Wu, Xiaohua; Dong, Dawei; Ma, Daqing
2016-08-08
BACKGROUND SARS is not only an acute disease, but also leads to long-term impaired lung diffusing capacity in some survivors. However, there is a paucity of data regarding long-term CT findings in survivors after SARS. The aim of this study was to assess the changes in lung function and lung thin-section computed tomography (CT) features in patients recovering from severe acute respiratory syndrome (SARS), especially the dynamic changes in ground-glass opacity (GGO). MATERIAL AND METHODS Clinical and radiological data from 11 patients with SARS were collected. The serial follow-up thin-section CTs were evaluated at 3, 6, and 84 months after SARS presentation. The distribution and predominant thin-section CT findings of lesions were evaluated. RESULTS The extent of the lesions on the CT scans of the 11 patients decreased at 6 and 84 months compared to 3 months. The number of segments involved on 84-month follow-up CTs was less than those at 6 months (P<0.05). The predominant thin-section CT manifestation at 84 months (intralobular and interlobular septal thickening) was different than that at 6 months, at which GGO was predominant. CONCLUSIONS During convalescence after SARS, GGO and intralobular and interlobular septal thickening were the main thin-section CT manifestation. Intralobular and interlobular septal thickening predominated over GGO at 84 months.
Suwatanapongched, Thitiporn; Boonsarngsuk, Viboon; Amornputtisathaporn, Naparat; Leelachaikul, Paisan
2015-01-01
Thoracic endometriosis (TE) is an uncommon disorder affecting women of childbearing age. We herein report clinical and thin-section computed tomography (CT) findings of two cases, in which one woman presented with catamenial haemoptysis (CH) alone and another woman presented with bilateral catamenial pneumothoraces (CP) coinciding with CH, a rare manifestation of TE. The dynamic changes demonstrated on thin-section chest CT performed during and after menses led to accurate localisation and presumptive diagnosis of TE in both patients. Following danazol treatment, the patient with CH alone had a complete cure, while the patient with CP and CH had an incomplete cure and required long-term danazol treatment. We discuss the role of imaging studies in TE, with an emphasis on the appropriate timing and scanning technique of chest CT in women presenting with CH, potential mechanisms, treatment and patient outcomes. PMID:26243981
[Thin-section computed tomography of the bronchi; 2. Right upper lobe and left upper division].
Matsuoka, Y; Ookubo, T; Ohtomo, K; Nishikawa, J; Kojima, K; Oyama, K; Yoshikawa, K; Iio, M
1990-02-01
Thin (2mm) section contiguous computed tomographic (CT) scans were obtained through the bronchi of the right upper lobe and the left upper division in 30 patients. All segmental bronchi were identified. The right subsegmental bronchi were identified in 100%, and the left subsegmental bronchi in 97%. The type of the orifice of the right bronchus was trifurcated (53%), the extension of B1 was apicoanterior (50%), and the size of B2b was equal to B3a (63%). The extension of the left B3 was subapicoanterior (38%), and the size of B1+2c was equal to B3a (62%).
Malignant external otitis: early scintigraphic detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strashun, A.M.; Nejatheim, M.; Goldsmith, S.J.
1984-02-01
Pseudomonas otitis externa in elderly diabetics may extend aggressively to adjacent bone, cranial nerves, meninges, and vessels, leading to a clinical diagnosis of ''malignant'' external otitis. Early diagnosis is necessary for successful treatment. This study compares the findings of initial radiographs, thin-section tomography of temporal bone, CT scans of head and neck, technetium-99m methylene diphosphonate (MDP) and gallium-67 citrate scintigraphy, and single-photon emission computed tomography (SPECT) for detection of temporal bone osteomylitis in ten patients fulfilling the clinical diagnostic criteria of malignant external otitis. Skull radiographs were negative in all of the eight patients studied. Thin-section tomography was positive inmore » one of the seven patients studied using this modality. CT scanning suggested osteomyelitis in three of nine patients. Both Tc-99m and Ga-67 citrate scintigraphy were positive in 10 of 10 patients. These results suggest that technetium and gallium scintigraphy are more sensitive than radiographs and CT scans for early detection of malignant external otitis.« less
Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo.
Xia, Jun; Chatni, Muhammad R; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V
2012-05-01
We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.
Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo
NASA Astrophysics Data System (ADS)
Xia, Jun; Chatni, Muhammad R.; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V.
2012-05-01
We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.
2011-01-01
Background Chest wall injury after stereotactic radiotherapy (SRT) for primary lung cancer has recently been reported. However, its detailed imaging findings are not clarified. So this study aimed to fully characterize the findings on computed tomography (CT), appearance time and frequency of chest wall injury after stereotactic radiotherapy (SRT) for primary lung cancer Materials and methods A total of 177 patients who had undergone SRT were prospectively evaluated for periodical follow-up thin-section CT with special attention to chest wall injury. The time at which CT findings of chest wall injury appeared was assessed. Related clinical symptoms were also evaluated. Results Rib fracture was identified on follow-up CT in 41 patients (23.2%). Rib fractures appeared at a mean of 21.2 months after the completion of SRT (range, 4 -58 months). Chest wall edema, thinning of the cortex and osteosclerosis were findings frequently associated with, and tending to precede rib fractures. No patients with rib fracture showed tumors > 16 mm from the adjacent chest wall. Chest wall pain was seen in 18 of 177 patients (10.2%), of whom 14 patients developed rib fracture. No patients complained of Grade 3 or more symptoms. Conclusion Rib fracture is frequently seen after SRT for lung cancer on CT, and is often associated with chest wall edema, thinning of the cortex and osteosclerosis. However, related chest wall pain is less frequent and is generally mild if present. PMID:21995807
Petrović, Kosta; Turkalj, Ivan; Stojanović, Sanja; Vucaj-Cirilović, Viktorija; Nikolić, Olivera; Stojiljković, Dragana
2013-08-01
Computerized tomography (CT), especially multidetector CT (MDCT), has had a revolutionary impact in diagnostic in traumatized patients. The aim of the study was to identify and compare the frequency of injuries to bone structures of the thorax displayed with 5-mm-thick axial CT slices and thin-slice (MDCT) examination with the use of 3D reconstructions, primarily multiplanar reformations (MPR). This prospective study included 61 patients with blunt trauma submitted to CT scan of the thorax as initial assessment. The two experienced radiologists inde pendently and separately described the findings for 5-mm-thick axial CT slices (5 mm CT) as in monoslice CT examination; MPR and other 3D reconstructions along with thin-slice axial sections which were available in modern MDCT technologies. After describing thin-slice examination in case of disagreement in the findings, the examiners redescribed thin-slice examination together which was ultimately considered as a real, true finding. No statistically significant difference in interobserver evaluation of 5 mm CT examination was recorded (p > 0.05). Evaluation of fractures of sternum with 5 mm CT and MDCT showed a statistically significant difference (p < 0.05) in favor of better display of injury by MDCT examination. MDCT is a powerful diagnostic tool that can describe higher number of bone fractures of the chest in traumatized patients compared to 5 mm CT, especially in the region of sternum for which a statistical significance was obtained using MPR. Moreover, the importance of MDCT is also set by easier and more accurate determination of the level of bone injury.
Si, Ming-Jue; Tao, Xiao-Feng; Du, Guang-Ye; Cai, Ling-Ling; Han, Hong-Xiu; Liang, Xi-Zi; Zhao, Jiang-Min
2016-10-01
To retrospectively compare focal interstitial fibrosis (FIF), atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), and minimally invasive adenocarcinoma (MIA) with pure ground-glass opacity (GGO) using thin-section computed tomography (CT). Sixty pathologically confirmed cases were reviewed including 7 cases of FIF, 17 of AAH, 23of AIS, and 13 of MIA. All nodules kept pure ground glass appearances before surgical resection and their last time of thin-section CT imaging data before operation were collected. Differences of patient demographics and CT features were compared among these four types of lesions. FIF occurred more frequently in males and smokers while the others occurred more frequently in female nonsmokers. Nodule size was significant larger in MIA (P<0.001, cut-off value=7.5mm). Nodule shape (P=0.045), margin characteristics (P<0.001), the presence of pleural indentation (P=0.032), and vascular ingress (P<0.001) were significant factors that differentiated the 4 groups. A concave margin was only demonstrated in a high proportion of FIF at 85.7% (P=0.002). There were no significant differences (all P>0.05) in age, malignant history, attenuation value, location, and presence of bubble-like lucency. A nodule size >7.5mm increases the possibility of MIA. A concave margin could be useful for differentiation of FIF from the other malignant or pre-malignant GGO nodules. The presence of spiculation or pleural indentation may preclude the diagnosis of AAH. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ohno, Yoshiharu; Seki, Shinichiro; Koyama, Hisanobu; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Takenaka, Daisuke; Kassai, Yoshimori; Yui, Masao; Sugimura, Kazuro
2015-08-01
To compare predictive capabilities of non-contrast-enhanced (CE)- and dynamic CE-perfusion MRIs, thin-section multidetector computed tomography (CT) (MDCT), and perfusion scan for postoperative lung function in non-small cell lung cancer (NSCLC) patients. Sixty consecutive pathologically diagnosed NSCLC patients were included and prospectively underwent thin-section MDCT, non-CE-, and dynamic CE-perfusion MRIs and perfusion scan, and had their pre- and postoperative forced expiratory volume in one second (FEV1 ) measured. Postoperative percent FEV1 (po%FEV1 ) was then predicted from the fractional lung volume determined on semiquantitatively assessed non-CE- and dynamic CE-perfusion MRIs, from the functional lung volumes determined on quantitative CT, from the number of segments observed on qualitative CT, and from uptakes detected on perfusion scans within total and resected lungs. Predicted po%FEV1 s were then correlated with actual po%FEV1 s, which were %FEV1 s measured postoperatively. The limits of agreement were also determined. All predicted po%FEV1 s showed significant correlation (0.73 ≤ r ≤ 0.93, P < 0.0001) and limits of agreement with actual po%FEV1 (non-CE-perfusion MRI: 0.3 ± 10.0%, dynamic CE-perfusion MRI: 1.0 ± 10.8%, perfusion scan: 2.2 ± 14.1%, quantitative CT: 1.2 ± 9.0%, qualitative CT: 1.5 ± 10.2%). Non-CE-perfusion MRI may be able to predict postoperative lung function more accurately than qualitatively assessed MDCT and perfusion scan. © 2014 Wiley Periodicals, Inc.
Meenan, Christopher; Daly, Barry; Toland, Christopher; Nagy, Paul
2006-01-01
Rapid advances are changing the technology and applications of multidetector computed tomography (CT) scanners. The major increase in data associated with this new technology, however, breaks most commercial picture archiving and communication system (PACS) architectures by preventing them from delivering data in real time to radiologists and outside clinicians. We proposed a phased model for 3D workflow, installed a thin-slice archive and measured thin-slice data storage over a period of 5 months. A mean of 1,869 CT studies were stored per month, with an average of 643 images per study and a mean total volume of 588 GB/month. We also surveyed 48 radiologists to determine diagnostic use, impressions of thin-slice value, and requirements for retention times. The majority of radiologists thought thin slice was helpful for diagnosis and regularly used the application. Permanent storage of thin slice CT is likely to become best practice and a mission-critical pursuit for the health care enterprise.
Gee, Carole T
2013-11-01
As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction.
Gee, Carole T.
2013-01-01
• Premise of the study: As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • Methods: MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • Results: If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • Conclusions: This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction. PMID:25202495
FIB-SEM tomography in biology.
Kizilyaprak, Caroline; Bittermann, Anne Greet; Daraspe, Jean; Humbel, Bruno M
2014-01-01
Three-dimensional information is much easier to understand than a set of two-dimensional images. Therefore a layman is thrilled by the pseudo-3D image taken in a scanning electron microscope (SEM) while, when seeing a transmission electron micrograph, his imagination is challenged. First approaches to gain insight in the third dimension were to make serial microtome sections of a region of interest (ROI) and then building a model of the object. Serial microtome sectioning is a tedious and skill-demanding work and therefore seldom done. In the last two decades with the increase of computer power, sophisticated display options, and the development of new instruments, an SEM with a built-in microtome as well as a focused ion beam scanning electron microscope (FIB-SEM), serial sectioning, and 3D analysis has become far easier and faster.Due to the relief like topology of the microtome trimmed block face of resin-embedded tissue, the ROI can be searched in the secondary electron mode, and at the selected spot, the ROI is prepared with the ion beam for 3D analysis. For FIB-SEM tomography, a thin slice is removed with the ion beam and the newly exposed face is imaged with the electron beam, usually by recording the backscattered electrons. The process, also called "slice and view," is repeated until the desired volume is imaged.As FIB-SEM allows 3D imaging of biological fine structure at high resolution of only small volumes, it is crucial to perform slice and view at carefully selected spots. Finding the region of interest is therefore a prerequisite for meaningful imaging. Thin layer plastification of biofilms offers direct access to the original sample surface and allows the selection of an ROI for site-specific FIB-SEM tomography just by its pronounced topographic features.
Hashimoto, Naozumi; Iwano, Shingo; Kawaguchi, Koji; Fukui, Takayuki; Fukumoto, Koichi; Nakamura, Shota; Mori, Shunsuke; Sakamoto, Koji; Wakai, Kenji; Yokoi, Kohei; Hasegawa, Yoshinori
2016-08-01
There is only limited information on the clinical impact of combined pulmonary fibrosis and emphysema (CPFE) on postoperative and survival outcomes among patients with resected lung cancer. In a retrospective analysis, data were reviewed from 685 patients with resected lung cancer between 2006 and 2011. The clinical impact of thin-section computed tomography (TSCT)-determined emphysema, fibrosis, and CPFE on postoperative and survival outcomes was evaluated. The emphysema group comprised 32.4% of the study population, the fibrosis group 2.8%, and the CPFE group 8.3%. The CPFE group had a more advanced pathologic stage and higher prevalence of squamous cell carcinoma as compared with the normal group without emphysema or fibrosis findings on TSCT. The incidence of postoperative complications was significantly higher in the CPFE group. Overall, the 30-day mortality in the CPFE group was 5.3%. Cancer recurrence at pathologic stage I and death due to either cancer or other causes were significantly higher in the CPFE group. Survival curves indicated that a finding of CPFE was associated with worse overall survival for patients with any stage disease. Multivariate analysis suggested that pathologic stage and CPFE were independent factors associated with worse overall survival. The adjusted hazard ratio of overall survival for the CPFE group versus the normal group was 2.990 (95% confidence interval: 1.801 to 4.962). Among patients with resected lung cancer, the presence of TSCT-determined CPFE might predict worse postoperative and survival outcomes. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Thin-section computed tomography findings in 104 immunocompetent patients with adenovirus pneumonia.
Park, Chan Kue; Kwon, Hoon; Park, Ji Young
2017-08-01
Background To date, there has been no computed tomography (CT) evaluation of adenovirus pneumonia in a large number of immunocompetent patients. Purpose To describe the thin-section CT findings of immunocompetent patients with adenovirus pneumonia. Material and Methods We prospectively enrolled 104 patients with adenovirus pneumonia from a military hospital. CT scans of each patient were retrospectively and independently assessed by two radiologists for the presence of abnormalities, laterality and zonal predominance of the parenchymal abnormalities, and dominant imaging patterns and their anatomic distributions. Results CT findings included consolidation (n = 92), ground-glass opacity (GGO; n = 82), septal thickening (n = 34), nodules (n = 46), bronchial wall thickening (n = 32), pleural effusion (n = 16), and lymphadenopathy (n = 3). Eighty-four patients (81%) exhibited unilateral parenchymal abnormalities and 57 (57%) exhibited lower lung zone abnormalities. The most frequently dominant CT pattern was consolidation with surrounding GGO (n = 50), with subpleural (70%) and peribronchovascular (94%) distributions. Consolidation-the second-most common pattern (n = 33)-also exhibited subpleural (79%) and peribronchovascular (97%) distributions. The dominant nodule pattern (n = 14) exhibited mixed (64%) and peribronchovascular (100%) distributions. A dominant GGO pattern was only observed in four patients; none had central distribution. Conclusion Although the manifestations of adenovirus pneumonia on CT are varied, we found the most frequent pattern was consolidation with or without surrounding GGO, with subpleural and peribronchovascular distributions. Parenchymal abnormalities were predominantly unilateral and located in the lower lung zone. If dominant consolidation findings are present in immunocompetent patients during the early stages, adenovirus pneumonia should be considered.
Unusual cortical bone features in a patient with gorlin-goltz syndrome: a case report.
Tarnoki, Adam Domonkos; Tarnoki, David Laszlo; Klara Kiss, Katalin; Bata, Pal; Karlinger, Kinga; Banvolgyi, Andras; Wikonkal, Norbert; Berczi, Viktor
2014-12-01
Gorlin-Goltz syndrome (GGS) consists of ectodermal and mesodermal abnormalities. In this case report we will investigate lower extremity lesions of GGS. A 52-year-old man with GGS underwent skull and lower extremity computer tomography. Radiographic findings included cervical spondylosis, transparent areas with slurred margins, and cerebral falx calcification. Tibial and fibular specific cortical lesions (thin cortical and subcortical cystic lesions) were seen on the radiography, which was confirmed by computer tomography. To our knowledge, this is the first report of such a long lesion of the tibia and fibula. Specific lower extremity cortical lesions (thin cortical and subcortical cystic lesions) may occur and these abnormalities can be found on radiography or CT, which are most probably attributed to retinoid treatment.
Unusual Cortical Bone Features in a Patient with Gorlin-Goltz Syndrome: A Case Report
Tarnoki, Adam Domonkos; Tarnoki, David Laszlo; Klara Kiss, Katalin; Bata, Pal; Karlinger, Kinga; Banvolgyi, Andras; Wikonkal, Norbert; Berczi, Viktor
2014-01-01
Gorlin-Goltz syndrome (GGS) consists of ectodermal and mesodermal abnormalities. In this case report we will investigate lower extremity lesions of GGS. A 52-year-old man with GGS underwent skull and lower extremity computer tomography. Radiographic findings included cervical spondylosis, transparent areas with slurred margins, and cerebral falx calcification. Tibial and fibular specific cortical lesions (thin cortical and subcortical cystic lesions) were seen on the radiography, which was confirmed by computer tomography. To our knowledge, this is the first report of such a long lesion of the tibia and fibula. Specific lower extremity cortical lesions (thin cortical and subcortical cystic lesions) may occur and these abnormalities can be found on radiography or CT, which are most probably attributed to retinoid treatment. PMID:25780550
Shin, M S; Zorn, G L; Ho, K J
1988-04-01
Computed tomographic (CT) findings of a rare case of triple-barreled aortic dissection was described. CT demonstrated the extent of dissection, a communication between two channels, and three lumens separated by the intimal flap and a thin undetached tunica media, resembling a Mercedes-Benz mark.
Aokage, Keiju; Miyoshi, Tomohiro; Ishii, Genichiro; Kusumoto, Masahiro; Nomura, Shogo; Katsumata, Shinya; Sekihara, Keigo; Hishida, Tomoyuki; Tsuboi, Masahiro
2017-09-01
The aim of this study was to validate the new eighth edition of the TNM classification and to elucidate whether radiological solid size corresponds to pathological invasive size incorporated in this T factor. We analyzed the data on 1792 patients who underwent complete resection from 2003 to 2011 at the National Cancer Center Hospital East, Japan. We reevaluated preoperative thin-section computed tomography (TSCT) to determine solid size and pathological invasive size using the fourth edition of the WHO classification and reclassified them according to the new TNM classification. The discriminative power of survival curves by the seventh edition was compared with that by the eighth edition by using concordance probability estimates and Akaike's information criteria calculated using a univariable Cox regression model. Pearson's correlation coefficient was calculated to elucidate the correlation between radiological solid size using TSCT and pathological invasive size. The overall survival curves in the eighth edition were well distinct at each clinical and pathological stage. The 5-year survival rates of patients with clinical and pathological stage 0 newly defined were both 100%. The concordance probability estimate and Akaike's information criterion values of the eighth edition were higher than those of the seventh edition in discriminatory power for overall survival. Solid size on TSCT scan and pathological invasive size showed a positive linear relationship, and Pearson's correlation coefficient was calculated as 0.83, which indicated strong correlation. This TNM classification will be feasible regarding patient survival, and radiological solid size correlates significantly with pathological invasive size as a new T factor. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Measuring Weld Profiles By Computer Tomography
NASA Technical Reports Server (NTRS)
Pascua, Antonio G.; Roy, Jagatjit
1990-01-01
Noncontacting, nondestructive computer tomography system determines internal and external contours of welded objects. System makes it unnecessary to take metallurgical sections (destructive technique) or to take silicone impressions of hidden surfaces (technique that contaminates) to inspect them. Measurements of contours via tomography performed 10 times as fast as measurements via impression molds, and tomography does not contaminate inspected parts.
Längkvist, Martin; Jendeberg, Johan; Thunberg, Per; Loutfi, Amy; Lidén, Mats
2018-06-01
Computed tomography (CT) is the method of choice for diagnosing ureteral stones - kidney stones that obstruct the ureter. The purpose of this study is to develop a computer aided detection (CAD) algorithm for identifying a ureteral stone in thin slice CT volumes. The challenge in CAD for urinary stones lies in the similarity in shape and intensity of stones with non-stone structures and how to efficiently deal with large high-resolution CT volumes. We address these challenges by using a Convolutional Neural Network (CNN) that works directly on the high resolution CT volumes. The method is evaluated on a large data base of 465 clinically acquired high-resolution CT volumes of the urinary tract with labeling of ureteral stones performed by a radiologist. The best model using 2.5D input data and anatomical information achieved a sensitivity of 100% and an average of 2.68 false-positives per patient on a test set of 88 scans. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Diagnostic ability of computed tomography using DentaScan software in endodontics: case reports.
Siotia, Jaya; Gupta, Sunil K; Acharya, Shashi R; Saraswathi, Vidya
2011-01-01
Radiographic examination is essential in diagnosis and treatment planning in endodontics. Conventional radiographs depict structures in two dimensions only. The ability to assess the area of interest in three dimensions is advantageous. Computed tomography is an imaging technique which produces three-dimensional images of an object by taking a series of two-dimensional sectional X-ray images. DentaScan is a computed tomography software program that allows the mandible and maxilla to be imaged in three planes: axial, panoramic, and cross-sectional. As computed tomography is used in endodontics, DentaScan can play a wider role in endodontic diagnosis. It provides valuable information in the assessment of the morphology of the root canal, diagnosis of root fractures, internal and external resorptions, pre-operative assessment of anatomic structures etc. The aim of this article is to explore the clinical usefulness of computed tomography and DentaScan in endodontic diagnosis, through a series of four cases of different endodontic problems.
Aokage, Keiju; Saji, Hisashi; Suzuki, Kenji; Mizutani, Tomonori; Katayama, Hiroshi; Shibata, Taro; Watanabe, Syunichi; Asamura, Hisao
2017-05-01
Lobectomy has been the standard surgery for even stage I lung cancer since the validity of limited resection for stage I lung cancer was denied by the randomized study reported in 1995. The aim of this non-randomized confirmatory going on since September 2013 is to confirm the efficacy of a segmentectomy for clinical T1N0 lung cancer with dominant ground glass opacity based on thin-slice computed tomography. A total of 390 patients from 42 Japanese institutions are recruited within 4 years. The primary endpoint of this study is a 5-year relapse-free survival in all of the patients who undergo a segmentectomy for a lung nodule. The secondary endpoints are overall survival, annual relapse-free survival, disease-free survival, proportion of local relapse, postoperative pulmonary function, proportion of segmentectomy completion, proportion of R0 resection completion by segmentectomy, adverse events, and serious adverse events. This trial has been registered at the UMIN Clinical Trials Registry as UMIN000011819 ( http://www.umin.ac.jp/ctr/ ). Patient's accrual has been already finished in November, 2015 and the primary analysis will be performed in 2021. This study is one of the pivotal trial of lung segmentectomy for early lung cancer. The result will provide a clear evidence for our daily clinics and will be possible contribution to preserving pulmonary function for lung cancer patients.
Bronchovascular anatomy of the upper lobes: evaluation with thin-section CT.
Lee, K S; Bae, W K; Lee, B H; Kim, I Y; Choi, E W; Lee, B H
1991-12-01
The anatomy of the bronchovascular trees of the upper lobes was evaluated with thin-section computed tomography (CT) in 50 patients. In all patients, the subsegmental bronchi could be seen, except the right B2b, left B1 + 2c, and left B3c. Regular anatomic relationships were seen between the right A3b and B3b (A3b was seen along the medial aspect of B3b in 45 patients [90%]), right A2a and B2a (A2a was seen along the posteromedial aspect of B2a in 45 patients [90%]), and left A1 + 2c and B1 + 2c (A1 + 2c was seen along the posterior aspect of B1 + 2c in 41 patients [82%]). Four patterns of bronchial branching were seen in the left upper lobe. The lateral branch of the posterior segmental vein of the upper lobes was an anatomic landmark dividing the anterior and posterior segments of the upper lobes. Three kinds of venous drainage patterns were identified in both the right and left upper lobes.
Rapid in vivo vertical tissue sectioning by multiphoton tomography
NASA Astrophysics Data System (ADS)
Batista, Ana; Breunig, Hans Georg; König, Karsten
2018-02-01
A conventional tool in the pathological field is histology which involves the analysis of thin sections of tissue in which specific cellular structures are stained with different dyes. The process to obtain these stained tissue sections is time consuming and invasive as it requires tissue removal, fixation, sectioning, and staining. Moreover, imaging of live tissue is not possible. We demonstrate that multiphoton tomography can provide within seconds, non-invasive, label-free, vertical images of live tissue which are in quality similar to conventional light micrographs of histologic stained specimen. In contrast to conventional setups based on laser scanning which image horizontally sections, the vertical in vivo images are directly recorded by combined line scanning and timed adjustments of the height of the focusing optics. In addition, multiphoton tomography provides autofluorescence lifetimes which can be used to determine the metabolic states of cells.
Sakao, Yukinori; Kuroda, Hiroaki; Mun, Mingyon; Uehara, Hirofumi; Motoi, Noriko; Ishikawa, Yuichi; Nakagawa, Ken; Okumura, Sakae
2014-01-01
Background We aimed to clarify that the size of the lung adenocarcinoma evaluated using mediastinal window on computed tomography is an important and useful modality for predicting invasiveness, lymph node metastasis and prognosis in small adenocarcinoma. Methods We evaluated 176 patients with small lung adenocarcinomas (diameter, 1–3 cm) who underwent standard surgical resection. Tumours were examined using computed tomography with thin section conditions (1.25 mm thick on high-resolution computed tomography) with tumour dimensions evaluated under two settings: lung window and mediastinal window. We also determined the patient age, gender, preoperative nodal status, tumour size, tumour disappearance ratio, preoperative serum carcinoembryonic antigen levels and pathological status (lymphatic vessel, vascular vessel or pleural invasion). Recurrence-free survival was used for prognosis. Results Lung window, mediastinal window, tumour disappearance ratio and preoperative nodal status were significant predictive factors for recurrence-free survival in univariate analyses. Areas under the receiver operator curves for recurrence were 0.76, 0.73 and 0.65 for mediastinal window, tumour disappearance ratio and lung window, respectively. Lung window, mediastinal window, tumour disappearance ratio, preoperative serum carcinoembryonic antigen levels and preoperative nodal status were significant predictive factors for lymph node metastasis in univariate analyses; areas under the receiver operator curves were 0.61, 0.76, 0.72 and 0.66, for lung window, mediastinal window, tumour disappearance ratio and preoperative serum carcinoembryonic antigen levels, respectively. Lung window, mediastinal window, tumour disappearance ratio, preoperative serum carcinoembryonic antigen levels and preoperative nodal status were significant factors for lymphatic vessel, vascular vessel or pleural invasion in univariate analyses; areas under the receiver operator curves were 0.60, 0.81, 0.81 and 0.65 for lung window, mediastinal window, tumour disappearance ratio and preoperative serum carcinoembryonic antigen levels, respectively. Conclusions According to the univariate analyses including a logistic regression and ROCs performed for variables with p-values of <0.05 on univariate analyses, our results suggest that measuring tumour size using mediastinal window on high-resolution computed tomography is a simple and useful preoperative prognosis modality in small adenocarcinoma. PMID:25365326
Franckenberg, Sabine; Binder, Thomas; Bolliger, Stephan; Thali, Michael J; Ross, Steffen G
2016-09-01
Cross-sectional imaging, such as computed tomography, has been increasingly implemented in both historic and recent postmortem forensic investigations. It aids in determining cause and manner of death as well as in correlating injuries to possible weapons. This study illuminates the feasibility of reconstructing guns in computed tomography and gives a distinct overview of historic and recent Swiss Army guns.
AXIALLY ORIENTED SECTIONS OF NUMMULITIDS: A TOOL TO INTERPRET LARGER BENTHIC FORAMINIFERAL DEPOSITS
Hohenegger, Johann; Briguglio, Antonino
2015-01-01
The “critical shear velocity” and “settling velocity” of foraminiferal shells are important parameters for determining hydrodynamic conditions during deposition of Nummulites banks. These can be estimated by determining the size, shape, and density of nummulitid shells examined in axial sections cut perpendicular to the bedding plane. Shell size and shape can be determined directly from the shell diameter and thickness, but density must be calculated indirectly from the thin section. Calculations using the half-tori method approximate shell densities by equalizing the chamber volume of each half whorl, based on the half whorl’s lumen area and its center of gravity. Results from this method yield the same lumen volumes produced empirically by micro-computed tomography. The derived hydrodynamic parameters help estimate the minimum flow velocities needed to entrain nummulitid tests and provide a potential tool to account for the nature of their accumulations. PMID:26166914
AXIALLY ORIENTED SECTIONS OF NUMMULITIDS: A TOOL TO INTERPRET LARGER BENTHIC FORAMINIFERAL DEPOSITS.
Hohenegger, Johann; Briguglio, Antonino
2012-04-01
The "critical shear velocity" and "settling velocity" of foraminiferal shells are important parameters for determining hydrodynamic conditions during deposition of Nummulites banks. These can be estimated by determining the size, shape, and density of nummulitid shells examined in axial sections cut perpendicular to the bedding plane. Shell size and shape can be determined directly from the shell diameter and thickness, but density must be calculated indirectly from the thin section. Calculations using the half-tori method approximate shell densities by equalizing the chamber volume of each half whorl, based on the half whorl's lumen area and its center of gravity. Results from this method yield the same lumen volumes produced empirically by micro-computed tomography. The derived hydrodynamic parameters help estimate the minimum flow velocities needed to entrain nummulitid tests and provide a potential tool to account for the nature of their accumulations.
Thönissen, P; Ermer, M A; Schmelzeisen, R; Gutwald, R; Metzger, M C; Bittermann, G
2015-09-01
Cone-Beam Computed Tomography (CBCT) has become widely used in dentistry and maxillofacial surgery. Accuracy, sensitivity and specificity of thin bony structures below 0.5 mm have been subject of some in vitro studies. This prospective in vivo study investigates the correlation between preoperative CBCT-imaging and intraoperative clinical examination of thin bony structures. We hereby present results from daily clinical routine. A total number of 80 sites in 64 patients has been examined to differentiate between preoperative 3D imaging and clinical measurements on cystic lesions in maxilla and mandible. Different CBCT-devices with a voxel size ranging from 0.08 mm to 0.4 mm were used. Overall-specificity found for detecting thin bony structures of the human jaw is 13.89%, overall sensitivity is 100%, positive predictive value (PPV) is 58.67% and negative predictive value (NPV) is 100%. Image quality is the key to make use of additional information CBCT provides and depends on spatial, temporal and contrast resolution. CBCT does not depict reliably thin bony structures of the jaw, even if high voxel resolution is used. In selected cases using high resolution protocols should be considered despite affecting the patient with higher doses of radiation. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...
CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...
Fast Industrial Inspection of Optical Thin Film Using Optical Coherence Tomography
Shirazi, Muhammad Faizan; Park, Kibeom; Wijesinghe, Ruchire Eranga; Jeong, Hyosang; Han, Sangyeob; Kim, Pilun; Jeon, Mansik; Kim, Jeehyun
2016-01-01
An application of spectral domain optical coherence tomography (SD-OCT) was demonstrated for a fast industrial inspection of an optical thin film panel. An optical thin film sample similar to a liquid crystal display (LCD) panel was examined. Two identical SD-OCT systems were utilized for parallel scanning of a complete sample in half time. Dual OCT inspection heads were utilized for transverse (fast) scanning, while a stable linear motorized translational stage was used for lateral (slow) scanning. The cross-sectional and volumetric images of an optical thin film sample were acquired to detect the defects in glass and other layers that are difficult to observe using visual inspection methods. The rapid inspection enabled by this setup led to the early detection of product defects on the manufacturing line, resulting in a significant improvement in the quality assurance of industrial products. PMID:27690043
Three dimensional rock microstructures: insights from FIB-SEM tomography
NASA Astrophysics Data System (ADS)
Drury, Martyn; Pennock, Gill; de Winter, Matthijs
2016-04-01
Most studies of rock microstructures investigate two-dimensional sections or thin slices of three dimensional grain structures. With advances of X-ray and electron tomography methods the 3-D microstructure can be(relatively) routinely investigated on scales from a few microns to cm. 3D studies are needed to investigate the connectivity of microstructures and to test the assumptions we use to calculate 3D properties from 2D sections. We have used FIB-SEM tomography to study the topology of melts in synthetic olivine rocks, 3D crystal growth microstructures, pore networks and subgrain structures. The technique uses a focused ion beam to make serial sections with a spacing of tens to hundreds of nanometers. Each section is then imaged or mapped using the electron beam. The 3D geometry of grains and subgrains can be investigated using orientation contrast or EBSD mapping. FIB-SEM tomography of rocks and minerals can be limited by charging of the uncoated surfaces exposed by the ion beam. The newest generation of FIB-SEMs have much improved low voltage imaging capability allowing high resolution charge free imaging. Low kV FIB-SEM tomography is now widely used to study the connectivity of pore networks. In-situ fluids can also be studied using cryo-FIB-SEM on frozen samples, although special freezing techniques are needed to avoid artifacts produced by ice crystallization. FIB-SEM tomography is complementary, in terms of spatial resolution and sampled volume, to TEM tomography and X-ray tomography, and the combination of these methods can cover a wide range of scales. Our studies on melt topology in synthetic olivine rocks with a high melt content show that many grain boundaries are wetted by nanometre scale melt layers that are too thin to resolve by X-ray tomography. A variety of melt layer geometries occur consistent with several mechanisms of melt layer formation. The nature of melt geometries along triple line junctions and quadruple points can be resolved. Quadruple point junctions between four grains cannot be investigated in 2D studies. 3D microstructural studies suggest that triple lines and quadruple points are important sites for the initiation of recrystallization, reaction and fracture.
Terahertz Computed Tomography of NASA Thermal Protection System Materials
NASA Technical Reports Server (NTRS)
Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.
2011-01-01
A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.
Manning, Phillip Lars; Lowe, Tristan; Withers, Philip J.
2017-01-01
This paper uses X-ray computed tomography to track the mechanical response of a vertebrate (Barnacle goose) long bone subjected to an axial compressive load, which is increased gradually until failure. A loading rig was mounted in an X-ray computed tomography system so that a time-lapse sequence of three-dimensional (3D) images of the bone’s internal (cancellous or trabecular) structure could be recorded during loading. Five distinct types of deformation mechanism were observed in the cancellous part of the bone. These were (i) cracking, (ii) thinning (iii) tearing of cell walls and struts, (iv) notch formation, (v) necking and (vi) buckling. The results highlight that bone experiences brittle (notch formation and cracking), ductile (thinning, tearing and necking) and elastic (buckling) modes of deformation. Progressive deformation, leading to cracking was studied in detail using digital image correlation. The resulting strain maps were consistent with mechanisms occurring at a finer-length scale. This paper is the first to capture time-lapse 3D images of a whole long bone subject to loading until failure. The results serve as a unique reference for researchers interested in how bone responds to loading. For those using computer modelling, the study not only provides qualitative information for verification and validation of their simulations but also highlights that constitutive models for bone need to take into account a number of different deformation mechanisms. PMID:28652932
Mustansar, Zartasha; McDonald, Samuel A; Sellers, William Irvin; Manning, Phillip Lars; Lowe, Tristan; Withers, Philip J; Margetts, Lee
2017-01-01
This paper uses X-ray computed tomography to track the mechanical response of a vertebrate (Barnacle goose) long bone subjected to an axial compressive load, which is increased gradually until failure. A loading rig was mounted in an X-ray computed tomography system so that a time-lapse sequence of three-dimensional (3D) images of the bone's internal (cancellous or trabecular) structure could be recorded during loading. Five distinct types of deformation mechanism were observed in the cancellous part of the bone. These were (i) cracking, (ii) thinning (iii) tearing of cell walls and struts, (iv) notch formation, (v) necking and (vi) buckling. The results highlight that bone experiences brittle (notch formation and cracking), ductile (thinning, tearing and necking) and elastic (buckling) modes of deformation. Progressive deformation, leading to cracking was studied in detail using digital image correlation. The resulting strain maps were consistent with mechanisms occurring at a finer-length scale. This paper is the first to capture time-lapse 3D images of a whole long bone subject to loading until failure. The results serve as a unique reference for researchers interested in how bone responds to loading. For those using computer modelling, the study not only provides qualitative information for verification and validation of their simulations but also highlights that constitutive models for bone need to take into account a number of different deformation mechanisms.
Gonçalves, Rita; Malalana, Fernando; McConnell, James Fraser; Maddox, Thomas
2015-01-01
For accurate interpretation of magnetic resonance (MR) images of the equine brain, knowledge of the normal cross-sectional anatomy of the brain and associated structures (such as the cranial nerves) is essential. The purpose of this prospective cadaver study was to describe and compare MRI and computed tomography (CT) anatomy of cranial nerves' origins and associated skull foramina in a sample of five horses. All horses were presented for euthanasia for reasons unrelated to the head. Heads were collected posteuthanasia and T2-weighted MR images were obtained in the transverse, sagittal, and dorsal planes. Thin-slice MR sequences were also acquired using transverse 3D-CISS sequences that allowed mutliplanar reformatting. Transverse thin-slice CT images were acquired and multiplanar reformatting was used to create comparative images. Magnetic resonance imaging consistently allowed visualization of cranial nerves II, V, VII, VIII, and XII in all horses. The cranial nerves III, IV, and VI were identifiable as a group despite difficulties in identification of individual nerves. The group of cranial nerves IX, X, and XI were identified in 4/5 horses although the region where they exited the skull was identified in all cases. The course of nerves II and V could be followed on several slices and the main divisions of cranial nerve V could be distinguished in all cases. In conclusion, CT allowed clear visualization of the skull foramina and occasionally the nerves themselves, facilitating identification of the nerves for comparison with MRI images. © 2015 American College of Veterinary Radiology.
Godoy, Myrna C B; Kim, Tae Jung; White, Charles S; Bogoni, Luca; de Groot, Patricia; Florin, Charles; Obuchowski, Nancy; Babb, James S; Salganicoff, Marcos; Naidich, David P; Anand, Vikram; Park, Sangmin; Vlahos, Ioannis; Ko, Jane P
2013-01-01
The objective of our study was to evaluate the impact of computer-aided detection (CAD) on the identification of subsolid and solid lung nodules on thin- and thick-section CT. For 46 chest CT examinations with ground-glass opacity (GGO) nodules, CAD marks computed using thin data were evaluated in two phases. First, four chest radiologists reviewed thin sections (reader(thin)) for nodules and subsequently CAD marks (reader(thin) + CAD(thin)). After 4 months, the same cases were reviewed on thick sections (reader(thick)) and subsequently with CAD marks (reader(thick) + CAD(thick)). Sensitivities were evaluated. Additionally, reader(thick) sensitivity with assessment of CAD marks on thin sections was estimated (reader(thick) + CAD(thin)). For 155 nodules (mean, 5.5 mm; range, 4.0-27.5 mm)-74 solid nodules, 22 part-solid (part-solid nodules), and 59 GGO nodules-CAD stand-alone sensitivity was 80%, 95%, and 71%, respectively, with three false-positives on average (0-12) per CT study. Reader(thin) + CAD(thin) sensitivities were higher than reader(thin) for solid nodules (82% vs 57%, p < 0.001), part-solid nodules (97% vs 81%, p = 0.0027), and GGO nodules (82% vs 69%, p < 0.001) for all readers (p < 0.001). Respective sensitivities for reader(thick), reader(thick) + CAD(thick), reader(thick) + CAD(thin) were 40%, 58% (p < 0.001), and 77% (p < 0.001) for solid nodules; 72%, 73% (p = 0.322), and 94% (p < 0.001) for part-solid nodules; and 53%, 58% (p = 0.008), and 79% (p < 0.001) for GGO nodules. For reader(thin), false-positives increased from 0.64 per case to 0.90 with CAD(thin) (p < 0.001) but not for reader(thick); false-positive rates were 1.17, 1.19, and 1.26 per case for reader(thick), reader(thick) + CAD(thick), and reader(thick) + CAD(thin), respectively. Detection of GGO nodules and solid nodules is significantly improved with CAD. When interpretation is performed on thick sections, the benefit is greater when CAD marks are reviewed on thin rather than thick sections.
Neuroanatomy of cranial computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kretschmann, H.J.; Weinrich, W.
1985-01-01
Based on the fundamental structures visualized by means of computed tomography, the authors present the functional systems which are relevant in neurology by means of axial cross-sections. All drawings were prepared from original preparations by means of a new technique which is similar to the grey values of X-ray CT and nuclear magnetic resonance tomography. A detailed description is given of the topics of neurofunctional lesions.
Argyros, A; Manos, S; Large, M C J; McKenzie, D R; Cox, G C; Dwarte, D M
2002-01-01
A combination of transmission electron tomography and computer modelling has been used to determine the three-dimensional structure of the photonic crystals found in the wing-scales of the Kaiser-I-Hind butterfly (Teinopalpus imperialis). These scales presented challenges for electron microscopy because the periodicity of the structure was comparable to the thickness of a section and because of the complex connectivity of the object. The structure obtained has been confirmed by taking slices of the three-dimensional computer model constructed from the tomography and comparing these with transmission electron microscope (TEM) images of microtomed sections of the actual scale. The crystal was found to have chiral tetrahedral repeating units packed in a triclinic lattice.
Characterization of PET preforms using spectral domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Hosseiny, Hamid; Ferreira, Manuel João.; Martins, Teresa; Carmelo Rosa, Carla
2013-11-01
Polyethylene terephthalate (PET) preforms are massively produced nowadays with the purpose of producing food and beverages packaging and liquid containers. Some varieties of these preforms are produced as multilayer structures, where very thin inner film(s) act as a barrier for nutrients leakage. The knowledge of the thickness of this thin inner layer is important in the production line. The quality control of preforms production requires a fast approach and normally the thickness control is performed by destructive means out of the production line. A spectral domain optical coherence tomography (SD-OCT) method was proposed to examine the thin layers in real time. This paper describes a nondestructive approach and all required signal processing steps to characterize the thin inner layers and also to improve the imaging speed and the signal to noise ratio. The algorithm was developed by using graphics processing unit (GPU) with computer unified device architecture (CUDA). This GPU-accelerated white light interferometry technique nondestructively assesses the samples and has high imaging speed advantage, overcoming the bottlenecks in PET performs quality control.
21 CFR 892.1200 - Emission computed tomography system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...
21 CFR 892.1200 - Emission computed tomography system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...
21 CFR 892.1200 - Emission computed tomography system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...
21 CFR 892.1200 - Emission computed tomography system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...
21 CFR 892.1200 - Emission computed tomography system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...
Nielsen, Tommy Kjærgaard; Østraat, Øyvind; Graumann, Ole; Pedersen, Bodil Ginnerup; Andersen, Gratien; Høyer, Søren; Borre, Michael
2017-08-01
The present study investigates how computed tomography perfusion scans and magnetic resonance imaging correlates with the histopathological alterations in renal tissue after cryoablation. A total of 15 pigs were subjected to laparoscopic-assisted cryoablation on both kidneys. After intervention, each animal was randomized to a postoperative follow-up period of 1, 2, or 4 weeks, after which computed tomography perfusion and magnetic resonance imaging scans were performed. Immediately after imaging, open bilateral nephrectomy was performed allowing for histopathological examination of the cryolesions. On computed tomography perfusion and magnetic resonance imaging examinations, rim enhancement was observed in the transition zone of the cryolesion 1week after laparoscopic-assisted cryoablation. This rim enhancement was found to subside after 2 and 4 weeks of follow-up, which was consistent with the microscopic examinations revealing of fibrotic scar tissue formation in the peripheral zone of the cryolesion. On T2 magnetic resonance imaging sequences, a thin hypointense rim surrounded the cryolesion, separating it from the adjacent renal parenchyma. Microscopic examinations revealed hemorrhage and later hemosiderin located in the peripheral zone. No nodular or diffuse contrast enhancement was found in the central zone of the cryolesions at any follow-up stage on neither computed tomography perfusion nor magnetic resonance imaging. On microscopic examinations, the central zone was found to consist of coagulative necrosis 1 week after laparoscopic-assisted cryoablation, which was partially replaced by fibrotic scar tissue 4 weeks following laparoscopic-assisted cryoablation. Both computed tomography perfusion and magnetic resonance imaging found the renal collecting system to be involved at all 3 stages of follow-up, but on microscopic examination, the urothelium was found to be intact in all cases. In conclusion, cryoablation effectively destroyed renal parenchyma, leaving the urothelium intact. Both computed tomography perfusion and magnetic resonance imaging reflect the microscopic findings but with some differences, especially regarding the peripheral zone. Magnetic resonance imaging seems an attractive modality for early postoperative follow-up.
Yamaguchi, S; Igami, H; Tanaka, H; Maekawa, T
2004-07-23
Sawtooth crashes in an Ohmically heated plasma in the WT-3 tokamak have been observed by using soft x-ray computer tomography at three different poloidal cross sections around the torus. Initially, collapsing proceeds slowly with keeping the helical structure of an m = 1/n = 1 hot core around the torus. It accelerates as the helical hot structure is strongly deformed and fades away in the manner that the hot core at the high field side becomes obscure and disappears, while that at the low field side is deformed into a thin crescent aligned along the inversion circle, which survives even at the completion of the crash. Copyright 2004 The American Physical Society
Clinical application of quantitative computed tomography in osteogenesis imperfecta-suspected cat.
Won, Sungjun; Chung, Woo-Jo; Yoon, Junghee
2017-09-30
One-year-old male Persian cat presented with multiple fractures and no known traumatic history. Marked decrease of bone radiopacity and thin cortices of all long bones were identified on radiography. Tentative diagnosis was osteogenesis imperfecta, a congenital disorder characterized by fragile bone. To determine bone mineral density (BMD), quantitative computed tomography (QCT) was performed. The QCT results revealed a mean trabecular BMD of vertebral bodies of 149.9 ± 86.5 mg/cm 3 . After bisphosphonate therapy, BMD of the same site increased significantly (218.5 ± 117.1 mg/cm 3 , p < 0.05). QCT was a useful diagnostic tool to diagnose osteopenia and quantify response to medical treatment.
Broadband Terahertz Computed Tomography Using a 5k-pixel Real-time THz Camera
NASA Astrophysics Data System (ADS)
Trichopoulos, Georgios C.; Sertel, Kubilay
2015-07-01
We present a novel THz computed tomography system that enables fast 3-dimensional imaging and spectroscopy in the 0.6-1.2 THz band. The system is based on a new real-time broadband THz camera that enables rapid acquisition of multiple cross-sectional images required in computed tomography. Tomographic reconstruction is achieved using digital images from the densely-packed large-format (80×64) focal plane array sensor located behind a hyper-hemispherical silicon lens. Each pixel of the sensor array consists of an 85 μm × 92 μm lithographically fabricated wideband dual-slot antenna, monolithically integrated with an ultra-fast diode tuned to operate in the 0.6-1.2 THz regime. Concurrently, optimum impedance matching was implemented for maximum pixel sensitivity, enabling 5 frames-per-second image acquisition speed. As such, the THz computed tomography system generates diffraction-limited resolution cross-section images as well as the three-dimensional models of various opaque and partially transparent objects. As an example, an over-the-counter vitamin supplement pill is imaged and its material composition is reconstructed. The new THz camera enables, for the first time, a practical application of THz computed tomography for non-destructive evaluation and biomedical imaging.
Ohno, Yoshiharu; Koyama, Hisanobu; Yoshikawa, Takeshi; Kishida, Yuji; Seki, Shinichiro; Takenaka, Daisuke; Yui, Masao; Miyazaki, Mitsue; Sugimura, Kazuro
2017-08-01
Purpose To compare the capability of pulmonary thin-section magnetic resonance (MR) imaging with ultrashort echo time (UTE) with that of standard- and reduced-dose thin-section computed tomography (CT) in nodule detection and evaluation of nodule type. Materials and Methods The institutional review board approved this study, and written informed consent was obtained from each patient. Standard- and reduced-dose chest CT (60 and 250 mA) and MR imaging with UTE were used to examine 52 patients; 29 were men (mean age, 66.4 years ± 7.3 [standard deviation]; age range, 48-79 years) and 23 were women (mean age, 64.8 years ± 10.1; age range, 42-83 years). Probability of nodule presence was assessed for all methods with a five-point visual scoring system. All nodules were then classified as missed, ground-glass, part-solid, or solid nodules. To compare nodule detection capability of the three methods, consensus for performances was rated by using jackknife free-response receiver operating characteristic analysis, and κ analysis was used to compare intermethod agreement for nodule type classification. Results There was no significant difference (F = 0.70, P = .59) in figure of merit between methods (standard-dose CT, 0.86; reduced-dose CT, 0.84; MR imaging with UTE, 0.86). There was no significant difference in sensitivity between methods (standard-dose CT vs reduced-dose CT, P = .50; standard-dose CT vs MR imaging with UTE, P = .50; reduced-dose CT vs MR imaging with UTE, P >.99). Intermethod agreement was excellent (standard-dose CT vs reduced-dose CT, κ = 0.98, P < .001; standard-dose CT vs MR imaging with UTE, κ = 0.98, P < .001; reduced-dose CT vs MR imaging with UTE, κ = 0.99, P < .001). Conclusion Pulmonary thin-section MR imaging with UTE was useful in nodule detection and evaluation of nodule type, and it is considered at least as efficacious as standard- or reduced-dose thin-section CT. © RSNA, 2017 Online supplemental material is available for this article.
Effect of disease stage on progression of hydroxychloroquine retinopathy.
Marmor, Michael F; Hu, Julia
2014-09-01
Hydroxychloroquine sulfate retinopathy can progress after the drug is stopped. It is not clear how this relates to the stage of retinopathy or whether early screening with modern imaging technology can prevent progression and visual loss. To determine the relationship between progression of retinopathy and the severity of disease using objective data from optical coherence tomography and assess the value of early screening for the toxic effects of hydroxychloroquine. Clinical findings in patients with hydroxychloroquine retinopathy were monitored with repeated anatomical and functional examinations for 13 to 40 months after the drug was stopped in a referral practice in a university medical center. Eleven patients participated, with the severity of toxic effects categorized as early (patchy parafoveal damage shown on field or objective testing), moderate (a 50%-100% parafoveal ring of optical coherence tomography thinning but intact retinal pigment epithelium), and severe (visible bull's-eye damage). Visual acuity, white 10-2 visual field pattern density plots, fundus autofluorescence, spectral-density optical coherence tomography cross sections, thickness (from cube diagrams), and ellipsoid zone length. Visual acuity and visual fields showed no consistent change. Fundus autofluorescence showed little or no change except in severe cases in which the bull's-eye damage expanded progressively. Optical coherence tomography cross sections showed little visible change in early and moderate cases but progressive foveal thinning (approximately 7 μm/y) and loss of ellipsoid zone (in the range of 100 μm/y) in severe cases, which was confirmed by quantitative measurements. The measurements also showed some foveal thinning (approximately 4 μm/y) and deepening of parafoveal loss in moderate cases, but the breadth of the ellipsoid zone remained constant in both early and moderate cases. A few cases showed a suggestion of ellipsoid zone improvement. Patients with hydroxychloroquine retinopathy involving the retinal pigment epithelium demonstrated progressive damage on optical coherence tomography for at least 3 years after the drug was discontinued, including loss of foveal thickness and cone structure. Cases recognized before retinal pigment epithelium damage retained foveal architecture with little retinal thinning. Early recognition of hydroxychloroquine toxic effects before any fundus changes are visible, using visual fields and optical coherence tomography (along with fundus autofluorescence and multifocal electroretinography as indicated), will greatly minimize late progression and the risk of visual loss.
NASA Astrophysics Data System (ADS)
Larsen, J. D.; Schaap, M. G.
2013-12-01
Recent advances in computing technology and experimental techniques have made it possible to observe and characterize fluid dynamics at the micro-scale. Many computational methods exist that can adequately simulate fluid flow in porous media. Lattice Boltzmann methods provide the distinct advantage of tracking particles at the microscopic level and returning macroscopic observations. While experimental methods can accurately measure macroscopic fluid dynamics, computational efforts can be used to predict and gain insight into fluid dynamics by utilizing thin sections or computed micro-tomography (CMT) images of core sections. Although substantial effort have been made to advance non-invasive imaging methods such as CMT, fluid dynamics simulations, and microscale analysis, a true three dimensional image segmentation technique has not been developed until recently. Many competing segmentation techniques are utilized in industry and research settings with varying results. In this study lattice Boltzmann method is used to simulate stokes flow in a macroporous soil column. Two dimensional CMT images were used to reconstruct a three dimensional representation of the original sample. Six competing segmentation standards were used to binarize the CMT volumes which provide distinction between solid phase and pore space. The permeability of the reconstructed samples was calculated, with Darcy's Law, from lattice Boltzmann simulations of fluid flow in the samples. We compare simulated permeability from differing segmentation algorithms to experimental findings.
Thin soil layer of green roof systems studied by X-Ray CT
NASA Astrophysics Data System (ADS)
Šácha, Jan; Jelínková, Vladimíra; Dohnal, Michal
2016-04-01
The popular non-invasive visualization technique of X-ray computed tomography (CT) has been used for 3D examination of thin soil layer of vegetated roof systems. The two categories of anthropogenic soils, usually used for green roof systems, were scanned during the first months after green roof system construction. First was represented by stripped topsoil with admixed crushed bricks and was well graded in terms of particle size distribution. The other category represented a commercial lightweight technogenic substrate. The undisturbed soil samples of total volume of 62.8 ccm were studied be means of X-ray Computed Tomography using X-ray Inspection System GE Phoenix Nanomex 180T with resulting spatial resolution about 57 μm in all directions. For both soil categories visible macroporosity, connectivity (described by the Euler characteristic), dimensionless connectivity and critical cross section of pore network were determined. Moreover, the temporal structural changes of studied soils were discussed together with heat and water regime of the green roof system. The analysis of CT images of anthropogenic soils was problematic due to the different X-ray attenuation of individual constituents. The correct determination of the threshold image intensity differentiating the soil constituents from the air phase had substantial importance for soil pore network analyses. However, X-ray CT derived macroporosity profiles reveal significant temporal changes notably in the soil comprised the stripped topsoil with admixed crushed bricks. The results implies that the technogenic substrate is structurally more stable over time compared to the stripped topsoil. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.
Phase-contrast x-ray computed tomography for observing biological specimens and organic materials
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Itai, Yuji
1995-02-01
A novel three-dimensional x-ray imaging method has been developed by combining a phase-contrast x-ray imaging technique with x-ray computed tomography. This phase-contrast x-ray computed tomography (PCX-CT) provides sectional images of organic specimens that would produce absorption-contrast x-ray CT images with little contrast. Comparing PCX-CT images of rat cerebellum and cancerous rabbit liver specimens with corresponding absorption-contrast CT images shows that PCX-CT is much more sensitive to the internal structure of organic specimens.
Otani, Hideji; Tanaka, Tomonori; Murata, Kiyoshi; Fukuoka, Junya; Nitta, Norihisa; Nagatani, Yukihiro; Sonoda, Akinaga; Takahashi, Masashi
2016-01-01
To evaluate the incidence and pathologic correlation of thin-section computed tomography (TSCT) findings in smoking-related interstitial fibrosis (SRIF) with pulmonary emphysema. Our study included 172 consecutive patients who underwent TSCT and subsequent lobectomy. TSCT findings including clustered cysts with visible walls (CCVW) and ground-glass attenuation with/without reticulation (GGAR) were evaluated and compared in nonsmokers and smokers and among lung locations. TSCT findings, especially CCVW, were also compared with histological findings using lobectomy specimens. The incidence of CCVW and GGAR was significantly higher in smokers than in nonsmokers (34.1% and 40.7%, respectively, vs 2.0% and 12.2%). CCVW and GGAR were frequently found in the lower and peripheral zones. Histologically, CCVW corresponded more often with SRIF with emphysema than usual interstitial pneumonia (UIP, 63.3% vs 30%). CCVW of irregular size and shape were seen in 19 of 20 SRIF with emphysema and in seven of nine UIP-manifested areas with similar round cysts. A less-involved subpleural parenchyma was observed more frequently in SRIF with emphysema. SRIF with emphysema is a more frequent pathological finding than UIP in patients with CCVW on TSCT. The irregular size and shape of CCVW and a less-involved subpleural parenchyma may be a clue suggesting the presence of SRIF with emphysema.
21 CFR 892.1750 - Computed tomography x-ray system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Computed tomography x-ray system. 892.1750 Section 892.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... same axial plane taken at different angles. This generic type of device may include signal analysis and...
21 CFR 892.1750 - Computed tomography x-ray system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Computed tomography x-ray system. 892.1750 Section 892.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... same axial plane taken at different angles. This generic type of device may include signal analysis and...
21 CFR 892.1750 - Computed tomography x-ray system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Computed tomography x-ray system. 892.1750 Section 892.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... same axial plane taken at different angles. This generic type of device may include signal analysis and...
21 CFR 892.1750 - Computed tomography x-ray system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Computed tomography x-ray system. 892.1750 Section 892.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... same axial plane taken at different angles. This generic type of device may include signal analysis and...
21 CFR 892.1750 - Computed tomography x-ray system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Computed tomography x-ray system. 892.1750 Section 892.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... same axial plane taken at different angles. This generic type of device may include signal analysis and...
Nonlinear optical THz generation and sensing applications
NASA Astrophysics Data System (ADS)
Kawase, Kodo
2012-03-01
We have suggested a wide range of real-life applications using novel terahertz imaging techniques. A high-resolution terahertz tomography was demonstrated by ultra short terahertz pulses using optical fiber and a nonlinear organic crystal. We also report on the thickness measurement of very thin films using high-sensitivity metal mesh filter. Further we have succeeded in a non-destructive inspection that can monitor the soot distribution in the ceramic filter using millimeter-to-terahertz wave computed tomography. These techniques are directly applicable to the non-destructive testing in industries.
NASA Astrophysics Data System (ADS)
Kahl, Wolf-Achim; Hidas, Károly; Dilissen, Nicole; Garrido, Carlos J.; López-Sánchez Vizcaíno, Vicente; Jesús Román-Alpiste, Manuel
2017-04-01
The complete reconstruction of the microstructure of rocks requires, among others, a full description of the shape preferred orientation (SPO) and crystal preferred orientation (CPO) of the constituent mineral phases. New advances in instrumental analyses, particularly electron backscatter diffraction (EBSD) coupled to focused ion beam-scanning electron microscope (FIB-SEM), allows a complete characterization of SPO and CPO in rocks at the micron scale [1-2]. Unfortunately, the large grain size of many crystalline rocks, such as peridotite, prevents a representative characterization of the CPO and SPO of their constituent minerals by this technique. Here, we present a new approach combining X-ray micro computed tomography (µ-CT) and EBSD to reconstruct the geographically oriented, 3-D SPO and CPO of cm- to mm-sized olivine crystals in two contrasting fabric types of chlorite harzburgites (Almírez ultramafic massif, SE Spain). The semi-destructive sample treatment involves drilling of geographically oriented micro drills in the field and preparation of oriented thin sections from µ-CT scanned cores. This allows for establishing the link among geological structures, macrostructure, fabric, and 3-D SPO-CPO at the thin section scale. Based on EBSD analyses, different CPO groups of olivine crystals can be discriminated in the thin sections and allocated to 3-D SPO in the µ-CT volume data. This approach overcomes the limitations of both methods (i.e., no crystal orientation data in µ-CT and no spatial information in EBSD), hence 3-D orientation of the crystallographic axes of olivines from different orientation groups could be correlated with the crystal shapes of olivine grains. This combined µ-CT and EBSD technique enables the correlation of both SPO and CPO and representative grain size, and is capable to characterize the 3-D microstructure of olivine-bearing rocks at the hand specimen scale. REFERENCES 1. Zaefferer, S., Wright, S.I., Raabe, D., 2008. Three-Dimensional orientation microscopy in a focused ion beam-scanning electron microscope: A new dimension of microstructure characterization. Metallurgical and Materials Transactions A 39, 374-389. 2. Burnett, T.L., Kelley, R., Winiarski, B., Contreras, L., Daly, M., Gholinia, A., Burke, M.G., Withers, P.J., 2016. Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. Ultramicroscopy 161, 119-129.
Recent observations with phase-contrast x-ray computed tomography
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi
1999-09-01
Recent development in phase-contrast X-ray computed tomography using an X-ray interferometer is reported. To observe larger samples than is possible with our previous X-ray interferometer, a large monolithic X-ray interferometer and a separated-type X-ray interferometer were studied. At the present time, 2.5 cm X 1.5 cm interference patterns have been generated with the X-ray interferometers using synchrotron X-rays. The large monolithic X-ray interferometer has produced interference fringes with 80% visibility, and has been used to measure various tissues. To produce images with higher spatial resolution, we fabricated another X-ray interferometer whose wafer was partially thinned by chemical etching. A preliminary test suggested that the spatial resolution has been improved.
Viewing Welds By Computer Tomography
NASA Technical Reports Server (NTRS)
Pascua, Antonio G.; Roy, Jagatjit
1990-01-01
Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.
Terahertz wide aperture reflection tomography.
Pearce, Jeremy; Choi, Hyeokho; Mittleman, Daniel M; White, Jeff; Zimdars, David
2005-07-01
We describe a powerful imaging modality for terahertz (THz) radiation, THz wide aperture reflection tomography (WART). Edge maps of an object's cross section are reconstructed from a series of time-domain reflection measurements at different viewing angles. Each measurement corresponds to a parallel line projection of the object's cross section. The filtered backprojection algorithm is applied to recover the image from the projection data. To our knowledge, this is the first demonstration of a reflection computed tomography technique using electromagnetic waves. We demonstrate the capabilities of THz WART by imaging the cross sections of two test objects.
Hybrid rendering of the chest and virtual bronchoscopy [corrected].
Seemann, M D; Seemann, O; Luboldt, W; Gebicke, K; Prime, G; Claussen, C D
2000-10-30
Thin-section spiral computed tomography was used to acquire the volume data sets of the thorax. The tracheobronchial system and pathological changes of the chest were visualized using a color-coded surface rendering method. The structures of interest were then superimposed on a volume rendering of the other thoracic structures, thus producing a hybrid rendering. The hybrid rendering technique exploit the advantages of both rendering methods and enable virtual bronchoscopic examinations using different representation models. Virtual bronchoscopic examinations with a transparent color-coded shaded-surface model enables the simultaneous visualization of both the airways and the adjacent structures behind of the tracheobronchial wall and therefore, offers a practical alternative to fiberoptic bronchoscopy. Hybrid rendering and virtual endoscopy obviate the need for time consuming detailed analysis and presentation of axial source images.
Owada, Yuki; Yonechi, Atsushi; Higuchi, Mitsunori; Suzuki, Hiroyuki
2016-03-10
Grand-glass nodule for CT image has thought to be less aggressive tumor in lung cancer. Echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK)-positive lung cancer presenting with Ground-glass nodules (GGNs) is relatively rare, and few such cases have been reported. An asymptomatic 56-year-old woman exhibited a 1.1-cm GGN in the lower lobe of the left lung on computed tomography during a medical checkup. Positron emission tomography showed no difference in uptake by the nodule compared with other organs. We elected to perform surgery because the nodule included a solid component and had grown only slightly during the last 2 years according to thin-section computed tomography. Partial resection of the lower left lung was performed by video-assisted thoracic surgery. Pathological examination revealed mucus-producing high columnar epithelium forming an irregular tubular-acinar-like structure partly replacing the alveolar epithelium on hematoxylin and eosin staining. More than 50 % of the tumor demonstrated a lepidic growth pattern. The tumor was negative for epidermal growth factor receptor mutation but positive for the EML4-ALK fusion oncogene according to fluorescence in situ hybridization. We herein report a case of EML4-ALK-positive lung cancer presenting with a GGN along with a review of the relevant literature, including histopathological findings and imaging features. We consider that EML4-ALK-positive lung cancer is often highly progressive and that careful follow-up is therefore essential in these patients.
Robinson, Alan M; Stock, Stuart R; Soriano, Carmen; Xiao, Xianghui; Richter, Claus-Peter
2016-11-01
The aim of this study was to determine if X-ray micro-computed tomography could be used to locate and characterize tissue damage caused by laser irradiation and to describe its advantages over classical histology for this application. A surgical CO 2 laser, operated in single pulse mode (100 milliseconds) at different power settings, was used to ablate different types of cadaveric animal tissues. Tissue samples were then harvested and imaged with synchrotron X-ray phase-contrast and micro-computed tomography to generate stacks of virtual sections of the tissues. Subsequently, Fiji (ImageJ) software was used to locate tissue damage, then to quantify volumes of laser ablation cones and thermal coagulation damage from 3D renderings of tissue image stacks. Visual comparisons of tissue structures in X-ray images with those visible by classic light microscopy histology were made. We demonstrated that micro-computed tomography could be used to rapidly identify areas of surgical laser ablation, vacuolization, carbonization, and thermally coagulated tissue. Quantification and comparison of the ablation crater, which represents the volume of ablated tissue, and the thermal coagulation zone volumes were performed faster than we could by classical histology. We demonstrated that these procedures can be performed on fresh hydrated and non-sectioned plastic embedded tissue. We demonstrated that the application of non-destructive micro-computed tomography to the visualization and analysis of laser induced tissue damage without tissue sectioning is possible. This will improve evaluation of new surgical lasers and their corresponding effect on tissues. Lasers Surg. Med. 48:866-877, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Wrinkles, loops, and topological defects in twisted ribbons
NASA Astrophysics Data System (ADS)
Chopin, Julien
Nature abounds with elastic ribbon like shapes including double-stranded semiflexible polymers, graphene and metal oxide nanoribbons which are examples of elongated elastic structures with a strongly anisotropic cross-section. Due to this specific geometry, it is far from trivial to anticipate if a ribbon should be considered as a flat flexible filament or a narrow thin plate. We thus perform an experiment in which a thin elastic ribbon is loaded using a twisting and traction device coupled with a micro X-ray computed tomography machine allowing a full 3D shape reconstruction. A wealth of morphological behaviors can be observed including wrinkled helicoids, curled and looped configurations, and faceted ribbons. In this talk, I will show that most morphologies can be understood using a far-from-threshold approach and simple scaling arguments. Further, we find that the various shapes can be organized in a phase diagram using the twist, the tension, and the geometry of the ribbon as control parameters. Finally, I will discuss the spontaneous formation of topological defects with negatively-signed Gaussian charge at large twist and small but finite stretch.
