Sample records for thiol evaluation micro-method

  1. Surface-functionalized polymethacrylic acid based hydrogel microparticles for oral drug delivery.

    PubMed

    Sajeesh, S; Bouchemal, K; Sharma, C P; Vauthier, C

    2010-02-01

    Aim of the present work was to develop novel thiol-functionalized hydrogel microparticles based on poly(methacrylic acid)-chitosan-poly(ethylene glycol) (PCP) for oral drug delivery applications. PCP microparticles were prepared by a modified ionic gelation process in aqueous medium. Thiol modification of surface carboxylic acid groups of PCP micro particles was carried out by coupling l-cysteine with a water-soluble carbodiimide. Ellman's method was adopted to quantify the sulfhydryl groups, and dynamic light-scattering technique was used to measure the average particle size. Cytotoxicity of the modified particles was evaluated on Caco 2 cells by MTT assay. Effect of thiol modification on permeability of paracellular marker fluorescence dextran (FD4) was evaluated on Caco 2 cell monolayers and freshly excised rat intestinal tissue with an Ussing chamber set-up. Mucoadhesion experiments were carried out by an ex vivo bioadhesion method with excised rat intestinal tissue. The average size of the PCP microparticles was increased after thiol modification. Thiolated microparticles significantly improved the paracellular permeability of FD4 across Caco 2 cell monolayers, with no sign of toxicity. However, the efficacy of thiolated system remained low when permeation experiments were carried out across excised intestinal membrane. This was attributed to the high adhesion of the thiolated particles on the gut mucosa. Nevertheless, it can be concluded that surface thiolation is an interesting strategy to improve paracellular permeability of hydrophilic macromolecules. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  2. Enhancement of bismuth antibacterial activity with lipophilic thiol chelators.

    PubMed Central

    Domenico, P; Salo, R J; Novick, S G; Schoch, P E; Van Horn, K; Cunha, B A

    1997-01-01

    The antibacterial properties of bismuth are greatly enhanced when bismuth is combined with certain lipophilic thiol compounds. Antibacterial activity was enhanced from 25- to 300-fold by the following seven different thiols, in order of decreasing synergy: 1,3-propanedithiol, dimercaprol (BAL), dithiothreitol, 3-mercapto-2-butanol, beta-mercaptoethanol, 1-monothioglycerol, and mercaptoethylamine. The dithiols produced the greatest synergy with bismuth at optimum bismuth-thiol molar ratios of from 3:1 to 1:1. The monothiols were generally not as synergistic and required molar ratios of from 1:1 to 1:4 for optimum antibacterial activity. The most-active mono- or dithiols were also the most soluble in butanol. The intensity of the yellow formed by bismuth-thiol complexes reflected the degree of chelation and correlated with antibacterial potency at high molar ratios. The bismuth-BAL compound (BisBAL) was active against most bacteria, as assessed by broth dilution, agar diffusion, and agar dilution analyses. Staphylococci (MIC, 5 to 7 microM Bi3+) and Helicobacter pylori (MIC, 2.2 microM) were among the most sensitive bacteria. Gram-negative bacteria were sensitive (MIC, < 17 microM). Enterococci were relatively resistant (MIC, 63 microM Bi3+). The MIC range for anaerobes was 15 to 100 microM Bi3+, except for Clostridium difficile (MIC, 7.5 microM). Bactericidal activity averaged 29% above the MIC. Bactericidal activity increased with increasing pH and/or increasing temperature. Bismuth-thiol solubility, stability, and antibacterial activity depended on pH and the bismuth-thiol molar ratio. BisBAL was stable but ineffective against Escherichia coli at pH 4. Activity and instability (reactivity) increased with increasing alkalinity. BisBAL was acid soluble at a molar ratio of greater than 3:2 and alkaline soluble at a molar ratio of less than 2:3. In conclusion, certain lipophilic thiol compounds enhanced bismuth antibacterial activity against a broad spectrum of bacteria. The activity, solubility, and stability of BisBAL were strongly dependent on the pH, temperature, and molar ratio. Chelation of bismuth with certain thiol agents enhanced the solubility and lipophilicity of this cationic heavy metal, thereby significantly enhancing its potency and versatility as an antibacterial agent. PMID:9257744

  3. Laser-directed 3D assembly of carbon nanotubes using two-photon polymerization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Xiong, Wei; Jiang, Li Jia; Zhou, Yunshen; Li, Dawei; Jiang, Lan; Silvain, Jean-Francois; Lu, Yongfeng

    2017-02-01

    Precise assembly of carbon nanotubes (CNTs) in arbitrary 3D space with proper alignment is critically important and desirable for CNT applications but still remains as a long-standing challenge. Using the two-photon polymerization (TPP) technique, it is possible to fabricate 3D micro/nanoscale CNT/polymer architectures with proper CNT alignments in desired directions, which is expected to enable a broad range of applications of CNTs in functional devices. To unleash the full potential of CNTs, it is strategically important to develop TPP-compatible resins with high CNT concentrations for precise assembly of CNTs into 3D micro/nanostructures for functional device applications. We investigated a thiol grafting method in functionalizing multiwalled carbon nanotubes (MWNTs) to develop TPP-compatible MWNT-thiol-acrylate (MTA) composite resins. The composite resins developed had high MWNT concentrations up to 0.2 wt%, over one order of magnitude higher than previously published work. Significantly enhanced electrical and mechanical properties of the 3D micro/nanostructures were achieved. Precisely controlled MWNT assembly and strong anisotropic effects were confirmed. Microelectronic devices made of the MTA composite polymer were demonstrated. The nanofabrication method can achieve controlled assembly of MWNTs in 3D micro/nanostructures, enabling a broad range of CNT applications, including 3D electronics, integrated photonics, and micro/nanoelectromechanical systems (MEMS/NEMS).

  4. Affecting of aquatic vascular plant Lemna minor by cisplatin revealed by voltammetry.

    PubMed

    Supalkova, Veronika; Beklova, Miroslava; Baloun, Jiri; Singer, Christoph; Sures, Bernd; Adam, Vojtech; Huska, Dalibor; Pikula, Jiri; Rauscherova, Libuse; Havel, Ladislav; Zehnalek, Josef; Kizek, Rene

    2008-02-01

    Within the context of application of platinum derivates based effective cytostatics, we can suppose that these risk metals can get into aquatic ecosystems where they can show biologic availability for food chain. In the present work we report on investigation of affecting of duckweed (Lemna minor) by various doses of cisplatin (0, 5, 10, 20, 40, 80 and 160 microM) for 4 days. The toxic influence of cisplatin was evaluated on the basis of growth inhibition expressed as number of leaves, growth rate, and total amount of biomass. The result value of 96hEC50, calculated from growth inhibition with comparison of growth rates, was 6.93 microM. Moreover we aimed on determination of cisplatin content using differential pulse voltammetry. The highest content of cisplatin (320 ng g(-1) of fresh weight) was determined in plants treated by 80 microM at the second day of treatment. Plants protect themselves against heavy metals by means of synthesis of cysteine-rich peptides such as glutathione and phytochelatins. Thus thiol determination in the treated plants by means of Brdicka reaction followed. The marked increase in thiol concentration detected is associated with defence reaction of the plant against stress caused by cisplatin.

  5. Oxidative stress and decreased thiol level in patients with migraine: cross-sectional study.

    PubMed

    Eren, Yasemin; Dirik, Ebru; Neşelioğlu, Salim; Erel, Özcan

    2015-12-01

    Although migraine is a neurological disorder known since long, its physiopathology remains unclear. Recent studies suggest that migraine is associated with oxidative stress; however, they report divergent results. The aim of the present study was to evaluate total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), and serum thiol level in migraine patients with or without aura. The study group consisted of 141 migraine patients. The control group included 70 healthy subjects. TAS, TOS, OSI were evaluated using a method developed by Erel. Serum thiol level was measured using the Hu method. No difference was found in TAS, TOS, OSI between the patients and controls. The level of thiol was significantly lower in patients than in controls. Negative correlations were detected between thiol level and Migraine Disability Assessment score in patients. Although TAS, TOS, and OSI were similar to those of the control group, serum thiol level, an important marker of antioxidant capacity, was significantly lower in migraines compared with controls, and caused more serious disability. Novel treatment approaches may be developed based on these data, and compounds containing thiol, such as alpha lipoic acid and N-acetyl cysteine, may be used in prophylaxis.

  6. Investigation of thiol-disulphide balance in patients with acute urticaria and chronic spontaneous urticaria.

    PubMed

    Akbas, Ayse; Kilinc, Fadime; Sener, Sertac; Aktaş, Akın; Baran, Pervin; Ergin, Merve

    2017-09-01

    Thiol-disulphide balance plays a major role in health and diseases. This balance may be disrupted by various diseases. We aimed to determine status of the effect of thiol-disulphide balance in urticaria. We aimed to investigate the thiol-disulphide balance in patients with acute urticaria (AUP) and chronic spontaneous urticaria (CSU). Study included 53 AUP and 47 healthy controls plus 57 patients with chronic spontaneous urticaria (CSUP) and 57 healthy controls. Levels of native thiols, disulphides and total thiols were evaluated in plasma using a new and automated spectrophotometric method. Ratios of disulphides/total thiols, disulphides/native thiols and native thiols/total thiols were calculated. For AU, there was no statistical difference compared to control group in levels of native thiols, disulphides and total thiols. For CSU, however, there was an increase in levels of native thiols, disulphides and total thiols and the ratio of thiol/disulphide in favour of disulphide. Thiol-disulphide balance was not affected by AU but shifted towards to disulphide in CSU indicating the presence of oxidative stress (OS).

  7. Superhydrophobic hybrid inorganic-organic thiol-ene surfaces fabricated via spray-deposition and photopolymerization.

    PubMed

    Sparks, Bradley J; Hoff, Ethan F T; Xiong, Li; Goetz, James T; Patton, Derek L

    2013-03-13

    We report a simple and versatile method for the fabrication of superhydrophobic inorganic-organic thiol-ene coatings via sequential spray-deposition and photopolymerization under ambient conditions. The coatings are obtained by spray-deposition of UV-curable hybrid inorganic-organic thiol-ene resins consisting of pentaerythritol tetra(3-mercaptopropionate) (PETMP), triallyl isocyanurate (TTT), 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (TMTVSi), and hydrophobic fumed silica nanoparticles. The spray-deposition process and nanoparticle agglomeration/dispersion provide surfaces with hierarchical morphologies exhibiting both micro- and nanoscale roughness. The wetting behavior, dependent on the concentration of TMTVSi and hydrophobic silica nanoparticles, can be varied over a broad range to ultimately provide coatings with high static water contact angles (>150°), low contact angle hysteresis, and low roll off angles (<5°). The cross-linked thiol-ene coatings are solvent resistant, stable at low and high pH, and maintain superhydrophobic wetting behavior after extended exposure to elevated temperatures. We demonstrate the versatility of the spray-deposition and UV-cure process on a variety of substrate surfaces including glass, paper, stone, and cotton fabric.

  8. An evaluation of thiol/disulphide homeostasis in patients with psoriasis

    PubMed Central

    Yorulmaz, Ahu; Erdogan, Serpil; Cakmak, Seray Kulcu; Guney, Elif; Sen, Orhan; Erel, Ozcan

    2017-01-01

    Introduction The role of oxidative stress in the pathogenesis of psoriasis has been investigated in previous studies with conflicting results. On the other hand, well-established treatments currently used in psoriasis exert their effects via a boost of oxidative stress. Recently, a strong positive association between psoriasis, metabolic syndrome and dyslipidemia has also been described showing the complex nature of the disease. Aim To examine thiol/disulphide homeostasis, a newly developed homeostasis assay in psoriasis and evaluate the possible association between thiol/disulphide homeostasis and dyslipidemia in psoriasis. Material and methods The study population included 92 psoriasis patients and 71 healthy subjects. Serum native thiol, total thiol and disulphide levels were investigated in patients with psoriasis and in healthy subjects. In addition, lipid profile (serum total cholesterol, triglyceride, high-density lipoprotein cholesterol and low-density lipoprotein cholesterol) levels were investigated in both groups. The association between thiol-disulphide parameters and dyslipidemia was also evaluated. Results Serum total cholesterol and triglyceride levels were found to be higher in patients with psoriasis than in the healthy group. Lower plasma disulphide and higher native thiol levels were found in patients with psoriasis indicating an antioxidant status. Conclusions To our knowledge, this is the first study showing the shift of dynamic thiol/disulphide homeostasis towards the thiol form in psoriasis which indicate higher antioxidant status. PMID:29507562

  9. Automated tagging of pharmaceutically active thiols under flow conditions using monobromobimane.

    PubMed

    Tzanavaras, Paraskevas D; Karakosta, Theano D

    2011-03-25

    The thiol-specific derivatization reagent monobromobimane (MBB) is applied--for the first time--under flow conditions. Sequential injection analysis allows the handling of precise volumes of the reagent in the micro-liter range. The effect of the main chemical and instrumental variables was investigated using captopril (CAP), N-acetylcysteine (NAC) and penicillamine (PEN) as representative pharmaceutically active thiols. Previously reported hydrolysis of MBB due to interaction with nucleophilic components of the buffers was avoided kinetically under flow conditions. The proposed analytical scheme is suitable for the fluorimetric determination of thiols at a sampling rate of 36 h(-1). Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Thiol/disulfide homeostasis in asphalt workers.

    PubMed

    Yilmaz, Ömer Hınç; Bal, Ceylan; Neşelioglu, Salim; Büyükşekerci, Murat; Gündüzöz, Meşide; Eren, Funda; Tutkun, Lutfiye; Yilmaz, Fatma Meric

    2016-09-02

    The aim of this study was to investigate thiol/disulfide homeostasis in asphalt workers who are exposed to polycyclic aromatic hydrocarbons occupationally. The study was carried out in 34 nonsmoker asphalt workers. Additionally, 35 healthy nonsmoker volunteers were recruited as control group. Thiol and disulfide concentrations were determined using the novel automated measurement method. Levels of urinary 1-OH-pyrene were analyzed by liquid chromatography. Disulfide/thiol ratio was significantly higher in exposed group (p = .034). Also, a positive correlation was detected between disulfide/thiol ratio and 1-OH-pyrene values (r = .249, p = .036). Thiol/disulfide homeostasis was found to be disturbed in asphalt workers. The novel test used in this study may be useful for evaluating the oxidative status in polycyclic aromatic hydrocarbon (PAH) exposure.

  11. Analysis of volatile thiols in alcoholic beverages by simultaneous derivatization/extraction and liquid chromatography-high resolution mass spectrometry.

    PubMed

    Vichi, Stefania; Cortés-Francisco, Nuria; Caixach, Josep

    2015-05-15

    A simultaneous derivatization/extraction method followed by liquid chromatography-electrospray-high resolution mass spectrometry for the determination of volatile thiols in hydroalcoholic matrixes was optimized and used to identify and quantify volatile thiols in wine and beer samples. The method was evaluated in terms of sensitivity, precision, accuracy and selectivity. The experimental LOQs of eleven thiols tested ranged between 0.01 ng/L and 10 ng/L. Intra-day relative standard deviation (RSD) was in general lower than 10% and inter-day RSD ranged between 10% and 30%. Recovery in the model and real matrixes ranged from 45% to 129%. The method was then applied for the analysis of four white wines and six beers. Five out of the eleven reference thiols were identified and quantified in the samples analyzed. The non-target approach, carried out by monitoring the diagnostic ion at m/z 275.9922 [C13H10ONSe](+) in the fragmentation spectrum, allowed detecting, in the same samples, fourteen non-target thiols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Modifying surface resistivity and liquid moisture management property of keratin fibers through thiol-ene click reactions.

    PubMed

    Yu, Dan; Cai, Jackie Y; Church, Jeffrey S; Wang, Lijing

    2014-01-22

    This paper reports on a new method for improving the antistatic and liquid moisture management properties of keratinous materials. The method involves the generation of thiols by controlled reduction of cystine disulfide bonds in keratin with tris(2-carboxyethyl) phosphine hydrochloride and subsequent grafting of hydrophilic groups onto the reduced keratin by reaction with an acrylate sulfonate or acrylamide sulfonate through thiol-ene click chemistry. The modified substrates were characterized with Raman spectroscopy and scanning electron microscopy and evaluated for their performance changes in liquid moisture management, surface resistivity, and wet burst strength. The results have revealed that the thiol-acrylate reaction is more efficient than the thiol-acrylamide reaction, and the keratinous substrate modified with an acrylate sulfonate salt exhibits significantly improved antistatic and liquid moisture management properties.

  13. Protective effects of anethole dithiolethione against oxidative stress-induced cytotoxicity in human Jurkat T cells.

    PubMed

    Khanna, S; Sen, C K; Roy, S; Christen, M O; Packer, L

    1998-07-01

    The protective effects of anethole dithiolethione (ADT) against H2O2- or 4-hydroxynonenal (HNE)-induced cytotoxicity in human Jurkat T cells were investigated. Jurkat T cells were pretreated with ADT (10-50 microM) for 18 hr and then challenged with H202 or HNE for up to 4 hr. Cytotoxicity was assessed by measuring: 1) leakage of lactate dehydrogenase from cells to medium; and 2) exclusion of the DNA intercalating fluorescent probe propidium iodide by viable cells. Pretreatment of cells with ADT (10 or 25 microM) for 18 hr significantly protected cells against H202- or HNE-induced cytotoxicity. Treatment of cells with ADT (10-50 microM) for 72 hr significantly increased the activities of catalase and glutathione reductase. The maximum effect of ADT treatment on the activity of these enzymes was observed when cells were treated with 25 microM of ADT for 72 hr. A significant increase in cellular GSH was observed in cells that were treated with ADT for 72 hr. Using monobromobimane as a thiol probe, we consistently observed that cells pretreated for 18 hr with ADT (25 or 50 microM) had also increased total thiol content. Exposure of Jurkat T cells to H202 or HNE resulted in a time-dependent decrease in cellular GSH. ADT (10-50 microM, 18 hr) pretreatment circumvented H202-dependent lowering of cellular GSH. In conclusion, ADT proved to be a potent cytoprotective thiol antioxidant with multifaceted mechanisms of action, suggesting that the drug has a remarkable therapeutic potential.

  14. Thiolated chitosan nanoparticles as an oral delivery system for Amikacin: in vitro and ex vivo evaluations.

    PubMed

    Atyabi, F; Talaie, F; Dinarvand, R

    2009-08-01

    The purpose of this study was the synthesis of two thiol conjugated Chitosan polymers, and evaluation of the potential of Thiomer nanoparticle formulation as a carrier for oral delivery system. Mediated by EDAC (Ethylene-3-(3-di-methylaminopropyl)-carbodiimide), either N-acetyl Cysteine (NAC) or N-acetyl D-penicillamine (NAP) were covalently attached to Chitosan. The success of the synthesis was demonstrated by comparing FTIR spectra. Iodometric titration demonstrated that depending on the pH value of the synthesis medium, the Thiomers display 250 +/- 30 microMol and 300 +/- 20 microMol thiol groups per gram of polymer respectively. The interaction between mucin and Thiomers, compared to mucin and Chitosan was studied for assessment of mucoadhesion properties of synthesized polymers. This interaction was determined by the measurement of the amount of mucin adsorbed on Chitosan and the conjugated polymers. Rotating cylinder method demonstrated an average of 20 times improvement in mucoadhesion of Thiomers compared to the unmodified polymer. Chitosan and Thiomer nanoparticles were formulated by two methods; TPP and Sodium Sulfate gelation. SEM micrographs and data achieved by a Malvern nano/zetasizer show nanoparticles formed by TPP gelation have a mean size of 150 +/- 15 nm compared to 300 +/- 25 nm sized nanoparticles obtained by Sodium sulfate gelation. TPP gelation yields smaller, more spherical shaped nanoparticles with a smaller range of size distribution. Amikacin loaded nanoparticles with an average size of 280 nm were prepared by TPP gelation in which disulfide bond formation was achieved by a time dependent oxidation process. In vitro studies were carried out; a recovery rate of 33% and a drug entrapment of 25% were achieved. The amount of release was determined during 18 hr in a carefully prepared media. The permeation time across a biological membrane was observed to be about 150 minutes. Microbiological tests were carried out on two microorganisms; Pseudomona aeruginosa and Staphylococcus aureus to further confirm the amount of Amikacin inside drug loaded nanoparticles.

  15. Characterization of free thiol variants of an IgG1 by reversed phase ultra high pressure liquid chromatography coupled with mass spectrometry.

    PubMed

    Liu, Hongbin; Jeong, Justin; Kao, Yung-Hsiang; Zhang, Yonghua Taylor

    2015-05-10

    RP-HPLC has been demonstrated as a powerful tool to study antibody free thiol and disulfide variants. Recently, the introduction of UHPLC columns with wide pore size (300Å) and small particle size (1.7μm) offered the opportunity to further improve the separation of such variants. This paper describes a systematic evaluation of stationary phases, operating parameters, and mobile phases for a UHPLC based method to separate free thiol variants of a recombinant monoclonal antibody (referred as mAb A), targeting high resolution, high throughput and improved recovery. Among the four different stationary phases evaluated, UHPLC diphenyl columns were found to provide the best separation. Using an optimized UHPLC method, free thiol variants of mAb A were separated in 5min. Importantly, the UHPLC method revealed minor variants that had coeluted in an HPLC based method, and the UHPLC method is also applicable as a platform method for characterization of other mAbs as well. Furthermore, an on-line UHPLC-MS method was developed to characterize the separated variants, and this method can streamline the characterization of fully assembled monoclonal and bispecific therapeutic antibodies. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Thiol-Ene functionalized siloxanes for use as elastomeric dental impression materials

    PubMed Central

    Cole, Megan A.; Jankousky, Katherine C.; Bowman, Christopher N.

    2014-01-01

    Objectives Thiol- and allyl-functionalized siloxane oligomers are synthesized and evaluated for use as a radical-mediated, rapid set elastomeric dental impression material. Thiol-ene siloxane formulations are crosslinked using a redox-initiated polymerization scheme, and the mechanical properties of the thiol-ene network are manipulated through the incorporation of varying degrees of plasticizer and kaolin filler. Formulations with medium and light body consistencies are further evaluated for their ability to accurately replicate features on both the gross and microscopic levels. We hypothesize that thiol-ene functionalized siloxane systems will exhibit faster setting times and greater detail reproduction than commercially available polyvinylsiloxane (PVS) materials of comparable consistencies. Methods Thiol-ene functionalized siloxane mixtures formulated with varying levels of redox initiators, plasticizer, and kaolin filler are made and evaluated for their polymerization speed (FTIR), consistency (ISO4823.9.2), and surface energy (goniometer). Feature replication is evaluated quantitatively by SEM. The Tg, storage modulus, and creep behavior are determined by DMA. Results Increasing redox initiation rate increases the polymerization rate but at high levels also limits working time. Combining 0.86 wt% oxidizing agent with up to 5 wt% plasticizer gave a working time of 3 min and a setting time of 2 min. The selected medium and light body thiol-ene formulations also achieved greater qualitative detail reproduction than the commercial material and reproduced micrometer patterns with 98% accuracy. Significance Improving detail reproduction and setting speed is a primary focus of dental impression material design and synthesis. Radical-mediated polymerizations, particularly thiol-ene reactions, are recognized for their speed, reduced shrinkage, and ‘click’ nature. PMID:24553250

  17. Cysteine based novel noncompetitive inhibitors of urease(s)--distinctive inhibition susceptibility of microbial and plant ureases.

