Publications - GMC 357 | Alaska Division of Geological & Geophysical
DGGS GMC 357 Publication Details Title: Thin Section and Scanning Electron Microscopy summary Laboratories, Inc., 2008, Thin Section and Scanning Electron Microscopy summary photographs from plugs taken
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buck, E.C.; Dietz, N.L.; Bates, J.K.
Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.
Stirling, C A
1978-09-01
Molten (328 K) 20% gelatin is used as a 'glue' to hold together separate tissue elements or tissue elements that may be separated when cutting small blocks of tissue for plastic embedding. Standard aldehyde and osmium fixation, dehydration and epoxy embedding are compatible with this as is semi-thin sectioning for light microscopy or thin sectioning for electron microscopy.
Silver stain for electron microscopy
NASA Technical Reports Server (NTRS)
Corbett, R. L.
1972-01-01
Ammoniacal silver stain used for light microscopy was adapted advantageously for use with very thin biological sections required for electron microscopy. Silver stain can be performed in short time, has more contrast, and is especially useful for low power electron microscopy.
Cross-sectional TEM specimen preparation for W/B{sub 4}C multilayer sample using FIB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondal, Puspen, E-mail: puspen@rrcat.gov.in; Pradhan, P. C.; Tiwari, Pragya
2016-05-23
A recent emergence of a cross-beam scanning electron microscopy (SEM)/focused-ion-beam (FIB) system have given choice to fabricate cross-sectional transmission electron microscopy (TEM) specimen of thin film multilayer sample. A 300 layer pair thin film multilayer sample of W/B{sub 4}C was used to demonstrate the specimen lift-out technique in very short time as compared to conventional cross-sectional sample preparation technique. To get large area electron transparent sample, sample prepared by FIB is followed by Ar{sup +} ion polishing at 2 kV with grazing incident. The prepared cross-sectional sample was characterized by transmission electron microscope.
New developments in electron microscopy for serial image acquisition of neuronal profiles.
Kubota, Yoshiyuki
2015-02-01
Recent developments in electron microscopy largely automate the continuous acquisition of serial electron micrographs (EMGs), previously achieved by laborious manual serial ultrathin sectioning using an ultramicrotome and ultrastructural image capture process with transmission electron microscopy. The new systems cut thin sections and capture serial EMGs automatically, allowing for acquisition of large data sets in a reasonably short time. The new methods are focused ion beam/scanning electron microscopy, ultramicrotome/serial block-face scanning electron microscopy, automated tape-collection ultramicrotome/scanning electron microscopy and transmission electron microscope camera array. In this review, their positive and negative aspects are discussed. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Adnet, J J; Pinteaux, A; Pousse, G; Caulet, T
1976-04-01
Three simple methods (adapted from optical techniques) for normal and pathological elastic tissue caracterisation in electron microscopy on thin and ultrathin sections are proposed. Two of these methods (orcein and fuchsin resorcin) seem to have a specificity for arterial and breast cancer elastic tissue. Weigert's method gives the best contrast.
Login, G R; Galli, S J; Morgan, E; Arizono, N; Schwartz, L B; Dvorak, A M
1987-11-01
We defined the ultrastructural localization of chymase in rat peritoneal mast cells using standard aldehyde fixation and a newly described microwave fixation method (Login GR, Dvorak AM: Microwave energy fixation for electron microscopy. Am J Pathol 120: 230, 1985; Login GR, Stavinoha WB, Dvorak AM: Ultrafast microwave energy fixation for electron microscopy. J Histochem Cytochem 34:381, 1986) and postembedding immunogold labeling. Thin sections were exposed first to goat IgG anti-rat chymase and second to gold-conjugated rabbit Ig directed against goat IgG. By transmission electron microscopy, gold particles were localized to the matrix of cytoplasmic granules. Control sections treated with nonimmune sera did not exhibit labeling of mast cells. Thin sections treated simultaneously with purified rat mast cell chymase and anti-chymase antibody in competition studies, showed a marked reduction in granule staining. These findings demonstrate that a microwave fixation method can be used to rapidly fix cell suspensions for postembedding immunocytochemical studies.
Bhaskaran, M; Sriram, S; Mitchell, D R G; Short, K T; Holland, A S; Mitchell, A
2009-01-01
This article discusses the results of transmission electron microscopy (TEM)-based investigation of nickel silicide (NiSi) thin films grown on silicon. Nickel silicide is currently used as the CMOS technology standard for local interconnects and in electrical contacts. Films were characterized with a range of TEM-based techniques along with glancing angle X-ray diffraction. The nickel silicide thin films were formed by vacuum annealing thin films of nickel (50 nm) deposited on (100) silicon. The cross-sectional samples indicated a final silicide thickness of about 110 nm. This investigation studied and reports on three aspects of the thermally formed thin films: the uniformity in composition of the film using jump ratio maps; the nature of the interface using high resolution imaging; and the crystalline orientation of the thin films using selected-area electron diffraction (SAED). The analysis highlighted uniform composition in the thin films, which was also substantiated by spectroscopy techniques; an interface exhibiting the desired abrupt transition from silicide to silicon; and desired and preferential crystalline orientation corresponding to stoichiometric NiSi, supported by glancing angle X-ray diffraction results.
Mitrecić, D; Cunko, V F; Gajović, S
2008-12-01
Descriptive morphological studies are often combined with gene expression pattern analyses. Unembedded vibratome or cryotome sections are compatible with in situ RNA hybridization, but spatial resolution is rather low for precise microscopic studies necessary in embryology. Therefore, use of plastic embedding media, which allow semi-thin and ultra-thin sectioning for light and electron microscopy, could be an important advantage. This work suggested a new approach based on the whole mount hybridization of mouse embryos and subsequent epoxy resin embedding. Epoxy resin allowed serial sectioning of semi-thin sections with preserved in situ RNA hybridization signal, which was a necessary prerequisite for precise morphological analysis of embryo development.
NASA Astrophysics Data System (ADS)
Hamers, M. F.; Pennock, G. M.; Drury, M. R.
2017-04-01
The study of deformation features has been of great importance to determine deformation mechanisms in quartz. Relevant microstructures in both growth and deformation processes include dislocations, subgrains, subgrain boundaries, Brazil and Dauphiné twins and planar deformation features (PDFs). Dislocations and twin boundaries are most commonly imaged using a transmission electron microscope (TEM), because these cannot directly be observed using light microscopy, in contrast to PDFs. Here, we show that red-filtered cathodoluminescence imaging in a scanning electron microscope (SEM) is a useful method to visualise subgrain boundaries, Brazil and Dauphiné twin boundaries. Because standard petrographic thin sections can be studied in the SEM, the observed structures can be directly and easily correlated to light microscopy studies. In contrast to TEM preparation methods, SEM techniques are non-destructive to the area of interest on a petrographic thin section.
Belu, A; Schnitker, J; Bertazzo, S; Neumann, E; Mayer, D; Offenhäusser, A; Santoro, F
2016-07-01
The preparation of biological cells for either scanning or transmission electron microscopy requires a complex process of fixation, dehydration and drying. Critical point drying is commonly used for samples investigated with a scanning electron beam, whereas resin-infiltration is typically used for transmission electron microscopy. Critical point drying may cause cracks at the cellular surface and a sponge-like morphology of nondistinguishable intracellular compartments. Resin-infiltrated biological samples result in a solid block of resin, which can be further processed by mechanical sectioning, however that does not allow a top view examination of small cell-cell and cell-surface contacts. Here, we propose a method for removing resin excess on biological samples before effective polymerization. In this way the cells result to be embedded in an ultra-thin layer of epoxy resin. This novel method highlights in contrast to standard methods the imaging of individual cells not only on nanostructured planar surfaces but also on topologically challenging substrates with high aspect ratio three-dimensional features by scanning electron microscopy. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Method for observation of deembedded sections of fish gonad by scanning electron microscopy
NASA Astrophysics Data System (ADS)
Mao, Lian-Ju
2000-09-01
This article reports a method for examining the intracellular structure of fish gonads using a scanning electron microscope(SEM). The specimen preparation procedure is similar to that for transmission electron microscopy wherein samples cut into semi-thin sections are fixed and embedded in plastic. The embedment matrix was removed by solvents. Risen-free specimens could be observed by SEM. The morphology of matured sperms in the gonad was very clear, and the oocyte internal structures appeared in three-dimensional images. Spheroidal nucleoli and yolk vesicles and several bundles of filaments adhered on the nucleoli could be viewed by SEM for the first time.
NASA Technical Reports Server (NTRS)
Bae, h. C.; Casida, L. E., Jr.
1973-01-01
Indigenous soil microorganisms were cultivated in their soil habitat with 50% moisture capacity at 30 C for two weeks. Changes in microorganism cells were studied by electron microscopy during incubation, with particular attention to the dormant cell growth and to the ability of cystlike cells to germinate and reencyst. The responses of various cell species to incubation conditions are described and illustrated by photomicrographs.
SILVER IMPREGNATION OF ULTRATHIN SECTIONS FOR ELECTRON MICROSCOPY
Marinozzi, Vittorio
1961-01-01
A new procedure is described for silver impregnation of thin sections for electron microscopy. Sections of various tissues, fixed in OsO4 and embedded in methacrylate, were treated with an ammoniacal silver solution, directly or after oxidation with periodic acid or hydrogen peroxide. After OsO4 fixation all cellular membranous systems exhibit a primary argentaffinity probably due to the reduction of ammoniacal silver solution by the reduced osmium bound to unsaturated lipids. Bleaching the sections with hydrogen peroxide removes the argentaffinity of protoplasmic structures. Treatment of the sections with periodic acid results in decreased argentaffinity of protoplasmic components while the argentaffinity of metaplasmic structures is greatly enhanced. The latter procedure appears particularly useful for enhancing the contrast of basement membranes. PMID:13766855
Dukes, Madeline J; Peckys, Diana B; de Jonge, Niels
2010-07-27
Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. QDs of dimensions 7x12 nm were visible in a 5 microm thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs.
Dukes, Madeline J.; Peckys, Diana B.; de Jonge, Niels
2010-01-01
Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. QDs of dimensions 7 × 12 nm were visible in a 5 μm thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs. PMID:20550177
Chapter 14: Electron Microscopy on Thin Films for Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, Manuel; Abou-Ras, Daniel; Nichterwitz, Melanie
2016-07-22
This chapter overviews the various techniques applied in scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and highlights their possibilities and also limitations. It gives the various imaging and analysis techniques applied on a scanning electron microscope. The chapter shows that imaging is divided into that making use of secondary electrons (SEs) and of backscattered electrons (BSEs), resulting in different contrasts in the images and thus providing information on compositions, microstructures, and surface potentials. Whenever aiming for imaging and analyses at scales of down to the angstroms range, TEM and its related techniques are appropriate tools. In many cases,more » also SEM techniques provide the access to various material properties of the individual layers, not requiring specimen preparation as time consuming as TEM techniques. Finally, the chapter dedicates to cross-sectional specimen preparation for electron microscopy. The preparation decides indeed on the quality of imaging and analyses.« less
Peña, B; Owen, G Rh; Dettelbach, K E; Berlinguette, C P
2018-01-25
A facile nonsubjective method was designed to measure porous nonconductive iron oxide film thickness using a combination of a focused ion beam (FIB) and scanning electron microscopy. Iron oxide films are inherently nonconductive and porous, therefore the objective of this investigation was to optimize a methodology that would increase the conductivity of the film to facilitate high resolution imaging with a scanning electron microscopy and to preserve the porous nature of the film that could potentially be damaged by the energy of the FIB. Sputter coating the sample with a thin layer of iridium before creating the cross section with the FIB decreased sample charging and drifting, but differentiating the iron layer from the iridium coating with backscattered electron imaging was not definitive, making accurate assumptions of the delineation between the two metals difficult. Moreover, the porous nature of the film was lost due to beam damage following the FIB process. A thin layer plastication technique was therefore used to embed the porous film in epoxy resin that would provide support for the film during the FIB process. However, the thickness of the resin created using conventional thin layer plastication processing varied across the sample, making the measuring process only possible in areas where the resin layer was at its thinnest. Such variation required navigating the area for ideal milling areas, which increased the subjectivity of the process. We present a method to create uniform thin resin layers, of controlled thickness, that are ideal for quantifying the thickness of porous nonconductive films with FIB/scanning electron microscopy. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
The actin cytoskeleton in whole mount preparations and sections.
Resch, Guenter P; Urban, Edit; Jacob, Sonja
2010-01-01
In non-muscle cells, the actin cytoskeleton plays a key role by providing a scaffold contributing to the definition of cell shape, force for driving cell motility, cytokinesis, endocytosis, and propulsion of pathogens, as well as tracks for intracellular transport. A thorough understanding of these processes requires insight into the spatial and temporal organisation of actin filaments into diverse higher-order structures, such as networks, parallel bundles, and contractile arrays. Transmission and scanning electron microscopy can be used to visualise the actin cytoskeleton, but due to the delicate nature of actin filaments, they are easily affected by standard preparation protocols, yielding variable degrees of ultrastructural preservation. In this chapter, we describe different conventional and cryo-approaches to visualise the actin cytoskeleton using transmission electron microscopy and discuss their specific advantages and drawbacks. In the first part, we present three different whole mount techniques, which allow visualisation of actin in the peripheral, thinly spread parts of cells grown in monolayers. In the second part, we describe specific issues concerning the visualisation of actin in thin sections. Techniques for three-dimensional visualisation of actin, protein localisation, and correlative light and electron microscopy are also included. Copyright © 2010 Elsevier Inc. All rights reserved.
Cross section TEM characterization of high-energy-Xe-irradiated U-Mo
Ye, B.; Jamison, L.; Miao, Y.; ...
2017-03-09
U-Mo alloys irradiated with 84 MeV Xe ions to various doses were characterized with transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) techniques. The TEM thin foils were prepared perpendicular to the irradiated surface to allow a direct observation of the entire region modified by ions. Furthermore, depth-selective microstructural information was revealed. Varied irradiation-induced phenomena such as gas bubble formation, phase reversal, and recrystallization were observed at different ion penetration depths in U-Mo.
Carbon abundances, major element chemistry, and mineralogy of hydrated interplanetary dust particles
NASA Technical Reports Server (NTRS)
Keller, L. P.; Thomas, K. L.; Mckay, D. S.
1993-01-01
Hydrated interplanetary dust particles (IDP's) comprise a major fraction of the interplanetary dust particles collected in the stratosphere. While much is known about the mineralogy and chemistry of hydrated IDP's, little is known about the C abundance in this class of IDP's, the nature of the C-bearing phases, and how the C abundance is related to other physical properties of hydrated IDP's. Bulk compositional data (including C and O) for 11 hydrated IDP's that were subsequently examined by the transition electron microscopy (TEM) to determine their mineralogy and mineral chemistry are reported. Our analysis indicates that these hydrated IDP's are strongly enriched in C relative to the most C-rich meteorites. The average abundance of C in these hydrated IDP's is 4X CI chondrite values. The bulk compositions (including C and O) of 11 hydrated IDP's were determined by thin-window, energy-dispersive x ray (EDX) spectroscopy of the uncoated IDP's on Be substrates in the scanning electron microscopy (SEM). As a check on our C measurements, one of the IDP's (L2006H5) was embedded in glassy S, and microtome thin sections were prepared and placed onto Be substrates. Thin-film EDX analyses of multiple thin sections of L2006H5 show good agreement with the bulk value determined in the SEM. Following EDX analysis, the mineralogy and mineral chemistry of each IDP was determined by analyzing ultramicrotome thin sections in a TEM equipped with an EDX spectrometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, J.; Beseler, S.; Sterflinger, K.
2007-11-15
Sterzing marble, a crystalline white marble used in the late-Baroque garden sculptures of Schoenbrunn Palace in Vienna, was studied by means of thin-section and scanning electron microscopy in order to obtain a better understanding of its surface decay caused by atmospheric weathering. Following the classification of distinct phenomena of deterioration by visual on-site inspection, the microstructural features including surface erosion, micro-cracking, soiling, black crust formation, and microbiological infestation are exemplified by microscopical images and are briefly discussed. The results proved useful for evaluating and understanding the various types of marble decay for creating a safer basis for establishing the proceduralmore » principles aimed at conservation and maintenance of the sculptures.« less
Microstructural study of the polymorphic transformation in pentacene thin films.
Murakami, Yosuke; Tomiya, Shigetaka; Koshitani, Naoki; Kudo, Yoshihiro; Satori, Kotaro; Itabashi, Masao; Kobayashi, Norihito; Nomoto, Kazumasa
2009-10-02
We have observed, by high-resolution cross-sectional transmission electron microscopy, the first direct evidence of polymorphic transformation in pentacene thin films deposited on silicon oxide substrates. Polymorphic transformation from the thin-film phase to the bulk phase occurred preferentially near polycrystalline grain boundaries, which exhibit concave surfaces. This process is thought to be driven by compressive stress caused by the grain boundaries. In addition to this stress, lattice mismatch between the two phases also results in structural defect formation.
Electronic and optical properties of La-doped S r3I r2O7 epitaxial thin films
NASA Astrophysics Data System (ADS)
Souri, M.; Terzic, J.; Johnson, J. M.; Connell, J. G.; Gruenewald, J. H.; Thompson, J.; Brill, J. W.; Hwang, J.; Cao, G.; Seo, A.
2018-02-01
We have investigated structural, transport, and optical properties of tensile strained (Sr1-xL ax ) 3I r2O7 (x =0 , 0.025, 0.05) epitaxial thin films. While high-Tc superconductivity is predicted theoretically in the system, we have observed that all of the samples remain insulating with finite optical gap energies and Mott variable-range hopping characteristics in transport. Cross-sectional scanning transmission electron microscopy indicates that structural defects such as stacking faults appear in this system. The insulating behavior of the La-doped S r3I r2O7 thin films is presumably due to disorder-induced localization and ineffective electron doping of La, which brings to light the intriguing difference between epitaxial thin films and bulk single crystals of the iridates.
Electron microscopy of the nuclear membrane of Amoeba proteus.
FRAJOLA, W J; GREIDER, M H; KOSTIR, W J
1956-07-25
An electron microscope study of the nuclear membrane of Amoeba proteus by thin sectioning techniques has revealed an ultrastructure in the outer layer of the membrane that is homologous to the pores and annuli observed in the nuclear membranes of many other cell types studied by these techniques. An inner honeycombed layer apparently unique to Amoeba proteus is also described.
Room temperature chemical synthesis of lead selenide thin films with preferred orientation
NASA Astrophysics Data System (ADS)
Kale, R. B.; Sartale, S. D.; Ganesan, V.; Lokhande, C. D.; Lin, Yi-Feng; Lu, Shih-Yuan
2006-11-01
Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH3COO)2 as Pb2+ and Na2SeSO3 as Se2- ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.
Focused Ion Beam Microscopy of ALH84001 Carbonate Disks
NASA Technical Reports Server (NTRS)
Thomas-Keprta, Kathie L.; Clemett, Simon J.; Bazylinski, Dennis A.; Kirschvink, Joseph L.; McKay, David S.; Vali, Hojatollah; Gibson, Everett K., Jr.; Romanek, Christopher S.
2005-01-01
Our aim is to understand the mechanism(s) of formation of carbonate assemblages in ALH84001. A prerequisite is that a detailed characterization of the chemical and physical properties of the carbonate be established. We present here analyses by transmission electron microscopy (TEM) of carbonate thin sections produced by both focused ion beam (FIB) sectioning and ultramicrotomy. Our results suggest that the formation of ALH84001 carbonate assemblages were produced by considerably more complex process(es) than simple aqueous precipitation followed by partial thermal decomposition as proposed by other investigators [e.g., 1-3].
Du, Ming; Jacobsen, Chris
2017-10-07
Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zeromore » loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 mu m (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Lastly, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Ming; Jacobsen, Chris
Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zeromore » loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 mu m (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Lastly, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified.« less
Hamzei-Sichani, Farid; Kamasawa, Naomi; Janssen, William G. M.; Yasumura, Thomas; Davidson, Kimberly G. V.; Hof, Patrick R.; Wearne, Susan L.; Stewart, Mark G.; Young, Steven R.; Whittington, Miles A.; Rash, John E.; Traub, Roger D.
2007-01-01
Gap junctions have been postulated to exist between the axons of excitatory cortical neurons based on electrophysiological, modeling, and dye-coupling data. Here, we provide ultrastructural evidence for axoaxonic gap junctions in dentate granule cells. Using combined confocal laser scanning microscopy, thin-section transmission electron microscopy, and grid-mapped freeze–fracture replica immunogold labeling, 10 close appositions revealing axoaxonic gap junctions (≈30–70 nm in diameter) were found between pairs of mossy fiber axons (≈100–200 nm in diameter) in the stratum lucidum of the CA3b field of the rat ventral hippocampus, and one axonal gap junction (≈100 connexons) was found on a mossy fiber axon in the CA3c field of the rat dorsal hippocampus. Immunogold labeling with two sizes of gold beads revealed that connexin36 was present in that axonal gap junction. These ultrastructural data support computer modeling and in vitro electrophysiological data suggesting that axoaxonic gap junctions play an important role in the generation of very fast (>70 Hz) network oscillations and in the hypersynchronous electrical activity of epilepsy. PMID:17640909
Handling Golgi-impregnated tissue for light microscopy.
Berbel, P J; Fairén, A
1983-08-08
The use of cyanocrylic glue to fix pieces of Golgi-stained nervous tissue on a paraffin blank is proposed for obtaining thick sections of unembedded tissue with a sliding microtome. This procedure makes correct orientation of the tissue easy during sectioning and makes it possible to obtain tissue sections quickly. The sections are flat-mounted using epoxy resin, resulting in permanent preparations with excellent optical properties and enabling further thin-sectioning for light and electron microscopic studies.
Evaluation of laser ablation microtomy for correlative microscopy of hard tissues.
Boyde, A
2018-02-27
Laser ablation machining or microtomy (LAM) is a relatively new approach to producing slide mounted sections of translucent materials. We evaluated the method with a variety of problems from the bone, joint and dental tissues fields where we require thin undecalcified and undistorted sections for correlative light microscopy (LM) and backscattered electron scanning electron microscopy (BSE SEM). All samples were embedded in poly-methylmethacrlate (PMMA) and flat block surfaces had been previously studied by BSE-SEM and confocal scanning light microscopy (CSLM). Most were also studied by X-yay microtomography (XMT). The block surface is stuck to a glass slide with cyanoacrylate adhesive. Setting the section thickness and levelling uses inbuilt optical coherence tomographic imaging. Tight focusing of near-infrared laser radiation in the sectioning plane gives extreme intensities causing photodisruption of material at the focal point. The laser beam is moved by a fast scanner to write a cutting line, which is simultaneously moved by an XY positioning unit to create a sectioning plane. The block is thereby released from the slide, leaving the section stuck to the slide. Light, wet polishing on the finest grade (4000 grit) silicon carbide polishing paper is used to remove a 1-2 μm thick damaged layer at the surface of the section. Sections produced by laser cutting are fine in quality and superior to those produced by mechanical cutting and can be thinner than the 'voxel' in most laboratory X-ray microtomography systems. The present extensive pilot studies have shown that it works to produce samples which we can study by both light and electron microscopy. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Mahalingam, S.; Abdullah, H.; Shaari, S.; Muchtar, A.; Asshari, I.
2015-01-01
Indium oxide (In2O3) thin films annealed at various annealing temperatures were prepared by using spin-coating method for dye-sensitized solar cells (DSSCs). The objective of this research is to enhance the photovoltaic conversion efficiency in In2O3 thin films by finding the optimum annealing temperature and also to study the reason for high and low performance in the annealed In2O3 thin films. The structural and morphological characteristics of In2O3 thin films were studied via XRD patterns, atomic force microscopy (AFM), field-emission scanning electron microscopy (FESEM), EDX sampling, and transmission electron microscopy (TEM). The annealing treatment modified the nanostructures of the In2O3 thin films viewed through FESEM images. The In2O3-450°C-based DSSC exhibited better photovoltaic performance than the other annealed thin films of 1.54%. The electron properties were studied by electrochemical impedance spectroscopy (EIS) unit. The In2O3-450°C thin films provide larger diffusion rate, low recombination effect, and longer electron lifetime, thus enhancing the performance of DSSC. PMID:26146652
Simple technique for high-throughput marking of distinguishable micro-areas for microscopy.
Henrichs, Leonard F; Chen, L I; Bell, Andrew J
2016-04-01
Today's (nano)-functional materials, usually exhibiting complex physical properties require local investigation with different microscopy techniques covering different physical aspects such as dipolar and magnetic structure. However, often these must be employed on the very same sample position to be able to truly correlate those different information and corresponding properties. This can be very challenging if not impossible especially when samples lack prominent features for orientation. Here, we present a simple but effective method to mark hundreds of approximately 15×15 μm sample areas at one time by using a commercial transmission electron microscopy grid as shadow mask in combination with thin-film deposition. Areas can be easily distinguished when using a reference or finder grid structure as shadow mask. We show that the method is suitable to combine many techniques such as light microscopy, scanning probe microscopy and scanning electron microscopy. Furthermore, we find that best results are achieved when depositing aluminium on a flat sample surface using electron-beam evaporation which ensures good line-of-sight deposition. This inexpensive high-throughput method has several advantageous over other marking techniques such as focused ion-beam processing especially when batch processing or marking of many areas is required. Nevertheless, the technique could be particularly valuable, when used in junction with, for example focused ion-beam sectioning to obtain a thin lamellar of a particular pre-selected area. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Pastore, Z.; Church, N. S.; McEnroe, S. A.; Oda, H.; ter Maat, G. W.
2017-12-01
Rocks samples can have wide range of magnetic properties depending on composition, amount of ferromagnetic minerals, grain sizes and microstructures. These influence the magnetic anomalies from the micro to the global scale making the study of the magnetic properties of interest for multiple applications. Later geological processes such as serpentinization can significantly influence these properties and change the nature of the magnetic anomalies. Particularly, magnetic properties such as remanent magnetization and magnetic susceptibility are directly linked to the magnetic mineralogy composition and grain size and can provide useful information about the geological history of the source. Scanning magnetic microscopy is a highly sensitive and high-resolution magnetometric technique for mapping the magnetic field over a planar surface of a rock sample. The device measures the vertical component of the field above the thin sections and the technique offers a spatial resolution down to tens of micrometers and thus can be used to investigate discrete magnetic mineral grains or magnetic textures and structures, and the magnetic history of the sample. This technique allows a direct correlation between the mineral chemistry (through both electron and optical microscopy) and the magnetic properties. We present as case-study three thin section magnetic scans of two dunite samples from the Reinfjord Ultramafic complex, in northern Norway. The selected thin sections show different magnetic properties which reflect the magnetic petrology. One of the thin sections is from a pristine dunite sample; the other two are highly serpentinized with newly formed magnetite found in multiple, few micrometer thick, veins. We present the preliminary results obtained applying a forward modelling approach on the magnetic anomaly maps acquired over the thin sections. Modelling consists of uniformly-magnetized polygonal bodies whose geometry is constrained by the thickness of the thin section and by the shape of the magnetic grains. The NRM direction in each polygon is modelled to fit the NRM magnetic field. Modelling helps in determining the NRM directions and intensities of discrete magnetic sources inside the thin sections and thus contributes to the study of the link between the magnetic petrology and the magnetic anomalies.
Shodo, Ryusuke; Hayatsu, Manabu; Koga, Daisuke; Horii, Arata; Ushiki, Tatsuo
2017-01-01
In the cochlea, a high K + environment in the endolymph is essential for the maintenance of normal hearing function, and the transport of K + ions through gap junctions of the cochlear epithelium is thought to play an important role in endolymphatic homeostasis. The aim of the present study was to demonstrate the three-dimensional (3D) ultrastructure of spiral ligament root cells and interdental cells, which are located at both ends of the gap junction system of the cochlea epithelium. Serial semi-thin sections of plastic-embedded rat cochlea were mounted on glass slides, stained with uranyl acetate and lead citrate, and observed by scanning electron microscopy (SEM) using the backscattered electron (BSE) mode. 3D reconstruction of BSE images of serial sections revealed that the root cells were linked together to form a branched structure like an elaborate "tree root" in the spiral ligament. The interdental cells were also connected to each other, forming a comb-shaped cellular network with a number of cellular strands in the spiral limbus. Furthermore, TEM studies of ultra-thin sections revealed the rich presence of gap junctions in both root cells and interdental cells. These findings suggest the possibility that both root cells and interdental cells contribute to K + circulation as the end portion of the epithelial cell gap junction system of the cochlea.
Furukawa, Taichi; Kanamori, Satoshi; Fukuta, Masahiro; Nawa, Yasunori; Kominami, Hiroko; Nakanishi, Yoichiro; Sugita, Atsushi; Inami, Wataru; Kawata, Yoshimasa
2015-07-13
We fabricated a bright and thin Zn₂SiO₄ luminescent film to serve as a nanometric light source for high-spatial-resolution optical microscopy based on electron beam excitation. The Zn₂SiO₄ luminescent thin film was fabricated by annealing a ZnO film on a Si₃N₄ substrate at 1000 °C in N₂. The annealed film emitted bright cathodoluminescence compared with the as-deposited film. The film is promising for nano-imaging with electron beam excitation-assisted optical microscopy. We evaluated the spatial resolution of a microscope developed using this Zn₂SiO₄ luminescent thin film. This is the first report of the investigation and application of ZnO/Si₃N₄ annealed at a high temperature (1000 °C). The fabricated Zn₂SiO₄ film is expected to enable high-frame-rate dynamic observation with ultra-high resolution using our electron beam excitation-assisted optical microscopy.
Pearson, Christopher; Bowen, Leon; Lee, Myung Won; Fisher, Alison L.; Linton, Katherine E.; Bryce, Martin R.; Petty, Michael C.
2013-01-01
We report on the mechanism of operation of organic thin film resistive memory architectures based on an ambipolar compound consisting of oxadiazole, carbazole, and fluorene units. Cross-sections of the devices have been imaged by electron microscopy both before and after applying a voltage. The micrographs reveal the growth of filaments, with diameters of 50 nm–100 nm, on the metal cathode. We suggest that these are formed by the drift of aluminium ions from the anode and are responsible for the observed switching and negative differential resistance phenomena in the memory devices.
Du, Ming; Jacobsen, Chris
2018-01-01
Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zero loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 µm (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Finally, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified. Copyright © 2017 Elsevier B.V. All rights reserved.
Snow, A D; Mar, H; Nochlin, D; Wight, T N
1989-01-01
Neuritic plaques (NPs), neurofibrillary tangles (NFTs) and congophilic angiopathy (CA), the three characteristic lesions in Alzheimer's disease, are easily detected in paraffin sections using light microscopy and specific staining methods including Congo red and Thioflavin S. Identification of these lesions in plastic thick sections (1 micron) is more tedious and relies essentially on morphological criteria. This causes investigators to subsequently analyze large numbers of thin sections under the electron microscope. Since many researchers use electron microscopy for various aspects of Alzheimer's disease and related research, it would be advantageous to have a rapid method enabling the investigator to quickly and reliably identify in thick sections the characteristic NPs, NFTs and/or CA, which can then be used for further analysis at the ultrastructural level. In this context, the present study describes a dependable technique for identifying NPs, NFTs and/or CA in Alzheimer's disease and related disorders and involves Congo red staining on one micron sections after plastic removal.
Chi, Chih-Wen; Deng, Yu-Lun; Lee, Jyh-Wei; Lin, Chun-Pin
2017-05-01
Dental nickel-titanium (NiTi) rotary instruments are widely used in endodontic therapy because they are efficient with a higher success rate. However, an unpredictable fracture of instruments may happen due to the surface characteristics of imperfection (or irregularity). This study assessed whether a novel surface treatment could increase fatigue fracture resistance of dental NiTi rotary instruments. A 200- or 500-nm thick Ti-zirconium-boron (Ti-Zr-B) thin film metallic glass was deposited on ProTaper Universal F2 files using a physical vapor deposition process. The characteristics of coating were analyzed by scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. In cyclic fatigue tests, the files were performed in a simulated root canal (radius=5 mm, angulation=60°) under a rotating speed of 300rpm. The fatigue fractured cross sections of the files were analyzed with their fractographic performances through scanning electron microscopy images. The amorphous structure of the Ti-Zr-B coating was confirmed by transmission electron microscopy and X-ray diffractometry. The surface of treated files presented smooth morphologies without grinding irregularity. For the 200- and 500-nm surface treatment groups, the coated files exhibited higher resistance of cyclic fatigue than untreated files. In fractographic analysis, treated files showed significantly larger crack-initiation zone; however, no significant differences in the areas of fatigue propagation and catastrophic fracture were found compared to untreated files. The novel surface treatment of Ti-Zr-B thin film metallic glass on dental NiTi rotary files can effectively improve the fatigue fracture resistance by offering a smooth coated surface with amorphous microstructure. Copyright © 2016. Published by Elsevier B.V.
Transmission Electron Microscopy of an In Situ Presolar Silicon Carbide Grain
NASA Technical Reports Server (NTRS)
Stroud, Rhonda M.; OGrady, Megan; Nittler, Larry R.; Alexander, Conel M. OD.
2002-01-01
We used a focused ion beam workstation to prepare ultra-thin sections of a presolar SiC grain. Our TEM studies indicate that the SiC formed by rapid vapor-phase condensation, trapping pre-existing graphite grains in random orientations. Additional information is contained in the original extended abstract.
Transmission electron microscopy in molecular structural biology: A historical survey.
Harris, J Robin
2015-09-01
In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. Copyright © 2014 Elsevier Inc. All rights reserved.
Ion Conduction in Perfectly Aligned Block Copolymer-Ionic Liquid Mixtures
NASA Astrophysics Data System (ADS)
Choi, Jae-Hong; Elabd, Yossef A.; Winey, Karen I.
2011-03-01
Our earlier work to correlate the transport measurements in diblock copolymer-ionic liquid mixtures was limited by our bulk samples that have only partial alignment. Here, thin films with perfect alignment of lamellar microdomains from mixtures of a poly(methyl methacrylate- b -styrene) diblock copolymer and an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, have been studied. The morphologies will be characterized by cross-sectional transmission electron microscopy. Ion conduction will be presented within and through the thin film.
Synthesis of nanocrystalline ZnO thin films by electron beam evaporation
NASA Astrophysics Data System (ADS)
Kondkar, V.; Rukade, D.; Bhattacharyya, V.
2018-05-01
Nanocrystalline ZnO thin films have potential for applications in variety of optoelectronic devices. In the present study, nanocrystalline thin films of ZnO are grown on fused silica substrate using electron beam (e-beam) evaporation technique. Phase identification is carried out using Glancing angle X-ray diffraction (GAXRD) and Raman spectroscopy. Ultraviolet-Visible (UV-Vis) spectroscopic analysis is carried out to calculate energy band gap of the ZnO film. Surface morphology of the film is investigated using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). Highly quality nanocrystalline thin films of hexagonal wurtzite ZnO are synthesized using e-beam evaporation technique.
Bushong, Eric A; Johnson, Donald D; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H
2015-02-01
The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging.
Bushong, Eric A.; Johnson, Donald D.; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T.; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H.
2015-01-01
The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging. PMID:25392009
Structure and Assembly of Intracellular Mature Vaccinia Virus: Thin-Section Analyses
Griffiths, Gareth; Roos, Norbert; Schleich, Sybille; Locker, Jacomine Krijnse
2001-01-01
In the preceding study (see accompanying paper), we showed by a variety of different techniques that intracellular mature vaccinia virus (vaccinia IMV) is unexpectedly complex in its structural organization and that this complexity also extends to the underlying viral core, which is highly folded. With that analysis as a foundation, we now present different thin-section electron microscopy approaches for analyzing the IMV and the processes by which it is assembled in infected HeLa cells. We focus on conventional epoxy resin thin sections as well as cryosections to describe key intermediates in the assembly process. We took advantage of streptolysin O's ability to selectively permeabilize the plasma membrane of infected cells to improve membrane contrast, and we used antibodies against bone fide integral membrane proteins of the virus to unequivocally identify membrane profiles in thin sections. All of the images presented here can be rationalized with respect to the model put forward for the assembly of the IMV in the accompanying paper. PMID:11602745
Atomic structures of B20 FeGe thin films grown on the Si(111) surface
NASA Astrophysics Data System (ADS)
Kim, Wondong; Noh, Seungkyun; Yoon, Jisoo; Kim, Young Heon; Lee, Inho; Kim, Jae-Sung; Hwang, Chanyong
We investigated the growth and atomic structures of FeGe thin films on the Si (111) surface by using scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). The 2 5nm- thick FeGe thin films were prepared on the clean Si(111) 7x7 surface by co-deposition of Fe and Ge from separated electron-beam evaporators. With direct deposition on the substrate at the temperature above 550 K, the surface of FeGe films was not smooth and consisted of coarse grains. By the combination of room-temperature annealing and post-annealing process around 800 K, the structure of FeGe thin films evolved into the well crystalized structures. Atom-resolved STM images revealed that there are at least four different surface terminations. We constructed atomic models for each surface terminations based on the bulk atomic arrangement of a B20 chiral structure and confirmed that the observed STM images are successfully reproduced by using computational simulations employing Vienna Ab Initio Simulation package (VASP) with a B20 chiral structure model. TEM cross-sectional images also support our atomic models by revealing clearly the characteristic zigzag features of B20 structures of FeGe(111) thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sardashti, Kasra; Haight, Richard; Anderson, Ryan
2016-06-22
Cryogenic focused ion beam (Cryo-FIB) milling at near-grazing angles is employed to fabricate cross-sections on thin Cu(In,Ga)Se2 with >8x expansion in thickness. Kelvin probe force microscopy (KPFM) on sloped cross sections showed reduction in grain boundaries potential deeper into the film. Cryo Fib-KPFM enabled the first determination of the electronic structure of the Mo/CIGSe back contact, where a sub 100 nm thick MoSey assists hole extraction due to 45 meV higher work function. This demonstrates that CryoFIB-KPFM combination can reveal new targets of opportunity for improvement in thin-films photovoltaics such as high-work-function contacts to facilitate hole extraction through the backmore » interface of CIGS.« less
Crimp, Martin A
2006-05-01
The imaging and characterization of dislocations is commonly carried out by thin foil transmission electron microscopy (TEM) using diffraction contrast imaging. However, the thin foil approach is limited by difficult sample preparation, thin foil artifacts, relatively small viewable areas, and constraints on carrying out in situ studies. Electron channeling imaging of electron channeling contrast imaging (ECCI) offers an alternative approach for imaging crystalline defects, including dislocations. Because ECCI is carried out with field emission gun scanning electron microscope (FEG-SEM) using bulk specimens, many of the limitations of TEM thin foil analysis are overcome. This paper outlines the development of electron channeling patterns and channeling imaging to the current state of the art. The experimental parameters and set up necessary to carry out routine channeling imaging are reviewed. A number of examples that illustrate some of the advantages of ECCI over thin foil TEM are presented along with a discussion of some of the limitations on carrying out channeling contrast analysis of defect structures. Copyright (c) 2006 Wiley-Liss, Inc.
Correlating microscopy techniques and ToF-SIMS analysis of fully grown mammalian oocytes.
Gulin, Alexander; Nadtochenko, Victor; Astafiev, Artyom; Pogorelova, Valentina; Rtimi, Sami; Pogorelov, Alexander
2016-06-20
The 2D-molecular thin film analysis protocol for fully grown mice oocytes is described using an innovative approach. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical microscopy imaging were applied to the same mice oocyte section on the same sample holder. A freeze-dried mice oocyte was infiltrated into embedding media, e.g. Epon, and then was cut with a microtome and 2 μm thick sections were transferred onto an ITO coated conductive glass. Mammalian oocytes can contain "nucleolus-like body" (NLB) units and ToF-SIMS analysis was used to investigate the NLB composition. The ion-spatial distribution in the cell components was identified and compared with the images acquired by SEM, AFM and optical microscopy. This study presents a significant advancement in cell embryology, cell physiology and cancer-cell biochemistry.
Characterisation of nickel silicide thin films by spectroscopy and microscopy techniques.
Bhaskaran, M; Sriram, S; Holland, A S; Evans, P J
2009-01-01
This article discusses the formation and detailed materials characterisation of nickel silicide thin films. Nickel silicide thin films have been formed by thermally reacting electron beam evaporated thin films of nickel with silicon. The nickel silicide thin films have been analysed using Auger electron spectroscopy (AES) depth profiles, secondary ion mass spectrometry (SIMS), and Rutherford backscattering spectroscopy (RBS). The AES depth profile shows a uniform NiSi film, with a composition of 49-50% nickel and 51-50% silicon. No oxygen contamination either on the surface or at the silicide-silicon interface was observed. The SIMS depth profile confirms the existence of a uniform film, with no traces of oxygen contamination. RBS results indicate a nickel silicide layer of 114 nm, with the simulated spectra in close agreement with the experimental data. Atomic force microscopy and transmission electron microscopy have been used to study the morphology of the nickel silicide thin films. The average grain size and average surface roughness of these films was found to be 30-50 and 0.67 nm, respectively. The film surface has also been studied using Kikuchi patterns obtained by electron backscatter detection.
Delpiano, J; Pizarro, L; Peddie, C J; Jones, M L; Griffin, L D; Collinson, L M
2018-04-26
Integrated array tomography combines fluorescence and electron imaging of ultrathin sections in one microscope, and enables accurate high-resolution correlation of fluorescent proteins to cell organelles and membranes. Large numbers of serial sections can be imaged sequentially to produce aligned volumes from both imaging modalities, thus producing enormous amounts of data that must be handled and processed using novel techniques. Here, we present a scheme for automated detection of fluorescent cells within thin resin sections, which could then be used to drive automated electron image acquisition from target regions via 'smart tracking'. The aim of this work is to aid in optimization of the data acquisition process through automation, freeing the operator to work on other tasks and speeding up the process, while reducing data rates by only acquiring images from regions of interest. This new method is shown to be robust against noise and able to deal with regions of low fluorescence. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
Berkovich Nanoindentation on AlN Thin Films.
Jian, Sheng-Rui; Chen, Guo-Ju; Lin, Ting-Chun
2010-03-31
Berkovich nanoindentation-induced mechanical deformation mechanisms of AlN thin films have been investigated by using atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM) techniques. AlN thin films are deposited on the metal-organic chemical-vapor deposition (MOCVD) derived Si-doped (2 × 1017 cm-3) GaN template by using the helicon sputtering system. The XTEM samples were prepared by means of focused ion beam (FIB) milling to accurately position the cross-section of the nanoindented area. The hardness and Young's modulus of AlN thin films were measured by a Berkovich nanoindenter operated with the continuous contact stiffness measurements (CSM) option. The obtained values of the hardness and Young's modulus are 22 and 332 GPa, respectively. The XTEM images taken in the vicinity regions just underneath the indenter tip revealed that the multiple "pop-ins" observed in the load-displacement curve during loading are due primarily to the activities of dislocation nucleation and propagation. The absence of discontinuities in the unloading segments of load-displacement curve suggests that no pressure-induced phase transition was involved. Results obtained in this study may also have technological implications for estimating possible mechanical damages induced by the fabrication processes of making the AlN-based devices.
The thermal and deformational history of apollo 15418, A partly shock-melted lunar breccia
Nord, G.L.; Christie, J.M.; Lally, J.S.; Heuer, A.H.
1977-01-01
A thermal and mechanical history of lunar gabbroic anorthosite 15418 (1140g) has been deduced from petrographic examination of both exterior and interior thin sections and electron microprobe analysis and transmission electron microscopy of interior thin sections. We suggest that the rock underwent two major shock events - an early brecciation and annealing that produced a recrystallized breccia, followed by a second shock event that melted the surface of the rock, vitrified the interior plagioclase and heavily deformed the mafic phases. This latter shock even was also followed by annealing which crystallized the shock-produced glass and promoted recovery and recrystallization of the deformed crystalline phases. The complex mechanical and thermal history of 15418 compared with other ANT suite rocks at Spur Crater suggests that it had a different provenance. ?? 1977 D. Reidel Publishing Company, Dordrecht-Holland.
Riedl, Thomas; Gemming, Thomas; Mickel, Christine; Eymann, Konrad; Kirchner, Alexander; Kieback, Bernd
2012-06-01
This article explores the achievable transmission electron microscopy specimen thickness and quality by using three different preparation methods in the case of a high-strength nanocrystalline Cu-Nb powder alloy. Low specimen thickness is essential for spatially resolved analyses of the grains in nanocrystalline materials. We have found that single-sided as well as double-sided low-angle Ar ion milling of the Cu-Nb powders embedded into epoxy resin produced wedge-shaped particles of very low thickness (<10 nm) near the edge. By means of a modified focused ion beam lift-out technique generating holes in the lamella interior large micrometer-sized electron-transparent regions were obtained. However, this lamella displayed a higher thickness at the rim of ≥30 nm. Limiting factors for the observed thicknesses are discussed including ion damage depths, backscattering, and surface roughness, which depend on ion type, energy, current density, and specimen motion. Finally, sections cut by ultramicrotomy at low stroke rate and low set thickness offered vast, several tens of square micrometers uniformly thin regions of ∼10-nm minimum thickness. As major drawbacks, we have detected a thin coating on the sections consisting of epoxy deployed as the embedding material and considerable nanoscale thickness variations. Copyright © 2011 Wiley Periodicals, Inc.
Short review on chemical bath deposition of thin film and characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mugle, Dhananjay, E-mail: dhananjayforu@gmail.com; Jadhav, Ghanshyam, E-mail: ghjadhav@rediffmail.com
2016-05-06
This reviews the theory of early growth of the thin film using chemical deposition methods. In particular, it critically reviews the chemical bath deposition (CBD) method for preparation of thin films. The different techniques used for characterizations of the chemically films such as X-ray diffractometer (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Electrical conductivity and Energy Dispersive Spectroscopy (EDS) are discussed. Survey shows the physical and chemical properties solely depend upon the time of deposition, temperature of deposition.
Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara
2010-03-01
Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. (c) 2010 Elsevier Inc. All rights reserved.
Cross Section High Resolution Imaging of Polymer-Based Materials
NASA Astrophysics Data System (ADS)
Delaportas, D.; Aden, P.; Muckle, C.; Yeates, S.; Treutlein, R.; Haq, S.; Alexandrou, I.
This paper describes a methodology for preparing cross sections of organic layers suitable for transmission electron microscopy (TEM) at high resolution. Our principal aim is to prepare samples that are tough enough to allow the slicing into sub-150 nm sections. We also need strong contrast at the organic layer area to make it identifiable during TEM. Our approach is to deposit organic layers on flexible substrates and prepare thin cross sections using ultra-microtomy. We sandwich the organic layer between two metal thin films in order to isolate it and improve contrast. Our methodology is used to study the microstructure of polymer/nanotube composites, allowing us to accurately measure the organic layer thickness, determine nanotube dispersion and assess the effect of nanotube clustering on film structural stability.
Energy dispersive X-ray analysis on an absolute scale in scanning transmission electron microscopy.
Chen, Z; D'Alfonso, A J; Weyland, M; Taplin, D J; Allen, L J; Findlay, S D
2015-10-01
We demonstrate absolute scale agreement between the number of X-ray counts in energy dispersive X-ray spectroscopy using an atomic-scale coherent electron probe and first-principles simulations. Scan-averaged spectra were collected across a range of thicknesses with precisely determined and controlled microscope parameters. Ionization cross-sections were calculated using the quantum excitation of phonons model, incorporating dynamical (multiple) electron scattering, which is seen to be important even for very thin specimens. Copyright © 2015 Elsevier B.V. All rights reserved.
Hasenmueller, W.A.; Hattin, D.E.
1985-01-01
Moulds of Baculites sp. are common in the Smoky Hill Member but only five known specimens contain connecting rings that have been preserved because of mineralisation by carbonate apatite. Analysis of four of these specimens suggests that the connecting rings were originally composed of organic material and were mineralised during early diagenesis. Thin sections and scanning electron microscopy demonstrate that the connecting rings had a two-layered structure consisting of a thick siphuncular wall and a thin pellicle. ?? 1985.
Low-voltage electron microscopy of polymer and organic molecular thin films.
Drummy, Lawrence F; Yang, Junyan; Martin, David C
2004-06-01
We have demonstrated the capabilities of a novel low-voltage electron microscope (LVEM) for imaging polymer and organic molecular thin films. The LVEM can operate in transmission electron microscopy, scanning transmission electron microscopy, scanning electron microscopy, and electron diffraction modes. The microscope operates at a nominal accelerating voltage of 5 kV and fits on a tabletop. A detailed discussion of the electron-sample interaction processes is presented, and the mean free path for total electron scattering was calculated to be 15 nm for organic samples at 5 kV. The total end point dose for the destruction of crystallinity at 5 kV was estimated at 5 x 10(-4) and 3.5 x 10(-2) C/cm2 for polyethylene and pentacene, respectively. These values are significantly lower than those measured at voltages greater than 100 kV. A defocus series of colloidal gold particles allowed us to estimate the experimental contrast transfer function of the microscope. Images taken of several organic materials have shown high contrast for low atomic number elements and a resolution of 2.5 nm. The materials studied here include thin films of the organic semiconductor pentacene, triblock copolymer films, single-molecule dendrimers, electrospun polymer fibers and gold nanoparticles. Copyright 2004 Elsevier B.V.
2014-02-27
Electron Microscopy. Detailed Kronig -Penny (K-P)) modeling of electron transport through these superlattices suggests an estimated e-h transition energy...superalttices was confirmed by Transmission Electron Microscopy. Detailed Kronig -Penny (K-P)) modeling of electron transport through these superlattices
Micro-CT scouting for transmission electron microscopy of human tissue specimens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, A. G.; Stempinski, E. S.; XIAO, X.
Transmission electron microscopy (TEM) provides sub-nanometre-scale details in volumetric samples. Samples such as pathology tissue specimens are often stained with a metal element to enhance contrast, which makes them opaque to optical microscopes. As a result, it can be a lengthy procedure to find the region of interest inside a sample through sectioning. Here, we describe micro-CT scouting for TEM that allows noninvasive identification of regions of interest within a block sample to guide the sectioning step. In a tissue pathology study, a bench-top micro-CT scanner with 10 m resolution was used to determine the location of patches of themore » mucous membrane in osmium-stained human nasal scraping samples. Furthermore, once the regions of interest were located, the sample block was sectioned to expose that location, followed by ultra-thin sectioning and TEM to inspect the internal structure of the cilia of the membrane epithelial cells with nanometre resolution. This method substantially reduced the time and labour of the search process from typically 20 sections for light microscopy to three sections with no added sample preparation. Lay description Electron microscopy provides very high levels of detail in a small area, and thus the question of where to look in an opaque sample, such as a stained tissue specimen, needs to be answered by sectioning the sample in small steps and examining the sections under a light microscope, until the region of interest is found. The search process can be lengthy and labor intensive, especially for a study involving a large number of samples. Small areas of interest can be missed in the process if not enough regions are examined. We also describe a method to directly locate the region of interest within a whole sample using micro-CT imaging, bypassing the need of blindly sectioning. Micro-CT enables locating the region within 3D space; this information provides a guide for sectioning the sample to expose that precise location for high resolution electron microscopy imaging. In a human tissue specimen study, this method considerably reduced the time and labor of the search process.« less
Micro-CT scouting for transmission electron microscopy of human tissue specimens
Morales, A. G.; Stempinski, E. S.; XIAO, X.; ...
2016-02-08
Transmission electron microscopy (TEM) provides sub-nanometre-scale details in volumetric samples. Samples such as pathology tissue specimens are often stained with a metal element to enhance contrast, which makes them opaque to optical microscopes. As a result, it can be a lengthy procedure to find the region of interest inside a sample through sectioning. Here, we describe micro-CT scouting for TEM that allows noninvasive identification of regions of interest within a block sample to guide the sectioning step. In a tissue pathology study, a bench-top micro-CT scanner with 10 m resolution was used to determine the location of patches of themore » mucous membrane in osmium-stained human nasal scraping samples. Furthermore, once the regions of interest were located, the sample block was sectioned to expose that location, followed by ultra-thin sectioning and TEM to inspect the internal structure of the cilia of the membrane epithelial cells with nanometre resolution. This method substantially reduced the time and labour of the search process from typically 20 sections for light microscopy to three sections with no added sample preparation. Lay description Electron microscopy provides very high levels of detail in a small area, and thus the question of where to look in an opaque sample, such as a stained tissue specimen, needs to be answered by sectioning the sample in small steps and examining the sections under a light microscope, until the region of interest is found. The search process can be lengthy and labor intensive, especially for a study involving a large number of samples. Small areas of interest can be missed in the process if not enough regions are examined. We also describe a method to directly locate the region of interest within a whole sample using micro-CT imaging, bypassing the need of blindly sectioning. Micro-CT enables locating the region within 3D space; this information provides a guide for sectioning the sample to expose that precise location for high resolution electron microscopy imaging. In a human tissue specimen study, this method considerably reduced the time and labor of the search process.« less
Darling, Sven; Theilade, Jørgen; Birch-Andersen, Aksel
1972-01-01
Cells of Saccharomyces cerevisiae and Hansenula anomala were digested with snail enzyme under conditions yielding prospheroplasts. Surrounding envelopes were isolated after lysis of prospheroplasts in distilled water. The envelope material was embedded and sectioned for electron microscopy, and thin, hollow structures still retaining the elongated form of the original cells were seen. The envelopes were of low electron density in sections stained with uranyl magnesium acetate and lead citrate, but were more electron-dense when stained with phosphotungstic acid. Shadowed preparations of prospheroplast envelopes revealed structures resembling ghosts. These “ghosts” were similar to the original cells in form and size but seemed to be very thin. Varying numbers of anular structures (bud scars) were found on them. Chemical analyses of the envelope indicated that an alkali-soluble glucan was a major constituent. The results show that the prospheroplast envelope is part of the original cell wall of the yeast and is located in close apposition to the cytoplasmic membrane. Images PMID:4552997
Surface Diagnostics in Tribology Technology and Advanced Coatings Development
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1999-01-01
This paper discusses the methodologies used for surface property measurement of thin films and coatings, lubricants, and materials in the field of tribology. Surface diagnostic techniques include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and tribology examination. Each diagnostic technique provides specific measurement results in its own unique way. In due course it should be possible to coordinate the different pieces of information provided by these diagnostic techniques into a coherent self-consistent description of the surface properties. Examples are given on the nature and character of thin diamond films.
Czigány, Zs; Neidhardt, J; Brunell, I F; Hultman, L
2003-04-01
The microstructure of CN(x) thin films, deposited by reactive magnetron sputtering, was investigated by transmission electron microscopy (TEM) at 200kV in plan-view and cross-sectional samples. Imaging artefacts arise in high-resolution TEM due to overlap of nm-sized fullerene-like features for specimen thickness above 5nm. The thinnest and apparently artefact-free areas were obtained at the fracture edges of plan-view specimens floated-off from NaCl substrates. Cross-sectional samples were prepared by ion-beam milling at low energy to minimize sample preparation artefacts. The depth of the ion-bombardment-induced surface amorphization was determined by TEM cross sections of ion-milled fullerene-like CN(x) surfaces. The thickness of the damaged surface layer at 5 degrees grazing incidence was 13 and 10nm at 3 and 0.8keV, respectively, which is approximately three times larger than that observed on Si prepared under the same conditions. The shallowest damage depth, observed for 0.25keV, was less than 1nm. Chemical changes due to N loss and graphitization were also observed by X-ray photoelectron spectroscopy. As a consequence of chemical effects, sputtering rates of CN(x) films were similar to that of Si, which enables relatively fast ion-milling procedure compared to carbon compounds. No electron beam damage of fullerene-like CN(x) was observed at 200kV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kononchik, Joseph P.; Vancini, Ricardo; Brown, Dennis T., E-mail: dennis_brown@ncsu.edu
Sindbis Virus (SV), the prototype alphavirus in the family togaviridae, infects both mammalian and insect cells. The ability of SV to infect cells possessing significantly different biochemical environments suggests that there may be a common mode of entry into each cell type. Previous studies show that up to 4 h post infection cells are permeable to small ions and alpha sarcin suggesting that the plasma membrane is compromised as infection takes place. Thin-section electron microscopy has also shown SV to bind to the plasma membrane and lose its electron dense core through a pore like structure developed upon interaction ofmore » the virus with the cell surface. Using freeze-fracture replicas, thin-sections and antibody labeling the data presented herein show virus associated with intramembrane particles on mosquito cells. These data suggest that the intramembrane particles associated with SV may be part of the pore structure consisting of virus proteins and cell receptor.« less
Holbert, Pauline E.
1960-01-01
Bacillus polymyxa sporangia and spores were prepared for examination in the electron microscope by methods whose critical features were apparently: judicious use of vacuum, to encourage complete penetration of the embedding medium; the use of epoxy resins as embedding media; and cutting of the thin sections with a diamond knife. Electron micrographs of material prepared in this manner exhibit undeformed sporangial sections. Some of the structures revealed have been shown before, though perhaps less distinctly; other structures are revealed here for the first time. While this single study does not pretend to elucidate all the complexities of sporulation in bacteria, these and similar images should make this possible, and some mention of the preparatory techniques that lead to them seems advisable at this time. PMID:14402552
Schwarcz, Henry P; McNally, Elizabeth A; Botton, Gianluigi A
2014-12-01
In a previous study we showed that most of the mineral in bone is present in the form of "mineral structures", 5-6nm-thick, elongated plates which surround and are oriented parallel to collagen fibrils. Using dark-field transmission electron microscopy, we viewed mineral structures in ion-milled sections of cortical human bone cut parallel to the collagen fibrils. Within the mineral structures we observe single crystals of apatite averaging 5.8±2.7nm in width and 28±19nm in length, their long axes oriented parallel to the fibril axis. Some appear to be composite, co-aligned crystals as thin as 2nm. From their similarity to TEM images of crystals liberated from deproteinated bone we infer that we are viewing sections through platy crystals of apatite that are assembled together to form the mineral structures. Copyright © 2014 Elsevier Inc. All rights reserved.
Berkovich Nanoindentation on AlN Thin Films
2010-01-01
Berkovich nanoindentation-induced mechanical deformation mechanisms of AlN thin films have been investigated by using atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM) techniques. AlN thin films are deposited on the metal-organic chemical-vapor deposition (MOCVD) derived Si-doped (2 × 1017 cm−3) GaN template by using the helicon sputtering system. The XTEM samples were prepared by means of focused ion beam (FIB) milling to accurately position the cross-section of the nanoindented area. The hardness and Young’s modulus of AlN thin films were measured by a Berkovich nanoindenter operated with the continuous contact stiffness measurements (CSM) option. The obtained values of the hardness and Young’s modulus are 22 and 332 GPa, respectively. The XTEM images taken in the vicinity regions just underneath the indenter tip revealed that the multiple “pop-ins” observed in the load–displacement curve during loading are due primarily to the activities of dislocation nucleation and propagation. The absence of discontinuities in the unloading segments of load–displacement curve suggests that no pressure-induced phase transition was involved. Results obtained in this study may also have technological implications for estimating possible mechanical damages induced by the fabrication processes of making the AlN-based devices. PMID:20672096
Lee, H-P; Perozek, J; Rosario, L D; Bayram, C
2016-11-21
AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {Al x Ga 1-x N}/AlN, (b) Thin-GaN/3 × {Al x Ga 1-x N}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm 2 /V∙s) and 2DEG carrier concentration (>1.0 × 10 13 cm -2 ) on Si(111) substrates.
Lee, H.-P.; Perozek, J.; Rosario, L. D.; Bayram, C.
2016-01-01
AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {AlxGa1−xN}/AlN, (b) Thin-GaN/3 × {AlxGa1−xN}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm2/V∙s) and 2DEG carrier concentration (>1.0 × 1013 cm−2) on Si(111) substrates. PMID:27869222
Internal Membrane Control in Azotobacter vinelandii
Pate, Jack L.; Shah, Vinod K.; Brill, Winston J.
1973-01-01
Azotobacter vinelandii was grown on N2, NH4+, or NO3−, and an internal membrane network was observed by electron microscopy of thin sections of cells. Cells obtained in early exponential growth contained less internal membrane than did cells from cultures in late exponential growth. It seems likely that O2 has a role in regulating the amount of internal membrane structure. Images PMID:4123239
Robert, Donatien; Douillard, Thierry; Boulineau, Adrien; Brunetti, Guillaume; Nowakowski, Pawel; Venet, Denis; Bayle-Guillemaud, Pascale; Cayron, Cyril
2013-12-23
LiFePO4 and FePO4 phase distributions of entire cross-sectioned electrodes with various Li content are investigated from nanoscale to mesoscale, by transmission electron microscopy and by the new electron forward scattering diffraction technique. The distributions of the fully delithiated (FePO4) or lithiated particles (LiFePO4) are mapped on large fields of view (>100 × 100 μm(2)). Heterogeneities in thin and thick electrodes are highlighted at different scales. At the nanoscale, the statistical analysis of 64 000 particles unambiguously shows that the small particles delithiate first. At the mesoscale, the phase maps reveal a core-shell mechanism at the scale of the agglomerates with a preferential pathway along the electrode porosities. At larger scale, lithiation occurs in thick electrodes "stratum by stratum" from the surface in contact with electrolyte toward the current collector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, V. V.; Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru; Shtykova, E. V.
2009-03-15
The nanoscale structural features in a composite (gel film of Acetobacter Xylinum cellulose with adsorbed silver nanoparticles, stabilized by N-polyvinylpyrrolidone) have been investigated by small-angle X-ray scattering. The size distributions of inhomogeneities in the porous structure of the cellulose matrix and the size distributions of silver nanoparticles in the composite have been determined. It is shown that the sizes of synthesized nanoparticles correlate with the sizes of inhomogeneities in the gel film. Particles of larger size (with radii up to 100 nm) have also been found. Electron microscopy of thin cross sections of a dried composite layer showed that largemore » particles are located on the cellulose layer surface. Electron diffraction revealed a crystal structure of silver nanoparticles in the composite.« less
NASA Astrophysics Data System (ADS)
Gao, Kuixiong; Cardell, Emma Lou; Morris, Randal E.; Giffin, Bruce F.; Cardell, Robert R.
