1988-01-01
A new concept for materials processing in space exploits the ultra vacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds and large ultra vacuum volume (about 100 cu m) without walls. These space ultra vacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials especially in the area of semiconductors for microelectronics use. For such thin film materials there is expected a very large value added from space ultra vacuum processing, and as a result the application of the epitaxial thin film growth technology to space could lead to major commercial efforts in space.
Optically Defined Multifunctional Patterning of Photosensitive Thin-Film Silica Mesophases
NASA Astrophysics Data System (ADS)
Doshi, Dhaval A.; Huesing, Nicola K.; Lu, Mengcheng; Fan, Hongyou; Lu, Yunfeng; Simmons-Potter, Kelly; Potter, B. G.; Hurd, Alan J.; Brinker, C. Jeffrey
2000-10-01
Photosensitive films incorporating molecular photoacid generators compartmentalized within a silica-surfactant mesophase were prepared by an evaporation-induced self-assembly process. Ultraviolet exposure promoted localized acid-catalyzed siloxane condensation, which can be used for selective etching of unexposed regions; for ``gray-scale'' patterning of refractive index, pore size, surface area, and wetting behavior; and for optically defining a mesophase transformation (from hexagonal to tetragonal) within the film. The ability to optically define and continuously control both structure and function on the macro- and mesoscales is of interest for sensor arrays, nanoreactors, photonic and fluidic devices, and low-dielectric-constant films.
Ti6Al4V Superplastic Forming for the Production of an Aircraft Part
NASA Astrophysics Data System (ADS)
Filice, L.; Gagliardi, F.; Lazzaro, S.; Rosa, R.
2011-05-01
Titanium and its alloys have grown their importance in the automotive and aerospace industries becoming strategic materials; this is due to their mechanical properties that, perfectly, meet the needs of the above said industrial field. For example, they are characterized by a high strength vs. weight ratio that is directly related to fuel saving impacting on both economic and environmental aspects. A weakness point of these materials is linked to their workability that entails significant manufacturing costs. Taking into account these issues, it is easy to understand the reasons for the development of net shape technologies, like hot forming (HF) or superplastic forming (SPF) in order to reduce the price of titanium components. In the work here introduced, a cockpit section, known as "Pocket Support", was produced through SPF. More in detail, the influence that the strain rate can have on the quality of the final part was highlighted; for this reason, two different pressure-time curves were tested monitoring the accuracy and wall thinning of the realized parts. The experimental campaign was carried out using an ACB superplastic forming press located in the Somma Vesuviana DEMA plant. The dimension of the obtained components were checked through the structural light technique (Gray Code-Phase Shifting); in particular, a cloud of points was obtained and, subsequently, used to rebuild the actual surface of the Pocket Support. In this way, a comparison between the CAD model and the real part was possible. Moreover, the thickness distribution along a critical section was analyzed by means of a coordinate measuring machine.
Laminar boundary layer near the rotating end wall of a confined vortex
NASA Astrophysics Data System (ADS)
Shakespeare, W. J.; Levy, E. K.
1982-06-01
The results of an experimental and theoretical investigation of the fluid mechanics in a confined vortex are discussed with particular emphasis on behavior away from the axis of symmetry and near the end walls. The vortex is generated in a rotating cylindrical chamber with an exit opening in one end. Both end walls rotate. For the range of flow rates and swirl ratios (S between 1 and 5) of interest here, the flow field far from the end walls behaves as inviscid and irrotational; and the end wall boundary layers are thin and laminar. Measurements and calculations of tangential and radial velocity in the end wall region show the development of a secondary flow resulting in a strong velocity 'overshoot' in the radial component. Results illustrating the nature of the velocity variations on the end walls are presented; and it is shown that the mass flow rate through the end wall boundary layers, while only a small fraction of the total flow, increases with increasing swirl and with decreasing total flow rate through the chamber.
A drift chamber constructed of aluminized mylar tubes
NASA Astrophysics Data System (ADS)
Baringer, P.; Jung, C.; Ogren, H. O.; Rust, D. R.
1987-03-01
A thin reliable drift chamber has been constructed to be used near the interaction point of the PEP storage ring in the HRS detector. It is composed of individual drift tubes with aluminized mylar walls.
Tharwat, Mohamed; Al-Sobayil, Fahd; Ali, Ahmed; Buczinski, Sébastien
2012-10-01
The purpose of this study was to describe the ultrasonographic picture of the gastrointestinal tract in healthy camels (Camelus dromedarius). For this purpose, 22 camels were examined. The rumen and its glandular sacs were filling most of the left side of the abdomen. The rumen wall was smooth and echogenic. The ventral part of the reticulum could be best imaged in 17 (77%) camels from the left and right paramedian region just behind to the sternal pad. The reticulum in these animals had a thick wall (1.17±0.27 cm) that appeared as a half-moon-shaped structure with a biphasic contraction. The omasum was best viewed through the right 8th to 6th intercostal spaces in 18 (82%) camels. In the remaining 4 (18%), it was visualized through four consecutive intercostal spaces (right 9th to 6th). It had a wall thickness of 1.1±0.7 cm and a transverse diameter of 8.74±3.4 cm. The abomasum could be best visualized from the right 9th and 8th intercostal spaces in 14 (64%) camels, while it was observed in the 9th intercostal space in 3 (14%) animals and in the 8th and 7th intercostal space in 5 (22%) camels. Small intestinal structures were best seen low in the right paralumbar fossa. It was thin-walled (0.43±0.14 cm) and had a diameter of 2.62±0.47 cm. The cecum was imaged chiefly in the caudal right flank. It was thin-walled (0.37±0.05 cm), had a diameter of 13.8±1.6 cm. The proximal loop of the large colon appeared as thick, echogenic, continuous and slightly curved lines. It was thin-walled (0.51±0.08 cm) and had a diameter of 3.5±0.8 cm. The spiral colon was confined in all camels to the caudal ventral half of the abdomen. It appeared as structures with thick echoic lateral walls with a number of echogenic arched lines next to each other. Free peritoneal fluid pockets were imaged in two locations in 19 (86%) camels. Ultrasound-guided abdominocentesis was successful in 15 (68%) of the examined camels. This study provides the ultrasonographic appearance of the normal gastrointestinal tract in healthy camels that could be used as a reference for the interpretation of suspected digestive abnormalities. Copyright © 2012. Published by Elsevier India Pvt Ltd.
Liu, Jingqing; Ren, Hongxing; Ye, Xianbei; Wang, Wei; Liu, Yan; Lou, Liping; Cheng, Dongqing; He, Xiaofang; Zhou, Xiaoyan; Qiu, Shangde; Fu, Liusong; Hu, Baolan
2017-01-01
Biofilms in the pipe wall may lead to water quality deterioration and biological instability in drinking water distribution systems (DWDSs). In this study, bacterial community radial-spatial distribution in biofilms along the pipe wall in a chlorinated DWDS of East China was investigated. Three pipes of large diameter (300, 600, and 600 mm) were sampled in this DWDS, including a ductile cast iron pipe (DCIP) with pipe age of 11 years and two gray cast iron pipes (GCIP) with pipe ages of 17 and 19 years, and biofilms in the upper, middle, and lower parts of each pipe wall were collected. Real-time quantitative polymerase chain reaction (qPCR) and culture-based method were used to quantify bacteria. 454 pyrosequencing was used for bacterial community analysis. The results showed that the biofilm density and total solid (TS) and volatile solid (VS) contents increased gradually from the top to the bottom along the pipe wall. Microorganisms were concentrated in the upper and lower parts of the pipe wall, together accounting for more than 80 % of the total biomass in the biofilms. The bacterial communities in biofilms were significantly different in different areas of the pipe wall and had no strong interaction. Compared with the upper and lower parts of the pipe wall, the bacterial community in the middle of the pipe wall was distributed evenly and had the highest diversity. The 16S rRNA genes of various possible pathogens, including Escherichia coli, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Salmonella enterica, were detected in the biofilms, and the abundances of these possible pathogens were highest in the middle of the pipe wall among three areas. The detachment of the biofilms is the main reason for the deterioration of the water quality in DWDSs. The results of this study suggest that the biofilms in the middle of the pipe wall have highly potential risk for drinking water safety, which provides new ideas for the study of the microbial ecology in DWDS.
Pollono, Louis P.
1979-01-01
A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems. A section of the pipe to be supported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe.
The Production of Turbulence in Boundary Layers -- The Role of Microscale Coherent Motions.