    PubMed

    Amtul, Zareen; Kausar, Naheed; Follmer, Cristian; Rozmahel, Richard F; Atta-Ur-Rahman; Kazmi, Syed Arif; Shekhani, Mohammed Saleh; Eriksen, Jason L; Khan, Khalid M; Choudhary, Mohammad Iqbal

    2006-10-01

    Based on the catalysis mechanism of urease, a homologous series of 10 cysteine derivatives (CysDs) was designed and synthesized, and their inhibitory activities were evaluated for microbial ureases (Bacillus pasteurii, BPU, and Proteus mirabilis, PMU) and for a plant urease [jack bean (Cavavalia ensiformis), JBU]. As already described, thiol-compounds might inhibit urease activity by chelating the nickel atoms involved in the catalysis process. In contrast to cysteine, which has been reported to be a very weak urease inhibitor, we verified a potential inhibitory activity of these CysDs. The kinetic data demonstrate that thiol derivatives are more effective than the respective thioether derivatives. Besides, thiol-CysDs had a reduced activity in acidic pH (5.0). Lineweaver-Burk plots indicated that the nature of inhibition was of noncompetitive type for all 10 compounds, with the minimum Ki value of 2 microM for N,N-dimethyl L-cysteine. It is proposed that these classes of compounds are more potent inhibitors of the bacterial ureases, compared with the plant-originated urease. Since microbial urease is directly involved in the infection process of many pathological organisms, this work demonstrates that thiol-CysDs represent a class of new potential urease inhibitors.

  18. O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana.

    PubMed

    Wirtz, Markus; Droux, Michel; Hell, Rüdiger

    2004-08-01

    The synthesis of cysteine is positioned at a decisive stage of assimilatory sulphate reduction, marking the fixation of inorganic sulphide into a carbon skeleton. O-acetylserine (thiol) lyase (OAS-TL) catalyses the reaction of inorganic sulphide with O-acetylserine (OAS). Despite its prominent position in the pathway OAS-TL is generally regarded as a non-limiting enzyme without regulatory function, due to low substrate affinities and semi-constitutive expression patterns. To resolve this apparent contradiction, the kinetic properties of three OAS-TLs from Arabidopsis thaliana, localized in the cytosol (A), plastids (B), and mitochondria (C), were analysed. The recombinant expressed OAS-TLs were purified to apparent homogeneity without any fusion tag to maintain their native forms. The proteins displayed high specific activities of 550-900 micromol min(-1) mg(-1). Using an improved and highly sensitive assay method for cysteine determination, the apparent K(m)(sulphide) was 3-6 microM for OAS-TL A, B, and C and thus 10-100 times lower than previously reported for plant OAS-TLs. K(m)(OAS) was between 310 microM and 690 microM for OAS-TL isoform A, B, and C, whereas the apparent dissociation binding constant for OAS was much lower (K(d)<1 microM OAS). A HPLC method was developed for OAS quantification that revealed fast increases of the cellular OAS concentration in response to sulphate deprivation. The observed fluctuations of intracellular OAS concentrations, combined with the OAS dissociation constant and the catalytic properties of OAS-TL, support the model of a dynamic cysteine synthesis system with regulatory function as can be expected from the position of the reaction in the sulphur assimilation pathway.

  19. Self-assembling siloxane bilayer directly on SiO2 surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives.

    PubMed

    Chen, Ying; Xu, Pengcheng; Li, Xinxin

    2010-07-02

    This paper presents a novel sensing layer modification technique for static micro-cantilever sensors that detect trace explosives by measuring specific adsorption-induced surface stress. For the first time, a method of directly modifying a siloxane sensing bilayer on an SiO(2) surface is proposed to replace the conventional self-assembled monolayers (SAMs) of thiols on Au to avoid the trouble from long-term unstable Au-S bonds. For modifying the long-term reliable sensing bilayer on the piezoresistor-integrated micro-cantilevers, a siloxane-head bottom layer is self-assembled directly on the SiO(2) cantilever surface, which is followed by grafting another explosive-sensing-group functionalized molecule layer on top of the siloxane layer. The siloxane-modified sensor has experimentally exhibited a highly resoluble response to 0.1 ppb TNT vapor. More importantly, the repeated detection results after 140 days show no obvious attenuation in sensing signal. Also observed experimentally, the specific adsorption of the siloxane sensing bilayer to TNT molecules causes a tensile surface stress on the cantilever. Herein the measured tensile surface stress is in contrast to the compressive surface stress normally measured from conventional cantilever sensors where the sensitive thiol-SAMs are modified on an Au surface. The reason for this newly observed phenomenon is discussed and preliminarily analyzed.

  20. Synchrotron radiation based STXM analysis and micro-XRF mapping of differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on Fe(2+) and S(0).

    PubMed

    Xia, Jin-Lan; Liu, Hong-Chang; Nie, Zhen-Yuan; Peng, An-An; Zhen, Xiang-Jun; Yang, Yun; Zhang, Xiu-Li

    2013-09-01

    The differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on substrates Fe(2+) and S(0) was investigated by using synchrotron radiation based scanning transmission X-ray microscopy (STXM) imaging and microbeam X-ray fluorescence (μ-XRF) mapping. The extracellular thiol groups (SH) were first alkylated by iodoacetic acid forming Protein-SCH2COOH and then the P-SCH2COOH was marked by calcium ions forming P-SCH2COOCa. The STXM imaging and μ-XRF mapping of SH were based on analysis of SCH2COO-bonded Ca(2+). The results indicated that the thiol group content of A. ferrooxidans grown on S(0) is 3.88 times to that on Fe(2+). Combined with selective labeling of SH by Ca(2+), the STXM imaging and μ-XRF mapping provided an in situ and rapid analysis of differential expression of extracellular thiol groups. © 2013.

  1. Precise 3D printing of micro/nanostructures using highly conductive carbon nanotube-thiol-acrylate composites

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Xiong, W.; Jiang, L. J.; Zhou, Y. S.; Lu, Y. F.

    2016-04-01

    Two-photon polymerization (TPP) is of increasing interest due to its unique combination of truly three-dimensional (3D) fabrication capability and ultrahigh spatial resolution of ~40 nm. However, the stringent requirements of non-linear resins seriously limit the material functionality of 3D printing via TPP. Precise fabrication of 3D micro/nanostructures with multi-functionalities such as high electrical conductivity and mechanical strength is still a long-standing challenge. In this work, TPP fabrication of arbitrary 3D micro/nanostructures using multi-walled carbon nanotube (MWNT)-thiolacrylate (MTA) composite resins has been developed. Up to 0.2 wt% MWNTs have been incorporated into thiol-acrylate resins to form highly stable and uniform composite photoresists without obvious degradation for one week at room temperature. Various functional 3D micro/nanostructures including woodpiles, micro-coils, spiral-like photonic crystals, suspended micro-bridges, micro-gears and complex micro-cars have been successfully fabricated. The MTA composite resin offers significant enhancements in electrical conductivity and mechanical strength, and on the same time, preserving high optical transmittance and flexibility. Tightly controlled alignment of MWNTs and the strong anisotropy effect were confirmed. Microelectronic devices including capacitors and resistors made of the MTA composite polymer were demonstrated. The 3D micro/nanofabrication using the MTA composite resins enables the precise 3D printing of micro/nanostructures of high electrical conductivity and mechanical strength, which is expected to lead a wide range of device applications, including micro/nano-electromechanical systems (MEMS/NEMS), integrated photonics and 3D electronics.

  2. Thiol peptides induction in the seagrass Thalassia testudinum (Banks ex König) in response to cadmium exposure.

    PubMed

    Alvarez-Legorreta, Teresa; Mendoza-Cozatl, David; Moreno-Sanchez, Rafael; Gold-Bouchot, Gerardo

    2008-01-20

    Trace metal accumulation and thiol compounds synthesis as induced by cadmium exposure was studied in the seagrass Thalassia testudinum. Shoots were exposed for 24, 48, 96 and 144 h to several CdCl(2) concentrations (0, 30, 50 and 70 microM). Levels of cadmium, cysteine, glutathione (GSH), gamma-glutamylcysteine (gamma-EC), and phytochelatin-like peptides were determined in green blades, live sheaths and root/rhizomes tissues. Metal accumulation was dependent on Cd concentration and type of tissue, with green blades showing the highest content followed by live sheaths and root/rhizomes. All tissues experienced an increase in thiol-containing compounds as a response to cadmium exposure. Live sheaths showed the highest levels of cysteine, GSH and gamma-EC. This is the first report of induction of thiol peptides, presumably phytochelatins, by a trace metal in a sea grass species.

  3. Facile quantitation of free thiols in a recombinant monoclonal antibody by reversed-phase high performance liquid chromatography with hydrophobicity-tailored thiol derivatization.

    PubMed

    Welch, Leslie; Dong, Xiao; Hewitt, Daniel; Irwin, Michelle; McCarty, Luke; Tsai, Christina; Baginski, Tomasz

    2018-06-02

    Free thiol content, and its consistency, is one of the product quality attributes of interest during technical development of manufactured recombinant monoclonal antibodies (mAbs). We describe a new, mid/high-throughput reversed-phase-high performance liquid chromatography (RP-HPLC) method coupled with derivatization of free thiols, for the determination of total free thiol content in an E. coli-expressed therapeutic monovalent monoclonal antibody mAb1. Initial selection of the derivatization reagent used an hydrophobicity-tailored approach. Maleimide-based thiol-reactive reagents with varying degrees of hydrophobicity were assessed to identify and select one that provided adequate chromatographic resolution and robust quantitation of free thiol-containing mAb1 forms. The method relies on covalent derivatization of free thiols in denatured mAb1 with N-tert-butylmaleimide (NtBM) label, followed by RP-HPLC separation with UV-based quantitation of native (disulfide containing) and labeled (free thiol containing) forms. The method demonstrated good specificity, precision, linearity, accuracy and robustness. Accuracy of the method, for samples with a wide range of free thiol content, was demonstrated using admixtures as well as by comparison to an orthogonal LC-MS peptide mapping method with isotope tagging of free thiols. The developed method has a facile workflow which fits well into both R&D characterization and quality control (QC) testing environments. The hydrophobicity-tailored approach to the selection of free thiol derivatization reagent is easily applied to the rapid development of free thiol quantitation methods for full-length recombinant antibodies. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A Study of Functional Polymer Colloids Prepared Using Thiol-Ene/Yne Click Chemistry

    NASA Astrophysics Data System (ADS)

    Durham, Olivia Z.

    This project demonstrates the first instance of thiol-ene chemistry as the polymerization method for the production of polymer colloids in two-phase heterogeneous suspensions, miniemulsions, and emulsions. This work was also expanded to thiol-yne chemistry for the production of polymer particles containing increased crosslinking density. The utility of thiol-ene and thiol-yne chemistries for polymerization and polymer modification is well established in bulk systems. These reactions are considered 'click' reactions, which can be defined as processes that are both facile and simple, offering high yields with nearly 100% conversion, no side products, easy product separation, compatibility with a diverse variety of commercially available starting materials, and orthogonality with other chemistries. In addition, thiol-ene and thiol-yne chemistry follow a step-growth mechanism for the development of highly uniform polymer networks, where polymer growth is dependent on the coupling of functional groups. These step-growth polymerization systems are in stark contrast to the chain-growth mechanisms of acrylic and styrenic monomers that have dominated the field of conventional heterogeneous polymerizations. Preliminary studies evaluated the mechanism of particle production in suspension and miniemulsion systems. Monomer droplets were compared to the final polymer particles to confirm that particle growth occurred through the polymerization of monomer droplets. Additional parameters examined include homogenization energy (mechanical mixing), diluent species and concentration, and monomer content. These reactions were conducted using photoinitiation to yield particles in a matter of minutes with diameters in the size range of several microns to hundreds of microns in suspensions or submicron particles in miniemulsions. Improved control over the particle size and size distribution was examined through variation of reaction parameters. In addition, a method of seeded suspension polymerization was attempted. This project was further expanded through an extensive evaluation of stabilizers in thiol-ene suspension polymerizations. The scope of stabilizers used included synthetic surfactants (ionic and nonionic), natural gums, and colloidal silica (Pickering stabilization). Suspension polymerizations were further expanded to include thiol-yne chemistry for the evaluation of polymer composition and thermal properties. In addition, polymer particles with excess ene, yne, or thiol functionality were successfully developed to demonstrate the potential for further functionalization. The self-limiting behavior of thiol-ene/yne reactions allows for successful synthesis of functional polymer colloids using off-stoichiometric amounts of monomers. This capacity to control functionality is illustrated through the creation of fluorescent polymer particles using both an in situ thiol-ene polymerization reaction with a vinyl chromophore as well as through post-polymerization modification of thiol-ene and thiol-yne polymers with excess thiol functionality via thiol-isocyanate chemistry. To produce smaller polymer particles without the need for intense homogenization energy or high stabilizer concentrations, an emulsion polymerization system was implemented using a water soluble-thermal initiator. It was found that unlike thiol-ene suspensions, which are limited to crosslinked systems, thiol-ene emulsion polymerizations allowed for the production of polymer particles comprised of either crosslinked or linear polymer networks. For the crosslinked systems, various anionic SDS surfactant concentrations were examined to observe the influence on particle size. In linear polymer systems, variations in polymer composition were examined. Preliminary studies performed with a monomer with an ethylene glycol-like structure indicated that the synthesis of polymer particles with narrower size distributions compared to any of the other emulsion compositions was possible. Finally, thiol-ene chemistry was also employed toward the synthesis of degradable polyanhydride polymer particles. Unlike the aforementioned studies, the approach to particle synthesis was conducted by using a premade thiol-ene polymer. Various linear thiol-ene polyanhydrides were emulsified in water or buffered solutions via sonication. Polymer latex was obtained upon solvent evaporation of the dichloromethane (DCM) solvent used to solubilize the polymer. In this work, variation of polymer composition as well as degradation was examined. Additional experiments included a study of the release of Rhodamine B dye, functionalization of the linear polymers, and studies involving the delay of degradation through the incorporation of crosslinking in the polymer particles. The projects presented herein provide an innovative approach to the synthesis of polymer colloids using thiol-ene and thiol-yne 'click' chemistry in both heterogeneous polymerizations as well as through solvent evaporation of premade polymer solutions. Polymer colloids prove to be an area of great interest for numerous applications that encompass various areas involving biomedical and industrial technologies including paints and coatings, cosmetics, diagnostics, and drug delivery. Improvements in methods of chemical synthesis as well as advances in the tailoring of material properties are of utmost importance for the ever increasing demands of new technologies and educational enlightenment.

  5. Non-protein thiol imaging and quantification in live cells with a novel benzofurazan sulfide triphenylphosphonium fluorogenic compound.

    PubMed

    Yang, Yang; Guan, Xiangming

    2017-05-01

    Thiols (-SH) play various roles in biological systems. They are divided into protein thiols (PSH) and non-protein thiols (NPSH). Due to the significant roles thiols play in various physiological/pathological functions, numerous analytical methods have been developed for thiol assays. Most of these methods are developed for glutathione, the major form of NPSH. Majority of these methods require tissue/cell homogenization before analysis. Due to a lack of effective thiol-specific fluorescent/fluorogenic reagents, methods for imaging and quantifying thiols in live cells are limited. Determination of an analyte in live cells can reveal information that cannot be revealed by analysis of cell homogenates. Previously, we reported a thiol-specific thiol-sulfide exchange reaction. Based on this reaction, a benzofurazan sulfide thiol-specific fluorogenic reagent was developed. The reagent was able to effectively image and quantify total thiols (PSH+NPSH) in live cells through fluorescence microscopy. The reagent was later named as GUALY's reagent. Here we would like to report an extension of the work by synthesizing a novel benzofurazan sulfide triphenylphosphonium derivative [(((7,7'-thiobis(benzo[c][1,2,5]oxadiazole-4,4'-sulfonyl))bis(methylazanediyl))bis(butane-4,1-diyl))bis(triphenylphosphonium) (TBOP)]. Like GUALY's reagent, TBOP is a thiol-specific fluorogenic agent that is non-fluorescent but forms fluorescent thiol adducts in a thiol-specific fashion. Different than GUALY's reagent, TBOP reacts only with NPSH but not with PSH. TBOP was effectively used to image and quantify NPSH in live cells using fluorescence microscopy. TBOP is a complementary reagent to GUALY's reagent in determining the roles of PSH, NPSH, and total thiols in thiol-related physiological/pathological functions in live cells through fluorescence microscopy. Graphical Abstract Live cell imaging and quantification of non-protein thiols by TBOP.

  6. Dynamic Thiol/Disulphide Homeostasis in Children and Adolescents with Non-Autoimmune Subclinical Hypothyroidism

    PubMed Central

    Uçaktürk, Seyit Ahmet; Alışık, Murat; Uğur, Çağatay; Elmaoğulları, Selin; Mengen, Eda; Erel, Özcan

    2018-01-01

    Objective To evaluate the thiol/disulphide homeostasis in children with non-autoimmune subclinical hypothyroidism (SHT). Subjects and Methods Thiol/disulphide homeosta sis, involving native thiol (SH), disulphide (SS), and total thiol (SS + SH), was evaluated in 60 children and adolescents who were negative for thyroid auto-antibodies (anti-thyroid peroxidase, anti-thyroglobulin) and had a thyroid-stimulating hormone (TSH) value of > 5 mIU/L, and in 40 sex- and age-matched healthy control subjects who were negative for thyroid autoantibodies and had normal TSH levels. Lipid profiles and urine iodine levels were also determined. Results SH (466 ± 32.8 vs. 462 ± 32.1 μmol/L p = 0.59), SH + SS (508 ± 34.0 vs. 506 ± 32.7 μmol/L, p = 0.81), SS (21 ± 5.5 vs. 22 ± 5.8 μmol/L, p = 0.41), SS/SH (4.5 ± 1.2 vs. 4.8 ± 1.3%, p = 0.36), SS/SH + SS (4.1 ± 1.0 vs. 4.3 ± 1.1%, p = 0.36) and SH/SH + SS (91 ± 2.1 vs. 91 ± 2.1%, p = 0.31) levels were similar in children with SHT and control subjects (p > 0.05). There was no difference between total cholesterol, triglyceride, and low-density lipoprotein levels in SHT patients and controls. No difference was detected between the patients with or without iodine deficiency in the SHT group in terms of thiol/disulphide homeostasis parameters. Conclusion The status of dynamic thiol/disulphide homeostasis did not change in children and adolescents with non-autoimmune SHT. Future studies are needed for the evaluation of oxidative stress in patients with long-standing non-autoimmune SHT. PMID:29402856

  7. Capillary zone electrophoresis for analysis of phytochelatins and other thiol peptides in complex biological samples derivatized with monobromobimane.

    PubMed

    Perez-Rama, Mónica; Torres Vaamonde, Enrique; Abalde Alonso, Julio

    2005-02-01

    A new method to improve the analysis of phytochelatins and their precursors (cysteine, gamma-Glu-Cys, and glutathione) derivatized with monobromobimane (mBrB) in complex biological samples by capillary zone electrophoresis is described. The effects of the background electrolyte pH, concentration, and different organic additives (acetonitrile, methanol, and trifluoroethanol) on the separation were studied to achieve optimum resolution and number of theoretical plates of the analyzed compounds in the electropherograms. Optimum separation of the thiol peptides was obtained with 150 mM phosphate buffer at pH 1.60. Separation efficiency was improved when 2.5% v/v methanol was added to the background electrolyte. The electrophoretic conditions were 13 kV and capillary dimensions with 30 cm length from the inlet to the detector (38 cm total length) and 50 microm inner diameter. The injection was by pressure at 50 mbar for 17 s. Under these conditions, the separation between desglycyl-peptides and phytochelatins was also achieved. We also describe the optimum conditions for the derivatization of biological samples with mBrB to increase electrophoretic sensitivity and number of theoretical plates. The improved method was shown to be simple, reproducible, selective, and accurate in measuring thiol peptides in complex biological samples, the detection limit being 2.5 microM glutathione at a wavelength of 390 nm.

  8. Molecular Characterization of Thiols in Fossil Fuels by Michael Addition Reaction Derivatization and Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Wang, Meng; Zhao, Suoqi; Liu, Xuxia; Shi, Quan

    2016-10-04

    Thiols widely occur in sediments and fossil fuels. However, the molecular composition of these compounds is unclear due to the lack of appropriate analytical methods. In this work, a characterization method for thiols in fossil fuels was developed on the basis of Michael addition reaction derivatization followed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Model thiol compound studies showed that thiols were selectively reacted with phenylvinylsulfone and transformed to sulfones with greater than 98% conversions. This method was applied to a coker naphtha, light and heavy gas oils, and crude oils from various geological sources. The results showed that long alkyl chain thiols are readily present in petroleum, which have up to 30 carbon atoms. Large DBE dispersity of thiols indicates that naphthenic and aromatic thiols are also present in the petroleum. This method is capable of detecting thiol compounds in the part per million range by weight. This method allows characterization of thiols in a complex hydrocarbon matrix, which is complementary to the comprehensive analysis of sulfur compounds in fossil fuels.

  9. Chemiluminescence Resonance Energy Transfer-based Detection for Microchip Electrophoresis

    PubMed Central

    Huang, Yong; Shi, Ming; Liu, Rongjun

    2010-01-01

    Since the channels in micro- and nanofluidic devices are extremely small, a sensitive detection is required following microchip electrophoresis (MCE). This work describes a highly sensitive and yet universal detection scheme based on chemiluminescence resonance energy transfer (CRET) for MCE. It was found that an efficient CRET occurred between a luminol donor and a CdTe quantum dot (QD) acceptor in the luminol-NaBrO-QD system, and that it was sensitively suppressed by the presence of certain organic compounds of biological interest including biogenic amines and thiols, amino acids, organic acids, and steroids. These findings allowed developing sensitive MCE-CL assays for the tested compounds. The proposed MCE-CL methods showed desired analytical figures of merit such as a wide concentration range of linear response. Detection limits obtained were ~10−9 M for biogenic amines including dopamine and epinephrine, and ~ 10−8 M for biogenic thiols (e.g. glutathione and acetylcysteine), organic acids (i.e. ascorbic acid and uric acid), estrogens, and native amino acids. These were 10 to 1000 times more sensitive than those of previously reported MCE-based methods with chemiluminescence, electrochemical, or laser induced fluorescence detection for quantifying corresponding compounds. To evaluate the applicability of the present MCE-CL method for analyzing real biological samples, it was used to determine amino acids in individual human red blood cells. Nine amino acids including Lys, Ser, Ala, Glu, Trp, etc. were detected. The contents ranged from 3 to 31 amol /cell. The assay proved to be simple, quick, reproducible, and very sensitive. PMID:20121202

  10. Thiol Specific and Mitochondria Selective Fluorogenic Benzofurazan Sulfide for Live Cell Nonprotein Thiol Imaging and Quantification in Mitochondria.