1995-08-01
Phosphoenolpyruvate carboxykinase (PEPCK) is the rate-limiting gluconeogenic enzyme and in liver occurs in a lobular gradient from periportal to pericentral regions. The subcellular distribution of cytoplasmic PEPCK molecules within hepatocytes and its relationship to organelles have not been determined previously. In this study, we have used immunogold electron microscopy to evaluate the subcellar distribution of the enzyme, in addition to brightfield and epipolarized light microscopy. Cryosections (10 [mu]m) of perfusion-fixed rat liver were collected on silanated slides and immunostained using goat anti-rat PEPCK followed by 5-nm gold-labeled secondary and tertiary antibodies. Additionally, free-floating vibratome sections (25, 50, and 100 [mu]m) of perfusion-immersion-fixed rat liver were immunogold stained using goat anti-rat PEPCK and 5-nm gold-labeled secondary antibody, with and without silver enhancement. The immunogold labeled sections from both procedures were embedded in epoxy resin for the preparation of thin sections for electron microscopy. The results showed that the gold-labeled antibodies penetrated the entire thickness of cryosections, resulting in a high signal for PEPCK, but membranes in general, the smooth endoplasmic reticulum in particular, were not identifiable as electron dense unit membranes. On the other hand, the vibratome sections of well-fixed tissue allowed good visualization of the ultrastructure of cellular organelles, with the smooth endoplasmic reticulum appearing as vesicles and tubules with electron dense unit membranes; however, the penetration of the gold-labeled antibody was limited to cells at the surface of the vibratome sections. In both procedures, PEPCK, as indicated by gold particles, is predominantly in the glycogen areas of the cytosome and not in mitochondria, nuclei, Golgi apparatus, or other cell organelles. Hepatocytes in periportal regions have a compact subcellular distribution of PEPCK shown by gold particles; hepatocytes in pericentral regions have a diffuse subcellular distribution of PEPCK and thus more scattered gold particles. When normal serum replaced the first antibody in the immunogold staining procedures, the background was very low.
Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara
2010-11-01
Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. Copyright © 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuipers, Jeroen; Boer, Pascal de; Giepmans, Ben N.G., E-mail: b.n.g.giepmans@umcg.nl
Scanning electron microscopy (SEM) is increasing its application in life sciences for electron density measurements of ultrathin sections. These are traditionally analyzed with transmission electron microscopy (TEM); by most labs, SEM analysis still is associated with surface imaging only. Here we report several advantages of SEM for thin sections over TEM, both for structural inspection, as well as analyzing immuno-targeted labels such as quantum dots (QDs) and gold, where we find that QD-labeling is ten times more efficient than gold-labeling. Furthermore, we find that omitting post-staining with uranyl and lead leads to QDs readily detectable over the ultrastructure, but undermore » these conditions ultrastructural contrast was even almost invisible in TEM examination. Importantly, imaging in SEM with STEM detection leads to both outstanding QDs and ultrastructural contrast. STEM imaging is superior over back-scattered electron imaging of these non-contrasted samples, whereas secondary electron detection cannot be used at all. We conclude that examination of ultrathin sections by SEM, which may be immunolabeled with QDs, will allow rapid and straightforward analysis of large fields with more efficient labeling than can be achieved with immunogold. The large fields of view routinely achieved with SEM, but not with TEM, allows straightforward raw data sharing using virtual microscopy, also known as nanotomy when this concerns EM data in the life sciences. - Highlights: • High resolution and large fields of view via nanotomy or virtual microscopy. • Highly relevant for EM‐datasets where information density is high. • Sample preparation with low contrast good for STEM, not TEM. • Quantum dots now stand out in STEM‐based detection. • 10 Times more efficient labeling with quantum dots compared to gold.« less
Atomistic structures of nano-engineered SiC and radiation-induced amorphization resistance
NASA Astrophysics Data System (ADS)
Imada, Kenta; Ishimaru, Manabu; Sato, Kazuhisa; Xue, Haizhou; Zhang, Yanwen; Shannon, Steven; Weber, William J.
2015-10-01
Nano-engineered 3C-SiC thin films, which possess columnar structures with high-density stacking faults and twins, were irradiated with 2 MeV Si ions at cryogenic and room temperatures. From cross-sectional transmission electron microscopy observations in combination with Monte Carlo simulations based on the Stopping and Range of Ions in Matter code, it was found that their amorphization resistance is six times greater than bulk crystalline SiC at room temperature. High-angle bright-field images taken by spherical aberration corrected scanning transmission electron microscopy revealed that the distortion of atomic configurations is localized near the stacking faults. The resultant strain field probably contributes to the enhancement of radiation tolerance of this material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moutanabbir, O.; Scholz, R.; Senz, S.
We investigated the microstructural transformations during hydrogen ion-induced splitting of GaN thin layers. Cross-sectional transmission electron microscopy and positron annihilation spectroscopy data show that the implanted region is decorated with a high density of 1-2 nm bubbles resulting from vacancy clustering during implantation. These nanobubbles persist up to 450 deg. C. Ion channeling data show a strong dechanneling enhancement in this temperature range tentatively attributed to strain-induced lattice distortion. The dechanneling level decreases following the formation of plateletlike structures at 475 deg. C. Extended internal surfaces develop around 550 deg. C leading to the exfoliation of GaN thin layer.
TEM characterization of nanodiamond thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, L.-C.; Zhou, D.; Krauss, A. R.
The microstructure of thin films grown by microwave plasma-enhanced chemical vapor deposition (MPCVD) from fullerene C{sub 60} precursors has been characterized by scanning electron microscopy (SEM), selected-area electron diffraction (SAED), bright-field electron microscopy, high-resolution electron microscopy (HREM), and parallel electron energy loss spectroscopy (PEELS). The films are composed of nanosize crystallites of diamond, and no graphitic or amorphous phases were observed. The diamond crystallite size measured from lattice images shows that most grains range between 3-5 nm, reflecting a gamma distribution. SAED gave no evidence of either sp2-bonded glassy carbon or sp3-bonded diamondlike amorphous carbon. The sp2-bonded configuration found inmore » PEELS was attributed to grain boundary carbon atoms, which constitute 5-10% of the total. Occasionally observed larger diamond grains tend to be highly faulted.« less
In-situ spectro-microscopy on organic films: Mn-Phthalocyanine on Ag(100)
NASA Astrophysics Data System (ADS)
Al-Mahboob, Abdullah; Sadowski, Jerzy T.; Vescovo, Elio
2013-03-01
Metal phthalocyanines are attracting significant attention, owing to their potential for applications in chemical sensors, solar cells and organic magnets. As the electronic properties of molecular films are determined by their crystallinity and molecular packing, the optimization of film quality is important for improving the performance of organic devices. Here, we present the results of in situ low-energy electron microscopy / photoemission electron microscopy (LEEM/PEEM) studies of incorporation-limited growth of manganese-phthalocyanine (MnPc) on Ag(100) surfaces. MnPc thin films were grown on both, bulk Ag(100) surface and thin Ag(100)/Fe(100) films, where substrate spin-polarized electronic states can be modified through tuning the thickness of the Ag film. We also discuss the electronic structure and magnetic ordering in MnPc thin films, investigated by angle- and spin-resolved photoemission spectroscopy. Research carried out at the Center for Functional Nanomaterials and National Synchrotron Light Source, Brookhaven National Laboratory, which are supported by the U.S. Dept. of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.
Transmission electron microscopy of AlGaAs/GaAs quantum cascade laser structures.
Walther, T; Krysa, A B
2017-12-01
Quantum cascade lasers can be efficient infrared radiation sources and consist of several hundreds of very thin layers arranged in stacks that are repeated periodically. Both the thicknesses of the individual layers as well as the period lengths need to be monitored to high precision. Different transmission electron microscopy methods have been combined to analyse AlGaAs/GaAs quantum cascade laser structures in cross-section. We found a small parabolic variation of the growth rate during deposition, affecting the stack periodicity and a reduced aluminium content of the AlGaAs barriers, whereas their widths as well as those of the GaAs quantum wells agreed with the nominal values within one atomic layer. Growth on an offcut substrate led to facets and steps at the interfaces. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Preparation and characterization of nanostructured Pt/TiO2 thin films treated using electron beam.
Shin, Joong-Hyeok; Woo, Hee-Gweon; Kim, Bo-Hye; Lee, Byung Cheol; Jun, Jin
2010-05-01
Pt nanoparticle-doped titanium dioxide (Pt/TiO2) thin films were prepared on a silicon wafer substrate by sol-gel spin coating process. The prepared thin films were treated with electron beam (EB at 1.1 MeV, 100, 200, 300 kGy) at air atmosphere. The effect of EB-irradiation on the composition of the treated thin films, optical properties and morphology of thin films were investigated by various analytical techniques such as X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE), X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The crystal structure of the TiO2 layer was found to be an anatase phase and the size of TiO2 particles was determined to be about 13 nm. Pt nanoparticles with diameter of 5 nm were observed on surface of the films. A new layer (presumed to be Pt-Ti complex and/or PtO2 compound) was created in the Pt/TiO2 thin film treated with EB (300 kGy). The transmittance of thin film decreased with EB treatment whereas the refractive index increased.
Microstructure study of ZnO thin films on Si substrate grown by MOCVD
NASA Astrophysics Data System (ADS)
Huang, Jingyun; Ye, Zhizhen; Lu, Huanming; Wang, Lei; Zhao, Binghui; Li, Xianhang
2007-08-01
The microstructure of zinc oxide thin films on silicon substrates grown by metalorganic chemical vapour deposition (MOCVD) was characterized. The cross-sectional bright-field transmission electron microscopy (TEM) image showed that small ZnO columnar grains were embedded into large columnar grains, and the selected-area electron diffraction pattern showed that the ZnO/Si thin films were nearly c-axis oriented. The deviation angle along the ZnO (0 0 0 1) direction with respect to the growth direction of Si (1 0 0) was no more than 5°. The [0 0 0 1]-tilt grain boundaries in ZnO/Si thin films were investigated symmetrically by plan-view high resolution TEM. The boundaries can be classified into three types: low-angle boundaries described as an irregular array of edge dislocations, boundaries of near 30° angle with (1\\,0\\,\\bar{1}\\,0) facet structures and large-angle boundaries with symmetric structure which could be explained by a low Σ coincident site lattice structure mode. The research was useful to us for finding optimized growth conditions to improve ZnO/Si thin film quality.
NASA Astrophysics Data System (ADS)
Ueda, Shigenori; Iwasaki, Yoh; Ushioda, Sukekatsu
2003-10-01
The magnetic domain structures of Fe thin films on two-dimensionally arranged land-and-groove structures have been studied by spin-polarized secondary electron microscopy (SP-SEM) under an applied dc field. The coercive force on the land area was found to be higher than that on the groove area under magnetization reversal. The surface roughness measured by atomic force microscopy (AFM) was greater on the land area than on the groove area. The roughness-induced high-coercivity on the land prevented the reversed magnetic domain on the groove from spreading over the land in the initial magnetization reversal. This result indicates that surface roughness is an important factor in domain size control of thin magnetic films.
Thin-sectioning and analysis of fine-grained meteoritic materials
NASA Technical Reports Server (NTRS)
Brooks, Donald A. (Editor); Bradley, John P.
1992-01-01
The overall theme of the work was the identification of the sources and formation/aggregation mechanisms of the various classes of interplanetary dust particles (IDP's) and to clarify the relationship between IDP's and conventional meteorites. IDP's are believed to be derived from a much broader range of parent bodies than conventional meteorites. Some of these parent bodies (e.g., comets) have escaped that post accretional processing that has affected the parent bodies of meteorites. Therefore, IDP's are likely to preserve a record of early solar system and possibly presolar grain forming reactions. Using analytical electron microscopy (AEM) and more recently micro-infrared (IR) microspectroscopy to examine ultramicrotomed thin sections, we have addressed the questions of IDP formation mechanisms, sources, and their relationship to conventional meteorites. The following sections describe specific findings resulting from these studies.
NASA Astrophysics Data System (ADS)
Alam, Khan
As a part of my Ph.D research, initially I was involved in construction and calibration of an ultra-high vacuum thin film facility, and later on I studied structural, electronic, and magnetic properties of GaN, CrN, Fe/CrN bilayers, and Fe islands on CrN thin films. All of these films were grown by molecular beam epitaxy and characterized with a variety of state-of-the-art techniques including variable temperature reflection high energy electron diffraction, low temperature scanning tunneling microscopy and spectroscopy, variable temperature vibrating sample magnetometry, variable temperature neutron diffraction and reflectometry, variable temperature x-ray diffraction, x-ray reflectometry, Rutherford backscattering, Auger electron spectroscopy, and cross-sectional tunneling electron microscopy. The experimental results are furthermore understood by comparing with numerical calculations using generalized gradient approximation, local density approximation with Hubbard correction, Refl1D, and data analysis and visual environment program. In my first research project, I studied Ga gas adatoms on GaN surfaces. We discovered frozen-out gallium gas adatoms on atomically smooth c(6x12) GaN(0001¯) surface using low temperature scanning tunneling microscopy. We identified adsorption sites of the Ga adatoms on c(6x12) reconstructed surface. Their bonding is determined by measuring low unoccupied molecular orbital level. Absorption sites of the Ga gas adatoms on centered 6x12 are identified, and their asymmetric absorption on the chiral domains is investigated. In second project, I investigated magneto-structural phase transition in chromium nitride (CrN) thin films. The CrN thin films are grown by molecular beam epitaxy. Structural and magnetic transition are studied using variable temperature reflection high energy electron diffraction and variable temperature neutron diffraction. We observed a structural phase transition at the surface at 277+/-2 K, and a sharp, first-order magnetic phase transition from paramagnetic (room temperature) to antiferromagnetic (low temperature) at 280+/-3 K. Our experiments suggest that the structural transition in CrN thin films occur in out-of-plane direction, and epitaxial constraints suppress the in-plane transition; therefore, the low temperature crystal structure of CrN is tetragonal. This new model explains our structural and magnetic data at low temperatures, but it is different than the previously published orthorhombic model. In third project, I studied exchange bias and exchange spring effect in MBE grown Fe/CrN bilayer thin films. We grew Fe/CrN bilayer thin films on MgO(001) substrate by molecular beam epitaxy, and studied them using variable temperature vibrating sample magnetometry, polarized neutron reflectometry, x-ray reflectivity, and cross-sectional transmission electron microscopy. We observed exchange bias and exchange spring effect in all bilayer thin films. We studied the relationship of exchange bias, blocking temperature, and coercivity with Fe and CrN layers thicknesses. We used polarized neutron beam reflectometry to see if spins at Fe/CrN interface are pinned. We found a thin ferromagnetically ordered CrN layer at the interface. In my final project, I studied growth of submonolayer Fe islands on CrN thin films. These films are prepared in two stages: first, a CrN layer is grown by MBE and then a submonolayer Fe is deposited at room temperature from a carefully degassed e-beam evaporator. The films are studied at liquid helium temperature using low temperature scanning tunneling microscopy and spectroscopy. Islands are seen in STM images, after the Fe deposition, at the edges as well as at the center of atomically flat CrN terraces. However, numerical calculations performed by our collaborator Ponce-P'erez from Benem'erita Universidad Aut'onoma de Puebla show that the Fe islands are energetically unstable on the surface. The Fe atoms substitute Cr atoms in the surface layer and the Cr atoms comes out and form islands. In order to find out elemental composition of the islands, we attempted to map local density of state by measuring differential conductance spectra as a function of bias voltage using LT-STS. We observed three characteristically different spectra; one in the CrN substrate and two in the islands. The CrN substrate curve has a "U" shape near Fermi level and a peak at ≈ 105 mV. The islands spectra show Kondo-like resonances at Fermi level; some islands produce a peak whereas others produce a dip the dI/dV curves near Fermi level. Further investigations are needed to determine the origin of the peak and dip in the island curves, as well as to find the composition of the islands.
Zhang, Lina; Zhang, Haoxu; Zhou, Ruifeng; Chen, Zhuo; Li, Qunqing; Fan, Shoushan; Ge, Guanglu; Liu, Renxiao; Jiang, Kaili
2011-09-23
A novel grid for use in transmission electron microscopy is developed. The supporting film of the grid is composed of thin graphene oxide films overlying a super-aligned carbon nanotube network. The composite film combines the advantages of graphene oxide and carbon nanotube networks and has the following properties: it is ultra-thin, it has a large flat and smooth effective supporting area with a homogeneous amorphous appearance, high stability, and good conductivity. The graphene oxide-carbon nanotube grid has a distinct advantage when characterizing the fine structure of a mass of nanomaterials over conventional amorphous carbon grids. Clear high-resolution transmission electron microscopy images of various nanomaterials are obtained easily using the new grids.
High-resolution x-ray diffraction and transmission electron microscopy of multiferroic BiFeO3 films
NASA Astrophysics Data System (ADS)
Qi, Xiaoding; Wei, Ming; Lin, Yuan; Jia, Quanxi; Zhi, Dan; Dho, Joonghoe; Blamire, Mark G.; MacManus-Driscoll, Judith L.
2005-02-01
High-resolution x-ray diffraction and transmission electron microscopy (TEM) have been used to study BiFeO3 thin films grown on the bare and SrRuO3 buffered (001) SrTiO3 substrates. Reciprocal space mapping (RSM) around (002) and (103) reflections revealed that BFO films with a thickness of about 200 nm were almost fully relaxed and had a rhombohedral structure. Cross-sectional, high-resolution TEM showed that the films started to relax at a very early stage of growth, which was consistent with the RSM results. A thin intermediate layer of about 2 nm was observed at the interface, which had a smaller lattice than the overgrown film. Twist distortions about the c axis to release the shear strain introduced by the growth of rhombic (001) BiFeO3 on cubic (001) SrTiO3 were also observed. The results indicate that a strained, coherent BiFeO3 film on (001) SrTiO3 is very difficult to maintain and (111) STO substrates are preferable.
Jeong, Heondo; Na, Jeong-Geol; Jang, Min Su; Ko, Chang Hyun
2016-05-01
In hydrogen production by methanol steam reforming reaction with microchannel reactor, Al2O3 thin film formed by atomic layer deposition (ALD) was introduced on the surface of microchannel reactor prior to the coating of catalyst particles. Methanol conversion rate and hydrogen production rate, increased in the presence of Al2O3 thin film. Over-view and cross-sectional scanning electron microscopy study showed that the adhesion between catalyst particles and the surface of microchannel reactor enhanced due to the presence of Al2O3 thin film. The improvement of hydrogen production rate inside the channels of microreactor mainly came from the stable fixation of catalyst particles on the surface of microchannels.
NASA Astrophysics Data System (ADS)
Riekel, C.; Craig, C. L.; Burghammer, M.; Müller, M.
2001-01-01
Scanning X-ray microdiffraction (SXD) permits the 'imaging' in-situ of crystalline phases, crystallinity and texture in whole biopolymer samples on the micrometre scale. SXD complements transmission electron microscopy (TEM) techniques, which reach sub-nanometre lateral resolution but require thin sections and a vacuum environment. This is demonstrated using a support thread from a web spun by the orb-weaving spider Eriophora fuliginea (C.L. Koch). Scanning electron microscopy (SEM) shows a central thread composed of two fibres to which thinner fibres are loosely attached. SXD of a piece of support thread approximately 60 µm long shows in addition the presence of nanometre-sized crystallites with the β-poly(L-alanine) structure in all fibres. The crystallinity of the thin fibres appears to be higher than that of the central thread, which probably reflects a higher polyalanine content of the fibroins. The molecular axis of the polymer chains in the central thread is orientated parallel to the macroscopic fibre axis, but in the thin fibres the molecular axis is tilted by about 71° to the macroscopic fibre axis. A helical model is tentatively proposed to describe this morphology. The central thread has a homogeneous distribution of crystallinity along the macroscopic fibre axis.
Atomistic structures of nano-engineered SiC and radiation-induced amorphization resistance
Imada, Kenta; Ishimaru, Manabu; Sato, Kazuhisa; ...
2015-06-18
In this paper, nano-engineered 3C–SiC thin films, which possess columnar structures with high-density stacking faults and twins, were irradiated with 2 MeV Si ions at cryogenic and room temperatures. From cross-sectional transmission electron microscopy observations in combination with Monte Carlo simulations based on the Stopping and Range of Ions in Matter code, it was found that their amorphization resistance is six times greater than bulk crystalline SiC at room temperature. High-angle bright-field images taken by spherical aberration corrected scanning transmission electron microscopy revealed that the distortion of atomic configurations is localized near the stacking faults. Finally, the resultant strain fieldmore » probably contributes to the enhancement of radiation tolerance of this material.« less
Large-area synthesis of WSe2 from WO3 by selenium-oxygen ion exchange
NASA Astrophysics Data System (ADS)
Browning, Paul; Eichfeld, Sarah; Zhang, Kehao; Hossain, Lorraine; Lin, Yu-Chuan; Wang, Ke; Lu, Ning; Waite, A. R.; Voevodin, A. A.; Kim, Moon; Robinson, Joshua A.
2015-03-01
Few-layer tungsten diselenide (WSe2) is attractive as a next-generation electronic material as it exhibits modest carrier mobilities and energy band gap in the visible spectra, making it appealing for photovoltaic and low-powered electronic applications. Here we demonstrate the scalable synthesis of large-area, few-layer WSe2 via replacement of oxygen in hexagonally stabilized tungsten oxide films using dimethyl selenium. Cross-sectional transmission electron microscopy reveals successful control of the final WSe2 film thickness through control of initial tungsten oxide thickness, as well as development of layered films with grain sizes up to several hundred nanometers. Raman spectroscopy and atomic force microscopy confirms high crystal uniformity of the converted WSe2, and time domain thermo-reflectance provide evidence that near record low thermal conductivity is achievable in ultra-thin WSe2 using this method.
Zhang, Ji; Sun, Wei; Zhao, Jiangtao; Sun, Lei; Li, Lei; Yan, Xue-Jun; Wang, Ke; Gu, Zheng-Bin; Luo, Zhen-Lin; Chen, Yanbin; Yuan, Guo-Liang; Lu, Ming-Hui; Zhang, Shan-Tao
2017-08-02
Thin films of 0.85BiFe 1-2x Ti x Mg x O 3 -0.15CaTiO 3 (x = 0.1 and 0.2, abbreviated to C-1 and C-2, respectively) have been fabricated on (001) SrTiO 3 substrate with and without a conductive La 0.7 Sr 0.3 MnO 3 buffer layer. The X-ray θ-2θ and ϕ scans, atomic force microscopy, and cross-sectional transmission electron microscopy confirm the (001) epitaxial nature of the thin films with very high growth quality. Both the C-1 and C-2 thin films show well-shaped magnetization-magnetic field hysteresis at room temperature, with enhanced switchable magnetization values of 145.3 and 42.5 emu/cm 3 , respectively. The polarization-electric loops and piezoresponse force microscopy measurements confirm the room-temperature ferroelectric nature of both films. However, the C-1 films illustrate a relatively weak ferroelectric behavior and the poled states are easy to relax, whereas the C-2 films show a relatively better ferroelectric behavior with stable poled states. More interestingly, the room-temperature thermal conductivity of C-1 and C-2 films are measured to be 1.10 and 0.77 W/(m·K), respectively. These self-consistent multiferroic properties and thermal conductivities are discussed by considering the composition-dependent content and migration of Fe-induced electrons and/or charged point defects. This study not only provides multifunctional materials with excellent room-temperature magnetic, ferroelectric, and thermal conductivity properties but may also stimulate further work to develop BiFeO 3 -based materials with unusual multifunctional properties.
Hermannsdörfer, Justus; de Jonge, Niels
2017-02-05
Samples fully embedded in liquid can be studied at a nanoscale spatial resolution with Scanning Transmission Electron Microscopy (STEM) using a microfluidic chamber assembled in the specimen holder for Transmission Electron Microscopy (TEM) and STEM. The microfluidic system consists of two silicon microchips supporting thin Silicon Nitride (SiN) membrane windows. This article describes the basic steps of sample loading and data acquisition. Most important of all is to ensure that the liquid compartment is correctly assembled, thus providing a thin liquid layer and a vacuum seal. This protocol also includes a number of tests necessary to perform during sample loading in order to ensure correct assembly. Once the sample is loaded in the electron microscope, the liquid thickness needs to be measured. Incorrect assembly may result in a too-thick liquid, while a too-thin liquid may indicate the absence of liquid, such as when a bubble is formed. Finally, the protocol explains how images are taken and how dynamic processes can be studied. A sample containing AuNPs is imaged both in pure water and in saline.
Hermannsdörfer, Justus; de Jonge, Niels
2017-01-01
Samples fully embedded in liquid can be studied at a nanoscale spatial resolution with Scanning Transmission Electron Microscopy (STEM) using a microfluidic chamber assembled in the specimen holder for Transmission Electron Microscopy (TEM) and STEM. The microfluidic system consists of two silicon microchips supporting thin Silicon Nitride (SiN) membrane windows. This article describes the basic steps of sample loading and data acquisition. Most important of all is to ensure that the liquid compartment is correctly assembled, thus providing a thin liquid layer and a vacuum seal. This protocol also includes a number of tests necessary to perform during sample loading in order to ensure correct assembly. Once the sample is loaded in the electron microscope, the liquid thickness needs to be measured. Incorrect assembly may result in a too-thick liquid, while a too-thin liquid may indicate the absence of liquid, such as when a bubble is formed. Finally, the protocol explains how images are taken and how dynamic processes can be studied. A sample containing AuNPs is imaged both in pure water and in saline. PMID:28190028
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thangadurai, P.; Lumelsky, Yulia; Silverstein, Michael S.
Transmission electron microscopy (TEM) cross-section specimens of PMMA in contact with gold and Si were prepared by focused ion beam (FIB) and compared with plan-view PMMA specimens prepared by a dip-coating technique. The specimens were characterized by TEM and electron energy loss spectroscopy (EELS). In the cross-section specimens, the thin films of PMMA were located in a Si-PMMA-Au multilayer. Different thicknesses of PMMA films were spin-coated on the Si substrates. The thickness of the TEM specimens prepared by FIB was estimated using EELS to be 0.65 of the plasmon mean-free-path. Along the PMMA-Au interface, Au particle diffusion into the PMMAmore » was observed, and the size of the Au particles was in the range of 2-4 nm. Dip-coating of PMMA directly on Cu TEM grids resulted in thin specimens with a granular morphology, with a thickness of 0.58 of the plasmon mean-free-path. The dip-coated specimens were free from ion milling induced artifacts, and thus serve as control specimens for comparison with the cross-sectioned specimens prepared by FIB.« less
NASA Astrophysics Data System (ADS)
Huang, Chung-Che; Al-Saab, Feras; Wang, Yudong; Ou, Jun-Yu; Walker, John C.; Wang, Shuncai; Gholipour, Behrad; Simpson, Robert E.; Hewak, Daniel W.
2014-10-01
Nano-scale MoS2 thin films are successfully deposited on a variety of substrates by atmospheric pressure chemical vapor deposition (APCVD) at ambient temperature, followed by a two-step annealing process. These annealed MoS2 thin films are characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), micro-Raman, X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-VIS-NIR spectrometry, photoluminescence (PL) and Hall Effect measurement. Key optical and electronic properties of APCVD grown MoS2 thin films are determined. This APCVD process is scalable and can be easily incorporated with conventional lithography as the deposition is taking place at room temperature. We also find that the substrate material plays a significant role in the crystalline structure formation during the annealing process and single crystalline MoS2 thin films can be achieved by using both c-plane ZnO and c-plane sapphire substrates. These APCVD grown nano-scale MoS2 thin films show great promise for nanoelectronic and optoelectronic applications.
Glancing angle deposition of sculptured thin metal films at room temperature
NASA Astrophysics Data System (ADS)
Liedtke, S.; Grüner, Ch; Lotnyk, A.; Rauschenbach, B.
2017-09-01
Metallic thin films consisting of separated nanostructures are fabricated by evaporative glancing angle deposition at room temperature. The columnar microstructure of the Ti and Cr columns is investigated by high resolution transmission electron microscopy and selective area electron diffraction. The morphology of the sculptured metallic films is studied by scanning electron microscopy. It is found that tilted Ti and Cr columns grow with a single crystalline morphology, while upright Cr columns are polycrystalline. Further, the influence of continuous substrate rotation on the shaping of Al, Ti, Cr and Mo nanostructures is studied with view to surface diffusion and the shadowing effect. It is observed that sculptured metallic thin films deposited without substrate rotation grow faster compared to those grown with continuous substrate rotation. A theoretical model is provided to describe this effect.
NASA Astrophysics Data System (ADS)
Verma, Devendra; Qu, Tao; Tomar, Vikas
2015-04-01
The exoskeletons of crustacean species in the form of thin films have been investigated by several researchers to better understand the role played by the exoskeletal structure in affecting the functioning of species such as shrimps, crabs, and lobsters. These species exhibit similar designs in their exoskeleton microstructure, such as a Bouligand pattern (twisted plywood structure), layers of different thickness across cross section, change in mineral content through the layers, etc. Different parts of crustaceans exhibit a significant variation in mechanical properties based on the variation in the above-mentioned parameters. This change in mechanical properties has been analyzed by using imaging techniques such as scanning electron microscopy and energy-dispersive x-ray spectroscopy, and by using mechanical characterization techniques such as nanoindentation and atomic force microscopy. In this article, the design principles of these biological composites are discussed based on two shrimp species: Rimicaris exoculata and Pandalus platyceros.
Electron Microscopy Characterization of Vanadium Dioxide Thin Films and Nanoparticles
NASA Astrophysics Data System (ADS)
Rivera, Felipe
Vanadium dioxide (VO_2) is a material of particular interest due to its exhibited metal to insulator phase transition at 68°C that is accompanied by an abrupt and significant change in its electronic and optical properties. Since this material can exhibit a reversible drop in resistivity of up to five orders of magnitude and a reversible drop in infrared optical transmission of up to 80%, this material holds promise in several technological applications. Solid phase crystallization of VO_2 thin films was obtained by a post-deposition annealing process of a VO_{x,x approx 2} amorphous film sputtered on an amorphous silicon dioxide (SiO_2) layer. Scanning electron microscopy (SEM) and electron-backscattered diffraction (EBSD) were utilized to study the morphology of the solid phase crystallization that resulted from this post-deposition annealing process. The annealing parameters ranged in temperature from 300°C up to 1000°C and in time from 5 minutes up to 12 hours. Depending on the annealing parameters, EBSD showed that this process yielded polycrystalline vanadium dioxide thin films, semi-continuous thin films, and films of isolated single-crystal particles. In addition to these films on SiO_2, other VO_2 thin films were deposited onto a-, c-, and r-cuts of sapphire and on TiO_2(001) heated single-crystal substrates by pulsed-laser deposition (PLD). The temperature of the substrates was kept at ˜500°C during deposition. EBSD maps and orientation imaging microscopy were used to study the epitaxy and orientation of the VO_2 grains deposited on the single crystal substrates, as well as on the amorphous SiO_2 layer. The EBSD/OIM results showed that: 1) For all the sapphire substrates analyzed, there is a predominant family of crystallographic relationships wherein the rutile VO_2{001} planes tend to lie parallel to the sapphire's {10-10} and the rutile VO_2{100} planes lie parallel to the sapphire's {1-210} and {0001}. Furthermore, while this family of relationships accounts for the majority of the VO_2 grains observed, due to the sapphire substrate's geometry there were variations within these rules that changed the orientation of VO_2 grains with respect to the substrate's normal direction. 2) For the TiO_2, a substrate with a lower lattice mismatch, we observe the expected relationship where the rutile VO_2 [100], [110], and [001] crystal directions lie parallel to the TiO_2 substrate's [100], [110], and [001] crystal directions respectively. 3) For the amorphous SiO_2 layer, all VO_2 crystals that were measurable (those that grew to the thickness of the deposited film) had a preferred orientation with the the rutile VO_2[001] crystal direction tending to lie parallel to the plane of the specimen. The use of transmission electron microscopy (TEM) is presented as a tool for further characterization studies of this material and its applications. In this work TEM diffraction patterns taken from cross-sections of particles of the a- and r-cut sapphire substrates not only solidified the predominant family mentioned, but also helped lift the ambiguity present in the rutile VO_2{100} axes. Finally, a focused-ion beam technique for preparation of cross-sectional TEM samples of metallic thin films deposited on polymer substrates is demonstrated.
NASA Astrophysics Data System (ADS)
Takaya, K.; Okabe, M.; Sawataishi, M.; Takashima, H.; Yoshida, T.
2003-01-01
Ion microscopy (IM) of air-dried or freeze-dried cryostat and semi-thin cryosections has provided ion images of elements and organic substances in wide areas of the tissue. For reproducible ion images by a shorter time of exposure to the primary ion beam, fresh frozen dried ultrathin sections were prepared by freezing the tissue in propane chilled with liquid nitrogen, cryocut at 60 nm, mounted on grids and silicon wafer pieces, and freeze-dried. Rat Cowper gland and sciatic nerve, bone marrow of the rat administered of lithium carbonate, tree frog and African toad spleen and buffy coat of atopic dermatitis patients were examined. Fine structures and ion images of the corresponding areas in the same or neighboring sections were observed by transmission electron microscopy (TEM) followed by sector type and time-of-flight type IM. Cells in the buffy coat contained larger amounts of potassium and magnesium while plasma had larger amounts of sodium and calcium. However, in the tissues, lithium, sodium, magnesium, calcium and potassium were distributed in the cell and calcium showed a granular appearance. A granular cell of the tree frog spleen contained sodium and potassium over the cell and magnesium and calcium were confined to granules.
FIB-SEM imaging of carbon nanotubes in mouse lung tissue.
Købler, Carsten; Saber, Anne Thoustrup; Jacobsen, Nicklas Raun; Wallin, Håkan; Vogel, Ulla; Qvortrup, Klaus; Mølhave, Kristian
2014-06-01
Ultrastructural characterisation is important for understanding carbon nanotube (CNT) toxicity and how the CNTs interact with cells and tissues. The standard method for this involves using transmission electron microscopy (TEM). However, in particular, the sample preparation, using a microtome to cut thin sample sections for TEM, can be challenging for investigation of regions with agglomerations of large and stiff CNTs because the CNTs cut with difficulty. As a consequence, the sectioning diamond knife may be damaged and the uncut CNTs are left protruding from the embedded block surface excluding them from TEM analysis. To provide an alternative to ultramicrotomy and subsequent TEM imaging, we studied focused ion beam scanning electron microscopy (FIB-SEM) of CNTs in the lungs of mice, and we evaluated the applicability of the method compared to TEM. FIB-SEM can provide serial section volume imaging not easily obtained with TEM, but it is time-consuming to locate CNTs in the tissue. We demonstrate that protruding CNTs after ultramicrotomy can be used to locate the region of interest, and we present FIB-SEM images of CNTs in lung tissue. FIB-SEM imaging was applied to lung tissue from mice which had been intratracheally instilled with two different multiwalled CNTs; one being short and thin, and the other longer and thicker. FIB-SEM was found to be most suitable for detection of the large CNTs (Ø ca. 70 nm), and to be well suited for studying CNT agglomerates in biological samples which is challenging using standard TEM techniques.
Johnson, Jennifer; Maloney, Colleen L.; Yandl, Emily; Griffiths, Denise; Thurberg, Beth L.; Ryan, Susan
2012-01-01
Niemann-Pick disease (types A and B), or acid sphingomyelinase deficiency, is an inherited deficiency of acid sphingomyelinase, resulting in intralysosomal accumulation of sphingomyelin in cells throughout the body, particularly within those of the reticuloendothelial system. These cellular changes result in hepatosplenomegaly and pulmonary infiltrates in humans. A knockout mouse model mimics many elements of human ASMD and is useful for studying disease histopathology. However, traditional formalin-fixation and paraffin embedding of ASMD tissues dissolves sphingomyelin, resulting in tissues with a foamy cell appearance, making quantitative analysis of the substrate difficult. To optimize substrate fixation and staining, a modified osmium tetroxide and potassium dichromate postfixation method was developed to preserve sphingomyelin in epon-araldite embedded tissue and pulmonary cytology specimens. After processing, semi-thin sections were incubated with tannic acid solution followed by staining with toluidine blue/borax. This modified method provides excellent preservation and staining contrast of sphingomyelin with other cell structures. The resulting high-resolution light microscopy sections permit digital quantification of sphingomyelin in light microscopic fields. A lysenin affinity stain for sphingomyelin was also developed for use on these semi-thin epon sections. Finally, ultrathin serial sections can be cut from these same tissue blocks and stained for ultrastructural examination by electron microscopy. PMID:22614361
Matching characteristics of different buffer layers with VO2 thin films
NASA Astrophysics Data System (ADS)
Yang, Kai; Zhang, Dongping; Liu, Yi; Guan, Tianrui; Qin, Xiaonan; Zhong, Aihua; Cai, Xingmin; Fan, Ping; Lv, Weizhong
2016-10-01
VO2 thin films were fabricated by reactive DC magnetron sputtering on different buffer layers of MgF2, Al2O3 and TiO2, respectively. The crystallinity and orientation relationship, thickness of VO2 thin films, atoms vibrational modes, optical and electrical property, surface morphology of films were characterized by X-ray diffraction, Raman scattering microscopy, step profiler, spectrophotometer, four-probe technique, and scanning electron microscopy, respectively. XRD results investigated that the films have preferential crystalline planes VO2 (011). The crystallinity of VO2 films grown on TiO2 buffer layers are superior to VO2 directly deposited on soda-lime glass. The Raman bands of the VO2 films correspond to an Ag symmetry mode of VO2 (M). The sample prepared on 100nm TiO2 buffer layer appears nanorods structure, and exhibits remarkable solar energy modulation ability as high as 5.82% in full spectrum and 23% in near infrared spectrum. Cross-sectional SEM image of the thin films samples indicate that MgF2 buffer layer has clear interface with VO2 layer. But there are serious interdiffusion phenomenons between Al2O3, TiO2 buffer layer with VO2 layer.
Histology and ultrastructure of picosecond laser intrastromal photorefractive keratectomy (ISPRK)
NASA Astrophysics Data System (ADS)
Krueger, Ronald R.; Quantock, Andrew J.; Ito, Mitsutoshi; Assil, Kerry K.; Schanzlin, David J.
1995-05-01
Picosecond intrastromal ablation is currently under investigation as a new minimally invasive way of correcting refractive error. When the laser pulses are placed in an expanding spiral pattern along a lamellar plane, the technique is called intrastromal photorefractive keratectomy (ISPRK). We performed ISPRK on six human eye bank eyes. Thirty picosecond pulses at 1000 Hz and 20 - 25 (mu) J per pulse were separated by 15 microns. A total of 3 layers were placed in the anterior stroma separated by 15 microns. The eyes were then preserved and sectioned for light, scanning and transmission electron microscopy. Light and scanning electron microscopy reveals that picosecond intrastromal ablation using an ISPRK pattern demonstrates multiple, coalescing intrastromal cavities oriented parallel to the corneal surface. These cavities possess a smooth appearing inner wall. Using transmission electron microscopy, we noticed tissue loss surrounding some cavities with collagen fibril termination and thinning of collagen lamella. Other cavities we formed by separation of lamella with little evidence of tissue loss. A pseudomembrane lines the edge of some cavities. Although underlying tissue disruption was occasionally seen along the border of a cavity in no case was there any evidence of thermal damage or tissue necrosis. Ablation and loss of tissue in ISPRK results in nonthermal microscopic corneal thinning around some cavities whereas others demonstrate only lamellar separation. Alternative patterns and energy parameters should be investigated to bring this technology to its full potential in refractive surgery.
Grandfield, Kathryn; Palmquist, Anders; Gonçalves, Stéphane; Taylor, Andy; Taylor, Mark; Emanuelsson, Lena; Thomsen, Peter; Engqvist, Håkan
2011-04-01
The current study evaluates the in vivo response to free form fabricated cobalt chromium (CoCr) implants with and without hydroxyapatite (HA) plasma sprayed coatings. The free form fabrication method allowed for integration of complicated pyramidal surface structures on the cylindrical implant. Implants were press fit into the tibial metaphysis of nine New Zealand white rabbits. Animals were sacrificed and implants were removed and embedded. Histological analysis, histomorphometry and electron microscopy studies were performed. Focused ion beam was used to prepare thin sections for high-resolution transmission electron microscopy examination. The fabricated features allowed for effective bone in-growth and firm fixation after 6 weeks. Transmission electron microscopy investigations revealed intimate bone-implant integration at the nanometre scale for the HA coated samples. In addition, histomorphometry revealed a significantly higher bone contact on HA coated implants compared to native CoCr implants. It is concluded that free form fabrication in combination with HA coating improves the early fixation in bone under experimental conditions.
NASA Astrophysics Data System (ADS)
Jahn, Martin T.; Markert, Sebastian M.; Ryu, Taewoo; Ravasi, Timothy; Stigloher, Christian; Hentschel, Ute; Moitinho-Silva, Lucas
2016-10-01
Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.
NASA Astrophysics Data System (ADS)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Varley, D.; Lochner, T.; Scheu, C.
2017-10-01
The work in hand presents an electron microscopy based in-depth study of micro- and nanoscale degradation processes that take place during the operation of high-temperature polymer-electrolyte-membrane fuel cells (HT-PEMFCs). Carbon supported Pt particles were used as cathodic catalyst material and the bimetallic, carbon supported Pt/Ru system was applied as anode. As membrane, cross-linked polybenzimidazole was used. Scanning electron microscopy analysis of cross-sections of as-prepared and long-term operated membrane-electrode-assemblies revealed insight into micrometer scale degradation processes: operation-caused catalyst redistribution and thinning of the membrane and electrodes. Transmission electron microscopy investigations were performed to unravel the nanometer scale phenomena: a band of Pt and Pt/Ru nanoparticles was detected in the membrane adjacent to the cathode catalyst layer. Quantification of the elemental composition of several individual nanoparticles and the overall band area revealed that they stem from both anode and cathode catalyst layers. The results presented do not demonstrate any catastrophic failure but rather intermediate states during fuel cell operation and indications to proceed with targeted HT-PEMFC optimization.
High-Speed Coating Method for Photovoltaic Textiles with Closed-Type Die Coater
NASA Astrophysics Data System (ADS)
Imai, Takahiko; Shibayama, Norihisa; Takamatsu, Seiichi; Shiraishi, Kenji; Marumoto, Kazuhiro; Itoh, Toshihiro
2013-06-01
We developed a closed-type die-coating method to fabricate thin films for electronic devices. We succeeded in the die-coating of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) water dispersions and regioregular poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) solution to fabricate thin films of these organic materials with extremely high speeds of 5 and 20 m/min, respectively. The film thicknesses were evaluated by cross-sectional scanning electron microscopy (SEM). The deviations of the film thicknesses from our target values were less than 5%. We fabricated Al/P3HT:PCBM/PEDOT:PSS/indium tin oxide (ITO)/poly(ethylene terephthalate) (PET) textiles as an example of an application of the method, and the photovoltaic characteristic of the devices was confirmed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovygin, M. V., E-mail: lemi@miee.ru; Borgardt, N. I.; Seibt, M.
2015-12-15
The results of electron-microscopy studies of a thin epitaxial aluminum layer deposited onto a misoriented gallium-arsenide substrate are reported. It is established that the layer consists of differently oriented grains, whose crystal lattices are coherently conjugated with the substrate with the formation of misfit dislocations, as in the case of a layer on a singular substrate. Atomic steps on the substrate surface are visualized, and their influence on the growth of aluminum crystal grains is discussed.
NASA Astrophysics Data System (ADS)
Ciupinǎ, Victor; Prioteasa, Iulian; Ilie, Daniela; Manu, Radu; Petrǎşescu, Lucian; Tutun, Ştefan Gabriel; Dincǎ, Paul; MustaÅ£ǎ, Ion; Lungu, Cristian Petricǎ; Jepu, IonuÅ£; Vasile, Eugeniu; Nicolescu, Virginia; Vladoiu, Rodica
2017-02-01
Copper/Cobalt/Copper/Iron thin films were synthesized in order to obtain nanostructured materials with special magnetoresistive properties. The multilayer films were deposited on silicon substrates. In this respect we used Thermionic Vacuum Arc Discharge Method (TVA). The benefit of this deposition technique is the ability to have a controlled range of thicknesses starting from few nanometers to hundreds of nanometers. The purity of the thin films was insured by a high vacuum pressure and a lack of any kind of buffer gas inside the coating chamber. The morphology and structure of the thin films were analyzed using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) Techniques and Energy Dispersive X-ray Spectroscopy (EDXS). Magnetoresistive measurement results depict that thin films possess Giant Magneto-Resistance Effect (GMR). Magneto-Optic-Kerr Effect (MOKE) studies were performed to characterize the magnetic properties of these thin films.
Studying Pulsed Laser Deposition conditions for Ni/C-based multi-layers
NASA Astrophysics Data System (ADS)
Bollmann, Tjeerd R. J.
2018-04-01
Nickel carbon based multi-layers are a viable route towards future hard X-ray and soft γ-ray focusing telescopes. Here, we study the Pulsed Laser Deposition growth conditions of such bilayers by Reflective High Energy Electron Diffraction, X-ray Reflectivity and Diffraction, Atomic Force Microscopy, X-ray Photoelectron Spectroscopy and cross-sectional Transmission Electron Microscopy analysis, with emphasis on optimization of process pressure and substrate temperature during growth. The thin multi-layers are grown on a treated SiO substrate resulting in Ni and C layers with surface roughnesses (RMS) of ≤0.2 nm. Small droplets resulting during melting of the targets surface increase the roughness, however, and cannot be avoided. The sequential process at temperatures beyond 300 °C results into intermixing between the two layers, being destructive for the reflectivity of the multi-layer.
Dwyer, Jason R; Harb, Maher
2017-09-01
We present a review of the use of selected nanofabricated thin films to deliver a host of capabilities and insights spanning bioanalytical and biophysical chemistry, materials science, and fundamental molecular-level research. We discuss approaches where thin films have been vital, enabling experimental studies using a variety of optical spectroscopies across the visible and infrared spectral range, electron microscopies, and related techniques such as electron energy loss spectroscopy, X-ray photoelectron spectroscopy, and single molecule sensing. We anchor this broad discussion by highlighting two particularly exciting exemplars: a thin-walled nanofluidic sample cell concept that has advanced the discovery horizons of ultrafast spectroscopy and of electron microscopy investigations of in-liquid samples; and a unique class of thin-film-based nanofluidic devices, designed around a nanopore, with expansive prospects for single molecule sensing. Free-standing, low-stress silicon nitride membranes are a canonical structural element for these applications, and we elucidate the fabrication and resulting features-including mechanical stability, optical properties, X-ray and electron scattering properties, and chemical nature-of this material in this format. We also outline design and performance principles and include a discussion of underlying material preparations and properties suitable for understanding the use of alternative thin-film materials such as graphene.
Thin-Film Phase Plates for Transmission Electron Microscopy Fabricated from Metallic Glasses.
Dries, Manuel; Hettler, Simon; Schulze, Tina; Send, Winfried; Müller, Erich; Schneider, Reinhard; Gerthsen, Dagmar; Luo, Yuansu; Samwer, Konrad
2016-10-01
Thin-film phase plates (PPs) have become an interesting tool to enhance the contrast of weak-phase objects in transmission electron microscopy (TEM). The thin film usually consists of amorphous carbon, which suffers from quick degeneration under the intense electron-beam illumination. Recent investigations have focused on the search for alternative materials with an improved material stability. This work presents thin-film PPs fabricated from metallic glass alloys, which are characterized by a high electrical conductivity and an amorphous structure. Thin films of the zirconium-based alloy Zr65.0Al7.5Cu27.5 (ZAC) were fabricated and their phase-shifting properties were evaluated. The ZAC film was investigated by different TEM techniques, which reveal beneficial properties compared with amorphous carbon PPs. Particularly favorable is the small probability for inelastic plasmon scattering, which results from the combined effect of a moderate inelastic mean free path and a reduced film thickness due to a high mean inner potential. Small probability plasmon scattering improves contrast transfer at high spatial frequencies, which makes the ZAC alloy a promising material for PP fabrication.
Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate
2013-01-01
Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques. PMID:23448090
Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate.
Wei, Xianqi; Zhao, Ranran; Shao, Minghui; Xu, Xijin; Huang, Jinzhao
2013-02-28
Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques.
An ultrastructural analysis of the epithelial-fiber interface (EFI) in primate lenses.
Kuszak, J R; Novak, L A; Brown, H G
1995-11-01
The purpose of this study was to conduct a comprehensive ultrastructural analysis of the epithelial-fiber interface (EFI) in normal adult primate (Macaque nemestrina and fascicularis; 6-9 years old, n = 10) lenses. Scanning electron microscopy (SEM) was used to initially characterize the gross size, shape and three-dimensional organization of central zone (cz) epithelial cells and the anterior ends of elongating fibers beneath these cells. This fiducial information was essential to properly orient lens pieces in freeze fracture specimen carriers for the production of replicas with unambiguously identifiable EFI. Transmission electron microscopy (TEM) of replicas and thin-sectioned material were used to ultrastructurally analyse the cz EFI. TEM thin-sectioned material was also used to ultrastructurally analyse the pregerminative (pgz), germinative (gz) and transitional zone (tz) EFI. Correlative SEM and TEM of cz EFI components revealed that the apical membrane of both epithelial and elongating fiber cells were irregularly polygonal in shape, and aligned in parallel as smooth, concave-convex surfaces. However, whereas epithelial cell apical surfaces had minimal size variation, elongating fibers were larger and considerably variable in size. Quantitative analysis of > 10000 micron2 cz elongating fiber apical surfaces failed to detect any gap junctions defined in freeze fracture replicas as complementary aggregates of transmembrane proteins (connexons) conjoined across a narrowed extracellular space. However, a comparable frequency of vesicular events was noted in this region as quantified previously in adult and embryonic chick lens. Correlative TEM analysis > 1500 linear micrometers of thin-sectioned EFI from this region confirmed the presence of epithelial-epithelial gap junctions, elongating fiber-elongating fiber gap junctions, and an extreme paucity of epithelial-elongating fiber gap junctions. In contrast, TEM analysis of > 1000 linear micrometers of thin-sectioned pgz, gz and tz EFI, confirmed the presence of epithelial-epithelial gap junctions, elongating fiber-elongating fiber gap junctions, numerous epithelial-elongating fiber adherens junctions and a few epithelial-elongating fiber gap junctions. Thus, the results of this and previous quantitative morphological and physiological studies (electronic and dye coupling) demonstrate that there is limited coupling between cz epithelial cells and underlying elongating fibers. Furthermore, the absence of gap junctional plaques in cz EFI freeze-fracture replicas and either pentalaminar or septalaminar profiles in correlative thin-sections, suggests that this limited coupling could be mediated via isolated gap junction channels. However, the results of this and previous quantitative studies further show that a greater degree of coupling exists across the pgz, gz and tz regions of the EFI and that this coupling is likely to be mediated by gap junction plaques. Finally, this and other studies continue to demonstrate that transcytotic processes play a role in lens physiology at the EFI.
Resonant tunneling through electronic trapping states in thin MgO magnetic junctions.
Teixeira, J M; Ventura, J; Araujo, J P; Sousa, J B; Wisniowski, P; Cardoso, S; Freitas, P P
2011-05-13
We report an inelastic electron tunneling spectroscopy study on MgO magnetic junctions with thin barriers (0.85-1.35 nm). Inelastic electron tunneling spectroscopy reveals resonant electronic trapping within the barrier for voltages V>0.15 V. These trapping features are associated with defects in the barrier crystalline structure, as confirmed by high-resolution transmission electron microscopy. Such defects are responsible for resonant tunneling due to energy levels that are formed in the barrier. A model was applied to determine the average location and energy level of the traps, indicating that they are mostly located in the middle of the MgO barrier, in accordance with the high-resolution transmission electron microscopy data and trap-assisted tunneling conductance theory. Evidence of the influence of trapping on the voltage dependence of tunnel magnetoresistance is shown.
Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of Methylene blue
NASA Astrophysics Data System (ADS)
Velanganni, S.; Pravinraj, S.; Immanuel, P.; Thiruneelakandan, R.
2018-04-01
In the present manuscript, thin films of Zinc Oxide (ZnO) have been deposited on a FTO substrate using a simple successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) method. Cadmium Sulphide (CdS) nanoparticles are sensitized over ZnO thin films using SILAR method. The synthesized nanostructured CdS/ZnO heterojunction thin films was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), High resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy and Raman spectroscopy techniques. The band gap of CdS nanoparticles over ZnO nanostructure was found to be about 3.20 eV. The photocatalytic activities of the deposited CdS/ZnO thin films were evaluated by the degradation of methylene blue (MB) in an aqueous solution under sun light irradiation.
Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo
2015-12-01
In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
2011-09-01
glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,
Interface effects in the dissolution of silicon into thin gold films
NASA Technical Reports Server (NTRS)
Sankur, H.; Mccaldin, J. O.
1975-01-01
The dissolution of crystalline Si and amorphous Si substrates into thin films of evaporated Au was studied with an electron microprobe and scanning electron microscopy. The dissolution pattern was found to be nonuniform along the plane of the surface and dependent on the crystalline orientation of the Si substrate. The dissolution is greatly facilitated when a very thin layer of Pd is evaporated between the Si substrate and the Au film.
A Program of Research on Microfabrication Techniques for VLSI Magnetic Devices.
1982-11-30
epitaxial ( LPE ) garnet films have been investigated by transmission electron microscopy B. A special technique involving physical polishing and ion milling...was used for producing ultra-thin cross-sections of the LPE garnet films . To our knowledge no one else has such capabilities. It was found that the...Materials and the Effects of Ion Implantation on them 3 2.1 The Effects of Deuterium and Oxygen Implantation on the Magnetic 3 Parameters of Garnet Films 2.2
[Spermatogonia types in tepezcuintle (Cuniculus paca). Ultrastructural study].
Ureña, F; Bolaños, R; Rojas, N; Suárez, R; Quesada, R
1988-11-01
Ultrastructural studies of different types of spermatogonia by thin section techniques and transmission electron microscopy showed that Cuniculus paca has two types of Type A spermatogonia (A-O and A-1). Samples were taken at different stages of the cycle in the seminiferous tubule epithelium presented a similar pattern as those of other rodents. Type B spermatogonia are similar to those of the rat, the difference being that the heterochromatic zones are larger and more numerous. Both characteristics differentiate them from preleptotenic spermatocytes.
NASA Astrophysics Data System (ADS)
Lee, Sunghwan; Paine, David C.
2011-06-01
In2O3-based amorphous oxide channel materials are of increasing interest for thin film transisitor applications due, in part, to the remarkable stability of this class of materials amorphous structure and electronic properties. We report that this stability is degraded in the presence of Ti, which is widely used as a contact and/or adhesion layer. A cross-sectional transmission electron microscopy analysis, supported by glancing incident angle x-ray and selected area diffraction examination, shows that amorphous indium zinc oxide in contact with Ti undergoes crystallization to the bixbyite phase and reacts to form the rutile phase of TiO2 at a temperature of 200 °C. A basic thermodynamic analysis is presented and forms the basis of a model that describes both the crystallization and the resistivity decrease.
Araldite as an Embedding Medium for Electron Microscopy
Glauert, Audrey M.; Glauert, R. H.
1958-01-01
Epoxy resins are suitable media for embedding for electron microscopy, as they set uniformly with virtually no shrinkage. A mixture of araldite epoxy resins has been developed which is soluble in ethanol, and which yields a block of the required hardness for thin sectioning. The critical modifications to the conventional mixtures are the choice of a plasticized resin in conjunction with an aliphatic anhydride as the hardener. The hardness of the final block can be varied by incorporating additional plasticizer, and the rate of setting can be controlled by the use of an amine accelerator. The properties of the araldite mixture can be varied quite widely by adjusting the proportions of the various constituents. The procedure for embedding biological specimens is similar to that employed with methacrylates, although longer soaking times are recommended to ensure the complete penetration of the more viscous epoxy resin. An improvement in the preservation of the fine structure of a variety of specimens has already been reported, and a typical electron microgram illustrates the present paper. PMID:13525433
Morphology of the Vestibular Utricule in Toadfish, Opsanus Tau
NASA Technical Reports Server (NTRS)
Bass, L.; Smith, J.; Twombly, A.; Boyle, Richard; Varelas, Ehsanian J.; Johanson, C.
2003-01-01
The uticle is an otolith organ in the vertebrate inner ear that provides gravitoinertial acceleration information into the vestibular reflex pathways. The aim of the present study was to provide an anatomical description of this structure in the adult oyster toadfish, and establish a morphological basis for interpretation of subsequent functional studies. Light, scanning electron and transmission electron microscopy were applied to visualize the sensory epithelium and its neural innervation. Electrophysiological techniques were used to identify utricular afferents by their response to translation stimuli. Similar to nerve afferents supplying the semicircular canals and lagena, utricular afferents commonly exhibit a short-latency increase of firing rate in response to electrical activation of the central efferent pathway. Afferents were labeled with biocytin either intraaxonally or with extracellular bulk deposits. Light microscope images of serial thick sections were used to make three-dimensional reconstructions of individual labeled afferents to identify the dendritic morphology with respect to epithelial location. Scanning electron microscopy was used to visualize the surface of the otolith mass facing the otolith membrane, and the hair cell polarization patterns of strioler and extrastriolar regions. Transmission electron micrographs of serial thin sections were compiled to create a three-dimensional reconstruction of the labeled afferent over a segment of its dendritic field and to examine the hair cell-afferent synaptic contacts.
Combined infrared and analytical electron microscope studies of interplanetary dust particles
NASA Technical Reports Server (NTRS)
Bradley, J. P.; Humecki, H. J.; Germani, M. S.
1992-01-01
Ultramicrotomed thin sections (less than 100 nm thick) of eight chondritic interplanetary dust particles (IDPs) were studied by analytical electron microscopy and IR microspectroscopy with the objective of identifying IDPs or their specific components with IR spectral transmission characteristics at 10 microns similar to those of comets. Two IDPs are identified whose silicate emission characteristics between 8 and 12 microns are similar to those of comets Halley and Bradfield. Implanted solar flare tracks and sputtered rims resulting from solar wind damage suggest that the minerology and petrography of these IDPs have not been significantly perturbed since ejection from their parent bodies.
A comparative study of heterostructured CuO/CuWO4 nanowires and thin films
NASA Astrophysics Data System (ADS)
Polyakov, Boris; Kuzmin, Alexei; Vlassov, Sergei; Butanovs, Edgars; Zideluns, Janis; Butikova, Jelena; Kalendarev, Robert; Zubkins, Martins
2017-12-01
A comparative study of heterostructured CuO/CuWO4 core/shell nanowires and double-layer thin films was performed through X-ray diffraction, confocal micro-Raman spectroscopy and electron (SEM and TEM) microscopies. The heterostructures were produced using a two-step process, starting from a deposition of amorphous WO3 layer on top of CuO nanowires and thin films by reactive DC magnetron sputtering and followed by annealing at 650 °C in air. The second step induced a solid-state reaction between CuO and WO3 oxides through a thermal diffusion process, revealed by SEM-EDX analysis. Morphology evolution of core/shell nanowires and double-layer thin films upon heating was studied by electron (SEM and TEM) microscopies. A formation of CuWO4 phase was confirmed by X-ray diffraction and confocal micro-Raman spectroscopy.
New possibility on InZnO nano thin film for green emissive optoelectronic devices
NASA Astrophysics Data System (ADS)
Sugumaran, Sathish; Noor Bin Ahmad, Mohd; Faizal Jamlos, Mohd; Bellan, Chandar Shekar; Chandran, Sharmila; Sivaraj, Manoj
2016-04-01
Indium zinc oxide (InZnO) nano thin film was prepared from InZnO nanoparticles (NPs) by thermal evaporation technique. Fourier transform infrared spectroscopy showed the presence of metal-oxide bond. X-ray diffraction pattern revealed the mixed phase structure. The presence of elements In, Zn and O were identified from energy dispersive X-ray analysis. Size of the NPs was found to be 171 and 263 nm by transmission electron microscopy. Scanning electron microscopy image showed the spherical shape uniform morphology with uniform distribution grains. Photoluminescence spectrum exhibited a broad green emission for InZnO nano thin film. The acquired results of structure, smooth morphology and photoluminescence property suggested that the InZnO nano thin film to be a promising material for room temperature green emissive optoelectronic, laser diodes, solar cells and other optical devices.
Akkerman, M; Franssen-Verheijen, M A W; Immerzeel, P; Hollander, L D E N; Schel, J H N; Emons, A M C
2012-07-01
Cellulose is the most abundant biopolymer on earth, and has qualities that make it suitable for biofuel. There are new tools for the visualisation of the cellulose synthase complexes in living cells, but those do not show their product, the cellulose microfibrils (CMFs). In this study we report the characteristics of cell wall textures, i.e. the architectures of the CMFs in the wall, of root hairs of Arabidopsis thaliana, Medicago truncatula and Vicia sativa and compare the different techniques we used to study them. Root hairs of these species have a random primary cell wall deposited at the root hair tip, which covers the outside of the growing and fully grown hair. The secondary wall starts between 10 (Arabidopsis) and 40 (Vicia) μm from the hair tip and the CMFs make a small angle, Z as well as S direction, with the long axis of the root hair. CMFs are 3-4 nm wide in thin sections, indicating that single cellulose synthase complexes make them. Thin sections after extraction of cell wall matrix, leaving only the CMFs, reveal the type of wall texture and the orientation and width of CMFs, but CMF density within a lamella cannot be quantified, and CMF length is always underestimated by this technique. Field emission scanning electron microscopy and surface preparations for transmission electron microscopy reveal the type of wall texture and the orientation of individual CMFs. Only when the orientation of CMFs in subsequent deposited lamellae is different, their density per lamella can be determined. It is impossible to measure CMF length with any of the EM techniques. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Dutta, Aniruddha; Heinrich, Helge; Kuebler, Stephen; Grabill, Chris; Bhattacharya, Aniket
2011-03-01
Gold nanoparticles(Au-NPs) act as nucleation sites for electroless deposition of silver on functionalized SU8 polymeric surfaces. Here we report the nanoscale morphology of Au and Ag nanoparticles as studied by Transmission Electron Microscopy (TEM). Scanning TEM with a high-angle annular dark-field detector is used to obtain atomic number contrast. From the intensity-calibrated plan-view scanning TEM images we determine the mean thickness and the volume distribution of the Au-NPs on the surface of the functionalized polymer. We also report the height and the radius distribution of the gold nanoparticles obtained from STEM images taking into consideration the experimental errors. The cross sectional TEM images yield the density and the average distance of the Au and Ag nanoparticles on the surface of the polymer. Supported by grant NSF, Chemistry Division.
Burmistrova, Polina V.; Zakharov, Dmitri N.; Favaloro, Tela; ...
2015-03-14
Four epitaxial ScN(001) thin films were successfully deposited on MgO(001) substrates by dc reactive magnetron sputtering at 2, 5, 10, and 20 mTorr in an Ar/N2 ambient atmosphere at 650 °C. The microstructure of the resultant films was analyzed by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Electrical resistivity, electron mobility and concentration were measured using the room temperature Hall technique, and temperature dependent in-plain measurements of the thermoelectric properties of the ScN thin films were performed. The surface morphology and film crystallinity significantly degrade with increasing deposition pressure. The ScN thin film deposited at 20 mTorr exhibitsmore » the presence of <221> oriented secondary grains resulting in decreased electric properties and a low thermoelectric power factor of 0.5 W/m-K² at 800 K. ScN thin films grown at 5 and 10 mTorr are single crystalline, yielding the power factor of approximately 2.5 W/m-K² at 800 K. The deposition performed at 2 mTorr produces the highest quality ScN thin film with the electron mobility of 98 cm² V⁻¹ s⁻¹ and the power factor of 3.3 W/m-K² at 800 K.« less
Morphology selection for cupric oxide thin films by electrodeposition.