1987-06-01
unstable and it breaks up as it moves away from the wall. The wall layer must be thin and vortex stretching, due to inviscid image effects, dominate...how a Typical eddy ultimately creates the long streaks is not clear. It is entirely possible that the viscous image of the rolled up vorticity forms...clarified, especially the formation of the long streaky structure, and secondary hairpin vorticity. It appears that the outer region microscale coherent
Microstructural characterization of pipe bomb fragments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Otto, E-mail: gregory@egr.uri.edu; Oxley, Jimmie; Smith, James
2010-03-15
Recovered pipe bomb fragments, exploded under controlled conditions, have been characterized using scanning electron microscopy, optical microscopy and microhardness. Specifically, this paper examines the microstructural changes in plain carbon-steel fragments collected after the controlled explosion of galvanized, schedule 40, continuously welded, steel pipes filled with various smokeless powders. A number of microstructural changes were observed in the recovered pipe fragments: deformation of the soft alpha-ferrite grains, deformation of pearlite colonies, twin formation, bands of distorted pearlite colonies, slip bands, and cross-slip bands. These microstructural changes were correlated with the relative energy of the smokeless powder fillers. The energy of themore » smokeless powder was reflected in a reduction in thickness of the pipe fragments (due to plastic strain prior to fracture) and an increase in microhardness. Moreover, within fragments from a single pipe, there was a radial variation in microhardness, with the microhardness at the outer wall being greater than that at the inner wall. These findings were consistent with the premise that, with the high energy fillers, extensive plastic deformation and wall thinning occurred prior to pipe fracture. Ultimately, the information collected from this investigation will be used to develop a database, where the fragment microstructure and microhardness will be correlated with type of explosive filler and bomb design. Some analyses, specifically wall thinning and microhardness, may aid in field characterization of explosive devices.« less
Hiroshima, Yuki; Tajima, Katsushi; Shiono, Yousuke; Suzuki, Ikuko; Kohno, Kei; Kato, Yuichi; Shunji, Kawamura; Kato, Takeo
2012-01-01
Cardiac tamponade caused by perforation is a rare but potentially lethal complication of central venous catheter (CVC) insertion. We herein report a case of cardiac perforation associated with the use of a soft J-tipped guide wire. Twenty minutes after the insertion of a CVC, the patient developed unexpected cardiac arrest. An autopsy revealed 400 mL of pericardial blood. The right ventricular wall was 1 mm thick with about 10 myocyte layers, which is one-third that of the normal heart. A histological analysis revealed widespread fatty infiltration of the right ventricular wall (right ventricular lipomatosis).
Emerging technology for transonic wind-tunnel-wall interference assessment and corrections
NASA Technical Reports Server (NTRS)
Newman, P. A.; Kemp, W. B., Jr.; Garriz, J. A.
1988-01-01
Several nonlinear transonic codes and a panel method code for wind tunnel/wall interference assessment and correction (WIAC) studies are reviewed. Contrasts between two- and three-dimensional transonic testing factors which affect WIAC procedures are illustrated with airfoil data from the NASA/Langley 0.3-meter transonic cyrogenic tunnel and Pathfinder I data. Also, three-dimensional transonic WIAC results for Mach number and angle-of-attack corrections to data from a relatively large 20 deg swept semispan wing in the solid wall NASA/Ames high Reynolds number Channel I are verified by three-dimensional thin-layer Navier-Stokes free-air solutions.
Yamamoto, Saori; Suzuki, Hideaki; Sugimura, Koichiro; Tatebe, Shunsuke; Aoki, Tatsuo; Miura, Masanobu; Yaoita, Nobuhiro; Sato, Haruka; Kozu, Katuya; Ota, Hideki; Takanami, Kentaro; Takase, Kei; Shimokawa, Hiroaki
2016-11-25
It remains to be elucidated whether cardiac sympathetic nervous activity is impaired in patients with Anderson-Fabry disease (AFD).Methods and Results:We performed 123 I-meta-iodobenzylguanidine (MIBG) scintigraphy and gadolinium-enhanced cardiovascular magnetic resonance (CMR) in 5 AFD patients. MIBG uptake in the inferolateral wall, where wall thinning and delayed enhancement were noted on CMR, was significantly lower compared with the anteroseptal wall. The localized reduction in MIBG uptake was also noted in 2 patients with no obvious abnormal findings on CMR. Cardiac sympathetic nervous activity is impaired in AFD before development of structural myocardial abnormalities. (Circ J 2016; 80: 2550-2551).
Self-assembled morphologies of an amphiphilic Y-shaped weak polyelectrolyte in a thin film.
Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu
2017-11-29
Different from the self-assembly of neutral polymers, polyelectrolytes self-assemble into smaller aggregates with a more loosely assembled structure, which results from the repulsive forces acting between similar electrical compositions with the introduction of ions. The Y-shaped weak polyelectrolytes self-assemble into a core-shell type cylindrical structure with a hexagonal arrangement in a thin film, whose thickness is smaller than the gyration radius of the polymer chain. The corresponding formation mechanism consists of enrichment of the same components, adjustment of the shape of the aggregate, and the subsequent separation into individual aggregates. With the increase in the thickness of the thin film until it exceeds the gyration radius of the polymer chain, combined with the greater freedom of movement along the direction of thin film thickness, the self-assembled structure changes into a micellar structure. Under confinement, the repulsive force to the polymeric components is weakened by the repulsive forces among polyelectrolyte components with like charges, and this helps in generating aggregates with more uniform size and density distribution. In particular, when the repulsive force between the walls and the core forming components is greater than that between the walls and the shell forming components, such asymmetric confinement produces a crossed-cylindrical structure with nearly perpendicular arrangement of two cylinder arrays. Similarly, a novel three-crossed cylinder morphology is self-assembled upon removal of confinement.
Anand, Rahul J; Whelan, James F; Ferrada, Paula; Duane, Therese M; Malhotra, Ajai K; Aboutanos, Michel B; Ivatury, Rao R
2012-04-01
The factors contributing to the development of pneumothorax after removal of chest tube thoracostomy are not fully understood. We hypothesized that development of post pull pneumothorax (PPP) after chest tube removal would be significantly lower in those patients with thicker chest walls, due to the "protective" layer of adipose tissue. All patients on our trauma service who underwent chest tube thoracostomy from July 2010 to February 2011 were retrospectively reviewed. Patient age, mechanism of trauma, and chest Abbreviated Injury Scale score were analyzed. Thoracic CTs were reviewed to ascertain chest wall thickness (CW). Thickness was measured at the level of the nipple at the midaxillary line, as perpendicular distance between skin and pleural cavity. Chest X-ray reports from immediately prior and after chest tube removal were reviewed for interval development of PPP. Data are presented as average ± standard deviation. Ninety-one chest tubes were inserted into 81 patients. Patients who died before chest tube removal (n = 11), or those without thoracic CT scans (n = 13) were excluded. PPP occurred in 29.9 per cent of chest tube removals (20/67). When PPP was encountered, repeat chest tube was necessary in 20 per cent of cases (4/20). After univariate analysis, younger age, penetrating mechanism, and thin chest wall were found to be significant risk factors for development of PPP. Chest Abbreviated Injury Scale score was similar in both groups. Logistic regression showed only chest wall thickness to be an independent risk factor for development of PPP.
Automated extraction of pleural effusion in three-dimensional thoracic CT images
NASA Astrophysics Data System (ADS)
Kido, Shoji; Tsunomori, Akinori
2009-02-01
It is important for diagnosis of pulmonary diseases to measure volume of accumulating pleural effusion in threedimensional thoracic CT images quantitatively. However, automated extraction of pulmonary effusion correctly is difficult. Conventional extraction algorithm using a gray-level based threshold can not extract pleural effusion from thoracic wall or mediastinum correctly, because density of pleural effusion in CT images is similar to those of thoracic wall or mediastinum. So, we have developed an automated extraction method of pulmonary effusion by use of extracting lung area with pleural effusion. Our method used a template of lung obtained from a normal lung for segmentation of lungs with pleural effusions. Registration process consisted of two steps. First step was a global matching processing between normal and abnormal lungs of organs such as bronchi, bones (ribs, sternum and vertebrae) and upper surfaces of livers which were extracted using a region-growing algorithm. Second step was a local matching processing between normal and abnormal lungs which were deformed by the parameter obtained from the global matching processing. Finally, we segmented a lung with pleural effusion by use of the template which was deformed by two parameters obtained from the global matching processing and the local matching processing. We compared our method with a conventional extraction method using a gray-level based threshold and two published methods. The extraction rates of pleural effusions obtained from our method were much higher than those obtained from other methods. Automated extraction method of pulmonary effusion by use of extracting lung area with pleural effusion is promising for diagnosis of pulmonary diseases by providing quantitative volume of accumulating pleural effusion.
Visualizing domain wall and reverse domain superconductivity.
Iavarone, M; Moore, S A; Fedor, J; Ciocys, S T; Karapetrov, G; Pearson, J; Novosad, V; Bader, S D
2014-08-28
In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.
A fiber-reinforced-fluid model of anisotropic plant root cell growth
NASA Astrophysics Data System (ADS)
Jensen, Oliver E.; Dyson, Rosemary J.
2009-11-01
We present a theoretical model of a single cell in the expansion zone of the primary root of the plant Arabidopsis thaliana. The cell undergoes rapid elongation with approximately constant radius. Growth is driven by high internal turgor pressure causing viscous stretching of the cell wall, with embedded cellulose microfibrils providing the wall with strongly anisotropic properties. We represent the cell as a thin cylindrical fiber-reinforced viscous sheet between rigid end plates. Asymptotic reduction of the governing equations, under simple sets of assumptions about fiber and wall properties, yields variants of the traditional Lockhart equation that relates the axial cell growth rate to the internal pressure. The model provides insights into the geometric and biomechanical parameters underlying bulk quantities such as wall extensibility and shows how either dynamical changes in wall material properties or passive fibre reorientation may suppress cell elongation.
Visualizing domain wall and reverse domain superconductivity
Iavarone, M.; Moore, S. A.; Fedor, J.; Ciocys, S. T.; Karapetrov, G.; Pearson, J.; Novosad, V.; Bader, S. D.
2014-01-01
In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application. PMID:25164004
Laparoscopic excision of an epidermoid cyst arising from the deep abdominal wall.