    PubMed

    Wang, Shenggang; Yin, Huihui; Huang, Yue; Guan, Xiangming

    2018-06-11

    Cellular thiols are divided into two major categories: nonprotein thiols (NPSH) and protein thiols (PSH). Thiols are unevenly distributed inside the cell and compartmentalized in subcellular structures. Most of our knowledge on functions/dysfunctions of cellular/subcellular thiols is based on the quantification of cellular/subcellular thiols through homogenization of cellular/subcellular structures followed by a thiol quantification method. We would like to report a thiol-specific mitochondria-selective fluorogenic benzofurazan sulfide {7,7'-thiobis( N-rhodamine-benzo[c][1,2,5]oxadiazole-4-sulfonamide) (TBROS)} that can effectively image and quantify live cell NPSH in mitochondria through fluorescence intensity. Limited methods are available for imaging thiols in mitochondria in live cells especially in a quantitative manner. The thiol specificity of TBROS was demonstrated by its ability to react with thiols and inability to react with biologically relevant nucleophilic functional groups other than thiols. TBROS, with minimal fluorescence, formed strong fluorescent thiol adducts (λ ex = 550 nm, λ em = 580 nm) when reacting with NPSH confirming its fluorogenicity. TBROS failed to react with PSH from bovine serum albumin and cell homogenate proteins. The high mitochondrial thiol selectivity of TBROS was achieved by its mitochondria targeting structure and its higher reaction rate with NPSH at mitochondrial pH. Imaging of mitochondrial NPSH in live cells was confirmed by two colocalization methods and use of a thiol-depleting reagent. TBROS effectively imaged NPSH changes in a quantitative manner in mitochondria in live cells. The reagent will be a useful tool in exploring physiological and pathological roles of mitochondrial thiols.

  11. Species-Specific Thiol-Disulfide Equilibrium Constant: A Tool To Characterize Redox Transitions of Biological Importance.

    PubMed

    Mirzahosseini, Arash; Somlyay, Máté; Noszál, Béla

    2015-08-13

    Microscopic redox equilibrium constants, a new species-specific type of physicochemical parameters, were introduced and determined to quantify thiol-disulfide equilibria of biological significance. The thiol-disulfide redox equilibria of glutathione with cysteamine, cysteine, and homocysteine were approached from both sides, and the equilibrium mixtures were analyzed by quantitative NMR methods to characterize the highly composite, co-dependent acid-base and redox equilibria. The directly obtained, pH-dependent, conditional constants were then decomposed by a new evaluation method, resulting in pH-independent, microscopic redox equilibrium constants for the first time. The 80 different, microscopic redox equilibrium constant values show close correlation with the respective thiolate basicities and provide sound means for the development of potent agents against oxidative stress.

  12. A Novel Oxidative Stress Mediator in Acute Appendicitis: Thiol/Disulphide Homeostasis

    PubMed Central

    Turan, Umit; Kuvvetli, Adnan; Kilavuz, Huseyin; Karakaya, Burak; Ozaltun, Pınar; Alısık, Murat; Erel, Ozcan

    2016-01-01

    Aim. To investigate the role of a novel oxidative stress marker, thiol/disulphide homeostasis, in patients diagnosed with acute appendicitis (AA). Methods. In this study, seventy-one (43 male and 28 female) patients diagnosed with AA and 71 (30 male and 41 female) healthy volunteers were included. Age, gender, body mass index (BMI), haemoglobin (Hb), white blood cell (WBC), c-reactive protein (CRP), and thiol/disulphide homeostasis parameters (native thiol, total thiol, disulphide, disulphide/native thiol, native thiol/total thiol, and disulphide/total thiol ratios) were compared between the groups. Thiol/disulphide homeostasis was determined by a newly developed method by Erel and Neselioglu. Results. The native thiol, total thiol, and the native thiol/total thiol ratio levels were statistically significantly decreased in the AA compared with the control group (p < 0.001). Disulphide level and the ratios of disulphide/native thiol and disulphide/total thiol were higher in the AA group than in the control group (p < 0.001). There was a negative correlation of CRP with native thiol, total thiol, and native thiol/total thiol ratio while there was a positive correlation of CRP with disulphide/native thiol and disulphide/total thiol in the AA group. In the stepwise regression model, risk factors as disulphide/native thiol (OR = 1.368; p = 0.018) and CRP (OR = 1.635; p = 0.003) were determined as predictors of perforated appendicitis compared to the nonperforated group. Conclusion. This is the first study examining the thiol/disulphide homeostasis as a diagnostic aid in AA and establishing thiol/disulphide homeostatis balance shifted towards the disulphide formation due to thiol oxidation. Further studies are needed to optimize the use of this novel oxidative stress marker in AA. PMID:27642237

  13. Benzofurazan Sulfides for Thiol Imaging and Quantification in Live Cells through Fluorescence Microscopy

    PubMed Central

    Li, Yinghong; Yang, Yang; Guan, Xiangming

    2012-01-01

    Thiol groups play a significant role in various cellular functions. Cellular thiol concentrations can be affected by various physiological or pathological factors. A fluorescence imaging agent that can effectively and specifically image thiols in live cells through fluorescence microscopy is desirable for live cell thiol monitoring. Benzofurazan sulfides 1a–e were synthesized and found to be thiol specific fluorogenic agents except 1d. They are not fluorescent but form strong fluorescent thiol adducts after reacting with thiols through a sulfide-thiol exchange reaction. On the other hand, they exhibit no reaction with other biologically relevant nucleophilic functional groups such as -NH2, -OH, or -COOH revealing the specificity for the detection of thiols. Sulfide 1a was selected to confirm its ability to image cellular thiols through fluorescence microscopy. The compound was demonstrated to effectively image and quantify thiol changes in live cells through fluorescence microscopy using 430 nm and 520 nm as the excitation and emission wavelengths respectively. The quantification results of total thiol in live cells obtained from fluorescence microscopy were validated by an HPLC/UV total thiol assay method. The reagents and method will be of a great value to thiol redox-related research. PMID:22794193

  14. The change in serum Thiol/Disulphide homeostasis after transrectal ultrasound guided prostate biopsy

    PubMed Central

    Tokgöz, Hüsnü; Taş, Selim; Giray, Özlem; Yalçınkaya, Soner; Tokgöz, Özlem; Koca, Cemile; Savaş, Murat; Erel, Özcan

    2017-01-01

    ABSTRACT Objectives The aim of this prospective clinical study was to investigate variations in a novel oxidative stress marker (thiol/disulphide homeostasis) in men who underwent transrectal ultrasound guided prostate biopsy (TRUSB). Materials and Methods A total of 22 men undergoing TRUSB of the prostate were enrolled in the study. Patients with abnormal digital rectal examination and/or total prostate specific antigen (PSA) over 4ng/mL underwent TRUSB with 12 cores. Serum samples were obtained before and just after the procedure to evaluate the possible changes in thiol/disulphide homeostasis. Mean age, total PSA and free PSA, prostate volume and histopathological data were also recorded. Results Mean age of the study population was 65.05±8.89 years. Significant decreases in native and total thiol levels were documented after the biopsy procedure. However, serum disulphide levels and disulphide/native thiol, disulphide/total thiol and native/total thiol ratios did not significantly change after TRUSB. No correlation was observed between oxidative parameters and total PSA and free PSA levels, prostate volume and histopathology of the prostate. However, mean patient age was significantly correlated with mean native and total thiol levels. Conclusion Significant decreases in serum native and total thiol levels related to the prostate biopsy procedure suggest that TRUSB causes acute oxidative stress in the human body. Since our trial is the first in the current literature to investigate these oxidative stress markers in urology practice, additional studies are warranted. PMID:28128906

  15. Spectrophotometric Determination of Phenolic Antioxidants in the Presence of Thiols and Proteins.

    PubMed

    Avan, Aslı Neslihan; Demirci Çekiç, Sema; Uzunboy, Seda; Apak, Reşat

    2016-08-12

    Development of easy, practical, and low-cost spectrophotometric methods is required for the selective determination of phenolic antioxidants in the presence of other similar substances. As electron transfer (ET)-based total antioxidant capacity (TAC) assays generally measure the reducing ability of antioxidant compounds, thiols and phenols cannot be differentiated since they are both responsive to the probe reagent. In this study, three of the most common TAC determination methods, namely cupric ion reducing antioxidant capacity (CUPRAC), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt/trolox equivalent antioxidant capacity (ABTS/TEAC), and ferric reducing antioxidant power (FRAP), were tested for the assay of phenolics in the presence of selected thiol and protein compounds. Although the FRAP method is almost non-responsive to thiol compounds individually, surprising overoxidations with large positive deviations from additivity were observed when using this method for (phenols + thiols) mixtures. Among the tested TAC methods, CUPRAC gave the most additive results for all studied (phenol + thiol) and (phenol + protein) mixtures with minimal relative error. As ABTS/TEAC and FRAP methods gave small and large deviations, respectively, from additivity of absorbances arising from these components in mixtures, mercury(II) compounds were added to stabilize the thiol components in the form of Hg(II)-thiol complexes so as to enable selective spectrophotometric determination of phenolic components. This error compensation was most efficient for the FRAP method in testing (thiols + phenols) mixtures.

  16. Sensitive and background-free determination of thiols from wastewater samples by MOF-5 extraction coupled with high-performance liquid chromatography with fluorescence detection using a novel fluorescence probe of carbazole-9-ethyl-2-maleimide.

    PubMed

    Lv, Zhengxian; Sun, Zhiwei; Song, Cuihua; Lu, Shuaimin; Chen, Guang; You, Jinmao

    2016-12-01

    A sensitive and background-free pre-column derivatization method for the determination of thiol compounds using metal-organic framework material (MOF-5) as dispersive solid-phase extraction (DSPE) adsorbent followed by high-performance liquid chromatography fluorescence detection (HPLC-FLD) has been developed. In this paper, a novel labeling reagent, carbazole-9-ethyl-2-maleimide(CAEM), was synthesized and reacted with thiols at 40°C for 10min in the presence of PBS buffer (0.02mol/L, pH 7.5). Interestingly, CAEM itself had no fluorescence, while its derivatives exhibited intense fluorescence with an excitation maximum at λ ex 274nm and an emission maximum at λ em 363nm, which greatly reduced the background interference and improved the sensitivity of the method. Furthermore, the MOF-5 was prepared and used as DSPE adsorbent for the selective adsorption of thiols from wastewater sample. Under the optimized experimental conditions, an excellent linearity for all analytes over their concentration ranges of 0.01-1.0μmol/L (R 2 >0.9986)were obtained with the limit of detection (LOD) ranging from 8 to 17.1pmol/L for nine tested thiols. The feasibility of this method for the determination of thiols in wastewater samples had been evaluated and satisfactory average recoveries (n=3) were achieved with the range of 86.6-98.5%. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Thiol derivatization of Xanthan gum and its evaluation as a mucoadhesive polymer.

    PubMed

    Bhatia, Meenakshi; Ahuja, Munish; Mehta, Heena

    2015-10-20

    Thiol-derivatization of xanthan gum polysaccharide was carried out by esterification with mercaptopropionic acid and thioglycolic acid. Thiol-derivatization was confirmed by Fourier-transformed infra-red spectroscopy. Xanthan-mercaptopropionic acid conjugate and xanthan-thioglycolic acid conjugate were found to possess 432.68mM and 465.02mM of thiol groups as determined by Ellman's method respectively. Comparative evaluation of mucoadhesive property of metronidazole loaded buccal pellets of xanthan and thiolated xanthan gum using chicken buccal pouch membrane revealed higher ex vivo bioadhesion time of thiolated xanthan gum as compared to xanthan gum. Improved mucoadhesive property of thiolated xanthan gum over the xanthan gum can be attributed to the formation of disulfide bond between mucus and thiolated xanthan gum. In vitro release study conducted using phosphate buffer (pH 6.8) revealed a sustained release profile of metronidazole from thiolated xanthan pellets as compared to xanthan pellets. In conclusion, thiolation of xanthan improves its mucoadhesive property and sustained the release of metronidazole over a prolonged period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Spectrophotometric Determination of Phenolic Antioxidants in the Presence of Thiols and Proteins

    PubMed Central

    Avan, Aslı Neslihan; Demirci Çekiç, Sema; Uzunboy, Seda; Apak, Reşat

    2016-01-01

    Development of easy, practical, and low-cost spectrophotometric methods is required for the selective determination of phenolic antioxidants in the presence of other similar substances. As electron transfer (ET)-based total antioxidant capacity (TAC) assays generally measure the reducing ability of antioxidant compounds, thiols and phenols cannot be differentiated since they are both responsive to the probe reagent. In this study, three of the most common TAC determination methods, namely cupric ion reducing antioxidant capacity (CUPRAC), 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt/trolox equivalent antioxidant capacity (ABTS/TEAC), and ferric reducing antioxidant power (FRAP), were tested for the assay of phenolics in the presence of selected thiol and protein compounds. Although the FRAP method is almost non-responsive to thiol compounds individually, surprising overoxidations with large positive deviations from additivity were observed when using this method for (phenols + thiols) mixtures. Among the tested TAC methods, CUPRAC gave the most additive results for all studied (phenol + thiol) and (phenol + protein) mixtures with minimal relative error. As ABTS/TEAC and FRAP methods gave small and large deviations, respectively, from additivity of absorbances arising from these components in mixtures, mercury(II) compounds were added to stabilize the thiol components in the form of Hg(II)-thiol complexes so as to enable selective spectrophotometric determination of phenolic components. This error compensation was most efficient for the FRAP method in testing (thiols + phenols) mixtures. PMID:27529232

  19. 1,2,4-triazole derivative with Schiff base; thiol-thione tautomerism, DFT study and antileishmanial activity

    NASA Astrophysics Data System (ADS)

    Süleymanoğlu, Nevin; Ustabaş, Reşat; Direkel, Şahin; Alpaslan, Yelda Bingöl; Ünver, Yasemin

    2017-12-01

    Thiol-thione tautomerism of 1,2,4-triazole derivative with Schiff base was investigated by spectroscopic methods and quantum mechanical calculations. Theoretical study of thiol-thione tautomeric forms of 1,2,4-triazole derivative with Schiff base; 1,2,4-triazole-thiol form, 1-((5-mercapto-4-(thiophene-2-ylmethyleneamino)-4H-1,2,4-triazole-3-yl)methyl)-3-(thiophene-2-ylmethyl)-4-(thiophene-2-ylmethyleneamino)-1H-1,2,4-triazole-5(4H)-one (I) and 1,2,4-triazole-thione form, 3-(thiophene-2-ylmethyl)-4-(thiophene-2-ylmethyleneamino)-1-((4-(thiophene-2-ylmethyleneamino)-5-thioxo-4,5-dihydro-1H-1,2,4-triazole-3-yl)methyl)-1H-1,2,4-triazole-5(4H)-one (II) was performed by the density functional theory (DFT) method with 6-311++G(d,p) basis set. Structural parameters were obtained and spectral parameters of NMR, FTIR and UV-vis were compared with experimental ones to determine structural details. In vitro antileishmanial activity was studied against Leishmania infantum promastigots by microdilution broth assay with Alamar Blue Dye. The results indicate that 1,2,4-triazole derivative exists in both thiol and thione form and, can be evaluated as antiparasitic in term of antileishmanial activity.

  20. Evaluation of Dynamic Disulphide/Thiol Homeostasis in Silica Exposed Workers

    PubMed Central

    Gündüzöz, Meşide; Bal, Ceylan; Büyükşekerci, Murat; Neşelioğlu, Salim; Nadir Öziş, Türkan; İritaş, Servet; Kara, Halil; Erel, Özcan

    2017-01-01

    Background: Oxidative stress is implicated as one of the main molecular mechanism underlying silicosis. Aims: In this study, our aim was to asses the redox status in occupationally silica-exposed workers, by evaluating the dynamic thiol-disulphide homeostasis. Study Design: Case-control study. Methods: Thirty-six male workers occupationally exposed to silica particles and 30 healthy volunteers, working as office workers were included to the study. Posteroanterior chest radiographs and pulmonary function tests of both groups were evaluated. Also serum thiol disulphide levels were measured using the spectrophotometric method described by Erel and Neşelioğlu. Results: Among the 36 workers that underwent pulmonary function tests 6 (17%) had obstructive, 7 (19%) had restrictive, 6 (17%) had obstructive and restrictive signs whereas 17 (47%) had no signs. The mean PFTs results of silica-exposed workers were significantly lower than control subjects. The serum disulphide levels of silica-exposed workers were significantly higher than control subjects (23.84±5.89 μmol/L and 21.18±3.44 μmol/L, respectively p=0.02). Conclusion: The serum disulphide levels, a biomarker of oxidative stress, are found to be higher in silica-exposed workers. PMID:28418335

  1. Thiol/disulphide homeostasis in celiac disease

    PubMed Central

    Kaplan, Mustafa; Ates, Ihsan; Yuksel, Mahmut; Ozderin Ozin, Yasemin; Alisik, Murat; Erel, Ozcan; Kayacetin, Ertugrul

    2017-01-01

    AIM To determine dynamic thiol/disulphide homeostasis in celiac disease and to examine the associate with celiac autoantibodies and gluten-free diet. METHODS Seventy three patients with celiac disease and 73 healthy volunteers were enrolled in the study. In both groups, thiol/disulphide homeostasis was examined with a new colorimetric method recently developed by Erel and Neselioglu. RESULTS In patients with celiac disease, native thiol (P = 0.027) and total thiol (P = 0.031) levels were lower, while disulphide (P < 0.001) level, disulphide/native thiol (P < 0.001) and disulphide/total thiol (P < 0.001) ratios were higher compared to the control group. In patients who do not comply with a gluten-free diet, disulphide/native thiol ratio was found higher compared to the patients who comply with the diet (P < 0.001). In patients with any autoantibody-positive, disulphide/native thiol ratio was observed higher compared to the patients with autoantibody-negative (P < 0.05). It is found that there is a negative correlation between celiac autoantibodies, and native thiol, total thiol levels and native thiol/total thiol ratio, while a positive correlation is observed between disulphide, disulphide/native thiol and disulphide/total thiol levels. CONCLUSION This study is first in the literature which found that the patients with celiac disease the dynamic thiol/disulphide balance shifts through disulphide form compared to the control group. PMID:28533921

  2. Evaluation of dynamic thiol/disulphide homeostasis as a novel indicator of oxidative stress in maple syrup urine disease patients under treatment.

    PubMed

    Zubarioglu, Tanyel; Kiykim, Ertugrul; Cansever, Mehmet Serif; Neselioglu, Salim; Aktuglu-Zeybek, Cigdem; Erel, Ozcan

    2017-02-01

    Maple syrup urine disease (MSUD) is a metabolic disorder that is caused by deficiency of branched-chain α-keto acid dehydrogenase complex. Although accumulation of toxic metabolites is associated with neurotoxicity, mechanisms underlying brain damage remain unclear. Aim of this study is to evaluate thiol/disulphide homeostasis as a novel indicator of oxidative stress in MSUD patients under treatment. Twenty patients with MSUD and 20 healthy individuals were included in study. All patients were under regular follow-up and had a good metabolic control. Serum native thiol (-SH), total thiol (-SH + -S-S-), disulphide (-S-S) levels were measured in all subjects. Disulphide/native thiol, disulphide/total thiol and native thiol/total thiol ratios were calculated from these values. Simultaneous blood sampling for plasma quantitative amino acid analysis was performed in both groups. Any significant difference was not observed in -SH, -SH + -S-S-, -S-S levels between two groups. In addition no increase of disulphide/native thiol and disulphide/total thiol ratios was detected in patient group. This study is the first study that evaluates dynamic thiol/disulphide homeostasis as an indicator of oxidative stress in MSUD patients. Among previous studies that were made to determine oxidative stress in treated MSUD patients, this study had the largest sample size also. In recent studies, it was claimed that oxidative stress could be responsible from neurotoxicity even in treated patients. Here, dynamic thiol/disulfide homeostasis status showed that providing good metabolic control in MSUD patients prevent oxidative stress. Under regular follow-up and good compliance with diet, additional antioxidant therapies would possibly not be necessary.

  3. Dynamic thiol/disulphide homeostasis in patients with basal cell carcinoma.

    PubMed

    Demirseren, Duriye Deniz; Cicek, Cagla; Alisik, Murat; Demirseren, Mustafa Erol; Aktaş, Akın; Erel, Ozcan

    2017-09-01

    The aim of this study is to measure and compare the dynamic thiol/disulphide homeostasis of patients with basal cell carcinoma and healthy subjects with a newly developed and original method. Thirty four patients attending our outpatient clinic and clinically and histopathologically diagnosed as nodular basal cell carcinoma, and age and gender matched 30 healthy individuals have been involved in the study. Thiol/disulphide homeostasis tests have been measured with a novel automatic spectrophotometric method developed and the results have been compared statistically. Serum native thiol and disulphide levels in the patient and control group show a considerable variance statistically (p = 0.028, 0.039, respectively). Total thiol levels do not reveal a considerable variation (p = 0.094). Disulphide/native thiol ratios and native thiol/total thiol ratios also show a considerable variance statistically (p = 0.012, 0.013, 0.010, respectively). Thiol disulphide homeostasis in patients with basal cell carcinoma alters in the way that disulphide gets lower and thiols get higher. Thiol/disulphide level is likely to have a role in basal cell carcinoma pathogenesis.

  4. Application of Atmospheric Pressure Photoionization H/D-exchange Mass Spectrometry for Speciation of Sulfur-containing Compounds.

    PubMed

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Ha, Ji-Hyoung; Kim, Sunghwan

    2017-08-01

    Herein we report the observation of atmospheric pressure in-source hydrogen-deuterium exchange (HDX) of thiol group for the first time. The HDX for thiol group was optimized for positive atmospheric pressure photoionization (APPI) mass spectrometry (MS). The optimized HDX-MS was applied for 31 model compounds (thiols, thiophenes, and sulfides) to demonstrate that exchanged peaks were observed only for thiols. The optimized method has been successfully applied to the isolated fractions of sulfur-rich oil samples. The exchange of one and two thiol hydrogens with deuterium was observed in the thiol fraction; no HDX was observed in the other fractions. Thus, the results presented in this study demonstrate that the HDX-MS method using APPI ionization source can be effective for speciation of sulfur compounds. This method has the potential to be used to access corrosion problems caused by thiol-containing compounds. Graphical Abstract ᅟ.