Dhanasekaran, V; Mahalingam, T; Chandramohan, R
2011-10-01
Polycrystalline cupric oxide thin films were deposited using alkaline solution bath employing cathodic electrodeposition method. The thin films were electrodeposited at various solution pH. The surface morphology and elemental analyzes of the films were studied using scanning electron microscopy (SEM) and energy dispersive X-ray analysis, respectively. SEM studies revealed that the surface morphology could be tailored suitably by adjusting the pH value during deposition. Mesh average on multiple lattice mode atomic force microscopy image was obtained and reported. Copyright © 2011 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohri, Maryam, E-mail: mmohri@ut.ac.ir; Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe; Nili-Ahmadabadi, Mahmoud
The crystallization of Ni-rich/NiTiCu bi-layer thin film deposited by magnetron sputtering from two separate alloy targets was investigated. To achieve the shape memory effect, the NiTi thin films deposited at room temperature with amorphous structure were annealed at 773 K for 15, 30, and 60 min for crystallization. Characterization of the films was carried out by differential scanning calorimetry to indicate the crystallization temperature, grazing incidence X-ray diffraction to identify the phase structures, atomic force microscopy to evaluate surface morphology, scanning transmission electron microscopy to study the cross section of the thin films. The results show that the structure ofmore » the annealed thin films strongly depends on the temperature and time of the annealing. Crystalline grains nucleated first at the surface and then grew inward to form columnar grains. Furthermore, the crystallization behavior was markedly affected by composition variations. - Highlights: • A developed bi-layer Ni45TiCu5/Ni50.8Ti was deposited on Si substrate and crystallized. • During crystallization, The Ni{sub 45}TiCu{sub 5} layer is thermally less stable than the Ni-rich layer. • The activation energy is 302 and 464 kJ/mol for Cu-rich and Ni-rich layer in bi-layer, respectively.« less
Hettler, Simon; Dries, Manuel; Hermann, Peter; Obermair, Martin; Gerthsen, Dagmar; Malac, Marek
2017-05-01
We analyze electron-beam induced carbon contamination in a transmission electron microscope. The study is performed on thin films potentially suitable as phase plates for phase-contrast transmission electron microscopy. Electron energy-loss spectroscopy and phase-plate imaging is utilized to analyze the contamination. The deposited contamination layer is identified as a graphitic carbon layer which is not prone to electrostatic charging whereas a non-conductive underlying substrate charges. Several methods that inhibit contamination are evaluated and the impact of carbon contamination on phase-plate imaging is discussed. The findings are in general interesting for scanning transmission electron microscopy applications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Schmidt, Franziska; Kühbacher, Markus; Gross, Ulrich; Kyriakopoulos, Antonius; Schubert, Helmut; Zehbe, Rolf
2011-03-01
3D imaging at a subcellular resolution is a powerful tool in the life sciences to investigate cells and their interactions with native tissues or artificial objects. While a tomographic experimental setup achieving a sufficient structural resolution can be established with either X-rays or electrons, the use of electrons is usually limited to very thin samples in transmission electron microscopy due to the poor penetration depths of electrons. The combination of a serial sectioning approach and scanning electron microscopy in state of the art dual beam experimental setups therefore offers a means to image highly resolved spatial details using a focused ion beam for slicing and an electron beam for imaging. The advantage of this technique over X-ray μCT or X-ray microscopy attributes to the fact that absorption is not a limiting factor in imaging and therefore even strong absorbing structures can be spatially reconstructed with a much higher possible resolution. This approach was used in this study to elucidate the effect of an electric potential on the morphology of cells from a hippocampal cell line (HT22) deposited on gold microelectrodes. While cells cultivated on two different controls (gold and polymer substrates) did show the expected stretched morphology, cells on both the anode and the cathode differed significantly. Cells deposited on the anode part of the electrode exhibited the most extreme deviation, being almost spherical and showed signs of chromatin condensation possibly indicating cell death. Furthermore, EDX was used as supplemental methodology for combined chemical and structural analyses. Copyright © 2010 Elsevier B.V. All rights reserved.
Structural, optical and photoelectric properties of sprayed CdS thin films
NASA Astrophysics Data System (ADS)
Chandel, Tarun; Dwivedi, Shailendra Kumar; Zaman, M. Burhanuz; Rajaram, P.
2018-05-01
In this study, CdS thin films were grown via a facile spray pyrolysis technique. The crystalline phase, morphological, compositional and optical properties of the CdS thin films have been studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and UV-vis absorption spectroscopy, respectively. XRD patterns show that the grown CdS films crystallized in the hexagonal structure. Scanning electron microscopy (SEM) study shows that the surfaces of the films are smooth and are uniformly covered with nanoparticles. EDAX results reveal that the grown films have good stochiometry. UV-vis spectroscopy shows that the grown films have transparency above 80% over the entire visible region. The photo-electric response of the CdS films grown on glass substrates has been observed.
Chinthaka Silva, G W; Ma, Longzhou; Hemmers, Oliver; Lindle, Dennis
2008-01-01
Fluorapatite is a naturally occurring mineral of the apatite group and it is well known for its high physical and chemical stability. There is a recent interest in this ceramic to be used as a radioactive waste form material due to its intriguing chemical and physical properties. In this study, the nano-sized fluorapatite particles were synthesized using a precipitation method and the material was characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Two well-known methods, called solution-drop and the microtome cutting, were used to prepare the sample for TEM analysis. It was found that the microtome cutting technique is advantageous for examining the particle shape and cross-sectional morphology as well as for obtaining ultra-thin samples. However, this method introduces artifacts and strong background contrast for high-resolution transmission electron microscopy (HRTEM) observation. On the other hand, phase image simulations showed that the solution-drop method is reliable and stable for HRTEM analysis. Therefore, in order to comprehensively analyze the microstructure and morphology of the nano-material, it is necessary to combine both solution-drop and microtome cutting techniques for TEM sample preparation.
Application of Nomarski DIC and cathodoluminescence (CL) microscopy to building materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetze, J., E-mail: goetze@mineral.tu-freiberg.de
2009-07-15
The present study discusses the potential of an integrated application of Nomarski differential interference contrast and cathodoluminescence microscopy for the investigation of building materials such as natural stone, cement, mortar and concrete. Nomarski differential interference contrast microscopy is a modern technique applied in materials sciences to visualize different phases and/or to image the surface relief on the scale of 50 nm. It is based on the principle of beam splitting by a double-crystal prism split, resulting in the superposition of laterally shifted wave fronts. In cathodoluminescence microscopy, the luminescence signal is excited by an electron beam and is generated bymore » different point defects within the material. Therefore, cathodoluminescence is a powerful method to characterize the defect structure of solid materials, to distinguish different phases and to reveal detailed information about their chemical composition. By combining Nomarski differential interference contrast and cathodoluminescence microscopy, textural, crystallographic and chemical information can be obtained from the same sample area in a polished thin section.« less
Oxide-free aC/Zr0.65Al0.075Cu0.275/aC phase plates for transmission electron microscopy.
Dries, M; Obermair, M; Hettler, S; Hermann, P; Seemann, K; Seifried, F; Ulrich, S; Fischer, R; Gerthsen, D
2018-06-01
Thin-film phase plates (PP) have become a valuable tool for the imaging of organic objects in transmission electron microscopy (TEM). The thin film usually consists of amorphous carbon (aC), which undergoes rapid aging under intense illumination with high-energy electrons. The limited lifetime of aC film PPs calls for alternative PP materials with improved material stability. This work presents thin-film PPs fabricated from the metallic glass alloy Zr 0.65 Al 0.075 Cu 0.275 (ZAC), which was identified as a promising PP material with beneficial properties, such as a large inelastic mean free path. An adverse effect of the ZAC alloy is the formation of a surface oxide layer in ambient air, which reduces the electrical conductivity and causes electrostatic charging in the electron beam. To avoid surface oxidation, the ZAC alloy is enclosed by thin aC layers. The resulting aC/ZAC/aC layer system is used to fabricate Zernike and Hilbert PPs. Phase-contrast TEM imaging is demonstrated for a sample of carbon nanotubes, which show strong contrast enhancement in PP TEM images. Copyright © 2018 Elsevier B.V. All rights reserved.
Blank, Holger; Schneider, Reinhard; Gerthsen, Dagmar; Gehrke, Helge; Jarolim, Katharina; Marko, Doris
2014-06-01
High-angle annular dark-field scanning transmission electron microscopy (HAADF STEM) in a scanning electron microscope facilitates the acquisition of images with high chemical sensitivity and high resolution. HAADF STEM at low electron energies is particularly suited to image nanoparticles (NPs) in thin cell sections which are not subjected to poststaining procedures as demonstrated by comparison with bright-field TEM. High membrane contrast is achieved and distinction of NPs with different chemical composition is possible at first sight. Low-energy HAADF STEM was applied to systematically study the uptake of Pt-NPs with a broad size distribution in HT29 colon carcinoma cells as a function of incubation time and incubation temperature. The cellular dose was quantified, that is, the amount and number density of NPs taken up by the cells, as well as the particle-size distribution. The results show a strong dependence of the amount of incubated NPs on the exposure time which can be understood by considering size-dependent diffusion and gravitational settling of the NPs in the cell culture medium.
Hoffmann, Ramona; Wochnik, Angela S; Betzler, Sophia B; Matich, Sonja; Griesshaber, Erika; Schmahl, Wolfgang W; Scheu, Christina
2014-07-01
The ultrastructure of biologically formed calcium carbonate crystals like the shell of Emiliania huxleyi depends on the environmental conditions such as pH value, temperature and salinity. Therefore, they can be used as indicator for climate changes. However, for this a detailed understanding of their crystal structure and chemical composition is required. High resolution methods like transmission electron microscopy can provide those information on the nanoscale, given that sufficiently thin samples can be prepared. In our study, we developed sample preparation techniques for cross-section and plan-view investigations and studied the sample stability under electron bombardment. In addition to the biological material (Emiliania huxleyi) we also prepared mineralogical samples (Iceland spar) for comparison. High resolution transmission electron microscopy imaging, electron diffraction and electron energy-loss spectroscopy studies revealed that all prepared samples are relatively stable under electron bombardment at an acceleration voltage of 300 kV when using a parallel illumination. Above an accumulated dose of ∼10(5) e/nm2 the material--independent whether its origin is biological or geological--transformed to poly-crystalline calcium oxide. Copyright © 2014 Elsevier Ltd. All rights reserved.
Examining Wetting and Dewetting Processes in Thin-films on Crystalline Substrates at the Nanoscale
NASA Astrophysics Data System (ADS)
Hihath, Sahar
Controlling the wetting and dewetting of ultra-thin films on solid substrates is important for a variety of technological and fundamental research applications. These applications include film deposition for semiconductor manufacturing, the growth of nanowires through nanoparticle-based catalysis sites, to making ordered arrays of nanoscale particles for electronic and optical devices. However, despite the importance of these processes, the underlying mechanisms by which a film wets a surface or dewets from it is still often unclear and widely debated. In this dissertation we examine wetting and dewetting processes in three materials systems that are relevant for device applications with the ultimate goal of understanding what mechanisms drive the wetting (or dewetting) process in each case. First, we examine the formation of wetting layers between nanoparticle films and highly conductive GaAs substrates for spintronic applications. In this case, the formation of a wetting layer is important for nanoparticle adhesion on the substrate surface. Wetting layers can be made by annealing these systems, which causes elemental diffusion from nanoparticles into the substrate, thereby adhesion between the nanoparticles and the substrate. Here we investigate the feasibility of forming a wetting layer underneath nanoparticles post-annealing in a system of Fe3O4 nanoparticles on a (100) GaAs substrate by studying the interface structure and composition via Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), Electron Energy Loss Spectroscopy (EELS) and Energy Dispersive X-ray Spectroscopy (EDXS). Electron Energy-Loss fine structures of the Fe-L 3,2 and O-K absorption edges were quantitatively analyzed to gain insight about the compositional gradient of the interface between the nanoparticles and the GaAs substrate. Additionally, real-space density functional theory calculations of the dynamical form factor was performed to confirm the experimental observations. Second, the fundamental mechanisms that govern the onset of dewetting of thin metal films in both liquid and solid state are investigated. Dewetting processes are used in numerous technological applications. For instance, the dewetting of thin films on substrates is used for making spatially ordered nanoparticle arrays for use in plasmonics, nanophotonics, and magnetics. [1] In addition to dewetting applications in industry and research, dewetting processes have adverse impact on the reliability of semiconductor devices as it can limit the functionality of metal contacts utilized in transistors at elevated temperatures. The morphological changes during dewetting have been studied previously in plan-view by Scanning Electron Microscopy (SEM) after the annealing is completed, and in some cases in cross-section via real-time Transmission Electron Microscopy (TEM). However, due to temporal limitations of image acquisition in TEM, which is in the range of milliseconds, it has not been possible thus far to investigate the dynamics of the dewetting process with high-speed time resolution from nano- to micro-seconds. To gain insights into the fundamental mechanisms involved in dewetting, the early stages of the dewetting process were investigated via Dynamic Transmission Electron Microscopy (DTEM) with nanosecond time and nanometer spatial resolution. The experiments were performed on plan-view TEM samples consisting of nickel thin-films on (100) silicon substrates with a 2-3 nm thick native oxide. The laser ablation dynamics were captured, which involved liquid phase dewetting of the nickel film followed by substrate fracture and nanoscale particle expulsion. Finally, to capture the full dynamics of the dewetting process the experiments were performed on a system of nickel thin-films on (100) Strontium Titanate (STO) substrates. Samples of nickel thin-films on STO substrates have lower thermal expansion coefficient mismatch compared to the system discussed above. Thus, the STO substrates did not fracture after laser irradiation and enabled us to capture the progress of hole growth with time. Valence Electron Energy Loss spectroscopy was used to find the thickness of the TEM sample in order to calculate the geometry and simulate the temperature fields via finite element analysis with COMSOL Multiphysics package. Spatio-temporal temperature plots acquired from finite element modeling suggests that both liquid and solid-state dewetting processes were observed depending upon the magnitude of the laser energy used.
NASA Astrophysics Data System (ADS)
Rădulescu, Dragoş; Grumezescu, Valentina; Andronescu, Ecaterina; Holban, Alina Maria; Grumezescu, Alexandru Mihai; Socol, Gabriel; Oprea, Alexandra Elena; Rădulescu, Marius; Surdu, Adrian; Trusca, Roxana; Rădulescu, Radu; Chifiriuc, Mariana Carmen; Stan, Miruna S.; Constanda, Sabrina; Dinischiotu, Anca
2016-06-01
In this study we aimed to obtain functionalized thin films based on hydroxyapatite/poly(lactic-co-glycolic acid) (HAp/PLGA) containing ceftriaxone/cefuroxime antibiotics (ATBs) deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The prepared thin films were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-Ray diffraction (XRD), selected area electron diffraction (SAED), and infra red (IR) analysis. HAp/PLGA/ATBs thin films sustained the growth of human osteoblasts, proving their good biocompatibility. The microscopic evaluation and the culture-based quantitative assay of the E. coli biofilm development showed that the thin films inhibited the initial step of microbial attachment as well as the subsequent colonization and biofilm development on the respective surfaces. This study demonstrates that MAPLE technique could represent an appealing technique for the fabrication of antibiotics-containing polymeric implant coatings. The bioevaluation results recommend this type of surfaces for the prevention of bone implant microbial contamination and for the enhanced stimulation of the implant osseointegration process.
Electronically decoupled stacking fault tetrahedra embedded in Au(111) films
Schouteden, Koen; Amin-Ahmadi, Behnam; Li, Zhe; Muzychenko, Dmitry; Schryvers, Dominique; Van Haesendonck, Chris
2016-01-01
Stacking faults are known as defective structures in crystalline materials that typically lower the structural quality of the material. Here, we show that a particular type of defect, that is, stacking fault tetrahedra (SFTs), exhibits pronounced quantized electronic behaviour, revealing a potential synthetic route to decoupled nanoparticles in metal films. We report on the electronic properties of SFTs that exist in Au(111) films, as evidenced by scanning tunnelling microscopy and confirmed by transmission electron microscopy. We find that the SFTs reveal a remarkable decoupling from their metal surroundings, leading to pronounced energy level quantization effects within the SFTs. The electronic behaviour of the SFTs can be described well by the particle-in-a-box model. Our findings demonstrate that controlled preparation of SFTs may offer an alternative way to achieve well-decoupled nanoparticles of high crystalline quality in metal thin films without the need of thin insulating layers. PMID:28008910
Electronically decoupled stacking fault tetrahedra embedded in Au(111) films.
Schouteden, Koen; Amin-Ahmadi, Behnam; Li, Zhe; Muzychenko, Dmitry; Schryvers, Dominique; Van Haesendonck, Chris
2016-12-23
Stacking faults are known as defective structures in crystalline materials that typically lower the structural quality of the material. Here, we show that a particular type of defect, that is, stacking fault tetrahedra (SFTs), exhibits pronounced quantized electronic behaviour, revealing a potential synthetic route to decoupled nanoparticles in metal films. We report on the electronic properties of SFTs that exist in Au(111) films, as evidenced by scanning tunnelling microscopy and confirmed by transmission electron microscopy. We find that the SFTs reveal a remarkable decoupling from their metal surroundings, leading to pronounced energy level quantization effects within the SFTs. The electronic behaviour of the SFTs can be described well by the particle-in-a-box model. Our findings demonstrate that controlled preparation of SFTs may offer an alternative way to achieve well-decoupled nanoparticles of high crystalline quality in metal thin films without the need of thin insulating layers.
NASA Astrophysics Data System (ADS)
Basantani, H. A.; Kozlowski, S.; Lee, Myung-Yoon; Li, J.; Dickey, E. C.; Jackson, T. N.; Bharadwaja, S. S. N.; Horn, M.
2012-06-01
Thin films of VOx (1.3 ≤ x ≤ 2) were deposited by reactive pulsed-dc magnetron sputtering of a vanadium metal target while RF-biasing the substrate. Rutherford back scattering, glancing angle x-ray, and cross-sectional transmission electron microscopy measurements revealed the formation of nanocolumns with nanotwins within VOx samples. The resistivity of nanotwinned VOx films ranged from 4 mΩ.cm to 0.6 Ω.cm and corresponding temperature coefficient of resistance between -0.1% and -2.6% per K, respectively. The 1/f electrical noise was analyzed in these VOx samples using the Hooge-Vandamme relation. These VOx films are comparable or surpass commercial VOx films deposited by ion beam sputtering.
Caruso, Valentina; Cummaudo, Marco; Maderna, Emanuela; Cappella, Annalisa; Caudullo, Giorgio; Scarpulla, Valentina; Cattaneo, Cristina
2018-02-01
The present study aims to evaluate the preservation of the microstructure of skeletal remains collected from four different known burial sites (archaeological and contemporary). Histological analysis on undecalcified and decalcified thin sections was performed in order to assess which of the two techniques is more affected by taphonomic insults. A histological analysis was performed on both undecalcified and decalcified thin sections of 40 long bones and the degree of diagenetic change was evaluated using transmitted and polarized light microscopy according to the Oxford Histological Index (OHI). In order to test the optical behavior of bone tissue, thin sections were observed by polarized light microscopy and the intensity of birefringence was evaluated. The more ancient samples are generally characterized by a low OHI (0-1) with extensive microscopic focal destruction; recent samples exhibited a better preservation of bone micromorphology. When comparing undecalcified to decalcified thin sections, the latter showed an amelioration in the conservation of microscopic structure. As regards the birefringence, it was very low in all the undecalcified thin sections, whereas decalcification process seems to improve its visibility. The preservation of the bone microscopic structure appears to be influenced not only by age, but also by the burial context. Undecalcified bones appear to be more affected by taphonomical alterations, probably because of the thickness of the thin sections; on the contrary, decalcified thin sections proved to be able to tackle this issue allowing a better reading of the bone tissue. © 2017 Wiley Periodicals, Inc.
2012-01-01
Background Mollusc shells are commonly investigated using high-resolution imaging techniques based on cryo-fixation. Less detailed information is available regarding the light-optical properties. Sea shells of Haliotis pulcherina were embedded for polishing in defined orientations in order to investigate the interface between prismatic calcite and nacreous aragonite by standard materialographic methods. A polished thin section of the interface was prepared with a defined thickness of 60 μm for quantitative birefringence analysis using polarized light and LC-PolScope microscopy. Scanning electron microscopy images were obtained for comparison. In order to study structural-mechanical relationships, nanoindentation experiments were performed. Results Incident light microscopy revealed a super-structure in semi-transparent regions of the polished cross-section under a defined angle. This super-structure is not visible in transmitted birefringence analysis due to the blurred polarization of small nacre platelets and numerous organic interfaces. The relative orientation and homogeneity of calcite prisms was directly identified, some of them with their optical axes exactly normal to the imaging plane. Co-oriented "prism colonies" were identified by polarized light analyses. The nacreous super-structure was also visualized by secondary electron imaging under defined angles. The domains of the super-structure were interpreted to consist of crystallographically aligned platelet stacks. Nanoindentation experiments showed that mechanical properties changed with the same periodicity as the domain size. Conclusions In this study, we have demonstrated that insights into the growth mechanisms of nacre can be obtained by conventional light-optical methods. For example, we observed super-structures formed by co-oriented nacre platelets as previously identified using X-ray Photo-electron Emission Microscopy (X-PEEM) [Gilbert et al., Journal of the American Chemical Society 2008, 130:17519–17527]. Polarized optical microscopy revealed unprecedented super-structures in the calcitic shell part. This bears, in principle, the potential for in vivo studies, which might be useful for investigating the growth modes of nacre and other shell types. PMID:22967319
NASA Astrophysics Data System (ADS)
Kahl, Wolf-Achim; Hidas, Károly; Dilissen, Nicole; Garrido, Carlos J.; López-Sánchez Vizcaíno, Vicente; Jesús Román-Alpiste, Manuel
2017-04-01
The complete reconstruction of the microstructure of rocks requires, among others, a full description of the shape preferred orientation (SPO) and crystal preferred orientation (CPO) of the constituent mineral phases. New advances in instrumental analyses, particularly electron backscatter diffraction (EBSD) coupled to focused ion beam-scanning electron microscope (FIB-SEM), allows a complete characterization of SPO and CPO in rocks at the micron scale [1-2]. Unfortunately, the large grain size of many crystalline rocks, such as peridotite, prevents a representative characterization of the CPO and SPO of their constituent minerals by this technique. Here, we present a new approach combining X-ray micro computed tomography (µ-CT) and EBSD to reconstruct the geographically oriented, 3-D SPO and CPO of cm- to mm-sized olivine crystals in two contrasting fabric types of chlorite harzburgites (Almírez ultramafic massif, SE Spain). The semi-destructive sample treatment involves drilling of geographically oriented micro drills in the field and preparation of oriented thin sections from µ-CT scanned cores. This allows for establishing the link among geological structures, macrostructure, fabric, and 3-D SPO-CPO at the thin section scale. Based on EBSD analyses, different CPO groups of olivine crystals can be discriminated in the thin sections and allocated to 3-D SPO in the µ-CT volume data. This approach overcomes the limitations of both methods (i.e., no crystal orientation data in µ-CT and no spatial information in EBSD), hence 3-D orientation of the crystallographic axes of olivines from different orientation groups could be correlated with the crystal shapes of olivine grains. This combined µ-CT and EBSD technique enables the correlation of both SPO and CPO and representative grain size, and is capable to characterize the 3-D microstructure of olivine-bearing rocks at the hand specimen scale. REFERENCES 1. Zaefferer, S., Wright, S.I., Raabe, D., 2008. Three-Dimensional orientation microscopy in a focused ion beam-scanning electron microscope: A new dimension of microstructure characterization. Metallurgical and Materials Transactions A 39, 374-389. 2. Burnett, T.L., Kelley, R., Winiarski, B., Contreras, L., Daly, M., Gholinia, A., Burke, M.G., Withers, P.J., 2016. Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. Ultramicroscopy 161, 119-129.
Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices
Xiao, Zhigang; Kisslinger, Kim
2015-06-17
Thin films of hafnium dioxide (HfO 2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this paper, the authors report the growth of thin films of HfO 2 using e-beam evaporation, and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO 2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution transmission electron microscopy and electron diffraction, thereby demonstrating that the e-beam-evaporation-grown HfO 2 film has a polycrystalline structure and forms an excellent interface with silicon. Accordingly, we fabricated 31-stage CMOS ringmore » oscillator to test the quality of the HfO 2 thin film as the gate oxide, and obtained excellent rail-to-rail oscillation waveforms from it, denoting that the HfO 2 thin film functioned very well as the gate oxide.« less
Georgsson, G; Martin, J R; Stoner, G L; Webster, H F
1987-01-01
Mice were infected by the vaginal route with the MS strain of herpes simplex virus type 2 (HSV-2). Serial vaginal cultures were used to confirm infection and to select mice for this study. Two mice were killed by perfusion on days 2-6 post infection (p.i.) and lumbar and sacral cord with cauda were fixed and embedded for electron microscopy. Semithin Epon-sections were stained for viral antigen using a rabbit anti-HSV-2 antiserum and the Avidin-Biotin (ABC) method. Thin sections from antigen-positive blocks were examined by electron microscopy, and the number and types of infected cells detected by these two methods were compared. A good correlation was found between detection of infected cells by these methods. Infected cells included neurons of dorsal root ganglia and spinal cord, satellite cells of dorsal root ganglia, non-myelinating Schwann cells, astrocytes, oligodendrocytes and arachnoidal cells. Infected cells were first detected in the cauda on day 3 p.i. and in the spinal cord on day 5 p.i. The temporal and spatial distribution of infected cells was consistent with neural spread to and within the CNS. The pathological lesions showed a good correlation with the distribution and number of infected cells and are probably due to a direct virus effect. The similar sensitivity of the Epon-ABC method to electron microscopy in detecting infected cells indicates that this method may have useful applications in both experimental and diagnostic work.
NASA Astrophysics Data System (ADS)
Wang, X. W.; Kuchmizhak, A. A.; Li, X.; Juodkazis, S.; Vitrik, O. B.; Kulchin, Yu. N.; Zhakhovsky, V. V.; Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I.; Rudenko, A. A.; Inogamov, N. A.
2017-10-01
Subwavelength structures (meta-atoms) with artificially engineered permittivity and permeability have shown promising applications for guiding and controlling the flow of electromagnetic energy on the nanoscale. Ultrafast laser nanoprinting emerges as a promising single-step, green and flexible technology in fabricating large-area arrays of meta-atoms through the translative or ablative modification of noble-metal thin films. Ultrafast laser energy deposition in noble-metal films produces irreversible, intricate nanoscale translative mass redistributions after resolidification of the transient thermally assisted hydrodynamic melt perturbations. Such mass redistribution results in the formation of a radially symmetric frozen surface with modified hidden nanofeatures, which strongly affect the optical response harnessed in plasmonic sensing and nonlinear optical applications. Here, we demonstrate that side-view electron microscopy and ion-beam cross sections together with low-energy electron x-ray dispersion microscopy provide exact information about such three-dimensional patterns, enabling an accurate acquisition of their cross-sectional mass distributions. Such nanoscale solidified structures are theoretically modeled, considering the underlying physical processes associated with laser-induced energy absorption, electron-ion energy exchange, acoustic relaxation, and hydrodynamic flows. A theoretical approach, separating slow and fast physical processes and combining hybrid analytical two-temperature calculations, scalable molecular-dynamics simulations, and a semianalytical thin-shell model is synergistically applied. These advanced characterization approaches are required for a detailed modeling of near-field electromagnetic response and pave the way to a fully automated noninvasive in-line control of a high-throughput and large-scale laser fabrication. This theoretical modeling provides an accurate prediction of scales and topographies of the laser-fabricated meta-atoms and metasurfaces.
Capping of rare earth silicide nanowires on Si(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appelfeller, Stephan; Franz, Martin; Kubicki, Milan
The capping of Tb and Dy silicide nanowires grown on Si(001) was studied using scanning tunneling microscopy and cross-sectional high-resolution transmission electron microscopy. Several nanometers thick amorphous Si films deposited at room temperature allow an even capping, while the nanowires maintain their original structural properties. Subsequent recrystallization by thermal annealing leads to more compact nanowire structures and to troughs in the Si layer above the nanowires, which may even reach down to the nanowires in the case of thin Si films, as well as to V-shaped stacking faults forming along (111) lattice planes. This behavior is related to strain duemore » to the lattice mismatch between the Si overlayer and the nanowires.« less
NASA Astrophysics Data System (ADS)
Jamaluddin, F. W.; Khalid, M. F. Abdul; Mamat, M. H.; Zoolfakar, A. S.; Zulkefle, M. A.; Rusop, M.; Awang, Z.
2018-05-01
Barium Strontium Titanate (Ba0.5Sr0.5TiO3) is known to have a high dielectric constant and low loss at microwave frequencies. These unique features are useful for many electronic applications. This paper focuses on material characterization of BST thin films deposited on sapphire substrate by RF magnetron sputtering system. The sample was then annealed at 900 °C for two hours. Several methods were used to characterize the structural properties of the material such as X-ray diffraction (XRD) and atomic force microscopy (AFM). Field emission scanning electron microscopy (FESEM) was used to analyze the surface morphology of the thin film. From the results obtained, it can be shown that the annealed sample had a rougher surface and better crystallinity as compared to as-deposited sample.
Wang, Chun-Min; Huang, Chun-Chieh; Kuo, Jui-Chao; Sahu, Dipti Ranjan; Huang, Jow-Lay
2015-08-14
Tin oxide (SnO 2-x ) thin films were prepared under various flow ratios of O₂/(O₂ + Ar) on unheated glass substrate using the ion beam sputtering (IBS) deposition technique. This work studied the effects of the flow ratio of O₂/(O₂ + Ar), chamber pressures and post-annealing treatment on the physical properties of SnO₂ thin films. It was found that annealing affects the crystal quality of the films as seen from both X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. In addition, the surface RMS roughness was measured with atomic force microscopy (AFM). Auger electron spectroscopy (AES) analysis was used to obtain the changes of elemental distribution between tin and oxygen atomic concentration. The electrical property is discussed with attention to the structure factor.
Ultraviolet emission enhancement in ZnO thin films modified by nanocrystalline TiO2
NASA Astrophysics Data System (ADS)
Zheng, Gaige; Lu, Xi; Qian, Liming; Xian, Fenglin
2017-05-01
In this study, nanocrystalline TiO2 modified ZnO thin films were prepared by electron beam evaporation. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV-visible spectroscopy, fluorescence spectroscopy, respectively. The composition of the films was examined by energy dispersive X-ray spectroscopy (EDX). The photoluminescent spectrum shows that the pure ZnO thin film exhibits an ultraviolet (UV) emission peak and a strong green emission band. Surface analysis indicates that the ZnO thin film contains many oxygen vacancy defects on the surface. After the ZnO thin film is modified by the nanocrystalline TiO2 layer, the UV emission of ZnO is largely enhanced and the green emission is greatly suppressed, which suggests that the surface defects such as oxygen vacancies are passivated by the TiO2 capping layer. As for the UV emission enhancement of the ZnO thin film, the optimized thickness of the TiO2 capping layer is ∼16 nm. When the thickness is larger than 16 nm, the UV emission of the ZnO thin film will decrease because the TiO2 capping layer absorbs most of the excitation energy. The UV emission enhancement in the nanocrystalline TiO2 modified ZnO thin film can be attributed to surface passivation and flat band effect.
Sinclair, Robert; Lee, Sang Chul; Shi, Yezhou; ...
2017-03-18
Here, we have applied aberration-corrected transmission electron microscopy (TEM) imaging and electron energy loss spectroscopy (EELS) to study the structure and chemistry of epitaxial ceria thin films, grown by pulsed laser deposition onto (001) yttria-stabilized zirconia (YSZ) substrates. There are few observable defects apart from the expected mismatch interfacial dislocations and so the films would be expected to have good potential for applications. Under high electron beam dose rate (above about 6000 e-/Å 2s) domains of an ordered structure appear and these are interpreted as being created by oxygen vacancy ordering. The ordered structure does not appear at lower losemore » rates (ca. 2600 e-/Å 2s) and can be removed by imaging under 1 mbar oxygen gas in an environmental TEM. EELS confirms that there is both oxygen deficiency and the associated increase in Ce 3+ versus Ce 4+ cations in the ordered domains. In situ high resolution TEM recordings show the formation of the ordered domains as well as atomic migration along the ceria thin film (001) surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, Robert; Lee, Sang Chul; Shi, Yezhou
Here, we have applied aberration-corrected transmission electron microscopy (TEM) imaging and electron energy loss spectroscopy (EELS) to study the structure and chemistry of epitaxial ceria thin films, grown by pulsed laser deposition onto (001) yttria-stabilized zirconia (YSZ) substrates. There are few observable defects apart from the expected mismatch interfacial dislocations and so the films would be expected to have good potential for applications. Under high electron beam dose rate (above about 6000 e-/Å 2s) domains of an ordered structure appear and these are interpreted as being created by oxygen vacancy ordering. The ordered structure does not appear at lower losemore » rates (ca. 2600 e-/Å 2s) and can be removed by imaging under 1 mbar oxygen gas in an environmental TEM. EELS confirms that there is both oxygen deficiency and the associated increase in Ce 3+ versus Ce 4+ cations in the ordered domains. In situ high resolution TEM recordings show the formation of the ordered domains as well as atomic migration along the ceria thin film (001) surface.« less
A simple and low temperature process for super-hydrophilic rutile TiO 2 thin films growth
NASA Astrophysics Data System (ADS)
Mane, R. S.; Joo, Oh-Shim; Min, Sun-Ki; Lokhande, C. D.; Han, Sung-Hwan
2006-11-01
We investigate an environmentally friendly aqueous solution system for rutile TiO2 violet color nanocrystalline thin films growth on ITO substrate at room temperature. Film shows considerable absorption in visible region with excitonic maxima at 434 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-vis, water surface contact angle and energy dispersive X-ray analysis (EDX) techniques in addition to actual photo-image that shows purely rutile phase of TiO2 with violet color, super-hydrophilic and densely packed nanometer-sized spherical grains of approximate diameter 3.15 ± 0.4 nm, characterize the films. Band gap energy of 4.61 eV for direct transition was obtained for the rutile TiO2 films. Film surface shows super-hydrophilic behavior, as exhibited water contact angle was 7°. Strong visible absorption (not due to chlorine) leaves future challenge to use these films in extremely thin absorber (ETA) solar cells.
NASA Astrophysics Data System (ADS)
Dinca-Balan, Virginia; Vladoiu, Rodica; Mandes, Aurelia; Prodan, Gabriel
2017-11-01
The synthesis of Ag, Mg and Si nanocrystalline, embedded in a hydrogen-free amorphous carbon (a-C) matrix, deposited by a high vacuum and free buffer gas technique, were investigated. The films with compact structures and extremely smooth surfaces were prepared using the thermionic vacuum arc method in one electron gun configuration, on glass and silicon substrates. The surface morphology and wettability of the obtained multifunctional thin films were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and free surface energy (FSE) by See System. The results from the TEM measurements show how the Ag, Mg and Si interacted with carbon and the influence these materials have on the thin film structure formation and the grain size distribution. SEM correlated with EDX results reveal a very precise comparative study, regarding the quantity of the elements that morphed into carbides nanostructures. Also, the FSE results prove how different materials in combination with carbon can make changes to the surface properties.
NASA Astrophysics Data System (ADS)
Carrière, Marie; Gouget, Barbara; Gallien, Jean-Paul; Avoscan, Laure; Gobin, Renée; Verbavatz, Jean-Marc; Khodja, Hicham
2005-04-01
The major health effect of uranium exposure has been reported to be chemical kidney toxicity, functional and histological damages being mainly observed in proximal tubule cells. Uranium enters the proximal tubule as uranyl-bicarbonate or uranyl-citrate complexes. The aim of our research is to investigate the mechanisms of uranium toxicity, intracellular accumulation and repartition after acute intoxication of rat renal proximal tubule epithelial cells, as a function of its chemical form. Microscopic observations of renal epithelial cells after acute exposure to uranyl-bicarbonate showing the presence of intracellular precipitates as thin needles of uranyl-phosphate localized in cell lysosomes have been published. However the initial site of precipitates formation has not been identified yet: they could either be formed outside the cells before internalization, or directly inside the cells. Uranium solubility as a function and initial concentration was specified by ICP-MS analysis of culture media. In parallel, uranium uptake and distribution in cell monolayers exposed to U-bicarbonate was investigated by nuclear microprobe analyses. Finally, the presence of uranium precipitates was tested out by scanning electron microscopic observations (SEM), while extracellular and/or intracellular precipitates were observed on thin sections of cells by transmission electron microscopy (TEM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailovskii, V., E-mail: v.mikhailovskii@spbu.ru; IRC for Nanotechnology, Research Park, St.-Petersburg State University; Petrov, Yu.
2016-06-17
The drastic enhancement of backscattered electrons (BSE) yield from nanostructured thin metal film which exceeded well the one from massive metal was observed at accelerating voltages below 400 V. The dependences of BSE signal from nanostructured gold film on accelerating voltage and on retarding grid potential applied to BSE detector were investigated. It was shown that enhanced BSE signal was formed by inelastic scattered electrons coming from the gaps between nanoparticles. A tentative explanation of the mechanism of BSE signal enhancement was suggested.
Organic Photonics: Toward a New Generation of Thin Film Photovoltaics and Lasers
2011-03-07
plane. 39 Both electron and x - ray diffraction confirm the existence of crystalline domains of CuPc and C60. Crystalline domain sizes range from 5...nanocrystalline domains indicated by white curves that locate the domain boundaries. Scale bar=5 nm. b, X - ray diffraction pattern of an OVPD grown A... ray diffraction (XRD) and atomic force microscopy (AFM), as shown in Fig. 8. A cross-sectional TEM image of [CuPc(6.1nm)/C60(6.1nm)]10 is shown in
Axonal inclusions in the crab Hemigrapsus nudus.
Smith, R S
1978-10-01
Light microscopic examination of living giant axons from the walking legs of Hemigrapsus nudus revealed intra-axonal inclusions which were usually several tens of micrometers long and about 5 micron wide. The inclusions were filled with small light-scattering particles. The inclusions were shown, by thin section electron microscopy, to be composed largely 68% by volume) of mitochondria. Each inclusion was surrounded by membrane bounded spaces which are presumed to represent a part of the smooth endoplasmic reticulum. Similar inclusions were not found in the leg axons of a variety of other decapod crustaceans.
Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel
2018-01-01
Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM). PMID:29568263
Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel
2018-01-01
Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM).
Majumder, Erica L-W; Wolf, Benjamin M; Liu, Haijun; Berg, R Howard; Timlin, Jerilyn A; Chen, Min; Blankenship, Robert E
2017-11-01
Far-Red Light (FRL) acclimation is a process that has been observed in cyanobacteria and algae that can grow solely on light above 700 nm. The acclimation to FRL results in rearrangement and synthesis of new pigments and pigment-protein complexes. In this study, cyanobacteria containing chlorophyll f, Synechococcus sp. PCC 7335 and Halomicronema hongdechloris, were imaged as live cells with confocal microscopy. H. hongdechloris was further studied with hyperspectral confocal fluorescence microscopy (HCFM) and freeze-substituted thin-section transmission electron microscopy (TEM). Under FRL, phycocyanin-containing complexes and chlorophyll-containing complexes were determined to be physically separated and the synthesis of red-form phycobilisome and Chl f was increased. The timing of these responses was observed. The heterogeneity and eco-physiological response of the cells was noted. Additionally, a gliding motility for H. hongdechloris is reported.
Clean graphene electrodes on organic thin-film devices via orthogonal fluorinated chemistry.
Beck, Jonathan H; Barton, Robert A; Cox, Marshall P; Alexandrou, Konstantinos; Petrone, Nicholas; Olivieri, Giorgia; Yang, Shyuan; Hone, James; Kymissis, Ioannis
2015-04-08
Graphene is a promising flexible, highly transparent, and elementally abundant electrode for organic electronics. Typical methods utilized to transfer large-area films of graphene synthesized by chemical vapor deposition on metal catalysts are not compatible with organic thin-films, limiting the integration of graphene into organic optoelectronic devices. This article describes a graphene transfer process onto chemically sensitive organic semiconductor thin-films. The process incorporates an elastomeric stamp with a fluorinated polymer release layer that can be removed, post-transfer, via a fluorinated solvent; neither fluorinated material adversely affects the organic semiconductor materials. We used Raman spectroscopy, atomic force microscopy, and scanning electron microscopy to show that chemical vapor deposition graphene can be successfully transferred without inducing defects in the graphene film. To demonstrate our transfer method's compatibility with organic semiconductors, we fabricate three classes of organic thin-film devices: graphene field effect transistors without additional cleaning processes, transparent organic light-emitting diodes, and transparent small-molecule organic photovoltaic devices. These experiments demonstrate the potential of hybrid graphene/organic devices in which graphene is deposited directly onto underlying organic thin-film structures.
Enhanced Photocatalytic Activity of Diamond Thin Films Using Embedded Ag Nanoparticles.
Li, Shuo; Bandy, Jason A; Hamers, Robert J
2018-02-14
Silver nanoparticles embedded into the diamond thin films enhance the optical absorption and the photocatalytic activity toward the solvated electron-initiated reduction of N 2 to NH 3 in water. Here, we demonstrate the formation of diamond films with embedded Ag nanoparticles <100 nm in diameter. Cross-sectional scanning electron microscopy (SEM), energy-dependent SEM, and energy-dispersive X-ray analysis demonstrate the formation of encapsulated nanoparticles. Optical absorption measurements in the visible and ultraviolet region show that the resulting films exhibit plasmonic resonances in the visible and near-ultraviolet region. Measurements of photocatalytic activity using supraband gap (λ < 225 nm) and sub-band gap (λ > 225 nm) excitation show significantly enhanced ability to convert N 2 to NH 3 . Incorporation of Ag nanoparticles induces a nearly 5-fold increase in activity using a sub-band gap excitation with λ > 225 nm. Our results suggest that internal photoemission, in which electrons are excited from Ag into diamond's conduction band, is an important process that extends the wavelength region beyond diamond's band gap. Other factors, including Ag-induced optical scattering and formation of graphitic impurities are also discussed.
Castejon, O J; Castejon, H V; Diaz, M; Castellano, A
2001-10-01
Cortical biopsies of 11 patients with traumatic brain oedema were consecutively studied by light microscopy (LM) using thick plastic sections, scanning-transmission electron microscopy ((S)TEM) using semithin plastic sections and transmission electron microscopy (TEM) using ultrathin sections. Samples were glutaraldehyde-osmium fixed and embedded in Araldite or Epon. Thick sections were stained with toluidine-blue for light microscopy. Semithin sections were examined unstained and uncoated for (S)TEM. Ultrathin sections were stained with uranyl and lead. Perivascular haemorrhages and perivascular extravasation of proteinaceous oedema fluid were observed in both moderate and severe oedema. Ischaemic pyramidal and non-pyramidal nerve cells appeared shrunken, electron dense and with enlargement of intracytoplasmic membrane compartment. Notably swollen astrocytes were observed in all samples examined. Glycogen-rich and glycogen-depleted astrocytes were identified in anoxic-ischaemic regions. Dark and hydropic satellite, interfascicular and perivascular oligodendrocytes were also found. The status spongiosus of severely oedematous brain parenchyma observed by LM and (S)TEM was correlated with the enlarged extracellular space and disrupted neuropil observed by TEM. The (S)TEM is recommended as a suitable technique for studying pathological processes in the central nervous system and as an informative adjunct to LM and TEM.
Connected Au network in annealed Ni/Au thin films on p-GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. P.; Jang, H. W.; Noh, D. Y.
2007-11-12
We report the formation of a connected Au network in annealed Ni/Au thin films on p-GaN, which was studied by scanning electron microscopy, transmission electron microscopy, and synchrotron x-ray diffraction. As the Ni was oxidized into NiO upon annealing at 530 deg. C in air, the Au layer was transformed to an interconnected network with an increased thickness. During annealing, Ni atoms diffuse out onto the Au through defects to form NiO, while Au atoms replace the Ni positions. The Au network grows downward until it reaches the p-GaN substrate, and NiO columns fill the space between the Au network.
Characterization of Pb-Doped GaN Thin Films Grown by Thermionic Vacuum Arc
NASA Astrophysics Data System (ADS)
Özen, Soner; Pat, Suat; Korkmaz, Şadan
2018-03-01
Undoped and lead (Pb)-doped gallium nitride (GaN) thin films have been deposited by a thermionic vacuum arc (TVA) method. Glass and polyethylene terephthalate were selected as optically transparent substrates. The structural, optical, morphological, and electrical properties of the deposited thin films were investigated. These physical properties were interpreted by comparison with related analysis methods. The crystalline structure of the deposited GaN thin films was hexagonal wurtzite. The optical bandgap energy of the GaN and Pb-doped GaN thin films was found to be 3.45 eV and 3.47 eV, respectively. The surface properties of the deposited thin films were imaged using atomic force microscopy and field-emission scanning electron microscopy, revealing a nanostructured, homogeneous, and granular surface structure. These results confirm that the TVA method is an alternative layer deposition system for Pb-doped GaN thin films.
Magnetism of epitaxial Tb films on W(110) studied by spin-polarized low-energy electron microscopy
NASA Astrophysics Data System (ADS)
Prieto, J. E.; Chen, Gong; Schmid, A. K.; de la Figuera, J.
2016-11-01
Thin epitaxial films of Tb metal were grown on a clean W(110) substrate in ultrahigh vacuum and studied in situ by low-energy electron microscopy. Annealed films present magnetic contrast in spin-polarized low-energy electron microscopy. The energy dependence of the electron reflectivity was determined and a maximum value of its spin asymmetry of about 1% was measured. The magnetization direction of the Tb films is in-plane. Upon raising the temperature, no change in the domain distribution is observed, while the asymmetry in the electron reflectivity decreases when approaching the critical temperature, following a power law ˜(1-T /TC) β with a critical exponent β of 0.39.
Ahmad, Mariam; Andersen, Frederik; Brend Bech, Ári; Bendixen, H. Krestian L.; Nawrocki, Patrick R.; Bloch, Anders J.; Bora, Ilkay; Bukhari, Tahreem A.; Bærentsen, Nicolai V.; Carstensen, Jens; Chima, Smeeah; Colberg, Helene; Dahm, Rasmus T.; Daniels, Joshua A.; Dinckan, Nermin; El Idrissi, Mohamed; Erlandsen, Ricci; Førster, Marc; Ghauri, Yasmin; Gold, Mikkel; Hansen, Andreas; Hansen, Kenn; Helmsøe-Zinck, Mathias; Henriksen, Mathias; Hoffmann, Sophus V.; Hyllested, Louise O. H.; Jensen, Casper; Kallenbach, Amalie S.; Kaur, Kirandip; Khan, Suheb R.; Kjær, Emil T. S.; Kristiansen, Bjørn; Langvad, Sylvester; Lund, Philip M.; Munk, Chastine F.; Møller, Theis; Nehme, Ola M. Z.; Nejrup, Mathilde Rove; Nexø, Louise; Nielsen, Simon Skødt Holm; Niemeier, Nicolai; Nikolajsen, Lasse V.; Nøhr, Peter C. T.; Skaarup Ovesen, Jacob; Paustian, Lucas; Pedersen, Adam S.; Petersen, Mathias K.; Poulsen, Camilla M.; Praeger-Jahnsen, Louis; Qureshi, L. Sonia; Schiermacher, Louise S.; Simris, Martin B.; Smith, Gorm; Smith, Heidi N.; Sonne, Alexander K.; Zenulovic, Marko R.; Winther Sørensen, Alma; Vogt, Emil; Væring, Andreas; Westermann, Jonas; Özcan, Sevin B.
2018-01-01
Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained. PMID:29462883
Kühnel, Miguel R Carro-Temboury Martin; Ahmad, Mariam; Andersen, Frederik; Bech, Ári Brend; Bendixen, H Krestian L; Nawrocki, Patrick R; Bloch, Anders J; Bora, Ilkay; Bukhari, Tahreem A; Bærentsen, Nicolai V; Carstensen, Jens; Chima, Smeeah; Colberg, Helene; Dahm, Rasmus T; Daniels, Joshua A; Dinckan, Nermin; Idrissi, Mohamed El; Erlandsen, Ricci; Førster, Marc; Ghauri, Yasmin; Gold, Mikkel; Hansen, Andreas; Hansen, Kenn; Helmsøe-Zinck, Mathias; Henriksen, Mathias; Hoffmann, Sophus V; Hyllested, Louise O H; Jensen, Casper; Kallenbach, Amalie S; Kaur, Kirandip; Khan, Suheb R; Kjær, Emil T S; Kristiansen, Bjørn; Langvad, Sylvester; Lund, Philip M; Munk, Chastine F; Møller, Theis; Nehme, Ola M Z; Nejrup, Mathilde Rove; Nexø, Louise; Nielsen, Simon Skødt Holm; Niemeier, Nicolai; Nikolajsen, Lasse V; Nøhr, Peter C T; Orlowski, Dominik B; Overgaard, Marc; Ovesen, Jacob Skaarup; Paustian, Lucas; Pedersen, Adam S; Petersen, Mathias K; Poulsen, Camilla M; Praeger-Jahnsen, Louis; Qureshi, L Sonia; Ree, Nicolai; Schiermacher, Louise S; Simris, Martin B; Smith, Gorm; Smith, Heidi N; Sonne, Alexander K; Zenulovic, Marko R; Sørensen, Alma Winther; Sørensen, Karina; Vogt, Emil; Væring, Andreas; Westermann, Jonas; Özcan, Sevin B; Sørensen, Thomas Just
2018-02-15
Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained.
Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction
NASA Technical Reports Server (NTRS)
Daulton, Tyrone L.; Little, Brenda J.; Lowe, Kristine; Jones-Meehan, Joanne
2002-01-01
Electron energy loss spectroscopy (EELS) techniques were used to determine oxidation state, at high spatial resolution, of chromium associated with the metal-reducing bacteria, Shewanella oneidensis, in anaerobic cultures containing Cr(VI)O4(2-). These techniques were applied to fixed cells examined in thin section by conventional transmission electron microscopy (TEM) as well as unfixed, hydrated bacteria examined by environmental cell (EC)-TEM. Two distinct populations of bacteria were observed by TEM: bacteria exhibiting low image contrast and bacteria exhibiting high contrast in their cell membrane (or boundary) structure which was often encrusted with high-contrast precipitates. Measurements by EELS demonstrated that cell boundaries became saturated with low concentrations of Cr and the precipitates encrusting bacterial cells contained a reduced form of Cr in oxidation state + 3 or lower.
Muda, A O; Barsotti, P; Marinozzi, V
1988-01-01
Dense deposit disease is characterized by the presence of intramembranous dense deposits; their constituents are unknown but immunological and biochemical studies have demonstrated that they contain no gamma-globulins or any other plasma protein. In order to clarify the nature of the dense deposits better, we investigated their most distinctive character, (marked electron-density) by means of ultrastructural histochemistry techniques using thin sections from Formaldehyde fixed, OsO4 postfixed and Epon embedded specimens collected for diagnostic electron microscopy. The dense deposits have a higher osmium affinity than the lamina densa of normal basement membranes, and the electron-density is strictly osmium-dependent suggesting the presence of a lipid component. Further data, obtained using an extraction method for lipids, seems to confirm our hypothesis.
NASA Astrophysics Data System (ADS)
Fujii, Tatsuya; Takahashi, Yuta; Uchida, Hirohisa
2015-03-01
We report on a novel deposition technique of tetracene (naphthacene) thin films on SiO2/Si substrates by rapid expansion of supercritical solutions (RESS) using CO2. Optical microscopy and scanning electron microscopy show that the thin films consist of a high density of submicron-sized grains. The growth mode of the grains followed the Volmer-Weber mode. X-ray diffraction shows that the thin films have regularly arranged structures in both the horizontal and vertical directions of the substrate. A fabricated top-contacted organic thin-film transistor with the tetracene active layer showed p-type transistor characteristics with a field-effect mobility of 5.1 × 10-4 cm2 V-1 s-1.
Studying localized corrosion using liquid cell transmission electron microscopy
Chee, See Wee; Pratt, Sarah H.; Hattar, Khalid; ...
2014-11-07
Using liquid cell transmission electron microscopy (LCTEM), localized corrosion of Cu and Al thin films immersed in aqueous NaCl solutions was studied. We demonstrate that potentiostatic control can be used to initiate pitting and that local compositional changes, due to focused ion beam implantation of Au + ions, can modify the corrosion susceptibility of Al films. Likewise, a discussion on strategies to control the onset of pitting is also presented.
Electron microscopy study of antioxidant interaction with bacterial cells
NASA Astrophysics Data System (ADS)
Plotnikov, Oleg P.; Novikova, Olga V.; Konnov, Nikolai P.; Korsukov, Vladimir N.; Gunkin, Ivan F.; Volkov, Uryi P.
2000-10-01
To maintain native microorganisms genotype and phenotype features a lyophylization technique is widely used. However in this case cells are affected by influences of vacuum and low temperature that cause a part of the cells population to be destruction. Another factor reduced microorganisms vitality is formation of reactive oxygen forms that damage certain biological targets (such as DNA, membranes etc.) Recently to raise microorganism's resistance against adverse condition natural and synthetic antioxidants are used. Antioxidant- are antagonists of free radicals. Introduction of antioxidants in protective medium for lyophylization increase bacteria storage life about 2,0-4,8 fold in comparison with reference samples. In the article the main results of our investigation of antioxidants interaction with microorganism cells is described. As bacteria cells we use vaccine strain yersinia pestis EV, that were grown for 48 h at 28 degree(s)C on the Hottinger agar (pH 7,2). Antioxidants are inserted on the agar surface in specimen under test. To investigate a localization of antioxidants for electron microscopy investigation, thallium organic antioxidants were used. The thallium organic compounds have an antioxidant features if thallium is in low concentration (about 1(mu) g/ml). The localization of the thallium organic antioxidants on bacteria Y. pestis EV is visible in electron microscopy images, thallium being heavy metal with high electron density. The negatively stained bacteria and bacteria thin sections with thallium organic compounds were investigated by means of transmission electron microscopy. The localization of the thallium organic compounds is clearly visible in electron micrographs as small dark spots with size about 10-80nm. Probably mechanisms of interaction of antioxidants with bacteria cells are discussed.
Iron doped LiCoPO4 thin films for lithium-ion microbatteries obtained by ns pulsed laser deposition
NASA Astrophysics Data System (ADS)
Smaldone, A.; Brutti, S.; De Bonis, A.; Ciarfaglia, N.; Santagata, A.; Teghil, R.
2018-07-01
Well crystallized and homogeneous iron doped LiCoPO4 (LCfP) thin films have been grown by ns Pulsed Laser Ablation, at ambient temperature without any substrate heating or post-annealing treatments. The films have been deposited in vacuum and in the presence of buffer gases (O2, Ar) and it has been found that their crystallinity, structure and morphology depend on pressure conditions. The films have been studied by Scanning Electron Microscopy and X Ray Diffraction, while their first steps of growth have been characterized by Transmission Electron Microscopy. A study of the plasma produced by the laser ablation in the different pressure conditions has been carried out with the aim of elucidate the mechanisms involved in the films deposition. LCfP thin films have been also tested as microelectrodes in lithium cells in galvanostatic condition for analyzing the reversibility of the lithium-ion battery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihut, Dorina M., E-mail: dorinamm@yahoo.com; Lozano, Karen; Foltz, Heinrich
2014-11-01
Silver and copper nanoparticles were deposited as thin films onto substrates consisting of Nylon 6 nanofibers manufactured using forcespinning{sup ®} equipment. Different rotational speeds were used to obtain continuous nanofibers of various diameters arranged as nonwoven mats. The Nylon 6 nanofibers were collected as successive layers on frames, and a high-vacuum thermal evaporation method was used to deposit the silver and copper thin films on the nanofibers. The structures were investigated using scanning electron microscopy–scanning transmission electron microscopy, atomic force microscopy, x-ray diffraction, and electrical resistance measurements. The results indicate that evaporated silver and copper nanoparticles were successfully deposited onmore » Nylon 6 nanofibers as thin films that adhered well to the polymer substrate while the native morphology of the nanofibers were preserved, and electrically conductive nanostructures were achieved.« less
Electron Microscopy of the Infection and Subsequent Development of Soybean Nodule Cells
Goodchild, D. J.; Bergersen, F. J.
1966-01-01
Goodchild, D. J. (Commonwealth Scientific and Industrial Research Organization, Canberra, Australia), and F. J. Bergersen. Electron microscopy of the infection and subsequent development of soybean nodule cells. J. Bacteriol. 92:204–213. 1966—Electron microscopy of thin sections of the developing central tissue cells of young soybean root nodules has shown that infection is initiated by a few infection threads which penetrate cells of the young central tissue. Extension growth of the threads may be a result of pressure developed from the growth of the bacteria within the threads. Release of bacteria from a thread is preceded by the development on an infection thread of a bulge with a cellulose-free membrane-bounded extension; bacteria move from this into the host cells by an endocytotic process and remain enclosed in an infection vacuole which is bounded by a membrane of host-cell origin. Multiplication of the intracellular bacteria takes place within these vacuoles. Until the host cell becomes filled with bacteria, the vacuoles separate into discrete units at each division. Later, division of the bacteria occurs within each vacuole, thus leading to the mature structure of the central tissue cells in which several bacteria are enclosed within each membrane-bounded unit. Images PMID:5949564
NASA Astrophysics Data System (ADS)
Mohanty, P.; Kabiraj, D.; Mandal, R. K.; Kulriya, P. K.; Sinha, A. S. K.; Rath, Chandana
2014-04-01
TiO2 thin films deposited by electron beam evaporation technique annealed in either O2 or Ar atmosphere showed ferromagnetism at room temperature. The pristine amorphous film demonstrates anatase phase after annealing under Ar/O2 atmosphere. While the pristine film shows a super-paramagnetic behavior, both O2 and Ar annealed films display hysteresis at 300 K. X-ray photo emission spectroscopy (XPS), Raman spectroscopy, Rutherford's backscattering spectroscopy (RBS), cross-sectional transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were used to refute the possible role of impurities/contaminants in magnetic properties of the films. The saturation magnetization of the O2 annealed film is found to be higher than the Ar annealed one. It is revealed from shifting of O 1s and Ti 2p core level spectra as well as from the enhancement of high binding energy component of O 1s spectra that the higher magnetic moment is associated with higher oxygen vacancies. In addition, O2 annealed film demonstrates better crystallinity, uniform deposition and smoother surface than that of the Ar annealed one from glancing angle X-ray diffraction (GAXRD) and atomic force microscopy (AFM). We conclude that although ferromagnetism is due to oxygen vacancies, the higher magnetization in O2 annealed film could be due to crystallinity, which has been observed earlier in Co doped TiO2 film deposited by pulsed laser deposition (Mohanty et al., 2012 [10]).
NASA Astrophysics Data System (ADS)
Vuchic, Boris Vukan
1995-01-01
Most high angle grain boundaries in high-T _{c} superconductors exhibit weak link behavior. The Josephson-like properties of these grain boundaries can be used for many device applications such as superconducting quantum interference devices (SQUIDs). The structure-property relationship of different types of 45 ^circ (001) YBa_2 Cu_3O_{7-x} thin film grain boundary junctions are examined to study their weak link nature. A technique, termed sputter-induced epitaxy, is developed to form 45^circ (001) tilt grain boundaries in YBa_2Cu _3O_{7-x} thin films on (100) MgO substrates. A low voltage ion bombardment pre-growth substrate treatment is used to modify the epitaxial orientation relationship between the thin film and the substrate in selected regions. By modifying the orientation of the thin film, grain boundary junctions can be placed in any configuration on the substrate. A variety of pre-growth sputtering conditions in conjunction with atomic force microscopy and Rutherford backscatter spectrometry are used to determine the role of the ions in modifying the substrate surface. Sputter-induced epitaxy is extended to a multilayer MgO/LaAlO_3 substrate, allowing integration of the sputter -induced epitaxy junctions into multilayer structures. The low temperature transport properties of the sputter-induced epitaxy junctions and a set of bi-epitaxial grain boundaries are studied. Individual grain boundaries are isolated and characterized for resistance vs. temperature, current vs. voltage as a function of temperature and magnetic field behavior. Resistive and superconducting grain boundaries are compared. Microstructural analysis is performed using scanning electron microscopy, transmission electron microscopy and high resolution electron microscopy (HREM). Marked differences are observed in the microstructure of resistive and superconducting grain boundaries. HREM studies suggest the importance of the local atomic scale structure of the grain boundary in transport properties. A phenomenological grain boundary model is proposed to describe the structure -property relationship of the boundaries.
Wildfires in the Triassic of Gondwana Paraná Basin
NASA Astrophysics Data System (ADS)
Cardoso, Daiane dos Santos; Mizusaki, Ana Maria Pimentel; Guerra-Sommer, Margot; Menegat, Rualdo; Barili, Rosalia; Jasper, André; Uhl, Dieter
2018-03-01
This first report of wildfires from an association of facies containing a Dicroidium flora is made from the Upper Triassic (Carnian age) in the southern part of the Paraná Basin (Santa Maria Supersequence, Rio Grande do Sul state). The geographical extension of the Dicroidium plant assemblage is augmented in Brazilian Gondwana. Field work followed by organic petrography (inertinite reflectance), scanning electron microscopy (SEM) and field emission gun scanning electron microscopy (FEG-SEM), revealed charcoal presence in a section located in Pinheiro Machado town. Macroscopic charcoal is represented by three-dimensional wood specimens assigned to gymnosperms, with coniferous affinities and by flattened, thin, elongated remains corresponding to rachises of Dicroidium. Average reflectance values between 2.80 and 6.61 %Ro measured in the macroscopic charcoals evidence high temperature burning processes, involving fires both in the crown and in the crown-surface interface. The occurrence of charcoal in distinct and subsequent facies of the studied section indicates wildfires, which affected hinterland, meso-xerophyllous coniferous assemblages and marginal hygro-mesophyllous Dicroidium-like assemblages. The integration of results from the charcoal analyses is consistent with an atmospheric oxygen content higher than 18.5% and fuel enough to generate wildfires during the Triassic of Gondwana.
Structured Illumination Microscopy for the Investigation of Synaptic Structure and Function.