3D Structure Determination of Native Mammalian Cells using Cryo-FIB and Cryo-electron Tomography
Wang, Ke; Strunk, Korrinn; Zhao, Gongpu; Gray, Jennifer L.; Zhang, Peijun
2012-01-01
Cryo-electron tomography (cryo-ET) has enabled high resolution three-dimensional (3D) structural analysis of virus and host cell interactions and many cell signaling events; these studies, however, have largely been limited to very thin, peripheral regions of eukaryotic cells or to small prokaryotic cells. Recent efforts to make thin, vitreous sections using cryo-ultramicrotomy have been successful, however, this method is technically very challenging and with many artifacts. Here, we report a simple and robust method for creating in situ, frozen-hydrated cell lamellas using a focused ion beam at cryogenic temperature (cryo-FIB), allowing access to any interior cellular regions of interest. We demonstrate the utility of cryo-FIB with high resolution 3D cellular structures from both bacterial cells and large mammalian cells. The method will not only facilitate high-throughput 3D structural analysis of biological specimens, but is also broadly applicable to sample preparation of thin films and surface materials without the need for FIB “lift-out”. PMID:22796867
Cross section measurements for production of positron emitters for PET imaging in carbon therapy
NASA Astrophysics Data System (ADS)
Salvador, S.; Colin, J.; Cussol, D.; Divay, C.; Fontbonne, J.-M.; Labalme, M.
2017-04-01
In light ion beam therapy, positron (β+) emitters are produced by the tissue nuclei through nuclear interactions with the beam ions. They can be used for the verification of the delivered dose using positron emission tomography by comparing the spatial distribution of the β+ emitters activity to a computer simulation taking into account the patient morphology and the treatment plan. However, the accuracy of the simulation greatly depends on the method used to generate the nuclear interactions producing these emitters. In the case of Monte Carlo (MC) simulations, the nuclear interaction models still lack the required accuracy due to insufficient experimental cross section data. This is particularly true for carbon therapy where literature data on fragmentation cross sections of a carbon beam with targets of medical interest are very scarce. Therefore, we performed at GANIL in July 2016 measurements on β+ emitter production cross sections with a carbon beam at 25, 50, and 95 MeV/nucleon on thin targets (C, N, O, and PMMA). We extracted the production cross section of C,1110, 13N, and O,1514 that are essential to constrain or develop MC nuclear fragmentation models.
X-ray computed tomography datasets for forensic analysis of vertebrate fossils.
Rowe, Timothy B; Luo, Zhe-Xi; Ketcham, Richard A; Maisano, Jessica A; Colbert, Matthew W
2016-06-07
We describe X-ray computed tomography (CT) datasets from three specimens recovered from Early Cretaceous lakebeds of China that illustrate the forensic interpretation of CT imagery for paleontology. Fossil vertebrates from thinly bedded sediments often shatter upon discovery and are commonly repaired as amalgamated mosaics grouted to a solid backing slab of rock or plaster. Such methods are prone to inadvertent error and willful forgery, and once required potentially destructive methods to identify mistakes in reconstruction. CT is an efficient, nondestructive alternative that can disclose many clues about how a specimen was handled and repaired. These annotated datasets illustrate the power of CT in documenting specimen integrity and are intended as a reference in applying CT more broadly to evaluating the authenticity of comparable fossils.
X-ray computed tomography datasets for forensic analysis of vertebrate fossils
Rowe, Timothy B.; Luo, Zhe-Xi; Ketcham, Richard A.; Maisano, Jessica A.; Colbert, Matthew W.
2016-01-01
We describe X-ray computed tomography (CT) datasets from three specimens recovered from Early Cretaceous lakebeds of China that illustrate the forensic interpretation of CT imagery for paleontology. Fossil vertebrates from thinly bedded sediments often shatter upon discovery and are commonly repaired as amalgamated mosaics grouted to a solid backing slab of rock or plaster. Such methods are prone to inadvertent error and willful forgery, and once required potentially destructive methods to identify mistakes in reconstruction. CT is an efficient, nondestructive alternative that can disclose many clues about how a specimen was handled and repaired. These annotated datasets illustrate the power of CT in documenting specimen integrity and are intended as a reference in applying CT more broadly to evaluating the authenticity of comparable fossils. PMID:27272251
Heussel, C P; Herth, F J F; Kappes, J; Hantusch, R; Hartlieb, S; Weinheimer, O; Kauczor, H U; Eberhardt, R
2009-10-01
Characterisation and quantification of emphysema are necessary for planning of local treatment and monitoring. Sensitive, easy to measure, and stable parameters have to be established and their relation to the well-known pulmonary function testing (PFT) has to be investigated. A retrospective analysis of 221 nonenhanced thin-section MDCT with a corresponding PFT was carried out, with a subgroup analysis in 102 COPD stage III+IV, 44 COPD stage 0, and 33 investigations into interstitial lung disease (ILD). The in-house YACTA software was used for automatic quantification of lung and emphysema volume [l], emphysema index, mean lung density (MLD [HU]) and 15(th) percentile [HU]. CT-derived lung volume is significantly smaller in ILD (3.8) and larger in COPD (7.2) than in controls (5.9, p < 0.0001). Emphysema volume and index are significantly higher in COPD than in controls (3.2 vs. 0.5, p < 0.0001, 45% vs. 8%, p < 0.0001). MLD and 15(th) percentile are significantly smaller in COPD (-877/-985, p < 0.0001) and significantly higher in ILD (-777, p < 0.0006/-914, p < 0.0001) than in controls (-829/-935). A relevant amount of COPD patients apparently do not suffer from emphysema, while controls who do not fulfil PFT criteria for COPD also demonstrate CT features of emphysema. Automatic quantification of thin-section CT delivers convincing parameters and ranges that are able to differentiate among emphysema, control and ILD. An emphysema index of lower 20%, MLD higher than -850, and 15(th) percentile lower than -950 might be regarded as normal (thin-section, nonenhanced, B40, YACTA). These ranges might be helpful in the judgement of individual measures.
Neubauer, Jakob; Benndorf, Matthias; Reidelbach, Carolin; Krauß, Tobias; Lampert, Florian; Zajonc, Horst; Kotter, Elmar; Langer, Mathias; Fiebich, Martin; Goerke, Sebastian M.
2016-01-01
Purpose To compare the diagnostic accuracy of radiography, to radiography equivalent dose multidetector computed tomography (RED-MDCT) and to radiography equivalent dose cone beam computed tomography (RED-CBCT) for wrist fractures. Methods As study subjects we obtained 10 cadaveric human hands from body donors. Distal radius, distal ulna and carpal bones (n = 100) were artificially fractured in random order in a controlled experimental setting. We performed radiation dose equivalent radiography (settings as in standard clinical care), RED-MDCT in a 320 row MDCT with single shot mode and RED-CBCT in a device dedicated to musculoskeletal imaging. Three raters independently evaluated the resulting images for fractures and the level of confidence for each finding. Gold standard was evaluated by consensus reading of a high-dose MDCT. Results Pooled sensitivity was higher in RED-MDCT with 0.89 and RED-MDCT with 0.81 compared to radiography with 0.54 (P = < .004). No significant differences were detected concerning the modalities’ specificities (with values between P = .98). Raters' confidence was higher in RED-MDCT and RED-CBCT compared to radiography (P < .001). Conclusion The diagnostic accuracy of RED-MDCT and RED-CBCT for wrist fractures proved to be similar and in some parts even higher compared to radiography. Readers are more confident in their reporting with the cross sectional modalities. Dose equivalent cross sectional computed tomography of the wrist could replace plain radiography for fracture diagnosis in the long run. PMID:27788215
Foster, Allison; Morandi, Federica; May, Elizabeth
2015-01-01
Previous reports describing the prevalence of ear diseases in dogs have primarily been based on dogs presenting with clinical signs of disease. The prevalence of subclinical ear disease remains unknown. The purpose of this cross-sectional retrospective study was to describe the prevalence of lesions consistent with middle and external ear disease in dogs presented for multidetector computed tomography (CT) of the head and/or cranial cervical spine at our hospital during the period of July 2011 and August 2013. For each included dog, data recorded were signalment, CT findings, diagnosis, and treatment. A total of 199 dogs met inclusion criteria. Nineteen dogs (9.5%) were referred for evaluation of suspected ear disease and 27 dogs (13.5%) had histories or physical examination findings consistent with otitis externa. A total of 163 dogs (81.9%) had CT lesions consistent with external ear disease (i.e. ear canal mineralization, external canal thickening, and/or narrowing of the external canal). Thirty-nine dogs (19.5%) had CT lesions consistent with middle ear disease (i.e. soft tissue attenuating/fluid material in the tympanic bullae, bulla wall thickening or lysis, and/or periosteal proliferation of the temporal bone). Findings from this study indicated that the prevalence of external and middle ear disease in dogs could be higher than that previously reported. © 2014 American College of Veterinary Radiology.
Otani, Hideji; Tanaka, Tomonori; Murata, Kiyoshi; Fukuoka, Junya; Nitta, Norihisa; Nagatani, Yukihiro; Sonoda, Akinaga; Takahashi, Masashi
2016-01-01
Purpose To evaluate the incidence and pathologic correlation of thin-section computed tomography (TSCT) findings in smoking-related interstitial fibrosis (SRIF) with pulmonary emphysema. Patients and methods Our study included 172 consecutive patients who underwent TSCT and subsequent lobectomy. TSCT findings including clustered cysts with visible walls (CCVW) and ground-glass attenuation with/without reticulation (GGAR) were evaluated and compared in nonsmokers and smokers and among lung locations. TSCT findings, especially CCVW, were also compared with histological findings using lobectomy specimens. Results The incidence of CCVW and GGAR was significantly higher in smokers than in nonsmokers (34.1% and 40.7%, respectively, vs 2.0% and 12.2%). CCVW and GGAR were frequently found in the lower and peripheral zones. Histologically, CCVW corresponded more often with SRIF with emphysema than usual interstitial pneumonia (UIP, 63.3% vs 30%). CCVW of irregular size and shape were seen in 19 of 20 SRIF with emphysema and in seven of nine UIP-manifested areas with similar round cysts. A less-involved subpleural parenchyma was observed more frequently in SRIF with emphysema. Conclusion SRIF with emphysema is a more frequent pathological finding than UIP in patients with CCVW on TSCT. The irregular size and shape of CCVW and a less-involved subpleural parenchyma may be a clue suggesting the presence of SRIF with emphysema. PMID:27445472
Koistinen, A P; Korhonen, H; Kiviranta, I; Kröger, H; Lappalainen, R
2011-07-01
Insertion of internal fracture fixation devices, such as screws, mechanically weakens the bone. Diamond-like carbon has outstanding tribology properties which may decrease the amount of damage in tissue. The purpose of this study was to investigate methods for quantification of cortical bone damage after orthopaedic bone screw insertion and to evaluate the effect of surface modification on tissue damage. In total, 48 stainless steel screws were inserted into cadaver bones. Half of the screws were coated with a smooth amorphous diamond coating. Geometrical data of the bones was determined by peripheral quantitative computed tomography. Thin sections of the bone samples were prepared after screw insertion, and histomorphometric evaluation of damage was performed on images obtained using light microscopy. Micro-computed tomography and scanning electron microscopy were also used to examine tissue damage. A positive correlation was found between tissue damage and the geometric properties of the bone. The age of the cadaver significantly affected the bone mineral density, as well as the damage perimeter and diameter of the screw hole. However, the expected positive effect of surface modification was probably obscured by large variations in the results and, thus, statistically significant differences were not found in this study. This can be explained by natural variability in bone tissue, which also made automated image analysis difficult.
Virtopsy: postmortem imaging of laryngeal foreign bodies.
Oesterhelweg, Lars; Bolliger, Stephan A; Thali, Michael J; Ross, Steffen
2009-05-01
Death from corpora aliena in the larynx is a well-known entity in forensic pathology. The correct diagnosis of this cause of death is difficult without an autopsy, and misdiagnoses by external examination alone are common. To determine the postmortem usefulness of modern imaging techniques in the diagnosis of foreign bodies in the larynx, multislice computed tomography, magnetic resonance imaging, and postmortem full-body computed tomography-angiography were performed. Three decedents with a suspected foreign body in the larynx underwent the 3 different imaging techniques before medicolegal autopsy. Multislice computed tomography has a high diagnostic value in the noninvasive localization of a foreign body and abnormalities in the larynx. The differentiation between neoplasm or soft foreign bodies (eg, food) is possible, but difficult, by unenhanced multislice computed tomography. By magnetic resonance imaging, the discrimination of the soft tissue structures and soft foreign bodies is much easier. In addition to the postmortem multislice computed tomography, the combination with postmortem angiography will increase the diagnostic value. Postmortem, cross-sectional imaging methods are highly valuable procedures for the noninvasive detection of corpora aliena in the larynx.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, R. C.; Bruno, Giovanni; Onel, Yener
Microstructural changes in porous cordierite caused by machining were characterized using microtensile testing, X-ray computed tomography and scanning electron microscopy. Young s moduli and Poisson s ratios were determined on ~215-380 um thick machined samples by combining digital image correlation and microtensile loading. The results provide evidence for an increase in microcrack density due to machining of the thin samples extracted from diesel particulate filter honeycombs.
Computer program for thin-wire structures in a homogeneous conducting medium
NASA Technical Reports Server (NTRS)
Richmond, J. H.
1974-01-01
A computer program is presented for thin-wire antennas and scatters in a homogeneous conducting medium. The anaylsis is performed in the real or complex frequency domain. The program handles insulated and bare wires with finite conductivity and lumped loads. The output data includes the current distribution, impedance, radiation efficiency, gain, absorption cross section, scattering cross section, echo area and the polarization scattering matrix. The program uses sinusoidal bases and Galerkin's method.
NASA Astrophysics Data System (ADS)
Mahabadi, O. K.; Tatone, B. S. A.; Grasselli, G.
2014-07-01
This study investigates the influence of microscale heterogeneity and microcracks on the failure behavior and mechanical response of a crystalline rock. The thin section analysis for obtaining the microcrack density is presented. Using micro X-ray computed tomography (μCT) scanning of failed laboratory specimens, the influence of heterogeneity and, in particular, biotite grains on the brittle fracture of the specimens is discussed and various failure patterns are characterized. Three groups of numerical simulations are presented, which demonstrate the role of microcracks and the influence of μCT-based and stochastically generated phase distributions. The mechanical response, stress distribution, and fracturing process obtained by the numerical simulations are also discussed. The simulation results illustrate that heterogeneity and microcracks should be considered to accurately predict the tensile strength and failure behavior of the sample.
High Resolution X-Ray Micro-CT of Ultra-Thin Wall Space Components
NASA Technical Reports Server (NTRS)
Roth, Don J.; Rauser, R. W.; Bowman, Randy R.; Bonacuse, Peter; Martin, Richard E.; Locci, I. E.; Kelley, M.
2012-01-01
A high resolution micro-CT system has been assembled and is being used to provide optimal characterization for ultra-thin wall space components. The Glenn Research Center NDE Sciences Team, using this CT system, has assumed the role of inspection vendor for the Advanced Stirling Convertor (ASC) project at NASA. This article will discuss many aspects of the development of the CT scanning for this type of component, including CT system overview; inspection requirements; process development, software utilized and developed to visualize, process, and analyze results; calibration sample development; results on actual samples; correlation with optical/SEM characterization; CT modeling; and development of automatic flaw recognition software. Keywords: Nondestructive Evaluation, NDE, Computed Tomography, Imaging, X-ray, Metallic Components, Thin Wall Inspection
Majkut, Patrycja; Sadr, Alireza; Shimada, Yasushi; Sumi, Yasunori; Tagami, Junji
2015-08-01
Optical coherence tomography (OCT) is a noninvasive modality to obtain in-depth images of biological structures. A dental OCT system has become available for chairside application. This in vitro study hypothesized that swept-source OCT can be used to measure the remaining dentin thickness (RDT) at the roof of the dental pulp chamber during excavation of deep caries. Human molar teeth with deep occlusal caries were investigated. After obtaining 2-dimensional and 3-dimensional OCT scans using a swept-source OCT system at a 1330-nm center wavelength, RDT was evaluated by image analysis software. Microfocus x-ray computed tomographic (micro-CT) images were obtained from the same cross sections to confirm OCT findings. The smallest RDT values at the visible pulp horn were measured on OCT and micro-CT imaging and compared using the Pearson correlation. Pulpal horns and pulp chamber roof observation under OCT and micro-CT imaging resulted in comparable images that allowed the measurement of coronal dentin thickness. RDT measured by OCT showed optical values range between 140 and 2300 μm, which corresponded to the range of 92-1524 μm on micro-CT imaging. A strong correlation was found between the 2 techniques (r = 0.96, P < .001). Further analysis indicated linear regression with a slope of 1.54 and no intercept, closely matching the bulk refractive index of dentin. OCT enables visualization of anatomic structures during deep caries excavation. Exposure of the vital dental pulp because of the removal of very thin remaining coronal dentin can be avoided with this novel noninvasive technique. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
[Value of computer tomography in the managment of brain injuries].
Keita, A D; Toure, M; Sissako, A; Doumbia, S; Coulibaly, Y; Doumbia, D; Kane, M; Diallo, A K; Toure, A A; Traore, I
2005-11-01
The purpose of this prospective study conducted from January 2001 to December 2001 was to ascertain the value of computer tomography for evaluation of brain injuries. Computer tomography was performed using a Toshiba X VID system with contiguous 5 mm axial sections through the posterior fossa and 10 mm contiguous axial sections through the subtentorial region without contrast injection. A total of 107 patients with brain injuries were enrolled over the one-year study period. These patients accounted for 0.8% of all admissions to surgical emergency unit of Gabriel Toure Hospital in Bamako, Mali. The predominant age group for brain injuries was the 20- to 29-year-old group (35 cases). The male-to-female sex ratio was 5:1. Vehicular accident was the most frequent cause of brain injury (76 cases). Trauma was severe in 48 patients with a Glasgow score less than 8. Coma occurred immediately after injury in 90 cases. Ventricular hemorrhage led to coma in 100% of cases whereas brain hemorrhage and hematoma led to coma in 93.3% and 83.3% of cases respectively. Treatment was medical in 99 cases and neurosurgical in 8. The mortality rate was 34% and the morbidity rate (permanent sequels) was 36%. Computer tomography is a valuable tool for therapeutic decision-making in medico-surgical emergencies involving brain injuries.
Structure and mechanical behavior of bird beaks
NASA Astrophysics Data System (ADS)
Seki, Yasuaki
The structure and mechanical behavior of Toco toucan (Ramphastos toco) and Wreathed hornbill (Rhyticeros undulatus) beaks were examined. The structure of Toco toucan and Wreathed hornbill beak was found to be a sandwich composite with an exterior of keratin and a fibrous bony network of closed cells made of trabeculae. A distinctive feature of the hornbill beak is its casque formed from cornified keratin layers. The casque is believed to have an acoustic function due to the complex internal structure. The toucan and hornbill beaks have a hollow region that extends from proximal to mid-section. The rhamphotheca is comprised of super-posed polygonal scales (45 mum diameter and 1 mum thickness) fixed by some organic adhesive. The branched intermediate filaments embedded in keratin matrix were discovered by transmission electron microscopy (TEM). The diameter of intermediate laments was ~10 nm. The orientation of intermediate filaments was examined with TEM tomography and the branched filaments were homogeneously distributed. The closed-cell foam is comprised of the fibrous structure of bony struts with an edge connectivity of three or four and the cells are sealed off by the thin membranes. The volumetric structure of bird beak foam was reproduced by computed tomography for finite element modeling.
[The radiologist physician in major trauma evaluation].
Motta-Ramírez, Gaspar Alberto
2016-01-01
Trauma is the most common cause of death in young adults. A multidisciplinary trauma team consists of at least a surgical team, an anesthesiology team, radiologic team, and an emergency department team. Recognize the integration of multidisciplinary medical team in managing the trauma patient and which must include the radiologist physician responsible for the institutional approach to the systematization of the trauma patient regarding any radiological and imaging study with emphasis on the FAST (del inglés, Focused Assessment with Sonography in Trauma)/USTA, Whole body computed tomography. Ultrasound is a cross-sectional method available for use in patients with major trauma. Whole-body multidetector computed tomography became the imaging modality of choice in the late 1990s. In patients with major trauma, examination FAST often is the initial imaging examination, extended to extraabdominal regions. Patients who have multitrauma from blunt mechanisms often require multiple diagnostic examinations, including Computed Tomography imaging of the torso as well as abdominopelvic Computed Tomography angiography. Multiphasic Whole-body trauma imaging is feasible, helps detect clinically relevant vascular injuries, and results in diagnostic image quality in the majority of patients. Computed Tomography has gained importance in the early diagnostic phase of trauma care in the emergency room. With a single continuous acquisition, whole-body computed tomography angiography is able to demonstrate all potentially injured organs, as well as vascular and bone structures, from the circle of Willis to the symphysis pubis.
Pahl, Daniel A; Green, Nancy S; Bhatia, Monica; Lee, Margaret T; Chang, Jonathan S; Licursi, Maureen; Briamonte, Courtney; Smilow, Elana; Chen, Royce W S
2017-11-01
Based on standard screening techniques, sickle retinopathy reportedly occurs in 10% of adolescents with sickle cell disease (SCD). We performed a prospective, observational clinical study to determine if ultra-widefield fluorescein angiography (UWFA), spectral-domain optical coherence tomography (SD-OCT), and optical coherence tomography angiography (OCT-A) detect more-frequent retinopathy in adolescents with SCD. Cross-sectional study. Setting: Institutional. Sixteen adolescents with SCD, aged 10-19 years (mean age 14.9 years), and 5 age-equivalent controls (mean age 17.4 years). Examinations including acuity, standard slit-lamp biomicroscopy, UWFA, SD-OCT, and OCT-A were performed. Sickle retinopathy defined by biomicroscopic changes, Goldberg stages I-V, Penman scale, flow void on OCT-A, or macular thinning on SD-OCT. While 22 of 32 SCD eyes (68.8%) had retinopathy on biomicroscopy, by UWFA 4 of 24 (16.7%) SCD eyes had peripheral arterial occlusion (Goldberg I), and 20 of 24 eyes (83.3%) had peripheral arteriovenous anastomoses (Goldberg II) in addition. No patients had Goldberg stages III-V. By SD-OCT and OCT-A, thinning of the macula and flow voids in both the superficial and deep retinal capillary plexus were found in 6 of 30 (20%) eyes. All 24 eyes with adequate UWFA studies demonstrated sickle retinopathy. SD-OCT and OCT-A, which have not been previously reported in the adolescent population, detected abnormal macular thinning and flow abnormalities undetected by biomicroscopy. These findings suggest that pediatric sickle retinopathy may be more prevalent than previously suspected. If these findings are confirmed with larger cross-sectional and prospective analyses, these approaches may enhance early screening for sickle retinopathy. Copyright © 2017 Elsevier Inc. All rights reserved.
Prakashini, K; Babu, Satish; Rajgopal, K V; Kokila, K Raja
2016-01-01
To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT) in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location. A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD) and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP) rate of CAD software was calculated. Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2%) and 202 (91.4%) by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4-10 mm (93.4%) and nodules in hilar (100%) and central (96.5%) location when compared to RAD's performance. CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD's performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time.
Razavi, Touraj; Palmer, Richard M; Davies, Jonathan; Wilson, Ron; Palmer, Paul J
2010-07-01
To assess the accuracy of measuring the cortical bone thickness adjacent to dental implants using two cone beam computed tomography (CBCT) systems. Ten 4 x 11 mm Astra Tech implants were placed at varying distances from the cortical bone in two prepared bovine ribs. Both ribs were scanned in a reproducible position using two different CBCT scanners. Ten examiners each carried out four measurements on all 10 implants using the two CBCT systems: vertical distance between the top of the implant and the alveolar crest (IT-AC), and thickness of the cortical bone from the outer surface of the implant threads at 3, 6 and 9 mm from the top of the implant. Ground sections were prepared and bone thickness was measured using a light microscope and a graticule to give a gold standard (GS) measurement. The examiner's measurements were significantly different between CBCT systems for the vertical and thickness dimensions (P<0.001) while measuring the cortical bone thickness between 0.3 and 3.7 mm. Within that range, i-CAT NG measurements were consistently underestimated in comparison with the GS. Accuitomo 3D60 FPD measurements closely approximated the GS, except when cortical bone thickness was <0.8 mm. The mean percentage errors from the GS at 3, 6 and 9 mm measurement levels were 68%, 28% and 18%, respectively, for i-CAT NG and 23%, 5% and 6%, respectively, for Accuitomo 3D60 FPD. Within the limitations of this study, it was concluded that i-CAT NG (voxel size 0.3) may not produce sufficient resolution of the thin cortical bone adjacent to dental implants and, therefore, the measurements may not be accurate; whereas, Accuitomo 3D60 FPD (voxel size 0.125) may produce better resolution and more accurate measurement of the thin bone.
Application of thin-section low-dose chest CT (TSCT) in the management of pediatric AIDS.
Ambrosino, M M; Roche, K J; Genieser, N B; Kaul, A; Lawrence, R M
1995-01-01
The aim of this study was to evaluate the usefulness of thin-section low-dose computed tomography (TSCT) in the management of children with AIDS, as chest radiographs (CXR) often fail to adequately explain the patients' clinical status. We performed 54 noncontrast TSCTs on 32 children. The patients aged from 3 months to 14.6 years, were diagnosed as having bacterial pneumonia, lumphocytic interstitial pneumonitis (LIP), Pneumocystis carinii pneumonia (PCP), or Mycobacterium avium-intracellulare infection (MAI). The scans were correlated with the clinical diagnosis, T-lymphocyte-subset percentages, and p24-antigen levels. Subsegmental consolidations were seen in patients with LIP, PCP, and MAI, and as an isolated finding in those with only bacterial pneumonia. Ground-glass haziness was seen exclusively with acute PCP. Reticulonodular thickening was identified only in patients with LIP. Mosaic perfusion was seen with MAI, LIP, and pneumonia. The presence of adenopathy correlated with CD4+ T-cell subset percentages. The greatest value of CT in this study was in detecting new disease when chest films failed to correlate with a patient's clinical state, and in demonstrating acute/subacute disease in patients with severe baseline chest-film changes. Recurrent pneumonias may represent progression of "smoldering" disease, rather than true recurrent disease following complete clearing. Adenopathy with low CD4+ levels should suggest lymphoma or infection with MAI.
Application of Computer Axial Tomography (CAT) to measuring crop canopy geometry. [corn and soybeans
NASA Technical Reports Server (NTRS)
Bauer, M. E.; Vanderbilt, V. C. (Principal Investigator); Kilgore, R. W.
1981-01-01
The feasibility of using the principles of computer axial topography (CAT) to quantify the structure of crop canopies was investigated because six variables are needed to describe the position-orientation with time of a small piece of canopy foliage. Several cross sections were cut through the foliage of healthy, green corn and soybean canopies in the dent and full pod development stages, respectively. A photograph of each cross section representing the intersection of a plane with the foliage was enlarged and the air-foliage boundaries delineated by the plane were digitized. A computer program was written and used to reconstruct the cross section of the canopy. The approach used in applying optical computer axial tomography to measuring crop canopy geometry shows promise of being able to provide needed geometric information for input data to canopy reflectance models. The difficulty of using the CAT scanner to measure large canopies of crops like corn is discussed and a solution is proposed involving the measurement of plants one at a time.
Internal Carotid Artery Hypoplasia: Role of Color-Coded Carotid Duplex Sonography.
Chen, Pei-Ya; Liu, Hung-Yu; Lim, Kun-Eng; Lin, Shinn-Kuang
2015-10-01
The purpose of this study was to determine the role of color-coded carotid duplex sonography for diagnosis of internal carotid artery hypoplasia. We retrospectively reviewed 25,000 color-coded carotid duplex sonograms in our neurosonographic database to establish more diagnostic criteria for internal carotid artery hypoplasia. A definitive diagnosis of internal carotid artery hypoplasia was made in 9 patients. Diagnostic findings on color-coded carotid duplex imaging include a long segmental small-caliber lumen (52% diameter) with markedly decreased flow (13% flow volume) in the affected internal carotid artery relative to the contralateral side but without intraluminal lesions. Indirect findings included markedly increased total flow volume (an increase of 133%) in both vertebral arteries, antegrade ipsilateral ophthalmic arterial flow, and a reduced vessel diameter with increased flow resistance in the ipsilateral common carotid artery. Ten patients with distal internal carotid artery dissection showed a similar color-coded duplex pattern, but the reductions in the internal and common carotid artery diameters and increase in collateral flow from the vertebral artery were less prominent than those in hypoplasia. The ipsilateral ophthalmic arterial flow was retrograde in 40% of patients with distal internal carotid artery dissection. In addition, thin-section axial and sagittal computed tomograms of the skull base could show the small diameter of the carotid canal in internal carotid artery hypoplasia and help distinguish hypoplasia from distal internal carotid artery dissection. Color-coded carotid duplex sonography provides important clues for establishing a diagnosis of internal carotid artery hypoplasia. A hypoplastic carotid canal can be shown by thin-section axial and sagittal skull base computed tomography to confirm the final diagnosis. © 2015 by the American Institute of Ultrasound in Medicine.
Bermo, Mohammed; Behnia, Sanaz; Fair, Joanna; Miyaoka, Robert S; Elojeimy, Saeed
2017-07-31
Recognizing the different mechanisms and imaging appearance of extraskeletal Tc-99m methylene diphosphonate uptake enhances the diagnostic value of bone scan interpretation. In this article, we present a pictorial review of the different mechanisms of extraskeletal Tc-99m methylene diphosphonate uptake on bone scintigraphy including neoplastic, inflammatory, ischemic, traumatic, excretory, and iatrogenic. We also illustrate through case examples the added value of correlation with cross-sectional and single photon emission computed tomography and computed tomography imaging in localizing and characterizing challenging cases of extraskeletal uptake. Copyright © 2017 Elsevier Inc. All rights reserved.
Hood, Donald C.
2017-01-01
Although ophthalmologists are becoming increasingly reliant upon optical coherence tomography (OCT), clinicians who care for glaucoma patients are not taking full advantage of the potential of this powerful technology. First, we ask, how would one describe the nature of glaucomatous damage if only OCT scans were available? In particular, a schematic model of glaucomatous damage is developed in section 2, and the nature of glaucomatous damage seen on OCT scans described in the context of this model in section 3. In particular, we illustrate that local thinning of the circumpapillary retinal nerve fiber layer (cpRNFL) around the optic disc can vary in location, depth, and/or width, as well as homogeneity of damage. Second, we seek to better understand the relationship between the thinning of the cpRNFL and the various patterns of sensitivity loss seen on visual fields obtained with standard automated perimetry. In sections 4 and 5, we illustrate why one should expect a wide range of visual field patterns, and iilustrate why they should not be placed into discrete categories. Finally, section 6 describes how the clinician can take better advantage of the information in OCT scans. The approach is summarized in a single-page report, which can be generated from a single wide-field scan. The superiority of this approach, as opposed to the typical reliance on summary metrics, is described. PMID:28012881
Computer Program for Steady Transonic Flow over Thin Airfoils by Finite Elements
1975-10-01
COMPUTER PROGRAM FOR STEADY JJ TRANSONIC FLOW OVER THIN AIRFOILS BY g FINITE ELEMENTS • *q^^ r ̂ c HUNTSVILLE RESEARCH & ENGINEERING CENTER...jglMMi B Jun’ INC ORGANIMTION NAME ANO ADDRESS Lö^kfteed Missiles & Space Company, Inc. Huntsville Research & Engineering Center,^ Huntsville, Alab...This report was prepared by personnel in the Computational Mechamcs Section of the Lockheed Missiles fc Space Company, Inc.. Huntsville Research
Visualization of Individual Images in Patterned Organic-Inorganic Multilayers Using GISAXS-CT.
Ogawa, Hiroki; Nishikawa, Yukihiro; Takenaka, Mikihito; Fujiwara, Akihiko; Nakanishi, Yohei; Tsujii, Yoshinobu; Takata, Masaki; Kanaya, Toshiji
2017-05-16
Using grazing-incidence small-angle scattering (GISAXS) with computed tomography (CT), we have individually reconstructed the spatial distribution of a thin gold (Au) layer buried under a thin poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) layer. Owing to the difference between total reflection angles of Au and PS-b-P2VP, the scattering profiles for Au nanoparticles and self-assembled nanostructures of PS-b-P2VP could be independently obtained by changing the X-ray angle of incidence. Reconstruction of scattering profiles allows one to separately characterize spatial distributions in Au and PS-b-P2VP nanostructures.
Hemsley, S; Palmer, H; Canfield, R B; Stewart, M E B; Krockenberger, M B; Malik, R
2013-09-01
To use cross-sectional imaging (helical computed tomography (CT)) combined with conventional anatomical dissection to define the normal anatomy of the nasal cavity and bony cavitations of the koala skull. Helical CT scans of the heads of nine adult animals were obtained using a multislice scanner acquiring thin slices reconstructed in the transverse, sagittal and dorsal planes. Subsequent anatomical dissection permitted confirmation of correct identification and further delineation of bony and air-filled structures visible in axial and multiplanar reformatted CT images. The nasal cavity was relatively simple, with little scrolling of nasal conchae, but bony cavitations were complex and extensive. A rostral maxillary recess and ventral conchal, caudal maxillary, frontal and sphenoidal paranasal sinuses were identified and characterised. Extensive temporal bone cavitation was shown to be related to a large epitympanic recess. The detailed anatomical data provided are applicable to future functional and comparative anatomical studies, as well as providing a preliminary atlas for clinical investigation of conditions such as cryptococcal rhinosinusitis, a condition more common in the koala than in many other species. © 2013 Australian Veterinary Association.
Single photon emission computed tomography and oth selected computer topics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frey, G.D.
1981-07-01
This book, the proceedings of a meeting in January 1980, contains 21 papers. Thirteen are devoted to aspects of emission tomography, four to nuclear cardiology, and five to other topics. The initial set of papers consists of reviews of the single photon emission tomography process. These include transverse axial tomography using scintillation cameras and other devices, longitudinal section tomography, and pin-hole and slant-hole systems. These reviews are generally well done, but as might be expected, lack any coherence from paper to paper. The papers on nuclear cardiology include several of Fourier analysis in nuclear cardiology and one on shunt quantification.more » Other clinical papers are on quantifying Tc-99m glucoheptonate uptake in the brain and on iron-59 retention studies. A general criticism of the book is the poor quality of photographic reproductions.« less
3-D X-ray tomography of diamondiferous mantle eclogite xenoliths, Siberia: A review
NASA Astrophysics Data System (ADS)
Howarth, Geoffrey H.; Sobolev, Nikolay V.; Pernet-Fisher, John F.; Ketcham, Richard A.; Maisano, Jessica A.; Pokhilenko, Lyudmila N.; Taylor, Dawn; Taylor, Lawrence A.
2015-04-01
Diamonds form over billions of years, hundreds of kilometers beneath the Earth's surface, and in combination with inclusions trapped within, provide important constraints on the evolution of the mantle over geological time. Diamonds are generally studied as individual crystals sourced from highly explosive kimberlite pipes, which entrain and subsequently disaggregate mantle fragments (xenoliths) en route to the surface. This has resulted in a general absence of robust textural descriptions of diamonds relative to their hosting mantle protolith. The textural associations of diamonds within their mantle host rocks are reviewed here on the basis of a compilation of X-ray tomographic data for 17 diamondiferous eclogite xenoliths from Siberian kimberlites. This review represents a comprehensive description of diamonds relative to their host silicates. The lack of such descriptions in previous studies is largely due to the rarity of these xenoliths, the difficulty in preparing petrographic thin sections containing diamonds, and their high-monetary value. High-resolution computed X-ray tomography (HRCXT) produces up to 1200 sequential 2-D slices through individual xenoliths, each of which represents a 'pseudo thin-section' with a resolution on the order of 5-20 μm. The improved resolution of X-ray imaging in recent studies allows for the identification of not only primary minerals, but metasomatic minerals assemblages, including: 'spongy' textured clinopyroxene, phlogopite/K-richterite, and hercynitic spinel, allowing for the delineation of distinct metasomatic pathways through the xenoliths and their relationship to diamonds. Diamonds are observed in three distinct textural settings, potentially representing several temporally distinct diamond growth events, these setting includes: (1) diamonds completely enclosed in garnet; (2) diamonds associated with highly embayed silicate grain boundaries; and (3) diamonds contained within distinct metasomatic 'plumbing-systems'. Diamonds observed completely enclosed in garnets suggest an early diamond-forming event prior to major re-crystallization and eclogite formation during subduction. The occurrence of diamond in association with embayed garnets suggests that diamond grew at the expense of the hosting silicate protolith. In addition, the spatial relationships of diamonds with metasomatic pathways, which are generally interpreted to result from late-stage proto-kimberlitic fluid percolation, indicate a period of diamond growth occurring close to, but prior to, the time of kimberlite emplacement. Furthermore, the paragenesis of sulfides within eclogite xenoliths are described using 3-D models for entire xenoliths volumes, providing important constraints of the timing of sulfide mobilization within the mantle. Three-D animations created using X-ray tomography data for ten of the xenoliths can be viewed at the following link: http://eps.utk.edu/faculty/taylor/tomography.php
NASA Astrophysics Data System (ADS)
White, Robin T.; Wu, Alex; Najm, Marina; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik
2017-05-01
A four-dimensional visualization approach, featuring three dimensions in space and one dimension in time, is proposed to study local electrode degradation effects during voltage cycling in fuel cells. Non-invasive in situ micro X-ray computed tomography (XCT) with a custom fuel cell fixture is utilized to track the same cathode catalyst layer domain throughout various degradation times from beginning-of-life (BOL) to end-of-life (EOL). With this unique approach, new information regarding damage features and trends are revealed, including crack propagation and catalyst layer thinning being quantified by means of image processing and analysis methods. Degradation heterogeneities as a result of local environmental variations under land and channel are also explored, with a higher structural degradation rate under channels being observed. Density and compositional changes resulting from carbon corrosion and catalyst layer collapse and thinning are observed by changes in relative X-ray attenuation from BOL to EOL, which also indicate possible vulnerable regions where crack initiation and propagation may occur. Electrochemical diagnostics and morphological features observed by micro-XCT are correlated by additionally collecting effective catalyst surface area, double layer capacitance, and polarization curves prior to imaging at various stages of degradation.
Bornstein, Michael M; Horner, Keith; Jacobs, Reinhilde
2017-02-01
Diagnostic radiology is an essential component of treatment planning in the field of implant dentistry. This narrative review will present current concepts for the use of cone beam computed tomography imaging, before and after implant placement, in daily clinical practice and research. Guidelines for the selection of three-dimensional imaging will be discussed, and limitations will be highlighted. Current concepts of radiation dose optimization, including novel imaging modalities using low-dose protocols, will be presented. For preoperative cross-sectional imaging, data are still not available which demonstrate that cone beam computed tomography results in fewer intraoperative complications such as nerve damage or bleeding incidents, or that implants inserted using preoperative cone beam computed tomography data sets for planning purposes will exhibit higher survival or success rates. The use of cone beam computed tomography following the insertion of dental implants should be restricted to specific postoperative complications, such as damage of neurovascular structures or postoperative infections in relation to the maxillary sinus. Regarding peri-implantitis, the diagnosis and severity of the disease should be evaluated primarily based on clinical parameters and on radiological findings based on periapical radiographs (two dimensional). The use of cone beam computed tomography scans in clinical research might not yield any evident beneficial effect for the patient included. As many of the cone beam computed tomography scans performed for research have no direct therapeutic consequence, dose optimization measures should be implemented by using appropriate exposure parameters and by reducing the field of view to the actual region of interest. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Comparison of radiological and morphologic assessments of myocardial bridges.
Ercakmak, Burcu; Bulut, Elif; Hayran, Mutlu; Kaymaz, Figen; Bilgin, Selma; Hazirolan, Tuncay; Bayramoglu, Alp; Erbil, Mine
2015-09-01
In this study we aimed to compare the findings of coronary dual-source computed tomography angiography of myocardial bridges with cadaveric dissections. Forty-one isolated, non-damaged fresh sheep hearts were used in this study. Myocardial bridges of the anterior interventricular branch of the left coronary artery were demonstrated and analyzed by a coronary dual-source computed tomography angiography. Dissections along the left anterior interventricular branch of the left coronary artery were performed by using Zeiss OPMI pico microscope and the length of the bridges were measured. The depths of the myocardial bridges were measured from the stained sections by using the light microscope (Leica DM 6000B). MBs were found in all 41 hearts (100%) during dissections. Dual-source computed tomography angiography successfully detected 87.8% (36 of the 41 hearts) of the myocardial bridges measured on left anterior interventricular branch of left coronary artery. The lengths of the myocardial bridges were found 5-40 and 8-50 mm with dissection and dual-source computed tomography angiography, respectively. And the depths were found 0.7-4.5 mm by dual-source computed tomography angiography and 0.745-4.632 mm morphologically. Comparison of the mean values of the lengths showed statistically significantly higher values (22.0 ± 8.5, 17.7 ± 7.7 mm, p = 0.003) for the dissections. Radiological assessment also effectively discriminated complete bridges from incomplete ones. Our study showed that coronary computed tomography angiography is reliable in evaluating the presence and depth of myocardial bridges.
Raji, A R; Sardari, K; Mohammadi, H R
2008-06-01
The purpose of this study was to define the structures of the digits and hoof in Holstein dairy cattle by using computed tomography scan (CT scan). Transverse, sagittal and dorsoplantar CT images of two isolated cattle cadaver digits were obtained using a Siemens ARTX2 Somatom. The CT images were compared to corresponding frozen cross-sections. Relevant anatomical structures were identified and labelled at each level. The CT images provided anatomical detail of the digits and hoof in Holstein dairy cattle. Transversal images provided excellent depiction of anatomical structures when compared to corresponding frozen cross-sections. The information presented in this paper would serve as an initial reference to the evaluation of CT images of the digits and hoof in Holstein dairy cattle.
[Case of lymphangioleiomyomatosis (LAM) discovered during cesarean section under spinal anesthesia].
Nakanishi, Mika; Okura, Nahomi; Kashii, Tomoko; Matsushita, Mitsuji; Mori, Masanobu; Yoshida, Masayo; Tsujimura, Shigehisa
2014-02-01
We experienced a case of scheduled cesarean section under spinal anesthesia in a patient with LAM which had been missed in spite of preoperative medical examination and consultation with specialists but discovered because of perioperative hypoxia A 35-year-old woman, Gravida 1 Para 0, with breech presentation was scheduled to undergo cesarean section under spinal anesthesia at 38 weeks of gestation. She had no history of asthma or abnormal findings at annual medical examination. She had suffered from dry cough and nocturnal dyspnea for 7 weeks and an inhaled bronchodilator was administered with diagnosis of inflammatory airway disease by her respiratory physicians. Spinal anesthesia was performed with bupivacaine 12.5 mg. At the beginning of anesthesia SPO2 was 97% in supine position, but it rapidly decreased to less than 90% and 3 l x min(-1) oxygen was supplied with a facial mask. The anesthetic level was thoracal 4 bilaterally and her breathing was stable. The circulatory state, Apgar score and other vital signs were within normal ranges. Postoperative chest X-ray showed bilateral numerous grained spots and computed tomography scans showed multiple thin-walled cysts. The characteristic history and the fluoroscopic data gave her clinical diagnosis of LAM.
Bindu, G; Semenov, S
2013-01-01
This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell's equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness.
Terahertz computed tomography of NASA thermal protection system materials
NASA Astrophysics Data System (ADS)
Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.
2012-05-01
A terahertz (THz) axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 m3 (1 ft3) with no safety concerns as for x-ray computed tomography. In this study, the THz-CT system was evaluated for its ability to detect and characterize 1) an embedded void in Space Shuttle external fuel tank thermal protection system (TPS) foam material and 2) impact damage in a TPS configuration under consideration for use in NASA's multi-purpose Orion crew module (CM). Micro-focus X-ray CT is utilized to characterize the flaws and provide a baseline for which to compare the THz CT results.
Calculation of Centrally Loaded Thin-Walled Columns Above the Buckling Limit
NASA Technical Reports Server (NTRS)
Reinitzhuber, F.
1945-01-01
When thin-walled columns formed from flanged sheet, such as used in airplane construction, are subjected to axial load, their behavior at failure varies according to the slenderness ratio. On long columns the axis deflects laterally while the cross section form is maintained; buckling results. The respective breaking load in the elastic range is computed by Euler's formula and for the plastic range by the Engesser- Karman formula. Its magnitude is essentially dependent upon the length. On intermediate length columns, especially where open sections are concerned, the cross section is distorted while the cross section form is preserved; twisting failure results. The buckling load in twisting is calculated according to Wagner and Kappus. On short columns the straight walls of low-bending resistance that form the column are deflected at the same time that the cross section form changes - buckling occurs without immediate failure. Then the buckling load of the total section computable from the buckling loads of the section walls is not the ultimate load; quite often, especially on thin-walled sections, it lies considerably higher and is secured by tests. Both loads, the buckling and the ultimate load are only in a small measure dependent upon length. The present report is an attempt to theoretically investigate the behavior of such short, thin-walled columns above the buckling load with the conventional calculating methods.
Age-related incidence of pineal calcification detected by computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, R.A.; Bilaniuk, L.T.
The age-related incidence of detectable pineal calcification in 725 patients (age range, newborn-20 yrs) suggests that there is a relationship between calcification and the hormonal role played by the pineal gland in the regulation of sexual development. Pineal calcification (demonstrated by computed tomography (CT) on 8-mm-thick sections) in patients less than 6 years old should be looked upon with suspicion, and follow-up CT should be considered to exclude the possible development of a pineal neoplasm.
PET and Single-Photon Emission Computed Tomography in Brain Concussion.
Raji, Cyrus A; Henderson, Theodore A
2018-02-01
This article offers an overview of the application of PET and single photon emission computed tomography brain imaging to concussion, a type of mild traumatic brain injury and traumatic brain injury, in general. The article reviews the application of these neuronuclear imaging modalities in cross-sectional and longitudinal studies. Additionally, this article frames the current literature with an overview of the basic physics and radiation exposure risks of each modality. Copyright © 2017 Elsevier Inc. All rights reserved.
The Effect of Experimental Variables on Industrial X-Ray Micro-Computed Sensitivity
NASA Technical Reports Server (NTRS)
Roth, Don J.; Rauser, Richard W.
2014-01-01
A study was performed on the effect of experimental variables on radiographic sensitivity (image quality) in x-ray micro-computed tomography images for a high density thin wall metallic cylinder containing micro-EDM holes. Image quality was evaluated in terms of signal-to-noise ratio, flaw detectability, and feature sharpness. The variables included: day-to-day reproducibility, current, integration time, voltage, filtering, number of frame averages, number of projection views, beam width, effective object radius, binning, orientation of sample, acquisition angle range (180deg to 360deg), and directional versus transmission tube.
Kasai, Takehiro; Ishiguro, Naoki; Matsui, Yasumoto; Harada, Atsushi; Takemura, Marie; Yuki, Atsumu; Kato, Yuki; Otsuka, Rei; Ando, Fujiko; Shimokata, Hiroshi
2015-06-01
Sex- and age-related differences in mid-thigh composition and muscle quality remain unclear. The present study aimed to clarify these differences using computed tomography in middle-aged and elderly Japanese. A total of 2310 participants (age 40-89 years), who were randomly selected from the local residents, underwent computed tomography examination of the right mid-thigh. Thigh circumference and cross-sectional areas of the thigh, muscle, quadriceps, non-quadriceps, fat, and bone were measured. Knee extension strength and muscle quality index (knee extension strength/quadriceps cross-sectional area) were also assessed. Sex- and age-related differences in these indices were analyzed. The thigh cross-sectional area in men and women decreased by 0.6% and 0.5%/year, respectively, because of a decrease in muscle cross-sectional area (men 75.2%, women 40.6%), fat cross-sectional area (men 24.4%, women 59.6%) and bone cross-sectional area (men 0.5%, women -0.2%). Muscle cross-sectional area in men and women decreased by 0.6% and 0.4%/year, respectively, because of a decrease in quadriceps cross-sectional area (men 65.6%, women 81.6%) and non-quadriceps cross-sectional area (men 34.4%, women 18.4%). Muscle quality in men and women decreased by 0.4% and 0.3%/year, respectively. Thigh cross-sectional area decreased with age mainly because of a decrease in muscle cross-sectional area in men and fat cross-sectional area in women. The rate of decrease in muscle cross-sectional area was 1.5-fold higher in men than in women. Muscle cross-sectional area decreased with age mainly because of a decrease in quadriceps cross-sectional area, especially in women. Decrease in muscle quality with age was similar in both sexes. © 2014 Japan Geriatrics Society.
Young’s modulus and Poisson’s ratio changes due to machining in porous microcracked cordierite
Cooper, R. C.; Bruno, Giovanni; Onel, Yener; ...
2016-07-25
Microstructural changes in porous cordierite caused by machining were characterized using microtensile testing, X-ray computed tomography and scanning electron microscopy. Young s moduli and Poisson s ratios were determined on ~215-380 um thick machined samples by combining digital image correlation and microtensile loading. The results provide evidence for an increase in microcrack density due to machining of the thin samples extracted from diesel particulate filter honeycombs.
Computed tomographic pelvimetry in English bulldogs.
Dobak, Tetyda P; Voorhout, George; Vernooij, Johannes C M; Boroffka, Susanne A E B
2018-05-31
English bulldogs have been reported to have a high incidence of dystocia and caesarean section is often performed electively in this breed. A narrow pelvic canal is the major maternal factor contributing to obstructive dystocia. The objective of this cross-sectional study was to assess the pelvic dimensions of 40 clinically healthy English bulldogs using computed tomography pelvimetry. A control group consisting of 30 non-brachycephalic dogs that underwent pelvic computed tomography was retrospectively collected from the patient archive system. Univariate analysis of variance was used to compare computed tomography pelvimetry of both groups and the effects of weight and gender on the measurements. In addition, ratios were obtained to address pelvic shape differences. A significantly (P = 0.00) smaller pelvic size was found in English bulldogs compared to the control group for all computed tomography measurements: width and length of the pelvis, pelvic inlet and caudal pelvic aperture. The pelvic conformation was significantly different between the groups, English bulldogs had an overall shorter pelvis and pelvic canal and a narrower pelvic outlet. Weight had a significant effect on all measurements whereas gender that only had a significant effect on some (4/11) pelvic dimensions. Our findings prove that English bulldogs have a generally reduced pelvic size as well as a shorter pelvis and narrower pelvic outlet when compared to non-brachycephalic breeds. We suggest that some of our measurements may serve as a baseline for pelvic dimensions in English bulldogs and may be useful for future studies on dystocia in this breed. Copyright © 2018 Elsevier Inc. All rights reserved.
El-Shafey, A; Kassab, A
2013-04-01
The purpose of the present study was to provide a detailed computed tomography (CT) and cross-sectional anatomic reference of the normal metatarsus and digits for the camel and buffalo, as well as to compare between metatarsus and digits in these animals to outstand a basis for diagnosis of their diseases. Advantages, including depiction of detailed cross-sectional anatomy, improved contrast resolution and computer reformatting, make it a potentially valuable diagnostic technique. The hind limbs of 12 healthy adult camel and buffalo were used. Clinically relevant anatomic structures were identified and labelled at each level in the corresponding images (CT and anatomic slices). CT images were used to identify the bony and soft tissue structures of the metatarsus and digits. The knowledge of normal anatomy of the camel and buffalo metatarsus and digits would serve as initial reference to the evaluation of CT images in these species. © 2012 Blackwell Verlag GmbH.
Peru, M; Peru, C; Mannocci, F; Sherriff, M; Buchanan, L S; Pitt Ford, T R
2006-02-01
The aim of this study was to evaluate root canals instrumented by dental students using the modified double-flared technique, nickel-titanium (NiTi) rotary System GT files and NiTi rotary ProTaper files by micro-computed tomography (MCT). A total of 36 root canals from 18 mesial roots of mandibular molar teeth were prepared; 12 canals were prepared with the modified double-flared technique, using K-flexofiles and Gates-Glidden burs; 12 canals were prepared using System GT and 12 using ProTaper rotary files. Each root was scanned using MCT preoperatively and postoperatively. At the coronal and mid-root sections, System GT and ProTaper files produced significantly less enlarged canal cross-sectional area, volume and perimeter than the modified double-flared technique (P < 0.05). In the mid-root sections there was significantly less thinning of the root structure towards the furcation with System GT and ProTaper (P < 0.05). The rotary techniques were both three times faster than the modified double-flared technique (P < 0.05). Qualitative evaluation of the preparations showed that both ProTaper and System GT were able to prepare root canals with little or no procedural error compared with the modified double-flared technique. Under the conditions of this study, inexperienced dental students were able to prepare curved root canals with rotary files with greater preservation of tooth structure, low risk of procedural errors and much quicker than with hand instruments.
Berger, Florian; Steuer, Andrea E; Rentsch, Katharina; Gascho, Dominic; Stamou, Stamatios; Schärli, Sarah; Thali, Michael J; Krämer, Thomas; Flach, Patricia M
2016-09-01
A case of fatal poisoning by ingesting formic acid, diphenhydramine, and ethanol by a 25-year-old woman who committed suicide is presented. Prior to autopsy, postmortem computed tomography and postmortem magnetic resonance tomography were performed and revealed severe damage to the stomach, the left thoracic wall, and parts of the liver. Imaging detected acid-induced fluid-fluid level within the thoracic cavity (fat-equivalent fluid and necrotic pleural effusion). This case report illustrates that postmortem cross-sectional imaging may facilitate dissection of severely damaged or complex regions, and may provide additional information compared to autopsy and toxicological examinations alone.
Zhang, Ying; Tang, Jian; Xu, Jianrong
2017-01-01
Background To investigate the value of dual energy computed tomography (DECT) parameters (including iodine concentration and monochromatic CT numbers) for predicting pure ground-glass nodules (pGGNs) of invasive adenocarcinoma (IA). Methods A total of 55 resected pGGNs evaluated with both unenhanced thin-section CT (TSCT) and enhanced DECT scans were included. Correlations between histopathology [adenocarcinoma in situ (AIS), minimally IA (MIA), and IA] and CT scan characteristics were examined. CT scan and clinicodemographic data were investigated by univariate and multivariate analysis to identify features that helped distinguish IA from AIS or MIA. Results Both normalized iodine concentration (NIC) of IA and slope of spectral curve [slope(k)] were not significantly different between IA and AIS or MIA. Size, performance of pleural retraction and enhanced monochromatic CT attenuation values of 120–140 keV were significantly higher for IA. In multivariate regression analysis, size and enhanced monochromatic CT number of 140 keV were independent predictors for IA. Using the two parameters together, the diagnostic capacity of IA could be improved from 0.697 or 0.635 to 0.713. Conclusions DECT could help demonstrate blood supply and indicate invasion extent of pGGNs, and monochromatic CT number of higher energy (especially 140 keV) would be better for diagnosing IA than lower energies. Together with size of pGGNs, the diagnostic capacity of IA could be better. PMID:29312701
CT of the ear in Pendred syndrome.
Goldfeld, Moshe; Glaser, Benjamin; Nassir, Elias; Gomori, John Moshe; Hazani, Elitsur; Bishara, Nassir
2005-05-01
To prospectively determine the structural anomalies of the inner ear by using thin-section computed tomography (CT) in an extended family with Pendred syndrome. Ethics committee approved the study, and informed consent was obtained from every patient or from parents of patients under legal age. Twelve patients (three females and nine males aged 7-47 years) with Pendred syndrome (all from the same ethnic isolate and with the same mutation in the PDS gene) were evaluated for inner-ear malformation at thin-section CT. Both ears were evaluated. Presence or absence of interscalar septum between upper and middle turns of the cochlea was evaluated, and vestibule and vestibular aqueduct were examined for enlargement. Modiolus was determined to be present or absent (modiolar deficiency). CT scans were evaluated in consensus by two radiologists (M.G., J.M.G.). All patients had inner ear malformation on both sides. Modiolus was absent and vestibule was enlarged on both sides in all 12 patients. Interscalar septum was absent in 18 (75%) of 24 ears. In eight patients, interscalar septum was absent in both ears, whereas in two patients, it was absent on only one side. Aqueduct was enlarged in 20 (80%) of 24 ears. In nine patients, both ears had enlarged aqueducts, while in two patients, only one side was abnormal. Inner ear malformation is an invariable finding in Pendred syndrome. Modiolus deficiency and vestibular enlargement were the most consistent anomalies in this population with Pendred syndrome. (c) RSNA, 2005.
Hielscher, Andreas H; Bartel, Sebastian
2004-02-01
Optical tomography (OT) is a fast developing novel imaging modality that uses near-infrared (NIR) light to obtain cross-sectional views of optical properties inside the human body. A major challenge remains the time-consuming, computational-intensive image reconstruction problem that converts NIR transmission measurements into cross-sectional images. To increase the speed of iterative image reconstruction schemes that are commonly applied for OT, we have developed and implemented several parallel algorithms on a cluster of workstations. Static process distribution as well as dynamic load balancing schemes suitable for heterogeneous clusters and varying machine performances are introduced and tested. The resulting algorithms are shown to accelerate the reconstruction process to various degrees, substantially reducing the computation times for clinically relevant problems.
Bindu, G.; Semenov, S.
2013-01-01
This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell’s equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness. PMID:24058889
2017-01-01
Purpose Optical coherence tomography (OCT) is a noninvasive diagnostic technique that may be useful for both qualitative and quantitative analyses of the periodontium. Micro-computed tomography (micro-CT) is another noninvasive imaging technique capable of providing submicron spatial resolution. The purpose of this study was to present periodontal images obtained using ex vivo dental OCT and to compare OCT images with micro-CT images and histologic sections. Methods Images of ex vivo canine periodontal structures were obtained using OCT. Biologic depth measurements made using OCT were compared to measurements made on histologic sections prepared from the same sites. Visual comparisons were made among OCT, micro-CT, and histologic sections to evaluate whether anatomical details were accurately revealed by OCT. Results The periodontal tissue contour, gingival sulcus, and the presence of supragingival and subgingival calculus could be visualized using OCT. OCT was able to depict the surface topography of the dentogingival complex with higher resolution than micro-CT, but the imaging depth was typically limited to 1.2–1.5 mm. Biologic depth measurements made using OCT were a mean of 0.51 mm shallower than the histologic measurements. Conclusions Dental OCT as used in this study was able to generate high-resolution, cross-sectional images of the superficial portions of periodontal structures. Improvements in imaging depth and the development of an intraoral sensor are likely to make OCT a useful technique for periodontal applications. PMID:28261522
Observation of human tissue with phase-contrast x-ray computed tomography
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi
1999-05-01
Human tissues obtained from cancerous kidneys fixed in formalin were observed with phase-contrast X-ray computed tomography (CT) using 17.7-keV synchrotron X-rays. By measuring the distributions of the X-ray phase shift caused by samples using an X-ray interferometer, sectional images that map the distribution of the refractive index were reconstructed. Because of the high sensitivity of phase- contrast X-ray CT, a cancerous lesion was differentiated from normal tissue and a variety of other structures were revealed without the need for staining.
Structural Extremes in a Cretaceous Dinosaur
Sereno, Paul C.; Wilson, Jeffrey A.; Witmer, Lawrence M.; Whitlock, John A.; Maga, Abdoulaye; Ide, Oumarou; Rowe, Timothy A.
2007-01-01
Fossils of the Early Cretaceous dinosaur, Nigersaurus taqueti, document for the first time the cranial anatomy of a rebbachisaurid sauropod. Its extreme adaptations for herbivory at ground-level challenge current hypotheses regarding feeding function and feeding strategy among diplodocoids, the larger clade of sauropods that includes Nigersaurus. We used high resolution computed tomography, stereolithography, and standard molding and casting techniques to reassemble the extremely fragile skull. Computed tomography also allowed us to render the first endocast for a sauropod preserving portions of the olfactory bulbs, cerebrum and inner ear, the latter permitting us to establish habitual head posture. To elucidate evidence of tooth wear and tooth replacement rate, we used photographic-casting techniques and crown thin sections, respectively. To reconstruct its 9-meter postcranial skeleton, we combined and size-adjusted multiple partial skeletons. Finally, we used maximum parsimony algorithms on character data to obtain the best estimate of phylogenetic relationships among diplodocoid sauropods. Nigersaurus taqueti shows extreme adaptations for a dinosaurian herbivore including a skull of extremely light construction, tooth batteries located at the distal end of the jaws, tooth replacement as fast as one per month, an expanded muzzle that faces directly toward the ground, and hollow presacral vertebral centra with more air sac space than bone by volume. A cranial endocast provides the first reasonably complete view of a sauropod brain including its small olfactory bulbs and cerebrum. Skeletal and dental evidence suggests that Nigersaurus was a ground-level herbivore that gathered and sliced relatively soft vegetation, the culmination of a low-browsing feeding strategy first established among diplodocoids during the Jurassic. PMID:18030355
One-dimensional analysis of filamentary composite beam columns with thin-walled open sections
NASA Technical Reports Server (NTRS)
Lo, Patrick K.-L.; Johnson, Eric R.
1986-01-01
Vlasov's one-dimensional structural theory for thin-walled open section bars was originally developed and used for metallic elements. The theory was recently extended to laminated bars fabricated from advanced composite materials. The purpose of this research is to provide a study and assessment of the extended theory. The focus is on flexural and torsional-flexural buckling of thin-walled, open section, laminated composite columns. Buckling loads are computed from the theory using a linear bifurcation analysis and a geometrically nonlinear beam column analysis by the finite element method. Results from the analyses are compared to available test data.
Nascimento, Monikelly do Carmo Chagas; Boscolo, Solange Maria de Almeida; Haiter-Neto, Francisco; Santos, Emanuela Carla Dos; Lambrichts, Ivo; Pauwels, Ruben; Jacobs, Reinhilde
2017-06-01
The aim of this study was to assess the influence of the number of basis images and the orientation of the skull on the evaluation of cortical alveolar bone in cone beam computed tomography (CBCT). Eleven skulls with a total of 59 anterior teeth were selected. CBCT images were acquired by using 4 protocols, by varying the rotation of the tube-detector arm and the orientation of the skull (protocol 1: 360°/0°; protocol 2: 180°/0°; protocol 3: 180°/90°; protocol 4: 180°/180°). Observers evaluated cortical bone as absent, thin, or thick. Direct observation of the skulls was used as the gold standard. Intra- and interobserver agreement, as well as agreement of scoring between the 3 bone thickness classifications, were calculated by using the κ statistic. The Wilcoxon signed-rank test was used to compare the 4 protocols. For lingual cortical bone, protocol 1 showed no statistical difference from the gold standard. Higher reliability was found in protocol 3 for absent (κ = 0.80) and thin (κ = 0.47) cortices, whereas for thick cortical bone, protocol 2 was more consistent (κ = 0.60). In buccal cortical bone, protocol 1 obtained the highest agreement for absent cortices (κ = 0.61), whereas protocol 4 was better for thin cortical plates (κ = 0.38) and protocol 2 for thick cortical plates (κ = 0.40). No consistent effect of the number of basis images or head orientation for visual detection of alveolar bone was detected, except for lingual cortical bone, for which full rotation scanning showed improved visualization. Copyright © 2017 Elsevier Inc. All rights reserved.
Fluid Dynamic and Stability Analysis of a Thin Liquid Sheet
NASA Technical Reports Server (NTRS)
McMaster, Matthew S.
1992-01-01
Interest in thin sheet flows has recently been renewed due to their potential application in space radiators. Theoretical and experimental studies of the fluid dynamics and stability of thin liquid sheet flows have been carried out in this thesis. A computer program was developed to determine the cross-sectional shape of the edge cylinder given the cross-sectional area of the edge cylinder. A stability analysis was performed on a non-planer liquid sheet. A study was conducted to determine the effects of air resistance on the sheet.
Mehdizadeh, Mojdeh; Ahmadi, Navid; Jamshidi, Mahsa
2014-11-01
Exact location of the inferior alveolar nerve (IAN) bundle is very important. The aim of this study is to evaluate the relationship between the mandibular third molar and the mandibular canal by cone-beam computed tomography. This was a cross-sectional study with convenience sampling. 94 mandibular CBCTs performed with CSANEX 3D machine (Soredex, Finland) and 3D system chosen. Vertical and horizontal relationship between the mandibular canal and the third molar depicted by 3D, panoramic reformat view of CBCT and cross-sectional view. Cross-sectional view was our gold standard and other view evaluated by it. There were significant differences between the vertical and horizontal relation of nerve and tooth in all views (p < 0.001). The results showed differences in the position of the inferior alveolar nerve with different views of CBCT, so CBCT images are not quite reliable and have possibility of error.
Florid cemento-osseous dysplasia: A rare case report evaluated with cone-beam computed tomography.
Yildirim, Eren; Bağlar, Serdar; Ciftci, Mehmet Ertugrul; Ozcan, Erdal
2016-01-01
A 29-year-old systemically healthy female patient presented to our department. Cone-beam computed tomographic images showed multiple well-defined sclerotic masses with radiolucent border in both right and left molar regions of the mandible. These sclerotic masses were surrounded by a thin radiolucent border. We diagnosed the present pathology as florid cemento-osseous dysplasia and decided to follow the patient without taking biopsy. For the patient, who did not have any clinical complaints, radiographic followupis recommended twice a year. The responsibility of the dentist is to ensure the follow-up of the diagnosed patients and take necessary measures for preventing the infections.