  5. Determination of thiol metabolites in human urine by stable isotope labeling in combination with pseudo-targeted mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Qi, Chu-Bo; Zhu, Quan-Fei; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-02-01

    Precursor ion scan and multiple reaction monitoring scan (MRM) are two typical scan modes in mass spectrometry analysis. Here, we developed a strategy by combining stable isotope labeling (IL) with liquid chromatography-mass spectrometry (LC-MS) under double precursor ion scan (DPI) and MRM for analysis of thiols in 5 types of human cancer urine. Firstly, the IL-LC-DPI-MS method was applied for non-targeted profiling of thiols from cancer samples. Compared to traditional full scan mode, the DPI method significantly improved identification selectivity and accuracy. 103 thiol candidates were discovered in all cancers and 6 thiols were identified by their standards. It is worth noting that pantetheine, for the first time, was identified in human urine. Secondly, the IL-LC-MRM-MS method was developed for relative quantification of thiols in cancers compared to healthy controls. All the MRM transitions of light and heavy labeled thiols were acquired from urines by using DPI method. Compared to DPI method, the sensitivity of MRM improved by 2.1-11.3 folds. In addition, the concentration of homocysteine, γ-glutamylcysteine and pantetheine enhanced more than two folds in cancer patients compared to healthy controls. Taken together, the method demonstrated to be a promising strategy for identification and comprehensive quantification of thiols in human urines.

  6. Determination of thiol metabolites in human urine by stable isotope labeling in combination with pseudo-targeted mass spectrometry analysis

    PubMed Central

    Liu, Ping; Qi, Chu-Bo; Zhu, Quan-Fei; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-01-01

    Precursor ion scan and multiple reaction monitoring scan (MRM) are two typical scan modes in mass spectrometry analysis. Here, we developed a strategy by combining stable isotope labeling (IL) with liquid chromatography-mass spectrometry (LC-MS) under double precursor ion scan (DPI) and MRM for analysis of thiols in 5 types of human cancer urine. Firstly, the IL-LC-DPI-MS method was applied for non-targeted profiling of thiols from cancer samples. Compared to traditional full scan mode, the DPI method significantly improved identification selectivity and accuracy. 103 thiol candidates were discovered in all cancers and 6 thiols were identified by their standards. It is worth noting that pantetheine, for the first time, was identified in human urine. Secondly, the IL-LC-MRM-MS method was developed for relative quantification of thiols in cancers compared to healthy controls. All the MRM transitions of light and heavy labeled thiols were acquired from urines by using DPI method. Compared to DPI method, the sensitivity of MRM improved by 2.1–11.3 folds. In addition, the concentration of homocysteine, γ-glutamylcysteine and pantetheine enhanced more than two folds in cancer patients compared to healthy controls. Taken together, the method demonstrated to be a promising strategy for identification and comprehensive quantification of thiols in human urines. PMID:26888486

  7. Nitric oxide-related species-induced protein oxidation: reversible, irreversible, and protective effects on enzyme function of papain.

    PubMed

    Väänänen, Antti J; Kankuri, Esko; Rauhala, Pekka

    2005-04-15

    Protein oxidation, irreversible modification, and inactivation may play key roles in various neurodegenerative disorders. Therefore, we studied the effects of the potentially in vivo occurring nitric oxide-related species on two different markers of protein oxidation: protein carbonyl generation on bovine serum albumine (BSA) and loss of activity of a cysteine-dependent protease, papain, in vitro by using Angeli's salt, papanonoate, SIN-1, and S-nitrosoglutathione (GSNO) as donors of nitroxyl, nitric oxide, peroxynitrite, and nitrosonium ions, respectively. Angeli's salt, SIN-1, and papanonoate (0-1000 microM) all generated a concentration-dependent increase in carbonyl formation on BSA (107, 60, and 45%, respectively). GSNO did not affect carbonyl formation. Papain was inhibited by Angeli's salt, SIN-1, papanonoate, and GSNO with IC50 values of 0.62, 2.3, 54, and 80 microM, respectively. Angeli's salt (3.16 microM)-induced papain inactivation was only partially reversible, while the effects of GSNO (316 microM) and papanonoate (316 microM) were reversible upon addition of excess DTT. The Angeli's salt-mediated DTT-irreversible inhibition of papain was prevented by GSNO or papanonoate pretreatment, hypothetically through mixed disulfide formation or S-nitrosylation of the catalytically critical thiol group of papain. These results, for the first time, compare the generation of carbonyls in proteins by Angeli's salt, papanonoate, and SIN-1. Furthermore, these results suggest that S-nitrosothiols may have a novel function in protecting critical thiols from irreversible oxidative damage.

  8. Gel-based methods in redox proteomics.

    PubMed

    Charles, Rebecca; Jayawardhana, Tamani; Eaton, Philip

    2014-02-01

    The key to understanding the full significance of oxidants in health and disease is the development of tools and methods that allow the study of proteins that sense and transduce changes in cellular redox. Oxidant-reactive deprotonated thiols commonly operate as redox sensors in proteins and a variety of methods have been developed that allow us to monitor their oxidative modification. This outline review specifically focuses on gel-based methods used to detect, quantify and identify protein thiol oxidative modifications. The techniques we discuss fall into one of two broad categories. Firstly, methods that allow oxidation of thiols in specific proteins or the global cellular pool to be monitored are discussed. These typically utilise thiol-labelling reagents that add a reporter moiety (e.g. affinity tag, fluorophore, chromophore), in which loss of labelling signifies oxidation. Secondly, we outline methods that allow specific thiol oxidation states of proteins (e.g. S-sulfenylation, S-nitrosylation, S-thionylation and interprotein disulfide bond formation) to be investigated. A variety of different gel-based methods for identifying thiol proteins that are sensitive to oxidative modifications have been developed. These methods can aid the detection and quantification of thiol redox state, as well as identifying the sensor protein. By understanding how cellular redox is sensed and transduced to a functional effect by protein thiol redox sensors, this will help us better appreciate the role of oxidants in health and disease. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Glutathione S-transferases act as isomerases in isomerization of 13-cis-retinoic acid to all-trans-retinoic acid in vitro.

    PubMed Central

    Chen, H; Juchau, M R

    1997-01-01

    A discovery that rapid enzymic isomerization of 13-cis-retinoic acid (13-cRA) to all-trans-retinoic acid (t-RA) can be catalysed by purified hepatic glutathione S-transferases (GSTs; EC 2.5.1.18) from rat is now reported. Rates of cis-trans isomerization were determined quantitatively by HPLC. GST-catalysed reactions reached equilibrium rapidly, in marked contrast with uncatalysed or GSH-catalysed isomerizations. The GST-catalysed reaction exhibited substrate saturation kinetics with a Km of approx. 8 microM. The maximal velocity of the reaction and the catalytic efficiency of GSTs were determined. The initial rate of the reaction increased linearly as a function of enzyme concentration. Catalysis by GSTs was independent of the presence of GSH, indicating that GSTs act as GSH-independent isomerases as well as transferases. Incubation with guanidine (7-8 M) or heat-inactivation of GSTs (100 degrees C for 3 min) decreased isomerase activities by approx. 50% and 75% respectively. The same heat treatment did not significantly inhibit isomerization catalysed by GSH and apoferritin, indicating that the observed decrease in isomerase activity by heat inactivation was not primarily due to oxidation of protein thiol groups in the GSTs. The specific activity of GSTs was approx. 23- and 340-fold those of GSH and apoferritin respectively when comparisons were made on the basis of free thiol concentrations, indicating that free thiol in GSTs cannot account for the majority of observed isomerase activities and suggesting that specific conformations of GSTs are important for such activities. Complete inhibition of the reaction by low concentrations of N-ethylmaleimide (10 microM) demonstrated that intact protein thiols are required for the isomerase activities of GSTs. PMID:9581548

  10. Glutathione S-transferases act as isomerases in isomerization of 13-cis-retinoic acid to all-trans-retinoic acid in vitro.

    PubMed

    Chen, H; Juchau, M R

    1997-11-01

    A discovery that rapid enzymic isomerization of 13-cis-retinoic acid (13-cRA) to all-trans-retinoic acid (t-RA) can be catalysed by purified hepatic glutathione S-transferases (GSTs; EC 2.5.1.18) from rat is now reported. Rates of cis-trans isomerization were determined quantitatively by HPLC. GST-catalysed reactions reached equilibrium rapidly, in marked contrast with uncatalysed or GSH-catalysed isomerizations. The GST-catalysed reaction exhibited substrate saturation kinetics with a Km of approx. 8 microM. The maximal velocity of the reaction and the catalytic efficiency of GSTs were determined. The initial rate of the reaction increased linearly as a function of enzyme concentration. Catalysis by GSTs was independent of the presence of GSH, indicating that GSTs act as GSH-independent isomerases as well as transferases. Incubation with guanidine (7-8 M) or heat-inactivation of GSTs (100 degrees C for 3 min) decreased isomerase activities by approx. 50% and 75% respectively. The same heat treatment did not significantly inhibit isomerization catalysed by GSH and apoferritin, indicating that the observed decrease in isomerase activity by heat inactivation was not primarily due to oxidation of protein thiol groups in the GSTs. The specific activity of GSTs was approx. 23- and 340-fold those of GSH and apoferritin respectively when comparisons were made on the basis of free thiol concentrations, indicating that free thiol in GSTs cannot account for the majority of observed isomerase activities and suggesting that specific conformations of GSTs are important for such activities. Complete inhibition of the reaction by low concentrations of N-ethylmaleimide (10 microM) demonstrated that intact protein thiols are required for the isomerase activities of GSTs.

  11. Determination of acidity and nucleophilicity in thiols by reaction with monobromobimane and fluorescence detection.

    PubMed

    Sardi, Florencia; Manta, Bruno; Portillo-Ledesma, Stephanie; Knoops, Bernard; Comini, Marcelo A; Ferrer-Sueta, Gerardo

    2013-04-01

    A method based on the differential reactivity of thiol and thiolate with monobromobimane (mBBr) has been developed to measure nucleophilicity and acidity of protein and low-molecular-weight thiols. Nucleophilicity of the thiolate is measured as the pH-independent second-order rate constant of its reaction with mBBr. The ionization constants of the thiols are obtained through the pH dependence of either second-order rate constant or initial rate of reaction. For readily available thiols, the apparent second-order rate constant is measured at different pHs and then plotted and fitted to an appropriate pH function describing the observed number of ionization equilibria. For less available thiols, such as protein thiols, the initial rate of reaction is determined in a wide range of pHs and fitted to the appropriate pH function. The method presented here shows excellent sensitivity, allowing the use of nanomolar concentrations of reagents. The method is suitable for scaling and high-throughput screening. Example determinations of nucleophilicity and pK(a) are presented for captopril and cysteine as low-molecular-weight thiols and for human peroxiredoxin 5 and Trypanosoma brucei monothiol glutaredoxin 1 as protein thiols. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Proteomic detection of oxidized and reduced thiol proteins in cultured cells.

    PubMed

    Cuddihy, Sarah L; Baty, James W; Brown, Kristin K; Winterbourn, Christine C; Hampton, Mark B

    2009-01-01

    The oxidation and reduction of cysteine residues is emerging as an important post-translational control of protein function. We describe a method for fluorescent labelling of either reduced or oxidized thiols in combination with two-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (2DE) to detect changes in the redox proteome of cultured cells. Reduced thiols are labelled with the fluorescent compound 5-iodoacetamidofluorescein. To monitor oxidized thiols, the reduced thiols are first blocked with N-ethyl-maleimide, then the oxidized thiols reduced with dithiothreitol and labelled with 5-iodoacetamidofluorescein. The method is illustrated by treating Jurkat T-lymphoma cells with hydrogen peroxide and monitoring increased labelling of oxidized thiol proteins. A decrease in labelling can also be detected, and this is attributed to the formation of higher oxidation states of cysteine that are not reduced by dithiothreitol.

  13. Synthesis of cyclic, multivalent Arg-Gly-Asp using sequential thiol-ene/thiol-yne photoreactions

    PubMed Central

    Aimetti, Alex A.; Feaver, Kristen R.

    2014-01-01

    A unique method has been developed for the formation of multivalent cyclic peptides. This procedure exploits on-resin peptide cyclization using a photoinitiated thiol-ene click reaction and subsequent clustering using thiol-yne photochemistry. Both reactions utilize the sulfhydryl group on natural cysteine amino acids to participate in the thiol-mediated reactions. PMID:20552127

  14. Multiplexed Thiol Reactivity Profiling for Target Discovery of Electrophilic Natural Products.

    PubMed

    Tian, Caiping; Sun, Rui; Liu, Keke; Fu, Ling; Liu, Xiaoyu; Zhou, Wanqi; Yang, Yong; Yang, Jing

    2017-11-16

    Electrophilic groups, such as Michael acceptors, expoxides, are common motifs in natural products (NPs). Electrophilic NPs can act through covalent modification of cysteinyl thiols on functional proteins, and exhibit potent cytotoxicity and anti-inflammatory/cancer activities. Here we describe a new chemoproteomic strategy, termed multiplexed thiol reactivity profiling (MTRP), and its use in target discovery of electrophilic NPs. We demonstrate the utility of MTRP by identifying cellular targets of gambogic acid, an electrophilic NP that is currently under evaluation in clinical trials as anticancer agent. Moreover, MTRP enables simultaneous comparison of seven structurally diversified α,β-unsaturated γ-lactones, which provides insights into the relative proteomic reactivity and target preference of diverse structural scaffolds coupled to a common electrophilic motif and reveals various potential druggable targets with liganded cysteines. We anticipate that this new method for thiol reactivity profiling in a multiplexed manner will find broad application in redox biology and drug discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Submicrodeterminations of thiols, disulphides and thiol esters in serum by using o-hydroxymercuribenzoic acid and dithiofluorescein

    PubMed Central

    Wroński, Mieczysław

    1967-01-01

    1. Methods are described for selective estimation of thiols, disulphides and thiol esters in standard solutions and in serum. The methods are based on the reaction with the excess of o-hydroxymercuribenzoic acid (HMB) in alkaline solution with subsequent addition of dithiofluorescein in excess and determination of the extinction at 588mμ. The sensitivity of the methods amounts to 1·5×10−9g.equiv. in 5ml. of final solution. Of results obtained on standard solutions 80% have the errors within the range ±4%. 2. It has been found that serum contains an unidentified substance (substance X) producing green complexes with dithiofluorescein which undergo decomposition on addition of formaldehyde. The correction for substance X must be estimated in a separate sample and taken into account. The concentration of substance X can be calculated from extinctions measured at 588mμ and 635mμ in the presence of dithiofluorescein in excess. 3. The selective determination of thiols and disulphides is based on different reaction rates with formaldehyde. The complexes between HMB and cysteine can be selectively decomposed by formaldehyde, and free glutathione can be selectively removed by formaldehyde in the presence of protein thiols. 4. Thiols are determined in the presence of triethylamine, thiols plus disulphides in the presence of triethylamine and sulphite, and thiols plus thiol esters in the presence of dimethylamine, with subsequent addition of ammonium sulphate. PMID:6049936

  16. Synthesis, characterization and evaluation of thiolated tamarind seed polysaccharide as a mucoadhesive polymer.

    PubMed

    Kaur, Harmanmeet; Yadav, Shikha; Ahuja, Munish; Dilbaghi, Neeraj

    2012-11-06

    In the present study, thiol-functionalization of tamarind seed polysaccharide was carried out by esterification with thioglycolic acid. Thiol-functionalization was confirmed by SH stretch in Fourier-transformed infra-red spectra at 2586 cm(-1). It was found to possess 104.5 mM of thiol groups per gram. The results of differential scanning calorimetry and X-ray diffraction study indicate increase in crystallinity. Polymer compacts of thiolated tamarind seed polysaccharide required 6.85-fold greater force to detach from the mucin coated membrane than that of tamarind seed polysaccharide. Comparative evaluation of Carbopol-based metronidazole gels containing thiolated tamarind seed polysaccharide with gels containing tamarind seed polysaccharide for mucoadhesive strength using chicken ileum by modified balance method revealed higher mucoadhesion of gels containing thiolated tamarind seed polysaccharide. Further, the gels containing tamarind seed polysaccharide and thiolated tamarind seed polysaccharide released the drug by Fickian-diffusion following the first-order and Higuchi's-square root release kinetics, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Dynamic thiol/disulfide homeostasis and effects of smoking on homeostasis parameters in patients with psoriasis.

    PubMed

    Emre, Selma; Demirseren, Duriye Deniz; Alisik, Murat; Aktas, Akin; Neselioglu, Salim; Erel, Ozcan

    2017-12-01

    Recently, increased reactive oxygen species (ROS), reduced antioxidant capacity, and oxidative stress have been suggested in the pathogenesis of psoriasis. The aim of this study to evaluate the thiol/disulfide homeostasis in patients with psoriasis. Ninety patients with psoriasis who did not receive any systemic treatment in the last six  months were included in the study. Seventy-six age and gender-matched healthy volunteers served as control group. Thiol/disulfide homeostasis was measured in venous blood samples obtained from patient and control groups. Native thiol and total thiol levels were significantly higher in patients than in control group. When thiol/disulfide hemostasis parameters and clinical and demographic characteristics were compared, a negative correlation was detected between native thiol and total thiol with age. The levels of total thiols had also negative correlation with PASI and duration of the disease. When we divided the patients into smokers and non-smokers, native thiol and total thiol levels were significantly higher in smokers than in controls, whereas native thiol and total thiol levels were comparable in non-smoker patients and controls. Thiol/disulfide balance shifted towards thiol in psoriasis patients and this may be responsible for increased keratinocyte proliferation in the pathogenesis of psoriasis.

  18. Vapor-liquid interfacial reaction to fabricate superhydrophilic and underwater superoleophobic thiol-ene/silica hybrid decorated fabric for oil/water separation

    NASA Astrophysics Data System (ADS)

    Li, Hongqiang; Liang, Tao; Lai, Xuejun; Su, Xiaojing; Zhang, Lin; Zeng, Xingrong

    2018-01-01

    With oil spill accidents and oil industrial wastewater increasing, oil/water separation has attracted much attention in recent years. Herein, we report the fabrication of superhydrophilic and underwater superoleophobic thiol-ene/silica hybrid decorated fabrics for oil/water separation via vapor-liquid interfacial reaction. It is based on sol-gel reaction of tetraethyl orthosilicate (TEOS) to generate silica and thiol-ene reaction between poly(ethylene glycol) dimethacrylate (PEGDMA) and trimethylolpropane tris(3-mercaptopropionate) (TTMP) to form crosslinked hydrophilic polymer on polyester fabric under the catalysis of butylamine/ammonia vapor. The chemical structure of the surfaces on thiol-ene/silica hybrid decorated fabric was confirmed by FTIR and XPS, and obvious micro-nano morphology and roughness were observed with SEM and AFM. The water contact angle of the fabric attained 0° in 0.36 s, and the underwater oil contact angle reached up to 160°. Importantly, the fabric exhibited high separation efficiency at 99.5%, fast water flux above 71600 Lm-2h-1 and excellent recyclability in oil/water separation. Our findings open a new strategy to fabricate organic-inorganic hybrid superhydrophobic and underwater superoleophobic materials for oil/water separation.

  19. Adsorption of Dissolved Metals in the Berkeley Pit using Thiol-Functionalized Self-Assembled Monolayers on Mesoporous Supports (Thiol-SAMMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betancourt, Amaury P.; Mattigod, Shas V.; Wellman, Dawn M.

    2010-03-07

    The Berkeley Pit in Butte, Montana, is heavily contaminated with dissolved metals. Adsorption and extraction of these metals can be accomplished through the use of a selective adsorbent. For this research, the adsorbent used was thiol-functionalized Self-Assembled Monolayers on Mesoporous Supports (thiol-SAMMS), which was developed at Pacific Northwest National Laboratory (PNNL). Thiol-SAMMS selectively binds to numerous types of dissolved metals. The objective of this research was to evaluate the loading and kinetics of aluminum, beryllium, copper, and zinc on thiol-SAMMS. For the loading tests, a series of Berkeley Pit water to thiol-SAMMS ratios (mL:g) were tested. These ratios were 1000:1,more » 500:1, 100:1, and 50:1. Berkeley Pit water is acidic (pH {approx} 2.5). This can affect the performance of SAMMS materials. Therefore, the effect of pH was evaluated by conducting parallel series of loading tests wherein the Berkeley Pit water was neutralized before or after addition of thiol-SAMMS, and a series of kinetics tests wherein the Berkeley Pit water was neutralized before addition of thiol-SAMMS for the first test and was not neutralized for the second test. For the kinetics tests, one Berkeley Pit water to thiol-SAMMS ratio was tested, which was 2000:1. The results of the loading and kinetics tests suggest that a significant decrease in dissolved metal concentration at Berkeley Pit could be realized through neutralization of Berkeley Pit water. Thiol-SAMMS technology has a limited application under the highly acidic conditions posed by the Berkeley Pit. However, thiol-SAMMS could provide a secondary remedial technique which would complete the remedial system and remove dissolved metals from the Berkeley Pit to below drinking water standards.« less

  20. Focused ion beam-assisted technology in sub-picolitre micro-dispenser fabrication

    NASA Astrophysics Data System (ADS)

    Lopez, M. J.; Caballero, D.; Campo, E. M.; Perez-Castillejos, R.; Errachid, A.; Esteve, J.; Plaza, J. A.

    2008-07-01

    Novel medical and biological applications are driving increased interest in the fabrication of micropipette or micro-dispensers. Reduced volume samples and drug dosages are prime motivators in this effort. We have combined microfabrication technology with ion beam milling techniques to successfully produce cantilever-type polysilicon micro-dispensers with 3D enclosed microchannels. The microfabrication technology described here allows for the designing of nozzles with multiple shapes. The contribution of ion beam milling has had a large impact on the fabrication process and on further customizing shapes of nozzles and inlet ports. Functionalization tests were conducted to prove the viability of ion beam-fabricated micro-dispensers. Self-assembled monolayers were successfully formed when a gold surface was patterned with a thiol solution dispensed by the fabricated micro-dispensers.

  1. Thiol/disulfide homeostasis in patients with ankylosing spondylitis

    PubMed Central

    Dogru, Atalay; Balkarli, Ayse; Cetin, Gozde Yildirim; Neselioglu, Salim; Erel, Ozcan; Tunc, Sevket Ercan; Sahin, Mehmet

    2016-01-01

    Ankylosing spondylitis (AS) is a chronic inflammatory disease. In many inflammatory diseases, increased production of pro-inflammatory cytokines is associated with an increase in oxidative stress mediators. Thiol/disulfide homeostasis is a marker for oxidative stress. The aim of this study was to examine the dynamic thiol/disulfide homeostasis in AS. Sixty-nine patients with AS and 60 age- and sex-matched controls were included in the study. The Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and visual analogue scale (VAS) were used to determine the disease activity. Native thiol, total thiol, and disulfide levels were measured with a novel automated method recently described by Erel and Neselioglu. The aforementioned method is also optionally manual spectrophotometric assay. The total thiol levels were significantly lower in the AS group compared with the control group (p = 0.03). When the patients were divided into active (n = 35) and inactive (n = 34) subgroups using BASDAI scores, the native plasma thiol and total thiol levels were significantly lower in the active AS patients compared to the inactive AS patients (p = 0.02, p = 0.03 respectively). There was a negative correlation between the plasma native thiol levels and VAS, BASDAI scores. Thiol/disulfide homeostasis may be used for elucidating the effects of oxidative stress in AS. Understanding the role of thiol/disulfide homeostasis in AS might provide new therapeutic intervention strategies for patients. PMID:27186972

  2. Simultaneous LC/MS/MS determination of thiols and disulfides in urine samples based on differential labeling with ferrocene-based maleimides.