Hong, Soyon; Wilton, Daniel K; Stevens, Beth; Richardson, Douglas S
2017-01-01
The neuronal synapse is a primary building block of the nervous system to which alterations in structure or function can result in numerous pathologies. Studying its formation and elimination is the key to understanding how brains are wired during development, maintained throughout adulthood plasticity, and disrupted during disease. However, due to its diffraction-limited size, investigations of the synaptic junction at the structural level have primarily relied on labor-intensive electron microscopy or ultra-thin section array tomography. Recent advances in the field of super-resolution light microscopy now allow researchers to image synapses and associated molecules with high-spatial resolution, while taking advantage of the key characteristics of light microscopy, such as easy sample preparation and the ability to detect multiple targets with molecular specificity. One such super-resolution technique, Structured Illumination Microscopy (SIM), has emerged as an attractive method to examine synapse structure and function. SIM requires little change in standard light microscopy sample preparation steps, but results in a twofold improvement in both lateral and axial resolutions compared to widefield microscopy. The following protocol outlines a method for imaging synaptic structures at resolutions capable of resolving the intricacies of these neuronal connections.
Three-dimensional scanning transmission electron microscopy of biological specimens.
de Jonge, Niels; Sougrat, Rachid; Northan, Brian M; Pennycook, Stephen J
2010-02-01
A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2-3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset.
Three-Dimensional Scanning Transmission Electron Microscopy of Biological Specimens
de Jonge, Niels; Sougrat, Rachid; Northan, Brian M.; Pennycook, Stephen J.
2010-01-01
A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2–3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset. PMID:20082729
Comparison of the agglomeration behavior of thin metallic films on SiO2
NASA Astrophysics Data System (ADS)
Gadkari, P. R.; Warren, A. P.; Todi, R. M.; Petrova, R. V.; Coffey, K. R.
2005-07-01
The stability of continuous metallic thin films on insulating oxide surfaces is of interest to applications such as semiconductor interconnections and gate engineering. In this work, we report the study of the formation of voids and agglomeration of initially continuous Cu, Au, Ru and Pt thin films deposited on amorphous thermally grown SiO2 surfaces. Polycrystalline thin films having thicknesses in the range of 10-100 nm were ultrahigh vacuum sputter deposited on thermally grown SiO2 surfaces. The films were annealed at temperatures in the range of 150-800 °C in argon and argon+3% hydrogen gases. Scanning electron microscopy was used to investigate the agglomeration behavior, and transmission electron microscopy was used to characterize the microstructure of the as-deposited and annealed films. The agglomeration sequence in all of the films is found to follow a two step process of void nucleation and void growth. However, void growth in Au and Pt thin films is different from Cu and Ru thin films. Residual stress and adhesion were observed to play an important part in deciding the mode of void growth in Au and Pt thin films. Last, it is also observed that the tendency for agglomeration can be reduced by encapsulating the metal film with an oxide overlayer.
VAN Donselaar, E G; Dorresteijn, B; Popov-Čeleketić, D; VAN DE Wetering, W J; Verrips, T C; Boekhout, T; Schneijdenberg, C T W M; Xenaki, A T; VAN DER Krift, T P; Müller, W H
2018-03-25
Since the recent boost in the usage of electron microscopy in life-science research, there is a great need for new methods. Recently minimal resin embedding methods have been successfully introduced in the sample preparation for focused-ion beam scanning electron microscopy (FIB-SEM). In these methods several possibilities are given to remove as much resin as possible from the surface of cultured cells or multicellular organisms. Here we introduce an alternative way in the minimal resin embedding method to remove excess of resin from two widely different cell types by the use of Mascotte filter paper. Our goal in correlative light and electron microscopic studies of immunogold-labelled breast cancer SKBR3 cells was to visualise gold-labelled HER2 plasma membrane proteins as well as the intracellular structures of flat and round cells. We found a significant difference (p < 0.001) in the number of gold particles of selected cells per 0.6 μm 2 cell surface: on average a flat cell contained 2.46 ± 1.98 gold particles, and a round cell 5.66 ± 2.92 gold particles. Moreover, there was a clear difference in the subcellular organisation of these two cells. The round SKBR3 cell contained many organelles, such as mitochondria, Golgi and endoplasmic reticulum, when compared with flat SKBR3 cells. Our next goal was to visualise crosswall associated organelles, septal pore caps, of Rhizoctonia solani fungal cells by the combined use of a heavy metal staining and our extremely thin layer plastification (ETLP) method. At low magnifications this resulted into easily finding septa which appeared as bright crosswalls in the back-scattered electron mode in the scanning electron microscope. Then, a septum was selected for FIB-SEM. Cross-sectioned views clearly revealed the perforate septal pore cap of R. solani next to other structures, such as mitochondria, endoplasmic reticulum, lipid bodies, dolipore septum, and the pore channel. As the ETLP method was applied on two widely different cell types, the use of the ETLP method will be beneficial to correlative studies of other cell model systems and multicellular organisms. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Grumezescu, Valentina; Socol, Gabriel; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Ficai, Anton; Truşcǎ, Roxana; Bleotu, Coralia; Balaure, Paul Cǎtǎlin; Cristescu, Rodica; Chifiriuc, Mariana Carmen
2014-05-01
We report the fabrication of thin coatings of PLA-PVA microspheres loaded with usnic acid by matrix assisted pulsed laser evaporation (MAPLE) onto Ti substrate. The obtained coatings have been physico-chemically characterized by scanning electron microscopy (SEM) and infrared microscopy (IRM). In vitro biological assays have been performed in order to evaluate the influence of fabricated microsphere thin coatings on the Staphylococcus aureus biofilm development as well as their biocompatibility. SEM micrographs have revealed a uniform morphology of thin coatings, while IRM investigations have proved both the homogeneity and functional groups integrity of prepared thin coatings. The obtained microsphere-based thin coatings have proved to be efficient vehicles for usnic acid natural compound with antibiofilm activity, as demonstrated by the inhibitory activity on S. aureus mature biofilm development, opening new perspectives for the prevention and therapy associated to biofilm related infections.
Hickey, William J; Shetty, Ameesha R; Massey, Randall J; Toso, Daniel B; Austin, Jotham
2017-01-01
Bacterial biofilms play key roles in environmental and biomedical processes, and understanding their activities requires comprehension of their nanoarchitectural characteristics. Electron microscopy (EM) is an essential tool for nanostructural analysis, but conventional EM methods are limited in that they either provide topographical information alone, or are suitable for imaging only relatively thin (<300 nm) sample volumes. For biofilm investigations, these are significant restrictions. Understanding structural relations between cells requires imaging of a sample volume sufficiently large to encompass multiple cells and the capture of both external and internal details of cell structure. An emerging EM technique with such capabilities is bright-field scanning transmission electron microscopy (BF-STEM) and in the present report BF-STEM was coupled with tomography to elucidate nanostructure in biofilms formed by the polycyclic aromatic hydrocarbon-degrading soil bacterium, Delftia acidovorans Cs1-4. Dual-axis BF-STEM enabled high-resolution 3-D tomographic recontructions (6-10 nm) visualization of thick (1250 and 1500 nm) sections. The 3-D data revealed that novel extracellular structures, termed nanopods, were polymorphic and formed complex networks within cell clusters. BF-STEM tomography enabled visualization of conduits formed by nanopods that could enable intercellular movement of outer membrane vesicles, and thereby enable direct communication between cells. This report is the first to document application of dual-axis BF-STEM tomography to obtain high-resolution 3-D images of novel nanostructures in bacterial biofilms. Future work with dual-axis BF-STEM tomography combined with correlative light electron microscopy may provide deeper insights into physiological functions associated with nanopods as well as other nanostructures. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, M. A. R., E-mail: ameerridhwan89@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com
2016-07-06
Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.
NASA Astrophysics Data System (ADS)
Deng, Dashen; Feng, Wenlin; Wei, Jianwei; Qin, Xiang; Chen, Rong
2017-11-01
A novel fiber-optic hydrogen sulfide sensor based on a thin-core Mach-Zehnder fiber modal interferometer (TMZFI) is demonstrated and fabricated. This in-line interferometer is composed of a short section of thin-core fiber sandwiched between two standard single mode fibers, and the fast response to hydrogen sulfide is achieved via the construction of tungsten sulfide film on the outside surface of the TMZFI using the dip-coating and calcination technique. The fabricated sensing nanofilm is characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) spectrometer, Fourier transform infrared (FTIR) and spectroscopic analysis technology, etc. Experimental results showed that the WS2 sensing film has a hexagonal structure with a compact and porous morphology. The XPS and FTIR indicate that the existence of two elements (W and S) is demonstrated. With the increasing concentration of hydrogen sulfide, the interference spectra appear blue shift. In addition, a high sensitivity of 18.37 pm/ppm and a good linear relationship are obtained within a measurement range from 0 to 80 ppm. In addition, there is an excellent selectivity for H2S, which has also been proved by the surface adsorption energy results of tungsten sulfide with four gases (H2S, N2, O2 and CO2) by using the density functional theory calculations. This interferometer has the advantages of simple structure, high sensitivity and easy manufacture, and could be used in the safety monitoring field of hydrogen sulfide gas.
NASA Astrophysics Data System (ADS)
Woo, S. Y.; Hosseini Vajargah, S.; Ghanad-Tavakoli, S.; Kleiman, R. N.; Botton, G. A.
2012-10-01
Unambiguous identification of anti-phase boundaries (APBs) in heteroepitaxial films of GaSb grown on Si has been so far elusive. In this work, we present conventional transmission electron microscopy (TEM) diffraction contrast imaging using superlattice reflections, in conjunction with convergent beam electron diffraction analysis, to determine a change in polarity across APBs in order to confirm the presence of anti-phase disorder. In-depth analysis of anti-phase disorder is further supported with atomic resolution high-angle annular dark-field scanning transmission electron microscopy. The nature of APBs in GaSb is further elucidated by a comparison to previous results for GaAs epilayers grown on Si.
Micromechanisms of brittle fracture: STM, TEM and electron channeling analysis. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerberich, W.W.
1997-01-01
The original thrust of this grant was to apply newly developed techniques in scanning tunneling and transmission electron microscopy to elucidate the mechanism of brittle fracture. This grant spun-off several new directions in that some of the findings on bulk structural materials could be utilized on thin films or intermetallic single crystals. Modeling and material evaluation efforts in this grant are represented in a figure. Out of this grant evolved the field the author has designated as Contact Fracture Mechanics. By appropriate modeling of stress and strain distribution fields around normal indentations or scratch tracks, various measures of thin filmmore » fracture or decohesion and brittle fracture of low ductility intermetallics is possible. These measures of fracture resistance in small volumes are still evolving and as such no standard technique or analysis has been uniformly accepted. For brittle ceramics and ceramic films, there are a number of acceptable analyses such as those published by Lawn, Evans and Hutchinson. For more dissipative systems involving metallic or polymeric films and/or substrates, there is still much to be accomplished as can be surmised from some of the findings in the present grant. In Section 2 the author reviews the funding history and accomplishments associated mostly with bulk brittle fracture. This is followed by Section 3 which covers more recent work on using novel techniques to evaluate fracture in low ductility single crystals or thin films using micromechanical probes. Basically Section 3 outlines how the recent work fits in with the goals of defining contact fracture mechanics and gives an overview of how the several examples in Section 4 (the Appendices) fit into this framework.« less
NASA Astrophysics Data System (ADS)
Plesco, Irina; Dragoman, Mircea; Strobel, Julian; Ghimpu, Lidia; Schütt, Fabian; Dinescu, Adrian; Ursaki, Veaceslav; Kienle, Lorenz; Adelung, Rainer; Tiginyanu, Ion
2018-05-01
In this paper, we report on functionalization of graphene aerogel with a CdS thin film deposited by magnetron sputtering and on the development of flexible pressure sensors based on ultra-lightweight CdS-aerogel nanocomposite. Analysis by scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analysis disclose the uniform deposition of nanocrystalline CdS films with quasi-stoichiometric composition. The piezoresistive response of the aforementioned nanocomposite in the pressure range from 1 to 5 atm is found to be more than one order of magnitude higher than that inherent to suspended graphene membranes, leading to an average sensitivity as high as 3.2 × 10-4 kPa-1.
Structural and morphological study of chemically synthesized CdSe thin films
NASA Astrophysics Data System (ADS)
Agrawal, P.; Singh, Randhir; Sharma, Jeewan; Sachdeva, M.; Singh, Anupinder; Bhargava, A.
2018-05-01
Nanocrystalline CdSe thin films were prepared by Chemical Bath Deposition (CBD) method using potassium nitrilo-triacetic acid cadmium complex and sodium selenosulphite. The as deposited films were red in color, uniform and well adherent to the glass substrate. These films were strongly dependent on the deposition parameters such as bath composition, deposition temperature and time. Films were annealed at 350 °C for four hours. The morphological, structural and optical properties were studied using X-ray diffraction (XRD), UV-VIS spectrophotometer measurements, scanning electron microscopy and atomic force microscopy. The XRD analysis confirmed that films are predominantly in hexagonal phase. Scanning electron micrograph shows that the grains are uniformly spread all over the film and each grain contains many nanocrystals with spherical shapes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fang; Huang, Li; Porter, Lisa M.
2016-07-15
Calculated frequency distributions of atom probe tomography reconstructions (∼80 nm field of view) of very thin Al{sub x}Ga{sub 1−x}N (0.18 ≤ x ≤ 0.51) films grown via metalorganic vapor phase epitaxy on both (0001) GaN/AlN/SiC and (0001) GaN/sapphire heterostructures revealed homogeneous concentrations of Al and chemically abrupt Al{sub x}Ga{sub 1−x}N/GaN interfaces. The results of scanning transmission electron microscopy and selected area diffraction corroborated these results and revealed that neither superlattice ordering nor phase separation was present at nanometer length scales.
Precise and economic FIB/SEM for CLEM: with 2 nm voxels through mitosis.
Luckner, Manja; Wanner, Gerhard
2018-05-23
A portfolio is presented documenting economic, high-resolution correlative focused ion beam scanning electron microscopy (FIB/SEM) in routine, comprising: (i) the use of custom-labeled slides and coverslips, (ii) embedding of cells in thin, or ultra-thin resin layers for correlative light and electron microscopy (CLEM) and (iii) the claim to reach the highest resolution possible with FIB/SEM in xyz. Regions of interest (ROIs) defined in light microscope (LM), can be relocated quickly and precisely in SEM. As proof of principle, HeLa cells were investigated in 3D context at all stages of the cell cycle, documenting ultrastructural changes during mitosis: nuclear envelope breakdown and reassembly, Golgi degradation and reconstitution and the formation of the midzone and midbody.
New modes of electron microscopy for materials science enabled by fast direct electron detectors
NASA Astrophysics Data System (ADS)
Minor, Andrew
There is an ongoing revolution in the development of electron detector technology that has enabled modes of electron microscopy imaging that had only before been theorized. The age of electron microscopy as a tool for imaging is quickly giving way to a new frontier of multidimensional datasets to be mined. These improvements in electron detection have enabled cryo-electron microscopy to resolve the three-dimensional structures of non-crystalized proteins, revolutionizing structural biology. In the physical sciences direct electron detectors has enabled four-dimensional reciprocal space maps of materials at atomic resolution, providing all the structural information about nanoscale materials in one experiment. This talk will highlight the impact of direct electron detectors for materials science, including a new method of scanning nanobeam diffraction. With faster detectors we can take a series of 2D diffraction patterns at each position in a 2D STEM raster scan resulting in a four-dimensional data set. For thin film analysis, direct electron detectors hold the potential to enable strain, polarization, composition and electrical field mapping over relatively large fields of view, all from a single experiment.
NASA Astrophysics Data System (ADS)
Font, Eric; Adatte, Thierry; Ponte, Jorge; Fantasia, Alicia; Mirão, José; Samant, Bandana; Mohabey, Dhananjay; Florindo, Fabio
2014-05-01
The Deccan phase 2 is a crucial period caracterized by the rapid eruptions of huge volume of continental flood basalts correlated in age to the mass extinction of the Cretaceous-Paleogene boundary. However, local to global paleonvironmental changes during the Deccan Phase 2 are still baddly known. Here we provide new environmental magnetic data coupled to scanning electron microscopy of intertrapean deposits from the Deccan Volcanic Province (India) in order to unravel local paleoenvironmental conditions during periods of volcanic quiescence in the aftermath of the Deccan Phase 1 and Phase 2. Our results show that the magnetic mineralogy of these lacustrine and fluvial sediments is composed by several populations of iron oxides and sulphur, with a large range of grain size, probably resulting from different source of magnetic carriers (aeolian, detrital and bio-chemical). The number of magnetic phases identified using unmixing Isothermal Remanence Magnetic techniques is significantly higher (2 to 4) in the Podgavan section equivalent to Phase 2 than in the other studied sections, interpreted to result from higher weathering rates (acidity) by correlation with index of chemical alteration. Detailed scanning electron microscopy analysis of the Podgavan section reveal a complex mineralogy constituted by detrital magnetite, spherical and framboidal magnetite, microsphere of silicon, pyrrhotite, sylvite, manganese oxides and sporangiospores. A peculiar interval observed in the middle part of the Podgavan section, and corresponding to a thin interval of organic-rich clay capped by a thin oxidized level of reddish clays, show the presence of calcite needles and very fine hematite pigment. Hematite pigment are systematically associated to voids and form structures comparable to the blueberry hematite formed on mars. The abrupt transition from organic-rich levels (reducing conditions) to red hematitic clays (oxidation) suggests drastic and abrupt paleoenvironmental changes and acid conditions during the Deccan Phase 2. Keywords: Deccan, lacustrine sediments, environmental magnetism, acid rain, climate, weathering, volcanism.
The effect of TiO2 thin film thickness on self-cleaning glass properties
NASA Astrophysics Data System (ADS)
Mufti, Nandang; Laila, Ifa K. R.; Hartatiek; Fuad, Abdulloh
2017-05-01
TiO2 is one of semiconductor materials which are widely used as photocatalyst in the form of a thin film. The TiO2 thin film is prepared by using the spin coating sol-gel method. The researcher prepared TiO2 thin film with 3 coating variations and X-Ray Diffraction characterization, UV-Vis Spectrophotometer, Electron Microscopy Scanning, and examined its hydrophilic and anti-fogging properties. The result of X-Ray Diffraction showed that the phase formed is the anatase on 101crystal field. The Electron Microscopy Scanning images showed that TiO2 thin films had a homogeneous surface with the particle sizes as big as 235 nm, 179 nm, and 137 nm. The thickness of each thin film was 2.06μm, 3.33μm, and 5.20μm. The characterization of UV-Vis Spectrophotometer showed that the greatest absorption to the wavelength of visible light was in the thin film’s thickness of 3 coatings with the band-gap determined by using 3.30 eV, 3.33 eV, and 3.33 eV Plot Tuoc. These results indicated that the rate of absorption would be increased by increasing the thickness of film. The increasing thickness of the thin film makes the film hydrophilic able to be used as an anti-fogging substance.
Simulating Lattice Image of Suspended Graphene Taken by Helium Ion Microscopy
NASA Astrophysics Data System (ADS)
Miyamoto, Yoshiyuki; Zhang, Hong; Rubio, Angel
2013-03-01
Atomic scale image in nano-scale helps us to characterize property of graphene, and performance of high-resolution transmission electron microscopy (HRTEM) is significant, so far. While a tool without pre-treatment of samples is demanded in practice. Helium ion microscopy (HIM), firstly reported by Word et. al. in 2006, was applied for monitoring graphene in device structure (Lumme, et. al., 2009). Motivated by recent HIM explorations, we examined the possibility of taking lattice image of suspended graphene by HIM. The intensity of secondary emitted electron is recorded as a profile of scanned He+-beam in HIM measurement. We mimicked this situation by performing electron-ion dynamics based on the first-principles simulation within the time-dependent density functional theory. He+ ion collision on single graphene sheet at several impact points were simulated and we found that the amount of secondary emitted electron from graphene reflected the valence charge distribution of the graphene sheet. Therefore HIM using atomically thin He-beam should be able to provide the lattice image, and we propose that an experiment generating ultra-thin He+ ion beam (Rezeq et. al., 2006) should be combined with HIM technique. All calculations were performed by using the Earth Simulator.
Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T. T., E-mail: li48@llnl.gov; Bayu Aji, L. B.; Heo, T. W.
Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar{sup +} ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. The propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.
Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T. T.; Bayu Aji, L. B.; Heo, T. W.
Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar + ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. In conclusion, the propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.
On the structural origins of ferroelectricity in HfO{sub 2} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Xiahan; Grimley, Everett D.; LeBeau, James M.
2015-04-20
Here, we present a structural study on the origin of ferroelectricity in Gd doped HfO{sub 2} thin films. We apply aberration corrected high-angle annular dark-field scanning transmission electron microscopy to directly determine the underlying lattice type using projected atom positions and measured lattice parameters. Furthermore, we apply nanoscale electron diffraction methods to visualize the crystal symmetry elements. Combined, the experimental results provide unambiguous evidence for the existence of a non-centrosymmetric orthorhombic phase that can support spontaneous polarization, resolving the origin of ferroelectricity in HfO{sub 2} thin films.
Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films
Li, T. T.; Bayu Aji, L. B.; Heo, T. W.; ...
2016-06-03
Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar + ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. In conclusion, the propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.
The origins and evolution of freeze-etch electron microscopy
Heuser, John E.
2011-01-01
The introduction of the Balzers freeze-fracture machine by Moor in 1961 had a much greater impact on the advancement of electron microscopy than he could have imagined. Devised originally to circumvent the dangers of classical thin-section techniques, as well as to provide unique en face views of cell membranes, freeze-fracturing proved to be crucial for developing modern concepts of how biological membranes are organized and proved that membranes are bilayers of lipids within which proteins float and self-assemble. Later, when freeze-fracturing was combined with methods for freezing cells that avoided the fixation and cryoprotection steps that Moor still had to use to prepare the samples for his original invention, it became a means for capturing membrane dynamics on the millisecond time-scale, thus allowing a deeper understanding of the functions of biological membranes in living cells as well as their static ultrastructure. Finally, the realization that unfixed, non-cryoprotected samples could be deeply vacuum-etched or even freeze-dried after freeze-fracturing opened up a whole new way to image all the other molecular components of cells besides their membranes and also provided a powerful means to image the interactions of all the cytoplasmic components with the various membranes of the cell. The purpose of this review is to outline the history of these technical developments, to describe how they are being used in electron microscopy today and to suggest how they can be improved in order to further their utility for biological electron microscopy in the future. PMID:21844598
A petrographic thin sectioning technique for evaluating composite materials
NASA Technical Reports Server (NTRS)
Parker, D. S.; Yee, A. F.
1989-01-01
Petrographic thin sectioning by a low-speed diamond saw has been used in conjunction with transmission polarized light microscopy for the characterization of the microstructure and deformation mechanisms of a variety of polymer systems. It has proven possible by these means to study three types of thermoplastic matrices for composite applications: PEEK, BPA-based polycarbonate (PC), and a rubber-modified PC. The reinforcing fibers for these matrices were in all cases AS4 carbon fibers, unidirectionally arrayed. Superior analyzability of matrix morphology and subsurface fracture processes is achieved by thin sectioning.
Leroy, Celine Marie; Cardinal, Thierry; Jubera, Veronique; Treguer-Delapierre, Mona; Majimel, Jerome; Manaud, Jean Pierre; Backov, Renal; Boissière, Cedric; Grosso, David; Sanchez, Clement; Viana, Bruno; Pellé, Fabienne
2008-10-06
Herein, Eu(III)-doped 3D mesoscopically ordered arrays of mesoporous and nanocrystalline titania are prepared and studied. The rare-earth-doped titania thin films-synthesized via evaporation-induced self-assembly (EISA)-are characterized by using environmental ellipsoporosimetry, electronic microscopy (i.e. high-resolution scanning electron microscopy, HR-SEM, and transmission electron microscopy, HR-TEM), X-ray diffraction, and luminescence spectroscopy. Structural characterizations show that high europium-ion loadings can be incorporated into the titanium-dioxide walls without destroying the mesoporous arrangement. The luminescence properties of Eu(III) are investigated by using steady-state and time-resolved spectroscopy via excitation of the Eu(III) ions through the titania host. Using Eu(III) luminescence as a probe, the europium-ion sites can be addressed with at least two different environments within the mesoporous framework, namely, a nanocrystalline environment and a glasslike one. Emission fluctuations ((5)D(0)-->(7)F(2)) are observed upon continuous UV excitation in the host matrix. These fluctuations are attributed to charge trapping and appear to be strongly dependent on the amount of europium and the level of crystallinity.
Christensen, A. Kent
1971-01-01
A simple method has been developed that allows frozen thin sections of fresh-frozen tissue to be cut on a virtually unmodified ultramicrotome kept at room temperature. A bowl-shaped Dewar flask with a knifeholder in its depths replaces the stage of the microtome; a bar extends down into the bowl from the microtome's cutting arm and bears the frozen tissue near its lower end. When the microtome is operated, the tissue passes a glass or diamond knife in the depths of the bowl as in normal cutting. The cutting temperature is maintained by flushing the bowl with cold nitrogen gas, and can be set anywhere from about -160°C up to about -30°C. The microtome is set for a cutting thickness of 540–1000 A. Sections are picked up from the dry knife edge, and are placed on membrane-coated grids, flattened with the polished end of a copper rod, and either dried in nitrogen gas or freeze-dried. Throughout the entire process the tissue is kept cold and does not come in contact with any solvent. The morphology seen in frozen thin sections of rat pancreas and liver generally resembles that in conventional preparations, although freezing damage and low contrast limit the detail that can be discerned. Among unusual findings is a frequent abundance of mitochondrial granules in material prepared by this method. PMID:4942776
Rizzo, N W; Duncan, K E; Bourett, T M; Howard, R J
2016-08-01
We have refined methods for biological specimen preparation and low-voltage backscattered electron imaging in the scanning electron microscope that allow for observation at continuous magnifications of ca. 130-70 000 X, and documentation of tissue and subcellular ultrastructure detail. The technique, based upon early work by Ogura & Hasegawa (1980), affords use of significantly larger sections from fixed and resin-embedded specimens than is possible with transmission electron microscopy while providing similar data. After microtomy, the sections, typically ca. 750 nm thick, were dried onto the surface of glass or silicon wafer and stained with heavy metals-the use of grids avoided. The glass/wafer support was then mounted onto standard scanning electron microscopy sample stubs, carbon-coated and imaged directly at an accelerating voltage of 5 kV, using either a yttrium aluminum garnet or ExB backscattered electron detector. Alternatively, the sections could be viewed first by light microscopy, for example to document signal from a fluorescent protein, and then by scanning electron microscopy to provide correlative light/electron microscope (CLEM) data. These methods provide unobstructed access to ultrastructure in the spatial context of a section ca. 7 × 10 mm in size, significantly larger than the typical 0.2 × 0.3 mm section used for conventional transmission electron microscopy imaging. Application of this approach was especially useful when the biology of interest was rare or difficult to find, e.g. a particular cell type, developmental stage, large organ, the interface between cells of interacting organisms, when contextual information within a large tissue was obligatory, or combinations of these factors. In addition, the methods were easily adapted for immunolocalizations. © 2015 The Author. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of the Royal Microscopical Society.
Domain imaging in ferroelectric thin films via channeling-contrast backscattered electron microscopy
Ihlefeld, Jon F.; Michael, Joseph R.; McKenzie, Bonnie B.; ...
2016-09-16
We report that ferroelastic domain walls provide opportunities for deterministically controlling mechanical, optical, electrical, and thermal energy. Domain wall characterization in micro- and nanoscale systems, where their spacing may be of the order of 100 nm or less is presently limited to only a few techniques, such as piezoresponse force microscopy and transmission electron microscopy. These respective techniques cannot, however, independently characterize domain polarization orientation and domain wall motion in technologically relevant capacitor structures or in a non-destructive manner, thus presenting a limitation of their utility. In this work, we show how backscatter scanning electron microscopy utilizing channeling contrast yieldmore » can image the ferroelastic domain structure of ferroelectric films with domain wall spacing as narrow as 10 nm.« less
Seleim, S M; Hamdalla, Taymour A; Mahmoud, Mohamed E
2017-09-05
Nanosized (NS) cobalt (II) bis(5-phenyl-azo-8-hydroxyquinolate) (NS Co(II)-(5PA-8HQ) 2 ) thin films have been synthesized using static step-by-step soft surface reaction (SS-b-SSR) technique. Structural and optical characterizations of these thin films have been carried out using thermal gravimetric analysis (TGA), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD). The HR-TEM results revealed that the assembled Co(II)-complex exhibited a uniformly NS structure particles in the form of nanorods with width and length up to 16.90nm and 506.38nm, respectively. The linear and nonlinear optical properties have been investigated. The identified energy gap of the designed thin film materials was found 4.01eV. The refractive index of deposited Co(II)-complex thin film was identified by thickness-dependence and found as 1.9 at wavelength 1100nm. In addition, the refractive index was varied by about 0.15 due to an increase in the thickness by 19nm. Copyright © 2017 Elsevier B.V. All rights reserved.
Dubey, J. P.; Sykes, J. E.; Shelton, G. D.; Sharp, N.; Verma, S. K.; Calero-Bernal, R.; Viviano, J.; Sundar, N.; Khan, A.; Grigg, M. E.
2014-01-01
There are several reports of Sarcocystis sarcocysts in muscles of dogs but these species have not been named. Additionally, there are 2 reports of Sarcocystis neurona in dogs. Here, we propose 2 new names, Sarcocystis caninum, and Sarcocystis svanai for sarcocysts associated with clinical muscular sarcocystosis in 4 domestic dogs (Canis familiaris), 1 each from Montana and Colorado in the USA, and 2 from British Columbia, Canada. Only the sarcocyst stage was identified. Most of the sarcocysts identified were S. caninum. Sarcocysts were studied using light microscopy, transmission electron microscopy, and PCR. Based on collective results 2 new species, Sarcocystis caninum and Sarcocystis svanai were designated. Sarcocystis caninum and Sarcocystis svanai were structurally distinct. Sarcocystis caninum sarcocysts were up to 1.2 mm long and up to 75 μm wide. By light microscopy, the sarcocyst wall was relatively thin and smooth. By transmission electron microscopy (TEM), the sarcocyst wall “type 9”, 1–2 μm thick, and contained villar protrusions that lacked microtubules. Bradyzoites in sections were 7–9 μm long. Sarcocysts of S. svanai were few and were identified by TEM. Sarcocystis svanai sarcocysts were “type 1”, thin walled (< 0.5 μm), and the wall lacked villar protrusions but had tiny blebs that did not invaginate. DNA was extracted either from infected frozen muscle biopsies or formalin-fixed paraffin-embedded sections. Dogs were either singly infected with S. caninum or multiply co-infected with S. caninum and S. svanai (the result of a mixed infection) based on multi-locus DNA sequencing and morphology. BLASTn analysis established that the sarcocysts identified in these dogs were similar to, but not identical to S. canis or S. arctosi, parasites found to infect polar bears (Ursus maritimus) or brown bears (Ursus arctosi), respectively. However, the S. caninum sequence showed 100% identify over the 18S rRNA region sequenced to that of S. arctica, a parasite known to infect Arctic foxes (Vulpes lagopus). PMID:25256157
NASA Astrophysics Data System (ADS)
Cristescu, R.; Visan, A.; Socol, G.; Surdu, A. V.; Oprea, A. E.; Grumezescu, A. M.; Chifiriuc, M. C.; Boehm, R. D.; Yamaleyeva, D.; Taylor, M.; Narayan, R. J.; Chrisey, D. B.
2016-06-01
The purpose of this study was to investigate the interactions between microorganisms, including the planktonic and adherent organisms, and biopolymer (polyvinylpyrrolidone), flavonoid (quercetin dihydrate and resveratrol)-biopolymer, and silver nanoparticles-biopolymer composite thin films that were deposited using matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF* excimer laser source was used to deposit the aforementioned composite thin films, which were characterized using Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The antimicrobial activity of thin films was quantified using an adapted disk diffusion assay against Gram-positive and Gram-negative bacteria strains. FT-IR, AFM and SEM studies confirmed that MAPLE may be used to fabricate thin films with chemical properties corresponding to the input materials as well as surface properties that are appropriate for medical use. The silver nanoparticles and flavonoid-containing films exhibited an antimicrobial activity both against Gram-positive and Gram-negative bacterial strains demonstrating the potential use of these hybrid systems for the development of novel antimicrobial strategies.
In situ sputter cleaning of thin film metal substrates for UHV-TEM corrosion studies.
NASA Technical Reports Server (NTRS)
Heinemann, K.; Poppa, H.
1973-01-01
A prerequisite for conducting valid corrosion experiments by in situ electron microscopy techniques is not only the achievement of UHV background pressure conditions at the site of the specimen but also the ability to clean the surface of the thin metal substrate specimen before initiation of the corrosive interaction. A miniaturized simple ion gun has been constructed for this purpose. The gun is small enough to be incorporated into an UHV electron microscope specimen chamber with hot stage in such a way as to permit bombardment of the substrate specimen while observing it by transmission electron microscopy TEM. It is shown that the ion beam generated is confined well enough to cause a sputtering removal of substrate material at a rate of approximately 5-10 A/min and to prevent the sputter deposition of contaminating material from the specimen holder.
Thin single-crystalline Bi2(Te1-xSex)3 ternary nanosheets synthesized by a solvothermal technique
NASA Astrophysics Data System (ADS)
Guo, Jing; Jian, Jikang; Zhang, Zhihua; Wu, Rong; Li, Jin; Sun, Yanfei
2016-01-01
Bi2(Te1-xSex)3 ternary nanosheets have been successfully synthesized through a facile solvothermal technique using diethylenetriamine as solvent, where x can vary from 0 to 1. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) indicate that the as-synthesized Bi2(Te1-xSex)3 samples are nanosheets with rhombohedral structure, and the thickness of the nanosheets can be as thin as several nanometers. High resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) reveal that the nanosheets are single crystalline with a rhombohedral structure. Energy disperse spectroscopy (EDS) and XRD analysis by Vegard's law confirm that the ternary Bi2(Te1-xSex)3 nanosheets have been obtained here. The growth of the nanosheets is discussed based on an amine-based molecular template mechanism that has been employed to synthesize some other metal chalcogenides.
NASA Astrophysics Data System (ADS)
Manikandan, V.; Li, Xiaogan; Mane, R. S.; Chandrasekaran, J.
2018-04-01
Tin (Sn) substituted nickel ferrite (NiFe2O4) thin film sensors were prepared by a simple chemical co-precipitation method, which initially characterized their structure and surface morphology with the help of x-ray diffraction and scanning electron microscopy. Surface morphology of the sensing films reveals particles stick together with nearer particles and this formation leads to a large specific area as a large specific area is very useful for easy adsorption of gas molecules. Transmission electron microscopy and selected area electron diffraction pattern images confirm particle size and nanocrystallnity as due to formation of circular rings. Fourier transform infrared analysis has supported the presence of functional groups. The 3.69 eV optical band gap of the film was found which enabled better gas sensing. Gas sensors demonstrate better response and recovery characteristics, and the maximum response was 68.43%.
Far-field optical imaging with subdiffraction resolution enabled by nonlinear saturation absorption
NASA Astrophysics Data System (ADS)
Ding, Chenliang; Wei, Jingsong
2016-01-01
The resolution of far-field optical imaging is required to improve beyond the Abbe limit to the subdiffraction or even the nanoscale. In this work, inspired by scanning electronic microscopy (SEM) imaging, in which carbon (or Au) thin films are usually required to be coated on the sample surface before imaging to remove the charging effect while imaging by electrons. We propose a saturation-absorption-induced far-field super-resolution optical imaging method (SAI-SRIM). In the SAI-SRIM, the carbon (or Au) layers in SEM imaging are replaced by nonlinear-saturation-absorption (NSA) thin films, which are directly coated onto the sample surfaces using advanced thin film deposition techniques. The surface fluctuant morphologies are replicated to the NSA thin films, accordingly. The coated sample surfaces are then imaged using conventional laser scanning microscopy. Consequently, the imaging resolution is greatly improved, and subdiffraction-resolved optical images are obtained theoretically and experimentally. The SAI-SRIM provides an effective and easy way to achieve far-field super-resolution optical imaging for sample surfaces with geometric fluctuant morphology characteristics.
Morphology and crystallinity of ZnS nanocolumns prepared by glancing angle deposition.
Lu, Lifang; Zhang, Fujun; Xu, Zheng; Zhao, Suling; Wang, Yongsheng
2010-03-01
ZnS films with different morphologies and nanometer structures were fabricated via high vacuum electron beam deposition by changing the oblique angle alpha between the incoming particle flux and the substrate normal. The morphology and crystallinity of ZnS nanocrystalline films prepared on the substrates at alpha = 0 degrees and 80 degrees were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction. These experimental results show that the ZnS nanocolumn structure was formed at the situation of alpha = 80 degrees. The incidence angle also strongly influenced the crystallinity of thin films. The most intensive diffraction peaks changed from (220) to (111) when the incidence angle was set to 0 degrees and 80 degrees. The dynamic growth process of ZnS films at alpha = 0 degrees and 80 degrees has been analyzed by shadow effect and atomic surface diffusion. The transmittance spectra of the ZnS thin films prepared at different oblique angles were measured, and the transmissivity of ZnS nanocolumn thin films was enhanced compared with ZnS thin films prepared by normal deposition in the visible light range.
NASA Astrophysics Data System (ADS)
Sarkar, S.; Das, N. S.; Chattopadhyay, K. K.
2014-07-01
BiVO4 thin films have been prepared through radio frequency (rf) magnetron sputtering of a pre-fabricated BiVO4 target on ITO coated glass (ITO-glass) substrate and bare glass substrates. BiVO4 target material was prepared through solid-state reaction method by heating Bi2O3 and V2O5 mixture at 800 °C for 8 h. The films were characterized by X-ray diffraction, UV-Vis spectroscopy, LCR meter, field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy. BiVO4 thin films deposited on the ITO-glass substrate are much smoother compared to the thin films prepared on bare glass substrate. The rms surface roughness calculated from the AFM images comes out to be 0.74 nm and 4.2 nm for the films deposited on the ITO-glass substrate and bare glass substrate for the deposition time 150 min respectively. Optical constants and energy dispersion parameters of these extra-smooth BiVO4 thin films have been investigated in detail. Dielectric properties of the BiVO4 thin films on ITO-glass substrate were also investigated. The frequency dependence of dielectric constant of the BiVO4 thin films has been measured in the frequency range from 20 Hz to 2 MHz. It was found that the dielectric constant increased from 145 to 343 at 20 Hz as the film thickness increased from 90 nm to 145 nm (deposition time increased from 60 min to 150 min). It shows higher dielectric constant compared to the literature value of BiVO4.
Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas
Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1 μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. Utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less
Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas
Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. In conclusion, utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less
Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films
Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas; ...
2016-09-02
Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. In conclusion, utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less
NASA Astrophysics Data System (ADS)
Li, Yue; Cherkezyan, Lusik; Zhang, Di; Almassalha, Luay; Roth, Eric; Chandler, John; Bleher, Reiner; Subramanian, Hariharan; Dravid, Vinayak P.; Backman, Vadim
2017-02-01
Structural and biological origins of light scattering in cells and tissue are still poorly understood. We demonstrate how this problem might be addressed through the use of transmission electron microscopy (TEM). For biological samples, TEM image intensity is proportional to mass-density, and thus proportional to refractive index (RI). By calculating the autocorrelation function (ACF) of TEM image intensity of a thin-section of cells, we essentially maintain the nanoscale ACF of the 3D cellular RI distribution, given that the RI distribution is statistically isotropic. Using this nanoscale 3D RI ACF, we can simulate light scattering through biological samples, and thus guiding many optical techniques to quantify specific structures. In this work, we chose to use Partial Wave Spectroscopy (PWS) microscopy as a one of the nanoscale-sensitive optical techniques. Hela cells were prepared using standard protocol to preserve nanoscale ultrastructure, and a 50-nm slice was sectioned for TEM imaging at 6 nm resolution. The ACF was calculated for chromatin, and the PWS mean sigma was calculated by summing over the power spectral density in the visible light frequency of a random medium generated to match the ACF. A 1-µm slice adjacent to the 50-nm slice was sectioned for PWS measurement to guarantee identical chromatin structure. For 33 cells, we compared the calculated PWS mean sigma from TEM and the value measured directly, and obtained a strong correlation of 0.69. This example indicates the great potential of using TEM measured RI distribution to better understand the quantification of cellular nanostructure by optical methods.
NASA Astrophysics Data System (ADS)
Shen, Huaxiang; Zhu, Guo-Zhen; Botton, Gianluigi A.; Kitai, Adrian
2015-03-01
The growth mechanisms of high quality GaN thin films on 6H-SiC by sputtering were investigated by X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). The XRD θ-2θ scans show that high quality ( 0002 ) oriented GaN was deposited on 6H-SiC by reactive magnetron sputtering. Pole figures obtained by 2D-XRD clarify that GaN thin films are dominated by ( 0002 ) oriented wurtzite GaN and { 111 } oriented zinc-blende GaN. A thin amorphous silicon oxide layer on SiC surfaces observed by STEM plays a critical role in terms of the orientation information transfer from the substrate to the GaN epilayer. The addition of H2 into Ar and/or N2 during sputtering can reduce the thickness of the amorphous layer. Moreover, adding 5% H2 into Ar can facilitate a phase transformation from amorphous to crystalline in the silicon oxide layer and eliminate the unwanted { 3 3 ¯ 02 } orientation in the GaN thin film. Fiber texture GaN thin films can be grown by adding 10% H2 into N2 due to the complex reaction between H2 and N2.
Hampton, Cheri M; Strauss, Joshua D; Ke, Zunlong; Dillard, Rebecca S; Hammonds, Jason E; Alonas, Eric; Desai, Tanay M; Marin, Mariana; Storms, Rachel E; Leon, Fredrick; Melikyan, Gregory B; Santangelo, Philip J; Spearman, Paul W; Wright, Elizabeth R
2016-01-01
Correlative light and electron microscopy (CLEM) combines spatiotemporal information from fluorescence light microscopy (fLM) with high-resolution structural data from cryo-electron tomography (cryo-ET). These technologies provide opportunities to bridge knowledge gaps between cell and structural biology. Here we describe our protocol for correlated cryo-fLM, cryo-electron microscopy (cryo-EM), and cryo-ET (i.e., cryo-CLEM) of virus-infected or transfected mammalian cells. Mammalian-derived cells are cultured on EM substrates, using optimized conditions that ensure that the cells are spread thinly across the substrate and are not physically disrupted. The cells are then screened by fLM and vitrified before acquisition of cryo-fLM and cryo-ET images, which is followed by data processing. A complete session from grid preparation through data collection and processing takes 5–15 d for an individual experienced in cryo-EM. PMID:27977021
NASA Astrophysics Data System (ADS)
Kal, S.; Kasko, I.; Ryssel, H.
1995-10-01
The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (<50 nm) CoSi2 preparation. A comparison of the plan-view and cross-section TEM micrographs of the ion-beam mixed and unmixed CoSi2 films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.
NASA Astrophysics Data System (ADS)
Chang, C. W.; Wadekar, P. V.; Guo, S. S.; Cheng, Y. J.; Chou, M.; Huang, H. C.; Hsieh, W. C.; Lai, W. C.; Chen, Q. Y.; Tu, L. W.
2018-01-01
For the development of non-polar nitrides based optoelectronic devices, high-quality films with smooth surfaces, free of defects or clusters, are critical. In this work, the mechanisms governing the topography and single phase epitaxy of non-polar m-plane gallium nitride ( m-GaN) thin films are studied. The samples were grown using plasma-assisted molecular beam epitaxy on m-plane sapphire substrates. Growth of pure m-GaN thin films, concomitant with smooth surfaces is possible at low radio frequency powers and high growth temperatures as judged by the high resolution x-ray diffraction, field emission scanning electron microscopy, and atomic force microscopy measurements. Defect types and densities are quantified using transmission electron microscopy, while Raman spectroscopy was used to analyze the in-plane stress in the thin films which matches the lattice mismatch analysis. Energy dispersive spectroscopy and cathodoluminescence support a congruent growth and a dominant near band edge emission. From the analysis, a narrow growth window is discovered wherein epitaxial growth of pure m-plane GaN samples free of secondary phases with narrow rocking curves and considerable smooth surfaces are successfully demonstrated.
Hajihashemi, R; Rashidi, Ali M; Alaie, M; Mohammadzadeh, R; Izadi, N
2014-11-01
Nano-composite of multiwall carbon nanotube, decorated with NiFe2O4 nanoparticles (NiFe2O4-MWCNT), was synthesized using the sol-gel method. NiFe2O4-MWCNTs were characterized using different methods such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM). The average size of the crystallites is 23.93 nm. The values of the saturation magnetization (MS), coercivity (HC) and retentivity (MR) of NiFe2O4-MWCNTs are obtained as 15 emu g(-1), 21Oe and 5 emu g(-1), respectively. In this research, NiFe2O4-MWCNT thin films were prepared with the spin-coating method. These thin films were used as the H2S gas sensor. The results suggest the possibility of the utilization of NiFe2O4-MWCNT nano-composite, as the H2S detector. The sensor shows appropriate response towards 100 ppm of H2S at 300°C. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lamsal, B. S.; Dubey, M.; Swaminathan, V.; Huh, Y.; Galipeau, D.; Qiao, Q.; Fan, Q. H.
2014-11-01
This work studied the electronic characteristics of the grains and grain boundaries of indium tin oxide (ITO) thin films using electrostatic and Kelvin probe force microscopy. Two types of ITO films were compared, deposited using radiofrequency magnetron sputtering in pure argon or 99% argon + 1% oxygen, respectively. The average grain size and surface roughness increased with substrate temperature for the films deposited in pure argon. With the addition of 1% oxygen, the increase in the grain size was inhibited above 150°C, which was suggested to be due to passivation of the grains by the excess oxygen. Electrostatic force microscopy and Kelvin probe force microscopy (KPFM) images confirmed that the grain growth was defect mediated and occurred at defective interfaces at high temperatures. Films deposited at room temperature with 1% oxygen showed crystalline nature, while films deposited with pure argon at room temperature were amorphous as observed from KPFM images. The potential drop across the grain and grain boundary was determined by taking surface potential line profiles to evaluate the electronic properties.
Peckys, Diana B; Bandmann, Vera; de Jonge, Niels
2014-01-01
Correlative fluorescence microscopy combined with scanning transmission electron microscopy (STEM) of cells fully immersed in liquid is a new methodology with many application areas. Proteins, in live cells immobilized on microchips, are labeled with fluorescent quantum dot nanoparticles. In this protocol, the epidermal growth factor receptor (EGFR) is labeled. The cells are fixed after a selected labeling time, for example, 5 min as needed to form EGFR dimers. The microchip with cells is then imaged with fluorescence microscopy. Thereafter, STEM can be accomplished in two ways. The microchip with the labeled cells and one microchip with a spacer are assembled into a special microfluidic device and imaged with dedicated high-voltage STEM. Alternatively, thin edges of cells can be studied with environmental scanning electron microscopy with a STEM detector, by placing a microchip with cells in a cooled wet environment. © 2014 Elsevier Inc. All rights reserved.
Mollahosseini, Arash; Rahimpour, Ahmad
2013-01-01
A new, thin film, biofouling resistant, nanofiltration (NF) membrane was fabricated with two key characteristics, viz. a low rate of silver (Ag) release and long-lasting antibacterial properties. In the new approach, nanoparticles were embedded completely in a polymeric thin-film layer. A comparison was made between the new thin-film composite (TFC), NF membrane and thin-film nanocomposite (TFN), and antibacterial NF membranes. Both types of NF membrane were fabricated by interfacial polymerization on a polysulphone sublayer using m-phenylenediamine and trimesoyl chloride as an amine monomer and an acid chloride monomer, respectively. Energy dispersive X-ray (EDX) microanalysis demonstrated the presence of Ag nanoparticles. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to study the cross-sectional and surface morphological properties of the NF membranes. Permeability and salt rejection were tested using a dead-end filtration cell. Ag leaching from the membranes was measured using inductively coupled mass spectrometry (ICP-MS). Morphological studies showed that the TFC NF membranes had better thin-film formation (a more compact structure and a smoother surface) than TFN NF membranes. Performance experiments on TFC NF membranes revealed that permeability was good, without sacrificing salt rejection. The antibacterial properties of the fabricated membranes were tested using the disk diffusion method and viable plate counts. The antibiofouling properties of the membranes were examined by measuring the quantity of bacterial cells released from the biofilm formed (as a function of the amount of biofilm present). A more sensitive surface was observed compared to that of a typical antibacterial NF membrane. The Ag leaching rates were low, which will likely result in long-lasting antibacterial and biofouling resistant properties.
Atomic-scale visualization of oxide thin-film surfaces.
Iwaya, Katsuya; Ohsawa, Takeo; Shimizu, Ryota; Okada, Yoshinori; Hitosugi, Taro
2018-01-01
The interfaces of complex oxide heterostructures exhibit intriguing phenomena not observed in their constituent materials. The oxide thin-film growth of such heterostructures has been successfully controlled with unit-cell precision; however, atomic-scale understandings of oxide thin-film surfaces and interfaces have remained insufficient. We examined, with atomic precision, the surface and electronic structures of oxide thin films and their growth processes using low-temperature scanning tunneling microscopy. Our results reveal that oxide thin-film surface structures are complicated in contrast to the general perception and that atomically ordered surfaces can be achieved with careful attention to the surface preparation. Such atomically ordered oxide thin-film surfaces offer great opportunities not only for investigating the microscopic origins of interfacial phenomena but also for exploring new surface phenomena and for studying the electronic states of complex oxides that are inaccessible using bulk samples.
CdTe Photovoltaics for Sustainable Electricity Generation
NASA Astrophysics Data System (ADS)
Munshi, Amit; Sampath, Walajabad
2016-09-01
Thin film CdTe (cadmium telluride) is an important technology in the development of sustainable and affordable electricity generation. More than 10 GW of installations have been carried out using this technology around the globe. It has been demonstrated as a sustainable, green, renewable, affordable and abundant source of electricity. An advanced sublimation tool has been developed that allows highly controlled deposition of CdTe films onto commercial soda lime glass substrates. All deposition and treatment steps can be performed without breaking the vacuum within a single chamber in an inline process that can be conveniently scaled to a commercial process. In addition, an advanced cosublimation source has been developed to allow the deposition of ternary alloys such as Cd x Mg1- x Te to form an electron reflector layer which is expected to address the voltage deficits in current CdTe devices and to achieve very high efficiency. Extensive materials characterization, including but not limited to scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, high resolution transmission electron microscopy and electron back-scatter diffraction, has been performed to get a better understanding of the effects of processing conditions on CdTe thin film photovoltaics. This combined with computer modeling such as density function theory modeling gives a new insight into the mechanism of CdTe photovoltaic function. With all these efforts, CdTe photovoltaics has seen great progress in the last few years. Currently, it has been recorded as the cheapest source of electricity in the USA on a commercial scale, and further improvements are predicted to further reduce the cost while increasing its utilization. Here, we give an overview of the advantages of thin film CdTe photovoltaics as well as a brief review of the challenges that need to be addressed. Some fundamental studies of processing conditions for thin film CdTe are also presented along with fabrication conditions using the closed-space sublimation method.
Effect of copper and nickel doping on the optical and structural properties of ZnO
NASA Astrophysics Data System (ADS)
Muǧlu, G. Merhan; Sarıtaş, S.; ćakıcı, T.; Şakar, B.; Yıldırım, M.
2017-02-01
The present study is focused on the Cu doped ZnO and Ni doped ZnO dilute magnetic semiconductor thin films. ZnO:Cu and ZnO:Ni thin films were grown by Chemically Spray Pyrolysis (CSP) method on glass substrates. Optical analysis of the films was done spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. The structure, morphology, topology and elemental analysis of ZnO:Cu and ZnO:Ni dilute magnetic thin films were investigated by X-ray diffraction (XRD), Raman Analysis, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) techniques, respectively. Also The magnetic properties of the ZnO:Ni thin film was investigated by vibrating sample magnetometer (VSM) method. VSM measurements of ZnO:Ni thin film showed that the ferromagnetic behavior.
Effect of Doping Materials on the Low-Level NO Gas Sensing Properties of ZnO Thin Films
NASA Astrophysics Data System (ADS)
Çorlu, Tugba; Karaduman, Irmak; Yildirim, Memet Ali; Ateş, Aytunç; Acar, Selim
2017-07-01
In this study, undoped, Cu-doped, and Ni-doped ZnO thin films have been successfully prepared by successive ionic layer adsorption and reaction method. The structural, compositional, and morphological properties of the thin films are characterized by x-ray diffractometer, energy dispersive x-ray analysis (EDX), and scanning electron microscopy, respectively. Doping effects on the NO gas sensing properties of these thin films were investigated depending on gas concentration and operating temperature. Cu-doped ZnO thin film exhibited a higher gas response than undoped and Ni-doped ZnO thin film at the operating temperature range. The sensor with Cu-doped ZnO thin film gave faster responses and recovery speeds than other sensors, so that is significant for the convenient application of gas sensor. The response and recovery speeds could be associated with the effective electron transfer between the Cu-doped ZnO and the NO molecules.
NASA Astrophysics Data System (ADS)
Kogure, Toshihiro; Raimbourg, Hugues; Kumamoto, Akihito; Fujii, Eiko; Ikuhara, Yuichi
2014-12-01
High-resolution structure analyses using electron beam techniques have been performed for the investigation of subgrain boundaries (SGBs) in deformed orthopyroxene (Opx) in mylonite from Hidaka Metamorphic Belt, Hokkaido, Japan, to understand ductile deformation mechanism of silicate minerals in shear zones. Scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) analysis of Opx porphyroclasts in the mylonitic rock indicated that the crystal orientation inside the Opx crystals gradually changes by rotation about the b-axis by SGBs and crystal folding. In order to observe the SGBs along the b-axis by transmission electron microscopy (TEM) or scanning TEM (STEM), the following sample preparation protocol was adopted. First, petrographic thin sections were slightly etched with hydrofluoric acid to identify SGBs in SEM. The Opx crystals whose b-axes were oriented close to the normal of the surface were identified by EBSD, and the areas containing SGBs were picked and thinned for (S) TEM analysis with a focused ion beam instrument with micro-sampling system. High-resolution TEM imaging of the SGBs in Opx revealed various boundary structures from a periodic array of dissociated (100) [001] edge dislocations to partially or completely incoherent crystals, depending on the misorientation angle. Atomic-resolution STEM imaging clearly confirmed the formation of clinopyroxene (Cpx) structure between the dissociated partial dislocations. Moreover, X-ray microanalysis in STEM revealed that the Cpx contains a considerable amount of calcium replacing iron. Such chemical inhomogeneity may limit glide motion of the dislocation and eventually the plastic deformation of the Opx porphyroclasts at a low temperature. Chemical profiles across the high-angle incoherent SGB also showed an enrichment of the latter in calcium at the boundary, suggesting that SGBs are an efficient diffusion pathway of calcium out of host Opx grain during cooling.
Experimental approaches to well controlled studies of thin-film nucleation and growth.
NASA Technical Reports Server (NTRS)
Poppa, H.; Moorhead, R. D.; Heinemann, K.
1972-01-01
Particular features and the performance of two experimental systems are described for quantitative studies of thin-film nucleation and growth processes including epitaxial depositions. System I consists of a modified LEED-Auger instrument combined with high-resolution electron microscopy. System II is a UHV electron microscope adapted for in-situ deposition studies. The two systems complement each other ideally, and the combined use of both can result in a comprehensive investigation of vapor deposition processes not obtainable with any other known method.
Preparation of high-quality planar FeRh thin films for in situ TEM investigations
NASA Astrophysics Data System (ADS)
Almeida, Trevor P.; McGrouther, Damien; Pivak, Yevheniy; Perez Garza, Hector Hugo; Temple, Rowan; Massey, Jamie; Marrows, Christopher H.; McVitie, Stephen
2017-10-01
The preparation of a planar FeRh thin film using a focused ion beam (FIB) secondary electron microscope (SEM) for the purpose of in situ transmission electron microscopy (TEM) is presented. A custom SEM stub with 45° faces allows for the transfer and milling of the sample on a TEM heating chip, whilst Fresnel imaging within the TEM revealed the presence of the magnetic domain walls, confirming the quality of the FIB-prepared sample.
Improvement of corrosion resistance of NiTi sputtered thin films by anodization
NASA Astrophysics Data System (ADS)
Bayat, N.; Sanjabi, S.; Barber, Z. H.
2011-08-01
Anodization of sputtered NiTi thin films has been studied in 1 M acetic acid at 23 °C for different voltages from 2 to 10 V. The morphology and cross-sectional structures of the untreated and anodized surfaces were investigated by field emission scanning electron microscopy (FE-SEM). The results show that increasing anodization voltage leads to film surface roughening and unevenness. It can be seen that the thickness of the anodized layer formed on the NiTi surface is in the nanometer range. The corrosion resistance of anodized thin films was studied by potentiodynamic scan (PDS) and impedance spectroscopy (EIS) techniques in Hank's solution at 310 K (37 °C). It was shown that the corrosion resistance of the anodized film surface improved with increasing voltage to 6 V. Anodization of austenitic sputtered NiTi thin films has also been studied, in the same anodizing conditions, at 4 V. Comparison of anodized sputtered NiTi thin films with anodized austenitic shape memory films illustrate that the former are more corrosion resistant than the latter after 1 h immersion in Hank's solution, which is attributed to the higher grain boundary density to quickly form a stable and protective passive film.
Fabrication and etching processes of silicon-based PZT thin films
NASA Astrophysics Data System (ADS)
Zhao, Hongjin; Liu, Yanxiang; Liu, Jianshe; Ren, Tian-Ling; Liu, Li-Tian; Li, Zhijian
2001-09-01
Lead-zirconate-titanate (PZT) thin films on silicon were prepared by a sol-gel method. Phase characterization and crystal orientation of the films were investigated by x-ray diffraction analysis (XRD). It was shown that the PZT thin films had a perfect perovskite structure after annealed at a low temperature of 600 degrees C. PZT thin films were chemically etched using HCl/HF solution through typical semiconductor lithographic process, and the etching condition was optimized. The scanning electron microscopy results indicated that the PZT thin film etching problem was well solved for the applications of PZT thin film devices.
Watanabe, Shigeki; Richards, Jackson; Hollopeter, Gunther; Hobson, Robert J; Davis, Wayne M; Jorgensen, Erik M
2012-12-03
Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated (1-3). However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated (4-7). However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot (8-10). We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are imaged in these same sections using a scanning electron microscope. Fifth, the fluorescence and electron micrographs are aligned using gold particles as fiducial markers. In summary, the subcellular localization of fluorescently tagged proteins can be determined at nanometer resolution in approximately one week.
Electrodeposition of thin yttria-stabilized zirconia layers using glow-discharge plasma
NASA Astrophysics Data System (ADS)
Ogumi, Zempachi; Uchimoto, Yoshiharu; Tsuji, Yoichiro; Takehara, Zen-ichiro
1992-08-01
A novel process for preparation of thin yttria-stabilized zirconia (YSZ) layers was developed. This process differs from other vapor-phase deposition methods in that a dc bias circuit, separate from the plasma-generation circuit, is used for the electrodeposition process. The YSZ layer was electrodeposited from ZrCl4 and YCl3 on a nonporous calcia-stabilized zirconia substrate. Scanning electron microscopy, electron probe microanalysis, electron spectroscopy for chemical analysis, and x-ray-diffraction measurements confirmed the electrodeposition of a smooth, pinhole-free yttria-stabilized zirconia film of about 3 μm thickness.
A feasible method to eliminate nanoleakage in dentin hybrid layers.
Chen, Ji-Hua; Liu, Yan; Niu, Li-Na; Lu, Shuai; Tay, Franklin R; Gao, Yu
2014-10-01
To determine whether high-pressure air blowing during adhesive application affects the infiltration of resin comonomers and nanoleakage manifestation in the resin/dentin interface under simulated pulpal pressure. Thirty mid-coronal dentin surfaces were bonded with an etch-and-rinse adhesive (Adper Single Bond 2) under simulated pulpal pressure. In the control group, the adhesive was thinned by ordinary air blowing with a pressure of 0.2 MPa, while in the experimental group, a high-pressure air blowing technique (pressure: 0.4 MPa) was used. All other procedures followed the manufacturer's instructions. Resin tag formation and nanoleakage in the bonding interface were evaluated with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). When adhesive was thinned with high pressure air blowing, longer and more homogeneous resin tags were formed. The bonding interface demonstrated good overall morphology and integrity. Almost perfect infiltration of resin and no obvious nanoleakage were observed. Thinning of adhesive with high-pressure air blowing provides a clinically feasible adjunctive procedure for better resin infiltration.
NASA Astrophysics Data System (ADS)
Lin, Shi-Zeng; Ayala-Valenzuela, Oscar; McDonald, Ross D.; Bulaevskii, Lev N.; Holesinger, Terry G.; Ronning, Filip; Weisse-Bernstein, Nina R.; Williamson, Todd L.; Mueller, Alexander H.; Hoffbauer, Mark A.; Rabin, Michael W.; Graf, Matthias J.
2013-05-01
The fabrication of high-quality thin superconducting films is essential for single-photon detectors. Their device performance is crucially affected by their material parameters, thus requiring reliable and nondestructive characterization methods after the fabrication and patterning processes. Important material parameters to know are the resistivity, superconducting transition temperature, relaxation time of quasiparticles, and uniformity of patterned wires. In this work, we characterize micropatterned thin NbN films by using transport measurements in magnetic fields. We show that from the instability of vortex motion at high currents in the flux-flow state of the IV characteristic, the inelastic lifetime of quasiparticles can be determined to be about 2 ns. Additionally, from the depinning transition of vortices at low currents, as a function of magnetic field, the size distribution of grains can be extracted. This size distribution is found to be in agreement with the film morphology obtained from scanning electron microscopy and high-resolution transmission electron microscopy images.
Ultrastructural organization of the hamster renal pelvis.
Lacy, E R; Schmidt-Nielsen, B
1979-08-01
The renal pelvis of the hamster has been studied by light microscopy (epoxy resin sections), transmission electron microscopy, and morphometric analysis of electron micrographs. Three morphologically distinct epithelia line the pelvis, and each covers a different zone of the kidney. A thin epithelium covering the outer medulla (OM) consists of two cell types: (1) granular cells are most numerous and have apically positioned granules which stain intensely with toluidine blue, are membrane-bound, and contain a fine particulate matter that stains light grey to black in electron micrographs. (2) Basal cells do not have granules, are confined to the basal lamina region, and do not reach the mucosal epithelial surface. The inner medulla (IM) is covered by a pelvic epithelium morphologically similar to collecting duct epithelium of IM. Some cells in this portion of the pelvic epithelium (IM) stain intensely dark with toluidine blue, osmium tetroxide, lead, and uranyl acetate. Transitional epithelium, which separates cortex (C) from pelvic urine, has an asymmetric luminal plasma membrane and discoid vesicles, each of which is similar to those previously observed in mammalian ureter and urinary bladder epithelia. Based on morphological comparisons with other epithelia, the IM and OM pelvic epithelia would appear permeable to solutes and/or water, while the transitional epithelium covering the C appears relatively impermeable. It would also appear that the exchange of solutes and water between pelvic urine and OM would involve capillaries, primarily, since morphometric analysis showed that both fenestrated and continuous capillaries of the OM were extremely abundant (greater than 60% of OM pelvic surface area) just under the thin pelvic epithelium.