Ekizoglu, Oguzhan; Inci, Ercan; Hocaoglu, Elif; Sayin, Ibrahim; Kayhan, Fatma Tulin; Can, Ismail Ozgur
2014-05-01
Gender determination is an important step in identification. For gender determination, anthropometric evaluation is one of the main forensic evaluations. In the present study, morphometric analysis of maxillary sinuses was performed to determine gender. For morphometric analysis, coronal and axial paranasal sinus computed tomography (CT) scan with 1-mm slice thickness was used. For this study, 140 subjects (70 women and 70 men) were enrolled (age ranged between 18 and 63). The size of each subject's maxillary sinuses was measured in anteroposterior, transverse, cephalocaudal, and volume directions. In each measurement, the size of the maxillary sinus is significantly small in female gender (P < 0.001). When discrimination analysis was performed, the accuracy rate was detected as 80% for women and 74.3% for men with an overall rate of 77.15%. With the use of 1-mm slice thickness CT, morphometric analysis of maxillary sinuses will be helpful for gender determination.
Harris, Andrew Charles; Chaudry, Mohammed Asif; Menzies, Donald; Conn, Paul Chandler
2012-08-01
We report a case of an epidermoid cyst within an intrapancreatic accessory spleen that was treated by laparoscopic excision. A 39-year-old man with no abdominal symptoms was incidentally found to have a cystic pancreatic lesion on computed tomography scan undertaken for suspected deep vein thrombosis. Further computed tomography and magnetic resonance imaging confirmed similar findings and the laparoscopic resection of the distal pancreas and spleen was undertaken as malignancy could not be excluded. Microscopic analysis revealed a well-circumscribed epidermoid cyst within a thin splenic rim in the tail of the pancreas. Such histologic diagnoses are extremely rare, and this is the 26th case report to our knowledge in English language journals. These lesions should be treated surgically to exclude malignancy. This is the first case reported in the United Kingdom and the first to be excised by pure laparoscopic means, which we believe provides effective and successful surgical management.
NASA Astrophysics Data System (ADS)
Schulz, Georg; Waschkies, Conny; Pfeiffer, Franz; Zanette, Irene; Weitkamp, Timm; David, Christian; Müller, Bert
2012-11-01
Imaging modalities including magnetic resonance imaging and X-ray computed tomography are established methods in daily clinical diagnosis of human brain. Clinical equipment does not provide sufficient spatial resolution to obtain morphological information on the cellular level, essential for applying minimally or non-invasive surgical interventions. Therefore, generic data with lateral sub-micrometer resolution have been generated from histological slices post mortem. Sub-cellular spatial resolution, lost in the third dimension as a result of sectioning, is obtained using magnetic resonance microscopy and micro computed tomography. We demonstrate that for human cerebellum grating-based X-ray phase tomography shows complementary contrast to magnetic resonance microscopy and histology. In this study, the contrast-to-noise values of magnetic resonance microscopy and phase tomography were comparable whereas the spatial resolution in phase tomography is an order of magnitude better. The registered data with their complementary information permit the distinct segmentation of tissues within the human cerebellum.
Prakashini, K; Babu, Satish; Rajgopal, KV; Kokila, K Raja
2016-01-01
Aims and Objectives: To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT) in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location. Materials and Methods: A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD) and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP) rate of CAD software was calculated. Observations and Results: Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2%) and 202 (91.4%) by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4–10 mm (93.4%) and nodules in hilar (100%) and central (96.5%) location when compared to RAD's performance. Conclusion: CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD's performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time. PMID:27578931
Single-shot ultrafast tomographic imaging by spectral multiplexing
NASA Astrophysics Data System (ADS)
Matlis, N. H.; Axley, A.; Leemans, W. P.
2012-10-01
Computed tomography has profoundly impacted science, medicine and technology by using projection measurements scanned over multiple angles to permit cross-sectional imaging of an object. The application of computed tomography to moving or dynamically varying objects, however, has been limited by the temporal resolution of the technique, which is set by the time required to complete the scan. For objects that vary on ultrafast timescales, traditional scanning methods are not an option. Here we present a non-scanning method capable of resolving structure on femtosecond timescales by using spectral multiplexing of a single laser beam to perform tomographic imaging over a continuous range of angles simultaneously. We use this technique to demonstrate the first single-shot ultrafast computed tomography reconstructions and obtain previously inaccessible structure and position information for laser-induced plasma filaments. This development enables real-time tomographic imaging for ultrafast science, and offers a potential solution to the challenging problem of imaging through scattering surfaces.
Integrated Nondestructive Evaluation and Finite Element Analysis Predicts Crack Location and Shape
NASA Technical Reports Server (NTRS)
Abdul-Azia, Ali; Baaklini, George Y.; Trudell, Jeffrey J.
2002-01-01
This study describes the finite-element analyses and the NDE modality undertaken on two flywheel rotors that were spun to burst speed. Computed tomography and dimensional measurements were used to nondestructively evaluate the rotors before and/or after they were spun to the first crack detection. Computed tomography data findings of two- and three-dimensional crack formation were used to conduct finite-element (FEA) and fracture mechanics analyses. A procedure to extend these analyses to estimate the life of these components is also outlined. NDE-FEA results for one of the rotors are presented in the figures. The stress results, which represent the radial stresses in the rim, clearly indicate that the maximum stress region is within the section defined by the computed tomography scan. Furthermore, the NDE data correlate well with the FEA results. In addition, the measurements reported show that the NDE and FEA data are in parallel.
Cross-sectional imaging in cancers of the head and neck: how we review and report.
Tshering Vogel, Dechen Wangmo; Thoeny, Harriet C
2016-08-03
Cancer of the head and neck is the sixth most frequent cancer worldwide and associated with significant morbidity. The head and neck area is complex and divided into various anatomical and functional subunits. Imaging is performed by cross-sectional modalities like computed tomography, magnetic resonance imaging, ultrasound and positron emission tomography-computed tomography, usually with fluorine-18-deoxy-D-glucose. Therefore, knowledge of the cross-sectional anatomy is very important. This article seeks to give an overview of the various cross-sectional imaging modalities used in the evaluation of head and neck cancers. It briefly describes the anatomy of the extracranial head and neck and the role of imaging as well as the imaging appearance of tumours and their extension to lymph nodes, bone and surrounding tissue. The advantages and disadvantages as well as basic requirements of the various modalities are described along with ways of optimizing imaging quality. A general guideline for prescription of the various modalities is given. Pitfalls are many and varied and can be due to anatomical variation, due to pathology which can be misinterpreted and technical due to peculiarities of the various imaging modalities. Knowledge of these pitfalls can help to avoid misinterpretation. The important points to be mentioned while reporting are also enumerated.
Zhu, Da-Jian; Chen, Xiao-Wu; OuYang, Man-Zhao; Lu, Yan
2016-01-12
Complete mesocolic excision provides a correct anatomical plane for colon cancer surgery. However, manifestation of the surgical plane during laparoscopic complete mesocolic excision versus in computed tomography images remains to be examined. Patients who underwent laparoscopic complete mesocolic excision for right-sided colon cancer underwent an abdominal computed tomography scan. The spatial relationship of the intraoperative surgical planes were examined, and then computed tomography reconstruction methods were applied. The resulting images were analyzed. In 44 right-sided colon cancer patients, the surgical plane for laparoscopic complete mesocolic excision was found to be composed of three surgical planes that were identified by computed tomography imaging with cross-sectional multiplanar reconstruction, maximum intensity projection, and volume reconstruction. For the operations performed, the mean bleeding volume was 73±32.3 ml and the mean number of harvested lymph nodes was 22±9.7. The follow-up period ranged from 6-40 months (mean 21.2), and only two patients had distant metastases. The laparoscopic complete mesocolic excision surgical plane for right-sided colon cancer is composed of three surgical planes. When these surgical planes were identified, laparoscopic complete mesocolic excision was a safe and effective procedure for the resection of colon cancer.
Degradation of metallic materials studied by correlative tomography
NASA Astrophysics Data System (ADS)
Burnett, T. L.; Holroyd, N. J. H.; Lewandowski, J. J.; Ogurreck, M.; Rau, C.; Kelley, R.; Pickering, E. J.; Daly, M.; Sherry, A. H.; Pawar, S.; Slater, T. J. A.; Withers, P. J.
2017-07-01
There are a huge array of characterization techniques available today and increasingly powerful computing resources allowing for the effective analysis and modelling of large datasets. However, each experimental and modelling tool only spans limited time and length scales. Correlative tomography can be thought of as the extension of correlative microscopy into three dimensions connecting different techniques, each providing different types of information, or covering different time or length scales. Here the focus is on the linking of time lapse X-ray computed tomography (CT) and serial section electron tomography using the focussed ion beam (FIB)-scanning electron microscope to study the degradation of metals. Correlative tomography can provide new levels of detail by delivering a multiscale 3D picture of key regions of interest. Specifically, the Xe+ Plasma FIB is used as an enabling tool for large-volume high-resolution serial sectioning of materials, and also as a tool for preparation of microscale test samples and samples for nanoscale X-ray CT imaging. The exemplars presented illustrate general aspects relating to correlative workflows, as well as to the time-lapse characterisation of metal microstructures during various failure mechanisms, including ductile fracture of steel and the corrosion of aluminium and magnesium alloys. Correlative tomography is already providing significant insights into materials behaviour, linking together information from different instruments across different scales. Multiscale and multifaceted work flows will become increasingly routine, providing a feed into multiscale materials models as well as illuminating other areas, particularly where hierarchical structures are of interest.
NASA Astrophysics Data System (ADS)
Gupta, Sumit; Loh, Kenneth J.
2017-04-01
The main objective of this research is to develop a noncontact and noninvasive method for monitoring infections at the interface of human tissue and osseointegrated prostheses. The technique used here is centered on the theory of a noncontact permittivity imaging technique known as electrical capacitance tomography (ECT). This work is divided into two main parts. First, an ECT electrical permittivity reconstruction software and hardware system was developed. Second, a carbon nanotube-polyaniline nanocomposite thin film was designed and fabricated such that its electrical permittivity is sensitive to pH stimuli. The dielectric properties of this thin film were characterized as it was exposed to different pH buffer solutions. It is envisioned that osseointegrated implants can be pre-coated with the pH-sensitive nanocomposite prior to implant. When infection occurs and alters the local pH of tissue at the human-prosthesis interface, the dielectric property of the film would change accordingly. Then, ECT can interrogate the cross-section of the human limb and reconstruct its permittivity distribution, revealing localized changes in permittivity due to infection. To validate this concept, a prosthesis phantom was coated with the nanocomposite pH sensor and then immersed in different pH buffer solutions. ECT was conducted, and the results showed that the magnitude and location of subsurface, localized, pH changes could be detected. In general, noncontact tomography coupled with stimuliresponsive thin films could pave way for new modalities of noninvasive human body imaging, in particular, for patients with osseointegrated implants and prostheses.
Ergün, Recai; Evcik, Ender; Ergün, Dilek; Ergan, Begüm; Özkan, Esin; Gündüz, Özge
2017-05-05
The number of studies where non-malignant pulmonary diseases are evaluated after occupational arsenic exposure is very few. To investigate the effects of occupational arsenic exposure on the lung by high-resolution computed tomography and pulmonary function tests. Retrospective cross-sectional study. In this study, 256 workers with suspected respiratory occupational arsenic exposure were included, with an average age of 32.9±7.8 years and an average of 3.5±2.7 working years. Hair and urinary arsenic levels were analysed. High-resolution computed tomography and pulmonary function tests were done. In workers with occupational arsenic exposure, high-resolution computed tomography showed 18.8% pulmonary involvement. In pulmonary involvement, pulmonary nodule was the most frequently seen lesion (64.5%). The other findings of pulmonary involvement were 18.8% diffuse interstitial lung disease, 12.5% bronchiectasis, and 27.1% bullae-emphysema. The mean age of patients with pulmonary involvement was higher and as they smoked more. The pulmonary involvement was 5.2 times higher in patients with skin lesions because of arsenic. Diffusing capacity of lung for carbon monoxide was significantly lower in patients with pulmonary involvement. Besides lung cancer, chronic occupational inhalation of arsenic exposure may cause non-malignant pulmonary findings such as bronchiectasis, pulmonary nodules and diffuse interstitial lung disease. So, in order to detect pulmonary involvement in the early stages, workers who experience occupational arsenic exposure should be followed by diffusion test and high-resolution computed tomography.
Three-dimensional surface reconstruction for industrial computed tomography
NASA Technical Reports Server (NTRS)
Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.
1985-01-01
Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.
Retrospective respiration-gated whole-body photoacoustic computed tomography of mice
NASA Astrophysics Data System (ADS)
Xia, Jun; Chen, Wanyi; Maslov, Konstantin; Anastasio, Mark A.; Wang, Lihong V.
2014-01-01
Photoacoustic tomography (PAT) is an emerging technique that has a great potential for preclinical whole-body imaging. To date, most whole-body PAT systems require multiple laser shots to generate one cross-sectional image, yielding a frame rate of <1 Hz. Because a mouse breathes at up to 3 Hz, without proper gating mechanisms, acquired images are susceptible to motion artifacts. Here, we introduce, for the first time to our knowledge, retrospective respiratory gating for whole-body photoacoustic computed tomography. This new method involves simultaneous capturing of the animal's respiratory waveform during photoacoustic data acquisition. The recorded photoacoustic signals are sorted and clustered according to the respiratory phase, and an image of the animal at each respiratory phase is reconstructed subsequently from the corresponding cluster. The new method was tested in a ring-shaped confocal photoacoustic computed tomography system with a hardware-limited frame rate of 0.625 Hz. After respiratory gating, we observed sharper vascular and anatomical images at different positions of the animal body. The entire breathing cycle can also be visualized at 20 frames/cycle.
Patterned thin metal film for the lateral resolution measurement of photoacoustic tomography
2012-01-01
Background Image quality assessment method of photoacoustic tomography has not been completely standardized yet. Due to the combined nature of photonic signal generation and ultrasonic signal transmission in biological tissue, neither optical nor ultrasonic traditional methods can be used without modification. An optical resolution measurement technique was investigated for its feasibility for resolution measurement of photoacoustic tomography. Methods A patterned thin metal film deposited on silica glass provides high contrast in optical imaging due to high reflectivity from the metal film and high transmission from the glass. It provides high contrast when it is used for photoacoustic tomography because thin metal film can absorb pulsed laser energy. An US Air Force 1951 resolution target was used to generate patterned photoacoustic signal to measure the lateral resolution. Transducer with 2.25 MHz bandwidth and a sample submerged in water and gelatinous block were tested for lateral resolution measurement. Results Photoacoustic signal generated from a thin metal film deposited on a glass can propagate along the surface or through the surrounding medium. First, a series of experiments with tilted sample confirmed that the measured photoacoustic signal is what is propagating through the medium. Lateral resolution of the photoacoustic tomography system was successfully measured for water and gelatinous block as media: 0.33 mm and 0.35 mm in water and gelatinous material, respectively, when 2.25 MHz transducer was used. Chicken embryo was tested for biomedical applications. Conclusions A patterned thin metal film sample was tested for its feasibility of measuring lateral resolution of a photoacoustic tomography system. Lateral resolutions in water and gelatinous material were successfully measured using the proposed method. Measured resolutions agreed well with theoretical values. PMID:22794510
Better Finite-Element Analysis of Composite Shell Structures
NASA Technical Reports Server (NTRS)
Clarke, Gregory
2007-01-01
A computer program implements a finite-element-based method of predicting the deformations of thin aerospace structures made of isotropic materials or anisotropic fiber-reinforced composite materials. The technique and corresponding software are applicable to thin shell structures in general and are particularly useful for analysis of thin beamlike members having open cross-sections (e.g. I-beams and C-channels) in which significant warping can occur.
Positron Emission Tomography - Computed Tomography (PET/CT)
... A-Z Positron Emission Tomography - Computed Tomography (PET/CT) Positron emission tomography (PET) uses small amounts of ... What is Positron Emission Tomography – Computed Tomography (PET/CT) Scanning? Positron emission tomography, also called PET imaging ...
NASA Astrophysics Data System (ADS)
Baumgartner, L.; Wohlers, A.; Müller, T.
2003-04-01
Micro X-ray tomography is rapidly advancing to an important tool for non-destructive 3-D imaging of geological and engineering materials. We have been using a Skyscan 1072 system (Skyscan, Belgium) to successfully image as diverse geological materials as sandstones, foraminifers, run products of hydrothermal partial melting experiments, and metamorphic rocks. The system has a conical x-ray source with a spot size of about 5µm. The X-ray source is powered by a 10W, 20--100kV, tunable supply. Images are acquired with a scintillator coupled by glass fiber optics to a 1024×1024 pixel, 12-bit CCD. The sample is rotated for 180^o (or 360^o) in steps as small as 0.24^o. Transmission image are back projected, using a Feldkamp algorithm, into a stack of up to 1000 1K×1K images, each of which represents a horizontal cross section of the sample. We have succeeded to image very low contrast systems (feldspar/quartz and olivine/calcite/dolomite), by using extended acquisition times (up to 24 hours), and low excitation voltages (30--40kV) in combination with aluminum filters to reduce beam hardening. Some quartzites collected in the Little Cottonwood contact aureole have been infiltrated by a pegmatitic liquid. These liquids are the products of partial melting in intercalated meta-pelites. 2-D images (thin sections) clearly show, that poly-crystalline interstitial feldspar and mica represent precipitates from the infiltrated pegmatitic liquid (acute quartz-feldspar junctions similar to melting experiments). The micro-CT images reveal a thin mica-feldspar network. It forms highly anastomosing, multiply interconnected networks surrounding quartz grains. They connect larger, up to 1mm sized ponds, located in triple junctions. These results have important consequences for porous melt transport in shallow crustal rocks. Micro-CT images of spinifex textured olivine in marbles from the Ubehebe Peak contact aureole (Death Valley, California) reveal two preferential growth orientations of olivine, and irregular distribution of calcite haloes. These volumetric images suggesting that the growth of olivine is related to mass transport, rather than to their inherent crystallographic growth preferences.
NASA Astrophysics Data System (ADS)
Poggio, Andrew J.
1988-10-01
This issue of Energy and Technology Review contains: Neutron Penumbral Imaging of Laser-Fusion Targets--using our new penumbral-imaging diagnostic, we have obtained the first images that can be used to measure directly the deuterium-tritium burn region in laser-driven fusion targets; Computed Tomography for Nondestructive Evaluation--various computed tomography systems and computational techniques are used in nondestructive evaluation; Three-Dimensional Image Analysis for Studying Nuclear Chromatin Structure--we have developed an optic-electronic system for acquiring cross-sectional views of cell nuclei, and computer codes to analyze these images and reconstruct the three-dimensional structures they represent; Imaging in the Nuclear Test Program--advanced techniques produce images of unprecedented detail and resolution from Nevada Test Site data; and Computational X-Ray Holography--visible-light experiments and numerically simulated holograms test our ideas about an X-ray microscope for biological research.
Zhang, Luo; Han, De-min; Ge, Wen-tong; Zhou, Bing; Xian, Jun-fang; Liu, Zhong-yan; Wang, Kui-ji; He, Fei
2005-12-01
To investigate the anatomical interaction between uncinate process and agger nasi cell to better understand the anatomy of the frontal sinus drainage pathway by endoscopy, spiral computed tomography (CT) and sectioning. Twenty-one skeletal skulls (forty-two sides) and one cadaver head (two sides) were studied by spiral CT together with endoscopy and collodion embedded thin sectioning at coronal plane. The sections with the thickness of 100 microm were stained with hemotoxylin and eosin. Under endoscopy, a leaflet of bone to the middle turbinate, which is given off by uncinate process, forms the anterior insertion of the middle turbinate onto the lateral nasal wall. The middle portion of the uncinate process attached to the frontal process of the maxilla in all of the skeletal nasal cavities, as well as the lacrimal bone in 78.6% of the skeletal nasal cavities. On CT scans, the agger nasi cell is present in 90.5% of the skeletal nasal cavities. While the lateral wall of the agger nasi cell is formed by lacrimal bone, the medial wall of the agger nasi cell is formed by uncinate process. And the anterior wall is formed by the frontal process of the maxilla. The superior portion of the uncinate process forms the medial, posterior and top wall of the agger nasi cells. The superior portion of the uncinate extends into the frontal recess and may insert into lamina papyracea (33.3%), skull base (9.5%), middle turbinate, combination of these (57.2%). The agger nasi cell is the key that unlocks the frontal recess.
Retrospective case series of the imaging findings of facial nerve hemangioma.
Yue, Yunlong; Jin, Yanfang; Yang, Bentao; Yuan, Hui; Li, Jiandong; Wang, Zhenchang
2015-09-01
The aim was to compare high-resolution computed tomography (HRCT) and thin-section magnetic resonance imaging (MRI) findings of facial nerve hemangioma. The HRCT and MRI characteristics of 17 facial nerve hemangiomas diagnosed between 2006 and 2013 were retrospectively analyzed. All patients included in the study suffered from a space-occupying lesion of soft tissues at the geniculate ganglion fossa. Affected nerve was compared for size and shape with the contralateral unaffected nerve. HRCT showed irregular expansion and broadening of the facial nerve canal, damage of the bone wall and destruction of adjacent bone, with "point"-like or "needle"-like calcifications in 14 cases. The average CT value was 320.9 ± 141.8 Hu. Fourteen patients had a widened labyrinthine segment; 6/17 had a tympanic segment widening; 2/17 had a greater superficial petrosal nerve canal involvement, and 2/17 had an affected internal auditory canal (IAC) segment. On MRI, all lesions were significantly enhanced due to high blood supply. Using 2D FSE T2WI, the lesion detection rate was 82.4 % (14/17). 3D fast imaging employing steady-state acquisition (3D FIESTA) revealed the lesions in all patients. HRCT showed that the average number of involved segments in the facial nerve canal was 2.41, while MRI revealed an average of 2.70 segments (P < 0.05). HRCT and MR findings of facial nerve hemangioma were typical, revealing irregular masses growing along the facial nerve canal, with calcifications and rich blood supply. Thin-section enhanced MRI was more accurate in lesion detection and assessment compared with HRCT.
NASA Technical Reports Server (NTRS)
Nettles, J. W.; Lofgren, G. E.; Carlson, W. D.; McSween, H. Y., Jr.
2004-01-01
Many workers have considered the degree to which partial melting occurred in chondrules they have studied, and this has led to attempts to find reliable methods of determining the degree of melting. At least two quantitative methods have been used in the literature: a convolution index (CVI), which is a ratio of the perimeter of the chondrule as seen in thin section divided by the perimeter of a circle with the same area as the chondrule, and nominal grain size (NGS), which is the inverse square root of the number density of olivines and pyroxenes in a chondrule (again, as seen in thin section). We have evaluated both nominal grain size and convolution index as melting indicators. Nominal grain size was measured on the results of a set of dynamic crystallization experiments previously described, where aliquots of LEW97008(L3.4) were heated to peak temperatures of 1250, 1350, 1370, and 1450 C, representing varying degrees of partial melting of the starting material. Nominal grain size numbers should correlate with peak temperature (and therefore degree of partial melting) if it is a good melting indicator. The convolution index is not directly testable with these experiments because the experiments do not actually create chondrules (and therefore they have no outline on which to measure a CVI). Thus we had no means to directly test how well the CVI predicted different degrees of melting. Therefore, we discuss the use of the CVI measurement and support the discussion with X-ray Computed Tomography (CT) data.
[CAS in rhino-surgical procedures in the growing age].
Schipper, J; Maier, W; Gellrich, N-C; Arapakis, I; Hochmuth, A; Laszig, R
2005-01-01
Rhinosurgery in children and adolescents meets special requirements: Limited cooperation and reduced limits for the organ dose for ionizing radiological examinations aggravate diagnostics. On the other side, bone sutures and bone growth areas have to be respected intraoperatively, and regions of bones not yet calcified have to be distinguished from possible tumor infiltration. Computer assisted surgery (CAS) can help to identify these areas safely. 5 patients, from the first to the 20 (th) year of life, suffering from tumors, malformation syndromes or therapy resistant nasal polyposis were treated with CAS in rhinosurgery. In addition to radiological diagnostics, we performed 3D computed tomography of the skull for CAS. CAS enabled us to intraoperatively respect possible areas of bone growth, to identify regions with thin, not bonily developed cranial vault and to safely distinguish bone sutures from ethmoidal cells. CAS helped the surgeon to navigate in the not yet developed paranasal sinus system. CAS is a useful complementary method in rhinosurgery of the developing skull of the child. In spite of the additional 3D computed tomography, the calculated organ dose of the ocular lense amounted to 5 millisievert, so a recommended maximal organ dose for the ocular lense of 15 millisievert was not exceeded.
NASA Astrophysics Data System (ADS)
Pokhrel, A.; El Hannach, M.; Orfino, F. P.; Dutta, M.; Kjeang, E.
2016-10-01
X-ray computed tomography (XCT), a non-destructive technique, is proposed for three-dimensional, multi-length scale characterization of complex failure modes in fuel cell electrodes. Comparative tomography data sets are acquired for a conditioned beginning of life (BOL) and a degraded end of life (EOL) membrane electrode assembly subjected to cathode degradation by voltage cycling. Micro length scale analysis shows a five-fold increase in crack size and 57% thickness reduction in the EOL cathode catalyst layer, indicating widespread action of carbon corrosion. Complementary nano length scale analysis shows a significant reduction in porosity, increased pore size, and dramatically reduced effective diffusivity within the remaining porous structure of the catalyst layer at EOL. Collapsing of the structure is evident from the combination of thinning and reduced porosity, as uniquely determined by the multi-length scale approach. Additionally, a novel image processing based technique developed for nano scale segregation of pore, ionomer, and Pt/C dominated voxels shows an increase in ionomer volume fraction, Pt/C agglomerates, and severe carbon corrosion at the catalyst layer/membrane interface at EOL. In summary, XCT based multi-length scale analysis enables detailed information needed for comprehensive understanding of the complex failure modes observed in fuel cell electrodes.
CT and PET-CT of a Dog with Multiple Pulmonary Adenocarcinoma
KIM, Jisun; KWON, Seong Young; CENA, Rohani; PARK, Seungjo; OH, Juyeon; OUI, Heejin; CHO, Kyoung-Oh; MIN, Jung-Joon; CHOI, Jihye
2013-01-01
ABSTRACT A 10-year-old, intact female Yorkshire terrier had multiple pulmonary nodules on thoracic radiography and ultrasonography with no lesions elsewhere. Computed tomography (CT) and positron emission tomography and computed tomography (PET-CT) using 18F-fluorodeoxyglucose (FDG) were performed to identify metastasis and undetected primary tumors. On CT examination, pulmonary nodules had a hypoattenuating center with thin peripheral enhancement, suggesting ischemic or necrotizing lesion. In PET-CT at 47 min after intravenous injection of 11.1 MBq/kg of FDG, the maximum standardized uptake value of each pulmonary nodule was about from 3.8 to 6.4. There were no abnormal lesions except for four pulmonary nodules on the CT and PET-CT. Primary lung tumor was tentatively diagnosed, and palliative therapy using 2 mg/kg tramadol and 2.2 mg/kg carprofen twice per day was applied. After the dog’s euthanasia due to deteriorated clinical signs and poor prognosis, undifferentiated pulmonary adenocarcinoma was diagnosed through histopathologic and immunochemistry examination. To the best of the authors’ knowledge, this is the first study of CT and PET-CT features of canine pulmonary adenocarcinoma. In this case, multiple pulmonary adenocarcinoma could be determined on the basis of FDG PET-CT through screening the obvious distant metastasis and/or lymph node invasions and excluding unknown primary tumors. PMID:24389742
NASA Astrophysics Data System (ADS)
Antony, Bhavna J.; Abràmoff, Michael D.; Lee, Kyungmoo; Sonkova, Pavlina; Gupta, Priya; Kwon, Young; Niemeijer, Meindert; Hu, Zhihong; Garvin, Mona K.
2010-03-01
Optical coherence tomography (OCT), being a noninvasive imaging modality, has begun to find vast use in the diagnosis and management of ocular diseases such as glaucoma, where the retinal nerve fiber layer (RNFL) has been known to thin. Furthermore, the recent availability of the considerably larger volumetric data with spectral-domain OCT has increased the need for new processing techniques. In this paper, we present an automated 3-D graph-theoretic approach for the segmentation of 7 surfaces (6 layers) of the retina from 3-D spectral-domain OCT images centered on the optic nerve head (ONH). The multiple surfaces are detected simultaneously through the computation of a minimum-cost closed set in a vertex-weighted graph constructed using edge/regional information, and subject to a priori determined varying surface interaction and smoothness constraints. The method also addresses the challenges posed by presence of the large blood vessels and the optic disc. The algorithm was compared to the average manual tracings of two observers on a total of 15 volumetric scans, and the border positioning error was found to be 7.25 +/- 1.08 μm and 8.94 +/- 3.76 μm for the normal and glaucomatous eyes, respectively. The RNFL thickness was also computed for 26 normal and 70 glaucomatous scans where the glaucomatous eyes showed a significant thinning (p < 0.01, mean thickness 73.7 +/- 32.7 μm in normal eyes versus 60.4 +/- 25.2 μm in glaucomatous eyes).
Accuracy of patient-specific guided glenoid baseplate positioning for reverse shoulder arthroplasty.
Levy, Jonathan C; Everding, Nathan G; Frankle, Mark A; Keppler, Louis J
2014-10-01
The accuracy of reproducing a surgical plan during shoulder arthroplasty is improved by computer assistance. Intraoperative navigation, however, is challenged by increased surgical time and additional technically difficult steps. Patient-matched instrumentation has the potential to reproduce a similar degree of accuracy without the need for additional surgical steps. The purpose of this study was to examine the accuracy of patient-specific planning and a patient-specific drill guide for glenoid baseplate placement in reverse shoulder arthroplasty. A patient-specific glenoid baseplate drill guide for reverse shoulder arthroplasty was produced for 14 cadaveric shoulders based on a plan developed by a virtual preoperative 3-dimensional planning system using thin-cut computed tomography images. Using this patient-specific guide, high-volume shoulder surgeons exposed the glenoid through a deltopectoral approach and drilled the bicortical pathway defined by the guide. The trajectory of the drill path was compared with the virtual preoperative planned position using similar thin-cut computed tomography images to define accuracy. The drill pathway defined by the patient-matched guide was found to be highly accurate when compared with the preoperative surgical plan. The translational accuracy was 1.2 ± 0.7 mm. The accuracy of inferior tilt was 1.2° ± 1.2°. The accuracy of glenoid version was 2.6° ± 1.7°. The use of patient-specific glenoid baseplate guides is highly accurate in reproducing a virtual 3-dimensional preoperative plan. This technique delivers the accuracy observed using computerized navigation without any additional surgical steps or technical challenges. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
The vulnerable plaque: the real villain in acute coronary syndromes.
Liang, Michael; Puri, Aniket; Devlin, Gerard
2011-01-01
The term "vulnerable plaque" refers to a vascular lesion that is prone to rupture and may result in life-threatening events which include myocardial infarction. It consists of thin-cap fibroatheroma and a large lipid core which is highly thrombogenic. Acute coronary syndromes often result from rupture of vulnerable plaques which frequently are only moderately stenosed and not visible by conventional angiography. Several invasive and non-invasive strategies have been developed to assess the burden of vulnerable plaques. Intravascular ultrasound provides a two-dimensional cross-sectional image of the arterial wall and can help assess the plaque burden and composition. Optical coherent tomography offers superior resolution over intravascular ultrasound. High-resolution magnetic resonance imaging provides non-invasive imaging for visualizing fibrous cap thickness and rupture in plaques. In addition, it may be of value in assessing the effects of treatments, such as lipid-lowering therapy. Technical issues however limit its clinical applicability. The role of multi-slice computed tomography, a well established screening tool for coronary artery disease, remains to be determined. Fractional flow reserve (FFR) may provide physiological functional assessment of plaque vulnerability; however, its role in the management of vulnerable plaque requires further studies. Treatment of the vulnerable patient may involve systemic therapy which currently include statins, ACE inhibitors, beta-blockers, aspirin, and calcium-channel blockers and in the future local therapeutic options such as drug-eluting stents or photodynamic therapy.
Mukherjee, Dibyendu; Stinnett, Sandra S.; Cousins, Scott W.; Potter, Guy G.; Burke, James R.; Farsiu, Sina; Whitson, Heather E.
2018-01-01
Inner retina in Alzheimer's Disease (AD) may experience neuroinflammation resulting in atrophy. The objective of our study was to determine whether retinal GCIPL (ganglion cell-inner plexiform layer) or nerve fiber layer (NFL) thickness may serve as noninvasive biomarkers to diagnose AD. This cross-sectional case-control study enrolled 15 mild cognitive impairment (MCI) patients, 15 mild-moderate AD patients, and 18 cognitively normal adults. NFL and GCIPL thicknesses on optical coherence tomography (OCT) were measured using Duke Optical Coherence Tomography Retinal Analysis Program (DOCTRAP) and Spectralis software. We demonstrated that regional thicknesses of NFL or GCIPL on macular or nerve OCTs did not differ between groups. However, a multi-variate regression analysis identified macular areas with a significant thickening or thinning in NFL and GCIPL in MCI and AD patients. Our primary findings controvert previous reports of thinner NFL in moderate-to-severe AD. The areas of thickening of GCIPL and NFL in the macula adjacent to areas of thinning, as revealed by a more complex statistical model, suggest that NFL and GCIPL may undergo dynamic changes during AD progression. PMID:29420642
Sampson, David D.; Kennedy, Brendan F.
2017-01-01
High-resolution tactile imaging, superior to the sense of touch, has potential for future biomedical applications such as robotic surgery. In this paper, we propose a tactile imaging method, termed computational optical palpation, based on measuring the change in thickness of a thin, compliant layer with optical coherence tomography and calculating tactile stress using finite-element analysis. We demonstrate our method on test targets and on freshly excised human breast fibroadenoma, demonstrating a resolution of up to 15–25 µm and a field of view of up to 7 mm. Our method is open source and readily adaptable to other imaging modalities, such as ultrasonography and confocal microscopy. PMID:28250098
Florid cemento-osseous dysplasia: A rare case report evaluated with cone-beam computed tomography
Yildirim, Eren; Bağlar, Serdar; Ciftci, Mehmet Ertugrul; Ozcan, Erdal
2016-01-01
A 29-year-old systemically healthy female patient presented to our department. Cone-beam computed tomographic images showed multiple well-defined sclerotic masses with radiolucent border in both right and left molar regions of the mandible. These sclerotic masses were surrounded by a thin radiolucent border. We diagnosed the present pathology as florid cemento-osseous dysplasia and decided to follow the patient without taking biopsy. For the patient, who did not have any clinical complaints, radiographic followupis recommended twice a year. The responsibility of the dentist is to ensure the follow-up of the diagnosed patients and take necessary measures for preventing the infections. PMID:27601835
Imaging cellular and subcellular structure of human brain tissue using micro computed tomography
NASA Astrophysics Data System (ADS)
Khimchenko, Anna; Bikis, Christos; Schweighauser, Gabriel; Hench, Jürgen; Joita-Pacureanu, Alexandra-Teodora; Thalmann, Peter; Deyhle, Hans; Osmani, Bekim; Chicherova, Natalia; Hieber, Simone E.; Cloetens, Peter; Müller-Gerbl, Magdalena; Schulz, Georg; Müller, Bert
2017-09-01
Brain tissues have been an attractive subject for investigations in neuropathology, neuroscience, and neurobiol- ogy. Nevertheless, existing imaging methodologies have intrinsic limitations in three-dimensional (3D) label-free visualisation of extended tissue samples down to (sub)cellular level. For a long time, these morphological features were visualised by electron or light microscopies. In addition to being time-consuming, microscopic investigation includes specimen fixation, embedding, sectioning, staining, and imaging with the associated artefacts. More- over, optical microscopy remains hampered by a fundamental limit in the spatial resolution that is imposed by the diffraction of visible light wavefront. In contrast, various tomography approaches do not require a complex specimen preparation and can now reach a true (sub)cellular resolution. Even laboratory-based micro computed tomography in the absorption-contrast mode of formalin-fixed paraffin-embedded (FFPE) human cerebellum yields an image contrast comparable to conventional histological sections. Data of a superior image quality was obtained by means of synchrotron radiation-based single-distance X-ray phase-contrast tomography enabling the visualisation of non-stained Purkinje cells down to the subcellular level and automated cell counting. The question arises, whether the data quality of the hard X-ray tomography can be superior to optical microscopy. Herein, we discuss the label-free investigation of the human brain ultramorphology be means of synchrotron radiation-based hard X-ray magnified phase-contrast in-line tomography at the nano-imaging beamline ID16A (ESRF, Grenoble, France). As an example, we present images of FFPE human cerebellum block. Hard X-ray tomography can provide detailed information on human tissues in health and disease with a spatial resolution below the optical limit, improving understanding of the neuro-degenerative diseases.
C-arm Cone Beam Computed Tomography: A New Tool in the Interventional Suite.
Raj, Santhosh; Irani, Farah Gillan; Tay, Kiang Hiong; Tan, Bien Soo
2013-11-01
C-arm Cone Beam CT (CBCT) is a technology that is being integrated into many of the newer angiography systems in the interventional suite. Due to its ability to provide cross sectional imaging, it has opened a myriad of opportunities for creating new clinical applications. We review the technical aspects, current reported clinical applications and potential benefits of this technology. Searches were made via PubMed using the string "CBCT", "Cone Beam CT", "Cone Beam Computed Tomography" and "C-arm Cone Beam Computed Tomography". All relevant articles in the results were reviewed. CBCT clinical applications have been reported in both vascular and non-vascular interventions. They encompass many aspects of a procedure including preprocedural planning, intraprocedural guidance and postprocedural assessment. As a result, they have allowed the interventionalist to be safer and more accurate in performing image guided procedures. There are however several technical limitations. The quality of images produced is not comparable to conventional computed tomography (CT). Radiation doses are also difficult to quantify when compared to CT and fluoroscopy. CBCT technology in the interventional suite has contributed significant benefits to the patient despite its current limitations. It is a tool that will evolve and potentially become an integral part of imaging guidance for intervention.
Thornby, John; Landheer, Dirk; Williams, Tim; Barnes-Warden, Jane; Fenne, Paul; Norman, Danielle G; Attridge, Alex; Williams, Mark A
2014-01-01
Fundamental to any ballistic armour standard is the reference projectile to be defeated. Typically, for certification purposes, a consistent and symmetrical bullet geometry is assumed, however variations in bullet jacket dimensions can have far reaching consequences. Traditionally, characteristics and internal dimensions have been analysed by physically sectioning bullets--an approach which is of restricted scope and which precludes subsequent ballistic assessment. The use of a non-destructive X-ray computed tomography (CT) method has been demonstrated and validated (Kumar et al., 2011 [15]); the authors now apply this technique to correlate bullet impact response with jacket thickness variations. A set of 20 bullets (9 mm DM11) were selected for comparison and an image-based analysis method was employed to map jacket thickness and determine the centre of gravity of each specimen. Both intra- and inter-bullet variations were investigated, with thickness variations of the order of 200 μm commonly found along the length of all bullets and angular variations of up to 50 μm in some. The bullets were subsequently impacted against a rigid flat plate under controlled conditions (observed on a high-speed video camera) and the resulting deformed projectiles were re-analysed. The results of the experiments demonstrate a marked difference in ballistic performance between bullets from different manufacturers and an asymmetric thinning of the jacket is observed in regions of pre-impact weakness. The conclusions are relevant for future soft armour standards and provide important quantitative data for numerical model correlation and development. The implications of the findings of the work on the reliability and repeatability of the industry standard V50 ballistic test are also discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
A Computer Program which Uses an Expert Systems Approach to Identifying Minerals.
ERIC Educational Resources Information Center
Hart, Allan Bruce; And Others
1988-01-01
Described is a mineral identification program which uses a shell system for creating expert systems of a classification nature. Discusses identification of minerals in hand specimens, thin sections, and polished sections of rocks. (Author/CW)
21 CFR 1020.33 - Computed tomography (CT) equipment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... opening where insertion of any part of the human body into the primary beam is possible. (2) For systems... Section 1020.33 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... diameters of 32.0 centimeters for testing any CT system designed to image any section of the body (whole...
21 CFR 1020.33 - Computed tomography (CT) equipment.
Code of Federal Regulations, 2011 CFR
2011-04-01
... opening where insertion of any part of the human body into the primary beam is possible. (2) For systems... Section 1020.33 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... diameters of 32.0 centimeters for testing any CT system designed to image any section of the body (whole...
Reconstruction of three-dimensional porous media using a single thin section
NASA Astrophysics Data System (ADS)
Tahmasebi, Pejman; Sahimi, Muhammad
2012-06-01
The purpose of any reconstruction method is to generate realizations of two- or multiphase disordered media that honor limited data for them, with the hope that the realizations provide accurate predictions for those properties of the media for which there are no data available, or their measurement is difficult. An important example of such stochastic systems is porous media for which the reconstruction technique must accurately represent their morphology—the connectivity and geometry—as well as their flow and transport properties. Many of the current reconstruction methods are based on low-order statistical descriptors that fail to provide accurate information on the properties of heterogeneous porous media. On the other hand, due to the availability of high resolution two-dimensional (2D) images of thin sections of a porous medium, and at the same time, the high cost, computational difficulties, and even unavailability of complete 3D images, the problem of reconstructing porous media from 2D thin sections remains an outstanding unsolved problem. We present a method based on multiple-point statistics in which a single 2D thin section of a porous medium, represented by a digitized image, is used to reconstruct the 3D porous medium to which the thin section belongs. The method utilizes a 1D raster path for inspecting the digitized image, and combines it with a cross-correlation function, a grid splitting technique for deciding the resolution of the computational grid used in the reconstruction, and the Shannon entropy as a measure of the heterogeneity of the porous sample, in order to reconstruct the 3D medium. It also utilizes an adaptive technique for identifying the locations and optimal number of hard (quantitative) data points that one can use in the reconstruction process. The method is tested on high resolution images for Berea sandstone and a carbonate rock sample, and the results are compared with the data. To make the comparison quantitative, two sets of statistical tests consisting of the autocorrelation function, histogram matching of the local coordination numbers, the pore and throat size distributions, multiple-points connectivity, and single- and two-phase flow permeabilities are used. The comparison indicates that the proposed method reproduces the long-range connectivity of the porous media, with the computed properties being in good agreement with the data for both porous samples. The computational efficiency of the method is also demonstrated.
Jung, Jesse J; Chen, Michael H; Frambach, Caroline R; Rofagha, Soraya; Lee, Scott S
2018-01-01
To compare the spectral domain and swept source optical coherence tomography angiography findings in two cases of sickle cell maculopathy. A 53-year-old man and a 24-year-old man both with sickle cell disease (hemoglobin SS) presented with no visual complaints; Humphrey visual field testing demonstrated asymptomatic paracentral scotomas that extended nasally in the involved eyes. Clinical examination and multimodal imaging including spectral domain and swept source optical coherence tomography, and spectral domain optical coherence tomography angiography and swept source optical coherence tomography angiography (Carl Zeiss Meditec Inc, Dublin, CA) were performed. Fundus examination of both patients revealed subtle thinning of the macula. En-face swept source optical coherence tomography confirmed the extent of the thinning correlating with the functional paracentral scotomas on Humphrey visual field. Swept source optical coherence tomography B-scan revealed multiple confluent areas of inner nuclear thinning and significant temporal retinal atrophy. En-face 6 × 6-mm spectral domain optical coherence tomography angiography of the macula demonstrated greater loss of the deep capillary plexus compared with the superficial capillary plexus. Swept source optical coherence tomography angiography 12 × 12-mm imaging captured the same macular findings and loss of both plexuses temporally outside the macula. In these two cases of sickle cell maculopathy, deep capillary plexus ischemia is more extensive within the macula, whereas both the superficial capillary plexus and deep capillary plexus are involved outside the macula likely due to the greater oxygen demands and watershed nature of these areas. Swept source optical coherence tomography angiography clearly demonstrates the angiographic extent of the disease correlating with the Humphrey visual field scotomas and confluent areas of inner nuclear atrophy.
Li, Hui; Jin, Dan; Qiao, Fang; Chen, Jianchang; Gong, Jianping
Computed tomography coronary angiography, a key method for obtaining coronary artery images, is widely used to screen for coronary artery diseases due to its noninvasive nature. In China, 64-slice computed tomography systems are now the most common models. As factors that directly affect computed tomography performance, heart rate and rhythm control are regulated by the autonomic nervous system and are highly related to the emotional state of the patient. The aim of this prospective study is to use a pre-computed tomography scan Self-Rating Anxiety Scale assessment to analyze the effects of tension and anxiety on computed tomography coronary angiography success. Subjects aged 18-85 years who were planned to undergo computed tomography coronary angiography were enrolled; 1 to 2 h before the computed tomography scan, basic patient data (gender, age, heart rate at rest, and family history) and Self-Rating Anxiety Scale score were obtained. The same group of imaging department doctors, technicians, and nurses performed computed tomography coronary angiography for all the enrolled subjects and observed whether those subjects could finish the computed tomography coronary angiography scan and provide clear, diagnostically valuable images. Participants were divided into successful (obtained diagnostically useful coronary images) and unsuccessful groups. Basic data and Self-Rating Anxiety Scale scores were compared between the groups. The Self-Rating Anxiety Scale standard score of the successful group was lower than that of the unsuccessful group (P = 0.001). As the Self-Rating Anxiety Scale standard score rose, the success rate of computed tomography coronary angiography decreased. The Self-Rating Anxiety Scale score has a negative relationship with computed tomography coronary angiography success. Anxiety can be a disadvantage in computed tomography coronary angiography examination. The pre-computed tomography coronary angiography scan Self-Rating Anxiety Scale score may be a useful tool for assessing whether a computed tomography coronary angiography scan will be successful or not. © The Author(s) 2015.
Computed tomography of a medium size Roman bronze statue of Cupid
NASA Astrophysics Data System (ADS)
Bettuzzi, M.; Casali, F.; Morigi, M. P.; Brancaccio, R.; Carson, D.; Chiari, G.; Maish, J.
2015-03-01
Diagnostics based on X-ray computed tomography (CT) are becoming increasingly important, not only in the medical field but in industry and cultural heritage. CT devices typical for medical applications, however, can seldom be used on art objects because both they are not easily transportable and they often present high X-ray absorption. It is therefore necessary to make use of portable instrumentation and/or to develop tomographic systems optimized to the characteristics of the objects under examination. This work describes the computed tomography of a first century A.D. Roman bronze statue of Cupid (96.AB.53) in the collection of the J. Paul Getty Museum, within the collaborative framework between the Getty Conservation Institute and the Department of Physics and Astronomy (DIFA) of the University of Bologna (Italy). The tomography performed at the Getty facilities employed a 450 kV X-ray tube and a detection system developed at DIFA. The study highlighted the casting and construction techniques used by Roman foundry workers and provided information on the status of conservation of the statue. A 3D virtual reconstruction allowed the user to define different cross-sections enabling the study of the internal features.
Shomura, Shin; Suzuki, Hitoshi; Yada, Masaki; Kondo, Chiaki
2017-09-01
A 53-year-old woman who had undergone hystero-oophorectomy for uterine endometrial stromal sarcoma in our hospital 9 months previously was referred to our hospital because of bilateral pneumothorax. Chest computed tomography scan on admission revealed multiple thin-walled cavity nodules in both lung and a bilateral pneumothorax, suggesting pulmonary metastases of the uterine endometrial stromal sarcoma. We surgically treated the pneumothorax and diagnosed the nodules as metastatic lesions. They were pathologically diagnosed as metastatic uterine endometrial stromal sarcoma.
High Sensitivity SPECT for Small Animals and Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Gregory S.
Imaging systems using single gamma-ray emitting radioisotopes typically implement collimators in order to form the images. However, a tradeoff in sensitivity is inherent in the use of collimators, and modern preclinical single-photon emission computed tomography (SPECT) systems detect a very small fraction of emitted gamma-rays (<0.3%). We have built a collimator-less system, which can reach sensitivity of 40% for 99mTc imaging, while still producing images of sufficient spatial resolution for certain applications in thin objects such as mice, small plants, and well plates used for in vitro experiments.
Neuroimaging Techniques: a Conceptual Overview of Physical Principles, Contribution and History
NASA Astrophysics Data System (ADS)
Minati, Ludovico
2006-06-01
This paper is meant to provide a brief overview of the techniques currently used to image the brain and to study non-invasively its anatomy and function. After a historical summary in the first section, general aspects are outlined in the second section. The subsequent six sections survey, in order, computed tomography (CT), morphological magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion-tensor magnetic resonance imaging (DWI/DTI), positron emission tomography (PET), and electro- and magneto-encephalography (EEG/MEG) based imaging. Underlying physical principles, modelling and data processing approaches, as well as clinical and research relevance are briefly outlined for each technique. Given the breadth of the scope, there has been no attempt to be comprehensive. The ninth and final section outlines some aspects of active research in neuroimaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minati, Ludovico
This paper is meant to provide a brief overview of the techniques currently used to image the brain and to study non-invasively its anatomy and function. After a historical summary in the first section, general aspects are outlined in the second section. The subsequent six sections survey, in order, computed tomography (CT), morphological magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion-tensor magnetic resonance imaging (DWI/DTI), positron emission tomography (PET), and electro- and magneto-encephalography (EEG/MEG) based imaging. Underlying physical principles, modelling and data processing approaches, as well as clinical and research relevance are briefly outlined for each technique. Givenmore » the breadth of the scope, there has been no attempt to be comprehensive. The ninth and final section outlines some aspects of active research in neuroimaging.« less
Al-Fahdawi, Mahmood Abd; Farid, Mary Medhat; El-Fotouh, Mona Abou; El-Kassaby, Marwa Abdelwahab
2017-03-01
To assess the nasopharyngeal airway volume, cross-sectional area, and depth in previously repaired nonsyndromic unilateral cleft lip and palate versus bilateral cleft lip and palate patients compared with noncleft controls using cone-beam computed tomography with the ultimate goal of finding whether cleft lip and palate patients are more liable to nasopharyngeal airway obstruction. A retrospective analysis comparing bilateral cleft lip and palate, unilateral cleft lip and palate, and control subjects. Significance at P ≤ .05. Cleft Care Center and the outpatient clinic that are both affiliated with our faculty. Cone-beam computed tomography data were selected of 58 individuals aged 9 to 12 years: 14 with bilateral cleft lip and palate and 20 with unilateral cleft lip and palate as well as 24 age- and gender-matched noncleft controls. Volume, depth, and cross-sectional area of nasopharyngeal airway were measured. Patients with bilateral cleft lip and palate showed significantly larger nasopharyngeal airway volume than controls and patients with unilateral cleft lip and palate (P < .001). Patients with bilateral cleft lip and palate showed significantly larger cross-sectional area than those with unilateral cleft lip and palate (P < .001) and insignificant cross-sectional area compared with controls (P > .05). Patients with bilateral cleft lip and palate showed significantly larger depth than controls and those with unilateral cleft lip and palate (P < .001). Patients with unilateral cleft lip and palate showed insignificant nasopharyngeal airway volume, cross-sectional area, and depth compared with controls (P > .05). Unilateral and bilateral cleft lip and palate patients did not show significantly less volume, cross-sectional area, or depth of nasopharyngeal airway than controls. From the results of this study we conclude that unilateral and bilateral cleft lip and palate patients at the studied age and stage of repaired clefts are not more prone to nasopharyngeal airway obstruction than controls.
Computed Tomography (CT) - Spine
... Resources Professions Site Index A-Z Computed Tomography (CT) - Spine Computed tomography (CT) of the spine is ... of CT Scanning of the Spine? What is CT Scanning of the Spine? Computed tomography, more commonly ...
Dong, Jian; Hayakawa, Yoshihiko; Kannenberg, Sven; Kober, Cornelia
2013-02-01
The objective of this study was to reduce metal-induced streak artifact on oral and maxillofacial x-ray computed tomography (CT) images by developing the fast statistical image reconstruction system using iterative reconstruction algorithms. Adjacent CT images often depict similar anatomical structures in thin slices. So, first, images were reconstructed using the same projection data of an artifact-free image. Second, images were processed by the successive iterative restoration method where projection data were generated from reconstructed image in sequence. Besides the maximum likelihood-expectation maximization algorithm, the ordered subset-expectation maximization algorithm (OS-EM) was examined. Also, small region of interest (ROI) setting and reverse processing were applied for improving performance. Both algorithms reduced artifacts instead of slightly decreasing gray levels. The OS-EM and small ROI reduced the processing duration without apparent detriments. Sequential and reverse processing did not show apparent effects. Two alternatives in iterative reconstruction methods were effective for artifact reduction. The OS-EM algorithm and small ROI setting improved the performance. Copyright © 2012 Elsevier Inc. All rights reserved.
Chang, Yu-Bing; Xia, James J.; Yuan, Peng; Kuo, Tai-Hong; Xiong, Zixiang; Gateno, Jaime; Zhou, Xiaobo
2013-01-01
Recent advances in cone-beam computed tomography (CBCT) have rapidly enabled widepsread applications of dentomaxillofacial imaging and orthodontic practices in the past decades due to its low radiation dose, high spatial resolution, and accessibility. However, low contrast resolution in CBCT image has become its major limitation in building skull models. Intensive hand-segmentation is usually required to reconstruct the skull models. One of the regions affected by this limitation the most is the thin bone images. This paper presents a novel segmentation approach based on wavelet density model (WDM) for a particular interest in the outer surface of anterior wall of maxilla. Nineteen CBCT datasets are used to conduct two experiments. This mode-based segmentation approach is validated and compared with three different segmentation approaches. The results show that the performance of this model-based segmentation approach is better than those of the other approaches. It can achieve 0.25 ± 0.2mm of surface error from ground truth of bone surface. PMID:23694914
Yang, Zhongyi; Pan, Lingling; Cheng, Jingyi; Hu, Silong; Xu, Junyan; Ye, Dingwei; Zhang, Yingjian
2012-07-01
To investigate the value of whole-body fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography for the detection of metastatic bladder cancer. From December 2006 to August 2010, 60 bladder cancer patients (median age 60.5 years old, range 32-96) underwent whole body positron emission tomography/computed tomography positron emission tomography/computed tomography. The diagnostic accuracy was assessed by performing both organ-based and patient-based analyses. Identified lesions were further studied by biopsy or clinically followed for at least 6 months. One hundred and thirty-four suspicious lesions were identified. Among them, 4 primary cancers (2 pancreatic cancers, 1 colonic and 1 nasopharyngeal cancer) were incidentally detected, and the patients could be treated on time. For the remaining 130 lesions, positron emission tomography/computed tomography detected 118 true positive lesions (sensitivity = 95.9%). On the patient-based analysis, the overall sensitivity and specificity resulted to be 87.1% and 89.7%, respectively. There was no difference of sensitivity and specificity in patients with or without adjuvant treatment in terms of detection of metastatic sites by positron emission tomography/computed tomography. Compared with conventional imaging modality, positron emission tomography/computed tomography correctly changed the management in 15 patients (25.0%). Positron emission tomography/computed tomography has excellent sensitivity and specificity in the detection of metastatic bladder cancer and it provides additional diagnostic information compared to standard imaging techniques. © 2012 The Japanese Urological Association.
2001-09-01
The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images.
Kwon, Ohin; Woo, Eung Je; Yoon, Jeong-Rock; Seo, Jin Keun
2002-02-01
We developed a new image reconstruction algorithm for magnetic resonance electrical impedance tomography (MREIT). MREIT is a new EIT imaging technique integrated into magnetic resonance imaging (MRI) system. Based on the assumption that internal current density distribution is obtained using magnetic resonance imaging (MRI) technique, the new image reconstruction algorithm called J-substitution algorithm produces cross-sectional static images of resistivity (or conductivity) distributions. Computer simulations show that the spatial resolution of resistivity image is comparable to that of MRI. MREIT provides accurate high-resolution cross-sectional resistivity images making resistivity values of various human tissues available for many biomedical applications.
Rogers, Ian S.; Cury, Ricardo C.; Blankstein, Ron; Shapiro, Michael D.; Nieman, Koen; Hoffmann, Udo; Brady, Thomas J.; Abbara, Suhny
2010-01-01
Background Despite rapid advances in cardiac computed tomography (CT), a strategy for optimal visualization of perfusion abnormalities on CT has yet to be validated. Objective To evaluate the performance of several post-processing techniques of source data sets to detect and characterize perfusion defects in acute myocardial infarctions with cardiac CT. Methods Twenty-one subjects (18 men; 60 ± 13 years) that were successfully treated with percutaneous coronary intervention for ST-segment myocardial infarction underwent 64-slice cardiac CT and 1.5 Tesla cardiac MRI scans following revascularization. Delayed enhancement MRI images were analyzed to identify the location of infarcted myocardium. Contiguous short axis images of the left ventricular myocardium were created from the CT source images using 0.75mm multiplanar reconstruction (MPR), 5mm MPR, 5mm maximal intensity projection (MIP), and 5mm minimum intensity projection (MinIP) techniques. Segments already confirmed to contain infarction by MRI were then evaluated qualitatively and quantitatively with CT. Results Overall, 143 myocardial segments were analyzed. On qualitative analysis, the MinIP and thick MPR techniques had greater visibility and definition than the thin MPR and MIP techniques (p < 0.001). On quantitative analysis, the absolute difference in Hounsfield Unit (HU) attenuation between normal and infarcted segments was significantly greater for the MinIP (65.4 HU) and thin MPR (61.2 HU) techniques. However, the relative difference in HU attenuation was significantly greatest for the MinIP technique alone (95%, p < 0.001). Contrast to noise was greatest for the MinIP (4.2) and thick MPR (4.1) techniques (p < 0.001). Conclusion The results of our current investigation found that MinIP and thick MPR detected infarcted myocardium with greater visibility and definition than MIP and thin MPR. PMID:20579617
Use of cone beam computed tomography in identifying postmenopausal women with osteoporosis.
Brasileiro, C B; Chalub, L L F H; Abreu, M H N G; Barreiros, I D; Amaral, T M P; Kakehasi, A M; Mesquita, R A
2017-12-01
The aim of this study is to correlate radiometric indices from cone beam computed tomography (CBCT) images and bone mineral density (BMD) in postmenopausal women. Quantitative CBCT indices can be used to screen for women with low BMD. Osteoporosis is a disease characterized by the deterioration of bone tissue and the consequent decrease in BMD and increase in bone fragility. Several studies have been performed to assess radiometric indices in panoramic images as low-BMD predictors. The aim of this study is to correlate radiometric indices from CBCT images and BMD in postmenopausal women. Sixty postmenopausal women with indications for dental implants and CBCT evaluation were selected. Dual-energy X-ray absorptiometry (DXA) was performed, and the patients were divided into normal, osteopenia, and osteoporosis groups, according to the World Health Organization (WHO) criteria. Cross-sectional images were used to evaluate the computed tomography mandibular index (CTMI), the computed tomography index (inferior) (CTI (I)) and computed tomography index (superior) (CTI (S)). Student's t test was used to compare the differences between the indices of the groups' intraclass correlation coefficient (ICC). Statistical analysis showed a high degree of interobserver and intraobserver agreement for all measurements (ICC > 0.80). The mean values of CTMI, CTI (S), and CTI (I) were lower in the osteoporosis group than in osteopenia and normal patients (p < 0.05). In comparing normal patients and women with osteopenia, there was no statistically significant difference in the mean value of CTI (I) (p = 0.075). Quantitative CBCT indices may help dentists to screen for women with low spinal and femoral bone mineral density so that they can refer postmenopausal women for bone densitometry.
NASA Astrophysics Data System (ADS)
Liu, George S.; Kim, Jinkyung; Applegate, Brian E.; Oghalai, John S.
2017-07-01
Diseases that cause hearing loss and/or vertigo in humans such as Meniere's disease are often studied using animal models. The volume of endolymph within the inner ear varies with these diseases. Here, we used a mouse model of increased endolymph volume, endolymphatic hydrops, to develop a computer-aided objective approach to measure endolymph volume from images collected in vivo using optical coherence tomography. The displacement of Reissner's membrane from its normal position was measured in cochlear cross sections. We validated our computer-aided measurements with manual measurements and with trained observer labels. This approach allows for computer-aided detection of endolymphatic hydrops in mice, with test performance showing sensitivity of 91% and specificity of 87% using a running average of five measurements. These findings indicate that this approach is accurate and reliable for classifying endolymphatic hydrops and quantifying endolymph volume.
Kahl, W-A; Dilissen, N; Hidas, K; Garrido, C J; López-Sánchez-Vizcaíno, V; Román-Alpiste, M J
2017-11-01
We reconstruct the 3-D microstructure of centimetre-sized olivine crystals in rocks from the Almirez ultramafic massif (SE Spain) using combined X-ray micro computed tomography (μ-CT) and electron backscatter diffraction (EBSD). The semidestructive sample treatment involves geographically oriented drill pressing of rocks and preparation of oriented thin sections for EBSD from the μ-CT scanned cores. The μ-CT results show that the mean intercept length (MIL) analyses provide reliable information on the shape preferred orientation (SPO) of texturally different olivine groups. We show that statistical interpretation of crystal preferred orientation (CPO) and SPO of olivine becomes feasible because the highest densities of the distribution of main olivine crystal axes from EBSD are aligned with the three axes of the 3-D ellipsoid calculated from the MIL analyses from μ-CT. From EBSD data we distinguish multiple CPO groups and by locating the thin sections within the μ-CT volume, we assign SPO to the corresponding olivine crystal aggregates, which confirm the results of statistical comparison. We demonstrate that the limitations of both methods (i.e. no crystal orientation data in μ-CT and no spatial information in EBSD) can be overcome, and the 3-D orientation of the crystallographic axes of olivines from different orientation groups can be successfully correlated with the crystal shapes of representative olivine grains. Through this approach one can establish the link among geological structures, macrostructure, fabric and 3-D SPO-CPO relationship at the hand specimen scale even in complex, coarse-grained geomaterials. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Cross-sectional shape of the child's trachea by computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griscom, N.T.
1983-06-01
Computed tomographic scanning was used to investigate the shape in cross section of the lumen of the pediatric trachea. Seven children up to age 10 (mostly age 6 or older), six girls aged 10 to 19, and six boys aged 10 to 19 had scans of their tracheas, mostly during breath-holding not far from total lung capacity. At these ages and under these circumstances, the trachea may be slightly narrow just below the larynx, and it broadens just above its bifurcation. At other levels, it is only mildly or moderately off-circular although there are variations from patient to patient andmore » from level to level. The severely off-circular shapes found by others during autopsies and computed tomography of the middle-aged and elderly were not detected in these children and adolescents. Under the circumstances of the study, there was little change in shape or size as the trachea passed from the neck into the chest, nor was there a consistent difference in tracheal shape between girls and boys.« less
[Diagnostic possibilities of digital volume tomography].
Lemkamp, Michael; Filippi, Andreas; Berndt, Dorothea; Lambrecht, J Thomas
2006-01-01
Cone beam computed tomography allows high quality 3D images of cranio-facial structures. Although detail resolution is increased, x-ray exposition is reduced compared to classic computer tomography. The volume is analysed in three orthogonal plains, which can be rotated independently without quality loss. Cone beam computed tomography seems to be a less expensive and less x-ray exposing alternative to classic computer tomography.
The prevalence of transpancreatic common hepatic artery and coexisting variant anatomy.
Ishigami, Kousei; Nishie, Akihiro; Asayama, Yoshiki; Ushijima, Yasuhiro; Takayama, Yukihisa; Okamoto, Daisuke; Fujita, Nobuhiro; Yoshizumi, Tomoharu; Harimoto, Norifumi; Ohtsuka, Takao; Nakata, Kohei; Honda, Hiroshi
2018-05-01
We studied the prevalence of the transpancreatic common hepatic artery (tp-CHA) and coexisting variant anatomy. The study group comprised 788 consecutive liver transplant donor candidates who had undergone thin-section multidetector-row computed tomography (MDCT) studies to investigate vascular anatomy. Multiplanar reformatted (MPR) images obtained from the arterial phase were retrospectively reviewed to assess the presence/absence of the tp-CHA. Five cases of tp-CHA with pancreaticobiliary tumors were also included in an investigation of the presence/absence of variant hepatic arteries, celiac stenosis, and circumportal pancreas. Three of the 788 (0.38%) donor candidates had a tp-CHA. Overall, eight tp-CHA cases were assessed for coexisting variant anatomy. Seven of these eight cases had a hepatomesenteric trunk, six had celiac stenosis, and two had a circumportal pancreas. The prevalence of the tp-CHA was 0.38% (approx. one in 260 in normal populations). A tp-CHA can commonly be associated with a hepatomesenteric trunk and celiac stenosis. A circumportal pancreas can also coexist with a tp-CHA. Clin. Anat. 31:598-604, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Paleoradiology: advanced CT in the evaluation of nine Egyptian mummies.
Hoffman, Heidi; Torres, William E; Ernst, Randy D
2002-01-01
Axial thin-collimation state-of-the-art spiral computed tomography (CT) was combined with sagittal and coronal reformatting, three-dimensional (3D) reconstruction, and virtual "fly-through" techniques to nondestructively study nine Egyptian mummies. These techniques provided important paleopathologic and historical information about mummification techniques, depicted anatomy in the most informative imaging plane, illustrated the soft-tissue preservation and physical appearance of mummies in superb detail, and generated an intriguing virtual tour through hollow mummified remains without harming the specimens themselves. Images generated with these methods can help archaeologists and Egyptologists understand these fascinating members of mankind and can serve as adjunct visual aids for laypersons who are interested in mummies. CT has emerged as the imaging modality of choice for the examination of Egyptian mummies due to its noninvasive cross-sectional nature and inherently superior contrast and spatial resolution. As multi-detector row CT and postprocessing tools evolve, the capabilities and applications of CT will continue to proliferate, attesting to the expanded versatility and utility of CT as a noninvasive research tool in the multidisciplinary study of Egyptian mummies. Copyright RSNA, 2002
Higgs, Nicholas D; Glover, Adrian G; Dahlgren, Thomas G; Little, Crispin T S
2011-12-01
Osedax worms possess unique "root" tissues that they use to bore into bones on the seafloor, but details of the boring pattern and processes are poorly understood. Here we use X-ray micro-computed tomography to investigate the borings of Osedax mucofloris in bones of the minke whale (Balaenoptera acutorostrata), quantitatively detailing their morphological characteristics for the first time. Comparative thin-sections of the borings reveal how the bone is eroded at the sub-millimeter level. On the basis of these results we hypothesize a model of boring that is dependent on the density and microstructure of the bone. We also present evidence of acidic mucopolysaccharides in the mucus of the root tissue, and hypothesize that this plays an important role in the boring mechanism. We discuss the utility of these new data in evaluating Osedax trace fossils and their relevance for O. mucofloris ecology. Measured rates of bone erosion (6% per year) and evidence of enhanced sulfide release from the borings indicate that Osedax worms are important habitat modifiers in whale-fall communities.