    PubMed

    Seiwert, Bettina; Karst, Uwe

    2007-09-15

    A method for the simultaneous determination of a series of thiols and disulfides in urine samples has been developed based on the sequential labeling of free and bound thiol functionalities with two ferrocene-based maleimide reagents. The sample is first exposed to N-(2-ferroceneethyl)maleimide, thus leading to the derivatization of free thiol groups in the sample. After quantitative reaction and subsequent reduction of the disulfide-bound thiols by tris(2-carboxyethyl)phosphine, the newly formed thiol functionalities are reacted with ferrocenecarboxylic acid-(2-maleimidoyl)ethylamide. The reaction products are determined by LC/MS/MS in the multiple reaction mode, and precursor ion scan as well as neutral loss scan is applied to detect unknown further thiols. The method was successfully applied to the analysis of free and disulfide-bound thiols in urine samples. Limits of detection are 30 to 110 nM, and the linear range comprises two decades of concentration, thus covering the relevant concentration range of thiols in urine samples. The thiol and disulfide concentrations were referred to the creatinine content to compensate for different sample volumes. As some calibration standards for the disulfides are not commercially available, they were synthesized in an electrochemical flow-through cell. This allowed the synthesis of hetero- and homodimeric disulfides.

  3. Thiol-ene immobilisation of carbohydrates onto glass slides as a simple alternative to gold-thiol monolayers, amines or lipid binding.

    PubMed

    Biggs, Caroline I; Edmondson, Steve; Gibson, Matthew I

    2015-01-01

    Carbohydrate arrays are a vital tool in studying infection, probing the mechanisms of bacterial, viral and toxin adhesion and the development of new treatments, by mimicking the structure of the glycocalyx. Current methods rely on the formation of monolayers of carbohydrates that have been chemically modified with a linker to enable interaction with a functionalised surface. This includes amines, biotin, lipids or thiols. Thiol-addition to gold to form self-assembled monolayers is perhaps the simplest method for immobilisation as thiolated glycans are readily accessible from reducing carbohydrates in a single step, but are limited to gold surfaces. Here we have developed a quick and versatile methodology which enables the use of thiolated carbohydrates to be immobilised as monolayers directly onto acrylate-functional glass slides via a 'thiol-ene'/Michael-type reaction. By combining the ease of thiol chemistry with glass slides, which are compatible with microarray scanners this offers a cost effective, but also useful method to assemble arrays.

  4. Preactivated thiolated pullulan as a versatile excipient for mucosal drug targeting.

    PubMed

    Leonaviciute, Gintare; Suchaoin, Wongsakorn; Matuszczak, Barbara; Lam, Hung Thanh; Mahmood, Arshad; Bernkop-Schnürch, Andreas

    2016-10-20

    The purpose of the present study was to generate a novel mucoadhesive thiolated pullulan with protected thiol moieties and to evaluate its suitability as mucosal drug delivery system. Two different synthetic pathways: bromination-nucleophilic substitution and reductive amination including periodate cleavage were utilized to synthesize such thiolated pullulans. The thiomer (pullulan-cysteamine) with the highest amount of free thiol groups was further enrolled in a reaction with 6-mercaptonicotinamide and its presence in pullulan structure was confirmed via NMR analysis. Furthermore, unmodified, thiolated and preactivated thiolated pullulan were investigated in terms of mucoadhesion via rotating cylinder studies and rheological synergism method as well as their toxicity potential over Caco-2 cells. Comparing both methods the reductive amination seems to be the method of choice resulting in comparatively higher coupling rates. Using this procedure pullulan-cysteamine conjugate displayed 1522±158μmol immobilized thiol groups and 280±70μmol free thiol groups per gram polymer. Furthermore, 82% of free thiol groups on this conjugate were linked with 6-mercaptonicotinamide (6-MNA). The adhesion time on the rotating cylinder was up to 46-fold prolonged in case of the thiolated polymer and up to 75-fold in case of the preactivated polymer. Rheological measurements of modified pullulan samples showed 98-fold and 160-fold increase in dynamic viscosity upon the addition of mucus within 60min, whereas unmodified pullulan did not show an increase in viscosity at all. Both conjugates had a minor effect on Caco-2 cell viability. Because of these features preactivated thiolated pullulan seems to represent a promising type of mucoadhesive polymers for the development of various mucosal drug delivery systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The Role of Follicular Fluid Thiol/Disulphide Homeostasis in Polycystic Ovary Syndrome.

    PubMed

    Tola, Esra Nur; Köroğlu, Nadiye; Ergin, Merve; Oral, Hilmi Baha; Turgut, Abdülkadir; Erel, Özcan

    2018-04-04

    Oxidative stress is suggested as a potential triggering factor in the etiopathogenesis of Polycystic ovary syndrome related infertility. Thiol/disulphide homeostasis, a recently oxidative stress marker, is one of the antioxidant mechanism in human which have critical roles in folliculogenesis and ovulation. The aim of our study is to investigate follicular fluid thiol/disulphide homeostasis in the etiopathogenesis of Polycystic ovary syndrome and to determine its' association with in vitro fertilization outcome. The study procedures were approved by local ethic committee. Cross sectional design Methods: Follicular fluid of twenty-two Polycystic ovary syndrome women and twenty ovulatory controls undergoing in vitro fertilization treatment were recruited. Thiol/disulphide homeostasis was analyzed via a novel spectrophotometric method. Follicular native thiol levels were found to be lower in Polycystic ovary syndrome group than non- Polycystic ovary syndrome group (p=0.041) as well as native thiol/total thiol ratio (p<0.0001). Disulphide level, disulphide/native thiol and disulphide/total thiol ratios were increased in Polycystic ovary syndrome group (p<0.0001). A positive correlation between fertilization rate and native thiol (p=0.01, r=0.53) and total thiol (p=0.01, r=0.052) among Polycystic ovary syndrome patients was found. A positive predictive effect of native thiol on fertilization rate among Polycystic ovary syndrome group was also found (p=0.03, β=0.45, 95% CI=0.031-0.643). Deterioration in thiol/disulphide homeostasis, especially elevated disulphide levels could be one of the etiopathogenetic mechanism in Polycystic ovary syndrome. Increased native thiol levels is related to fertilization rate among Polycystic ovary syndrome patients and also positive predictor marker of fertilization rate among Polycystic ovary syndrome patients. Improvement of thiol/disulphide homeostasis could be of importance in the treatment of Polycystic ovary syndrome to increase in vitro fertilization success in Polycystic ovary syndrome.

  6. Sensitive determination of thiols in wine samples by a stable isotope-coded derivatization reagent d0/d4-acridone-10-ethyl-N-maleimide coupled with high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis.

    PubMed

    Lv, Zhengxian; You, Jinmao; Lu, Shuaimin; Sun, Weidi; Ji, Zhongyin; Sun, Zhiwei; Song, Cuihua; Chen, Guang; Li, Guoliang; Hu, Na; Zhou, Wu; Suo, Yourui

    2017-03-31

    As the key aroma compounds, varietal thiols are the crucial odorants responsible for the flavor of wines. Quantitative analysis of thiols can provide crucial information for the aroma profiles of different wine styles. In this study, a rapid and sensitive method for the simultaneous determination of six thiols in wine using d 0 /d 4 -acridone-10-ethyl-N-maleimide (d 0 /d 4 -AENM) as stable isotope-coded derivatization reagent (SICD) by high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) has been developed. Quantification of thiols was performed by using d 4 -AENM labeled thiols as the internal standards (IS), followed by stable isotope dilution HPLC-ESI-MS/MS analysis. The AENM derivatization combined with multiple reactions monitoring (MRM) not only allowed trace analysis of thiols due to the extremely high sensitivity, but also efficiently corrected the matrix effects during HPLC-MS/MS and the fluctuation in MS/MS signal intensity due to instrument. The obtained internal standard calibration curves for six thiols were linear over the range of 25-10,000pmol/L (R 2 ≥0.9961). Detection limits (LODs) for most of analytes were below 6.3pmol/L. The proposed method was successfully applied for the simultaneous determination of six kinds of thiols in wine samples with precisions ≤3.5% and recoveries ≥78.1%. In conclusion, the developed method is expected to be a promising tool for detection of trace thiols in wine and also in other complex matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Modified cupric reducing antioxidant capacity (CUPRAC) assay for measuring the antioxidant capacities of thiol-containing proteins in admixture with polyphenols.

    PubMed

    Cekiç, Sema Demirci; Başkan, Kevser Sözgen; Tütem, Esma; Apak, Reşat

    2009-07-15

    Proteins are not considered as true antioxidants but are known to protect antioxidants from oxidation in various antioxidant activity assays. This study aims to investigate the contribution of proteins, especially thiol-containing proteins, to the observed overall antioxidant capacity measured by known methods. To determine the antioxidant properties of thiol-containing proteins, the CUPRAC method of antioxidant assay using the oxidizing reagent Cu(II)-neocuproine previously used for simultaneous analysis of cystine and cysteine was adopted. While the CUPRAC method is capable of determining all antioxidant compounds including thiols in complex sample matrices, the Ellman method of thiol quantitation basically does not respond to other antioxidants. The antioxidant quantities in the selected samples were assayed with the ABTS and FRAP methods as well as with the CUPRAC method. In all applied methods, the dilutions were made with a standard pH 8 buffer used in the Ellman method by substituting the Na(2)EDTA component of the buffer with sodium citrate. On the other hand, the standard CUPRAC protocol was modified by substituting the pH 7 ammonium acetate buffer (at 1M concentration) with 8M urea buffer adjusted to pH 7 by neutralizing with 6M HCl. Urea helps to partly solubilize and denaturate proteins so that their buried thiols be oxidized more easily. All methods used in the estimation of antioxidant properties of proteins (i.e., CUPRAC, Ellman, ABTS, and FRAP) were first standardized with a simple thiol compound, cysteine, by constructing the calibration curves. The molar absorptivities of these methods for cysteine were: epsilon(CUPRAC)=7.71x10(3), epsilon(Ellman)=1.37x10(4), epsilon(ABTS)=2.06x10(4), and epsilon(FRAP)=2.98x10(3)L mol(-1)cm(-1). Then these methods were applied to various samples containing thiols, such as glutathione (reduced form:GSH), egg white, whey proteins, and gelatin. Additionally, known quantities of selected antioxidants were added to these samples to show the additivity of responses.

  8. Casein hydrolysate augments antimicrobial and antioxidative efficacy of cheddar whey based edible coating of retail-cut beefsteak

    USDA-ARS?s Scientific Manuscript database

    Hydrolysis of casein using chymotrypsin results in the formation of polypeptides (casein hydrolyzate, CH) with a hydrophobic aromatic amino acid on one end of the chain because the enzyme selectively cleaves the adjacent peptide-bond. Due to resonance of the aromatic micro-domain, thiols become redo...

  9. Thiol-acrylate nanocomposite foams for critical size bone defect repair: A novel biomaterial.

    PubMed

    Garber, Leah; Chen, Cong; Kilchrist, Kameron V; Bounds, Christopher; Pojman, John A; Hayes, Daniel

    2013-12-01

    Bone tissue engineering approaches using polymer/ceramic composites show promise as effective biocompatible, absorbable, and osteoinductive materials. A novel class of in situ polymerizing thiol-acrylate based copolymers synthesized via an amine-catalyzed Michael addition was studied for its potential to be used in bone defect repair. Both pentaerythritol triacrylate-co-trimethylolpropane tris(3-mercaptopropionate) (PETA-co-TMPTMP) and PETA-co-TMPTMP with hydroxyapatite (HA) composites were fabricated in solid cast and foamed forms. These materials were characterized chemically and mechanically followed by an in vitro evaluation of the biocompatibility and chemical stability in conjunction with human adipose-derived mesenchymal pluripotent stem cells (hASC). The solid PETA-co-TMPTMP with and without HA exhibited compressive strength in the range of 7-20 MPa, while the cytotoxicity and biocompatibility results demonstrate higher metabolic activity of hASC on PETA-co-TMPTMP than on a polycaprolactone control. Scanning electron microscope imaging of hASC show expected spindle shaped morphology when adhered to copolymer. Micro-CT analysis indicates open cell interconnected pores. Foamed PETA-co-TMPTMP HA composite shows promise as an alternative to FDA-approved biopolymers for bone tissue engineering applications. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  10. Impaired Thiol-Disulfide Balance in Acute Brucellosis.

    PubMed

    Kolgelier, Servet; Ergin, Merve; Demir, Lutfi Saltuk; Inkaya, Ahmet Cagkan; Aktug Demir, Nazlim; Alisik, Murat; Erel, Ozcan

    2017-05-24

    The objective of this study was to examine a novel profile: thiol-disulfide homeostasis in acute brucellosis. The study included 90 patients with acute brucellosis, and 27 healthy controls. Thiol-disulfide profile tests were analyzed by a recently developed method, and ceruloplasmin levels were determined. Native thiol levels were 256.72 ± 48.20 μmol/L in the acute brucellosis group and 461.13 ± 45.37 μmol/L in the healthy group, and total thiol levels were 298.58 ± 51.78 μmol/L in the acute brucellosis group and 504.83 ± 51.05 μmol/L in the healthy group (p < 0.001, for both). The disulfide/native thiol ratios and disulfide/total thiol ratios were significantly higher, and native thiol/total thiol ratios were significantly lower in patients with acute brucellosis than in the healthy controls (p < 0.001, for all ratios). There were either positive or negative relationships between ceruloplasmin levels and thiol-disulfide parameters. The thiol-disulfide homeostasis was impaired in acute brucellosis. The strong associations between thiol-disulfide parameters and a positive acute-phase reactant reflected the disruption of the balance between the antioxidant and oxidant systems. Since thiol groups act as anti-inflammatory mediators, the alteration in the thiol-disulfide homeostasis may be involved in brucellosis.

  11. Thiol/disulfide homeostasis in postmenopausal osteoporosis.

    PubMed

    Korkmaz, V; Kurdoglu, Z; Alisik, M; Turgut, E; Sezgın, O O; Korkmaz, H; Ergun, Y; Erel, O

    2017-04-01

    To evaluate the impact of postmenopausal osteoporosis on thiol/disulfide homeostasis. A total of 75 participants were divided into two groups: Group 1 (n = 40) was composed of healthy postmenopausal women, and group 2 (n = 35) was composed of women with postmenopausal osteoporosis. Clinical findings and thiol/disulfide homeostasis were compared between the two groups. The disulfide/native thiol ratio was 8.6% ± 3.6 in group 1 and 12.7% ± 8.4 in group 2 (p = 0.04). The disulfide/native thiol percent ratio was significantly higher in group 2 after adjustment for the years since menopause and age (p < 0.05). The native thiol/total thiol percent ratio was 85.6% ± 4.8 in group 1 and 73.8% ± 24.9 in group 2 (p = 0.01). The native thiol/total thiol percent ratio was significantly lower in group 2 after adjustment for the years since menopause and age (p < 0.05). Thiol/disulfide homeostasis shifted to the disulfide side independent of age and years since menopause in postmenopausal osteoporosis.

  12. Reduced protein carbonylation of cube steak and catfish fillet using antioxidative coatings containing cheddar whey, casein hydrolyzate and oolong tea extract

    USDA-ARS?s Scientific Manuscript database

    Hydrolysis of casein using chymotrypsin results in the formation of polypeptides (casein hydrolyzate, CH) with a hydrophobic aromatic amino acid on one end of the chain because the enzyme selectively cleaves the adjacent peptide-bond. Due to resonance of the aromatic micro-domain, thiols become redo...

  13. Selective chromogenic detection of thiol-containing biomolecules using carbonaceous nanospheres loaded with silver nanoparticles as carrier.

    PubMed

    Hu, Bo; Zhao, Yang; Zhu, Hai-Zhou; Yu, Shu-Hong

    2011-04-26

    Thiol-containing biomolecules show strong affinity with noble metal nanostructures and could not only stably protect them but also control the self-assembly process of these special nanostructures. A highly selective and sensitive chromogenic detection method has been designed for the low and high molecular weight thiol-containing biomolecules, including cysteine, glutathione, dithiothreitol, and bovine serum albumin, using a new type of carbonaceous nanospheres loaded with silver nanoparticles (Ag NPs) as carrier. This strategy relies upon the place-exchange process between the reporter dyes on the surface of Ag NPs and the thiol groups of thiol-containing biomolecules. The concentration of biomolecules can be determined by monitoring with the fluorescence intensity of reporter dyes dispersed in solution. This new chromogenic assay method could selectively detect these biomolecules in the presence of various other amino acids and monosaccharides and even sensitively detect the thiol-containing biomolecules with different molecular weight, even including proteins.

  14. MicroRNAs as targets for dietary and pharmacological inhibitors of mutagenesis and carcinogenesis

    PubMed Central

    Izzotti, Alberto; Cartiglia, Cristina; Steele, Vernon E.; De Flora, Silvio

    2012-01-01

    MicroRNAs (miRNAs) have been implicated in many biological processes, cancer, and other diseases. In addition, miRNAs are dysregulated following exposure to toxic and genotoxic agents. Here we review studies evaluating modulation of miRNAs by dietary and pharmacological agents, which could potentially be exploited for inhibition of mutagenesis and carcinogenesis. This review covers natural agents, including vitamins, oligoelements, polyphenols, isoflavones, indoles, isothiocyanates, phospholipids, saponins, anthraquinones and polyunsaturated fatty acids, and synthetic agents, including thiols, nuclear receptor agonists, histone deacetylase inhibitors, antiinflammatory drugs, and selective estrogen receptor modulators. As many as 145 miRNAs, involved in the control of a variety of carcinogenesis mechanisms, were modulated by these agents, either individually or in combination. Most studies used cancer cells in vitro with the goal of modifying their phenotype by changing miRNA expression profiles. In vivo studies evaluated regulation of miRNAs by chemopreventive agents in organs of mice and rats, either untreated or exposed to carcinogens, with the objective of evaluating their safety and efficacy. The tissue specificity of miRNAs could be exploited for the chemoprevention of site-specific cancers, and the study of polymorphic miRNAs is expected to predict the individual response to chemopreventive agents as a tool for developing new prevention strategies. PMID:22683846

  15. Stable isotope labeling-solid phase extraction-mass spectrometry analysis for profiling of thiols and aldehydes in beer.

    PubMed

    Zheng, Shu-Jian; Wang, Ya-Lan; Liu, Ping; Zhang, Zheng; Yu, Lei; Yuan, Bi-Feng; Feng, Yu-Qi

    2017-12-15

    In this study, we developed a strategy for profiling of thiols and aldehydes in beer samples by stable isotope labeling-solid phase extraction-liquid chromatography-double precursor ion scan/double neutral loss scan-mass spectrometry analysis (SIL-SPE-LC-DPIS/DNLS-MS). A pair of isotope reagents (ω-bromoacetonylquinolinium bromide, BQB; ω-bromoacetonylquinolinium-d 7 bromide, BQB-d 7 ) were used to label thiols; while for the aldehydes, a pair of isotope reagents (4-(2-(trimethylammonio) ethoxy) benzenaminium halide, 4-APC; 4-(2-(trimethylammonio) ethoxy) benzenaminium halide-d 4 , 4-APC-d 4 ) were used. The labeled thiols and aldehydes were extracted and purified with solid-phase extraction, respectively, followed by LC-MS analysis. Using the proposed SIL-SPE-LC-DPIS/DNLS-MS methods, 76 thiol and 25 aldehyde candidates were found in beer. Furthermore, we established SIL-SPE-LC-MRM-MS methods for the relative quantitation of thiols and aldehydes in different beer samples. The results showed that the contents of thiols and aldehydes are closely related to the brands and origins of beers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Functionalization of gold and graphene electrodes by p-maleimido-phenyl towards thiol-sensing systems investigated by EQCM and IR ellipsometric spectroscopy

    NASA Astrophysics Data System (ADS)

    Neubert, Tilmann J.; Rösicke, Felix; Sun, Guoguang; Janietz, Silvia; Gluba, Marc A.; Hinrichs, Karsten; Nickel, Norbert H.; Rappich, Jörg

    2017-11-01

    Electrografting of gold and graphene surfaces by functional p-(N-maleimido)phenyl groups was performed by reduction of p-(N-maleimido)phenyldiazonium tetrafluoroborate. The reduction was carried out using cyclic voltammetry coupled with micro-gravimetric measurements by means of electrochemical quartz crystal microbalance (EQCM). The overall deposited mass on gold was higher than on graphene. However, the Faradaic efficiency was lower on Au (14%) compared to graphene (22%) after the first potential scan. Subsequently, the maleimide functional groups have been tested for immobilization of terminal thiols using (4-nitrobenzyl)mercaptan for the functionalized graphene surface and a cysteine-modified peptide for the functionalized gold surface. The functionalization by p-(N-maleimido)phenyl groups and the following thiol coupling of the particular surface was proven by infrared spectroscopic ellipsometry (IRSE). In addition, the interaction of the tetrabutylammonium and tetrafluoroborate ions present in the electrolyte with the Au and graphene electrodes was investigated by EQCM and revealed less electrostatic interaction of graphene with these ions in solution compared to the metal (Au) surface.

  17. Synthesis and Antioxidant Activity of 2-Amino-5-methylthiazol Derivatives Containing 1,3,4-Oxadiazole-2-thiol Moiety

    PubMed Central

    Mohana, Kikkeri N.; Kumar, Chikkur B. Pradeep

    2013-01-01

    A series of new 5-(2-amino-5-methylthiazol-4-yl)-1,3,4-oxadiazole-2-thiol derivatives 6(a–j) were designed and synthesized with various substituted aldehydes. The chemical structures were confirmed by elemental analyses, FT-IR, 1H NMR, and mass spectral studies. The antioxidant activity of the synthesized compounds was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, nitric oxide, and superoxide radical scavenging assay methods. Compounds 6a, 6e, and 6c showed significant radical scavenging potential due to the presence of electron donating substituent on substituted aldehydes. PMID:24052865

  18. Synthesis and Antioxidant Activity of 2-Amino-5-methylthiazol Derivatives Containing 1,3,4-Oxadiazole-2-thiol Moiety.

    PubMed

    Mohana, Kikkeri N; Kumar, Chikkur B Pradeep

    2013-01-01

    A series of new 5-(2-amino-5-methylthiazol-4-yl)-1,3,4-oxadiazole-2-thiol derivatives 6(a-j) were designed and synthesized with various substituted aldehydes. The chemical structures were confirmed by elemental analyses, FT-IR, (1)H NMR, and mass spectral studies. The antioxidant activity of the synthesized compounds was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, nitric oxide, and superoxide radical scavenging assay methods. Compounds 6a, 6e, and 6c showed significant radical scavenging potential due to the presence of electron donating substituent on substituted aldehydes.