Metal-Coated Optical Fibers for High Temperature Applications
NASA Technical Reports Server (NTRS)
Zeakes, Jason; Murphy, Kent; Claus, Richard; Greene, Jonathan; Tran, Tuan
1996-01-01
A DC magnetron sputtering system has been used to actively coat optical fibers with hermetic metal coatings during the fiber draw process. Thin films of Inconel 625 have been deposited on optical fibers and annealed in air at 2000 F. Scanning electron microscopy and Auger electron microscopy have been used to investigate the morphology and composition of the films prior to and following thermal cycling. Issues to be addressed include film adhesion, other coating materials, and a discussion of additional applications for this novel technology.
Nanomechanical study of amorphous and polycrystalline ALD HfO2 thin films
K. Tapily; J.E. Jakes; D. Gu; H. Baumgart; A.A. Elmustafa
2011-01-01
Thin films of hafnium oxide (HfO2) were deposited by atomic layer deposition (ALD). The structural properties of the deposited films were characterised by transmission electron microscopy (TEM) and X-ray diffraction (XRD). We investigated the effect of phase transformations induced by thermal treatments on the mechanical properties of ALD HfO
NASA Astrophysics Data System (ADS)
Chen, Xu; Zhai, Sudan; Gao, Di; Liu, Ye; Xu, Jing; Liu, Yang
2018-01-01
The stress corrosion cracking (SCC) behavior, electrical conductivity and mechanical properties of an Al-Zn-Mg-Cu alloy pre-stretched thin plate for wing skin were researched in this paper. The microstructures and SCC fracture surfaces of the alloy treated at different conditions were characterized by transmission electron microscopy, optical microscopy and scanning electron microscopy. Results indicated that with the increasing of aging temperature, the electrical conductivity and the elongation increased greatly, while the strength decreased gradually which were closely associated with the type and morphology of the precipitates. Compared with the T6 treated alloy, the SCC resistance of the T761 treated Al-Zn-Mg-Cu alloy was improved greatly. The SCC behavior of the T6 treated alloy was dominated by anodic dissolution theory, whereas the hydrogen induced cracking controlled the fracture behavior of the T761 treated alloy which was influenced by the morphology of grain boundary precipitates in this investigated alloy.
Visualization of Current and Mapping of Elements in Quantum Dot Solar Cells
Niezgoda, J. Scott; Ng, Amy; Poplawsky, Jonathan D.; ...
2015-12-17
The delicate influence of properties such as high surface state density and organic-inorganic boundaries on the individual quantum dot electronic structure complicates pursuits toward forming quantitative models of quantum dot thin films ab initio. Our report describes the application of electron beam-induced current (EBIC) microscopy to depleted-heterojunction colloidal quantum dot photovoltaics (DH-CQD PVs), a technique which affords one a map of current production within the active layer of a PV device. The effects of QD sample size polydispersity as well as layer thickness in CQD active layers as they pertain to current production within these PVs are imaged and explained.more » The results from these experiments compare well with previous estimations, and confirm the ability of EBIC to function as a valuable empirical tool for the design and betterment of DH-CQD PVs. Lastly, extensive and unexpected PbS QD penetration into the mesoporous TiO 2 layer is observed through imaging of device cross sections by energy-dispersive X-ray spectroscopy combined with scanning transmission electron microscopy. Finally, the effects of this finding are discussed and corroborated with the EBIC studies on similar devices.« less
Mukhamadiyarov, Rinat A; Sevostyanova, Victoria V; Shishkova, Daria K; Nokhrin, Andrey V; Sidorova, Olga D; Kutikhin, Anton G
2016-06-01
A broad use of the graft replacement requires a detailed investigation of the host-graft interaction, including both histological examination and electron microscopy. A high quality sectioning of the host tissue with a graft seems to be complicated; in addition, it is difficult to examine the same tissue area by both of the mentioned microscopy techniques. To solve these problems, we developed a new technique of epoxy resin embedding with the further grinding, polishing, and staining. Graft-containing tissues prepared by grinding and polishing preserved their structure; however, sectioning frequently required the explantation of the graft and led to tissue disintegration. Moreover, stained samples prepared by grinding and polishing may then be assessed by both light microscopy and backscattered scanning electron microscopy. Therefore, grinding and polishing outperform sectioning when applied to the tissues with a graft. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chu, Cheng Hung; Shiue, Chiun Da; Cheng, Hsuen Wei; Tseng, Ming Lun; Chiang, Hai-Pang; Mansuripur, Masud; Tsai, Din Ping
2010-08-16
Amorphous thin films of Ge(2)Sb(2)Te(5), sputter-deposited on a ZnS-SiO(2) dielectric layer, are investigated for the purpose of understanding the structural phase-transitions that occur under the influence of tightly-focused laser beams. Selective chemical etching of recorded marks in conjunction with optical, atomic force, and electron microscopy as well as local electron diffraction analysis are used to discern the complex structural features created under a broad range of laser powers and pulse durations. Clarifying the nature of phase transitions associated with laser-recorded marks in chalcogenide Ge(2)Sb(2)Te(5) thin films provides useful information for reversible optical and electronic data storage, as well as for phase-change (thermal) lithography.
Correlation of live-cell imaging with volume scanning electron microscopy.
Lucas, Miriam S; Günthert, Maja; Bittermann, Anne Greet; de Marco, Alex; Wepf, Roger
2017-01-01
Live-cell imaging is one of the most widely applied methods in live science. Here we describe two setups for live-cell imaging, which can easily be combined with volume SEM for correlative studies. The first procedure applies cell culture dishes with a gridded glass support, which can be used for any light microscopy modality. The second approach is a flow-chamber setup based on Ibidi μ-slides. Both live-cell imaging strategies can be followed up with serial blockface- or focused ion beam-scanning electron microscopy. Two types of resin embedding after heavy metal staining and dehydration are presented making best use of the particular advantages of each imaging modality: classical en-bloc embedding and thin-layer plastification. The latter can be used only for focused ion beam-scanning electron microscopy, but is advantageous for studying cell-interactions with specific substrates, or when the substrate cannot be removed. En-bloc embedding has diverse applications and can be applied for both described volume scanning electron microscopy techniques. Finally, strategies for relocating the cell of interest are discussed for both embedding approaches and in respect to the applied light and scanning electron microscopy methods. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Otieno, Francis; Airo, Mildred; Erasmus, Rudolph M.; Billing, David G.; Quandt, Alexander; Wamwangi, Daniel
2017-08-01
Aluminium doped zinc oxide thin films are prepared by Radio Frequency magnetron sputtering in pure argon atmosphere at 100 W. The structural results reveal good film adhesion on a silicon substrate (001). The thin films were then subjected to heat treatment in a furnace under ambient air. The structural, morphological, and optical properties of the thin films as a function of deposition time and annealing temperatures have been investigated using Grazing incidence X-Ray Diffraction (GIXRD), Atomic Force Microscopy, and Scanning Electronic Microscopy. The photoluminescence properties of the annealed films showed significant changes in the optical properties attributed to mid gap defects. Annealing increases the crystallite size and the roughness of the film. The crystallinity of the films also improved as evident from the Raman and XRD studies.
NASA Astrophysics Data System (ADS)
Nasrin, Rahima; Hossain, Khandker S.; Bhuiyan, A. H.
2018-05-01
Plasma polymerized n-butyl methacrylate (PPnBMA) thin films of varying thicknesses were prepared at room temperature by AC plasma polymerization system using a capacitively coupled parallel plate reactor. Field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), energy-dispersive X-ray (EDX) analysis, and ultraviolet-visible (UV-Vis) spectroscopic investigation have been performed to study the morphological, elemental, and optical properties of the PPnBMA thin films, respectively. The flat and defect-free nature of thin films were confirmed by FESEM and AFM images. With declining plasma power, average roughness and root mean square roughness increase. Allowed direct transition ( E gd) and indirect transition ( E gi) energy gaps were found to be 3.64-3.80 and 3.38-3.45 eV, respectively, for PPnBMA thin films of different thicknesses. Values of E gd as well as E gi increase with the increase of thickness. The extinction coefficient, Urbach energy, and steepness parameter were also determined for these thin films.
Quantitative Analysis of Electron Beam Damage in Organic Thin Films
2017-01-01
In transmission electron microscopy (TEM) the interaction of an electron beam with polymers such as P3HT:PCBM photovoltaic nanocomposites results in electron beam damage, which is the most important factor limiting acquisition of structural or chemical data at high spatial resolution. Beam effects can vary depending on parameters such as electron dose rate, temperature during imaging, and the presence of water and oxygen in the sample. Furthermore, beam damage will occur at different length scales. To assess beam damage at the angstrom scale, we followed the intensity of P3HT and PCBM diffraction rings as a function of accumulated electron dose by acquiring dose series and varying the electron dose rate, sample preparation, and the temperature during acquisition. From this, we calculated a critical dose for diffraction experiments. In imaging mode, thin film deformation was assessed using the normalized cross-correlation coefficient, while mass loss was determined via changes in average intensity and standard deviation, also varying electron dose rate, sample preparation, and temperature during acquisition. The understanding of beam damage and the determination of critical electron doses provides a framework for future experiments to maximize the information content during the acquisition of images and diffraction patterns with (cryogenic) transmission electron microscopy. PMID:28553431
Assessment of nerve ultrastructure by fibre-optic confocal microscopy.
Cushway, T R; Lanzetta, M; Cox, G; Trickett, R; Owen, E R
1996-01-01
Fibre-optic technology combined with confocality produces a microscope capable of optical thin sectioning. In this original study, tibial nerves have been stained in a rat model with a vital dye, 4-(4-diethylaminostyryl)-N-methylpyridinium iodide, and analysed by fibre-optic confocal microscopy to produce detailed images of nerve ultrastructure. Schwann cells, nodes of Ranvier and longitudinal myelinated sheaths enclosing axons were clearly visible. Single axons appeared as brightly staining longitudinal structures. This allowed easy tracing of multiple signal axons within the nerve tissue. An accurate measurement of internodal lengths was easily accomplished. This technique is comparable to current histological techniques, but does not require biopsy, thin sectioning or tissue fixing. This study offers a standard for further in vivo microscopy, including the possibility of monitoring the progression of nerve regeneration following microsurgical neurorraphy.
Multi-Resolution Imaging of Electron Dynamics in Nanostructure Interfaces
2010-07-27
metallic carbon nanotubes from semiconducting ones. In pentacene transistors, we used scanning photocurrent microscopy to study spatially resolved...photoelectric response of pentacene thin films, which showed that point contacts formed near the hole injection points limit the overall performance of the...photothermal current microscopy, carbon nanotube transistor, pentacene transistor, contact resistance, hole injection 16. SECURITY CLASSIFICATION OF
Cometary particles - Thin sectioning and electron beam analysis
NASA Technical Reports Server (NTRS)
Bradley, J. P.; Brownlee, D. E.
1986-01-01
Thin sections (500 to 1000 angstroms thick) of individual micrometeorites (5 to 15 micrometers) have been prepared with an ultramicrotome equipped with a diamond knife. Electron microscope examination of these sections has revealed the internal structures of chondritic micrometeorites, and a subset of highly porous, fragile particles has been identified. Delicate meteoritic materials such as these are characteristic of debris from cometary meteors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monna, R.; Angermeier, D.; Slaoui, A.
1996-12-01
The homoepitaxy of thin film silicon layers in a horizontal, atmospheric pressure RTCVD reactor is reported. The experiments were conducted in a temperature range from 900 C to 1,300 C employing the precursor trichlorosilane (TCS) and the dopant trichloroborine (TCB) diluted in hydrogen. The epilayers were evaluated by Nomarski microscopy, Rutherford backscattering spectroscopy, and scanning electron microscopy (SEM). The electrical properties of the thin film were analyzed by sheet resistance and four point probe characterization methods. The authors propose that the responsible mechanisms for the observed growth decline at higher precursor concentration in hydrogen are due to the reaction ofmore » the gaseous HCl with the silicon surface and the supersaturation of silicon.« less
Synthesis of TiN/a-Si3N4 thin film by using a Mather type dense plasma focus system
NASA Astrophysics Data System (ADS)
Hussain, T.; R., Ahmad; Khalid, N.; A. Umar, Z.; Hussnain, A.
2013-05-01
A 2.3 kJ Mather type pulsed plasma focus device was used for the synthesis of a TiN/a-Si3N4 thin film at room temperature. The film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The XRD pattern confirms the growth of polycrystalline TiN thin film. The XPS results indicate that the synthesized film is non-stoichiometric and contains titanium nitride, silicon nitride, and a phase of silicon oxy-nitride. The SEM and AFM results reveal that the surface of the synthesized film is quite smooth with 0.59 nm roughness (root-mean-square).
Observation of electromigration in a Cu thin line by in situ coherent x-ray diffraction microscopy
NASA Astrophysics Data System (ADS)
Takahashi, Yukio; Nishino, Yoshinori; Furukawa, Hayato; Kubo, Hideto; Yamauchi, Kazuto; Ishikawa, Tetsuya; Matsubara, Eiichiro
2009-06-01
Electromigration (EM) in a 1-μm-thick Cu thin line was investigated by in situ coherent x-ray diffraction microscopy (CXDM). Characteristic x-ray speckle patterns due to both EM-induced voids and thermal deformation in the thin line were observed in the coherent x-ray diffraction patterns. Both parts of the voids and the deformation were successfully visualized in the images reconstructed from the diffraction patterns. This result not only represents the first demonstration of the visualization of structural changes in metallic materials by in situ CXDM but is also an important step toward studying the structural dynamics of nanomaterials using x-ray free-electron lasers in the near future.
Ghamarian, I.; Samani, P.; Rohrer, G. S.; ...
2017-03-24
Grain boundary engineering and other fundamental materials science problems (e.g., phase transformations and physical properties) require an improvement in the understanding of the type and population of grain boundaries in a given system – yet, databases are limited in number and spare in detail, including for hcp crystals such as zirconium. One way to rapidly obtain databases to analyze is to use small-grained materials and high spatial resolution orientation microscopy techniques, such as ASTAR™/precession electron diffraction. To demonstrate this, a study of grain boundary character distributions was conducted for α-zirconium deposited at room temperature on fused silica substrates using physicalmore » vapor deposition. The orientation maps of the nanocrystalline thin films were acquired by the ASTARα/precession electron diffraction technique, a new transmission electron microscope based orientation microscopy method. The reconstructed grain boundaries were classified as pure tilt, pure twist, 180°-twist and 180°-tilt grain boundaries based on the distribution of grain boundary planes with respect to the angle/axis of misorientation associated with grain boundaries. The results of the current study were compared to the results of a similar study on α-titanium and the molecular dynamics results of grain boundary energy for α-titanium.« less
NASA Astrophysics Data System (ADS)
Miyasaka, C.; Tittmann, B. R.; Tutwiler, R.; Tian, Y.; Maeva, E.; Shum, D.
2010-03-01
The present study is to investigate the feasibility of applying in-vivo acoustic microscopy to the analysis of cancerous tissue. The study was implemented with mechanical scanning reflection acoustic microscope (SAM) by the following procedures. First, we ultrasonically visualized thick sections of normal and tumor tissues to determine the lowest transducer frequency required for cellular imaging. We used skin for normal tissue and the tumor was a malignant melanoma. Thin sections of the tissue were also studied with the optical and high-frequency-ultrasonic imaging for pathological evaluation. Secondly, we ultrasonically visualized subsurface cellular details of thin tissue specimens with different modes (i.e., pulse and tone-burst wave modes) to obtain the highest quality ultrasonic images. The objective is to select the best mode for the future design of a future SAM for in-vivo examination. Thirdly, we developed a mathematical modeling technique based on an angular spectrum approach for improving image processing and comparing numerical to experimental results.
Organic nanofibers from squarylium dyes: local morphology, optical, and electrical properties
NASA Astrophysics Data System (ADS)
Balzer, Frank; Schiek, Manuela; Osadnik, Andreas; Lützen, Arne; Rubahn, Horst-Günter
2012-02-01
Environmentally stable, non-toxic squarylium dyes with strong absorption maxima in the red and near infrared spectral region are known for almost fifty years. Despite the fact that their optoelectronic properties distinguish them as promising materials for organics based photovoltaic cells, they have regained attention only very recently. For their application in heterojunction solar cells knowledge of their nanoscopic morphology as well as nanoscopic electrical properties is paramount. In this paper thin films from two different squarylium dyes, from squarylium (SQ) and from hydroxy-squarylium (SQOH) are investigated. The thin films are either solution casted or vacuum sublimed onto substrates such as muscovite mica, which are known to promote self-assembly into oriented, crystalline nanostructures such as nanofibers. Local characterization is performed via (polarized) optical microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and Kelvin probe force microscopy (KPFM).
Connecting quantum dots and bionanoparticles in hybrid nanoscale ultra-thin films
NASA Astrophysics Data System (ADS)
Tangirala, Ravisubhash; Hu, Yunxia; Zhang, Qingling; He, Jinbo; Russell, Thomas; Emrick, Todd
2008-03-01
Aldehyde-functionalized CdSe quantum dots and nanorods, and horse spleen ferritin bionanoparticles, were co-assembled at an oil-water interface. Reaction of the aldehydes with the surface-available amines on the ferritin particles enabled cross-linking at the interface, converting the assembled nanoparticles into robust ultra-thin films. The cross-linked capsules and sheets thus made by aldehyde-amine conjugation could be disrupted by addition of acid. Reductive amination chemistry could be performed to convert these degradable capsules and sheets into structures with irreversible cross-linking. Fluorescence confocal microscopy, scanning force microscopy and pendant drop tensiometry were used to characterize these hybrid nanoparticle-based materials, and transmission electron microscopy (TEM) confirmed the presence of both the synthetic and naturally derived nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Congfei; Liang, Xiaojuan, E-mail: lxj6126@126
The titanate, is a material of interest for various energy applications, including photovoltaics, catalysts, and high-rate energy storage devices. Herein, its related materials, CuO/CaTi{sub 4}O{sub 9} [CCTO] thin films, were successfully fabricated on SrTiO{sub 3} (100) substrates by RF magnetron sputtering assisted with subsequent oxygen annealing. This obtained CCTO thin films were then systemically studied by X-ray powder diffraction (XRD), atomic force microscopy (AFM), scan electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). It was found that CuO and CaTi{sub 4}O{sub 9} (001) particles were closely accumulated together on the surface of the substrate inmore » the annealing process after comparing with that of the as-prepared thin film, which was verified by SEM and AFM results. Furthermore, we investigated the third-order nonlinear optical (NLO) properties of the as-prepared and annealed CCTO thin film by means of the Z-scan technique using 650 nm femtosecond laser pulse. Post-deposition oxygen annealing was found to modify the morphological characteristics of the films, resulting in enhancing their NLO properties. The observation of NLO performance of annealed CCTO thin film indicates that RF magnetron sputtering is a feasible method for the fabrication of optical thin films, which can be expanded to fabricate other NLO materials from the corresponding dispersions. Naturally, we concluded that the CCTO thin film occupy a better NLO property, and thus enlarge its application in nonlinear optics. - Highlights: • The CCTO thin film was prepared using the RF magnetron sputtering and oxygen annealing. • The film was prepared on the SrTiO{sub 3}(100) substrates with a Ca{sub 2}CuO{sub 3} target. • The oxygen annealing was found can effectively enhance the film quality and NLO property. • The film was characterized using XPS, SEM, AFM, TEM, XRD and Z-scan techniques.« less
Nakatani, Ryuichi; Takano, Hiroki; Chandra, Alvin; Yoshimura, Yasunari; Wang, Lei; Suzuki, Yoshinori; Tanaka, Yuki; Maeda, Rina; Kihara, Naoko; Minegishi, Shinya; Miyagi, Ken; Kasahara, Yuusuke; Sato, Hironobu; Seino, Yuriko; Azuma, Tsukasa; Yokoyama, Hideaki; Ober, Christopher K; Hayakawa, Teruaki
2017-09-20
In this study, a series of perpendicular lamellae-forming poly(polyhedral oligomeric silsesquioxane methacrylate-block-2,2,2-trifluoroethyl methacrylate)s (PMAPOSS-b-PTFEMAs) was developed based on the bottom-up concept of creating a simple yet effective material by tailoring the chemical properties and molecular composition of the material. The use of silicon (Si)-containing hybrid high-χ block copolymers (BCPs) provides easy access to sub-10 nm feature sizes. However, as the surface free energies (SFEs) of Si-containing polymers are typically vastly lower than organic polymers, this tends to result in the selective segregation of the inorganic block onto the air interface and increased difficulty in controlling the BCP orientation in thin films. Therefore, by balancing the SFEs between the organic and inorganic blocks through the use of poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) on the organic block, a polymer with an SFE similar to Si-containing polymers, orientation control of the BCP domains in thin films becomes much simpler. Herein, perpendicularly oriented BCP thin films with a χ eff value of 0.45 were fabricated using simple spin-coating and thermal annealing processes under ambient conditions. The thin films displayed a minimum domain size of L 0 = 11 nm, as observed via atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Furthermore, directed self-assembly (DSA) of the BCP on a topographically prepatterned substrate using the grapho-epitaxy method was used to successfully obtain perpendicularly oriented lamellae with a half pitch size of ca. 8 nm.
Polymer mediated layer-by-layer assembly of different shaped gold nanoparticles.
Budy, Stephen M; Hamilton, Desmond J; Cai, Yuheng; Knowles, Michelle K; Reed, Scott M
2017-02-01
Gold nanoparticles (GNPs) have a wide range of properties with potential applications in electronics, optics, catalysis, and sensing. In order to demonstrate that dense, stable, and portable samples could be created for these applications, multiple layers of GNPs were assembled via drop casting on glass substrates by layer-by-layer (LBL) techniques. Two cationic polyelectrolytes, poly(diallyldimethylammonium chloride) and polyethyleneimine, one anionic polyelectrolyte, poly(sodium 4-styrene sulfonate), and one neutral polymer, polyvinylpyrrolidone, were combined with four different shapes of GNPs (spherical, rod, triangular prismatic, and octahedral) to prepare thin films. A subset of these polymer nanoparticle combinations were assembled into thin films. Synthesized GNPs were characterized via dynamic light scattering, UV-vis spectroscopy, and transmission electron microscopy and the LBL thin films were characterized using UV-vis spectroscopy and atomic force microscopy. Sensing applications of the nanoparticles in solution and thin films were tested by monitoring the localized surface plasmon resonance of the GNPs. LBL thin films were prepared ranging from 25 to 100 layers with optical densities at plasmon from 0.5 to 3.0. Sensitivity in solutions ranged from 14 to 1002nm/refractive index units (RIU) and films ranged from 18.8 to 135.1nm/RIU suggesting reduced access to the GNPs within the films. Copyright © 2016 Elsevier Inc. All rights reserved.
Synthesis of zirconia (ZrO2) nanowires via chemical vapor deposition
NASA Astrophysics Data System (ADS)
Baek, M. K.; Park, S. J.; Choi, D. J.
2017-02-01
Monoclinic zirconia nanowires were synthesized by chemical vapor deposition using ZrCl4 powder as a starting material at 1200 °C and 760 Torr. Graphite was employed as a substrate, and an Au thin film was pre-deposited on the graphite as a catalyst. The zirconia nanostructure morphology was observed through scanning electron microscopy and transmission electron microscopy. Based on X-ray diffraction, selected area electron diffraction, and Raman spectroscopy data, the resulting crystal structure was found to be single crystalline monoclinic zirconia. The homogeneous distributions of Zr, O and Au were studied by scanning transmission electron microscopy with energy dispersive X-ray spectroscopy mapping, and there was no metal droplet at the nanowire tips despite the use of an Au metal catalyst. This result is apart from that of conventional metal catalyzed nanowires.
Wireless digital pressure gauge based on nanomaterials
NASA Astrophysics Data System (ADS)
Abay, Dilyara; Otarbay, Zhuldyz; Token, Madengul; Guseinov, Nazim; Muratov, Mukhit; Gabdullin, Maratbek; Ismailov, Daniyar
2018-03-01
In the article studies the efficiency of using nanostructured nickel copper films as thin films for bending sensors. Thin films of nickel-copper alloy were deposited using magnetron sputtering technology followed by the appropriate masks. Scanning electron microscopy (SEM) and energy- dispersive X-ray spectroscopy (EDS) techniques were used to examine structure and surface of the Ni Cu coatings. The results of the bending sensors result indicated that the Ni Cu thin film strain gauge showed an excellent sensitive.
Analysis of Red Pigments from the Neolithic sites of Çatalhöyük in Turkey and Sheikh-e Abad in Iran
NASA Astrophysics Data System (ADS)
Anderson, Emma; Almond, Matthew J.; Matthews, Wendy; Cinque, Gianfelice; Frogley, Mark D.
2014-10-01
Samples containing red pigment have been collected from two different archaeological sites dating to the Neolithic (Çatalhöyük in Turkey and Sheikh-e Abad in Iran) and have been analysed by a range of techniques. Sub-samples were examined by IR spectroscopy and X-ray diffraction, whilst thin sections were studied using optical polarising microscopy, synchrotron based IR microscopy and environmental scanning electron microscopy with energy dispersive X-ray analysis. Thin layers of red paint in a wall painting from Çatalhöyük were found to contain ochre (hematite and clay) as well as an unexpected component, grains of red and colourless obsidian, which have not been identified in any previous studies of the wall paintings at Çatalhöyük. These small grains of obsidian may have improved the reflective properties of the paint and made the artwork more vivid in the darkness of the buildings. Analysis of a roughly shaped ball of red sediment found on a possible working surface at Sheikh-e Abad revealed that the cause of the red colouring was the mineral hematite, which was probably from a source of terra rossa sediment in the local area. The results of this work suggest it is unlikely that this had been altered by the Neolithic people through mixing with other minerals.
THE FINE STRUCTURE OF THE NUCLEOLUS DURING MITOSIS IN THE GRASSHOPPER NEUROBLAST CELL
Stevens, Barbara J.
1965-01-01
The behavior of the nucleolus during mitosis was studied by electron microscopy in neuroblast cells of the grasshopper embryo, Chortophaga viridifasciata. Living neuroblast cells were observed in the light microscope, and their mitotic stages were identified and recorded. The cells were fixed and embedded; alternate thick and thin sections were made for light and electron microscopy. The interphase nucleolus consists of two fine structural components arranged in separate zones. Concentrations of 150 A granules form a dense peripheral zone, while the central regions are composed of a homogeneous background substance. Observations show that nucleolar dissolution in prophase occurs in two steps with a preliminary loss of the background substance followed by a dispersal of the granules. Nucleolar material reappears at anaphase as small clumps or layers at the chromosome surfaces. These later form into definite bodies, which disappear as the nucleolus grows in telophase. Evidence suggests both a collecting and a synthesizing role for the nucleolus-associated chromatin. The final, mature nucleolar form is produced by a rearrangement of the fine structural components and an increase in their mass. PMID:14326121
Łaszcz, A; Katcki, J; Ratajczak, J; Tang, Xiaohui; Dubois, E
2006-10-01
Very thin erbium silicide layers have been used as source and drain contacts to n-type Si in low Schottky barrier MOSFETs on silicon-on-insulator substrates. Erbium silicide is formed by a solid-state reaction between the metal and silicon during annealing. The influence of annealing temperature (450 degrees C, 525 degrees C and 600 degrees C) on the formation of an erbium silicide layer in the Pt/Er/Si/SiO(2)/Si structure was analysed by means of cross-sectional transmission electron microscopy. The Si grains/interlayer formed at the interface and the presence of Si grains within the Er-related layer constitute proof that Si reacts with Er in the presence of a Pt top layer in the temperature range 450-600 degrees C. The process of silicide formation in the Pt/Er/Si structure differs from that in the Er/Si structure. At 600 degrees C, the Pt top layer vanishes and a (Pt-Er)Si(x) system is formed.
Genetics and Cell Morphology Analyses of the Actinomyces oris srtA Mutant.
Wu, Chenggang; Reardon-Robinson, Melissa Elizabeth; Ton-That, Hung
2016-01-01
Sortase is a cysteine-transpeptidase that anchors LPXTG-containing proteins on the Gram-positive bacterial cell wall. Previously, sortase was considered to be an important factor for bacterial pathogenesis and fitness, but not cell growth. However, the Actinomyces oris sortase is essential for cell viability, due to its coupling to a glycosylation pathway. In this chapter, we describe the methods to generate conditional srtA deletion mutants and identify srtA suppressors by Tn5 transposon mutagenesis. We also provide procedures for analyzing cell morphology of this mutant by thin-section electron microscopy. These techniques can be applied for analyses of other essential genes in A. oris.
Low-temperature MOCVD deposition of Bi2Te3 thin films using Et2BiTeEt as single source precursor
NASA Astrophysics Data System (ADS)
Bendt, Georg; Gassa, Sanae; Rieger, Felix; Jooss, Christian; Schulz, Stephan
2018-05-01
Et2BiTeEt was used as single source precursor for the deposition of Bi2Te3 thin films on Si(1 0 0) substrates by metal organic chemical vapor deposition (MOCVD) at very low substrate temperatures. Stoichiometric and crystalline Bi2Te3 films were grown at 230 °C, which is approximately 100 °C lower compared to conventional MOCVD processes using one metal organic precursors for each element. The Bi2Te3 films were characterized using scanning electron microscopy, high-resolution transmission electron microscopy and X-ray diffraction. The elemental composition of the films, which was determined by energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy, was found to be strongly dependent of the substrate temperature.
Nucleation, growth, and strain relaxation of lattice-mismatched 3-5 semiconductor epitaxial layers
NASA Technical Reports Server (NTRS)
Welser, R. E.; Guido, L. J.
1994-01-01
We have investigated the early stages of evolution of highly strained 2-D InAs layers and 3-D InAs islands grown by metal-organic chemical vapor deposition (MOCVD) on (100) and (111)B GaAs substrates. The InAs epilayer/GaAs substrate combination has been chosen because the lattice-mismatch is severe (approximately 7.2 percent), yet these materials are otherwise very similar. By examining InAs-on-GaAs composites instead of the more common In(x)Ga(1-x)As alloy we remove an additional degree of freedom (x) and thereby simplify data interpretation. A matrix of experiments is described in which the MOCVD growth parameters - susceptor temperature, Thin flux, and AsH3 flux - have been varied over a wide range. Scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and electron microprobe analysis have been employed to observe the thin film surface morphology. In the case of 3-D growth, we have extracted activation energies and power-dependent exponents that characterize the nucleation process. As a consequence, optimized growth conditions have been identified for depositing approximately 250 A thick (100) and (111)B oriented InAs layers with relatively smooth surfaces. Together with preliminary data on the strain relaxation of these layers, the above results on the evolution of thin InAs films indicate that the (111)B orientation is particularly promising for yielding lattice-mismatched films that are fully relaxed with only misfit dislocations at the epilayer/substrate interface.
Santala, M. K.; Raoux, S.; Campbell, G. H.
2015-12-24
The kinetics of laser-induced, liquid-mediated crystallization of amorphous Ge thin films were studied using multi-frame dynamic transmission electron microscopy (DTEM), a nanosecond-scale photo-emission transmission electron microscopy technique. In these experiments, high temperature gradients are established in thin amorphous Ge films with a 12-ns laser pulse with a Gaussian spatial profile. The hottest region at the center of the laser spot crystallizes in ~100 ns and becomes nano-crystalline. Over the next several hundred nanoseconds crystallization continues radially outward from the nano-crystalline region forming elongated grains, some many microns long. The growth rate during the formation of these radial grains is measuredmore » with time-resolved imaging experiments. Crystal growth rates exceed 10 m/s, which are consistent with crystallization mediated by a very thin, undercooled transient liquid layer, rather than a purely solid-state transformation mechanism. The kinetics of this growth mode have been studied in detail under steady-state conditions, but here we provide a detailed study of liquid-mediated growth in high temperature gradients. Unexpectedly, the propagation rate of the crystallization front was observed to remain constant during this growth mode even when passing through large local temperature gradients, in stark contrast to other similar studies that suggested the growth rate changed dramatically. As a result, the high throughput of multi-frame DTEM provides gives a more complete picture of the role of temperature and temperature gradient on laser crystallization than previous DTEM experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santala, M. K., E-mail: melissa.santala@oregonstate.edu; Campbell, G. H.; Raoux, S.
2015-12-21
The kinetics of laser-induced, liquid-mediated crystallization of amorphous Ge thin films were studied using multi-frame dynamic transmission electron microscopy (DTEM), a nanosecond-scale photo-emission transmission electron microscopy technique. In these experiments, high temperature gradients are established in thin amorphous Ge films with a 12-ns laser pulse with a Gaussian spatial profile. The hottest region at the center of the laser spot crystallizes in ∼100 ns and becomes nano-crystalline. Over the next several hundred nanoseconds crystallization continues radially outward from the nano-crystalline region forming elongated grains, some many microns long. The growth rate during the formation of these radial grains is measured withmore » time-resolved imaging experiments. Crystal growth rates exceed 10 m/s, which are consistent with crystallization mediated by a very thin, undercooled transient liquid layer, rather than a purely solid-state transformation mechanism. The kinetics of this growth mode have been studied in detail under steady-state conditions, but here we provide a detailed study of liquid-mediated growth in high temperature gradients. Unexpectedly, the propagation rate of the crystallization front was observed to remain constant during this growth mode even when passing through large local temperature gradients, in stark contrast to other similar studies that suggested the growth rate changed dramatically. The high throughput of multi-frame DTEM provides gives a more complete picture of the role of temperature and temperature gradient on laser crystallization than previous DTEM experiments.« less
Rambabu, A; Senthilkumar, B; Sada, K; Krupanidhi, S B; Barpanda, P
2018-03-15
Sodium-ion thin-film micro-batteries form a niche sector of energy storage devices. Sodium titanate, Na 2 Ti 6 O 13 (NTO) thin films were deposited by pulsed laser deposition (PLD) using solid-state synthesized polycrystalline Na 2 Ti 6 O 13 compound. The phase-purity and crystallinity of NTO in bulk and thin-film forms were confirmed by Rietveld refinement. Electron microscopy and atomic force microscopy revealed the formation of uniform ∼100 nm thin film with roughness of ∼4 nm consisting of homogeneous nanoscale grains. These PLD-deposited NTO thin-films, when tested in Na-half cell architecture, delivered a near theoretical reversible capacity close to 42 mA h g -1 involving Ti 4+ /Ti 3+ redox activity along with good cycling stability and rate kinetics. Na 2 Ti 6 O 13 can work as an efficient and safe anode in designing sodium-ion thin-film micro-batteries. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Christoffersen, Roy; Keller, Lindsay P.; Han, Jangmi; Rahman, Zia; Berger, Eve L.
2015-01-01
Focused ion beam (FIB) sectioning has revolutionized preparation of meteorite samples for characterization by analytical transmission electron microscopy (TEM) and other techniques. Although FIB is not "non-destructive" in the purest sense, each extracted section amounts to no more than nanograms (approximately 500 cubic microns) removed intact from locations precisely controlled by SEM imaging and analysis. Physical alteration of surrounding material by ion damage, fracture or sputter contamination effects is localized to within a few micrometers around the lift-out point. This leaves adjacent material intact for coordinate geochemical analysis by SIMS, microdrill extraction/TIMS and other techniques. After lift out, FIB sections can be quantitatively analyzed by electron microprobe prior to final thinning, synchrotron x-ray techniques, and by the full range of state-of-the-art analytical field-emission scanning transmission electron microscope (FE-STEM) techniques once thinning is complete. Multiple meteorite studies supported by FIB/FE-STEM are currently underway at NASA-JSC, including coordinated analysis of refractory phase assemblages in CAIs and fine-grained matrices in carbonaceous chondrites. FIB sectioning of CAIs has uncovered epitaxial and other overgrowth relations between corundum-hibonite-spinel consistent with hibonite preceding corundum and/or spinel in non-equilibrium condensation sequences at combinations of higher gas pressures, dust-gas enrichments or significant nebular transport. For all of these cases, the ability of FIB to allow for coordination with spatially-associated isotopic data by SIMS provides immense value for constraining the formation scenarios of the particular CAI assemblage. For carbonaceous chondrites matrix material, FIB has allowed us to obtain intact continuous sections of the immediate outer surface of Murchison (CM2) after it has been experimentally ion processed to simulate solar wind space weathering. The surface amorphization and loss of OH produced by the irradiation provides important clues regarding space weathering on primitive asteroids such as the OSIRIS-Rex target 101955 Bennu.
Ion Beam Assisted Deposition of Thin Epitaxial GaN Films.
Rauschenbach, Bernd; Lotnyk, Andriy; Neumann, Lena; Poppitz, David; Gerlach, Jürgen W
2017-06-23
The assistance of thin film deposition with low-energy ion bombardment influences their final properties significantly. Especially, the application of so-called hyperthermal ions (energy <100 eV) is capable to modify the characteristics of the growing film without generating a large number of irradiation induced defects. The nitrogen ion beam assisted molecular beam epitaxy (ion energy <25 eV) is used to deposit GaN thin films on (0001)-oriented 6H-SiC substrates at 700 °C. The films are studied in situ by reflection high energy electron diffraction, ex situ by X-ray diffraction, scanning tunnelling microscopy, and high-resolution transmission electron microscopy. It is demonstrated that the film growth mode can be controlled by varying the ion to atom ratio, where 2D films are characterized by a smooth topography, a high crystalline quality, low biaxial stress, and low defect density. Typical structural defects in the GaN thin films were identified as basal plane stacking faults, low-angle grain boundaries forming between w-GaN and z-GaN and twin boundaries. The misfit strain between the GaN thin films and substrates is relieved by the generation of edge dislocations in the first and second monolayers of GaN thin films and of misfit interfacial dislocations. It can be demonstrated that the low-energy nitrogen ion assisted molecular beam epitaxy is a technique to produce thin GaN films of high crystalline quality.
Paydavosi, Sarah; Aidala, Katherine E; Brown, Patrick R; Hashemi, Pouya; Supran, Geoffrey J; Osedach, Timothy P; Hoyt, Judy L; Bulović, Vladimir
2012-03-14
Retention and diffusion of charge in tris(8-hydroxyquinoline) aluminum (Alq(3)) molecular thin films are investigated by injecting electrons and holes via a biased conductive atomic force microscopy tip into the Alq(3) films. After the charge injection, Kelvin force microscopy measurements reveal minimal changes with time in the spatial extent of the trapped charge domains within Alq(3) films, even for high hole and electron densities of >10(12) cm(-2). We show that this finding is consistent with the very low mobility of charge carriers in Alq(3) thin films (<10(-7) cm(2)/(Vs)) and that it can benefit from the use of Alq(3) films as nanosegmented floating gates in flash memory cells. Memory capacitors using Alq(3) molecules as the floating gate are fabricated and measured, showing durability over more than 10(4) program/erase cycles and the hysteresis window of up to 7.8 V, corresponding to stored charge densities as high as 5.4 × 10(13) cm(-2). These results demonstrate the potential for use of molecular films in high storage capacity nonvolatile memory cells. © 2012 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhunthan, N.; Singh, Om Pal; Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org
2015-10-15
Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films wasmore » done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.« less
Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support.
Lin, Xiaoyang; Liu, Peng; Wei, Yang; Li, Qunqing; Wang, Jiaping; Wu, Yang; Feng, Chen; Zhang, Lina; Fan, Shoushan; Jiang, Kaili
2013-01-01
Graphene, exhibiting superior mechanical, thermal, optical and electronic properties, has attracted great interest. Considering it being one-atom-thick, and the reduced mechanical strength at grain boundaries, the fabrication of large-area suspended chemical vapour deposition graphene remains a challenge. Here we report the fabrication of an ultra-thin free-standing carbon nanotube/graphene hybrid film, inspired by the vein-membrane structure found in nature. Such a square-centimetre-sized hybrid film can realize the overlaying of large-area single-layer chemical vapour deposition graphene on to a porous vein-like carbon nanotube network. The vein-membrane-like hybrid film, with graphene suspended on the carbon nanotube meshes, possesses excellent mechanical performance, optical transparency and good electrical conductivity. The ultra-thin hybrid film features an electron transparency close to 90%, which makes it an ideal gate electrode in vacuum electronics and a high-performance sample support in transmission electron microscopy.
Challenges in quantitative crystallographic characterization of 3D thin films by ACOM-TEM.
Kobler, A; Kübel, C
2017-02-01
Automated crystal orientation mapping for transmission electron microscopy (ACOM-TEM) has become an easy to use method for the investigation of crystalline materials and complements other TEM methods by adding local crystallographic information over large areas. It fills the gap between high resolution electron microscopy and electron back scatter diffraction in terms of spatial resolution. Recent investigations showed that spot diffraction ACOM-TEM is a quantitative method with respect to sample parameters like grain size, twin density, orientation density and others. It can even be used in combination with in-situ tensile or thermal testing. However, there are limitations of the current method. In this paper we discuss some of the challenges and discuss solutions, e.g. we present an ambiguity filter that reduces the number of pixels with a '180° ambiguity problem'. For that an ACOM-TEM tilt series of nanocrystalline Pd thin films with overlapping crystallites was acquired and analyzed. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Sharona, H.; Loukya, B.; Bhat, U.; Sahu, R.; Vishal, B.; Silwal, P.; Gupta, A.; Datta, R.
2017-12-01
The origin of alternating wavy dark-bright stripe-like contrast in strain contrast transmission electron microscopy images of NiCo2O4 (NCO) epitaxial thin films grown by pulsed laser deposition has been investigated. The nanoscale stripe-like pattern is determined to be associated with coexisting rock salt (RS) and inverse spinel crystal phases. The presence of two different phases, not addressed in previous reports, is experimentally confirmed by both electron diffraction and high resolution transmission electron microscopy imaging. First principles based calculations, together with compressive strain present in the films, support the formation of such coexisting crystallographic phases in NCO. Similar microstructural patterns and RS structure are not observed in epitaxial films of two other oxides of the spinel family, namely, NiFe2O4 and CoFe2O4. A correlation between the coexisting structures and the macroscopic physical properties of NCO is discussed.
Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; ...
2016-04-22
Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. Themore » remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.« less
Electronic structure of Fe1.08Te bulk crystals and epitaxial FeTe thin films on Bi2Te3
NASA Astrophysics Data System (ADS)
Arnold, Fabian; Warmuth, Jonas; Michiardi, Matteo; Fikáček, Jan; Bianchi, Marco; Hu, Jin; Mao, Zhiqiang; Miwa, Jill; Singh, Udai Raj; Bremholm, Martin; Wiesendanger, Roland; Honolka, Jan; Wehling, Tim; Wiebe, Jens; Hofmann, Philip
2018-02-01
The electronic structure of thin films of FeTe grown on Bi2Te3 is investigated using angle-resolved photoemission spectroscopy, scanning tunneling microscopy and first principles calculations. As a comparison, data from cleaved bulk Fe1.08Te taken under the same experimental conditions is also presented. Due to the substrate and thin film symmetry, FeTe thin films grow on Bi2Te3 in three domains, rotated by 0°, 120°, and 240°. This results in a superposition of photoemission intensity from the domains, complicating the analysis. However, by combining bulk and thin film data, it is possible to partly disentangle the contributions from three domains. We find a close similarity between thin film and bulk electronic structure and an overall good agreement with first principles calculations, assuming a p-doping shift of 65 meV for the bulk and a renormalization factor of around two. By tracking the change of substrate electronic structure upon film growth, we find indications of an electron transfer from the FeTe film to the substrate. No significant change of the film’s electronic structure or doping is observed when alkali atoms are dosed onto the surface. This is ascribed to the film’s high density of states at the Fermi energy. This behavior is also supported by the ab initio calculations.
Three-dimensional imaging of adherent cells using FIB/SEM and STEM.
Villinger, Clarissa; Schauflinger, Martin; Gregorius, Heiko; Kranz, Christine; Höhn, Katharina; Nafeey, Soufi; Walther, Paul
2014-01-01
In this chapter we describe three different approaches for three-dimensional imaging of electron microscopic samples: serial sectioning transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) tomography, and focused ion beam/scanning electron microscopy (FIB/SEM) tomography. With these methods, relatively large volumes of resin-embedded biological structures can be analyzed at resolutions of a few nm within a reasonable expenditure of time. The traditional method is serial sectioning and imaging the same area in all sections. Another method is TEM tomography that involves tilting a section in the electron beam and then reconstruction of the volume by back projection of the images. When the scanning transmission (STEM) mode is used, thicker sections (up to 1 μm) can be analyzed. The third approach presented here is focused ion beam/scanning electron microscopy (FIB/SEM) tomography, in which a sample is repeatedly milled with a focused ion beam (FIB) and each newly produced block face is imaged with the scanning electron microscope (SEM). This process can be repeated ad libitum in arbitrary small increments allowing 3D analysis of relatively large volumes such as eukaryotic cells. We show that resolution of this approach is considerably improved when the secondary electron signal is used. However, the most important prerequisite for three-dimensional imaging is good specimen preparation. For all three imaging methods, cryo-fixed (high-pressure frozen) and freeze-substituted samples have been used.
NASA Astrophysics Data System (ADS)
Lu, Lei; Xiao, Dingquan; Lin, Dunmin; Zhang, Yongbin; Zhu, Jianguo
2009-02-01
Bi 0.5(Na 0.7K 0.2Li 0.1) 0.5TiO 3 (BNKLT) thin films were prepared on Pt/Ti/SiO 2/Si substrates by pulsed laser deposition (PLD) technique. The films prepared were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effects of the processing parameters, such as oxygen pressure, substrate temperature and laser power, on the crystal structure, surface morphology, roughness and deposition rates of the thin films were investigated. It was found that the substrate temperature of 600 °C and oxygen pressure of 30 Pa are the optimized technical parameters for the growth of textured film, and all the thin films prepared have granular structure, homogeneous grain size and smooth surfaces.
Najafi, Ebrahim; Liao, Bolin; Scarborough, Timothy; Zewail, Ahmed
2018-01-01
Understanding the mechanical properties of organic semiconductors is essential to their electronic and photovoltaic applications. Despite a large volume of research directed toward elucidating the chemical, physical and electronic properties of these materials, little attention has been directed toward understanding their thermo-mechanical behavior. Here, we report the ultrafast imaging of surface acoustic waves (SAWs) on the surface of the Poly(3-hexylthiophene-2,5-diyl) (P3HT) thin film at the picosecond and nanosecond timescales. We then use these images to measure the propagation velocity of SAWs, which we then employ to determine the Young's modulus of P3HT. We further validate our experimental observation by performing a semi-empirical transient thermoelastic finite element analysis. Our findings demonstrate the potential of ultrafast electron microscopy to not only probe charge carrier dynamics in materials as previously reported, but also to measure their mechanical properties with great accuracy. This is particularly important when in situ characterization of stiffness for thin devices and nanomaterials is required. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gokdogan, Gozde Kahriman, E-mail: gozdekahriman@gmail.com; Anutgan, Tamila, E-mail: tamilaanutgan@karabuk.edu.tr
2016-03-25
This contribution provides the comparison between micro- and macro-structure of hydrogenated nanocrystalline silicon (nc-Si:H) thin films grown by plasma enhanced chemical vapor deposition (PECVD) technique under different RF power densities (P{sub RF}: 100−444 mW/cm{sup 2}). Micro-structure is assessed through grazing angle X-ray diffraction (GAXRD), while macro-structure is followed by surface and cross-sectional morphology via field emission scanning electron microscopy (FE-SEM). The nanocrystallite size (∼5 nm) and FE-SEM surface conglomerate size (∼40 nm) decreases with increasing P{sub RF}, crystalline volume fraction reaches maximum at 162 mW/cm{sup 2}, FE-SEM cross-sectional structure is columnar except for the film grown at 162 mW/cm{sup 2}. The dependence of previously determinedmore » ‘oxygen content–refractive index’ correlation on obtained macro-structure is investigated. Also, the effect of P{sub RF} is discussed in the light of plasma parameters during film deposition process and nc-Si:H film growth models.« less
Gavin, Carson T; Ali, Sohrab N; Tailly, Thomas; Olvera-Posada, Daniel; Alenezi, Husain; Power, Nicholas E; Hou, Jinqiang; St. Amant, Andre H; Luyt, Leonard G; Wood, Stephen; Wu, Charles; Razvi, Hassan; Leong, Hon S
2016-01-01
Accurate determination of urinary stone composition has significant bearing on understanding pathophysiology, choosing treatment modalities and preventing recurrence. A need exists for improved methods to determine stone composition. Urine of 31 patients with known renal calculi was examined with nanoscale flow cytometry and the calculi collected during surgery subsequently underwent petrographic thin sectioning with polarized and fluorescent microscopy. Fluorescently labeled bisphosphonate probes (Alendronate-fluorescein/Alendronate-Cy5) were developed for nanoscale flow cytometry to enumerate nanocrystals that bound the fluorescent probes. Petrographic sections of stones were also imaged by fluorescent and polarized light microscopy with composition analysis correlated to alendronate +ve nanocrystal counts in corresponding urine samples. Urine samples from patients with Ca2+ and Mg2+ based calculi exhibited the highest alendronate +ve nanocrystal counts, ranging from 100–1000 nm in diameter. This novel urine based assay was in agreement with composition determined by petrographic thin sections with Alendronate probes. In some cases, high alendronate +ve nanocrystal counts indicated a Ca2+ or Mg2+ composition, as confirmed by petrographic analysis, overturning initial spectrophotometric diagnosis of stone composition. The combination of nanoscale flow cytometry and petrographic thin sections offer an alternative means for determining stone composition. Nanoscale flow cytometry of alendronate +ve nanocrystals alone may provide a high-throughput means of evaluating stone burden. PMID:26771074
HALE STAIN FOR SIALIC ACID-CONTAINING MUCINS. ADAPTATION TO ELECTRON MICROSCOPY.
GASIC, G; BERWICK, L
1963-10-01
The feasibility of using the Hale stain to identify cellular sialic acid-containing mucins by electron microscopy was investigated. Three kinds of mouse ascites tumor cells were fixed in neutral buffered formalin, exposed to fresh colloidal ferric oxide, treated with potassium ferrocyanide, imbedded in Selectron, and sectioned for electron microscopy. Additional staining with uranyl acetate and potassium permanganate was done after sectioning in order to increase contrast. Those cells known to be coated with sialomucin showed deposits of electron-opaque ferric ferrocyanide crystals in the areas where sialomucin concentrations were expected. When these cells were treated with neuraminidase beforehand, these deposits did not appear. It was concluded that, with the precautions and modifications described, the Hale stain can be successfully combined with electron microscopy to identify sialomucin.
NASA Astrophysics Data System (ADS)
Anderson, L.; Lechaire, J.; Frebourg, G.; Boudier, T.; Zbinden, M.; Gaill, F.
2005-12-01
The chemical and temperature conditions around deep sea hydrothermal vents are both dynamic and extreme, yet the shrimp Rimicaris exoculata flourishes around these environments on the Mid-Atlantic Ridge (MAR) . The epibiotic bacteria and minerals found within the branchial chamber of the shrimp are of great interest in the search for a chemical model for the Rainbow MAR hydrothermal vent site. Here we examine the close three-dimensional (3D) relationship between bacteria (on inner surface of the branchial chamber wall), and the minerals that surround them. The morphology and chemistry of the minerals were analysed by Transmission Electron Microscopy (TEM) and Energy-filtering Transmission Electron Microscopy (EFTEM, LEO 912 Omega) respectively, and the 3D organisation (TOMO) was established using IMAGE-J (public-domain) tomographic reconstruction software. Samples of Rimicaris exoculata were collected from the Rainbow site (36° 13' N, 2320 m depth). The cuticle of the branchial chamber was cut into 2mm wide sub-samples, dehydrated and impregnated in resin for cutting. Consecutive thin and semi-thin sections of 80μm (for TEM, EFTEM) and 150μm-200μm (for TOMO) were cut and mounted on standard microscope grids. Thin-section grids were observed initially for morphology, to find broad relationships between bacteria and minerals, and also as a tool to find areas for EFTEM analysis and TOMO. The TOMO reconstruction was produced from a `Tilt Series', comprising a number of images taken at one degree increments between -55° and +55°. Tilt series were obtained using the ESIvision program (Version 3.0, Soft' Imaging Software, SIS GmbH, D-49153 Münster, Germany) with additional in-house scripts for automated acquisition. This same procedure was applied to consecutive semi-thin sections through the same sub-sample. The different series for each sub-sample were then overlain to obtain a 3D overview of the bacteria-mineral associations. In many cases the minerals exhibit a sharp boundary against the bacteria, often with a substantial void between bacterial membrane and mineral boundary. Mineral layering and areas of elemental zoning are also observed. Iron is the most prevalent element, with a close association to the bacteria. Future work will combine the elemental data obtained by EFTEM with tomography to produce a 3D elemental map of the minerals surrounding the bacteria, focussing particularly on the bacteria-mineral interface using recently developed EFTET-J software (http://www.snv.jussieu.fr/~wboudier/softs.html).
Terrace-like morphology of the boundary created through basal-prismatic transformation in magnesium
Liu, Bo -Yu; Wan, Liang; Wang, Jian; ...
2015-01-24
Here, the boundaries created through basal-prismatic transformation in submicron-sized single crystal magnesium have been investigated systematically using in situ transmission electron microscopy. We found that these boundaries not only deviated significantly from the twin plane associated with {101¯2} twin, but also possessed a non-planar morphology. After the sample was thinned to be less than 90 nm, aberration-corrected scanning transmission electron microscopy observation found that the basic components of these boundaries are actually terrace-like basal-prismatic interfaces.
Active pixel sensor array as a detector for electron microscopy.
Milazzo, Anna-Clare; Leblanc, Philippe; Duttweiler, Fred; Jin, Liang; Bouwer, James C; Peltier, Steve; Ellisman, Mark; Bieser, Fred; Matis, Howard S; Wieman, Howard; Denes, Peter; Kleinfelder, Stuart; Xuong, Nguyen-Huu
2005-09-01
A new high-resolution recording device for transmission electron microscopy (TEM) is urgently needed. Neither film nor CCD cameras are systems that allow for efficient 3-D high-resolution particle reconstruction. We tested an active pixel sensor (APS) array as a replacement device at 200, 300, and 400 keV using a JEOL JEM-2000 FX II and a JEM-4000 EX electron microscope. For this experiment, we used an APS prototype with an area of 64 x 64 pixels of 20 microm x 20 microm pixel pitch. Single-electron events were measured by using very low beam intensity. The histogram of the incident electron energy deposited in the sensor shows a Landau distribution at low energies, as well as unexpected events at higher absorbed energies. After careful study, we concluded that backscattering in the silicon substrate and re-entering the sensitive epitaxial layer a second time with much lower speed caused the unexpected events. Exhaustive simulation experiments confirmed the existence of these back-scattered electrons. For the APS to be usable, the back-scattered electron events must be eliminated, perhaps by thinning the substrate to less than 30 microm. By using experimental data taken with an APS chip with a standard silicon substrate (300 microm) and adjusting the results to take into account the effect of a thinned silicon substrate (30 microm), we found an estimate of the signal-to-noise ratio for a back-thinned detector in the energy range of 200-400 keV was about 10:1 and an estimate for the spatial resolution was about 10 microm.
Facile synthesis and photo electrochemical performance of SnSe thin films
NASA Astrophysics Data System (ADS)
Pusawale, S. N.; Jadhav, P. S.; Lokhande, C. D.
2018-05-01
Orthorhombic structured SnSe thin films are synthesized via SILAR (successive ionic layer adsorption and reaction) method on glass substrates. The structural properties of thin films are characterized by x-ray diffraction, scanning electron microscopy studies from which nanoparticles with an elongated shape and hydrophilic behavior are observed. UV -VIS absorption spectroscopy study showed the maximum absorption in the visible region with a direct band gap of 1.55 eV. The photo electrochemical study showed p-type electrical conductivity.
Atomic Layer-Deposited Titanium-Doped Vanadium Oxide Thin Films and Their Thermistor Applications
Wang, Shuyu; Yu, Shifeng; Lu, Ming; ...
2016-11-30
In this paper, we report the enhancement in the temperature coefficient of resistance (TCR) of atomic layer-deposited vanadium oxide thin films through the doping of titanium oxide. The Hall effect measurement provides a potential explanation for the phenomenon. The composition and morphology of the thin films are investigated by x-ray diffraction and scanning electron microscopy techniques. The high TCR, good uniformity, and low processing temperature of the material make it a good candidate for thermistor application.
Thin film resists for registration of single-ion impacts
NASA Astrophysics Data System (ADS)
Millar, V.; Pakes, C. I.; Prawer, S.; Rout, B.; Jamieson, D. N.
2005-06-01
We demonstrate registration of the location of the impact site of single ions using a thin film polymethyl methacrylate resist on a SiO2/Si substrate. Carbon nanotube-based atomic force microscopy is used to reveal craters in the surface of chemically developed films, consistent with the development of latent damage induced by single-ion impacts. The responses of thin PMMA films to the implantation of He+ and Ga+ ions indicate the role of electronic and nuclear energy loss mechanisms at the single-ion level.
The effects of viscoelastic polymer substrates on adult stem cell differentiation
NASA Astrophysics Data System (ADS)
Chang, Chungchueh; Fields, Adam; Ramek, Alex; Jurukovski, Vladimir; Simon, Marcia; Rafailovich, Miriam
2009-03-01
Dental Pulp Stem Cells (DPSCs) are known to differentiate in either bone, dentine, or nerve tissue by different environment signals. In this study, we have determined whether differentiation could only through modification of the substrate mechanics. Atomic Force Microscopy (AFM) on Shear Modulation Force Microscopy (SMFM) mode indicated that the spun-cast polybutadiene (PB) thin films could be used to provide different stiffness substrates by changing the thicknesses of thin films. DPSCs were then plated on these substrates and cultured in standard media. After 28 days incubation, Lasar Scanning Confocal Microscopy (LSCM) with mercury lamp indicated that the crystals were observed only on hard surfaces. The Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDX analysis) indicated that the crystals are calcium phosphates. The Glancing Incidence Diffraction (GID) was also used to determine the structure of crystals. These results indicate that DPSCs could be differentiated into osteoblasts by mechanical stimuli from substrate mechanics.
Defects in paramagnetic Co-doped ZnO films studied by transmission electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovacs, Andras; Ney, A.; Duchamp, Martial
2013-12-23
We have studied planar defects in epitaxial Co:ZnO dilute magnetic semiconductor thin films deposited on c-plane sapphire (Al2O3) and the Co:ZnO/Al2O3 interface structure at atomic resolution using aberration-corrected transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). Comparing Co:ZnO samples deposited by pulsed laser deposition and reactive magnetron sputtering, both exhibit extrinsic stacking faults, incoherent interface structures, and compositional variations within the first 3-4 Co:ZnO layers at the interface.. In addition, we have measured the local strain which reveals the lattice distortion around the stacking faults.
NASA Technical Reports Server (NTRS)
Synowicki, R. A.; Hale, Jeffrey S.; Woollam, John A.
1992-01-01
The University of Nebraska is currently evaluating Low Earth Orbit (LEO) simulation techniques as well as a variety of thin film protective coatings to withstand atomic oxygen (AO) degradation. Both oxygen plasma ashers and an electron cyclotron resonance (ECR) source are being used for LEO simulation. Thin film coatings are characterized by optical techniques including Variable Angle Spectroscopic Ellipsometry, Optical spectrophotometry, and laser light scatterometry. Atomic Force Microscopy (AFM) is also used to characterize surface morphology. Results on diamondlike carbon (DLC) films show that DLC degrades with simulated AO exposure at a rate comparable to Kapton polyimide. Since DLC is not as susceptible to environmental factors such as moisture absorption, it could potentially provide more accurate measurements of AO fluence on short space flights.
A green synthesis method for large area silver thin film containing nanoparticles.
Shinde, N M; Lokhande, A C; Lokhande, C D
2014-07-05
The green synthesis method is inexpensive and convenient for large area deposition of thin films. For the first time, a green synthesis method for large area silver thin film containing nanoparticles is reported. Silver nanostructured films are deposited using silver nitrate solution and guava leaves extract. The study confirmed that the reaction time plays a key role in the growth and shape/size control of silver nanoparticles. The properties of silver films are studied using UV-visible spectrophotometer, scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), contact angle, Fourier-transform Raman (FT-Raman) spectroscopy and Photoluminescence (PL) techniques. Finally, as an application, these films are used effectively in antibacterial activity study. Copyright © 2014 Elsevier B.V. All rights reserved.
Use of fluorescence and scanning electron microscopy as tools in teaching biology
NASA Astrophysics Data System (ADS)
Ghosh, Nabarun; Silva, Jessica; Vazquez, Aracely; Das, A. B.; Smith, Don W.
2011-06-01
Recent nationwide surveys reveal significant decline in students' interest in Math and Sciences. The objective of this project was to inspire young minds in using various techniques involved in Sciences including Scanning Electron Microscopy. We used Scanning Electron Microscope in demonstrating various types of Biological samples. An SEM Tabletop model in the past decade has revolutionized the use of Scanning Electron Microscopes. Using SEM Tabletop model TM 1000 we studied biological specimens of fungal spores, pollen grains, diatoms, plant fibers, dust mites, insect parts and leaf surfaces. We also used fluorescence microscopy to view, to record and analyze various specimens with an Olympus BX40 microscope equipped with FITC and TRITC fluorescent filters, a mercury lamp source, DP-70 digital camera with Image Pro 6.0 software. Micrographs were captured using bright field microscopy, the fluoresceinisothiocyanate (FITC) filter, and the tetramethylrhodamine (TRITC) filter settings at 40X. A high pressure mercury lamp or UV source was used to excite the storage molecules or proteins which exhibited autofluorescence. We used fluorescent microscopy to confirm the localization of sugar beet viruses in plant organs by viewing the vascular bundles in the thin sections of the leaves and other tissues. We worked with the REU summer students on sample preparation and observation on various samples utilizing the SEM. Critical Point Drying (CPD) and metal coating with the sputter coater was followed before observing some cultured specimen and the samples that were soft in textures with high water content. SEM Top allowed investigating the detailed morphological features that can be used for classroom teaching. Undergraduate and graduate researchers studied biological samples of Arthropods, pollen grains and teeth collected from four species of snakes using SEM. This project inspired the research students to pursue their career in higher studies in science and 45% of the undergraduates participated in this project entered Graduate school.