Ishikawa, Hajime; Nakai, Takuya; Ueda, Kazuki; Haji, Seiji; Takeyama, Yoshifumi; Ohyanagi, Harumasa
2009-10-01
Epidermoid cysts are the most common type of cutaneous cyst. However, their occurrence in the deep abdominal wall has not yet been reported. Here, we present the case of a 60-year-old woman who developed an epidermoid cyst in the deep abdominal wall, which was resected laparoscopically. The patient presented with right upper quadrant abdominal pain on admission to our hospital. Computed tomography revealed cholecystolithiasis and an incidentally identified well-defined hypoattenuating mass (62 x 47 x 65 mm) in the deep abdominal wall on the left side of the navel. We performed laparoscopic complete resection of the abdominal wall tumor followed by cholecystectomy. The excised specimen was a cyst covered with a smooth thin membrane and contained sludge. Histopathologic examination revealed an epidermoid cyst. This is a very rare case with no previous reports on a similar type of epidermoid cyst.
Method and apparatus for constructing an underground barrier wall structure
Dwyer, Brian P.; Stewart, Willis E.; Dwyer, Stephen F.
2002-01-01
A method and apparatus for constructing a underground barrier wall structure using a jet grout injector subassembly comprising a pair of primary nozzles and a plurality of secondary nozzles, the secondary nozzles having a smaller diameter than the primary nozzles, for injecting grout in directions other than the primary direction, which creates a barrier wall panel having a substantially uniform wall thickess. This invention addresses the problem of the weak "bow-tie" shape that is formed during conventional jet injection when using only a pair of primary nozzles. The improvement is accomplished by using at least four secondary nozzles, of smaller diameter, located on both sides of the primary nozzles. These additional secondary nozzles spray grout or permeable reactive materials in other directions optimized to fill in the thin regions of the bow-tie shape. The result is a panel with increased strength and substantially uniform wall thickness.
Rajanna, Pramod Mulbagal; Gilshteyn, Evgenia; Yagafarov, Timur; Alekseeva, Alena; Anisimov, Anton; Sergeev, Oleg; Neumueller, Alex; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert
2018-01-09
We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and a thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high quality SWCNTs with an enhanced conductivity by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with different SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit Jsc, open-circuit Voc, and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and efficiency of 3.4% under simulated one-sun AM 1.5G direct illumination. © 2018 IOP Publishing Ltd.
Rajanna, Pramod M; Gilshteyn, Evgenia P; Yagafarov, Timur; Aleekseeva, Alena K; Anisimov, Anton S; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G
2018-01-31
We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.
NASA Astrophysics Data System (ADS)
Ge, Jun; Cheng, Guanghui; Chen, Liwei
2011-08-01
Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm-2 and 59 wt% PANI gives a specific capacitance of 55.0 F g-1 at a current density of 2.6 A g-1, showing its possibility for transparent and flexible energy storage.
Optimal Shakedown of the Thin-Wall Metal Structures Under Strength and Stiffness Constraints
NASA Astrophysics Data System (ADS)
Alawdin, Piotr; Liepa, Liudas
2017-06-01
Classical optimization problems of metal structures confined mainly with 1st class cross-sections. But in practice it is common to use the cross-sections of higher classes. In this paper, a new mathematical model for described shakedown optimization problem for metal structures, which elements are designed from 1st to 4th class cross-sections, under variable quasi-static loads is presented. The features of limited plastic redistribution of forces in the structure with thin-walled elements there are taken into account. Authors assume the elastic-plastic flexural buckling in one plane without lateral torsional buckling behavior of members. Design formulae for Methods 1 and 2 for members are analyzed. Structures stiffness constrains are also incorporated in order to satisfy the limit serviceability state requirements. With the help of mathematical programming theory and extreme principles the structure optimization algorithm is developed and justified with the numerical experiment for the metal plane frames.
Electromagnetic augmentation for casting of thin metal sheets
Hull, J.R.
1987-10-28
Thin metal sheets are cast by magnetically levitating molten metal deposited in a model within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. 8 figs.
Colmenares, Juan Carlos; Nair, Vaishakh; Kuna, Ewelina; Łomot, Dariusz
2018-03-01
Formation of thin layers of photocatalyst in photo-microreactor is a challenging work considering the properties of both catalyst and the microchannel material. The deposition of semiconductor materials on fluoropolymer based microcapillary requires the use of economical methods which are also less energy dependent. The current work introduces a new method for depositing nanoparticles of TiO 2 on the inner walls of a hexafluoropropylene tetrafluoroethylene microtube under mild conditions using ultrasound technique. During the ultrasonication process, changes in the polymer surface were observed and characterized using Attenuated Total Reflectance spectroscopy, Scanning Electron Microscopy and Confocal Microscopy. The rough patches form sites for catalyst deposition resulting in the formation of thin layer of TiO 2 nanoparticles in the inner walls of the microtube. The photocatalytic activity of the TiO 2 coated fluoropolymer based microcapillary was evaluated for removal of phenol present in water. Copyright © 2017 Elsevier B.V. All rights reserved.
Ge, Jun; Cheng, Guanghui; Chen, Liwei
2011-08-01
Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm(-2) and 59 wt% PANI gives a specific capacitance of 55.0 F g(-1) at a current density of 2.6 A g(-1), showing its possibility for transparent and flexible energy storage. This journal is © The Royal Society of Chemistry 2011
Measurement and modeling of dielectric properties of Pb(Zr,Ti)O3 ferroelectric thin films.
Renoud, Raphaël; Borderon, Caroline; Gundel, Hartmut W
2011-09-01
In this study, the real and imaginary parts of the complex permittivity of lead zirconate titanate ferroelectric thin films are studied in the frequency range of 100 Hz to 100 MHz. The permittivity is well fitted by the Cole-Cole model. The variation of the relaxation time with the temperature is described by the Arrhenius law and an activation energy of 0.38 eV is found. Because of its nonlinear character, the dielectric response of the ferroelectric sample depends on the amplitude of the applied ac electric field. The permittivity is composed of three different contributions: the first is due to intrinsic lattice, the second is due to domain wall vibrations, and the third is due to domain wall jumps between pinning centers. This last contribution depends on the electric field, so it is important to control the field amplitude to obtain the desired values of permittivity and tunability.
The Versatile Elastohydrodynamics of a Free Particle near a Thin Soft Wall
NASA Astrophysics Data System (ADS)
Salez, Thomas; Saintyves, Baudouin; Mahadevan, L.
2015-03-01
We address the free motion of a buoyant particle inside a viscous fluid, in the vicinity of a thin compressible elastic wall. After discussing the main scalings, we obtain analytically the dominant drag forces within the soft lubrication approximation. By including those into the equations of motion of the particle, we establish a general governing system of three coupled nonlinear and singular differential equations, that describe the three essential motions: sedimentation, hydroplaning, and hydrospinning, through four dimensionless control parameters. Numerical integration allows us to predict a wide zoology of exotic solutions - despite the low-Reynolds feature of the flow - including: spontaneous oscillation, Magnus-like effect, enhanced sedimentation, and boomerang-like effect. We compare these predictions to experiments. The presented elementary approach could be of interest in the description of a broad variety of elastohydrodynamical phenomena, including: landslides, ageing of cartilaginous joints, and motion of a cell in a microfluidic channel or in a blood vessel.
Impact Deformation of Thin-Walled Circular Tube Filled with Aluminum Foam in Lateral Compression
NASA Astrophysics Data System (ADS)
Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Hori, Masahiro
In this study, the impact deformation of thin-walled circular tubes filled with aluminum foam in lateral compression was investigated using a special load cell for long time measurement and a high-speed video camera to check the displacement of specimens. It was found that the absorbed energy up to the deformation of 60% of the specimen diameter obtained from impact tests is greater than that obtained in static tests, because of strain rate dependency of aluminum foam. The loaddisplacement curve of circular tubes with aluminum foam just inserted was consistent with the sum of the curves individually obtained. In both dynamic and static tests, however, the load of the tube with the foam inserted and glued by adhesive resin became larger than the sum of the individual loads, because of the interaction between circular tubes and aluminum foam cores.
Self-organization of cosmic radiation pressure instability
NASA Technical Reports Server (NTRS)
Hogan, Craig J.
1991-01-01
Under some circumstances the absorption of radiation momentum by an absorbing medium opens the possibility of a dynamical instability, sometimes called 'mock gravity'. Here, a simplified abstract model is studied in which the radiation source is assumed to remain spatially uniform, there is no reabsorption or reradiated light, and no forces other than radiative pressure act on the absorbing medium. It is shown that this model displays the unique feature of being not only unstable, but also self-organizing. The structure approaches a statistical dynamical steady state which is almost independent of initial conditions. In this saturated state the absorbers are concentrated in thin walls around empty bubbles; as the instability develops the big bubbles get bigger and the small ones get crushed and disappear. A linear analysis shows that to first order the thin walls are indeed stable structures. It is speculated that this instability may play a role in forming cosmic large-scale structure.
Lubricated immersed boundary method in two dimensions
NASA Astrophysics Data System (ADS)
Fai, Thomas G.; Rycroft, Chris H.
