NASA Technical Reports Server (NTRS)
Johnson, E. J.; Johnson, M. K.; Macelroy, R. D.
1968-01-01
Ribulose diphosphate carboxylase and phosphoribulokinase activity in chemosynthetic autotrophs Thiobacillus thioparus and Thiobacillus neapolitanus, noting sedimentation and gel filtration characteristics
Taylor, Barrie F.; Hoare, Derek S.
1969-01-01
A new facultatively autotrophic Thiobacillus has been isolated in pure culture. The general physiological characteristics of the organism are described together with a redescription of Thiobacillus novellus. The new isolate differs from T. novellus in its ability to grow heterotrophically at faster rates and on a greater range of organic compounds. It can be transferred readily between autotrophic and heterotrophic conditions. It can grow anaerobically by nitrate respiration on a number of organic compounds, but not on thiosulfate. Some problems in the nomenclature and taxonomy of the thiobacilli are discussed with reference to the new isolate. Images PMID:5344108
Fukushima, Toshikazu; Whang, Liang-Ming; Chen, Po-Chun; Putri, Dyah Wulandari; Chang, Ming-Yu; Wu, Yi-Ju; Lee, Ya-Ching
2013-08-01
This study investigated the linkage between performance of two full-scale membrane bioreactor (MBR) systems treating thin-film transistor liquid crystal display (TFT-LCD) wastewater and the population dynamics of dimethylsulfoxide (DMSO)/dimethylsulfide (DMS) degrading bacteria. High DMSO degradation efficiencies were achieved in both MBRs, while the levels of nitrification inhibition due to DMS production from DMSO degradation were different in the two MBRs. The results of real-time PCR targeting on DMSO/DMS degrading populations, including Hyphomicrobium and Thiobacillus spp., indicated that a higher DMSO oxidation efficiency occurred at a higher Hyphomicrobium spp. abundance in the systems, suggesting that Hyphomicrobium spp. may be more important for complete DMSO oxidation to sulfate compared with Thiobacillus spp. Furthermore, Thiobacillus spp. was more abundant during poor nitrification, while Hyphomicrobium spp. was more abundant during good nitrification. It is suggested that microbial population of DMSO/DMS degrading bacteria is closely linking to both DMSO/DMS degradation efficiency and nitrification performance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sand, Wolfgang
1987-01-01
Biogenic sulfuric acid corrosion of concrete surfaces caused by thiobacilli was reproduced in simulation experiments. At 9 months after inoculation with thiobacilli, concrete blocks were severely corroded. The sulfur compounds hydrogen sulfide, thiosulfate, and methylmercaptan were tested for their corrosive action. With hydrogen sulfide, severe corrosion was noted. The flora was dominated by Thiobacillus thiooxidans. Thiosulfate led to medium corrosion and a dominance of Thiobacillus neapolitanus and Thiobacillus intermedius. Methylmercaptan resulted in negligible corrosion. A flora of heterotrophs and fungi grew on the blocks. This result implies that methylmercaptan cannot be degraded by thiobacilli. PMID:16347391
Heavy metal resistance of Thiobacillus spp. isolated from tin mining area in Bestari Jaya, Selangor
NASA Astrophysics Data System (ADS)
Prabhakaran, Pranesha; Ashraf, Muhammad Aqeel; Aqma, Wan Syaidatul
2016-11-01
Increased anthropogenic activities such as mining have contributed to accumulation of heavy metals in the environment. Microorganisms that are found in the contaminated area develop resistance toward the heavy metals after a prolonged exposure. Screenings for bacterial resistance to metal tin were conducted using isolated Thiobacillus spp. from a tin mining area at Bestari Jaya, Selangor. Two isolated Thiobacillus spp. able to show growth without inhibition up to 300 ppm. IC50 that indicate 50% inhibition of the bacterial growth for both isolates, TB1 and TB2 are 496.03 ppm and 514.27 ppm respectively under tin-stressed condition. Adaptation of these microorganisms toward heavy metal could be exploited for bioremediation of heavy metals at contaminated sites.
Inhibition of bacterial activity in acid mine drainage
NASA Astrophysics Data System (ADS)
Singh, Gurdeep; Bhatnagar, Miss Mridula
1988-12-01
Acid mine drainage water give rise to rapid growth and activity of an iron- and sulphur- oxidizing bacterium Thiobacillus ferrooxidians which greatly accelerate acid producing reactions by oxidation of pyrite material associated with coal and adjoining strata. The role of this bacterium in production of acid mine drainage is described. This study presents the data which demonstrate the inhibitory effect of certain organic acids, sodium benzoate, sodium lauryl sulphate, quarternary ammonium compounds on the growth of the acidophilic aerobic autotroph Thiobacillus ferrooxidians. In each experiment, 10 milli-litres of laboratory developed culture of Thiobacillus ferrooxidians was added to 250 milli-litres Erlenmeyer flask containing 90 milli-litres of 9-k media supplemented with FeSO4 7H2O and organic compounds at various concentrations. Control experiments were also carried out. The treated and untreated (control) samples analysed at various time intervals for Ferrous Iron and pH levels. Results from this investigation showed that some organic acids, sodium benzoate, sodium lauryl sulphate and quarternary ammonium compounds at low concentration (10-2 M, 10-50 ppm concentration levels) are effective bactericides and able to inhibit and reduce the Ferrous Iron oxidation and acidity formation by inhibiting the growth of Thiobacillus ferrooxidians is also discussed and presented
Peng, J B; Yan, W M; Bao, X Z
1994-07-01
Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host.
Peng, Ji-Bin; Yan, Wang-Ming; Bao, Xue-Zhen
1994-01-01
Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host. PMID:16349341
Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching
Gehrke, Tilman; Telegdi, Judit; Thierry, Dominique; Sand, Wolfgang
1998-01-01
Leaching bacteria such as Thiobacillus ferrooxidans attach to pyrite or sulfur by means of extracellular polymeric substances (EPS) (lipopolysaccharides). The primary attachment to pyrite at pH 2 is mediated by exopolymer-complexed iron(III) ions in an electrochemical interaction with the negatively charged pyrite surface. EPS from sulfur cells possess increased hydrophobic properties and do not attach to pyrite, indicating adaptability to the substrate or substratum. PMID:9647862
Onysko, Steven J.; Kleinmann, Robert L. P.; Erickson, Patricia M.
1984-01-01
Benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds. PMID:16346592
Potumarthi, Ravichandra; Mugeraya, Gopal; Jetty, Annapurna
2008-12-01
In the present studies, newly isolated Thiobacillus sp was used for the treatment of synthetic spent sulfide caustic in a laboratory-scale fluidized bed bioreactor. The sulfide oxidation was tested using Ca-alginate immobilized Thiobacillus sp. Initially, response surface methodology was applied for the optimization of four parameters to check the sulfide oxidation efficiency in batch mode. Further, reactor was operated in continuous mode for 51 days at different sulfide loading rates and retention times to test the sulfide oxidation and sulfate and thiosulfate formation. Sulfide conversions in the range of 90-98% were obtained at almost all sulfide loading rates and hydraulic retention times. However, increased loading rates resulted in lower sulfide oxidation capacity. All the experiments were conducted at constant pH of around 6 and temperature of 30 +/- 5 degrees C.
Huerta, G; Escobar, B; Rubio, J; Badilla-Ohlbaum, R
1995-09-01
Oxidation of Fe(II) iron and bioleaching of pyrite and chalcopyrite by Thiobacillus ferrooxidans was adversely affected by isopropylxanthate, a flotation agent, and by LIX 984, a solvent-extraction agent, each at ≤ 1 g/l. The reagents/l were adsorbed on the bacterial surface, decreasing the bacteria's development and preventing biooxidation. Both reagents inhibited the bioleaching of pyrite and LIX 984 also inhibited the bioleaching of chalcopyrite.
Biochemical solubilization of toxic salts from residual geothermal brines and waste waters
Premuzic, Eugene T.; Lin, Mow S.
1994-11-22
A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.
Peccia, Jordan; Marchand, Eric A.; Silverstein, Joann; Hernandez, Mark
2000-01-01
Culture-dependent studies have implicated sulfur-oxidizing bacteria as the causative agents of acid mine drainage and concrete corrosion in sewers. Thiobacillus species are considered the major representatives of the acid-producing bacteria in these environments. Small-subunit rRNA genes from all of the Thiobacillus and Acidiphilium species catalogued by the Ribosomal Database Project were identified and used to design oligonucleotide DNA probes. Two oligonucleotide probes were synthesized to complement variable regions of 16S rRNA in the following acidophilic bacteria: Thiobacillus ferrooxidans and T. thiooxidans (probe Thio820) and members of the genus Acidiphilium (probe Acdp821). Using 32P radiolabels, probe specificity was characterized by hybridization dissociation temperature (Td) with membrane-immobilized RNA extracted from a suite of 21 strains representing three groups of bacteria. Fluorochrome-conjugated probes were evaluated for use with fluorescent in situ hybridization (FISH) at the experimentally determined Tds. FISH was used to identify and enumerate bacteria in laboratory reactors and environmental samples. Probing of laboratory reactors inoculated with a mixed culture of acidophilic bacteria validated the ability of the oligonucleotide probes to track specific cell numbers with time. Additionally, probing of sediments from an active acid mine drainage site in Colorado demonstrated the ability to identify numbers of active bacteria in natural environments that contain high concentrations of metals, associated precipitates, and other mineral debris. PMID:10877807
Biochemical solubilization of toxic salts from residual geothermal brines and waste waters
Premuzic, E.T.; Lin, M.S.
1994-11-22
A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed. The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts. For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates. 54 figs.
[Application of immunologic methods to the analysis of bio-leaching bacteria].
Coto, O; Fernández, A I; León, T; Rodríguez, D
1994-09-01
Pure cultures of Thiobacillus ferrooxidans and mixed cultures of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans isolated from the Matahambre mine (Cuba) were used to fit immunodiffusion and immunoelectron microscopy to the study of iron oxidizing bacteria. The possibilities, advantages and limits of those techniques have been studied from both the identification and the serological characterization points of view. Finally, the efficiency of these methods was tested by applying them to the identification of microorganisms from acidic waters from the mine.
ISOLATION AND PROPERTIES OF AN IRON-OXIDIZING THIOBACILLUS
Razzell, W. E.; Trussell, P. C.
1963-01-01
Razzell, W. E. (British Columbia Research Council, Vancouver, Canada) and P. C. Trussell. Isolation and properties of an iron-oxidizing Thiobacillus. J. Bacteriol. 85:595–603. 1963. — An organism isolated from acidic copper-leaching waters has been shown to oxidize ferrous ions, sulfur, and metallic sulfides but exhibit peculiar responses to thiosulfate. The name Thiobacillus ferrooxidans has been used to describe it. A pH of 2.5 is optimal for growth on iron, sulfur, and metallic sulfides, but cells free from iron can be obtained from growth at pH 1.6, and sulfur cultures adjusted to pH 5.5 readily attain a pH of 1.8. A stationary cultivation procedure appears superior to percolation techniques for studying the oxidation of finely divided metallic sulfides. Concentrations of soluble copper in excess of 1 g per liter were obtained from chalcopyrite in less than 4 weeks. Chalcocite oxidation proceeded in the absence of iron. Sodium chloride inhibits iron oxidation without preventing oxidation of metallic sulfides by the organism. PMID:14042937
Wang, Lan; Wei, Benping; Chen, Ziai; Deng, Liangwei; Song, Li; Wang, Shuang; Zheng, Dan; Liu, Yi; Pu, Xiaodong; Zhang, Yunhong
2015-12-01
Four reactors were initiated to study the effect of inoculum and sulfide type on the simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine slurry (Ssu-Nir) process. Anaerobic sludge, aerobic sludge, and water were used as inocula, and Na2S and biogas were used as a sulfide substrate, respectively. Additionally, 454 pyrosequencing of the 16S rRNA gene was used to explore the bacterial diversity. The results showed that sulfur-oxidizing bacteria (Thiobacillus, 42.2-84.4 %) were dominant in Ssu-Nir process and led to the excellent performance. Aerobic sludge was more suitable for inoculation of the Ssu-Nir process because it is better for rapidly enriching dominant sulfur-oxidizing bacteria (Thiobacillus, 54.4 %), denitrifying sulfur-oxidizing bacteria (40.0 %) and denitrifiers (23.9 %). Lower S(2-) removal efficiency (72.6 %) and NO3 (-) removal efficiency (<90 %) of the Ssu-Nir process were obtained using biogas as a sulfide substrate than when Na2S was used. For the Ssu-Nir process with biogas as the sulfide substrate, limiting H2S absorption caused a high relative abundance of sulfur-oxidizing bacteria, Thiobacillus (84.8 %) and Thiobacillus sayanicus (39.6 %), which in turn led to low relative abundance of denitrifiers (1.6 %) and denitrifying sulfur-oxidizing bacteria (24.4 %), low NO3 (-) removal efficiency, and eventually poor performance.
Influence of Organic Solvents on Chalcopyrite Oxidation Ability of Thiobacillus ferrooxidans
Torma, Arpad E.; Itzkovitch, Irwin J.
1976-01-01
It has been shown that organic solvents used primarily for the extraction of metals from aqueous leach liquors decrease both the surface tension of the aqueous phase and the chalcopyrite oxidation ability of Thiobacillus ferrooxidans. For the reagents and modifiers investigated, the order of inhibition was found to be LIX 70 < LIX 73 < LIX 71 < LIX 64N < LIX 65N < TBP ∼ isodecanol ∼ nonylphenol < LIX 63 <<< D2EHPA ∼ Kelex 100 < Kelex 120 <<< Alamine 336 ∼ Alamine 308 ∼ Alamine 310 < Alamine 304 < Adogen 381 ∼ Aliquat 336 < Adogen 364. To avoid limitation in bacterial activity, organic matter should be removed from the recycling liquor prior to leaching. PMID:16345164
Hallberg, K B; Lindstrom, E B
1996-11-01
Phylogenetic and phenotypic analysis indicates that a moderately thermophilic isolate, C-SH12, from Australia belongs to the species Thiobacillus caldus. Antiserum generated against whole cells of T. caldus KU recognized protein antigens common to cell lysates of the three T. caldus strains KU, BC13, and C-SH12 but did not recognize whole cells of isolate C-SH12. Differences in the lipopolysaccharide (LPS) of strain C-SH12 and those of the other two T. caldus strains were found, and the anti-KU antiserum did not recognize the LPS from strain C-SH12. These data indicate that this T. caldus isolate belongs to a serotype different from that of strains KU and BC13.
Mathematical model of the oxidation of ferrous iron by a biofilm of Thiobacillus ferrooxidans.
Mesa, M M; Macías, M; Cantero, D
2002-01-01
Microbial oxidation of ferrous iron may be a viable alternative method of producing ferric sulfate, which is a reagent used for removal of H(2)S from biogas. The paper introduces a kinetic study of the biological oxidation of ferrous iron by Thiobacillus ferrooxidans immobilized on biomass support particles (BSP) composed of polyurethane foam. On the basis of the data obtained, a mathematical model for the bioreactor was subsequently developed. In the model described here, the microorganisms adhere by reversible physical adsorption to the ferric precipitates that are formed on the BSP. The model can also be considered as an expression for the erosion of microorganisms immobilized due to the agitation of the medium by aeration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gay, Sean C.; Segel, Irwin H.; Fisher, Andrew J., E-mail: fisher@chem.ucdavis.edu
2009-10-01
APS kinase from Thiobacillus denitrificans contains an inactive N-terminal ATP sulfurylase domain. The structure presented unveils the first hexameric assembly for an APS kinase, and reveals that structural changes in the N-terminal domain disrupt the ATP sulfurylase active site thus prohibiting activity. The Tbd-0210 gene of the chemolithotrophic bacterium Thiobacillus denitrificans is annotated to encode a 60.5 kDa bifunctional enzyme with ATP sulfurylase and APS kinase activity. This putative bifunctional enzyme was cloned, expressed and structurally characterized. The 2.95 Å resolution X-ray crystal structure reported here revealed a hexameric assembly with D{sub 3} symmetry. Each subunit contains a large N-terminalmore » sulfurylase-like domain and a C-terminal APS kinase domain reminiscent of the two-domain fungal ATP sulfurylases of Penicillium chrysogenum and Saccharomyces cerevisiae, which also exhibit a hexameric assembly. However, the T. denitrificans enzyme exhibits numerous structural and sequence differences in the N-terminal domain that render it inactive with respect to ATP sulfurylase activity. Surprisingly, the C-terminal domain does indeed display APS kinase activity, indicating that this gene product is a true APS kinase. Therefore, these results provide the first structural insights into a unique hexameric APS kinase that contains a nonfunctional ATP sulfurylase-like domain of unknown function.« less
Suppression of pyritic sulphur during flotation tests using the bacterium Thiobacillus ferrooxidans.
Townsley, C C; Atkins, A S; Davis, A J
1987-07-01
Environmental concern about sulphur dioxide emissions has led to the examination of the possibility of removing pyritic sulphur from coal prior to combustion during froth flotation, a routine method for coal cleaning at the pit-head. The bacterium Thiobacillus ferrooxidans was effective in leaching 80% and 63% -53 mum pyrite at 2% and 6% pulp density in shake flasks in 240 and 340 h, respectively.The natural floatability of pyrite was significantly reduced in the Hallimond tube following 2.5 min of conditioning in membrane-filtered bacterial liquor prior to flotation. The suppression effect was greatly enhanced in the presence of Thiobacillus ferrooxidans. A bacterial suspension in pH 2.0 distilled water showed 85% suppression, whereas in spent growth liquor this value was 95%. The optimum bacterial density was 3.25 x 10(10) cells/g pyrite in 230-ml distilled water (2% pulp density) in the Hallimond tube. The degree of suppression by the cells was related to particle size but not to pH or temperature. The sulphur content of a synthetic coal/pyrite mixture was reduced from 10.9 to 2.1% by flotation after bacterial preconditioning. It is postulated that pyrite removal in coals which are cleaned by froth flotation could be significantly reduced using a bacterial preconditioning stage with a short residence time of 2.5 min.
Leaching of Chalcopyrite with Thiobacillus ferrooxidans: Effect of Surfactants and Shaking
Duncan, D. W.; Trussell, P. C.; Walden, C. C.
1964-01-01
The rate of leaching of chalcopyrite by Thiobacillus ferrooxidans has been greatly accelerated by using shaken flasks in place of stationary bottles or percolators. A further increase in rate and extent of leaching was obtained by the use of Tween 20, 40, 60, and 80, Triton X-100, Quaker TT 5386, and Hyamine 2389. Tween 20 was the most effective surfactant. No individual component of the Tween molecule was responsible for the improved leaching. The Tween-to-chalcopyrite ratio is more important than the Tween-to-medium ratio. The effect of the surfactants is probably due to increased contact between the mineral surface and the organism, and shaking provides the necessary oxygen. Rates and yields obtained by use of surfactants and shaking as aids to microbiological leaching approach those obtained with acidified erric sulfate leaching. PMID:14131359
Mechanism of microbial flotation using Thiobacillus ferrooxidans for pyrite suppression.
Ohmura, N; Kitamura, K; Saiki, H
1993-03-15
Microbial desulfurization might be developed as a new process for the removal of pyrite sulfur from coal sluries such as coal-water mixture (CWM). An application of iron-oxidizing bacterium Thiobacillus ferrooxidans to flotation would shorten the periods of the microbial removal of pyrite from some weeks by leaching methods to a few minutes. The floatability of pyrite in flotation was mainly reduced by T. ferrooxidans itself rather than by other microbial substances in bacterial culture as additive of flotation liquor. Floatability was suppressed within a few seconds by bacterial contact. The suppression was proportional to increasing the number of cells observed between bacterial adhesion and the suppression of floatability. If 25% of the total pyrite surface area covered with the bacteria, pyrite floatability would be completely depressed. Bacteria that lost their iron-oxidizing activities by sodium cyanide treatment were also able to adhere to pyrite and reduced pyrite floatability as much as normal bacteria did. Thiobacillus ferrooxidans ATCC 23270, T-1, 9, and 11, which had different iron-oxidizing abilities, suppressed floatability to similar-levels. The oxidizing ability of bacteria did not influence the suppressing effect. These results showed the mechanism of the suppression of pyrite floatability by bacteria. Quick bacterial adhesion to pyrite induced floatability suppression by changing the surface property from hydrophobic. The quick adhesion of the bacterium was the novel function which worked to change the surface property of pyrite to remove it from coal. (c) 1993 John Wiley & Sons, Inc.
Vázquez-Rodríguez, Adiari I.; Hansel, Colleen M.; Zhang, Tong; ...
2015-06-23
Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. In this study, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanismsmore » at play. We show that the abundant and widespread sulfur-oxidizing bacteria of the genus Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus thioparus cultures led to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of thiosulfate, which served a dual role by enhancing HgS dissolution through Hg complexation and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. Lastly, they also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment.« less
Vázquez-Rodríguez, Adiari I.; Hansel, Colleen M.; Zhang, Tong; Lamborg, Carl H.; Santelli, Cara M.; Webb, Samuel M.; Brooks, Scott C.
2015-01-01
Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. Here, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanisms at play. We show that the abundant and widespread sulfur-oxidizing bacteria of the genus Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus thioparus cultures led to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of thiosulfate, which served a dual role by enhancing HgS dissolution through Hg complexation and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. They also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment. PMID:26157421
Leaching of Copper Ore by Thiobacillus Ferrooxidans.
ERIC Educational Resources Information Center
Lennox, John; Biaha, Thomas
1991-01-01
A quantitative laboratory exercise based upon the procedures copper manufacturers employ to increase copper production is described. The role of chemoautotrophic microorganisms in biogeologic process is emphasized. Safety considerations when working with bacteria are included. (KR)
Genetic manipulation of the obligate chemolithoautotrophic bacterium Thiobacillus denitrificans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beller, H.R.; Legler, T.C.; Kane, S.R.
2011-07-15
Chemolithoautotrophic bacteria can be of industrial and environmental importance, but they present a challenge for systems biology studies, as their central metabolism deviates from that of model organisms and there is a much less extensive experimental basis for their gene annotation than for typical organoheterotrophs. For microbes with sequenced genomes but unconventional metabolism, the ability to create knockout mutations can be a powerful tool for functional genomics and thereby render an organism more amenable to systems biology approaches. In this chapter, we describe a genetic system for Thiobacillus denitrificans, with which insertion mutations can be introduced by homologous recombination andmore » complemented in trans. Insertion mutations are generated by in vitro transposition, the mutated genes are amplified by the PCR, and the amplicons are introduced into T. denitrificans by electroporation. Use of a complementation vector, pTL2, based on the IncP plasmid pRR10 is also addressed.« less
Microbial diversity and community structure in an antimony-rich tailings dump.
Xiao, Enzong; Krumins, Valdis; Dong, Yiran; Xiao, Tangfu; Ning, Zengping; Xiao, Qingxiang; Sun, Weimin
2016-09-01
To assess the impact of antimony (Sb) on microbial community structure, 12 samples were taken from an Sb tailings pile in Guizhou Province, Southwest China. All 12 samples exhibited elevated Sb concentrations, but the mobile and bioaccessible fractions were small in comparison to total Sb concentrations. Besides the geochemical analyses, microbial communities inhabiting the tailing samples were characterized to investigate the interplay between the microorganisms and environmental factors in mine tailings. In all samples, Proteobacteria and Actinobacteria were the most dominant phyla. At the genus level, Thiobacillus, Limnobacter, Nocardioides, Lysobacter, Phormidium, and Kaistobacter demonstrated relatively high abundances. The two most abundant genera, Thiobacillus and Limnobacter, are characterized as sulfur-oxidizing bacteria and thiosulfate-oxidizing bacteria, respectively, while the genus Lysobacter contains arsenic (As)-resistant bacteria. Canonical correspondence analysis (CCA) indicates that TOC and the sulfate to sulfide ratio strongly shaped the microbial communities, suggesting the influence of the environmental factors in the indigenous microbial communities.
Effects of sulphur and Thiobacillus thioparus on cow manure aerobic composting.
Gu, Wenjie; Zhang, Fabao; Xu, Peizhi; Tang, Shuanhu; Xie, Kaizhi; Huang, Xu; Huang, Qiaoyi
2011-06-01
A simulated aerobic composting experiment was used to explore the effects of sulphur and Thiobacillus thioparus during six manure composting treatments. The addition of sulphur led to a decrease of the pH level within the range 6-6.3, which was lower than the control treatment (CK). The concentration of ammonium nitrogen in T1 (0.25% sulphur), T2 (0.5% sulphur), T3 (0.25% sulphur + T. thioparus) and T4 (0.5% sulphur + T. thioparus) were much higher than the ammonium N in CK. The results indicated that addition of sulphur could increase the concentration of ammonium N and reduce loss of nitrogen. However, excess sulphur had a negative effect on temperature and GI. Addition of T. thioparus could increase concentration of available S, alleviate these negative influences and reduce compost biological toxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cho, Dae Haeng; Kim, Min Hoo; Lee, Sang Hyun; Jung, Kwang Deog; Kim, Yong Hwan
2014-01-01
NAD-dependent formate dehydrogenase (FDH) from Candida boidinii (CbFDH) has been widely used in various CO2-reduction systems but its practical applications are often impeded due to low CO2-reducing activity. In this study, we demonstrated superior CO2-reducing properties of FDH from Thiobacillus sp. KNK65MA (TsFDH) for production of formate from CO2 gas. To discover more efficient CO2-reducing FDHs than a reference enzyme, i.e. CbFDH, five FDHs were selected with biochemical properties and then, their CO2-reducing activities were evaluated. All FDHs including CbFDH showed better CO2-reducing activities at acidic pHs than at neutral pHs and four FDHs were more active than CbFDH in the CO2 reduction reaction. In particular, the FDH from Thiobacillus sp. KNK65MA (TsFDH) exhibited the highest CO2-reducing activity and had a dramatic preference for the reduction reaction, i.e., a 84.2-fold higher ratio of CO2 reduction to formate oxidation in catalytic efficiency (k cat/K B) compared to CbFDH. Formate was produced from CO2 gas using TsFDH and CbFDH, and TsFDH showed a 5.8-fold higher formate production rate than CbFDH. A sequence and structural comparison showed that FDHs with relatively high CO2-reducing activities had elongated N- and C-terminal loops. The experimental results demonstrate that TsFDH can be an alternative to CbFDH as a biocatalyst in CO2 reduction systems. PMID:25061666
Gu, Wenjie; Sun, Wen; Lu, Yusheng; Li, Xia; Xu, Peizhi; Xie, Kaizhi; Sun, Lili; Wu, Hangtao
2018-02-01
The effects of sulphur and Thiobacillus thioparus 1904 on odour emissions during composting were studied. Results indicated that the sulphur addition reduced the pH and decreased cumulative emission of ammonia and the nitrogen loss by 47.80% and 44.23%, respectively, but the amount of volatile sulphur compounds (VSCs) and the sulphur loss increased. The addition of T. thioparus 1904 effectively reduced the cumulative emissions of H 2 S, methyl sulphide, methanethiol, dimethyl disulphide and the sulphur loss by 33.24%, 81.24%, 32.70%, 54.22% and 54.24%, respectively. T. thioparus 1904 also limited the nitrogen loss. The combined application of sulphur and T. thioparus 1904 resulted in the greatest amount of nitrogen retention. The accumulation of ammonia emissions was reduced by 63.33%, and the nitrogen loss was reduced by 71.93%. The combined treatment did not increase the emission of VSCs. The application of sulphur and T. thioparus 1904 may help to control the odour of compost. Copyright © 2017. Published by Elsevier Ltd.
Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both active and abandoned mining operations. The wastewater...
Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both the active and abandoned mining operations. The wastew...
Fowler, T. A.; Crundwell, F. K.
1999-01-01
This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T. ferrooxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions. PMID:10583978
Varela, Patricia; Levicán, Gloria; Rivera, Francisco; Jerez, Carlos A.
1998-01-01
Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. During the process of ore bioleaching, the microorganisms are subjected to several stressing conditions, including the lack of some essential nutrients, which can affect the rates and yields of bioleaching. When T. ferrooxidans is starved for phosphate, the cells respond by inducing the synthesis of several proteins, some of which are outer membrane proteins of high molecular weight (70,000 to 80,000). These proteins were considered to be potential markers of the phosphate starvation state of these microorganisms. We developed a single-cell immunofluorescence assay that allowed monitoring of the phosphate starvation condition of this biomining microorganism by measuring the increased expression of the surface proteins. In the presence of low levels of arsenate (2 mM), the growth of phosphate-starved T. ferrooxidans cells was greatly inhibited compared to that of control nonstarved cells. Therefore, the determination of the phosphorus nutritional state is particularly relevant when arsenic compounds are solubilized during the bioleaching of different ores. PMID:9835593
Selective Inhibition of the Oxidation of Ferrous Iron or Sulfur in Thiobacillus ferrooxidans
Harahuc, Lesia; Lizama, Hector M.; Suzuki, Isamu
2000-01-01
The oxidation of either ferrous iron or sulfur by Thiobacillus ferrooxidans was selectively inhibited or controlled by various anions, inhibitors, and osmotic pressure. Iron oxidation was more sensitive than sulfur oxidation to inhibition by chloride, phosphate, and nitrate at low concentrations (below 0.1 M) and also to inhibition by azide and cyanide. Sulfur oxidation was more sensitive than iron oxidation to the inhibitory effect of high osmotic pressure. These differences were evident not only between iron oxidation by iron-grown cells and sulfur oxidation by sulfur-grown cells but also between the iron and sulfur oxidation activities of the same iron-grown cells. Growth experiments with ferrous iron or sulfur as an oxidizable substrate confirmed the higher sensitivity of iron oxidation to inhibition by phosphate, chloride, azide, and cyanide. Sulfur oxidation was actually stimulated by 50 mM phosphate or chloride. Leaching of Fe and Zn from pyrite (FeS2) and sphalerite (ZnS) by T. ferrooxidans was differentially affected by phosphate and chloride, which inhibited the solubilization of Fe without significantly affecting the solubilization of Zn. PMID:10698768
Nucleotide sequence of the gene encoding the nitrogenase iron protein of Thiobacillus ferrooxidans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pretorius, I.M.; Rawlings, D.E.; O'Neill, E.G.
1987-01-01
The DNA sequence was determined for the cloned Thiobacillus ferrooxidans nifH and part of the nifD genes. The DNA chains were radiolabeled with (..cap alpha..-/sup 32/P)dCTP (3000 Ci/mmol) or (..cap alpha..-/sup 35/S)dCTP (400 Ci/mmol). A putative T. ferrooxidans nifH promoter was identified whose sequences showed perfect consensus with those of the Klebsiella pneumoniae nif promoter. Two putative consensus upstream activator sequences were also identified. The amino acid sequence was deduced from the DNA sequence. In a comparison of nifH DNA sequences from T. ferrooxidans and eight other nitrogen-fixing microbes, a Rhizobium sp. isolated from Parasponia andersonii showed the greatest homologymore » (74%) and Clostridium pasteurianum (nifH1) showed the least homology (54%). In the comparison of the amino acid sequences of the Fe proteins, the Rhizobium sp. and Rhizobium japonicum showed the greatest homology (both 86%) and C. pasteurianum (nifH1 gene product) demonstrated the least homology (56%) to the T. ferrooxidans Fe protein.« less
Park, S; Lee, J; Park, J; Byun, I; Park, T; Lee, T
2010-01-01
Since spent sulfidic caustic (SSC) produced from petrochemical industry contains a high concentration of alkalinity and sulfide, it was expected that SSC could be used as an electron donor for autotrophic denitrification. To investigate the nitrogen removal performance, a pilot scale Bardenpho process was operated. The total nitrogen removal efficiency increased as SSC dosage increased, and the highest efficiency was observed as 77.5% when SSC was injected into both anoxic tank (1) and (2). FISH analysis was also performed to shed light on the effect of SSC dosage on the distribution ratio of nitrifying bacteria and Thiobacillus denitrificans. FISH results indicated that the relative distribution ratio of ammonia-oxidizing bacteria, Nitrobacter spp., Nitrospira genus and Thiobacillus denitrificans to eubacteria varied little with the pH of the tanks, and SSC injection did not give harmful effect on nitrification efficiency. These results show that SSC can be applied as an electron donor of autotrophic denitrification to biological nitrogen removal process effectively, without any inhibitory effects to nitrifying bacteria and sulfur-utilizing denitrifying bacteria.
An Immunological Assay for Detection and Enumeration of Thermophilic Biomining Microorganisms
Amaro, Ana M.; Hallberg, Kevin B.; Lindström, E. Börje; Jerez, Carlos A.