Charged-particle emission tomography
Ding, Yijun; Caucci, Luca; Barrett, Harrison H.
2018-01-01
Purpose Conventional charged-particle imaging techniques —such as autoradiography —provide only two-dimensional (2D) black ex vivo images of thin tissue slices. In order to get volumetric information, images of multiple thin slices are stacked. This process is time consuming and prone to distortions, as registration of 2D images is required. We propose a direct three-dimensional (3D) autoradiography technique, which we call charged-particle emission tomography (CPET). This 3D imaging technique enables imaging of thick tissue sections, thus increasing laboratory throughput and eliminating distortions due to registration. CPET also has the potential to enable in vivo charged-particle imaging with a window chamber or an endoscope. Methods Our approach to charged-particle emission tomography uses particle-processing detectors (PPDs) to estimate attributes of each detected particle. The attributes we estimate include location, direction of propagation, and/or the energy deposited in the detector. Estimated attributes are then fed into a reconstruction algorithm to reconstruct the 3D distribution of charged-particle-emitting radionuclides. Several setups to realize PPDs are designed. Reconstruction algorithms for CPET are developed. Results Reconstruction results from simulated data showed that a PPD enables CPET if the PPD measures more attributes than just the position from each detected particle. Experiments showed that a two-foil charged-particle detector is able to measure the position and direction of incident alpha particles. Conclusions We proposed a new volumetric imaging technique for charged-particle-emitting radionuclides, which we have called charged-particle emission tomography (CPET). We also proposed a new class of charged-particle detectors, which we have called particle-processing detectors (PPDs). When a PPD is used to measure the direction and/or energy attributes along with the position attributes, CPET is feasible. PMID:28370094
Charged-particle emission tomography.
Ding, Yijun; Caucci, Luca; Barrett, Harrison H
2017-06-01
Conventional charged-particle imaging techniques - such as autoradiography - provide only two-dimensional (2D) black ex vivo images of thin tissue slices. In order to get volumetric information, images of multiple thin slices are stacked. This process is time consuming and prone to distortions, as registration of 2D images is required. We propose a direct three-dimensional (3D) autoradiography technique, which we call charged-particle emission tomography (CPET). This 3D imaging technique enables imaging of thick tissue sections, thus increasing laboratory throughput and eliminating distortions due to registration. CPET also has the potential to enable in vivo charged-particle imaging with a window chamber or an endoscope. Our approach to charged-particle emission tomography uses particle-processing detectors (PPDs) to estimate attributes of each detected particle. The attributes we estimate include location, direction of propagation, and/or the energy deposited in the detector. Estimated attributes are then fed into a reconstruction algorithm to reconstruct the 3D distribution of charged-particle-emitting radionuclides. Several setups to realize PPDs are designed. Reconstruction algorithms for CPET are developed. Reconstruction results from simulated data showed that a PPD enables CPET if the PPD measures more attributes than just the position from each detected particle. Experiments showed that a two-foil charged-particle detector is able to measure the position and direction of incident alpha particles. We proposed a new volumetric imaging technique for charged-particle-emitting radionuclides, which we have called charged-particle emission tomography (CPET). We also proposed a new class of charged-particle detectors, which we have called particle-processing detectors (PPDs). When a PPD is used to measure the direction and/or energy attributes along with the position attributes, CPET is feasible. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Axial Crushing of Thin-Walled Columns with Octagonal Section: Modeling and Design
NASA Astrophysics Data System (ADS)
Liu, Yucheng; Day, Michael L.
This chapter focus on numerical crashworthiness analysis of straight thinwalled columns with octagonal cross sections. Two important issues in this analysis are demonstrated here: computer modeling and crashworthiness design. In the first part, this chapter introduces a method of developing simplified finite element (FE) models for the straight thin-walled octagonal columns, which can be used for the numerical crashworthiness analysis. Next, this chapter performs a crashworthiness design for such thin-walled columns in order to maximize their energy absorption capability. Specific energy absorption (SEA) is set as the design objective, side length of the octagonal cross section and wall thickness are selected as design variables, and maximum crushing force (Pm) occurs during crashes is set as design constraint. Response surface method (RSM) is employed to formulate functions for both SEA and Pm.
Analysis of x-ray tomography data of an extruded low density styrenic foam: an image analysis study
NASA Astrophysics Data System (ADS)
Lin, Jui-Ching; Heeschen, William
2016-10-01
Extruded styrenic foams are low density foams that are widely used for thermal insulation. It is difficult to precisely characterize the structure of the cells in low density foams by traditional cross-section viewing due to the frailty of the walls of the cells. X-ray computed tomography (CT) is a non-destructive, three dimensional structure characterization technique that has great potential for structure characterization of styrenic foams. Unfortunately the intrinsic artifacts of the data and the artifacts generated during image reconstruction are often comparable in size and shape to the thin walls of the foam, making robust and reliable analysis of cell sizes challenging. We explored three different image processing methods to clean up artifacts in the reconstructed images, thus allowing quantitative three dimensional determination of cell size in a low density styrenic foam. Three image processing approaches - an intensity based approach, an intensity variance based approach, and a machine learning based approach - are explored in this study, and the machine learning image feature classification method was shown to be the best. Individual cells are segmented within the images after the images were cleaned up using the three different methods and the cell sizes are measured and compared in the study. Although the collected data with the image analysis methods together did not yield enough measurements for a good statistic of the measurement of cell sizes, the problem can be resolved by measuring multiple samples or increasing imaging field of view.
NASA Technical Reports Server (NTRS)
Bergan, Andrew C.; Garcea, Serafina C.
2017-01-01
The role of longitudinal compressive failure mechanisms in notched cross-ply laminates is studied experimentally with in-situ synchrotron radiation based computed tomography. Carbon/epoxy specimens loaded monotonically in uniaxial compression exhibited a quasi-stable failure process, which was captured with computed tomography scans recorded continuously with a temporal resolutions of 2.4 seconds and a spatial resolution of 1.1 microns per voxel. A detailed chronology of the initiation and propagation of longitudinal matrix splitting cracks, in-plane and out-of-plane kink bands, shear-driven fiber failure, delamination, and transverse matrix cracks is provided with a focus on kink bands as the dominant failure mechanism. An automatic segmentation procedure is developed to identify the boundary surfaces of a kink band. The segmentation procedure enables 3-dimensional visualization of the kink band and conveys the orientation, inclination, and spatial variation of the kink band. The kink band inclination and length are examined using the segmented data revealing tunneling and spatial variations not apparent from studying the 2-dimensional section data.
Anderson, F; Williams, A; Pannier, L; Pethick, D W; Gardner, G E
2015-10-01
Data are obtained from computed tomography scanning of 1665 lambs at locations around Australia. Lambs were progeny of Terminal, Maternal and Merino sires with known Australian Sheep Breeding Values for post weaning c-site eye muscle depth (mm; PEMD) and fat depth (mm; PFAT), and post weaning weight (kg; PWWT). Across the 7.8 unit range of sire PEMD, carcass lean weight increased by 7.7%. This lean was distributed to the saddle section (mid-section) where lean became 3.8% heavier, with fore section lean becoming 3.5% lighter. Reducing sire PFAT across its 5.1 unit range increased carcass lean weight by 9.5%, and distributed lean to the saddle section which was 3.7% heavier. Increasing sire PWWT increased lean at some sites in some years, and on average increased saddle lean by 4% across the 24.7 unit PWWT range. Changes in lean weight and distribution due to selection for carcass breeding values will increase carcass value, particularly through increased weight of high value loin cuts. Copyright © 2015. Published by Elsevier Ltd.
Atelectasis observed by computerized tomography after Caesarean section.
Meira, M N C; Carvalho, C R R; Galizia, M S; Borges, J B; Kondo, M M; Zugaib, M; Vieira, J E
2010-06-01
Atelectasis after either vaginal or Caesarean delivery has not been adequately quantified. This study addresses the hypothesis that atelectasis may be worse in women who undergo Caesarean section when compared with vaginal delivery under regional anaesthesia. Twenty healthy non-smoking women submitted to a chest computed tomography (CT) 2 h after delivery in a University Hospital, who had experienced vaginal delivery (n=10) under combined spinal-epidural analgesia or a Caesarean section (n=10) under spinal anaesthesia, were evaluated. The percentage cross-sectional area of atelectasis in dependent lung regions were measured from the CT images obtained at cross-section of the xiphoid process and the top of the diaphragm. The percentage cross-sectional area of atelectasis was 3.95% in the vaginal delivery group and 14.1% in the Caesarean group (P<0.001, Mann-Whitney rank sum test). These results suggested that pulmonary atelectasis is greater after Caesarean section delivery under spinal anaesthesia than after vaginal delivery with combined spinal-epidural analgesia.
Sader, Kasim; Reedy, Michael; Popp, David; Lucaveche, Carmen; Trinick, John
2007-07-01
Thin sections of biological tissue embedded in plastic and cut with an ultramicrotome do not generally display useful details smaller than approximately 50 A in the electron microscope. However, there is evidence that before sectioning the embedded tissue can be substantially better preserved, which suggests that cutting is when major damage and loss of resolution occurs. We show here a striking example of such damage in embedded insect flight muscle fibres. X-ray diffraction of the embedded muscle gave patterns extending to 13A, whereas sections cut from the same block showed only approximately 50 A resolution. A possible source of this damage is the substantial compression that was imposed on sections during cutting. An oscillating knife ultramicrotome eliminates the compression and it seemed possible that sections cut with such a knife would show substantially improved preservation. We used the oscillating knife to cut sections from the embedded muscle and from embedded catalase crystals. Preservation with and without oscillation was assessed in Fourier transforms of micrographs. Sections cut with the knife oscillating did not show improved preservation over those cut without. Thus compression during cutting does not appear to be the major source of damage in plastic sections, and leaves unexplained the 50 A versus 13A discrepancy between block and section preservation. The results nevertheless suggest that improvements in ultramicrotomy will be important for bringing thin-sectioning and tomography of plastic-embedded cells and tissues to the point where macromolecule shapes can be resolved.
NASA Astrophysics Data System (ADS)
Castellano, Isabel; Geleijns, Jacob
After its clinical introduction in 1973, computed tomography developed from an x-ray modality for axial imaging in neuroradiology into a versatile three dimensional imaging modality for a wide range of applications in for example oncology, vascular radiology, cardiology, traumatology and even in interventional radiology. Computed tomography is applied for diagnosis, follow-up studies and screening of healthy subpopulations with specific risk factors. This chapter provides a general introduction in computed tomography, covering a short history of computed tomography, technology, image quality, dosimetry, room shielding, quality control and quality criteria.
[Mediastinal Pancreatic Pseudocyst with Pancreatic Pleural Effusion].
Sasajima, Motoko; Kawai, Hideki; Suzuki, Yohei; Saito, Yoshitaro; Eto, Takeshi
2017-06-01
A 72-year-old man with chronic alcohol related pancreatitis was admitted for dyspnea and pain at the upper body. Chest X-ray showed right massive pleural effusion. Chest and abdominal contrast enhanced thin slice computed tomography revealed the route from the pancreatic head reaching the right thoracic cavity via the esophagus hiatus and the communication between the cystic lesion and main pancreatic duct. We drained the pleural effusion that showed abnormally high amylase activity. We diagnosed his illness as mediastinal pancreatic pseudocyst with pancreatic pleural effusion. Endoscopic Nasopancreatic Drainage catheter was placed in the main pancreatic duct, and the pleural effusion disappeared.
A modal radar cross section of thin-wire targets via the singularity expansion method
NASA Technical Reports Server (NTRS)
Richards, M. A.; Shumpert, T. H.; Riggs, L. S.
1992-01-01
A modal radar cross section (RCS) of arbitrary wire scatterers is constructed in terms of SEM parameters. Numerical results are presented for both straight and L-shaped wire targets and are compared to computations performed in the frequency domain using the method of moments.
2001-01-01
The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images. In this photograph, a patient undergoes an open MRI.
Akhtar, Saeed; Alkhalaf, Mousa; Khan, Adnan A; Almubrad, Turki M
2016-08-01
We report ultrastructural features and transmission electron tomography of the dhub lizard (Uromastyx aegyptia) cornea and its adaptation to hot and dry environments. Six corneas of dhub lizards were fixed in 2.5% glutaraldehyde and processed for electron microscopy and tomography. The ultrathin sections were observed with a JEOL 1400 transmission electron microscope. The cornea of the dhub lizard is very thin (~28-30 µm). The epithelium constitutes ~14% of the cornea, whereas the stroma constitutes 80% of the cornea. The middle stromal lamellae are significantly thicker than anterior and posterior stromal lamellae. Collagen fibril (CF) diameters in the anterior stroma are variable in size (25-75 nm). Proteoglycans (PGs) are very large in the middle and posterior stroma, whereas they are small in the anterior stroma. Three-dimensional electron tomography was carried out to understand the structure and arrangement of the PG and CFs. The presence of large PGs in the posterior and middle stroma might help the animal retain a large amount of water to protect it from dryness. The dhub corneal structure is equipped to adapt to the dry and hot desert environment.
Ozan, E; Atac, G K; Evrin, T; Alisar, K; Sonmez, L O; Alhan, A
2017-02-01
The value of abdominal computed tomography in non-traumatic abdominal pain has been well established. On the other hand, to manage computed tomography, appropriateness has become more of an issue as a result of the concomitant increase in patient radiation exposure with increased computed tomography use. The purpose of this study was to investigate whether C-reactive protein, white blood cell count, and pain location may guide the selection of patients for computed tomography in non-traumatic acute abdomen. Patients presenting with acute abdomen to the emergency department over a 12-month period and who subsequently underwent computed tomography were retrospectively reviewed. Those with serum C-reactive protein and white blood cell count measured on admission or within 24 h of the computed tomography were selected. Computed tomography examinations were retrospectively reviewed, and final diagnoses were designated either positive or negative for pathology relating to presentation with acute abdomen. White blood cell counts, C-reactive protein levels, and pain locations were analyzed to determine whether they increased or decreased the likelihood of producing a diagnostic computed tomography. The likelihood ratio for computed tomography positivity with a C-reactive protein level above 5 mg/L was 1.71, while this increased to 7.71 in patients with combined elevated C-reactive protein level and white blood cell count and right lower quadrant pain. Combined elevated C-reactive protein level and white blood cell count in patients with right lower quadrant pain may represent a potential factor that could guide the decision to perform computed tomography in non-traumatic acute abdomen.
Preoperative N Staging of Gastric Cancer by Stomach Protocol Computed Tomography
Kim, Se Hoon; Kim, Jeong Jae; Lee, Jeong Sub; Kim, Seung Hyoung; Kim, Bong Soo; Maeng, Young Hee; Hyun, Chang Lim; Kim, Min Jeong
2013-01-01
Purpose Clinical stage of gastric cancer is currently assessed by computed tomography. Accurate clinical staging is important for the tailoring of therapy. This study evaluated the accuracy of clinical N staging using stomach protocol computed tomography. Materials and Methods Between March 2004 and November 2012, 171 patients with gastric cancer underwent preoperative stomach protocol computed tomography (Jeju National University Hospital; Jeju, Korea). Their demographic and clinical characteristics were reviewed retrospectively. Two radiologists evaluated cN staging using axial and coronal computed tomography images, and cN stage was matched with pathologic results. The diagnostic accuracy of stomach protocol computed tomography for clinical N staging and clinical characteristics associated with diagnostic accuracy were evaluated. Results The overall accuracy of stomach protocol computed tomography for cN staging was 63.2%. Computed tomography images of slice thickness 3.0 mm had a sensitivity of 60.0%; a specificity of 89.6%; an accuracy of 78.4%; and a positive predictive value of 78.0% in detecting lymph node metastases. Underestimation of cN stage was associated with larger tumor size (P<0.001), undifferentiated type (P=0.003), diffuse type (P=0.020), more advanced pathologic stage (P<0.001), and larger numbers of harvested and metastatic lymph nodes (P<0.001 each). Tumor differentiation was an independent factor affecting underestimation by computed tomography (P=0.045). Conclusions Computed tomography with a size criterion of 8 mm is highly specific but relatively insensitive in detecting nodal metastases. Physicians should keep in mind that computed tomography may not be an appropriate tool to detect nodal metastases for choosing appropriate treatment. PMID:24156034
An improved cryo-FIB method for fabrication of frozen hydrated lamella.
Zhang, Jianguo; Ji, Gang; Huang, Xiaojun; Xu, Wei; Sun, Fei
2016-05-01
Cryo-electron tomography (cryo-ET) provides great insights into the ultrastructure of cells and tissues in their native state and provides a promising way to study the in situ 3D structures of macromolecular complexes. However, this technique has been limited on the very thin specimen, which is not applicable for most cells and tissues. Besides cryo-sectioning approach, cryo focused ion beam (cryo-FIB) appeared recently to achieve 'artifact-free' thin frozen hydrated lamella via fabrication. Considering that the current cryo-FIB methods need modified holders or cartridges, here, with a "D-shaped" molybdenum grid and a specific shutter system, we developed a simple cryo-FIB approach for thin frozen hydrated lamella fabrication, which fits both standard transmission cryo-electron microscopes with side-entry cryo-holders and state-of-the-art ones with AutoGrids. Our approach will expand the usage of cryo-FIB approach in many labs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Anatomic study of cranial nerve emergence and associated skull foramina in cats using CT and MRI.
Gomes, Eymeric; Degueurce, Christophe; Ruel, Yannick; Dennis, Ruth; Begon, Dominique
2009-01-01
Magnetic resonance (MR) images of the brain of four normal cats were reviewed retrospectively to assess the emergence and course of the cranial nerves (CNs). Two-millimeter-thick images were obtained in transverse, sagittal, and dorsal planes using a 1.5 T unit. CN skull foramina, as anatomic landmarks for MR imaging, were identified by computed tomography performed on an isolated cat skull using thin wire within each skull foramen. Thin slice (1 mm slice thickness) images were obtained with a high-resolution bone filter scan protocol. The origins of CNs II, V, VII, and VIII and the group of IX, X, XI, and XII could be identified. The pathway and proximal divisions of CNs V were described. CNs III, IV, and VI were not distinguished from each other but could be seen together in the orbital fissure. CN V was characterized by slight contrast enhancement.
Marwah, Nikhil
2016-01-01
ABSTRACT Objective: The aim of our study is to use cone beam computed tomography (CBCT) to assess the dimensional changes in the nasopharyngeal soft-tissue characteristics in children of Indian origin with repaired cleft lip and palate (CLP) and to compare the results with patients with ideal occlusion. Materials and methods: A sample of 20 children (10 girls, 10 boys) with repaired CLP was selected. Cone beam computed tomography scans were taken to measure the nasopharyngeal airway changes in terms of linear measurements and sagittal cross-sectional areas. Error analysis was performed to prevent systematic or random errors. Independent means t-tests and Pearson correlation analysis were used to evaluate sex differences and the correlations among the variables. Results: Nasopharyngeal soft-tissue characteristics were different in the control and the study groups. Subjects with repaired CLP had lesser lower aerial width, lower adenoidal width and lower airway width. The upper airway width was also significantly lesser. The retropalatal and the total airway area were significantly greater in the control group. Conclusion: The narrow pharyngeal airway in patients with CLP might result in functional impairment of breathing in patients. Further investigations are necessary to clarify the relationship between pharyngeal structure and airway function in patients with CLP. How to cite this article: Agarwal A, Marwah N. Assessment of the Airway Characteristics in Children with Cleft Lip and Palate using Cone Beam Computed Tomography. Int J Clin Pediatr Dent 2016;9(1):5-9. PMID:27274147
Cottin, Vincent; Richeldi, Luca
2014-03-01
In idiopathic pulmonary fibrosis (IPF), some facts or concepts based on substantial evidence, whilst implicit for learned subspecialists, have previously been neglected and/or not explicitly formulated or made accessible to a wider audience. IPF is strongly associated with cigarette smoking and is predominantly a disease of ageing. However, its cause(s) remain elusive and, thus, it is one of the most challenging diseases for the development of novel effective and safe therapies. With the approval of pirfenidone for patients with mild-to-moderate IPF, an earlier diagnosis of IPF is a prerequisite for earlier treatment and, potentially, improvement of the long-term clinical outcome of this progressive and ultimately fatal disease. An earlier diagnosis may be achieved in IPF by promoting thin-slice chest high-resolution computed tomography screening of interstitial lung disease as a "by-product" of large-scale lung cancer screening strategies in smokers, but other techniques, which have been neglected in the past, are now available. Lung auscultation and early identification of "velcro" crackles has been proposed as a key component of early diagnosis of IPF. An ongoing study is exploring correlations between lung sounds on auscultation obtained using electronic stethoscopes and high-resolution computed tomography patterns.
Mosotho, Nathaniel Lehlohonolo; Timile, Ino; Joubert, Gina
computed tomography and the Bender Gestalt Test are some of the tests used routinely for the assessment of alleged offenders referred under Sections 77 and 78 of the Criminal Procedure Act 51 of 1977. An exploratory retrospective study was conducted at the Free State Psychiatric Complex. The aim of this study was to identify the extent to which the Bender Gestalt Test results and the computed tomography scans are associated with outcomes in the assessment of competency to stand trial and criminal responsibility in individuals referred to the Free State Psychiatric Complex (FSPC) observation unit. This was a cross-sectional study and the entire population of patients admitted in 2013 was included in the study. The clinical and demographic data were obtained from patient files. The majority of participants were black, males, single and unemployed. The most common diagnosis was schizophrenia. The current study showed no statistically significant association between the Bender Gestalt Test Hain's scores and the outcome of criminal responsibility and competency to stand trial. Similarly, the study also showed no statistically significant association between the presence of a brain lesion and the outcome of criminal responsibility and competency to stand trial. It was also concluded that as CT scans are expensive, patients should be referred for that service only when there is a clear clinical indication to do so. Copyright © 2016 Elsevier Ltd. All rights reserved.
Renal-related adverse effects of intravenous contrast media in computed tomography
Leow, Kheng Song; Wu, Yi Wei; Tan, Cher Heng
2015-01-01
Renal-related adverse effects of intravascular contrast media (CM) include contrast-induced nephropathy in computed tomography and angiography. While large retrospective studies have been published, the exact pathogenesis of this condition is still unknown. We review the main international guidelines, including the American College of Radiology white paper and the guidelines of European Society of Urogenital Radiology, Royal College of Radiologists and Canadian Association of Radiologists, as well as their references, regarding this subject. We present a simplified, concise approach to renal-related adverse effects of CM, taking into consideration the basis for each recommendation in these published guidelines. This will allow the reader to better understand the rationale behind appropriate patient preparation for cross-sectional imaging. PMID:25917468
Lifton, Joseph J; Malcolm, Andrew A; McBride, John W
2015-01-01
X-ray computed tomography (CT) is a radiographic scanning technique for visualising cross-sectional images of an object non-destructively. From these cross-sectional images it is possible to evaluate internal dimensional features of a workpiece which may otherwise be inaccessible to tactile and optical instruments. Beam hardening is a physical process that degrades the quality of CT images and has previously been suggested to influence dimensional measurements. Using a validated simulation tool, the influence of spectrum pre-filtration and beam hardening correction are evaluated for internal and external dimensional measurements. Beam hardening is shown to influence internal and external dimensions in opposition, and to have a greater influence on outer dimensions compared to inner dimensions. The results suggest the combination of spectrum pre-filtration and a local gradient-based surface determination method are able to greatly reduce the influence of beam hardening in X-ray CT for dimensional metrology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins de Oliveira, Jose Jr.; Germano Martins, Antonio Cesar
X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe a non-conventional application of computerized tomography: visualization and improvements in the understanding of some internal structural features of solid dosage forms. A micro-CT X-ray scanner, with a minimum resolution of 30 mum was used to characterize some pharmaceutical tablets, granules, controlled-release osmotic tablet and liquid-filled soft-gelatin capsules. The analysis presented in this work are essentially qualitative, but quantitative parameters, such as porosity, density distribution, tablets dimensions, etc. could also be obtained using the related CT techniques.
Sandgren, Buster; Crafoord, Joakim; Garellick, Göran; Carlsson, Lars; Weidenhielm, Lars; Olivecrona, Henrik
2013-10-01
Digital radiographic images in the anterior-posterior and lateral view have been gold standard for evaluation of peri-acetabular osteolysis for patients with an uncemented hip replacement. We compared digital radiographic images and computer tomography in detection of peri-acetabular osteolysis and devised a classification system based on computer tomography. Digital radiographs were compared with computer tomography on 206 hips, with a mean follow up 10 years after surgery. The patients had no clinical signs of osteolysis and none were planned for revision surgery. On digital radiographs, 192 cases had no osteolysis and only 14 cases had osteolysis. When using computer tomography there were 184 cases showing small or large osteolysis and only 22 patients had no osteolysis. A classification system for peri-acetabular osteolysis is proposed based on computer tomography that is easy to use on standard follow up evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.
Atom Probe Tomography Studies on the Cu(In,Ga)Se2 Grain Boundaries
Cojocaru-Mirédin, Oana; Schwarz, Torsten; Choi, Pyuck-Pa; Herbig, Michael; Wuerz, Roland; Raabe, Dierk
2013-01-01
Compared with the existent techniques, atom probe tomography is a unique technique able to chemically characterize the internal interfaces at the nanoscale and in three dimensions. Indeed, APT possesses high sensitivity (in the order of ppm) and high spatial resolution (sub nm). Considerable efforts were done here to prepare an APT tip which contains the desired grain boundary with a known structure. Indeed, site-specific sample preparation using combined focused-ion-beam, electron backscatter diffraction, and transmission electron microscopy is presented in this work. This method allows selected grain boundaries with a known structure and location in Cu(In,Ga)Se2 thin-films to be studied by atom probe tomography. Finally, we discuss the advantages and drawbacks of using the atom probe tomography technique to study the grain boundaries in Cu(In,Ga)Se2 thin-film solar cells. PMID:23629452
Three-rooted premolar analyzed by high-resolution and cone beam CT.
Marca, Caroline; Dummer, Paul M H; Bryant, Susan; Vier-Pelisser, Fabiana Vieira; Só, Marcus Vinicius Reis; Fontanella, Vania; Dutra, Vinicius D'avila; de Figueiredo, José Antonio Poli
2013-07-01
The aim of this study was to analyze the variations in canal and root cross-sectional area in three-rooted maxillary premolars between high-resolution computed tomography (μCT) and cone beam computed tomography (CBCT). Sixteen extracted maxillary premolars with three distinct roots and fully formed apices were scanned using μCT and CBCT. Photoshop CS software was used to measure root and canal cross-sectional areas at the most cervical and the most apical points of each root third in images obtained using the two tomographic computed (CT) techniques, and at 30 root sections equidistant from both root ends using μCT images. Canal and root areas were compared between each method using the Student t test for paired samples and 95 % confidence intervals. Images using μCT were sharper than those obtained using CBCT. There were statistically significant differences in mean area measurements of roots and canals between the μCT and CBCT techniques (P < 0.05). Root and canal areas had similar variations in cross-sectional μCT images and became proportionally smaller in a cervical to apical direction as the cementodentinal junction was approached, from where the area then increased apically. Although variation was similar in the roots and canals under study, CBCT produced poorer image details than μCT. Although CBCT is a strong diagnosis tool, it still needs improvement to provide accuracy in details of the root canal system, especially in cases with anatomical variations, such as the three-rooted maxillary premolars.
Kendi A, Tuba Karagulle; Mudalegundi, Shwetha; Switchenko, Jeffrey; Lee, Daniel; Halkar, Raghuveer; Chen, Amy Y
2016-01-01
Positron emission tomography/computed tomography is suggested to have a role in detection of iodine negative recurrence in well differentiated thyroid cancer. The aim of this study is to identify role of different imaging modalities in the management of well differentiated thyroid cancer. We reviewed 900 well differentiated thyroid cancer patients after post-thyroidectomy who underwent recombinant human thyroid stimulating hormone stimulated Sodium Iodide I 131 imaging. Out of 900 patients, 74 had positron emission tomography/computed tomography. Multivariate analysis was performed by controlling positron emission tomography/computed tomography, Sodium Iodide I 131 scan, neck ultrasonography, age, sex, primary tumor size, stage, histology, thyroglobulin. Patients were grouped according to results of Sodium Iodide I 131 scan and positron emission tomography/computed tomography. Positron emission tomography/computed tomography was positive in 23 of 74 patients. The sensitivity for positron emission tomography was 11/11(100%), the specificity was 51/63 (81.0%), the positive predictive value was 11/23 (47.8%), and the negative predictive value was 51/51 (100%). The sensitivity for the neck ultrasonography was 4/8 (50%), the specificity was 53/60 (88.3%), positive predictive value was 4/11 (36.4%), and negative predictive value was 53/57 (93.0%). 50% of patients who had Sodium Iodide I 131 negative scan and positive positron emission tomography/computed tomography had a change in management. Thirty-six percent with positive neck ultrasonography had a change in management. Out of 11 recurrences, 6 had distant metastatic disease, and 5/11 had regional nodal disease. Neck ultrasonography showed nodal metastasis in 4/5 (80%). Positron emission tomography/computed tomography altered management in the presence of a high thyroglobulin level and a negative Sodium Iodide I 131 scan. Neck ultrasonography should be the first line of imaging with rising thyroglobulin levels. Positron emission tomography/computed tomography should be considered for cases with high thyroglobulin levels and normal neck ultrasonography to look for distant metastatic disease.
An Expert System for Identification of Minerals in Thin Section.
ERIC Educational Resources Information Center
Donahoe, James Louis; And Others
1989-01-01
Discusses a computer database which includes optical properties of 142 minerals. Uses fuzzy logic to identify minerals from incomplete and imprecise information. Written in Turbo PASCAL for MS-DOS with 128K. (MVL)
... Resources Professions Site Index A-Z Computed Tomography (CT) - Body Computed tomography (CT) of the body uses ... of CT Scanning of the Body? What is CT Scanning of the Body? Computed tomography, more commonly ...
Pathomorphism of spiral tibial fractures in computed tomography imaging.
Guzik, Grzegorz
2011-01-01
Spiral fractures of the tibia are virtually homogeneous with regard to their pathomorphism. The differences that are seen concern the level of fracture of the fibula, and, to a lesser extent, the level of fracture of the tibia, the length of fracture cleft, and limb shortening following the trauma. While conventional radiographs provide sufficient information about the pathomorphism of fractures, computed tomography can be useful in demonstrating the spatial arrangement of bone fragments and topography of soft tissues surrounding the fracture site. Multiple cross-sectional computed tomography views of spiral fractures of the tibia show the details of the alignment of bone chips at the fracture site, axis of the tibial fracture cleft, and topography of soft tissues that are not visible on standard radiographs. A model of a spiral tibial fracture reveals periosteal stretching with increasing spiral and longitudinal displacement. The cleft in tibial fractures has a spiral shape and its line is invariable. Every spiral fracture of both crural bones results in extensive damage to the periosteum and may damage bellies of the long flexor muscle of toes, flexor hallucis longus as well as the posterior tibial muscle. Computed tomography images of spiral fractures of the tibia show details of damage that are otherwise invisible on standard radiographs. Moreover, CT images provide useful information about the spatial location of the bone chips as well as possible threats to soft tissues that surround the fracture site. Every spiral fracture of the tibia is associated with disruption of the periosteum. 1. Computed tomography images of spiral fractures of the tibia show details of damage otherwise invisible on standard radiographs, 2. The sharp end of the distal tibial chip can damage the tibialis posterior muscle, long flexor muscles of the toes and the flexor hallucis longus, 3. Every spiral fracture of the tibia is associated with disruption of the periosteum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arhatari, B. D.; ARC Centre of Excellence for Coherent X-ray Science, Melbourne; Harris, A. R.
Phase retrieval tomography has been successfully used to enhance imaging in systems that exhibit poor absorption contrast. However, when highly absorbing regions are present in a sample, so-called metal artefacts can appear in the tomographic reconstruction. We demonstrate that straightforward approaches for metal artefact reconstruction, developed in absorption contrast tomography, can be applied when using phase retrieval. Using a prototype thin film cochlear implant that has high and low absorption components made from iridium (or platinum) and plastic, respectively, we show that segmentation of the various components is possible and hence measurement of the electrode geometry and relative location tomore » other regions of interest can be achieved.« less
The MAGIC-5 CAD for nodule detection in low dose and thin slice lung CTs
NASA Astrophysics Data System (ADS)
Cerello, Piergiorgio; MAGIC-5 Collaboration
2010-11-01
Lung cancer is the leading cause of cancer-related mortality in developed countries. Only 10-15% of all men and women diagnosed with lung cancer live 5 years after the diagnosis. However, the 5-year survival rate for patients diagnosed in the early asymptomatic stage of the disease can reach 70%. Early-stage lung cancers can be diagnosed by detecting non-calcified small pulmonary nodules with computed tomography (CT). Computer-aided detection (CAD) could support radiologists in the analysis of the large amount of noisy images generated in screening programs, where low-dose and thin-slice settings are used. The MAGIC-5 project, funded by the Istituto Nazionale di Fisica Nucleare (INFN, Italy) and Ministero dell'Università e della Ricerca (MUR, Italy), developed a multi-method approach based on three CAD algorithms to be used in parallel with a merging of their results: the Channeler Ant Model (CAM), based on Virtual Ant Colonies, the Dot-Enhancement/Pleura Surface Normals/VBNA (DE-PSN-VBNA), and the Region Growing Volume Plateau (RGVP). Preliminary results show quite good performances, to be improved with the refining of the single algorithm and the added value of the results merging.
Liu, Fei; Zhu, Hua; Yu, Jiangyuan; Han, Xuedi; Xie, Qinghua; Liu, Teli; Xia, Chuanqin; Li, Nan; Yang, Zhi
2017-06-01
Somatostatin receptors are overexpressed in neuroendocrine tumors, whose endogenous ligands are somatostatin. DOTA-TATE is an analogue of somatostatin, which shows high binding affinity to somatostatin receptors. We aim to evaluate the 68 Ga/ 177 Lu-labeling DOTA-TATE kit in neuroendocrine tumor model for molecular imaging and to try human-positron emission tomography/computed tomography imaging of 68 Ga-DOTA-TATE in neuroendocrine tumor patients. DOTA-TATE kits were formulated and radiolabeled with 68 Ga/ 177 Lu for 68 Ga/ 177 Lu-DOTA-TATE (M-DOTA-TATE). In vitro and in vivo stability of 177 Lu-DOTA-TATE were performed. Nude mice bearing human tumors were injected with 68 Ga-DOTA-TATE or 177 Lu-DOTA-TATE for micro-positron emission tomography and micro-single-photon emission computed tomography/computed tomography imaging separately, and clinical positron emission tomography/computed tomography images of 68 Ga-DOTA-TATE were obtained at 1 h post-intravenous injection from patients with neuroendocrine tumors. Micro-positron emission tomography and micro-single-photon emission computed tomography/computed tomography imaging of 68 Ga-DOTA-TATE and 177 Lu-DOTA-TATE both showed clear tumor uptake which could be blocked by excess DOTA-TATE. In addition, 68 Ga-DOTA-TATE-positron emission tomography/computed tomography imaging in neuroendocrine tumor patients could show primary and metastatic lesions. 68 Ga-DOTA-TATE and 177 Lu-DOTA-TATE could accumulate in tumors in animal models, paving the way for better clinical peptide receptor radionuclide therapy for neuroendocrine tumor patients in Asian population.
Visualization of x-ray computer tomography using computer-generated holography
NASA Astrophysics Data System (ADS)
Daibo, Masahiro; Tayama, Norio
1998-09-01
The theory converted from x-ray projection data to the hologram directly by combining the computer tomography (CT) with the computer generated hologram (CGH), is proposed. The purpose of this study is to offer the theory for realizing the all- electronic and high-speed seeing through 3D visualization system, which is for the application to medical diagnosis and non- destructive testing. First, the CT is expressed using the pseudo- inverse matrix which is obtained by the singular value decomposition. CGH is expressed in the matrix style. Next, `projection to hologram conversion' (PTHC) matrix is calculated by the multiplication of phase matrix of CGH with pseudo-inverse matrix of the CT. Finally, the projection vector is converted to the hologram vector directly, by multiplication of the PTHC matrix with the projection vector. Incorporating holographic analog computation into CT reconstruction, it becomes possible that the calculation amount is drastically reduced. We demonstrate the CT cross section which is reconstituted by He-Ne laser in the 3D space from the real x-ray projection data acquired by x-ray television equipment, using our direct conversion technique.
3D optical coherence tomography image registration for guiding cochlear implant insertion
NASA Astrophysics Data System (ADS)
Cheon, Gyeong-Woo; Jeong, Hyun-Woo; Chalasani, Preetham; Chien, Wade W.; Iordachita, Iulian; Taylor, Russell; Niparko, John; Kang, Jin U.
2014-03-01
In cochlear implant surgery, an electrode array is inserted into the cochlear canal to restore hearing to a person who is profoundly deaf or significantly hearing impaired. One critical part of the procedure is the insertion of the electrode array, which looks like a thin wire, into the cochlear canal. Although X-ray or computed tomography (CT) could be used as a reference to evaluate the pathway of the whole electrode array, there is no way to depict the intra-cochlear canal and basal turn intra-operatively to help guide insertion of the electrode array. Optical coherent tomography (OCT) is a highly effective way of visualizing internal structures of cochlea. Swept source OCT (SSOCT) having center wavelength of 1.3 micron and 2D Galvonometer mirrors was used to achieve 7-mm depth 3-D imaging. Graphics processing unit (GPU), OpenGL, C++ and C# were integrated for real-time volumetric rendering simultaneously. The 3D volume images taken by the OCT system were assembled and registered which could be used to guide a cochlear implant. We performed a feasibility study using both dry and wet temporal bones and the result is presented.
Ackermann, Philipp; Brachert, Maike; Albrecht, Philipp; Ringelstein, Marius; Finis, David; Geerling, Gerd; Aktas, Orhan; Guthoff, Rainer
2017-07-01
A characteristic disease pattern may be reflected by retinal layer thickness changes in non-arteritic anterior ischaemic optic neuropathy measured using spectraldomain optical coherence tomography. Retinal layer segmentation is enabled by advanced software. In this study, retinal layer thicknesses in acute and chronic non-arteritic anterior ischaemic optic neuropathy were compared. A single-centre cross-sectional analysis was used. A total of 27 patients (20 age-matched healthy eyes) were included: 14 with acute (<7 days) and 13 patients with chronic non-arteritic anterior ischaemic optic neuropathy. Macular volume and 12° peripapillary ring optical coherence tomography scans were used. The peripapillary thicknesses of the following layers were determined by manual segmentation: retinal nerve fibres, ganglion cells + inner plexiform layer, inner nuclear layer + outer plexiform layer, outer nuclear layer + inner segments of the photoreceptors and outer segments of the photoreceptors to Bruch's membrane. Macular retinal layer thicknesses were automatically determined in volume cubes centred on the fovea. Peripapillary retinal swelling in acute nonarteritic anterior ischaemic optic neuropathy was attributable to retinal nerve fibre layer, ganglion cell layer/inner plexiform layer and outer nuclear layer/segments of the photoreceptors thickening. In chronic cases, peripapillary retinal nerve fibre layer, macular ganglion cell layer and inner plexiform layer thinning were observed. In acute non-arteritic anterior ischaemic optic neuropathy, the inner and outer peripapillary retinal layers are affected by thickness changes. In chronic cases, atrophy of the ganglion cells and their axons and dendrites is evident by inner retinal layer thinning. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models
NASA Astrophysics Data System (ADS)
Katsaga, T.; Young, P.
2009-05-01
The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the sample testing, in relation to the CT images allows the precise reconstruction of the failure sequence. Our proposed modelling approach illustrates realistic fracture formation and growth predictions at different loading conditions.
Surface anatomy of the pulmonary fissures determined by high-resolution computed tomography.
Heřmanová, Zuzana; Ctvrtlík, Filip; Heřman, Miroslav
2012-10-01
The aim of our study was to describe the surface anatomy of the interlobar fissures using volumetric thin-section high-resolution computed tomography (HRCT). Retrospective assessment of HRCT examinations of 250 patients was performed. The localization of the oblique fissures was marked at three sites: posteriorly at its most superior medial limit, laterally in the midaxillary line, and inferiorly at the junction of the middle and lateral thirds of the hemithorax; posteriorly and laterally, this was to the nearest rib whilst inferiorly the position was described in relation to the diaphragm or chest wall. The localization of the horizontal fissure was marked anteriorly in relation to the nearest rib (or costal cartilage) and posteriorly where it intersected with the oblique fissure (superior, middle, or inferior third). Shapes of the fissures and differences between inspiration and expiration were also documented. Descriptive statistics were used to report the most frequent positions. The most frequent localization of the oblique fissure on the left side was posteriorly at the fourth rib (45%), laterally at the sixth rib (52%), and inferiorly in the anterior third of the hemidiaphragm (60%). The right oblique fissure was located posteriorly at the fifth rib (50%), laterally at the sixth rib (50%), and inferiorly in the anterior third of the hemidiaphragm (71%). The horizontal fissure most commonly originated in the middle third of the oblique fissure (61%) and met the anterior thoracic wall at the level of the fourth rib (51%). The most frequent shape of the left oblique fissure was linear (78%), whereas S-shaped and linear configurations (28% each) were most frequent on the right. No difference was found in the surface markings of the fissures between inspiration and expiration in 90% of cases. The considerable individual variation in the position and shape of the interlobar fissures helps to explain the variable descriptions of their surface anatomy in the literature. Copyright © 2012 Wiley Periodicals, Inc.
Tsuchiya, Nanae; Yamashiro, Tsuneo; Murayama, Sadayuki
2016-09-01
Lung volume and pulmonary blood flow decrease in patients with interstitial lung disease (ILD). The purpose of this study was to assess the relationship between pulmonary blood flow and lung volume in ILD patients. This research was approved by the institutional review board. Twenty-seven patients (9 men, 18 women; mean age, 59 years; range, 24-79 years) with ILD were included. Blood flow was assessed in the pulmonary trunk and the left and right pulmonary arteries by phase contrast magnetic resonance imaging (MRI). Lung volume and the computed tomography (CT) visual score that indicates the severity of ILD were assessed on the left and right sides by thin-section CT scanning. Lung volume was automatically measured by lung analysis software (VINCENT Ver. 4). The CT visual score was measured by averaging the proportion of abnormal lung area at five anatomic levels. Pearson's correlation coefficient was used to determine the relationship between pulmonary blood flow and lung volume. Pulmonary blood flow showed a significant correlation with lung volume (both: r=0.52, p=0.006; left: r=0.61, p=0.001; right: r=0.54, p=0.004) and CT visual score (both: r=-0.39, p=0.04; left: r=-0.48, p=0.01; right: r=-0.38, p=0.04). Partial correlation analysis, controlled for age, height and weight, showed a significant correlation between pulmonary blood flow and lung volume (both: r=0.43, p=0.03; left: r=0.55, p=0.005; right: r=0.48, p=0.01) and CT visual score (both: r=-0.58, p=0.003; left: r=-0.51, p=0.01; right: r=-0.64, p=0.001). In ILD, reduced pulmonary blood flow is associated with reduced lung volume and increased abnormal lung area. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Dual-Energy Computed Tomography in Cardiothoracic Vascular Imaging.
De Santis, Domenico; Eid, Marwen; De Cecco, Carlo N; Jacobs, Brian E; Albrecht, Moritz H; Varga-Szemes, Akos; Tesche, Christian; Caruso, Damiano; Laghi, Andrea; Schoepf, Uwe Joseph
2018-07-01
Dual energy computed tomography is becoming increasingly widespread in clinical practice. It can expand on the traditional density-based data achievable with single energy computed tomography by adding novel applications to help reach a more accurate diagnosis. The implementation of this technology in cardiothoracic vascular imaging allows for improved image contrast, metal artifact reduction, generation of virtual unenhanced images, virtual calcium subtraction techniques, cardiac and pulmonary perfusion evaluation, and plaque characterization. The improved diagnostic performance afforded by dual energy computed tomography is not associated with an increased radiation dose. This review provides an overview of dual energy computed tomography cardiothoracic vascular applications. Copyright © 2018 Elsevier Inc. All rights reserved.
21 CFR 1020.33 - Computed tomography (CT) equipment.
Code of Federal Regulations, 2013 CFR
2013-04-01
...-ray system. The phantom shall be a right circular cylinder of polymethl-methacrylate of density 1.19±0... the cross-sectional volume over which x-ray transmission data are collected. (12) Picture element..., respectively. (14) Scan increment means the amount of relative displacement of the patient with respect to the...
21 CFR 1020.33 - Computed tomography (CT) equipment.
Code of Federal Regulations, 2012 CFR
2012-04-01
...-ray system. The phantom shall be a right circular cylinder of polymethl-methacrylate of density 1.19±0... the cross-sectional volume over which x-ray transmission data are collected. (12) Picture element..., respectively. (14) Scan increment means the amount of relative displacement of the patient with respect to the...
21 CFR 1020.33 - Computed tomography (CT) equipment.
Code of Federal Regulations, 2014 CFR
2014-04-01
...-ray system. The phantom shall be a right circular cylinder of polymethl-methacrylate of density 1.19±0... the cross-sectional volume over which x-ray transmission data are collected. (12) Picture element..., respectively. (14) Scan increment means the amount of relative displacement of the patient with respect to the...
NASA Astrophysics Data System (ADS)
Hyde, B. C.; Tait, K. T.; Nicklin, I.; Day, J. M. D.; Ash, R. D.; Moser, D. E.
2013-09-01
Sectioning of meteorites is usually done in an arbitrary manner. We used micro-computed tomography to view the interior of brachinite NWA 4872. A cut was then made through an area of interest. Heterogeneity and modal abundance are discussed.
Optical coherence tomography study of retinal changes in normal aging and after ischemia.
Shariati, Mohammad Ali; Park, Joyce Ho; Liao, Yaping Joyce
2015-05-01
Age-related thinning of the retinal ganglion cell axons in the nerve fiber layer has been measured in humans using optical coherence tomography (OCT). In this study, we used OCT to measure inner retinal changes in 3-month-, 1-year-, and 2-year-old mice and after experimental anterior ischemic optic neuropathy (AION). We used OCT to quantify retinal thickness in over 200 eyes at different ages before and after a photochemical thrombosis model of AION. The scans were manually or automatically segmented. In normal aging, there was 1.3-μm thinning of the ganglion cell complex (GCC) between 3 months and 1 year (P < 0.0001) and no further thinning at 2 years. In studying age-related inner retinal changes, measurement of the GCC (circular scan) was superior to that of the total retinal thickness (posterior pole scan) despite the need for manual segmentation because it was not contaminated by outer retinal changes. Three weeks after AION, there was 8.9-μm thinning of the GCC (circular scan; P < 0.0001), 50-μm thinning of the optic disc (posterior pole scan; P < 0.0001), and 17-μm thinning of the retina (posterior pole scan; P < 0.0001) in the 3-month-old group. Changes in the older eyes after AION were similar to those of the 3-month-old group. Optical coherence tomography imaging of a large number of eyes showed that, like humans, mice exhibited small, age-related inner retinal thinning. Measurement of the GCC was superior to total retinal thickness in quantifying age-related changes, and both circular and posterior pole scans were useful to track short-term changes after AION.
Swept source optical coherence tomography of objects with arbitrary reflectivity profiles
NASA Astrophysics Data System (ADS)
Mezgebo, Biniyam; Nagib, Karim; Fernando, Namal; Kordi, Behzad; Sherif, Sherif
2018-03-01
Swept Source optical coherence tomography (SS-OCT) has become a well established imaging modality for both medical and industrial diagnostic applications. A cross-sectional SS-OCT image is obtained by applying an inverse discrete Fourier transform (DFT) to axial interferogram measured in the frequency domain (k-space). Fourier inversion of the obtained interferogram typically produces a potentially overlapping conjugate mirror image, whose overlap could be avoided by restricting the object to have its highest reflectivity at its surface. However, this restriction may not be fulfilled when imaging a very thin object that is placed on a highly reflective surface, or imaging an object containing a contrast agent with high reflectivity. In this paper, we show that oversampling of the SS-OCT signal in k-space would overcome the need for such restriction on the object. Our result is demonstrated using SS-OCT images of Axolotl salamander eggs.
Şahin, Muhammed; Şahin, Alparslan; Kılınç, Faruk; Karaalp, Ümit; Yüksel, Harun; Özkurt, Zeynep Gürsel; Türkcü, Fatih Mehmet; Çaça, İhsan
2018-02-01
To compare the retina ganglion cell complex (GCC) layer and peripapillary nerve fibre layer thickness (pRNFL) in patients with prediabetes and healthy subjects analysed by spectral domain optical coherence tomography (SD-OCT). This cross-sectional and comparative study included prediabetic patients and healthy subjects. All participants underwent SD-OCT measurement of pRNFL thickness, and GCC thickness. A total of 30 eyes of the 30 patients with prediabetes and 30 eyes of 30 controls were included. The overall calculated pRNFL thicknesses were similar between the prediabetic and control subjects. The GCC thickness was significantly lower in all quadrants of the inner macula, and outer nasal quadrant in the prediabetes group when compared to the control group. Our study demonstrated that inner macular GCC thickness was significantly thinner in prediabetic subjects. As a result neurodegeneration may play role in the thinning of GCC.
SAITO, Atsushi; KON, Hiroyuki; HARYU, Shinya; MINO, Masaki; SASAKI, Tatsuya; NISHIJIMA, Michiharu
2014-01-01
A 20-year-old woman suffered gradual progression of right pulsatile exophthalmos and slight headache. Computed tomography (CT) demonstrated outward and downward displacement of the right globe and an arachnoid cyst in the right middle cranial fossa associated with thinned and anterior protrusion of a bony orbit. Microscopic cystocisternotomy was performed and the cerebrospinal fluid (CSF) inside of the cyst communicated into the carotid cistern and cistern in the posterior cranial fossa. Pulsatile exophthalmos improved immediately after surgery. Arachnoid cyst in the middle cranial fossa presenting with exophthalmos is rare. Microscopic cystocisternotomy might successfully improve CSF flow and relieve exophthalmos. PMID:24305013
Miniature modified Faraday cup for micro electron beams
Teruya, Alan T.; Elmer, John W.; Palmer, Todd A.; Walton, Chris C.
2008-05-27
A micro beam Faraday cup assembly includes a refractory metal layer with an odd number of thin, radially positioned traces in this refractory metal layer. Some of the radially positioned traces are located at the edge of the micro modified Faraday cup body and some of the radially positioned traces are located in the central portion of the micro modified Faraday cup body. Each set of traces is connected to a separate data acquisition channel to form multiple independent diagnostic networks. The data obtained from the two diagnostic networks are combined and inputted into a computed tomography algorithm to reconstruct the beam shape, size, and power density distribution.
Design of free-space optical transmission system in computer tomography equipment
NASA Astrophysics Data System (ADS)
Liu, Min; Fu, Weiwei; Zhang, Tao
2018-04-01
Traditional computer tomography (CT) based on capacitive coupling cannot satisfy the high data rate transmission requirement. We design and experimentally demonstrate a free-space optical transmission system for CT equipment at a data rate of 10 Gb / s. Two interchangeable sections of 12 pieces of fiber with equal length is fabricated and tested by our designed laser phase distance measurement system. By locating the 12 collimators in the edge of the circle wheel evenly, the optical propagation characteristics for the 12 wired and wireless paths are similar, which can satisfy the requirement of high-speed CT transmission system. After bit error rate (BER) measurement in several conditions, the BER performances are below the value of 10 - 11, which has the potential in the future application scenario of CT equipment.
NASA Astrophysics Data System (ADS)
Ilgenstein, Bernd; Deyhle, Hans; Jaquiery, Claude; Kunz, Christoph; Stalder, Anja; Stübinger, Stefan; Jundt, Gernot; Beckmann, Felix; Müller, Bert; Hieber, Simone E.
2012-10-01
Bone augmentation is a vital part of surgical interventions of the oral and maxillofacial area including dental implantology. Prior to implant placement, sufficient bone volume is needed to reduce the risk of peri-implantitis. While augmentation using harvested autologous bone is still considered as gold standard, many surgeons prefer bone substitutes to reduce operation time and to avoid donor site morbidity. To assess the osteogenic efficacy of commercially available augmentation materials we analyzed drill cores extracted before implant insertion. In younger patients, distraction osteogenesis is successfully applied to correct craniofacial deformities through targeted bone formation. To study the influence of mesenchymal stem cells on bone regeneration during distraction osteogenesis, human mesenchymal stem cells were injected into the distraction gap of nude rat mandibles immediately after osteotomy. The distraction was performed over eleven days to reach a distraction gap of 6 mm. Both the rat mandibles and the drill cores were scanned using synchrotron radiation-based micro computed tomography. The three-dimensional data were manually registered and compared with corresponding two-dimensional histological sections to assess bone regeneration and its morphology. The analysis of the rat mandibles indicates that bone formation is enhanced by mesenchymal stem cells injected before distraction. The bone substitutes yielded a wide range of bone volume and degree of resorption. The volume fraction of the newly formed bone was determined to 34.4% in the computed tomography dataset for the augmentation material Geistlich Bio-Oss®. The combination of computed tomography and histology allowed a complementary assessment for both bone augmentation and distraction osteogenesis.
A Freeware Path to Neutron Computed Tomography
NASA Astrophysics Data System (ADS)
Schillinger, Burkhard; Craft, Aaron E.
Neutron computed tomography has become a routine method at many neutron sources due to the availability of digital detection systems, powerful computers and advanced software. The commercial packages Octopus by Inside Matters and VGStudio by Volume Graphics have been established as a quasi-standard for high-end computed tomography. However, these packages require a stiff investment and are available to the users only on-site at the imaging facility to do their data processing. There is a demand from users to have image processing software at home to do further data processing; in addition, neutron computed tomography is now being introduced even at smaller and older reactors. Operators need to show a first working tomography setup before they can obtain a budget to build an advanced tomography system. Several packages are available on the web for free; however, these have been developed for X-rays or synchrotron radiation and are not immediately useable for neutron computed tomography. Three reconstruction packages and three 3D-viewers have been identified and used even for Gigabyte datasets. This paper is not a scientific publication in the classic sense, but is intended as a review to provide searchable help to make the described packages usable for the tomography community. It presents the necessary additional preprocessing in ImageJ, some workarounds for bugs in the software, and undocumented or badly documented parameters that need to be adapted for neutron computed tomography. The result is a slightly complicated, but surprisingly high-quality path to neutron computed tomography images in 3D, but not a replacement for the even more powerful commercial software mentioned above.
Online monitoring of oil film using electrical capacitance tomography and level set method.
Xue, Q; Sun, B Y; Cui, Z Q; Ma, M; Wang, H X
2015-08-01
In the application of oil-air lubrication system, electrical capacitance tomography (ECT) provides a promising way for monitoring oil film in the pipelines by reconstructing cross sectional oil distributions in real time. While in the case of small diameter pipe and thin oil film, the thickness of the oil film is hard to be observed visually since the interface of oil and air is not obvious in the reconstructed images. And the existence of artifacts in the reconstructions has seriously influenced the effectiveness of image segmentation techniques such as level set method. Besides, level set method is also unavailable for online monitoring due to its low computation speed. To address these problems, a modified level set method is developed: a distance regularized level set evolution formulation is extended to image two-phase flow online using an ECT system, a narrowband image filter is defined to eliminate the influence of artifacts, and considering the continuity of the oil distribution variation, the detected oil-air interface of a former image can be used as the initial contour for the detection of the subsequent frame; thus, the propagation from the initial contour to the boundary can be greatly accelerated, making it possible for real time tracking. To testify the feasibility of the proposed method, an oil-air lubrication facility with 4 mm inner diameter pipe is measured in normal operation using an 8-electrode ECT system. Both simulation and experiment results indicate that the modified level set method is capable of visualizing the oil-air interface accurately online.
Online monitoring of oil film using electrical capacitance tomography and level set method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Q., E-mail: xueqian@tju.edu.cn; Ma, M.; Sun, B. Y.
2015-08-15
In the application of oil-air lubrication system, electrical capacitance tomography (ECT) provides a promising way for monitoring oil film in the pipelines by reconstructing cross sectional oil distributions in real time. While in the case of small diameter pipe and thin oil film, the thickness of the oil film is hard to be observed visually since the interface of oil and air is not obvious in the reconstructed images. And the existence of artifacts in the reconstructions has seriously influenced the effectiveness of image segmentation techniques such as level set method. Besides, level set method is also unavailable for onlinemore » monitoring due to its low computation speed. To address these problems, a modified level set method is developed: a distance regularized level set evolution formulation is extended to image two-phase flow online using an ECT system, a narrowband image filter is defined to eliminate the influence of artifacts, and considering the continuity of the oil distribution variation, the detected oil-air interface of a former image can be used as the initial contour for the detection of the subsequent frame; thus, the propagation from the initial contour to the boundary can be greatly accelerated, making it possible for real time tracking. To testify the feasibility of the proposed method, an oil-air lubrication facility with 4 mm inner diameter pipe is measured in normal operation using an 8-electrode ECT system. Both simulation and experiment results indicate that the modified level set method is capable of visualizing the oil-air interface accurately online.« less
Guclu, Orkut; Guclu, Hande; Huseyin, Serhat; Korkmaz, Selcuk; Yuksel, Volkan; Canbaz, Suat; Pelitli Gurlu, Vuslat
2018-06-23
To examine changes in retinal ganglion cell complex (GCC) and peripapillary retinal nerve fiber layer (RNFL) thicknesses by optical coherence tomography (OCT) in contralateral and ipsilatateral eyes of carotid artery stenosis (CAS) patients before and after carotid endarterectomy (CEA). Forty-two consecutive patients diagnosed with CAS (70-99% stenosis rate) who underwent CEA were included in this prospective cross-sectional study. The indication for CEA was based on the Asymptomatic Carotid Atherosclerosis Study. Doppler ultrasonography and computed tomography angiography were performed to calculate CAS. All the subjects underwent an ophthalmological examination, including best corrected visual acuity (BCVA), intraocular pressure (IOP) measurements, biomicroscopy, fundoscopy, and OCT before and after the surgery. The mean preoperative intraocular pressure was 15.2 ± 2.1 mmHg in the ipsilateral eye and 15.8 ± 2.7 in the contralateral eye. The mean postoperative intraocular pressure in the ipsilateral and contralateral eye was 18.6 ± 3.0 and 19.3 ± 3.8, respectively. The intraocular pressure was significantly higher in postoperative eyes (p = 0.0001). There was a statistically significant decrease in peripapillary RNFL thickness in superior quadrants postoperatively in ipsilateral eyes. The retinal GCC layer thickness was not significantly different before and after CEA in ipsilateral and contralateral eyes. Carotid endarterectomy results in thinning of the superior peripapillary RNFL thickness. To the best of our knowledge, this is the first study to examine peripapillary RNFL and GCC thicknesses before and after CEA.
NASA Astrophysics Data System (ADS)
Ushenko, V. O.; Koval, G. D.; Ushenko, Yu. O.; Pidkamin, L. Y.; Sidor, M. I.; Vanchuliak, O.; Motrich, A. V.; Gorsky, M. P.; Meglinskiy, I.
2017-09-01
The paper presents the results of Jones-matrix mapping of uterine wall histological sections with second-degree and third-degree endometriosis. The technique of experimental measurement of coordinate distributions of the modulus and phase values of Jones matrix elements is suggested. Within the statistical and cross-correlation approaches the modulus and phase maps of Jones matrix images of optically thin biological layers of polycrystalline films of plasma and cerebrospinal fluid are analyzed. A set of objective parameters (statistical and generalized correlation moments), which are the most sensitive to changes in the phase of anisotropy, associated with the features of polycrystalline structure of uterine wall histological sections with second-degree and third-degree endometriosis are determined.
Teasdale, G. M.; Hadley, D. M.; Lawrence, A.; Bone, I.; Burton, H.; Grant, R.; Condon, B.; Macpherson, P.; Rowan, J.
1989-01-01
OBJECTIVE--To compare computed tomography and magnetic resonance imaging in investigating patients suspected of having a lesion in the posterior cranial fossa. DESIGN--Randomised allocation of newly referred patients to undergo either computed tomography or magnetic resonance imaging; the alternative investigation was performed subsequently only in response to a request from the referring doctor. SETTING--A regional neuroscience centre serving 2.7 million. PATIENTS--1020 Patients recruited between April 1986 and December 1987, all suspected by neurologists, neurosurgeons, or other specialists of having a lesion in the posterior fossa and referred for neuroradiology. The groups allocated to undergo computed tomography or magnetic resonance imaging were well matched in distributions of age, sex, specialty of referring doctor, investigation as an inpatient or an outpatient, suspected site of lesion, and presumed disease process; the referring doctor's confidence in the initial clinical diagnosis was also similar. INTERVENTIONS--After the patients had been imaged by either computed tomography or magnetic resonance (using a resistive magnet of 0.15 T) doctors were given the radiologist's report and a form asking if they considered that imaging with the alternative technique was necessary and, if so, why; it also asked for their current diagnoses and their confidence in them. MAIN OUTCOME MEASURES--Number of requests for the alternative method of investigation. Assessment of characteristics of patients for whom further imaging was requested and lesions that were suspected initially and how the results of the second imaging affected clinicians' and radiologists' opinions. RESULTS--Ninety three of the 501 patients who initially underwent computed tomography were referred subsequently for magnetic resonance imaging whereas only 28 of the 493 patients who initially underwent magnetic resonance imaging were referred subsequently for computed tomography. Over the study the number of patients referred for magnetic resonance imaging after computed tomography increased but requests for computed tomography after magnetic resonance imaging decreased. The reason that clinicians gave most commonly for requesting further imaging by magnetic resonance was that the results of the initial computed tomography failed to exclude their suspected diagnosis (64 patients). This was less common in patients investigated initially by magnetic resonance imaging (eight patients). Management of 28 patients (6%) imaged initially with computed tomography and 12 patients (2%) imaged initially with magnetic resonance was changed on the basis of the results of the alternative imaging. CONCLUSIONS--Magnetic resonance imaging provided doctors with the information required to manage patients suspected of having a lesion in the posterior fossa more commonly than computed tomography, but computed tomography alone was satisfactory in 80% of cases... PMID:2506965
Improved Interactive Medical-Imaging System
NASA Technical Reports Server (NTRS)
Ross, Muriel D.; Twombly, Ian A.; Senger, Steven
2003-01-01
An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.
Rybacka, Anna; Goździk-Spychalska, Joanna; Rybacki, Adam; Piorunek, Tomasz; Batura-Gabryel, Halina; Karmelita-Katulska, Katarzyna
2018-05-04
In cystic fibrosis, pulmonary function tests (PFTs) and computed tomography are used to assess lung function and structure, respectively. Although both techniques of assessment are congruent there are lingering doubts about which PFTs variables show the best congruence with computed tomography scoring. In this study we addressed the issue by reinvestigating the association between PFTs variables and the score of changes seen in computed tomography scans in patients with cystic fibrosis with and without pulmonary exacerbation. This retrospective study comprised 40 patients in whom PFTs and computed tomography were performed no longer than 3 weeks apart. Images (inspiratory: 0.625 mm slice thickness, 0.625 mm interval; expiratory: 1.250 mm slice thickness, 10 mm interval) were evaluated with the Bhalla scoring system. The most frequent structural abnormality found in scans were bronchiectases and peribronchial thickening. The strongest relationship was found between the Bhalla sore and forced expiratory volume in 1 s (FEV1). The Bhalla sore also was related to forced vital capacity (FVC), FEV1/FVC ratio, residual volume (RV), and RV/total lung capacity (TLC) ratio. We conclude that lung structural data obtained from the computed tomography examination are highly congruent to lung function data. Thus, computed tomography imaging may supersede functional assessment in cases of poor compliance with spirometry procedures in the lederly or children. Computed tomography also seems more sensitive than PFTs in the assessment of cystic fibrosis progression. Moreover, in early phases of cystic fibrosis, computed tomography, due to its excellent resolution, may be irreplaceable in monitoring pulmonary damage.
Abbara, Suhny; Blanke, Philipp; Maroules, Christopher D; Cheezum, Michael; Choi, Andrew D; Han, B Kelly; Marwan, Mohamed; Naoum, Chris; Norgaard, Bjarne L; Rubinshtein, Ronen; Schoenhagen, Paul; Villines, Todd; Leipsic, Jonathon
In response to recent technological advancements in acquisition techniques as well as a growing body of evidence regarding the optimal performance of coronary computed tomography angiography (coronary CTA), the Society of Cardiovascular Computed Tomography Guidelines Committee has produced this update to its previously established 2009 "Guidelines for the Performance of Coronary CTA" (1). The purpose of this document is to provide standards meant to ensure reliable practice methods and quality outcomes based on the best available data in order to improve the diagnostic care of patients. Society of Cardiovascular Computed Tomography Guidelines for the Interpretation is published separately (2). The Society of Cardiovascular Computed Tomography Guidelines Committee ensures compliance with all existing standards for the declaration of conflict of interest by all authors and reviewers for the purpose ofclarity and transparency. Copyright © 2016 Society of Cardiovascular Computed Tomography. All rights reserved.
Nano-Computed Tomography: Technique and Applications.