  19. Gold nanoparticles on titanium and interaction with prototype protein.

    PubMed

    Padmos, J Daniel; Duchesne, Paul; Dunbar, Michael; Zhang, Peng

    2010-10-01

    Modifying titanium (Ti) implant surfaces with functional proteins can strengthen the interface between prosthesis and bone. A prototype system was developed using gold nanoparticles (AuNPs) to immobilize proteins onto Ti. An electroless (galvanic displacement) deposition method was first used to form AuNPs of controlled size and coverage on commercial Ti foil (giving Ti-AuNPs). Parameters were then modified to create two groups of discs (n = 26) with different average AuNP diameters. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the morphology and surface structure of Ti-AuNPs. To study the interaction of Ti-AuNPs with proteins, Ti discs (n = 8) modified with plain AuNPs and discs (n = 8) modified with thiol (HS--R--COOH)-functionalized AuNPs were treated with lysozyme solution. The amount and activity of the lysozyme on the discs were examined with Micro-BCA and enzymatic assays. Lysozyme was immobilized onto the discs, and the assays showed that the discs with thiol-functionalized AuNPs, discs with bare AuNPs, and Ti controls had average lysozyme adsorptions of 23 x 10(4), 2.3 x 10(4), and 5.7 x 10(4) microg/m2, respectively. The activity assays showed that 21.5, 18.4, and 12.5% of the adsorbed lysozyme was active on the discs with thiol-functionalized AuNPs, discs with bare AuNPs, and Ti controls, respectively. This technique holds promise for binding functional biomolecules to surgical implants, hence possibly creating implant surfaces that react to their local environment. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  20. The Role of Thiol/Disulphide Homeostasis in Anthracycline Associated Cardiac Toxicity.

    PubMed

    Topuz, Mustafa; Şen, Omer; Kaplan, Mehmet; Akkus, Oguz; Erel, Ozcan; Gur, Mustafa

    2017-02-07

    The aim of the present study was to evaluate whether the baseline thiol/disulfide state can predict the occurrence of anthracycline induced cardiac toxicity. A total of 186 cancer patients receiving anthracycline (doxorubicin)-based chemotherapy were enrolled. All patients underwent 2-dimensional (2D) speckle tracking echocardiography (STE) to determine their left ventricular ejection fraction (LVEF) and blood samples for measuring thiol forms were obtained before treatment and 4 weeks after completion of the chemotherapy. The mean dose of doxorubicin exposure was 255 ± 39.2 mg/m 2 . Baseline native thiol was found to be lower whereas baseline disulfide and the disulfide/total thiol ratio were found to be higher in patients who had a decrease in LVEF after anthracycline therapy. Also, the amount of decrease in LVEF was well correlated with the delta value of the thiol forms. Logistic regression analysis revealed that changes in BNP and global longitudinal strain (GLS), baseline level of native thiol, disulfide, and the disulfide/total thiol ratio were strong predictors for a decrease in LVEF.The thiol/disulfide pathway may be a factor for predicting chemotherapy-induced cardiac toxicity as one of the oxidative stress mechanisms.

  1. Spray-dried mucoadhesives for intravesical drug delivery using N-acetylcysteine- and glutathione-glycol chitosan conjugates.

    PubMed

    Denora, Nunzio; Lopedota, Angela; Perrone, Mara; Laquintana, Valentino; Iacobazzi, Rosa M; Milella, Antonella; Fanizza, Elisabetta; Depalo, Nicoletta; Cutrignelli, Annalisa; Lopalco, Antonio; Franco, Massimo

    2016-10-01

    This work describes N-acetylcysteine (NAC)- and glutathione (GSH)-glycol chitosan (GC) polymer conjugates engineered as potential platform useful to formulate micro-(MP) and nano-(NP) particles via spray-drying techniques. These conjugates are mucoadhesive over the range of urine pH, 5.0-7.0, which makes them advantageous for intravesical drug delivery and treatment of local bladder diseases. NAC- and GSH-GC conjugates were generated with a synthetic approach optimizing reaction times and purification in order to minimize the oxidation of thiol groups. In this way, the resulting amount of free thiol groups immobilized per gram of NAC- and GSH-GC conjugates was 6.3 and 3.6mmol, respectively. These polymers were completely characterized by molecular weight, surface sulfur content, solubility at different pH values, substitution and swelling degree. Mucoadhesion properties were evaluated in artificial urine by turbidimetric and zeta (ζ)-potential measurements demonstrating good mucoadhesion properties, in particular for NAC-GC at pH 5.0. Starting from the thiolated polymers, MP and NP were prepared using both the Büchi B-191 and Nano Büchi B-90 spray dryers, respectively. The resulting two formulations were evaluated for yield, size, oxidation of thiol groups and ex-vivo mucoadhesion. The new spray drying technique provided NP of suitable size (<1μm) for catheter administration, low degree of oxidation, and sufficient mucoadhesion property with 9% and 18% of GSH- and NAC-GC based NP retained on pig mucosa bladder after 3h of exposure, respectively. The aim of the present study was first to optimize the synthesis of NAC-GC and GSH-GC, and preserve the oxidation state of the thiol moieties by introducing several optimizations of the already reported synthetic procedures that increase the mucoadhesive properties and avoid pH-dependent aggregation. Second, starting from these optimized thiomers, we studied the feasibility of manufacturing MP and NP by spray-drying techniques. The aim of this second step was to produce mucoadhesive drug delivery systems of adequate size for vesical administration by catheter, and comparable mucoadhesive properties with respect to the processed polymers, avoiding thiolic oxidation during the formulation. MP with acceptable size produced by spray-dryer Büchi B-191 were compared with NP made with the apparatus Nano Büchi B-90. Copyright © 2016 Acta Materialia Inc. All rights reserved.

  2. The compromise of dynamic disulfide/thiol homeostasis as a biomarker of oxidative stress in trichloroethylene exposure.

    PubMed

    Bal, C; Büyükşekerci, M; Koca, C; Ağış, E R; Erdoğan, S; Baran, P; Gündüzöz, M; Yilmaz, Öh

    2016-09-01

    In this study, we aimed to investigate disulfide/thiol homeostasis in trichloroethylene (TCE) exposure. The study was carried out in 30 nonsmoker TCE-exposed workers with a variety of occupations. Additionally, 30 healthy nonsmoker volunteers were recruited as the control group. TCE exposure was determined by measuring urinary trichloroacetic acid (TCA) concentration. Median urinary TCA levels of exposed workers (20.5 mg/L) were significantly higher than control subjects (5 mg/L). Thiol and disulfide concentrations were determined using a novel automated method. Disulfide/thiol ratio was significantly higher in the exposed group (p < 0.001). Thiol/disulfide homeostasis was found to be disturbed in TCE-exposed workers. We predict that in TCE-exposed workers this disturbance can be a therapeutic target, and the efficiency of the treatment can easily be monitored by the novel method we used. © The Author(s) 2015.

  3. Mass Spectrometry in Studies of Protein Thiol Chemistry and Signaling: Opportunities and Caveats

    PubMed Central

    Devarie Baez, Nelmi O.; Reisz, Julie A.; Furdui, Cristina M.

    2014-01-01

    Mass spectrometry (MS) has become a powerful and widely utilized tool in the investigation of protein thiol chemistry, biochemistry, and biology. Very early biochemical studies of metabolic enzymes have brought to light the broad spectrum of reactivity profiles that distinguish cysteine thiols with functions in catalysis and protein stability from other cysteine residues in proteins. The development of MS methods for the analysis of proteins using electrospray ionization (ESI) or matrix-assisted laser desorption/ionization (MALDI) coupled with the emergence of high-resolution mass analyzers have been instrumental in advancing studies of thiol modifications, both in single proteins and within the cellular context. This article reviews MS instrumentation and methods of analysis employed in investigations of thiols and their reactivity toward a range of small biomolecules. A selected number of studies are detailed to highlight the advantages brought about by the MS technologies along with the caveats associated with these analyses. PMID:25261734

  4. Photonics and microarray technology

    NASA Astrophysics Data System (ADS)

    Skovsen, E.; Duroux, M.; Neves-Petersen, M. T.; Duroux, L.; Petersen, S. B.

    2007-05-01

    Photonic induced immobilization of biosensor molecules is a novel technology that results in spatially oriented and spatially localized covalent coupling of a large variety of biomolecules onto thiol reactive surfaces, e.g. thiolated glass, quartz, gold or silicon. The reaction mechanism behind the reported new technology involves light-induced breakage of disulphide bridges in proteins upon UV illumination of nearby aromatic amino acids resulting in the formation of reactive molecules that will form covalent bonds with thiol reactive surfaces. This new technology has the potential of replacing present micro dispensing arraying technologies, where the size of the individual sensor spots are limited by the size of the dispensed droplets. Using light-induced immobilization the spatial resolution is defined by the area of the sensor surface that is illuminated by UV light and not by the physical size of the dispensed droplets of sensor molecules. This new technology allows for dense packing of different biomolecules on a surface, allowing the creation of multi-potent functionalized materials, such as biosensors with micrometer sized individual sensor spots. Thus, we have developed the necessary technology for preparing large protein arrays of enzymes and fragments of antibodies, with micrometer resolution, without the need for liquid micro dispensing.

  5. Fast and Selective Modification of Thiol Proteins/Peptides by N-(Phenylseleno)phthalimide

    NASA Astrophysics Data System (ADS)

    Wang, Zhengfang; Zhang, Yun; Zhang, Hao; Harrington, Peter B.; Chen, Hao

    2012-03-01

    We previously reported that selenamide reagents such as ebselen and N-(phenylseleno)phthalimide (NPSP) can be used to selectively derivatize thiols for mass spectrometric analysis, and the introduced selenium tags are useful as they could survive or removed with collision-induced dissociation (CID). Described herein is the further study of the reactivity of various protein/peptide thiols toward NPSP and its application to derivatize thiol peptides in protein digests. With a modified protocol (i.e., dissolving NPSP in acetonitrile instead of aqueous solvent), we found that quantitative conversion of thiols can be obtained in seconds, using NPSP in a slight excess amount (NPSP:thiol of 1.1-2:1). Further investigation shows that the thiol reactivity toward NPSP reflects its chemical environment and accessibility in proteins/peptides. For instance, adjacent basic amino acid residues increase the thiol reactivity, probably because they could stabilize the thiolate form to facilitate the nucleophilic attack of thiol on NPSP. In the case of creatine phosphokinase, the native protein predominately has one thiol reacted with NPSP while all of four thiol groups of the denatured protein can be derivatized, in accordance with the corresponding protein conformation. In addition, thiol peptides in protein/peptide enzymatic digests can be quickly and effectively tagged by NPSP following tri- n-butylphosphine (TBP) reduction. Notably, all three thiols of the peptide QCCASVCSL in the insulin peptic digest can be modified simultaneously by NPSP. These results suggest a novel and selective method for protecting thiols in the bottom-up approach for protein structure analysis.

  6. Synthesis of a thiol-β-cyclodextrin, a potential agent for controlling enzymatic browning in fruits and vegetables.

    PubMed

    Manta, Carmen; Peralta-Altier, Gabriela; Gioia, Larissa; Méndez, María F; Seoane, Gustavo; Ovsejevi, Karen

    2013-11-27

    A thiol-β-cyclodextrin was synthesized by a simple and environmentally friendly three-step method comprising epoxy activation of β-cyclodextrin, thiosulfate-mediated oxirane opening, and further reduction of the S-alkyl thiosulfate to a thiol group. The final step was optimized by using thiopropyl-agarose, a solid phase reducing agent with many advantages over soluble ones. β-Cyclodextrin thiolation was confirmed by titration with a thiol-reactive reagent, NMR studies, and MALDI-TOF/TOF. Thiolated cyclodextrin had an average value of one thiol group per molecule. Thiol-β-cyclodextrin proved to be an excellent agent for controlling polyphenol oxidase activity. This copper-containing enzyme is responsible for browning in fruits and vegetables. Under the same conditions, thiol-β-cyclodextrin generated a reductive microenvironment that increased the antibrowning effect on Red Delicious apples compared to unmodified β-cyclodextrin.

  7. The Expanding Landscape of the Thiol Redox Proteome*

    PubMed Central

    Yang, Jing; Carroll, Kate S.; Liebler, Daniel C.

    2016-01-01

    Cysteine occupies a unique place in protein chemistry. The nucleophilic thiol group allows cysteine to undergo a broad range of redox modifications beyond classical thiol-disulfide redox equilibria, including S-sulfenylation (-SOH), S-sulfinylation (-SO2H), S-sulfonylation (-SO3H), S-nitrosylation (-SNO), S-sulfhydration (-SSH), S-glutathionylation (-SSG), and others. Emerging evidence suggests that these post-translational modifications (PTM) are important in cellular redox regulation and protection against oxidative damage. Identification of protein targets of thiol redox modifications is crucial to understanding their roles in biology and disease. However, analysis of these highly labile and dynamic modifications poses challenges. Recent advances in the design of probes for thiol redox forms, together with innovative mass spectrometry based chemoproteomics methods make it possible to perform global, site-specific, and quantitative analyses of thiol redox modifications in complex proteomes. Here, we review chemical proteomic strategies used to expand the landscape of thiol redox modifications. PMID:26518762

  8. Gel Electrophoresis of Gold-DNA Nanoconjugates

    DOE PAGES

    Pellegrino, T.; Sperling, R. A.; Alivisatos, A. P.; ...

    2007-01-01

    Gold-DNA conjugates were investigated in detail by a comprehensive gel electrophoresis study based on 1200 gels. A controlled number of single-stranded DNA of different length was attached specifically via thiol-Au bonds to phosphine-stabilized colloidal gold nanoparticles. Alternatively, the surface of the gold particles was saturated with single stranded DNA of different length either specifically via thiol-Au bonds or by nonspecific adsorption. From the experimentally determined electrophoretic mobilities, estimates for the effective diameters of the gold-DNA conjugates were derived by applying two different data treatment approaches. The first method is based on making a calibration curve for the relation between effectivemore » diameters and mobilities with gold nanoparticles of known diameter. The second method is based on Ferguson analysis which uses gold nanoparticles of known diameter as reference database. Our study shows that effective diameters derived from gel electrophoresis measurements are affected with a high error bar as the determined values strongly depend on the method of evaluation, though relative changes in size upon binding of molecules can be detected with high precision. Furthermore, in this study, the specific attachment of DNA via gold-thiol bonds to Au nanoparticles is compared to nonspecific adsorption of DNA. Also, the maximum number of DNA molecules that can be bound per particle was determined.« less

  9. Evaluation of low molecular mass thiols content in carotid atherosclerotic plaques.

    PubMed

    Zinellu, Angelo; Lepedda, Antonio; Sotgia, Salvatore; Zinellu, Elisabetta; Scanu, Bastianina; Turrini, Franco; Spirito, Rita; Deiana, Luca; Formato, Marilena; Carru, Ciriaco

    2009-06-01

    Despite the evidence that both homocysteine and cysteine are important risk factors for vascular disease and atherosclerosis no information are reported about their effective amount in plaque and on the relationship with the other low molecular weight thiols. We used capillary electrophoresis to measure thiols in both carotid plaque specimens and plasma samples from 37 patients undergoing carotid endarterectomy. Pearson's correlation shows that intraplaque homocysteine, cysteine and cysteinylglycine levels are related to their plasma concentrations. The distribution of intraplaque GSH and Glu-Cys was higher than that of the same thiols in plasma, whereas the other thiols were significantly less prevalent in plaque than in plasma. Intraplaque haemoglobin and GSH levels were correlated, thus suggesting their common origin from erythrocytes lysis. Data suggest that increased levels of intraplaque glutathione may induce important effects on plaque fate by perturbing the normal LMW thiol redox state.

  10. Detection of intracellular glutathione using ThiolTracker violet stain and fluorescence microscopy.

    PubMed

    Mandavilli, Bhaskar S; Janes, Michael S

    2010-07-01

    Glutathione plays an important role in protecting mammalian cells from oxidative stress and cell death. Because reduced glutathione (GSH) represents the large majority of intracellular free thiols, cell-permeant, thiol-reactive fluorescent probes represent potentially useful indicators of intracellular GSH. The ThiolTracker Violet stain (a registered trademark of Invitrogen) is a bright fluorescent probe that is highly reactive to thiols and can be used as a convenient and effective indicator of intracellular GSH and general redox status by a variety of detection modalities. While this probe has been validated in flow cytometry and microplate fluorimetry assays, the following method will describe details on the use of the ThiolTracker Violet dye in traditional fluorescence microscopy, as well as high-content imaging and analysis.

  11. High-throughput identification of promiscuous inhibitors from screening libraries with the use of a thiol-containing fluorescent probe.

    PubMed

    McCallum, Megan M; Nandhikonda, Premchendar; Temmer, Jonathan J; Eyermann, Charles; Simeonov, Anton; Jadhav, Ajit; Yasgar, Adam; Maloney, David; Arnold, Alexander Leggy

    2013-07-01

    Testing small molecules for their ability to modify cysteine residues of proteins in the early stages of drug discovery is expected to accelerate our ability to develop more selective drugs with lesser side effects. In addition, this approach also enables the rapid evaluation of the mode of binding of new drug candidates with respect to thiol reactivity and metabolism by glutathione. Herein, we describe the development of a fluorescence-based high-throughput assay that allows the identification of thiol-reactive compounds. A thiol-containing fluorescent probe, MSTI, was synthesized and used to evaluate small molecules from the Library of Pharmacologically Active Compounds (LOPAC) collection of bioactive molecules. LOPAC compounds that are known to react with sulfur nucleophiles were identified with this assay, for example, irreversible protease inhibitors, nitric oxide-releasing compounds, and proton-pump inhibitors. The results confirm that both electrophilic and redox reactive compounds can be quickly identified in a high-throughput manner, enabling the assessment of screening libraries with respect to thiol-reactive compounds.

  12. Mucoadhesive polymers: Synthesis and in vitro characterization of thiolated poly(vinyl alcohol).

    PubMed

    Suchaoin, Wongsakorn; Pereira de Sousa, Irene; Netsomboon, Kesinee; Rohrer, Julia; Hoffmann Abad, Patricia; Laffleur, Flavia; Matuszczak, Barbara; Bernkop-Schnürch, Andreas

    2016-04-30

    The aim of this study was to synthesize thiolated poly(vinyl alcohol) (PVA) and to evaluate its mucoadhesive properties. Thiourea and 3-mercaptopropionic acid were utilized in order to obtain thiolated PVAs, namely, TPVA1 and TPVA2, respectively. TPVA1 and TPVA2 displayed 130.44 ± 14.99 and 958.35 ± 155.27 μmol immobilized thiol groups per gram polymer, respectively, which were then evaluated regarding reactivity of thiol groups, swelling behavior and mucoadhesive properties. Both thiolated PVAs exhibited the highest reactivity at pH 8.0 whereas more than 95% of free thiol groups were preserved at pH 5.0. Thiolation of PVA decelerated water uptake and prolonged disintegration time of test discs compared to unmodified PVA. Contact time of TPVA1- and TPVA2-based test discs on porcine intestinal mucosa was 3.2- and 15.8-fold prolonged, respectively, in comparison to non-thiolated PVA as measured by rotating cylinder method. According to tensile studies on mucosa, the total work of adhesion (TWA) and the maximum detachment force (MDF) were increased when compared to PVA. Furthermore, thiolated PVAs preserved higher percentage of viable cells compared to unmodified PVA within 24h as evaluated by MTT assay. Accordingly, thiolated PVA represents a novel excipient that can likely improve the mucoadhesive properties of various pharmaceutical formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Can thiol compounds be used as biomarkers of aquatic ecosystem contamination by cadmium?

    PubMed Central

    Kovářová, Jana; Svobodová, Zdeňka

    2009-01-01

    Due to anthropogenic activities, heavy metals still represent a threat for various trophic levels. If aquatic animals are exposed to heavy metals we can obviously observe considerable toxicity. It is well known that an organism affected by cadmium (Cd) synthesize low molecular mass thiol compounds rich in cysteine (Cys), such as metallothioneins (MT) and glutathione (GSH/GSSG). The aim of this study was to summarize the effect of Cd on level of thiol compounds in aquatic organisms, and evaluate that the concentrations of thiol compounds are effective indicators of Cd water pollution and explain their potential use in biomonitoring applications. PMID:21217850

  14. Fluorimetric determination of some thiol compounds in their dosage forms.

    PubMed

    Al-Ghannam, Sh M; El-Brashy, A M; Al-Farhan, B S

    2002-08-01

    A simple fluorimetric procedure was adopted for determination of three pharmaceutical compounds containing thiol groups namely, captopril, D-penicillamine and N-acetylcysteine. In this method, the drugs are treated with 1,2-naphthoquinone-4-sulfonic acid. The latter is reduced to 1,2-dihydroxynaphthalene-4-sulfonic acid which has a maximum fluorescence intensity at 480/318 nm (lambdaEm/Ex). The method is sensitive to 0.5-4.5 pg ml(- 1) with minimum detectability 0.05 microg ml(-1) (S/N = 2), and has been applied to determine these three thiols in their dosage forms. The results obtained are compared favourably with those obtained by their pharmacopeial methods.

  15. Microcontact Printing of Thiol-Functionalized Ionic Liquid Microarrays for "Membrane-less" and "Spill-less" Gas Sensors.

    PubMed

    Gondosiswanto, Richard; Gunawan, Christian A; Hibbert, David B; Harper, Jason B; Zhao, Chuan

    2016-11-16

    Lab-on-a-chip systems have gained significant interest for both chemical synthesis and assays at the micro-to-nanoscale with a unique set of benefits. However, solvent volatility represents one of the major hurdles to the reliability and reproducibility of the lab-on-a-chip devices for large-scale applications. Here we demonstrate a strategy of combining nonvolatile and functionalized ionic liquids with microcontact printing for fabrication of "wall-less" microreactors and microfluidics with high reproducibility and high throughput. A range of thiol-functionalized ionic liquids have been synthesized and used as inks for microcontact printing of ionic liquid microdroplet arrays onto gold chips. The covalent bonds formed between the thiol-functionalized ionic liquids and the gold substrate offer enhanced stability of the ionic liquid microdroplets, compared to conventional nonfunctionalized ionic liquids, and these microdroplets remain stable in a range of nonpolar and polar solvents, including water. We further demonstrate the use of these open ionic liquid microarrays for fabrication of "membrane-less" and "spill-less" gas sensors with enhanced reproducibility and robustness. Ionic-liquid-based microarray and microfluidics fabricated using the described microcontact printing may provide a versatile platform for a diverse number of applications at scale.