1994-01-01
A specific, fast, and sensitive nonradioactive immunobinding assay for the detection and enumeration of the moderate thermophile Thiobacillus caldus and the thermophilic archaeon Sulfolobus acidocaldarius was developed. It employs enhanced chemiluminescence or peroxidase-conjugated immunoglobulins in a dot or slot blotting system and is very convenient for monitoring thermophilic bioleaching microorganisms in effluents from industrial bioleaching processes. Images PMID:16349398
An immunological assay for detection and enumeration of thermophilic biomining microorganisms.
Amaro, A M; Hallberg, K B; Lindström, E B; Jerez, C A
1994-09-01
A specific, fast, and sensitive nonradioactive immunobinding assay for the detection and enumeration of the moderate thermophile Thiobacillus caldus and the thermophilic archaeon Sulfolobus acidocaldarius was developed. It employs enhanced chemiluminescence or peroxidase-conjugated immunoglobulins in a dot or slot blotting system and is very convenient for monitoring thermophilic bioleaching microorganisms in effluents from industrial bioleaching processes.
1994-07-01
hydrolyzed during incubation in the aqueous medium used for growth of the microorganism. Microorganisms possessing an enzyme system functional against mustard...indicated. Acidophilic Thiobacillus appear to have limited use for mustard breakdown except for the halotolerant T. DrosDerus, originally isolated from a...microorganisms for mustard breakdown is a viable alternative. Enzymes of halophilic and thermophilic microorganisms are able to function in the presence organic
Knickerbocker, C.; Nordstrom, D. Kirk; Southam, G.
2000-01-01
Brimstone Basin, in southeastern Yellowstone National Park, Wyoming is an ancient hydrothermal area containing solfataric alteration. Drainage waters flowing from Brimstone Basin had pH values as low as 1.23 and contained up to 1.7×106 MPN/ml acidophilic sulfur-oxidizing bacteria. Thiobacillus thiooxidans was the dominant sulfur-oxidizing bacterium recovered from an enrichment culture and was used in a structural examination of bacterial sulfur oxidation. Growth in these sulfur cultures occurred in two phases with cells in association with the macroscopic sulfur grains and in suspension above these grains. Colonization of sulfur grains by individual cells and microcolonies was facilitated by organic material that appeared to be responsible for bacterial adhesion. Transmission electron microscopy of negatively stained (2% [wt./vol.] uranyl acetate), sulfur-grown T. thiooxidans revealed extensive membrane blebbing (sloughing of outer membrane vesicles) and the presence of approximately 100 nm sized sulfur particles adsorbed to membrane material surrounding individual bacteria. Sulfite-grown bacteria did not possess membrane blebs. The amphipathic nature of these outer membrane vesicles appear to be responsible for overcoming the hydrophobic barrier necessary for the growth of T. thiooxidans on elemental sulfur.
Alcántara, S; Velasco, A; Revah, S
2004-10-01
The elemental sulfur formation by the partial oxidation of thiosulfate by both a sulfoxidizing consortium and by Thiobacillus thioparus ATCC 23645 was studied under aerobic conditions in chemostat. Steady state was attained with essentially total conversion to sulfate when the dissolved oxygen concentration was 5 mgO2 l(-1) and below a dilution rate (D) of 3.0 d(-1)for the consortium and 0.9 d(-1) for T thioparus. The consortium formed elemental sulfur in steady state under oxygen limitation. Fifty percent of the theoretical elemental sulfur yield was obtained with a dissolved oxygen concentration of 0.2 mgO2 l(-1). Growth of T thioparus was negatively affected with a concentration below 1.9 mgO2 l(-1). Consortium yield from batch cultures was 2.1 g(-1) (protein) mol(-1) (thiosulfate), which was comparable with the values obtained in the chemostat at dilution rates of 0.4 d(-1) and 1.2 d(-1). The consortium showed a maximum degradation rate of 0.105 g(thiosulfate) g(-1) (protein) min(-1) and a saturation rate for S2O3(2-) of 1.9 mM.
Chemistry Related to Semiconductor Growth Involving Organometallics
1990-05-11
Biodegradation ( bioleaching --solubilization of minerals via microorganisms) nas been patented and used in conjunction with traditional mineral and... bioleach work, Lundgren, Torma, Karaivko and Ivanov reported that Thiobacillus ferrooxidans (370) was used to oxidize gallium sulfide (Ga2S3) to gallium...multimillion dollar loss of gallium, gold and silver. Our laboratories have shown that bacteria found to be successful in a three year gallium bioleach
1985-07-01
aerugiaosa PAO-l, Saccharomyces cerevisiae, Aspergillus niger , P. fluorescens, Escherichia coli, and Thiobacillus ferroxidans. Interaction of these...shown that P. aeruginosa CSU has..a-••reference for uranium while P. aeruginosa PAO-l, Aspergillus niger and-P. fluorescens exhibits a preference for...exhibits a preference for chromium. Aspergillus niger under identical conditions is chromium and manganese selective. P. aeruginosa when grown in th
Microbial removal of no.sub.x from gases
Sublette, Kerry L.
1991-01-01
Disclosed is a process by which a gas containing nitric oxide is contacted with an anaerobic microbial culture of denitrifying bacteria to effect the chemical reduction of the nitric oxide to elemental nitrogen. The process is particularly suited to the removal of nitric oxide from flue gas streams and gas streams from nitric acid plants. Thiobacillus dentrificians as well as other bacteria are disclosed for use in the process.
Enzyme-Linked Immunofiltration Assay To Estimate Attachment of Thiobacilli to Pyrite
Dziurla, Marie-Antoinette; Achouak, Wafa; Lam, Bach-Tuyet; Heulin, Thierry; Berthelin, Jacques
1998-01-01
An enzyme-linked immunofiltration assay (ELIFA) has been developed in order to estimate directly and specifically Thiobacillus ferrooxidans attachment on sulfide minerals. This method derives from the enzyme-linked immunosorbent assay but is performed on filtration membranes which allow the retention of mineral particles for a subsequent immunoenzymatic reaction in microtiter plates. The polyclonal antiserum used in this study was raised against T. ferrooxidans DSM 583 and recognized cell surface antigens present on bacteria belonging to the genus Thiobacillus. This antiserum and the ELIFA allowed the direct quantification of attached bacteria with high sensitivity (104 bacteria were detected per well of the microtiter plate). The mean value of bacterial attachment has been estimated to be about 105 bacteria mg−1 of pyrite at a particle size of 56 to 65 μm. The geometric coverage ratio of pyrite by T. ferrooxidans ranged from 0.25 to 2.25%. This suggests an attachment of T. ferrooxidans on the pyrite surface to well-defined limited sites with specific electrochemical or surface properties. ELIFA was shown to be compatible with the measurement of variable levels of adhesion. Therefore, this method may be used to establish adhesion isotherms of T. ferrooxidans on various sulfide minerals exhibiting different physicochemical properties in order to understand the mechanisms of bacterial interaction with mineral surfaces. PMID:9687454
Selective Adhesion of Thiobacillus ferrooxidans to Pyrite
Ohmura, Naoya; Kitamura, Keiko; Saiki, Hiroshi
1993-01-01
Bacterial adhesion to mineral surfaces plays an important role not only in bacterial survival in natural ecosystems, but also in mining industry applications. Selective adhesion was investigated with Thiobacillus ferrooxidans by using four minerals, pyrite, quartz, chalcopyrite, and galena. Escherichia coli was used as a control bacterium. Contact angles were used as indicators of hydrophobicity, which was an important factor in the interaction between minerals and bacteria. The contact angle of E. coli in a 0.5% sodium chloride solution was 31°, and the contact angle of T. ferrooxidans in a pH 2.0 sulfuric acid solution was 23°. E. coli tended to adhere to more hydrophobic minerals by hydrophobic interaction, while T. ferrooxidans selectively adhered to iron-containing minerals, such as pyrite and chalcopyrite. Ferrous ion inhibited the selective adhesion of T. ferrooxidans to pyrite competitively, while ferric ion scarcely inhibited such adhesion. When selective adhesion was quenched by ferrous ion completely, adhesion of T. ferrooxidans was controlled by hydrophilic interactions. Adhesion of E. coli to pyrite exhibited a liner relationship on langmuir isotherm plots, but adhesion of T. ferrooxidans did not. T. ferrooxidans recognized the reduced iron in minerals and selectively adhered to pyrite and chalcopyrite by a strong interaction other than the physical interaction. PMID:16349106
A novel mineral flotation process using Thiobacillus ferrooxidans.
Nagaoka, T; Ohmura, N; Saiki, H
1999-08-01
Oxidative leaching of metals by Thiobacillus ferrooxidans has proven useful in mineral processing. Here, we report on a new use for T. ferrooxidans, in which bacterial adhesion is used to remove pyrite from mixtures of sulfide minerals during flotation. Under control conditions, the floatabilities of five sulfide minerals tested (pyrite, chalcocite, molybdenite, millerite, and galena) ranged from 90 to 99%. Upon addition of T. ferrooxidans, the floatability of pyrite was significantly suppressed to less than 20%. In contrast, addition of the bacterium had little effect on the floatabilities of the other minerals, even when they were present in relatively large quantities: their floatabilities remained in the range of 81 to 98%. T. ferrooxidans thus appears to selectively suppress pyrite floatability. As a consequence, 77 to 95% of pyrite was removed from mineral mixtures while 72 to 100% of nonpyrite sulfide minerals was recovered. The suppression of pyrite floatability was caused by bacterial adhesion to pyrite surfaces. When normalized to the mineral surface area, the number of cells adhering to pyrite was significantly larger than the number adhering to other minerals. These results suggest that flotation with T. ferrooxidans may provide a novel approach to mineral processing in which the biological functions involved in cell adhesion play a key role in the separation of minerals.
A Novel Mineral Flotation Process Using Thiobacillus ferrooxidans
Nagaoka, Toru; Ohmura, Naoya; Saiki, Hiroshi
1999-01-01
Oxidative leaching of metals by Thiobacillus ferrooxidans has proven useful in mineral processing. Here, we report on a new use for T. ferrooxidans, in which bacterial adhesion is used to remove pyrite from mixtures of sulfide minerals during flotation. Under control conditions, the floatabilities of five sulfide minerals tested (pyrite, chalcocite, molybdenite, millerite, and galena) ranged from 90 to 99%. Upon addition of T. ferrooxidans, the floatability of pyrite was significantly suppressed to less than 20%. In contrast, addition of the bacterium had little effect on the floatabilities of the other minerals, even when they were present in relatively large quantities: their floatabilities remained in the range of 81 to 98%. T. ferrooxidans thus appears to selectively suppress pyrite floatability. As a consequence, 77 to 95% of pyrite was removed from mineral mixtures while 72 to 100% of nonpyrite sulfide minerals was recovered. The suppression of pyrite floatability was caused by bacterial adhesion to pyrite surfaces. When normalized to the mineral surface area, the number of cells adhering to pyrite was significantly larger than the number adhering to other minerals. These results suggest that flotation with T. ferrooxidans may provide a novel approach to mineral processing in which the biological functions involved in cell adhesion play a key role in the separation of minerals. PMID:10427053
Aria, Marzieh Mohammady; Lakzian, Amir; Haghnia, Gholam Hosain; Berenji, Ali Reza; Besharati, Hosein; Fotovat, Amir
2010-01-01
Sulfur, organic matter, and inoculation with sulfur-oxidizing bacteria are considered as amendments to increase the availability of phosphorus from rock phosphate. The present study was conducted to evaluate the best combination of sulfur, vermicompost, and Thiobacillus thiooxidans inoculation with rock phosphate from Yazd province for direct application to agricultural lands in Iran. For such study, an experiment was carried out in a completely randomized design with factorial arrangement: Elemental sulfur originated from Sarakhs mine at three rates, 0% (S1), 10% (S2), 20% (S3), vermicompost at two rates, 0% (V1), 15% (V2), and inoculation without (B1) and with (B2) T. thiooxidans, in three replications. The results showed that water-soluble phosphorus (WSP) content was significantly higher in inoculated treatments compared to non-inoculated treatments. Sulfur had a significant effect on WSP. The highest solubility rate of rock phosphate was obtained in 20% of sulfur (S3) treatments and it was 2.4 times more than S1 treatments. Vermicompost also had a significant and positive effect on WSP of rock phosphate dissolution. The results also revealed that the highest concentration of WSP, sulfate and the lowest pH were obtained in treatments with 20% sulfur, 15% vermicompost inoculated with T. thiooxidans (B2S3V2).
Amemiya, K.; Umbreit, W. W.
1974-01-01
A cell-free protein-synthesizing system prepared from the strict chemolithotroph, Thiobacillus thiooxidans, was similar to that of heterotrophs. The poly-U directed system had a temperature optimum of 37 C, but in the presence of spermidine (3 mM) the optimum shifted to 45 C. Although growth of the chemolithotroph occurs only in acid conditions, the pH optimum for the cell-free system was pH 7.2. The endogenous-directed activity in the presence or absence of spermidine was maximal at pH 7.8. Spermidine had a stimulatory effect; however, this effect was dependent on the magnesium and tris(hydroxymethyl)aminomethane (Tris) concentrations. At low Tris concentrations (10 mM), spermidine (3 to 5 mM) could completely replace magnesium. When the Tris concentration was increased (50 mM), spermidine could not replace magnesium. Supernatant and ribosomal fractions from T. thiooxidans were exchanged with those of Bacillus thuringiensis and Escherichia coli, and the ribosomal fraction from the chemolithotroph gave good to moderate stimulation when exchanged with the supernatant from the heterotrophs. On the other hand, the supernatant from T. thiooxidans gave good stimulation when mixed with ribosomes from B. thuringiensis but poor activity with ribosomes from E. coli. Both supernatant and ribosomal fractions prepared from stationary phase extracts of T. thiooxidans were inactive in the cell-free system. PMID:4590488
Kinetics of the Removal of Iron Pyrite from Coal by Microbial Catalysis
Hoffmann, Michael R.; Faust, Bruce C.; Panda, Fern A.; Koo, Hong H.; Tsuchiya, Henry M.
1981-01-01
Different strains of Thiobacillus ferrooxidans and Thiobacillus thiooxidans were used to catalyze the oxidative dissolution of iron pyrite, FeS2, in nine different coal samples. Kinetic variables and parametric factors that were determined to have a pronounced effect on the rate and extent of oxidative dissolution at a fixed Po2 were: the bacterial strain, the nitrogen/phosphorus molar ratio, the partial pressure of CO2, the coal source, and the total reactive surface area of FeS2. The overall rate of leaching, which exhibited a first-order dependence on the total surface area of FeS2, was analyzed mathematically in terms of the sum of a biochemical rate, ν1, and a chemical rate, ν2. Results of this study show that bacterial desulfurization (90 to 98%) of coal samples which are relatively high in pyritic sulfur can be achieved within a time-frame of 8 to 12 days when pulp densities are ≤20% and particle sizes are ≤74 μm. The most effective strains of T. ferrooxidans were those that were isolated from natural systems, and T. ferrooxidans ATCC 19859 was the most effective pure strain. The most effective nutrient media contained relatively low phosphate concentrations, with an optimal N/P molar ratio of 90:1. These results suggest that minimal nutrient additions may be required for a commercial desulfurization process. PMID:16345826
Fowler, T. A.; Crundwell, F. K.
1998-01-01
The role of Thiobacillus ferrooxidans in bacterial leaching of mineral sulfides is controversial. Much of the controversy is due to the fact that the solution conditions, especially the concentrations of ferric and ferrous ions, change during experiments. The role of the bacteria would be more easily discernible if the concentrations of ferric and ferrous ions were maintained at set values throughout the experimental period. In this paper we report results obtained by using the constant redox potential apparatus described previously (P. I. Harvey and F. K. Crundwell, Appl. Environ. Microbiol. 63:2586–2592, 1997). This apparatus is designed to control the redox potential in the leaching compartment of an electrolytic cell by reduction or oxidation of dissolved iron. By controlling the redox potential the apparatus maintains the concentrations of ferrous and ferric ions at their initial values. Experiments were conducted in the presence of T. ferrooxidans and under sterile conditions. Analysis of the conversion of zinc sulfide in the absence of the bacteria and analysis of the conversion of zinc sulfate in the presence of the bacteria produced the same results. This indicates that the only role of the bacteria under the conditions used is regeneration of ferric ions in solution. In this work we found no evidence that there is a direct mechanism for bacterial leaching. PMID:9758769
Chen, Lin-Xing; Li, Jin-Tian; Chen, Ya-Ting; Huang, Li-Nan; Hua, Zheng-Shuang; Hu, Min; Shu, Wen-Sheng
2013-09-01
In an attempt to link the microbial community composition and function in mine tailings to the generation of acid mine drainage, we simultaneously explored the geochemistry and microbiology of six tailings collected from a lead/zinc mine, i.e. primary tailings (T1), slightly acidic tailings (T2), extremely acidic tailings (T3, T4 and T5) and orange-coloured oxidized tailings (T6). Geochemical results showed that the six tailings (from T1 to T6) likely represented sequential stages of the acidification process of the mine tailings. 16S rRNA pyrosequencing revealed a contrasting microbial composition between the six tailings: Proteobacteria-related sequences dominated T1-T3 with relative abundance ranging from 56 to 93%, whereas Ferroplasma-related sequences dominated T4-T6 with relative abundance ranging from 28 to 58%. Furthermore, metagenomic analysis of the microbial communities of T2 and T6 indicated that the genes encoding key enzymes for microbial carbon fixation, nitrogen fixation and sulfur oxidation in T2 were largely from Thiobacillus and Acidithiobacillus, Methylococcus capsulatus, and Thiobacillus denitrificans respectively; while those in T6 were mostly identified in Acidithiobacillus and Leptospirillum, Acidithiobacillus and Leptospirillum, and Acidithiobacillus respectively. The microbial communities in T2 and T6 harboured more genes suggesting diverse metabolic capacities for sulfur oxidation/heavy metal detoxification and tolerating low pH respectively. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
Blake, R C; Shute, E A
1994-08-09
Rusticyanin is an acid-stable, soluble blue copper protein found in abundance in the periplasmic space of Thiobacillus ferrooxidans, an acidophilic bacterium capable of growing autotrophically on soluble ferrous sulfate. An acid-stable iron:rusticyanin oxidoreductase activity was partially purified from cell-free extracts of T. ferrooxidans. The enzyme-catalyzed, iron-dependent reduction of the rusticyanin exhibited three kinetic properties characteristic of aerobic iron oxidation by whole cells. (i) A survey of 14 different anions indicated that catalysis by the oxidoreductase occurred only in the presence of sulfate or selenate, an anion specificity identical to that of whole cells. (ii) Saturation with both sulfatoiron(II) and the catalyst produced a concentration-independent rate constant of 3 s-1 for the reduction of the rusticyanin, which is an electron transfer reaction sufficiently rapid to account for the flux of electrons through the iron respiratory chain. (iii) Values for the enzyme-catalyzed pseudo-first-order rate constants for the reduction of the rusticyanin showed a hyperbolic dependence on the concentration of sulfatoiron(II) with a half-maximal effect at 300 microM, a value similar to the apparent KM for iron shown by whole cells. On the basis of these favorable comparisons between the behavior patterns of isolated biomolecules and those of whole cells, this iron:rusticyanin oxidoreductase is postulated to be the primary cellular oxidant of ferrous ions in the iron respiratory electron transport chain of T. ferrooxidans.
Butcher, Bronwyn G.; Deane, Shelly M.; Rawlings, Douglas E.
2000-01-01
The chromosomal arsenic resistance genes of the acidophilic, chemolithoautotrophic, biomining bacterium Thiobacillus ferrooxidans were cloned and sequenced. Homologues of four arsenic resistance genes, arsB, arsC, arsH, and a putative arsR gene, were identified. The T. ferrooxidans arsB (arsenite export) and arsC (arsenate reductase) gene products were functional when they were cloned in an Escherichia coli ars deletion mutant and conferred increased resistance to arsenite, arsenate, and antimony. Therefore, despite the fact that the ars genes originated from an obligately acidophilic bacterium, they were functional in E. coli. Although T. ferrooxidans is gram negative, its ArsC was more closely related to the ArsC molecules of gram-positive bacteria. Furthermore, a functional trxA (thioredoxin) gene was required for ArsC-mediated arsenate resistance in E. coli; this finding confirmed the gram-positive ArsC-like status of this resistance and indicated that the division of ArsC molecules based on Gram staining results is artificial. Although arsH was expressed in an E. coli-derived in vitro transcription-translation system, ArsH was not required for and did not enhance arsenic resistance in E. coli. The T. ferrooxidans ars genes were arranged in an unusual manner, and the putative arsR and arsC genes and the arsBH genes were translated in opposite directions. This divergent orientation was conserved in the four T. ferrooxidans strains investigated. PMID:10788346
Tian, Huimei; Gao, Peike; Chen, Zhaohui; Li, Yanshu; Li, Yan; Wang, Yansen; Zhou, Jiefang; Li, Guoqiang; Ma, Ting
2017-01-01
Sulfate-reducing bacteria (SRB) have been studied extensively in the petroleum industry due to their role in corrosion, but very little is known about sulfur-oxidizing bacteria (SOB), which drive the oxidization of sulfur-compounds produced by the activity of SRB in petroleum reservoirs. Here, we surveyed the community structure, diversity and abundance of SRB and SOB simultaneously based on 16S rRNA, dsrB and soxB gene sequencing, and quantitative PCR analyses, respectively in petroleum reservoirs with different physicochemical properties. Similar to SRB, SOB were found widely inhabiting the analyzed reservoirs with high diversity and different structures. The dominant SRB belonged to the classes Deltaproteobacteria and Clostridia, and included the Desulfotignum, Desulfotomaculum, Desulfovibrio, Desulfobulbus, and Desulfomicrobium genera. The most frequently detected potential SOB were Sulfurimonas, Thiobacillus, Thioclava, Thiohalomonas and Dechloromonas, and belonged to Betaproteobacteria, Alphaproteobacteria, and Epsilonproteobacteria. Among them, Desulfovibrio, Desulfomicrobium, Thioclava, and Sulfurimonas were highly abundant in the low-temperature reservoirs, while Desulfotomaculum, Desulfotignum, Thiobacillus, and Dechloromonas were more often present in high-temperature reservoirs. The relative abundances of SRB and SOB varied and were present at higher proportions in the relatively high-temperature reservoirs. Canonical correspondence analysis also revealed that the SRB and SOB communities in reservoirs displayed high niche specificity and were closely related to reservoir temperature, pH of the formation brine, and sulfate concentration. In conclusion, this study extends our knowledge about the distribution of SRB and SOB communities in petroleum reservoirs. PMID:28210252
Sun, Ya-jun; Wang, Tie-yu; Peng, Xia-wei; Wang, Pei
2015-07-01
In order to reveal the relationship between Perfluoroalkyl substances (PFASs) contamination and the bacterial community composition, surface sediment samples were collected along the Xiaoqing River in Shandong Province in April and July 2014 (XQ1-XQ10), where many PFASs manufacturers were located. PFASs were quantified by HPLC/MS-MS, related environmental factors affecting the microbial community structure were measured, and the microbial community structure in surface sediments was measured by the second-generation sequencing technology Illumina MiSeq. The results not only revealed the degree of PFASs pollution in the sediments of Xiaoqing River, but also illustrated the relationship between PFASs pollution and the microbial community structure. Among the twelve kinds of PFASs detected in this study, PFOA was the predominant compound, and the highest PFOA concentrations were detected in the sample of XQ5 (April: 456. 2 ng. g-1; July: 748.7 ng . g-1) located at the downstream of Xiaoqing River with many fluoropolymer producing facilities. PFOA contamination was the main factor affecting the microbial community structure in April, accordingly community richness and evenness were significantly negatively correlated with PFOA levels. The abundance of Thiobacillus increased with the increasing PFOA concentration in the sediment PFOA. This suggested that Thiobacillus was sensitive to PFOA pollution and might be the potential indicator to reveal the degree of PFOA pollution in sediment. When the concentrations of PFOA were below 100 ng . g-1, no significant effects on the microbial community structure were observed.
1993-09-24
and to provide basic data for the development of new materials with anticorrosion and antifouling properties. Experimental Methods Thiobacillus thio...directors, members thereof, nor instructors accept any responsibility for the use of the methods and materials discussed herein. Any goods, products...information is advisory only, and use of the materials and methods is solely at the risk of the user. Pninted in the USA. All rights reserved. This book, or
Boden, Rich; Hutt, Lee P.; Huntemann, Marcel; ...
2016-09-26
Thermithiobacillus tepidarius DSM 3134 T was originally isolated (1983) from the waters of a sulfidic spring entering the Roman Baths (Temple of Sulis-Minerva) at Bath, United Kingdom and is an obligate chemolithoautotroph growing at the expense of reduced sulfur species. This strain has a genome size of 2,958,498 bp. Here we report the genome sequence, annotation and characteristics. The genome comprises 2,902 protein coding and 66 RNA coding genes. Genes responsible for the transaldolase variant of the Calvin-Benson-Bassham cycle were identified along with a biosynthetic horseshoe in lieu of Krebs' cycle sensu stricto. Terminal oxidases were identified, viz. cytochrome cmore » oxidase (cbb 3 , EC 1.9.3.1) and ubiquinol oxidase (bd, EC 1.10.3.10). Metalloresistance genes involved in pathways of arsenic and cadmium resistance were found. Evidence of horizontal gene transfer accounting for 5.9 % of the protein-coding genes was found, including transfer from Thiobacillus spp. and Methylococcus capsulatus Bath, isolated from the same spring. A sox gene cluster was found, similar in structure to those from other Acidithiobacillia - by comparison with Thiobacillus thioparus and Paracoccus denitrificans, an additional gene between soxA and soxB was found, annotated as a DUF302-family protein of unknown function. As the Kelly-Friedrich pathway of thiosulfate oxidation (encoded by sox) is not used in Thermithiobacillus spp., the role of the operon (if any) in this species remains unknown. We speculate that DUF302 and sox genes may have a role in periplasmic trithionate oxidation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boden, Rich; Hutt, Lee P.; Huntemann, Marcel
Thermithiobacillus tepidarius DSM 3134 T was originally isolated (1983) from the waters of a sulfidic spring entering the Roman Baths (Temple of Sulis-Minerva) at Bath, United Kingdom and is an obligate chemolithoautotroph growing at the expense of reduced sulfur species. This strain has a genome size of 2,958,498 bp. Here we report the genome sequence, annotation and characteristics. The genome comprises 2,902 protein coding and 66 RNA coding genes. Genes responsible for the transaldolase variant of the Calvin-Benson-Bassham cycle were identified along with a biosynthetic horseshoe in lieu of Krebs' cycle sensu stricto. Terminal oxidases were identified, viz. cytochrome cmore » oxidase (cbb 3 , EC 1.9.3.1) and ubiquinol oxidase (bd, EC 1.10.3.10). Metalloresistance genes involved in pathways of arsenic and cadmium resistance were found. Evidence of horizontal gene transfer accounting for 5.9 % of the protein-coding genes was found, including transfer from Thiobacillus spp. and Methylococcus capsulatus Bath, isolated from the same spring. A sox gene cluster was found, similar in structure to those from other Acidithiobacillia - by comparison with Thiobacillus thioparus and Paracoccus denitrificans, an additional gene between soxA and soxB was found, annotated as a DUF302-family protein of unknown function. As the Kelly-Friedrich pathway of thiosulfate oxidation (encoded by sox) is not used in Thermithiobacillus spp., the role of the operon (if any) in this species remains unknown. We speculate that DUF302 and sox genes may have a role in periplasmic trithionate oxidation.« less
Mixotrophic and autotrophic growth of Thiobacillus acidophilus on glucose and thiosulfate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pronk, J.T.; Meulenberg, R.; van den Berg, D.J.C.
1990-11-01
Mixotrophic growth of the facultatively autotrophic acidophile Thiobacillus acidophilus on mixtures of glucose and thiosulfate or tetrathionate was studied in substrate-limited chemostat cultures. Growth yields in mixotrophic cultures were higher than the sum of the heterotrophic and autographic growth yields. Pulse experiments with thiosulfate indicated that tetrathionate is an intermediate during thiosulfate oxidation by cell suspensions of T. acidophilus. From mixotrophic growth studied, the energetic value of thiosulfate and tetrathionate redox equivalents was estimated to be 50% of that of redox equivalents derived from glucose oxidation. Ribulose 1,5-bisphosphate carboxylase (RuBPCase) activities in cell extracts and rates of sulfur compound oxidationmore » by cell suspensions increased with increasing thiosulfate/glucose ratios in the influent medium of the mixotrophic cultures. Significant RuBPCase and sulfur compound-oxidizing activities were detected in heterotrophically grown T. acidophilus. Polyhedral inclusion bodies (carboxysomes) could be observed at low frequencies in thin sections of cells grown in heterotrophic, glucose-limited chemostat cultures. Highest RuBPCase activities and carboxysome abundancy were observed in cells from autotrophic, CO{sub 2}-limited chemostat cultures. The maximum growth rate at which thiosulfate was still completely oxidized was increased when glucose was utilized simultaneously. This, together with the fact that even during heterotrophic growth the organism exhibited significant activities of enzymes involved in autotrophic metabolism, indicates that T. acidophilus is well adapted to a mixotrophic lifestyle. In this respect, T. acidophilus may have a competitive advantage over autotrophic acidophiles with respect to the sulfur compound oxidation in environments in which organic compounds are present.« less
Hutt, Lee P.; Huntemann, Marcel; Clum, Alicia; ...
2017-01-19
Thiobacillus thioparus DSM 505 T is one of first two isolated strains of inorganic sulfur-oxidising Bacteria. The original strain of T. thioparus was lost almost 100 years ago and the working type strain is Culture C T (=DSM 505 T = ATCC 8158 T ) isolated by Starkey in 1934 from agricultural soil at Rutgers University, New Jersey, USA. It is an obligate chemolithoautotroph that conserves energy from the oxidation of reduced inorganic sulfur compounds using the Kelly-Trudinger pathway and uses it to fix carbon dioxide It is not capable of heterotrophic or mixotrophic growth. The strain has a genomemore » size of 3,201,518 bp. Here we report the genome sequence, annotation and characteristics. The genome contains 3,135 protein coding and 62 RNA coding genes. Genes encoding the transaldolase variant of the Calvin-Benson-Bassham cycle were also identified and an operon encoding carboxysomes, along with Smith's biosynthetic horseshoe in lieu of Krebs' cycle sensu stricto. Terminal oxidases were identified, viz. cytochrome c oxidase (cbb3, EC 1.9.3.1) and ubiquinol oxidase (bd, EC 1.10.3.10). There is a partial sox operon of the Kelly-Friedrich pathway of inorganic sulfur-oxidation that contains soxXYZAB genes but lacking soxCDEF, there is also a lack of the DUF302 gene previously noted in the sox operon of other members of the 'Proteobacteria' that can use trithionate as an energy source. In spite of apparently not growing anaerobically with denitrification, the nar, nir, nor and nos operons encoding enzymes of denitrification are found in the T. thioparus genome, in the same arrangements as in the true denitrifier T. denitrificans.« less
Beller, Harry R.; Chain, Patrick S. G.; Letain, Tracy E.; Chakicherla, Anu; Larimer, Frank W.; Richardson, Paul M.; Coleman, Matthew A.; Wood, Ann P.; Kelly, Donovan P.
2006-01-01
The complete genome sequence of Thiobacillus denitrificans ATCC 25259 is the first to become available for an obligately chemolithoautotrophic, sulfur-compound-oxidizing, β-proteobacterium. Analysis of the 2,909,809-bp genome will facilitate our molecular and biochemical understanding of the unusual metabolic repertoire of this bacterium, including its ability to couple denitrification to sulfur-compound oxidation, to catalyze anaerobic, nitrate-dependent oxidation of Fe(II) and U(IV), and to oxidize mineral electron donors. Notable genomic features include (i) genes encoding c-type cytochromes totaling 1 to 2 percent of the genome, which is a proportion greater than for almost all bacterial and archaeal species sequenced to date, (ii) genes encoding two [NiFe]hydrogenases, which is particularly significant because no information on hydrogenases has previously been reported for T. denitrificans and hydrogen oxidation appears to be critical for anaerobic U(IV) oxidation by this species, (iii) a diverse complement of more than 50 genes associated with sulfur-compound oxidation (including sox genes, dsr genes, and genes associated with the AMP-dependent oxidation of sulfite to sulfate), some of which occur in multiple (up to eight) copies, (iv) a relatively large number of genes associated with inorganic ion transport and heavy metal resistance, and (v) a paucity of genes encoding organic-compound transporters, commensurate with obligate chemolithoautotrophy. Ultimately, the genome sequence of T. denitrificans will enable elucidation of the mechanisms of aerobic and anaerobic sulfur-compound oxidation by β-proteobacteria and will help reveal the molecular basis of this organism's role in major biogeochemical cycles (i.e., those involving sulfur, nitrogen, and carbon) and groundwater restoration. PMID:16452431
Baker, Stefanie H.; Jin, Songmu; Aldrich, Henry C.; Howard, Gary T.; Shively, Jessup M.