Ti{sub 2}AlN thin films synthesized by annealing of (Ti+Al)/AlN multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabioch, Thierry, E-mail: Thierry.cabioch@univ-poitiers.fr; Alkazaz, Malaz; Beaufort, Marie-France
2016-08-15
Highlights: • Epitaxial thin films of the MAX phase Ti{sub 2}AlN are obtained by thermal annealing. • A new metastable (Ti,Al,N) solid solution with the structure of α-T is evidenced. • The formation of the MAX phase occurs at low temperature (600 °C). - Abstract: Single-phase Ti{sub 2}AlN thin films were obtained by annealing in vacuum of (Ti + Al)/AlN multilayers deposited at room temperature by magnetron sputtering onto single-crystalline (0001) 4H-SiC and (0001) Al{sub 2}O{sub 3} substrates. In-situ X-ray diffraction experiments combined with ex-situ cross-sectional transmission electron microscopy observations reveal that interdiffusion processes occur in the multilayer at amore » temperature of ∼400 °C leading to the formation of a (Ti, Al, N) solid solution, having the hexagonal structure of α-Ti, whereas the formation of Ti{sub 2}AlN occurs at 550–600 °C. Highly oriented (0002) Ti{sub 2}AlN thin films can be obtained after an annealing at 750 °C.« less
Dumée, Ludovic F.; She, Fenghua; Duke, Mikel; Gray, Stephen; Hodgson, Peter; Kong, Lingxue
2014-01-01
Meso-porous metal materials have enhanced surface energies offering unique surface properties with potential applications in chemical catalysis, molecular sensing and selective separation. In this paper, commercial 20 nm diameter metal nano-particles, including silver and copper were blended with 7 nm silica nano-particles by shear mixing. The resulted powders were cold-sintered to form dense, hybrid thin films. The sacrificial silica template was then removed by selective etching in 12 wt% hydrofluoric acid solutions for 15 min to reveal a purely metallic meso-porous thin film material. The impact of the initial silica nano-particle diameter (7–20 nm) as well as the sintering pressure (5–20 ton·m−2) and etching conditions on the morphology and properties of the final nano-porous thin films were investigated by porometry, pyknometery, gas and liquid permeation and electron microscopy. Furthermore, the morphology of the pores and particle aggregation during shear mixing were assessed through cross-sectioning by focus ion beam milling. It is demonstrated that meso-pores ranging between 50 and 320 nm in average diameter and porosities up to 47% can be successfully formed for the range of materials tested. PMID:28344241
Preliminary results on complex ceramic layers deposition by atmospheric plasma spraying
NASA Astrophysics Data System (ADS)
Florea, Costel; Bejinariu, Costicǎ; Munteanu, Corneliu; Cimpoeşu, Nicanor
2017-04-01
In this article we obtain thin layers from complex ceramic powders using industrial equipment based on atmospheric plasma spraying. We analyze the influence of the substrate material roughness on the quality of the thin layers using scanning electron microscopy (SEM) and X-ray dispersive energy analyze (EDAX). Preliminary results present an important dependence between the surface state and the structural and chemical homogeneity.
Nanostructuring on zinc phthalocyanine thin films for single-junction organic solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhary, Dhirendra K.; Kumar, Lokendra, E-mail: lokendrakr@allduniv.ac.in
2016-05-23
Vertically aligned and random oriented crystalline molecular nanorods of organic semiconducting Zinc Phthalocyanine (ZnPc) have been grown on ITO coated glass substrate using solvent volatilization method. Interesting changes in surface morphology were observed under different solvent treatment. Vertically aligned nanorods of ZnPc thin film were observed in the films treated with acetone, where as the random oriented nanorods were observed in the films treated with chloroform. The X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) have been used for characterization of nanostructures. The optical properties of the nanorods have been investigated by UV-Vis. absorption spectroscopy.
Thin films deposited by femtosecond pulsed laser ablation of tungsten carbide
NASA Astrophysics Data System (ADS)
De Bonis, A.; Teghil, R.; Santagata, A.; Galasso, A.; Rau, J. V.
2012-09-01
Ultra-short Pulsed Laser Deposition has been applied to the production of thin films from a tungsten carbide target. The gaseous phase obtained by the laser ablation shows a very weak primary plume, in contrast with a very strong secondary one. The deposited films, investigated by Scanning Electron Microscopy, Atomic Force Microscopy, X-Ray Photoelectron Spectroscopy and X-Ray Diffraction, present a mixture of WC and other phases with lower carbon content. All films are amorphous, independently from the substrate temperature. The characteristics of the deposits have been explained in terms of thermal evaporation and cooling rate of molten particles ejected from the target.
Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; Xiao, Kai; Ma, Ying-Zhong
2017-07-20
A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. Here, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH 3 NH 3 PbI 3-x Cl x ) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmission microscopies. Comprehensive image analysis revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. These results show that PL probes effectively the species near or at the film surface.
NASA Astrophysics Data System (ADS)
Uto, Koichiro; Yamamoto, Kazuya; Kishimoto, Naoko; Muraoka, Masahiro; Aoyagi, Takao; Yamashita, Ichiro
2013-04-01
We have fabricated electroactive multilayer thin films containing ferritin protein cages. The multilayer thin films were prepared on a solid substrate by the alternate electrostatic adsorption of (apo)ferritin and poly( N-isopropylacrylamide- co-2-carboxyisopropylacrylamide) (NIPAAm- co-CIPAAm) in pH 3.5 acetate buffer solution. The assembly process was monitored using a quartz crystal microbalance. The (apo)ferritin/poly(NIPAAm- co-CIPAAm) multilayer thin films were then cross-linked using a water-soluble carbodiimide, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide. The cross-linked films were stable under a variety of conditions. The surface morphology and thickness of the multilayer thin films were characterized by atomic force microscopy, and the ferritin iron cores were observed by scanning electron microscopy to confirm the assembly mechanism. Cyclic voltammetry measurements showed different electrochemical properties for the cross-linked ferritin and apoferritin multilayer thin films, and the effect of stability of the multilayer film on its electrochemical properties was also examined. Our method for constructing multilayer films containing protein cages is expected to be useful in building more complex functional inorganic nanostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskowski, Lukasz, E-mail: lukasz.laskowski@kik.pcz.pl; Laskowska, Magdalena, E-mail: magdalena.laskowska@onet.pl; Jelonkiewicz, Jerzy, E-mail: jerzy.jelonkiewicz@kik.pcz.pl
The SBA-15 silica thin films containing copper ions anchored inside channels via propyl phosphonate groups are investigated. Such materials were prepared in the form of thin films, with hexagonally arranged pores, laying rectilinear to the substrate surface. However, in the case of our thin films, their free standing form allowed for additional research possibilities, that are not obtainable for typical thin films on a substrate. The structural properties of the samples were investigated by X-ray reflectometry, atomic force microscopy (AFM) and transmission electron microscopy (TEM). The molecular structure was examined by Raman spectroscopy supported by numerical simulations. Magnetic measurements (SQUIDmore » magnetometry and EPR spectroscopy) showed weak antiferromagnetic interactions between active units inside silica channels. Consequently, the pores arrangement was determined and the process of copper ions anchoring by propyl phosphonate groups was verified in unambiguous way. Moreover, the type of interactions between magnetic atoms was determined. - Highlights: • Functionalized free-standing SBA-15 thin films were synthesized for a first time. • Thin films synthesis procedure was described in details. • Structural properties of the films were thoroughly investigated and presented. • Magnetic properties of the novel material was investigated and presented.« less
Simulation of transformations of thin metal films heated by nanosecond laser pulses
NASA Astrophysics Data System (ADS)
Balandin, V. Yu.; Niedrig, R.; Bostanjoglo, O.
1995-01-01
The ablation of free-standing thin aluminum films by a nanosecond laser pulse was investigated by time-resolved transmission electron microscopy and numerical simulation. It was established that thin film geometry is particularly suited to furnish information on the mechanism of evaporation and the surface tension of the melt. In the case of aluminum the surface tension sigma as function of temperature can be approximated by two linear sections with a coefficient -0.3 x 10(exp -3) N/K m from the melting point 933 K up to 3000 K and -0.02 x 10(exp -3) N/K m above 3000 K, respectively, with sigma(993 K) = 0.9 N/m and sigma(8500 K) = 0. At lower pulse energies the films disintegrated predominantly by thermocapillary flow. Higher pulse energies produced volume evaporation, and a nonmonotonous flow, explained by recoil from evaporating atoms and thermocapillarity. The familiar equations of energy and motion, which presuppose separate and coherent vapor and liquid phases, were not adequate to describe the ablation of the hottest zone. Surface evaporation seemed to be marginal at all laser pulse energies used.
1985-01-01
A monoclonal antibody, MF20, which has been shown previously to bind the myosin heavy chain of vertebrate striated muscle, has been proven to bind the light meromyosin (LMM) fragment by solid phase radioimmune assay with alpha-chymotryptic digests of purified myosin. Epitope mapping by electron microscopy of rotary-shadowed, myosin-antibody complexes has localized the antibody binding site to LMM at a point approximately 92 nm from the C-terminus of the myosin heavy chain. Since this epitope in native thick filaments is accessible to monoclonal antibodies, we used this antibody as a high affinity ligand to analyze the packing of LMM along the backbone of the thick filament. By immunofluorescence microscopy, MF20 was shown to bind along the entire A-band of chicken pectoralis myofibrils, although the epitope accessibility was greater near the ends than at the center of the A- bands. Thin-section, transmission electron microscopy of myofibrils decorated with MF20 revealed 50 regularly spaced, cross-striations in each half A-band, with a repeat distance of approximately 13 nm. These were numbered consecutively, 1-50, from the A-band to the last stripe, approximately 68 nm from the filament tips. These same striations could be visualized by negative staining of native thick filaments labeled with MF20. All 50 striations were of a consecutive, uninterrupted repeat which approximated the 14-15-nm axial translation of cross- bridges. Each half M-region contained five MF20 striations (approximately 13 nm apart) with a distance between stripes 1 and 1', on each half of the bare zone, of approximately 18 nm. This is compatible with a packing model with full, antiparallel overlap of the myosin rods in the bare zone region. Differences in the spacings measured with negatively stained myofilaments and thin-sectioned myofibrils have been shown to arise from specimen shrinkage in the fixed and embedded preparations. These observations provide strong support for Huxley's original proposal for myosin packing in thick filaments of vertebrate muscle (Huxley, H. E., 1963, J. Mol. Biol., 7:281-308) and, for the first time, directly demonstrate that the 14-15- nm axial translation of LMM in the thick filament backbone corresponds to the cross-bridge repeat detected with x-ray diffraction of living muscle. PMID:3897243
Müller glial cells of the primate foveola: An electron microscopical study.
Syrbe, Steffen; Kuhrt, Heidrun; Gärtner, Ulrich; Habermann, Gunnar; Wiedemann, Peter; Bringmann, Andreas; Reichenbach, Andreas
2018-02-01
Previous studies on the ultrastructure of the primate foveola suggested the presence of an inverted cone-like structure which is formed by 25-35 specialized Müller cells overlying the area of high photoreceptor density. We investigated the ultrastructure of the Müller cells in the foveola of a human and macaque retina. Sections through the posterior poles of an eye of a 40 years-old human donor and an eye of an adult cynomolgus monkey (Macaca fascicularis) were investigated with transmission electron microscopy. The foveola consisted of an inner layer (thickness, 5.5-12 μm) which mainly contained somata (including nuclei) and inner processes of Müller cells; this layer overlaid the central Henle fibers and outer nuclear layer. The inner layer contained numerous watery cysts and thin lamelliform and tubular Müller cell processes which spread along the inner limiting membrane (ILM). The cytoplasm of the outer Müller cell processes became increasingly dispersed and electron-lucent in the course towards the outer limiting membrane. The ILM of the foveola was formed by a very thin basal lamina (thickness, <40 nm) while the basal lamina of the parafovea was thick (0.9-1 μm). The data show that there are various conspicuous features of foveolar Müller cells. The numerous thin Müller cell processes below the ILM may smooth the inner surface of the foveola (to minimize image distortion resulting from varying light refraction angles at an uneven retinal surface), create additional barriers to the vitreous cavity (compensating the thinness of the ILM), and provide mechanical stability to the tissue. The decreasing density of the outer process cytoplasm may support the optical function of the foveola. Copyright © 2017. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Rabindar K.; Reddy, G. B.
In this work, we have successfully developed plasma assisted paste sublimation route to deposit vertically aligned MoO{sub 3} nanoflakes (NFs) on nickel coated glass substrate in oxygen plasma ambience with the assistant of Ni thin layer as a catalyst. In our case, sublimation source (Mo strip surface) is resistively heated by flowing current across it. The structural, morphological, and optical properties of NFs have been investigated systematically using x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), High resolution transmission electron microscopy (HRTEM), micro-Raman spectroscopy, and Photoluminescence (PL) spectroscopy. Studies reveal thatmore » the presence of oxygen plasma and the nickel thin layer are very essential for the growth of vertically aligned NFs. The observed results divulge that α-MoO{sub 3} NFs are deposited uniformly on large scale with very high aspect (height/thickness) ratio more than 30 and well aligned along [0 k 0] crystallographic direction where k is even (2, 4, 6). Raman spectrum shows a significant size effect on the vibrational property of MoO{sub 3} nanoflakes. The PL spectrum of MoO{sub 3} NFs was recorded at room temperature and four prominent peaks at 365 nm, 395 nm, 452 nm, and 465 nm corresponding to UV-visible region were observed. In this paper, a three step growth strategy for the formation of MoO{sub 3} NFs has been proposed in detail.« less
Electron microscopy study of Ni induced crystallization in amorphous Si thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radnóczi, G. Z.; Battistig, G.; Pécz, B., E-mail: pecz.bela@ttk.mta.hu
2015-02-17
The crystallization of amorphous silicon is studied by transmission electron microscopy. The effect of Ni on the crystallization is studied in a wide temperature range heating thinned samples in-situ inside the microscope. Two cases of limited Ni source and unlimited Ni source are studied and compared. NiSi{sub 2} phase started to form at a temperature as low as 250°C in the limited Ni source case. In-situ observation gives a clear view on the crystallization of silicon through small NiSi{sub 2} grain formation. The same phase is observed at the crystallization front in the unlimited Ni source case, where a secondmore » region is also observed with large grains of Ni{sub 3}Si{sub 2}. Low temperature experiments show, that long annealing of amorphous silicon at 410 °C already results in large crystallized Si regions due to the Ni induced crystallization.« less
NASA Astrophysics Data System (ADS)
Berthier, R.; Bernier, N.; Cooper, D.; Sabbione, C.; Hippert, F.; Noé, P.
2017-09-01
The crystallization mechanisms of prototypical GeTe phase-change material thin films have been investigated by in situ scanning transmission electron microscopy annealing experiments. A novel sample preparation method has been developed to improve sample quality and stability during in situ annealing, enabling quantitative analysis and live recording of phase change events. Results show that for an uncapped 100 nm thick GeTe layer, exposure to air after fabrication leads to composition changes which promote heterogeneous nucleation at the oxidized surface. We also demonstrate that protecting the GeTe layer with a 10 nm SiN capping layer prevents nucleation at the surface and allows volume nucleation at a temperature 50 °C higher than the onset of crystallization in the oxidized sample. Our results have important implications regarding the integration of these materials in confined memory cells.
Gao, Ying; Asadirad, Mojtaba; Yao, Yao; Dutta, Pavel; Galstyan, Eduard; Shervin, Shahab; Lee, Keon-Hwa; Pouladi, Sara; Sun, Sicong; Li, Yongkuan; Rathi, Monika; Ryou, Jae-Hyun; Selvamanickam, Venkat
2016-11-02
Single-crystal-like silicon (Si) thin films on bendable and scalable substrates via direct deposition are a promising material platform for high-performance and cost-effective devices of flexible electronics. However, due to the thick and unintentionally highly doped semiconductor layer, the operation of transistors has been hampered. We report the first demonstration of high-performance flexible thin-film transistors (TFTs) using single-crystal-like Si thin films with a field-effect mobility of ∼200 cm 2 /V·s and saturation current, I/l W > 50 μA/μm, which are orders-of-magnitude higher than the device characteristics of conventional flexible TFTs. The Si thin films with a (001) plane grown on a metal tape by a "seed and epitaxy" technique show nearly single-crystalline properties characterized by X-ray diffraction, Raman spectroscopy, reflection high-energy electron diffraction, and transmission electron microscopy. The realization of flexible and high-performance Si TFTs can establish a new pathway for extended applications of flexible electronics such as amplification and digital circuits, more than currently dominant display switches.
New constraints on deformation processes in serpentinite from sub-micron Raman Spectroscopy and TEM
NASA Astrophysics Data System (ADS)
Smith, S. A. F.; Tarling, M.; Rooney, J. S.; Gordon, K. C.; Viti, C.
2017-12-01
Extensive work has been performed to characterize the mineralogical and mechanical properties of the various serpentine minerals (i.e. antigorite, lizardite, chrysotile, polyhedral and polygonal serpentine). However, correct identification of serpentine minerals is often difficult or impossible using conventional analytical techniques such as optical- and SEM-based microscopy, X-ray diffraction and infrared spectroscopy. Transmission Electron Microscopy (TEM) is the best analytical technique to identify the serpentine minerals, but TEM requires complex sample preparation and typically results in very small analysis areas. Sub-micron confocal Raman spectroscopy mapping of polished thin sections provides a quick and relatively inexpensive way of unambiguously distinguishing the main serpentine minerals within their in-situ microstructural context. The combination of high spatial resolution (with a diffraction-limited system, 366 nm), large-area coverage (up to hundreds of microns in each dimension) and ability to map directly on thin sections allows intricate fault rock textures to be imaged at a sample-scale, which can then form the target of more focused TEM work. The potential of sub-micron Raman Spectroscopy + TEM is illustrated by examining sub-micron-scale mineral intergrowths and deformation textures in scaly serpentinites (e.g. dissolution seams, mineral growth in pressure shadows), serpentinite crack-seal veins and polished fault slip surfaces from a serpentinite-bearing mélange in New Zealand. The microstructural information provided by these techniques has yielded new insights into coseismic dehydration and amorphization processes and the interplay between creep and localised rupture in serpentinite shear zones.
Fey, E G; Wan, K M; Penman, S
1984-06-01
Madin-Darby canine kidney (MDCK) cells grow as differentiated, epithelial colonies that display tissue-like organization. We examined the structural elements underlying the colony morphology in situ using three consecutive extractions that produce well-defined fractions for both microscopy and biochemical analysis. First, soluble proteins and phospholipid were removed with Triton X-100 in a physiological buffer. The resulting skeletal framework retained nuclei, dense cytoplasmic filament networks, intercellular junctional complexes, and apical microvillar structures. Scanning electron microscopy showed that the apical cell morphology is largely unaltered by detergent extraction. Residual desmosomes, as can be seen in thin sections, were also well-preserved. The skeletal framework was visualized in three dimensions as an unembedded whole mount that revealed the filament networks that were masked in Epon-embedded thin sections of the same preparation. The topography of cytoskeletal filaments was relatively constant throughout the epithelial sheet, particularly across intercellular borders. This ordering of epithelial skeletal filaments across contiguous cell boundaries was in sharp contrast to the more independent organization of networks in autonomous cells such as fibroblasts. Further extraction removed the proteins of the salt-labile cytoskeleton and the chromatin as separate fractions, and left the nuclear matrix-intermediate filament (NM-IF) scaffold. The NM-IF contained only 5% of total cellular protein, but whole mount transmission electron microscopy and immunofluorescence showed that this scaffold was organized as in the intact epithelium. Immunoblots demonstrate that vimentin, cytokeratins, desmosomal proteins, and a 52,000-mol-wt nuclear matrix protein were found almost exclusively in the NM-IF scaffold. Vimentin was largely perinuclear while the cytokeratins were localized at the cell borders. The 52,000-mol-wt nuclear matrix protein was confined to the chromatin-depleted matrix and the desmosomal proteins were observed in punctate polygonal arrays at intercellular junctions. The filaments of the NM-IF were seen to be interconnected, via the desmosomes, over the entire epithelial colony. The differentiated epithelial morphology was reflected in both the cytoskeletal framework and the NM-IF scaffold.
1984-01-01
Madin-Darby canine kidney (MDCK) cells grow as differentiated, epithelial colonies that display tissue-like organization. We examined the structural elements underlying the colony morphology in situ using three consecutive extractions that produce well-defined fractions for both microscopy and biochemical analysis. First, soluble proteins and phospholipid were removed with Triton X-100 in a physiological buffer. The resulting skeletal framework retained nuclei, dense cytoplasmic filament networks, intercellular junctional complexes, and apical microvillar structures. Scanning electron microscopy showed that the apical cell morphology is largely unaltered by detergent extraction. Residual desmosomes, as can be seen in thin sections, were also well- preserved. The skeletal framework was visualized in three dimensions as an unembedded whole mount that revealed the filament networks that were masked in Epon-embedded thin sections of the same preparation. The topography of cytoskeletal filaments was relatively constant throughout the epithelial sheet, particularly across intercellular borders. This ordering of epithelial skeletal filaments across contiguous cell boundaries was in sharp contrast to the more independent organization of networks in autonomous cells such as fibroblasts. Further extraction removed the proteins of the salt-labile cytoskeleton and the chromatin as separate fractions, and left the nuclear matrix-intermediate filament (NM-IF) scaffold. The NM-IF contained only 5% of total cellular protein, but whole mount transmission electron microscopy and immunofluorescence showed that this scaffold was organized as in the intact epithelium. Immunoblots demonstrate that vimentin, cytokeratins, desmosomal proteins, and a 52,000-mol-wt nuclear matrix protein were found almost exclusively in the NM-IF scaffold. Vimentin was largely perinuclear while the cytokeratins were localized at the cell borders. The 52,000-mol-wt nuclear matrix protein was confined to the chromatin- depleted matrix and the desmosomal proteins were observed in punctate polygonal arrays at intercellular junctions. The filaments of the NM-IF were seen to be interconnected, via the desmosomes, over the entire epithelial colony. The differentiated epithelial morphology was reflected in both the cytoskeletal framework and the NM-IF scaffold. PMID:6202700
Confocal laser scanning microscopy in study of bone calcification
NASA Astrophysics Data System (ADS)
Nishikawa, Tetsunari; Kokubu, Mayu; Kato, Hirohito; Imai, Koichi; Tanaka, Akio
2012-12-01
Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 μm/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghica, C., E-mail: cghica@infim.ro; Negrea, R. F.; Nistor, L. C.
2014-07-14
In this paper, we analyze the structural distortions observed by transmission electron microscopy in thin epitaxial SrRuO{sub 3} layers used as bottom electrodes in multiferroic coatings onto SrTiO{sub 3} substrates for future multiferroic devices. Regardless of the nature and architecture of the multilayer oxides deposited on the top of the SrRuO{sub 3} thin films, selected area electron diffraction patterns systematically revealed the presence of faint diffraction spots appearing in forbidden positions for the SrRuO{sub 3} orthorhombic structure. High-resolution transmission electron microscopy (HRTEM) combined with Geometric Phase Analysis (GPA) evidenced the origin of these forbidden diffraction spots in the presence ofmore » structurally disordered nanometric domains in the SrRuO{sub 3} bottom layers, resulting from a strain-driven phase transformation. The local high compressive strain (−4% ÷ −5%) measured by GPA in the HRTEM images induces a local orthorhombic to monoclinic phase transition by a cooperative rotation of the RuO{sub 6} octahedra. A further confirmation of the origin of the forbidden diffraction spots comes from the simulated diffraction patterns obtained from a monoclinic disordered SrRuO{sub 3} structure.« less
Bi2O3 nanoparticles encapsulated in surface mounted metal-organic framework thin films
NASA Astrophysics Data System (ADS)
Guo, Wei; Chen, Zhi; Yang, Chengwu; Neumann, Tobias; Kübel, Christian; Wenzel, Wolfgang; Welle, Alexander; Pfleging, Wilhelm; Shekhah, Osama; Wöll, Christof; Redel, Engelbert
2016-03-01
We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye.We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00532b
Quantitative Cryo-Scanning Transmission Electron Microscopy of Biological Materials.
Elbaum, Michael
2018-05-11
Electron tomography provides a detailed view into the 3D structure of biological cells and tissues. Physical fixation by vitrification of the aqueous medium provides the most faithful preservation of biological specimens in the native, fully hydrated state. Cryo-microscopy is challenging, however, because of the sensitivity to electron irradiation and due to the weak electron scattering of organic material. Tomography is even more challenging because of the dependence on multiple exposures of the same area. Tomographic imaging is typically performed in wide-field transmission electron microscopy (TEM) mode with phase contrast generated by defocus. Scanning transmission electron microscopy (STEM) is an alternative mode based on detection of scattering from a focused probe beam, without imaging optics following the specimen. While careful configuration of the illumination and detectors is required to generate useful contrast, STEM circumvents the major restrictions of phase contrast TEM to very thin specimens and provides a signal that is more simply interpreted in terms of local composition and density. STEM has gained popularity in recent years for materials science. The extension of STEM to cryomicroscopy and tomography of cells and macromolecules is summarized herein. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Correlative multi-scale characterization of a fine grained Nd-Fe-B sintered magnet.
Sasaki, T T; Ohkubo, T; Hono, K; Une, Y; Sagawa, M
2013-09-01
The Nd-rich phases in pressless processed fine grained Nd-Fe-B sintered magnets have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and three dimensional atom probe tomography (3DAP). The combination of the backscattered electron (BSE) and in-lens secondary electron (IL-SE) images in SEM led to an unambiguous identification of four types of Nd-rich phases, NdOx, Ia3 type phase, which is isostructural to Nd₂O₃, dhcp-Nd and Nd₁Fe₄B₄. In addition, the 3DAP analysis of thin Nd-rich grain boundary layer indicate that the coercivity has a close correlation with the chemistry of the grain boundary phase. Copyright © 2013 Elsevier B.V. All rights reserved.
Thin films of a ferroelectric phenazine/chloranilic acid organic cocrystal
NASA Astrophysics Data System (ADS)
Thompson, Nicholas J.; Jandl, Adam C.; Spalenka, Josef W.; Evans, Paul G.
2011-07-01
Phenazine-chloranilic acid cocrystal thin films can be formed by vacuum evaporation of the component molecules onto cooled substrates. Fluxes of phenazine and chloranilic acid were provided from separate sublimation sources, from which the cocrystalline phase can be formed under a wide range of impingement rates of the component molecules. Substrates consisted of Au or Ni thin films on Si wafers, cooled to 100-140 K during deposition. X-ray diffraction and scanning electron microscopy show that this process yields polycrystalline thin films of the cocrystal with voids between crystalline grains. The relative intensities of X-ray reflections differ from reported intensities of polycrystalline powders, suggesting that the films have an anisotropic distribution of crystallographic orientations. The cocrystalline thin films have an effective dielectric constant of 13 at room temperature, increasing at lower temperatures and exhibiting a broad maximum near 200 K. The means to grow thin films of organic ferroelectric materials will allow the integration of new functionalities into organic electronic device structures, including capacitors and field-effect transistors.
NASA Astrophysics Data System (ADS)
Merakeb, Noureddine; Messai, Amel; Djelloul, Abdelkader; Ayesh, Ahmad I.
2015-11-01
In this paper, we investigate the structure, composition, magnetic, and mechanical properties of stainless steel thin films formed by thermal evaporation technique. These thin films reveal novel structural and physical properties where they were found to consist of nanocrystals that are ~90 % body-centred cubic crystal structure which holds ferromagnetic properties (α-phase), and ~10 % face-centred cubic crystal structure which is paramagnetic at room temperature (γ-phase). The presence of the above phases was quantified by X-ray diffraction, transmission electron microscopy, and conversion electron Mössbauer spectroscopy. The magnetic properties were evaluated by a superconducting quantum interference device magnetometer, and they confirmed the dual-phase crystal structure of the stainless thin films, where the presence of γ-phase reduced the magnetization of the produced thin films. In addition, the fabricated stainless steel thin films did not contain micro-cracks, and they exhibit a tensile stress of about 1.7 GPa, hardness of 7.5 GPa, and elastic modulus of 104 GPa.
Synthesis, characterization, and photocatalytic properties of nanocrystalline NZO thin films
NASA Astrophysics Data System (ADS)
Aryanto, D.; Hastuti, E.; Husniya, N.; Sudiro, T.; Nuryadin, B. W.
2018-03-01
Nanocrystalline Ni-doped ZnO (NZO) thin films were synthesized on glass substrate using sol-gel spin coating methods. The effect of annealing on the structural and optical properties of nanocrystalline thin film was studied using X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), UV-VIS spectrophotometry, and photoluminescence (PL). The results showed that the annealing temperature strongly influenced the physical properties of nanocrystalline NZO thin films. The photocatalytic properties of nanocrystalline NZO thin films were evaluated using an aqueous solution of Rhodamine-B. The photocatalytic activity of nanocrystalline NZO thin films increased with the increase of annealing temperature. The results indicated that the structure, morphology, and band gap energy of nanocrystalline NZO thin films played an important role in photocatalytic activity.
Haas, Mark
2009-02-01
Alport syndrome and thin glomerular basement membrane nephropathy (TBMN) are genetically heterogeneous conditions characterized by structural abnormalities in the glomerular basement membrane and an initial presentation that usually involves hematuria. Approximately 40% of patients with TBMN are heterozygous carriers for autosomal recessive Alport syndrome, with mutations at the genetic locus encoding type IV collagen alpha(3) [alpha(3)(IV)] and alpha(4) chains. However, although the clinical course of TBMN is usually benign, Alport syndrome, particularly the X-linked form with mutations in the locus encoding the alpha(5) chain of type IV collagen [alpha(5)(IV)], typically results in end-stage renal disease. Electron microscopy is essential to diagnosis of TBMN and Alport syndrome on renal biopsy, although electron microscopy alone is of limited value in distinguishing between TBMN, the heterozygous carrier state of X-linked Alport syndrome, autosomal recessive Alport syndrome, and even early stages of X-linked Alport syndrome. To review diagnostic pathologic features of each of the above conditions, emphasizing the need for immunohistology for alpha(3)(IV) and alpha(5)(IV) in addition to electron microscopy to resolve this differential diagnosis on a renal biopsy. The diagnostic value of immunofluorescence studies for alpha(5)(IV) on a skin biopsy in family members of patients with Alport syndrome also is reviewed. Original and comprehensive review articles on the diagnosis of Alport syndrome and TBMN from the past 35 years, primarily the past 2 decades, and experience in our own renal pathology laboratory. Although Alport syndrome variants and TBMN do not show characteristic light microscopic findings and can be difficult to differentiate from each other even by electron microscopy, using a combination of electron microscopy and immunohistology for alpha(3)(IV) and alpha(5)(IV) enables pathologists to definitively diagnose these disorders on renal biopsy in most cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zweiacker, K.; McKeown, J. T.; Liu, C.
In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of themore » metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ~1.3 m s –1 to ~2.5 m s –1 during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s –1 have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. As a result, using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zweiacker, K., E-mail: Kai@zweiacker.org; Liu, C.; Wiezorek, J. M. K.
In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of themore » metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ∼1.3 m s{sup −1} to ∼2.5 m s{sup −1} during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s{sup −1} have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. Using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.« less
Zweiacker, K.; McKeown, J. T.; Liu, C.; ...
2016-08-04
In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of themore » metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ~1.3 m s –1 to ~2.5 m s –1 during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s –1 have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. As a result, using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.« less
Determination of dispersive optical constants of nanocrystalline CdSe (nc-CdSe) thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Kriti; Al-Kabbi, Alaa S.; Saini, G.S.S.
2012-06-15
Highlights: ► nc-CdSe thin films are prepared by thermal vacuum evaporation technique. ► TEM analysis shows NCs are spherical in shape. ► XRD reveals the hexagonal (wurtzite) crystal structure of nc-CdSe thin films. ► The direct optical bandgap of nc-CdSe is 2.25 eV in contrast to bulk (1.7 eV). ► Dispersion of refractive index is discussed in terms of Wemple–DiDomenico single oscillator model. -- Abstract: The nanocrystalline thin films of CdSe are prepared by thermal evaporation technique at room temperature. These thin films are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-raymore » diffraction (XRD) and photoluminescence spectroscopy (PL). The transmission spectra are recorded in the transmission range 400–3300 nm for nc-CdSe thin films. Transmittance measurements are used to calculate the refractive index (n) and absorption coefficient (α) using Swanepoel's method. The optical band gap (E{sub g}{sup opt}) has been determined from the absorption coefficient values using Tauc's procedure. The optical constants such as extinction coefficient (k), real (ε{sub 1}) and imaginary (ε{sub 2}) dielectric constants, dielectric loss (tan δ), optical conductivity (σ{sub opt}), Urbach energy (E{sub u}) and steepness parameter (σ) are also calculated for nc-CdSe thin films. The normal dispersion of refractive index is described using Wemple–DiDomenico single-oscillator model. Refractive index dispersion is further analysed to calculate lattice dielectric constant (ε{sub L}).« less
Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy.
Wang, Zhili; Gao, Kun; Chen, Jian; Hong, Youli; Ge, Xin; Wang, Dajiang; Pan, Zhiyun; Zhu, Peiping; Yun, Wenbing; Jacobsen, Chris; Wu, Ziyu
2013-01-01
Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (<1 μm thick) sections of biological specimens, many questions involve the three-dimensional organization of a cell or the interconnectivity of cells. X-ray microscopy offers superior imaging resolution compared to light microscopy, and unique capability of nondestructive three-dimensional imaging of hydrated unstained biological cells, complementary to existing light and electron microscopy. Until now, X-ray microscopes operating in the "water window" energy range between carbon and oxygen k-shell absorption edges have produced outstanding 3D images of cryo-preserved cells. The relatively low X-ray energy (<540 eV) of the water window imposes two important limitations: limited penetration (<10 μm) not suitable for imaging larger cells or tissues, and small depth of focus (DoF) for high resolution 3D imaging (e.g., ~1 μm DoF for 20 nm resolution). An X-ray microscope operating at intermediate energy around 2.5 keV using Zernike phase contrast can overcome the above limitations and reduces radiation dose to the specimen. Using a hydrated model cell with an average chemical composition reported in literature, we calculated the image contrast and the radiation dose for absorption and Zernike phase contrast, respectively. The results show that an X-ray microscope operating at ~2.5 keV using Zernike phase contrast offers substantial advantages in terms of specimen size, radiation dose and depth-of-focus. Copyright © 2012 Elsevier Inc. All rights reserved.
Morphological impact of zinc oxide layers on the device performance in thin-film transistors.
Faber, Hendrik; Klaumünzer, Martin; Voigt, Michael; Galli, Diana; Vieweg, Benito F; Peukert, Wolfgang; Spiecker, Erdmann; Halik, Marcus
2011-03-01
Zinc oxide thin-films are prepared either by spin coating of an ethanolic dispersion of nanoparticles (NP, diameter 5 nm) or by spray pyrolysis of a zinc acetate dihydrate precursor. High-resolution electron microscopy studies reveal a monolayer of particles for the low temperature spin coating approach and larger crystalline domains of more than 30 nm for the spray pyrolysis technique. Thin-film transistor devices (TFTs) based on spray pyrolysis films exhibit higher electron mobilities of up to 24 cm2 V(-1) s(-1) compared to 0.6 cm2 V(-1) s(-1) for NP based TFTs. These observations were dedicated to a reduced number of grain boundaries within the transistor channel.
NASA Astrophysics Data System (ADS)
García-Gutiérrez, Diana F.; Hernández-Casillas, Laura P.; Sepúlveda-Guzmán, Selene; Vazquez-Rodriguez, Sofia; García-Gutiérrez, Domingo I.
2018-02-01
The influence of the capping ligand on nanoparticles' optical and electronic properties is a topic of great interest currently being investigated by several research groups in different countries. In the present study, PbS nanoparticles originally synthesized with oleic acid, myristic acid and hexanoic acid underwent a ligand exchange process to replace the original carboxylic acid for uc(l)-cysteine as the capping layer, and were thoroughly characterized by means of transmission electron microscopy and its related techniques, such as energy dispersive x-ray spectroscopy and scanning-transmission electron microscopy, and Fourier transform infrared, Raman and x-ray photoelectron spectroscopy. Afterwards, these PbS nanoparticles were dispersed into a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) matrix to fabricate a composite thin film which displayed the optical absorption properties of the PbS nanoparticles and the electrical transport properties of the PEDOT:PSS matrix, in order to evaluate the impact of the nanoparticles' capping ligand on the optoelectronic properties of the fabricated composite thin films. Composite thin films with PbS nanoparticles showing uc(l)-cysteine as the capping layer displayed clear photoresponse and a threefold increment in their conductivities compared to pristine PEDOT:PSS. The properties of PEDOT:PSS, known as a hole transport layer in most organic photovoltaic devices, were enhanced by adding PbS nanoparticles with different capping ligands, producing a promising composite material for optoelectronic applications by proper selection of the nanoparticles' capping layer.
Zhou, Tao; Hong, Guosong; Fu, Tian-Ming; Yang, Xiao; Schuhmann, Thomas G.; Viveros, Robert D.; Lieber, Charles M.
2017-01-01
Implantation of electrical probes into the brain has been central to both neuroscience research and biomedical applications, although conventional probes induce gliosis in surrounding tissue. We recently reported ultraflexible open mesh electronics implanted into rodent brains by syringe injection that exhibit promising chronic tissue response and recording stability. Here we report time-dependent histology studies of the mesh electronics/brain-tissue interface obtained from sections perpendicular and parallel to probe long axis, as well as studies of conventional flexible thin-film probes. Confocal fluorescence microscopy images of the perpendicular and parallel brain slices containing mesh electronics showed that the distribution of astrocytes, microglia, and neurons became uniform from 2–12 wk, whereas flexible thin-film probes yield a marked accumulation of astrocytes and microglia and decrease of neurons for the same period. Quantitative analyses of 4- and 12-wk data showed that the signals for neurons, axons, astrocytes, and microglia are nearly the same from the mesh electronics surface to the baseline far from the probes, in contrast to flexible polymer probes, which show decreases in neuron and increases in astrocyte and microglia signals. Notably, images of sagittal brain slices containing nearly the entire mesh electronics probe showed that the tissue interface was uniform and neurons and neurofilaments penetrated through the mesh by 3 mo postimplantation. The minimal immune response and seamless interface with brain tissue postimplantation achieved by ultraflexible open mesh electronics probes provide substantial advantages and could enable a wide range of opportunities for in vivo chronic recording and modulation of brain activity in the future. PMID:28533392
Zhou, Tao; Hong, Guosong; Fu, Tian-Ming; Yang, Xiao; Schuhmann, Thomas G; Viveros, Robert D; Lieber, Charles M
2017-06-06
Implantation of electrical probes into the brain has been central to both neuroscience research and biomedical applications, although conventional probes induce gliosis in surrounding tissue. We recently reported ultraflexible open mesh electronics implanted into rodent brains by syringe injection that exhibit promising chronic tissue response and recording stability. Here we report time-dependent histology studies of the mesh electronics/brain-tissue interface obtained from sections perpendicular and parallel to probe long axis, as well as studies of conventional flexible thin-film probes. Confocal fluorescence microscopy images of the perpendicular and parallel brain slices containing mesh electronics showed that the distribution of astrocytes, microglia, and neurons became uniform from 2-12 wk, whereas flexible thin-film probes yield a marked accumulation of astrocytes and microglia and decrease of neurons for the same period. Quantitative analyses of 4- and 12-wk data showed that the signals for neurons, axons, astrocytes, and microglia are nearly the same from the mesh electronics surface to the baseline far from the probes, in contrast to flexible polymer probes, which show decreases in neuron and increases in astrocyte and microglia signals. Notably, images of sagittal brain slices containing nearly the entire mesh electronics probe showed that the tissue interface was uniform and neurons and neurofilaments penetrated through the mesh by 3 mo postimplantation. The minimal immune response and seamless interface with brain tissue postimplantation achieved by ultraflexible open mesh electronics probes provide substantial advantages and could enable a wide range of opportunities for in vivo chronic recording and modulation of brain activity in the future.
"Reticular" and "Areticular" Nissl Bodies in Sympathetic Neurons of a Lizard
Smith, Stuart W.
1959-01-01
Sympathetic ganglia of the horned lizard, Phrynosoma cornutum, were fixed in OsO4 and imbedded in methacrylate. Thin sections were cut for electron microscopy. Some adjacent thick sections were cut for light microscopy and were stained in acidified, dilute thionine both before and after digestion by RNase. In the light microscope two types of Nissl bodies are found, both removable by RNase: (1) a deep, diffuse, indistinctly bounded, metachromatic variety, and (2) a superficial, dense, sharply delimited, orthochromatic sort. Electron microscopically, the former ("reticular" Nissl bodies) corresponds to the granulated endoplasmic reticular structure of Nissl material previously described by others, whereas the latter ("areticular" Nissl bodies) comprises compact masses of particles of varying internal density and devoid of elements of endoplasmic reticulum. The constituent particles of the areticular Nissl material are 4 to 8 x the diameter of single ribonucleoprotein granules of the reticular Nissl substance and seem, near zones of junction with the reticular type, to arise by clustering of such granules with subsequent partial dispersion of the substance of the granules into an added, less dense material. It is suggested that the observed orthochromasia of the areticular Nissl substance is due to accumulation of a large amount of protein bound to RNA and, further, that these Nissl bodies may represent storage depots of RNA and protein. PMID:13673051
Homoepitaxial growth of β-Ga{sub 2}O{sub 3} thin films by low pressure chemical vapor deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafique, Subrina; Han, Lu; Zhao, Hongping, E-mail: hongping.zhao@case.edu
2016-05-02
This paper presents the homoepitaxial growth of phase pure (010) β-Ga{sub 2}O{sub 3} thin films on (010) β-Ga{sub 2}O{sub 3} substrate by low pressure chemical vapor deposition. The effects of growth temperature on the surface morphology and crystal quality of the thin films were systematically investigated. The thin films were synthesized using high purity metallic gallium (Ga) and oxygen (O{sub 2}) as precursors for gallium and oxygen, respectively. The surface morphology and structural properties of the thin films were characterized by atomic force microscopy, X-ray diffraction, and high resolution transmission electron microscopy. Material characterization indicates the growth temperature played anmore » important role in controlling both surface morphology and crystal quality of the β-Ga{sub 2}O{sub 3} thin films. The smallest root-mean-square surface roughness of ∼7 nm was for thin films grown at a temperature of 950 °C, whereas the highest growth rate (∼1.3 μm/h) with a fixed oxygen flow rate was obtained for the epitaxial layers grown at 850 °C.« less
An investigation of GaN thin films on AlN on sapphire substrate by sol-gel spin coating method
NASA Astrophysics Data System (ADS)
Amin, Nur Fahana Mohd; Ng, Sha Shiong
2017-12-01
In this research, the gallium nitride (GaN) thin films were deposited on aluminium nitride on sapphire (AlN/Al2O3) substrate by sol-gel spin coating method. Simple ethanol-based precursor with the addition of diethanolamine solution was used. The structural and morphology properties of synthesized GaN thin films were characterized by using X-ray Diffraction, Field-Emission Scanning Electron Microscopy and Atomic Force Microscopy. While the elemental compositions and the lattice vibrational properties of the films were investigated by means of the Energy Dispersive X-ray spectroscopy and Raman spectroscopy. All the results revealed that the wurtzite structure GaN thin films with GaN(002) preferred orientation and smooth surface morphology were successfully grown on AlN/Al2O3 substrate by using inexpensive and simplified sol-gel spin coating technique. The sol-gel spin coated GaN thin film with lowest oxygen content was also achieved.FESEM images show that GaN thin films with uniform and packed grains were formed. Based on the obtained results, it can be concluded that wurtzite structure GaN thin films were successfully deposited on AlN/Al2O3 substrate.
Photosensitive space charge limited current in screen printed CdTe thin films
NASA Astrophysics Data System (ADS)
Vyas, C. U.; Pataniya, Pratik; Zankat, Chetan K.; Patel, Alkesh B.; Pathak, V. M.; Patel, K. D.; Solanki, G. K.
2018-05-01
Group II-VI Compounds have emerged out as most suitable in the class of photo sensitive material. They represent a strong position in terms of their applications in the field of detectors as well as photo voltaic devices. Cadmium telluride is the prime member of this Group, because of high acceptance of this material as active component in opto-electronic devices. In this paper we report preparation and characterization of CdTe thin films by using a most economical screen printing technique in association with sintering at 510°C temperature. Surface morphology and smoothness are prime parameters of any deposited to be used as an active region of devices. Thus, we studied of the screen printed thin film by means of atomic force microscopy (AFM) and scanning electron microscopy (SEM) for this purpose. However, growth processes induced intrinsic defects in fabricated films work as charge traps and affect the conduction process significantly. So the conduction mechanism of deposited CdTe thin film is studied under dark as well as illuminated conditions. It is found that the deposited films showed the space charge limited conduction (SCLC) mechanism and hence various parameters of space charge limited conduction (SCLC) of CdTe film were evaluated and discussed and the photo responsive resistance is also presented in this paper.
Focus on membrane differentiation and membrane domains in the prokaryotic cell.
Boekema, Egbert J; Scheffers, Dirk-Jan; van Bezouwen, Laura S; Bolhuis, Henk; Folea, I Mihaela
2013-01-01
A summary is presented of membrane differentiation in the prokaryotic cell, with an emphasis on the organization of proteins in the plasma/cell membrane. Many species belonging to the Eubacteria and Archaea have special membrane domains and/or membrane proliferation, which are vital for different cellular processes. Typical membrane domains are found in bacteria where a specific membrane protein is abundantly expressed. Lipid rafts form another example. Despite the rareness of conventional organelles as found in eukaryotes, some bacteria are known to have an intricate internal cell membrane organization. Membrane proliferation can be divided into curvature and invaginations which can lead to internal compartmentalization. This study discusses some of the clearest examples of bacteria with such domains and internal membranes. The need for membrane specialization is highest among the heterogeneous group of bacteria which harvest light energy, such as photosynthetic bacteria and halophilic archaea. Most of the highly specialized membranes and domains, such as the purple membrane, chromatophore and chlorosome, are found in these autotrophic organisms. Otherwise the need for membrane differentiation is lower and variable, except for those structures involved in cell division. Microscopy techniques have given essential insight into bacterial membrane morphology. As microscopy will further contribute to the unraveling of membrane organization in the years to come, past and present technology in electron microscopy and light microscopy is discussed. Electron microscopy was the first to unravel bacterial morphology because it can directly visualize membranes with inserted proteins, which no other technique can do. Electron microscopy techniques developed in the 1950s and perfected in the following decades involve the thin sectioning and freeze fractioning of cells. Several studies from the golden age of these techniques show amazing examples of cell membrane morphology. More recently, light microscopy in combination with the use of fluorescent dyes has become an attractive technique for protein localization with the natural membrane. However, the resolution problem in light microscopy remains and overinterpretation of observed phenomena is a pitfall. Thus, light microscopy as a stand-alone technique is not sufficient to prove, for instance, the long-range helical distribution of proteins in membrane such as MinD spirals in Bacillus subtilis. Electron tomography is an emerging electron microscopy technique that can provide three-dimensional reconstructions of small, nonchemically fixed bacteria. It will become a useful tool for studying prokaryotic membranes in more detail and is expected to collect information complementary to those of advanced light microscopy. Together, microscopy techniques can meet the challenge of the coming years: to specify membrane structures in more detail and to bring them to the level of specific protein-protein interactions. Copyright © 2013 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Naghibi, Sanaz; Vahed, Shohreh; Torabi, Omid; Jamshidi, Amin; Golabgir, Mohammad Hossein
2015-02-01
Antibacterial properties of Fe-doped TiO2 thin films prepared on glass by the sol-gel hot-dipping technique were studied. The films were characterized by X-ray diffraction, field emission scanning electron microscopy, scanning probe microscopy and X-ray photoelectron spectroscopy. The photocatalytic activities were evaluated by measuring the decomposition rate of methylene blue under ultra violet and visible light. The antibacterial properties of the coatings were investigated against Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisia and Aspergillus niger. The principle of incubation methods was also discussed. The results indicated that Fe doping of thin films eventuated in high antibacterial properties under visible light and this performance remained even after stoppage of illumination. This article tries to provide some explanation for this fact.
Structural and morphological properties of ITO thin films grown by magnetron sputtering
NASA Astrophysics Data System (ADS)
Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.
2015-10-01
Physical properties of transparent and conducting indium tin oxide (ITO) thin films grown by radiofrequency (RF) magnetron sputtering are studied systematically by changing deposition time. The X-ray diffraction (XRD) data indicate polycrystalline thin films with grain orientations predominantly along the (2 2 2) and (4 0 0) directions. From atomic force microscopy (AFM) it is found that by increasing the deposition time, the roughness of the film increases. Scanning electron microscopy (SEM) images show a network of a high-porosity interconnected nanoparticles, which approximately have a pore size ranging between 20 and 30 nm. Optical measurements suggest an average transmission of 80 % for the ITO films. Sheet resistances are investigated using four-point probes, which imply that by increasing the film thickness the resistivities of the films decrease to 2.43 × 10-5 Ω cm.
Mozafari, Masoud; Salahinejad, Erfan; Shabafrooz, Vahid; Yazdimamaghani, Mostafa; Vashaee, Daryoosh; Tayebi, Lobat
2013-01-01
Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. PMID:23641155
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lad, Robert J.
1999-12-14
This project focused on three different aspects of oxide thin film systems: (1) Model metal/oxide and oxide/oxide interface studies were carried out by depositing ultra-thin metal (Al, K, Mg) and oxide (MgO, AlO{sub x}) films on TiO{sub 2}, NiO and {alpha}-Al{sub 2}O{sub 3} single crystal oxide substrates. (2) Electron cyclotron resonance (ECR) oxygen plasma deposition was used to fabricate AlO{sub 3} and ZrO{sub 2} films on sapphire substrates, and film growth mechanisms and structural characteristics were investigated. (3) The friction and wear characteristics of ZrO{sub 2} films on sapphire substrates in unlubricated sliding contact were studied and correlated with filmmore » microstructure. In these studies, thin film and interfacial regions were characterized using diffraction (RHEED, LEED, XRD), electron spectroscopies (XPS, UPS, AES), microscopy (AFM) and tribology instruments (pin-on-disk, friction microprobe, and scratch tester). By precise control of thin film microstructure, an increased understanding of the structural and chemical stability of interface regions and tribological performance of ultra-thin oxide films was achieved in these important ceramic systems.« less
Low-hazard metallography of moisture-sensitive electrochemical cells.
Wesolowski, D E; Rodriguez, M A; McKenzie, B B; Papenguth, H W
2011-08-01
A low-hazard approach is presented to prepare metallographic cross-sections of moisture-sensitive battery components. The approach is tailored for evaluation of thermal (molten salt) batteries composed of thin pressed-powder pellets, but has general applicability to other battery electrochemistries. Solution-cast polystyrene is used to encapsulate cells before embedding in epoxy. Nonaqueous grinding and polishing are performed in an industrial dry room to increase throughput. Lapping oil is used as a lubricant throughout grinding. Hexane is used as the solvent throughout processing; occupational exposure levels are well below the limits. Light optical and scanning electron microscopy on cross-sections are used to analyse a thermal battery cell. Spatially resolved X-ray diffraction on oblique angle cut cells complement the metallographic analysis. Published 2011. This article is a US Government work and is in the public domain in the USA.
Rapid Classification of Ordinary Chondrites Using Raman Spectroscopy
NASA Technical Reports Server (NTRS)
Fries, M.; Welzenbach, L.
2014-01-01
Classification of ordinary chondrites is typically done through measurements of the composition of olivine and pyroxenes. Historically, this measurement has usually been performed via electron microprobe, oil immersion or other methods which can be costly through lost sample material during thin section preparation. Raman microscopy can perform the same measurements but considerably faster and with much less sample preparation allowing for faster classification. Raman spectroscopy can facilitate more rapid classification of large amounts of chondrites such as those retrieved from North Africa and potentially Antarctica, are present in large collections, or are submitted to a curation facility by the public. With development, this approach may provide a completely automated classification method of all chondrite types.
Johnson, Raymond H.; Diehl, Sharon F.; Benzel, William M.
2013-01-01
This report releases solid-phase data from cores at the proposed Dewey Burdock uranium in-situ recovery site near Edgemont, South Dakota. These cores were collected by Powertech Uranium Corporation, and material not used for their analyses were given to the U.S. Geological Survey for additional sampling and analyses. These additional analyses included total carbon and sulfur, whole rock acid digestion for major and trace elements, 234U/238U activity ratios, X-ray diffraction, thin sections, scanning electron microscopy analyses, and cathodoluminescence. This report provides the methods and data results from these analyses along with a short summary of observations.
Analysis of Red Pigments from the Neolithic sites of Çatalhöyük in Turkey and Sheikh-e Abad in Iran.
Anderson, Emma; Almond, Matthew J; Matthews, Wendy; Cinque, Gianfelice; Frogley, Mark D
2014-10-15
Samples containing red pigment have been collected from two different archaeological sites dating to the Neolithic (Çatalhöyük in Turkey and Sheikh-e Abad in Iran) and have been analysed by a range of techniques. Sub-samples were examined by IR spectroscopy and X-ray diffraction, whilst thin sections were studied using optical polarising microscopy, synchrotron based IR microscopy and environmental scanning electron microscopy with energy dispersive X-ray analysis. Thin layers of red paint in a wall painting from Çatalhöyük were found to contain ochre (hematite and clay) as well as an unexpected component, grains of red and colourless obsidian, which have not been identified in any previous studies of the wall paintings at Çatalhöyük. These small grains of obsidian may have improved the reflective properties of the paint and made the artwork more vivid in the darkness of the buildings. Analysis of a roughly shaped ball of red sediment found on a possible working surface at Sheikh-e Abad revealed that the cause of the red colouring was the mineral hematite, which was probably from a source of terra rossa sediment in the local area. The results of this work suggest it is unlikely that this had been altered by the Neolithic people through mixing with other minerals. Copyright © 2014 Elsevier B.V. All rights reserved.
Schubert, M; Schaefer, H; Mayer, J; Laptev, A; Hettich, M; Merklein, M; He, C; Rummel, C; Ristow, O; Großmann, M; Luo, Y; Gusev, V; Samwer, K; Fonin, M; Dekorsy, T; Demsar, J
2015-08-14
The origin of the martensitic transition in the magnetic shape memory alloy Ni-Mn-Ga has been widely discussed. While several studies suggest it is electronically driven, the adaptive martensite model reproduced the peculiar nonharmonic lattice modulation. We used femtosecond spectroscopy to probe the temperature and doping dependence of collective modes, and scanning tunneling microscopy revealed the corresponding static modulations. We show that the martensitic phase can be described by a complex charge-density wave tuned by magnetic ordering and strong electron-lattice coupling.
NASA Astrophysics Data System (ADS)
Schubert, M.; Schaefer, H.; Mayer, J.; Laptev, A.; Hettich, M.; Merklein, M.; He, C.; Rummel, C.; Ristow, O.; Großmann, M.; Luo, Y.; Gusev, V.; Samwer, K.; Fonin, M.; Dekorsy, T.; Demsar, J.
2015-08-01
The origin of the martensitic transition in the magnetic shape memory alloy Ni-Mn-Ga has been widely discussed. While several studies suggest it is electronically driven, the adaptive martensite model reproduced the peculiar nonharmonic lattice modulation. We used femtosecond spectroscopy to probe the temperature and doping dependence of collective modes, and scanning tunneling microscopy revealed the corresponding static modulations. We show that the martensitic phase can be described by a complex charge-density wave tuned by magnetic ordering and strong electron-lattice coupling.
Scanning electron microscopy of a blister roof in dystrophic epidermolysis bullosa*
de Almeida Jr., Hiram Larangeira; Monteiro, Luciane; Silva, Ricardo Marques e; Rocha, Nara Moreira; Scheffer, Hans
2013-01-01
In dystrophic epidermolysis bullosa the genetic defect of anchoring fibrils leads to cleavage beneath the basement membrane, with its consequent loss. We performed scanning electron microscopy of an inverted blister roof of a case of dystrophic epidermolysis bullosa, confirmed by immunomapping and gene sequencing. With a magnification of 2000 times a net attached to the blister roof could be easily identified. This net was composed of intertwined flat fibers. With higher magnifications, different fiber sizes could be observed, some thin fibers measuring around 80 nm and thicker ones measuring between 200 and 300 nm. PMID:24474107
Ceramic surfaces, interfaces and solid-state reactions
NASA Astrophysics Data System (ADS)
Heffelfinger, Jason Roy
Faceting, the decomposition of a surface into two or more surfaces of different orientation, is studied as a function of annealing time for ceramic surfaces. Single-crystals of Alsb2Osb3\\ (alpha-Alsb2Osb3 or corundum structure) are carefully prepared and characterized by atomic force microscopy, scanning electron microscopy and transmission electron microscopy. The mechanisms by which the originally smooth vicinal surface transforms into either a hill-and-valley or a terrace-and-step structure have been characterized. The progression of faceting is found to have a series of stages: surface smoothing, nucleation and growth of individual facets, formation of facet domains, coalescence of individual and facet domains and facet coarsening. These stages provide a model for the mechanisms of how other ceramic surfaces may facet into hill-and-valley and terrace-and-step surface microstructures. The well characterized Alsb2Osb3 surfaces provide excellent substrates by which to study the effect of surface structure on thin-film growth. Pulsed-laser deposition was used to grow thin films of yttria stabilized zirconia (YSZ) and Ysb2Osb3 onto annealed Alsb2Osb3 substrates. The substrate surface structure, such as surface steps and terraces, was found to have several effects on thin-film growth. Thin-films grown onto single-crystal substrates serve as a model geometry for studying thin-film solid-state reactions. Here, the reaction sequence and orientation relationship between thin films of Ysb2Osb3 and an Alsb2Osb3 substrate were characterized for different reaction temperatures. In a system were multiple reaction phases can form, the yttria aluminum monoclinic phase (YAM) was found to form prior to formation of other phases in this system. In a second system, a titanium alloy was reacted with single crystal Alsb2Osb3 in order to study phase formation in an intermetallic system. Both Tisb3Al and TiAl were found to form as reaction products and their orientation relationships with the Alsb2Osb3 are discussed.
Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB 2
Gill, Tobias G.; Fleurence, Antoine; Warner, Ben; ...
2017-02-17
We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting tomore » the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less
Isolation, electron microscopic imaging, and 3-D visualization of native cardiac thin myofilaments.
Spiess, M; Steinmetz, M O; Mandinova, A; Wolpensinger, B; Aebi, U; Atar, D
1999-06-15
An increasing number of cardiac diseases are currently pinpointed to reside at the level of the thin myofilaments (e.g., cardiomyopathies, reperfusion injury). Hence the aim of our study was to develop a new method for the isolation of mammalian thin myofilaments suitable for subsequent high-resolution electron microscopic imaging. Native cardiac thin myofilaments were extracted from glycerinated porcine myocardial tissue in the presence of protease inhibitors. Separation of thick and thin myofilaments was achieved by addition of ATP and several centrifugation steps. Negative staining and subsequent conventional and scanning transmission electron microscopy (STEM) of thin myofilaments permitted visualization of molecular details; unlike conventional preparations of thin myofilaments, our method reveals the F-actin moiety and allows direct recognition of thin myofilament-associated porcine cardiac troponin complexes. They appear as "bulges" at regular intervals of approximately 36 nm along the actin filaments. Protein analysis using SDS-polyacrylamide gel electrophoresis revealed that only approximately 20% troponin I was lost during the isolation procedure. In a further step, 3-D helical reconstructions were calculated using STEM dark-field images. These 3-D reconstructions will allow further characterization of molecular details, and they will be useful for directly visualizing molecular alterations related to diseased cardiac thin myofilaments (e.g., reperfusion injury, alterations of Ca2+-mediated tropomyosin switch). Copyright 1999 Academic Press.
de Jonge, Niels
2018-04-01
The sample dependent spatial resolution was calculated for transmission electron microscopy (TEM) and scanning TEM (STEM) of objects (e.g., nanoparticles, proteins) embedded in a layer of liquid water or amorphous ice. The theoretical model includes elastic- and inelastic scattering, beam broadening, and chromatic aberration. Different contrast mechanisms were evaluated as function of the electron dose, the detection angle, and the sample configuration. It was found that the spatial resolution scales with the electron dose to the -1/4th power. Gold- and carbon nanoparticles were examined in the middle of water layers ranging from 0.01--10 µm thickness representing relevant classes of experiments in both materials science and biology. The optimal microscope settings differ between experimental configurations. STEM performs the best for gold nanoparticles for all layer thicknesses, while carbon is best imaged with phase-contrast TEM for thin layers but bright field STEM is preferred for thicker layers. The resolution was also calculated for a water layer enclosed between thin membranes. The influence of chromatic aberration correction for TEM was examined as well. The theory is broadly applicable to other types of materials and sample configurations. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ngabonziza, P.; Wang, Y.; Brinkman, A.
2018-04-01
An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi2Te3 topological insulator samples, bulk single crystals and thin films exposed to air during fabrication processes are known to be bulk conducting, with the chemical potential in the bulk conduction band. For Bi2Te3 thin films grown by molecular beam epitaxy, we combine structural characterization (transmission electron microscopy), chemical surface analysis as function of time (x-ray photoelectron spectroscopy) and magnetotransport analysis to understand the low defect density and record high bulk electron mobility once charge is doped into the bulk by surface degradation. Carrier densities and electronic mobilities extracted from the Hall effect and the quantum oscillations are consistent and reveal a large bulk carrier mobility. Because of the cylindrical shape of the bulk Fermi surface, the angle dependence of the bulk magnetoresistance oscillations is two dimensional in nature.
NASA Astrophysics Data System (ADS)
Dey, Anup; Roy, Subhashis; Sarkar, Subir Kumar
2018-03-01
In this paper, an attempt is made to deposit ZnO thin films using sol-gel process followed by dip-coating method on p-silicon (100) substrates for intended application as a hydrogen gas sensor owing to the low toxic nature and thermal stability of ZnO. The thin films are annealed under annealing temperatures of 350, 450 and 550 °C for 25 min. The crystalline quality of the fabricated thin films is then analyzed by field-emission scanning electron microscopy and transmission electron microscope. The gas sensing performance analysis of ZnO thin films is demonstrated at different annealing temperatures and hydrogen gas concentrations ranging from 100 to 3000 ppm. Results obtained show that the sensitivity is significantly improved as annealing temperature increases with maximum sensitivity being achieved at 550 °C annealing temperature and operating temperature of 150 °C. Hence, the modified ZnO thin films can be applicable as H2 gas sensing device showing to the improved performance in comparison with unmodified thin-film sensor.
SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques
NASA Astrophysics Data System (ADS)
Chaki, Sunil H.; Chaudhary, Mahesh D.; Deshpande, M. P.
2016-05-01
The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two temperatures: ambient and 70 °C. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper.
Synthesis of galium nitride thin films using sol-gel dip coating method
NASA Astrophysics Data System (ADS)
Hamid, Maizatul Akmam Ab; Ng, Sha Shiong
2017-12-01
In this research, gallium nitride (GaN) thin film were grown on silicon (Si) substrate by a low-cost sol-gel dip coating deposition method. The GaN precursor solution was prepared using gallium (III) nitrate hydrate powder, ethanol and diethanolamine as a starting material, solvent and surfactant respectively. The structural, morphological and optical characteristics of the deposited GaN thin film were investigated. Field-emission scanning electron microscopy observations showed that crack free and dense grains GaN thin films were formed. Energy dispersive X-ray analysis confirmed that the oxygen content in the deposited films was low. X-ray diffraction results revealed that deposited GaN thin films have hexagonal wurtzite structure.
NASA Astrophysics Data System (ADS)
Hosseini, Somaye; Savaloni, Hadi; Gholipour-Shahraki, Mehran
2017-03-01
The wettability of solid surfaces is important from the aspects of both science and technology. The Mn nano-sculptured thin films were designed and fabricated by oblique angle deposition of Mn on glass substrates at room temperature. The obtained structure was characterized by field emission scanning electron microscopy and atomic force microscopy. The wettability of thin films samples was investigated by water contact angle (WCA). The 4-pointed helical star-shaped structure exhibits hydrophobicity with static WCAs of more than 133° for a 10-mg distilled water droplet. This sample also shows the rose petal effect with the additional property of high adhesion. The Mn nano-sculptured thin films also act as a sticky surface which is confirmed by hysteresis of the contact angle obtained from advancing and receding contact angles measurements. Physicochemical property of liquid phase could effectively change the contact angle, and polar solvents in contact with hydrophobic solid surfaces do not necessarily show high contact angle value.
NASA Astrophysics Data System (ADS)
Chen, Kai-Huang; Cheng, Chien-Min; Kao, Ming-Cheng; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Wu, Sean; Su, Feng-Yi
2017-04-01
The bipolar switching properties and electrical conduction mechanism of vanadium oxide thin-film resistive random-access memory (RRAM) devices obtained using a rapid thermal annealing (RTA) process have been investigated in high-resistive status/low-resistive status (HRS/LRS) and are discussed herein. In addition, the resistance switching properties and quality improvement of the vanadium oxide thin-film RRAM devices were measured by x-ray diffraction (XRD) analysis, x-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage ( I- V) measurements. The activation energy of the hopping conduction mechanism in the devices was investigated based on Arrhenius plots in HRS and LRS. The hopping conduction distance and activation energy barrier were obtained as 12 nm and 45 meV, respectively. The thermal annealing process is recognized as a candidate method for fabrication of thin-film RRAM devices, being compatible with integrated circuit technology for nonvolatile memory devices.
Impact of nanostructured thin ZnO film in ultraviolet protection
Sasani Ghamsari, Morteza; Alamdari, Sanaz; Han, Wooje; Park, Hyung-Ho
2017-01-01
Nanoscale ZnO is one of the best choices for ultraviolet (UV) protection, not only because of its antimicrobial properties but also due to its potential application for UV preservation. However, the behavior of nanostructured thin ZnO films and long-term effects of UV-radiation exposure have not been studied yet. In this study, we investigated the UV-protection ability of sol gel-derived thin ZnO films after different exposure times. Scanning electron microscopy, atomic force microscopy, and UV-visible optical spectroscopy were carried out to study the structure and optical properties of the ZnO films as a function of the UV-irradiation time. The results obtained showed that the prepared thin ZnO films were somewhat transparent under the visible wavelength region and protective against UV radiation. The UV-protection factor was 50+ for the prepared samples, indicating that they were excellent UV protectors. The deposited thin ZnO films demonstrated promising antibacterial potential and significant light absorbance in the UV range. The experimental results suggest that the synthesized samples have potential for applications in the health care field. PMID:28096668
Impact of nanostructured thin ZnO film in ultraviolet protection.
Sasani Ghamsari, Morteza; Alamdari, Sanaz; Han, Wooje; Park, Hyung-Ho
2017-01-01
Nanoscale ZnO is one of the best choices for ultraviolet (UV) protection, not only because of its antimicrobial properties but also due to its potential application for UV preservation. However, the behavior of nanostructured thin ZnO films and long-term effects of UV-radiation exposure have not been studied yet. In this study, we investigated the UV-protection ability of sol gel-derived thin ZnO films after different exposure times. Scanning electron microscopy, atomic force microscopy, and UV-visible optical spectroscopy were carried out to study the structure and optical properties of the ZnO films as a function of the UV-irradiation time. The results obtained showed that the prepared thin ZnO films were somewhat transparent under the visible wavelength region and protective against UV radiation. The UV-protection factor was 50+ for the prepared samples, indicating that they were excellent UV protectors. The deposited thin ZnO films demonstrated promising antibacterial potential and significant light absorbance in the UV range. The experimental results suggest that the synthesized samples have potential for applications in the health care field.
Free-living spirochetes from Cape Cod microbial mats detected by electron microscopy
NASA Technical Reports Server (NTRS)
Teal, T. H.; Chapman, M.; Guillemette, T.; Margulis, L.
1996-01-01
Spirochetes from microbial mats and anaerobic mud samples collected in salt marshes were studied by light microscopy, whole mount and thin section transmission electron microscopy. Enriched in cellobiose-rifampin medium, selective for Spirochaeta bajacaliforniensis, seven distinguishable spirochete morphotypes were observed. Their diameters ranged from 0.17 micron to > 0.45 micron. Six of these morphotypes came from southwest Cape Cod, Massachusetts: five from Microcoleus-dominated mat samples collected at Sippewissett salt marsh and one from anoxic mud collected at School Street salt marsh (on the east side of Eel Pond). The seventh morphotype was enriched from anoxic mud sampled from the north central Cape Cod, at the Sandy Neck salt marsh. Five of these morphotypes are similar or identical to previously described spirochetes (Leptospira, Spirochaeta halophila, Spirochaeta bajacaliforniensis, Spirosymplokos deltaeiberi and Treponema), whereas the other two have unique features that suggest they have not been previously described. One of the morphotypes resembles Spirosymplokos deltaeiberi (the largest free-living spirochete described), in its large variable diameter (0.4-3.0 microns), cytoplasmic granules, and spherical (round) bodies with composite structure. This resemblance permits its tentative identification as a Sippewissett strain of Spirosymplokos deltaeiberi. Microbial mats samples collected in sterile Petri dishes and stored dry for more than four years yielded many organisms upon rewetting, including small unidentified spirochetes in at least 4 out of 100 enrichments.
Local sample thickness determination via scanning transmission electron microscopy defocus series.
Beyer, A; Straubinger, R; Belz, J; Volz, K
2016-05-01
The usable aperture sizes in (scanning) transmission electron microscopy ((S)TEM) have significantly increased in the past decade due to the introduction of aberration correction. In parallel with the consequent increase of convergence angle the depth of focus has decreased severely and optical sectioning in the STEM became feasible. Here we apply STEM defocus series to derive the local sample thickness of a TEM sample. To this end experimental as well as simulated defocus series of thin Si foils were acquired. The systematic blurring of high resolution high angle annular dark field images is quantified by evaluating the standard deviation of the image intensity for each image of a defocus series. The derived dependencies exhibit a pronounced maximum at the optimum defocus and drop to a background value for higher or lower values. The full width half maximum (FWHM) of the curve is equal to the sample thickness above a minimum thickness given by the size of the used aperture and the chromatic aberration of the microscope. The thicknesses obtained from experimental defocus series applying the proposed method are in good agreement with the values derived from other established methods. The key advantages of this method compared to others are its high spatial resolution and that it does not involve any time consuming simulations. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, V. V., E-mail: vvsemenov@iomc.ras.ru; Loginova, V. V.; Zolotareva, N. V.
A thin cobalt layer has been formed on the surface of p-aminobenzoic acid whiskers by chemical vapor deposition (CVD). The metallized crystals have been oriented in liquid polydimethylsiloxane rubber by applying a dc magnetic field. After vulcanization, the filler has been removed by processing in an alcohol solution of trifluoroacetic acid. The cobalt deposition on the surface of the organic compound and the properties of metallized whiskers are investigated by optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM).
Ferroelectric size effects in multiferroic BiFeO3 thin films
NASA Astrophysics Data System (ADS)
Chu, Y. H.; Zhao, T.; Cruz, M. P.; Zhan, Q.; Yang, P. L.; Martin, L. W.; Huijben, M.; Yang, C. H.; Zavaliche, F.; Zheng, H.; Ramesh, R.
2007-06-01
Ferroelectric size effects in multiferroic BiFeO3 have been studied using a host of complementary measurements. The structure of such epitaxial films has been investigated using atomic force microscopy, transmission electron microscopy, and x-ray diffraction. The crystal structure of the films has been identified as a monoclinic phase, which suggests that the polarization direction is close to ⟨111⟩. Such behavior has also been confirmed by piezoforce microscopy measurements. That also reveals that the ferroelectricity is down to at least 2nm.
Vera, Pablo; Yago, José Hernández; Conejero, Vicente
1989-01-01
Citrus exocortis viroid induces in tomato plants (Lycopersicon esculentum) synthesis and accumulation of a pathogenesis-related protein (P69) previously reported to be a proteinase (Vera P, Conejero V [1988] Plant Physiol 87: 58-63). By immunogold/transmission electron microscopy, we have studied the distribution of this protein in thin sections of parenchymatous leaf tissue. The enzyme was present intra- and extracellularly. The intracellular location was limited to the vacuole and was always associated with engulfed cell material. When extracellularly located, the enzyme was associated with a dispersed, electron-dense material in the intercellular spaces. This latter location was confirmed after analysis of intercellular washing fluids obtained by vacuum infiltration of leaves. These observations provide new data for the understanding of viroid pathogenesis and the biological role of the pathogenesis-related proteinase P69. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:16666981
Tweeten, K A; Bulla, L A; Consigli, R A
1977-09-01
A procedure was developed for purification of a granulosis virus inclusion body produced in vivo in the Indian meal moth, Plodia interpunctella (Hübner). Purification was accomplished by differential centrifugation, treatment with sodium deoxycholate, and velocity sedimentation in sucrose gradients. The adequacy of the procedure was confirmed by mixing experiments in which uninfected, radioactively labeled larvae were mixed with infected, unlabeled larvae. After purification, the virus was shown to be free of host tissue, to retain its physical integrity, and to be highly infectious per os. Preparations of purified virus consisted of homogeneous populations of intact inclusion bodies (210 by 380 nm) whose buoyant density was 1.271 g/cm3 when centrifuged to equilibrium in sucrose gradients. Electron microscopy of thin-sectioned virus or of virus sequentially disrupted on electron microscope grids demonstrated three components: protein matrix, envelope, and nucleocapsid.
Tweeten, K A; Bulla, L A; Consigli, R A
1977-01-01
A procedure was developed for purification of a granulosis virus inclusion body produced in vivo in the Indian meal moth, Plodia interpunctella (Hübner). Purification was accomplished by differential centrifugation, treatment with sodium deoxycholate, and velocity sedimentation in sucrose gradients. The adequacy of the procedure was confirmed by mixing experiments in which uninfected, radioactively labeled larvae were mixed with infected, unlabeled larvae. After purification, the virus was shown to be free of host tissue, to retain its physical integrity, and to be highly infectious per os. Preparations of purified virus consisted of homogeneous populations of intact inclusion bodies (210 by 380 nm) whose buoyant density was 1.271 g/cm3 when centrifuged to equilibrium in sucrose gradients. Electron microscopy of thin-sectioned virus or of virus sequentially disrupted on electron microscope grids demonstrated three components: protein matrix, envelope, and nucleocapsid. Images PMID:334076
Thin films of Degussa P-25 TiO2 encapsulated in an SBA-15 mesoporous silica matrix were prepared. The TiO2/SBA-15 thin film structure was verified using transmission electron microscopy (TEM) and small angle X-ray diffraction (XRD). During irradiation with 350 nm light, the TiO...
NASA Astrophysics Data System (ADS)
Salodkar, R. V.; Belkhedkar, M. R.; Nemade, S. D.
2018-05-01
Successive Ionic Layer Adsorption and Reaction (SILAR) method has been employed to deposit nanocrystalline ZrO2 thin film of thickness 91 nm onto glass substrates using ZrOCl2.8H2O and NaOH as cationic and anionic precursors respectively. The structural and surface morphological characterizations have been carried out by means of X-ray diffraction and field emission scanning electron microscopy confirms the nanocrystalline nature of ZrO2 thin film. The direct optical band gap and activation energy of the ZrO2 thin film are found to be 4.74 and 0.80eV respectively.
AZO nanorods thin films by sputtering method
NASA Astrophysics Data System (ADS)
Rosli, A. B.; Shariffudin, S. S.; Awang, Z.; Herman, S. H.
2018-05-01
Al-doped zinc oxide (AZO) nanorods thin film were deposited on Au catalyst using RF sputtering at 300 °C. The 15 nm thickness Au catalyst were deposited on glass substrates by sputtering method followed by annealing for 15 min at 500 °C to form Au nanostructures on the glass substrate. The AZO thin films were then deposited on Au catalyst at different RF power ranging from 50 - 200 W. The morphology of AZO was characterized using Field Emission Scanning Electron Microscopy while X-ray Diffraction was used to examine crystallinity of AZO thin films. From this work, the AZO nanorods was found grow at 200 W RF power.
NASA Astrophysics Data System (ADS)
Ionin, Andrey; Ivanova, Anastasia; Khmel'nitskii, Roman; Klevkov, Yury; Kudryashov, Sergey; Mel'nik, Nikolay; Nastulyavichus, Alena; Rudenko, Andrey; Saraeva, Irina; Smirnov, Nikita; Zayarny, Dmitry; Baranov, Anatoly; Kirilenko, Demid; Brunkov, Pavel; Shakhmin, Alexander
2018-04-01
Milligram-per-second production of selenium nanoparticles in water sols was realized through 7-W, 2 MHz-rate femtosecond laser ablation of a crystalline trigonal selenium pellet. High-yield particle formation mechanism and ultimate mass-removal yield were elucidated by optical profilometry and scanning electron microscopy characterization of the corresponding crater depths and topographies. Deposited selenium particles were inspected by scanning and transmission electron microscopy, while their hydrosols (nanoinks) were characterized by optical transmission, Raman and dynamic light scattering spectroscopy. 2D patterns and coatings were ink-jet printed on thin supported silver films and their bare silica glass substrates, as well as on IR-transparent CaF2 substrates, and characterized by electron microscopy, energy-dispersive x-ray spectroscopy, and broadband (vis-mid IR) transmission spectroscopy, exhibiting crystalline selenium nanoparticles with high refractive index as promising all-dielectric sensing building nanoblocks in nanophotonics.
Madela, Kazimierz; Banhart, Sebastian; Zimmermann, Anja; Piesker, Janett; Bannert, Norbert; Laue, Michael
2014-01-01
Plastic cell culture dishes that contain a thin bottom of highest optical quality including an imprinted finder grid (μ-Dish Grid-500) are optimally suited for routine correlative light and electron microscopy using chemical fixation. Such dishes allow high-resolution fluorescence and bright-field imaging using fixed and living cells and are compatible with standard protocols for scanning and transmission electron microscopy. Ease of use during cell culture and imaging, as well as a tight cover render the dishes particularly suitable for working with infectious organisms up to the highest biosafety level. Detailed protocols are provided and demonstrated by showing two examples: monitoring the production of virus-like particles of the Human Endogenous Retrovirus HERV-K(HML-2) by HeLa cells and investigation of Rab11-positive membrane-compartments of HeLa cells after infection with Chlamydia trachomatis. © 2014 Elsevier Inc. All rights reserved.
Pd-Ni-MWCNT nanocomposite thin films: preparation and structure
NASA Astrophysics Data System (ADS)
Kozłowski, Mirosław; Czerwosz, ElŻbieta; Sobczak, Kamil
2017-08-01
The properties of nanocomposite palladium-nickel-multi-walled (Pd-Ni-MWCNT) films deposited on aluminum oxide (Al2O3) substrate have been prepared and investigated. These films were obtained by 3 step process consisted of PVD/CVD/PVD methods. The morphology and structure of the obtained films were characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques at various stages of the film formation. EDX spectrometer was used to measurements of elements segregation in the obtained film. TEM and STEM (Scanning Transmission Electron Microscopy) observations showed MWCNTs decorated with palladium nanoparticles in the film obtained in the last step of film formation (final PVD process). The average size of the palladium nanoparticles observed both on MWCNTs and carbonaceous matrix does not exceed 5 nm. The research was conducted on the use of the obtained films as potential sensors of gases (e.g. H2, NH3, CO2) and bio-sensors or optical sensors.
He, Qianping; Chen, Jihua; Keffer, David J; Joy, David C
2014-01-01
Electron microscopy is an essential tool for the evaluation of microstructure and properties of the catalyst layer (CL) of proton exchange membrane fuel cells (PEMFCs). However, electron microscopy has one unavoidable drawback, which is radiation damage. Samples suffer temporary or permanent change of the surface or bulk structure under radiation damage, which can cause ambiguity in the characterization of the sample. To better understand the mechanism of radiation damage of CL samples and to be able to separate the morphological features intrinsic to the material from the consequences of electron radiation damage, a series of experiments based on high-angle annular dark-field-scanning transmission scanning microscope (HAADF-STEM), energy filtering transmission scanning microscope (EFTEM), and electron energy loss spectrum (EELS) are conducted. It is observed that for thin samples (0.3-1 times λ), increasing the incident beam energy can mitigate the radiation damage. Platinum nanoparticles in the CL sample facilitate the radiation damage. The radiation damage of the catalyst sample starts from the interface of Pt/C or defective thin edge and primarily occurs in the form of mass loss accompanied by atomic displacement and edge curl. These results provide important insights on the mechanism of CL radiation damage. Possible strategies of mitigating the radiation damage are provided. © 2013 Wiley Periodicals, Inc.
Practical aspects of the use of the X(2) holder for HRTEM-quality TEM sample preparation by FIB.
van Mierlo, Willem; Geiger, Dorin; Robins, Alan; Stumpf, Matthias; Ray, Mary Louise; Fischione, Paul; Kaiser, Ute
2014-12-01
The X(2) holder enables the effective production of thin, electron transparent samples for high-resolution transmission electron microscopy (HRTEM). Improvements to the X(2) holder for high-quality transmission electron microscopy (TEM) sample preparation are presented in this paper. We discuss the influence of backscattered electrons (BSE) from the sample holder in determining the lamella thickness in situ and demonstrate that a significant improvement in thickness determination can be achieved by comparatively simple means using the relative BSE intensity. We show (using Monte Carlo simulations) that by taking into account the finite collection angle of the electron backscatter detector, an approximately 20% underestimation of the lamella thickness in a silicon sample can be avoided. However, a correct thickness determination for light-element lamellas still remains a problem with the backscatter method; we introduce a more accurate method using the energy dispersive X-ray spectroscopy (EDX) signal for in situ thickness determination. Finally, we demonstrate how to produce a thin lamella with a nearly damage-free surface using the X(2) holder in combination with sub-kV polishing in the Fischione Instruments׳ NanoMill(®) TEM specimen preparation system. Copyright © 2014 Elsevier B.V. All rights reserved.
A simple way to obtain backscattered electron images in a scanning transmission electron microscope.
Tsuruta, Hiroki; Tanaka, Shigeyasu; Tanji, Takayoshi; Morita, Chiaki
2014-08-01
We have fabricated a simple detector for backscattered electrons (BSEs) and incorporated the detector into a scanning transmission electron microscope (STEM) sample holder. Our detector was made from a 4-mm(2) Si chip. The fabrication procedure was easy, and similar to a standard transmission electron microscopy (TEM) sample thinning process based on ion milling. A TEM grid containing particle objects was fixed to the detector with a silver paste. Observations were carried out using samples of Au and latex particles at 75 and 200 kV. Such a detector provides an easy way to obtain BSE images in an STEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Nanobelt formation of magnesium hydroxide sulfate hydrate via a soft chemistry process.
Zhou, Zhengzhi; Sun, Qunhui; Hu, Zeshan; Deng, Yulin
2006-07-13
The nanobelt formation of magnesium hydroxide sulfate hydrate (MHSH) via a soft chemistry approach using carbonate salt and magnesium sulfate as reactants was successfully demonstrated. X-ray diffraction (XRD), energy dispersion X-ray spectra (EDS), selected area electron diffraction (SAED), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis revealed that the MHSH nanobelts possessed a thin belt structure (approximately 50 nm in thickness) and a rectangular cross profile (approximately 200 nm in width). The MHSH nanobelts suffered decomposition under electron beam irradiation during TEM observation and formed MgO with the pristine nanobelt morphology preserved. The formation process of the MHSH nanobelts was studied by tracking the morphology of the MHSH nanobelts during the reaction. A possible chemical reaction mechanism is proposed.
NASA Astrophysics Data System (ADS)
Roberts, N.; Cunningham, H.; Snell, A.; Newman, J.; Tikoff, B.; Chatzaras, V.; Walker, J. D.; Williams, R. T.
2017-12-01
There is currently no repository where a geologist can survey microstructural datasets that have been collected from a specific field area or deformation experiment. New development of the StraboSpot digital data system provides a such a repository as well as visualization and analysis tools. StraboSpot is a graph database that allows field geologists to share primary data and develop new types of scientific questions. The database can be accessed through: 1) a field-based mobile application that runs on iOS and Android mobile devices; and 2) a desktop system. We are expanding StraboSpot to include the handling of a variety of microstructural data types. Presented here is the detailed vocabulary and logic used for the input of microstructural data, and how this system operates with the anticipated workflow of users. Microstructural data include observations and interpretations from photomicrographs, scanning electron microscope images, electron backscatter diffraction, and transmission electron microscopy data. The workflow for importing microstructural data into StraboSpot is organized into the following tabs: Images, Mineralogy & Composition; Sedimentary; Igneous; Metamorphic; Fault Rocks; Grain size & configuration; Crystallographic Preferred Orientation; Reactions; Geochronology; Relationships; and Interpretations. Both the sample and the thin sections are also spots. For the sample spot, the user can specify whether a sample is experimental or natural; natural samples are inherently linked to their field context. For the thin section (sub-sample) spot, the user can select between different options for sample preparation, geometry, and methods. A universal framework for thin section orientation is given, which allows users to overlay different microscope images of the same area and keeps georeferenced orientation. We provide an example dataset of field and microstructural data from the Mt Edgar dome, a granitic complex in the Paleoarchean East Pilbara craton, Australia. StraboSpot provides a single place for georeferenced geologic data at every spatial scale, in which data are interconnected. Incorporating microstructural data into an open-access platform will give field and experimental geologists a library of microstructural data across a range of tectonic and experimental contexts.
Optical and structural properties of cobalt-permalloy slanted columnar heterostructure thin films
NASA Astrophysics Data System (ADS)
Sekora, Derek; Briley, Chad; Schubert, Mathias; Schubert, Eva
2017-11-01
Optical and structural properties of sequential Co-column-NiFe-column slanted columnar heterostructure thin films with an Al2O3 passivation coating are reported. Electron-beam evaporated glancing angle deposition is utilized to deposit the sequential multiple-material slanted columnar heterostructure thin films. Mueller matrix generalized spectroscopic ellipsometry data is analyzed with a best-match model approach employing the anisotropic Bruggeman effective medium approximation formalism to determine bulk-like and anisotropic optical and structural properties of the individual Co and NiFe slanted columnar material sub-layers. Scanning electron microscopy is applied to image the Co-NiFe sequential growth properties and to verify the results of the ellipsometric analysis. Comparisons to single-material slanted columnar thin films and optically bulk solid thin films are presented and discussed. We find that the optical and structural properties of each material sub-layer of the sequential slanted columnar heterostructure film are distinct from each other and resemble those of their respective single-material counterparts.
Electron transport in ultra-thin films and ballistic electron emission microscopy
NASA Astrophysics Data System (ADS)
Claveau, Y.; Di Matteo, S.; de Andres, P. L.; Flores, F.
2017-03-01
We have developed a calculation scheme for the elastic electron current in ultra-thin epitaxial heterostructures. Our model uses a Keldysh’s non-equilibrium Green’s function formalism and a layer-by-layer construction of the epitaxial film. Such an approach is appropriate to describe the current in a ballistic electron emission microscope (BEEM) where the metal base layer is ultra-thin and generalizes a previous one based on a decimation technique appropriated for thick slabs. This formalism allows a full quantum mechanical description of the transmission across the epitaxial heterostructure interface, including multiple scattering via the Dyson equation, which is deemed a crucial ingredient to describe interfaces of ultra-thin layers properly in the future. We introduce a theoretical formulation needed for ultra-thin layers and we compare with results obtained for thick Au(1 1 1) metal layers. An interesting effect takes place for a width of about ten layers: a BEEM current can propagate via the center of the reciprocal space (\\overlineΓ ) along the Au(1 1 1) direction. We associate this current to a coherent interference finite-width effect that cannot be found using a decimation technique. Finally, we have tested the validity of the handy semiclassical formalism to describe the BEEM current.
Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;
NASA Astrophysics Data System (ADS)
Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil
2017-09-01
In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durcan, Chris A.; Balsano, Robert; LaBella, Vincent P., E-mail: vlabella@albany.edu
2015-06-28
The W/Si(001) Schottky barrier height is mapped to nanoscale dimensions using ballistic electron emission microscopy (BEEM) over a period of 21 days to observe changes in the interface electrostatics. Initially, the average spectrum is fit to a Schottky barrier height of 0.71 eV, and the map is uniform with 98% of the spectra able to be fit. After 21 days, the average spectrum is fit to a Schottky barrier height of 0.62 eV, and the spatial map changes dramatically with only 27% of the spectra able to be fit. Transmission electron microscopy shows the formation of an ultra-thin tungsten silicide at themore » interface, which increases in thickness over the 21 days. This increase is attributed to an increase in electron scattering and the changes are observed in the BEEM measurements. Interestingly, little to no change is observed in the I-V measurements throughout the 21 day period.« less
High-speed nanoscale characterization of dewetting via dynamic transmission electron microscopy
NASA Astrophysics Data System (ADS)
Hihath, Sahar; Santala, Melissa K.; Campbell, Geoffrey; van Benthem, Klaus
2016-08-01
The dewetting of thin films can occur in either the solid or the liquid state for which different mass transport mechanisms are expected to control morphological changes. Traditionally, dewetting dynamics have been examined on time scales between several seconds to hours, and length scales ranging between nanometers and millimeters. The determination of mass transport mechanisms on the nanoscale, however, requires nanoscale spatial resolution and much shorter time scales. This study reports the high-speed observation of dewetting phenomena for kinetically constrained Ni thin films on crystalline SrTiO3 substrates. Movie-mode Dynamic Transmission Electron Microscopy (DTEM) was used for high-speed image acquisition during thin film dewetting at different temperatures. DTEM imaging confirmed that the initial stages of film agglomeration include edge retraction, hole formation, and growth. Finite element modeling was used to simulate temperature distributions within the DTEM samples after laser irradiation with different energies. For pulsed laser irradiation at 18 μJ, experimentally observed hole growth suggests that Marangoni flow dominates hole formation in the liquid nickel film. After irradiation with 13.8 μJ, however, the observations suggest that dewetting was initiated by nucleation of voids followed by hole growth through solid-state surface diffusion.
NASA Astrophysics Data System (ADS)
Cristescu, R.; Surdu, A. V.; Grumezescu, A. M.; Oprea, A. E.; Trusca, R.; Vasile, O.; Dorcioman, G.; Visan, A.; Socol, G.; Mihailescu, I. N.; Mihaiescu, D.; Enculescu, M.; Chifiriuc, M. C.; Boehm, R. D.; Narayan, R. J.; Chrisey, D. B.
2015-05-01
Although a great number of antibiotics are currently available, they are often rendered ineffective by the ability of microbial strains to develop genetic resistance and to grow in biofilms. Since many antimicrobial agents poorly penetrate biofilms, biofilm-associated infections often require high concentrations of antimicrobial agents for effective treatment. Among the various strategies that may be used to inhibit microbial biofilms, one strategy that has generated significant interest involves the use of bioactive surfaces that are resistant to microbial colonization. In this respect, we used matrix assisted pulsed laser evaporation (MAPLE) involving a pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) to obtain thin composite biopolymeric films containing natural (flavonoid) or synthetic (antibiotic) compounds as bioactive substances. Chemical composition and film structures were investigated by Fourier transform infrared spectroscopy and X-ray diffraction. Films morphology was studied by scanning electron microscopy and transmission electron microscopy. The antimicrobial assay of the microbial biofilms formed on these films was assessed by the viable cell counts method. The flavonoid-containing thin films showed increased resistance to microbial colonization, highlighting their potential to be used for the design of anti-biofilm surfaces.
Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; ...
2017-07-04
A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. In this paper, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH 3NH 3PbI 3–xCl x) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmissionmore » microscopies. Comprehensive image analysis revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. Finally, these results show that PL probes effectively the species near or at the film surface.« less
NASA Astrophysics Data System (ADS)
Grumezescu, Valentina; Andronescu, Ecaterina; Holban, Alina Maria; Socol, Gabriel; Grumezescu, Alexandru Mihai; Ficai, Anton; Lazar, Veronica; Chifiriuc, Mariana Carmen; Trusca, Roxana; Iordache, Florin
2015-05-01
The purpose of this study was the fabrication of functionalized anti-adherent surfaces based on the polyvinyl chloride (PVC) coated with 3-amino propyltrimethoxysilane (APTMS) by matrix assisted pulsed laser evaporation (MAPLE) in order to improve the resistance of PVC based prosthetic devices to microbial colonization. Infrared microscopy (IRM) investigations of APTMS thin films proved the compositional homogeneity of the prepared thin film. Scanning electron microscopy (SEM) micrographs revealed a granular morphology with microspheres harboring a diameter between 15 and 60 nm. The microbiological assays proved that MAPLE deposited APTMS films inhibited the adherence capacity and biofilm development of Pseudomonas aeruginosa and Staphylococcus aureus strains. Furthermore, this material proved to be highly biocompatible, allowing the normal growth and development of human endothelial cells. These traits highlight the fact that the fabricated APTMS thin films may be efficiently used for improving different surfaces of medical use, including prostheses and implantable devices.
Hwang, Ki-Hwan; Seo, Hyeon Jin; Nam, Sang-Hun; Boo, Jin-Hyo
2015-10-01
Recently, the use of PSS in flexible device electrodes has been reported. PSS treatment consists of a step in which a small amount of surfactant is added to enhance the adhesion between PSS and the substrate or TCO materials. However, basic research into the effect of the surfactant is lacking. We studied the effects of sodium dodecyl sulfate (SDS) at controlled concentrations in aqueous PSS solution and that it enhanced the conductivity in the mixed thin films with surfactant and PSS. The thin films were prepared by the spin coating method. To study the structural effects on the resulting electrical properties, the thin films were investigated by FE-SEM (Field Emission Scanning Electron Microscopy) and AFM (Atomic Force Microscopy). At the same time, the electrical properties were investigated using a 4-point probe and solar simulator.
NASA Astrophysics Data System (ADS)
Doughty, Benjamin; Simpson, Mary Jane; Yang, Bin; Xiao, Kai; Ma, Ying-Zhong
2016-03-01
This work aims to simplify multi-dimensional femtosecond transient absorption microscopy (TAM) data into decay associated amplitude maps (DAAMs) that describe the spatial distributions of dynamical processes occurring on various characteristic timescales. Application of this method to TAM data obtained from a model methyl-ammonium lead iodide (CH3NH3PbI3) perovskite thin film allows us to simplify the data set comprising 68 time-resolved images into four DAAMs. These maps offer a simple means to visualize the complex electronic excited-state dynamics in this system by separating distinct dynamical processes evolving on characteristic timescales into individual spatial images. This approach provides new insight into subtle aspects of ultrafast relaxation dynamics associated with excitons and charge carriers in the perovskite thin film, which have recently been found to coexist at spatially distinct locations.
Laser-induced dewetting of silver-doped chalcogenide glasses
NASA Astrophysics Data System (ADS)
Douaud, Alexandre; Messaddeq, Sandra Helena; Boily, Olivier; Messaddeq, Younès
2018-07-01
We report the observation of laser-induced dewetting responsible for the formation of periodic relief structures in silver-based chalcogenide thin-films. By varying the concentration of silver in the Agx(As20S80)100-x system (with x = 0, 4, 9 and 36), different surface relief structures are formed. The evolution of the surface changes as a function of laser parameters (power density, duration of exposure, and polarisation) as well as film thickness and silver concentration has been investigated. The scanning electron microscopy and atomic force microscopy images of irradiated spots show periodic ripples aligned perpendicularly to the electric field of incident light. Our results show that addition of silver into sulphur-rich chalcogenide thin-films improves the dewetting when compared to pure As20S80 thin-films. The changes in surface morphology were attributable to photo-induced chemical modifications and a laser-driven molecular rearrangement.
FE-SEM, FIB and TEM Study of Surface Deposits of Apollo 15 Green Glass Volcanic Spherules
NASA Technical Reports Server (NTRS)
Ross, Daniel K.; Thomas-Keprta, K. L.; Rahman, Z.; Wentworth, S. J.; McKay, D. S.
2011-01-01
Surface deposits on lunar pyroclastic green (Apollo 15) and orange (Apollo 17) glass spherules have been attributed to condensation from the gas clouds that accompanied fire-fountain eruptions. The fire fountains cast molten lava high above the lunar surface and the silicate melt droplets quenched before landing producing the glass beads. Early investigations showed that these deposits are rich in sulfur and zinc. The deposits are extremely fine-grained and thin, so that it was never possible to determine their chemical compositions cleanly by SEM/EDX or electron probe x-ray analysis because most of the excited volume was in the under-lying silicate glass. We are investigating the surface deposits by TEM, using focused ion beam (FIB) microscopy to extract and thin the surface deposits. Here we report on chemical mapping of a FIB section of surface deposits of an Apollo green glass bead 15401using the ultra-high resolution JEOL 2500 STEM located at NASA Johnson Space Center.
Perovskite-Perovskite Homojunctions via Compositional Doping.
Dänekamp, Benedikt; Müller, Christian; Sendner, Michael; Boix, Pablo P; Sessolo, Michele; Lovrincic, Robert; Bolink, Henk J
2018-05-11
One of the most important properties of semiconductors is the possibility of controlling their electronic behavior via intentional doping. Despite the unprecedented progress in the understanding of hybrid metal halide perovskites, extrinsic doping of perovskite remains nearly unexplored and perovskite-perovskite homojunctions have not been reported. Here we present a perovskite-perovskite homojunction obtained by vacuum deposition of stoichiometrically tuned methylammonium lead iodide (MAPI) films. Doping is realized by adjusting the relative deposition rates of MAI and PbI 2 , obtaining p-type (MAI excess) and n-type (MAI defect) MAPI. The successful stoichiometry change in the thin films is confirmed by infrared spectroscopy, which allows us to determine the MA content in the films. We analyzed the resulting thin-film junction by cross-sectional scanning Kelvin probe microscopy (SKPM) and found a contact potential difference (CPD) of 250 mV between the two differently doped perovskite layers. Planar diodes built with the perovskite-perovskite homojunction show the feasibility of our approach for implementation in devices.
Nanostructured PdO Thin Film from Langmuir-Blodgett Precursor for Room-Temperature H2 Gas Sensing.
Choudhury, Sipra; Betty, C A; Bhattacharyya, Kaustava; Saxena, Vibha; Bhattacharya, Debarati
2016-07-06
Nanoparticulate thin films of PdO were prepared using the Langmuir-Blodgett (LB) technique by thermal decomposition of a multilayer film of octadecylamine (ODA)-chloropalladate complex. The stable complex formation of ODA with chloropalladate ions (present in subphase) at the air-water interface was confirmed by the surface pressure-area isotherm and Brewster angle microscopy. The formation of nanocrystalline PdO thin film after thermal decomposition of as-deposited LB film was confirmed by X-ray diffraction and Raman spectroscopy. Nanocrystalline PdO thin films were further characterized by using UV-vis and X-ray photoelectron spectroscopic (XPS) measurements. The XPS study revealed the presence of prominent Pd(2+) with a small quantity (18%) of reduced PdO (Pd(0)) in nanocrystalline PdO thin film. From the absorption spectroscopic measurement, the band gap energy of PdO was estimated to be 2 eV, which was very close to that obtained from specular reflectance measurements. Surface morphology studies of these films using atomic force microscopy and field-emission scanning electron microscopy indicated formation of nanoparticles of size 20-30 nm. These PdO film when employed as a chemiresistive sensor showed H2 sensitivity in the range of 30-4000 ppm at room temperature. In addition, PdO films showed photosensitivity with increase in current upon shining of visible light.
Electron-microscopical localization of gelsolin in various crustacean muscles.
Unger, Andreas; Hinssen, Horst
2010-08-01
Gelsolin was localized by immunoelectron microscopy in fast and slow cross-striated muscles of the lobster Homarus americanus. When ultrathin sections of the muscles were labelled with anti-gelsolin and a gold-conjugated second antibody, 90% of all gold particles in the myoplasm were detected on myofibrils, preferentially in the I-band and AI-region of the sarcomeres. Both the region of the H-zone (lacking thin filaments) and the Z-disc contained no or little gold label. Under physiological conditions, a close association of gelsolin with the thin filaments was observed for both muscle types. The preferential localization of particles in the I- and AI-region indicated that gelsolin was distributed randomly over the whole length of the thin filaments. Preincubation of muscle strips with Ringer solution containing 0.5 mM EGTA resulted in a significantly different distribution pattern; gold particles were now localized preferentially in the cell periphery close to the sarcolemma, with significantly decreased abundance in the centre of the cell. Compared with the muscle under physiological conditions, the number of gold particles over sarcomeric structures was significantly reduced. Thus, binding of gelsolin to the thin filaments is apparently reversible in vivo and depends on the presence of calcium ions. We assume a functional role for gelsolin in the actin turnover processes in invertebrate muscle systems.
Lunar resources: Oxygen from rocks and soil
NASA Technical Reports Server (NTRS)
Allen, C. C.; Gibson, M. A.; Knudsen, C. W.; Kanamori, H.; Morris, R. V.; Keller, L. P.; Mckay, D. S.
1992-01-01
The first set of hydrogen reduction experiments to use actual lunar material was recently completed. The sample, 70035, is a coarse-grained vesicular basalt containing 18.46 wt. percent FeO and 12.97 wt. percent TiO2. The mineralogy includes pyroxene, ilmenite, plagioclase, and minor olivine. The sample was crushed to a grain size of less than 500 microns. The crushed basalt was reduced with hydrogen in seven tests at temperatures of 900-1050 C and pressures of 1-10 atm for 30-60 minutes. A capacitance probe, measuring the dew point of the gas stream, was used to follow reaction progress. Experiments were also conducted using a terrestrial basalt similar to some lunar mare samples. Minnesota Lunar Simulant (MLS-1) contains 13.29 wt. percent FeO, 2.96 wt. percent Fe2O3, and 6.56 wt. percent TiO2. The major minerals include plagioclase, pyroxene, olivine, ilmenite, and magnetite. The rock was ground and seived, and experiments were run on the less than 74- and 500-1168-micron fractions. Experiments were also conducted on less than 74-micron powders of olivine, pyroxene, synthetic ilmenite, and TiO2. The terrestrial rock and mineral samples were reduced with flowing hydrogen at 1100 C in a microbalance furnace, with reaction progress monitored by weight loss. Experiments were run at atmospheric pressure for durations of 3-4 hr. Solid samples from both sets of experiments were analyzed by Mossbauer spectroscopy, petrographic microscopy, scanning electron microscopy, tunneling electron microscopy, and x-ray diffraction. Apollo 17 soil 78221 was examined for evidence of natural reduction in the lunar environment. This sample was chosen based on its high maturity level (I sub s/FeO = 93.0). The FeO content is 11.68 wt. percent and the TiO2 content is 3.84 wt. percent. A polished thin section of the 90-150 micron size fraction was analyzed by petrographic microscopy and scanning electron microscopy.
Preparation of c-axis perpendicularly oriented ultra-thin L10-FePt films on MgO and VN underlayers
NASA Astrophysics Data System (ADS)
Futamoto, Masaaki; Shimizu, Tomoki; Ohtake, Mitsuru
2018-05-01
Ultra-thin L10-FePt films of 2 nm average thickness are prepared on (001) oriented MgO and VN underlayers epitaxially grown on base substrate of SrTiO3(001) single crystal. Detailed cross-sectional structures are observed by high-resolution transmission electron microscopy. Continuous L10-FePt(001) thin films with very flat surface are prepared on VN(001) underlayer whereas the films prepared on MgO(001) underlayer consist of isolated L10-FePt(001) crystal islands. Presence of misfit dislocation and lattice bending in L10-FePt material is reducing the effective lattice mismatch with respect to the underlayer to be less than 0.5 %. Formation of very flat and continuous FePt layer on VN underlayer is due to the large surface energy of VN material where de-wetting of FePt material at high temperature annealing process is suppressed under a force balance between the surface and interface energies of FePt and VN materials. An employment of underlayer or substrate material with the lattice constant and the surface energy larger than those of L10-FePt is important for the preparation of very thin FePt epitaxial thin continuous film with the c-axis controlled to be perpendicular to the substrate surface.
Nanomechanical properties of platinum thin films synthesized by atomic layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamun, M.A.; Gu, D.; Baumgart, H.
2015-03-01
The nanomechanical properties of Pt thin films grown on Si (100) using atomic layer deposition (ALD) were investigated using nanoindentation. Recently, atomic layer deposition (ALD) has successfully demonstrated the capability to deposit ultra-thin films of platinum (Pt). Using (methylcyclopentadienyl) trimethylplatinum (MeCpPtMe3) as chemical platinum precursor and oxygen (O2) as the oxidizing agent, the ALD synthesis of Pt can be achieved with high conformity and excellent film uniformity. The ALD process window for Pt films was experimentally established in the temperature range between 270 °C and 320 °C, where the sheet conductance was constant over that temperature range, indicating stable ALDmore » Pt film growth rate. ALD growth of Pt films exhibits very poor nucleation and adhesion characteristics on bare Si surfaces when the native oxide was removed by 2% HF etch. Pt adhesion improves for thermally oxidized Si wafers and for Si wafers covered with native oxide. Three ALD Pt films deposited at 800, 900, and 1000 ALD deposition cycles were tested for the structural and mechanical properties. Additionally, the sample with 900 ALD deposition cycles was further annealed in forming gas (95% N2 and 5% H2) at 450 °C for 30 min in order to passivate dangling bonds in the grain boundaries of the polycrystalline Pt film. Cross-sectional transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscope (SEM) were employed to characterize the films' surface structure and morphology. Nanoindentation technique was used to evaluate the hardness and modulus of the ALD Pt films of various film thicknesses. The results indicate that the films depict comparable hardness and modulus results; however, the 800 and 1000 ALD deposition cycles films without forming gas annealing experienced significant amount of pileup, whereas the 900 ALD deposition cycles sample annealed in forming gas resulted in a smaller pileup.« less
Synthesis and characterization of RuS2 nanostructures.
Díaz, David; Castillo-Blum, Silvia E; Alvarez-Fregoso, Octavio; Rodríguez-Gattorno, Geonel; Santiago-Jacinto, Patricia; Rendon, Luis; Ortiz-Frade, Luis; León-Paredes, Yolia-Judith
2005-12-08
Small naked ruthenium sulfide nanoparticles (NPs) with narrow size distribution (2.5 +/- 0.4 nm of diameter) were synthesized in DMSO colloidal dispersions, under mild reaction conditions and using commercial RuCl3 as precursor. To test the chemical reactivity with soft and hard bases, fresh presynthesized RuS2 colloids were mixed with triethylamine (N(Et)3) and ammonium tetrathiomolybdate ((NH4)2MoS4) dimethyl sulfoxide solutions. Naked N(Et)3 and [MoS4](2-)-capped RuS2 nanoparticle colloids were characterized using UV-visible electronic absorption and emission spectroscopies and high-resolution transmission electron microscopy (HR-TEM). It has also been shown that capped RuS2-[MoS4]2- nanoparticles yield MoO3 crystalline matrix by means of HR-TEM experiments. The emission spectra of RuS2 and N(Et)3-RuS2 dispersions show that both nanosized materials have strong fluorescence. The existence of the ruthenium precursor species in solution was established by cyclic voltammetry. Moreover, naked RuS2 NPs were mixed with a chemical mixture with composition similar to gasoline (dibenzothiophene (Bz2S, 400 ppm), hexane, and toluene (55:45% v/v)). The reaction mixture consisted of two phases; in the polar phase, we found evidences of a strong interaction of Bz2S and toluene with the naked RuS2 NPs. We have also obtained self-organized thin films of capped N(Et)3- and RuS2-[MoS4]2- nanoparticles. In both cases, the shape and thickness of the resulting thin films were controlled by a dynamic vacuum procedure. The thin films have been characterized by atomic force microscopy, scanning electron microscopy, HR-TEM, energy dispersion spectroscopy, X-ray diffraction, and absorbance and fluorescence spectroscopies.
Transition-Metal Substitution Doping in Synthetic Atomically Thin Semiconductors
Gao, Jian; Kim, Young Duck; Liang, Liangbo; ...
2016-09-20
Semiconductor impurity doping has enabled an entire generation of technology. The emergence of alternative semiconductor material systems, such as transition metal dichalcogenides (TMDCs), requires the development of scalable doping strategies. We report an unprecedented one-pot synthesis for transition-metal substitution in large-area, synthetic monolayer TMDCs. Electron microscopy, optical and electronic transport characterization and ab initio calculations indicate that our doping strategy preserves the attractive qualities of TMDC monolayers, including semiconducting transport and strong direct-gap luminescence. These results are expected to encourage exploration of transition-metal substitution in two-dimensional systems, potentially enabling next-generation optoelectronic technology in the atomically-thin regime.
NASA Astrophysics Data System (ADS)
Christensen, A. Kent; Lowry, Terry B.
1995-10-01
Ethanol (ethyl alcohol) has long been a standard reagent used in preparing tissues for light and electron microscopy. After fixation, tissues are usually dehydrated with ethanol before being embedded in paraffin or plastic. In this study we show that the ethanol-infiltrated tissue can be frozen and sectioned directly without embedding. When tissue impregnated with ethanol is cooled below about [minus sign]117°C with liquid nitrogen, the ethanol solidifies without appreciable crystallization. The frozen tissue can then be sectioned in a commercial cryoultramicrotome that is set at [minus sign]155 to [minus sign]170°C to produce semithin frozen sections (0.5 to 3 [mu]m thick) for light microscopy or ultrathin frozen sections (50 to 100 nm thick) for electron microscopy. Sections are picked up and mounted on glass slides or EM grids by means that are in current use for ice ultrathin frozen sectioning. Because there is no apparent freezing damage, the morphology in these ethanol frozen sections of unembedded tissue appears generally quite good, often resembling that obtained by conventional EM techniques. Examples are provided that illustrate the use of this material for immunocytochemistry at the light and electron microscope levels.
Electron beam crystallization of Te 1-xSe x films
NASA Astrophysics Data System (ADS)
Vermaak, J. S.; Raubenheimer, D.
1987-11-01
In situ transmission electron microscopy has been used to study the effect of high energy electrons on the amorphous-to-crystalline phase transformation, the isothermal growth rates, as well as the structure and orientation of the recrystallized Te 0.7Se 0.3 thin films. It is shown that the beam effect is not a pure thermal effect. It is proposed that the electron beam initiates nucleation and promotes growth by the interaction of the high energy electrons with the van der Waals type bonds between the short composite Te-Se chains.
Swift heavy-ions induced sputtering in BaF2 thin films
NASA Astrophysics Data System (ADS)
Pandey, Ratnesh K.; Kumar, Manvendra; Singh, Udai B.; Khan, Saif A.; Avasthi, D. K.; Pandey, Avinash C.
2013-11-01
In our present experiment a series of barium fluoride thin films of different thicknesses have been deposited by electron beam evaporation technique at room temperature on silicon substrates. The effect of film thickness on the electronic sputter yield of polycrystalline BaF2 thin films has been reported in the present work. Power law for sputtered species collected on catcher grids has also been reported for film of lowest thickness. Sputtering has been performed by 100 MeV Au+28 ions. Atomic force microscopy (AFM) has been done to check the surface morphology of pristine samples. Glancing angle X-ray diffraction (GAXRD) measurements show that the pristine films are polycrystalline in nature and the grain size increases with increase in film thickness. Rutherford backscattering spectrometry (RBS) of pristine as well as irradiated films was done to determine the areal concentration of Ba and F atoms in the films. A reduction in the sputter yield of BaF2 films with the increase in film thickness has been observed from RBS results. The thickness dependence sputtering is explained on the basis of thermal spike and the energy confinement of the ions in the smaller grains. Also transmission electron microscopy (TEM) of the catchers shows a size distribution of sputtered species with values of power law exponent 1/2 and 3/2 for two fluences 5 × 1011 and 1 × 1012 ions/cm2, respectively.
NASA Astrophysics Data System (ADS)
Reghima, Meriem; Akkari, Anis; Guasch, Cathy; Turki-Kamoun, Najoua
2014-09-01
SnS thin films were initially coated onto Pyrex substrates by the chemical bath deposition (CBD) method and annealed at various temperatures ranging from 200°C to 600°C for 30 min in nitrogen gas. X-ray diffraction (XRD) analysis revealed that a structural transition from face-centered cubic to orthorhombic occurs when the annealing temperature is over 500°C. The surface morphology of all thin layers was investigated by means of scanning electron microscopy and atomic force microscopy. The elemental composition of Sn and S, as measured by energy dispersive spectroscopy, is near the stoichiometric ratio. Optical properties studied by means of transmission and reflection measurements show an increase in the absorption coefficient with increasing annealing temperatures. The band gap energy is close to 1.5 eV, which corresponds to the optimum for photovoltaic applications. Last, the thermally stimulated current measurements show that the electrically active traps located in the band gap disappear after annealing at 500°C. These results suggest that, once again, annealing as a post-deposition treatment may be useful for improving the physical properties of the SnS layers included in photovoltaic applications. Moreover, the thermo-stimulated current method may be of practical relevance to explore the electronic properties of more conventional industrial methods, such as sputtering and chemical vapor deposition.
Phosphate microaggregates in Archean sediments. [Abstract only
NASA Technical Reports Server (NTRS)
Mojzsis, S.; Fan, G. Y.; Arrhenius, G.
1994-01-01
Light microscopy conducted on samples of Archean sediments reveals phosphate microaggregates which are suggestive of a biotic origin (Arrhenius et al., 1993). These aggregates, typically 15 micrometers wide and 50 micrometers long, are thought to be the mineral remains of colonies of microorganisms that lived during the late Archean Eon (greater than or equal to 2.5 Ga). Confocal microscopy was used to study the structures of these microaggregates in three dimensions. Samples used in this study are from the lowermost section of drill core taken from the Dales Gorge Member of the Brockman Iron-Formation (Hamersley Basin) in Western Australia. These sediments are well-preserved and escaped extensive metamorphism typically experienced by older rocks of this type. Two types of samples were prepared for study under the microscope: thin sections (30 micrometers) for transmitted light microscopy to study the general rock texture and to locate the grains of interest, and thick sections (3mm) for confocal microscopy to determine the 3-D structure of the aggregates in situ. The samples have been carefully polished so that they may be directly placed on the oil-immersion lens without the use of a cover slip. No chemical treatments of the surfaces have been performed. The aggregates often form clusters, although isolated aggregates have also been found. The clusters tend to distribute along microbands in the rocks. Electron microprobe analyses show that the phosphate grains and their inclusions, besides calcium and phosphorus, contain no major elements heavier than sodium. The proportions of calcium to phosphorus, the absence of stoichiometric amounts of other cations such as magnesium and iron, as well as optical properties suggest apatite as the mineral form.
Probing battery chemistry with liquid cell electron energy loss spectroscopy
Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; ...
2015-09-15
Electron energy loss spectroscopy (EELS) was used to determine the chemistry and oxidation state of LiMn 2O 4 and Li 4Ti 5O 12 thin film battery electrodes in liquid cells for in situ scanning/transmission electron microscopy (S/TEM). Using the L2,3 white line intensity ratio method we determine the oxidation state of Mn and Ti in a liquid electrolyte solvent and discuss experimental parameters that influence measurement sensitivity.
Lα and Mαβ X-ray production cross-sections of Bi by 6-30 keV electron impact
NASA Astrophysics Data System (ADS)
Liang, Y.; Xu, M. X.; Yuan, Y.; Wu, Y.; Qian, Z. C.; Chang, C. H.; Mei, C. S.; Zhu, J. J.; Moharram, K.
2017-12-01
In this paper, the Lα and Mαβ X-ray production cross-sections for Bi impacted by 6-30 keV electron have been measured. The experiments were performed at a Scanning Electron Microscope equipped with a silicon drift detector. The thin film with thick C substrate and the thin film deposited on self-supporting thin C film were both used as the targets to make a comparison. For the thick carbon substrate target, the Monte Carlo method has been used to eliminate the contribution of backscattering particles. The measured data are compared with the DWBA theoretical model and the experimental results in the literature. The experimental data for the thin film with thick C substrate target and the thin film deposited on self-supporting thin C film target are within reasonable gaps. The DWBA theoretical model gives good fit to the experimental data both for L- and M- shells. Besides, we also analyze the reasons why the discrepancies exist between our measurements and the experimental results in the literature.
NASA Astrophysics Data System (ADS)
Kafashan, Hosein
2018-04-01
An electrochemical route has been employed to prepare pure SnS and indium-doped SnS thin films. Six samples including undoped SnS and In-doped SnS thin films deposited on the fluorine-doped tin oxide (FTO) glass substrates. An aqueous solution having SnCl2 and Na2S2O3 used as the primary electrolyte. Different In-doped SnS samples were prepared by adding a different amount of 1 mM InCl3 solution into the first electrolyte. The applied potential (E), time of deposition (t), pH and bath temperature (T) were kept at ‑1 V, 30 min, 2.1 and 60 °C, respectively. For all samples, except the In-dopant concentration, all the deposition parameters are the same. After preparation, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) with an energy dispersive X-ray analyzer (EDX) attachment, atomic force microscopy (AFM), and transmission electron microscopy (TEM) were used to determine structural properties of as-deposited films. XRD patterns revealed that the synthesized undoped- and In-doped SnS thin films were crystallized in the orthorhombic structure. The shape of SnS crystals was spherical in the TEM image. X-ray peak broadening studies was done by applying Scherrer’s method, Williamson-Hall (W–H) models (including uniform deformation model (UDM), uniform strain deformation model (UDSM), and uniform deformation energy density model (UDEDM)), and size-strain plot (SSP) method. Using these techniques, the crystallite size and the lattice strains have been predicted. There was a good agreement in the particle size achieved by W–H- and SSP methods with TEM image.
NASA Astrophysics Data System (ADS)
Liu, Dongqing; Cheng, Haifeng; Xing, Xin; Zhang, Chaoyang; Zheng, Wenwei
2016-07-01
The W doped VO2 thin films with various W contents were successfully deposited by aqueous sol-gel method followed by a post annealing process. The derived thin films were characterized by X-ray diffraction, Raman spectra, scanning electron microscopy and atomic force microscopy. Besides, the resistance-temperature relationship and infrared emissivity in the waveband 7.5-14 μm were analyzed, and the effects of W doping on the thermochromic properties of VO2 thin films were studied. The results show that W atoms enter the crystal lattice of VO2 and the transition temperature decreases gradually with increasing doping amount of W. The emissivity of VO2-W-4% thin films has dropped to 0.4 when its real temperature is above 30 °C. The thermal infrared images were also examined under different temperature by thermal imager. The results indicate that the temperature under which W doped VO2 thin films begin to have lower emissivity decreases gradually with increasing doping amount of W. W doped VO2 thin films can control its infrared radiation intensity actively at a lower temperature level of 30 °C, which has great application prospects in the adaptive infrared stealth technology.
NASA Astrophysics Data System (ADS)
Qi, Meng; Xiao, Jianrong; Gong, Chenyang; Jiang, Aihua; Chen, Yong
2018-01-01
Low concentrations (<1 at%) of hafnium doped into diamond-like thin films (Hf-DLC) were deposited on 316L stainless steel and silicon (1 0 0) substrates by magnetron sputtering to attain superior mechanical and tribological properties. Ar and CH4 were used as source gases. The microstructure, chemical composition, and morphology of the Hf-DLC thin films in various concentrations were analyzed using x-ray diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy. Results showed that Hf species transferred from the particulate microstructure to Hf carbide phases, and the surface roughness increased monotonically with increasing Hf concentration. Moreover, the hardness and elastic modulus exhibited high values when the doped Hf concentration was 0.42 at%. Similarly, the tribological behaviors and wear life of Hf-DLC thin films had a low friction coefficient and excellent wear resistance at 0.42 at% Hf concentration. Therefore, 0.42 at% Hf is an optimal doping concentration to improve the mechanical and tribological properties of DLC thin films. Generally, the use of low-concentration Hf doping into DLC thin films is novel, and the present results provide guidance for the selection of suitable and effective concentration to optimize Hf-DLC thin films with superior performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullen, David A; Koestner, Roland; Kukreja, Ratan
Improved conditions for imaging and spectroscopic mapping of thin perfluorosulfonic acid (PFSA) ionomer layers in fuel cell electrodes by scanning transmission electron microscopy (STEM) have been investigated. These conditions are first identified on model systems of Nafion ionomer-coated nanostructured thin films and nanoporous Si. The optimized conditions are then applied in a quantitative study of the ionomer through-layer loading for two typical electrode catalyst coatings using electron energy loss and energy dispersive X-ray spectroscopy in the transmission electron microscope. The e-beam induced damage to the perfluorosulfonic acid (PFSA) ionomer is quantified by following the fluorine mass loss with electron exposuremore » and is then mitigated by a few orders of magnitude using cryogenic specimen cooling and a higher incident electron voltage. Multivariate statistical analysis is also applied to the analysis of spectrum images for data denoising and unbiased separation of independent components related to the catalyst, ionomer, and support.« less
The Structure and Infrastructure of the Global Nanotechnology Literature
2005-01-01
transmiss.electron.microscopi 1.3%, morpholog 1.2%, zn 1.0%, cd 1.0%, microscopi 1.0%, synthesi 0.9%, diffract.xrd 0.8%, electron 0.8%, powder 0.8%, surfact 0.8...film 2.3%, product 2.3%, hydrotherm 1.1%, tem 1.0%, synthes 0.9%, reaction 0.9%, xrd 0.9%, layer 0.8%, zn 0.8%, surfac 0.7%, cd 0.7%, magnet 0.7...0.5%, sol.gel 0.5%, thick 0.5%, materi 0.5%, laser 0.5%, reaction 0.5%, capac 0.4%, synthesi 0.4%, thin 0.4%, surfac 0.4%, nanowir 0.4%, nanoparticl
Surface structures of L10-MnGa (001) by scanning tunneling microscopy and first-principles theory
NASA Astrophysics Data System (ADS)
Corbett, J. P.; Guerrero-Sanchez, J.; Richard, A. L.; Ingram, D. C.; Takeuchi, N.; Smith, A. R.
2017-11-01
We report on the surface reconstructions of L10-ordered MnGa (001) thin films grown by molecular beam epitaxy on a 50 nm Mn3N2 (001) layer freshly grown on a magnesium oxide (001) substrate. Scanning tunneling microscopy, Auger electron spectroscopy, and reflection high energy electron diffraction are combined with first-principles density functional theory calculations to determine the reconstructions of the L10-ordered MnGa (001) surface. We find two lowest energy reconstructions of the MnGa (001) face: a 1 × 1 Ga-terminated structure and a 1 × 2 structure with a Mn replacing a Ga in the 1 × 1 Ga-terminated surface. The 1 × 2 reconstruction forms a row structure along [100]. The manganese:gallium stoichiometry within the surface based on theoretical modeling is in good agreement with experiment. Magnetic moment calculations for the two lowest energy structures reveal important surface and bulk effects leading to oscillatory total magnetization for ultra-thin MnGa (001) films.
Growth process optimization of ZnO thin film using atomic layer deposition
NASA Astrophysics Data System (ADS)
Weng, Binbin; Wang, Jingyu; Larson, Preston; Liu, Yingtao
2016-12-01
The work reports experimental studies of ZnO thin films grown on Si(100) wafers using a customized thermal atomic layer deposition. The impact of growth parameters including H2O/DiethylZinc (DEZn) dose ratio, background pressure, and temperature are investigated. The imaging results of scanning electron microscopy and atomic force microscopy reveal that the dose ratio is critical to the surface morphology. To achieve high uniformity, the H2O dose amount needs to be at least twice that of DEZn per each cycle. If the background pressure drops below 400 mTorr, a large amount of nanoflower-like ZnO grains would emerge and increase surface roughness significantly. In addition, the growth temperature range between 200 °C and 250 °C is found to be the optimal growth window. And the crystal structures and orientations are also strongly correlated to the temperature as proved by electron back-scattering diffraction and x-ray diffraction results.
Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide.
Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J; Schlom, Darrell G; Alem, Nasim; Gopalan, Venkatraman
2016-08-31
Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure.
Atomic scale imaging of competing polar states in a Ruddlesden–Popper layered oxide
Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J.; Schlom, Darrell G.; Alem, Nasim; Gopalan, Venkatraman
2016-01-01
Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden–Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure. PMID:27578622
An alternative route for the synthesis of silicon nanowires via porous anodic alumina masks
2011-01-01
Amorphous Si nanowires have been directly synthesized by a thermal processing of Si substrates. This method involves the deposition of an anodic aluminum oxide mask on a crystalline Si (100) substrate. Fe, Au, and Pt thin films with thicknesses of ca. 30 nm deposited on the anodic aluminum oxide-Si substrates have been used as catalysts. During the thermal treatment of the samples, thin films of the metal catalysts are transformed in small nanoparticles incorporated within the pore structure of the anodic aluminum oxide mask, directly in contact with the Si substrate. These homogeneously distributed metal nanoparticles are responsible for the growth of Si nanowires with regular diameter by a simple heating process at 800°C in an Ar-H2 atmosphere and without an additional Si source. The synthesized Si nanowires have been characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman. PMID:21849077
Lo Nigro, Raffaella; Toro, Roberta G; Malandrino, Graziella; Fragalà, Ignazio L; Losurdo, Maria; Giangregorio, Michelaria M; Bruno, Giovanni; Raineri, Vito; Fiorenza, Patrick
2006-09-07
A novel approach based on a molten multicomponent precursor source has been applied for the MOCVD fabrication of high-quality CaCu(3)Ti(4)O(12) (CCTO) thin films on various substrates. The adopted in situ strategy involves a molten mixture consisting of Ca(hfa)(2).tetraglyme, Ti(tmhd)(2)(O-iPr)(2), and Cu(tmhd)(2) [Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione; tetraglyme = 2,5,8,11,14-pentaoxapentadecane; Htmhd = 2,2,6,6-tetramethyl-3,5-heptandione; O-iPr = isopropoxide] precursors. Film structural and morphological characterizations have been carried out by several techniques [X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM)], and in particular the energy filtered TEM mapping and X-ray energy dispersive (EDX) analysis in TEM mode provided a suitable correlation between nanostructural properties of CCTO films and deposition conditions and/or the substrate nature. Correlation between the nanostructure and optical/dielectric properties has been investigated exploiting spectroscopic ellipsometry.