  16. The synthesis of novel hybrid thiol-functionalized nano-structured SBA-15

    NASA Astrophysics Data System (ADS)

    Hoang, Van Duc; Phuong Dang, Tuyet; Khieu Dinh, Quang; Phu Nguyen, Huu; Vu, Anh Tuan

    2010-09-01

    Mesoporous thiol-functionalized SBA-15 has been directly synthesized by co-condensation of tetraethyl orthosilicate (TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) with triblock copolymer P123 as-structure-directing agent under hydrothermal conditions. Surfactant removal was performed by Soxhlet ethanol extraction. These materials have been characterized by powder x-ray diffraction (XRD), nitrogen adsorption/desorption (BET model), transmission electron microscopy (TEM), thermal analysis, infrared spectroscopy (IR) and energy-dispersive x-ray spectroscopy (EDX). The main parameters, such as the initial molar ratio of MPTMS to TEOS, the time of adding MPTMS to synthesized gel and the Soxhlet ethanol extraction on the thiol functionalized SBA-15 with high thiol content and highly ordered hexagonal mesostructure, were investigated and evaluated. The adsorption capacity of the thiol-functionalized and non-functionalized SBA-15 materials for Pb2+ ion from aqueous solution was tested. It was found that the Pb2+ adsorption capacity of the thiol functionalized SBA-15 is three times higher than that of non-functionalized SBA-15.

  17. Redox mediators in visible light photocatalysis: photocatalytic radical thiol-ene additions.

    PubMed

    Tyson, Elizabeth L; Niemeyer, Zachary L; Yoon, Tehshik P

    2014-02-07

    Synthetically useful radical thiol-ene reactions can be initiated by visible light irradiation in the presence of transition metal polypyridyl photocatalysts. The success of this method relies upon the use of p-toluidine as an essential additive. Using these conditions, high-yielding thiol-ene reactions of cysteine-containing biomolecules can be accomplished using biocompatibile wavelengths of visible light, under aqueous conditions, and with the thiol component as the limiting reagent. We present evidence that p-toluidine serves as a redox mediator that is capable of catalyzing the otherwise inefficient photooxidation of thiols to the key thiyl radical intermediate. Thus, we show that co-catalytic oxidants can be important in the design of synthetic reactions involving visible light photoredox catalysis.

  18. Study of Highly Selective and Efficient Thiol Derivatization using Selenium Reagents by Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kehua; Zhang, Yun W.; Tang, Bo

    2010-08-15

    Biological thiols are critical physiological components and their detection often involves derivatization. This paper reports a systemic mass spectrometry (MS) investigation of the cleavage of Se-N bond by thiol to form a new Se-S bond, the new selenium chemistry for thiol labeling. Our data shows that the reaction is highly selective, rapid, reversible and efficient. For instance, among twenty amino acids, only cysteine was found to be reactive with Se-N containing reagents and the reaction takes place in seconds. By adding dithiothreitol (DTT), the newly formed Se-S bond of peptides/proteins can be reduced back to free thiol. The high selectivitymore » and excellent reversibility of the reaction provide potential of using this chemistry for selective identification of thiol compounds or enriching and purifying thiol peptides/proteins. In addition, the derivatized thiol peptides have interesting dissociation behavior, which is tunable using different selenium reagents. For example, by introducing an adjacent nucleophilic group into the selenium reagent in the case of using ebselen, the reaction product of ebselen with glutathione (GSH) is easy to lose the selenium tag upon collision-induced dissociation (CID), which is useful to "fish out" those peptides containing free cysteine residues by precursor ion scan. By contrast, the selenium tag of N-(phenylseleno) phthalimide reagent can be stable and survive in CID process, which would be of value in pinpointing thiol location using a top-down proteomic approach. Also, the high conversion yield of the reaction allows the counting of total number of thiol in proteins. We believe that ebselen or N-(phenylseleno) phthalimide as tagging thiol-protein reagents will have important applications in both qualitative and quantitative analysis of different thiol-proteins derived from living cells by MS method.« less

  19. The change in serum Thiol/Disulphide homeostasis after transrectal ultrasound guided prostate biopsy.

    PubMed

    Tokgöz, Hüsnü; Taş, Selim; Giray, Özlem; Yalçınkaya, Soner; Tokgöz, Özlem; Koca, Cemile; Savaş, Murat; Erel, Özcan

    2017-01-01

    The aim of this prospective clinical study was to investigate variations in a novel oxidative stress marker (thiol/disulphide homeostasis) in men who underwent transrectal ultrasound guided prostate biopsy (TRUSB). A total of 22 men undergoing TRUSB of the prostate were enrolled in the study. Patients with abnormal digital rectal examination and/or total prostate specific antigen (PSA) over 4ng/mL underwent TRUSB with 12 cores. Serum samples were obtained before and just after the procedure to evaluate the possible changes in thiol/disulphide homeostasis. Mean age, total PSA and free PSA, prostate volume and histopathological data were also recorded. Mean age of the study population was 65.05±8.89 years. Significant decreases in native and total thiol levels were documented after the biopsy procedure. However, serum disulphide levels and disulphide/native thiol, disulphide/total thiol and native / total thiol ratios did not significantly change after TRUSB. No correlation was observed between oxidative parameters and total PSA and free PSA levels, prostate volume and histopathology of the prostate. However, mean patient age was significantly correlated with mean native and total thiol levels. Significant decreases in serum native and total thiol levels related to the prostate biopsy procedure suggest that TRUSB causes acute oxidative stress in the human body. Since our trial is the first in the current literature to investigate these oxidative stress markers in urology practice, additional studies are warranted. Copyright® by the International Brazilian Journal of Urology.

  20. Enantioselective Synthesis of α-Mercapto-β-amino Esters via Rh(II)/Chiral Phosphoric Acid-Cocatalyzed Three-Component Reaction of Diazo Compounds, Thiols, and Imines.

    PubMed

    Xiao, Guolan; Ma, Chaoqun; Xing, Dong; Hu, Wenhao

    2016-12-02

    An enantioselective method for the synthesis of α-mercapto-β-amino esters has been developed via a rhodium(II)/chiral phosphoric acid-cocatalyzed three-component reaction of diazo compounds, thiols, and imines. This transformation is proposed to proceed through enantioselective trapping of the sulfonium ylide intermediate generated in situ from the diazo compound and thiol by the phosphoric acid-activated imine. With this method, a series of α-mercapto-β-amino esters were obtained in good yields with moderate to good stereoselectivities.

  1. Methods of measuring Protein Disulfide Isomerase activity: a critical overview

    NASA Astrophysics Data System (ADS)

    Watanabe, Monica; Laurindo, Francisco; Fernandes, Denise

    2014-09-01

    Protein disulfide isomerase is an essential redox chaperone from the endoplasmic reticulum (ER) and is responsible for correct disulfide bond formation in nascent proteins. PDI is also found in other cellular locations in the cell, particularly the cell surface. Overall, PDI contributes to ER and global cell redox homeostasis and signaling. The knowledge about PDI structure and function progressed substantially based on in vitro studies using recombinant PDI and chimeric proteins. In these experimental scenarios, PDI reductase and chaperone activities are readily approachable. In contrast, assays to measure PDI isomerase activity, the hallmark of PDI family, are more complex. Assessment of PDI roles in cells and tissues mainly relies on gain- or loss-of-function studies. However, there is limited information regarding correlation of experimental readouts with the distinct types of PDI activities. In this mini-review, we evaluate the main methods described for measuring the different kinds of PDI activity: thiol reductase, thiol oxidase, thiol isomerase and chaperone. We emphasize the need to use appropriate controls and the role of critical interferents (e.g., detergent, presence of reducing agents). We also discuss the translation of results from in vitro studies with purified recombinant PDI to cellular and tissue samples, with critical comments on the interpretation of results.

  2. “Turn-on” fluorescence probe integrated polymer nanoparticles for sensing biological thiol molecules

    NASA Astrophysics Data System (ADS)

    Ang, Chung Yen; Tan, Si Yu; Lu, Yunpeng; Bai, Linyi; Li, Menghuan; Li, Peizhou; Zhang, Quan; Selvan, Subramanian Tamil; Zhao, Yanli

    2014-11-01

    A ``turn-on'' thiol-responsive fluorescence probe was synthesized and integrated into polymeric nanoparticles for sensing intracellular thiols. There is a photo-induced electron transfer process in the off state of the probe, and this process is terminated upon the reaction with thiol compounds. Configuration interaction singles (CIS) calculation was performed to confirm the mechanism of this process. A series of sensing studies were carried out, showing that the probe-integrated nanoparticles were highly selective towards biological thiol compounds over non-thiolated amino acids. Kinetic studies were also performed to investigate the relative reaction rate between the probe and the thiolated amino acids. Subsequently, the Gibbs free energy of the reactions was explored by means of the electrochemical method. Finally, the detection system was employed for sensing intracellular thiols in cancer cells, and the sensing selectivity could be further enhanced with the use of a cancer cell-targeting ligand in the nanoparticles. This development paves a path for the sensing and detection of biological thiols, serving as a potential diagnostic tool in the future.

  3. Evaluation of fracture toughness and mechanical properties of ternary thiol-ene-methacrylate systems as resin matrix for dental restorative composites.

    PubMed

    Beigi, Saeed; Yeganeh, Hamid; Atai, Mohammad

    2013-07-01

    Study and evaluation of fracture toughness, flexural and dynamic mechanical properties, and crosslink density of ternary thiol-ene-methacrylate systems and comparison with corresponding conventional methacrylate system were considered in the present study. Urethane tetra allyl ether monomer (UTAE) was synthesized as ene monomer. Different formulations were prepared based on combination of UTAE, BisGMA/TEGDMA and a tetrathiol monomer (PETMP). The photocuring reaction was conducted under visible light using BD/CQ combination as photoinitiator system. Mechanical properties were evaluated via measuring flexural strength, flexural modulus and fracture toughness. Scanning electron microscopy (SEM) was utilized to study the morphology of the fractured specimen's cross section. Viscoelastic properties of the samples were also determined by dynamic mechanical thermal analysis (DMTA). The same study was performed on a conventional methacrylate system. The data were analyzed and compared by ANOVA and Tukey HSD tests (significance level=0.05). The results showed improvement in fracture toughness of the specimens containing thiol-ene moieties. DMTA revealed a lower glass transition temperature and more homogenous structure for thiol-ene containing specimens in comparison to the system containing merely methacrylate monomer. The flexural modulus and flexural strength of the specimens with higher thiol-ene content were lower than the neat methacrylate system. The SEM micrographs of the fractured surface of specimens with higher methacrylate content were smooth and mirror-like (shiny) which represent brittle fracture. The thiol-ene-methacrylate system can be used as resin matrix of dental composites with enhanced fracture toughness in comparison to the methacrylate analogous. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Identification of Thiols in Yellow Onion (Allium cepa L.) Using Solvent Vented Large Volume Injection GC-MS.

    PubMed

    Wermes, Clint; Cannon, Robert; Haasnoot, Sytze; Colstee, Hans; Niedeveld, Cor; Koopmanschap, Gijs; Da Costa, Neil C

    2017-11-01

    Thiols are often highly odor active molecules and as such can significantly contribute to aroma while being present at extremely low concentrations. This paper details the identification of thiols in yellow onion juice by solvent extraction followed by thiol enrichment using a mercuric agarose gel column. Due to the inherent thermal instability and low concentrations of thiols in onion, chromatographic analysis utilized larger volume solvent elimination injections. New sulfur compounds in onion included 1,1-propanedithiol, bis-(1-sulfanylpropyl)-sulfide, 1-methylsulfanyl-1-propanethiol, 1-propylsulfanyl-1-propanethiol, and 1-allylsulfanyl-1-propanethiol. A discussion on the potential route of formation for each compound is included along with the orthonasal and retronasal evaluations of the synthesized molecules. This work investigated and identified 5 newly identified compounds present in onions that can impart onion character at low concentrations levels. © 2017 Institute of Food Technologists®.

  5. Spectroelectrochemical detection of microRNA-155 based on functional RNA immobilization onto ITO/GNP nanopattern.

    PubMed

    Mohammadniaei, Mohsen; Yoon, Jinho; Lee, Taek; Choi, Jeong-Woo

    2018-05-20

    We fabricated a microRNA biosensor using the combination of surface enhanced Raman spectroscopy (SERS) and electrochemical (EC) techniques. For the first time, the weaknesses of each techniques for microRNA detection was compensated by the other ones to give rise to the specific and wide-range detection of miR-155. A single stranded 3' methylene blue (MB) and 5' thiol-modified RNA (MB-ssRNA-SH) was designed to detect the target miR-155 and immobilized onto the gold nanoparticle-modified ITO (ITO/GNP). Upon the invasion of target strand, the double-stranded RNA transformed rapidly to an upright structure resulting in a notable decrease in SERS and redox signals of the MB. For the first time, by combination of SERS and EC techniques in a single platform we extended the dynamic range of both techniques from 10 pM to 450 nM (SERS: 10 pM-5 nM and EC: 5 nM-450 nM). As well, the SERS technique improved the detection limit of the EC method from 100 pM to 100 fM, while the EC method covered single-mismatch detection which was the SERS deficiency. The fabricated single-step biosensor possessing a good capability of miRNA detection in human serum, could be employed throughout the broad ranges of biomedical and bioelectronics applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Thiol/disulfide homeostasis in pregnant women with obstructive sleep apnea syndrome.

    PubMed

    Üstündağ, Yasemin; Demirci, Hakan; Balık, Rifat; Erel, Ozcan; Özaydın, Fahri; Kücük, Bilgen; Ertaş, Dilber; Ustunyurt, Emin

    2017-11-27

    Repetitive episodes of hypoxia and reoxygenation during sleep in patients with obstructive sleep apnea syndrome (OSAS) resemble an ischemia-reperfusion injury. We aimed to test the hypothesis that oxidative stress occurs in pregnant women with OSAS. We also aimed to compare thiol/disulfide homeostasis with ischemia-modified albumin (IMA) and total antioxidant capacity (TAC) as markers of ischemia-reperfusion injury in pregnant women with and without OSAS and healthy control. This study included 29 pregnant women with OSAS, 30 women without OSAS in the third trimester applying for periodic examinations, and 30 healthy women. Serum IMA and TAC (using the ferric reducing power of plasma method) were measured. Serum thiol/disulfide homeostasis was determined by a novel automated method. The mean age of the pregnant women with OSAS was 31.0 ± 4.7 years with a mean gestational age of 36.5 ± 3.0 weeks. The mean age of pregnant women without OSAS was 29.8 ± 4.9 years with a mean gestational age of 36.9 ± 2.7 weeks. The mean age of the nonpregnant control group was 29.7 ± 6.4 years. Both native thiol (291 ± 29 μmol/L versus 314 ± 30 μmol/L; p = .018) and total thiol (325 ± 32 versus 350 ± 32, p = .025) levels were lower in pregnant women with OSAS compared to pregnant women without OSAS, respectively (p < .01). This is the first study demonstrating the thiol/disulfide homeostasis in pregnant women with OSAS. Native thiol and total thiol levels were lower in pregnant women with OSAS compared to those without OSAS. However, dynamic thiol/disulfide homeostasis parameters cannot provide valuable information to discriminate OSAS in pregnant women.

  7. Physical properties and stability evaluation of fish oil-in-water emulsions stabilized using thiol-modified β-lactoglobulin fibrils-chitosan complex.

    PubMed

    Chang, Hon Weng; Tan, Tai Boon; Tan, Phui Yee; Abas, Faridah; Lai, Oi Ming; Wang, Yong; Wang, Yonghua; Nehdi, Imededdine Arbi; Tan, Chin Ping

    2018-03-01

    Fish oil-in-water emulsions containing fish oil, thiol-modified β-lactoglobulin (β-LG) fibrils, chitosan and maltodextrin were fabricated using a high-energy method. The results showed that chitosan coating induced charge reversal; denoting successful biopolymers complexation. A significantly (p<0.05) larger droplet size and lower polydispersity index value, attributed to the thicker chitosan coating at the oil-water interface, were observed. At high chitosan concentrations, the cationic nature of chitosan strengthened the electrostatic repulsion between the droplets, thus conferring high oxidative stability and low turbidity loss rate to the emulsions. The apparent viscosity of emulsions stabilized using thiol-modified β-LG fibrils-chitosan complex was higher than those stabilized using β-LG fibrils alone, resulting in the former's higher creaming stability. Under thermal treatments (63°C and 100°C), emulsions stabilized using thiol-modified β-LG fibrils-chitosan complex possessed higher heat stability as indicated by the consistent droplet sizes observed. Chitosan provided a thicker protective layer that protected the oil droplets against high temperature. Bridging flocculation occurred at low chitosan concentration (0.1%, w/w), as revealed through microscopic observations which indicated the presence of large flocs. All in all, this work provided us with a better understanding of the application of protein fibrils-polysaccharide complex to produce stable emulsion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity.

    PubMed

    Belda, Ignacio; Ruiz, Javier; Navascués, Eva; Marquina, Domingo; Santos, Antonio

    2016-05-16

    The development of a selective medium for the rapid differentiation of yeast species with increased aromatic thiol release activity has been achieved. The selective medium was based on the addition of S-methyl-l-cysteine (SMC) as β-lyase substrate. In this study, a panel of 245 strains of Saccharomyces cerevisiae strains was tested for their ability to grow on YCB-SMC medium. Yeast strains with an increased β-lyase activity grew rapidly because of their ability to release ammonium from SMC in comparison to others, and allowed for the easy isolation and differentiation of yeasts with promising properties in oenology, or another field, for aromatic thiol release. The selective medium was also helpful for the discrimination between those S. cerevisiae strains, which present a common 38-bp deletion in the IRC7 sequence (present in around 88% of the wild strains tested and are likely to be less functional for 4-mercapto-4-methylpentan-2-one (4MMP) production), and those S. cerevisiae strains homozygous for the full-length IRC7 allele. The medium was also helpful for the selection of non-Saccharomyces yeasts with increased β-lyase activity. Based on the same medium, a highly sensitive, reproducible and non-expensive GC-MS method for the evaluation of the potential volatile thiol release by different yeast isolates was developed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Oxidative stress, thiols, and redox profiles.

    PubMed

    Harris, Craig; Hansen, Jason M

    2012-01-01

    Oxidative stress has been recognized as a contributing factor in the toxicity of a large number of developmental toxicants. Traditional definitions of oxidative stress state that a shift in the balance between reduced and oxidized biomolecules within cells, in favor of the latter, result in changes that are deleterious to vital cell functions and can culminate in malformations and death. The glutathione (GSH)/glutathione disulfide (GSSG) redox couple has been the traditional marker of choice for characterization of oxidative stress because of its high concentrations and direct roles as antioxidant and cellular protectant. Steady state depletion of GSH through conjugation, oxidation, or export has often been reported as the sole criteria for invoking oxidative stress and a myriad of associated deleterious consequences. Numerous other, mostly qualitative, observations have also been reported to suggest oxidative stress has occurred but it is not always clear how well they reflect the state of a cell or its functions. Our emerging understanding of redox signaling and the roles of reactive oxygen species (ROS), thiols, oxidant molecules, and cellular antioxidants, all acting as second messengers, has prompted a redefinition of oxidative stress based on changes in the real posttranslational protein thiol modifications that are central to redox regulation and control. Thiol-based redox couples such as GSH/GSSG, cysteine/cystine (cys/cySS), thioredoxin-reduced/thioredoxin-oxidized (TRX(red)/TRX(ox)) form independent signaling nodes that selectively regulate developmental events and are closely linked to changes in intracellular redox potentials. Accurate assessment of the consequences of increased free radicals in developing conceptuses should best be made using a battery of measurements including the quantitative assessment of intracellular redox potential, ROS, redox status of biomolecules, and induced changes in specific redox signaling nodes. Methods are presented for a determination of ROS production, soluble thiol oxidation, redox potential, and a proteomic approach to evaluate the thiol oxidation state of specific proteins.

  10. Heavy metal ion removal by thiol functionalized aluminum oxide hydroxide nanowhiskers

    NASA Astrophysics Data System (ADS)

    Xia, Zhiyong; Baird, Lance; Zimmerman, Natasha; Yeager, Matthew

    2017-09-01

    In this study, we developed a cost effective method of using thiol functionalized γ-aluminum oxide hydroxide (γ-AlOOH) filters for removing three key heavy metals from water: mercury, lead, and cadmium under non-concomitant conditions. Compared to non-thiol treated γ-AlOOH filters, the introduction of thiol functional groups greatly improved the heavy metal removal efficiency under both static and dynamic filtration conditions. The adsorption kinetics of thiol functionalized γ-AlOOH were investigated using the Lagergren first order and pseudo-second order kinetics models; whereas the isothermal adsorption behavior of these membranes was revealed through the Langmuir and Freundlich models. Heavy metal concentration was quantified by Inductively Coupled Plasma-Mass Spectroscopy, and the thiol level on γ-AlOOH surface was measured by a colorimetric assay using Ellman's reagent. X-ray photoelectron spectroscopy was used to further address the surface sulfur state on the membranes after heavy metal exposure. Mechanisms for heavy metal adsorption were also discussed.

  11. Mechanistic investigation of Fe(III) oxide reduction by low molecular weight organic sulfur species

    NASA Astrophysics Data System (ADS)

    Eitel, Eryn M.; Taillefert, Martial

    2017-10-01

    Low molecular weight organic sulfur species, often referred to as thiols, are known to be ubiquitous in aquatic environments and represent important chemical reductants of Fe(III) oxides. Thiols are excellent electron shuttles used during dissimilatory iron reduction, and in this capacity could indirectly affect the redox state of sediments, release adsorbed contaminants via reductive dissolution, and influence the carbon cycle through alteration of bacterial respiration processes. Interestingly, the reduction of Fe(III) oxides by thiols has not been previously investigated in environmentally relevant conditions, likely due to analytical limitations associated with the detection of thiols and their oxidized products. In this study, a novel electrochemical method was developed to simultaneously determine thiol/disulfide pair concentrations in situ during the reduction of ferrihydrite in batch reactors. First order rate laws with respect to initial thiol concentration were confirmed for Fe(III) oxyhydroxide reduction by four common thiols: cysteine, homocysteine, cysteamine, and glutathione. Zero order was determined for both Fe(III) oxyhydroxide and proton concentration at circumneutral pH. A kinetic model detailing the molecular mechanism of the reaction was optimized with proposed intermediate surface structures. Although metal oxide overall reduction rate constants were inversely proportional to the complexity of the thiol structure, the extent of metal reduction increased with structure complexity, indicating that surface complexes play a significant role in the ability of these thiols to reduce iron. Taken together, these results demonstrate the importance of considering the molecular reaction mechanism at the iron oxide surface when investigating the potential for thiols to act as electron shuttles during dissimilatory iron reduction in natural environments.

  12. Determination of low molecular weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Fahey, Robert C.; Newton, Gerald L.

    1988-01-01

    Methods are described for the preparation and high-performance liquid chromatography (HPLC) analysis of monobromobimane derivatives of low molecular weight thiols in extracts of biological samples. Typical problems encountered in the development and application of these methods are discussed. Analysis of mung bean extract is used as an example.