2018-03-01
Many biological examples of fluid-structure interaction, including the transit of red blood cells through the narrow slits in the spleen and the intracellular trafficking of vesicles into dendritic spines, involve the near-contact of elastic structures separated by thin layers of fluid. Motivated by such problems, we introduce an immersed boundary method that uses elements of lubrication theory to resolve thin fluid layers between immersed boundaries. We demonstrate 2nd-order accurate convergence for simple two-dimensional flows with known exact solutions to showcase the increased accuracy of this method compared to the standard immersed boundary method. Motivated by the phenomenon of wall-induced migration, we apply the lubricated immersed boundary method to simulate an elastic vesicle near a wall in shear flow. We also simulate the dynamics of a vesicle traveling through a narrow channel and observe the ability of the lubricated method to capture the vesicle motion on relatively coarse fluid grids.
NASA Technical Reports Server (NTRS)
Goldenveizer, A L
1951-01-01
Starting with the Love equations for bending of extensible shells, "principal stress states" are sought for a thin-walled rod of arbitrary but open cross section. Principal stress states exclude those local states arising from end conditions which damp out with distance from the ends. It is found that for rods of intermediate length, long enough to avoid local bending at a support, and short enough that elementary torsion and bending are not the most significant stress states, four principal states exist. Three of these states are associated with the planar distribution of axial stress and are equivalent to the engineering theory of extension and bending of solid sections. The fourth state resembles that which has been called in the literature "bending stress due to torsional", except that cross sections are permitted to bend and the shear along the center line of the cross section is permitted to differ from zero.
NASA Astrophysics Data System (ADS)
Thendie, Boanerges; Omachi, Haruka; Hirotani, Jun; Ohno, Yutaka; Miyata, Yasumitsu; Shinohara, Hisanori
2017-06-01
Large-diameter semiconductor single-wall carbon nanotubes (s-SWCNTs) have superior mobility and conductivity to small-diameter s-SWCNTs. However, the purification of s-SWCNTs with diameters larger than 1.6 nm by gel filtration has been difficult owing to the low selectivity of the conventional purification method in these large-diameter regions. We report a combination of temperature-controlled gel filtration and the gradient elution technique that we developed to enrich a high-purity s-SWCNT with a diameter as large as 1.9 nm. The thin-film transistor (TFT) device using the 1.9-nm-diameter SWCNT shows an average channel mobility of 23.7 cm2 V-1 s-1, which is much higher than those of conventional SWCNT-TFTs with smaller-diameters of 1.5 and 1.4 nm.
Effect of load eccentricity on the buckling of thin-walled laminated C-columns
NASA Astrophysics Data System (ADS)
Wysmulski, Pawel; Teter, Andrzej; Debski, Hubert
2018-01-01
The study investigates the behaviour of short, thin-walled laminated C-columns under eccentric compression. The tested columns are simple-supported. The effect of load inaccuracy on the critical and post-critical (local buckling) states is examined. A numerical analysis by the finite element method and experimental tests on a test stand are performed. The samples were produced from a carbon-epoxy prepreg by the autoclave technique. The experimental tests rest on the assumption that compressive loads are 1.5 higher than the theoretical critical force. Numerical modelling is performed using the commercial software package ABAQUS®. The critical load is determined by solving an eigen problem using the Subspace algorithm. The experimental critical loads are determined based on post-buckling paths. The numerical and experimental results show high agreement, thus demonstrating a significant effect of load inaccuracy on the critical load corresponding to the column's local buckling.
Quality Factor and Microslipping of Fatigue Cracks in Thin Plates at Resonant Vibration
NASA Technical Reports Server (NTRS)
Wincheski, B.; Namkung, M.; Fulton, J. P.
1993-01-01
Resonant vibrations have been stimulated in thin metal plates using a non-contacting electromagnetic driver. A sinusoidal force was applied in a swept frequency fashion and the resulting surface displacements were monitored through the use of an acoustic microphone. It has been found that the presence of a fatigue crack in the sample causes a broadening of the second resonance peak. The Q factors of the resonance curves were determined and are directly correlated with the presence of fatigue cracks in the samples. The broadening of the curves is explained in terms of a microslipping at the crack face walls which reduces the amplitude of the resonant vibration by increasing the damping of the system. A comparison is made between the resonance characteristics of fatigue damaged and notched samples, where the stiffness of the two systems is nearly constant while the interaction between crack face walls is eliminated in the latter.
Serially connected solid oxide fuel cells having monolithic cores
Herceg, Joseph E.
1987-01-01
A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick. Between 2 and 50 cell segments may be connected in series.
NASA Astrophysics Data System (ADS)
Rajanna, Pramod M.; Gilshteyn, Evgenia P.; Yagafarov, Timur; Aleekseeva, Alena K.; Anisimov, Anton S.; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G.
2018-03-01
We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.
Modeling of thin, back-wall silicon solar cells
NASA Technical Reports Server (NTRS)
Baraona, C. R.
1979-01-01
The performance of silicon solar cells with p-n junctions on the nonilluminated surface (i.e., upside-down or back-wall cells) was calculated. These structures consisted of a uniformly shaped p-type substrate layer, a p(+)-type field layer on the front (illuminated) surface, and a shallow, n-type junction on the back (nonilluminated) surface. A four-layer solar cell model was used to calculate efficiency, open-circuit voltage, and short-circuit current. The effect on performance of p-layer thickness and resistivity was determined. The diffusion length was varied to simulate the effect of radiation damage. The results show that peak initial efficiencies greater than 15 percent are possible for cell thicknesses or 100 micrometers or less. After 10 years of radiation damage in geosynchronous orbit, thin (25 to 50 micrometers thick) cells made from 10 to 100 ohm cm material show the smallest decrease (approximately 10 percent) in performance.
Dynamics and morphology of chiral magnetic bubbles in perpendicularly magnetized ultra-thin films
NASA Astrophysics Data System (ADS)
Sarma, Bhaskarjyoti; Garcia-Sanchez, Felipe; Nasseri, S. Ali; Casiraghi, Arianna; Durin, Gianfranco
2018-06-01
We study bubble domain wall dynamics using micromagnetic simulations in perpendicularly magnetized ultra-thin films with disorder and Dzyaloshinskii-Moriya interaction. Disorder is incorporated into the material as grains with randomly distributed sizes and varying exchange constant at the edges. As expected, magnetic bubbles expand asymmetrically along the axis of the in-plane field under the simultaneous application of out-of-plane and in-plane fields. Remarkably, the shape of the bubble has a ripple-like part which causes a kink-like (steep decrease) feature in the velocity versus in-plane field curve. We show that these ripples originate due to the nucleation and interaction of vertical Bloch lines. Furthermore, we show that the Dzyaloshinskii-Moriya interaction field is not constant but rather depends on the in-plane field. We also extend the collective coordinate model for domain wall motion to a magnetic bubble and compare it with the results of micromagnetic simulations.
Resonant coupling through a slot to a loaded cylindrical cavity: Experimental results
NASA Astrophysics Data System (ADS)
Norgard, John D.; Sega, Ronald M.
1990-03-01
The effect of cavity geometry on the energy coupled through a slot aperture is investigated through the use of planar mappings of the internal cavity field. A copper cylinder, closed at both ends, is constructed with copper mesh sections incorporated at the ends of the cylinder and in the cylinder wall opposite a thin slot aperture placed in the wall. The frequencies used for testing are 2 to 4 GHz. Internal field mapping is accomplished by placing thin carbon-loaded sheets in the plane of interest and recording the digitized temperature distribution using an infrared scanning system. The sheets are calibrated such that the temperature data is transformed to current densities or electric field strengths. Using several positions for the detection material, a three-dimensional field profile is obtained. The onset of the internal cavity resonance is studied as it is related to the energy coupled through small apertures.
Raznahan, Armin; Greenstein, Deanna; Lee, Yohan; Long, Robert; Clasen, Liv; Gochman, Pete; Addington, Anjene; Giedd, Jay N.; Rapoport, Judith L.; Gogtay, Nitin
2012-01-01
Non-psychotic individuals at increased risk for schizophrenia show alterations in fronto-striatal dopamine signaling and cortical gray matter maturation reminiscent of those seen in schizophrenia. It remains unclear however if variations in dopamine signaling influence rates of structural cortical maturation in typically developing individuals, and whether such influences are disrupted in patients with schizophrenia and their non-psychotic siblings. We sought to address these issues by relating a functional Val→Met polymorphism within the gene encoding catechol-o-methyltransferase (COMT)—a key enzymatic regulator of cortical dopamine levels—to longitudinal structural neuroimaging measures of cortical gray matter thickness. We included a total of 792 magnetic resonance imaging brain scans, acquired between ages 9 and 22 years from patients with childhood-onset schizophrenia (COS), their non-psychotic full siblings, and matched healthy controls. Whereas greater Val allele dose (which confers enhanced dopamine catabolism and is proposed to aggravate cortical deficits in schizophrenia) accelerated adolescent cortical thinning in both schizophrenia probands and their siblings, it attenuated cortical thinning in healthy controls. This similarity between COS patients and their siblings was accompanied by differences between the two groups in the timing and spatial distribution of disrupted COMT influences on cortical maturation. Consequently, whereas greater Val “dose” conferred persistent dorsolateral prefrontal cortical deficits amongst affected probands by adulthood, cortical thickness differences associated with varying Val dose in non-psychotic siblings resolved over the age-range studied. These findings suggest that cortical abnormalities in pedigrees affected by schizophrenia may be contributed to by a disruption of dopaminergic infleunces on cortical maturation. PMID:21620981
Domain imaging in ferroelectric thin films via channeling-contrast backscattered electron microscopy
Ihlefeld, Jon F.; Michael, Joseph R.; McKenzie, Bonnie B.; ...