Kampschulte, M; Langheinirch, A C; Sender, J; Litzlbauer, H D; Althöhn, U; Schwab, J D; Alejandre-Lafont, E; Martels, G; Krombach, G A
2016-02-01
Nano-computed tomography (nano-CT) is an emerging, high-resolution cross-sectional imaging technique and represents a technical advancement of the established micro-CT technology. Based on the application of a transmission target X-ray tube, the focal spot size can be decreased down to diameters less than 400 nanometers (nm). Together with specific detectors and examination protocols, a superior spatial resolution up to 400 nm (10 % MTF) can be achieved, thereby exceeding the resolution capacity of typical micro-CT systems. The technical concept of nano-CT imaging as well as the basics of specimen preparation are demonstrated exemplarily. Characteristics of atherosclerotic plaques (intraplaque hemorrhage and calcifications) in a murine model of atherosclerosis (ApoE (-/-)/LDLR(-/-) double knockout mouse) are demonstrated in the context of superior spatial resolution in comparison to micro-CT. Furthermore, this article presents the application of nano-CT for imaging cerebral microcirculation (murine), lung structures (porcine), and trabecular microstructure (ovine) in contrast to micro-CT imaging. This review shows the potential of nano-CT as a radiological method in biomedical basic research and discusses the application of experimental, high resolution CT techniques in consideration of other high resolution cross-sectional imaging techniques. Nano-computed tomography is a high resolution CT-technology for 3D imaging at sub-micrometer resolution. The technical concept bases on a further development of the established ex-vivo-micro-CT technology. By improvement of the spatial resolution, structures at a cellular level become visible (e.g. osteocyte lacunae). © Georg Thieme Verlag KG Stuttgart · New York.
Guided wave radiation from a point source in the proximity of a pipe bend
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brath, A. J.; Nagy, P. B.; Simonetti, F.
Throughout the oil and gas industry corrosion and erosion damage monitoring play a central role in managing asset integrity. Recently, the use of guided wave technology in conjunction with tomography techniques has provided the possibility of obtaining point-by-point maps of wall thickness loss over the entire volume of a pipeline section between two ring arrays of ultrasonic transducers. However, current research has focused on straight pipes while little work has been done on pipe bends which are also the most susceptible to developing damage. Tomography of the bend is challenging due to the complexity and computational cost of the 3-Dmore » elastic model required to accurately describe guided wave propagation. To overcome this limitation, we introduce a 2-D anisotropic inhomogeneous acoustic model which represents a generalization of the conventional unwrapping used for straight pipes. The shortest-path ray-tracing method is then applied to the 2-D model to compute ray paths and predict the arrival times of the fundamental flexural mode, A0, excited by a point source on the straight section of pipe entering the bend and detected on the opposite side. Good agreement is found between predictions and experiments performed on an 8” diameter (D) pipe with 1.5 D bend radius. The 2-D model also reveals the existence of an acoustic lensing effect which leads to a focusing phenomenon also confirmed by the experiments. The computational efficiency of the 2-D model makes it ideally suited for tomography algorithms.« less
Naser, Asieh Zamani; Mehr, Bahar Behdad
2013-01-01
Cross- sectional tomograms have been used for optimal pre-operative planning of dental implant placement. The aim of the present study was to assess the accuracy of Cone Beam Computed Tomography (CBCT) measurements of specific distances around the mandibular canal by comparing them to those obtained from Multi-Slice Computed Tomography (MSCT) images. Ten hemi-mandible specimens were examined using CBCT and MSCT. Before imaging, wires were placed at 7 locations between the anterior margin of the third molar and the anterior margin of the second premolar as reference points. Following distances were measured by two observers on each cross-sectional CBCT and MSCT image: Mandibular Width (W), Length (L), Upper Distance (UD), Lower Distance (LD), Buccal Distance (BD), and Lingual Distance (LID). The obtained data were evaluated using SPSS software, applying paired t-test and intra-class correlation coefficient (ICC). There was a significant difference between the values obtained by MSCT and CBCT measurement for all areas such as H, W, UD, LD, BD, and LID, (P < 0.001), with a difference less than 1 mm. The ICC for all distances by both techniques, measured by a single observer with a one week interval and between 2 observers was 99% and 98%, respectively. Comparing the obtained data of both techniques indicates that the difference between two techniques is 2.17% relative to MSCT. The results of this study showed that there is significant difference between measurements obtained by CBCT and MSCT. However, the difference is not clinically significant.
Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.
Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T
2013-06-01
This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography∕diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).
Application of multidetector-row computed tomography in propeller flap planning.
Ono, Shimpei; Chung, Kevin C; Hayashi, Hiromitsu; Ogawa, Rei; Takami, Yoshihiro; Hyakusoku, Hiko
2011-02-01
The propeller flap is defined as (1) being island-shaped, (2) having an axis that includes the perforators, and (3) having the ability to be rotated around an axis. The advantage of the propeller flap is that it is a pedicle flap that can be applied to cover defects located at the distal ends of the extremities. The specific aims of the authors' study were (1) to evaluate the usefulness of multidetector-row computed tomography in the planning of propeller flaps and (2) to present a clinical case series of propeller flap reconstructions that were planned preoperatively using multidetector-row computed tomography. The authors retrospectively analyzed all cases between April of 2007 and April of 2010 at Nippon Medical School Hospital in Tokyo, where multidetector-row computed tomography was used preoperatively to plan surgical reconstructions using propeller flaps. Thirteen patients underwent 16 flaps using the propeller flap technique. The perforators were identified accurately by multidetector-row computed tomography preoperatively in all cases. This is the first report describing the application of multidetector-row computed tomography in the planning of propeller flaps. Multidetector-row computed tomography is superior to other imaging methods because it demonstrates more precisely the perforator's position and subcutaneous course using high-resolution three-dimensional images. By using multidetector-row computed tomography to preoperatively identify a flap's perforators, the surgeon can better plan the flap design to efficiently conduct the flap surgery.
Experimental Investigation of Material Flows Within FSWs Using 3D Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles R. Tolle; Timothy A. White; Karen S. Miller
2008-06-01
There exists significant prior work using tracers or pre-placed hardened markers within friction stir welding (FSWing) to experimentally explore material flow within the FSW process. Our experiments replaced markers with a thin sheet of copper foil placed between the 6061 aluminum lap and butt joints that were then welded. The absorption characteristics of x-rays for copper and aluminum are significantly different allowing for non-destructive evaluation (NDE) methods such as x-ray computed tomography (CT) to be used to demonstrate the material movement within the weldment on a much larger scale than previously shown. 3D CT reconstruction of the copper components ofmore » the weldment allows for a unique view into the final turbulent state of the welding process as process parameters are varied. The x-ray CT data of a section of the weld region was collected using a cone-beam x-ray imaging system developed at the INL. Six-hundred projections were collected over 360-degrees using a 160-kVp Bremsstrahlung x-ray generator (25-micrometer focal spot) and amorphoussilicon x-ray detector. The region of the object that was imaged was about 3cm tall and 1.5cm x 1cm in cross section, and was imaged at a magnification of about 3.6x. The data were reconstructed on a 0.5x0.5x0.5 mm3 voxel grid. After reconstruction, the aluminum and copper could be easily discriminated using a gray level threshold allowing visualization of the copper components. Fractal analysis of the tomographic reconstructed material topology is investigated as a means to quantify macro level material flow based on process parameters. The results of multi-pass FSWs show increased refinement of the copper trace material. Implications of these techniques for quantifying process flow are discussed.« less
Simulation of FIB-SEM images for analysis of porous microstructures.
Prill, Torben; Schladitz, Katja
2013-01-01
Focused ion beam nanotomography-scanning electron microscopy tomography yields high-quality three-dimensional images of materials microstructures at the nanometer scale combining serial sectioning using a focused ion beam with SEM. However, FIB-SEM tomography of highly porous media leads to shine-through artifacts preventing automatic segmentation of the solid component. We simulate the SEM process in order to generate synthetic FIB-SEM image data for developing and validating segmentation methods. Monte-Carlo techniques yield accurate results, but are too slow for the simulation of FIB-SEM tomography requiring hundreds of SEM images for one dataset alone. Nevertheless, a quasi-analytic description of the specimen and various acceleration techniques, including a track compression algorithm and an acceleration for the simulation of secondary electrons, cut down the computing time by orders of magnitude, allowing for the first time to simulate FIB-SEM tomography. © Wiley Periodicals, Inc.
Burnett, T. L.; McDonald, S. A.; Gholinia, A.; Geurts, R.; Janus, M.; Slater, T.; Haigh, S. J.; Ornek, C.; Almuaili, F.; Engelberg, D. L.; Thompson, G. E.; Withers, P. J.
2014-01-01
Increasingly researchers are looking to bring together perspectives across multiple scales, or to combine insights from different techniques, for the same region of interest. To this end, correlative microscopy has already yielded substantial new insights in two dimensions (2D). Here we develop correlative tomography where the correlative task is somewhat more challenging because the volume of interest is typically hidden beneath the sample surface. We have threaded together x-ray computed tomography, serial section FIB-SEM tomography, electron backscatter diffraction and finally TEM elemental analysis all for the same 3D region. This has allowed observation of the competition between pitting corrosion and intergranular corrosion at multiple scales revealing the structural hierarchy, crystallography and chemistry of veiled corrosion pits in stainless steel. With automated correlative workflows and co-visualization of the multi-scale or multi-modal datasets the technique promises to provide insights across biological, geological and materials science that are impossible using either individual or multiple uncorrelated techniques. PMID:24736640
NASA Astrophysics Data System (ADS)
Anderson, L.; Lechaire, J.; Frebourg, G.; Boudier, T.; Zbinden, M.; Gaill, F.
2005-12-01
The chemical and temperature conditions around deep sea hydrothermal vents are both dynamic and extreme, yet the shrimp Rimicaris exoculata flourishes around these environments on the Mid-Atlantic Ridge (MAR) . The epibiotic bacteria and minerals found within the branchial chamber of the shrimp are of great interest in the search for a chemical model for the Rainbow MAR hydrothermal vent site. Here we examine the close three-dimensional (3D) relationship between bacteria (on inner surface of the branchial chamber wall), and the minerals that surround them. The morphology and chemistry of the minerals were analysed by Transmission Electron Microscopy (TEM) and Energy-filtering Transmission Electron Microscopy (EFTEM, LEO 912 Omega) respectively, and the 3D organisation (TOMO) was established using IMAGE-J (public-domain) tomographic reconstruction software. Samples of Rimicaris exoculata were collected from the Rainbow site (36° 13' N, 2320 m depth). The cuticle of the branchial chamber was cut into 2mm wide sub-samples, dehydrated and impregnated in resin for cutting. Consecutive thin and semi-thin sections of 80μm (for TEM, EFTEM) and 150μm-200μm (for TOMO) were cut and mounted on standard microscope grids. Thin-section grids were observed initially for morphology, to find broad relationships between bacteria and minerals, and also as a tool to find areas for EFTEM analysis and TOMO. The TOMO reconstruction was produced from a `Tilt Series', comprising a number of images taken at one degree increments between -55° and +55°. Tilt series were obtained using the ESIvision program (Version 3.0, Soft' Imaging Software, SIS GmbH, D-49153 Münster, Germany) with additional in-house scripts for automated acquisition. This same procedure was applied to consecutive semi-thin sections through the same sub-sample. The different series for each sub-sample were then overlain to obtain a 3D overview of the bacteria-mineral associations. In many cases the minerals exhibit a sharp boundary against the bacteria, often with a substantial void between bacterial membrane and mineral boundary. Mineral layering and areas of elemental zoning are also observed. Iron is the most prevalent element, with a close association to the bacteria. Future work will combine the elemental data obtained by EFTEM with tomography to produce a 3D elemental map of the minerals surrounding the bacteria, focussing particularly on the bacteria-mineral interface using recently developed EFTET-J software (http://www.snv.jussieu.fr/~wboudier/softs.html).
Computer aided stress analysis of long bones utilizing computer tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marom, S.A.
1986-01-01
A computer aided analysis method, utilizing computed tomography (CT) has been developed, which together with a finite element program determines the stress-displacement pattern in a long bone section. The CT data file provides the geometry, the density and the material properties for the generated finite element model. A three-dimensional finite element model of a tibial shaft is automatically generated from the CT file by a pre-processing procedure for a finite element program. The developed pre-processor includes an edge detection algorithm which determines the boundaries of the reconstructed cross-sectional images of the scanned bone. A mesh generation procedure than automatically generatesmore » a three-dimensional mesh of a user-selected refinement. The elastic properties needed for the stress analysis are individually determined for each model element using the radiographic density (CT number) of each pixel with the elemental borders. The elastic modulus is determined from the CT radiographic density by using an empirical relationship from the literature. The generated finite element model, together with applied loads, determined from existing gait analysis and initial displacements, comprise a formatted input for the SAP IV finite element program. The output of this program, stresses and displacements at the model elements and nodes, are sorted and displayed by a developed post-processor to provide maximum and minimum values at selected locations in the model.« less
Drees, R; Forrest, L J; Chappell, R
2009-07-01
Canine intranasal neoplasia is commonly evaluated using computed tomography to indicate the diagnosis, to determine disease extent, to guide histological sampling location and to plan treatment. With the expanding use of magnetic resonance imaging in veterinary medicine, this modality has been recently applied for the same purpose. The aim of this study was to compare the features of canine intranasal neoplasia using computed tomography and magnetic resonance imaging. Twenty-one dogs with confirmed intranasal neoplasia underwent both computed tomography and magnetic resonance imaging. The images were reviewed retrospectively for the bony and soft tissue features of intranasal neoplasia. Overall computed tomography and magnetic resonance imaging performed very similarly. However, lysis of bones bordering the nasal cavity and mucosal thickening was found on computed tomography images more often than on magnetic resonance images. Small amounts of fluid in the nasal cavity were more often seen on magnetic resonance images. However, fluid in the frontal sinuses was seen equally well with both modalities. We conclude that computed tomography is satisfactory for evaluation of canine intranasal neoplasia, and no clinically relevant benefit is gained using magnetic resonance imaging for intranasal neoplasia without extent into the cranial cavity.
Mukherjee, Anirban; Bal, Chandrasekhar; Tripathi, Madhavi; Das, Chandan Jyoti; Shamim, Shamim Ahmed
2017-01-01
A 44-year-old female with known primary myelofibrosis presented with shortness of breath. High Resolution Computed Tomography thorax revealed large heterogeneously enhancing extraparenchymal soft tissue density mass involving bilateral lung fields. F-18-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography revealed mildly FDG avid soft tissue density mass with specks of calcification involving bilateral lung fields, liver, and spleen. Subsequent histopathologic evaluation from the right lung mass was suggestive of extramedullary hematopoesis. PMID:28533647
Cone beam computed tomography in the diagnosis of dental disease.
Tetradis, Sotirios; Anstey, Paul; Graff-Radford, Steven
2011-07-01
Conventional radiographs provide important information for dental disease diagnosis. However, they represent 2-D images of 3-D objects with significant structure superimposition and unpredictable magnification. Cone beam computed tomography, however, allows true 3-D visualization of the dentoalveolar structures, avoiding major limitations of conventional radiographs. Cone beam computed tomography images offer great advantages in disease detection for selected patients. The authors discuss cone beam computed tomography applications in dental disease diagnosis, reviewing the pertinent literature when available.
Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.
Asghar, Z; Requena, G; Sket, F
2015-07-01
The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Iodine imaging in thyroid by fluorescent X-ray CT with 0.05 mm spatial resolution
NASA Astrophysics Data System (ADS)
Takeda, T.; Yu, Q.; Yashiro, T.; Zeniya, T.; Wu, J.; Hasegawa, Y.; Thet-Thet-Lwin; Hyodo, K.; Yuasa, T.; Dilmanian, F. A.; Akatsuka, T.; Itai, Y.
2001-07-01
Fluorescent X-ray computed tomography (FXCT) at a 0.05 mm in-plane spatial resolution and 0.05 mm slice thickness depicted the cross sectional distribution of endogenous iodine within thyroid. The distribution obtained from the FXCT image correlated closely to that obtained from the pathological pictures.
Bolton, William David; Cochran, Thomas; Ben-Or, Sharon; Stephenson, James E; Ellis, William; Hale, Allyson L; Binks, Andrew P
The aims of the study were to evaluate electromagnetic navigational bronchoscopy (ENB) and computed tomography-guided placement as localization techniques for minimally invasive resection of small pulmonary nodules and determine whether electromagnetic navigational bronchoscopy is a safer and more effective method than computed tomography-guided localization. We performed a retrospective review of our thoracic surgery database to identify patients who underwent minimally invasive resection for a pulmonary mass and used either electromagnetic navigational bronchoscopy or computed tomography-guided localization techniques between July 2011 and May 2015. Three hundred eighty-three patients had a minimally invasive resection during our study period, 117 of whom underwent electromagnetic navigational bronchoscopy or computed tomography localization (electromagnetic navigational bronchoscopy = 81; computed tomography = 36). There was no significant difference between computed tomography and electromagnetic navigational bronchoscopy patient groups with regard to age, sex, race, pathology, nodule size, or location. Both computed tomography and electromagnetic navigational bronchoscopy were 100% successful at localizing the mass, and there was no difference in the type of definitive surgical resection (wedge, segmentectomy, or lobectomy) (P = 0.320). Postoperative complications occurred in 36% of all patients, but there were no complications related to the localization procedures. In terms of localization time and surgical time, there was no difference between groups. However, the down/wait time between localization and resection was significant (computed tomography = 189 minutes; electromagnetic navigational bronchoscopy = 27 minutes); this explains why the difference in total time (sum of localization, down, and surgery) was significant (P < 0.001). We found electromagnetic navigational bronchoscopy to be as safe and effective as computed tomography-guided wire placement and to provide a significantly decreased down time between localization and surgical resection.
Human cardiac telocytes: 3D imaging by FIB-SEM tomography
Cretoiu, D; Hummel, E; Zimmermann, H; Gherghiceanu, M; Popescu, L M
2014-01-01
Telocyte (TC) is a newly identified type of cell in the cardiac interstitium (www.telocytes.com). TCs are described by classical transmission electron microscopy as cells with very thin and long telopodes (Tps; cellular prolongations) having podoms (dilations) and podomers (very thin segments). TCs’ three-dimensional (3D) morphology is still unknown. Cardiac TCs seem to be particularly involved in long and short distance intercellular signalling and, therefore, their 3D architecture is important for understanding their spatial connections. Using focused ion beam scanning electron microscopy (FIB-SEM) we show, for the first time, the whole ultrastructural anatomy of cardiac TCs. 3D reconstruction of cardiac TCs by FIB-SEM tomography confirms that they have long, narrow but flattened (ribbon-like) telopodes, with humps generated by the podoms. FIB-SEM tomography also confirms the network made by TCs in the cardiac interstitium through adherens junctions. This study provides the first FIB-SEM tomography of a human cell type. PMID:25327290
3D visualization of membrane failures in fuel cells
NASA Astrophysics Data System (ADS)
Singh, Yadvinder; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik
2017-03-01
Durability issues in fuel cells, due to chemical and mechanical degradation, are potential impediments in their commercialization. Hydrogen leak development across degraded fuel cell membranes is deemed a lifetime-limiting failure mode and potential safety issue that requires thorough characterization for devising effective mitigation strategies. The scope and depth of failure analysis has, however, been limited by the 2D nature of conventional imaging. In the present work, X-ray computed tomography is introduced as a novel, non-destructive technique for 3D failure analysis. Its capability to acquire true 3D images of membrane damage is demonstrated for the very first time. This approach has enabled unique and in-depth analysis resulting in novel findings regarding the membrane degradation mechanism; these are: significant, exclusive membrane fracture development independent of catalyst layers, localized thinning at crack sites, and demonstration of the critical impact of cracks on fuel cell durability. Evidence of crack initiation within the membrane is demonstrated, and a possible new failure mode different from typical mechanical crack development is identified. X-ray computed tomography is hereby established as a breakthrough approach for comprehensive 3D characterization and reliable failure analysis of fuel cell membranes, and could readily be extended to electrolyzers and flow batteries having similar structure.
Craniofacial and brain abnormalities in Laron syndrome (primary growth hormone insensitivity).
Kornreich, L; Horev, G; Schwarz, M; Karmazyn, B; Laron, Z
2002-04-01
To investigate abnormalities in the craniofacial structures and in the brain in patients with Laron syndrome. Eleven patients with classical Laron syndrome, nine untreated adults aged 36-68 years and two children aged 4 and 9 years (the latter treated by IGF-I), were studied. Magnetic resonance images of the brain were obtained in all the patients. One patient also underwent computed tomography. The maximal diameter of the maxillary and frontal sinuses was measured and compared with reference values, the size of the sphenoid sinus was evaluated in relation to the sella, and the mastoids were evaluated qualitatively (small or normal). The brain was evaluated for congenital anomalies and parenchymal lesions. In the adult untreated patients, the paranasal sinuses and mastoids were small; in six patients, the bone marrow in the base of the skull was not mature. The diploe of the calvaria was thin. On computed tomography in one adult patient, the sutures were still open. A minimal or mild degree of diffuse brain parenchymal loss was seen in ten patients. One patient demonstrated a lacunar infarct and another periventricular high signals on T2-weighted images. Two patients had cerebellar atrophy. The present study has demonstrated the important role IGF-I plays in the development of the brain and bony structures of the cranium.
Modelling the penumbra in Computed Tomography1
Kueh, Audrey; Warnett, Jason M.; Gibbons, Gregory J.; Brettschneider, Julia; Nichols, Thomas E.; Williams, Mark A.; Kendall, Wilfrid S.
2016-01-01
BACKGROUND: In computed tomography (CT), the spot geometry is one of the main sources of error in CT images. Since X-rays do not arise from a point source, artefacts are produced. In particular there is a penumbra effect, leading to poorly defined edges within a reconstructed volume. Penumbra models can be simulated given a fixed spot geometry and the known experimental setup. OBJECTIVE: This paper proposes to use a penumbra model, derived from Beer’s law, both to confirm spot geometry from penumbra data, and to quantify blurring in the image. METHODS: Two models for the spot geometry are considered; one consists of a single Gaussian spot, the other is a mixture model consisting of a Gaussian spot together with a larger uniform spot. RESULTS: The model consisting of a single Gaussian spot has a poor fit at the boundary. The mixture model (which adds a larger uniform spot) exhibits a much improved fit. The parameters corresponding to the uniform spot are similar across all powers, and further experiments suggest that the uniform spot produces only soft X-rays of relatively low-energy. CONCLUSIONS: Thus, the precision of radiographs can be estimated from the penumbra effect in the image. The use of a thin copper filter reduces the size of the effective penumbra. PMID:27232198
Okumura, Yuri; Hidaka, Hiroshi; Seiji, Kazumasa; Nomura, Kazuhiro; Takata, Yusuke; Suzuki, Takahiro; Katori, Yukio
2015-02-01
The first objective was to describe a novel case of migration of a broken dental needle into the parapharyngeal space. The second was to address the importance of simulation elucidating visualization of such a thin needle under X-ray fluoroscopy. Clinical case records (including computed tomography [CT] and surgical approaches) were reviewed, and a simulation experiment using a head phantom was conducted using the same settings applied intraoperatively. A 36-year-old man was referred after failure to locate a broken 31-G dental needle. Computed tomography revealed migration of the needle into the parapharyngeal space. Intraoperative X-ray fluoroscopy failed to identify the needle, so a steel wire was applied as a reference during X-ray to locate the foreign body. The needle was successfully removed using an intraoral approach with tonsillectomy under surgical microscopy. The simulation showed that the dental needle was able to be identified only after applying an appropriate compensating filter, contrasting with the steel wire. Meticulous preoperative simulation regarding visual identification of dental needle foreign bodies is mandatory. Intraoperative radiography and an intraoral approach with tonsillectomy under surgical microscopy offer benefits for accessing the parapharyngeal space, specifically for cases medial to the great vessels. © The Author(s) 2014.
Patterns of contrast enhancement in the brain and meninges.
Smirniotopoulos, James G; Murphy, Frances M; Rushing, Elizabeth J; Rees, John H; Schroeder, Jason W
2007-01-01
Contrast material enhancement for cross-sectional imaging has been used since the mid 1970s for computed tomography and the mid 1980s for magnetic resonance imaging. Knowledge of the patterns and mechanisms of contrast enhancement facilitate radiologic differential diagnosis. Brain and spinal cord enhancement is related to both intravascular and extravascular contrast material. Extraaxial enhancing lesions include primary neoplasms (meningioma), granulomatous disease (sarcoid), and metastases (which often manifest as mass lesions). Linear pachymeningeal (dura-arachnoid) enhancement occurs after surgery and with spontaneous intracranial hypotension. Leptomeningeal (pia-arachnoid) enhancement is present in meningitis and meningoencephalitis. Superficial gyral enhancement is seen after reperfusion in cerebral ischemia, during the healing phase of cerebral infarction, and with encephalitis. Nodular subcortical lesions are typical for hematogenous dissemination and may be neoplastic (metastases) or infectious (septic emboli). Deeper lesions may form rings or affect the ventricular margins. Ring enhancement that is smooth and thin is typical of an organizing abscess, whereas thick irregular rings suggest a necrotic neoplasm. Some low-grade neoplasms are "fluid-secreting," and they may form heterogeneously enhancing lesions with an incomplete ring sign as well as the classic "cyst-with-nodule" morphology. Demyelinating lesions, including both classic multiple sclerosis and tumefactive demyelination, may also create an open ring or incomplete ring sign. Thick and irregular periventricular enhancement is typical for primary central nervous system lymphoma. Thin enhancement of the ventricular margin occurs with infectious ependymitis. Understanding the classic patterns of lesion enhancement--and the radiologic-pathologic mechanisms that produce them--can improve image assessment and differential diagnosis.
Sinonasal papilloma: what influences the decision to request a magnetic resonance imaging scan?
Kasbekar, A V; Swords, C; Attlmayr, B; Kulkarni, T; Swift, A C
2018-06-18
Computed tomography is the standard pre-operative imaging modality for sinonasal papilloma. The complementary use of magnetic resonance imaging as an additional investigation is debated. This study aimed to establish whether magnetic resonance imaging can accurately detect tumour extent and is a useful adjunct to computed tomography. A retrospective review was conducted on 19 patients with sinonasal papilloma. The interpretation of computed tomography and magnetic resonance imaging scans, by three clinicians, was conducted by comparing prediction of tumour extent. The perceived necessity of magnetic resonance imaging was compared between clinicians. The addition of magnetic resonance imaging improved accuracy of pre-operative interpretation; specifically, this finding was significant in cases with frontal sinus involvement. Surgeons were more likely than a radiologist to request magnetic resonance imaging, particularly when computed tomography indicated frontal sinus disease. Pre-operative combined magnetic resonance imaging and computed tomography helped predict disease in the frontal sinus better than computed tomography alone. A close working relationship between the ENT and radiology departments is important for accurate tumour localisation.
Comparing 3-dimensional virtual methods for reconstruction in craniomaxillofacial surgery.
Benazzi, Stefano; Senck, Sascha
2011-04-01
In the present project, the virtual reconstruction of digital osteomized zygomatic bones was simulated using different methods. A total of 15 skulls were scanned using computed tomography, and a virtual osteotomy of the left zygomatic bone was performed. Next, virtual reconstructions of the missing part using mirror imaging (with and without best fit registration) and thin plate spline interpolation functions were compared with the original left zygomatic bone. In general, reconstructions using thin plate spline warping showed better results than the mirroring approaches. Nevertheless, when dealing with skulls characterized by a low degree of asymmetry, mirror imaging and subsequent registration can be considered a valid and easy solution for zygomatic bone reconstruction. The mirroring tool is one of the possible alternatives in reconstruction, but it might not always be the optimal solution (ie, when the hemifaces are asymmetrical). In the present pilot study, we have verified that best fit registration of the mirrored unaffected hemiface and thin plate spline warping achieved better results in terms of fitting accuracy, overcoming the evident limits of the mirroring approach. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee
2018-05-01
To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.
Inspection of a Medieval Wood Sculpture Using Computer Tomography
NASA Astrophysics Data System (ADS)
Kapitany, K.; Somogyi, A.; Barsi, A.
2016-06-01
Computer tomography (CT) is an excellent technique for obtaining accurate 3D information about the human body. It allows to visualize the organs, bones and blood vessels, furthermore it enables to diagnose anomalies and diseases. Its spatial reconstruction capability supports other interesting applications, such as inspecting different, even valuable objects like ancient sculptures. Current paper presents a methodology of evaluating CT and video imagery through the example of investigating a wood Madonna with infant Jesus sculpture from the 14th century. The developed techniques extract the outer boundary of the statue, which has been triangulated to derive the surface model. The interior of the sculpture has also been revealed: the iron bolts and rivets as well as the woodworm holes can be mapped. By merging the interior and outer data (geometry and texture) interesting visualizations (perspective views, sections etc.) have been created.
Chang, Yoon; Koenig, Lisa J; Pruszynski, Jessica E; Bradley, Thomas G; Bosio, Jose A; Liu, Dawei
2013-04-01
The aim of this prospective study was to use cone-beam computed tomography to assess the dimensional changes of the upper airway in orthodontic patients with maxillary constriction treated by rapid maxillary expansion. Fourteen orthodontic patients (mean age, 12.9 years; range, 9.7-16 years) were recruited. The patients with posterior crossbite and constricted maxilla were treated with rapid maxillary expansion as the initial part of their comprehensive orthodontic treatments. Before and after rapid maxillary expansion cone-beam computed tomography scans were taken to measure the retropalatal and retroglossal airway changes in terms of volume, and sagittal and cross-sectional areas. The transverse expansions by rapid maxillary expansion were assessed between the midlingual alveolar bone plates at the maxillary first molar and first premolar levels. The measurements of the before and after rapid maxillary expansion scans were compared by using paired t tests with the Bonferroni adjustment for multiple comparisons. After rapid maxillary expansion, significant and equal amounts of 4.8 mm of expansion were observed at the first molar (P = 0.0000) and the first premolar (P = 0.0000) levels. The width increase at the first premolar level (20.0%) was significantly greater than that at the first molar level (15.0%) (P = 0.035). As the primary outcome variable, the cross-sectional airway measured from the posterior nasal spine to basion level was the only parameter showing a significant increase of 99.4 mm(2) (59.6%) after rapid maxillary expansion (P = 0.0004). These results confirm the findings of previous studies of the effect of rapid maxillary expansion on the maxilla. Additionally, we found that only the cross-sectional area of the upper airway at the posterior nasal spine to basion level significantly gains a moderate increase after rapid maxillary expansion. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Computer tomography of the neurocranium.
Liliequist, B; Forssell, A
1976-07-01
The experience with computer tomography of the neurocranium in 300 patients submitted for computer tomography of the brain is reported. The more appropriate projections which may be obtained with the second generation of scanners in combination with an elaborated reconstruction technique seem to constitute a replacement of conventional skull films.
NASA Astrophysics Data System (ADS)
Demirkaya, Omer
2001-07-01
This study investigates the efficacy of filtering two-dimensional (2D) projection images of Computer Tomography (CT) by the nonlinear diffusion filtration in removing the statistical noise prior to reconstruction. The projection images of Shepp-Logan head phantom were degraded by Gaussian noise. The variance of the Gaussian distribution was adaptively changed depending on the intensity at a given pixel in the projection image. The corrupted projection images were then filtered using the nonlinear anisotropic diffusion filter. The filtered projections as well as original noisy projections were reconstructed using filtered backprojection (FBP) with Ram-Lak filter and/or Hanning window. The ensemble variance was computed for each pixel on a slice. The nonlinear filtering of projection images improved the SNR substantially, on the order of fourfold, in these synthetic images. The comparison of intensity profiles across a cross-sectional slice indicated that the filtering did not result in any significant loss of image resolution.
Spinodal Decomposition in Multilayered Fe-Cr System: Kinetic Stasis and Wave Instability
NASA Astrophysics Data System (ADS)
Maugis, Philippe; Colignon, Yann; Mangelinck, Dominique; Hoummada, Khalid
2015-08-01
Used as fuel cladding in the Gen IV fission reactors, ODS steels would be held at temperatures in the range of 350°C to 600°C for several months. Under these conditions, spinodal decomposition is likely to occur in the matrix, resulting in an increase of material brittleness. In this study, thin films consisting of a modulated composition in Fe and in Cr in a given direction have been elaborated. The time evolution of the composition profiles during aging at 500°C has been characterized by atom probe tomography, indicating an apparent kinetic stasis of the initial microstructure. A computer model has been developed on the basis of the Cahn-Hilliard theory of spinodal decomposition, associated with the mobility form proposed by Martin (1990). We make the assumption that the initial profile is very close to the amplitude-dependent critical wavelength. Our calculations show that the thin film is unstable relative to wavelength modulations, resulting in the observed kinetic stasis.
Ross, James C; San José Estépar, Rail; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K; Washko, George R
2010-01-01
We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases.
Ross, James C.; Estépar, Raúl San José; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K.; Washko, George R.
2011-01-01
We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases. PMID:20879396
NASA Astrophysics Data System (ADS)
Hangai, Yoshihiko; Nakano, Yukiko; Utsunomiya, Takao; Kuwazuru, Osamu; Yoshikawa, Nobuhiro
2017-02-01
In this study, Al-Si-Cu alloy ADC12 foam-filled thin-walled stainless steel pipes, which exhibit metal bonding between the ADC12 foam and steel pipe, were fabricated by friction stir back extrusion. Drop weight impact tests were conducted to investigate the deformation behavior and mechanical properties of the foam-filled pipes during dynamic compression tests, which were compared with the results of static compression tests. From x-ray computed tomography observation, it was confirmed that the fabricated foam-filled pipes had almost uniform porosity and pore size distributions. It was found that no scattering of the fragments of collapsed ADC12 foam occurred for the foam-filled pipes owing to the existence of the pipe surrounding the ADC12 foam. Preventing the scattering of the ADC12 foam decreases the drop in stress during dynamic compression tests and therefore improves the energy absorption properties of the foam.
Obturator mononeuropathy caused by lipomatosis of the nerve: a case report.
Nardone, Raffaele; Venturi, Alessandro; Ladurner, Gunther; Golaszewski, Stefan; Psenner, Konrad; Tezzon, Frediano
2008-08-01
We report a patient who presented with the clinical features of obturator mononeuropathy. Abdomino-pelvic computed tomography revealed a fusiform mass in the right perivesical space; magnetic resonance imaging (MRI) showed characteristic "coaxial-cable-like" appearance in cross-section and "spaghetti-like" appearance in longitudinal section, pathognomonic of lipomatosis of the nerve. Nerve lipomatosis as the cause of obturator neuropathy has not been previously reported. MRI provides definite and graphic proof of the diagnosis.
CT of hepatic schistosomiasis mansoni
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fataar, S.; Bassiony, H.; Satyanath, S.
1985-07-01
Schistosomal periportal fibrosis produced a typical pattern on computed tomography in five patients. Low-density periportal tissue, present throughout the liver, enhanced strongly after the administration of contrast medium. While rounded in cross section, the thickened periportal tissue produced linear and branching patterns when imaged in longitudinal section. In all cases, the sonographic features were typical of schistosomal periportal fibrosis. A lack of awareness of the distinctive features of periportal fibrosis may result in a mistaken diagnosis of hepatic metastases.
Magnetic resonance imaging, computed tomography, and gross anatomy of the canine tarsus.
Deruddere, Kirsten J; Milne, Marjorie E; Wilson, Kane M; Snelling, Sam R
2014-11-01
To describe the normal anatomy of the soft tissues of the canine tarsus as identified on computed tomography (CT) and magnetic resonance imaging (MRI) and to evaluate specific MRI sequences and planes for observing structures of diagnostic interest. Prospective descriptive study. Canine cadavers (n = 3). A frozen cadaver pelvic limb was used to trial multiple MRI sequences using a 1.5 T superconducting magnet and preferred sequences were selected. Radiographs of 6 canine cadaver pelvic limbs confirmed the tarsi were radiographically normal. A 16-slice CT scanner was used to obtain 1 mm contiguous slices through the tarsi. T1-weighted, proton density with fat suppression (PD FS) and T2-weighted MRI sequences were obtained in the sagittal plane, T1-weighted, and PD FS sequences in the dorsal plane and PD FS sequences in the transverse plane. The limbs were frozen for one month and sliced into 4-5 mm thick frozen sections. Anatomic sections were photographed and visually correlated to CT and MR images. Most soft tissue structures were easiest to identify on the transverse MRI sections with cross reference to either the sagittal or dorsal plane. Bony structures were easily identified on all CT, MR, and gross sections. The anatomy of the canine tarsus can be readily identified on MR imaging. © Copyright 2014 by The American College of Veterinary Surgeons.
NASA Technical Reports Server (NTRS)
Bennett, Robert M.; Batina, John T.
1989-01-01
The application and assessment of a computer program called CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) for flutter predictions are described. Flutter calculations are presented for two thin swept-and-tapered wing planforms with well-defined modal properties. One planform is a series of 45-degree swept wings and the other planform is a clipped delta wing. Comparisons are made between the results of CAP-TSD using the linear equation and no airfoil thickness and the results obtained from a subsonic kernel function analysis. The calculations cover a Mach number range from low subsonic to low supersonic values, including the transonic range, and are compared with subsonic linear theory and experimental data. It is noted that since both wings have very thin airfoil sections, the effects of thickness are minimal.
Compton imaging tomography for nondestructive evaluation of spacecraft thermal protection systems
NASA Astrophysics Data System (ADS)
Romanov, Volodymyr; Burke, Eric; Grubsky, Victor
2017-02-01
Here we present new results of in situ nondestructive evaluation (NDE) of spacecraft thermal protection system materials obtained with POC-developed NDE tool based on a novel Compton Imaging Tomography (CIT) technique recently pioneered and patented by Physical Optics Corporation (POC). In general, CIT provides high-resolution three-dimensional Compton scattered X-ray imaging of the internal structure of evaluated objects, using a set of acquired two-dimensional Compton scattered X-ray images of consecutive cross sections of these objects. Unlike conventional computed tomography, CIT requires only one-sided access to objects, has no limitation on the dimensions and geometry of the objects, and can be applied to large multilayer non-uniform objects with complicated geometries. Also, CIT does not require any contact with the objects being imaged during its application.
Nambu, Atsushi; Onishi, Hiroshi; Aoki, Shinichi; Tominaga, Licht; Kuriyama, Kengo; Araya, Masayuki; Saito, Ryoh; Maehata, Yoshiyasu; Komiyama, Takafumi; Marino, Kan; Koshiishi, Tsuyota; Sawada, Eiichi; Araki, Tsutomu
2013-02-07
As stereotactic body radiotherapy (SBRT) is a highly dose-dense radiotherapy, adverse events of neighboring normal tissues are a major concern. This study thus aimed to clarify the frequency and degree of clinical symptoms in patients with rib fractures after SBRT for primary lung cancer and to reveal risk factors for rib fracture. Appropriate α/β ratios for discriminating between fracture and non-fracture groups were also investigated. Between November 2001 and April 2009, 177 patients who had undergone SBRT were evaluated for clinical symptoms and underwent follow-up thin-section computed tomography (CT). The time of rib fracture appearance was also assessed. Cox proportional hazard modeling was performed to identify risk factors for rib fracture, using independent variables of age, sex, maximum tumor diameter, radiotherapeutic method and tumor-chest wall distance. Dosimetric details were analyzed for 26 patients with and 22 randomly-sampled patients without rib fracture. Biologically effective dose (BED) was calculated with a range of α/β ratios (1-10 Gy). Receiver operating characteristics analysis was used to define the most appropriate α/β ratio. Rib fracture was found on follow-up thin-section CT in 41 patients. The frequency of chest wall pain in patients with rib fracture was 34.1% (14/41), and was classified as Grade 1 or 2. Significant risk factors for rib fracture were smaller tumor-chest wall distance and female sex. Area under the curve was maximal for BED at an α/β ratio of 8 Gy. Rib fracture is frequently seen on CT after SBRT for lung cancer. Small tumor-chest wall distance and female sex are risk factors for rib fracture. However, clinical symptoms are infrequent and generally mild. When using BED analysis, an α/β ratio of 8 Gy appears most effective for discriminating between fracture and non-fracture patients.
2013-01-01
Background As stereotactic body radiotherapy (SBRT) is a highly dose-dense radiotherapy, adverse events of neighboring normal tissues are a major concern. This study thus aimed to clarify the frequency and degree of clinical symptoms in patients with rib fractures after SBRT for primary lung cancer and to reveal risk factors for rib fracture. Appropriate α/β ratios for discriminating between fracture and non-fracture groups were also investigated. Methods Between November 2001 and April 2009, 177 patients who had undergone SBRT were evaluated for clinical symptoms and underwent follow-up thin-section computed tomography (CT). The time of rib fracture appearance was also assessed. Cox proportional hazard modeling was performed to identify risk factors for rib fracture, using independent variables of age, sex, maximum tumor diameter, radiotherapeutic method and tumor-chest wall distance. Dosimetric details were analyzed for 26 patients with and 22 randomly-sampled patients without rib fracture. Biologically effective dose (BED) was calculated with a range of α/β ratios (1–10 Gy). Receiver operating characteristics analysis was used to define the most appropriate α/β ratio. Results Rib fracture was found on follow-up thin-section CT in 41 patients. The frequency of chest wall pain in patients with rib fracture was 34.1% (14/41), and was classified as Grade 1 or 2. Significant risk factors for rib fracture were smaller tumor-chest wall distance and female sex. Area under the curve was maximal for BED at an α/β ratio of 8 Gy. Conclusions Rib fracture is frequently seen on CT after SBRT for lung cancer. Small tumor-chest wall distance and female sex are risk factors for rib fracture. However, clinical symptoms are infrequent and generally mild. When using BED analysis, an α/β ratio of 8 Gy appears most effective for discriminating between fracture and non-fracture patients. PMID:23391264
Study of Image Qualities From 6D Robot-Based CBCT Imaging System of Small Animal Irradiator.
Sharma, Sunil; Narayanasamy, Ganesh; Clarkson, Richard; Chao, Ming; Moros, Eduardo G; Zhang, Xin; Yan, Yulong; Boerma, Marjan; Paudel, Nava; Morrill, Steven; Corry, Peter; Griffin, Robert J
2017-01-01
To assess the quality of cone beam computed tomography images obtained by a robotic arm-based and image-guided small animal conformal radiation therapy device. The small animal conformal radiation therapy device is equipped with a 40 to 225 kV X-ray tube mounted on a custom made gantry, a 1024 × 1024 pixels flat panel detector (200 μm resolution), a programmable 6 degrees of freedom robot for cone beam computed tomography imaging and conformal delivery of radiation doses. A series of 2-dimensional radiographic projection images were recorded in cone beam mode by placing and rotating microcomputed tomography phantoms on the "palm' of the robotic arm. Reconstructed images were studied for image quality (spatial resolution, image uniformity, computed tomography number linearity, voxel noise, and artifacts). Geometric accuracy was measured to be 2% corresponding to 0.7 mm accuracy on a Shelley microcomputed tomography QA phantom. Qualitative resolution of reconstructed axial computed tomography slices using the resolution coils was within 200 μm. Quantitative spatial resolution was found to be 3.16 lp/mm. Uniformity of the system was measured within 34 Hounsfield unit on a QRM microcomputed tomography water phantom. Computed tomography numbers measured using the linearity plate were linear with material density ( R 2 > 0.995). Cone beam computed tomography images of the QRM multidisk phantom had minimal artifacts. Results showed that the small animal conformal radiation therapy device is capable of producing high-quality cone beam computed tomography images for precise and conformal small animal dose delivery. With its high-caliber imaging capabilities, the small animal conformal radiation therapy device is a powerful tool for small animal research.
Morphometric analysis - Cone beam computed tomography to predict bone quality and quantity.
Hohlweg-Majert, B; Metzger, M C; Kummer, T; Schulze, D
2011-07-01
Modified quantitative computed tomography is a method used to predict bone quality and quantify the bone mass of the jaw. The aim of this study was to determine whether bone quantity or quality was detected by cone beam computed tomography (CBCT) combined with image analysis. MATERIALS AND PROCEDURES: Different measurements recorded on two phantoms (Siemens phantom, Comac phantom) were evaluated on images taken with the Somatom VolumeZoom (Siemens Medical Solutions, Erlangen, Germany) and the NewTom 9000 (NIM s.r.l., Verona, Italy) in order to calculate a calibration curve. The spatial relationships of six sample cylinders and the repositioning from four pig skull halves relative to adjacent defined anatomical structures were assessed by means of three-dimensional visualization software. The calibration curves for computer tomography (CT) and cone beam computer tomography (CBCT) using the Siemens phantom showed linear correlation in both modalities between the Hounsfield Units (HU) and bone morphology. A correction factor for CBCT was calculated. Exact information about the micromorphology of the bone cylinders was only available using of micro computer tomography. Cone-beam computer tomography is a suitable choice for analysing bone mass, but, it does not give any information about bone quality. 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Sozzi, Fabiola B; Maiello, Maria; Pelliccia, Francesco; Parato, Vito Maurizio; Canetta, Ciro; Savino, Ketty; Lombardi, Federico; Palmiero, Pasquale
2016-09-01
Coronary computed tomography angiography is a noninvasive heart imaging test currently undergoing rapid development and advancement. The high resolution of the three-dimensional pictures of the moving heart and great vessels is performed during a coronary computed tomography to identify coronary artery disease and classify patient risk for atherosclerotic cardiovascular disease. The technique provides useful information about the coronary tree and atherosclerotic plaques beyond simple luminal narrowing and plaque type defined by calcium content. This application will improve image-guided prevention, medical therapy, and coronary interventions. The ability to interpret coronary computed tomography images is of utmost importance as we develop personalized medical care to enable therapeutic interventions stratified on the bases of plaque characteristics. This overview provides available data and expert's recommendations in the utilization of coronary computed tomography findings. We focus on the use of coronary computed tomography to detect coronary artery disease and stratify patients at risk, illustrating the implications of this test on patient management. We describe its diagnostic power in identifying patients at higher risk to develop acute coronary syndrome and its prognostic significance. Finally, we highlight the features of the vulnerable plaques imaged by coronary computed tomography angiography. © 2016, Wiley Periodicals, Inc.
Drees, R.; Forrest, L. J.; Chappell, R.
2009-01-01
Objectives Canine intranasal neoplasia is commonly evaluated using computed tomography to indicate the diagnosis, to determine disease extent, to guide histological sampling location and to plan treatment. With the expanding use of magnetic resonance imaging in veterinary medicine, this modality has been recently applied for the same purpose. The aim of this study was to compare the features of canine intranasal neoplasia using computed tomography and magnetic resonance imaging. Methods Twenty-one dogs with confirmed intranasal neoplasia underwent both computed tomography and magnetic resonance imaging. The images were reviewed retrospectively for the bony and soft tissue features of intranasal neoplasia. Results Overall computed tomography and magnetic resonance imaging performed very similarly. However, lysis of bones bordering the nasal cavity and mucosal thickening was found on computed tomography images more often than on magnetic resonance images. Small amounts of fluid in the nasal cavity were more often seen on magnetic resonance images. However, fluid in the frontal sinuses was seen equally well with both modalities. Clinical Significance We conclude that computed tomography is satisfactory for evaluation of canine intranasal neoplasia, and no clinically relevant benefit is gained using magnetic resonance imaging for intranasal neoplasia without extent into the cranial cavity. PMID:19508490
NASA Astrophysics Data System (ADS)
Everett, Matthew J.; Colston, Bill W., Jr.; Sathyam, Ujwal S.; Da Silva, Luiz B.; Fried, Daniel; Featherstone, John D. B.
1999-05-01
There is no diagnostic technology presently available utilizing non-ionizing radiation that can image the state of demineralization of dental enamel in vivo for the detection, characterization and monitoring of early, incipient caries lesions. In this study, a Polarization Sensitive Optical Coherence Tomography (PS-OCT) system was evaluated for its potential for the non-invasive diagnosis of early carious lesions. We demonstrated clear discrimination in PS-OCT imags between regions of normal and demineralized enamel in bovine enamel blocks containing well-characterized artificial lesions. Moreover, high-resolution, cross- sectional images were acquired that clearly discriminate between the normal and carious regions of extracted human teeth. Regions that appeared to be demineralized in the PS- OCT imags were verified using histological thin sections examined under polarized light. The PS-OCT system discriminates between normal and carious regions by measuring the state of polarization of the back-scattered 1310 nm light, which is affected by the state of demineralization of the enamel. The demineralized regions of enamel have a large scattering coefficient, thus depolarizing the incident light. This initial study shows that PS-OCT has great potential for the detection, characterization, and monitoring of incipient caries lesions.
Taking geoscience to the IMAX: 3D and 4D insight into geological processes using micro-CT
NASA Astrophysics Data System (ADS)
Dobson, Katherine; Dingwell, Don; Hess, Kai-Uwe; Withers, Philip; Lee, Peter; Pistone, Mattia; Fife, Julie; Atwood, Robert
2015-04-01
Geology is inherently dynamic, and full understanding of any geological system can only be achieved by considering the processes by which change occurs. Analytical limitations mean understanding has largely developed from ex situ analyses of the products of geological change, rather than of the processes themselves. Most methods essentially utilise "snap shot" sampling: and from thin section petrography to high resolution crystal chemical stratigraphy and field volcanology, we capture an incomplete view of a spatially and temporally variable system. Even with detailed experimental work, we can usually only analyse samples before and after we perform an experiment, as routine analysis methods are destructive. Serial sectioning and quenched experiments stopped at different stages can give some insight into the third and fourth dimension, but the true scaling of the processes from the laboratory to the 4D (3D + time) geosphere is still poorly understood. Micro computed tomography (XMT) can visualise the internal structures and spatial associations within geological samples non-destructively. With image resolutions of between 200 microns and 50 nanometres, tomography has the ability to provide a detailed sample assessment in 3D, and quantification of mineral associations, porosity, grain orientations, fracture alignments and many other features. This allows better understanding of the role of the complex geometries and associations within the samples, but the challenge of capturing the processes that generate and modify these structures remains. To capture processes, recent work has focused on developing experimental capability for in situ experiments on geological materials. Data presented will showcase examples from recent experiments where high speed synchrotron x-ray tomography has been used to acquire each 3D image in under 2 seconds. We present a suite of studies that showcase how it is now possible to take quantification of many geological processed into 3D and 4D. This will include tracking the interactions between bubbles and crystals in a deforming magma, the dissolution of individual mineral grains from low grade ores, and quantification of three phase flow in sediments and soils. Our aim is to demonstrate how XMT can provide new insight into dynamic processes in all geoscience disciplines, and give you some insight into where 4D geoscience could take us next.
Alonso-Farré, J M; Gonzalo-Orden, M; Barreiro-Vázquez, J D; Barreiro-Lois, A; André, M; Morell, M; Llarena-Reino, M; Monreal-Pawlowsky, T; Degollada, E
2015-02-01
Computed tomography (CT) and low-field magnetic resonance imaging (MRI) were used to scan seven by-caught dolphin cadavers, belonging to two species: four common dolphins (Delphinus delphis) and three striped dolphins (Stenella coeruleoalba). CT and MRI were obtained with the animals in ventral recumbency. After the imaging procedures, six dolphins were frozen at -20°C and sliced in the same position they were examined. Not only CT and MRI scans, but also cross sections of the heads were obtained in three body planes: transverse (slices of 1 cm thickness) in three dolphins, sagittal (5 cm thickness) in two dolphins and dorsal (5 cm thickness) in two dolphins. Relevant anatomical structures were identified and labelled on each cross section, obtaining a comprehensive bi-dimensional topographical anatomy guide of the main features of the common and the striped dolphin head. Furthermore, the anatomical cross sections were compared with their corresponding CT and MRI images, allowing an imaging identification of most of the anatomical features. CT scans produced an excellent definition of the bony and air-filled structures, while MRI allowed us to successfully identify most of the soft tissue structures in the dolphin's head. This paper provides a detailed anatomical description of the head structures of common and striped dolphins and compares anatomical cross sections with CT and MRI scans, becoming a reference guide for the interpretation of imaging studies. © 2014 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Li, Bin; Wang, Dayong; Rong, Lu; Zhai, Changchao; Wang, Yunxin; Zhao, Jie
2018-02-01
Terahertz (THz) radiation is able to penetrate many different types of nonpolar and nonmetallic materials without the damaging effects of x-rays. THz technology can be combined with computed tomography (CT) to form THz CT, which is an effective imaging method that is used to visualize the internal structure of a three-dimensional sample as cross-sectional images. Here, we reported an application of THz as the radiation source in CT imaging by replacing the x-rays. In this method, the sample cross section is scanned in all translation and rotation directions. Then, the projection data are reconstructed using a tomographic reconstruction algorithm. Two-dimensional (2-D) cross-sectional images of the chicken ulna were obtained through the continuous-wave (CW) THz CT system. Given by the difference of the THz absorption of different substances, the compact bone and spongy bone inside the chicken ulna are structurally distinguishable in the 2-D cross-sectional images. Using the filtered back projection algorithm, we reconstructed the projection data of the chicken ulna at different projection angle intervals and found that the artifacts and noise in the images are strikingly increased when the projection angle intervals become larger, reflected by the blurred boundary of the compact bone. The quality and fidelity of the 2-D cross-sectional images could be substantially improved by reducing the projection angle intervals. Our experimental data demonstrated a feasible application of the CW THz CT system in biological imaging.
Song, Zhongchang; Xu, Xiao; Dong, Jianchen; Xing, Luru; Zhang, Meng; Liu, Xuecheng; Zhang, Yu; Li, Songhai; Berggren, Per
2015-11-01
Computed tomography (CT) imaging and sound experimental measurements were used to reconstruct the acoustic properties (density, velocity, and impedance) of the forehead tissues of a deceased pygmy sperm whale (Kogia breviceps). The forehead was segmented along the body axis and sectioned into cross section slices, which were further cut into sample pieces for measurements. Hounsfield units (HUs) of the corresponding measured pieces were obtained from CT scans, and regression analyses were conducted to investigate the linear relationships between the tissues' HUs and velocity, and HUs and density. The distributions of the acoustic properties of the head at axial, coronal, and sagittal cross sections were reconstructed, revealing that the nasal passage system was asymmetric and the cornucopia-shaped spermaceti organ was in the right nasal passage, surrounded by tissues and airsacs. A distinct dense theca was discovered in the posterior-dorsal area of the melon, which was characterized by low velocity in the inner core and high velocity in the outer region. Statistical analyses revealed significant differences in density, velocity, and acoustic impedance between all four structures, melon, spermaceti organ, muscle, and connective tissue (p < 0.001). The obtained acoustic properties of the forehead tissues provide important information for understanding the species' bioacoustic characteristics.
NASA Astrophysics Data System (ADS)
Doradla, Pallavi; Villiger, Martin; Tshikudi, Diane M.; Bouma, Brett E.; Nadkarni, Seemantini K.
2016-02-01
Acute myocardial infarction, caused by the rupture of vulnerable coronary plaques, is the leading cause of death worldwide. Collagen is the primary extracellular matrix macromolecule that imparts the mechanical stability to a plaque and its reduction causes plaque instability. Intracoronary polarization sensitive optical coherence tomography (PS-OCT) measures the polarization states of the backscattered light from the tissue to evaluate plaque birefringence, a material property that is elevated in proteins such as collagen with an ordered structure. Here we investigate the dependence of the PS-OCT parameters on the quantity of the plaque collagen and fiber architecture. In this study, coronary arterial segments from human cadaveric hearts were evaluated with intracoronary PS-OCT and compared with Histopathological assessment of collagen content and architecture from picrosirius-red (PSR) stained sections. PSR sections were visualized with circularly-polarized light microscopy to quantify collagen birefringence, and the additional assessment of color hue indicated fibril thickness. Due to the ordered architecture of thick collagen fibers, a positive correlation between PS-OCT retardation and quantity of thick collagen fibers (r=0.54, p=0.04), and similarly with the total collagen content (r=0.51, p=0.03) was observed. In contrast, there was no perceivable relationship between PS-OCT retardation and the presence of thin collagen fibers (r=0.08, p=0.07), suggesting that thin and disorganized collagen fiber architecture did not significantly contribute to the PS-OCT retardation. Further analysis will be performed to assess the relationship between PS-OCT retardation and collagen architecture based on immunohistochemical analysis of collagen type. These results suggest that intracoronary PS-OCT may open the opportunity to assess collagen architecture in addition total collagen content, potentially enabling an improved understanding of coronary plaque rupture.
NASA Technical Reports Server (NTRS)
Vest, C. M.
1982-01-01
The use of holographic interferometry to measure two and threedimensional flows and the interpretation of multiple-view interferograms with computer tomography are discussed. Computational techniques developed for tomography are reviewed. Current research topics are outlined including the development of an automated fringe readout system, optimum reconstruction procedures for when an opaque test model is present in the field, and interferometry and tomography with strongly refracting fields and shocks.
Primary pleural lymphoma: plaque-like thickening of the pleura.
Oikonomou, Anastasia; Giatromanolaki, Alexandra; Margaritis, Dimitrios; Froudarakis, Marios; Prassopoulos, Panos
2010-01-01
Primary pleural lymphoma is a rare entity that has been described in association with human immunodeficiency virus (HIV) infection or pyothorax. We report a 63-year-old-man with no history of HIV infection or pyothorax who presented with progressive dyspnea and nonproductive cough. Chest radiography revealed complete opacification of the left hemithorax, and contrast-enhanced computed tomography showed large left pleural effusion and thin, homogeneous, plaque-like thickening of the parietal pleura. Thoracoscopic pleural biopsy was consistent with grade 1 extranodal follicular lymphoma of the pleura. The authors suggest that physicians should be aware of this rare location of primary pleural lymphoma manifested by plaque-like thickening of the pleura but not accompanied by mediastinal lymphadenopathy.
Otogenic pneumocephalus as a complication of multiple myeloma.
Maguire, Melissa J; Nath, Uma; Bignardi, Guiseppe E
2012-09-01
We report a case of otogenic pneumocephalus in an 80-year-old woman with multiple myeloma. The pneumocephalus was associated with Haemophilus influenzae otitis media and reactive meningitis in the absence of an intracranial brain abscess. Myeloma causes thinning of bone trabeculae and destructive lytic bone lesions. This can predispose to a risk of pathologic fractures and, in patients with skull vault involvement, to the rare complication of pneumocephalus. Therefore, pneumocephalus should be considered in the differential diagnosis of acute headache in patients with multiple myeloma, especially those with skull vault involvement. Prompt computed tomography and liaison between the otolaryngology and neurology teams may assist in making an early diagnosis and preventing life-threatening intracranial complications.
Gerritsen, M G; Willemink, M J; Pompe, E; van der Bruggen, T; van Rhenen, A; Lammers, J W J; Wessels, F; Sprengers, R W; de Jong, P A; Minnema, M C
2017-01-01
We performed a prospective study in patients with chemotherapy induced febrile neutropenia to investigate the diagnostic value of low-dose computed tomography compared to standard chest radiography. The aim was to compare both modalities for detection of pulmonary infections and to explore performance of low-dose computed tomography for early detection of invasive fungal disease. The low-dose computed tomography remained blinded during the study. A consensus diagnosis of the fever episode made by an expert panel was used as reference standard. We included 67 consecutive patients on the first day of febrile neutropenia. According to the consensus diagnosis 11 patients (16.4%) had pulmonary infections. Sensitivity, specificity, positive predictive value and negative predictive value were 36%, 93%, 50% and 88% for radiography, and 73%, 91%, 62% and 94% for low-dose computed tomography, respectively. An uncorrected McNemar showed no statistical difference (p = 0.197). Mean radiation dose for low-dose computed tomography was 0.24 mSv. Four out of 5 included patients diagnosed with invasive fungal disease had radiographic abnormalities suspect for invasive fungal disease on the low-dose computed tomography scan made on day 1 of fever, compared to none of the chest radiographs. We conclude that chest radiography has little value in the initial assessment of febrile neutropenia on day 1 for detection of pulmonary abnormalities. Low-dose computed tomography improves detection of pulmonary infiltrates and seems capable of detecting invasive fungal disease at a very early stage with a low radiation dose.
Pompe, E.; van der Bruggen, T.; van Rhenen, A.; Lammers, J. W. J.; Wessels, F.; Sprengers, R. W.; de Jong, P. A.; Minnema, M. C.
2017-01-01
We performed a prospective study in patients with chemotherapy induced febrile neutropenia to investigate the diagnostic value of low-dose computed tomography compared to standard chest radiography. The aim was to compare both modalities for detection of pulmonary infections and to explore performance of low-dose computed tomography for early detection of invasive fungal disease. The low-dose computed tomography remained blinded during the study. A consensus diagnosis of the fever episode made by an expert panel was used as reference standard. We included 67 consecutive patients on the first day of febrile neutropenia. According to the consensus diagnosis 11 patients (16.4%) had pulmonary infections. Sensitivity, specificity, positive predictive value and negative predictive value were 36%, 93%, 50% and 88% for radiography, and 73%, 91%, 62% and 94% for low-dose computed tomography, respectively. An uncorrected McNemar showed no statistical difference (p = 0.197). Mean radiation dose for low-dose computed tomography was 0.24 mSv. Four out of 5 included patients diagnosed with invasive fungal disease had radiographic abnormalities suspect for invasive fungal disease on the low-dose computed tomography scan made on day 1 of fever, compared to none of the chest radiographs. We conclude that chest radiography has little value in the initial assessment of febrile neutropenia on day 1 for detection of pulmonary abnormalities. Low-dose computed tomography improves detection of pulmonary infiltrates and seems capable of detecting invasive fungal disease at a very early stage with a low radiation dose. PMID:28235014
Chen, Delei; Goris, Bart; Bleichrodt, Folkert; Mezerji, Hamed Heidari; Bals, Sara; Batenburg, Kees Joost; de With, Gijsbertus; Friedrich, Heiner
2014-12-01
In electron tomography, the fidelity of the 3D reconstruction strongly depends on the employed reconstruction algorithm. In this paper, the properties of SIRT, TVM and DART reconstructions are studied with respect to having only a limited number of electrons available for imaging and applying different angular sampling schemes. A well-defined realistic model is generated, which consists of tubular domains within a matrix having slab-geometry. Subsequently, the electron tomography workflow is simulated from calculated tilt-series over experimental effects to reconstruction. In comparison with the model, the fidelity of each reconstruction method is evaluated qualitatively and quantitatively based on global and local edge profiles and resolvable distance between particles. Results show that the performance of all reconstruction methods declines with the total electron dose. Overall, SIRT algorithm is the most stable method and insensitive to changes in angular sampling. TVM algorithm yields significantly sharper edges in the reconstruction, but the edge positions are strongly influenced by the tilt scheme and the tubular objects become thinned. The DART algorithm markedly suppresses the elongation artifacts along the beam direction and moreover segments the reconstruction which can be considered a significant advantage for quantification. Finally, no advantage of TVM and DART to deal better with fewer projections was observed. Copyright © 2014 Elsevier B.V. All rights reserved.
Kuehn, Ned F
2006-05-01
Chronic nasal disease is often a challenge to diagnose. Computed tomography greatly enhances the ability to diagnose chronic nasal disease in dogs and cats. Nasal computed tomography provides detailed information regarding the extent of disease, accurate discrimination of neoplastic versus nonneoplastic diseases, and identification of areas of the nose to examine rhinoscopically and suspicious regions to target for biopsy.
Multislice Computed Tomography Accurately Detects Stenosis in Coronary Artery Bypass Conduits
Duran, Cihan; Sagbas, Ertan; Caynak, Baris; Sanisoglu, Ilhan; Akpinar, Belhhan; Gulbaran, Murat
2007-01-01
The aim of this study was to evaluate the accuracy of multislice computed tomography in detecting graft stenosis or occlusion after coronary artery bypass grafting, using coronary angiography as the standard. From January 2005 through May 2006, 25 patients (19 men and 6 women; mean age, 54 ± 11.3 years) underwent diagnostic investigation of their bypass grafts by multislice computed tomography within 1 month of coronary angiography. The mean time elapsed after coronary artery bypass grafting was 6.2 years. In these 25 patients, we examined 65 bypass conduits (24 arterial and 41 venous) and 171 graft segments (the shaft, proximal anastomosis, and distal anastomosis). Compared with coronary angiography, the segment-based sensitivity, specificity, and positive and negative predictive values of multislice computed tomography in the evaluation of stenosis were 89%, 100%, 100%, and 99%, respectively. The patency rate for multislice compu-ted tomography was 85% (55/65: 3 arterial and 7 venous grafts were occluded), with 100% sensitivity and specificity. From these data, we conclude that multislice computed tomography can accurately evaluate the patency and stenosis of bypass grafts during outpatient follow-up. PMID:17948078
Zerbini, Talita; da Silva, Luiz Fernando Ferraz; Ferro, Antonio Carlos Gonçalves; Kay, Fernando Uliana; Junior, Edson Amaro; Pasqualucci, Carlos Augusto Gonçalves; do Nascimento Saldiva, Paulo Hilario
2014-01-01
OBJECTIVE: The aim of the present work is to analyze the differences and similarities between the elements of a conventional autopsy and images obtained from postmortem computed tomography in a case of a homicide stab wound. METHOD: Comparison between the findings of different methods: autopsy and postmortem computed tomography. RESULTS: In some aspects, autopsy is still superior to imaging, especially in relation to external examination and the description of lesion vitality. However, the findings of gas embolism, pneumothorax and pulmonary emphysema and the relationship between the internal path of the instrument of aggression and the entry wound are better demonstrated by postmortem computed tomography. CONCLUSIONS: Although multislice computed tomography has greater accuracy than autopsy, we believe that the conventional autopsy method is fundamental for providing evidence in criminal investigations. PMID:25518020
Interlaced X-ray diffraction computed tomography
Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.
2016-01-01
An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305
Neroladaki, Angeliki; Breguet, Romain; Botsikas, Diomidis; Terraz, Sylvain; Becker, Christoph D; Montet, Xavier
2012-07-23
Computed tomography colonography, or virtual colonoscopy, is a good alternative to optical colonoscopy. However, suboptimal patient preparation or colon distension may reduce the diagnostic accuracy of this imaging technique. We report the case of an 83-year-old Caucasian woman who presented with a five-month history of pneumaturia and fecaluria and an acute episode of macrohematuria, leading to a high clinical suspicion of a colovesical fistula. The fistula was confirmed by standard contrast-enhanced computed tomography. Optical colonoscopy was performed to exclude the presence of an underlying colonic neoplasm. Since optical colonoscopy was incomplete, computed tomography colonography was performed, but also failed due to inadequate colon distension. The insufflated air directly accumulated within the bladder via the large fistula. Clinicians should consider colovesical fistula as a potential reason for computed tomography colonography failure.