One dimensional metallic edges in atomically thin WSe2 induced by air exposure
NASA Astrophysics Data System (ADS)
Addou, Rafik; Smyth, Christopher M.; Noh, Ji-Young; Lin, Yu-Chuan; Pan, Yi; Eichfeld, Sarah M.; Fölsch, Stefan; Robinson, Joshua A.; Cho, Kyeongjae; Feenstra, Randall M.; Wallace, Robert M.
2018-04-01
Transition metal dichalcogenides are a unique class of layered two-dimensional (2D) crystals with extensive promising applications. Tuning the electronic properties of low-dimensional materials is vital for engineering new functionalities. Surface oxidation is of particular interest because it is a relatively simple method of functionalization. By means of scanning probe microscopy and x-ray photoelectron spectroscopy, we report the observation of metallic edges in atomically thin WSe2 monolayers grown by chemical vapor deposition on epitaxial graphene. Scanning tunneling microscopy shows structural details of WSe2 edges and scanning tunneling spectroscopy reveals the metallic nature of the oxidized edges. Photoemission demonstrates that the formation of metallic sub-stoichiometric tungsten oxide (WO2.7) is responsible for the high conductivity measured along the edges. Ab initio calculations validate the susceptibility of WSe2 nanoribbon edges to oxidation. The zigzag terminated edge exhibits metallic behavior prior the air-exposure and remains metallic after oxidation. Comprehending and exploiting this property opens a new opportunity for application in advanced electronic devices.
Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide
NASA Astrophysics Data System (ADS)
Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J.; Schlom, Darrell G.; Alem, Nasim; Gopalan, Venkatraman
2016-08-01
Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure.
Human cardiac telocytes: 3D imaging by FIB-SEM tomography
Cretoiu, D; Hummel, E; Zimmermann, H; Gherghiceanu, M; Popescu, L M
2014-01-01
Telocyte (TC) is a newly identified type of cell in the cardiac interstitium (www.telocytes.com). TCs are described by classical transmission electron microscopy as cells with very thin and long telopodes (Tps; cellular prolongations) having podoms (dilations) and podomers (very thin segments). TCs’ three-dimensional (3D) morphology is still unknown. Cardiac TCs seem to be particularly involved in long and short distance intercellular signalling and, therefore, their 3D architecture is important for understanding their spatial connections. Using focused ion beam scanning electron microscopy (FIB-SEM) we show, for the first time, the whole ultrastructural anatomy of cardiac TCs. 3D reconstruction of cardiac TCs by FIB-SEM tomography confirms that they have long, narrow but flattened (ribbon-like) telopodes, with humps generated by the podoms. FIB-SEM tomography also confirms the network made by TCs in the cardiac interstitium through adherens junctions. This study provides the first FIB-SEM tomography of a human cell type. PMID:25327290
NASA Astrophysics Data System (ADS)
Zhang, Qi-Xian; Wei, Wen-Sheng; Ruan, Fang-Ping
2011-04-01
Gallium phosphide (GaP) nanoparticulate thin films were easily fabricated by colloidal suspension deposition via GaP nanoparticles dispersed in N,N-dimethylformamide. The microstructure of the film was performed by x-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy. The film was further investigated by spectroscopic ellipsometry. After the model GaP+void|SiO2 was built and an effective medium approximation was adopted, the values of the refractive index n and the extinction coefficient k were calculated for the energy range of 0.75 eV-4.0 eV using the dispersion formula in DeltaPsi2 software. The absorption coefficient of the film was calculated from its k and its energy gaps were further estimated according to the Tauc equation, which were further verified by its fluorescence spectrum measurement. The structure and optical absorption properties of the nanoparticulate films are promising for their potential applications in hybrid solar cells.
Refractive-Index Tuning of Highly Fluorescent Carbon Dots.
Kumar, Vijay Bhooshan; Sahu, Amit Kumar; Mohsin, Abu S M; Li, Xiangping; Gedanken, Aharon
2017-08-30
In this manuscript, we report the refractive-index (RI) modulation of various concentrations of nitrogen-doped carbon dots (N@C-dots) embedded in poly(vinyl alcohol) (PVA) polymer. The dispersion and size distribution of N@C-dots embedded within PVA have been investigated using electron microscopy. The RI of PVA-N@C-dots can be enhanced by increasing the doping concentration of highly fluorescent C-dots (quantum yield 44%). This is demonstrated using ultraviolet-visible (UV-visible), photoluminscence, Raman, and Fourier transform infrared (FTIR) spectroscopy measurements. The Mie scattering of light on N@C-dots was applied for developing the relationship between RI tuning and absorption cross section of N@C-dots. The extinction cross section of N@C-dot thin films can be rapidly enhanced by either tuning the RI or increasing the concentration of N@C-dots. The developed method can be used as effective RI contrast for various applications such as holography creation and bioimaging.
NASA Astrophysics Data System (ADS)
Rajak, D. K.; Deshpande, P. G.; Kumaraswamidhas, L. A.
2017-08-01
This Paper aimed at experimental investigation of compressive behaviour of square tube filled with pumice lightweight concrete (PLC). Square section of 20×20×30 mm is investigated, which is the backbone structure. The compression deformation result shows the better folding mechanism, displacement value, and energy absorption. PLC concrete filled with aluminium thin-wall tubes has been revealed superior energy absorption capacity (EAC) under low strain rate at room temperature. Superior EAC resulted as a result of mutual deformation benefit between aluminium section and PLC is also analysed. PLC was characterised by Fourier Transform Infrared (FTIR) and Field Emission Scanning Electron Microscopy (FESEM), and Energy Dispersive X-ray Spectrometry (EDX) analysis for better understanding of material behaviour. Individual and comparative load bearing graphs is logged for better prospective of analysing. Novel approach aimed at validation of porous lightweight concrete for better lightweight EA filler material.
NASA Astrophysics Data System (ADS)
Suarez Anzorena, Manuel; Bertolo, Alma A.; Gagetti, Leonardo; Gaviola, Pedro A.; del Grosso, Mariela F.; Kreiner, Andrés J.
2018-06-01
Titanium deuteride thin films have been manufactured under different conditions specified by deuterium gas pressure, substrate temperature and time. The films were characterized by different techniques to evaluate the deuterium content and the homogeneity of such films. Samples with different concentrations of deuterium, including non deuterated samples, were irradiated with a 150 keV proton beam. Both deposits, pristine and irradiated, were characterized by optical profilometry and scanning electron microscopy.
Two-Dimensional Animal-Like Fractals in Thin Films
NASA Astrophysics Data System (ADS)
Gao, Hong-jun; Xue, Zeng-quan; Wu, Quan-de; Pang, Shi-jin
1996-02-01
We present a few unique animal-like fractal patterns in ionized-cluster-beam deposited fullerene-tetracyanoquinodimethane thin films. The fractal patterns consisting of animal-like aggregates such as "fishes" and "quasi-seahorses" have been characterized by transmission electron microscopy. The results indicate that the small aggregates of the animal-like body are composed of many single crystals whose crystalline directions are generally different. The formation of the fractal patterns can be attributed to the cluster-diffusion-limited aggregation.
2014-01-01
Indium gallium nitride (InGaN) samples with single heterojunction (SH) and double heterojunction (DH) were prepared using metal-organic chemical vapor deposition. SH has a layer of InGaN thin film (thicknesses, 25, 50, 100, and 200 nm) grown on an uGaN film (thickness, 2 μm). The DH samples are distinguished by DH uGaN film (thickness, 120 nm) grown on the InGaN layer. Reciprocal space mapping measurements reveal that the DH samples are fully strained with different thicknesses, whereas the strain in the SH samples are significantly relaxed with the increasing thickness of the InGaN film. Scanning electron microscopy results show that the surface roughness of the sample increases when the sample is relaxed. High-resolution transmission electron microscopy images of the structure of indium droplets in the DH sample indicate that the thickness of the InGaN layer decreases with the density of indium droplets. The formation of these droplets is attributed to the insufficient kinetic energy of indium atom to react with the elements of group V, resulting to aggregation. The gallium atoms in the GaN thin film will not be uniformly replaced by indium atoms; the InGaN thin film has an uneven distribution of indium atoms and the quality of the epitaxial layer is degraded. PMID:25024692
Femtosecond pulsed laser deposition of amorphous, ultrahard boride thin films
NASA Astrophysics Data System (ADS)
Stock, Michael; Molian, Pal
2004-05-01
Amorphous thin films (300-500 nm) of ultrahard AlMgB10 with oxygen and carbon impurities were grown on Si (100) substrates at 300 K using a solid target of AlMgB14 containing a spinel phase (MgAl2O4) and using a 120 fs pulsed, 800 nm wavelength Ti:sapphire laser. The films were subsequently annealed in argon gas up to 1373 K for 2 h. Scanning electron microscopy (SEM) was used to examine the particulate formation, atomic force microscopy was employed to characterize the film surface topography, x-ray diffraction and transmission electron microscopy were used to determine the microstructure, x-ray photoelectron spectroscopy was performed to examine the film composition, and nanoindentation was employed to study the hardness of thin films. The as-deposited and postannealed films (up to 1273 K) had a stochiometry of AlMgB10 with a significant amount of oxygen and carbon impurities and exhibited amorphous structures for a maximum hardness of 40+/-3 GPa. However, postannealing at higher temperatures led to crystallization and transformation of the film to SiB6 with a substantial loss in hardness. Results are also compared with our previous study on 23 ns, 248 nm wavelength (KrF excimer) pulsed laser deposition of AlMgB14 reported in this journal [Y. Tian, A. Constant, C. C. H. Lo, J. W. Anderegg, A. M. Russell, J. E. Snyder, and P. A. Molian, J. Vac. Sci. Technol. A 21, 1055 (2003)]. .
Peckys, Diana B; de Jonge, Niels
2014-02-01
The size of gold nanoparticles (AuNPs) can influence various aspects of their cellular uptake. Light microscopy is not capable of resolving most AuNPs, while electron microscopy (EM) is not practically capable of acquiring the necessary statistical data from many cells and the results may suffer from various artifacts. Here, we demonstrate the use of a fast EM method for obtaining high-resolution data from a much larger population of cells than is usually feasible with conventional EM. A549 (human lung carcinoma) cells were subjected to uptake protocols with 10, 15, or 30 nm diameter AuNPs with adsorbed serum proteins. After 20 min, 24 h, or 45 h, the cells were fixed and imaged in whole in a thin layer of liquid water with environmental scanning electron microscopy equipped with a scanning transmission electron microscopy detector. The fast preparation and imaging of 145 whole cells in liquid allowed collection of nanoscale data within an exceptionally small amount of time of ~80 h. Analysis of 1,041 AuNP-filled vesicles showed that the long-term AuNP storing lysosomes increased their average size by 80 nm when AuNPs with 30 nm diameter were uptaken, compared to lysosomes of cells incubated with AuNPs of 10 and 15 nm diameter.
Observation and manipulation of magnetic domains in sol gel derived thin films of spinel ferrites
NASA Astrophysics Data System (ADS)
Datar, Ashwini A.; Mathe, Vikas L.
2017-12-01
Thin films of spinel ferrites, namely zinc substituted nickel, cobalt ferrite, and manganese substituted cobalt ferrite, were synthesized using sol-gel derived spin-coating techniques. The films were characterized using x-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy techniques for the analysis of structural, morphological and vibrational band transition properties, which confirm the spinel phase formation of the films. The magnetic force microscopy (MFM) technique was used to observe the magnetic domain structure present in the synthesized films. Further, the films were subjected to an external DC magnetic field of 2 kG to orient the magnetic domains and analyzed using an ex situ MFM technique.
NASA Astrophysics Data System (ADS)
Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.
2013-03-01
In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.
NASA Astrophysics Data System (ADS)
El Kazzi, S.; Mortelmans, W.; Nuytten, T.; Meersschaut, J.; Carolan, P.; Landeloos, L.; Conard, T.; Radu, I.; Heyns, M.; Merckling, C.
2018-04-01
We present in this paper the use of Gas Source Molecular Beam Epitaxy for the large-scale growth of transition metal dichalcogenides. Fiber-textured MoS2 co-deposited thin films (down to 1 MLs) are grown on commercially 200 mm wafer size templates where MX2 crystalline layers are achieved at temperatures ranging from RT to 550 °C. Raman Spectroscopy and photoluminescence measurements along with X-Ray Photoelectron Spectroscopy show that a low growth rate is essential for complete Mo sulfurization during MoS2 co-deposition. Finally, cross-section Transmission Electron Microscopy investigations are discussed to highlight the influence of SiO2 and Al2O3 used surfaces on MoS2 deposition.
Characterization of a Latent Virus-Like Infection of Symbiotic Zooxanthellae▿
Lohr, Jayme; Munn, Colin B.; Wilson, William H.
2007-01-01
A latent virus-like agent, which we designated zooxanthella filamentous virus 1 (ZFV1), was isolated from Symbiodinium sp. strain CCMP 2465 and characterized. Transmission electron microscopy and analytical flow cytometry revealed the presence of a new group of distinctive filamentous virus-like particles after exposure of the zooxanthellae to UV light. Examination of thin sections of the zooxanthellae revealed the formation and proliferation of filamentous virus-like particles in the UV-induced cells. Assessment of Symbiodinium sp. cultures was used here as a model to show the effects of UV irradiance and induction of potential latent viruses. The unique host-virus system described here provides insight into the role of latent infections in zooxanthellae through environmentally regulated viral induction mechanisms. PMID:17351090
Characterization of a latent virus-like infection of symbiotic zooxanthellae.
Lohr, Jayme; Munn, Colin B; Wilson, William H
2007-05-01
A latent virus-like agent, which we designated zooxanthella filamentous virus 1 (ZFV1), was isolated from Symbiodinium sp. strain CCMP 2465 and characterized. Transmission electron microscopy and analytical flow cytometry revealed the presence of a new group of distinctive filamentous virus-like particles after exposure of the zooxanthellae to UV light. Examination of thin sections of the zooxanthellae revealed the formation and proliferation of filamentous virus-like particles in the UV-induced cells. Assessment of Symbiodinium sp. cultures was used here as a model to show the effects of UV irradiance and induction of potential latent viruses. The unique host-virus system described here provides insight into the role of latent infections in zooxanthellae through environmentally regulated viral induction mechanisms.
In Vitro Morphology and Maturation of Lymphocystis Virus 1
Midlige, F. H.; Malsberger, R. G.
1968-01-01
The temporal sequence of development of lymphocystis disease virus (LDV) was studied by electron microscopy of thin sections of infected tissue-culture monolayers. Neither the typical cytoplasmic inclusion nor virus was detected at 4 days postinfection (PI). Inclusions, but no viruses, were detected at 8 days PI. Inclusions and associated virions were detected at 15 days PI, and by 28 days PI the undisrupted cells were filled with the typical virions. No release mechanism was detected, and severe clumping of particles was noted. Negatively stained preparations revealed particles 200 nm in diameter with no capsomere structure and apparent spikes associated with the particle. The relationship of LDV to the well-defined deoxyribonucleic acid virus groups is discussed. Images PMID:5701821
Brown, M F; Brotzman, H G; Kinden, D A
1976-09-01
A procedure yielding sections of unembedded biological samples for observation by scanning electron microscopy is described. Sections of samples, fixed and hardened in OsO4, were obtained in quantity with a tissue sectioner. Subsequent treatments to osmium-coat cut surfaces were employed prior to critical point drying. The procedure yields cleanly cut surfaces through cells and cytoplasmic organelles which are retained in their normal position. Sections of apple leaf and mouse kidney are illustrated. Sections can be readily cut in a desired plane with less structural damage than is typically encountered by other sectioning or dissection techniques.
Nanoskiving: A new method for nanofabrication
NASA Astrophysics Data System (ADS)
Xu, Qiaobing
"Nanoskiving" is the name we have given to a technique for the fabrication of nanostructures by combining deposition of thin films on a topographically patterned polymeric substrate using physical vapor methods and sectioning with an ultramicrotome. Ultramicrotomy was originally developed as a tool for sectioning biological specimens for analysis by optical or electron microscopy. The imaging of biological specimens requires the ability to slice mum to sub-mum thick sections and the imaging is done through the thinnest dimension of the section. Nanoskiving utilizes an ultramicrotome because of its ability to section sub-100 nm slices reproducibly. In this thesis, I will describe the fabrication by nanoskiving of the diverse nanostructures and their applications in electronics and optics. Nanoskiving is experimentally simple, and requires little in the way of facilities (for example, access to a cleanroom or a high-resolution e-beam writer is unnecessary). It is applicable to many classes of structures and materials with which conventional methods of nanofabrication (e.g. EUV or X-ray photolithography, e-beam lithography (EBL) focused ion-beam (FIB)) fail. This method begins with the deposition of thin metallic films on an epoxy substrate by e-beam evaporation or sputtering. After embedding the thin metallic film in an epoxy matrix, sectioning (in a plane perpendicular or parallel to the metal film) with an ultramicrotome generates nanometer-thick sections of epoxy containing metallic nanostructures. The cross-section of the metal wires embedded in the resulting thin epoxy sections is controlled by the thickness of the evaporated metal film (which can be as small as 20 nm), and the thickness of the sections cut by the microtome (as small as 30 nm, using a standard 35° diamond knife). The embedded nanostructures can be transferred to, and positioned on planar or curved substrates by manipulating the thin polymer film. Removal of the epoxy matrix by etching with an oxygen plasma generates free-standing metallic nanostructures. Chapter 1 is an overview of nanoskiving---a technique that combines thin-film deposition of metal on a topographically contoured substrate with sectioning using an ultramicrotome---as a method of fabricating nanostructures. Nanoskiving provides a simple and convenient procedure to produce arrays (over areas of mm2 to cm2) of structures with cross-sectional dimensions in the thirty-nanometer regime embedded in epoxy. The ability to control the dimensions of nanostructures, combined with the ability to manipulate and position them, enables the fabrication of nanostructures with geometries that are difficult to prepare by other methods. Two classes of applications--- in optics and in electronics---demonstrate the utility of nanostructures fabricated by nanoskiving. Chapter 2 shows the fabrication by nanoskiving of complex nanostructures that are difficult or impossible to achieve by other nanofabrication methods. These include multilayer structures, structures on curved surfaces, structures that span gaps, structures in less familiar materials, structures with high-aspect ratios, and large-area structures comprising two-dimensional periodic arrays. Chapter 3 demonstrates the Fabrication patterned arrays of gold structures (for example, rings) with wall thickness of 40 nm, and with high aspect ratios up to 25. Chapter 4 introduces the fabrication by nanoskiving of gold nanowires of uniform, controllable length, width, and height, and describes a systematic study of the dependence of the surface plasmon resonance on the geometry of these wires. Chapter 5 describes the fabrication of arrays of closed and open, loop-shaped nanostructures over mm2 area by nanoskiving. These arrays of metallic structures serve as frequency-selective surfaces at mid-infrared wavelengths. Chapter 6 describes a procedure to fabricate an array of nanoelectrodes that can be addressed from the back face of the slab of epoxy resin.
Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy
Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei
2015-01-01
Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453
Massa, P T; Szuchet, S; Mugnaini, E
1984-12-01
Oligodendrocytes were isolated from lamb brain. Freshly isolated cells and cultured cells, either 1- to 4-day-old unattached or 1- to 5-week-old attached, were examined by thin section and freeze-fracture electron microscopy. Freeze-fracture of freshly isolated oligodendrocytes showed globular and elongated intramembrane particles similar to those previously described in oligodendrocytes in situ. Enrichment of these particles was seen at sites of inter-oligodendrocyte contact. Numerous gap junctions and scattered linear tight junctional arrays were apparent. Gap junctions were connected to blebs of astrocytic plasma membrane sheared off during isolation, whereas tight junctions were facing extracellular space or blebs of oligodendrocytic plasma membrane. Thin sections of cultured, unattached oligodendrocytes showed rounded cell bodies touching one another at points without forming specialized cell junctions. Cells plated on polylysine-coated aclar dishes attached, emanated numerous, pleomorphic processes, and expressed galactocerebroside and myelin basic protein, characteristic markers for oligodendrocytes. Thin sections showed typical oligodendrocyte ultrastructure but also intermediate filaments not present in unattached cultures. Freeze-fracture showed intramembrane particles similar to but more numerous, and with a different fracture face repartition, than those seen in oligodendrocytes, freshly isolated or in situ. Gap junctions were small and rare. Apposed oligodendrocyte plasma membrane formed linear tight junctions which became more numerous with time in culture. Thus, cultured oligodendrocytes isolated from ovine brains develop and maintain features characteristic of mature oligodendrocytes in situ and can be used to explore formation and maintenance of tight junctions and possibly other classes of cell-cell interactions important in the process of myelination.
Platinum blue as an alternative to uranyl acetate for staining in transmission electron microscopy.
Inaga, Sumire; Katsumoto, Tetsuo; Tanaka, Keiichi; Kameie, Toshio; Nakane, Hironobu; Naguro, Tomonori
2007-04-01
This paper introduces an aqueous solution of platinum blue (Pt-blue) as an alternative to uranyl acetate (UA) for staining in transmission electron microscopy (TEM). Pt-blue was prepared from a reaction of cis-dichlorodiamine-platinum (II) (cis-platin) with thymidine. When Pt-blue was dried on a microgrid and observed by TEM it showed a uniform appearance with tiny particles less than 1 nm in diameter. The effect of Pt-blue as an electron stain was then examined not only for positive staining of conventional ultrathin resin sections and counterstaining of post-embedding immuno-electron microscopy but also for negative staining. In ultrathin sections of the rat liver and renal glomerulus, Pt-blue provided good contrast images, especially in double staining combined with a lead stain (Pb). Almost all cell organelles were clearly observed with high contrast in these sections. Glycogen granules in the hepatic parenchymal cells were particularly electron dense in Pt-blue stained sections compared with those treated with UA. In longitudinal and transverse sections of budding influenza A viruses, a specific arrangement of rod-like structures, which correspond to the ribonucleoprotein complexes, was clearly shown in each virion stained with Pt-blue and Pb. When post-embedding immunoelectron microscopy was performed in ultrathin sections of HeLa cells embedded in Lowicryl K4M, the localization of Ki-67 protein was sufficiently detected even after Pt-blue and Pb staining. The present study also revealed that Pt-blue could be used for the negative staining of E. coli, allowing the visualization of a flagellum. These findings indicate that Pt-blue is a useful, safe, and easily obtainable electron stain that is an alternative to UA for TEM preparations.
Gold Nanoparticle Quantitation by Whole Cell Tomography.
Sanders, Aric W; Jeerage, Kavita M; Schwartz, Cindi L; Curtin, Alexandra E; Chiaramonti, Ann N
2015-12-22
Many proposed biomedical applications for engineered gold nanoparticles require their incorporation by mammalian cells in specific numbers and locations. Here, the number of gold nanoparticles inside of individual mammalian stem cells was characterized using fast focused ion beam-scanning electron microscopy based tomography. Enhanced optical microscopy was used to provide a multiscale map of the in vitro sample, which allows cells of interest to be identified within their local environment. Cells were then serially sectioned using a gallium ion beam and imaged using a scanning electron beam. To confirm the accuracy of single cross sections, nanoparticles in similar cross sections were imaged using transmission electron microscopy and scanning helium ion microscopy. Complete tomographic series were then used to count the nanoparticles inside of each cell and measure their spatial distribution. We investigated the influence of slice thickness on counting single particles and clusters as well as nanoparticle packing within clusters. For 60 nm citrate stabilized particles, the nanoparticle cluster packing volume is 2.15 ± 0.20 times the volume of the bare gold nanoparticles.
NASA Astrophysics Data System (ADS)
Ahmadipour, Mohsen; Ain, Mohd Fadzil; Ahmad, Zainal Arifin
2016-11-01
In this study, calcium copper titanate (CCTO) thin films were deposited on ITO substrates successfully by radio frequency (RF) magnetron sputtering method in argon atmosphere. The CCTO thin films present a polycrystalline, uniform and porous structure. The surface morphology, optical and humidity sensing properties of the synthesized CCTO thin films have been studied by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), UV-vis spectrophotometer and current-voltage (I-V) analysis. XRD and AFM confirmed that the intensity of peaks and pore size of CCTO thin films were enhanced by increasing the thin films. Tauc plot method was adopted to estimate the optical band gaps. The surface structure and energy band gaps of the deposited films were affected by film thickness. Energy band gap of the layers were 3.76 eV, 3.68 eV and 3.5 eV for 200 nm, 400 nm, and 600 nm CCTO thin films layer, respectively. The humidity sensing properties were measured by using direct current (DC) analysis method. The response times were 12 s, 22 s, and 35 s while the recovery times were 500 s, 600 s, and 650 s for 200 nm, 400 nm, and 600 nm CCTO thin films, respectively at humidity range of 30-90% relative humidity (RH).
New Frontier Process using Bio Technology
2013-02-05
p.58-59,2012. (2) H.Yamazaki, M.Fujii, Y.Ueoka, Y.ishikawa, M.Fujiwara, E.Takahashi, Y.Uraoka, “Highly Reliable a-InGaZnO Thin Film Transistors ...Electron Traps in SiO2/ IGZO Interface by Cyclic Capacitance–Voltage Method”, IEEE/ 2012 International Meeting for Future of Electron Devices, Kansai...Horita, Yasuaki Ishikawa, Yukiharu Uraoka, and Shinji Koh, “Characterizatio of Graphene Based Field Effect Transistors Using Nano Probing Microscopy
Nanoscale contact resistance of V2O5 xerogel films developed by nanostructured powder
NASA Astrophysics Data System (ADS)
Bera, Biswajit; Sekhar Das, Pradip; Bhattacharya, Manjima; Ghosh, Swapankumar; Mukhopadhyay, Anoop Kumar; Dey, Arjun
2016-03-01
Here we report the synthesis of V2O5 nanostructures by a fast, simple, cost-effective, low-temperature chemical process; followed by the deposition of V2O5 xerogel thin films on a glass substrate by a sol-gel route. Phase analysis, phase transition, microstructural and electronic characterization studies are carried out by x-ray diffraction, texture coefficient analysis, field emission scanning electron microscopy, transmission electron microscopy (TEM), related selected area electron diffraction pattern (SAED) analysis, Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis, differential scanning calorimetry, and x-ray photoelectron spectroscopy techniques. Confirmatory TEM and SAED data analysis prove further that in this polycrystalline powder there is a unique localized existence of purely single crystalline V2O5 powder with a preferred orientation in the (0 1 0) direction. The most interesting result obtained in the present work is that the xerogel thin films exhibit an inherent capability to enhance the intrinsic resistance against contact induced deformations as more external load is applied during the nanoindentation experiments. In addition, both the nanohardness and Young’s modulus of the films are found to be insensitive to load variations (e.g. 1 to 7 mN). These results are explained in terms of microstructural parameters, e.g. porosity and structural configuration.
Microstructural features of carious human enamel imaged with back-scattered electrons.
Pearce, E I; Nelson, D G
1989-02-01
We have used back-scattered electrons (BE) in the scanning electron microscope to produce mineral density images of enamel. Flat surfaces of artificially-carious enamel, softened in an intra-oral experiment, and naturally-carious (white spot) enamel were polished to a high gloss with diamond lapping compound, rendering them almost featureless by secondary electron scanning electron microscopy. They were then examined at 10 to 30 kV in a Philips 505 instrument fitted with a 4-quadrant BE detector. Study of surfaces prepared approximately parallel to the natural surface showed that mineral was lost from both prism core and the interprismatic region, leaving a thin mineral-rich rim at the prism periphery. The same lesions viewed longitudinally on a surface prepared perpendicular to the natural surface showed mineral-rich bands at the prism margins in the outer enamel. Near the advancing front of the lesion, the prism junctions were widened and the prism cores sometimes hypermineralized. Natural lesions sectioned in the prism long axis showed features previously seen with other techniques, e.g., cross-striations and striae of Retzius, but in much greater detail. Mineral enrichment at the prism periphery in the lesion body and a widening of the prism junction at the advancing fronts of lesions in permanent teeth were most obvious. Calculations showed that with an accelerating voltage of 30 kV, the images reflected mineral density up to 4 microns beneath the surface. BE microscopy produces a high-resolution image of mineral loss or gain in carious enamel, with relatively easy sample preparation.
Amorphization induced by focused ion beam milling in metallic and electronic materials.
Huh, Yoon; Hong, Ki Jung; Shin, Kwang Soo
2013-08-01
Focused ion beam (FIB) milling using high-energy gallium ions is widely used in the preparation of specimens for transmission electron microscopy (TEM). However, the energetic ion beam induces amorphization on the edge of specimens during milling, resulting in a mischievous influence on the clearness of high-quality transmission electron micrographs. In this work, the amorphization induced by the FIB milling was investigated by TEM for three kinds of materials, metallic materials in bulk shape, and semiconductive and electronic ceramic materials as a substrate for the deposition of thin films.
Fabrication of Si3N4 thin films on phynox alloy substrates for electronic applications
NASA Astrophysics Data System (ADS)
Shankernath, V.; Naidu, K. Lakshun; Krishna, M. Ghanashyam; Padmanabhan, K. A.
2018-04-01
Thin films of Si3N4 are deposited on Phynox alloy substrates using radio frequency magnetron sputtering. The thickness of the films was varied between 80-150 nm by increasing the duration of deposition from 1 to 3 h at a fixed power density and working pressure. X-ray diffraction patterns reveal that the Si3N4 films had crystallized inspite of the substrates not being heated during deposition. This was confirmed using selected area electron diffraction and high resolution transmission electron microscopy also. It is postulated that a low lattice misfit between Si3N4 and Phynox provides energetically favourable conditions for ambient temperature crystallization. The hardness of the films is of the order of 6 to 9 GPa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Tobias G.; Fleurence, Antoine; Warner, Ben
We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting tomore » the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less
Akhtar, Saeed; Alkhalaf, Mousa; Khan, Adnan A; Almubrad, Turki M
2016-08-01
We report ultrastructural features and transmission electron tomography of the dhub lizard (Uromastyx aegyptia) cornea and its adaptation to hot and dry environments. Six corneas of dhub lizards were fixed in 2.5% glutaraldehyde and processed for electron microscopy and tomography. The ultrathin sections were observed with a JEOL 1400 transmission electron microscope. The cornea of the dhub lizard is very thin (~28-30 µm). The epithelium constitutes ~14% of the cornea, whereas the stroma constitutes 80% of the cornea. The middle stromal lamellae are significantly thicker than anterior and posterior stromal lamellae. Collagen fibril (CF) diameters in the anterior stroma are variable in size (25-75 nm). Proteoglycans (PGs) are very large in the middle and posterior stroma, whereas they are small in the anterior stroma. Three-dimensional electron tomography was carried out to understand the structure and arrangement of the PG and CFs. The presence of large PGs in the posterior and middle stroma might help the animal retain a large amount of water to protect it from dryness. The dhub corneal structure is equipped to adapt to the dry and hot desert environment.
Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F
2015-12-01
The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (<20 nm), tips display a curved surface and a significantly larger thickness. As far as a correlative approach aims at analysing the same specimen by both techniques, it is mandatory to explore the limits and advantages imposed by the particular geometry of atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography. Copyright © 2015 Elsevier B.V. All rights reserved.
Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels.
Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka
2015-01-01
Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature.
Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels
Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka
2015-01-01
Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature. PMID:26491304
NASA Astrophysics Data System (ADS)
Hymavathi, B.; Rajesh Kumar, B.; Subba Rao, T.
2018-01-01
Nanostructured Cr-doped CdO thin films were deposited on glass substrates by reactive direct current magnetron sputtering and post-annealed in vacuum from 200°C to 500°C. X-ray diffraction studies confirmed that the films exhibit cubic nature with preferential orientation along the (111) plane. The crystallite size, lattice parameters, unit cell volume and strain in the films were determined from x-ray diffraction analysis. The surface morphology of the films has been characterized by field emission scanning electron microscopy and atomic force microscopy. The electrical properties of the Cr-doped CdO thin films were measured by using a four-probe method and Hall effect system. The lowest electrical resistivity of 2.20 × 10-4 Ω cm and a maximum optical transmittance of 88% have been obtained for the thin films annealed at 500°C. The optical band gap of the films decreased from 2.77 eV to 2.65 eV with the increase of annealing temperature. The optical constants, packing density and porosity of Cr-doped CdO thin films were also evaluated from the transmittance spectra.
Quantifying charge carrier concentration in ZnO thin films by Scanning Kelvin Probe Microscopy
Maragliano, C.; Lilliu, S.; Dahlem, M. S.; Chiesa, M.; Souier, T.; Stefancich, M.
2014-01-01
In the last years there has been a renewed interest for zinc oxide semiconductor, mainly triggered by its prospects in optoelectronic applications. In particular, zinc oxide thin films are being widely used for photovoltaic applications, in which the determination of the electrical conductivity is of great importance. Being an intrinsically doped material, the quantification of its doping concentration has always been challenging. Here we show how to probe the charge carrier density of zinc oxide thin films by Scanning Kelvin Probe Microscopy, a technique that allows measuring the contact potential difference between the tip and the sample surface with high spatial resolution. A simple electronic energy model is used for correlating the contact potential difference with the doping concentration in the material. Limitations of this technique are discussed in details and some experimental solutions are proposed. Two-dimensional doping concentration images acquired on radio frequency-sputtered intrinsic zinc oxide thin films with different thickness and deposited under different conditions are reported. We show that results inferred with this technique are in accordance with carrier concentration expected for zinc oxide thin films deposited under different conditions and obtained from resistivity and mobility measurements. PMID:24569599
Charge transport in CdTe solar cells revealed by conductive tomographic atomic force microscopy
Luria, Justin; Kutes, Yasemin; Moore, Andrew; ...
2016-09-26
Polycrystalline photovoltaics comprising cadmium telluride (CdTe) represent a growing portion of the solar cell market, yet the physical picture of charge transport through the meso-scale grain morphology remains a topic of debate. It is unknown how thin film morphology affects the transport of electron-hole pairs. Accordingly this study is the first to generate three dimensional images of photocurrent throughout a thin-film solar cell, revealing the profound influence of grain boundaries and stacking faults on device efficiency.
1993-12-01
diamond carbon on diamond Measurements of CVD diamond grown directly on Mo TEM specimen grids were made through a collaboration with the Fritz Haber ...Hawaii, May 1993. 2. --- , University of Illinois at Chicago, March 1993. 3. --- , Fritz Haber Institute, Berlin, June 1993. 3.0 Appendix: 8 1 Real...University, Athens OH 45701 -2979 *Permanent address: Fritz Haber Institute, Berlin, Germany. Thin (1Onm) carbon films are found to adhere to Chemical Vapor
Laser sintered thin layer graphene and cubic boron nitride reinforced nickel matrix nanocomposites
NASA Astrophysics Data System (ADS)
Hu, Zengrong; Tong, Guoquan
2015-10-01
Laser sintered thin layer graphene (Gr)-cubic boron nitride (CBN)-Ni nanocomposites were fabricated on AISI 4140 plate substrate. The composites fabricating process, composites microstructure and mechanical properties were studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to study the micro structures and composition of the composites. XRD and Raman tests proved that graphene and CBN were dispersed in the nanocomposites. Nanoindentation test results indicate the significant improvements were achieved in the composites mechanical properties.
Size effects and electron microscopy of thin metal films. M.S. Thesis
NASA Technical Reports Server (NTRS)
Hernandez, J. D.
1978-01-01
All films were deposited by resistive heated evaporation in an oil diffusion pumped vacuum system (ultimate approx. equal to 0.0000001 torr). The growth from nuclei to a continuous film is highly dependent on the deposition parameters, evaporation rate as well as substrate material and substrate temperature. The growth stages of a film and the dependence of grain size on various deposition and annealing parameters are shown. Resistivity measurements were taken on thin films to observe size effects.
NASA Astrophysics Data System (ADS)
Khimani, Ankurkumar J.; Chaki, Sunil H.; Malek, Tasmira J.; Tailor, Jiten P.; Chauhan, Sanjaysinh M.; Deshpande, M. P.
2018-03-01
The CdS thin films were deposited on glass slide substrates by Chemical Bath Deposition and dip coating techniques. The films thickness variation with deposition time showed maximum films deposition at 35 min for both the films. The energy dispersive analysis of x-ray showed both the films to be stoichiometric. The x-ray diffraction analysis confirmed the films possess hexagonal crystal structure. The transmission electron, scanning electron and optical microscopy study showed the films deposition to be uniform. The selected area electron diffraction exhibited ring patterns stating the films to be polycrystalline in nature. The atomic force microscopy images showed surface formed of spherical grains, hills and valleys. The recorded optical absorbance spectra analysis revealed the films possess direct optical bandgap having values of 2.25 eV for CBD and 2.40 eV for dip coating. The refractive index (η), extinction coefficient (k), complex dielectric constant (ε) and optical conductivity (σ 0) variation with wavelength showed maximum photon absorption till the respective wavelengths corresponding to the optical bandgap energy values. The recorded photoluminescence spectra showed two emission peaks. All the obtained results have been discussed in details.
Liang, Chih-Peng; Yamauchi, Yusuke; Liu, Chia-Hung; Wu, Kevin C-W
2013-06-28
This study focuses on the incorporation of gold nanoparticles (Au NPs) into our previously synthesized mesoporous titania thin films consisting of titania nanopillars and inverse mesospace (C. W. Wu, T. Ohsuna, M. Kuwabara and K. Kuroda, J. Am. Chem. Soc., 2006, 128, 4544-4545, denoted as MTTFs). Recently, mesoporous titania materials doped with noble metals such as gold have attracted considerable attention because noble metals can enhance the efficiency of mesoporous titania-based devices. In this research, we attempted to use four different reduction methods (i.e., thermal treatment, photo irradiation, liquid immersion, and vapor contacting) to introduce gold nanoparticles (Au NPs) into MTTFs. The synthesized Au@MTTFs were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We further systematically investigated the formation mechanism of gold nanoparticles on the external and internal surfaces of the MTTFs. With the assistance of a silica sacrificial layer, well-dispersed Au NPs with sizes of 4.1 nm were obtained inside the MTTF by photo irradiation. The synthesized Au@MTTF materials show great potential in various photo-electronic and photo-catalytic applications.
Nanomusical systems visualized and controlled in 4D electron microscopy.
Baskin, J Spencer; Park, Hyun Soon; Zewail, Ahmed H
2011-05-11
Nanomusical systems, nanoharp and nanopiano, fabricated as arrays of cantilevers by focused ion beam milling of a layered Ni/Ti/Si(3)N(4) thin film, have been investigated in 4D electron microscopy. With the imaging and selective femtosecond and nanosecond control combinations, full characterization of the amplitude and phase of the resonant response of a particular cantilever relative to the optical pulse train was possible. Using a high repetition rate, low energy optical pulse train for selective, resonant excitation, coupled with pulsed and steady-state electron imaging for visualization in space and time, both the amplitude on the nanoscale and resonance of motion on the megahertz scale were resolved for these systems. Tilting of the specimen allowed in-plane and out-of-plane cantilever bending and cantilever torsional motions to be identified in stroboscopic measurements of impulsively induced free vibration. Finally, the transient, as opposed to steady state, thermostat effect was observed for the layered nanocantilevers, with a sufficiently sensitive response to demonstrate suitability for in situ use in thin-film temperature measurements requiring resolutions of <10 K and 10 μm on time scales here mechanically limited to microseconds and potentially at shorter times.
Epitaxial growth of pentacene on alkali halide surfaces studied by Kelvin probe force microscopy.
Neff, Julia L; Milde, Peter; León, Carmen Pérez; Kundrat, Matthew D; Eng, Lukas M; Jacob, Christoph R; Hoffmann-Vogel, Regina
2014-04-22
In the field of molecular electronics, thin films of molecules adsorbed on insulating surfaces are used as the functional building blocks of electronic devices. Control of the structural and electronic properties of the thin films is required for reliably operating devices. Here, noncontact atomic force and Kelvin probe force microscopies have been used to investigate the growth and electrostatic landscape of pentacene on KBr(001) and KCl(001) surfaces. We have found that, together with molecular islands of upright standing pentacene, a new phase of tilted molecules appears near step edges on KBr. Local contact potential differences (LCPD) have been studied with both Kelvin experiments and density functional theory calculations. Our images reveal that differently oriented molecules display different LCPD and that their value is independent of the number of molecular layers. These results point to the formation of an interface dipole, which may be explained by a partial charge transfer from the pentacene to the surface. Moreover, the monitoring of the evolution of the pentacene islands shows that they are strongly affected by dewetting: Multilayers build up at the expense of monolayers, and in the Kelvin images, previously unknown line defects appear, which reveal the epitaxial growth of pentacene crystals.
Ultra-thin layer packaging for implantable electronic devices
NASA Astrophysics Data System (ADS)
Hogg, A.; Aellen, T.; Uhl, S.; Graf, B.; Keppner, H.; Tardy, Y.; Burger, J.
2013-07-01
State of the art packaging for long-term implantable electronic devices generally uses reliable metal and glass housings; however, these are limited in the miniaturization potential and cost reduction. This paper focuses on the development of biocompatible hermetic thin-film packaging based on poly-para-xylylene (Parylene-C) and silicon oxide (SiOx) multilayers for smart implantable microelectromechanical systems (MEMS) devices. For the fabrication, a combined Parylene/SiOx single-chamber deposition system was developed. Topological aspects of multilayers were characterized by atomic force microscopy and scanning electron microscopy. Material compositions and layer interfaces were analyzed by Fourier transform infrared spectrometry and x-ray photoelectron spectroscopy. To evaluate the multilayer corrosion protection, water vapor permeation was investigated using a calcium mirror test. The calcium mirror test shows very low water permeation rates of 2 × 10-3 g m-2 day-1 (23 °C, 45% RH) for a 4.7 µm multilayer, which is equivalent to a 1.9 mm pure Parylene-C coating. According to the packaging standard MIL-STD-883, the helium gas tightness was investigated. These helium permeation measurements predict that a multilayer of 10 µm achieves the hermeticity acceptance criterion required for long-term implantable medical devices.
1986-01-01
A technique has been developed for localizing hybrids formed in situ on semi-thin and ultrathin sections of Lowicryl K4M-embedded tissue. Biotinylated dUTP (Bio-11-dUTP and/or Bio-16-dUTP) was incorporated into mitochondrial rDNA and small nuclear U1 probes by nick- translation. The probes were hybridized to sections of Drosophila ovaries and subsequently detected with an anti-biotin antibody and protein A-gold complex. On semi-thin sections, probe detection was achieved by amplification steps with anti-protein A antibody and protein A-gold with subsequent silver enhancement. At the electron microscope level, specific labeling was obtained over structures known to be the site of expression of the appropriate genes (i.e., either over mitochondria or over nuclei). The labeling pattern at the light microscope level (semi-thin sections) was consistent with that obtained at the electron microscope level. The described nonradioactive procedures for hybrid detection on Lowicryl K4M-embedded tissue sections offer several advantages: rapid signal detection: superior morphological preservation and spatial resolution; and signal-to-noise ratios equivalent to radiolabeling. PMID:3084498
NASA Astrophysics Data System (ADS)
Shettigar, Nayana; Pramodini, S.; Kityk, I. V.; Abd-Lefdil, M.; Eljald, E. M.; Regragui, M.; Antony, Albin; Rao, Ashok; Sanjeev, Ganesh; Ajeyakashi, K. C.; Poornesh, P.
2017-11-01
We report the third-order nonlinear optical properties of electron beam treated Indium doped ZnO (Zn1-xInxO (x = 0.03) thin films at different dose rate. Zn1-xInxO (x = 0.03) thin films prepared by spray pyrolysis deposition technique were irradiated using 8 MeV electron beam at dose rates ranging from 1 kGy to 4 kGy. X-ray diffraction patterns were obtained to examine the structural changes, The transformation from sphalerite to wurtzite structure of ZnO was observed which indicates occurrence of structural changes due to irradiation. Morphology of irradiated thin films examined using atomic force microscopy (AFM) technique indicates the surface roughness varying with irradiation dose rate. The switching over from Saturable Absorption (SA) to Reverse Saturable Absorption (RSA) behaviour was noted when the irradiation dose rate was increased from 1 kGy to 4 kGy. The significant changes observed in the third-order nonlinear optical susceptibility χ(3) of the Zn1-xInxO (x = 0.03) thin films is attributed mainly due to electron beam irradiation. The study indicates that nonlinear optical parameters can be controlled by electron beam irradiation by choosing appropriate dose rate which is very much essential for device applications. Hence Zn1-xInxO (x = 0.03) materialize as a promising material for use in nonlinear optical device applications.
Saitoh, Sei; Ohno, Nobuhiko; Saitoh, Yurika; Terada, Nobuo; Shimo, Satoshi; Aida, Kaoru; Fujii, Hideki; Kobayashi, Tetsuro; Ohno, Shinichi
2018-01-01
Combined analysis of immunostaining for various biological molecules coupled with investigations of ultrastructural features of individual cells is a powerful approach for studies of cellular functions in normal and pathological conditions. However, weak antigenicity of tissues fixed by conventional methods poses a problem for immunoassays. This study introduces a method of correlative light and electron microscopy imaging of the same endocrine cells of compact and diffuse islets from human pancreatic tissue specimens. The method utilizes serial sections obtained from Epon-embedded specimens fixed with glutaraldehyde and osmium tetroxide. Double-immunofluorescence staining of thick Epon sections for endocrine hormones (insulin and glucagon) and regenerating islet-derived gene 1 α (REG1α) was performed following the removal of Epoxy resin with sodium ethoxide, antigen retrieval by autoclaving, and de-osmification treatment with hydrogen peroxide. The immunofluorescence images of endocrine cells were superimposed with the electron microscopy images of the same cells obtained from serial ultrathin sections. Immunofluorescence images showed well-preserved secretory granules in endocrine cells, whereas electron microscopy observations demonstrated corresponding secretory granules and intracellular organelles in the same cells. In conclusion, the correlative imaging approach developed by us may be useful for examining ultrastructural features in combination with immunolocalisation of endocrine hormones in the same human pancreatic islets. PMID:29622846
NASA Astrophysics Data System (ADS)
Patel, Nagabhushan; Dias, Sandra; Krupanidhi, S. B.
2018-04-01
Organic-inorganic hybrid perovskite materials are considered as promising candidates for emerging thin-film photodetectors. In this work, we discuss the application of the CH3NH3PbI3 thin films by pulsed laser deposition for photodetection applications. With this method, we obtained good perovskite film coverage on fluorine-doped tin oxide-coated substrates and observed wel- developed grains. The films showed no sign of degradation over several months of testing. We investigated the surface morphology and surface roughness of the films by field emission scanning electron microscopy and atomic force microscopy. The optical response of the films was studied using ultraviolet-visible and photoluminescence spectroscopy. We carried out a study on the solar and infrared photodetection of CH3NH3PbI3 thin films. The values of the responsivity, sensitivity, external quantum efficiency and specific detectivity under 1 sun illumination and 0.7 V bias were 105.4 A/W, 1.9, 2.38 × 104% and 1.5 × 1012 Jones, respectively.
Atomic Resolution Imaging of Nanoscale Chemical Expansion in PrxCe1-xO2-δ during In Situ Heating.
Swallow, Jessica G; Lee, Ja Kyung; Defferriere, Thomas; Hughes, Gareth M; Raja, Shilpa N; Tuller, Harry L; Warner, Jamie H; Van Vliet, Krystyn J
2018-02-27
Thin film nonstoichiometric oxides enable many high-temperature applications including solid oxide fuel cells, actuators, and catalysis. Large concentrations of point defects (particularly, oxygen vacancies) enable fast ionic conductivity or gas exchange kinetics in these materials but also manifest as coupling between lattice volume and chemical composition. This chemical expansion may be either detrimental or useful, especially in thin film devices that may exhibit enhanced performance through strain engineering or decreased operating temperatures. However, thin film nonstoichiometric oxides can differ from bulk counterparts in terms of operando defect concentrations, transport properties, and mechanical properties. Here, we present an in situ investigation of atomic-scale chemical expansion in Pr x Ce 1-x O 2-δ (PCO), a mixed ionic-electronic conducting oxide relevant to electrochemical energy conversion and high-temperature actuation. Through a combination of electron energy loss spectroscopy and transmission electron microscopy with in situ heating, we characterized chemical strains and changes in oxidation state in cross sections of PCO films grown on yttria-stabilized zirconia (YSZ) at temperatures reaching 650 °C. We quantified, both statically and dynamically, the nanoscale chemical expansion induced by changes in PCO redox state as a function of position and direction relative to the film-substrate interface. Additionally, we observed dislocations at the film-substrate interface, as well as reduced cation localization to threading defects within PCO films. These results illustrate several key aspects of atomic-scale structure and mechanical deformation in nonstoichiometric oxide films that clarify distinctions between films and bulk counterparts and that hold several implications for operando chemical expansion or "breathing" of such oxide films.
Hainsworth, A. H.; Lee, S.; Patel, A.; Poon, W. W.; Knight, A. E.
2018-01-01
Aims The spatial resolution of light microscopy is limited by the wavelength of visible light (the ‘diffraction limit’, approximately 250 nm). Resolution of sub-cellular structures, smaller than this limit, is possible with super resolution methods such as stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI). We aimed to resolve subcellular structures (axons, myelin sheaths and astrocytic processes) within intact white matter, using STORM and SOFI. Methods Standard cryostat-cut sections of subcortical white matter from donated human brain tissue and from adult rat and mouse brain were labelled, using standard immunohistochemical markers (neurofilament-H, myelin-associated glycoprotein, glial fibrillary acidic protein, GFAP). Image sequences were processed for STORM (effective pixel size 8–32 nm) and for SOFI (effective pixel size 80 nm). Results In human, rat and mouse, subcortical white matter high-quality images for axonal neurofilaments, myelin sheaths and filamentous astrocytic processes were obtained. In quantitative measurements, STORM consistently underestimated width of axons and astrocyte processes (compared with electron microscopy measurements). SOFI provided more accurate width measurements, though with somewhat lower spatial resolution than STORM. Conclusions Super resolution imaging of intact cryo-cut human brain tissue is feasible. For quantitation, STORM can under-estimate diameters of thin fluorescent objects. SOFI is more robust. The greatest limitation for super-resolution imaging in brain sections is imposed by sample preparation. We anticipate that improved strategies to reduce autofluorescence and to enhance fluorophore performance will enable rapid expansion of this approach. PMID:28696566
Hainsworth, A H; Lee, S; Foot, P; Patel, A; Poon, W W; Knight, A E
2018-06-01
The spatial resolution of light microscopy is limited by the wavelength of visible light (the 'diffraction limit', approximately 250 nm). Resolution of sub-cellular structures, smaller than this limit, is possible with super resolution methods such as stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI). We aimed to resolve subcellular structures (axons, myelin sheaths and astrocytic processes) within intact white matter, using STORM and SOFI. Standard cryostat-cut sections of subcortical white matter from donated human brain tissue and from adult rat and mouse brain were labelled, using standard immunohistochemical markers (neurofilament-H, myelin-associated glycoprotein, glial fibrillary acidic protein, GFAP). Image sequences were processed for STORM (effective pixel size 8-32 nm) and for SOFI (effective pixel size 80 nm). In human, rat and mouse, subcortical white matter high-quality images for axonal neurofilaments, myelin sheaths and filamentous astrocytic processes were obtained. In quantitative measurements, STORM consistently underestimated width of axons and astrocyte processes (compared with electron microscopy measurements). SOFI provided more accurate width measurements, though with somewhat lower spatial resolution than STORM. Super resolution imaging of intact cryo-cut human brain tissue is feasible. For quantitation, STORM can under-estimate diameters of thin fluorescent objects. SOFI is more robust. The greatest limitation for super-resolution imaging in brain sections is imposed by sample preparation. We anticipate that improved strategies to reduce autofluorescence and to enhance fluorophore performance will enable rapid expansion of this approach. © 2017 British Neuropathological Society.
Theory of bright-field scanning transmission electron microscopy for tomography
NASA Astrophysics Data System (ADS)
Levine, Zachary H.
2005-02-01
Radiation transport theory is applied to electron microscopy of samples composed of one or more materials. The theory, originally due to Goudsmit and Saunderson, assumes only elastic scattering and an amorphous medium dominated by atomic interactions. For samples composed of a single material, the theory yields reasonable parameter-free agreement with experimental data taken from the literature for the multiple scattering of 300-keV electrons through aluminum foils up to 25μm thick. For thin films, the theory gives a validity condition for Beer's law. For thick films, a variant of Molière's theory [V. G. Molière, Z. Naturforschg. 3a, 78 (1948)] of multiple scattering leads to a form for the bright-field signal for foils in the multiple-scattering regime. The signal varies as [tln(e1-2γt/τ)]-1 where t is the path length of the beam, τ is the mean free path for elastic scattering, and γ is Euler's constant. The Goudsmit-Saunderson solution interpolates numerically between these two limits. For samples with multiple materials, elemental sensitivity is developed through the angular dependence of the scattering. From the elastic scattering cross sections of the first 92 elements, a singular-value decomposition of a vector space spanned by the elastic scattering cross sections minus a delta function shows that there is a dominant common mode, with composition-dependent corrections of about 2%. A mathematically correct reconstruction procedure beyond 2% accuracy requires the acquisition of the bright-field signal as a function of the scattering angle. Tomographic reconstructions are carried out for three singular vectors of a sample problem with four elements Cr, Cu, Zr, and Te. The three reconstructions are presented jointly as a color image; all four elements are clearly identifiable throughout the image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, D.F.; Zhang, X.M.; Gautier, E.
The morphology and crystallography of deformation-induced martensites formed during isothermal tensile tests in Fe-30Ni-0.34C and Fe-25Ni-0.66C alloys were investigated by means of optical, transmission electron and scanning electron microscopy. Transitions in morphology from thin plate to coupled plate, to lenticular coupled-plate martensite and from thin plate to lenticular to compact martensite have been observed with increasing deformation. Stress favors the growth of martensite when concurrent plastic strain allows accommodation of macroscopic transformation strains and the change of the Bain strain accommodation mechanism. Mobile dislocations and emission dislocations are directly related to the change of the Bain strain accommodation mechanism frommore » twinning to slip.« less
Single clay sheets inside electrospun polymer nanofibers
NASA Astrophysics Data System (ADS)
Sun, Zhaohui
2005-03-01
Nanofibers were prepared from polymer solution with clay sheets by electrospinning. Plasma etching, as a well controlled process, was used to supply electrically excited gas molecules from a glow discharge. To reveal the structure and arrangement of clay layers in the polymer matrix, plasma etching was used to remove the polymer by controlled gasification to expose the clay sheets due to the difference in reactivity. The shape, flexibility, and orientation of clay sheets were studied by transmission and scanning electron microscopy. Additional quantitative information on size distribution and degree of exfoliation of clay sheets were obtained by analyzing electron micrograph of sample after plasma etching. Samples in various forms including fiber, film and bulk, were thinned by plasma etching. Morphology and dispersion of inorganic fillers were studied by electron microscopy.
Walther, T; Wang, X
2016-05-01
Based on Monte Carlo simulations of X-ray generation by fast electrons we calculate curves of effective sensitivity factors for analytical transmission electron microscopy based energy-dispersive X-ray spectroscopy including absorption and fluorescence effects, as a function of Ga K/L ratio for different indium and gallium containing compound semiconductors. For the case of InGaN alloy thin films we show that experimental spectra can thus be quantified without the need to measure specimen thickness or density, yielding self-consistent values for quantification with Ga K and Ga L lines. The effect of uncertainties in the detector efficiency are also shown to be reduced. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Song, Haili; Li, Chao; Nguyen Van, Chien; Dong, Wenxia; Qi, Ruijuan; Zhang, Yuanyuan; Huang, Rong; Chu, Ying-Hao; Duan, Chun-Gang
2018-02-01
A series of self-assembled WO3-BiVO4 nanostructured thin films were grown on the (001) yttria-stabilized zirconia (YSZ) substrate at the substrate temperatures of 400 °C, 500 °C, 550 °C, 600 °C, 650 °C and 700 °C by a pulsed laser deposition method. The microstructures including crystalline phases, epitaxial relationships, surface morphologies and interface structures were investigated by a combination of x-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy. The sample grown at 400 °C was amorphous due to the low driving forces for nucleation and diffusion. For the samples made at 500 °C, 550 °C and 600 °C, the monoclinic BiVO4 matrix epitaxially grew on YSZ, forming the matrix, where the WO3 nanopillars were embedded in with a specific orientation relationship among BiVO4, WO3 and YSZ. However, in thin films deposited at 650 °C and 700 °C, the WO3 grains randomly grew on the YSZ substrate, which dominated the microstructures of the resultant thin films. Quantitative analyses of the microstructures revealed that the lateral grain sizes of BiVO4 and WO3 increased and the volume fraction of BiVO4 in the thin films decreased with the increase of the deposition temperature. A three-regime growth mechanism of the WO3-BiVO4 composite thin film was proposed based on the growth dynamics determined by the competition between BiVO4 and WO3.
NASA Astrophysics Data System (ADS)
Viswanath, Changhyun Ko, B.; Yang, Zheng; Ramanathan, Shriram
2011-03-01
VO2 undergoes a sharp metal-insulator transition at ˜67 °C with several orders of change in conductivity and optical transmittance. Understanding and control of the properties of vanadium oxide layers grown on technologically relevant substrates such as Si (100) single crystals is therefore of great interest. In this work, we show tunability of metal-insulator transition temperature as well as recoverable stress in VO2 thin films grown on Si substrate by introducing nanoscale atomic layer deposited HfO2 interfacial layers with no degradation in the resistance ratio. For a confined VO2 film, the metal-insulator transition temperature is suppressed by ˜16 °C and the recoverable stress is 150 MPa, compared to 400 MPa for a bare film. These observations are further correlated with in situ variable temperature measurement of stress changes occurring during the phase transition. Structural and microstructural studies on the various samples have been carried out by x ray diffraction and cross-sectional transmission electron microscopy. The strategy of tuning the metal-insulator transition characteristics by nanoscale interfacial dielectrics is of broader relevance in design of programmable materials and integration into solid state devices for electronics.
Pérez-Huerta, Alberto; Dauphin, Yannicke
2016-02-01
The structure and composition of the eggshells of two commercial species (guinea fowl and greylag goose) have been studied. Thin sections and scanning electron microcopy show the similarity of the overall structure, but the relative thickness of the layers differs in these two taxa. Atomic force microscopy shows that the different layers are composed of rounded, heterogeneous granules, the diameter of which is between 50 and 100 nm, with a thin cortex. Infrared data and thermogravimetric analyses show that both eggshells are made of calcite, but differing on the quality and quantity when the organic component is considered. Chemical maps show that chemical element distribution is not uniform within a sample, and differs between the species, but with low magnesium content. Electron back scattered diffraction confirms the eggshells are calcite, but the microtexture strongly differs between the two species. Based on the chemical-structural differences, a species-specific biological control on the biomineralization is found, despite the rapid formation of an eggshell. Overall results indicate that to estimate the quality of eggshells, such as resistance to breakage, is not a straightforward process because of the high complexity of avian eggshell biomineralization. Copyright © 2015 Elsevier GmbH. All rights reserved.
Proceedings of the seventh international conference on high voltage electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, R.M.; Gronsky, R.; Westmacott, K.H.
1983-01-01
Eight-four papers are arranged under the following headings: high resolution, techniques and instrumentation, radiation effects, in-situ and phase transformations, minerals and ceramics, and semiconductors and thin films. Twenty-three papers were abstracted separately for the data base; three of the remainder had previously been abstracted. (DLC)
Thin Films of Antimony-Tin Oxide as Counter-Electrodes for Proton Working Electrochromic Devices
2002-01-01
diffraction and transmission electron microscopy (TEM). Electrochromic behavior is studied by means of cyclic voltamperometry coupled with ex situ optical... analysis , we noted that the Sn/Sb atomic ratio was relatively well preserved between target and grown films. Structural characterizations: Figure 1 shows the
Morphogenesis of nanostructures in glancing angle deposition of metal thin film coatings
NASA Astrophysics Data System (ADS)
Brown, Timothy James
Atomic vapors condensed onto solid surfaces form a remarkable category of condensed matter materials, the so-called thin films, with a myriad of compositions, morphological structures, and properties. The dynamic process of atomic condensation exhibits self-assembled pattern formation, producing morphologies with atomic-scale three- dimensional structures of seemingly limitless variety. This study attempts to shed new light on the dynamical growth processes of thin film deposition by analyzing in detail a previously unreported specific distinct emergent structure, a crystalline triangular-shaped spike that grows within copper and silver thin films. I explored the deposition parameters that lead to the growth of these unique structures, referred to as "nanospikes", fabricating approximately 55 thin films and used scanning electron microscopy and x-ray diffraction analysis. The variation of parameters include: vapor incidence angle, film thickness, substrate temperature, deposition rate, deposition material, substrate, and source-to-substrate distance. Microscopy analysis reveals that the silver and copper films deposited at glancing vapor incidence angles, 80 degrees and greater, have a high degree of branching interconnectivity between adjacent inclined nanorods. Diffraction analysis reveals that the vapor incidence angle influences the sub-populations of crystallites in the films, producing two different [110] crystal texture orientations. I hypothesize that the growth of nanospikes from nanorods is initiated by the stochastic arrival of vapor atoms and photons emitted from the deposition source at small diameter nanorods, and then driven by localized heating from vapor condensation and photon absorption. Restricted heat flow due to nanoscale thermal conduction maintains an elevated local temperature at the nanorod, enhancing adatom diffusion and enabling fast epitaxial crystal growth, leading to the formation and growth of nanospikes. Electron microscopy and x-ray diffraction analysis, and comparisons to related scientific literature, support this hypothesis. I also designed a highly modular ultrahigh vacuum deposition chamber, capable of concurrently mounting several different pieces of deposition equipment, that allows for a high degree of control of the growth dynamics of deposited thin films. I used the newly designed chamber to fabricate tailor-made nanostructured tantalum films for use in ultracapacitors, for the Cabot Corporation.