2016-09-16
We report that ferroelastic domain walls provide opportunities for deterministically controlling mechanical, optical, electrical, and thermal energy. Domain wall characterization in micro- and nanoscale systems, where their spacing may be of the order of 100 nm or less is presently limited to only a few techniques, such as piezoresponse force microscopy and transmission electron microscopy. These respective techniques cannot, however, independently characterize domain polarization orientation and domain wall motion in technologically relevant capacitor structures or in a non-destructive manner, thus presenting a limitation of their utility. In this work, we show how backscatter scanning electron microscopy utilizing channeling contrast yieldmore » can image the ferroelastic domain structure of ferroelectric films with domain wall spacing as narrow as 10 nm.« less
Chiba, D; Kawaguchi, M; Fukami, S; Ishiwata, N; Shimamura, K; Kobayashi, K; Ono, T
2012-06-06
Controlling the displacement of a magnetic domain wall is potentially useful for information processing in magnetic non-volatile memories and logic devices. A magnetic domain wall can be moved by applying an external magnetic field and/or electric current, and its velocity depends on their magnitudes. Here we show that the applying an electric field can change the velocity of a magnetic domain wall significantly. A field-effect device, consisting of a top-gate electrode, a dielectric insulator layer, and a wire-shaped ferromagnetic Co/Pt thin layer with perpendicular anisotropy, was used to observe it in a finite magnetic field. We found that the application of the electric fields in the range of ± 2-3 MV cm(-1) can change the magnetic domain wall velocity in its creep regime (10(6)-10(3) m s(-1)) by more than an order of magnitude. This significant change is due to electrical modulation of the energy barrier for the magnetic domain wall motion.
The minimal flow unit in near-wall turbulence
NASA Technical Reports Server (NTRS)
Jimeez, Javier; Moin, Parviz
1991-01-01
Direct numerical simulations of unsteady channel flow were performed at low to moderate Reynolds numbers on computational boxes chosen small enough so that the flow consists of a doubly periodic (in x and z) array of identical structures. The goal is to isolate the basic flow unit, to study its morphology and dynamics, and to evaluate its contribution to turbulence in fully developed channels. For boxes wider than approximately 100 wall units in the spanwise direction, the flow is turbulent, and the low-order turbulence statistics are in good agreement with experiments in the near-wall region. For a narrow range of widths below that threshold, the flow near only one wall remains turbulent, but its statistics are still in fairly good agreement with experimental data when scaled with the local wall stress. For narrower boxes only laminar solutions are found. In all cases, the elementary box contains a single low-velocity streak, consisting of a longitudinal strip on which a thin layer of spanwise vorticity is lifted away from the wall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaul, Alexander; Holzinger, Dennis; Müglich, Nicolas David
A magnetic domain texture has been deterministically engineered in a topographically flat exchange-biased (EB) thin film system. The texture consists of long-range periodically arranged unit cells of four individual domains, characterized by individual anisotropies, individual geometry, and with non-collinear remanent magnetizations. The texture has been engineered by a sequence of light-ion bombardment induced magnetic patterning of the EB layer system. The magnetic texture's in-plane spatial magnetization distribution and the corresponding domain walls have been characterized by scanning electron microscopy with polarization analysis (SEMPA). The influence of magnetic stray fields emerging from neighboring domain walls and the influence of the differentmore » anisotropies of the adjacent domains on the Néel type domain wall core's magnetization rotation sense and widths were investigated. It is shown that the usual energy degeneracy of clockwise and counterclockwise rotating magnetization through the walls is revoked, suppressing Bloch lines along the domain wall. Estimates of the domain wall widths for different domain configurations based on material parameters determined by vibrating sample magnetometry were quantitatively compared to the SEMPA data.« less
NASA Astrophysics Data System (ADS)
Nahmany, Moshe; Stern, Adin; Aghion, Eli; Frage, Nachum
2017-10-01
Additive manufacturing of metals by selective laser melting (AM-SLM) is hampered by significant limitations in product size due to the limited dimensions of printing trays. Electron beam welding (EBW) is a well-established process that results in relatively minor metallurgical modifications in workpieces due to the ability of EBW to pass high-density energy to the related substance. The present study aims to evaluate structural properties of EB-welded AlSi10Mg thin-walled pressure vessels produced from components prepared by SLM technology. Following the EB welding process, leak and burst tests were conducted, as was fractography analysis. The welded vessels showed an acceptable holding pressure of 30 MPa, with a reasonable residual deformation up to 2.3% and a leak rate better than 1 × 10-8 std-cc s-1 helium. The failures that occurred under longitudinal stresses reflected the presence of two weak locations in the vessels, i.e., the welded joint region and the transition zone between the vessel base and wall. Fractographic analysis of the fracture surfaces of broken vessels displayed the ductile mode of the rupture, with dimples of various sizes, depending on the failure location.
Spray-coated carbon nanotube thin-film transistors with striped transport channels
NASA Astrophysics Data System (ADS)
Jeong, Minho; Lee, Kunhak; Choi, Eunsuk; Kim, Ahsung; Lee, Seung-Beck
2012-12-01
We present results for the transfer characteristics of carbon nanotube thin-film transistors (CNT-TFTs) that utilize single-walled carbon nanotube thin-films prepared by direct spray-coating on the substrate. By varying the number of spray-coatings (Nsp) and the concentration of nanotubes in solution (CNT), it was possible to control the conductivity of the spray-coated nanotube thin-film from 129 to 0.1 kΩ/□. Also, by introducing stripes into the channel of the CNT-TFT, and thereby reducing the number of metallic percolation paths between source and drain, it was possible to enhance the on/off current ratio 1000-fold, from 10 to 104, demonstrating that it may be possible to utilize spray-coating as a method to fabricate CNT-TFTs for large area switching array applications.
Ternary Precursors for Depositing I-III-VI2 Thin Films for Solar Cells via Spray CVD
NASA Technical Reports Server (NTRS)
Banger, K. K.; Hollingsworth, J. A.; Jin, M. H.-C.; Harris, J. D.; Duraj, S. A.; Smith, M.; Scheiman, D.; Bohannan, E. W.; Switzer, J. A.; Buhro, W. E.
2002-01-01
The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power (W/kg). Thin-film fabrication studies demonstrate that ternary single source precursors (SSP's) can be used in either a hot or cold-wall spray chemical vapour deposition (CVD) reactor, for depositing CuInS2, CuGaS2, and CuGaInS2 at reduced temperatures (400 to 450 C), which display good electrical and optical properties suitable for photovoltaic (PV) devices. X-ray diffraction studies, energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) confirmed the formation of the single phase CIS, CGS, CIGS thin-films on various substrates at reduced temperatures.
Integrated structure vacuum tube
NASA Technical Reports Server (NTRS)
Dimeff, J.; Kerwin, W. J. (Inventor)
1976-01-01
High efficiency, multi-dimensional thin film vacuum tubes suitable for use in high temperature, high radiation environments are described. The tubes are fabricated by placing thin film electrode members in selected arrays on facing interior wall surfaces of an alumina substrate envelope. Cathode members are formed using thin films of triple carbonate. The photoresist used in photolithography aids in activation of the cathodes by carbonizing and reacting with the reduced carbonates when heated in vacuum during forming. The finely powdered triple carbonate is mixed with the photoresist used to delineate the cathode locations in the conventional solid state photolithographic manner. Anode and grid members are formed using thin films of refractory metal. Electron flow in the tubes is between grid elements from cathode to anode as in a conventional three-dimensional tube.
Features of the rupture of free hanging liquid film under the action of a thermal load
NASA Astrophysics Data System (ADS)
Ovcharova, Alla S.
2011-10-01
We consider a deformation and a rupture of a thin liquid film which is hanging between two solid flat walls under the action of concentrated thermal load action. A two-dimensional model is applied to describe the motion of thin layers of viscous non-isothermal liquid under micro-gravity conditions. For flow simulation, two-dimensional Navier-Stokes equations are used. A computational analysis of the influence of thermal loads on the deformation and the rupture behavior of the thin freely hanging film is carried out. It is shown that the rupture of the thin film with generation of a droplet can occur under the thermal beam of specific width acting on the free surface of the film. The results of the model problem solutions are presented.
NASA Astrophysics Data System (ADS)
Chen, Y. M.; Cai, J. H.; Huang, Y. S.; Lee, K. Y.; Tsai, D. S.
2011-03-01
A thin film of novel hierarchical structure, suitable for supercapacitor applications, has been developed through combining conductive multi-wall carbon nanotubes (MWCNTs) and square IrO2 nanotubes (IrO2NT) of nanometer size. Synthesis of this hierarchical structure with open porosity is performed by depositing IrO2 short tubes densely along the long wires of carbon nanotube on a substrate of stainless steel. A IrO2 tube of rutile structure grows in the [001] direction, with an opening at its top, surrounded by very thin walls. The IrO2 addition on the MWCNT template increases the capacitance of the CNT thin film effectively, because of pseudocapacitance of the IrO2 surface. For this particular composite, featured with two tubular nanostructures, the specific capacitance increases from 15 F g - 1 (MWCNT) to 69 F g - 1 (IrO2NT/MWCNT), measured using the galvanostatic discharge experiment. Its property of fast retrieval of the stored charge is assured in the impedance measurement, showing that the internal resistance of the IrO2NT/MWCNT nanocomposite electrode is lower than that of the bare MWCNTs.