Altinmakas, Emre; Guo, Ming; Kundu, Uma R; Habra, Mouhammed Amir; Ng, Chaan
2015-01-01
We report the contrast-enhanced computed tomography (CT) and (18)F-fluorodeoxyglucose positron emission tomography findings in adrenal histoplasmosis and candidiasis. Both demonstrated bilateral hypermetabolic heterogeneous adrenal masses with limited wash-out on delayed CT. Adrenal candidiasis has not been previously reported, nor have the CT wash-out findings in either infection. The adrenal imaging findings are indistinguishable from malignancy, which is more common; but in this setting, physicians should be alert to the differential diagnosis of fungal infections, since it can be equally deadly. Published by Elsevier Inc.
Incidental renal tumours on low-dose CT lung cancer screening exams.
Pinsky, Paul F; Dunn, Barbara; Gierada, David; Nath, P Hrudaya; Munden, Reginald; Berland, Lincoln; Kramer, Barnett S
2017-06-01
Introduction Renal cancer incidence has increased markedly in the United States in recent decades, largely due to incidentally detected tumours from computed tomography imaging. Here, we analyze the potential for low-dose computed tomography lung cancer screening to detect renal cancer. Methods The National Lung Screening Trial randomized subjects to three annual screens with either low-dose computed tomography or chest X-ray. Eligibility criteria included 30 + pack-years, current smoking or quit within 15 years, and age 55-74. Subjects were followed for seven years. Low-dose computed tomography screening forms collected information on lung cancer and non-lung cancer abnormalities, including abnormalities below the diaphragm. A reader study was performed on a sample of National Lung Screening Trial low-dose computed tomography images assessing presence of abnormalities below the diaphragms and abnormalities suspicious for renal cancer. Results There were 26,722 and 26,732 subjects enrolled in the low-dose computed tomography and chest X-ray arms, respectively, and there were 104 and 85 renal cancer cases diagnosed, respectively (relative risk = 1.22, 95% CI: 0.9-1.5). From 75,126 low-dose computed tomography screens, there were 46 renal cancer diagnoses within one year. Abnormalities below the diaphragm rates were 39.1% in screens with renal cancer versus 4.1% in screens without (P < 0.001). Cases with abnormalities below the diaphragms had shorter median time to diagnosis than those without (71 vs. 160 days, P = 0.004). In the reader study, 64% of renal cancer cases versus 13% of non-cases had abnormalities below the diaphragms; 55% of cases and 0.8% of non-cases had a finding suspicious for renal cancer (P < 0.001). Conclusion Low-dose computed tomography screens can potentially detect renal cancers. The benefits to harms tradeoff of incidental detection of renal tumours on low-dose computed tomography is unknown.
Meta-Analysis of Stress Myocardial Perfusion Imaging
2017-06-06
Coronary Disease; Echocardiography; Fractional Flow Reserve, Myocardial; Hemodynamics; Humans; Magnetic Resonance Imaging; Myocardial Perfusion Imaging; Perfusion; Predictive Value of Tests; Single Photon Emission Computed Tomography; Positron Emission Tomography; Multidetector Computed Tomography; Echocardiography, Stress; Coronary Angiography
Positron Computed Tomography: Current State, Clinical Results and Future Trends
DOE R&D Accomplishments Database
Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.
1980-09-01
An overview is presented of positron computed tomography: its advantages over single photon emission tomography, its use in metabolic studies of the heart and chemical investigation of the brain, and future trends. (ACR)
Jain, Tarun Kumar; Phulsunga, Rohit Kumar; Basher, Rajender Kumar; Kumar, Narendra; Bhattacharya, Anish; Mittal, Bhagwant Rai
2015-01-01
We present a 71-year-old male patient subjected to skeletal scintigraphy for metastasis work up of prostate cancer. Whole body planar images revealed a solitary focal tracer uptake in left femoral head mimicking as solitary metastatic focus. Single positron emission computed tomography/computed tomography images localized this increased tracer uptake to the subchondral cysts with minimal sclerosis in left femur head with no decrease in size of femur head and was reported as (degenerative joint disease).
Jain, Tarun Kumar; Phulsunga, Rohit Kumar; Basher, Rajender Kumar; Kumar, Narendra; Bhattacharya, Anish; Mittal, Bhagwant Rai
2015-01-01
We present a 71-year-old male patient subjected to skeletal scintigraphy for metastasis work up of prostate cancer. Whole body planar images revealed a solitary focal tracer uptake in left femoral head mimicking as solitary metastatic focus. Single positron emission computed tomography/computed tomography images localized this increased tracer uptake to the subchondral cysts with minimal sclerosis in left femur head with no decrease in size of femur head and was reported as (degenerative joint disease). PMID:26170582
Lau, S F; Wolschrijn, C F; Hazewinkel, H A W; Siebelt, M; Voorhout, G
2013-09-01
Medial coronoid disease (MCD) encompasses lesions of the entire medial coronoid process (MCP), both of the articular cartilage and the subchondral bone. To detect the earliest signs of MCD, radiography and computed tomography were used to monitor the development of MCD in 14 Labrador retrievers, from 6 to 7 weeks of age until euthanasia. The definitive diagnosis of MCD was based on necropsy and micro-computed tomography findings. The frequency of MCD in the dogs studied was 50%. Radiographic findings did not provide evidence of MCD, ulnar subtrochlear sclerosis or blunting of the cranial edge of the MCP. Computed tomography was more sensitive (30.8%) than radiography (0%) in detecting early MCD, with the earliest signs detectable at 14 weeks of age. A combination of the necropsy and micro-computed tomography findings of the MCP showed that MCD was manifested as a lesion of only the subchondral bone in dogs <18 weeks of age. In all dogs (affected and unaffected), there was close contact between the base of the MCP and the proximal radial head in the congruent joints. Computed tomography and micro-computed tomography findings indicated that the lesions of MCD probably originated at the base of the MCP. Copyright © 2013 Elsevier Ltd. All rights reserved.
Automated Rapid Prototyping of 3D Ceramic Parts
NASA Technical Reports Server (NTRS)
McMillin, Scott G.; Griffin, Eugene A.; Griffin, Curtis W.; Coles, Peter W. H.; Engle, James D.
2005-01-01
An automated system of manufacturing equipment produces three-dimensional (3D) ceramic parts specified by computational models of the parts. The system implements an advanced, automated version of a generic rapid-prototyping process in which the fabrication of an object having a possibly complex 3D shape includes stacking of thin sheets, the outlines of which closely approximate the horizontal cross sections of the object at their respective heights. In this process, the thin sheets are made of a ceramic precursor material, and the stack is subsequently heated to transform it into a unitary ceramic object. In addition to the computer used to generate the computational model of the part to be fabricated, the equipment used in this process includes: 1) A commercially available laminated-object-manufacturing machine that was originally designed for building woodlike 3D objects from paper and was modified to accept sheets of ceramic precursor material, and 2) A machine designed specifically to feed single sheets of ceramic precursor material to the laminated-object-manufacturing machine. Like other rapid-prototyping processes that utilize stacking of thin sheets, this process begins with generation of the computational model of the part to be fabricated, followed by computational sectioning of the part into layers of predetermined thickness that collectively define the shape of the part. Information about each layer is transmitted to rapid-prototyping equipment, where the part is built layer by layer. What distinguishes this process from other rapid-prototyping processes that utilize stacking of thin sheets are the details of the machines and the actions that they perform. In this process, flexible sheets of ceramic precursor material (called "green" ceramic sheets) suitable for lamination are produced by tape casting. The binder used in the tape casting is specially formulated to enable lamination of layers with little or no applied heat or pressure. The tape is cut into individual sheets, which are stacked in the sheet-feeding machine until used. The sheet-feeding machine can hold enough sheets for about 8 hours of continuous operation.
Montaudon, M; Desbarats, P; Berger, P; de Dietrich, G; Marthan, R; Laurent, F
2007-01-01
A thickened bronchial wall is the morphological substratum of most diseases of the airway. Theoretical and clinical models of bronchial morphometry have so far focused on bronchial lumen diameter, and bronchial length and angles, mainly assessed from bronchial casts. However, these models do not provide information on bronchial wall thickness. This paper reports in vivo values of cross-sectional wall area, lumen area, wall thickness and lumen diameter in ten healthy subjects as assessed by multi-detector computed tomography. A validated dedicated software package was used to measure these morphometric parameters up to the 14th bronchial generation, with respect to Weibel's model of bronchial morphometry, and up to the 12th according to Boyden's classification. Measured lumen diameters and homothety ratios were compared with theoretical values obtained from previously published studies, and no difference was found when considering dichotomic division of the bronchial tree. Mean wall area, lumen area, wall thickness and lumen diameter were then provided according to bronchial generation order, and mean homothety ratios were computed for wall area, lumen area and wall thickness as well as equations giving the mean value of each parameter for a given bronchial generation with respect to its value in generation 0 (trachea). Multi-detector computed tomography measurements of bronchial morphometric parameters may help to improve our knowledge of bronchial anatomy in vivo, our understanding of the pathophysiology of bronchial diseases and the evaluation of pharmacological effects on the bronchial wall. PMID:17919291
NASA Astrophysics Data System (ADS)
Ponomarev, A. A.; Mamadaliev, R. A.; Semenova, T. V.
2016-10-01
The article presents a brief overview of the current state of computed tomography in the sphere of oil and gas production in Russia and in the world. Operation of computed microtomograph Skyscan 1172 is also provided, as well as personal examples of its application in solving geological problems.
Mekitarian Filho, Eduardo; de Carvalho, Werther Brunow; Gilio, Alfredo Elias; Robinson, Fay; Mason, Keira P
2013-10-01
This pilot study introduces the aerosolized route for midazolam as an option for infant and pediatric sedation for computed tomography imaging. This technique produced predictable and effective sedation for quality computed tomography imaging studies with minimal artifact and no significant adverse events. Copyright © 2013 Mosby, Inc. All rights reserved.
Computed Tomography Measuring Inside Machines
NASA Technical Reports Server (NTRS)
Wozniak, James F.; Scudder, Henry J.; Anders, Jeffrey E.
1995-01-01
Computed tomography applied to obtain approximate measurements of radial distances from centerline of turbopump to leading edges of diffuser vanes in turbopump. Use of computed tomography has significance beyond turbopump application: example of general concept of measuring internal dimensions of assembly of parts without having to perform time-consuming task of taking assembly apart and measuring internal parts on coordinate-measuring machine.
1992-03-15
Pipes, Computer Modelling, Nondestructive Testing. Tomography , Planar Converter, Cesium Reservoir 19. ABSTRACT (Continue on reverse if necessary and...Investigation ........................ 32 4.3 Computed Tomography ................................ 33 4.4 X-Ray Radiography...25 3.4 LEOS generated output data for Mo-Re converter ................ 26 4.1 Distance along converter imaged by the computed tomography
The benefits of the Atlas of Human Cardiac Anatomy website for the design of cardiac devices.
Spencer, Julianne H; Quill, Jason L; Bateman, Michael G; Eggen, Michael D; Howard, Stephen A; Goff, Ryan P; Howard, Brian T; Quallich, Stephen G; Iaizzo, Paul A
2013-11-01
This paper describes how the Atlas of Human Cardiac Anatomy website can be used to improve cardiac device design throughout the process of development. The Atlas is a free-access website featuring novel images of both functional and fixed human cardiac anatomy from over 250 human heart specimens. This website provides numerous educational tutorials on anatomy, physiology and various imaging modalities. For instance, the 'device tutorial' provides examples of devices that were either present at the time of in vitro reanimation or were subsequently delivered, including leads, catheters, valves, annuloplasty rings and stents. Another section of the website displays 3D models of the vasculature, blood volumes and/or tissue volumes reconstructed from computed tomography and magnetic resonance images of various heart specimens. The website shares library images, video clips and computed tomography and MRI DICOM files in honor of the generous gifts received from donors and their families.
CT demonstration of pharyngeal narrowing in adult obstructive sleep apnea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohlman, M.E.; Haponik, E.F.; Smith, P.L.
Sleep apnea is a major cause of daytime hypersomnolence. Among the proposed etiologies, focal obstruction of the airways at the level of the pharynx has been suggested but not proven. Using computed tomography, the cross-sectional area of the airway can be readily assessed. Thirty-three adults with clinically proven sleep apnea and 12 normal adults underwent systematic computed tomography of the neck. Significant airway narrowing was demonstrated in all the patients with obstructive sleep apnea, whereas no such narrowing was seen in the controls. In 11, the narrowing was at a single level, whereas in 22 patients two or more levelsmore » were affected. This study has shown that a structurally abnormal airway may serve as an anatomic substrate for the development of sleep apnea. On the basis of this evidence, uvulopalatopharyngoplasty has been performed in two patients with relief of symptoms in one.« less
Dang, Trien T; Ziv, Etay; Weinstein, Stefanie; Meng, Maxwell V; Wang, Zhen; Coakley, Fergus V
2012-01-01
This study aimed to report the computed tomography (CT) and magnetic resonance imaging (MRI) findings of renal cell carcinoma associated with Xp11.2 translocation in adults. We retrospectively identified 9 adults with renal cell carcinoma associated with Xp11.2 translocation who underwent baseline cross-sectional imaging with CT (n = 9) or MRI (n = 3). All available clinical, imaging, and histopathological records were reviewed. Mean patient age was 24 years (range, 18-45 years). Eight of 9 cancers demonstrated imaging findings of hemorrhage or necrosis (n = 3), advanced stage disease (n = 2), or both (n = 3) at CT or MRI. The possibility of renal cell carcinoma associated with Xp11.2 translocation should be considered for a renal mass seen in a patient 45 years or younger, which demonstrates hemorrhage or necrosis or advanced stage disease at CT or MRI.
Computed tomography of cystic nerve root sleeve dilatation.
Neave, V C; Wycoff, R R
1983-10-01
A case of cystic nerve root sleeve dilatation in the lumbar area associated with a chronic back pain syndrome is presented. Prominent computed tomography (CT) findings include: (a) rounded masses in the region of the foramina isodense with cerebrospinal fluid in the subarachnoid space; (b) associated asymmetry of epidural fat distribution; (c) enlargement of the neural foramina in axial sections with scalloped erosion of the adjacent posteriolateral vertebral body, pedicle, and pedicular-laminar junction with preservation of cortex and without bony sclerosis or infiltrative appearance; (d) prominent or ectatic dural sac with lack of usual epidural landmarks between the sac and vertebral body; and (e) multilevel abnormalities throughout the entire lumbar region. Myelographic and CT correlations are demonstrated with a review of the literature. A discussion of the various cystic abnormalities involving nerve root sheaths is undertaken in an attempt to clarify the confusing nomenclature applied to nerve root sleeve pathology.
NASA Astrophysics Data System (ADS)
Preissner, M.; Murrie, R. P.; Pinar, I.; Werdiger, F.; Carnibella, R. P.; Zosky, G. R.; Fouras, A.; Dubsky, S.
2018-04-01
We have developed an x-ray imaging system for in vivo four-dimensional computed tomography (4DCT) of small animals for pre-clinical lung investigations. Our customized laboratory facility is capable of high resolution in vivo imaging at high frame rates. Characterization using phantoms demonstrate a spatial resolution of slightly below 50 μm at imaging rates of 30 Hz, and the ability to quantify material density differences of at least 3%. We benchmark our system against existing small animal pre-clinical CT scanners using a quality factor that combines spatial resolution, image noise, dose and scan time. In vivo 4DCT images obtained on our system demonstrate resolution of important features such as blood vessels and small airways, of which the smallest discernible were measured as 55–60 μm in cross section. Quantitative analysis of the images demonstrate regional differences in ventilation between injured and healthy lungs.
Initial results of finger imaging using photoacoustic computed tomography
NASA Astrophysics Data System (ADS)
van Es, Peter; Biswas, Samir K.; Moens, Hein J. Bernelot; Steenbergen, Wiendelt; Manohar, Srirang
2014-06-01
We present a photoacoustic computed tomography investigation on a healthy human finger, to image blood vessels with a focus on vascularity across the interphalangeal joints. The cross-sectional images were acquired using an imager specifically developed for this purpose. The images show rich detail of the digital blood vessels with diameters between 100 μm and 1.5 mm in various orientations and at various depths. Different vascular layers in the skin including the subpapillary plexus could also be visualized. Acoustic reflections on the finger bone of photoacoustic signals from skin were visible in sequential slice images along the finger except at the location of the joint gaps. Not unexpectedly, the healthy synovial membrane at the joint gaps was not detected due to its small size and normal vascularization. Future research will concentrate on studying digits afflicted with rheumatoid arthritis to detect the inflamed synovium with its heightened vascularization, whose characteristics are potential markers for disease activity.
Magneto-optical Phase Transition in a Nanostructured Co/Pd Thin Film
NASA Astrophysics Data System (ADS)
Nwokoye, Chidubem; Bennett, Lawrence; Della Torre, Edward; Siddique, Abid; Zhang, Ming; Wagner, Michael; Narducci, Frank
Interest in the study of magnetism in nanostructures at low temperatures is growing. We report work that extends the magnetics experiments in that studied Bose-Einstein Condensation (BEC) of magnons in confined nanostructures. We report experimental investigation of the magneto-optical properties, influenced by photon-magnon interactions, of a Co/Pd thin film below and above the magnon BEC temperature. Comparison of results from SQUID and MOKE experiments revealed a phase transition temperature in both magnetic and magneto-optical properties of the material that is attributed to the magnon BEC. Recent research in magnonics has provided a realization scheme for developing magnon BEC qubit gates for a quantum computing processor. Future research work will explore this technology and find ways to apply quantum computing to address some computational challenges in communication systems. We recognize financial support from the Naval Air Systems Command Section 219 grant.
Interior tomographic imaging for x-ray coherent scattering (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pang, Sean; Zhu, Zheyuan
2017-05-01
Conventional computed tomography reconstructs the attenuation only high-dimensional images. Coherent scatter computed tomography, which reconstructs the angular dependent scattering profiles of 3D objects, can provide molecular signatures that improves the accuracy of material identification and classification. Coherent scatter tomography are traditionally acquired by setups similar to x-ray powder diffraction machine; a collimated source in combination with 2D or 1D detector collimation in order to localize the scattering point. In addition, the coherent scatter cross-section is often 3 orders of magnitude lower than that of the absorption cross-section for the same material. Coded aperture and structured illumination approaches has been shown to greatly improve the collection efficiency. In many applications, especially in security imaging and medical diagnosis, fast and accurate identification of the material composition of a small volume within the whole object would lead to an accelerated imaging procedure and reduced radiation dose. Here, we report an imaging method to reconstruct the material coherent scatter profile within a small volume. The reconstruction along one radial direction can reconstruct a scalar coherent scattering tomographic image. Our methods takes advantage of the finite support of the scattering profile in small angle regime. Our system uses a pencil beam setup without using any detector side collimation. Coherent scatter profile of a 10 mm scattering sample embedded in a 30 mm diameter phantom was reconstructed. The setup has small form factor and is suitable for various portable non-destructive detection applications.
Effect of angle of deposition on the Fractal properties of ZnO thin film surface
NASA Astrophysics Data System (ADS)
Yadav, R. P.; Agarwal, D. C.; Kumar, Manvendra; Rajput, Parasmani; Tomar, D. S.; Pandey, S. N.; Priya, P. K.; Mittal, A. K.
2017-09-01
Zinc oxide (ZnO) thin films were prepared by atom beam sputtering at various deposition angles in the range of 20-75°. The deposited thin films were examined by glancing angle X-ray diffraction and atomic force microscopy (AFM). Scaling law analysis was performed on AFM images to show that the thin film surfaces are self-affine. Fractal dimension of each of the 256 vertical sections along the fast scan direction of a discretized surface, obtained from the AFM height data, was estimated using the Higuchi's algorithm. Hurst exponent was computed from the fractal dimension. The grain sizes, as determined by applying self-correlation function on AFM micrographs, varied with the deposition angle in the same manner as the Hurst exponent.
Human cardiac telocytes: 3D imaging by FIB-SEM tomography.
Cretoiu, D; Hummel, E; Zimmermann, H; Gherghiceanu, M; Popescu, L M
2014-11-01
Telocyte (TC) is a newly identified type of cell in the cardiac interstitium (www.telocytes.com). TCs are described by classical transmission electron microscopy as cells with very thin and long telopodes (Tps; cellular prolongations) having podoms (dilations) and podomers (very thin segments). TCs' three-dimensional (3D) morphology is still unknown. Cardiac TCs seem to be particularly involved in long and short distance intercellular signalling and, therefore, their 3D architecture is important for understanding their spatial connections. Using focused ion beam scanning electron microscopy (FIB-SEM) we show, for the first time, the whole ultrastructural anatomy of cardiac TCs. 3D reconstruction of cardiac TCs by FIB-SEM tomography confirms that they have long, narrow but flattened (ribbon-like) telopodes, with humps generated by the podoms. FIB-SEM tomography also confirms the network made by TCs in the cardiac interstitium through adherens junctions. This study provides the first FIB-SEM tomography of a human cell type. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Teeter, Matthew G; Langohr, G Daniel G; Medley, John B; Holdsworth, David W
2014-02-01
The purpose of this study was to determine the ability of micro-computed tomography to quantify wear in preclinical pin-on-plate testing of materials for use in joint arthroplasty. Wear testing of CoCr pins articulating against six polyetheretherketone plates was performed using a pin-on-plate apparatus over 2 million cycles. Change in volume due to wear was quantified with gravimetric analysis and with micro-computed tomography, and the volumes were compared. Separately, the volume of polyetheretherketone pin-on-plate specimens that had been soaking in fluid for 52 weeks was quantified with both gravimetric analysis and micro-computed tomography, and repeated after drying. The volume change with micro-computed tomography was compared to the mass change with gravimetric analysis. The mean wear volume measured was 8.02 ± 6.38 mm(3) with gravimetric analysis and 6.76 ± 5.38 mm(3) with micro-computed tomography (p = 0.06). Micro-computed tomography volume measurements did not show a statistically significant change with drying for either the plates (p = 0.60) or the pins (p = 0.09), yet drying had a significant effect on the gravimetric mass measurements for both the plates (p = 0.03) and the pins (p = 0.04). Micro-computed tomography provided accurate measurements of wear in polyetheretherketone pin-on-plate test specimens, and no statistically significant change was caused by fluid uptake. Micro-computed tomography quantifies wear depth and wear volume, mapped to the specific location of damage on the specimen, and is also capable of examining subsurface density as well as cracking. Its noncontact, nondestructive nature makes it ideal for preclinical testing of materials, in which further additional analysis techniques may be utilized.
Chan, Ernest G; Landreneau, James R; Schuchert, Matthew J; Odell, David D; Gu, Suicheng; Pu, Jiantao; Luketich, James D; Landreneau, Rodney J
2015-09-01
Accurate cancer localization and negative resection margins are necessary for successful segmentectomy. In this study, we evaluate a newly developed software package that permits automated segmentation of the pulmonary parenchyma, allowing 3-dimensional assessment of tumor size, location, and estimates of surgical margins. A pilot study using a newly developed 3-dimensional computed tomography analytic software package was performed to retrospectively evaluate preoperative computed tomography images of patients who underwent segmentectomy (n = 36) or lobectomy (n = 15) for stage 1 non-small cell lung cancer. The software accomplishes an automated reconstruction of anatomic pulmonary segments of the lung based on bronchial arborization. Estimates of anticipated surgical margins and pulmonary segmental volume were made on the basis of 3-dimensional reconstruction. Autosegmentation was achieved in 72.7% (32/44) of preoperative computed tomography images with slice thicknesses of 3 mm or less. Reasons for segmentation failure included local severe emphysema or pneumonitis, and lower computed tomography resolution. Tumor segmental localization was achieved in all autosegmented studies. The 3-dimensional computed tomography analysis provided a positive predictive value of 87% in predicting a marginal clearance greater than 1 cm and a 75% positive predictive value in predicting a margin to tumor diameter ratio greater than 1 in relation to the surgical pathology assessment. This preoperative 3-dimensional computed tomography analysis of segmental anatomy can confirm the tumor location within an anatomic segment and aid in predicting surgical margins. This 3-dimensional computed tomography information may assist in the preoperative assessment regarding the suitability of segmentectomy for peripheral lung cancers. Published by Elsevier Inc.
Role of post-mapping computed tomography in virtual-assisted lung mapping.
Sato, Masaaki; Nagayama, Kazuhiro; Kuwano, Hideki; Nitadori, Jun-Ichi; Anraku, Masaki; Nakajima, Jun
2017-02-01
Background Virtual-assisted lung mapping is a novel bronchoscopic preoperative lung marking technique in which virtual bronchoscopy is used to predict the locations of multiple dye markings. Post-mapping computed tomography is performed to confirm the locations of the actual markings. This study aimed to examine the accuracy of marking locations predicted by virtual bronchoscopy and elucidate the role of post-mapping computed tomography. Methods Automated and manual virtual bronchoscopy was used to predict marking locations. After bronchoscopic dye marking under local anesthesia, computed tomography was performed to confirm the actual marking locations before surgery. Discrepancies between marking locations predicted by the different methods and the actual markings were examined on computed tomography images. Forty-three markings in 11 patients were analyzed. Results The average difference between the predicted and actual marking locations was 30 mm. There was no significant difference between the latest version of the automated virtual bronchoscopy system (30.7 ± 17.2 mm) and manual virtual bronchoscopy (29.8 ± 19.1 mm). The difference was significantly greater in the upper vs. lower lobes (37.1 ± 20.1 vs. 23.0 ± 6.8 mm, for automated virtual bronchoscopy; p < 0.01). Despite this discrepancy, all targeted lesions were successfully resected using 3-dimensional image guidance based on post-mapping computed tomography reflecting the actual marking locations. Conclusions Markings predicted by virtual bronchoscopy were dislocated from the actual markings by an average of 3 cm. However, surgery was accurately performed using post-mapping computed tomography guidance, demonstrating the indispensable role of post-mapping computed tomography in virtual-assisted lung mapping.
Dasari, Tarun W; Pavlovic-Surjancev, Biljana; Dusek, Linda; Patel, Nilamkumar; Heroux, Alain L
2011-12-01
Malignancy is a late cause of mortality in heart transplant recipients. It is unknown if screening computed tomography scan would lead to early detection of such malignancies or serious vascular anomalies post heart transplantation. This is a single center observational study of patients undergoing surveillance computed tomography of chest, abdomen and pelvis at least 5 years after transplantation. Abnormal findings, included pulmonary nodules, lymphadenopathy and intra-thoracic and intra-abdominal masses and vascular anomalies such as abdominal aortic aneurysm. The clinical follow up of each of these major abnormal findings is summarized. A total of 63 patients underwent computed tomography scan of chest, abdomen and pelvis at least 5 years after transplantation. Of these, 54 (86%) were male and 9 (14%) were female. Mean age was 52±9.2 years. Computed tomography revealed 1 lung cancer (squamous cell) only. Non specific pulmonary nodules were seen in 6 patients (9.5%). The most common incidental finding was abdominal aortic aneurysms (N=6 (9.5%)), which necessitated follow up computed tomography (N=5) or surgery (N=1). Mean time to detection of abdominal aortic aneurysms from transplantation was 14.6±4.2 years. Mean age at the time of detection of abdominal aortic aneurysms was 74.5±3.2 years. Screening computed tomography scan in patients 5 years from transplantation revealed only one malignancy but lead to increased detection of abdominal aortic aneurysms. Thus the utility is low in terms of detection of malignancy. Based on this study we do not recommend routine computed tomography post heart transplantation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Martina, Maria Cristina; Cesarani, Federico; Boano, Rosa; Fiore Marochetti, Elisa; Gandini, Giovanni
The objective of our work was to report the most recent findings obtained with multidetector computed tomography of a child mummy from the Roman period (119-123 CE) housed at the Egyptian Museum in Turin, Italy. Multidetector computed tomography and postprocessing were applied to understand the embalming techniques, the nature of a foreign object, and anthropometrical values. The information was compared with that from other mummies that were buried in the same tomb, but today housed in different museums. New information regarding the embalming technique was revealed. Multidetector computed tomography allowed the identification of a knife-like metallic object, probably an amulet for the child's protection in the afterlife. Multidetector computed tomography and image postprocessing confirm their valuable role in noninvasive studies in ancient mummies and provided evidence of a unique cultural practice in the late history of Ancient Egypt such as placing a knife possibly as an amulet.
Optical coherence tomography for the structural changes detection in aging skin
NASA Astrophysics Data System (ADS)
Cheng, Chih-Ming; Chang, Yu-Fen; Chiang, Hung-Chih; Chang, Chir-Weei
2018-01-01
Optical coherence tomography (OCT) technique is an extremely powerful tool to detect numerous ophthalmological disorders, such as retinal disorder, and can be applied on other fields. Thus, many OCT systems are developed. For assessment of the skin textures, a cross-sectional (B-scan) spectra domain OCT system is better than an en-face one. However, this kind of commercial OCT system is not available. We designed a brand-new probe of commercial OCT system for evaluating skin texture without destroying the original instrument and it can be restored in 5 minutes. This modification of OCT system retains the advantages of commercial instrument, such as reliable, stable, and safe. Furthermore, the structural changes in aging skin are easily obtained by means of our probe, including larger pores, thinning of the dermis, collagen volume loss, vessel atrophy and flattening of dermal-epidermal junction. We can use this OCT technique in the field of cosmetic medicine such as detecting the skin textures and skin care product effect followup.
NASA Astrophysics Data System (ADS)
Wang, Xianghong; Liu, Xinyu; Wang, Nanshuo; Yu, Xiaojun; Bo, En; Chen, Si; Liu, Linbo
2017-02-01
Optical coherence tomography (OCT) provides high resolution and cross-sectional images of biological tissue and is widely used for diagnosis of ocular diseases. However, OCT images suffer from speckle noise, which typically considered as multiplicative noise in nature, reducing the image resolution and contrast. In this study, we propose a two-step iteration (TSI) method to suppress those noises. We first utilize augmented Lagrange method to recover a low-rank OCT image and remove additive Gaussian noise, and then employ the simple and efficient split Bregman method to solve the Total-Variation Denoising model. We validated such proposed method using images of swine, rabbit and human retina. Results demonstrate that our TSI method outperforms the other popular methods in achieving higher peak signal-to-noise ratio (PSNR) and structure similarity (SSIM) while preserving important structural details, such as tiny capillaries and thin layers in retinal OCT images. In addition, the results of our TSI method show clearer boundaries and maintains high image contrast, which facilitates better image interpretations and analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segal-Peretz, Tamar; Winterstein, Jonathan; Doxastakis, Manolis
Understanding and controlling the three-dimensional structure of block copolymer (BCP) thin films is critical for utilizing these materials for sub-20 nm nanopatterning in semiconductor devices, as well as in membranes and solar cell applications. Combining an atomic layer deposition (ALD) based technique for enhancing the contrast of BCPs in transmission electron microscopy (TEM) together with scanning TEM (STEM) tomography reveals and characterizes the three-dimensional structures of poly(styrene-block-methyl methacrylate) (PS-b-PMMA) thin films with great clarity. Sequential infiltration synthesis (SIS), a block-selective technique for growing inorganic materials in BCPs films in ALD, and an emerging tool for enhancing the etch contrast ofmore » BCPs, was harnessed to significantly enhance the high-angle scattering from the polar domains of BCP films in the TEM. The power of combining SIS and STEM tomography for three dimensional (3D) characterization of BCPs films was demonstrated with the following cases: self-assembled cylindrical, lamellar, and spherical PS-PMMA thin films. In all cases, STEM tomography has revealed 3D structures that were hidden underneath the surface, including: 1) the 3D structure of defects in cylindrical and lamellar phases, 2) non-perpendicular 3D surface of grain boundaries in the cylindrical phase, and 3) the 3D arrangement of spheres in body centered cubic (BCC) and hexagonal closed pack (HCP) morphologies in the spherical phase. The 3D data of the spherical morphologies was compared to coarse-grained simulations and assisted in validating the simulations’ parameters. STEM tomography of SIS-treated BCP films enables the characterization of the exact structure used for pattern transfer, and can lead to better understating of the physics which is utilized in BCP lithography.« less
Diagnostic imaging in ophthalmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, C.F.; Becker, M.H.; Flanagan, J.C.
There are three sections in the book. The first section is a discussion of imaging techniques, which includes plain film radiography and multidirectional tomography of the orbit, computed tomography (CT) of the orbit and its use in the evaluation of ocular motility disorders, ultrasonography of the eye and orbit, investigation of the orbit by contrast techniques (which includes a brief review of angiography), the lachrimal drainage system, foreign body localization, and magnetic resonance imaging of the eye and orbit. There is extensive discussion of CT throughout the book. The second section is devoted to the role of these imaging methodsmore » in the evaluation of ophthalmic disorders. A discussion of congenital anomalies is useful for those centers that are exposed to unusual congenital anomalies and syndromes. Also included is evaluation of exophthalmous and thyroid ophthamalopathy, orbital tumors, lesions involving the visual pathways, CT assessment of paraorbital pathology (including basal and squamous cell tumors of the face), infection of the orbit, and orbital trauma. The third section is an overview of radiation therapy and malignant intraoccular tumors.« less
Gauthé, Mathieu; Bozec, Laurence; Bedossa, Pierre
2014-11-01
Sinusoidal obstruction syndrome (SOS) is a potentially fatal liver injury that mainly occurs after myeloablative chemotherapy. We report two cases of SOS investigated by 18F-fluorodeoxyglucose positron emission tomography/computed tomography and treated with defibrotide. © 2014 by the American Association for the Study of Liver Diseases.
NASA Astrophysics Data System (ADS)
Di Egidio, Angelo; Contento, Alessandro; Vestroni, Fabrizio
2015-12-01
An open-cross section thin-walled beam model, already developed by the authors, has been conveniently simplified while maintaining the capacity of accounting for the significant nonlinear warping effects. For a technical range of geometrical and mechanical characteristics of the beam, the response is characterized by the torsional curvature prevailing over the flexural ones. A Galerkin discretization is performed by using a suitable expansion of displacements based on shape functions. The attention is focused on the dynamic response of the beam to a harmonic force, applied at the free end of the cantilever beam. The excitation is directed along the symmetry axis of the beam section. The stability of the one-component oscillations has been investigated using the analytical model, showing the importance of the internal resonances due to the nonlinear warping coupling terms. Comparison with the results provided by a computational finite element model has been performed. The good agreement among the results of the analytical and the computational models confirms the effectiveness of the simplified model of a nonlinear open-cross section thin-walled beam and overall the important role of the warping and of the torsional elongation in the study of the one-component dynamic oscillations and their stability.
Parallel Computing for the Computed-Tomography Imaging Spectrometer
NASA Technical Reports Server (NTRS)
Lee, Seungwon
2008-01-01
This software computes the tomographic reconstruction of spatial-spectral data from raw detector images of the Computed-Tomography Imaging Spectrometer (CTIS), which enables transient-level, multi-spectral imaging by capturing spatial and spectral information in a single snapshot.
[The comparison of the expansion of polyps according to the Ki-67 and computed tomography scores].
Aydin, Sedat; Sanli, Arif; Tezer, Ilter; Hardal, Umit; Barişik, Nagehan Ozdemir
2009-01-01
The disease extention in nasal polyps was compared by using the mitotic activity rates and the computed tomography scores. This study was conducted on 19 nasal polyposis patients (8 males, 11 females; mean age 40.0+/-13.7 years; range 20 to 63 years). The preoperative computed tomography records of the patients were evaluated according to the Lund-Mackay grading system. The polyp tissues of the same patients were stained with the Ki-67 antigen for immunohistochemical evaluation. The correlation between the radiologic results and the Ki-67 values was compared by means of the Spearman's correlation test. The mean computed tomography score was observed as 14.3+/-4.7 (range 7-24). The mean Ki-67 score resulting from the immunohistochemical staining was calculated as 24.3+/-18.5 (range 3.3-73.5%). A significant correlation was determined between the Ki-67 values and the computed tomography scores. ("Spearman's" correlation factor: 0.677; p<0.001). As the mitotic activity rate of nasal polyps increases, both the volume of the polyps and the computed tomography scores increase as a result of the blockage of the sinus ostiums by the increased polyp volume.
Men, Kuo; Dai, Jianrong
2017-12-01
To develop a projection quality-driven tube current modulation method in cone-beam computed tomography for image-guided radiotherapy based on the prior attenuation information obtained by the planning computed tomography and then evaluate its effect on a reduction in the imaging dose. The QCKV-1 phantom with different thicknesses (0-400 mm) of solid water upon it was used to simulate different attenuation (μ). Projections were acquired with a series of tube current-exposure time product (mAs) settings, and a 2-dimensional contrast to noise ratio was analyzed for each projection to create a lookup table of mAs versus 2-dimensional contrast to noise ratio, μ. Before a patient underwent computed tomography, the maximum attenuation [Formula: see text] within the 95% range of each projection angle (θ) was estimated according to the planning computed tomography images. Then, a desired 2-dimensional contrast to noise ratio value was selected, and the mAs setting at θ was calculated with the lookup table of mAs versus 2-dimensional contrast to noise ratio,[Formula: see text]. Three-dimensional cone-beam computed tomography images were reconstructed using the projections acquired with the selected mAs. The imaging dose was evaluated with a polymethyl methacrylate dosimetry phantom in terms of volume computed tomography dose index. Image quality was analyzed using a Catphan 503 phantom with an oval body annulus and a pelvis phantom. For the Catphan 503 phantom, the cone-beam computed tomography image obtained by the projection quality-driven tube current modulation method had a similar quality to that of conventional cone-beam computed tomography . However, the proposed method could reduce the imaging dose by 16% to 33% to achieve an equivalent contrast to noise ratio value. For the pelvis phantom, the structural similarity index was 0.992 with a dose reduction of 39.7% for the projection quality-driven tube current modulation method. The proposed method could reduce the additional dose to the patient while not degrading the image quality for cone-beam computed tomography. The projection quality-driven tube current modulation method could be especially beneficial to patients who undergo cone-beam computed tomography frequently during a treatment course.
SPH Numerical Modeling for the Wave-Thin Structure Interaction
NASA Astrophysics Data System (ADS)
Ren, Xi-feng; Sun, Zhao-chen; Wang, Xing-gang; Liang, Shu-xiu
2018-04-01
In this paper, a numerical model of 2D weakly compressible smoothed particle hydrodynamics (WCSPH) is developed to simulate the interaction between waves and thin structures. A new color domain particle (CDP) technique is proposed to overcome difficulties of applying the ghost particle method to thin structures in dealing with solid boundaries. The new technique can deal with zero-thickness structures. To apply this enforcing technique, the computational fluid domain is divided into sub domains, i.e., boundary domains and internal domains. A color value is assigned to each particle, and contains the information of the domains in which the particle belongs to and the particles can interact with. A particle, nearby a thin boundary, is prevented from interacting with particles, which should not interact with on the other side of the structure. It is possible to model thin structures, or the structures with the thickness negligible with this technique. The proposed WCSPH module is validated for a still water tank, divided by a thin plate at the middle section, with different water levels in the subdomains, and is applied to simulate the interaction between regular waves and a perforated vertical plate. Finally, the computation is carried out for waves and submerged twin-horizontal plate interaction. It is shown that the numerical results agree well with experimental data in terms of the pressure distribution, pressure time series and wave transmission.
Oatts, Julius T; Keenan, Jeremy D; Mannis, Tova; Lietman, Tom M; Rose-Nussbaumer, Jennifer
2017-04-01
To assess the relationship between corneal thinning measured by clinician-graded slit-lamp examination compared with ultrasound pachymetry (USP), anterior segment optical coherence tomography (AS-OCT), and the Pentacam. Patients with corneal thinning underwent USP, AS-OCT, Pentacam measurements and standardized clinical grading by 2 cornea specialists estimating thinning on slit-lamp examination. Reproducibility of each testing modality was assessed using the intraclass correlation coefficient. Bland-Altman plots were used to determine precision and limits of agreement (LOA) between imaging modalities and clinical grading. We included 22 patients with corneal thinning secondary to infectious or inflammatory keratitis. Mean percent stromal thinning estimated by grader 1 was 51% (SD 31) and grader 2 was 49% (SD 33). The intraclass correlation coefficient between the masked examiners was 0.95 (95% confidence interval, 0.88-0.98). Graders were more similar to each other than to any other modality with 2% difference and 4.6% of measurements outside the LOA. When measuring the area of maximum thinning, AS-OCT measured approximately 10% thicker than human graders while the Pentacam measured approximately 10% thinner than human graders with 16.7% outside the LOA. USP measured approximately 20% thinner than human graders with 5.6% outside the LOA. Trained corneal specialists have a high degree of agreement in location and degree of corneal thinning when measured in a standardized fashion on the same day. Other testing modalities had acceptable reproducibility and agreement with clinical examination and each other, although Scheimpflug imaging fared worse for corneal thinning, particularly in the periphery, than the other modalities.
Banzato, T; Selleri, P; Veladiano, I A; Zotti, A
2013-12-01
Contrast-enhanced computed tomographic studies of the coelomic cavity in four green iguanas, four black and white tegus and four bearded dragons were performed using a conventional CT scanner. Anatomical reference cross sections were obtained from four green iguana, four black and white tegu and six bearded dragon cadavers; the specimens were stored in a -20°C freezer for 24 h then sliced into 5-mm intervals. The frozen sections were cleaned with water and photographed on both sides. The individual anatomical structures were identified by means of the available literature; these were labelled first on the anatomical images and then matched to the corresponding computed tomography images. The results provide an atlas of the normal cross-sectional and computed tomographic anatomy of the coelomic cavity in the green iguana, the black and white tegu and the bearded dragon, which is useful in the interpretation of any imaging modality. © 2013 Blackwell Verlag GmbH.
Shalabi, Manal M; Wolke, Johannes G C; Cuijpers, Vincent M J I; Jansen, John A
2007-10-01
High-resolution three-dimensional data about the bone response to oral implants can be obtained by using microfocus computer tomography. However, a disadvantage is that metallic implants cause streaking artifacts due to scattering of X-rays, which prevents an accurate evaluation of the interfacial bone-to-implant contact. It has been suggested that the use of thin titanium coatings deposited on polymeric implants can offer an alternative option for analyzing bone contact using micro-CT imaging. Consequently, the aim of the current study was to investigate bone behavior to titanium-coated polymethylmethacrylate (PMMA) implants by micro-CT and histological evaluation. For the experiment titanium-coated PMMA implants were used. The implants had a machined threaded appearance and were provided with a 400-500 nm thick titanium coating. The implants were inserted in the right or left tibia of 10 goats. After an implantation period of 12 weeks the implants were retrieved and prepared for micro-computer tomography (microCT), light microscopy, and X-ray microanalysis. The micro-CT showed that the screw-threads and typical implant configuration were well maintained through the installation procedure. Overall, histological responses showed that the titanium-coated implants were well tolerated and caused no atypical tissue response. In addition, the bone was seen in direct contact with the titanium-coated layer. The X-ray microanalysis results confirmed the light microscopical data. In conclusion, the obtained results proof the final use of titanium-coated PMMA implants for evaluation of the bone-implant response using microCT. However, this study also confirms that for a proper analysis of the bone-implant interface the additional use of microscopical techniques is still required.
Apparatus for obtaining an X-ray image
Watanabe, Eiji
1979-01-01
A computed tomography apparatus in which a fan-shaped X-ray beam is caused to pass through a section of an object, enabling absorption detection on the opposite side of the object by a detector comprising a plurality of discrete detector elements. An electron beam generating the X-ray beam by impacting upon a target is caused to rotate over the target.
Tobita, Kenji; Matsumoto, Takuya; Ohashi, Satoru; Bessho, Masahiko; Kaneko, Masako; Ohnishi, Isao
2012-07-01
It has been previously demonstrated that low-intensity pulsed ultrasound stimulation (LIPUS) enhances formation of the medullary canal and cortex in a gap-healing model of the tibia in rabbits, shortens the time required for remodeling, and enhances mineralization of the callus. In the current study, the mechanical integrity of these models was confirmed. In order to do this, the cross-sectional moment of inertia (CSMI) obtained from quantitative micro-computed tomography scans was calculated, and a comparison was made with a four-point bending test. This parameter can be analyzed in any direction, and three directions were selected in order to adopt an XYZ coordinate (X and Y for bending; Z for torsion). The present results demonstrated that LIPUS improved earlier restoration of bending stiffness at the healing site. In addition, LIPUS was effective not only in the ultrasound-irradiated plane, but also in the other two planes. CSMI may provide the structural as well as compositional determinants to assess fracture healing and would be very useful to replace the mechanical testing.
X-ray micro computed tomography for the visualization of an atherosclerotic human coronary artery
NASA Astrophysics Data System (ADS)
Matviykiv, Sofiya; Buscema, Marzia; Deyhle, Hans; Pfohl, Thomas; Zumbuehl, Andreas; Saxer, Till; Müller, Bert
2017-06-01
Atherosclerosis refers to narrowing or blocking of blood vessels that can lead to a heart attack, chest pain or stroke. Constricted segments of diseased arteries exhibit considerably increased wall shear stress, compared to the healthy ones. One of the possibilities to improve patient’s treatment is the application of nano-therapeutic approaches, based on shear stress sensitive nano-containers. In order to tailor the chemical composition and subsequent physical properties of such liposomes, one has to know precisely the morphology of critically stenosed arteries at micrometre resolution. It is often obtained by means of histology, which has the drawback of offering only two-dimensional information. Additionally, it requires the artery to be decalcified before sectioning, which might lead to deformations within the tissue. Micro computed tomography (μCT) enables the three-dimensional (3D) visualization of soft and hard tissues at micrometre level. μCT allows lumen segmentation that is crucial for subsequent flow simulation analysis. In this communication, tomographic images of a human coronary artery before and after decalcification are qualitatively and quantitatively compared. We analyse the cross section of the diseased human coronary artery before and after decalcification, and calculate the lumen area of both samples.
Lee, Ju-Yeun; Bae, Kunho; Park, Kyung-Ah; Lyu, In Jeong; Oh, Sei Yeul
2016-01-01
The aim of this study was to investigate extraocular muscle (EOM) volume and cross-sectional area using computed tomography (CT), and to determine the relationship between EOM size and the vertical angle of deviation in thyroid eye disease (TED). Twenty-nine TED patients (58 orbits) with vertical strabismus were enrolled in the study. All patients underwent complete ophthalmic examination including prism, alternate cover, and Krimsky tests. Orbital CT scans were also performed on each patient. Digital image analysis was used to quantify superior rectus (SR) and inferior rectus (IR) muscle cross-sectional areas and volumes. Measurements were compared with those of controls. The correlation between muscle size and degree of vertical angle deviation was evaluated. The mean vertical angle of deviation was 26.2 ± 4.1 prism diopters. The TED group had a greater maximum cross-sectional area and EOM volume in the SR and IR than the control group (all p<0.001). Area and volume of the IR were correlated with the angle of deviation, but the SR alone did not show a significant correlation. The maximum cross-sectional area and volume of [Right IR + Left SR − Right SR − Left IR] was strongly correlated with the vertical angle of deviation (P<0.001). Quantitative CT of the orbit with evaluation of the area and volume of EOMs may be helpful in anticipating and monitoring vertical strabismus in TED patients. PMID:26820406
Lee, Ju-Yeun; Bae, Kunho; Park, Kyung-Ah; Lyu, In Jeong; Oh, Sei Yeul
2016-01-01
The aim of this study was to investigate extraocular muscle (EOM) volume and cross-sectional area using computed tomography (CT), and to determine the relationship between EOM size and the vertical angle of deviation in thyroid eye disease (TED). Twenty-nine TED patients (58 orbits) with vertical strabismus were enrolled in the study. All patients underwent complete ophthalmic examination including prism, alternate cover, and Krimsky tests. Orbital CT scans were also performed on each patient. Digital image analysis was used to quantify superior rectus (SR) and inferior rectus (IR) muscle cross-sectional areas and volumes. Measurements were compared with those of controls. The correlation between muscle size and degree of vertical angle deviation was evaluated. The mean vertical angle of deviation was 26.2 ± 4.1 prism diopters. The TED group had a greater maximum cross-sectional area and EOM volume in the SR and IR than the control group (all p<0.001). Area and volume of the IR were correlated with the angle of deviation, but the SR alone did not show a significant correlation. The maximum cross-sectional area and volume of [Right IR + Left SR - Right SR - Left IR] was strongly correlated with the vertical angle of deviation (P<0.001). Quantitative CT of the orbit with evaluation of the area and volume of EOMs may be helpful in anticipating and monitoring vertical strabismus in TED patients.
Freire-Maia, B; Machado, V deC; Valerio, C S; Custódio, A L N; Manzi, F R; Junqueira, J L C
2017-03-01
The aim of this study was to compare the accuracy of linear measurements of the distance between the mandibular cortical bone and the mandibular canal using 64-detector multi-slice computed tomography (MSCT) and cone beam computed tomography (CBCT). It was sought to evaluate the reliability of these examinations in detecting the mandibular canal for use in bilateral sagittal split osteotomy (BSSO) planning. Eight dry human mandibles were studied. Three sites, corresponding to the lingula, the angle, and the body of the mandible, were selected. After the CT scans had been obtained, the mandibles were sectioned and the bone segments measured to obtain the actual measurements. On analysis, no statistically significant difference was found between the measurements obtained through MSCT and CBCT, or when comparing the measurements from these scans with the actual measurements. It is concluded that the images obtained by CT scan, both 64-detector multi-slice and cone beam, can be used to obtain accurate linear measurements to locate the mandibular canal for preoperative planning of BSSO. The ability to correctly locate the mandibular canal during BSSO will reduce the occurrence of neurosensory disturbances in the postoperative period. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Espigares, Jorge; Sadr, Alireza; Hamba, Hidenori; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori
2015-01-01
A technology to characterize early enamel lesions is needed in dentistry. Optical coherence tomography (OCT) is a noninvasive method that provides high-resolution cross-sectional images. The aim of this study is to compare OCT with microfocus x-ray computed tomography ([Formula: see text]) for assessment of natural enamel lesions in vitro. Ten human teeth with visible white spot-like changes on the enamel smooth surface and no cavitation (ICDAS code 2) were subjected to imaging by μCT (SMX-100CT, Shimadzu) and 1300-nm swept-source OCT (Dental SS-OCT, Panasonic Health Care). In [Formula: see text], the lesions appeared as radiolucent dark areas, while in SS-OCT, they appeared as areas of increased signal intensity beneath the surface. An SS-OCT attenuation coefficient based on Beer-Lambert law could discriminate lesions from sound enamel. Lesion depth ranged from 175 to [Formula: see text] in SS-OCT. A correlation between [Formula: see text] and SS-OCT was found regarding lesion depth ([Formula: see text], [Formula: see text]) and also surface layer thickness ([Formula: see text], [Formula: see text]). The images obtained clinically in real time using the dental SS-OCT system are suitable for the assessment of natural subsurface lesions and their surface layer, providing comparable images to a laboratory high-resolution [Formula: see text] without the use of x-ray.
Espigares, Jorge; Sadr, Alireza; Hamba, Hidenori; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori
2015-01-01
Abstract. A technology to characterize early enamel lesions is needed in dentistry. Optical coherence tomography (OCT) is a noninvasive method that provides high-resolution cross-sectional images. The aim of this study is to compare OCT with microfocus x-ray computed tomography (μCT) for assessment of natural enamel lesions in vitro. Ten human teeth with visible white spot-like changes on the enamel smooth surface and no cavitation (ICDAS code 2) were subjected to imaging by μCT (SMX-100CT, Shimadzu) and 1300-nm swept-source OCT (Dental SS-OCT, Panasonic Health Care). In μCT, the lesions appeared as radiolucent dark areas, while in SS-OCT, they appeared as areas of increased signal intensity beneath the surface. An SS-OCT attenuation coefficient based on Beer–Lambert law could discriminate lesions from sound enamel. Lesion depth ranged from 175 to 606 μm in SS-OCT. A correlation between μCT and SS-OCT was found regarding lesion depth (R=0.81, p<0.001) and also surface layer thickness (R=0.76, p<0.005). The images obtained clinically in real time using the dental SS-OCT system are suitable for the assessment of natural subsurface lesions and their surface layer, providing comparable images to a laboratory high-resolution μCT without the use of x-ray. PMID:26158079
Antony, Bhavna; Abràmoff, Michael D.; Tang, Li; Ramdas, Wishal D.; Vingerling, Johannes R.; Jansonius, Nomdo M.; Lee, Kyungmoo; Kwon, Young H.; Sonka, Milan; Garvin, Mona K.
2011-01-01
The 3-D spectral-domain optical coherence tomography (SD-OCT) images of the retina often do not reflect the true shape of the retina and are distorted differently along the x and y axes. In this paper, we propose a novel technique that uses thin-plate splines in two stages to estimate and correct the distinct axial artifacts in SD-OCT images. The method was quantitatively validated using nine pairs of OCT scans obtained with orthogonal fast-scanning axes, where a segmented surface was compared after both datasets had been corrected. The mean unsigned difference computed between the locations of this artifact-corrected surface after the single-spline and dual-spline correction was 23.36 ± 4.04 μm and 5.94 ± 1.09 μm, respectively, and showed a significant difference (p < 0.001 from two-tailed paired t-test). The method was also validated using depth maps constructed from stereo fundus photographs of the optic nerve head, which were compared to the flattened top surface from the OCT datasets. Significant differences (p < 0.001) were noted between the artifact-corrected datasets and the original datasets, where the mean unsigned differences computed over 30 optic-nerve-head-centered scans (in normalized units) were 0.134 ± 0.035 and 0.302 ± 0.134, respectively. PMID:21833377
Optical Coherence Tomography in Glaucoma
NASA Astrophysics Data System (ADS)
Berisha, Fatmire; Hoffmann, Esther M.; Pfeiffer, Norbert
Retinal nerve fiber layer (RNFL) thinning and optic nerve head cupping are key diagnostic features of glaucomatous optic neuropathy. The higher resolution of the recently introduced SD-OCT offers enhanced visualization and improved segmentation of the retinal layers, providing a higher accuracy in identification of subtle changes of the optic disc and RNFL thinning associated with glaucoma.
Ihara, Tsutomu; Komori, Kimihiro; Yamamoto, Kiyohito; Kobayashi, Masayoshi; Banno, Hiroshi; Kodama, Akio
2013-02-01
Abdominal aortic aneurysm diameter is usually measured by the maximum minor-axis diameter on axial computed tomography (CT). However, this "traditional" diameter may underestimate the real size, as the aorta is not always straight and the aneurysm shape is sometimes in the form of an ellipse along the cross section. Therefore, we measured maximum major-axis diameters using a three-dimensional (3D) workstation and compared them with the traditional maximum minor-axis diameters measured using thin-slice axial CT. CT data of 141 AAA patients (with fusiform aneurysms) were stored in a 3D workstation. These thin-slice CT images were reviewed on the 3D workstation to obtain curved multiplanar reconstruction images (CPR images). Using the CPR images, we measured the maximum major-axis and minor-axis diameters on CPR and the angle of the aneurysms to the body axis. The mean traditional maximum minor-axis diameter was 51.2 ± 8.2 mm, whereas the mean maximum major-axis diameter on CPR was 54.7 ± 10.1 mm. Sixty eight patients had a mean aneurysm size of <50 mm when measured by the traditional minor-axis diameter. Among these patients, five (7.4%) had a major-axis diameter >55 mm on CPR. The measurement of the traditional maximum minor-axis diameter of aneurysms is useful in the case of most patients. However, the traditional maximum minor-axis diameter may underestimate the real aneurysmal diameter, particularly in patients with an ellipse-shaped aneurysm. The maximum major-axis diameter as measured using CPR images is effective for representing the real aneurysmal size. Copyright © 2013 Elsevier Inc. All rights reserved.
Whitehead, Michelle C; Parker, Dennilyn L
2015-03-01
An American white pelican was presented with a complete left wing droop and no abnormal findings on conventional radiography. Computed tomography was used to diagnose chronic shoulder arthritis as a sequela to a suspected traumatic compressive fracture. This is the first case report to describe use of computed tomography to evaluate the avian shoulder joint.
Embracing Statistical Challenges in the Information Technology Age
2006-01-01
computation and feature selection. Moreover, two research projects on network tomography and arctic cloud detection are used throughout the paper to bring...prominent Network Tomography problem, origin- destination (OD) traffic estimation. It demonstrates well how the two modes of data collection interact...software debugging (Biblit et al, 2005 [2]), and network tomography for computer network management. Computer sys- tem problems exist long before the IT
Computed Tomography For Internal Inspection Of Castings
NASA Technical Reports Server (NTRS)
Hanna, Timothy L.
1995-01-01
Computed tomography used to detect internal flaws in metal castings before machining and otherwise processing them into finished parts. Saves time and money otherwise wasted on machining and other processing of castings eventually rejected because of internal defects. Knowledge of internal defects gained by use of computed tomography also provides guidance for changes in foundry techniques, procedures, and equipment to minimize defects and reduce costs.
The Impact of Computed Tomography on Decision Making in Tibial Plateau Fractures.
Castiglia, Marcello Teixeira; Nogueira-Barbosa, Marcello Henrique; Messias, Andre Marcio Vieira; Salim, Rodrigo; Fogagnolo, Fabricio; Schatzker, Joseph; Kfuri, Mauricio
2018-02-14
Schatzker introduced one of the most used classification systems for tibial plateau fractures, based on plain radiographs. Computed tomography brought to attention the importance of coronal plane-oriented fractures. The goal of our study was to determine if the addition of computed tomography would affect the decision making of surgeons who usually use the Schatzker classification to assess tibial plateau fractures. Image studies of 70 patients who sustained tibial plateau fractures were uploaded to a dedicated homepage. Every patient was linked to a folder which contained two radiographic projections (anteroposterior and lateral), three interactive videos of computed tomography (axial, sagittal, and coronal), and eight pictures depicting tridimensional reconstructions of the tibial plateau. Ten attending orthopaedic surgeons, who were blinded to the cases, were granted access to the homepage and assessed each set of images in two different rounds, separated to each other by an interval of 2 weeks. Each case was evaluated in three steps, where surgeons had access, respectively to radiographs, two-dimensional videos of computed tomography, and three-dimensional reconstruction images. After every step, surgeons were asked to present how would they classify the case using the Schatzker system and which surgical approaches would be appropriate. We evaluated the inter- and intraobserver reliability of the Schatzker classification using the Kappa concordance coefficient, as well as the impact of computed tomography in the decision making regarding the surgical approach for each case, by using the chi-square test and likelihood ratio. The interobserver concordance kappa coefficients after each assessment step were, respectively, 0.58, 0.62, and 0.64. For the intraobserver analysis, the coefficients were, respectively, 0.76, 0.75, and 0.78. Computed tomography changed the surgical approach selection for the types II, V, and VI of Schatzker ( p < 0.01). The addition of computed tomography scans to plain radiographs improved the interobserver reliability of Schatzker classification. Computed tomography had a statistically significant impact in the selection of surgical approaches for the lateral tibial plateau. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Saccular aortic aneurysm that resembled a mediastinal neoplasm
Nose, Naohiro; Kataoka, Hiroumi; Hamada, Masakatsu; Kosako, Yukio; Matsuno, Yasuji; Ishii, Takahiro
2012-01-01
INTRODUCTION Saccular aortic arch aneurysms in unusual sites may be misdiagnosed as a neoplasm. We present the case of a rare saccular aortic arch aneurysm between trachea and esophagus that resembled a mediastinal neoplasm in the preoperative findings. PRESENTATION OF CASE A 63-year-old male with an abnormal mediastinal shadow on chest X-ray was referred to the hospital. An axial plain computed tomogram of the chest revealed mediastinal soft tissue next to the right side of the aortic arch resembling a neoplasm originating from the gap between the trachea and the esophagus. The coronal view constructed by enhanced 64-row multi detector computed tomography revealed the soft tissue was an aneurysm arising from the inner side of the aortic arch. An aortic arch replacement was performed via a median sternotomy. DISCUSSION A thoracic aortic aneurysm sometimes behaves like a mediastinal neoplasm. The multiple cross-sectional image from multidetector computed tomography was useful for the correct diagnosis of such an aneurysm. CONCLUSION The possibility of an aneurysm should be considered whenever a mass in contact with the aortic wall is identified. PMID:22995656
Texture classification of lung computed tomography images
NASA Astrophysics Data System (ADS)
Pheng, Hang See; Shamsuddin, Siti M.
2013-03-01
Current development of algorithms in computer-aided diagnosis (CAD) scheme is growing rapidly to assist the radiologist in medical image interpretation. Texture analysis of computed tomography (CT) scans is one of important preliminary stage in the computerized detection system and classification for lung cancer. Among different types of images features analysis, Haralick texture with variety of statistical measures has been used widely in image texture description. The extraction of texture feature values is essential to be used by a CAD especially in classification of the normal and abnormal tissue on the cross sectional CT images. This paper aims to compare experimental results using texture extraction and different machine leaning methods in the classification normal and abnormal tissues through lung CT images. The machine learning methods involve in this assessment are Artificial Immune Recognition System (AIRS), Naive Bayes, Decision Tree (J48) and Backpropagation Neural Network. AIRS is found to provide high accuracy (99.2%) and sensitivity (98.0%) in the assessment. For experiments and testing purpose, publicly available datasets in the Reference Image Database to Evaluate Therapy Response (RIDER) are used as study cases.
Thali, Michael J; Taubenreuther, Ulrike; Karolczak, Marek; Braun, Marcel; Brueschweiler, Walter; Kalender, Willi A; Dirnhofer, Richard
2003-11-01
When a knife is stabbed in bone, it leaves an impression in the bone. The characteristics (shape, size, etc.) may indicate the type of tool used to produce the patterned injury in bone. Until now it has been impossible in forensic sciences to document such damage precisely and non-destructively. Micro-computed tomography (Micro-CT) offers an opportunity to analyze patterned injuries of tool marks made in bone. Using high-resolution Micro-CT and computer software, detailed analysis of three-dimensional (3D) architecture has recently become feasible and allows microstructural 3D bone information to be collected. With adequate viewing software, data from 2D slice of an arbitrary plane can be extracted from 3D datasets. Using such software as a "digital virtual knife," the examiner can interactively section and analyze the 3D sample. Analysis of the bone injury revealed that Micro-CT provides an opportunity to correlate a bone injury to an injury-causing instrument. Even broken knife tips can be graphically and non-destructively assigned to a suspect weapon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semin Chong; Kyung Soo Lee; Myung Jin Chung
Pneumoconiosis may be classified as either fibrotic or nonfibrotic, according to the presence or absence of fibrosis. Silicosis, coal worker pneumoconiosis, asbestosis, berylliosis, and talcosis are examples of fibrotic pneumoconiosis. Siderosis, stannosis, and baritosis are nonfibrotic forms of pneumoconiosis that result from inhalation of iron oxide, tin oxide, and barium sulfate particles, respectively. In an individual who has a history of exposure to silica or coal dust, a finding of nodular or reticulonodular lesions at chest radiography or small nodules with a perilymphatic distribution at thin-section computed tomography (CT), with or without eggshell calcifications, is suggestive of silicosis or coalmore » worker pneumoconiosis. Magnetic resonance imaging is helpful for distinguishing between progressive massive fibrosis and lung cancer. CT and histopathologic findings in asbestosis are similar to those in idiopathic pulmonary fibrosis, but the presence of asbestos bodies in histopathologic specimens is specific for the diagnosis of asbestosis. Giant cell interstitial pneumonia due to exposure to hard metals is classified as a fibrotic form of pneumoconiosis and appears on CT images as mixed ground-glass opacities and reticulation. Berylliosis simulates pulmonary sarcoidosis on CT images. CT findings in talcosis include small centrilobular and subpleural nodules or heterogeneous conglomerate masses that contain foci of high attenuation indicating talc deposition. Siderosis is nonfibrotic and is indicated by a CT finding of poorly defined centrilobular nodules or ground-glass opacities.« less
Murray, C P; Wong, P M; Louw, J; Waterer, G W
2009-08-01
To determine the prevalence of small lung nodules on low-dose helical computed tomography (CT) in a Western Australian cohort of asymptomatic long-term cigarette smokers and to compare this with a large, similarly derived cohort of North Americans from the Mayo Clinic Lung Cancer Screening Trial. Forty-nine asymptomatic long-term cigarette smokers of minimum age 50 years underwent a low-dose 64-slice helical CT of the lungs. Images were viewed on a soft copy reporting station with thin section axial and coronal images, maximum intensity projection images, and advanced image manipulation tools. The prevalence of all nodules was 39%, significantly lower than the Mayo Clinic cohort prevalence of 51% (P < 0.01, Fisher's exact test), despite the use of more advanced imaging technology and image manipulation designed to increase the sensitivity for nodules. The prevalence of small nodules in asymptomatic long-term cigarette smokers in Western Australia is high, though significantly less than that found in a large study in North America. The authors postulate this is due to the relatively low rates of mycobacterium tuberculosis and soil-derived fungal pulmonary infections in Western Australia, as well as a lower degree of urban air pollution.
Akthar, Adil S; Ferguson, Mark K; Koshy, Matthew; Vigneswaran, Wickii T; Malik, Renuka
2017-02-01
Patients receiving stereotactic body radiotherapy for stage I non-small cell lung cancer are typically staged clinically with positron emission tomography-computed tomography. Currently, limited data exist for the detection of occult hilar/peribronchial (N1) disease. We hypothesize that positron emission tomography-computed tomography underestimates spread of cancer to N1 lymph nodes and that future stereotactic body radiotherapy patients may benefit from increased pathologic evaluation of N1 nodal stations in addition to N2 nodes. A retrospective study was performed of all patients with clinical stage I (T1-2aN0) non-small cell lung cancer (American Joint Committee on Cancer, 7th edition) by positron emission tomography-computed tomography at our institution from 2003 to 2011, with subsequent surgical resection and lymph node staging. Findings on positron emission tomography-computed tomography were compared to pathologic nodal involvement to determine the negative predictive value of positron emission tomography-computed tomography for the detection of N1 nodal disease. An analysis was conducted to identify predictors of occult spread. A total of 105 patients with clinical stage I non-small cell lung cancer were included in this study, of which 8 (7.6%) patients were found to have occult N1 metastasis on pathologic review yielding a negative predictive value for N1 disease of 92.4%. No patients had occult mediastinal nodes. The negative predictive value for positron emission tomography-computed tomography in patients with clinical stage T1 versus T2 tumors was 72 (96%) of 75 versus 25 (83%) of 30, respectively ( P = .03), and for peripheral versus central tumor location was 77 (98%) of 78 versus 20 (74%) of 27, respectively ( P = .0001). The negative predictive values for peripheral T1 and T2 tumors were 98% and 100%, respectively; while for central T1 and T2 tumors, the rates were 85% and 64%, respectively. Occult lymph node involvement was not associated with primary tumor maximum standard uptake value, histology, grade, or interval between positron emission tomography-computed tomography and surgery. Our results support pathologic assessment of N1 lymph nodes in patients with stage Inon-small cell lung cancer considered for stereotactic body radiotherapy, with the greatest benefit in patients with central and T2 tumors. Diagnostic evaluation with endoscopic bronchial ultrasound should be considered in the evaluation of stereotactic body radiotherapy candidates.