1998-01-01
It has been previously established that Thiobacillus neapolitanus fixes CO2 by using a form I ribulose bisphosphate carboxylase/oxygenase (RuBisCO), that much of the enzyme is sequestered into carboxysomes, and that the genes for the enzyme, cbbL and cbbS, are part of a putative carboxysome operon. In the present study, cbbL and cbbS were cloned and sequenced. Analysis of RNA showed that cbbL and cbbS are cotranscribed on a message approximately 2,000 nucleotides in size. The insertion of a kanamycin resistance cartridge into cbbL resulted in a premature termination of transcription; a polar mutant was generated. The mutant is able to fix CO2, but requires a CO2 supplement for growth. Separation of cellular proteins from both the wild type and the mutant on sucrose gradients and subsequent analysis of the RuBisCO activity in the collected fractions showed that the mutant assimilates CO2 by using a form II RuBisCO. This was confirmed by immunoblot analysis using antibodies raised against form I and form II RuBisCOs. The mutant does not possess carboxysomes. Smaller, empty inclusions are present, but biochemical analysis indicates that if they are carboxysome related, they are not functional, i.e., do not contain RuBisCO. Northern analysis showed that some of the shell components of the carboxysome are produced, which may explain the presence of these inclusions in the mutant. PMID:9696760
Prenafeta-Boldú, Francesc X; Rojo, Naiara; Gallastegui, Gorka; Guivernau, Miriam; Viñas, Marc; Elías, Ana
2014-07-01
This study reports the biodegradation of carbon disulfide (CS2) in air biofilters packed with a pelletized mixture of composted manure and sawdust. Experiments were carried out in two lab-scale (1.2 L) biofiltration units. Biofilter B was seeded with activated sludge enriched previously on CS2-degrading biomass under batch conditions, while biofilter A was left as a negative inoculation control. This inoculum was characterized by an acidic pH and sulfate accumulation, and contained Achromobacter xylosoxidans as the main putative CS2 biodegrading bacterium. Biofilter operation start-up was unsuccessfully attempted under xerophilic conditions and significant CS2 elimination was only achieved in biofilter A upon the implementation of an intermittent irrigation regime. Sustained removal efficiencies of 90-100 % at an inlet load of up to 12 g CS2 m(-3) h(-1) were reached. The CS2 removal in this biofilter was linked to the presence of the chemolithoautotrophic bacterium Thiobacillus thioparus, known among the relatively small number of species with a reported capacity of growing on CS2 as the sole energy source. DGGE molecular profiles confirmed that this microbe had become dominant in biofilter A while it was not detected in samples from biofilter B. Conventional biofilters packed with inexpensive organic materials are suited for the treatment of low-strength CS2 polluted gases (IL <12 g CS2 m(-3) h(-1)), provided that the development of the adequate microorganisms is favored, either upon enrichment or by inoculation. The importance of applying culture-independent techniques for microbial community analysis as a diagnostic tool in the biofiltration of recalcitrant compounds has been highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutt, Lee P.; Huntemann, Marcel; Clum, Alicia
Thiobacillus thioparus DSM 505 T is one of first two isolated strains of inorganic sulfur-oxidising Bacteria. The original strain of T. thioparus was lost almost 100 years ago and the working type strain is Culture C T (=DSM 505 T = ATCC 8158 T ) isolated by Starkey in 1934 from agricultural soil at Rutgers University, New Jersey, USA. It is an obligate chemolithoautotroph that conserves energy from the oxidation of reduced inorganic sulfur compounds using the Kelly-Trudinger pathway and uses it to fix carbon dioxide It is not capable of heterotrophic or mixotrophic growth. The strain has a genomemore » size of 3,201,518 bp. Here we report the genome sequence, annotation and characteristics. The genome contains 3,135 protein coding and 62 RNA coding genes. Genes encoding the transaldolase variant of the Calvin-Benson-Bassham cycle were also identified and an operon encoding carboxysomes, along with Smith's biosynthetic horseshoe in lieu of Krebs' cycle sensu stricto. Terminal oxidases were identified, viz. cytochrome c oxidase (cbb3, EC 1.9.3.1) and ubiquinol oxidase (bd, EC 1.10.3.10). There is a partial sox operon of the Kelly-Friedrich pathway of inorganic sulfur-oxidation that contains soxXYZAB genes but lacking soxCDEF, there is also a lack of the DUF302 gene previously noted in the sox operon of other members of the 'Proteobacteria' that can use trithionate as an energy source. In spite of apparently not growing anaerobically with denitrification, the nar, nir, nor and nos operons encoding enzymes of denitrification are found in the T. thioparus genome, in the same arrangements as in the true denitrifier T. denitrificans.« less
Measurement of Fe2+ ion by coulometry method at incubation of Thiobacillus ferrooxidans.
Tsuda, I; Kato, K; Nozaki, K
1996-12-01
Thiobacillus ferrooxidans is a chemoautotrophic bacterium that is capable of using Fe2+ oxidation by O2 as the sole source of energy for growth and CO2 fixation. The idea of the solar bacterial biomass farm by using of this bacterium is proposed. The incubation experiment of these bacteria was carried out, and the 9K culture medium as the standard medium for T. ferrooxidans was used. The measurement of Fe2+ in the growth stage was carried out as the first step of the experiments to clarify the possibility of this system. The items of measurement were Fe2+ ion density, pH of the medium, bacterium density and quantity of total organic carbon (TOC). The density of Fe2+ ion in the medium was measured by coulometry method. This method has the following advantage, high accuracy (<1%), easy operation, short measurement time (a few minutes) and small sample quantity (about 0.1 ml). The experimental results show that the Fe 2+ ion density is measured as same as the accuracy of pH measurement. At the final stage of the growth, the pH decreased due to the generation of the iron hydroxide (Fe(OH)3). The bacterium density and TOC slightly increased after that Fe2+ runs short. This result shows that the CO2 fixation speed is slower than Fe2+ oxidation speed. It is shown by the experiment that the growth limit of T. ferrooxidans is caused by the disappearance of the Fe2+ ion. It may be possible that the bacterium density increases by the continuous supply of Fe2+ ion.
NASA Astrophysics Data System (ADS)
Beller, H. R.; Zhou, P.; Legler, T. C.; Chakicherla, A.; O'Day, P. A.
2013-12-01
Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. Of the transposon mutants defective in Fe(II) oxidation, one mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process.
Beller, Harry R.; Zhou, Peng; Legler, Tina C.; Chakicherla, Anu; Kane, Staci; Letain, Tracy E.; A. O’Day, Peggy
2013-01-01
Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process. PMID:24065960
Direct Method for Continuous Determination of Iron Oxidation by Autotrophic Bacteria
Steiner, Michael; Lazaroff, Norman
1974-01-01
A method for direct, continuous determination of ferric ions produced in autotrophic iron oxidation, which depends upon the measurement of ferric ion absorbance at 304 nm, is described. The use of initial rates is shown to compensate for such changes in extinction during oxidation, which are due to dependence of the extinction coefficient on the ratio of complexing anions to ferric ions. A graphical method and a computer method are given for determination of absolute ferric ion concentration, at any time interval, in reaction mixtures containing Thiobacillus ferrooxidans and ferrous ions at known levels of SO42+ and hydrogen ion concentrations. Some examples are discussed of the applicability of these methods to study of the rates of ferrous ion oxidation related to sulfate concentration. PMID:4441066
Microbial oxidation of elemental selenium in soil slurries and bacterial cultures
Dowdle, P.R.; Oremland, R.S.
1998-01-01
The microbial oxidation of elemental selenium [Se(O)] was studied by employing 75Se(O) as a tracer. Live, oxic soil slurries demonstrated a linear production of mostly Se(IV), with the formation of smaller quantities of Se(VI). Production of both Se(IV) and Se(VI) was inhibited by autoclaving, formalin, antibiotics, azide, and 2,4-dinitrophenol, thereby indicating the involvement of microbes. Oxidation of Se(O) in slurries was enhanced by addition of acetate, glucose, or sulfide, which implied involvement of chemoheterotrophs as well as chemoautotrophic thiobacilli. Cultures of Thiobacillus ASN-1, Leptothrix MnB1, and a heterotrophic soil enrichment all oxidized Se(O) with Se(VI) observed as the major product rather than Se(IV). This indicated that microbial oxidation in soils is partly constrained by the adsorption of Se(IV) onto soil surfaces. Rate constants for unamended soil slurry Se(O) oxidation ranged from 0.0009 to 0.0117 day-1 which were 3-4 orders of magnitude lower than those reported for dissimilatory Se(VI) reduction in organic-rich, anoxic sediments.The microbial oxidation of elemental selenium [Se(0)] was studied by employing 75Se(0) as a tracer. Live, oxic soil slurries demonstrated a linear production of mostly Se(IV), with the formation of smaller quantities of Se(VI). Production of both Se(IV) and Se(VI) was inhibited by autoclaving, formalin, antibiotics, azide, and 2,4-dinitrophenol, thereby indicating the involvement of microbes. Oxidation of Se(O) in slurries was enhanced by addition of acetate, glucose, or sulfide, which implied involvement of chemoheterotrophs as well as chemoautotrophic thiobacilli. Cultures of Thiobacillus ASN-1, Leptothrix MnB1, and a heterotrophic soil enrichment all oxidized Se(O) with Se(VI) observed as the major product rather than Se(IV). This indicated that microbial oxidation in soils is partly constrained by the adsorption of Se(IV) onto soil surfaces. Rate constants for unamended soil slurry Se(O) oxidation ranged from 0.0009 to 0.0117 day-1 which were 3-4 orders of magnitude lower than those reported for dissimilatory Se(VI) reduction in organic-rich, anoxic sediments.
Acidophiles of saline water at thermal vents of Vulcano, Italy.
Simmons, Susan; Norris, R
2002-06-01
DNA was extracted from samples taken from close to acidic hydrothermal vents on shore of the Aeolian Island of Vulcano (Italy). RNA gene sequences were amplified by PCR, cloned, and sequenced. A sequence with an origin in samples at 35 degrees and 45 degrees C corresponded to that of a novel Acidithiobacillus species that was isolated from water close to the vents. Novel, iron-oxidizing mesophilic acidophiles were isolated through enrichment cultures with ferrous iron but were not represented in the clone banks of environmental rDNA. These acidophiles were related to Thiobacillus prosperus, which was isolated previously from Vulcano. The archaeal sequences that comprised a clone bank representing a high-temperature sample (75 degrees C) corresponded to those of Acidianus brierleyi and of thermophiles previously isolated from Vulcano, Thermoplasma volcanium and Acidianus infernus.
A preliminary cost analysis of the biotreatment of refinery spent-sulfidic caustic.
Sublette, K L
1997-01-01
Caustics are used in petroleum refining to remove hydrogen sulfide from various hydrocarbon streams. Spent-sulfidic caustics from three refineries have been successfully biotreated on the bench and pilot scale, resulting in neutralization and removal of active Sulfides. Sulfides were completely oxidized to sulfate by Thiobacillus denitrificans strain F. Microbial oxidation of sulfide produced acid, which at least partially neutralized the caustic. A commercial-scale treatment system has been designed that features a bioreactor with a suspended culture of flocculated T. denitrificans, a settler and acid and nutrient storage and delivery systems. A cost analysis has been performed for nine cases representing a range of spent caustic sulfide and hydroxide concentrations at a base treatment rate of 10 gpm. This analysis shows that refinery spent-sulfidic caustic can be biotreated for 4-8.3 cent/gal.
Microbial oxidation of mixtures of methylmercaptan and hydrogen sulfide.
Subramaniyan, A; Kolhatkar, R; Sublette, K L; Beitle, R
1998-01-01
Refinery spent-sulfidic caustic, containing only inorganic sulfides, has previously been shown to be amenable to biotreatment with Thiobacillus denitrificans strain F with complete oxidation of sulfides to sulfate. However, many spent caustics contain mercaptans that cannot be metabolized by this strict autotroph. An aerobic enrichment culture was developed from mixed Thiobacilli and activated sludge that was capable of simultaneous oxidation of inorganic sulfide and mercaptans using hydrogen sulfide (H2S) and methylmercaptan (MeSH) gas feeds used to simulate the inorganic and organic sulfur of a spent-sulfidic caustic. The enrichment culture was also capable of biotreatment of an actual mercaptan-containing, spent-sulfidic caustic but at lower rates than predicted by operation on MeSH and H2S fed to the culture in the gas phase, indicating that the caustic contained other inhibitory components.
Hirota, Ryuichi; Kato, Junichi; Morita, Hiromu; Kuroda, Akio; Ikeda, Tsukasa; Takiguchi, Noboru; Ohtake, Hisao
2002-03-01
The cbbL and cbbS genes encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large and small subunits in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11 were cloned and sequenced. The deduced gene products, CbbL and CbbS, had 93 and 87% identity with Thiobacillus intermedius CbbL and Nitrobacter winogradskyi CbbS, respectively. Expression of cbbL and cbbS in Escherichia coli led to the detection of RubisCO activity in the presence of 0.1 mM isopropyl-beta-D-thiogalactopyranoside (IPTG). To our knowledge, this is the first paper to report the genes involved in the carbon fixation reaction in chemolithotrophic ammonia-oxidizing bacteria.
Isolation of sulfur reducing and oxidizing bacteria found in contaminated drywall.
Hooper, Dennis G; Shane, John; Straus, David C; Kilburn, Kaye H; Bolton, Vincent; Sutton, John S; Guilford, Frederick T
2010-02-05
Drywall from China has been reported to release sulfur producing products which are corrosive to metals, result in noxious odors, and represent a significant health risk. It has been reported that these emissions produce medical symptoms such as respiratory or asthma type problems, sinusitis, gastrointestinal disorders, and vision problems in home owners and their household pets. We report here a method of identifying a causative agent for these emissions by sampling affected gypsum wallboard and subjecting those samples to Real Time Polymerase Chain Reaction [RT-PCR] studies. Specific DNA probes and primers have been designed and patented that detect a specific iron and sulfur reducing bacterium (i.e., Thiobacillus ferrooxidans). One hundred percent of affected drywall samples obtained from homes located in the southeastern United States tested positive for the presence of T. ferrooxidans. All negative controls consisting of unaffected wallboard and internal controls, Geotrichum sp., tested negative within our limits of detection.
Isolation of Sulfur Reducing and Oxidizing Bacteria Found in Contaminated Drywall
Hooper, Dennis G.; Shane, John; Straus, David C.; Kilburn, Kaye H.; Bolton, Vincent; Sutton, John S.; Guilford, Frederick T.
2010-01-01
Drywall from China has been reported to release sulfur producing products which are corrosive to metals, result in noxious odors, and represent a significant health risk. It has been reported that these emissions produce medical symptoms such as respiratory or asthma type problems, sinusitis, gastrointestinal disorders, and vision problems in home owners and their household pets. We report here a method of identifying a causative agent for these emissions by sampling affected gypsum wallboard and subjecting those samples to Real Time Polymerase Chain Reaction [RT-PCR] studies. Specific DNA probes and primers have been designed and patented that detect a specific iron and sulfur reducing bacterium (i.e., Thiobacillus ferrooxidans). One hundred percent of affected drywall samples obtained from homes located in the southeastern United States tested positive for the presence of T. ferrooxidans. All negative controls consisting of unaffected wallboard and internal controls, Geotrichum sp., tested negative within our limits of detection. PMID:20386658
Microbial detoxification of waste rubber material by wood-rotting fungi.
Bredberg, Katarina; Andersson, B Erik; Landfors, Eva; Holst, Olle
2002-07-01
The extensive use of rubber products, mainly tires, and the difficulties to recycle those products, has resulted in world wide environmental problems. Microbial devulcanisation is a promising way to increase the recycling of rubber materials. One obstacle is that several microorganisms tested for devulcanisation are sensitive to rubber additives. A way to overcome this might be to detoxify the rubber material with fungi prior to the devulcanisation. In this study, 15 species of white-rot and brown-rot fungi have been screened with regard to their capacity to degrade an aromatic model compound in the presence of ground waste tire rubber. The most effective fungus, Resinicium bicolor, was used for detoxification of rubber material. Increase in growth of the desulfurising bacterium Thiobacillus ferrooxidans in presence of the rubber treated with Resinicium bicolor compared to untreated rubber demonstrated that detoxification with fungi is possible.
Liu, Wei-Guo; Liang, Cun-Zhen; Yang, Jin-Sheng; Wang, Gui-Ping; Liu, Miao-Miao
2013-02-01
The bacterial diversity in the biological desulfurization reactor operated continuously for 1 year was studied by the 16S rDNA cloning and sequencing method. Forty clones were randomly selected and their partial 16S rDNA genes (ca. 1,400 bp) were sequenced and blasted. The results indicated that there were dominant bacterias in the biological desulfurization reactor, where 33 clones belonged to 3 different published phyla, while 1 clone belonged to unknown phylum. The dominant bacterial community in the system was Proteobacteria, which accounted for 85.3%. The bacterial community succession was as follows: the gamma-Proteobacteria(55.9%), beta-Proteobacteria(17.6%), Actinobacteridae (8.8%), delta-Proteobacteria (5.9%) , alpha-Proteobacteria(5.9%), and Sphingobacteria (2.9%). Halothiobacillus sp. ST15 and Thiobacillus sp. UAM-I were the major desulfurization strains.
Cavanaugh, C M; Abbott, M S; Veenhuis, M
1988-10-01
The distribution of the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase (RbuP(2)Case; EC 4.1.1.39) was examined by using two immunological methods in tissues of Solemya velum, an Atlantic coast bivalve containing putative chemoautotrophic symbionts. Antibodies elicited by the purified large subunit of RbuP(2)Case from tobacco (Nicotiana tabacum) cross-reacted on immunoblots with a protein of similar molecular mass occurring in extracts of the symbiont-containing gill tissue of S. velum. No cross-reactivity was detected in symbiont-free tissue extracts. The antiserum also cross-reacted in immunoblots with proteins of Thiobacillus neapolitanus, a free-living sulfuroxidizing chemoautotroph whose RbuP(2)Case has been well characterized. In protein A-gold immunoelectron microscopy studies, this antiserum consistently labeled the symbionts but not surrounding host gill tissue, indicating that the symbionts are responsible for the RbuP(2)Case activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Day, Peggy A.; Asta, Maria P.; Kanematsu, Masakazu
2015-02-27
In this project, we combined molecular genetic, spectroscopic, and microscopic techniques with kinetic and reactive transport studies to describe and quantify biotic and abiotic mechanisms underlying anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, which influences the long-term efficacy of in situ reductive immobilization of uranium at DOE sites. In these studies, Thiobacillus denitrificans, an autotrophic bacterium that catalyzes anaerobic U(IV) and Fe(II) oxidation, was used to examine coupled oxidation-reduction processes under either biotic (enzymatic) or abiotic conditions in batch and column experiments with biogenically produced UIVO2(s). Synthesis and quantitative analysis of coupled chemical and transport processes were done with the reactivemore » transport modeling code Crunchflow. Research focused on identifying the primary redox proteins that catalyze metal oxidation, environmental factors that influence protein expression, and molecular-scale geochemical factors that control the rates of biotic and abiotic oxidation.« less
Beristain-Cardoso, Ricardo; Gómez, Jorge; Méndez-Pampín, Ramón
2011-02-01
The physiological and kinetic behavior of a denitrifying granular sludge exposed to different sulfide loading rates (55-295 mg/L d) were evaluated in a UASB reactor fed with acetate, ammonium and nitrate. At any sulfide loading rates, the consumption efficiencies of sulfide, acetate and ammonium were above 95%, while nitrate consumption efficiencies were around 62-72%. At the highest sulfide loading rate the ammonium was used as electron donor for N(2) production. The increase of sulfide loading rate also affected the fate of sulfide oxidation, since elemental sulfur was the main end product instead of sulfate. However, the lithotrophic denitrifying kinetic was not affected. FISH oligonucleotide probes for Thiobacillus denitrificans, Thiomiscropira denitrificans, genus Paracoccus and Pseudomonas spp. were used to follow the microbial ecology. The results of this work have shown that four pollutants could simultaneously be removed, namely, sulfide, ammonium, acetate and nitrate under well defined denitrifying conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.
Yang, Meng; Zhong, Yuezhi; Zhang, Baogang; Shi, Jiaxin; Huang, Xueyang; Xing, Yi; Su, Lin; Liu, Huipeng; Borthwick, Alistair G L
2018-01-31
Anode materials and structures are of critical importance for microbial fuel cells (MFCs) recovering energy from toxic substrates. Carbon-fiber-felt anodes modified by layers of vertically oriented TiO 2 and Fe 2 O 3 nanosheets were applied in the present study. Enhanced sulfide removal efficiencies (both over 90%) were obtained after a 48-h operation, with maximum power densities improved by 1.53 and 1.36 folds compared with MFCs with raw carbon-fiber-felt anode. The modified anodes provided more active sites for microbial adhesion with increasing biomass densities. High-throughput 16S rRNA gene sequencing analysis also indicated the increase in microbial diversities. Bacteroidetes responsible for bioelectricity generation with Thiobacillus and Spirochaeta dominating sulfide removal were found in the MFCs with the modified anodes, with less anaerobic fermentative bacteria as Firmicutes appeared. This indicates that the proposed materials are competitive for applications of MFCs generating bioelectricity from toxic sulfide.
Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water.
Sun, Min; Xiao, Tangfu; Ning, Zengping; Xiao, Enzong; Sun, Weimin
2015-03-01
Five rice paddy soils located in southwest China were selected for geochemical and microbial community analysis. These rice fields were irrigated with river water which was contaminated by Fe-S-rich acid mine drainage. Microbial communities were characterized by high-throughput sequencing, which showed 39 different phyla/groups in these samples. Among these phyla/groups, Proteobacteria was the most abundant phylum in all samples. Chloroflexi, Acidobacteria, Nitrospirae, and Bacteroidetes exhibited higher relative abundances than other phyla. A number of rare and candidate phyla were also detected. Moreover, canonical correspondence analysis suggested that pH, sulfate, and nitrate were significant factors that shaped the microbial community structure. In addition, a wide diversity of Fe- and S-related bacteria, such as GOUTA19, Shewanella, Geobacter, Desulfobacca, Thiobacillus, Desulfobacterium, and Anaeromyxobacter, might be responsible for biogeochemical Fe and S cycles in the tested rice paddy soils. Among the dominant genera, GOUTA19 and Shewanella were seldom detected in rice paddy soils.
Park, Sora; Yu, Jaecheul; Byun, Imgyu; Cho, Sunja; Park, Taejoo; Lee, Taeho
2011-08-01
A laboratory-scale Bardenpho process was established to investigate the proper nitrogen loading rate (NLR) when modified spent caustic (MSC) is applied as electron donor and alkalinity source for denitrification. MSC injection induced autotrophic nitrogen removal with sulfur as electron donor and heterotrophic denitrification. The nitrogen removal rate (NRR) did not increase proportionally to NLR. Based on the total nitrogen concentration in the effluent observed in the trials with MSC, the NLR in the influent should not exceed 0.15 kg N/m(3)d in order to satisfy water quality regulations. Microbial communities in the anoxic reactors were characterized by pyrosequencing of 16S rRNA gene sequences amplified by the polymerase chain reaction of DNA extracted from sludge samples. Microbial diversity was lower as MSC dosage was increased, and the injection of MSC caused an increase in SOB belonging to the genus Thiobacillus which is responsible for denitrification using sulfur. Copyright © 2011 Elsevier Ltd. All rights reserved.
Microbiological Leaching of Metallic Sulfides
Razzell, W. E.; Trussell, P. C.
1963-01-01
The percentage of chalcopyrite leached in percolators by Thiobacillus ferrooxidans was dependent on the surface area of the ore but not on the amount. Typical examples of ore leaching, which demonstrate the role of the bacteria, are presented. In stationary fermentations, changes in KH2PO4 concentration above or below 0.1% decreased copper leaching as did reduction in the MgSO4·7H2O and increase in the (NH4)2SO4 concentration. Bacterial leaching of chalcopyrite was more effective than nonbiological leaching with ferric sulfate; ferric sulfate appeared to retard biological leaching, but this effect was likely caused by formation of an insoluble copper-iron complex. Ferrous sulfate and sodium chloride singly accentuated both bacterial and nonbiological leaching of chalcocite but jointly depressed bacterial action. Sodium chloride appeared to block bacterial iron oxidation without interfering with sulfide oxidation. Bacterial leaching of millerite, bornite, and chalcocite was greatest at pH 2.5. The economics of leaching a number of British Columbia ore bodies was discussed. PMID:16349627
Microbial oxidation of pyrrhotites in coal chars
Miller, K.W.; Risatti, J.B.
1988-01-01
The ability of Thiobacillus ferrooxidans to oxidize pyrrhotite minerals occurring in coal chars was investigated, to evaluate the feasibility of microbial char desulphurization. Bio-oxidation of pyrrhotites in chars produced by two different processes was demonstrated conclusively. Microbial removal of sulphur from a char and its parent coal proceeded at the rate of 3.5% and 12% day-1, respectively with a total of 48% and 81% removal after 27 days. The pH of shake flask cultures containing the coal dropped naturally to a final value of 2.2, while the pH of cultures containing the corresponding char rose and had to be lowered artificially with additional acid. Amending char cultures with elemental sulphur to increase acidity upon bio-oxidation and prevent precipitation of ferric iron was successful; however, the extent of pyrrhotite removal, as demonstated by X-ray diffraction analysis, was not improved. As yet, there is no explanation for the failure of microbial removal of pyrrhotitic sulphur to go to completion. ?? 1988.
Ma, Qiao; Qu, Yuanyuan; Shen, Wenli; Zhang, Zhaojing; Wang, Jingwei; Liu, Ziyan; Li, Duanxing; Li, Huijie; Zhou, Jiti
2015-03-01
In this study, Illumina high-throughput sequencing was used to reveal the community structures of nine coking wastewater treatment plants (CWWTPs) in China for the first time. The sludge systems exhibited a similar community composition at each taxonomic level. Compared to previous studies, some of the core genera in municipal wastewater treatment plants such as Zoogloea, Prosthecobacter and Gp6 were detected as minor species. Thiobacillus (20.83%), Comamonas (6.58%), Thauera (4.02%), Azoarcus (7.78%) and Rhodoplanes (1.42%) were the dominant genera shared by at least six CWWTPs. The percentages of autotrophic ammonia-oxidizing bacteria and nitrite-oxidizing bacteria were unexpectedly low, which were verified by both real-time PCR and fluorescence in situ hybridization analyses. Hierarchical clustering and canonical correspondence analysis indicated that operation mode, flow rate and temperature might be the key factors in community formation. This study provides new insights into our understanding of microbial community compositions and structures of CWWTPs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Oxidative Dissolution of Arsenopyrite by Mesophilic and Moderately Thermophilic Acidophiles †
Tuovinen, Olli H.; Bhatti, Tariq M.; Bigham, Jerry M.; Hallberg, Kevin B.; Garcia, Oswaldo; Lindström, E. Börje
1994-01-01
The purpose of this work was to determine solution- and solid-phase changes associated with the oxidative leaching of arsenopyrite (FeAsS) by Thiobacillus ferrooxidans and a moderately thermoacidophilic mixed culture. Jarosite [KFe3(SO4)2(OH)6], elemental sulfur (S0), and amorphous ferric arsenate were detected by X-ray diffraction as solid-phase products. The oxidation was not a strongly acid-producing reaction and was accompanied by a relatively low redox level. The X-ray diffraction lines of jarosite increased considerably when ferrous sulfate was used as an additional substrate for T. ferroxidans. A moderately thermoacidophilic mixed culture oxidized arsenopyrite faster at 45°C than did T. ferroxidans at 22°C, and the oxidation was accompanied by a nearly stoichiometric release of Fe and As. The redox potential was initially low but subsequently increased during arsenopyrite oxidation by the thermoacidophiles. Jarosite, S0, and amorphous ferric arsenate were also formed under these conditions. PMID:16349379
Cydzik-Kwiatkowska, Agnieszka; Rusanowska, Paulina; Zielińska, Magdalena; Bernat, Katarzyna; Wojnowska-Baryła, Irena
2014-02-01
This study investigated how hydraulic retention time (HRT) and COD/N ratio affect nitrogen-converting consortia in constantly aerated granules treating high-ammonium digester supernatant. Three HRTs (10, 13, 19 h) were tested at COD/N ratios of 4.5 and 2.3. Denaturing gradient gel electrophoresis and relative real-time PCR were used to characterize the microbial communities. When changes in HRT and COD/N increased nitrogen loading, the ratio of the relative abundance of aerobic to anaerobic ammonium-oxidizers decreased. The COD/N ratio determined the species composition of the denitrifiers; however, Thiobacillus denitrificans, Pseudomonas denitrificans and Azoarcus sp. showed a high tolerance to the environmental conditions and occurred in the granules from all reactors. Denitrifier genera that support granule formation were identified, such as Pseudomonas, Shinella, and Flavobacterium. In aerated granules, nirK-possessing bacteria were more diverse than nirS-possessing bacteria. At a low COD/N ratio, N2O-reducer diversity increased because of the presence of bacteria known as aerobic denitrifiers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Bo; Yu, Quanwei; Yan, Guoqi; Zhu, Hubo; Xu, Xiang Yang; Zhu, Liang
2018-03-15
To understand the seasonal variation of the activated sludge (AS) bacterial community and identify core microbes in different wastewater processing systems, seasonal AS samples were taken from every biological treatment unit within 4 full-scale wastewater treatment plants. These plants adopted A2/O, A/O and oxidation ditch processes and were active in the treatment of different types and sources of wastewater, some domestic and others industrial. The bacterial community composition was analyzed using high-throughput sequencing technology. The correlations among microbial community structure, dominant microbes and process performance were investigated. Seasonal variation had a stronger impact on the AS bacterial community than any variation within different wastewater treatment system. Facing seasonal variation, the bacterial community within the oxidation ditch process remained more stable those in either the A2/O or A/O processes. The core genera in domestic wastewater treatment systems were Nitrospira, Caldilineaceae, Pseudomonas and Lactococcus. The core genera in the textile dyeing and fine chemical industrial wastewater treatment systems were Nitrospira, Thauera and Thiobacillus.
Li, Jinlong; Li, Desheng; Cui, Yuwei; Xing, Wei; Deng, Shihai
2017-07-01
Nitrogen bioremediation in organic insufficient wastewater generally requires an extra carbon source. In this study, nitrate-contaminated wastewater was treated effectively through simultaneous autotrophic and heterotrophic denitrification based on micro-electrolysis carriers (MECs) and retinervus luffae fructus (RLF), respectively. The average nitrate and total nitrogen removal rates reached 96.3 and 94.0% in the MECs/RLF-based autotrophic and heterotrophic denitrification (MRAHD) system without ammonia and nitrite accumulation. The performance of MRAHD was better than that of MEC-based autotrophic denitrification for the wastewater treatment with low carbon nitrogen (COD/N) ratio. Real-time quantitative polymerase chain reaction (qPCR) revealed that the relative abundance of nirS-type denitrifiers attached to MECs (4.9%) and RLF (5.0%) was similar. Illumina sequencing suggested that the dominant genera were Thiobacillus (7.0%) and Denitratisoma (5.7%), which attached to MECs and RLF, respectively. Sulfuritalea was discovered as the dominant genus in the middle of the reactor. The synergistic interaction between autotrophic and heterotrophic denitrifiers played a vital role in the mixotrophic substrate environment.
Wang, Ya-Nan; Tsang, Yiu Fai; Wang, Lei; Fu, Xiaohua; Hu, Jiajun; Li, Huan; Le, Yiquan
2018-03-01
The features of extracellular dissolved organic carbon (EDOC) generation in two typical aerobic sulfur-oxidizing bacteria (Thiobacillus thioparus DSM 505 and Halothiobacillus neapolitanus DSM 15147) and its impact on CO 2 fixation during chemoautotrophic cultivation process were investigated. The results showed that EDOC accumulated in both strains during CO 2 fixation process. Large molecular weight (MW) EDOC derived from cell lysis and decay was dominant during the entire process in DSM 505, whereas small MW EDOC accounted for a large proportion during initial and middle stages of DSM 15147 as its cytoskeleton synthesis rate did not keep up with CO 2 assimilation rate. The self-generated EDOC feedback repressed cbb gene transcription and thus decreased total bacterial cell number and CO 2 fixation yield in both strains, but DSM 505 was more sensitive to this inhibition effect. Moreover, the membrane bioreactor effectively decreased the EDOC/TOC ratio and improved carbon fixation yield of DSM 505. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vishwakarmaa, Vinita; George, R P; Ramachandran, D; Anandkumar, B; Mudalib, U Kamachi
2014-01-01
In cooling water systems, many concrete structures in the form of tanks, pillars and reservoirs that come in contact with aggressive seawater are being deteriorated by chemical and biological factors. The nuclear industry has decided to partially replace the Portland cement with appropriate pozzolans such as fly ash, which could densify the matrix and make the concrete impermeable. Three types of concrete mixes, viz., normal concrete (NC), concrete with fly ash and superplasticizer (FA) and concrete with only superplasticizer (SP) were fabricated for short- and long-term exposure studies and for screening out the better concrete in seawater environments. Biofilm characterization studies and microscopic studies showed excellent performance of FA concrete compared to the other two. Laboratory exposure studies in pure cultures of Thiobacillus thiooxidans and Fusarium oxysporum were demonstrated for the inhibition of microbial growth on fly ash. Epifluorescence and scanning electron microscopic studies supported the better performance of the FA specimen. Thus, the present study clearly showed that FA concrete is less prone to biofilm formation and biodeterioration.