Chen, Y M; Cai, J H; Huang, Y S; Lee, K Y; Tsai, D S
2011-03-18
A thin film of novel hierarchical structure, suitable for supercapacitor applications, has been developed through combining conductive multi-wall carbon nanotubes (MWCNTs) and square IrO(2) nanotubes (IrO(2)NT) of nanometer size. Synthesis of this hierarchical structure with open porosity is performed by depositing IrO(2) short tubes densely along the long wires of carbon nanotube on a substrate of stainless steel. A IrO(2) tube of rutile structure grows in the [001] direction, with an opening at its top, surrounded by very thin walls. The IrO(2) addition on the MWCNT template increases the capacitance of the CNT thin film effectively, because of pseudocapacitance of the IrO(2) surface. For this particular composite, featured with two tubular nanostructures, the specific capacitance increases from 15 F g(-1) (MWCNT) to 69 F g(-1) (IrO(2)NT/MWCNT), measured using the galvanostatic discharge experiment. Its property of fast retrieval of the stored charge is assured in the impedance measurement, showing that the internal resistance of the IrO(2)NT/MWCNT nanocomposite electrode is lower than that of the bare MWCNTs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ta, D. T.; Tieu, A. K.; Zhu, H. T., E-mail: hongtao@uow.edu.au
2015-10-28
A comparative analysis of thin film lubrication of hexadecane between different iron and its oxide surfaces has been carried out using classical molecular dynamic simulation. An ab initio force-field, COMPASS, was applied for n-hexadecane using explicit atom model. An effective potential derived from density functional theory calculation was utilized for the interfacial interaction between hexadecane and the tribo-surfaces. A quantitative surface parameterization was introduced to investigate the influence of surface properties on the structure, rheological properties, and tribological performance of the lubricant. The results show that although the wall-fluid attraction of hexadecane on pure iron surfaces is significantly stronger thanmore » its oxides, there is a considerable reduction of shear stress of confined n-hexadecane film between Fe(100) and Fe(110) surfaces compared with FeO(110), FeO(111), Fe{sub 2}O{sub 3}(001), and Fe{sub 2}O{sub 3}(012). It was found that, in thin film lubrication of hexadecane between smooth iron and iron oxide surfaces, the surface corrugation plays a role more important than the wall-fluid adhesion strength.« less
Hagen, David A; Saucier, Lauren; Grunlan, Jaime C
2014-12-24
Polymer-clay thin films constructed via layer-by-layer (LbL) assembly, with a nanobrick wall structure (i.e., clay nanoplatelets as bricks surrounded by a polyelectrolyte mortar), are known to exhibit a high oxygen barrier. Further barrier improvement can be achieved by lowering the pH of the clay suspension in the polyethylenimine (PEI) and montmorillonite (MMT) system. In this case, the charge of the deposited PEI layer is increased in the clay suspension environment, which causes more clay to be deposited. At pH 4, MMT platelets deposit with near perfect ordering, observed with transmission electron microscopy, enabling a 5× improvement in the gas barrier for a 10 PEI/MMT bilayer thin film (85 nm) relative to the same film made with pH 10 MMT. This improved gas barrier approaches that achieved with much higher aspect ratio vermiculite clay. In essence, lower pH is generating a higher effective aspect ratio for MMT due to greater induced surface charge in the PEI layers, which causes heavier clay deposition. These flexible, transparent nanocoatings have a wide range of possible applications, from food and electronics packaging to pressurized bladders.
NASA Astrophysics Data System (ADS)
Wang, Tao; Wang, Guilin; Zhu, Dengchao; Li, Shengyi
2015-02-01
In order to meet the requirement of aerodynamics, the infrared domes or windows with conformal and thin-wall structure becomes the development trend of high-speed aircrafts in the future. But these parts usually have low stiffness, the cutting force will change along with the axial position, and it is very difficult to meet the requirement of shape accuracy by single machining. Therefore, on-machine measurement and compensating turning are used to control the shape errors caused by the fluctuation of cutting force and the change of stiffness. In this paper, on the basis of ultra precision diamond lathe, a contact measuring system with five DOFs is developed to achieve on-machine measurement of conformal thin-wall parts with high accuracy. According to high gradient surface, the optimizing algorithm is designed on the distribution of measuring points by using the data screening method. The influence rule of sampling frequency is analyzed on measuring errors, the best sampling frequency is found out based on planning algorithm, the effect of environmental factors and the fitting errors are controlled within lower range, and the measuring accuracy of conformal dome is greatly improved in the process of on-machine measurement. According to MgF2 conformal dome with high gradient, the compensating turning is implemented by using the designed on-machine measuring algorithm. The shape error is less than PV 0.8μm, greatly superior compared with PV 3μm before compensating turning, which verifies the correctness of measuring algorithm.
2015-01-23
From these studies we learned that nano wires of Fe grown in the lumens of multi-walled carbon nanotubes ( MWCNTs ) required four times higher 35...studies we learned that nano wires of Fe grown in the lumens of multi-walled carbon nanotubes ( MWCNTs ) required four times higher magnetic field...properties of nano-metric Fe thin films on 325 MgO(100) and nano wires of Fe prepared in the lumens of MWCNTs using magnetron DC-sputtering were studied
Flow Enhancement due to Elastic Turbulence in Channel Flows of Shear Thinning Fluids
NASA Astrophysics Data System (ADS)
Bodiguel, Hugues; Beaumont, Julien; Machado, Anaïs; Martinie, Laetitia; Kellay, Hamid; Colin, Annie
2015-01-01
We explore the flow of highly shear thinning polymer solutions in straight geometry. The strong variations of the normal forces close to the wall give rise to an elastic instability. We evidence a periodic motion close the onset of the instability, which then evolves towards a turbulentlike flow at higher flow rates. Strikingly, we point out that this instability induces genuine drag reduction due to the homogenization of the viscosity profile by the turbulent flow.
Flow enhancement due to elastic turbulence in channel flows of shear thinning fluids.
Bodiguel, Hugues; Beaumont, Julien; Machado, Anaïs; Martinie, Laetitia; Kellay, Hamid; Colin, Annie
2015-01-16
We explore the flow of highly shear thinning polymer solutions in straight geometry. The strong variations of the normal forces close to the wall give rise to an elastic instability. We evidence a periodic motion close the onset of the instability, which then evolves towards a turbulentlike flow at higher flow rates. Strikingly, we point out that this instability induces genuine drag reduction due to the homogenization of the viscosity profile by the turbulent flow.
Preparation of high-quality planar FeRh thin films for in situ TEM investigations
NASA Astrophysics Data System (ADS)
Almeida, Trevor P.; McGrouther, Damien; Pivak, Yevheniy; Perez Garza, Hector Hugo; Temple, Rowan; Massey, Jamie; Marrows, Christopher H.; McVitie, Stephen
2017-10-01
The preparation of a planar FeRh thin film using a focused ion beam (FIB) secondary electron microscope (SEM) for the purpose of in situ transmission electron microscopy (TEM) is presented. A custom SEM stub with 45° faces allows for the transfer and milling of the sample on a TEM heating chip, whilst Fresnel imaging within the TEM revealed the presence of the magnetic domain walls, confirming the quality of the FIB-prepared sample.
Hayakawa, Tetsu; Takanaga, Akinori; Tanaka, Koichi; Maeda, Seishi; Seki, Makoto
2003-03-01
The central subnucleus of the nucleus tractus solitarii (ceNTS) receives afferent projections from the esophageal wall and projects to the nucleus ambiguus, thus serving as a relay nucleus for peristalsis of the esophagus. Here we examine the synaptic organization of the ceNTS, and its esophageal afferents by using transganglionic anterograde transport of cholera toxin-conjugated horseradish peroxidase (CT-HRP). When CT-HRP was injected into the subdiaphragmatic esophagus, many anterogradely labeled terminals were found only in the ceNTS. The ceNTS was composed of round or oval-shaped, small neurons (14.7x8.7 micro m) containing sparse organelles and an irregularly shaped nucleus. The average number of axosomatic terminals was only 1.3 per section cut through the nucleolus. Most of them (92%) contained round vesicles and formed asymmetric synaptic contacts (Gray's type I), and a few (8%) contained pleomorphic vesicles and formed symmetric synaptic contacts (Gray's type II). All anterogradely labeled terminals contacted dendrites but not the neuronal somata. The labeled terminals were large (2.55+/-0.07 micro m) and exclusively Gray's type I. More than half of them (60%) contacted small dendrites (less than 1 micro m in diameter), and contained dense-cored vesicles. More than 40% of the labeled terminals contacted two to four dendrites, thus forming a synaptic glomerulus. Sometimes a labeled terminal that contacted an unlabeled terminal by an adherent junction was found within the glomerulus. The large terminals and these complex synaptic relations appeared to characterize the esophageal afferent projections in the ceNTS.
A Novel technique for stiffening steel structures.
DOT National Transportation Integrated Search
2009-03-01
The goal of this project was to identify the feasibility of using low-modulus pultruded glass fiber reinforced polymers (GFRP) sections to stiffen thin-walled steel plates and to assess the improvement in strength resulting from employing the propped...
Carbon Nanotube Thin-Film Antennas.
Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J
2016-08-17
Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of <10 ohm/sq is needed to achieve a 10 dB return loss in the unbalanced antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.
NASA Astrophysics Data System (ADS)
Jeon, Jun-Young; Ha, Tae-Jun
2017-08-01
In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.