NASA Astrophysics Data System (ADS)
Desrochers, Johanne; Vermette, Patrick; Fontaine, Réjean; Bérubé-Lauzière, Yves
2009-02-01
Current efforts in tissue engineering target the growth of 3D volumes of tissue cultures in bioreactor conditions. Fluorescence optical tomography has the potential to monitor cells viability and tissue growth non-destructively directly within the bioreactor via bio-molecular fluorescent labelling strategies. We currently work on developing the imaging instrumentation for tissue cultures in bioreactor conditions. Previously, we localized in 3D thin fluorescent-labelled capillaries in a cylindrically shaped bioreactor phantom containing a diffusive medium with our time-of-flight localization technique. Here, we present our first reconstruction results of the spatial distribution of fluorophore concentrations for labelled capillaries embedded in a bioreactor phantom.
Carcinosarcoma of the biliary system in a cat.
Cavicchioli, Laura; Ferro, Silvia; Callegari, Carolina; Auriemma, Edoardo; Zini, Eric; Zappulli, Valentina
2013-09-01
A 12-year-old, mixed-breed domestic cat was diagnosed with a multicystic hepatic mass via ultrasonographic examination and computer tomography scan. The tumor associated with the left medial liver lobe, and connected by a thin stalk to the hilar region, was surgically removed. The mass was firm, encapsulated, mottled white to red black, multinodular, and cystic. Histologic diagnosis was carcinosarcoma supported by positive immunohistochemistry for cytokeratins and vimentin of atypical neoplastic cell populations. On the basis of morphology, the origin was considered to be in the biliary tract. Biliary carcinosarcoma is a rare neoplasm that occurs in people. The epidemiology and risk factors have not yet been determined, and the prognosis is poor except for cases in which curative resection is performed.
Flach, Patricia M; Ross, Steffen G; Bolliger, Stephan A; Preiss, Ulrich S; Thali, Michael J; Spendlove, Danny
2010-01-01
In addition to the increasingly significant role of multislice computed tomography in forensic pathology, the performance of whole-body computed tomography angiography provides outstanding results. In this case, we were able to detect multiple injuries of the parenchymal organs in the upper abdomen as well as lesions of the brain parenchyma and vasculature of the neck. The radiologic findings showed complete concordance with the autopsy and even supplemented the autopsy findings in areas that are difficult to access via a manual dissection (such as the vasculature of the neck). This case shows how minimally invasive computed tomography angiography can serve as an invaluable adjunct to the classic autopsy procedure.
Computed tomography in the evaluation of Crohn disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, H.I.; Gore, R.M.; Margulis, A.R.
1983-02-01
The abdominal and pelvic computed tomographic examinations in 28 patients with Crohn disease were analyzed and correlated with conventional barium studies, sinograms, and surgical findings. Mucosal abnormalities such as aphthous lesions, pseudopolyps, and ulcerations were only imaged by conventional techniques. Computed tomography proved superior in demonstrating the mural, serosal, and mesenteric abnormalities such as bowel wall thickening (82%), fibrofatty proliferation of mesenteric fat (39%), mesenteric abscess (25%), inflammatory reaction of the mesentery (14%), and mesenteric lymphadenopathy (18%). Computed tomography was most useful clinically in defining the nature of mass effects, separation, or displacement of small bowel segments seen on smallmore » bowel series. Although conventional barium studies remain the initial diagnostic procedure in evaluating Crohn disease, computed tomography can be a useful adjunct in resolving difficult clinical and radiologic diagnostic problems.« less
Nogami, Yuya; Banno, Kouji; Irie, Haruko; Iida, Miho; Kisu, Iori; Masugi, Yohei; Tanaka, Kyoko; Tominaga, Eiichiro; Okuda, Shigeo; Murakami, Koji; Aoki, Daisuke
2015-01-01
We studied the diagnostic performance of (18)F-fluoro-2-deoxy-d-glucose-positron emission tomography/computed tomography in cervical and endometrial cancers with particular focus on lymph node metastases. Seventy patients with cervical cancer and 53 with endometrial cancer were imaged with (18)F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography before lymphadenectomy. We evaluated the diagnostic performance of (18)F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography using the final pathological diagnoses as the golden standard. We calculated the sensitivity, specificity, positive predictive value and negative predictive value of (18)F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography. In cervical cancer, the results evaluated by cases were 33.3, 92.7, 55.6 and 83.6%, respectively. When evaluated by the area of lymph nodes, the results were 30.6, 98.9, 55.0 and 97.0%, respectively. As for endometrial cancer, the results evaluated by cases were 50.0, 93.9, 40.0 and 95.8%, and by area of lymph nodes, 45.0, 99.4, 64.3 and 98.5%, respectively. The limitation of the efficacy was found out by analyzing it by the region of the lymph node, the size of metastatic node, the historical type of tumor in cervical cancer and the prevalence of lymph node metastasis. The efficacy of positron emission tomography/computed tomography regarding the detection of lymph node metastasis in cervical and endometrial cancer is not established and has limitations associated with the region of the lymph node, the size of metastasis lesion in lymph node and the pathological type of primary tumor. The indication for the imaging and the interpretation of the results requires consideration for each case by the pretest probability based on the information obtained preoperatively. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Les, C. M.; Whalen, R. T.; Beaupre, G. S.; Yan, C. H.; Cleek, T. M.; Wills, J. S.
2002-01-01
Changes in the material characteristics of bone marrow with aging can be a significant source of error in measurements of bone density when using X-ray and ultrasound imaging modalities. In the context of computed tomography, dual-energy computed techniques have been used to correct for changes in marrow composition. However, dual-energy quantitative computed tomography (DE-QCT) protocols, while increasing the accuracy of the measurement, reduce the precision and increase the radiation dose to the patient in comparison to single-energy quantitative computed tomography (SE-QCT) protocols. If the attenuation properties of the marrow for a particular bone can be shown to be relatively constant with age, it should be possible to use single-energy techniques without experiencing errors caused by unknown marrow composition. Marrow was extracted by centrifugation from 10 mm thick frontal sections of 34 adult cadaver calcanei (28 males, 6 females, ages 17-65 years). The density and energy-dependent linear X-ray attenuation coefficient of each marrow sample were determined. For purposes of comparing our results, we then computed an effective CT number at two GE CT/i scan voltages (80 and 120 kVp) for each specimen. The coefficients of variation for the density, CT number at 80 kVp and CT number at 120 kVp were each less than 1%, and the parameters did not change significantly with age (p > 0.2, r2 < 0.02, power > 0.8 where the minimum acceptable r2 = 0.216). We could demonstrate no significant gender-associated differences in these relationships. These data suggest that calcaneal bone marrow X-ray attenuation properties and marrow density are essentially constant from the third through sixth decades of life.
Huda, Walter; Lieberman, Kristin A; Chang, Jack; Roskopf, Marsha L
2004-03-01
We investigated how patient age, size and composition, together with the choice of x-ray technique factors, affect radiation doses in head computed tomography (CT) examinations. Head size dimensions, cross-sectional areas, and mean Hounsfield unit (HU) values were obtained from head CT images of 127 patients. For radiation dosimetry purposes patients were modeled as uniform cylinders of water. Dose computations were performed for 18 x 7 mm sections, scanned at a constant 340 mAs, for x-ray tube voltages ranging from 80 to 140 kV. Values of mean section dose, energy imparted, and effective dose were computed for patients ranging from the newborn to adults. There was a rapid growth of head size over the first two years, followed by a more modest increase of head size until the age of 18 or so. Newborns have a mean HU value of about 50 that monotonically increases with age over the first two decades of life. Average adult A-P and lateral dimensions were 186+/-8 mm and 147+/-8 mm, respectively, with an average HU value of 209+/-40. An infant head was found to be equivalent to a water cylinder with a radius of approximately 60 mm, whereas an adult head had an equivalent radius 50% greater. Adult males head dimensions are about 5% larger than for females, and their average x-ray attenuation is approximately 20 HU greater. For adult examinations performed at 120 kV, typical values were 32 mGy for the mean section dose, 105 mJ for the total energy imparted, and 0.64 mSv for the effective dose. Increasing the x-ray tube voltage from 80 to 140 kV increases patient doses by about a factor of 5. For the same technique factors, mean section doses in infants are 35% higher than in adults. Energy imparted for adults is 50% higher than for infants, but infant effective doses are four times higher than for adults. CT doses need to take into account patient age, head size, and composition as well as the selected x-ray technique factors.
Recent Scientific Evidence and Technical Developments in Cardiovascular Computed Tomography.
Marcus, Roy; Ruff, Christer; Burgstahler, Christof; Notohamiprodjo, Mike; Nikolaou, Konstantin; Geisler, Tobias; Schroeder, Stephen; Bamberg, Fabian
2016-05-01
In recent years, coronary computed tomography angiography has become an increasingly safe and noninvasive modality for the evaluation of the anatomical structure of the coronary artery tree with diagnostic benefits especially in patients with a low-to-intermediate pretest probability of disease. Currently, increasing evidence from large randomized diagnostic trials is accumulating on the diagnostic impact of computed tomography angiography for the management of patients with acute and stable chest pain syndrome. At the same time, technical advances have substantially reduced adverse effects and limiting factors, such as radiation exposure, the amount of iodinated contrast agent, and scanning time, rendering the technique appropriate for broader clinical applications. In this work, we review the latest developments in computed tomography technology and describe the scientific evidence on the use of cardiac computed tomography angiography to evaluate patients with acute and stable chest pain syndrome. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Computation of airfoil buffet boundaries
NASA Technical Reports Server (NTRS)
Levy, L. L., Jr.; Bailey, H. E.
1981-01-01
The ILLIAC IV computer has been programmed with an implicit, finite-difference code for solving the thin layer compressible Navier-Stokes equation. Results presented for the case of the buffet boundaries of a conventional and a supercritical airfoil section at high Reynolds numbers are found to be in agreement with experimentally determined buffet boundaries, especially at the higher freestream Mach numbers and lower lift coefficients where the onset of unsteady flows is associated with shock wave-induced boundary layer separation.
Charged-particle emission tomography
NASA Astrophysics Data System (ADS)
Ding, Yijun
Conventional charged-particle imaging techniques--such as autoradiography-- provide only two-dimensional (2D) images of thin tissue slices. To get volumetric information, images of multiple thin slices are stacked. This process is time consuming and prone to distortions, as registration of 2D images is required. We propose a direct three-dimensional (3D) autoradiography technique, which we call charged-particle emission tomography (CPET). This 3D imaging technique enables imaging of thick sections, thus increasing laboratory throughput and eliminating distortions due to registration. In CPET, molecules or cells of interest are labeled so that they emit charged particles without significant alteration of their biological function. Therefore, by imaging the source of the charged particles, one can gain information about the distribution of the molecules or cells of interest. Two special case of CPET include beta emission tomography (BET) and alpha emission tomography (alphaET), where the charged particles employed are fast electrons and alpha particles, respectively. A crucial component of CPET is the charged-particle detector. Conventional charged-particle detectors are sensitive only to the 2-D positions of the detected particles. We propose a new detector concept, which we call particle-processing detector (PPD). A PPD measures attributes of each detected particle, including location, direction of propagation, and/or the energy deposited in the detector. Reconstruction algorithms for CPET are developed, and reconstruction results from simulated data are presented for both BET and alphaET. The results show that, in addition to position, direction and energy provide valuable information for 3D reconstruction of CPET. Several designs of particle-processing detectors are described. Experimental results for one detector are discussed. With appropriate detector design and careful data analysis, it is possible to measure direction and energy, as well as position of each detected particle. The null functions of CPET with PPDs that measure different combinations of attributes are calculated through singular-value decomposition. In general, the more particle attributes are measured from each detection event, the smaller the null space of CPET is. In other words, the higher dimension the data space is, the more information about an object can be recovered from CPET.
Nakamura, Keiko; Tajima, Kiyoshi; Chen, Ker-Kong; Nagamatsu, Yuki; Kakigawa, Hiroshi; Masumi, Shin-ich
2013-12-01
This study focused on the application of novel finite-element analysis software for constructing a finite-element model from the computed tomography data of a human dentulous mandible. The finite-element model is necessary for evaluating the mechanical response of the alveolar part of the mandible, resulting from occlusal force applied to the teeth during biting. Commercially available patient-specific general computed tomography-based finite-element analysis software was solely applied to the finite-element analysis for the extraction of computed tomography data. The mandibular bone with teeth was extracted from the original images. Both the enamel and the dentin were extracted after image processing, and the periodontal ligament was created from the segmented dentin. The constructed finite-element model was reasonably accurate using a total of 234,644 nodes and 1,268,784 tetrahedral and 40,665 shell elements. The elastic moduli of the heterogeneous mandibular bone were determined from the bone density data of the computed tomography images. The results suggested that the software applied in this study is both useful and powerful for creating a more accurate three-dimensional finite-element model of a dentulous mandible from the computed tomography data without the need for any other software.
Rib Radiography versus Chest Computed Tomography in the Diagnosis of Rib Fractures.
Sano, Atsushi
2018-05-01
The accurate diagnosis of rib fractures is important in chest trauma. Diagnostic images following chest trauma are usually obtained via chest X-ray, chest computed tomography, or rib radiography. This study evaluated the diagnostic characteristics of rib radiography and chest computed tomography. Seventy-five rib fracture patients who underwent both chest computed tomography and rib radiography between April 2008 and December 2013 were included. Rib radiographs, centered on the site of pain, were taken from two directions. Chest computed tomography was performed using a 16-row multidetector scanner with 5-mm slice-pitch without overlap, and axial images were visualized in a bone window. In total, 217 rib fractures were diagnosed in 75 patients. Rib radiography missed 43 rib fractures in 24 patients. The causes were overlap with organs in 15 cases, trivial fractures in 21 cases, and injury outside the imaging range in 7 cases. Left lower rib fractures were often missed due to overlap with the heart, while middle and lower rib fractures were frequently not diagnosed due to overlap with abdominal organs. Computed tomography missed 21 rib fractures in 17 patients. The causes were horizontal fractures in 10 cases, trivial fractures in 9 cases, and insufficient breath holding in 1 case. In rib radiography, overlap with organs and fractures outside the imaging range were characteristic reasons for missed diagnoses. In chest computed tomography, horizontal rib fractures and insufficient breath holding were often responsible. We should take these challenges into account when diagnosing rib fractures. Georg Thieme Verlag KG Stuttgart · New York.
Barbero, Umberto; Iannaccone, Mario; d'Ascenzo, Fabrizio; Barbero, Cristina; Mohamed, Abdirashid; Annone, Umberto; Benedetto, Sara; Celentani, Dario; Gagliardi, Marco; Moretti, Claudio; Gaita, Fiorenzo
2016-08-01
A non-invasive approach to define grafts patency and stenosis in the follow-up of coronary artery bypass graft (CABG) patients may be an interesting alternative to coronary angiography. 64-slice-coronary computed tomography is nowadays a diffused non-invasive method that permits an accurate evaluation of coronary stenosis, due to a high temporal and spatial resolution. However, its sensitivity and specificity in CABG evaluation has to be clearly defined, since published studies used different protocols and scanners. We collected all studies investigating patients with stable symptoms and previous CABG and reporting the comparison between diagnostic performances of invasive coronary angiography and 64-slice-coronary computed tomography. As a result, sensitivity and specificity of 64-slice-coronary computed tomography for CABG occlusion were 0.99 (95% CI 0.97-1.00) and 0.99 (95% CI: 0.99-1.00) with an area under the curve (AUC) of 0.99. 64-slice-coronary computed tomography sensitivity and specificity for the presence of any CABG stenosis >50% were 0.98 (95% CI: 0.97-0.99) and 0.98 (95% CI: 0.96-0.98), while AUC was 0.99. At meta-regression, neither the age nor the time from graft implantation had effect on sensitivity and specificity of 64-slice-coronary computed tomography detection of significant CABG stenosis or occlusion. In conclusion 64-slice-coronary computed tomography confirmed its high sensitivity and specificity in CABG stenosis or occlusion evaluation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Quadruple Axis Neutron Computed Tomography
NASA Astrophysics Data System (ADS)
Schillinger, Burkhard; Bausenwein, Dominik
Neutron computed tomography takes more time for a full tomography than X-rays or Synchrotron radiation, because the source intensity is limited. Most neutron imaging detectors have a square field of view, so if tomography of elongated, narrow samples, e.g. fuel rods, sword blades is recorded, much of the detector area is wasted. Using multiple rotation axes, several samples can be placed inside the field of view, and multiple tomographies can be recorded at the same time by later splitting the recorded images into separate tomography data sets. We describe a new multiple-axis setup using four independent miniaturized rotation tables.
In situ process monitoring in selective laser sintering using optical coherence tomography
NASA Astrophysics Data System (ADS)
Gardner, Michael R.; Lewis, Adam; Park, Jongwan; McElroy, Austin B.; Estrada, Arnold D.; Fish, Scott; Beaman, Joseph J.; Milner, Thomas E.
2018-04-01
Selective laser sintering (SLS) is an efficient process in additive manufacturing that enables rapid part production from computer-based designs. However, SLS is limited by its notable lack of in situ process monitoring when compared with other manufacturing processes. We report the incorporation of optical coherence tomography (OCT) into an SLS system in detail and demonstrate access to surface and subsurface features. Video frame rate cross-sectional imaging reveals areas of sintering uniformity and areas of excessive heat error with high temporal resolution. We propose a set of image processing techniques for SLS process monitoring with OCT and report the limitations and obstacles for further OCT integration with SLS systems.
Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium
Beller, Laurence S.
1993-01-01
A method and apparatus for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.
Li, Yuxin; Tafti, Bashir A; Shaba, Wisam; Berenji, Gholam R
2011-07-01
A 68-year-old man with history of heavy smoking was admitted for increasing falls during the past 4 weeks. Chest x-ray revealed a right upper lobe mass. Biopsy demonstrated poorly differentiated non-small-cell carcinoma. F-18 fluoride positron emission tomography/computer tomography (PET/CT) was performed to evaluate bone metastasis. Review of the sectional PET images demonstrated extraosseous fluoride uptake in the primary lung mass, as well as ring-shaped fluoride uptake in the cerebral metastatic lesion. Neither of these lesions demonstrated calcifications on CT images. The patient received radiation treatment of the brain metastasis after F-18 fluoride PET/CT study.
NASA Astrophysics Data System (ADS)
Sung, Jiwon; Baek, Tae Seong; Yoon, Myonggeun; Kim, Dong Wook; Kim, Dong Hyun
2014-09-01
This study evaluated the effect of a simple shielding method using a thin lead sheet on the imaging dose caused by cone-beam computed tomography (CBCT) in image-guided radiation therapy (IGRT). Reduction of secondary doses from CBCT was measured using a radio-photoluminescence glass dosimeter (RPLGD) placed inside an anthropomorphic phantom. The entire body, except for the region scanned by using CBCT, was shielded by wrapping it with a 2-mm lead sheet. Changes in secondary cancer risk due to shielding were calculated using BEIR VII models. Doses to out-of-field organs for head-and-neck, chest, and pelvis scans were decreased 15 ~ 100%, 23 ~ 90%, and 23 ~ 98%, respectively, and the average reductions in lifetime secondary cancer risk due to the 2-mm lead shielding were 1.6, 11.5, and 12.7 persons per 100,000, respectively. These findings suggest that a simple, thin-lead-sheet-based shielding method can effectively decrease secondary doses to out-of-field regions for CBCT, which reduces the lifetime cancer risk on average by 9 per 100,000 patients.
Imaging resin infiltration into non-cavitated carious lesions by optical coherence tomography.
Schneider, Hartmut; Park, Kyung-Jin; Rueger, Claudia; Ziebolz, Dirk; Krause, Felix; Haak, Rainer
2017-05-01
Visualisation of the etching process and resin penetration at white spot carious lesions by spectral domain optical coherence tomography (SD-OCT). The non-cavitated carious lesions (ICDAS code 2) of four visually preselected extracted human molars and premolars were verified as enamel lesions by micro computed tomography (μCT). One region of interest (ROI) per tooth was marked by two drill-holes in occlusal-cervical direction. The lesions were imaged by SD-OCT. Lesions were infiltrated (Icon, DMG) according to the manufacturer's instructions. During each treatment step and after light curing of the infiltrant, the ROIs were imaged again by SD-OCT. Teeth were sectioned through the ROIs and section layers were imaged by scanning electron microscopy in order to compare with the OCT images. The image sequences for etching and infiltration were viewed in time lapse. During the etching process, numerous bubbles formed on the lesion surface. Using OCT, the process of resin penetration into the carious lesion body became visible. The early enamel carious lesion was completely infiltrated by the resin whereas infiltration of the advanced enamel carious lesion was incomplete and inhomogeneous. Resin infiltration can be increased by optimizing the etching process. Optical coherence tomography provides information about the process and degree of resin infiltration. Active acid application before resin infiltration is recommendable. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hisatomi, Toshio; Tachibana, Takashi; Notomi, Shoji; Koyanagi, Yoshito; Murakami, Yusuke; Takeda, Atsunobu; Ikeda, Yasuhiro; Yoshida, Shigeo; Enaida, Hiroshi; Murata, Toshinori; Sakamoto, Taiji; Sonoda, Koh-Hei; Ishibashi, Tatsuro
2018-03-01
To examine retinal changes after vitrectomy with internal limiting membrane (ILM) peeling, we used 3-dimensional optical coherence tomography (3D-OCT) in rhegmatogenous retinal detachment cases. The 68 eyes from 67 patients with rhegmatogenous retinal detachment were studied, including 35 detached macula cases (51%) and 33 attached macula cases. Internal limiting membrane peeling was performed with fine forceps after brilliant blue G staining. The 3D-OCT images were obtained with volume-rendering technologies from cross-sectional OCT images. The 3D-OCT detected 45 eyes (66%) with ILM peeling-dependent retinal changes, including dissociated optic nerve fiber layer appearance, dimple sign, temporal macular thinning, ILM peeling area thinning, or forceps-related retinal thinning. The ILM peeled area was detectable in only 9 eyes with 3D-OCT, whereas it was undetectable in other 59 eyes. The dissociated optic nerve fiber layer appearance was detected in 8 of the total cases (12%), and dimple signs were observed in 14 cases (21%). Forceps-related thinning was also noted in eight cases (24%) of attached macula cases and in four cases (11%) of detached macula cases. No postoperative macular pucker was noted in the observational period. The 3D-OCT clearly revealed spatial and time-dependent retinal changes after ILM peeling. The changes occurred in 2 months and remained thereafter.
Molina-Vicenty, Irma L; Santiago-Sánchez, Michelaldemar; Vélez-Miró, Iván; Motta-Valencia, Keryl
2016-09-01
Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external force. TBI, a global leading cause of death and disability, is associated with serious social, economic, and health problems. In cases of mild-to-moderate brain damage, conventional anatomical imaging modalities may or may not detect the cascade of metabolic changes that have occurred or are occurring at the intracellular level. Functional nuclear medicine imaging and neurophysiological parameters can be used to characterize brain damage, as the former provides direct visualization of brain function, even in the absence of overt behavioral manifestations or anatomical findings. We report the case of a 30-year-old Hispanic male veteran who, after 2 traumatic brain injury events, developed cognitive and neuropsychological problems with no clear etiology in the presence of negative computed tomography (CT) findings.
Tsubokawa, Masaki; Aoki, Akira; Kakizaki, Sho; Taniguchi, Yoichi; Ejiri, Kenichiro; Mizutani, Koji; Koshy, Geena; Akizuki, Tatsuya; Oda, Shigeru; Sumi, Yasunori; Izumi, Yuichi
2018-05-24
This study evaluated the effectiveness of swept-source optical coherence tomography (ss-OCT) for detecting calculus and root cementum during periodontal therapy. Optical coherence tomography (OCT) images were taken before and after removal of subgingival calculus from extracted teeth and compared with non-decalcified histological sections. Porcine gingival sheets of various thicknesses were applied to the root surfaces of extracted teeth with calculus and OCT images were taken. OCT images were also taken before and after scaling and root planing (SRP) in human patients. In vitro, calculus was clearly detected as a white-gray amorphous structure on the root surface, which disappeared after removal. Cementum was identified as a thin, dark-gray layer. The calculus could not be clearly observed when soft tissues were present on the root surface. Clinically, supragingival calculus and cementum could be detected clearly with OCT, and subgingival calculus in the buccal cervical area of the anterior and premolar teeth was identified, which disappeared after SRP. Digital processing of the original OCT images was useful for clarifying the calculus. In conclusion, ss-OCT showed potential as a periodontal diagnostic tool for detecting cementum and subgingival calculus, although the practical applications of subgingival imaging remain limited.
Measurement of Lacrimal Sac Fossa Using Orbital Computed Tomography.
Kang, Dongwan; Park, Jinhwan; Na, Jaehoon; Lee, Hwa; Baek, Sehyun
2017-01-01
To evaluate the clinical usefulness of measuring the lacrimal sac fossa length using orbital computed tomography in normal Koreans. The authors retrospectively evaluated 140 patients (70 males and 70 females) who underwent orbital computed tomography at Guro Hospital and who had no history of orbital disease or orbital trauma. Computed tomography scans of the right orbit, including the proportion of the lacrimal bone and maxillary bone that comprise the lacrimal sac fossa, were evaluated at 3 different axial planes (lower, middle, and upper levels). Additionally, the mid-point thickness and maximum thickness of the maxillary bone were measured. Finally, the authors also evaluated the relationship between nasal bone height and maxillary bone thickness in the lacrimal sac fossa. Maxillary bone thickness in the lacrimal sac fossa was thicker in males than in females at mid-point thickness and maximum thickness (P < 0.05). However, there was no significant difference in the size of the lacrimal sac fossa and the proportion of the maxillary bone between males and females.In comparisons between maxillary cross-sections, bone thickness was greater toward the upper level of the lacrimal sac fossa (P = 0.008), and the proportion of the maxillary bone was also greater (P = 0.006).Aging had a significant positive correlation with maxillary bone thickness at all 3 axial planes (P < 0.05), but there was no relationship between age and maxillary bone proportion. Nasal bone height and maxillary bone thickness were also not significantly related. In comprising the lacrimal sac fossa, the maxillary bone accounted for a bigger proportion than the lacrimal bone. Male maxillary bone thickness was greater than female thickness. The authors also observed that maxillary bone thickness increased toward the upper areas of the lacrimal sac fossa and with increasing subject age. Understanding the form and variation of a normal lacrimal sac fossa is helpful for preparing for a successful osteotomy with endoscopic dacryocystorhinostomy.
NASA Astrophysics Data System (ADS)
Reed, Judd E.; Rumberger, John A.; Buithieu, Jean; Behrenbeck, Thomas; Breen, Jerome F.; Sheedy, Patrick F., II
1995-05-01
Electron beam computed tomography is unparalleled in its ability to consistently produce high quality dynamic images of the human heart. Its use in quantification of left ventricular dynamics is well established in both clinical and research applications. However, the image analysis tools supplied with the scanners offer a limited number of analysis options. They are based on embedded computer systems which have not been significantly upgraded since the scanner was introduced over a decade ago in spite of the explosive improvements in available computer power which have occured during this period. To address these shortcomings, a workstation-based ventricular analysis system has been developed at our institution. This system, which has been in use for over five years, is based on current workstation technology and therefore has benefited from the periodic upgrades in processor performance available to these systems. The dynamic image segmentation component of this system is an interactively supervised, semi-automatic surface identification and tracking system. It characterizes the endocardial and epicardial surfaces of the left ventricle as two concentric 4D hyper-space polyhedrons. Each of these polyhedrons have nearly ten thousand vertices which are deposited into a relational database. The right ventricle is also processed in a similar manner. This database is queried by other custom components which extract ventricular function parameters such as regional ejection fraction and wall stress. The interactive tool which supervises dynamic image segmentation has been enhanced with a temporal domain display. The operator interactively chooses the spatial location of the endpoints of a line segment while the corresponding space/time image is displayed. These images, with content resembling M-Mode echocardiography, benefit form electron beam computed tomography's high spatial and contrast resolution. The segmented surfaces are displayed along with the imagery. These displays give the operator valuable feedback pertaining to the contiguity of the extracted surfaces. As with M-Mode echocardiography, the velocity of moving structures can be easily visualized and measured. However, many views inaccessible to standard transthoracic echocardiography are easily generated. These features have augmented the interpretability of cine electron beam computed tomography and have prompted the recent cloning of this system into an 'omni-directional M-Mode display' system for use in digital post-processing of echocardiographic parasternal short axis tomograms. This enhances the functional assessment in orthogonal views of the left ventricle, accounting for shape changes particularly in the asymmetric post-infarction ventricle. Conclusions: A new tool has been developed for analysis and visualization of cine electron beam computed tomography. It has been found to be very useful in verifying the consistency of myocardial surface definition with a semi-automated segmentation tool. By drawing on M-Mode echocardiography experience, electron beam tomography's interpretability has been enhanced. Use of this feature, in conjunction with the existing image processing tools, will enhance the presentations of data on regional systolic and diastolic functions to clinicians in a format that is familiar to most cardiologists. Additionally, this tool reinforces the advantages of electron beam tomography as a single imaging modality for the assessment of left and right ventricular size, shape, and regional functions.
Particle Shape Characterization of Lunar Regolith using Reflected Light Microscopy
NASA Astrophysics Data System (ADS)
McCarty, C. B.; Garcia, G. C.; Rickman, D.
2014-12-01
Automated identification of particles in lunar thin sections is necessary for practical measurement of particle shape, void characterization, and quantitative characterization of sediment fabric. This may be done using image analysis, but several aspects of the lunar regolith make such automations difficult. For example, many of the particles are shattered; others are aggregates of smaller particles. Sieve sizes of the particles span 5 orders of magnitude. The physical thickness of a thin section, at a nominal 30 microns, is large compared to the size of many of the particles. Image acquisition modes, such as SEM and reflected light, while superior to transmitted light, still have significant ambiguity as to the volume being sampled. It is also desirable to have a technique that is inexpensive, not resource intensive, and analytically robust. To this end, we have developed an image acquisition and processing protocol that identifies and delineates resolvable particles on the front surface of a lunar thin section using a petrographic microscope in reflected light. For a polished thin section, a grid is defined covering the entire thin section. The grid defines discrete images taken with 20% overlap, minimizing the number of particles that intersect image boundaries. In reflected light mode, two images are acquired at each grid location, with a closed aperture diaphragm. One image, A, is focused precisely on the front surface of the thin section. The second image, B, is made after the stage is brought toward the objective lens just slightly. A bright fringe line, analogous to a Becke line, appears inside all transparent particles at the front surface of the section in the second image. The added light in the bright line corresponds to a deficit around the particles. Particle identification is done using ImageJ and uses multiple steps. A hybrid 5x5 median filter is used to make images Af and Bf. This primarily removes very small particles just below the front surface of the section. Bf - (Bf/Af) is then computed. The division strongly enhances the fringe and the deficit, while minimizing the correlated information in A and B. The subtraction emphasizes the particle-epoxy boundaries. The resulting image is converted to binary, and then holes are filled. Cracks are removed using a median-based operator.
Moura, Frederico Castelo; Lunardelli, Patrícia; Leite, Cláudia Costa; Monteiro, Mário Luiz Ribeiro
2005-01-01
Lesions of the lateral geniculate body (LGB) are the most unusual lesions of the visual pathways. Imaging studies are very important in establishing the correct diagnosis. However, due to its small size and particular location, the lateral geniculate body and its lesions are sometimes difficult to detect in imaging studies possibly causing diagnostic confusion. The purpose of this paper is to document an unusual case of a lesion of the lateral geniculate body for which an optical coherence tomography study was very important in confirming the anatomic diagnosis of a lateral geniculate body lesion. A 39-year-old woman with a previous diagnosis of uveitis and central nervous system vasculitis was referred for investigation of a right temporal quadrantanopia. She had already been submitted to a magnetic resonance imaging (MRI) that did not show any lesion along the visual pathway. Ophthalmoscopy revealed retinal nerve fiber layer (RNFL) loss that was confirmed by optical coherence tomography. Such finding associated with the observations on the neurological examination strongly suggested a lateral geniculate body lesion. The patient was submitted to another new magnetic resonance imaging obtained with especially oriented thin sections and an ischemic lesion of the lateral geniculate body was observed establishing the correct diagnosis. This case serves to confirm the importance of optical coherence tomography in determining the pattern of retinal nerve fiber layer loss in neuro-ophthalmic diseases and therefore to help in locating a lesion along the visual pathway.
Advanced Computed-Tomography Inspection System
NASA Technical Reports Server (NTRS)
Harris, Lowell D.; Gupta, Nand K.; Smith, Charles R.; Bernardi, Richard T.; Moore, John F.; Hediger, Lisa
1993-01-01
Advanced Computed Tomography Inspection System (ACTIS) is computed-tomography x-ray apparatus revealing internal structures of objects in wide range of sizes and materials. Three x-ray sources and adjustable scan geometry gives system unprecedented versatility. Gantry contains translation and rotation mechanisms scanning x-ray beam through object inspected. Distance between source and detector towers varied to suit object. System used in such diverse applications as development of new materials, refinement of manufacturing processes, and inspection of components.
Parghane, Rahul Vithalrao; Phulsunga, Rohit Kumar; Gupta, Rajesh; Basher, Rajender Kumar; Bhattacharya, Anish; Mittal, Bhagwant Rai
2017-01-01
Bronchobiliary fistula (BBF), a rare complication of liver disease, is an abnormal communication between the biliary tract and bronchial tree. BBF may occur as a consequence of local liver infections such as hydatid or amebic disease, pyogenic liver abscess or trauma to the liver, obstruction of biliary tract, and tumor. As such management of liver disease with BBF is very difficult and often associated with a high rate of morbidity and mortality. Therefore, timely diagnosis of BBF is imperative. Hepatobiliary scintigraphy along with hybrid single photon emission computed tomography/computed tomography using Tc99m-mebrofenin is a very useful noninvasive imaging modality, in the diagnosis of BBF.
Parghane, Rahul Vithalrao; Phulsunga, Rohit Kumar; Gupta, Rajesh; Basher, Rajender Kumar; Bhattacharya, Anish; Mittal, Bhagwant Rai
2017-01-01
Bronchobiliary fistula (BBF), a rare complication of liver disease, is an abnormal communication between the biliary tract and bronchial tree. BBF may occur as a consequence of local liver infections such as hydatid or amebic disease, pyogenic liver abscess or trauma to the liver, obstruction of biliary tract, and tumor. As such management of liver disease with BBF is very difficult and often associated with a high rate of morbidity and mortality. Therefore, timely diagnosis of BBF is imperative. Hepatobiliary scintigraphy along with hybrid single photon emission computed tomography/computed tomography using Tc99m-mebrofenin is a very useful noninvasive imaging modality, in the diagnosis of BBF. PMID:29033682
Weightbearing Computed Tomography of the Foot and Ankle: Emerging Technology Topical Review.
Barg, Alexej; Bailey, Travis; Richter, Martinus; de Cesar Netto, Cesar; Lintz, François; Burssens, Arne; Phisitkul, Phinit; Hanrahan, Christopher J; Saltzman, Charles L
2018-03-01
In the last decade, cone-beam computed tomography technology with improved designs allowing flexible gantry movements has allowed both supine and standing weight-bearing imaging of the lower extremity. There is an increasing amount of literature describing the use of weightbearing computed tomography in patients with foot and ankle disorders. To date, there is no review article summarizing this imaging modality in the foot and ankle. Therefore, we performed a systematic literature review of relevant clinical studies targeting the use of weightbearing computed tomography in diagnosis of patients with foot and ankle disorders. Furthermore, this review aims to offer insight to those with interest in considering possible future research opportunities with use of this technology. Level V, expert opinion.
NASA Astrophysics Data System (ADS)
Wormanns, Dag; Fiebich, Martin; Wietholt, Christian; Diederich, Stefan; Heindel, Walter
2000-06-01
We evaluated the practical application of a Computer-Aided Diagnosis (CAD) system for viewing spiral computed tomography (CT) of the chest low-dose screening examinations which includes an automatic detection of pulmonary nodules. A UNIX- based CAD system was developed including a detection algorithm for pulmonary nodules and a user interface providing an original axial image, the same image with nodules highlighted, a thin-slab MIP, and a cine mode. As yet, 26 CT examinations with 1625 images were reviewed in a clinical setting and reported by an experienced radiologist using both the CAD system and hardcopies. The CT studies exhibited 19 nodules found on the hardcopies in consensus reporting of 2 experienced radiologists. Viewing with the CAD system was more time consuming than using hardcopies (4.16 vs. 2.92 min) due to analyzing MIP and cine mode. The algorithm detected 49% (18/37) pulmonary nodules larger than 5 mm and 30% (21/70) of all nodules. It produced an average of 6.3 false positive findings per CT study. Most of the missed nodules were adjacent to the pleura. However, the program detected 6 nodules missed by the radiologists. Automatic nodule detection increases the radiologists's awareness of pulmonary lesions. Simultaneous display of axial image and thin-slab MIP makes the radiologist more confident in diagnosis of smaller pulmonary nodules. The CAD system improves the detection of pulmonary nodules at spiral CT. Lack of sensitivity and specificity is still an issue to be addressed but does not prevent practical use.
Alves, Heitor C; Treurniet, Kilian M; Dutra, Bruna G; Jansen, Ivo G H; Boers, Anna M M; Santos, Emilie M M; Berkhemer, Olvert A; Dippel, Diederik W J; van der Lugt, Aad; van Zwam, Wim H; van Oostenbrugge, Robert J; Lingsma, Hester F; Roos, Yvo B W E M; Yoo, Albert J; Marquering, Henk A; Majoie, Charles B L M
2018-02-01
Thrombus characteristics and collateral score are associated with functional outcome in patients with acute ischemic stroke. It has been suggested that they affect each other. The aim of this study is to evaluate the association between clot burden score, thrombus perviousness, and collateral score and to determine whether collateral score influences the association of thrombus characteristics with functional outcome. Patients with baseline thin-slice noncontrast computed tomography and computed tomographic angiography images from the MR CLEAN trial (Multicenter Randomized Clinical Trial of Endovascular Treatment of Acute Ischemic Stroke in the Netherlands) were included (n=195). Collateral score and clot burden scores were determined on baseline computed tomographic angiography. Thrombus attenuation increase was determined by comparing thrombus density on noncontrast computed tomography and computed tomographic angiography using a semiautomated method. The association of collateral score with clot burden score and thrombus attenuation increase was evaluated with linear regression. Mediation and effect modification analyses were used to assess the influence of collateral score on the association of clot burden score and thrombus attenuation increase with functional outcome. A higher clot burden score (B=0.063; 95% confidence interval, 0.008-0.118) and a higher thrombus attenuation increase (B=0.014; 95% confidence interval, 0.003-0.026) were associated with higher collateral score. Collateral score mediated the association of clot burden score with functional outcome. The association between thrombus attenuation increase and functional outcome was modified by the collateral score, and this association was stronger in patients with moderate and good collaterals. Patients with lower thrombus burden and higher thrombus perviousness scores had higher collateral score. The positive effect of thrombus perviousness on clinical outcome was only present in patients with moderate and high collateral scores. URL: http://www.trialregister.nl. Unique identifier: NTR1804 and URL: http://www.controlled-trials.com Unique identifier: ISRCTN10888758. © 2018 The Authors.
Rotator cuff tear measurement by arthropneumotomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilcoyne, R.F.; Matsen, F.A. III
1983-02-01
Five years of experience with a method of shoulder arthrography using upright tomography in cases of suspected or known rotator cuff tears has demonstrated its effectiveness. The value of the procedure lies in its ability to demonstrate the size of the cuff tear and the thickness of the remaining cuff tissue. This information provides the surgeon with a preoperative estimate of the difficulty of the repair and the prognosis for a good functional recovery. In 33 cases, there was good correlation between the upright thin-section tomogram findings and the surgical results. The tomograms provided better information about the size ofmore » the tear and the quality of the remaining cuff than did plain arthrograms.« less
Evaluation of age-related changes with cross-sectional CT imaging of teeth
NASA Astrophysics Data System (ADS)
Fukui, Tatsumasa; Kita, Kanade; Kamemoto, Hiromasa; Nishiyama, Wataru; Yoshida, Hiroyasu; Iida, Yukihiro; Katsumata, Akitoshi; Muramatsu, Chisako; Fujita, Hiroshi
2017-03-01
Tooth pulp atrophy occurs with increasing age. An age estimation procedure using dental cone beam computed tomography (CBCT) imaging was developed. Clinical dental CBCT images of 60 patients (aged from 20 to 80 years) were evaluated. The ratio of the cross-sectional area of the pulp cavity to the cross-sectional area of the tooth (pulp cavity ratio) was calculated. The pulp cavity ratio in the labio-lingual plane of the mandibular anterior teeth and the mesio-distal plane of the maxillary anterior teeth was strongly correlated with the patients' age. The pulp cavity ratio of anterior teeth may be a useful parameter for estimating age.
Automated peroperative assessment of stents apposition from OCT pullbacks.
Dubuisson, Florian; Péry, Emilie; Ouchchane, Lemlih; Combaret, Nicolas; Kauffmann, Claude; Souteyrand, Géraud; Motreff, Pascal; Sarry, Laurent
2015-04-01
This study's aim was to control the stents apposition by automatically analyzing endovascular optical coherence tomography (OCT) sequences. Lumen is detected using threshold, morphological and gradient operators to run a Dijkstra algorithm. Wrong detection tagged by the user and caused by bifurcation, struts'presence, thrombotic lesions or dissections can be corrected using a morphing algorithm. Struts are also segmented by computing symmetrical and morphological operators. Euclidian distance between detected struts and wall artery initializes a stent's complete distance map and missing data are interpolated with thin-plate spline functions. Rejection of detected outliers, regularization of parameters by generalized cross-validation and using the one-side cyclic property of the map also optimize accuracy. Several indices computed from the map provide quantitative values of malapposition. Algorithm was run on four in-vivo OCT sequences including different incomplete stent apposition's cases. Comparison with manual expert measurements validates the segmentation׳s accuracy and shows an almost perfect concordance of automated results. Copyright © 2014 Elsevier Ltd. All rights reserved.
Alerhand, Stephen; Meltzer, James; Tay, Ee Tein
2017-08-01
Ultrasound scan has gained attention for diagnosing appendicitis due to its avoidance of ionizing radiation. However, studies show that ultrasound scan carries inferior sensitivity to computed tomography scan. A non-diagnostic ultrasound scan could increase the time to diagnosis and appendicectomy, particularly if follow-up computed tomography scan is needed. Some studies suggest that delaying appendicectomy increases the risk of perforation. To investigate the risk of appendiceal perforation when using ultrasound scan as the initial diagnostic imaging modality in children with suspected appendicitis. We retrospectively reviewed 1411 charts of children ≤17 years old diagnosed with appendicitis at two urban academic medical centers. Patients who underwent ultrasound scan first were compared to those who underwent computed tomography scan first. In the sub-group analysis, patients who only received ultrasound scan were compared to those who received initial ultrasound scan followed by computed tomography scan. Main outcome measures were appendiceal perforation rate and time from triage to appendicectomy. In 720 children eligible for analysis, there was no significant difference in perforation rate between those who had initial ultrasound scan and those who had initial computed tomography scan (7.3% vs. 8.9%, p = 0.44), nor in those who had ultrasound scan only and those who had initial ultrasound scan followed by computed tomography scan (8.0% vs. 5.6%, p = 0.42). Those patients who had ultrasound scan first had a shorter triage-to-incision time than those who had computed tomography scan first (9.2 (IQR: 5.9, 14.0) vs. 10.2 (IQR: 7.3, 14.3) hours, p = 0.03), whereas those who had ultrasound scan followed by computed tomography scan took longer than those who had ultrasound scan only (7.8 (IQR: 5.3, 11.6) vs. 15.1 (IQR: 10.6, 20.6), p < 0.001). Children < 12 years old receiving ultrasound scan first had lower perforation rate (p = 0.01) and shorter triage-to-incision time (p = 0.003). Children with suspected appendicitis receiving ultrasound scan as the initial diagnostic imaging modality do not have increased risk of perforation compared to those receiving computed tomography scan first. We recommend that children <12 years of age receive ultrasound scan first.
Neural networks for calibration tomography
NASA Technical Reports Server (NTRS)
Decker, Arthur
1993-01-01
Artificial neural networks are suitable for performing pattern-to-pattern calibrations. These calibrations are potentially useful for facilities operations in aeronautics, the control of optical alignment, and the like. Computed tomography is compared with neural net calibration tomography for estimating density from its x-ray transform. X-ray transforms are measured, for example, in diffuse-illumination, holographic interferometry of fluids. Computed tomography and neural net calibration tomography are shown to have comparable performance for a 10 degree viewing cone and 29 interferograms within that cone. The system of tomography discussed is proposed as a relevant test of neural networks and other parallel processors intended for using flow visualization data.
How reliably can computed tomography predict thyroid invasion prior to laryngectomy?
Harris, Andrew S; Passant, Carl D; Ingrams, Duncan R
2018-05-01
There is little evidence to support the removal of thyroid tissue during total laryngectomy. Although oncological control of the tumor is the priority, thyroidectomy can lead to hypothyroidism and hypoparathyroidism. This study aimed to test the usefulness of preoperative computed tomography in predicting histological invasion of the thyroid. Ambispective cohort study. All patients undergoing total laryngectomy for squamous cell carcinoma at one center from 2006 to 2016 were included. Data were recorded prospectively as part of the patients' standard care, but were collated retrospectively, giving this study an ambispective design. The histology report for thyroid invasion was taken as the gold standard. The computed tomography report was categorized by invasion of tumor into intralaryngeal, laryngeal cartilage involvement, and extralaryngeal tissues. Seventy-nine patients were included. Nine patients had thyroid involvement on histology, translating to an incidence of 11.29% in this population. The positive predictive value for cartilage involvement on computed tomography for thyroid invasion was 52.9% (95% confidence interval [CI]: 28.5%-76.1%) and the negative predictive value was 100% (95% CI: 92.7%-100%).The positive predictive value for extralaryngeal spread on computed tomography for thyroid involvement was 100% (95% CI: 62.9%-100%), and the negative predictive value was also 100% (95% CI: 93.5%-100%). This study has shown that preoperative computed tomography is an effective method of ruling out thyroid gland invasion. The absence of extralaryngeal spread on computed tomography has been shown to be the most useful finding, with a high negative predictive value and a narrow 95% CI. 4. Laryngoscope, 128:1099-1102, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Torres, Anna; Staśkiewicz, Grzegorz J; Lisiecka, Justyna; Pietrzyk, Łukasz; Czekajlo, Michael; Arancibia, Carlos U; Maciejewski, Ryszard; Torres, Kamil
2016-05-06
A wide variety of medical imaging techniques pervade modern medicine, and the changing portability and performance of tools like ultrasound imaging have brought these medical imaging techniques into the everyday practice of many specialties outside of radiology. However, proper interpretation of ultrasonographic and computed tomographic images requires the practitioner to not only hone certain technical skills, but to command an excellent knowledge of sectional anatomy and an understanding of the pathophysiology of the examined areas as well. Yet throughout many medical curricula there is often a large gap between traditional anatomy coursework and clinical training in imaging techniques. The authors present a radiological anatomy course developed to teach sectional anatomy with particular emphasis on ultrasonography and computed tomography, while incorporating elements of medical simulation. To assess students' overall opinions about the course and to examine its impact on their self-perceived improvement in their knowledge of radiological anatomy, anonymous evaluation questionnaires were provided to the students. The questionnaires were prepared using standard survey methods. A five-point Likert scale was applied to evaluate agreement with statements regarding the learning experience. The majority of students considered the course very useful and beneficial in terms of improving three-dimensional and cross-sectional knowledge of anatomy, as well as for developing practical skills in ultrasonography and computed tomography. The authors found that a small-group, hands-on teaching model in radiological anatomy was perceived as useful both by the students and the clinical teachers involved in their clinical education. In addition, the model was introduced using relatively few resources and only two faculty members. Anat Sci Educ 9: 295-303. © 2015 American Association of Anatomists. © 2015 American Association of Anatomists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fang; Huang, Li; Porter, Lisa M.
2016-07-15
Calculated frequency distributions of atom probe tomography reconstructions (∼80 nm field of view) of very thin Al{sub x}Ga{sub 1−x}N (0.18 ≤ x ≤ 0.51) films grown via metalorganic vapor phase epitaxy on both (0001) GaN/AlN/SiC and (0001) GaN/sapphire heterostructures revealed homogeneous concentrations of Al and chemically abrupt Al{sub x}Ga{sub 1−x}N/GaN interfaces. The results of scanning transmission electron microscopy and selected area diffraction corroborated these results and revealed that neither superlattice ordering nor phase separation was present at nanometer length scales.
Cullen, David A.; Lopez-Haro, Miguel; Bayle-Guillemaud, Pascale; ...
2015-04-10
In this study, the nanoscale morphology of highly active Pt 3Ni 7 nanostructured thin film fuel cell catalysts is linked with catalyst surface area and activity following catalyst pretreatments, conditioning and potential cycling. The significant role of fuel cell conditioning on the structure and composition of these extended surface catalysts is demonstrated by high resolution imaging, elemental mapping and tomography. The dissolution of Ni during fuel cell conditioning leads to highly complex, porous structures which were visualized in 3D by electron tomography. Quantification of the rendered surfaces following catalyst pretreatment, conditioning, and cycling shows the important role pore structure playsmore » in surface area, activity, and durability.« less
Diverticular Disease of the Colon: News From Imaging.
Flor, Nicola; Soldi, Simone; Zanchetta, Edoardo; Sbaraini, Sara; Pesapane, Filippo
2016-10-01
Different scenarios embrace computed tomography imaging and diverticula, including asymptomatic (diverticulosis) and symptomatic patients (acute diverticulitis, follow-up of acute diverticulitis, chronic diverticulitis). If the role of computed tomography is validated and widely supported by evidence in case of acute diverticulitis, this is not the case of patients in their follow-up for acute diverticulitis or with symptoms related to diverticula, but without acute inflammation. In these settings, computed tomography colonography is gaining consensus as the preferred radiologic test.
Skiadas, Vasilios; Koutoulidis, Vasilios; Koureas, Andreas; Moulopoulos, Lia; Gouliamos, Athanasios
2009-09-16
An 18-year-old male patient presented with chronic nonspecific pain of three months located at his left proximal tibia. The patient was admitted to our department for plain X-ray, computed tomography and magnetic resonance imaging examination. Plain X-ray and computed tomography revealed a geographic lytic lesion at the medial aspect of the proximal tibia. Biopsy of the lesion showed telangiectatic osteosarcoma. Image findings of all modalities are presented.
Advances in equine computed tomography and use of contrast media.
Puchalski, Sarah M
2012-12-01
Advances in equine computed tomography have been made as a result of improvements in software and hardware and an increasing body of knowledge. Contrast media can be administered intravascularly or intrathecally. Contrast media is useful to differentiate between tissues of similar density. Equine computed tomography can be used for many different clinical conditions, including lameness diagnosis, fracture identification and characterization, preoperative planning, and characterization of skull diseases. Copyright © 2012 Elsevier Inc. All rights reserved.
Xie, Tianwu; Zaidi, Habib
2016-01-01
The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.
High-resolution PET [Positron Emission Tomography] for Medical Science Studies
DOE R&D Accomplishments Database
Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.
1989-09-01
One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.
Quantifying Mesoscale Neuroanatomy Using X-Ray Microtomography
Gray Roncal, William; Prasad, Judy A.; Fernandes, Hugo L.; Gürsoy, Doga; De Andrade, Vincent; Fezzaa, Kamel; Xiao, Xianghui; Vogelstein, Joshua T.; Jacobsen, Chris; Körding, Konrad P.
2017-01-01
Methods for resolving the three-dimensional (3D) microstructure of the brain typically start by thinly slicing and staining the brain, followed by imaging numerous individual sections with visible light photons or electrons. In contrast, X-rays can be used to image thick samples, providing a rapid approach for producing large 3D brain maps without sectioning. Here we demonstrate the use of synchrotron X-ray microtomography (µCT) for producing mesoscale (∼1 µm 3 resolution) brain maps from millimeter-scale volumes of mouse brain. We introduce a pipeline for µCT-based brain mapping that develops and integrates methods for sample preparation, imaging, and automated segmentation of cells, blood vessels, and myelinated axons, in addition to statistical analyses of these brain structures. Our results demonstrate that X-ray tomography achieves rapid quantification of large brain volumes, complementing other brain mapping and connectomics efforts. PMID:29085899
NASA Astrophysics Data System (ADS)
Zabolotna, Natalia I.; Dovhaliuk, Rostyslav Y.
2013-09-01
We present a novel measurement method of optic axes orientation distribution which uses a relatively simple measurement setup. The principal difference of our method from other well-known methods lies in direct approach for measuring the orientation of optical axis of polycrystalline networks biological crystals. Our test polarimetry setup consists of HeNe laser, quarter wave plate, two linear polarizers and a CCD camera. We also propose a methodology for processing of measured optic axes orientation distribution which consists of evaluation of statistical, correlational and spectral moments. Such processing of obtained data can be used to classify particular tissue sample as "healthy" or "pathological". For our experiment we use thin layers of histological section of normal and muscular dystrophy tissue sections. It is shown that the difference between mentioned moments` values of normal and pathological samples can be quite noticeable with relative difference up to 6.26.
Batchelor, Connor; Pordeli, Pooneh; d'Esterre, Christopher D; Najm, Mohamed; Al-Ajlan, Fahad S; Boesen, Mari E; McDougall, Connor; Hur, Lisa; Fainardi, Enrico; Shankar, Jai Jai Shiva; Rubiera, Marta; Khaw, Alexander V; Hill, Michael D; Demchuk, Andrew M; Sajobi, Tolulope T; Goyal, Mayank; Lee, Ting-Yim; Aviv, Richard I; Menon, Bijoy K
2017-06-01
Intracerebral hemorrhage is a feared complication of intravenous alteplase therapy in patients with acute ischemic stroke. We explore the use of multimodal computed tomography in predicting this complication. All patients were administered intravenous alteplase with/without intra-arterial therapy. An age- and sex-matched case-control design with classic and conditional logistic regression techniques was chosen for analyses. Outcome was parenchymal hemorrhage on 24- to 48-hour imaging. Exposure variables were imaging (noncontrast computed tomography hypoattenuation degree, relative volume of very low cerebral blood volume, relative volume of cerebral blood flow ≤7 mL/min·per 100 g, relative volume of T max ≥16 s with all volumes standardized to z axis coverage, mean permeability surface area product values within T max ≥8 s volume, and mean permeability surface area product values within ipsilesional hemisphere) and clinical variables (NIHSS [National Institutes of Health Stroke Scale], onset to imaging time, baseline systolic blood pressure, blood glucose, serum creatinine, treatment type, and reperfusion status). One-hundred eighteen subjects (22 patients with parenchymal hemorrhage versus 96 without, median baseline NIHSS score of 15) were included in the final analysis. In multivariable regression, noncontrast computed tomography hypoattenuation grade ( P <0.006) and computerized tomography perfusion white matter relative volume of very low cerebral blood volume ( P =0.04) were the only significant variables associated with parenchymal hemorrhage on follow-up imaging (area under the curve, 0.73; 95% confidence interval, 0.63-0.83). Interrater reliability for noncontrast computed tomography hypoattenuation grade was moderate (κ=0.6). Baseline hypoattenuation on noncontrast computed tomography and very low cerebral blood volume on computerized tomography perfusion are associated with development of parenchymal hemorrhage in patients with acute ischemic stroke receiving intravenous alteplase. © 2017 American Heart Association, Inc.
Complete Tem-Tomography: 3D Structure of Gems Cluster
NASA Technical Reports Server (NTRS)
Matsuno, J.; Miyake, A.; Tsuchiyama, A.; Messenger, S.; Nakamura-Messenger, K.
2015-01-01
GEMS (glass with embedded metal and sulfide) grains in interplanetary dust particles (IDPs) are considered to be one of the ubiquitous and fundamental building blocks of solids in the Solar System. They have been considered to be interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk but the elemental and isotopic composition measurements suggest that most of them have been formed in the protoplanetary disk as condensates from high temperature gas. This formation model is also supported by the formation of GEMS-like grains with respect to the size, mineral assemblage, texture and infrared spectrum by condensation experiments from mean GEMS composition materials. Previous GEMS studies were performed only with 2D observation by transmission electron microscopy (TEM) or scanning TEM (STEM). However, the 3D shape and structure of GEMS grains and the spatial distribution of Fe/FeS's has critical information about their formation and origin. Recently, the 3D structure of GEMS grains in ultrathin sections of cluster IDPs was revealed by electron tomography using a TEM/STEM (JEM-2100F, JEOL). However, CT images of thin sections mounted on Cu grids acquired by conventional TEM-tomography are limited to low tilt angles (e. g., less than absolute value of 75 deg. In fact, previous 3D TEM observations of GEMS were affected by some artifacts related to the limited tilt range in the TEM used. Complete tomographic images should be acquired by rotating the sample tilt angle over a range of more than absolute value of 80 deg otherwise the CT images lose their correct structures. In order to constrain the origin and formation process of GEMS grains more clearly, we performed complete electron tomography for GEMS grains. Here we report the sample preparation method we have developed for this study, and the preliminary results.
Widmer, W R; Buckwalter, K A; Fessler, J F; Hill, M A; VanSickle, D C; Ivancevich, S
2000-01-01
Radiographic evaluation of navicular syndrome is problematic because of its inconsistent correlation with clinical signs. Scintigraphy often yields false positive and false negative results and diagnostic ultrasound is of limited value. Therefore, we assessed the use of computed tomography and magnetic resonance imaging in a horse with clinical and radiographic signs of navicular syndrome. Cadaver specimens were examined with spiral computed tomographic and high-field magnetic resonance scanners and images were correlated with pathologic findings. Radiographic changes consisted of bony remodeling, which included altered synovial fossae, increased medullary opacity, cyst formation and shape change. These osseous changes were more striking and more numerous on computed tomographic and magnetic resonance images. They were most clearly defined with computed tomography. Many osseous changes seen with computed tomography and magnetic resonance imaging were not radiographically evident. Histologically confirmed soft tissue alterations of the deep digital flexor tendon, impar ligament and marrow were identified with magnetic resonance imaging, but not with conventional radiography. Because of their multiplanar capability and tomographic nature, computed tomography and magnetic resonance imaging surpass conventional radiography for navicular imaging, facilitating earlier, more accurate diagnosis. Current advances in imaging technology should make these imaging modalities available to equine practitioners in the future.
Wu, Rongli; Watanabe, Yoshiyuki; Satoh, Kazuhiko; Liao, Yen-Peng; Takahashi, Hiroto; Tanaka, Hisashi; Tomiyama, Noriyuki
2018-05-21
The aim of this study was to quantitatively compare the reduction in beam hardening artifact (BHA) and variance in computed tomography (CT) numbers of virtual monochromatic energy (VME) images obtained with 3 dual-energy computed tomography (DECT) systems at a given radiation dose. Five different iodine concentrations were scanned using dual-energy and single-energy (120 kVp) modes. The BHA and CT number variance were evaluated. For higher iodine concentrations, 40 and 80 mgI/mL, BHA on VME imaging was significantly decreased when the energy was higher than 50 keV (P = 0.003) and 60 keV (P < 0.001) for GE, higher than 80 keV (P < 0.001) and 70 keV (P = 0.002) for Siemens, and higher than 40 keV (P < 0.001) and 60 keV (P < 0.001) for Toshiba, compared with single-energy CT imaging. Virtual monochromatic energy imaging can decrease BHA and improve CT number accuracy in different dual-energy computed tomography systems, depending on energy levels and iodine concentrations.
Computed Tomography to Estimate the Representative Elementary Area for Soil Porosity Measurements
Borges, Jaqueline Aparecida Ribaski; Pires, Luiz Fernando; Belmont Pereira, André
2012-01-01
Computed tomography (CT) is a technique that provides images of different solid and porous materials. CT could be an ideal tool to study representative sizes of soil samples because of the noninvasive characteristic of this technique. The scrutiny of such representative elementary sizes (RESs) has been the target of attention of many researchers related to soil physics field owing to the strong relationship between physical properties and size of the soil sample. In the current work, data from gamma-ray CT were used to assess RES in measurements of soil porosity (ϕ). For statistical analysis, a study on the full width at a half maximum (FWHM) of the adjustment of distribution of ϕ at different areas (1.2 to 1162.8 mm2) selected inside of tomographic images was proposed herein. The results obtained point out that samples with a section area corresponding to at least 882.1 mm2 were the ones that provided representative values of ϕ for the studied Brazilian tropical soil. PMID:22666133
Numbenjapon, Nawaporn; Costin, Gertrude; Gilsanz, Vicente; Pitukcheewanont, Pisit
2007-05-01
To determine whether increased thyroid hormones levels have an effect on various bone components (cortical vs cancellous bone). The anthropometric and 3-dimensional quantitative computed tomography (CT) bone measurements, including bone density (BD), cross-sectional area (CSA) of the lumbar spine and femur, and cortical bone area (CBA) of the femur, of 18 children and adolescents with untreated hyperthyroidism were reviewed and compared with those of age-, sex-, and ethnicity-matched historical controls. No significant differences in height, weight, body mass index (BMI), or pubertal staging between patients and controls were found. Cortical BD was significantly lower (P < .001) in children and adolescents with hyperthyroidism compared with historical controls. After adjusting for weight and height, no difference in femur CSA between hyperthyroid children and historical controls was evident. No significant correlations among thyroid hormone levels, antithyroid antibody levels, and cortical BD values were found. As determined by CT, cortical bone is the preferential site of bone loss in children and adolescents with untreated hyperthyroidism.
Postmortem computed tomography (PMCT) and disaster victim identification.
Brough, A L; Morgan, B; Rutty, G N
2015-09-01
Radiography has been used for identification since 1927, and established a role in mass fatality investigations in 1949. More recently, postmortem computed tomography (PMCT) has been used for disaster victim identification (DVI). PMCT offers several advantages compared with fluoroscopy, plain film and dental X-rays, including: speed, reducing the number of on-site personnel and imaging modalities required, making it potentially more efficient. However, there are limitations that inhibit the international adoption of PMCT into routine practice. One particular problem is that due to the fact that forensic radiology is a relatively new sub-speciality, there are no internationally established standards for image acquisition, image interpretation and archiving. This is reflected by the current INTERPOL DVI form, which does not contain a PMCT section. The DVI working group of the International Society of Forensic Radiology and Imaging supports the use of imaging in mass fatality response and has published positional statements in this area. This review will discuss forensic radiology, PMCT, and its role in disaster victim identification.
Artifact Reduction in X-Ray CT Images of Al-Steel-Perspex Specimens Mimicking a Hip Prosthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madhogarhia, Manish; Munshi, P.; Lukose, Sijo
2008-09-26
X-ray Computed Tomography (CT) is a relatively new technique developed in the late 1970's, which enables the nondestructive visualization of the internal structure of objects. Beam hardening caused by the polychromatic spectrum is an important problem in X-ray computed tomography (X-CT). It leads to various artifacts in reconstruction images and reduces image quality. In the present work we are considering the Artifact Reduction in Total Hip Prosthesis CT Scan which is a problem of medical imaging. We are trying to reduce the cupping artifact induced by beam hardening as well as metal artifact as they exist in the CT scanmore » of a human hip after the femur is replaced by a metal implant. The correction method for beam hardening used here is based on a previous work. Simulation study for the present problem includes a phantom consisting of mild steel, aluminium and perspex mimicking the photon attenuation properties of a hum hip cross section with metal implant.« less
Analysis of micro computed tomography images; a look inside historic enamelled metal objects
NASA Astrophysics Data System (ADS)
van der Linden, Veerle; van de Casteele, Elke; Thomas, Mienke Simon; de Vos, Annemie; Janssen, Elsje; Janssens, Koen
2010-02-01
In this study the usefulness of micro-Computed Tomography (µ-CT) for the in-depth analysis of enamelled metal objects was tested. Usually investigations of enamelled metal artefacts are restricted to non-destructive surface analysis or analysis of cross sections after destructive sampling. Radiography, a commonly used technique in the field of cultural heritage studies, is limited to providing two-dimensional information about a three-dimensional object (Lang and Middleton, Radiography of Cultural Material, pp. 60-61, Elsevier-Butterworth-Heinemann, Amsterdam-Stoneham-London, 2005). Obtaining virtual slices and information about the internal structure of these objects was made possible by CT analysis. With this technique the underlying metal work was studied without removing the decorative enamel layer. Moreover visible defects such as cracks were measured in both width and depth and as of yet invisible defects and weaker areas are visualised. All these features are of great interest to restorers and conservators as they allow a view inside these objects without so much as touching them.
Three-Dimensional Computed Tomography as a Method for Finding Die Attach Voids in Diodes
NASA Technical Reports Server (NTRS)
Brahm, E. N.; Rolin, T. D.
2010-01-01
NASA analyzes electrical, electronic, and electromechanical (EEE) parts used in space vehicles to understand failure modes of these components. The diode is an EEE part critical to NASA missions that can fail due to excessive voiding in the die attach. Metallography, one established method for studying the die attach, is a time-intensive, destructive, and equivocal process whereby mechanical grinding of the diodes is performed to reveal voiding in the die attach. Problems such as die attach pull-out tend to complicate results and can lead to erroneous conclusions. The objective of this study is to determine if three-dimensional computed tomography (3DCT), a nondestructive technique, is a viable alternative to metallography for detecting die attach voiding. The die attach voiding in two- dimensional planes created from 3DCT scans was compared to several physical cross sections of the same diode to determine if the 3DCT scan accurately recreates die attach volumetric variability
Estrogens are essential for male pubertal periosteal bone expansion.