Li, Rui; Feng, Chuanping; Hu, Weiwu; Xi, Beidou; Chen, Nan; Zhao, Baowei; Liu, Ying; Hao, Chunbo; Pu, Jiaoyang
2016-02-01
Nitrate contaminated water can be effectively treated by simultaneous heterotrophic and autotrophic denitrification (HAD). In the present study, woodchips and elemental sulfur were used as co-electron donors for HAD. It was found that ammonium salts could enhance the denitrifying activity of the Thiobacillus bacteria, which utilize the ammonium that is produced by the dissimilatory nitrate reduction to ammonium (DNRA) in the woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process. The denitrification performance of the WSHAD process (reaction constants range from 0.05485 h(-1) to 0.06637 h(-1)) is better than that of sulfur-based autotrophic denitrification (reaction constants range from 0.01029 h(-1) to 0.01379 h(-1)), and the optimized ratio of woodchips to sulfur is 1:1 (w/w). No sulfate accumulation is observed in the WSHAD process and the alkalinity generated in the heterotrophic denitrification can compensate for alkalinity consumption by the sulfur-based autotrophic denitrification. The symbiotic relationship between the autotrophic and the heterotrophic denitrification processes play a vital role in the mixotrophic environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Beller, Harry R.; Zhou, Peng; Jewell, Talia N. M.; ...
2016-07-05
Chemolithoautotrophic bacteria that oxidize reduced sulfur compounds, such as H 2 S, while fixing CO 2 are an untapped source of renewable bioproducts from sulfide-laden waste, such as municipal wastewater. In this study, we report engineering of the chemolithoautotrophic bacterium Thiobacillus denitrificans to produce up to 52-fold more fatty acids than the wild-type strain when grown with thiosulfate and CO 2 . A modified thioesterase gene from E. coli ('tesA) was integrated into the T. denitrificans chromosome under the control of P kan or one of two native T. denitrificans promoters. The relative strength of the two native promoters asmore » assessed by fatty acid production in engineered strains was very similar to that assessed by expression of the cognate genes in the wild-type strain. This proof-of-principle study suggests that engineering sulfide-oxidizing chemolithoautotrophic bacteria to overproduce fatty acid-derived products merits consideration as a technology that could simultaneously produce renewable fuels/chemicals as well as cost-effectively remediate sulfide-contaminated wastewater.« less
Response of microbial communities to pesticide residues in soil restored with Azolla imbricata.
Lu, Xiao-Ming; Lu, Peng-Zhen
2018-01-01
Under conditions of Azolla imbricata restoration, the high-throughput sequencing technology was employed to determine change trends of microbial community structures in the soil that had undergone long-term application of pesticides. The relationship between the content of pesticide residues in the soil and the microbial community structure was analyzed. The results indicated that the microbial diversity was strongly negatively correlated with the contents of pesticide residues in the soil. At a suitable dosage of 5 kg fresh A. imbricata per square meter of soil area, the soil microbial diversity increased by 12.0%, and the contents of pesticide residues decreased by 26.8-72.1%. Sphingobacterium, Sphingopyxis, Thermincola, Sphingobium, Acaryochloris, Megasphaera, Ralstonia, Pseudobutyrivibrio, Desulfitobacterium, Nostoc, Oscillochloris, and Aciditerrimonas may play major roles in the degradation of pesticide residues. Thauera, Levilinea, Geothrix, Thiobacillus, Thioalkalispira, Desulfobulbus, Polycyclovorans, Fluviicola, Deferrisoma, Erysipelothrix, Desulfovibrio, Cytophaga, Vogesella, Zoogloea, Azovibrio, Halomonas, Paludibacter, Crocinitomix, Haliscomenobacter, Hirschia, Silanimonas, Alkalibacter, Woodsholea, Peredibacter, Leptolinea, Chitinivorax, Candidatus_Lumbricincola, Anaerovorax, Propionivibrio, Parasegetibacter, Byssovorax, Runella, Leptospira, and Nitrosomonas may be indicators to evaluate the contents of pesticide residues.
Sun, Xinbo; Du, Lingfeng; Hou, Yuqian; Cheng, Shaoju; Zhang, Xuxiang; Liu, Bo
2018-02-21
The anaerobic ammonia oxidation (anammox) and sulfocompound-oxidizing autotrophic denitrification coupling system (A/SAD) was initiated in an expanded granular sludge bed (EGSB) reactor for nitrogen removal from high-strength wastewater. Owing to cooperation between anammox and partial sulfocompound-oxidation autotrophic denitrification coupling system (PSAD), the highest nitrogen removal efficiency (NRE) of 98.1% ± 0.4% achieved at the optimal influent conditions of conversion efficiency of ammonium (CEA) of 55% and S 2 O 3 2- -S/NO 3 - -N (S/N) of 1.4 mol mol -1 . The activity of the short-cut sulfocompound-oxidizing autotrophic denitrification (SSAD) was also regulated to cope with dynamic CEA in the influent by changing the S/N, which was demonstrated to be effective in alleviating nitrite accumulation when the CEA was between 57% and 61%. Both the anammox and SAD bacteria enriched in the reactor after long-term incubation. Candidatus Brocadia and Candidatus Jettenia might be potentially contributing the most to anammox, while the Thiobacillus was the dominant taxa related to SAD. Copyright © 2018. Published by Elsevier Ltd.
Fernández, N; Sierra-Alvarez, R; Amils, R; Field, J A; Sanz, J L
2009-01-01
Water contamination by nitrate is a wideworld extended phenomena. Biological autotrophic denitrification has a real potential to face this problem and presents less drawbacks than the most extended heterotrophic denitrification. Three bench-scale UASB reactors were operated under autotrophic (R1, H2S as electron donor), mixotrophic (R2, H2S plus p-cresol as electron donors) and heterotrophic (R3, p-cresol as electron donor) conditions using nitrate as terminal electron acceptor. 16S rDNA genetic libraries were built up to compare their microbial biodiversity. Six different bacteria phyla and three archaeal classes were observed. Proteobacteria was the main phyla in all reactors standing out the presence of denitrifiers. Microorganisms similar to Thiobacillus denitrificans and Acidovorax sp. performed the autotrophic denitification. These OTUs were displaced by chemoheterotrophic denitrifiers, especially by Limnobacter-like and Ottowia-like OTUs. Other phyla were Bacteroidetes, Chloroflexi, Firmicutes and Actinobacteria that--as well as Archaea members--were implicated in the degradation of organic matter, as substrate added as coming from endogenous sludge decay under autotrophic conditions. Archaea diversity remained low in all the reactors being Methanosaeta concilii the most abundant one.
Spring, S; Kämpfer, P; Schleifer, K H
2001-07-01
Two novel thiosulfate-oxidizing strains were isolated from sediment of the littoral zone of a freshwater lake (Lake Chiemsee, Bavaria, Germany). The new isolates, designated CS-K1 and CS-K2T, were gram-negative, slightly curved rods with pointed ends that were motile by means of single polar flagella. Both strains were obligately aerobic and grew on a variety of organic substrates, but not autotrophically. The utilization of thiosulfate led to an increase in the growth yield, indicating that these strains were able to grow chemolithoheterotrophically by oxidation of thiosulfate to sulfate. The optimum thiosulfate concentrations for growth were determined to be 10 mM for strain CS-K1 and 20 mM for strain CS-K2T. Phylogenetically, both strains were affiliated to the beta-Proteobacteria. Their characterization by a polyphasic approach resulted in the placement of both strains into a single species that is related only distantly to any known type species. Thus, the creation of a novel taxon is proposed, with the name Limnobacter thiooxidans gen. nov., sp. nov., to include the novel strains. In addition, the phylogenetic position of the chemolithoheterotrophic strain 'Thiobacillus' Q was determined.
Moghanloo, G M Mojarrad; Fatehifar, E; Saedy, S; Aghaeifar, Z; Abbasnezhad, H
2010-11-01
Hydrogen sulfide (H(2)S) removal in mineral media using Thiobacillus thioparus TK-1 in a biofilm airlift suspension reactor (BAS) was investigated to evaluate the relationship between biofilm formation and changes in inlet loading rates. Aqueous sodium sulfide was fed as the substrate into the continuous BAS-reactor. The reactor was operated at a constant temperature of 30 degrees C and a pH of 7, the optimal temperature and pH for biomass growth. The startup of the reactor was performed with basalt carrier material. Optimal treatment performance was obtained at a loading rate of 4.8 mol S(2-) m(-3) h(-1) at a conversion efficiency as high as 100%. The main product of H(2)S oxidation in the BAS-reactor was sulfate because of high oxygen concentrations in the airlift reactor. The maximum sulfide oxidation rate was 6.7 mol S(2-) m(-3) h(-1) at a hydraulic residence time of 3.3 h in the mineral medium. The data showed that the BAS-reactor with this microorganism can be used for sulfide removal from industrial effluent. Copyright 2010 Elsevier Ltd. All rights reserved.
Houghton, J.L.; Foustoukos, D.; Flynn, T.M.; Vetriani, C.; Bradley, A.S.; Fike, D.A.
2017-01-01
Summary Previous studies of the stoichiometry of thiosulfate oxidation by colorless sulfur bacteria have failed to demonstrate mass balance of sulfur, indicating that unidentified oxidized products must be present. Here we present reaction stoichiometry and kinetics under variable pH conditions during the growth of Thiomicrospira thermophila strain EPR85, isolated from diffuse hydrothermal fluids at the East Pacific Rise. At pH 8.0, thiosulfate is stoichiometrically converted to sulfate. At lower pH, the products of thiosulfate oxidation are extracellular elemental sulfur and sulfate. We were able to replicate previous experiments and identify the missing sulfur as tetrathionate, consistent with previous reports of the activity of thiosulfate dehydrogenase. Tetrathionate was formed under slightly acidic conditions. Genomic DNA from T. thermophila strain EPR85 contains genes homologous to those in the Sox pathway (soxAXYZBCDL), as well as rhodanese and thiosulfate dehydrogenase. No other sulfur oxidizing bacteria containing sox(CD)2 genes have been reported to produce extracellular elemental sulfur. If the apparent modified Sox pathway we observe in T. thermophila is present in marine Thiobacillus and Thiomicrospira species, production of extracellular elemental sulfur may be biogeochemically important in marine sulfur cycling. PMID:26914243
Analysis of the microbial communities on corroded concrete sewer pipes--a case study.
Vincke, E; Boon, N; Verstraete, W
2001-12-01
Conventional as well as molecular techniques have been used to determine the microbial communities present on the concrete walls of sewer pipes. The genetic fingerprint of the microbiota on corroded concrete sewer pipes was obtained by means of denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. The DGGE profiles of the bacterial communities present on the concrete surface changed as observed by shifts occurring at the level of the dominance of bands from non-corroded places to the most severely corroded places. By means of statistical tools, it was possible to distinguish two different groups, corresponding to the microbial communities on corroded and non-corroded surfaces, respectively. Characterization of the microbial communities indicated that the sequences of typical bands showed the highest level of identity to sequences from the bacterial strains Thiobacillus thiooxidans, Acidithiobacillus sp., Mycobacterium sp. and different heterotrophs belonging to the alpha-, beta- and gamma-Proteobacteria, Acidobacteria and Actinobacteria. In addition, the presence of N-acyl-homoserine lactone signal molecules was shown by two bio-assays of the biofilm on the concrete under the water level and at the most severely corroded places on the concrete surface of the sewer pipe.
Navarro-Noya, Yendi E; Jan-Roblero, Janet; González-Chávez, Maria del Carmen; Hernández-Gama, Regina; Hernández-Rodríguez, César
2010-05-01
In this study, the bacterial communities associated with the rhizospheres of pioneer plants Bahia xylopoda and Viguiera linearis were explored. These plants grow on silver mine tailings with high concentration of heavy metals in Zacatecas, Mexico. Metagenomic DNAs from rhizosphere and bulk soil were extracted to perform a denaturing gradient gel electrophoresis analysis (DGGE) and to construct 16S rRNA gene libraries. A moderate bacterial diversity and twelve major phylogenetic groups including Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes, Chloroflexi, Firmicutes, Verrucomicrobia, Nitrospirae and Actinobacteria phyla, and divisions TM7, OP10 and OD1 were recognized in the rhizospheres. Only 25.5% from the phylotypes were common in the rhizosphere libraries and the most abundant groups were members of the phyla Acidobacteria and Betaproteobacteria (Thiobacillus spp., Nitrosomonadaceae). The most abundant groups in bulk soil library were Acidobacteria and Actinobacteria, and no common phylotypes were shared with the rhizosphere libraries. Many of the clones detected were related with chemolithotrophic and sulfur-oxidizing bacteria, characteristic of an environment with a high concentration of heavy metal-sulfur complexes, and lacking carbon and organic energy sources.
Ma, Qiao; Qu, Yuan-Yuan; Zhang, Xu-Wang; Shen, Wen-Li; Liu, Zi-Yan; Wang, Jing-Wei; Zhang, Zhao-Jing; Zhou, Ji-Ti
2015-06-01
The wastewater from coal-mine industry varies greatly and is resistant to biodegradation for containing large quantities of inorganic and organic pollutants. Microorganisms in activated sludge are responsible for the pollutants' removal, whereas the microbial community composition and structure are far from understood. In the present study, the sludges from five coal-mine wastewater treatment plants were collected and the microbial communities were analyzed by Illumina high-throughput sequencing. The diversities of these sludges were lower than that of the municipal wastewater treatment systems. The most abundant phylum was Proteobacteria ranging from 63.64% to 96.10%, followed by Bacteroidetes (7.26%), Firmicutes (5.12%), Nitrospira (2.02%), Acidobacteria (1.31%), Actinobacteria (1.30%) and Planctomycetes (0.95%). At genus level, Thiobacillus and Comamonas were the two primary genera in all sludges, other major genera included Azoarcus, Thauera, Pseudomonas, Ohtaekwangia, Nitrosomonas and Nitrospira. Most of these core genera were closely related with aromatic hydrocarbon degradation and denitrification processes. Identification of the microbial communities in coal-mine wastewater treatment plants will be helpful for wastewater management and control. Copyright © 2015 Elsevier GmbH. All rights reserved.
Toxins vapC and pasB from prokaryotic TA modules remain active in mammalian cancer cells.
Wieteska, Łukasz; Skulimowski, Aleksander; Cybula, Magdalena; Szemraj, Janusz
2014-09-30
Among the great number of addictive modules which have been discovered, only a few have been characterized. However, research concerning the adoption of toxins from these systems shows their great potential as a tool for molecular biology and medicine. In our study, we tested two different toxins derived from class II addictive modules, pasAB from plasmid pTF-FC2 (Thiobacillus ferrooxidans) and vapBC 2829Rv (Mycobacterium tuberculosis), in terms of their usefulness as growth inhibitors of human cancer cell lines, namely KYSE 30, MCF-7 and HCT 116. Transfection of the pasB and vapC genes into the cells was conducted with the use of two different expression systems. Cellular effects, such as apoptosis, necrosis and changes in the cell cycle, were tested by applying flow cytometry with immunofluorescence staining. Our findings demonstrated that toxins VapC and PasB demonstrate proapoptotic activity in the human cancer cells, regardless of the expression system used. As for the toxin PasB, observed changes were more subtle than for the VapC. The level of expression for both the genes was monitored by QPCR and did not reveal statistically significant differences within the same cell line.
Xia, Fangfang; Liu, Xin; Kang, Ying; He, Ruo; Wu, Zucheng
2015-01-01
Hydrogen sulphide (H2S) contributes a lot to odours at landfills, which is a threat to the environment and the health of the staff therein. To mitigate its emission, the bioconversion within landfill cover soils (LCSs) was introduced. H2S emission and concentration both in the field air above the landfill and in microcosm testing were surveyed. Results indicated that H2S emission and concentration in the landfill varied with landfill seasons and sites. There existed relationship between H2S concentration and fluxes spatially and temporally. To characterize and assess the spatial and temporal diversity of sulphur-oxidizing bacteria (SOB) and sulphate-reducing bacteria (SRB) in the LCSs, the terminal-restriction fragment length polymorphism technique was employed. Using the functional genes of dsrB and soxB, SOB, including Halothiobacillus, Rhodothalassium, Paracocccus, Allochromatium, and Thiobacillus, and SRB, including Desulfovibrio, Syntrophobacter, Desulfomonile and Desulfobacca, were identical and exhibited the dominant role in the LCSs. By employing an alternative available corona reactor, more than 90% removal efficiencies of sulphides were demonstrated, suggesting that the LCSs for eliminating odours in a lower concentration would be feasible.
Reis, Mariana P.; Ávila, Marcelo P.; Costa, Patrícia S.; Barbosa, Francisco A. R.; Laanbroek, Hendrikus J.; Chartone-Souza, Edmar; Nascimento, Andréa M. A.
2014-01-01
Among the neutrophilic iron-oxidizing bacteria (FeOB), Gallionella is one of the most abundant genera in freshwater environments. By applying qPCR and DGGE based on 16S rRNA gene-directed primers targeting Gallionellaceae, we delineated the composition and abundance of the Gallionellaceae-related FeOB community in streams differentially affected by metal mining, and explored the relationships between these community characteristics and environmental variables. The sampling design included streams historically impacted by mining activity and a non-impacted stream. The sediment and water samples harbored a distinct community represented by Gallionella, Sideroxydans, and Thiobacillus species. Sequences affiliated with Gallionella were exclusively observed in sediments impacted by mining activities, suggesting an adaptation of this genus to these environments. In contrast, Sideroxydans-related sequences were found in all sediments including the mining impacted locations. The highest and lowest relative frequencies of Gallionellaceae-related FeOB were associated with the lowest and highest concentrations of Fe, respectively. The data enclosed here clearly show distinct species-specific ecological niches, with Gallionella species dominating in sediments impacted by anthropogenic activities over Sideroxydans species. PMID:25505456
Bacterial community composition characterization of a lead-contaminated Microcoleus sp. consortium.
Giloteaux, Ludovic; Solé, Antoni; Esteve, Isabel; Duran, Robert
2011-08-01
A Microcoleus sp. consortium, obtained from the Ebro delta microbial mat, was maintained under different conditions including uncontaminated, lead-contaminated, and acidic conditions. Terminal restriction fragment length polymorphism and 16S rRNA gene library analyses were performed in order to determine the effect of lead and culture conditions on the Microcoleus sp. consortium. The bacterial composition inside the consortium revealed low diversity and the presence of specific terminal-restriction fragments under lead conditions. 16S rRNA gene library analyses showed that members of the consortium were affiliated to the Alpha, Beta, and Gammaproteobacteria and Cyanobacteria. Sequences closely related to Achromobacter spp., Alcaligenes faecalis, and Thiobacillus species were exclusively found under lead conditions while sequences related to Geitlerinema sp., a cyanobacterium belonging to the Oscillatoriales, were not found in presence of lead. This result showed a strong lead selection of the bacterial members present in the Microcoleus sp. consortium. Several of the 16S rRNA sequences were affiliated to nitrogen-fixing microorganisms including members of the Rhizobiaceae and the Sphingomonadaceae. Additionally, confocal laser scanning microscopy and scanning and transmission electron microscopy showed that under lead-contaminated condition Microcoleus sp. cells were grouped and the number of electrodense intracytoplasmic inclusions was increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houghton, J. L.; Foustoukos, D. I.; Flynn, T. M.
Previous studies of the stoichiometry of thiosulfate oxidation by colorless sulfur bacteria have failed to demonstrate mass balance of sulfur, indicating that unidentified oxidized products must be present. Here the reaction stoichiometry and kinetics under variable pH conditions during the growth of Thiomicrospira thermophila strain EPR85, isolated from diffuse hydrothermal fluids at the East Pacific Rise, is presented. At pH 8.0, thiosulfate was stoichiometrically converted to sulfate. At lower pH, the products of thiosulfate oxidation were extracellular elemental sulfur and sulfate. Here, we were able to replicate previous experiments and identify the missing sulfur as tetrathionate, consistent with previous reportsmore » of the activity of thiosulfate dehydrogenase. Tetrathionate was formed under slightly acidic conditions. Genomic DNA from T. thermophila strain EPR85 contains genes homologous to those in the Sox pathway ( soxAXYZBCDL), as well as rhodanese and thiosulfate dehydrogenase. No other sulfur oxidizing bacteria containing sox(CD)2 genes have been reported to produce extracellular elemental sulfur. If the apparent modified Sox pathway we observed in T. thermophila is present in marine Thiobacillus and Thiomicrospira species, production of extracellular elemental sulfur may be biogeochemically important in marine sulfur cycling.« less
Kantor, Rose S; Huddy, Robert J; Iyer, Ramsunder; Thomas, Brian C; Brown, Christopher T; Anantharaman, Karthik; Tringe, Susannah; Hettich, Robert L; Harrison, Susan T L; Banfield, Jillian F
2017-03-07
Remediation of industrial wastewater is important for preventing environmental contamination and enabling water reuse. Biological treatment for one industrial contaminant, thiocyanate (SCN - ), relies upon microbial hydrolysis, but this process is sensitive to high loadings. To examine the activity and stability of a microbial community over increasing SCN - loadings, we established and operated a continuous-flow bioreactor fed increasing loadings of SCN - . A second reactor was fed ammonium sulfate to mimic breakdown products of SCN - . Biomass was sampled from both reactors for metagenomics and metaproteomics, yielding a set of genomes for 144 bacteria and one rotifer that constituted the abundant community in both reactors. We analyzed the metabolic potential and temporal dynamics of these organisms across the increasing loadings. In the SCN - reactor, Thiobacillus strains capable of SCN - degradation were highly abundant, whereas the ammonium sulfate reactor contained nitrifiers and heterotrophs capable of nitrate reduction. Key organisms in the SCN - reactor expressed proteins involved in SCN - degradation, sulfur oxidation, carbon fixation, and nitrogen removal. Lower performance at higher loadings was linked to changes in microbial community composition. This work provides an example of how meta-omics can increase our understanding of industrial wastewater treatment and inform iterative process design and development.
Houghton, J. L.; Foustoukos, D. I.; Flynn, T. M.; ...
2016-03-21
Previous studies of the stoichiometry of thiosulfate oxidation by colorless sulfur bacteria have failed to demonstrate mass balance of sulfur, indicating that unidentified oxidized products must be present. Here the reaction stoichiometry and kinetics under variable pH conditions during the growth of Thiomicrospira thermophila strain EPR85, isolated from diffuse hydrothermal fluids at the East Pacific Rise, is presented. At pH 8.0, thiosulfate was stoichiometrically converted to sulfate. At lower pH, the products of thiosulfate oxidation were extracellular elemental sulfur and sulfate. Here, we were able to replicate previous experiments and identify the missing sulfur as tetrathionate, consistent with previous reportsmore » of the activity of thiosulfate dehydrogenase. Tetrathionate was formed under slightly acidic conditions. Genomic DNA from T. thermophila strain EPR85 contains genes homologous to those in the Sox pathway ( soxAXYZBCDL), as well as rhodanese and thiosulfate dehydrogenase. No other sulfur oxidizing bacteria containing sox(CD)2 genes have been reported to produce extracellular elemental sulfur. If the apparent modified Sox pathway we observed in T. thermophila is present in marine Thiobacillus and Thiomicrospira species, production of extracellular elemental sulfur may be biogeochemically important in marine sulfur cycling.« less
Microbial interspecies electron transfer via electric currents through conductive minerals
Kato, Souichiro; Hashimoto, Kazuhito; Watanabe, Kazuya
2012-01-01
In anaerobic biota, reducing equivalents (electrons) are transferred between different species of microbes [interspecies electron transfer (IET)], establishing the basis of cooperative behaviors and community functions. IET mechanisms described so far are based on diffusion of redox chemical species and/or direct contact in cell aggregates. Here, we show another possibility that IET also occurs via electric currents through natural conductive minerals. Our investigation revealed that electrically conductive magnetite nanoparticles facilitated IET from Geobacter sulfurreducens to Thiobacillus denitrificans, accomplishing acetate oxidation coupled to nitrate reduction. This two-species cooperative catabolism also occurred, albeit one order of magnitude slower, in the presence of Fe ions that worked as diffusive redox species. Semiconductive and insulating iron-oxide nanoparticles did not accelerate the cooperative catabolism. Our results suggest that microbes use conductive mineral particles as conduits of electrons, resulting in efficient IET and cooperative catabolism. Furthermore, such natural mineral conduits are considered to provide ecological advantages for users, because their investments in IET can be reduced. Given that conductive minerals are ubiquitously and abundantly present in nature, electric interactions between microbes and conductive minerals may contribute greatly to the coupling of biogeochemical reactions. PMID:22665802
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesic, B.; Oliver, D.J.
1990-12-31
The present investigation is a part of our studies on the electro chemical aspects of pyrite bioleaching involving Thiobacillus ferrooxidans. Previously (1,2) we have examined the effect of T. ferrooxidans and their metabolic products on the redox reactions of Fe{sup 2+}/Fe{sup 3+} couple at the pyrite surface. Results obtained suggest that beyond 1. 5 days during their growth in a batch fermenter, the bacteria and their metabolic products completely cover the pyrite surface and shut down all electron transfer across the electrode-solution interface. In addition, it has been observed that the bacteria serve as the nucleation site for jarosite formation,more » which is found detrimental to bioleaching. In the present work we have focussed on the effect of the presence of vitamins on the redox chemistry of iron. Our examination of the effect of the presence of thiamine hydrochloride in the redox behavior of Fe{sup 2+}/Fe{sup 3+} at the pyrite surface has revealed that thiamine hydrochloride does not undergo chemical interaction with ferrous or ferric iron. However, it may adsorb onto the pyrite surface causing polarization of the pyrite electrode.« less
Effect of thiamine hydrochloride on the redox reactions of iron at pyrite surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesic, B.; Oliver, D.J.
1990-01-01
The present investigation is a part of our studies on the electro chemical aspects of pyrite bioleaching involving Thiobacillus ferrooxidans. Previously (1,2) we have examined the effect of T. ferrooxidans and their metabolic products on the redox reactions of Fe[sup 2+]/Fe[sup 3+] couple at the pyrite surface. Results obtained suggest that beyond 1. 5 days during their growth in a batch fermenter, the bacteria and their metabolic products completely cover the pyrite surface and shut down all electron transfer across the electrode-solution interface. In addition, it has been observed that the bacteria serve as the nucleation site for jarosite formation,more » which is found detrimental to bioleaching. In the present work we have focussed on the effect of the presence of vitamins on the redox chemistry of iron. Our examination of the effect of the presence of thiamine hydrochloride in the redox behavior of Fe[sup 2+]/Fe[sup 3+] at the pyrite surface has revealed that thiamine hydrochloride does not undergo chemical interaction with ferrous or ferric iron. However, it may adsorb onto the pyrite surface causing polarization of the pyrite electrode.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kantor, Rose S.; Huddy, Robert J.; Iyer, Ramsunder
Remediation of industrial wastewater is important for preventing environmental contamination and allowing water reuse. Biological treatment for one industrial contaminant, thiocyanate (SCN - ), relies upon microbial hydrolysis, but this process is sensitive to high loadings. To examine the activity and stability of a microbial community over increasing SCN - loadings, we established and operated a continuous-flow bioreactor fed increasing loadings of SCN - . A second reactor was fed ammonium sulfate to mimic breakdown products of SCN - . Biomass was sampled from both reactors for metagenomics and metaproteomics, yielding a set of genomes for 144 bacteria and onemore » rotifer that constituted the abundant community in both reactors. We analyzed the metabolic potential and temporal dynamics of these organisms across the increasing loadings. In the SCN - reactor, Thiobacillus strains capable of SCN - degradation were highly abundant, whereas the ammonium sulfate reactor contained nitrifiers and heterotrophs capable of nitrate reduction. Key organisms in the SCN - reactor expressed proteins involved in SCN - degradation, sulfur oxidation, carbon fixation, and nitrogen removal. Lower performance at higher loadings was linked to changes in microbial community composition. This work provides an example of how meta-omics can increase our understanding of industrial wastewater treatment and inform iterative process design and development.« less
Biological Nitrogen Removal through Nitritation Coupled with Thiosulfate-Driven Denitritation
Qian, Jin; Zhou, Junmei; Zhang, Zhen; Liu, Rulong; Wang, Qilin
2016-01-01
A novel biological nitrogen removal system based on nitritation coupled with thiosulfate-driven denitritation (Nitritation-TDD) was developed to achieve a high nitrogen removal rate and low sludge production. A nitritation sequential batch reactor (nitritation SBR) and an anoxic up-flow sludge bed (AnUSB) reactor were applied for effective nitritation and denitritation, respectively. Above 75% nitrite was accumulated in the nitritation SBR with an influent ammonia loading rate of 0.43 kg N/d/m3. During Nitritation-TDD operation, particle sizes (d50) of the sludge decreased from 406 to 225 um in nitritation SBR and from 327–183 um in AnUSB reactor. Pyrosequencing tests revealed that ammonium-oxidizing bacteria (AOB) population was stabilized at approximately 7.0% (calculated as population of AOB-related genus divided by the total microbial population) in the nitritation SBR. In contrast, nitrite-oxidizing bacteria (NOB) population decreased from 6.5–0.6% over the same time, indicating the effective nitrite accumulation in the nitritation SBR. Thiobacillus, accounting for 34.2% in the AnUSB reactor, was mainly responsible for nitrogen removal via autotrophic denitritation, using an external source of thiosulfate as electron donor. Also, it was found that free nitrous acid could directly affect the denitritation activity. PMID:27272192
Xiong, Jukun; An, Taicheng; Li, Guiying; Peng, Ping'an
2017-10-01
Bisphenol A (BPA) is a synthetic chemical primarily used to produce polycarbonate plastics and epoxy resins. Significant industrial and consumer's consumption of BPA-containing products has contributed to extensive contamination in different environmental matrices. In this study, microcosms bioaugmented with Bacillus sp. GZB were constructed to investigate BPA biodegradation, identify the main bacterial community, and evaluate bacterial community responses in the microcosms. Under aerobic conditions, BPA was quickly depleted as a result of bioaugmentation with Bacillus sp. GZB in water-sediment contaminated with pollutants. The pollutants used were generally associated with the electronic wastes (mobile phones, computers, televisions) dismantling process. Adding BPA affected the bacterial community composition in the water-sediment. Furthermore, BPA biodegradation was enhanced by adding electron donors/co-substrates: humic acid, NaCl, glucose, and yeast extract. Metagenomic analysis of the total 16S rRNA genes from the BPA-degrading microcosms with bioaugmentation illustrated that the genera Bacillus, Thiobacillus, Phenylobacterium, and Cloacibacterium were dominant after a 7-week incubation period. A consortium of microorganisms from different bacterial genera may be involved in BPA biodegradation in electronic waste contaminated water-sediment. This study provides new insights about BPA bioaugmentation and bacterial ecology in the BPA-degrading environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Popp, Nicole; Schlömann, Michael; Mau, Margit
2006-11-01
Soils contaminated with mineral oil hydrocarbons are often cleaned in off-site bioremediation systems. In order to find out which bacteria are active during the degradation phase in such systems, the diversity of the active microflora in a degrading soil remediation system was investigated by small-subunit (SSU) rRNA analysis. Two sequential RNA extracts from one soil sample were generated by a procedure incorporating bead beating. Both extracts were analysed separately by generating individual SSU rDNA clone libraries from cDNA of the two extracts. The sequencing results showed moderate diversity. The two clone libraries were dominated by Gammaproteobacteria, especially Pseudomonas spp. Alphaproteobacteria and Betaproteobacteria were two other large groups in the clone libraries. Actinobacteria, Firmicutes, Bacteroidetes and Epsilonproteobacteria were detected in lower numbers. The obtained sequences were predominantly related to genera for which cultivated representatives have been described, but were often clustered together in the phylogenetic tree, and the sequences that were most similar were originally obtained from soils and not from pure cultures. Most of the dominant genera in the clone libraries, e.g. Pseudomonas, Acinetobacter, Sphingomonas, Acidovorax and Thiobacillus, had already been detected in (mineral oil hydrocarbon) contaminated environmental samples. The occurrence of the genera Zymomonas and Rhodoferax was novel in mineral oil hydrocarbon-contaminated soil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, J M; Martin, S I; Masterson, B
2000-12-07
Experiments were undertaken to evaluate extreme conditions under which candidate materials intended for use in a proposed nuclear waste repository might be susceptible to corrosion by endogenous microorganisms. Thiobucillus ferrooxidans, a sulfur-oxidizing bacterium, was grown in continuous culture using thiosulfate as an energy source; thiosulfate is oxidized to sulfate as a metabolic endproduct by this organism. Culture conditions were optimized to produce a high-density, metabolically active culture throughout a period of long term incubation in the presence of Alloy 22 (a high nickel-based alloy) and Titanium grade 7 (Tigr7) material coupons. After seven months incubation under these conditions, material couponsmore » were withdrawn and analyzed by high resolution microscopy and energy dispersive x-ray analyses. Alloy 22 coupons showed no detectable signs of corrosion. Tigr7, however, demonstrated distinct roughening of the coupon surface, and [presumably solubilized and precipitated] titanium was detected on Alloy 22 coupons incubated in the same T. ferrooxiduns culture vessel. Control coupons of these materials incubated in sterile thiosulfate medium did not demonstrate any signs of corrosion, thus showing that observed corrosive effects were due to the T. ferrooxidans metabolic activities. T. ferrooxidans intermediates of thiosulfate oxidation or sulfate may have caused the corrosive effects observed on Tigr7.« less
Biofouling of contaminated ground-water recovery wells: Characterization of microorganisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, S.W.; Lange, C.R.; Lesold, E.A.