Palani, Damodharan; Pekala, Dobromila; Baginskas, Armantas; Szkudlarek, Hanna; Raastad, Morten
2012-07-15
We investigated the ability of a grease-gap method to record fast and slow changes of the membrane potential from bundles of gray matter axons. Their membrane potentials are of particular interest because these axons are different from most axons that have been investigated using intra-axonal or gap techniques. One of the main differences is that gray matter axons typically have closely spaced presynaptic specializations, called boutons or varicosities, distributed along their entire paths. In response to electrical activation of bundles of parallel fiber axons we were able to record small (128-416μV) but stable signals that we show most likely represented a fraction of the trans-membrane action potentials. A less-than 100% fraction prevents measurements of absolute values for membrane potentials, but the good signal-to-noise ratio (typically 10-16) allows detection of changes in resting membrane potential, action potentials and their after-potentials. Because very little is known about the shape of action potentials and after-potentials in these axons we used several independent methods to make it likely that the grease-gap signal was of intra-axonal origin. We demonstrate the utility of the method by showing that the action potentials in cerebellar parallel fibers and hippocampal Schaffer collaterals had a slowly decaying, depolarized after-potential. The method is ideal for pharmacological tests, which we demonstrate by showing that the slow after-potential was sensitive to 4-AP, and that the membrane potential was reduced by 200μM Ba(2+). Copyright © 2012 Elsevier B.V. All rights reserved.
Gray matter structural compromise is equally distributed in left and right temporal lobe epilepsy.
Liu, Min; Bernhardt, Boris C; Bernasconi, Andrea; Bernasconi, Neda
2016-02-01
In drug-resistant temporal lobe epilepsy (TLE), MRI studies have shown consistent mesiotemporal and neocortical structural alterations when comparing patients to healthy controls. It remains, however, relatively unclear whether the side of seizure focus differentially impacts the degree of structural damage. This work performed a comprehensive surface-based analysis of mesiotemporal and neocortical morphology on preoperative 1.5 T MRI in 25/35 LTLE/RTLE patients that achieved seizure freedom after surgery (i.e., Engel-I outcome; 7 ± 2 years follow-up), an imaging-independent confirmation of focus lateralization. Compared to 46 age- and sex-matched controls, both TLE groups displayed marked ipsilateral atrophy in mesiotemporal regions, while cortical thinning was bilateral. Direct contrasts between LTLE and RTLE did not reveal significant differences. Bootstrap simulations indicated low reproducibility of observing a between-cohort difference; power analysis revealed that more than 110 patients would be necessary to detect subtle differences. No difference between LTLE and RTLE was confirmed when using voxel-based morphometry, an independent proxy of gray matter volume. Similar results were obtained analyzing a separate 3 T dataset (15/15 LTLE/RTLE patients; Engel-I after 4 ± 2 years follow-up; 42 controls). Our results strongly support equivalent gray matter compromise in left and right TLE. The morphological profile of seizure-free patients, presenting with ipsilateral mesiotemporal and bilateral cortical atrophy, motivates the development of neuromarkers of outcome that consider both mesiotemporal and neocortical structures. Hum Brain Mapp 37:515-524, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Automatic knee cartilage delineation using inheritable segmentation
NASA Astrophysics Data System (ADS)
Dries, Sebastian P. M.; Pekar, Vladimir; Bystrov, Daniel; Heese, Harald S.; Blaffert, Thomas; Bos, Clemens; van Muiswinkel, Arianne M. C.
2008-03-01
We present a fully automatic method for segmentation of knee joint cartilage from fat suppressed MRI. The method first applies 3-D model-based segmentation technology, which allows to reliably segment the femur, patella, and tibia by iterative adaptation of the model according to image gradients. Thin plate spline interpolation is used in the next step to position deformable cartilage models for each of the three bones with reference to the segmented bone models. After initialization, the cartilage models are fine adjusted by automatic iterative adaptation to image data based on gray value gradients. The method has been validated on a collection of 8 (3 left, 5 right) fat suppressed datasets and demonstrated the sensitivity of 83+/-6% compared to manual segmentation on a per voxel basis as primary endpoint. Gross cartilage volume measurement yielded an average error of 9+/-7% as secondary endpoint. For cartilage being a thin structure, already small deviations in distance result in large errors on a per voxel basis, rendering the primary endpoint a hard criterion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medin, Stanislav A.; Basko, Mikhail M.; Orlov, Yurii N.
2012-07-11
Radiation hydrodynamics 1D simulations were performed with two concurrent codes, DEIRA and RAMPHY. The DEIRA code was used for DT capsule implosion and burn, and the RAMPHY code was used for computation of X-ray and fast ions deposition in the first wall liquid film of the reactor chamber. The simulations were run for 740 MJ direct drive DT capsule and Pb thin liquid wall reactor chamber of 10 m diameter. Temporal profiles for DT capsule leaking power of X-rays, neutrons and fast {sup 4}He ions were obtained and spatial profiles of the liquid film flow parameter were computed and analyzed.
Compact vacuum insulation embodiments
Benson, D.K.; Potter, T.F.
1992-04-28
An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.
Hwang, J J; Lien, W P; Kuan, P; Hung, C R; How, S W
1991-08-01
We report the case of a 38-year-old woman with a large thin-walled cystic mass (6 x 5 x 4.5 cm) filled with arterial blood in the right atrium. The cystic mass with blood content was clearly delineated by transesophageal cross-sectional echocardiography and magnetic resonance imaging of the heart. At operation, a silver-whitish, smooth surfaced cystic mass was found attached to the free wall of the right atrium between the superior vena cava and the right atrial appendage with a broad base. Microscopically, the wall of the cyst was composed of stellate mesenchymal cells embedded within a myxoid matrix which was proved by alcian blue stain. To our knowledge, this type of cardiac myxoma has not been previously reported.
Benson, D.K.; Potter, T.F.
1993-01-05
An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.
Ported jacket for use in deformation measurement apparatus
Wagner, L.A.; Senseny, P.E.; Mellegard, K.D.; Olsberg, S.B.
1990-03-06
A device for allowing deformation measurement of a jacketed specimen when the specimen is loaded includes an elastomeric specimen container or jacket surrounding a specimen while the specimen is being loaded by a test apparatus. The specimen jacket wall is compressible, and the wall follows and allows deformation of the specimen. The jacket wall of compressible material is provided with at least one opening and a thin layer or shim of substantially non-compressible (metal) material which covers and seals this opening. An extensometer is then positioned with its specimen engaging contact members engaging the substantially non-compressible material to measure the deformation of the specimen when the specimen is loaded, without compressibility effects of the jacket. 9 figs.
Benson, David K.; Potter, Thomas F.
1993-01-01
An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.
Compact vacuum insulation embodiments
Benson, David K.; Potter, Thomas F.
1992-01-01
An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.
NASA Astrophysics Data System (ADS)
Placeres Jiménez, Rolando; Pedro Rino, José; Marino Gonçalves, André; Antonio Eiras, José
2013-09-01
Ferroelectric domain walls are modeled as rigid bodies moving under the action of a potential field in a dissipative medium. Assuming that the dielectric permittivity follows the dependence ɛ '∝1/(α+βE2), it obtained the exact expression for the effective potential. Simulations of polarization current correctly predict a power law. Such results could be valuable in the study of domain wall kinetic and ultrafast polarization processes. The model is extended to poled samples allowing the study of nonlinear dielectric permittivity under subswitching electric fields. Experimental nonlinear data from PZT 20/80 thin films and Fe+3 doped PZT 40/60 ceramic are reproduced.
Blowing Carbon Nanotubes to Carbon Nanobulbs
NASA Astrophysics Data System (ADS)
Su, D. S.; Zhu, Z. P.; Lu, Y.; Schlögl, R.; Weinberg, G.; Liu, Z. Y.
2004-09-01
We report the blowing of multi-walled carbon nanotubes into carbon nanobulbs. This is realized in a unique tube growth environment generated by explosive decomposition of picric acid mixed with nickel formate. The carbon spherical bulbs are characterized by large dimensions (up to 900 nm), thin walls (around 10 nm), and fully hollow cores. The walls are in graphitic structure of sp2 hybridized carbons. Bulb-tube assemblies are found as intermediate derivatives of blowing. A joint action of the filled high-pressure gases and the structural defects in the carbon nanotubes is responsible to the formation of the carbon nanobulbs. Our finding may indicate the possibility to engineer the carbon nanotubes to the designed nanostructures.
Radiative Transfer in Stellar Atmospheres
NASA Astrophysics Data System (ADS)
Rutten, Robert J.
2003-05-01
The main topic treated in these graduate course notes is the classical theory of radiative transfer for explaining stellar spectra. It needs relatively much attention to be mastered. Radiative transfer in gaseous media that are neither optically thin nor fully opaque and scatter to boot is a key part of astrophysics but not a transparent subject. These course notes represent a middle road between Mihalas' "Stellar Atmospheres" (graduate level and up) and the books by Novotny and Boehm-Vitense (undergraduate level). They are at about the level of Gray's "The observation and analysis of stellar photospheres" but emphasize NLTE radiative transfer rather than observational techniques and data interpretation.
Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3
Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin
2017-01-01
Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors. PMID:28216672
NASA Astrophysics Data System (ADS)
Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.
2018-05-01
A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.
Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3.
Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin
2017-02-20
Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO 3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors.
NASA Astrophysics Data System (ADS)
Cui, Jizhai; Liang, Cheng-Yen; Paisley, Elizabeth A.; Sepulveda, Abdon; Ihlefeld, Jon F.; Carman, Gregory P.; Lynch, Christopher S.