Bouillon, Roger; Bex, Marie; Vanderschueren, Dirk; Boonen, Steven
2004-12-01
The skeletal response to estrogen therapy was studied in a 17-yr-old boy with congenital aromatase deficiency. As expected, estrogen therapy (1 mg estradiol valeriate/d from age 17 until 20 yr) normalized total and free testosterone and reduced the rate of bone remodeling. Dual-energy x-ray absorptiometry-assessed areal bone mineral density (BMD) of the lumbar spine and femoral neck increased significantly (by 23% and 14%, respectively), but peripheral quantitative computed tomography at the ultradistal radius revealed no gain of either trabecular or cortical volumetric BMD. The increase in areal BMD was thus driven by an increase in bone size. Indeed, longitudinal bone growth (height, +8.5%) and especially cross-sectional area of the radius (+46%) and cortical thickness (+12%), as measured by peripheral quantitative computed tomography, increased markedly during estrogen treatment. These findings demonstrate that androgens alone are insufficient, whereas estrogens are essential for the process of pubertal periosteal bone expansion typically associated with the male bone phenotype.
System-independent characterization of materials using dual-energy computed tomography
Azevedo, Stephen G.; Martz, Jr., Harry E.; Aufderheide, III, Maurice B.; ...
2016-02-01
In this study, we present a new decomposition approach for dual-energy computed tomography (DECT) called SIRZ that provides precise and accurate material description, independent of the scanner, over diagnostic energy ranges (30 to 200 keV). System independence is achieved by explicitly including a scanner-specific spectral description in the decomposition method, and a new X-ray-relevant feature space. The feature space consists of electron density, ρ e, and a new effective atomic number, Z e, which is based on published X-ray cross sections. Reference materials are used in conjunction with the system spectral response so that additional beam-hardening correction is not necessary.more » The technique is tested against other methods on DECT data of known specimens scanned by diverse spectra and systems. Uncertainties in accuracy and precision are less than 3% and 2% respectively for the (ρ e, Z e) results compared to prior methods that are inaccurate and imprecise (over 9%).« less
Application of conformal transformation to elliptic geometry for electric impedance tomography.
Yilmaz, Atila; Akdoğan, Kurtuluş E; Saka, Birsen
2008-03-01
Electrical impedance tomography (EIT) is a medical imaging modality that is used to compute the conductivity distribution through measurements on the cross-section of a body part. An elliptic geometry model, which defines a more general frame, ensures more accurate results in reconstruction and assessment of inhomogeneities inside. This study provides a link between the analytical solutions defined in circular and elliptical geometries on the basis of the computation of conformal mapping. The results defined as voltage distributions for the homogeneous case in elliptic and circular geometries have been compared with those obtained by the use of conformal transformation between elliptical and well-known circular geometry. The study also includes the results of the finite element method (FEM) as another approach for more complex geometries for the comparison of performance in other complex scenarios for eccentric inhomogeneities. The study emphasizes that for the elliptic case the analytical solution with conformal transformation is a reliable and useful tool for developing insight into more complex forms including eccentric inhomogeneities.
Image analysis of pubic bone for age estimation in a computed tomography sample.
López-Alcaraz, Manuel; González, Pedro Manuel Garamendi; Aguilera, Inmaculada Alemán; López, Miguel Botella
2015-03-01
Radiology has demonstrated great utility for age estimation, but most of the studies are based on metrical and morphological methods in order to perform an identification profile. A simple image analysis-based method is presented, aimed to correlate the bony tissue ultrastructure with several variables obtained from the grey-level histogram (GLH) of computed tomography (CT) sagittal sections of the pubic symphysis surface and the pubic body, and relating them with age. The CT sample consisted of 169 hospital Digital Imaging and Communications in Medicine (DICOM) archives of known sex and age. The calculated multiple regression models showed a maximum R (2) of 0.533 for females and 0.726 for males, with a high intra- and inter-observer agreement. The method suggested is considered not only useful for performing an identification profile during virtopsy, but also for application in further studies in order to attach a quantitative correlation for tissue ultrastructure characteristics, without complex and expensive methods beyond image analysis.
Naitoh, Munetaka; Nakahara, Kino; Suenaga, Yutaka; Gotoh, Kenichi; Kondo, Shintaro; Ariji, Eiichiro
2010-01-01
The most common diagnostic imaging modalities for cross-sectional imaging in dental implant planning are currently cone-beam computed tomography (CBCT) and multislice CT (MSCT). However, clinical differences between CBCT and MSCT in this task have not been fully clarified. In this investigation, the detection of fine anatomical structures in the mandible was assessed and compared between CBCT and MSCT images. The sample consisted of 28 patients who had undergone CBCT and MSCT. The bifid mandibular canal in the mandibular ramus, accessory mental and buccal foramina, and median and lateral lingual bony canals were observed in 2-D images, and the findings were compared between CBCT and MSCT. Four of 19 canals observed in CBCT were not observed in MSCT images. Three accessory mental foramina in 2 patients and 28 lateral lingual bony canals in 18 patients were observed consistently using the two methods. Depiction of fine anatomic features in the mandible associated with neurovascular structures is consistent between CBCT and MSCT images. Copyright 2010 Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xia, Jun; Chatni, Muhammad; Maslov, Konstantin; Wang, Lihong V.
2013-03-01
Due to the wide use of animals for human disease studies, small animal whole-body imaging plays an increasingly important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose metabolic information, leading to higher costs of building dual-modality systems. Even with image coregistration, the spatial resolution of the metabolic imaging modality is not improved. We present a ring-shaped confocal photoacoustic computed tomography (RC-PACT) system that can provide both assessments in a single modality. Utilizing the novel design of confocal full-ring light delivery and ultrasound transducer array detection, RC-PACT provides full-view cross-sectional imaging with high spatial resolution. Scanning along the orthogonal direction provides three-dimensional imaging. While the mouse anatomy was imaged with endogenous hemoglobin contrast, the glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. Through mouse tumor models, we demonstrate that RC-PACT may be a paradigm shifting imaging method for preclinical research.
Rib osteoblastic osteosarcoma in an African hedgehog (Atelerix albiventris).
Benoit-Biancamano, Marie-Odile; D'Anjou, Marc-André; Girard, Christiane; Langlois, Isabelle
2006-07-01
A 3-year-old African hedgehog (Atelerix albiventris) was presented to the Exotic Animal Clinic of the University of Montreal for evaluation of a mass growing on the right thoracic wall. The diagnostic workup, which included helical computed tomography, confirmed the presence of a large mass, originating from the right 7th rib, infiltrating the thoracic wall and cavity. The animal was euthanized due to the poor prognosis. At necropsy, a well-demarcated mass penetrated the thoracic wall and incorporated the 6th to 8th ribs. Cut sections of the tumor were white, glistening, firm, and gritty. Microscopically, it was composed of polyhedral to elongated cells with interspersed trabeculae of osteoid and large areas of coagulative necrosis. On the basis of histopathologic findings, a diagnosis of osteoblastic osteosarcoma was made. To the authors' knowledge, this is the first report of an osteoblastic osteosarcoma on the thoracic wall of an African hedgehog, as well as the first report of the use of helical computed tomography in that species.
King, A M; Posthumus, J; Hammond, G; Sullivan, M
2012-08-01
Evaluation of the tympanic bulla (TB) in cases of otitis media in the rabbit can be a diagnostic challenge, although a feature often associated with the condition is the accumulation of fluid or material within the TB. Randomly selected TB from 40 rabbit cadavers were filled with a water-based, water-soluble jelly lubricant. A dorsoventral radiograph and single computed tomography (CT) slice were taken followed by an ultrasound (US) examination. Image interpretation was performed by blinded operators. The content of each TB was determined (fluid or gas) using each technique and the cadavers were frozen and sectioned for confirmation. CT was the most accurate diagnostic method, but US produced better results than radiography. Given the advantages of US over the other imaging techniques, the results suggest that further work is warranted to determine US applications in the evaluation of the rabbit TB and clinical cases of otitis media in this species. Copyright © 2012 Elsevier Ltd. All rights reserved.
Takakuwa, Kevin M; Halpern, Ethan J; Shofer, Frances S
2011-02-01
The study aimed to examine time and imaging costs of 2 different imaging strategies for low-risk emergency department (ED) observation patients with acute chest pain or symptoms suggestive of acute coronary syndrome. We compared a "triple rule-out" (TRO) 64-section multidetector computed tomography protocol with nuclear stress testing. This was a prospective observational cohort study of consecutive ED patients who were enrolled in our chest pain observation protocol during a 16-month period. Our standard observation protocol included a minimum of 2 sets of cardiac enzymes at least 6 hours apart followed by a nuclear stress test. Once a week, observation patients were offered a TRO (to evaluate for coronary artery disease, thoracic dissection, and pulmonary embolus) multidetector computed tomography with the option of further stress testing for those patients found to have evidence of coronary artery disease. We analyzed 832 consecutive observation patients including 214 patients who underwent the TRO protocol. Mean total length of stay was 16.1 hours for TRO patients, 16.3 hours for TRO plus other imaging test, 22.6 hours for nuclear stress testing, 23.3 hours for nuclear stress testing plus other imaging tests, and 23.7 hours for nuclear stress testing plus TRO (P < .0001 for TRO and TRO + other test compared to stress test ± other test). Mean imaging times were 3.6, 4.4, 5.9, 7.5, and 6.6 hours, respectively (P < .05 for TRO and TRO + other test compared to stress test ± other test). Mean imaging costs were $1307 for TRO patients vs $945 for nuclear stress testing. Triple rule-out reduced total length of stay and imaging time but incurred higher imaging costs. A per-hospital analysis would be needed to determine if patient time savings justify the higher imaging costs. Copyright © 2011 Elsevier Inc. All rights reserved.
Romero-Delmastro, Alejandro; Kadioglu, Onur; Currier, G Frans; Cook, Tanner
2014-08-01
Cone-beam computed tomography images have been previously used for evaluation of alveolar bone levels around teeth before, during, and after orthodontic treatment. Protocols described in the literature have been vague, have used unstable landmarks, or have required several software programs, file conversions, or hand tracings, among other factors that could compromise the precision of the measurements. The purposes of this article are to describe a totally digital tooth-based superimposition method for the quantitative assessment of alveolar bone levels and to evaluate its reliability. Ultra cone-beam computed tomography images (0.1-mm reconstruction) from 10 subjects were obtained from the data pool of the University of Oklahoma; 80 premolars were measured twice by the same examiner and a third time by a second examiner to determine alveolar bone heights and thicknesses before and more than 6 months after orthodontic treatment using OsiriX (version 3.5.1; Pixeo, Geneva, Switzerland). Intraexaminer and interexaminer reliabilities were evaluated, and Dahlberg's formula was used to calculate the error of the measurements. Cross-sectional and longitudinal evaluations of alveolar bone levels were possible using a digital tooth-based superimposition method. The mean differences for buccal alveolar crest heights and thicknesses were below 0.10 mm for the same examiner and below 0.17 mm for all examiners. The ranges of errors for any measurement were between 0.02 and 0.23 mm for intraexaminer errors, and between 0.06 and 0.29 mm for interexaminer errors. This protocol can be used for cross-sectional or longitudinal assessment of alveolar bone levels with low interexaminer and intraexaminer errors, and it eliminates the use of less reliable or less stable landmarks and the need for multiple software programs and image printouts. Standardization of the methods for bone assessment in orthodontics is necessary; this method could be the answer to this need. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Some New Problems on Shells and Thin Structures
NASA Technical Reports Server (NTRS)
Vlasov, V. S.
1949-01-01
Cylindrical shells of arbitrary section, reinforced by longitudinal and transverse members (stringers and ribs) are considered by us, for a sufficiently close spacing of the ribs, as in our previously published papers (references 1 end 2), as thin-walled orthotropic spatial systems at the cross-sections of which only axial (normal and shearing) forces can arise. The longitudinal bending and twisting moments, due to their weak effect on the stress state of the shell, are taken equal to zero. Along the longitudinal sections of the shell there may arise transverse forces in addition to the normal d shearing forces. Under the so-called static assumptions there is taken for the computation model of the shell a thin-walled spatial system consisting along its length (along a generator) of an infinite number of elementary strips capable of bending. Each of these strips is likened to a curved rod operating in each of its sections not only in tension (compression)but also in transverse bending and shear. The interaction between two adjoining transverse strips in the shell expresses itself in the transmission from one strip to the other of only the normal and shearing stresses. The static structure of the computation model here described is shown in figure 1, where the connections through which the normal and shearing stresses transmitted from one transverse strip to smother are indicated schematically by the rods located in the middle surface of the shell. In addition to the static hypothesis we introduce also geometric hypotheses. According to the latter the elongational deformations of the shell along lines parallel to the generator of its middle surface and the shear deformations in the middle surface, as ma+gitudes having . little effect on the state of the fundamental internal forces of the shell, are taken equal to zero. The deformations of the shell in our computational model are such that in the first place the lines of this surface perpendicular to the generator are inextensible at each point end in the second place the angles between the lines of principal curvature (the coordinate lines) which are straight before the deformation remain straight after the deformation.
Bruining, David H; Zimmermann, Ellen M; Loftus, Edward V; Sandborn, William J; Sauer, Cary G; Strong, Scott A
2018-03-01
Computed tomography and magnetic resonance enterography have become routine small bowel imaging tests to evaluate patients with established or suspected Crohn's disease, but the interpretation and use of these imaging modalities can vary widely. A shared understanding of imaging findings, nomenclature, and utilization will improve the utility of these imaging techniques to guide treatment options, as well as assess for treatment response and complications. Representatives from the Society of Abdominal Radiology Crohn's Disease-Focused Panel, the Society of Pediatric Radiology, the American Gastroenterological Association, and other experts, systematically evaluated evidence for imaging findings associated with small bowel Crohn's disease enteric inflammation and established recommendations for the evaluation, interpretation, and use of computed tomography and magnetic resonance enterography in small bowel Crohn's disease. This work makes recommendations for imaging findings that indicate small bowel Crohn's disease, how inflammatory small bowel Crohn's disease and its complications should be described, elucidates potential extra-enteric findings that may be seen at imaging, and recommends that cross-sectional enterography should be performed at diagnosis of Crohn's disease and considered for small bowel Crohn's disease monitoring paradigms. A useful morphologic construct describing how imaging findings evolve with disease progression and response is described, and standard impressions for radiologic reports that convey meaningful information to gastroenterologists and surgeons are presented. © 2018, RSNA, AGA Institute, and Society of Abdominal Radiology This article is being published jointly in Radiology and Gastroenterology.
Simulation of computed tomography dose based on voxel phantom
NASA Astrophysics Data System (ADS)
Liu, Chunyu; Lv, Xiangbo; Li, Zhaojun
2017-01-01
Computed Tomography (CT) is one of the preferred and the most valuable imaging tool used in diagnostic radiology, which provides a high-quality cross-sectional image of the body. It still causes higher doses of radiation to patients comparing to the other radiological procedures. The Monte-Carlo method is appropriate for estimation of the radiation dose during the CT examinations. The simulation of the Computed Tomography Dose Index (CTDI) phantom was developed in this paper. Under a similar conditions used in physical measurements, dose profiles were calculated and compared against the measured values that were reported. The results demonstrate a good agreement between the calculated and the measured doses. From different CT exam simulations using the voxel phantom, the highest absorbed dose was recorded for the lung, the brain, the bone surface. A comparison between the different scan type shows that the effective dose for a chest scan is the highest one, whereas the effective dose values during abdomen and pelvis scan are very close, respectively. The lowest effective dose resulted from the head scan. Although, the dose in CT is related to various parameters, such as the tube current, exposure time, beam energy, slice thickness and patient size, this study demonstrates that the MC simulation is a useful tool to accurately estimate the dose delivered to any specific organs for patients undergoing the CT exams and can be also a valuable technique for the design and the optimization of the CT x-ray source.
Bruining, David H; Zimmermann, Ellen M; Loftus, Edward V; Sandborn, William J; Sauer, Cary G; Strong, Scott A
2018-03-01
Computed tomography and magnetic resonance enterography have become routine small bowel imaging tests to evaluate patients with established or suspected Crohn's disease, but the interpretation and use of these imaging modalities can vary widely. A shared understanding of imaging findings, nomenclature, and utilization will improve the utility of these imaging techniques to guide treatment options, as well as assess for treatment response and complications. Representatives from the Society of Abdominal Radiology Crohn's Disease-Focused Panel, the Society of Pediatric Radiology, the American Gastroenterological Association, and other experts, systematically evaluated evidence for imaging findings associated with small bowel Crohn's disease enteric inflammation and established recommendations for the evaluation, interpretation, and use of computed tomography and magnetic resonance enterography in small bowel Crohn's disease. This work makes recommendations for imaging findings that indicate small bowel Crohn's disease, how inflammatory small bowel Crohn's disease and its complications should be described, elucidates potential extra-enteric findings that may be seen at imaging, and recommends that cross-sectional enterography should be performed at diagnosis of Crohn's disease and considered for small bowel Crohn's disease monitoring paradigms. A useful morphologic construct describing how imaging findings evolve with disease progression and response is described, and standard impressions for radiologic reports that convey meaningful information to gastroenterologists and surgeons are presented. Copyright © 2018 AGA Institute, RSNA, and Society of Abdominal Radiology. Published by Elsevier Inc. All rights reserved.
CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... CT scan makes detailed pictures of the body very quickly. The test may help look for: An abscess ...
CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... Healing problems or scar tissue following surgery A CT scan may also be used to guide a surgeon ...
Marchiori, Adriano; da Silva, Ieverton Cleiton Correia; de Albuquerque Bonelli, Marília; de Albuquerque Zanotti, Luciana Carla Rameh; Siqueira, Daniel B; Zanotti, Alexandre Pinheiro; Costa, Fabiano Séllos
2015-06-01
Computed tomography is a sensitive and highly applicable technique for determining the degree of radiographic attenuation of the hepatic parenchyma. Radiodensity measurements of the liver can help in the diagnosis of hepatic lipidosis in humans and animals. The objective was to investigate the presence of hepatic lipidosis in captive red-footed tortoises (Chelonoidis carbonaria) using computed tomography. Computed tomography was performed in 10 male red-footed tortoises. Mean radiographic attenuation values for the hepatic parenchyma were 11.2±3.0 Hounsfield units (HU). Seven red-footed tortoises had values lower than 20 HU, which is compatible with C. carbonaria hepatic lipidosis. These results allowed an early diagnosis of the hepatic changes and suggested corrective measures regarding feeding and management protocols.
Multidetector Computed Tomography for Congenital Anomalies of the Aortic Arch: Vascular Rings.
García-Guereta, Luis; García-Cerro, Estefanía; Bret-Zurita, Montserrat
2016-07-01
The development of multidetector computed tomography has triggered a revolution in the study of the aorta and other large vessels and has replaced angiography in the diagnosis of congenital anomalies of the aortic arch, particularly vascular rings. The major advantage of multidetector computed tomography is that it permits clear 3-dimensional assessment of not only vascular structures, but also airway and esophageal compression. The current update aims to summarize the embryonic development of the aortic arch and the developmental anomalies leading to vascular ring formation and to discuss the current diagnostic and therapeutic role of multidetector computed tomography in this field. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Liu, Tin Yan Alvin; Han, Ian C; Goldberg, Morton F; Linz, Marguerite O; Chen, Connie J; Scott, Adrienne W
2018-05-01
Incontinentia pigmenti (IP) is a rare, X-linked dominant disease with potentially severe ocular complications that predominantly affect the peripheral retina. However, little is known about its effects on the macula. To describe the structural and vascular abnormalities observed in the maculas of patients with IP and to correlate these findings with peripheral pathologies. Prospective, cross-sectional study at Wilmer Eye Institute, Johns Hopkins University. Five participants with a clinical diagnosis of IP were included and underwent multimodal imaging with ultra-wide-field fluorescein angiography (FA), spectral-domain optical coherence tomography (OCT), and OCT angiography. The structural and vascular abnormalities observed on spectral-domain OCT and OCT angiography and their correlation with peripheral pathologies seen on ultra-wide-field FA. A total of 9 eyes from 5 patients (median age, 20.5 years; range, 8.4-54.2 years) were included. Median Snellen visual acuity was 20/32 (range, 20/16 to 20/63). ultra-wide-field FA-identified retinal vascular abnormalities in all 7 eyes in which FA was obtained. These abnormalities included microaneurysms, areas of nonperfusion, and vascular anastomoses, most of which were peripheral to the standard view of 30° FA with peripheral sweeps. Structural abnormalities were observed in 6 eyes on spectral-domain OCT, including inner retinal thinning and irregularities in the outer plexiform layer. Optical coherence tomography angiography abnormalities were noted in all 9 eyes, including decreased vascular density, abnormal vascular loops, and flow loss in the superficial and deep plexuses, which corresponded to areas of retinal thinning on spectral-domain OCT. Although our study is limited by the small sample size, the findings suggest that multimodal imaging is useful for detecting structural and vascular abnormalities that may not be apparent on ophthalmoscopy in patients with IP. Macular pathologies, especially a decrease in vascular density on OCT angiography, are common. Further studies are needed to characterize further the association between macular and peripheral abnormalities in patients with IP.
Contrast Agents for Micro-Computed Tomography of Microdamage in Bone
2011-01-01
solution from DI water (or PBS). For the second model, a 5 mm cube of cortical bone tissue was embedded in polymethylmethacrylate and sectioned...radiography1 and as a radiopacifer in polymethylmethacrylate bone cement.2 Current commercial products for either application use microscale BaSO4 particles... polymethylmethacrylate bone cement (Lewis, 1997). The objective of this study was to non-destructively and three-dimensionally image microdamage
Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyoung; Kwon, Ohin; Seo, Jin Keun; Lee, June-Yub; Baek, Woon Sik
2003-07-07
In magnetic resonance electrical impedance tomography (MREIT), we try to reconstruct a cross-sectional resistivity (or conductivity) image of a subject. When we inject a current through surface electrodes, it generates a magnetic field. Using a magnetic resonance imaging (MRI) scanner, we can obtain the induced magnetic flux density from MR phase images of the subject. We use recessed electrodes to avoid undesirable artefacts near electrodes in measuring magnetic flux densities. An MREIT image reconstruction algorithm produces cross-sectional resistivity images utilizing the measured internal magnetic flux density in addition to boundary voltage data. In order to develop such an image reconstruction algorithm, we need a three-dimensional forward solver. Given injection currents as boundary conditions, the forward solver described in this paper computes voltage and current density distributions using the finite element method (FEM). Then, it calculates the magnetic flux density within the subject using the Biot-Savart law and FEM. The performance of the forward solver is analysed and found to be enough for use in MREIT for resistivity image reconstructions and also experimental designs and validations. The forward solver may find other applications where one needs to compute voltage, current density and magnetic flux density distributions all within a volume conductor.
Kawasaki, Yoshiteru; Hirano, Tetsuya; Miyatake, Katsutoshi; Fujii, Koji; Takeda, Yoshitsugu
2014-07-01
Coracoid base fracture accompanied by acromioclavicular joint dislocation with intact coracoclavicular ligaments is a rare injury. Generally, an open reduction with screw fixation is the first treatment choice, as it protects the important structures around the coracoid process. This report presents a new technique of screw fixation for coracoid base fracture and provides anatomic information on cross-sectional size of the coracoid base obtained by computed tomography (CT). An axial image of the coracoid base was visualized over the neck of the scapula, and a guidewire was inserted into this circle under fluoroscopic guidance. The wire was inserted easily into the neck of scapula across the coracoid base fracture with imaging in only 1 plane. In addition, 25 measurements of the coracoid base were made in 25 subjects on axial CT images. Average length of the long and short axes at the thinnest part of the coracoid base was 13.9 ± 2.0 mm (range 10.6-17.0) and 10.5 ± 2.2 mm (6.6-15.1), respectively. This new screw fixation technique and measurement data on the coracoid base may be beneficial for safety screw fixation of coracoid base fracture.
Quaranta, Alessandro; DʼIsidoro, Orlando; Bambini, Fabrizio; Putignano, Angelo
2016-02-01
To compare the available potential bone-implant contact (PBIC) area of standard and short dental implants by micro-computed tomography (μCT) assessment. Three short implants with different diameters (4.5 × 6 mm, 4.1 × 7 mm, and 4.1 × 6 mm) and 2 standard implants (3.5 × 10 mm and 3.3 × 9 mm) with diverse design and surface features were scanned with μCT. Cross-sectional images were obtained. Image data were manually processed to find the plane that corresponds to the most coronal contact point between the crestal bone and implant. The available PBIC was calculated for each sample. Later on, the cross-sectional slices were processed by a 3-dimensional (3D) software, and 3D images of each sample were used for descriptive analysis and display the microtopography and macrotopography. The wide-diameter short implant (4.5 × 6 mm) showed the higher PBIC (210.89 mm) value followed by the standard (178.07 mm and 185.37 mm) and short implants (130.70 mm and 110.70 mm). Wide-diameter short implants show a surface area comparable with standard implants. Micro-CT analysis is a promising technique to evaluate surface area in dental implants with different macrodesign, microdesign, and surface features.
Kushnir, Vladimir M; Wani, Sachin B; Fowler, Kathryn; Menias, Christine; Varma, Rakesh; Narra, Vamsi; Hovis, Christine; Murad, Faris M; Mullady, Daniel K; Jonnalagadda, Sreenivasa S; Early, Dayna S; Edmundowicz, Steven A; Azar, Riad R
2013-04-01
There are limited data comparing imaging modalities in the diagnosis of pancreas divisum. We aimed to: (1) evaluate the sensitivity of endoscopic ultrasound (EUS), magnetic resonance cholangiopancreatography (MRCP), and multidetector computed tomography (MDCT) for pancreas divisum; and (2) assess interobserver agreement (IOA) among expert radiologists for detecting pancreas divisum on MDCT and MRCP. For this retrospective cohort study, we identified 45 consecutive patients with pancreaticobiliary symptoms and pancreas divisum established by endoscopic retrograde pancreatography who underwent EUS and cross-sectional imaging. The control group was composed of patients without pancreas divisum who underwent endoscopic retrograde pancreatography and cross-sectional imaging. The sensitivity of EUS for pancreas divisum was 86.7%, significantly higher than the sensitivity reported in the medical records for MDCT (15.5%) or MRCP (60%) (P < 0.001 for each). On review by expert radiologists, the sensitivity of MDCT increased to 83.3% in cases where the pancreatic duct was visualized, with fair IOA (κ = 0.34). Expert review of MRCPs did not identify any additional cases of pancreas divisum; IOA was moderate (κ = 0.43). Endoscopic ultrasound is a sensitive test for diagnosing pancreas divisum and is superior to MDCT and MRCP. Review of MDCT studies by expert radiologists substantially raises its sensitivity for pancreas divisum.
Cross sectional imaging of post partum headache and seizures.
Hiremath, Rudresh; Mundaganur, Praveen; Sonwalkar, Pradeep; N S, Vishal; G S, Narendra; P, Sanjay
2014-12-01
To evaluate spectrum of causes & their characteristic findings in peripartum head ache and seizures on computed tomography & magnetic resonance imaging. Forty patients with complaints of peripartum headache and seizures underwent cross sectional imaging with computed tomography and magnetic resonance imaging during period of June 2011 to May 2012. Age group of subjects in this study was 18 to 38 y. Out of 40 patients 15 had history of eclampsia and remaining 25 patients were normotensive. Subjects with complaints of headache and seizures after six weeks of delivery were excluded from the study. Intravenous contrast was administered in cases with diagnostic dilemma. All results were reported and informed to the referring physicians on priority bases. Nine patients with peripartum headache and seizures revealed no brain parenchymal or cerebral vascular abnormalities on imaging. Eleven patients with a history of eclampsia showed features of eclamptic encephalopathy. Out 40 patients, 17 patients revealed cortical venous thrombosis with 14 patients showing parenchymal changes. One patient each showed features of meningoencephalitis, ischemic watershed territory infarct & region of gliosis. All results were analysed & tabulated. Eclamptic encephalopathy and cortical venous thrombosis are the major causes for post partum headache and seizures. Rational use of CT & MRI in the early course of the disease helps in characterizing the lesion and providing the appropriate treatment.
Determination of Poisson Ratio of Bovine Extraocular Muscle by Computed X-Ray Tomography
Kim, Hansang; Yoo, Lawrence; Shin, Andrew; Demer, Joseph L.
2013-01-01
The Poisson ratio (PR) is a fundamental mechanical parameter that approximates the ratio of relative change in cross sectional area to tensile elongation. However, the PR of extraocular muscle (EOM) is almost never measured because of experimental constraints. The problem was overcome by determining changes in EOM dimensions using computed X-ray tomography (CT) at microscopic resolution during tensile elongation to determine transverse strain indicated by the change in cross-section. Fresh bovine EOM specimens were prepared. Specimens were clamped in a tensile fixture within a CT scanner (SkyScan, Belgium) with temperature and humidity control and stretched up to 35% of initial length. Sets of 500–800 contiguous CT images were obtained at 10-micron resolution before and after tensile loading. Digital 3D models were then built and discretized into 6–8-micron-thick elements. Changes in longitudinal thickness of each microscopic element were determined to calculate strain. Green's theorem was used to calculate areal strain in transverse directions orthogonal to the stretching direction. The mean PR from discretized 3D models for every microscopic element in 14 EOM specimens averaged 0.457 ± 0.004 (SD). The measured PR of bovine EOM is thus near the limit of incompressibility. PMID:23484091
NASA Astrophysics Data System (ADS)
Poon, Eric; Thondapu, Vikas; Chin, Cheng; Scheerlinck, Cedric; Zahtila, Tony; Mamon, Chris; Nguyen, Wilson; Ooi, Andrew; Barlis, Peter
2016-11-01
Blood flow dynamics directly influence biology of the arterial wall, and are closely linked with the development of coronary artery disease. Computational fluid dynamics (CFD) solvers may be employed to analyze the hemodynamic environment in patient-specific reconstructions of coronary arteries. Although coronary X-ray angiography (CA) is the most common medical imaging modality for 3D arterial reconstruction, models reconstructed from CA assume a circular or elliptical cross-sectional area. This limitation can be overcome with a reconstruction technique fusing CA with intravascular optical coherence tomography (OCT). OCT scans the interior of an artery using near-infrared light, achieving a 10-micron resolution and providing unprecedented detail of vessel geometry. We compared 3D coronary artery bifurcation models generated using CA alone versus OCT-angiography fusion. The model reconstructed from CA alone is unable to identify the detailed geometrical variations of diseased arteries, and also under-estimates the cross-sectional vessel area compared to OCT-angiography fusion. CFD was performed in both models under pulsatile flow in order to identify and compare regions of low wall shear stress, a hemodynamic parameter directly linked with progression of atherosclerosis. Supported by ARC LP150100233 and VLSCI VR0210.
Cross Sectional Imaging of Solitary Lesions of the Neurocranium.
Schäfer, Max-Ludwig; Koch, Arend; Streitparth, Florian; Wiener, Edzard
2017-12-01
Background Although a wide range of processes along the neurocranium are of a benign nature, there are often difficulties in the differential diagnosis. Method In the review CT/MRI scans of the head were evaluated retrospectively regarding solitary lesions along the neurocranium. The majority of the lesions were histologically proven. Results The purpose of the review is to present typical pathologies of the neurocranium and provide a systematic overview based on 12 entities, their locations, prevalence and radiological characteristics. Conclusion Processes, which primarily originate from the neurocranium have to be differentiated from secondary processes infiltrating the neurocranium. For this important diagnostic feature, MRI is typically essential, while the definitive diagnosis is often made on the basis of the medical history and the typical appearance on computer tomography. Key Points · There are often difficulties in the precise differential diagnosis of solitary lesions along the neurocranium. Typical solitary pathologies of the neurocranium based on 12 entities were presented. Both magnetic resonance imaging and computed tomography are often essential for an exact differential diagnosis.. Citation Format · Schäfer M, Koch A, Streitparth F et al. Cross Sectional Diagnosis of Solitary Lesions of the Neurocranium. Fortschr Röntgenstr 2017; 189: 1135 - 1144. © Georg Thieme Verlag KG Stuttgart · New York.
Soft Tissue Alterations in Esthetic Postextraction Sites: A 3-Dimensional Analysis.
Chappuis, V; Engel, O; Shahim, K; Reyes, M; Katsaros, C; Buser, D
2015-09-01
Dimensional alterations of the facial soft and bone tissues following tooth extraction in the esthetic zone play an essential role to achieve successful outcomes in implant therapy. This prospective study is the first to investigate the interplay between the soft tissue dimensions and the underlying bone anatomy during an 8-wk healing period. The analysis is based on sequential 3-dimensional digital surface model superimpositions of the soft and bone tissues using digital impressions and cone beam computed tomography during an 8-wk healing period. Soft tissue thickness in thin and thick bone phenotypes at extraction was similar, averaging 0.7 mm and 0.8 mm, respectively. Interestingly, thin bone phenotypes revealed a 7-fold increase in soft tissue thickness after an 8-wk healing period, whereas in thick bone phenotypes, the soft tissue dimensions remained unchanged. The observed spontaneous soft tissue thickening in thin bone phenotypes resulted in a vertical soft tissue loss of only 1.6 mm, which concealed the underlying vertical bone resorption of 7.5 mm. Because of spontaneous soft tissue thickening, no significant differences were detected in the total tissue loss between thin and thick bone phenotypes at 2, 4, 6, and 8 wk. More than 51% of these dimensional alterations occurred within 2 wk of healing. Even though the observed spontaneous soft tissue thickening in thin bone phenotypes following tooth extraction conceals the pronounced underlying bone resorption pattern by masking the true bone deficiency, spontaneous soft tissue thickening offers advantages for subsequent bone regeneration and implant therapies in sites with high esthetic demand (Clinicaltrials.gov NCT02403700). © International & American Associations for Dental Research.
Comprehensive Digital Imaging Network Project At Georgetown University Hospital
NASA Astrophysics Data System (ADS)
Mun, Seong K.; Stauffer, Douglas; Zeman, Robert; Benson, Harold; Wang, Paul; Allman, Robert
1987-10-01
The radiology practice is going through rapid changes due to the introduction of state-of-the-art computed based technologies. For the last twenty years we have witnessed the introduction of many new medical diagnostic imaging systems such as x-ray computed tomo-graphy, digital subtraction angiography (DSA), computerized nuclear medicine, single pho-ton emission computed tomography (SPECT), positron emission tomography (PET) and more re-cently, computerized digital radiography and nuclear magnetic resonance imaging (MRI). Other than the imaging systems, there has been a steady introduction of computed based information systems for radiology departments and hospitals.
Newton, Peter O; Hahn, Gregory W; Fricka, Kevin B; Wenger, Dennis R
2002-04-15
A retrospective radiographic review of 31 patients with congenital spine abnormalities who underwent conventional radiography and advanced imaging studies was conducted. To analyze the utility of three-dimensional computed tomography with multiplanar reformatted images for congenital spine anomalies, as compared with plain radiographs and axial two-dimensional computed tomography imaging. Conventional radiographic imaging for congenital spine disorders often are difficult to interpret because of the patient's small size, the complexity of the disorder, a deformity not in the plane of the radiographs, superimposed structures, and difficulty in forming a mental three-dimensional image. Multiplanar reformatted and three-dimensional computed tomographic imaging offers many potential advantages for defining congenital spine anomalies including visualization of the deformity in any plane, from any angle, with the overlying structures subtracted. The imaging studies of patients who had undergone a three-dimensional computed tomography for congenital deformities of the spine between 1992 and 1998 were reviewed (31 cases). All plain radiographs and axial two-dimensional computed tomography images performed before the three-dimensional computed tomography were reviewed and the findings documented. This was repeated for the three-dimensional reconstructions and, when available, the multiplanar reformatted images (15 cases). In each case, the utility of the advanced imaging was graded as one of the following: Grade A (substantial new information obtained), Grade B (confirmatory with improved visualization and understanding of the deformity), and Grade C (no added useful information obtained). In 17 of 31 cases, the multiplanar reformatted and three-dimensional images allowed identification of unrecognized malformations. In nine additional cases, the advanced imaging was helpful in better visualizing and understanding previously identified deformities. In five cases, no new information was gained. The standard and curved multiplanar reformatted images were best for defining the occiput-C1-C2 anatomy and the extent of segmentation defects. The curved multiplanar reformatted images were especially helpful in keeping the spine from "coming in" and "going out" of the plane of the image when there was significant spine deformity in the sagittal or coronal plane. The three-dimensional reconstructions proved valuable in defining failures of formation. Advanced computed tomography imaging (three-dimensional computed tomography and curved/standard multiplanar reformatted images) allows better definition of congenital spine anomalies. More than 50% of the cases showed additional abnormalities not appreciated on plain radiographs or axial two-dimensional computed tomography images. Curved multiplanar reformatted images allowed imaging in the coronal and sagittal planes of the entire deformity.
Delpiano, J; Pizarro, L; Peddie, C J; Jones, M L; Griffin, L D; Collinson, L M
2018-04-26
Integrated array tomography combines fluorescence and electron imaging of ultrathin sections in one microscope, and enables accurate high-resolution correlation of fluorescent proteins to cell organelles and membranes. Large numbers of serial sections can be imaged sequentially to produce aligned volumes from both imaging modalities, thus producing enormous amounts of data that must be handled and processed using novel techniques. Here, we present a scheme for automated detection of fluorescent cells within thin resin sections, which could then be used to drive automated electron image acquisition from target regions via 'smart tracking'. The aim of this work is to aid in optimization of the data acquisition process through automation, freeing the operator to work on other tasks and speeding up the process, while reducing data rates by only acquiring images from regions of interest. This new method is shown to be robust against noise and able to deal with regions of low fluorescence. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
... Computed tomography scan - heart; Calcium scoring; Multi-detector CT scan - heart; Electron beam computed tomography - heart; Agatston ... table that slides into the center of the CT scanner. You will lie on your back with ...
Carlton, Holly D; Elmer, John W; Li, Yan; Pacheco, Mario; Goyal, Deepak; Parkinson, Dilworth Y; MacDowell, Alastair A
2016-04-13
Synchrotron radiation micro-tomography (SRµT) is a non-destructive three-dimensional (3D) imaging technique that offers high flux for fast data acquisition times with high spatial resolution. In the electronics industry there is serious interest in performing failure analysis on 3D microelectronic packages, many which contain multiple levels of high-density interconnections. Often in tomography there is a trade-off between image resolution and the volume of a sample that can be imaged. This inverse relationship limits the usefulness of conventional computed tomography (CT) systems since a microelectronic package is often large in cross sectional area 100-3,600 mm(2), but has important features on the micron scale. The micro-tomography beamline at the Advanced Light Source (ALS), in Berkeley, CA USA, has a setup which is adaptable and can be tailored to a sample's properties, i.e., density, thickness, etc., with a maximum allowable cross-section of 36 x 36 mm. This setup also has the option of being either monochromatic in the energy range ~7-43 keV or operating with maximum flux in white light mode using a polychromatic beam. Presented here are details of the experimental steps taken to image an entire 16 x 16 mm system within a package, in order to obtain 3D images of the system with a spatial resolution of 8.7 µm all within a scan time of less than 3 min. Also shown are results from packages scanned in different orientations and a sectioned package for higher resolution imaging. In contrast a conventional CT system would take hours to record data with potentially poorer resolution. Indeed, the ratio of field-of-view to throughput time is much higher when using the synchrotron radiation tomography setup. The description below of the experimental setup can be implemented and adapted for use with many other multi-materials.
Evaluation of 3D airway imaging of obstructive sleep apnea with cone-beam computed tomography.
Ogawa, Takumi; Enciso, Reyes; Memon, Ahmed; Mah, James K; Clark, Glenn T
2005-01-01
This study evaluates the use of cone-beam Computer Tomography (CT) for imaging the upper airway structure of Obstructive Sleep Apnea (OSA) patients. The total airway volume and the anteroposterior dimension of oropharyngeal airway showed significant group differences between OSA and gender-matched controls, so if we increase sample size these measurements may distinguish the two groups. We demonstrate the utility of diagnosis of anatomy with the 3D airway imaging with cone-beam Computed Tomography.
Cone beam computed tomography in Endodontics - a review.
Patel, S; Durack, C; Abella, F; Shemesh, H; Roig, M; Lemberg, K
2015-01-01
Cone beam computed tomography (CBCT) produces undistorted three-dimensional information of the maxillofacial skeleton, including the teeth and their surrounding tissues with a lower effective radiation dose than computed tomography. The aim of this paper is to: (i) review the current literature on the applications and limitations of CBCT; (ii) make recommendations for the use of CBCT in Endodontics; (iii) highlight areas of further research of CBCT in Endodontics. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Siegel, Marilyn J; Kaza, Ravi K; Bolus, David N; Boll, Daniel T; Rofsky, Neil M; De Cecco, Carlo N; Foley, W Dennis; Morgan, Desiree E; Schoepf, U Joseph; Sahani, Dushyant V; Shuman, William P; Vrtiska, Terri J; Yeh, Benjamin M; Berland, Lincoln L
This is the first of a series of 4 white papers that represent Expert Consensus Documents developed by the Society of Computed Body Tomography and Magnetic Resonance through its task force on dual-energy computed tomography (DECT). This article, part 1, describes the fundamentals of the physical basis for DECT and the technology of DECT and proposes uniform nomenclature to account for differences in proprietary terms among manufacturers.
[Cardiac computed tomography: new applications of an evolving technique].
Martín, María; Corros, Cecilia; Calvo, Juan; Mesa, Alicia; García-Campos, Ana; Rodríguez, María Luisa; Barreiro, Manuel; Rozado, José; Colunga, Santiago; de la Hera, Jesús M; Morís, César; Luyando, Luis H
2015-01-01
During the last years we have witnessed an increasing development of imaging techniques applied in Cardiology. Among them, cardiac computed tomography is an emerging and evolving technique. With the current possibility of very low radiation studies, the applications have expanded and go further coronariography In the present article we review the technical developments of cardiac computed tomography and its new applications. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.
Koutoulidis, Vasilios; Koureas, Andreas; Moulopoulos, Lia; Gouliamos, Athanasios
2009-01-01
An 18-year-old male patient presented with chronic nonspecific pain of three months located at his left proximal tibia. The patient was admitted to our department for plain X-ray, computed tomography and magnetic resonance imaging examination. Plain X-ray and computed tomography revealed a geographic lytic lesion at the medial aspect of the proximal tibia. Biopsy of the lesion showed telangiectatic osteosarcoma. Image findings of all modalities are presented. PMID:19918488
Accuracy and Precision of Radioactivity Quantification in Nuclear Medicine Images
Frey, Eric C.; Humm, John L.; Ljungberg, Michael
2012-01-01
The ability to reliably quantify activity in nuclear medicine has a number of increasingly important applications. Dosimetry for targeted therapy treatment planning or for approval of new imaging agents requires accurate estimation of the activity in organs, tumors, or voxels at several imaging time points. Another important application is the use of quantitative metrics derived from images, such as the standard uptake value commonly used in positron emission tomography (PET), to diagnose and follow treatment of tumors. These measures require quantification of organ or tumor activities in nuclear medicine images. However, there are a number of physical, patient, and technical factors that limit the quantitative reliability of nuclear medicine images. There have been a large number of improvements in instrumentation, including the development of hybrid single-photon emission computed tomography/computed tomography and PET/computed tomography systems, and reconstruction methods, including the use of statistical iterative reconstruction methods, which have substantially improved the ability to obtain reliable quantitative information from planar, single-photon emission computed tomography, and PET images. PMID:22475429
SPECT imaging in evaluating extent of malignant external otitis: case report
DOE Office of Scientific and Technical Information (OSTI.GOV)
English, R.J.; Tu'Meh, S.S.; Piwnica-Worms, D.
1987-03-01
Otitis externa, a benign inflammatory process of the external auditory canal, is general responsive to local therapy. Some patients however, develop a less controllable disease leading to chondritis and osteomyelitis of the base of the skull. The direct invasive characteristic of the disease has led to the descriptive term malignant external otitis (MEO), more appropriately called necrotizing or invasive external otitis. Malignant external otitis is caused by an aggressive pseudomonas or proteus infection that almost exclusively occurs in elderly diabetic patients. The primary imaging modalities previously used in the diagnosis and evaluation of MEO were standard planar scintigraphic techniques withmore » technetium-99M (/sup 99m/Tc) bone agents and gallium-67 (/sup 67/Ga), and pluridirectional tomography. The advent of high resolution computed tomography (CT) effectively allowed demonstration of the soft tissue extension and bone destruction associated with MEO, but still suffered from the low sensitivity constraints of all radiographic techniques in determining early inflammatory bone involvement. Recent work suggests that scintigraphic detection of MEO with /sup 99m/Tc-MDP and /sup 67/Ga, combined with the cross-sectional resolution of single photon emission computed tomography (SPECT) may be of value in planning treatment of this inflammatory condition.« less
Meaning of Interior Tomography
Wang, Ge; Yu, Hengyong
2013-01-01
The classic imaging geometry for computed tomography is for collection of un-truncated projections and reconstruction of a global image, with the Fourier transform as the theoretical foundation that is intrinsically non-local. Recently, interior tomography research has led to theoretically exact relationships between localities in the projection and image spaces and practically promising reconstruction algorithms. Initially, interior tomography was developed for x-ray computed tomography. Then, it has been elevated as a general imaging principle. Finally, a novel framework known as “omni-tomography” is being developed for grand fusion of multiple imaging modalities, allowing tomographic synchrony of diversified features. PMID:23912256
Computed tomography, anatomy and morphometry of the lower extremity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoogewoud, H.M.; Rager, G.; Burch, H.
1989-01-01
This book presents up-to-date information on CT imaging of the lower extremity. It includes an atlas correlating new, high-resolution CT scans with identical thin anatomical slices covering the lower extremity from the crista iliaca to the planta pedis. Additional figures, including CT arthrograms of the hip, knee and ankle, depict the anatomy in detail The technique and clinical relevance of CT measurements especially in orthopedic surgery are also clearly explained. Of special interest is the new method developed by the authors for assessing the coverage of the femoral head. The special morphometry software and a 3D program allowing representation inmore » space make it possible to precisely and accurately measure the coverage with normal CT scans of the hip.« less
Vanikar, A.V.; Patel, R.D.; Nigam, L. K.; Trivedi, H. L.
2015-01-01
Primary renal squamous cell carcinoma is a very rare malignancy of the upper urinary tract. Most patients have history of chronic urolithiasis, analgesics abuse, radiotherapy or infection. Co-existence of SCC with xanthogranulomatous pyelonephritis is exceedingly rare with only few reports in the literature. We report a case of a 60-year-old male presented with right flank pain and mild tenderness of abdomen. Computed tomography of the abdomen revealed gross hydronephrosis with parenchymal thinning and irregular thick enhancing wall of pelvicalyceal system with multiple calculi in right kidney. Right renal vein appeared distended, filled with hypo dense material. Right nephrectomy was performed and sent for pathological examination. Histological evaluation revealed keratinizing squamous cell carcinoma with infiltration of renal vein and xanthogranulomatous pyelonephritis. PMID:26816904
Removing Contamination-Induced Reconstruction Artifacts from Cryo-electron Tomograms
Fernandez, Jose-Jesus; Laugks, Ulrike; Schaffer, Miroslava; Bäuerlein, Felix J.B.; Khoshouei, Maryam; Baumeister, Wolfgang; Lucic, Vladan
2016-01-01
Imaging of fully hydrated, vitrified biological samples by electron tomography yields structural information about cellular protein complexes in situ. Here we present a computational procedure that removes artifacts of three-dimensional reconstruction caused by contamination present in samples during imaging by electron microscopy. Applying the procedure to phantom data and electron tomograms of cellular samples significantly improved the resolution and the interpretability of tomograms. Artifacts caused by surface contamination associated with thinning by focused ion beam, as well as those arising from gold fiducial markers and from common, lower contrast contamination, could be removed. Our procedure is widely applicable and is especially suited for applications that strive to reach a higher resolution and involve the use of recently developed, state-of-the-art instrumentation. PMID:26743046
Karki, S; Pokharel, M; Suwal, S; Poudel, R
Background The exact role of High resolution computed tomography (HRCT) temporal bone in preoperative assessment of Chronic suppurative otitis media atticoantral disease still remains controversial. Objective To evaluate the role of high resolution computed tomography temporal bone in Chronic suppurative otitis media atticoantral disease and to compare preoperative computed tomographic findings with intra-operative findings. Method Prospective, analytical study conducted among 65 patients with chronic suppurative otitis media atticoantral disease in Department of Radiodiagnosis, Kathmandu University Dhulikhel Hospital between January 2015 to July 2016. The operative findings were compared with results of imaging. The parameters of comparison were erosion of ossicles, scutum, facial canal, lateral semicircular canal, sigmoid and tegmen plate along with extension of disease to sinus tympani and facial recess. Sensitivity, specificity, negative predictive value, positive predictive values were calculated. Result High resolution computed tomography temporal bone offered sensitivity (Se) and specificity (Sp) of 100% for visualization of sigmoid and tegmen plate erosion. The performance of HRCT in detecting malleus (Se=100%, Sp=95.23%), incus (Se=100%,Sp=80.48%) and stapes (Se=96.55%, Sp=71.42%) erosion was excellent. It offered precise information about facial canal erosion (Se=100%, Sp=75%), scutum erosion (Se=100%, Sp=96.87%) and extension of disease to facial recess and sinus tympani (Se=83.33%,Sp=100%). high resolution computed tomography showed specificity of 100% for lateral semicircular canal erosion (Sp=100%) but with low sensitivity (Se=53.84%). Conclusion The findings of high resolution computed tomography and intra-operative findings were well comparable except for lateral semicircular canal erosion. high resolution computed tomography temporal bone acts as a road map for surgeon to identify the extent of disease, plan for appropriate procedure that is required and prepare for potential complications that can be encountered during surgery.
Model-based cartilage thickness measurement in the submillimeter range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streekstra, G. J.; Strackee, S. D.; Maas, M.
2007-09-15
Current methods of image-based thickness measurement in thin sheet structures utilize second derivative zero crossings to locate the layer boundaries. It is generally acknowledged that the nonzero width of the point spread function (PSF) limits the accuracy of this measurement procedure. We propose a model-based method that strongly reduces PSF-induced bias by incorporating the PSF into the thickness estimation method. We estimated the bias in thickness measurements in simulated thin sheet images as obtained from second derivative zero crossings. To gain insight into the range of sheet thickness where our method is expected to yield improved results, sheet thickness wasmore » varied between 0.15 and 1.2 mm with an assumed PSF as present in the high-resolution modes of current computed tomography (CT) scanners [full width at half maximum (FWHM) 0.5-0.8 mm]. Our model-based method was evaluated in practice by measuring layer thickness from CT images of a phantom mimicking two parallel cartilage layers in an arthrography procedure. CT arthrography images of cadaver wrists were also evaluated, and thickness estimates were compared to those obtained from high-resolution anatomical sections that served as a reference. The thickness estimates from the simulated images reveal that the method based on second derivative zero crossings shows considerable bias for layers in the submillimeter range. This bias is negligible for sheet thickness larger than 1 mm, where the size of the sheet is more than twice the FWHM of the PSF but can be as large as 0.2 mm for a 0.5 mm sheet. The results of the phantom experiments show that the bias is effectively reduced by our method. The deviations from the true thickness, due to random fluctuations induced by quantum noise in the CT images, are of the order of 3% for a standard wrist imaging protocol. In the wrist the submillimeter thickness estimates from the CT arthrography images correspond within 10% to those estimated from the anatomical sections. We present a method that yields virtually unbiased thickness estimates of cartilage layers in the submillimeter range. The good agreement of thickness estimates from CT images with estimates from anatomical sections is promising for clinical application of the method in cartilage integrity staging of the wrist and the ankle.« less
Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium
Beller, L.S.
1993-01-26
A method and apparatus are described for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.
Kashyap, Raghava
2018-01-01
Testicular adrenal rest tumors (TARTs) are secondary to hypertrophy of adrenal rest cells in the rete testis in settings of hypersecretion of androgens. We present a case of congenital adrenal hyperplasia with TART with clues to the diagnosis on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT). To the best of our knowledge, this is the first reported case on the role of 18 F-FDG PET/CT in TART.
Pleuroperitoneal Mesothelioma: A Rare Entity on 18F-FDG PET/CT
Sahoo, Manas Kumar; Mukherjee, Anirban; Girish; Parida, Kumar; Agarwal, Krishan Kant; Bal, Chandrasekhar; Tripathi, Madhavi; Das, Chandan Jyoti; Shamim, Shamim Ahmed
2017-01-01
Pleuroperitoneal mesothelioma is an extremely rare entity. Only few cases are reported worldwide. We hereby represent a case of pleural mesothelioma referred for F-18-Fluorodeoxyglucose positron emission tomography/computed tomography for response evaluation. Diffuse F-18-Fluorodeoxyglucose avid peritoneal and omental thickening noted which subsequently turned out to be mesothelial involvement on peritoneal biopsy. This case demonstrates the role of F-18-Fluorodeoxyglucose positron emission tomography/computed tomography in detecting other sites of involvement in case of malignant mesothelioma. PMID:28242997
Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography in Disseminated Cryptococcosis.
Tripathy, Sarthak; Parida, Girish Kumar; Roy, Shambo Guha; Singhal, Abhinav; Mallick, Saumya Ranjan; Tripathi, Madhavi; Shamim, Shamim Ahmed
2017-01-01
Disseminated cryptococcosis without pulmonary involvement is a very rare phenomenon. Patterns of organ involvement in cryptococcosis resemble various other infective conditions as well as malignant conditions on fluorodeoxyglucose positron emission tomography-computed tomography. We present a case of a 43-year-old male patient who had disseminated cryptococcosis. The rarity of the case being noninvolvement of lungs and meninges and resembling more like lymphoma due to the diffuse involvement of the lymph nodes on both sides of the diaphragm.
Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples
Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry
2015-01-01
With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method – non-destructive 3D X-ray micro-Computed Tomography (μCT) – to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations – in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner. PMID:26549935
Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples.
Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry
2015-03-01
With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner.
NASA Astrophysics Data System (ADS)
Voorn, Maarten; Barnhoorn, Auke; Exner, Ulrike; Baud, Patrick; Reuschlé, Thierry
2015-04-01
Fractured reservoir rocks make up an important part of the hydrocarbon reservoirs worldwide. A detailed analysis of fractures and fracture networks in reservoir rock samples is thus essential to determine the potential of these fractured reservoirs. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this study, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna Basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. 3D μCT data is used to extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. The 3D analyses are complemented with thin sections made to provide some 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) of the µCT results towards more realistic reservoir conditions. Our results show that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other methods can therefore be a powerful approach in microstructural analysis of reservoir rocks, especially when applying the concepts that we present (on a small set of samples) in a larger study, in an automated and standardised manner.
... News Physician Resources Professions Site Index A-Z CT Perfusion of the Head Computed tomography (CT) perfusion ... of CT Perfusion of the Head? What is CT Perfusion of the Head? Computed tomography (CT) perfusion ...
Quantification of pericardial effusions by echocardiography and computed tomography.
Leibowitz, David; Perlman, Gidon; Planer, David; Gilon, Dan; Berman, Philip; Bogot, Naama
2011-01-15
Echocardiography is a well-accepted tool for the diagnosis and quantification of pericardial effusion (PEff). Given the increasing use of computed tomographic (CT) scanning, more PEffs are being initially diagnosed by computed tomography. No study has compared quantification of PEff by computed tomography and echocardiography. The objective of this study was to assess the accuracy of quantification of PEff by 2-dimensional echocardiography and computed tomography compared to the amount of pericardial fluid drained at pericardiocentesis. We retrospectively reviewed an institutional database to identify patients who underwent chest computed tomography and echocardiography before percutaneous pericardiocentesis with documentation of the amount of fluid withdrawn. Digital 2-dimensional echocardiographic and CT images were retrieved and quantification of PEff volume was performed by applying the formula for the volume of a prolate ellipse, π × 4/3 × maximal long-axis dimension/2 × maximal transverse dimension/2 × maximal anteroposterior dimension/2, to the pericardial sac and to the heart. Nineteen patients meeting study qualifications were entered into the study. The amount of PEff drained was 200 to 1,700 ml (mean 674 ± 340). Echocardiographically calculated pericardial effusion volume correlated relatively well with PEff volume (r = 0.73, p <0.001, mean difference -41 ± 225 ml). There was only moderate correlation between CT volume quantification and actual volume drained (r = 0.4, p = 0.004, mean difference 158 ± 379 ml). In conclusion, echocardiography appears a more accurate imaging technique than computed tomography in quantitative assessment of nonloculated PEffs and should continue to be the primary imaging in these patients. Copyright © 2011 Elsevier Inc. All rights reserved.
Suzuki, Satoshi; Watanabe, Yohei; Yazawa, Takashi; Ishigame, Teruhide; Sassa, Motoki; Monma, Tomoyuki; Takawa, Tadashi; Kumamoto, Kensuke; Nakamura, Izumi; Ohoki, Shinji; Hatakeyama, Yuichi; Sakuma, Hiroshi; Ono, Toshiyuki; Omata, Sadao; Takenoshita, Seiichi
2014-01-01
We examined whether conventional ultrasonography (US) and computed tomography (CT) were useful to evaluate liver hardness and hepatic fibrosis by comparing the results with those obtained by a tactile sensor using rats with liver fibrosis. We used 44 Wistar rats in which liver fibrosis was induced by intraperitoneal administration of thioacetamide. The CT and US values of each liver were measured before laparotomy. After laparotomy, a tactile sensor was used to measure liver hardness. We prepared Azan stained sections of each excised liver specimen and calculated the degree of liver fibrosis (HFI: hepatic fibrosis index) by computed color image analysis. The stiffness values and HFI showed a positive correlation (r=0.690, p<0.001), as did the tactile values and HFI (r=0.709, p<0.001).In addition, the stiffness and tactile values correlated positively with each other (r=0.814, p<0.001). There was no correlation between the CT values and HFI, as well as no correlation between the US values and HFI. We confirmed that it was difficult to evaluate liver hardness and HFI by CT or US examination, and considered that, at present, a tactile sensor is useful method for evaluating HFI.
Sinogram restoration for ultra-low-dose x-ray multi-slice helical CT by nonparametric regression
NASA Astrophysics Data System (ADS)
Jiang, Lu; Siddiqui, Khan; Zhu, Bin; Tao, Yang; Siegel, Eliot
2007-03-01
During the last decade, x-ray computed tomography (CT) has been applied to screen large asymptomatic smoking and nonsmoking populations for early lung cancer detection. Because a larger population will be involved in such screening exams, more and more attention has been paid to studying low-dose, even ultra-low-dose x-ray CT. However, reducing CT radiation exposure will increase noise level in the sinogram, thereby degrading the quality of reconstructed CT images as well as causing more streak artifacts near the apices of the lung. Thus, how to reduce the noise levels and streak artifacts in the low-dose CT images is becoming a meaningful topic. Since multi-slice helical CT has replaced conventional stop-and-shoot CT in many clinical applications, this research mainly focused on the noise reduction issue in multi-slice helical CT. The experiment data were provided by Siemens SOMATOM Sensation 16-Slice helical CT. It included both conventional CT data acquired under 120 kvp voltage and 119 mA current and ultra-low-dose CT data acquired under 120 kvp and 10 mA protocols. All other settings are the same as that of conventional CT. In this paper, a nonparametric smoothing method with thin plate smoothing splines and the roughness penalty was proposed to restore the ultra-low-dose CT raw data. Each projection frame was firstly divided into blocks, and then the 2D data in each block was fitted to a thin-plate smoothing splines' surface via minimizing a roughness-penalized least squares objective function. By doing so, the noise in each ultra-low-dose CT projection was reduced by leveraging the information contained not only within each individual projection profile, but also among nearby profiles. Finally the restored ultra-low-dose projection data were fed into standard filtered back projection (FBP) algorithm to reconstruct CT images. The rebuilt results as well as the comparison between proposed approach and traditional method were given in the results and discussions section, and showed effectiveness of proposed thin-plate based nonparametric regression method.
FIB-SEM cathodoluminescence tomography: practical and theoretical considerations.
De Winter, D A M; Lebbink, M N; Wiggers De Vries, D F; Post, J A; Drury, M R
2011-09-01
Focused ion beam-scanning electron microscope (FIB-SEM) tomography is a powerful application in obtaining three-dimensional (3D) information. The FIB creates a cross section and subsequently removes thin slices. The SEM takes images using secondary or backscattered electrons, or maps every slice using X-rays and/or electron backscatter diffraction patterns. The objective of this study is to assess the possibilities of combining FIB-SEM tomography with cathodoluminescence (CL) imaging. The intensity of CL emission is related to variations in defect or impurity concentrations. A potential problem with FIB-SEM CL tomography is that ion milling may change the defect state of the material and the CL emission. In addition the conventional tilted sample geometry used in FIB-SEM tomography is not compatible with conventional CL detectors. Here we examine the influence of the FIB on CL emission in natural diamond and the feasibility of FIB-SEM CL tomography. A systematic investigation establishes that the ion beam influences CL emission of diamond, with a dependency on both the ion beam and electron beam acceleration voltage. CL emission in natural diamond is enhanced particularly at low ion beam and electron beam voltages. This enhancement of the CL emission can be partly explained by an increase in surface defects induced by ion milling. CL emission enhancement could be used to improve the CL image quality. To conduct FIB-SEM CL tomography, a recently developed novel specimen geometry is adopted to enable sequential ion milling and CL imaging on an untilted sample. We show that CL imaging can be manually combined with FIB-SEM tomography with a modified protocol for 3D microstructure reconstruction. In principle, automated FIB-SEM CL tomography should be feasible, provided that dedicated CL detectors are developed that allow subsequent milling and CL imaging without manual intervention, as the current CL detector needs to be manually retracted before a slice can be milled. Due to the required high electron beam acceleration voltage for CL emission, the resolution for FIB-SEM CL tomography is currently limited to several hundreds of nm in XY and up to 650 nm in Z for diamonds. Opaque materials are likely to have an improved Z resolution, as CL emission generated deeper in the material is not able to escape from it. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
High resolution macroscopy (HRMac) of the eye using nonlinear optical imaging
NASA Astrophysics Data System (ADS)
Winkler, Moritz; Jester, Bryan E.; Nien-Shy, Chyong; Chai, Dongyul; Brown, Donald J.; Jester, James V.
2010-02-01
Non-linear optical (NLO) imaging using femtosecond lasers provides a non-invasive means of imaging the structural organization of the eye through the generation of second harmonic signals (SHG). While NLO imaging is able to detect collagen, the small field of view (FoV) limits the ability to study how collagen is structurally organized throughout the larger tissue. To address this issue we have used computed tomography on optical and mechanical sectioned tissue to greatly expand the FoV and provide high resolution macroscopic (HRMac) images that cover the entire tissue (cornea and optic nerve head). Whole, fixed cornea (13 mm diameter) or optic nerve (3 mm diameter) were excised and either 1) embedded in agar and sectioned using a vibratome (200-300 um), or 2) embedded in LR White plastic resin and serially sectioned (2 um). Vibratome and plastic sections were then imaged using a Zeiss LSM 510 Meta and Chameleon femtosecond laser to generate NLO signals and assemble large macroscopic 3-dimensional tomographs with high resolution that varied in size from 9 to 90 Meg pixels per plane having a resolution of 0.88 um lateral and 2.0 um axial. 3-D reconstructions allowed for regional measurements within the cornea and optic nerve to quantify collagen content, orientation and organization over the entire tissue. We conclude that NLO based tomography to generate HRMac images provides a powerful new tool to assess collagen structural organization. Biomechanical testing combined with NLO tomography may provide new insights into the relationship between the extracellular matrix and tissue mechanics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Tianwu; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch; Geneva Neuroscience Center, Geneva University, Geneva CH-1205
The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and themore » development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.« less
D'iachkova, G V; Mitina, Iu L
2007-01-01
Based on the data of computed tomography, radiography and densitometry in 39 patients the authors describe in detail the signs of osteonecrosis and sequestration of different localization and extension.
CAT scan - pelvis; Computed axial tomography scan - pelvis; Computed tomography scan - pelvis; CT scan - pelvis ... Risks of CT scans include: Being exposed to radiation Allergic reaction to contrast dye CT scans do expose you to more radiation ...
CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... CT scans rapidly makes detailed pictures of the lower back. The test may be used to look for: ...
CAT scan - shoulder; Computed axial tomography scan - shoulder; Computed tomography scan - shoulder; CT scan - shoulder ... Risks of CT scans include: Being exposed to radiation Allergic reaction to contrast dye Birth defect if done during pregnancy CT scans ...
A radiologic correlation with the basic functional neuroanatomy of the brain.
Bilicka, Z; Liska, M; Bluska, P; Bilicky, J
2014-01-01
Primary cortical areas for motor, sensory and sensitive functions are localized in certain areas of the brain cortex. In clinical practice, cross sectional imaging (computer tomography and magnetic resonance) is wildy used for diagnostics purpose, treatment planning and follow up of the patients. Accurate orientation in brain structures is necessary for the evaluation of radiological images. There are numerable landmark signs, which can be used for precise identification of important brain structures. In this review article, the mostly used anatomical landmarks are described and shown on the cross sectional images (magnetic resonance imaging) (Fig. 14, Ref. 25).
Rietveld-refinement and optical study of the Fe doped ZnO thin film by RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Kumar, Arun; Dhiman, Pooja; Singh, M.
2017-05-01
Fe Doped ZnO Dilute Magnetic Semiconductor thin film prepared by RF magnetron sputtering on glass substrate and Influence of 3% Fe-doping on structural and Optical properties has been studied. The Rietveld-refinement analysis shows that Fe doping has a significant effect on crystalline structure, grain size and strain in the thin film. Two dimensional and three-dimensional atom probe tomography of the thin film shows that Fe ions are randomly distributed which is supported by Xray Diffraction (XRD). Fe-doping is found to effectively modify the band gap energy up to 3.5 eV.