1997-11-01
The taxonomy and physiology of microorganisms isolated from contaminated ground-water recovery wells prone to biofouling are characterized for an industrial site in Rochester, New York. Principal aquifer contaminants include acetone, cyclohexane, dichloroethane, dichloromethane, 1,4-dioxane, isopropanol, methanol, and toluene. These contaminants represent a significant fraction (up to 95%) of the total organic carbon in the ground water. Ground-water samples from 12 recovery wells were used to isolate, quantify, and identify aerobic and anaerobic bacterial populations. Samples from selected wells were also characterized geochemically to assess redox conditions and availability of essential and trace nutrients. Dominant bacteria, listed in order of descendingmore » numbers, including sulfate-reducers (Desulfovibrio desulfuricans), anaerobic heterotrophs (Actinomyces, Bacteriodes, Bacillus, Agrobacterium), aerobic heterotrophs (Pseudomonas, Flavobacterium, Nocardia, Citrobacter), iron-oxidizers (Gallionella ferruginea, Crenothrix polyspora), iron-reducers (Shewanella), and sulfur-oxidizers (Thiobacillus ferrooxidans). Fungi were also recovered in low numbers. Both aerobic and anaerobic heterotrophs were able to utilize all principal contaminants as sole carbon and energy sources except 1,4-dioxane. The prevalence of heterotrophic bacteria and their ability to use the available anthropogenic carbon suggests that aerobic and anaerobic heterotrophs contribute to the biofouling of wells at this site, in addition to the often cited fouling due to iron-oxidizing bacteria and sulfate-reducing bacteria.« less
Kantor, Rose S; van Zyl, A Wynand; van Hille, Robert P; Thomas, Brian C; Harrison, Susan T L; Banfield, Jillian F
2015-12-01
Gold ore processing uses cyanide (CN(-) ), which often results in large volumes of thiocyanate- (SCN(-) ) contaminated wastewater requiring treatment. Microbial communities can degrade SCN(-) and CN(-) , but little is known about their membership and metabolic potential. Microbial-based remediation strategies will benefit from an ecological understanding of organisms involved in the breakdown of SCN(-) and CN(-) into sulfur, carbon and nitrogen compounds. We performed metagenomic analysis of samples from two laboratory-scale bioreactors used to study SCN(-) and CN(-) degradation. Community analysis revealed the dominance of Thiobacillus spp., whose genomes harbour a previously unreported operon for SCN(-) degradation. Genome-based metabolic predictions suggest that a large portion of each bioreactor community is autotrophic, relying not on molasses in reactor feed but using energy gained from oxidation of sulfur compounds produced during SCN(-) degradation. Heterotrophs, including a bacterium from a previously uncharacterized phylum, compose a smaller portion of the reactor community. Predation by phage and eukaryotes is predicted to affect community dynamics. Genes for ammonium oxidation and denitrification were detected, indicating the potential for nitrogen removal, as required for complete remediation of wastewater. These findings suggest optimization strategies for reactor design, such as improved aerobic/anaerobic partitioning and elimination of organic carbon from reactor feed. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Kantor, Rose S.; Huddy, Robert J.; Iyer, Ramsunder; ...
2017-01-31
Remediation of industrial wastewater is important for preventing environmental contamination and allowing water reuse. Biological treatment for one industrial contaminant, thiocyanate (SCN - ), relies upon microbial hydrolysis, but this process is sensitive to high loadings. To examine the activity and stability of a microbial community over increasing SCN - loadings, we established and operated a continuous-flow bioreactor fed increasing loadings of SCN - . A second reactor was fed ammonium sulfate to mimic breakdown products of SCN - . Biomass was sampled from both reactors for metagenomics and metaproteomics, yielding a set of genomes for 144 bacteria and onemore » rotifer that constituted the abundant community in both reactors. We analyzed the metabolic potential and temporal dynamics of these organisms across the increasing loadings. In the SCN - reactor, Thiobacillus strains capable of SCN - degradation were highly abundant, whereas the ammonium sulfate reactor contained nitrifiers and heterotrophs capable of nitrate reduction. Key organisms in the SCN - reactor expressed proteins involved in SCN - degradation, sulfur oxidation, carbon fixation, and nitrogen removal. Lower performance at higher loadings was linked to changes in microbial community composition. This work provides an example of how meta-omics can increase our understanding of industrial wastewater treatment and inform iterative process design and development.« less
Li, Xiaofang; Bond, Philip L.; Van Nostrand, Joy D.; Zhou, Jizhong; Huang, Longbin
2015-01-01
Engineering microbial diversity to enhance soil functions may improve the success of direct revegetation in sulphidic mine tailings. Therefore, it is essential to explore how remediation and initial plant establishment can alter microbial communities, and, which edaphic factors control these changes under field conditions. A long-term revegetation trial was established at a Pb-Zn-Cu tailings impoundment in northwest Queensland. The control and amended and/or revegetated treatments were sampled from the 3-year-old trial. In total, 24 samples were examined using pyrosequencing of 16S rRNA genes and various chemical properties. The results showed that the microbial diversity was positively controlled by soil soluble Si and negatively controlled by soluble S, total Fe and total As, implying that pyrite weathering posed a substantial stress on microbial development in the tailings. All treatments were dominated by typical extremophiles and lithotrophs, typically Truepera, Thiobacillus, Rubrobacter; significant increases in microbial diversity, biomass and frequency of organotrophic genera (typically Nocardioides and Altererythrobacter) were detected in the revegetated and amended treatment. We concluded that appropriate phytostabilization options have the potential to drive the microbial diversity and community structure in the tailings toward those of natural soils, however, inherent environmental stressors may limit such changes. PMID:26268667
Nguyen, Van Khanh; Park, Younghyun; Yu, Jaecheul; Lee, Taeho
2016-08-01
Nitrate contamination in aquifers has posed human health under high risk because people still rely on groundwater withdrawn from aquifers as drinking water and running water sources. These days, bioelectrochemical technologies have shown a great number of benefits for nitrate remediation via autotrophic denitrification in groundwater. This study tested the working possibility of a denitrifying biocathode when installed into a simulated aquifer. The reactors were filled with sand and synthetic groundwater at various ratios (10, 50, and 100 %) to clarify the effect of various biocathode states (not-buried, half-buried, and fully buried) on nitrate reduction rate and microbial communities. Decreases in specific nitrate reduction rates were found to be correlated with increases in sand/medium ratios. A specific nitrate reduction rate of 322.6 mg m(-2) day(-1) was obtained when the biocathode was fully buried in an aquifer. Microbial community analysis revealed slight differences in the microbial communities of biocathodes at various sand/medium ratios. Various coccus- and rod-shaped bacteria were found to contribute to bioelectrochemical denitrification including Thiobacillus spp. and Paracoccus spp. This study demonstrated that the denitrifying biocathode could work effectively in a saturated aquifer and confirmed the feasibility of in situ application of microbial electrochemical denitrification technology.
Arakawa, Takatoshi; Kawano, Yoshiaki; Kataoka, Shingo; Katayama, Yoko; Kamiya, Nobuo; Yohda, Masafumi; Odaka, Masafumi
2007-03-09
Thiocyanate hydrolase (SCNase) of Thiobacillus thioparus THI115 is a cobalt(III)-containing enzyme catalyzing the degradation of thiocyanate to carbonyl sulfide and ammonia. We determined the crystal structures of the apo- and native SCNases at a resolution of 2.0 A. SCNases in both forms had a conserved hetero-dodecameric structure, (alphabetagamma)(4). Four alphabetagamma hetero-trimers were structurally equivalent. One alphabetagamma hetero-trimer was composed of the core domain and the betaN domain, which was located at the center of the molecule and linked the hetero-trimers with novel quaternary interfaces. In both the apo- and native SCNases, the core domain was structurally conserved between those of iron and cobalt-types of nitrile hydratase (NHase). Native SCNase possessed the post-translationally modified cysteine ligands, gammaCys131-SO(2)H and gammaCys133-SOH like NHases. However, the low-spin cobalt(III) was found to be in the distorted square-pyramidal geometry, which had not been reported before in any protein. The size as well as the electrostatic properties of the substrate-binding pocket was totally different from NHases with respect to the charge distribution and the substrate accessibility, which rationally explains the differences in the substrate preference between SCNase and NHase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, T; Bain, TS; Barlett, MA
2014-01-02
Microbial oxidation of elemental sulfur with an electrode serving as the electron acceptor is of interest because this may play an important role in the recovery of electrons from sulfidic wastes and for current production in marine benthic microbial fuel cells. Enrichments initiated with a marine sediment inoculum, with elemental sulfur as the electron donor and a positively poised (+300 mV versus Ag/AgCl) anode as the electron acceptor, yielded an anode biofilm with a diversity of micro-organisms, including Thiobacillus, Sulfurimonas, Pseudomonas, Clostridium and Desulfuromonas species. Further enrichment of the anode biofilm inoculum in medium with elemental sulfur as the electronmore » donor and Fe(III) oxide as the electron acceptor, followed by isolation in solidified sulfur/Fe(III) medium yielded a strain of Desulfuromonas, designated strain TZ1. Strain TZ1 effectively oxidized elemental sulfur to sulfate with an anode serving as the sole electron acceptor, at rates faster than Desulfobulbus propionicus, the only other organism in pure culture previously shown to oxidize S with current production. The abundance of Desulfuromonas species enriched on the anodes of marine benthic fuel cells has previously been interpreted as acetate oxidation driving current production, but the results presented here suggest that sulfur-driven current production is a likely alternative.« less
Baldwin, Susan A.; Taylor, Jon; Gurr, David B.; Denesiuk, Daniel R.; Van Hamme, Jonathan D.; Fraser, Lauchlan H.
2018-01-01
We investigated the impacts of the Mount Polley tailings impoundment failure on chemical, physical, and microbial properties of substrates within the affected watershed, comprised of 70 hectares of riparian wetlands and 40 km of stream and lake shore. We established a biomonitoring network in October of 2014, two months following the disturbance, and evaluated riparian and wetland substrates for microbial community composition and function via 16S and full metagenome sequencing. A total of 234 samples were collected from substrates at 3 depths and 1,650,752 sequences were recorded in a geodatabase framework. These data revealed a wealth of information regarding watershed-scale distribution of microbial community members, as well as community composition, structure, and response to disturbance. Substrates associated with the impact zone were distinct chemically as indicated by elevated pH, nitrate, and sulphate. The microbial community exhibited elevated metabolic capacity for selenate and sulfate reduction and an abundance of chemolithoautotrophs in the Thiobacillus thiophilus/T. denitrificans/T. thioparus clade that may contribute to nitrate attenuation within the affected watershed. The most impacted area (a 6 km stream connecting two lakes) exhibited 30% lower microbial diversity relative to the remaining sites. The tailings impoundment failure at Mount Polley Mine has provided a unique opportunity to evaluate functional and compositional diversity soon after a major catastrophic disturbance to assess metabolic potential for ecosystem recovery. PMID:29694379
Maestre, Juan P; Rovira, Roger; Gamisans, Xavier; Kinney, Kerry A; Kirisits, Mary Jo; Lafuente, Javier; Gabriel, David
2009-01-01
The diversity and spatial distribution of bacteria in a lab-scale biotrickling filter treating high loads of hydrogen sulfide (H(2)S) were investigated. Diversity and community structure were studied by terminal-restriction fragment length polymorphism (T-RFLP). A 16S rRNA gene clone library was established. Near Full-length 16S rRNA gene sequences were obtained, and clones were clustered into 24 operational taxonomic units (OTUs). Nearly 74% and 26% of the clones were affiliated with the phyla Proteobacteria and Bacteroidetes, respectively. Beta-, epsilon- and gamma-proteobacteria accounted for 15, 9 and 48%, respectively. Around 45% of the sequences retrieved were affiliated to bacteria of the sulfur cycle including Thiothrix spp., Thiobacillus spp. and Sulfurimonas denitrificans. Sequences related to Thiothrix lacustris accounted for a 38%. Rarefaction curve demonstrated that clone library constructed can be sufficient to describe the vast majority of the bacterial diversity of this reactor operating under strict conditions (2,000 ppm(v) of H(2)S). A spatial distribution of bacteria was found along the length of the reactor by means of the T-RFLP technique. Although aerobic species were predominant along the reactor, facultative anaerobes had a major relative abundance in the inlet part of the reactor, where the sulfide to oxygen ratio is higher.
Włodarczyk, Agnieszka; Lirski, Maciej; Fogtman, Anna; Koblowska, Marta; Bidziński, Grzegorz; Matlakowska, Renata
2018-01-01
Black shales are one of the largest reservoirs of fossil organic carbon and inorganic reduced sulfur on Earth. It is assumed that microorganisms play an important role in the transformations of these sedimentary rocks and contribute to the return of organic carbon and inorganic sulfur to the global geochemical cycles. An outcrop of deep subterrestrial ~256-million-year-old Kupferschiefer black shale was studied to define the metabolic processes of the deep biosphere important in transformations of organic carbon and inorganic reduced sulfur compounds. This outcrop was created during mining activity 12 years ago and since then it has been exposed to the activity of oxygen and microorganisms. The microbial processes were described based on metagenome and metaproteome studies as well as on the geochemistry of the rock. The microorganisms inhabiting the subterrestrial black shale were dominated by bacterial genera such as Pseudomonas, Limnobacter, Yonghaparkia, Thiobacillus, Bradyrhizobium , and Sulfuricaulis . This study on black shale was the first to detect archaea and fungi, represented by Nitrososphaera and Aspergillus genera, respectively. The enzymatic oxidation of fossil aliphatic and aromatic hydrocarbons was mediated mostly by chemoorganotrophic bacteria, but also by archaea and fungi. The dissimilative enzymatic oxidation of primary reduced sulfur compounds was performed by chemolithotrophic bacteria. The geochemical consequences of microbial activity were the oxidation and dehydrogenation of kerogen, as well as oxidation of sulfide minerals.
Bacterial and archeal community composition in hot springs from Indo-Burma region, North-east India.
Panda, Amrita Kumari; Bisht, Satpal Singh; De Mandal, Surajit; Kumar, Nachimuthu Senthil
2016-12-01
Bacterial and archaeal diversity of two alkaline Indian hot springs, Jakrem (Meghalaya) and Yumthang (Sikkim), were studied. Thirteen major bacterial phyla were identified of which Firmicutes, Chloroflexi and Thermi were dominant in Jakrem and Proteobacteria in Yumthang. The dominant genera were Clostridium, Chloroflexus and Meiothermus at Jakrem (water temperature 46 °C, pH 9) and Thiobacillus, Sulfuritalea at Yumthang (water temperature 39 °C, pH 8) hot springs. The four Euryarchaeota taxa that were observed in both the hot springs were Methanoculleus, Methanosaeta, Methanosarcina and Methanocorposculum. Elstera litoralis, Thiovirga sp., Turneriella sp. were observed for the first time in association with hot springs along with Tepidibacter sp., Ignavibacterium sp., Teribacillus sp. and Dechloromonas sp. Individual bacterial phyla were found to be specifically correlated with certain physico-chemical factors such as temperature, dissolved SiO 2 , elemental S, total sulphide, calcium concentrations in hot spring water. Bacterial reads involved in sulfur cycle were identified in both16S rRNA gene library and sulfur metabolism may play key physiological functions in this hot spring. Members within Desulfobacterales and Thermodesulfovibrionaceae were identified and hypothesized their role in regulating sulfur cycle. The presence of many taxonomically unsolved sequences in the 16S rRNA gene tag datasets from these hot springs could be a sign of novel microbe richness in these less known hot water bodies of Northeastern India.
Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium
Visscher, P.T.; Taylor, B.F.
1993-01-01
A pure culture of a bacterium was obtained from a marine microbial mat by using an anoxic medium containing dimethyl sulfide (DMS) and nitrate. The isolate grew aerobically or anaerobically as a denitrifier on alkyl sulfides, including DMS, dimethyl disulfide, diethyl sulfide (DES), ethyl methyl sulfide, dipropyl sulfide, dibutyl sulfide, and dibutyl disulfide. Cells grown on an alkyl sulfide or disulfide also oxidized the corresponding thiols, namely, methanethiol, ethanethiol, propanethiol, or butanethiol. Alkyl sulfides were metabolized by induced or derepressed cells with oxygen, nitrate, or nitrite as electron acceptor. Cells grown on DMS immediately metabolized DMS, but there was a lag before DES was consumed; with DES-grown cells, DES was immediately used but DMS was used only after a lag. Chloramphenicol prevented the eventual use of DES by DMS-grown cells and DMS use by DES-grown cells, respectively, indicating separate enzymes for the metabolism of methyl and ethyl groups. Growth was rapid on formate, acetate, propionate, and butyrate but slow on methanol. The organism also grew chemolithotrophically on thiosulfate with a decrease in pH; growth required carbonate in the medium. Growth on sulfide was also carbonate dependent but slow. The isolate was identified as a Thiobacillus sp. and designated strain ASN-1. It may have utility for removing alkyl sulfides, and also nitrate, nitrite, and sulfide, from wastewaters.
Li, Qiang; Zhang, Bingjian; He, Zhang; Yang, Xiaoru
The historical and cultural heritage of Qingxing palace and Lingyin and Kaihua temple, located in Hangzhou of China, include a large number of exquisite Buddhist statues and ancient stone sculptures which date back to the Northern Song (960-1219 A.D.) and Qing dynasties (1636-1912 A.D.) and are considered to be some of the best examples of ancient stone sculpting techniques. They were added to the World Heritage List in 2011 because of their unique craftsmanship and importance to the study of ancient Chinese Buddhist culture. However, biodeterioration of the surface of the ancient Buddhist statues and white marble pillars not only severely impairs their aesthetic value but also alters their material structure and thermo-hygric properties. In this study, high-throughput sequencing was utilized to identify the microbial communities colonizing the stone monuments. The diversity and distribution of the microbial communities in six samples collected from three different environmental conditions with signs of deterioration were analyzed by means of bioinformatics software and diversity indices. In addition, the impact of environmental factors, including temperature, light intensity, air humidity, and the concentration of NO2 and SO2, on the microbial communities' diversity and distribution was evaluated. The results indicate that the presence of predominantly phototrophic microorganisms was correlated with light and humidity, while nitrifying bacteria and Thiobacillus were associated with NO2 and SO2 from air pollution.
Liu, Jun; Chen, Xi; Shu, Hao-Yue; Lin, Xue-Rui; Zhou, Qi-Xing; Bramryd, Torleif; Shu, Wen-Sheng; Huang, Li-Nan
2018-04-01
The release of toxic organic pollutants and heavy metals by primitive electronic waste (e-waste) processing to waterways has raised significant concerns, but little is known about their potential ecological effects on aquatic biota especially microorganisms. We characterized the microbial community composition and diversity in sediments sampled along two rivers consistently polluted by e-waste, and explored how community functions may respond to the complex combined pollution. High-throughput 16S rRNA gene sequencing showed that Proteobacteria (particularly Deltaproteobacteria) dominated the sediment microbial assemblages followed by Bacteroidetes, Acidobacteria, Chloroflexi and Firmicutes. PICRUSt metagenome inference provided an initial insight into the metabolic potentials of these e-waste affected communities, speculating that organic pollutants degradation in the sediment might be mainly performed by some of the dominant genera (such as Sulfuricurvum, Thiobacillus and Burkholderia) detected in situ. Statistical analyses revealed that toxic organic compounds contributed more to the observed variations in sediment microbial community structure and predicted functions (24.68% and 8.89%, respectively) than heavy metals (12.18% and 4.68%), and Benzo(a)pyrene, bioavailable lead and electrical conductivity were the key contributors. These results have shed light on the microbial assemblages in e-waste contaminated river sediments, indicating a potential influence of e-waste pollution on the microbial community structure and function in aquatic ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kilic, Arzu; Sahinkaya, Erkan; Cinar, Ozer
2014-01-01
Kinetics of sulphur-limestone autotrophic denitrification process in batch assays and the impact of sulphur/limestone ratio on the process performance in long-term operated packed-bed bioreactors were evaluated. The specific nitrate and nitrite reduction rates increased almost linearly with the increasing initial nitrate and nitrite concentrations, respectively. The process performance was evaluated in three parallel packed-bed bioreactors filled with different sulphur/limestone ratios (1:1, 2:1 and 3:1, v/v). Performances of the bioreactors were studied under varying nitrate loadings (0.05 - 0.80 gNO(-)(3) - NL⁻¹ d⁻¹) and hydraulic retention times (3-12 h). The maximum nitrate reduction rate of 0.66 g L⁻¹ d⁻¹ was observed at the loading rate of 0.80 g NO(-)(3) - N L⁻¹ d⁻¹ in the reactor with sulphur/limestone ratio of 3:1. Throughout the study, nitrite concentrations remained quite low (i.e. below 0.5 mg L⁻¹ NO(-)(2) -N. The reactor performance increased in the order of sulphur/limestone ratio of 3:1, 2:1 and 1:1. Denaturing gradient gel electrophoresis analysis of 16S rRNA genes showed quite stable communities in the reactors with the presence of Methylo virgulaligni, Sulfurimonas autotrophica, Sulfurovum lithotrophicum, Thiobacillus aquaesulis and Sulfurimonas autotrophica related species.
Knief, Claudia; Altendorf, Karlheinz; Lipski, André
2003-11-01
A method for the detection of physiologically active autotrophic bacteria in complex microbial communities was developed based on labelling with the stable isotope 13C. Labelling of autotrophic nitrifying, sulphur-oxidizing and iron-oxidizing populations was performed in situ by incubation with NaH[13C]O3. Incorporated label into fatty acid methyl esters (FAMEs) was detected and quantified using gas chromatography-mass spectrometry in single ion monitoring mode. Before the analyses of different environmental samples, the protocol was evaluated in pure culture experiments. In different environmental samples a selective labelling of fatty acids demonstrated which microbial taxa were responsible for the respective chemolithoautotrophic activity. The most strongly labelled fatty acids of a sample from a sulphide treating biofilter from an animal rendering plant were cis-7-hexadecenoic acid (16:1 cis7) and 11-methyl hexadecanoic acid (16:0 11methyl), which are as-yet not known for any sulphide-oxidizing autotroph. The fatty acid labelling pattern of an experimental biotrickling filter sample supplied with dimethyl disulphide clearly indicated the presence and activity of sulphide-oxidizing bacteria of the genus Thiobacillus. For a third environmental sample from an acid mining lake sediment, the assignment of autotrophic activity to bacteria of the genus Leptospirillum but not to Acidithiobacillus could be made by this method, as the fatty acid patterns of these bacteria show clear differences.
Tourna, Maria; Maclean, Paul; Condron, Leo; O'Callaghan, Maureen; Wakelin, Steven A
2014-06-01
Sulphur-oxidising bacteria (SOB) play a key role in the biogeochemical cycling of sulphur in soil ecosystems. However, the ecology of SOB is poorly understood, and there is little knowledge about the taxa capable of sulphur oxidation, their distribution, habitat preferences and ecophysiology. Furthermore, as yet there are no conclusive links between SOB community size or structure and rates of sulphur oxidation. We have developed a molecular approach based on primer design targeting the soxB functional gene of nonfilamentous chemolithotrophic SOB that allows assessment of both abundance and diversity. Cloning and sequencing revealed considerable diversity of known soxB genotypes from agricultural soils and also evidence for previously undescribed taxa. In a microcosm experiment, abundance of soxB genes increased with sulphur oxidation rate in soils amended with elemental sulphur. Addition of elemental sulphur to soil had a significant effect in the soxB gene diversity, with the chemolithotrophic Thiobacillus-like Betaproteobacteria sequences dominating clone libraries 6 days after sulphur application. Using culture-independent methodology, the study provides evidence for links between abundance and diversity of SOB and sulphur oxidation. The methodology provides a new tool for investigation of the ecology and role of SOB in soil sulphur biogeochemistry. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
House, Mitchell Wayne
Concrete is the most widely used material for construction of wastewater collection, storage, and treatment infrastructure. The chemical and physical characteristics of hydrated portland cement make it susceptible to degradation under highly acidic conditions. As a result, some concrete wastewater infrastructure may be susceptible to a multi-stage degradation process known as microbially induced corrosion, or MIC. MIC begins with the production of aqueous hydrogen sulfide (H2S(aq)) by anaerobic sulfate reducing bacteria present below the waterline. H2S(aq) partitions to the gas phase where it is oxidized to sulfuric acid by the aerobic sulfur oxidizing bacteria Thiobacillus that resides on concrete surfaces above the waterline. Sulfuric acid then attacks the cement paste portion of the concrete matrix through decalcification of calcium hydroxide and calcium silica hydrate coupled with the formation of expansive corrosion products. The attack proceeds inward resulting in reduced service life and potential failure of the concrete structure. There are several challenges associated with assessing a concrete's susceptibility to MIC. First, no standard laboratory tests exist to assess concrete resistance to MIC. Straightforward reproduction of MIC in the laboratory is complicated by the use of microorganisms and hydrogen sulfide gas. Physico-chemical tests simulating MIC by immersing concrete specimens in sulfuric acid offer a convenient alternative, but do not accurately capture the damage mechanisms associated with biological corrosion. Comparison of results between research studies is difficult due to discrepancies that can arise in experimental methods even if current ASTM standards are followed. This thesis presents two experimental methods to evaluate concrete resistance to MIC: one biological and one physico-chemical. Efforts are made to address the critical aspects of each testing method currently absent in the literature. The first method presented is a new test to evaluate performance of concrete specimens under conditions designed to accelerate MIC. Concrete specimens representing 12 mixture designs were inoculated with 5 species of Thiobacillus bacteria and placed in a biological growth chamber designed to encourage bacterial growth and sulfuric acid production by optimizing temperature, delivering necessary nutrients, and providing hydrogen sulfide gas. Results indicate that using supplementary cementitious materials, limestone aggregates, and sulfate resistant cement can improve resistance to MIC. It is interesting to note that this study showed that unlike many other durability problems the role of water to cement ratio was unclear. The second method presented is a sulfuric acid immersion study designed to evaluate the resistance of 12 concrete mixture designs to 5 concentrations of sulfuric acid. Experimental protocols (like those in ASTM) previously considered trivial were found to have a dramatic effect on experimental results. It was found that using supplementary cementitious materials, limestone coarse aggregate, and sulfate resistant cement can increase concrete resistance to moderate sulfuric acid concentrations. The primary damage mechanism was observed to change depending on sulfuric acid concentration. Rapid deterioration of specimens exposed to aggressive sulfuric acid solutions indicates that degradation of concrete under the most severe MIC conditions (i.e., a pH < 1.0) cannot be prevented by strictly manipulating concrete mixture proportions. A holistic approach is needed for these situations that considers environmental conditions as well.
Huang, Bing; Shi, Zhe; Wang, Yan-Yan; Zhang, Shi-Ling
2010-06-01
An excellent desulfuration microorganism with a quick growth and propagation, high activation, high efficiency of removing SO2 is obtained from oxidation ditch of a city sewage treatment plant by inductive acclimatization over 6 d with low concentration SO2 gas (100-2 000 mg/m3). The desulfurition microorganism get their energy sources for growth from transforming SO2 (SO3(2-)) to SO4(2-). The predominant bacterium of the desulfuration microorganism has the same characteristic with Thiobacillus ferrooxidans (T. ferrooxidans), which showed that it was Gram negative, short rod bacteria with a single polar flagellum under a microscopic examination, and obtained its nourishment through the oxidation of inorganic compounds. The technology process condition of domestication and desulfuration of microorganism are particular studied, and the results showed that aerating time, SO2 flux and time to provide nutriment contained N, P, K to microorganism were very important. They have an ability with degradation rate of 160g/ (m3 x h) and degradation efficiency over 50% to transform sulfite to sulfate in liquid phase. The bacteria have a 98% of removing efficiency and over 80% of biodegradation efficiency for the 5 500 mg/m3 SO2 gas and the outlet concentration of SO2 is lower than 100 mg/m3, and also have a 95% of removing efficiency for 15 000 mg/m3 SO2 gas in the packed tower reactor with Raschig ring at 3s contact time.
Biotechnological possibilities for waste tyre-rubber treatment.
Holst, O; Stenberg, B; Christiansson, M
1998-01-01
Every year large amounts of spent rubber material, mainly from rubber tyres, are discarded. Of the annual total global production of rubber material, which amounts to 16-17 million tonnes, approximately 65% is used for the production of tyres. About 250 millions spent car tyres are generated yearly in USA only. This huge amount of waste rubber material is an environmental problem of great concern. Various ways to remediate the problem have been proposed. Among these are road fillings and combustion in kilns. Spent tyres, however, comprise valuable material that could be recycled if a proper technique can be developed. One way of recycling old tyres is to blend ground spent rubber with virgin material followed by vulcanization. The main obstacle to this recycling is bad adhesion between the crumb and matrix of virgin rubber material due to little formation of interfacial sulphur crosslinks. Micro-organisms able to break sulphur-sulphur and sulphur-carbon bonds can be used to devulcanize waste rubber in order to make polymer chains on the surface more flexible and facilitate increased binding upon vulcanization. Several species belonging to both Bacteria and Archaea have this ability. Mainly sulphur oxidizing species, such as different species of the genus Thiobacillus and thermoacidophiles of the order of Sulfolobales, have been studied in this context. The present paper will give a background to the problem and an overview of the biotechnological possibilities for solutions of waste rubber as an environmental problem, focusing on microbial desulphurization.
Xiao, Ke-Qing; Bao, Peng; Bao, Qiong-Li; Jia, Yan; Huang, Fu-Yi; Su, Jian-Qiang; Zhu, Yong-Guan
2014-01-01
The Calvin cycle is known to be the major pathway for CO2 fixation, but our current understanding of its occurrence and importance in paddy soils is poor. In this study, the diversity of three ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbLG, cbbLR, cbbM) was investigated by clone library, T-RFLP, qPCR, and enzyme assay in five paddy soils in China. The cbbLG sequences revealed a relatively low level of diversity and were mostly related to the sequences of species from Thiobacillus. In contrast, highly diverse cbbLR and cbbM sequences were dispersed on the phylogenetic trees, and most of them were distantly related to known sequences, even forming separate clusters. Abundances of three cbbL genes ranged from 10(6) to 10(9) copies g(-1) soil, and cbbLR outnumbered cbbM and cbbLG in all soil samples, indicating that cbbLR may play a more important role than other two cbbL genes. Soil properties significantly influenced cbbL diversity in five paddy soils, of which clay content, C/N ratio, CEC, pH, and SOC correlated well with variations in microbial composition and abundance. In summary, this study provided a comparison of three cbbL genes, advancing our understanding of their role in carbon sequestration and nutrient turnover in the paddy soil. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
He, Ruo; Yao, Xing-Zhi; Chen, Min; Ma, Ruo-Chan; Li, Hua-Jun; Wang, Chen; Ding, Shen-Hua
2018-06-01
Volatile sulfur compounds (VSCs) are not only the main source of malodor in anaerobic treatment of organic waste, but also pose a threat to human health. In this study, VSCs production and microbial community was investigated during the anaerobic degradation of fish and pork waste. The results showed that after the operation of 245 days, 94.5% and 76.2% of sulfur compounds in the fish and pork waste was converted into VSCs. Among the detected VSCs including H 2 S, carbon disulfide, methanethiol, ethanethiol, dimethyl sulfide, dimethyl disulfide and dimethyl trisulfide, methanethiol was the major component with the maximum concentration of 4.54% and 3.28% in the fish and pork waste, respectively. The conversion of sulfur compounds including total sulfur, SO 4 2- -S, S 2- , methionine and cysteine followed the first-order kinetics. Miseq sequencing analysis showed that Acinetobacter, Clostridium, Proteus, Thiobacillus, Hyphomicrobium and Pseudomonas were the main known sulfur-metabolizing microorganisms in the fish and pork waste. The C/N value had most significant influence on the microbial community in the fish and pork waste. A main conversion of sulfur compounds with CH 3 SH as the key intermediate was firstly hypothesized during the anaerobic degradation of fish and pork waste. These findings are helpful to understand the conversion of sulfur compounds and to develop techniques to control ordor pollution in the anaerobic treatment of organic waste. Copyright © 2018 Elsevier Ltd. All rights reserved.
Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruhn, D F; Thompson, D N; Noah, K S
1999-06-01
Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, Leptospirillum, Ferromicrobium, and Acidiphilium. Two temperatures (30C and 45C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. Aftermore » acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to the low pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.« less
Benedek, Tibor; Táncsics, András; Szabó, István; Farkas, Milán; Szoboszlay, Sándor; Fábián, Krisztina; Maróti, Gergely; Kriszt, Balázs
2016-05-01
Pump and treat systems are widely used for hydrocarbon-contaminated groundwater remediation. Although biofouling (formation of clogging biofilms on pump surfaces) is a common problem in these systems, scarce information is available regarding the phylogenetic and functional complexity of such biofilms. Extensive information about the taxa and species as well as metabolic potential of a bacterial biofilm developed on the stainless steel surface of a pump submerged in a gasoline-contaminated hypoxic groundwater is presented. Results shed light on a complex network of interconnected hydrocarbon-degrading chemoorganotrophic and chemolitotrophic bacteria. It was found that besides the well-known hydrocarbon-degrading aerobic/facultative anaerobic biofilm-forming organisms (e.g., Azoarcus, Leptothrix, Acidovorax, Thauera, Pseudomonas, etc.), representatives of Fe(2+)-and Mn(2+)-oxidizing (Thiobacillus, Sideroxydans, Gallionella, Rhodopseudomonas, etc.) as well as of Fe(3+)- and Mn(4+)-respiring (Rhodoferax, Geobacter, Magnetospirillum, Sulfurimonas, etc.) bacteria were present in the biofilm. The predominance of β-Proteobacteria within the biofilm bacterial community in phylogenetic and functional point of view was revealed. Investigation of meta-cleavage dioxygenase and benzylsuccinate synthase (bssA) genes indicated that within the biofilm, Azoarcus, Leptothrix, Zoogloea, and Thauera species are most probably involved in intrinsic biodegradation of aromatic hydrocarbons. Polyphasic analysis of the biofilm shed light on the fact that subsurface microbial accretions might be reservoirs of novel putatively hydrocarbon-degrading bacterial species. Moreover, clogging biofilms besides their detrimental effects might supplement the efficiency of pump and treat systems.
Brito, Elcia M S; Piñón-Castillo, Hilda A; Guyoneaud, Rémy; Caretta, César A; Gutiérrez-Corona, J Félix; Duran, Robert; Reyna-López, Georgina E; Nevárez-Moorillón, G Virginia; Fahy, Anne; Goñi-Urriza, Marisol
2013-01-01
Anthropogenic extreme environments are among the most interesting sites for the bioprospection of extremophiles since the selection pressures may favor the presence of microorganisms of great interest for taxonomical and astrobiological research as well as for bioremediation technologies and industrial applications. In this work, T-RFLP and 16S rRNA gene library analyses were carried out to describe the autochthonous bacterial populations from an industrial waste characterized as hyper-alkaline (pH between 9 and 14), hyper-saline (around 100 PSU) and highly contaminated with metals, mainly chromium (from 5 to 18 g kg(-1)) and iron (from 2 to 108 g kg(-1)). Due to matrix interference with DNA extraction, a protocol optimization step was required in order to carry out molecular analyses. The most abundant populations, as evaluated by both T-RFLP and 16S rRNA gene library analyses, were affiliated to Bacillus and Lysobacter genera. Lysobacter related sequences were present in the three samples: solid residue and lixiviate sediments from both dry and wet seasons. Sequences related to Thiobacillus were also found; although strains affiliated to this genus are known to have tolerance to metals, they have not previously been detected in alkaline environments. Together with Bacillus (already described as a metal reducer), such organisms could be of use in bioremediation technologies for reducing chromium, as well as for the prospection of enzymes of biotechnological interest.
Li, Ping; Wang, Yanhong; Dai, Xinyue; Zhang, Rui; Jiang, Zhou; Jiang, Dawei; Wang, Shang; Jiang, Hongchen; Wang, Yanxin; Dong, Hailiang
2015-01-01
A survey was carried out on the microbial community of 20 groundwater samples (4 low and 16 high arsenic groundwater) and 19 sediments from three boreholes (two high arsenic and one low arsenic boreholes) in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia, using the 454 pyrosequencing approach. A total of 233,704 sequence reads were obtained and classified into 12–267 operational taxonomic units (OTUs). Groundwater and sediment samples were divided into low and high arsenic groups based on measured geochemical parameters and microbial communities, by hierarchical clustering and principal coordinates analysis. Richness and diversity of the microbial communities in high arsenic sediments are higher than those in high arsenic groundwater. Microbial community structure was significantly different either between low and high arsenic samples or between groundwater and sediments. Acinetobacter, Pseudomonas, Psychrobacter and Alishewanella were the top four genera in high arsenic groundwater, while Thiobacillus, Pseudomonas, Hydrogenophaga, Enterobacteriaceae, Sulfuricurvum and Arthrobacter dominated high arsenic sediments. Archaeal sequences in high arsenic groundwater were mostly related to methanogens. Biota-environment matching and co-inertia analyses showed that arsenic, total organic carbon, SO4 2-, SO4 2-/total sulfur ratio, and Fe2+ were important environmental factors shaping the observed microbial communities. The results of this study expand our current understanding of microbial ecology in high arsenic groundwater aquifers and emphasize the potential importance of microbes in arsenic transformation in the Hetao Basin, Inner Mongolia. PMID:25970606
Li, Ping; Wang, Yanhong; Dai, Xinyue; Zhang, Rui; Jiang, Zhou; Jiang, Dawei; Wang, Shang; Jiang, Hongchen; Wang, Yanxin; Dong, Hailiang
2015-01-01
A survey was carried out on the microbial community of 20 groundwater samples (4 low and 16 high arsenic groundwater) and 19 sediments from three boreholes (two high arsenic and one low arsenic boreholes) in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia, using the 454 pyrosequencing approach. A total of 233,704 sequence reads were obtained and classified into 12-267 operational taxonomic units (OTUs). Groundwater and sediment samples were divided into low and high arsenic groups based on measured geochemical parameters and microbial communities, by hierarchical clustering and principal coordinates analysis. Richness and diversity of the microbial communities in high arsenic sediments are higher than those in high arsenic groundwater. Microbial community structure was significantly different either between low and high arsenic samples or between groundwater and sediments. Acinetobacter, Pseudomonas, Psychrobacter and Alishewanella were the top four genera in high arsenic groundwater, while Thiobacillus, Pseudomonas, Hydrogenophaga, Enterobacteriaceae, Sulfuricurvum and Arthrobacter dominated high arsenic sediments. Archaeal sequences in high arsenic groundwater were mostly related to methanogens. Biota-environment matching and co-inertia analyses showed that arsenic, total organic carbon, SO4(2-), SO4(2-)/total sulfur ratio, and Fe(2+) were important environmental factors shaping the observed microbial communities. The results of this study expand our current understanding of microbial ecology in high arsenic groundwater aquifers and emphasize the potential importance of microbes in arsenic transformation in the Hetao Basin, Inner Mongolia.
The role of heterotrophic microorganism Galactomyces sp. Z3 in improving pig slurry bioleaching.
Zhou, Jun; Zheng, Guanyu; Zhou, Lixiang; Liu, Fenwu; Zheng, Chaocheng; Cui, Chunhong
2013-01-01
The feasibility of removing heavy metals and eliminating pathogens from pig slurry through bioleaching involving the fungus Galactomyces sp. Z3 and two acidophilic thiobacillus (A. ferrooxidans LX5 and A. thiooxidans TS6) was investigated. It was found that the isolated pig slurry dissolved organic matter (DOM) degrader Z3 was identified as Galactomyces sp. Z3, which could grow well at pH 2.5-7 and degrade pig slurry DOM from 1973 to 942 mg/l within 48 h. During the successive multi-batch bioleaching systems, the co-inoculation of pig slurry degrader Galactomyces sp. Z3 and the two Acidithiobacillus species could improve pig slurry bioleaching efficiency compared to the single system without Galactomyces sp. Z3. The removal efficiency of Zn and Cu exceeded 94% and 85%, respectively. In addition, the elimination efficiencies of pathogens, including both total coliform and faecal coliform counts, exceeded 99% after bioleaching treatment. However, the counts of Galactomyces sp. Z3 decreased with the fall of pH and did not restore to the initial level during successive multi-batch bioleaching systems, and it is necessary to re-inoculate Galactomyces sp. Z3 cells into the bioleaching system to maintain its role in degrading pig slurry DOM. Therefore, a bioleaching technique involving both Galactomyces sp. Z3 and Acidithiobacillus species is an efficient method for removing heavy metals and eliminating pathogens from pig slurry.
Vosoughi, Amin; Yazdian, Fatemeh; Amoabediny, Ghassem; Hakim, Maziar
2015-08-15
A novel hydrogen sulfide microbial biosensor was developed based on investigating the influence of four design parameters: cell concentration, immobilization bed type, hydrogen sulfide concentration, and geometrical shape of the biosensor. Thiobacillus thioparus was used as the recognition element and it was immobilized on sodium alginate as well as agarose bed. The results were optimized by the application of statistical optimization software based on response time of the system. Oxygen reduction was considered as the detection sign. Sodium alginate solution with a concentration of 2.3% (w/v) and optical density of 10 at 605 nm was found as the optimum conditions for immobilization with response time of 72s . Optimum response time of immobilized T. thioparus on agarose was also found equal to 120 s at agarose concentration of 1.2% (w/v) and optical density of 10.83. Performance of the biosensor in different temperatures, pH and agitation speeds was also analyzed. The designed biosensor could detect concentrations of hydrogen sulfide as low as 0.5 ppm. T. thioparus could retain 99% of the original activity in both systems, after ten days passing the fabrication. A fractal analysis was also done theoretically to investigate the diffusion of oxygen in immobilized cells which showed a satisfactory value of oxygen take up by the immobilized cells. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmore, B.B.
As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating amore » potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.« less
Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface.
Wu, Wei-Min; Carley, Jack; Green, Stefan J; Luo, Jian; Kelly, Shelly D; Van Nostrand, Joy; Lowe, Kenneth; Mehlhorn, Tonia; Carroll, Sue; Boonchayanant, Benjaporn; Löfller, Frank E; Watson, David; Kemner, Kenneth M; Zhou, Jizhong; Kitanidis, Peter K; Kostka, Joel E; Jardine, Philip M; Criddle, Craig S
2010-07-01
The effects of nitrate on the stability of reduced, immobilized uranium were evaluated in field experiments at a U.S. Department of Energy site in Oak Ridge, TN. Nitrate (2.0 mM) was injected into a reduced region of the subsurface containing high levels of previously immobilized U(IV). The nitrate was reduced to nitrite, ammonium, and nitrogen gas; sulfide levels decreased; and Fe(II) levels increased then deceased. Uranium remobilization occurred concomitant with nitrite formation, suggesting nitrate-dependent, iron-accelerated oxidation of U(IV). Bromide tracer results indicated changes in subsurface flowpaths likely due to gas formation and/or precipitate. Desorption-adsorption of uranium by the iron-rich sediment impacted uranium mobilization and sequestration. After rereduction of the subsurface through ethanol additions, background groundwater containing high levels of nitrate was allowed to enter the reduced test zone. Aqueous uranium concentrations increased then decreased. Clone library analyses of sediment samples revealed the presence of denitrifying bacteria that can oxidize elemental sulfur, H(2)S, Fe(II), and U(IV) (e.g., Thiobacillus spp.), and a decrease in relative abundance of bacteria that can reduce Fe(III) and sulfate. XANES analyses of sediment samples confirmed changes in uranium oxidation state. Addition of ethanol restored reduced conditions and triggered a short-term increase in Fe(II) and aqueous uranium, likely due to reductive dissolution of Fe(III) oxides and release of sorbed U(VI). After two months of intermittent ethanol addition, sulfide levels increased, and aqueous uranium concentrations gradually decreased to <0.1 microM.
Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruhn, Debby Fox; Thompson, David Neal; Noah, Karl Scott
1999-06-01
Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, “Leptospirillum”, “Ferromicrobium”, and Acidiphilium. Two temperatures (30°C and 45°C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. Aftermore » acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to low the pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.« less
Xu, Xi-jun; Chen, Chuan; Wang, Ai-jie; Yu, Hao; Zhou, Xu; Guo, Hong-liang; Yuan, Ye; Lee, Duu-jong; Zhou, Jizhong; Ren, Nan-qi
2014-08-15
Limited-oxygen mediated synergistic relationships between sulfate-reducing bacteria (SRB), nitrate-reducing bacteria (NRB) and sulfide-oxidizing bacteria (SOB, including nitrate-reducing, sulfide-oxidizing bacteria NR-SOB) were predicted to simultaneously remove contaminants of nitrate, sulfate and high COD, and eliminate sulfide generation. A lab-scale experiment was conducted to examine the impact of limited oxygen on these oxy-anions degradation, sulfide oxidation and associated microbial functional responses. In all scenarios tested, the reduction of both nitrate and sulfate was almost complete. When limited-oxygen was fed into bioreactors, S(0) formation was significantly improved up to ∼ 70%. GeoChip 4.0, a functional gene microarray, was used to determine the microbial gene diversity and functional potential for nitrate and sulfate reduction, and sulfide oxidation. The diversity of the microbial community in bioreactors was increased with the feeding of limited oxygen. Whereas the intensities of the functional genes involved in sulfate reduction did not show a significant difference, the abundance of the detected denitrification genes decreased in limited oxygen samples. More importantly, sulfide-oxidizing bacteria may alter their populations/genes in response to limited oxygen potentially to function more effectively in sulfide oxidation, especially to elemental sulfur. The genes fccA/fccB from nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB), such as Paracoccus denitrificans, Thiobacillus denitrificans, Beggiatoa sp., Thiomicrospira sp., and Thioalkalivibrio sp., were more abundant under limited-oxygen condition. Copyright © 2014 Elsevier B.V. All rights reserved.
Golyshina, Olga V; Timmis, Kenneth N
2005-09-01
For several decades, the bacterium Acidithiobacillus (previously Thiobacillus) has been considered to be the principal acidophilic sulfur- and iron-oxidizing microbe inhabiting acidic environments rich in ores of iron and other heavy metals, responsible for the metal solubilization and leaching from such ores, and has become the paradigm of such microbes. However, during the last few years, new studies of a number of acidic environments, particularly mining waste waters, acidic pools, etc., in diverse geographical locations have revealed the presence of new cell wall-lacking archaea related to the recently described, acidophilic, ferrous-iron oxidizing Ferroplasma acidiphilum. These mesophilic and moderately thermophilic microbes, representing the family Ferroplasmaceae, were numerically significant members of the microbial consortia of the habitats studied, are able to mobilize metals from sulfide ores, e.g. pyrite, arsenopyrite and copper-containing sulfides, and are more acid-resistant than iron and sulfur oxidizing bacteria exhibiting similar eco-physiological properties. Ferroplasma cell membranes contain novel caldarchaetidylglycerol tetraether lipids, which have extremely low proton permeabilities, as a result of the bulky isoprenoid core, and which are probably a major contributor to the extreme acid tolerance of these cell wall-less microbes. Surprisingly, several intracellular enzymes, including an ATP-dependent DNA ligase have pH optima close to that of the external environment rather than of the cytoplasm. Ferroplasma spp. are probably the major players in the biogeochemical cycling of sulfur and sulfide metals in highly acidic environments, and may have considerable potential for biotechnological applications such as biomining and biocatalysis under extreme conditions.
Technological aspects of the microbial treatment of sulfide-rich wastewaters: a case study.
Sublette, K L; Kolhatkar, R; Raterman, K
1998-01-01
Thiobacillus denitrificans has been shown to be an effective biocatalyst for the treatment of a variety of sulfide-laden waste streams including sour water, sour gases, and refinery spent-sulfidic caustics. The term 'sour' originated in the petroleum industry to describe a waste contaminated with hydrogen sulfide or salts of sulfide and bisulfide. The microbial treatment of sour waste streams resulting from the production or refining of natural gas and crude oil have been investigated in this laboratory for many years. The application of this technology to the treatment of sour wastes on a commercially useful scale has presented several technical barriers including substrate inhibition (sulfide), product inhibition (sulfate), the need for septic operation, biomass recycle and recovery, mixed waste issues, and the need for large-scale cultivation of the organism for process startup. The removal of these barriers through process improvements are discussed in terms of a case study of the full-scale treatment of sulfide-rich wastewater. The ability of T. denitrificans to deodorize and detoxify an oil-field produced water containing sulfides was evaluated under full-scale field conditions at Amoco Production Co. Salt Creek Field in Midwest, WY. More than 800 m3/d of produced water containing 100 mg/L sulfide and total dissolved solids of 4800 mg/L were successfully biotreated in an earthen pit (3000 m3) over a six-month period. Complete removal of sulfides and elimination of associated odors were observed. The system could be upset by severe hydraulic disturbances; however, the system recovered rapidly when normal influent flow rates were restored.
A Microbial Community in Sediments Beneath the Western Antarctic Ice Sheet, Ice Stream C (Kamb)
NASA Astrophysics Data System (ADS)
Skidmore, M.; Han, S.; Foo, W.; Bui, D.; Lanoil, B.
2004-12-01
In 2000, an ice-drilling project focusing on the "sticky spot" of Ice Stream C recovered cores of sub-glacial sediments from beneath the Western Antarctic Ice Sheet. We have characterized several chemical and microbiological parameters of the sole intact sediment core. Pore waters extracted from these sediments were brackish and some were supersaturated with respect to calcite. Ion chromatography demonstrated the presence of several organic acids at low, but detectable, levels in the pore water. DAPI direct cell counts were approximately 107 cells g-1. Aerobic viable plate counts were much lower than direct cell counts; however, they were two orders of magnitude higher on plates incubated at low temperature (4 ° C; 3.63 x 105 CFU ml-1) than at higher temperatures (ca. 22° C; 1.5 x 103 CFU ml-1); no colonies were detected on plates incubated anaerobically at either temperature. 16S rDNA clone library analysis indicates extremely limited bacterial diversity in these samples: six phylogenetic clades were detected. The three dominant bacterial phylogenetic clades in the clone libraries (252 clones total) were most closely related to Thiobacillus thioparus (180 clones), Polaromonas vacuolata (34 clones), and Gallionella ferruginea (35 clones) and their relatives; one clone each represented the other three phylogenetic clades (most closely related to Ralstonia pickettii, Lysobacter antibioticus, and Xylella fastidiosa, respectively). These sequences match closely with sequences previously obtained from other subglacial environments in Alaska, Ellesmere Island, Canada and New Zealand. Implications of this microbial community to subglacial chemistry and microbial biogeography will be discussed.
Yu, Hao; Chen, Chuan; Ma, Jincai; Liu, Wenzong; Zhou, Jizhong; Lee, Duu-Jong; Ren, Nanqi; Wang, Aijie
2014-07-01
The elemental sulfur (S°) recovery was evaluated in the presence of nitrate in two development models of simultaneous desulfurization and denitrification (SDD) process. At the loading rates of 0.9 kg S/(m³·day) for sulfide and 0.4 kg N/(m³·day) for nitrate, S° conversion rate was 91.1% in denitrifying sulfide removal (DSR) model which was higher than in integrated simultaneous desulfurization and denitrification (ISDD) model (25.6%). A comprehensive analysis of functional diversity, structure and metabolic potential of microbial communities was examined in two models by using functional gene array (GeoChip 2.0). GeoChip data indicated that diversity indices, community structure, and abundance of functional genes were distinct between two models. Diversity indices (Simpson's diversity index (1/D) and Shannon-Weaver index (H')) of all detected genes showed that with elevated influent loading rate, the functional diversity decreased in ISDD model but increased in DSR model. In contrast to ISDD model, the overall abundance of dsr genes was lower in DSR model, while some functional genes targeting from nitrate-reducing sulfide-oxidizing bacteria (NR-SOB), such as Thiobacillus denitrificans, Sulfurimonas denitrificans, and Paracoccus pantotrophus were more abundant in DSR model which were highly associated with the change of S(0) conversion rate obtained in two models. The results obtained in this study provide additional insights into the microbial metabolic mechanisms involved in ISDD and DSR models, which in turn will improve the overall performance of SDD process. Copyright © 2014. Published by Elsevier B.V.
Eyice, Özge; Namura, Motonobu; Chen, Yin; Mead, Andrew; Samavedam, Siva; Schäfer, Hendrik
2015-01-01
Dimethylsulphide (DMS) has an important role in the global sulphur cycle and atmospheric chemistry. Microorganisms using DMS as sole carbon, sulphur or energy source, contribute to the cycling of DMS in a wide variety of ecosystems. The diversity of microbial populations degrading DMS in terrestrial environments is poorly understood. Based on cultivation studies, a wide range of bacteria isolated from terrestrial ecosystems were shown to be able to degrade DMS, yet it remains unknown whether any of these have important roles in situ. In this study, we identified bacteria using DMS as a carbon and energy source in terrestrial environments, an agricultural soil and a lake sediment, by DNA stable isotope probing (SIP). Microbial communities involved in DMS degradation were analysed by denaturing gradient gel electrophoresis, high-throughput sequencing of SIP gradient fractions and metagenomic sequencing of phi29-amplified community DNA. Labelling patterns of time course SIP experiments identified members of the Methylophilaceae family, not previously implicated in DMS degradation, as dominant DMS-degrading populations in soil and lake sediment. Thiobacillus spp. were also detected in 13C-DNA from SIP incubations. Metagenomic sequencing also suggested involvement of Methylophilaceae in DMS degradation and further indicated shifts in the functional profile of the DMS-assimilating communities in line with methylotrophy and oxidation of inorganic sulphur compounds. Overall, these data suggest that unlike in the marine environment where gammaproteobacterial populations were identified by SIP as DMS degraders, betaproteobacterial Methylophilaceae may have a key role in DMS cycling in terrestrial environments. PMID:25822481
Factors Affecting Oxidation of Thiosalts by Thiobacilli
Silver, M.; Dinardo, O.
1981-01-01
The effects of temperature, initial pH, and the concentrations of ammonium, phosphate, and heavy metals on the oxidation of thiosalts by an authentic strain of Thiobacillus thiooxidans (ATCC 8085) and by a mixed culture isolated from a base metal-processing mill effluent pond were studied. The optimum temperature was 30°C and the optimum initial pH was 3.75 for both cultures using thiosulfate and for the mixed culture using tetrathionate. T. thiooxidans ATCC 8085 did not oxidize tetrathionate. For a thiosalt concentration of 2,000 ppm (2,000 mg/liter), maximal rates of destruction occurred at concentrations of ammonium ion above 2 mg/liter and in the presence of 1 mg of phosphate per liter. Under optimal conditions, the rate of thiosulfate oxidation by the pure culture was 55 ± 3 mg/liter per h; the mixed culture oxidized thiosulfate at the rate of 40 ± 1 mg/liter per h and tetrathionate at the rate of 50 ± 2 mg/liter per h. Metal ions caused normal inhibition kinetics in the oxidation of thiosulfate by T. thiooxidans ATCC 8085. Ki values were calculated for cadmium (16 mg/liter), copper (0.46 mg/liter), lead (2 mg/liter), silver (3.1 mg/liter), and zinc (33 mg/liter). Only a slight additive effect was apparent in the presence of all of these metal ions. The mixed culture of thiosalt-oxidizing bacteria was less sensitive to heavy metal inhibition; the order of inhibition of thiosulfate oxidation was Cd < Zn < Pb < Ag < Cu, and that of tetrathionate oxidation was Zn < Cd < Pb < Ag < Cu. PMID:16345785
Zhang, Xian; Niu, Jiaojiao; Liang, Yili; Liu, Xueduan; Yin, Huaqun
2016-01-19
Metagenomics allows us to acquire the potential resources from both cultivatable and uncultivable microorganisms in the environment. Here, shotgun metagenome sequencing was used to investigate microbial communities from the surface layer of low grade copper tailings that were industrially bioleached at the Dexing Copper Mine, China. A bioinformatics analysis was further performed to elucidate structural and functional properties of the microbial communities in a copper bioleaching heap. Taxonomic analysis revealed unexpectedly high microbial biodiversity of this extremely acidic environment, as most sequences were phylogenetically assigned to Proteobacteria, while Euryarchaeota-related sequences occupied little proportion in this system, assuming that Archaea probably played little role in the bioleaching systems. At the genus level, the microbial community in mineral surface-layer was dominated by the sulfur- and iron-oxidizing acidophiles such as Acidithiobacillus-like populations, most of which were A. ferrivorans-like and A. ferrooxidans-like groups. In addition, Caudovirales were the dominant viral type observed in this extremely environment. Functional analysis illustrated that the principal participants related to the key metabolic pathways (carbon fixation, nitrogen metabolism, Fe(II) oxidation and sulfur metabolism) were mainly identified to be Acidithiobacillus-like, Thiobacillus-like and Leptospirillum-like microorganisms, indicating their vital roles. Also, microbial community harbored certain adaptive mechanisms (heavy metal resistance, low pH adaption, organic solvents tolerance and detoxification of hydroxyl radicals) as they performed their functions in the bioleaching system. Our study provides several valuable datasets for understanding the microbial community composition and function in the surface-layer of copper bioleaching heap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sublette, K.L.
With the continual increase in the utilization of high sulfur and high nitrogen containing fossil fuels, the release of airborne pollutants into the environment has become a critical problem. The fuel sulfur is converted to SO{sub 2} during combustion. Fuel nitrogen and a fraction of the nitrogen from the combustion air are converted to nitric oxide and nitrogen dioxide, NO{sub x}. For the past five years Combustion Engineering (now Asea Brown Boveri or ABB) and, since 1986, the University of Tulsa (TU) have been investigating the oxidation of H{sub 2}S by the facultatively anaerobic and autotrophic bacterium Thiobacillus denitrificans andmore » have developed a process, concept for the microbial removal of H{sub 2}S from a gas stream the simultaneous removal of SO{sub 2} and NO by D. desulfuricans and T. denitrificans co-cultures and cultures-in-series was demonstrated. These systems could not be sustained due to NO inhibition of D. desulfuricans. However, a preliminary economic analysis has shown that microbial reduction of SO{sub 2} to H{sub 2}S with subsequent conversion to elemental sulfur by the Claus process is both technically and economically feasible if a less expensive carbon and/or energy source can be found. It has also been demonstrated that T. denitrificans can be grown anaerobically on NO(g) as a terminal electron acceptor with reduction to elemental nitrogen. Microbial reduction of NO{sub x} is a viable process concept for the disposal of concentrated streams of NO{sub x} as may be produced by certain regenerable processes for the removal of SO{sub 2} and NO{sub x} from flue gas.« less
Valentín-Vargas, Alexis; Neilson, Julia W; Root, Robert A; Chorover, Jon; Maier, Raina M
2018-03-15
Direct revegetation, or phytostabilization, is a containment strategy for contaminant metals associated with mine tailings in semiarid regions. The weathering of sulfide ore-derived tailings frequently drives acidification that inhibits plant establishment resulting in materials prone to wind and water dispersal. The specific objective of this study was to associate pyritic mine waste acidification, characterized through pore-water chemistry analysis, with dynamic changes in microbial community diversity and phylogenetic composition, and to evaluate the influence of different treatment strategies on the control of acidification dynamics. Samples were collected from a highly instrumented one-year mesocosm study that included the following treatments: 1) unamended tailings control; 2) tailings amended with 15% compost; and 3) the 15% compost-amended tailings planted with Atriplex lentiformis. Tailings samples were collected at 0, 3, 6 and 12months and pore water chemistry was monitored as an indicator of acidification and weathering processes. Results confirmed that the acidification process for pyritic mine tailings is associated with a temporal progression of bacterial and archaeal phylotypes from pH sensitive Thiobacillus and Thiomonas to communities dominated by Leptospirillum and Ferroplasma. Pore-water chemistry indicated that weathering rates were highest when Leptospirillum was most abundant. The planted treatment was most successful in disrupting the successional evolution of the Fe/S-oxidizing community. Plant establishment stimulated growth of plant-growth-promoting heterotrophic phylotypes and controlled the proliferation of lithoautotrophic Fe/S-oxidizers. The results suggest the potential for eco-engineering a microbial inoculum to stimulate plant establishment and inhibit proliferation of the most efficient Fe/S-oxidizing phylotypes. Copyright © 2017 Elsevier B.V. All rights reserved.
Mani, Dinesh; Kumar, Chitranjan; Patel, Niraj Kumar
2016-02-01
The potential of vermicompost, elemental sulphur, Thiobacillus thiooxidans and Pseudomonas putida for phytoremediation is well known individually but their integrated approach has not been discovered so far. The present work highlights the consideration of so far overlooked aspects of their integrated treatment by growing the ornamental plant, Gladiolus grandiflorus L in uncontaminated and sewage-contaminated soils (sulphur-deficient alluvial Entisols, pH 7.6-7.8) for phytoremediation of cadmium and lead under pot experiment. Between vermicompost and elemental sulphur, the response of vermicompost was higher towards improvement in the biometric parameters of plants, whereas the response of elemental sulphur was higher towards enhanced bioaccumulation of heavy metals under soils. The integrated treatment (T7: vermicompost 6g and elemental sulphur 0.5gkg(-1) soil and co-inoculation of the plant with T. thiooxidans and P. putida) was found superior in promoting root length, plant height and dry biomass of the plant. The treatment T7 caused enhanced accumulation of Cd up to 6.96 and 6.45mgkg(-1) and Pb up to 22.6 and 19.9mgkg(-1) in corm and shoot, respectively at the contaminated soil. T7 showed maximum remediation efficiency of 0.46% and 0.19% and bioaccumulation factor of 2.92 and 1.21 and uptake of 6.75 and 21.4mgkg(-1) dry biomass for Cd and Pb respectively in the contaminated soil. The integrated treatment T7 was found significant over the individual treatments to promote plant growth and enhance phytoremediation. Hence, authors conclude to integrate vermicompost, elemental sulphur and microbial co-inoculation for the enhanced clean-up of Cd and Pb-contaminated soils. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leigh, Mary Beth; Wu, Wei -Min; Cardenas, Erick
Stable isotope probing (SIP) was used to identify microbes stimulated by ethanol addition in microcosms containing two sediments collected from the bioremediation test zone at the US Department of Energy Oak Ridge site, TN, USA. One sample was highly bioreduced with ethanol while another was less reduced. Microcosms with the respective sediments were amended with 13C labeled ethanol and incubated for 7 days for SIP. Ethanol was rapidly converted to acetate within 24 h accompanied with the reduction of nitrate and sulfate. The accumulation of acetate persisted beyond the 7 d period. Aqueous U did not decline in the microcosmmore » with the reduced sediment due to desorption of U but continuously declined in the less reduced sample. Microbial growth and concomitant 13C-DNA production was detected when ethanol was exhausted and abundant acetate had accumulated in both microcosms. This coincided with U(VI) reduction in the less reduced sample. 13C originating from ethanol was ultimately utilized for growth, either directly or indirectly, by the dominant microbial community members within 7 days of incubation. The microbial community was comprised predominantly of known denitrifiers, sulfate-reducing bacteria and iron (III) reducing bacteria including Desulfovibrio, Sphingomonas, Ferribacterium, Rhodanobacter, Geothrix, Thiobacillus and others, including the known U(VI)-reducing bacteria Acidovorax, Anaeromyxobacter, Desulfovibrio, Geobacter and Desulfosporosinus. As a result, the findings suggest that ethanol biostimulates the U(VI)-reducing microbial community by first serving as an electron donor for nitrate, sulfate, iron (III) and U(VI) reduction, and acetate which then functions as electron donor for U(VI) reduction and carbon source for microbial growth.« less
Desulfurization of coal by microbial column flotation.