2015-08-01
Experimental results demonstrate the ability of a surface electrode pattern to produce sufficient in-plane strain in a PbZr0.52Ti0.48O3 (PZT) thin film clamped by a Si substrate to control magnetism in a 1000 nm diameter Ni ring. The electrode pattern and the Ni ring/PZT thin film heterostructure were designed using a finite element based micromagnetics code. The magnetoelectric heterostructures were fabricated on the PZT film using e-beam lithography and characterized using magnetic force microscopy. Application of voltage to the electrodes moved one of the "onion" state domain walls. This method enables the development of complex architectures incorporating strain-mediated multiferroic devices.
Perceived area and the luminosity threshold.
Bonato, F; Gilchrist, A L
1999-07-01
Observers made forced-choice opaque/luminous responses to targets of varying luminance and varying size presented (1) on the wall of a laboratory, (2) as a disk within an annulus, and (3) embedded within a Mondrian array presented within a vision tunnel. Lightness matches were also made for nearby opaque surfaces. The results show that the threshold luminance value at which a target begins to appear self-luminous increases with its size, defined as perceived size, not retinal size. More generally, the larger the target, the more an increase in its luminance induces grayness/blackness into the surround and the less it induces luminosity into the target, and vice versa. Corresponding to this luminosity/grayness tradeoff, there appears to be an invariant: Across a wide variety of conditions, a target begins to appear luminous when its luminance is about 1.7 times that of a surface that would appear white in the same illumination. These results show that the luminosity threshold behaves like a surface lightness value--the maximum lightness value, in fact--and is subject to the same laws of anchoring (such as the area rule proposed by Li & Gilchrist, 1999) as surface lightness.
Ducasse, Eric; Cosset, Jean-Marc; Eschwege, François; Creusy, Colette; Chevalier, Jacques; Puppinck, Paul; Lartigau, Eric
2004-01-01
In recent years there has been intensive research on the use of ionizing radiation for inhibition of intimal hyperplasia (IH). Results have clearly established that beta ionizing radiation delivered from an endoluminal source after angioplasty inhibits intimal restenosis. This effect has been confirmed by recent multicenter clinical trials in patients undergoing coronary dilatation. The purpose of this study was to determine if gamma radiation therapy delivered superficially from an external source also reduced smooth muscle cell proliferation in two animals models-the first involving experimentally induced restenosis and the second involving anastomosis between a prosthesis and artery. Ultimately we hope to develop a therapeutic application for patients undergoing peripheral anastomoses, especially in the lower extremities. Two different animal models were used in this two-stage study. The first-stage rabbit model (model 1) involved balloon injury of the aorta to validate the dose effect of external beam irradiation. The second-stage porcine model (model 2) involved aortic bypass followed by external beam irradiation of the distal anastomosis site. In model 1 a total of 56 rabbits were studied. They were divided into five groups including one control group in which external radiation was not applied after balloon injury and four test groups in which external radiation was applied in a single fraction on day 0 at four different doses: 10 grays, 15 grays, 20 grays, and 25 grays. In model 2, a total of 24 pigs underwent aortic bypass with a 6-mm PTFE graft followed by irradiation of the distal end-to-side anastomosis at a dose of 20 grays on day 0. In both models specimens were harvested after 6 weeks and studied histologically after staining with HES and orcein, histomorphometrically by measuring intimal hyperplasia, and immunohistochemically using actin and factor VIII/von Willebrand factor (F VIII/vWF). The zones of study on the anastomosis were separated into base of the artery to the tip and heel of the anastomosis and the edge of the arteriotomy. Measurements were compared using the Mann Whitney test. In the first-stage model designed to study IH in rabbits, mean intimal and medial thickness values and the intima-to-media ratio showed no difference between the control group and the groups irradiated at doses of 10 grays and 15 grays (p = 0.111, p = 0.405, and p = 0.14); (p = 0.301, p = 0.206, and p = 0.199). Conversely, there was a significant difference between the control group and the groups irradiated at 20 grays and 25 grays (p < 0.0001, p = 0.107 and p = 0.008; p = 0.008, p = 0.155, and p = 0.008). Histological examination demonstrated extensive changes in the wall with high-grade fibrosis after application of ionizing radiation. In the second-stage swine model, irradiation significantly inhibited development of IH at the level of anastomosis both at the base of the artery (p < 0.01) (tip 0.06 vs. 0.27 mm and heel 0.04 vs. 0.36) and at the level of the arteriotomy at the suture site (p < 0.001) (0.13 vs. 0.86 mm). Immunochemical analysis of the thickened zones showed a positive reaction of endothelial cells to smooth muscle actin and F VII/vWF. Like irradiation applied using an endoluminal source, superficial gamma ionizing radiation from an external source inhibits IH. Analysis of the dose effect showed that the overall dose must be between 15 and 20 grays. External radiation also reduces overall IH at the anastomosis between a prosthesis and artery. Although these experimental data are promising, further study will probably be necessary before attempting to undertake clinical trials using external beam radiation therapy for patients undergoing peripheral anastomoses.
NASA Technical Reports Server (NTRS)
Pessin, R.
1983-01-01
Tool locally expands small-diameter tubes. Tube expander locally expands and deforms tube: Compressive lateral stress induced in elastomeric sleeve by squeezing axially between two metal tool parts. Adaptable to situations in which tube must have small bulge for mechanical support or flow control.
Holographic analysis as an inspection method for welded thin-wall tubing
NASA Technical Reports Server (NTRS)
Brooks, Lawrence; Mulholland, John; Genin, Joseph; Matthews, Larryl
1990-01-01
The feasibility of using holographic interferometry for locating flaws in welded tubing is explored. Two holographic techniques are considered: traditional holographic interferometry and electronic speckle pattern interferometry. Several flaws including cold laps, discontinuities, and tube misalignments are detected.
Three-temperature plasma shock solutions with gray radiation diffusion
Johnson, Bryan M.; Klein, Richard I.
2016-04-19
Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation.more » Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.« less
Mechanical Properties and Tribological Behavior of In Situ NbC/Fe Surface Composites
NASA Astrophysics Data System (ADS)
Cai, Xiaolong; Zhong, Lisheng; Xu, Yunhua
2017-01-01
The mechanical properties and tribological behavior of the niobium carbide (NbC)-reinforced gray cast iron surface composites prepared by in situ synthesis have been investigated. Composites are comprised of a thin compound layer and followed by a deep diffusion zone on the surface of gray cast iron. The graded distributions of the hardness and elastic modulus along the depth direction of the cross section of composites form in the ranges of 6.5-20.1 and 159.3-411.2 GPa, respectively. Meanwhile, dry wear tests for composites were implemented on pin-on-disk equipment at sliding speed of 14.7 × 10-2 m/s and under 5 or 20 N, respectively. The result indicates that tribological performances of composites are considerably dependent on the volume fraction and the grain size of the NbC as well as the mechanical properties of the matrices in different areas. The surface compound layer presents the lowest coefficient of friction and wear rate, and exhibits the highest wear resistance, in comparison with diffusion zone and substrate. Furthermore, the worn morphologies observed reveal the dominant wear mechanism is abrasive wear feature in compound layer and diffusion zone.
Tinene: a two-dimensional Dirac material with a 72 meV band gap.
Cai, Bo; Zhang, Shengli; Hu, Ziyu; Hu, Yonghong; Zou, Yousheng; Zeng, Haibo
2015-05-21
Dirac materials have attracted great interest for both fundamental research and electronic devices due to their unique band structures, but the usual near zero bandgap of graphene results in a poor on-off ratio in the corresponding transistors. Here, we report on tinene, monolayer gray tin, as a new two-dimensional material with both Dirac characteristics and a remarkable 72 meV bandgap based on density functional theory calculations. Compared with silicene and germanene, tinene has a similar hexagonal honeycomb monolayer structure, but it has an obviously larger buckling height (∼0.70 Å). Interestingly, such a moderate buckling structure results in phonon dispersion without appreciable imaginary modes, indicating the strong dynamic stability of tinene. Significantly, a distinct transformation is discovered from the band structure that six Dirac cones would appear at high symmetry K points in the first Brillouin zone when gray tin is thinned from the bulk to monolayer, but a bandgap as large as 72 meV is still preserved. Considering the recent successful realization of silicene and germanene with a similar structure, the predicted stable tinene with Dirac characteristics and a suitable bandgap is a possibility for the "more than Moore" materials and devices.
Three-temperature plasma shock solutions with gray radiation diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Bryan M.; Klein, Richard I.
Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation.more » Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.« less
Geology and biology of Oceanographer submarine canyon.
Valentine, P.C.; Uzmann, J.R.; Cooper, R.A.
1980-01-01
Santonian beds more than 100 m thick are the oldest rocks collected from the canyon. Quaternary silty clay veneers the canyon walls in many places and is commonly burrowed by benthic organisms that cause extensive erosion of the canyon walls, especially in the depth zone (100-1300 m) inhabited by the crabs Geryon and Cancer. Bioerosion is minimal on high, near-vertical cliffs of sedimentary rock, in areas of continual sediment movement, and where the sea floor is paved by gravel. A thin layer of rippled, unconsolidated silt and sand is commonly present on the canyon walls and in the axis. Shelf sediments are transported from Georges Bank over the E rim and in the Canyon by the SW drift and storm currents; tidal currents and internal waves move the sediment downcanyon along the walls and axis.- from Authors