Ohmura, N; Saiki, H
1994-06-05
Twenty-three strains capable of oxidizing iron were isolated from coal and ore storage sites as well as coal and ore mines, volcanic areas, and hot spring. Four strains were found to have high iron-oxidizing activity. One strain (T-4) was selected for this experiment since the strain showed the fastest leaching rate of iron and sulfate from pyrite among the four strains. The T-4 strain was assigned for Thiobacillus ferrooxidans from its cultural and morphological characteristics.Bacterial treatment was applied to column flotation. An increase of cell density in the microbial column flotation resulted in the increase of pyrite removal from a coal-pyrite mixture (high sulfur imitated coal) with corresponding decrease of coal recovery. The addition of kerosene into the microbial column flotation increased the recovery of the imitated coal from 55% (without kerosene) to 81% (with 50 microL/L kerosene) with the reduction of pyrite sulfur content from 11% (feed coal) to 3.9% (product coal). The kerosene addition could reduce the pyritic sulfur content by collecting the coal in the recovery. However, the addition could not enhance separation of pyrite from the coal-pyrite mixture, since pyrite rejection was not affected by the increase of the kerosene addition. An excellent separation was obtained by the microbial flotation using a long column which had a length-diameter (L/D) ratio of 12.7. The long column flotation reduced the pyritic sulfur content from 11% (feed coal) to 1.8% (product coal) when 80% of the feed coal was recovered without the kerosene addition. The long column flotation not only attained an excellent separation but also reduced the amount of cells for desulfurization to as little as one-tenth of the reported amount.
Martínez-Santos, Miren; Lanzén, Anders; Unda-Calvo, Jessica; Martín, Iker; Garbisu, Carlos; Ruiz-Romera, Estilita
2018-08-15
Studying the dynamics of nitrogen and sulphur cycling bacteria in river surface sediments is essential to better understand their contribution to global biogeochemical cycles. Evaporitic rocks settled at the headwater of the Deba River catchment (northern Spain) lead to high values of sulphate concentration in its waters. Besides, the discharge of effluents from untreated and treated residual (urban and industrial) wastewaters increases the concentration of metals, nutrients and organic compounds in its mid- and low-water courses. The aim of this study was to assess the impact of anthropogenic contamination from untreated and treated residual and industrial wastewaters on the structure and function of bacterial communities present in surface sediments of the Deba River catchment. The application of a quantitative functional approach (qPCR) based on denitrification genes (nir: nirS+nirK; and nosZ), together with a 16S rRNA gene metabarcoding structural analysis, revealed (i) the high relevance of the sulphur cycle at headwater surface sediments (as reflected by the abundance of members of the Syntrophobacterales order, and the Sulfuricurvum and Thiobacillus genera) and (ii) the predominance of sulphide-driven autotrophic denitrification over heterotrophic denitrification. Incomplete heterotrophic denitrification appeared to be predominant in surface sediments strongly impacted by treated and untreated effluents, as reflected by the lower values of the nosZ/nir ratio, thus favouring N 2 O emissions. Understanding nitrogen and sulphur cycling pathways has profound implications for the management of river ecosystems, since this knowledge can help us determine whether a specific river is acting or not as a source of greenhouse gases (i.e., N 2 O). Copyright © 2018 Elsevier B.V. All rights reserved.
Biodegradation Of Thiocyanate Using Microbial Consortia Cultured From Gold Mine Tailings
NASA Astrophysics Data System (ADS)
Moreau, J. W.; Watts, M. P.; Spurr, L. P.; Vu, H. P.
2015-12-01
Some bacteria possess the capability to degrade SCN-; therefore, harnessing this metabolic trait offers a biotechnological remediation strategy for SCN- produced in gold ore processing. A tailings storage facility (TSF) at a gold mine in Victoria, Australia holds large quantities of thiocyanate (SCN-) contaminated mine waste. The surface water in the TSF typically contains SCN- concentrations of >800 mg L-1, and seepage from the facility has contaminated the groundwater at the site. This study aimed to culture SCN-degrading microbes from the TSF, characterize the microbial consortia and test its operational parameters for use in a thiocyanate-degrading bioreactor. Surface samples were obtained from several locations around the TSF facility and used to inoculate medium reflective of the moderately saline and alkaline tailings water at the TSF, in the absence of organic carbon but subject to additions of phosphate and trace metals. Four microbial consortia capable of rapid SCN- degradation were successfully cultured. Sequencing of 16S rRNA genes found that the consortia were dominated by Thiobacillus species, a genus of known SCN- degraders. Lower abundances of other SCN- degraders; Sphingopyxis and Rhodobacter, were also identified. The impact of a number of geochemical conditions, including pH, temperature and SCN- concentration, upon the growth and SCN- degrading capacity of these consortia was determined. These results informed the optimization of a lab-scale thiocyanate degrading bioreactor. In summary, the cultured bacterial consortia proved effective towards SCN- degradation at the prevailing geochemical conditions of the TSF, requiring minimal nutrient additions. These consortia were dominated by genera of known autotrophic SCN- degraders. The comprehensive characterisation of these SCN- degrading consortia will provide the fundamental operational parameters required for deployment of this technique at the field scale.
Vegetation successfully prevents oxidization of sulfide minerals in mine tailings.
Li, Yang; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan
2016-07-15
The oxidization of metal sulfide in tailings causes acid mine drainage. However, it remains unclear whether vegetation prevents the oxidization of metal sulfides. The oxidization characteristics and microbial indices of the tailings in the presence of various plant species were investigated to explore the effects of vegetation on the oxidization of sulfide minerals in tailings. The pH, reducing sulfur, free iron oxides (Fed), chemical oxygen consumption (COC) and biological oxygen consumption (BOC) were measured. Key iron- and sulfur-oxidizing bacteria (Acidithiobacillus spp., Leptospirillum spp. and Thiobacillus spp.) were quantified using real-time PCR. The results indicate that vegetation growing on tailings can effectively prevent the oxidization of sulfide minerals in tailings. A higher pH and reducing-sulfur content and lower Fed were observed in the 0-30 cm depth interval in the presence of vegetation compared to bare tailings (BT). The COC gradually decreased with depth in all of the soil profiles; specifically, the COC rapidly decreased in the 10-20 cm interval in the presence of vegetation but gradually decreased in the BT profiles. Imperata cylindrica (IC) and Chrysopogon zizanoides (CZ) profiles contained the highest BOC in the 10-20 cm interval. The abundance of key iron- and sulfur-oxidizing bacteria in the vegetated tailings were significantly lower than in the BT; in particular, IC was associated with the lowest iron- and sulfur-oxidizing bacterial abundance. In conclusion, vegetation successfully prevented the oxidization of sulfide minerals in the tailings, and Imperata cylindrica is the most effective in reducing the number of iron- and sulfur-oxidizing bacteria and helped to prevent the oxidization of sulfide minerals in the long term. Copyright © 2016 Elsevier Ltd. All rights reserved.
Joshi, Dev Raj; Zhang, Yu; Gao, Yinxin; Liu, Yuan; Yang, Min
2017-09-15
Although coking wastewater is generally considered to contain high concentration of nitrogen- and sulfur-containing pollutants, the biotransformation processes of these compounds have not been well understood. Herein, a high throughput functional gene array (GeoChip 5.0) in combination with Illumina MiSeq sequencing of the 16S rRNA gene were used to identify microbial functional traits and their role in biotransformation of nitrogen- and sulfur-containing compounds in a bench-scale aerobic coking wastewater treatment system operated for 488 days. Biotransformation of nitrogen and sulfur-containing pollutants deteriorated when pH of the bioreactor was increased to >8.0, and the microbial community functional structure was significantly associated with pH (Mantels test, P < 0.05). The release of ammonia nitrogen and sulfate was correlated with both the taxonomic and functional microbial community structure (P < 0.05). Considering the abundance and correlation with the release of ammonia nitrogen and sulfate, aromatic dioxygenases (e.g. xylXY, nagG), nitrilases (e.g. nhh, nitrilase), dibenzothiophene oxidase (DbtAc), and thiocyanate hydrolase (scnABC) were important functional genes for biotransformation of nitrogen- and sulfur-containing pollutants. Functional characterization of taxa and network analysis suggested that Burkholderiales, Actinomycetales, Rhizobiales, Pseudomonadales, and Hydrogenophiliales (Thiobacillus) were key functional taxa. Variance partitioning analysis showed that pH and influent ammonia nitrogen jointly explained 25.9% and 35.5% of variation in organic pollutant degrading genes and microbial community structure, respectively. This study revealed a linkage between microbial community functional structure and the likely biotransformation of nitrogen- and sulfur-containing pollutants, along with a suitable range of pH (7.0-7.5) for stability of the biological system treating coking wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Shih-Hung; Cheng, Kuo-Chih; Liao, Vivian Hsiu-Chuan
2017-11-01
Contamination by heavy metals and metalloids is a serious environmental and health concern. Acidic wastewaters are often associated with toxic metals which may enter and spread into agricultural soils. Several biological assays have been developed to detect toxic metals; however, most of them can only detect toxic metals in a neutral pH, not in an acidic environment. In this study, an acidophilic iron-oxidizing bacterium (IOB) Strain Y10 was isolated, characterized, and used to detect toxic metals toxicity in acidic water at pH 2.5. The colorimetric acidophilic IOB biosensor was based on the inhibition of the iron oxidizing ability of Strain Y10, an acidophilic iron-oxidizing bacterium, by metals toxicity. Our results showed that Strain Y10 is acidophilic iron-oxidizing bacterium. Thiobacillus caldus medium (TCM) (pH 2.5) supplied with both S 4 O 6 2- and glucose was the optimum growth medium for Strain Y10. The optimum temperature and pH for the growth of Strain Y10 was 45 °C and pH 2.5, respectively. Our study demonstrates that the color-based acidophilic IOB biosensor can be semi-quantitatively observed by eye or quantitatively measured by spectrometer to detect toxicity from multiple toxic metals at pH 2.5 within 45 min. Our study shows that monitoring toxic metals in acidic water is possible by using the acidophilic IOB biosensor. Our study thus provides a novel approach for rapid and cost-effective detection of toxic metals in acidic conditions that can otherwise compromise current methods of chemical analysis. This method also allows for increased efficiency when screening large numbers of environmental samples. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Xiaoqi; Meng, Delong; Li, Juan; Yin, Huaqun; Liu, Hongwei; Liu, Xueduan; Cheng, Cheng; Xiao, Yunhua; Liu, Zhenghua; Yan, Mingli
2017-12-01
Due to the persistence of metals in the ecosystem and their threat to all living organisms, effects of heavy metal on soil microbial communities were widely studied. However, little was known about the interactions among microorganisms in heavy metal-contaminated soils. In the present study, microbial communities in Non (CON), moderately (CL) and severely (CH) contaminated soils were investigated through high-throughput Illumina sequencing of 16s rRNA gene amplicons, and networks were constructed to show the interactions among microbes. Results showed that the microbial community composition was significantly, while the microbial diversity was not significantly affected by heavy metal contamination. Bacteria showed various response to heavy metals. Bacteria that positively correlated with Cd, e.g. Acidobacteria_Gp and Proteobacteria_thiobacillus, had more links between nodes and more positive interactions among microbes in CL- and CH-networks, while bacteria that negatively correlated with Cd, e.g. Longilinea, Gp2 and Gp4 had fewer network links and more negative interactions in CL and CH-networks. Unlike bacteria, members of the archaeal domain, i.e. phyla Crenarchaeota and Euryarchaeota, class Thermoprotei and order Thermoplasmatales showed only positive correlation with Cd and had more network interactions in CH-networks. The present study indicated that (i) the microbial community composition, as well as network interactions was shift to strengthen adaptability of microorganisms to heavy metal contamination, (ii) archaea were resistant to heavy metal contamination and may contribute to the adaption to heavy metals. It was proposed that the contribution might be achieved either by improving environment conditions or by cooperative interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lu, Shipeng; Chourey, Karuna; Reiche, Marco; Nietzsche, Sandor; Shah, Manesh B.; Neu, Thomas R.; Hettich, Robert L.
2013-01-01
Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates (“iron snow”) at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 108 copies g (dry weight)−1 in the acidic central lake basin (pH 3.3) to 4.0 × 1010 copies g (dry weight)−1 in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies. PMID:23645202
Lu, Shipeng; Chourey, Karuna; Reiche, Marco; Nietzsche, Sandor; Shah, Manesh B; Neu, Thomas R; Hettich, Robert L; Küsel, Kirsten
2013-07-01
Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates ("iron snow") at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 10(8) copies g (dry weight)(-1) in the acidic central lake basin (pH 3.3) to 4.0 × 10(10) copies g (dry weight)(-1) in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies.
Fuchs, Adrian C D; Maldoner, Lorena; Hipp, Katharina; Hartmann, Marcus D; Martin, Jörg
2018-01-19
Eukaryotic and archaeal proteasomes are paradigms for self-compartmentalizing proteases. To a large extent, their function requires interplay with hexameric ATPases associated with diverse cellular activities (AAA+) that act as substrate unfoldases. Bacteria have various types of self-compartmentalizing proteases; in addition to the proteasome itself, these include the proteasome homolog HslV, which functions together with the AAA+ HslU; the ClpP protease with its partner AAA+ ClpX; and Anbu, a recently characterized ancestral proteasome variant. Previous bioinformatic analysis has revealed a novel bacterial member of the proteasome family Betaproteobacteria proteasome homolog (BPH). Using cluster analysis, we here affirmed that BPH evolutionarily descends from HslV. Crystal structures of the Thiobacillus denitrificans and Cupriavidus metallidurans BPHs disclosed a homo-oligomeric double-ring architecture in which the active sites face the interior of the cylinder. Using small-angle X-ray scattering (SAXS) and electron microscopy averaging, we found that BPH forms tetradecamers in solution, unlike the dodecamers seen in HslV. Although the highly acidic inner surface of BPH was in striking contrast to the cavity characteristics of the proteasome and HslV, a classical proteasomal reaction mechanism could be inferred from the covalent binding of the proteasome-specific inhibitor epoxomicin to BPH. A ligand-bound structure implied that the elongated BPH inner pore loop may be involved in substrate recognition. The apparent lack of a partner unfoldase and other unique features, such as Ser replacing Thr as the catalytic residue in certain BPH subfamilies, suggest a proteolytic function for BPH distinct from those of known bacterial self-compartmentalizing proteases. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Fuchs, Adrian C. D.; Maldoner, Lorena; Hipp, Katharina; Hartmann, Marcus D.; Martin, Jörg
2018-01-01
Eukaryotic and archaeal proteasomes are paradigms for self-compartmentalizing proteases. To a large extent, their function requires interplay with hexameric ATPases associated with diverse cellular activities (AAA+) that act as substrate unfoldases. Bacteria have various types of self-compartmentalizing proteases; in addition to the proteasome itself, these include the proteasome homolog HslV, which functions together with the AAA+ HslU; the ClpP protease with its partner AAA+ ClpX; and Anbu, a recently characterized ancestral proteasome variant. Previous bioinformatic analysis has revealed a novel bacterial member of the proteasome family Betaproteobacteria proteasome homolog (BPH). Using cluster analysis, we here affirmed that BPH evolutionarily descends from HslV. Crystal structures of the Thiobacillus denitrificans and Cupriavidus metallidurans BPHs disclosed a homo-oligomeric double-ring architecture in which the active sites face the interior of the cylinder. Using small-angle X-ray scattering (SAXS) and electron microscopy averaging, we found that BPH forms tetradecamers in solution, unlike the dodecamers seen in HslV. Although the highly acidic inner surface of BPH was in striking contrast to the cavity characteristics of the proteasome and HslV, a classical proteasomal reaction mechanism could be inferred from the covalent binding of the proteasome-specific inhibitor epoxomicin to BPH. A ligand-bound structure implied that the elongated BPH inner pore loop may be involved in substrate recognition. The apparent lack of a partner unfoldase and other unique features, such as Ser replacing Thr as the catalytic residue in certain BPH subfamilies, suggest a proteolytic function for BPH distinct from those of known bacterial self-compartmentalizing proteases. PMID:29183996
Park, Jung-Hun; Choi, Okkyoung; Lee, Tae-Ho; Kim, Hyunook; Sang, Byoung-In
2016-11-01
Wastewaters from swine farms, nitrogen-dealing industries or side-stream processes of a wastewater treatment plant (e.g., anaerobic digesters, sludge thickening processes, etc.) are characterized by low C/N ratios and not easily treatable. In this study, a hollow fiber-membrane biofilm reactors (HF-MBfR) system consisting of an O2-based HF-MBfR and an H2-based HF-MBfR was applied for treating high-strength wastewater. The reactors were continuously operated with low supply of O2 and H2 and without any supply of organic carbon for 250 d. Gradual increase of ammonium and nitrate concentration in the influent showed stable and high nitrogen removal efficiency, and the maximum ammonium and nitrate removal rates were 0.48 kg NH4(+)-N m(-3) d(-1) and 0.55 kg NO3(-)-N m(-3) d(-1), respectively. The analysis of the microbial communities using pyrosequencing analysis indicated that Nitrosospira multiformis, ammonium-oxidizing bacteria, and Nitrobacter winogradskyi and Nitrobacter vulgaris, nitrite-oxidizing bacteria were highly enriched in the O2-based HF-MBfR. In the H2-based HF-MBfR, hydrogenotrophic denitrifying bacteria belonging to the family of Thiobacillus and Comamonadaceae were initially dominant, but were replaced to heterotrophic denitrifiers belonging to Rhodocyclaceae and Rhodobacteraceae utilizing by-products induced from autotrophic denitrifying bacteria. The pyrosequencing analysis of microbial communities indicates that the autotrophic HF-MBfRs system well developed autotrophic nitrifying and denitrifying bacteria within a relatively short period to accomplish almost complete nitrogen removal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Microbial Community Structure of Subglacial Lake Whillans, West Antarctica
Achberger, Amanda M.; Christner, Brent C.; Michaud, Alexander B.; Priscu, John C.; Skidmore, Mark L.; Vick-Majors, Trista J.; Adkins, W.
2016-01-01
Subglacial Lake Whillans (SLW) is located beneath ∼800 m of ice on the Whillans Ice Stream in West Antarctica and was sampled in January of 2013, providing the first opportunity to directly examine water and sediments from an Antarctic subglacial lake. To minimize the introduction of surface contaminants to SLW during its exploration, an access borehole was created using a microbiologically clean hot water drill designed to reduce the number and viability of microorganisms in the drilling water. Analysis of 16S rRNA genes (rDNA) amplified from samples of the drilling and borehole water allowed an evaluation of the efficacy of this approach and enabled a confident assessment of the SLW ecosystem inhabitants. Based on an analysis of 16S rDNA and rRNA (i.e., reverse-transcribed rRNA molecules) data, the SLW community was found to be bacterially dominated and compositionally distinct from the assemblages identified in the drill system. The abundance of bacteria (e.g., Candidatus Nitrotoga, Sideroxydans, Thiobacillus, and Albidiferax) and archaea (Candidatus Nitrosoarchaeum) related to chemolithoautotrophs was consistent with the oxidation of reduced iron, sulfur, and nitrogen compounds having important roles as pathways for primary production in this permanently dark ecosystem. Further, the prevalence of Methylobacter in surficial lake sediments combined with the detection of methanogenic taxa in the deepest sediment horizons analyzed (34–36 cm) supported the hypothesis that methane cycling occurs beneath the West Antarctic Ice Sheet. Large ratios of rRNA to rDNA were observed for several operational taxonomic units abundant in the water column and sediments (e.g., Albidiferax, Methylobacter, Candidatus Nitrotoga, Sideroxydans, and Smithella), suggesting a potentially active role for these taxa in the SLW ecosystem. Our findings are consistent with chemosynthetic microorganisms serving as the ecological foundation in this dark subsurface environment, providing new organic matter that sustains a microbial ecosystem beneath the West Antarctic Ice Sheet. PMID:27713727
Okabe, Satoshi; Odagiri, Mitsunori; Ito, Tsukasa; Satoh, Hisashi
2007-01-01
Microbially induced concrete corrosion (MICC) in sewer systems has been a serious problem for a long time. A better understanding of the succession of microbial community members responsible for the production of sulfuric acid is essential for the efficient control of MICC. In this study, the succession of sulfur-oxidizing bacteria (SOB) in the bacterial community on corroding concrete in a sewer system in situ was investigated over 1 year by culture-independent 16S rRNA gene-based molecular techniques. Results revealed that at least six phylotypes of SOB species were involved in the MICC process, and the predominant SOB species shifted in the following order: Thiothrix sp., Thiobacillus plumbophilus, Thiomonas intermedia, Halothiobacillus neapolitanus, Acidiphilium acidophilum, and Acidithiobacillus thiooxidans. A. thiooxidans, a hyperacidophilic SOB, was the most dominant (accounting for 70% of EUB338-mixed probe-hybridized cells) in the heavily corroded concrete after 1 year. This succession of SOB species could be dependent on the pH of the concrete surface as well as on trophic properties (e.g., autotrophic or mixotrophic) and on the ability of the SOB to utilize different sulfur compounds (e.g., H2S, S0, and S2O32−). In addition, diverse heterotrophic bacterial species (e.g., halo-tolerant, neutrophilic, and acidophilic bacteria) were associated with these SOB. The microbial succession of these microorganisms was involved in the colonization of the concrete and the production of sulfuric acid. Furthermore, the vertical distribution of microbial community members revealed that A. thiooxidans was the most dominant throughout the heavily corroded concrete (gypsum) layer and that A. thiooxidans was most abundant at the highest surface (1.5-mm) layer and decreased logarithmically with depth because of oxygen and H2S transport limitations. This suggested that the production of sulfuric acid by A. thiooxidans occurred mainly on the concrete surface and the sulfuric acid produced penetrated through the corroded concrete layer and reacted with the sound concrete below. PMID:17142362
Microbial control of hydrogen sulfide production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.
1995-12-31
A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of coresmore » and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.« less
Kadnikov, V V; Ivasenko, D A; Beletsky, A V; Mardanov, A V; Danilova, E V; Pimenov, N V; Karnachuk, O V; Ravin, N V
2016-07-01
Drainage waters at the metal mining areas often have low pH and high content of dissolved metals due to oxidation of sulfide minerals. Extreme conditions limit microbial diversity in- such ecosystems. A drainage water microbial community (6.5'C, pH 2.65) in an open pit at the Sherlovaya Gora polymetallic open-cast mine (Transbaikal region, Eastern Siberia, Russia) was studied using metagenomic techniques. Metagenome sequencing provided information for taxonomic and functional characterization of the micro- bial community. The majority of microorganisms belonged to a single uncultured lineage representing a new Betaproteobacteria species of the genus Gallionella. While no.acidophiles are known among the cultured members of the family Gallionellaceae, similar 16S rRNA gene sequences were detected in acid mine drain- ages. Bacteria ofthe genera Thiobacillus, Acidobacterium, Acidisphaera, and Acidithiobacillus,-which are com- mon in acid mine drainage environments, were the minor components of the community. Metagenomic data were -used to determine the almost complete (-3.4 Mb) composite genome of the new bacterial. lineage desig- nated Candidatus Gallionella acididurans ShG14-8. Genome analysis revealed that Fe(II) oxidation probably involved the cytochromes localized on the outer membrane of the cell. The electron transport chain included NADH dehydrogenase, a cytochrome bc1 complex, an alternative complex III, and cytochrome oxidases of the bd, cbb3, and bo3 types. Oxidation of reduced sulfur compounds probably involved the Sox system, sul- fide-quinone oxidoreductase, adenyl sulfate reductase, and sulfate adenyltransferase. The genes required for autotrophic carbon assimilation via the Calvin cycle were present, while no pathway for nitrogen fixation was revealed. High numbers of RND metal transporters and P type ATPases were probably responsible for resis- tance to heavy metals. The new microorganism was an aerobic chemolithoautotroph of the group of psychrotolerant iron- and sulfur-oxidizing acidophiles of the family Gallionellaceae, which are common in acid mine drainages.
Effect of particle-particle shearing on the bioleaching of sulfide minerals.
Chong, N; Karamanev, D G; Margaritis, A
2002-11-05
The biological leaching of sulfide minerals, used for the production of gold, copper, zinc, cobalt, and other metals, is very often carried out in slurry bioreactors, where the shearing between sulfide particles is intensive. In order to be able to improve the efficiency of the bioleaching, it is of significant importance to know the effect of particle shearing on the rate of leaching. The recently proposed concept of ore immobilization allowed us to study the effect of particle shearing on the rate of sulfide (pyrite) leaching by Thiobacillus ferrooxidans. Using this concept, we designed two very similar bioreactors, the main difference between which was the presence and absence of particle-particle shearing. It was shown that when the oxygen mass transfer was not the rate-limiting step, the rate of bioleaching in the frictionless bioreactor was 2.5 times higher than that in a bioreactor with particle friction (shearing). The concentration of free suspended cells in the frictionless bioreactor was by orders of magnitude lower than that in the frictional bioreactor, which showed that particle friction strongly reduces the microbial attachment to sulfide surface, which, in turn, reduces the rate of bioleaching. Surprisingly, it was found that formation of a layer of insoluble iron salts on the surface of sulfide particles is much slower under shearless conditions than in the presence of particle-particle shearing. This was explained by the effect of particle friction on liquid-solid mass transfer rate. The results of this study show that reduction of the particle friction during bioleaching of sulfide minerals can bring important advantages not only by increasing significantly the bioleaching rate, but also by increasing the rate of gas-liquid oxygen mass transfer, reducing the formation of iron precipitates and reducing the energy consumption. One of the efficient methods for reduction of particle friction is ore immobilization in a porous matrix. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 80: 349-357, 2002.
Barahona, Sergio; Dorador, Cristina; Zhang, Ruiyong; Aguilar, Pablo; Sand, Wolfgang; Vera, Mario; Remonsellez, Francisco
2014-11-01
Microorganisms are used to aid the extraction of valuable metals from low-grade sulfide ores in mines worldwide, but relatively little is known about this process in cold environments. This study comprises a preliminary analysis of the bacterial diversity of the polyextremophilic acid River Aroma located in the Chilean Altiplano, and revealed that Betaproteobacteria was the most dominant bacterial group (Gallionella-like and Thiobacillus-like). Taxa characteristic of leaching environments, such Acidithiobacillus and Leptospirillum, were detected at low abundances. Also, bacteria not associated with extremely acidic, metal-rich environments were found. After enrichment in iron- and sulfur-oxidizing media, we isolated and identified a novel psychrotolerant Acidithiobacillus ferrivorans strain ACH. This strain can grow using ferrous iron, sulfur, thiosulfate, tetrathionate and pyrite, as energy sources. Optimal growth was observed in the presence of pyrite, where cultures reached a cell number of 6.5 · 10(7) cells mL(-1). Planktonic cells grown with pyrite showed the presence of extracellular polymeric substances (10 °C and 28 °C), and a high density of cells attached to pyrite grains were observed at 10 °C by electron microscopy. The attachment of cells to pyrite coupons and the presence of capsular polysaccharides were visualized by using epifluorescence microscopy, through nucleic acid and lectin staining with Syto(®)9 and TRITC-Con A, respectively. Interestingly, we observed high cell adhesion including the formation of microcolonies within 21 days of incubation at 4 °C, which was correlated with a clear induction of capsular polysaccharides production. Our data suggests that attachment to pyrite is not temperature-dependent in At. ferrivorans ACH. The results of this study highlight the potential of this novel psychrotolerant strain in oxidation and attachment to minerals under low-temperature conditions. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Villa, F; Vasanthakumar, A; Mitchell, R; Cappitelli, F
2015-01-01
Outdoor stoneworks sustain biofilm formation and are constantly at risk of deterioration by micro-organisms. In this study, the biofilm microflora of historic limestone tombstones located in a highly polluted urban environment (Cambridge, MA) and in a less polluted location (Lexington, MA) were compared using comprehensive RNA-based molecular analyses of 16S rRNA gene sequences as well as sequences of genes for different pathways of sulphur metabolism (soxB, apsA, dsrA). The metabolically active micro-organisms detected by denaturing gradient gel electrophoresis analysis of 16S rRNA fragments were predominantly represented by cyanobacteria (belonging to the family Nostocaceae and to the genus Chroococcidiopsis) in both polluted and unpolluted environments. The investigation of soxB, apsA, dsrA transcripts reflected the abundance and the diversity of sulphur-oxidizing and sulphate-reducing bacteria in the Cambridge samples in comparison with the Lexington samples. The investigation revealed that in addition to phototrophic sulphur bacteria belonging to the genera Thiocapsa, Halochromatium, Allochromatium, Thiococcus and Thermochromatium, other sulphate-oxidizing prokaryotes (e.g. the genus Thiobacillus) as well as sequences of Deltaproteobacteria from the genus Desulfovibrio occurred at the polluted urban site. The interactions between the main functional groups retrieved from the limestone tombstones were discussed. The biofilm microflora inhabiting historic limestones are a multi-component open ecosystem sensitively reacting to all environmental factors including air pollutants. Little is known about specific target groups that are active in the biofilm and their physiological functions. For the first time, transcripts involved in important energy-yielding processes were investigated to reveal the metabolic capabilities of the microflora in response to atmospheric sulphur pollution. This work provides novel and important information about the ecology of limestone tombstone microbiota and its complex interaction with the external environment. © 2014 The Society for Applied Microbiology.
Qian, Jin; Liu, Rulong; Wei, Li; Lu, Hui; Chen, Guang-Hao
2015-09-01
A sulfur cycle-based wastewater treatment process, namely the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated process (SANI(®) process) has been recently developed for organics and nitrogen removal with 90% sludge minimization and 35% energy reduction in the biological treatment of saline sewage from seawater toilet flushing practice in Hong Kong. In this study, sulfate- and sulfite-rich wastes from simple wet flue gas desulfurization (WFGD) were considered as a potential low-cost sulfur source to achieve beneficial co-treatment with non-saline (freshwater) sewage in continental areas, through a Mixed Denitrification (MD)-SANI process trialed with synthetic mixture of simple WFGD wastes and freshwater sewage. The system showed 80% COD removal efficiency (specific COD removal rate of 0.26 kg COD/kg VSS/d) at an optimal pH of 7.5 and complete denitrification through MD (specific nitrogen removal rate of 0.33 kg N/kg VSS/d). Among the electron donors in MD, organics and thiosulfate could induce a much higher denitrifying activity than sulfide in terms of both NO3(-) reduction and NO2(-) reduction, suggesting a much higher nitrogen removal rate in organics-, thiosulfate- and sulfide-based MD in MD-SANI compared to sulfide alone-based autotrophic denitrification in conventional SANI(®). Diverse sulfate/sulfite-reducing bacteria (SRB) genera dominated in the bacterial community of sulfate/sulfite-reducing up-flow sludge bed (SRUSB) sludge without methane producing bacteria detected. Desulfomicrobium-like species possibly for sulfite reduction and Desulfobulbus-like species possibly for sulfate reduction are the two dominant groups with respective abundance of 24.03 and 14.91% in the SRB genera. Diverse denitrifying genera were identified in the bacterial community of anoxic up-flow sludge bed (AnUSB) sludge and the Thauera- and Thiobacillus-like species were the major taxa. These results well explained the successful operation of the lab-scale MD-SANI process. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lazaroff, Norman; Jollie, John; Dugan, Patrick R.
1998-07-01
Chemolithotrophic iron oxidation by Thiobacillus ferrooxidans and other iron oxidizing thiobacilli produce an Fe(III) sulfato complex that polymerizes as x-ray amorphous filaments approximately 40 nm in diameter. The precursor complex in solutionis seen by ATR-FTIR spectroscopy to have a sulfate spectrum resembling the v(subscript 3) and v(subscript 1) vibrational modes of the precipitated polymer. Chemically similar precipitates prepared by oxidation of acid ferrous sulfate with hydrogen peroxide have a different micromorphology, higher iron/sulfur ratio and acid solubility than the bacterial product. They possess coalescing globular microstructures composed of compacted micro-fibrils. Scanning electron microscopy and diffuse reflectance FTIR show the formation of iron polymer on the surface of immobilized cells of T. ferrooxidans, oxidizing iron during the corrosion of steel. Although spatially separated form the steel coupons by a membrane filter, the cell walls become covered with tufts of amorphous hydrated Fe(III) sulfate. The metastable polymer is converted to crystalline goethite, lepidocrocite, and magnetite in that order, as the pH rises due to proton reduction at cathodic sites on the steel. The instability of the iron polymer to changes in pH is also evidenced by the loss of sulfate when washed with lithium hydroxide solution at pH 8. Under those conditions there is little change in micromorphology, but restoration of sulfate with sulfuric acid at pH 2.5, fails to re-establish the original chemical structure. Adding sulfate salts of appropriate cations to solutions of the Fe(III) sulfato complex or suspensions of its precipitated polymer in dilute sulfuric acid, result in dissociation of the metastable complex followed by crystallization of ferric ions and sulfate in jarosites. Jarosites and other derivatives of iron precipitation by iron oxidizing thiobacilli, form conspicuous deposits in areas of natural pyrite leaching. The role of iron oxidizing thiobacilli in pyrite leaching, biohydrometallurgy, acid mine drainage, and the cycle of iron and sulfur in nature, has been studied for nearly 50 years. The manifestation of those activities, so widespread on Earth, can be a clue for seeking evidence of life elsewhere.
Ullrich, Sophie R.; Poehlein, Anja; Tischler, Judith S.; González, Carolina; Ossandon, Francisco J.; Daniel, Rolf; Holmes, David S.; Schlömann, Michael; Mühling, Martin
2016-01-01
Background Members of the genus “Ferrovum” are ubiquitously distributed in acid mine drainage (AMD) waters which are characterised by their high metal and sulfate loads. So far isolation and microbiological characterisation have only been successful for the designated type strain “Ferrovum myxofaciens” P3G. Thus, knowledge about physiological characteristics and the phylogeny of the genus “Ferrovum” is extremely scarce. Objective In order to access the wider genetic pool of the genus “Ferrovum” we sequenced the genome of a “Ferrovum”-containing mixed culture and successfully assembled the almost complete genome sequence of the novel “Ferrovum” strain JA12. Phylogeny and Lifestyle The genome-based phylogenetic analysis indicates that strain JA12 and the type strain represent two distinct “Ferrovum” species. “Ferrovum” strain JA12 is characterised by an unusually small genome in comparison to the type strain and other iron oxidising bacteria. The prediction of nutrient assimilation pathways suggests that “Ferrovum” strain JA12 maintains a chemolithoautotrophic lifestyle utilising carbon dioxide and bicarbonate, ammonium and urea, sulfate, phosphate and ferrous iron as carbon, nitrogen, sulfur, phosphorous and energy sources, respectively. Unique Metabolic Features The potential utilisation of urea by “Ferrovum” strain JA12 is moreover remarkable since it may furthermore represent a strategy among extreme acidophiles to cope with the acidic environment. Unlike other acidophilic chemolithoautotrophs “Ferrovum” strain JA12 exhibits a complete tricarboxylic acid cycle, a metabolic feature shared with the closer related neutrophilic iron oxidisers among the Betaproteobacteria including Sideroxydans lithotrophicus and Thiobacillus denitrificans. Furthermore, the absence of characteristic redox proteins involved in iron oxidation in the well-studied acidophiles Acidithiobacillus ferrooxidans (rusticyanin) and Acidithiobacillus ferrivorans (iron oxidase) indicates the existence of a modified pathway in “Ferrovum” strain JA12. Therefore, the results of the present study extend our understanding of the genus “Ferrovum” and provide a comprehensive framework for future comparative genome and metagenome studies. PMID:26808278
NASA Astrophysics Data System (ADS)
Beller, H. R.; Jewell, T. N. M.; Karaoz, U.; Thomas, B. C.; Banfield, J. F.; Brodie, E.; Williams, K. H.
2014-12-01
Although there is a limited understanding of the chemolithoautotrophic activity of aquifer microorganisms, such subsurface microbial activity could greatly influence the cycling of elements such as C, S, N, and Fe. Here, we present transcriptional (RNA-Seq) evidence of the emergence of such chemolithoautotrophic activities in groundwater filter samples from a 2-month experiment in which up to 1.5 mM nitrate (a native electron acceptor) was injected into a perennially suboxic/anoxic aquifer (Rifle, CO) containing a large reservoir of reduced Fe- and S-containing compounds. Illumina sequence data from rRNA-subtracted cDNA libraries was assembled and mapped to phylogenetically binned Rifle metagenome data. Indicative of the activity of Fe(II)-oxidizing bacteria, many high-abundance transcripts mapped to the Gallionellaceae family, whose known members are chemolithoautotrophic bacteria that catalyze Fe(II) oxidation. For example, included among the most abundant transcripts were a cold-shock protein and an acyl carrier protein with 96-98% protein sequence identity to Gallionella capsiferriformans and a nitrite reductase (nirS) gene likely belonging to a Sideroxydans relative. The apparent activity of Gallionellaceae members is consistent with 16S rRNA iTag analyses of these samples, which indicated that Gallionella-related taxa accounted for up to ~50% of these communities. Evidence of sulfide oxidation also was apparent in these samples. For example, highly expressed subunits of APS reductase were very similar to those of the obligately chemolithoautotrophic S- and Fe(II)-oxidizing Thiobacillus denitrificans in terms of sequence identity (98-99%) and synteny of the mapped scaffold. Also highly expressed were a ß-Proteobacterial Form II RubisCO gene and a hydrazine oxidoreductase gene (93% identity to the planctomycete KSU-1), the latter strongly indicative of anaerobic ammonia oxidation (anammox) activity, which has seldom been reported in aquifer environments. Such gene-level data on CO2 fixation and Fe(II), sulfide, and ammonium oxidation in the Rifle subsurface will contribute to genome-enabled modeling efforts aimed at developing a predictive understanding of biogeochemical processes at the site as part of LBNL's Sustainable Systems Scientific Focus Area (SFA) 2.0.
A field demonstration of the microbial treatment of sour produced water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sublette, K.L.; Morse, D.; Raterman, K.
1995-12-31
The potential for detoxification and deodorization of sulfide-laden water (sour water) by microbial treatment was evaluated at a petroleum production site under field conditions. A sulfide-tolerant strain of the chemautotroph and facultative anaerobe, Thiobacillus denitrificans, was introduced into an oil-skimming pit of the Amoco Production Company LACT 10 Unit of the Salt Creek Field, Wyoming. Field-produced water enters this pit from the oil/water separation treatment train at an average flowrate of 5,000 bbl/D (795 m{sup 3}/D) with a potential maximum of 98,000 bbl/D (15,580 m{sup 3}/D). Water conditions at the pit inlet are 4,800 mg/l TDS, 100 mg/l sulfide, pHmore » 7.8, and 107{degrees}F. To this water an aqueous solution of ammonium nitrate and diphosphorous pentoxide was added to provide required nutrients for the bacteria. The first 20% of the pit was aerated to a maximum depth of 5 ft (1.5 m) to facilitate the aerobic oxidation of sulfide. No provisions for pH control or biomass recovery and recycle were made. Pilot operations were initiated in October 1992 with the inoculation of the 19,000 bbl (3,020 m{sup 3}) pit with 40 lb (18.1 kg) of dry weight biomass. After a brief acclimation period, a nearly constant mass flux of 175 lb/D (80 kg/D) sulfide was established to the pit. Bio-oxidation of sulfide to elemental sulfur and sulfate was immediate and complete. Subsequent pilot operations focused upon process optimization and process sensitivity to system upsets. The process appeared most sensitive to large variations in sulfide loading due to maximum water discharge events. However, recoveries from such events could be accomplished within hours. This paper details all pertinent aspects of pilot operation, performance, and economics. Based on this body of evidence, it is suggested that the oxidation of inorganic sulfides by T denitrificans represents a viable concept for the treatment of sour water coproduced with oil and gas.« less
Coper Isotope Fractionation in Porphyry Copper Deposits: A Controlled Experiment
NASA Astrophysics Data System (ADS)
Ruiz, J.; Mathur, R.; Uhrie, J. L.; Hiskey, B.
2001-12-01
Previous studies have shown that copper is fractionated in the environment. However, the mechanisms for isotope fractionation and the role of organic and inorganic processes in the fractionation are not well understood. Here we used the well controlled experiments used by Phelps Dodge Corporation aimed at leaching copper from their ore deposits to constrain the mechanism of copper isotope fractionation in natural systems. The isotope data were collected on a Micromass Isoprobe. High temperature copper sulfides from ore deposits in Chile and Arizona yield delta 65Cu near 0 permil. The reproducibility of the data is better that 0.1 permil. Controlled experiments consisting of large columns of rocks were fed solutions containing bacteria such as Thiobacillus ferroxidans and Leptospirrilium ferroxidan. Solutions fom the columns were sampled for sixty days and analyzed for copper concentrations, oxidation potential, ferrous/ferric ratios and pH. The results indicate that the bacterially aided dissolution of copper fractionated copper. Preliminary experiments of copper dissolution not using bacteria show no isotope fractionation The original rock in the experiment has a delta 65Cu of -2.1. The first solutions that were collected from the columns had a delta 65Cu of -5.0 per mil. The liquid changed its isotopic composition from -50 to -10 during the sixty days of sampling. The greatest shift in the isotope ratios occurred the first 30 days when the copper recovered was less than 40% and the ferrous/ferric ratios were somewhat constant. At approximately 35 days after the start of the experiments, the copper recovery increases the ferrousferric ratio decreased and the copper isotope ratio of the fluids remained fairly constant. The data suggest that the bacteria are required to effectively fractionate copper isotopes in natural systems and that the mechanisms of bacterial aided copper dissolution may include a direct dissolution of the sulfides by the bacteria. Experiments underway with enzimes without the bacteria may confirm this hypothesis. The data obtained in these experiments will provide some constraints in the use of copper isotopes as proxy for life in the rock record.
Search for the algorithm of genes distribution during the process of microbial evolution
NASA Astrophysics Data System (ADS)
Pikuta, Elena V.
2015-09-01
Previous two and three dimensional graph analysis of eco-physiological data of Archaea demonstrated specific geometry for distribution of major Prokaryotic groups in a hyperboloid function. The function of a two-sheet hyperboloid covered all known biological groups, and therefore, could be applied for the entire evolution of life on Earth. The vector of evolution was indicated from the point of hyper temperature, extreme acidity and low salinity to the point of low temperature and increased alkalinity and salinity. According to this vector, the following groups were chosen for the gene screening analysis. In the vector "High-Temperature → Low-Temperature" within extreme acidic pH (0-3), it is: 1) the hyperthermophilic Crenarchaeota - order Sulfolobales, 2) moderately thermophilic Euryarchaeota - Class Thermoplasmata, and 3) mesophilic acidophiles- genus Thiobacillus and others. In the vector "Low pH → High pH" the following groups were selected in three temperature ranges: a) Hyperthermophilic Archaea and Eubacteria, b) moderately thermophilic - representatives of the genera Anaerobacter and Anoxybacillus, and c) mesophilic haloalkaliphiles (Eubacteria and Archaea). The genes associated with acidophily (H+ pump), chemolitho-autotrophy (proteins of biochemichal cycles), polymerases, and histones were proposed for the first vector, and for the second vector the genes associated with halo-alkaliphily (Na+ pumps), enzymes of organotrophic metabolisms (sugar- and proteolytics), and others were indicated for the screening. Here, an introduction to the phylogenetic constant (ρη) is presented and discussed. This universal characteristic is calculated for two principally different life forms -Prokaryotes and Eukaryotes; Existence of the second type of living forms is impossible without the first one. The number of chromosomes in Prokaryotic organisms is limited to one (with very rare exceptions, to two), while in Eukaryotic organisms this number is larger. Currently, accumulation of data for genome sequences is in progress: about 3,500 draft sequences of genomes are available (of the total 12,000 species Bacteria and Archaea). The possibility of confirmation of the previously proposed mathematical model with an approach for genes screening in determined key groups of microorganisms in genomes databases is outlined and discussed in this article.
NASA Astrophysics Data System (ADS)
Toubes-Rodrigo, Mario; Potgieter-Vermaak, Sanja; Sen, Robin; Elliott, David R.; Cook, Simon J.
2017-04-01
Basal ice is a significant sub-glacial component of glaciers and ice sheets that arises from ice-bedrock/substrate interaction. As a result, basal ice of a glacier retains a distinctive physical and chemical signature characterised by a high sediment- and low bubble-content and selective ionic enrichment. Previous research concluded that sediment entrapped in the basal ice matrix originates from the bedrock/substrate, and harbours an active microbial community. However, the nature and significance of the microbial community inhabiting basal ice facies remains poorly characterised. This paper reports on an integrated chemical, mineralogical, and microbial community analysis of basal ice in the subglacial environment at Svínafellsjökull, in south-east Iceland. Basal ice sediment supported 10E7 cells g^-1 and, based on glacier velocity and sediment flux, an estimated 10E17 cells a^-1 are exported to the glacier foreland. Furthermore, 16S rRNA gene analysis highlighted a glacier basal ice bacterial community dominated by Proteobacteria, Acidobacteria, Actinobacteria, and Chloroflexi. Sequences ascribed to chemolithotrophic-related species (Thiobacillus, Syderoxidans) were highly abundant. Minerological analyses of basal ice sediment confirmed dominant silicates and iron-containing minerals that represent susceptible substrates open to oxidation by the aforementioned chemolithotrophs. Previous studies have suggested that basal ice could constitute a good analogue for astrobiology. Svínafellsjökull and Mars geology are similar - volcanically derived rocks with a high abundance of silicates and iron-rich minerals, reinforcing this idea. Understanding where the limits of life in extreme environments, such as debris-rich basal ice, could help to unravel how life on other planets could succeed, and could help to identify which markers to use in order to find it. In dark and isolated basal ice niches, the dominating chemolithotrophic bacterial community are likely to act as primary producers, fixing carbon while weathering minerals and thus providing a plausible mechanism to explain how a basal ice microbial ecosystem can be sustained.
Denitrification, anammox and fixed nitrogen removal in the water column of a tropical great lake
NASA Astrophysics Data System (ADS)
Darchambeau, François; Roland, Fleur; Crowe, Sean A.; De Brabandere, Loreto; Llirós, Marc; Garcia-Armisen, Tamara; Inceoglu, Ozgul; Michiels, Céline; Servais, Pierre; Morana, Cédric D. T.; Bouillon, Steven; Meysman, Filip; Veuger, Bart; Masilya, Pascal M.; Descy, Jean-Pierre; Borges, Alberto V.
2013-04-01
If rates of microbial denitrification in aquatic systems are poorly constrained, it is much more the case for tropical water bodies. Lake Kivu [2.50° S 1.59° S, 29.37° E 28.83° E] is one of the great lakes of the East African Rift. It is an oligotrophic lake characterized by anoxic deep waters rich in dissolved gases (methane and carbon dioxide) and nutrients, and by well oxygenated and nutrient-depleted surface waters. During the seasonally stratified rainy season (October to May), a nitrogenous zone characterized by the accumulation of nitrite (NO2-) and nitrate (NO3-) is often observed in the lower layer of the mixolimnion. It results from nitrification of ammonium released by decaying organic matter. With the seasonal uplift of the oxygen minimum zone, the nitrogenous zone becomes anoxic and might be the most preferential area for fixed nitrogen (N) removal in Lake Kivu. Our work aimed at identifying and quantifying the processes of N losses by denitrification and/or anammox in the nitrogenous zone of the Lake Kivu water column. During 5 sampling campaigns (March 2010, October 2010, June 2011, February 2012 and September 2012), isotopic labelling experiments were used to quantify denitrification and anammox rates along vertical profiles at two pelagic stations of the main lake. Moreover, N2:Ar ratios were estimated during the September 2012 campaign, and 16S rDNA pyrosequencing was used to describe bacterial community composition during the last 2 campaigns. No bacteria related to organisms performing anammox was observed and labelling experiments failed to detect anammox at any locations and any depths. In Lake Kivu, denitrifying bacteria were mainly related to Denitratisoma and Thiobacillus genus. Significant denitrification rates were observed at several occasions, especially under the oxic-anoxic interface in the bottom of the nitracline. The annual average denitrification rate was estimated at ~150 μmoles N m-2 d-1. Denitrification was not the only nitrate-consuming process: dissimilative nitrate reduction to ammonium led to oxidized N removal with the same magnitude than denitrification alone. Isotopic labelling accompanied by addition of elemental sulfur evidenced that the upper vertical expansion of denitrification was limited by the abundance of reducing agents, while oxidized forms of N limited the lower expansion of denitrification.
Cébron, Aurélie; Beguiristain, Thierry; Bongoua-Devisme, Jeanne; Denonfoux, Jérémie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Parisot, Nicolas; Peyret, Pierre; Leyval, Corinne
2015-09-01
The high organic pollutant concentration of aged polycyclic aromatic hydrocarbon (PAH)-contaminated wasteland soils is highly recalcitrant to biodegradation due to its very low bioavailability. In such soils, the microbial community is well adapted to the pollution, but the microbial activity is limited by nutrient availability. Management strategies could be applied to modify the soil microbial functioning as well as the PAH contamination through various amendment types. The impact of amendment with clay minerals (montmorillonite), wood sawdust and organic matter plant roots on microbial community structure was investigated on two aged PAH-contaminated soils both in laboratory and 1-year on-site pot experiments. Total PAH content (sum of 16 PAHs of the US-EPA list) and polar polycyclic aromatic compounds (pPAC) were monitored as well as the available PAH fraction using the Tenax method. The bacterial and fungal community structures were monitored using fingerprinting thermal gradient gel electrophoresis (TTGE) method. The abundance of bacteria (16S rRNA genes), fungi (18S rRNA genes) and PAH degraders (PAH-ring hydroxylating dioxygenase and catechol dioxygenase genes) was followed through qPCR assays. Although the treatments did not modify the total and available PAH content, the microbial community density, structure and the PAH degradation potential changed when fresh organic matter was provided as sawdust and under rhizosphere influence, while the clay mineral only increased the percentage of catechol-1,2-dioxygenase genes. The abundance of bacteria and fungi and the percentage of fungi relative to bacteria were enhanced in soil samples supplemented with wood sawdust and in the plant rhizospheric soils. Two distinct fungal populations developed in the two soils supplemented with sawdust, i.e. fungi related to Chaetomium and Neurospora genera and Brachyconidiellopsis and Pseudallescheria genera, in H and NM soils respectively. Wood sawdust amendment favoured the development of PAH-degrading bacteria holding Gram-negative PAH-ring hydroxylating dioxygenase, catechol-1,2-dioxygenase and catechol-2,3-dioxygenase genes. Regarding the total community structure, bacteria closely related to Thiobacillus (β-Proteobacteria) and Steroidobacter (γ-Proteobacteria) genera were favoured by wood sawdust amendment. In both soils, plant rhizospheres induced the development of fungi belonging to Ascomycota and related to Alternaria and Fusarium genera. Bacteria closely related to Luteolibacter (Verrucomicrobia) and Microbacterium (Actinobacteria) were favoured in alfalfa and ryegrass rhizosphere.
Anaerobic Nitrate-Dependent Metal Bio-Oxidation
NASA Astrophysics Data System (ADS)
Weber, K.; Knox, T.; Achenbach, L. A.; Coates, J. D.
2007-12-01
Direct biological oxidation of reduced metals (Fe(II) and U(IV)) coupled to nitrate reduction at circumneutral pH under anaerobic conditions has been recognized in several environments as well as pure culture. Several phylogentically diverse mesophilic bacteria have been described as capable of anaerobic, nitrate-dependent Fe(II) oxidation (NFOx). Our recent identification of a freshwater mesophilic, lithoautotroph, Ferrutens nitratireducens strain 2002, capable of growth through NFOx presents an opportunity to further study metal bio- oxidation. Continuing physiological studies revealed that in addition to Fe(II) oxidation, strain 2002 is capable of oxidizing U(IV) (4 μM) in washed cell suspensions with nitrate serving as the electron acceptor. Pasteurized cultures exhibited abiotic oxidation of 2 μM U(IV). Under growth conditions, strain 2002 catalyzed the oxidation of 12 μM U(IV) within a two week period. Cultures amended with sodium azide, an electron transport inhibitor, demonstrated limited oxidation (7 μM) similar to pasteurized cultures, supporting the direct role of electron transport in U(IV) bio-oxidation. The oxidation of U(IV) coupled denitrification at circumneutral pH would yield enough energy to support anaerobic microbial growth (ΔG°'= -460.36 kJ/mole). It is currently unknown whether or not strain 2002 can couple this metabolism to growth. The growth of F. nitratireducens strain 2002 utilizing Fe(II) as the sole electron donor was previously demonstrated. The amount of U(IV) (~12 μM) that strain 2002 oxidized under similar autotrophic growth conditions yields 0.0019 kJ, enough energy for the generation of ATP (5.3 x 10-20 kJ ATP-1), but not enough energy for cell replication as calculated for nitrate-dependent Fe(II) oxidizing conditions (0.096 kJ) assuming a similar metabolism. In addition to F. nitratireducens strain 2002, a nitrate-dependent Fe(II) oxidizing bacterium isolated from U contaminated groundwater, Diaphorobacter sp. strain TPSY, was also capable of nitrate- dependent U(IV) oxidation (8 μM over 24 hours, pseudo first order rate constant of 0.12 ± 0.02 hr-1) in washed cell suspensions. Further biochemical investigation of nitrate-dependent U(IV) oxidation in strain TPSY revealed the expression of several putative high molecular weight proteins specific to this metabolism. Together with the previously described metabolic ability of Geobacter metallireducens (Finneran et al. 2002) and Thiobacillus denitrificans (Beller 2005), these data indicate that anaerobic, metal oxidation may be a ubiquitous microbial metabolism.
Foster, A.L.; Munk, L.; Koski, R.A.; Shanks, Wayne C.; Stillings, L.L.
2008-01-01
The relations among geochemical parameters and sediment microbial communities were examined at three shoreline sites in the Prince William Sound, Alaska, which display varying degrees of impact by acid-rock drainage (ARD) associated with historic mining of volcanogenic massive sulfide deposits. Microbial communities were examined using total fatty acid methyl esters (FAMEs), a class of compounds derived from lipids produced by eukaryotes and prokaryotes (bacteria and Archaea); standard extraction techniques detect FAMEs from both living (viable) and dead (non-viable) biomass, but do not detect Archaeal FAMEs. Biomass and diversity (as estimated by FAMEs) varied strongly as a function of position in the tidal zone, not by study site; subtidal muds, Fe oxyhydroxide undergoing biogenic reductive dissolution, and peat-rich intertidal sediment had the highest values. These estimates were lowest in acid-generating, intertidal zone sediment; if valid, the estimates suggest that only one or two bacterial species predominate in these communities, and/or that Archeal species are important members of the microbial community in this sediment. All samples were dominated by bacterial FAMEs (median value >90%). Samples with the highest absolute abundance of eukaryotic FAMEs were biogenic Fe oxyhydroxides from shallow freshwater pools (fungi) and subtidal muds (diatoms). Eukaryotic FAMEs were practically absent from low-pH, sulfide-rich intertidal zone sediments. The relative abundance of general microbial functional groups such as aerobes/anaerobes and gram(+)/gram(-) was not estimated due to severe inconsistency among the results obtained using several metrics reported in the literature. Principal component analyses (PCAs) were performed to investigate the relationship among samples as separate functions of water, sediment, and FAMEs data. PCAs based on water chemistry and FAMEs data resulted in similar relations among samples, whereas the PCA based on sediment chemistry produced a very different sample arrangement. Specifically, the sediment parameter PCA grouped samples with high bulk trace metal concentration regardless of whether the metals were incorporated into secondary precipitates or primary sulfides. The water chemistry PCA and FAMEs PCA appear to be less prone to this type of artifact. Signature lipids in sulfide-rich sediments could indicate the presence of acid-tolerant and/or acidophilic members of the genus Thiobacillus or they could indicate the presence of SO4-reducing bacteria. The microbial community documented in subtidal and offshore sediments is rich in SRB and/or facultative anaerobes of the Cytophaga-Flavobacterium group; both could reasonably be expected in PWS coastal environments. The results of this study provide evidence for substantial feedback between local (meter to centimeter-scale) geochemical variations, and sediment microbial community composition, and show that microbial community signatures in the intertidal zone are significantly altered at sites where ARD drainage is present relative to sites where it is not, even if the sediment geochemistry indicates net accumulation of ARD-generated trace metals in the intertidal zone. ?? 2007 Elsevier Ltd. All rights reserved.
Astrobiological Significance of Microbial Extremophiles
NASA Technical Reports Server (NTRS)
Pikuta, Elena V.; Hoover, Richard B.
2007-01-01
The microflora of the cryosphere of planet Earth provides the best analogs for life forms that might be found in the permafrost or polar ice caps of Mars, near the surface of the cometary nuclei, or in the liquid water beneath and the ice crusts of icy moons of Jupiter and Saturn. The importance of study alkaliphilic microorganisms for astrobiology was enhanced by the findings of abundant carbonates and carbonate globules rimmed with possibly biogenic magnetites in association with the putative microfossils in the ALH84001 meteorite. Although the ALH84001 "nanofossils" were to small and simple to be unambiguously recognized as biogenic, they stimulated Astrobiology research and studies of microbial extremophiles and biomarkers in ancient rocks and meteorites. Recent studies of CI and CM carbonaceous meteorites have resulted in the detection of the well-preserved mineralized remains of coccoidal and filamentous microorganisms in cyanobacterial mats. Energy Dispersive X-ray Analysis has shown anomalous biogenic element ratios clearly indicating they are not recent biological contaminants. This paper reviews microbial extremophiles in context of their significance to Astrobiology. The study of halophilic microorganisms was started from work with saline soils and lakes, and one of the record of good growth for Haloferax mediterranei was shown at 30 percent NaC1. Although alkali-tolerant nitrifying bacteria had previously been reported, the first described alkaliphilic microorganism was the bacterium Streptococcus faecalis. Halophilic and alkaliphilic forms are relevant to conditions that might be found in closed impact basins and craters on Mars filled with evaporite deposits. The first obligately acidophilic bacterium described was Acidithiobacillus ferrooxydans (formally Thiobacillus ferrooxidans). Later thermophilic lithotrophic acidophiles were found, and the hyperacidophilic moderately thermophilic species of the genus Picrophilus were found to grow at negative pH. The epoch of study of thermophilic microorganisms starts with the discovery of Thermus aquaticus, and presently the maximum temperature for growth at 113 C was found for Pyrolobus fumarii. The microorganisms capable of growth at high temperatures and in hyperacidic environments on Earth are good analogs for life that might be able to survive in hot acidic droplets in the upper regimes of the atmosphere of Venus. The study of barophiles was made possible by engineering achievements leading to the development of the submersible crafts used to study the Black Smokers of the Deep-sea Hydrothermal vents. The first described radioresistant bacterium Deinococcus radiodurans can survive ionizing irradiation and other DNA-damaging assaults at doses that are lethal to all other organisms. These microbes are models for life that might endure high radiation environments in the ice near the surface of comets or on the icy moons of Jupiter and Saturn and in the seafloor deep beneath icy crusts Europa and Enceladus. This paper presents ESEM and FESEM images showing intact microbes preserved in the deep ice cores extracted from just above Lake Vostok, Antarctica that are considered analogs for life forms that might survive on comets and icy moons.
NASA Astrophysics Data System (ADS)
Moser, D. P.; Anderson, C.; Bang, S.; Jones, T. L.; Boutt, D.; Kieft, T.; Sherwood Lollar, B.; Murdoch, L. C.; Pfiffner, S. M.; Bruckner, J.; Fisher, J. C.; Newburn, J.; Wheatley, A.; Onstott, T. C.
2010-12-01
Fluid and gas samples were collected from two flowing boreholes at the 4100 (1,250 m) and 4850 ft (1478 m) levels of the former Homestake Gold Mine in Lead, South Dakota. Service- and flood water samples were also collected as comparative benchmarks. With a maximum depth of 8,000 ft, (2,438 m), this mine currently hosts the Sanford Laboratory and is the proposed location for the US Deep Underground Science and Engineering Laboratory (DUSEL). The uncased 4100L hole is a legacy of mining; whereas, the cased 4850 hole was drilled in 2009 in support of large cavity construction. Both were packered or valved to exclude mine air and sampled anaerobically using aseptic technique. Physical measurements, aquatic and dissolved gas chemistry, cell counts, and microbial community assessments (SSU rRNA libraries) were performed on all samples. This study represents the first at Sanford Lab/DUSEL specifically focused on the deep biosphere rather than mine microbiology. Fluids from the two holes differed markedly, with that from 4100L being characterized by NaHCO3 and 4850 by Na2SO4. pH values of 8.2 vs. 7.5, conductivities (μS) of 1790 vs. 7667 and alkalinities (mg/L) of 767 vs. 187 were obtained from 4100L and 4850, respectively. As expected, the deeper 4850L hole had the higher temperature (38 vs. 30 oC). Neither had measureable nitrate, but both had similar dissolved organic C (DOC) concentrations (0.8 vs. 0.9 mg/L). Sulfate was present at 337 vs. 4,470 mg/L in 4100L and 4850L. Major dissolved gases were N2 (91 and 81 vol%), O2 (12 and 16 vol%) and CH4 (0.07 and 3.35 vol%) in 4100L and 4850L. The δ13C of CH4 was -51 and -56.7 permil in 4100L and 4850, respectively. The uncorrected 14C age of DIC was calculated at 25,310 (+/- 220) and 47,700 (+/-3,100) years for the two fluids. Cell counts were 5.9e3 and 2.01e5 in 4100L and 4850. Microbial community structure was diverse in both holes and distinct from that of service water. A large proportion of rRNA library clones were Proteobacteria and closely related to known or expected aerobes including: Thiobacillus, Siderooxidans, Leptothrix, Hydrogenophaga, Pseaudomonas, Methylomonas and Thiothrix, consistent with possible mine water or air contamination. Conversely, Deltaproteobacteria and Firmicute clones, often very closely related to others detected from deep mine or sediment habitats, suggests a deep subsurface component as well. Archaeal clones from 4100L were dominated by a deeply-branching clade with no cultivated representatives; whereas, those from 4850 were mostly related to known methanogens (e.g. Methanolobus). Collectively, this dataset suggests mixed end-member or deeply-sourced water partially overprinted by mine-related artifacts. However, until more is known concerning the deep hydrogeology of this system, it will be difficult to ascertain indigenous from impacted microbial communities in DUSEL.
Sulfur isotopic fractionation of carbonyl sulfide during degradation by soil bacteria and enzyme
NASA Astrophysics Data System (ADS)
Kamezaki, Kazuki; Hattori, Shohei; Ogawa, Takahiro; Toyoda, Sakae; Kato, Hiromi; Katayama, Yoko; Yoshida, Naohiro
2017-04-01
Carbonyl sulfide (COS) is an atmospheric trace gas that possess great potential for tracer of carbon cycle (Campbell et al., 2008). COS is taken up by vegetation during photosynthesis like absorption of carbon dioxide but COS can not emit by respiration of vegetation, suggesting possible tracer for gross primary production. However, some studies show the COS-derived GPP is larger than the estimates by using carbon dioxide flux because COS flux by photolysis and soil flux are not distinguished (e.g. Asaf et al., 2013). Isotope analysis is a useful tool to trace sources and transformations of trace gases. Recently our group developed a promising new analytical method for measuring the stable sulfur isotopic compositions of COS using nanomole level samples: the direct isotopic analytical technique of on-line gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using fragmentation ions S+ enabling us to easily analyze sulfur isotopes in COS (Hattori et al., 2015). Soil is thought to be important as both a source and a sink of COS in the troposphere. In particular, soil has been reported as a large environmental sink for atmospheric COS. Bacteria isolated from various soils actively degrade COS, with various enzymes such as carbonic anhydrase and COSase (Ogawa et al., 2013) involved in COS degradation. However, the mechanism and the magnitude of bacterial contribution in terms of a sink for atmospheric COS is still uncertain. Therefore, it is important to quantitatively evaluate this contribution using COS sulfur isotope analysis. We present isotopic fractionation constants for COS by laboratory incubation experiments during degradation by soil bacteria and COSase. Incubation experiments were conducted using strains belonging to the genera Mycobacterium, Williamsia, Cupriavidus, and Thiobacillus, isolated from natural soil or activated sludge and enzyme purified from a bacteria. As a result, the isotopic compositions of OCS were increased during degradation of OCS, indicating that reaction for OC32S was faster than that for OC33S and OC34S (Kamezaki et al., 2016). Although OCS degradation rates divided by cell numbers were different among strains of the same genus, the isotopic fractionation constants for same genus showed no significant differences. At the presentation, we discuss the mechanism of isotopic fractionation for OCS during degradation by comparing soil bacteria with enzyme. References Asaf, D., Rotenberg, E., Tatarinov, F., Dicken, U., Montzka, S. A., Yakir, D. Nat. Geosci., 6, 186-190, 2013 Campbell, J. E., Carmichael, G. R., Chai, T., Mena-Carrasco, M., Tang, Y., Blake, D. R., Blake, N. J., Vay, S. A., Collatz, G. J., Baker, I., Berry, J. A., Montzka, S. A., Sweeney, C., Schnoor, J. L., Stanier, C. O., Science, 332, 1085-1088, 2008. Hattori, S., Toyoda, A., Toyoda, S., Ishino, S., Ueno, Y., Yoshida, N. Anal. Chem., 87, 477-484, 2015. Ogawa, T., Noguchi, K., Saito, M., Nagahata, Y., Kato, H., Ohtaki, A., Nakayama, H., Dohmae, N., Matsushita, Y., Odaka, M., Yohda, M., Nyunoya, H., Katayama, Y. J. Am. Chem. Soc., 135, 3818-3825, 2013. Kamezaki, K., Hattori, S., Ogawa, T., Toyoda, S., Kato, H., Katayama, Y., Yoshida, N. Environ. Sci. Technol., 50, 3537-3544, 2016.