  13. Soft-lithography fabrication of microfluidic features using thiol-ene formulations.

    PubMed

    Ashley, John F; Cramer, Neil B; Davis, Robert H; Bowman, Christopher N

    2011-08-21

    In this work, a novel thiol-ene based photopolymerizable resin formulation was shown to exhibit highly desirable characteristics, such as low cure time and the ability to overcome oxygen inhibition, for the photolithographic fabrication of microfluidic devices. The feature fidelity, as well as various aspects of the feature shape and quality, were assessed as functions of various resin attributes, particularly the exposure conditions, initiator concentration and inhibitor to initiator ratio. An optical technique was utilized to evaluate the feature fidelity as well as the feature shape and quality. These results were used to optimize the thiol-ene resin formulation to produce high fidelity, high aspect ratio features without significant reductions in feature quality. For structures with aspect ratios below 2, little difference (<3%) in feature quality was observed between thiol-ene and acrylate based formulations. However, at higher aspect ratios, the thiol-ene resin exhibited significantly improved feature quality. At an aspect ratio of 8, raised feature quality for the thiol-ene resin was dramatically better than that achieved by using the acrylate resin. The use of the thiol-ene based resin enabled fabrication of a pinched-flow microfluidic device that has complex channel geometry, small (50 μm) channel dimensions, and high aspect ratio (14) features. This journal is © The Royal Society of Chemistry 2011

  14. Simultaneous determination of albumin and low-molecular-mass thiols in plasma by HPLC with UV detection.

    PubMed

    Borowczyk, Kamila; Wyszczelska-Rokiel, Monika; Kubalczyk, Paweł; Głowacki, Rafał

    2015-02-15

    In this paper, we describe a simple and robust HPLC based method for determination of total low- and high-molecular-mass thiols, protein S-linked thiols and reduced albumin in plasma. The method is based on derivatization of analytes with 2-chloro-1-methylquinolinium tetrafluoroborate, separation and quantification by reversed-phase liquid chromatography followed by UV detection. Disulfides were converted to their thiol counterparts by reductive cleavage with tris(2-carboxyethyl)phosphine. Linearity in detector response for total thiols was observed over the range of 1-40 μmol L(-1) for Hcy and glutathione (GSH), 5-100 μmol L(-1) for Cys-Gly, 20-300 μmol L(-1) for Cys and 3.1-37.5 μmol L(-1) (0.2-2.4gL(-1)) for human serum albumin (HSA). For the protein S-bound forms these values were as follows: 0.5-30 μmol L(-1) for Hcy and GSH, 2.5-60 μmol L(-1) for Cys-Gly and 5-200 μmol L(-1) for Cys. The LOQs for total HSA, Cys, Hcy, Cys-Gly and GSH were 0.5, 0.2, 0.4, 0.3 and 0.4 μmol L(-1), respectively. The estimated validation parameters for all analytes are more than sufficient to allow the analytical method to be used for monitoring of the total and protein bound thiols as well as redox status of HSA in plasma. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. X-ray photoelectron spectroscopy characterization of gold nanoparticles functionalized with amine-terminated alkanethiols

    PubMed Central

    Techane, Sirnegeda D.; Gamble, Lara J.; Castner, David G.

    2011-01-01

    Gold nanoparticles (AuNPs) functionalized with a short chain amine-terminated alkanethiol (HS-(CH2)2NH2 or C2 NH2-thiol) are prepared via a direct synthesis method and then ligand-exchanged with a long chain amine-terminated alkanethiol (HS-(CH2)11NH2 or C11 NH2-thiol). Transmission electron microscopy analysis showed the AuNPs were relatively spherical with a median diameter of 24.2±4.3 nm. X-ray photoelectron spectroscopy was used to determine surface chemistry of the functionalized and purified AuNPs. The ligand-exchange process was monitored within the time range from 30 min to 61 days. By the fourth day of exchange all the C2 NH2-thiol molecules had been replaced by C11 NH2-thiol molecules. C11 NH2-thiol molecules continued to be incorporated into the C11 NH2 self-assembled monolayer between days 4 and 14 of ligand-exchange. As the length of the exchange time increased, the functionalized AuNPs became more stable against aggregation. The samples were purified by a centrifugation and resuspension method. The C2 NH2 covered AuNPs aggregated immediately when purification was attempted. The C11 NH2 covered AuNPs could be purified with minimal or no aggregation. Small amounts of unbound thiol (∼15%) and oxidized sulfur (∼20%) species were detected on the ligand-exchanged AuNPs. Some of the unbound thiol and all of the oxidized sulfur could be removed by treating the functionalized AuNPs with HCl. PMID:21974680

  16. Determination of total antioxidant capacity of milk by CUPRAC and ABTS methods with separate characterisation of milk protein fractions.

    PubMed

    Çekiç, Sema Demirci; Demir, Aslı; Başkan, Kevser Sözgen; Tütem, Esma; Apak, Reşat

    2015-05-01

    Most milk-applied antioxidant assays in literature are based on the isolation and quantification of individual antioxidative compounds, whereas total antioxidant capacity (TAC) gives a more holistic picture due to cooperative action of antioxidants. Recently, the cupric reducing antioxidant capacity (CUPRAC) method has been modified to measure the antioxidant capacities of thiol-containing proteins, where the classical ammonium acetate buffer - that may otherwise precipitate proteins- was replaced with concentrated urea buffer (able to expose embedded thiol groups of proteins to oxidative attack) adjusted to pH 7.0. Thus, antioxidant capacity of milk was investigated with two competing TAC assays, namely CUPRAC and ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid))/persulphate, because only these assays were capable of evaluating protein contribution to the observed TAC value. As milk fat caused turbidity, experiments were carried out with skim milk or defatted milk samples. To determine TAC, modified CUPRAC method was applied to whole milk, separated and redissolved protein fractions, and the remaining liquid phase after necessary operations. Both TAC methods were investigated for their dilution sensitivity and antioxidant power assessment of separate milk fractions such as casein and whey. Proteins like β-lactoglobulin and casein (but not simple thiols) exhibited enhanced CUPRAC reactivity with surfactant (SDS) addition. Addition of milk protein fractions to whole skim milk produced significant 'negative-biased' deviations (up to -26% relative standard error) from TAC absorbance additivity in the application of the ABTS method, as opposed to that of the CUPRAC method less affected by chemical deviations from Beer's law thereby producing much smaller deviations from additivity (i.e. the property of additivity is valid when the measured TAC of a mixture is equal to the sum of individual antioxidant capacities of its constituents).

  17. Chromenoquinoline-based thiol probes: a study on the quencher position for controlling fluorescent Off-On characteristics.

    PubMed

    Kand, Dnyaneshwar; Kalle, Arunasree Marasanapalli; Talukdar, Pinaki

    2013-02-13

    The design, synthesis and thiol sensing ability of chromenoquinoline-based fluorescent probes 4, 5 and 6 and are reported here. The relative position of the maleimide moiety was varied along the chromenoquinoline fluorophore to decrease the background fluorescence. Lower background fluorescence in probes 4 and 6 was rationalized by the smaller k(r)/k(nr) values compared to that of probe 5. An intramolecular charge transfer (ICT) mechanism was proposed for quenching and the extent was dependent on the position of the maleimide quencher. Fluorescent Off-On characteristics were evaluated by theoretical calculations. All probes were selective only towards thiol containing amino acids. Thiol sensing by probes 4 and 6 were much better compared to 5. Probe 4 displayed a better fluorescence response for less hindered thiol (185-, 223- and 156-fold for Hcy, Cys and GSH, respectively), while for probe 6, a higher enhancement in fluorescence was observed with more hindered thiols (180-, 205- and 245-fold for Hcy, Cys and GSH, respectively). The better response to bulkier thiol, GSH by probe 6 was attributed to the steric crowding at the C-4 position and bulkiness of the GSH group which force the succinimide unit to be in a nearly orthogonal conformation. This spatial arrangement was important in reducing the fluorescence quenching ability of the succinimide moiety. The application of probes 4, 5 and 6 was demonstrated by naked eye detection thiols using a 96-well plate system as well as by live-cell imaging.

  18. Photogenerated Lectin Sensors Produced by Thiol-Ene/Yne Photo-Click Chemistry in Aqueous Solution

    PubMed Central

    Norberg, Oscar; Lee, Irene H.; Aastrup, Teodor; Yan, Mingdi; Ramström, Olof

    2012-01-01

    The photoinitiated radical reactions between thiols and alkenes/alkynes (thiol-ene and thiol-yne chemistry) have been applied to a functionalization methodology to produce carbohydrate-presenting surfaces for analyses of biomolecular interactions. Polymer-coated quartz surfaces were functionalized with alkenes or alkynes in a straightforward photochemical procedure utilizing perfluorophenylazide (PFPA) chemistry. The alkene/alkyne surfaces were subsequently allowed to react with carbohydrate thiols in water under UV-irradiation. The reaction can be carried out in a drop of water directly on the surface without photoinitiator and any disulfide side products were easily washed away after the functionalization process. The resulting carbohydrate-presenting surfaces were evaluated in real-time studies of protein-carbohydrate interactions using a quartz crystal microbalance flow-through system with recurring injections of selected lectins with intermediate regeneration steps using low pH buffer. The resulting methodology proved fast, efficient and scalable to high-throughput analysis formats, and the produced surfaces showed significant protein binding with expected selectivities of the lectins used in the study. PMID:22341757

  19. Odorant Screening and Quantitation of Thiols in Carmenere Red Wine by Gas Chromatography-Olfactometry and Stable Isotope Dilution Assays.

    PubMed

    Pavez, Carolina; Agosin, Eduardo; Steinhaus, Martin

    2016-05-04

    The sensory impact of thiols in Vitis vinifera 'Carmenere' red wines was evaluated. For this purpose, aroma extract dilution analysis was applied to the thiols isolated from a Carmenere red wine by affinity chromatography with a mercurated agarose gel. Results revealed the presence of four odorants, identified as 2-furanylmethanethiol, 3-sulfanylhexyl acetate, 3-sulfanyl-1-hexanol, and 2-methyl-3-sulfanyl-1-butanol, with the latter being described here for the first time in Carmenere red wines. Quantitation of the four thiols in the Carmenere wine screened by aroma extract dilution analysis and in three additional Carmenere wines by stable isotope dilution assays resulted in concentrations above the respective orthonasal odor detection threshold values. Triangle tests applied to wine model solutions with and without the addition of the four thiols showed significant differences, thus suggesting that the compounds do have the potential to influence the overall aroma of red wine.

  20. Time-dependent modulation of thioredoxin reductase activity might contribute to sulforaphane-mediated inhibition of NF-kappaB binding to DNA.

    PubMed

    Heiss, Elke; Gerhäuser, Clarissa

    2005-01-01

    The chemopreventive agent sulforaphane (SFN) exerts anti-inflammatory activity by thiol-dependent inhibition of nuclear factor kappaB (NF-kappaB) DNA binding. To further analyze the underlying mechanisms, we focused on the thioredoxin/thioredoxin reductase (TrxR) system as a key redox mechanism regulating NF-kappaB DNA binding. Using cultured Raw 264.7 mouse macrophages as a model, 1-chloro-2,4-dinitrobenzene (CDNB), a known inhibitor of TrxR, was identified as an inhibitor of lipopolysaccharide (LPS)-mediated nitric oxide (NO) production and of NF-kappaB DNA binding. CDNB and SFN acted synergistically with respect to inhibition of LPS-induced NO release, and we consequently identified SFN as a novel inhibitor of TrxR enzymatic activity in vitro. Short-term treatment of Raw macrophages with SFN or CDNB resulted in the inhibition of TrxR activity in vivo with half-maximal inhibitory concentration of 25.0 +/- 3.5 microM and 9.4 +/- 3.7 microM, respectively, whereas after a 24-h treatment with 25 microM SFN, TrxR activity was >1.5-fold elevated. In additional experiments, we could exclude that inhibition of trans-activating activity of NF-kappaB contributed to the reduced expression of pro-inflammatory proteins by SFN, based on transient transfection experiments with a (kappaB)(2)- chloramphenicol acetyltransferase construct and a lack of inhibition of protein kinase A activity. These findings further emphasize the importance of redox modulation or thiol reactivity for the regulation of NF-kappaB-dependent transcription by SFN. Antioxid. Redox Signal. 7, 1601-1611. Antioxid. Redox Signal. 7, 1601-1611.

  1. Mouse cumulus-denuded oocytes restore developmental capacity completely when matured with optimal supplementation of cysteamine, cystine, and cumulus cells.

    PubMed

    Zhou, Ping; Wu, Yan-Guang; Wei, De-Li; Li, Qing; Wang, Gang; Zhang, Jie; Luo, Ming-Jiu; Tan, Jing-He

    2010-04-01

    Our objectives were to study how cysteamine, cystine, and cumulus cells (CCs), as well as oocytes interact to increase oocyte intracellular glutathione (GSH) and thereby to establish an efficient in vitro maturation system for cumulus-denuded oocytes (DOs). Using M16 that contained no thiol as maturation medium, we showed that when supplemented alone, neither cystine nor cysteamine promoted GSH synthesis of mouse DOs, but they did when used together. Although goat CCs required either cysteamine or cystine to promote GSH synthesis, mouse CCs required both. In the presence of cystine, goat CCs produced cysteine but mouse CCs did not. Cysteamine reduced cystine to cysteine in cell-free M16. When TCM-199 that contained 83 microM cystine was used as maturation medium, supplementation with cysteamine alone had no effect, but supplementation with 100 microM cysteamine and 200 microM cystine increased blastulation of DOs matured with CC coculture to a level as high as achieved in cumulus-surrounded oocytes (COCs). Similar numbers of young were produced after two-cell embryos from mouse COCs or CC-cocultured DOs matured with optimal thiol supplementation were transferred to pseudopregnant recipients. It is concluded that 1) mouse CCs can use neither cysteamine nor cystine to promote GSH synthesis, but goat CCs can use either one; 2) goat CCs promote mouse oocyte GSH synthesis by reducing cystine to cysteine, but how they use cysteamine requires further investigation; and 3) mouse DOs can use neither cystine nor cysteamine for GSH synthesis, but they restore developmental capacity completely when matured in the presence of optimum supplementation of cysteamine, cystine, and CCs.

  2. Development of reliable analytical tools for evaluating the influence of reductive winemaking on the quality of Lugana wines.

    PubMed

    Mattivi, Fulvio; Fedrizzi, Bruno; Zenato, Alberto; Tiefenthaler, Paolo; Tempesta, Silvano; Perenzoni, Daniele; Cantarella, Paolo; Simeoni, Federico; Vrhovsek, Urska

    2012-06-30

    This paper presents methods for the definition of important analytical tools, such as the development of sensitive and rapid methods for analysing reduced and oxidised glutathione (GSH and GSSG), hydroxycinnamic acids (HCA), bound thiols (GSH-3MH and Cys-3MH) and free thiols (3MH and 3MHA), and their first application to evaluate the effect of reductive winemaking on the composition of Lugana juices and wines. Lugana is a traditional white wine from the Lake Garda region (Italy), produced using a local grape variety, Trebbiano di Lugana. An innovative winemaking procedure based on preliminary cooling of grape berries followed by crushing in an inert environment was implemented and explored on a winery scale. The effects of these procedures on hydroxycinnamic acids, GSH, GSSG, free and bound thiols and flavanols content were investigated. The juices and wines produced using different protocols were examined. Moreover, wines aged in tanks for 1, 2 and 3 months were analysed. The high level of GSH found in Lugana grapes, which can act as a natural antioxidant and be preserved in must and young wines, thus reducing the need of exogenous antioxidants, was particularly interesting. Moreover, it was clear that polyphenol concentrations (hydroxycinnamic acids and catechins) were strongly influenced by winemaking and pressing conditions, which required fine tuning of pressing. Above-threshold levels of 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA) were found in the wines and changed according to the winemaking procedure applied. Interestingly, the evolution during the first three months also varied depending on the procedure adopted. Organic synthesis of cysteine and glutathione conjugates was carried out and juices and wines were subjected to LC-MS/MS analysis. These two molecules appeared to be strongly affected by the winemaking procedure, but did not show any significant change during the first 3 months of post-bottling ageing. This supports the theory, already proposed in the literature, that there are other synthetic pathways for free thiol formation. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Interfacial thiol-ene photoclick reactions for forming multilayer hydrogels.

    PubMed

    Shih, Han; Fraser, Andrew K; Lin, Chien-Chi

    2013-03-13

    Interfacial visible light-mediated thiol-ene photoclick reactions were developed for preparing step-growth hydrogels with multilayer structures. The effect of a noncleavage type photoinitiator eosin-Y on visible-light-mediated thiol-ene photopolymerization was first characterized using in situ photorheometry, gel fraction, and equilibrium swelling ratio. Next, spectrophotometric properties of eosin-Y in the presence of various relevant macromer species were evaluated using ultraviolet-visible light (UV-vis) spectrometry. It was determined that eosin-Y was able to reinitiate the thiol-ene photoclick reaction, even after light exposure. Because of its small molecular weight, most eosin-Y molecules readily leached out from the hydrogels. The diffusion of residual eosin-Y from preformed hydrogels was exploited for fabricating multilayer step-growth hydrogels. Interfacial hydrogel coating was formed via the same visible-light-mediated gelation mechanism without adding fresh initiator. The thickness of the thiol-ene gel coating could be easily controlled by adjusting visible light exposure time, eosin-Y concentration initially loaded in the core gel, or macromer concentration in the coating solution. The major benefits of this interfacial thiol-ene coating system include its simplicity and cytocompatibility. The formation of thiol-ene hydrogels and coatings neither requires nor generates any cytotoxic components. This new gelation chemistry may have great utilities in controlled release of multiple sensitive growth factors and encapsulation of multiple cell types for tissue regeneration.

  4. A lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells based on a 1,8-naphthalimide derivative

    NASA Astrophysics Data System (ADS)

    Liang, Beibei; Wang, Baiyan; Ma, Qiujuan; Xie, Caixia; Li, Xian; Wang, Suiping

    2018-03-01

    Biological thiols, like cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), play crucial roles in biological systems and in lysosomal processes. Highly selective probes for detecting biological thiols in lysomes of living cells are rare. In this work, a lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells was designed and synthesized based on a 1,8-naphthalimide derivative. The probe has a 4-(2-aminoethyl)morpholine unit as a lysosome-targetable group and an acrylate group as the thiol recognition unit as well as a fluorescence quencher. In the absence of biothiols, the probe displayed weak fluorescence due to the photoinduced electron transfer (PET) process. Upon the addition of biothiols, the probe exhibited an enhanced fluorescence emission centered at 550 nm due to cleavage of the acrylate moiety. The probe had high selectivity toward biothiols. Moreover, the probe features fast response time, excitation in the visible region and ability of working in a wide pH range. The linear response range covers a concentration range of Cys from 1.5 × 10- 7 to 1.0 × 10- 5 mol·L- 1 and the detection limit is 6.9 × 10- 8 mol·L- 1 for Cys. The probe has been successfully applied to the confocal imaging of biothiols in lysosomes of A549 cells with low cell toxicity. Furthermore, the method was successfully applied to the determination of thiols in a complex multicomponent mixture such as human serum, which suggests our proposed method has great potential for diagnostic purposes. All of such good properties prove it can be used to monitor biothiols in lysosomes of living cells and to be a good fluorescent probe for the selective detection of thiols.

  5. Efficient Site-Specific Labeling of Proteins via Cysteines

    PubMed Central

    Kim, Younggyu; Ho, Sam O.; Gassman, Natalie R.; Korlann, You; Landorf, Elizabeth V.; Collart, Frank R.; Weiss, Shimon

    2011-01-01

    Methods for chemical modifications of proteins have been crucial for the advancement of proteomics. In particular, site-specific covalent labeling of proteins with fluorophores and other moieties has permitted the development of a multitude of assays for proteome analysis. A common approach for such a modification is solvent-accessible cysteine labeling using thiol-reactive dyes. Cysteine is very attractive for site-specific conjugation due to its relative rarity throughout the proteome and the ease of its introduction into a specific site along the protein's amino acid chain. This is achieved by site-directed mutagenesis, most often without perturbing the protein's function. Bottlenecks in this reaction, however, include the maintenance of reactive thiol groups without oxidation before the reaction, and the effective removal of unreacted molecules prior to fluorescence studies. Here, we describe an efficient, specific, and rapid procedure for cysteine labeling starting from well-reduced proteins in the solid state. The efficacy and specificity of the improved procedure are estimated using a variety of single-cysteine proteins and thiol-reactive dyes. Based on UV/vis absorbance spectra, coupling efficiencies are typically in the range 70–90%, and specificities are better than ~95%. The labeled proteins are evaluated using fluorescence assays, proving that the covalent modification does not alter their function. In addition to maleimide-based conjugation, this improved procedure may be used for other thiol-reactive conjugations such as haloacetyl, alkyl halide, and disulfide interchange derivatives. This facile and rapid procedure is well suited for high throughput proteome analysis. PMID:18275130

  6. Efficient site-specific labeling of proteins via cysteines.

    PubMed

    Kim, Younggyu; Ho, Sam O; Gassman, Natalie R; Korlann, You; Landorf, Elizabeth V; Collart, Frank R; Weiss, Shimon

    2008-03-01

    Methods for chemical modifications of proteins have been crucial for the advancement of proteomics. In particular, site-specific covalent labeling of proteins with fluorophores and other moieties has permitted the development of a multitude of assays for proteome analysis. A common approach for such a modification is solvent-accessible cysteine labeling using thiol-reactive dyes. Cysteine is very attractive for site-specific conjugation due to its relative rarity throughout the proteome and the ease of its introduction into a specific site along the protein's amino acid chain. This is achieved by site-directed mutagenesis, most often without perturbing the protein's function. Bottlenecks in this reaction, however, include the maintenance of reactive thiol groups without oxidation before the reaction, and the effective removal of unreacted molecules prior to fluorescence studies. Here, we describe an efficient, specific, and rapid procedure for cysteine labeling starting from well-reduced proteins in the solid state. The efficacy and specificity of the improved procedure are estimated using a variety of single-cysteine proteins and thiol-reactive dyes. Based on UV/vis absorbance spectra, coupling efficiencies are typically in the range 70-90%, and specificities are better than approximately 95%. The labeled proteins are evaluated using fluorescence assays, proving that the covalent modification does not alter their function. In addition to maleimide-based conjugation, this improved procedure may be used for other thiol-reactive conjugations such as haloacetyl, alkyl halide, and disulfide interchange derivatives. This facile and rapid procedure is well suited for high throughput proteome analysis.

  7. Vinyl functionalized silica hybrid monolith-based trypsin microreactor for on line digestion and separation via thiol-ene "click" strategy.

    PubMed

    Chen, Yingzhuang; Wu, Minghuo; Wang, Keyi; Chen, Bo; Yao, Shouzhuo; Zou, Hanfa; Nie, Lihua

    2011-11-04

    A novel thiol-ene "click" strategy for the preparation of monolithic trypsin microreactor was proposed. The hybrid organic-inorganic monolithic capillary column with ene-functionality was fabricated by sol-gel process using tetramethoxysilane (TMOS) and γ-methacryloxypropyltrimethoxysilane (γ-MAPS) as precursors. The disulfide bonds of trypsin were reduced to form free thiol groups. Then the trypsin containing free thiol groups was attached on the γ-MAPS hybrid monolithic column with ene-functionality via thiol-ene click chemistry to form a trypsin microreactor. The activity of the trypsin microreactor was characterized by detecting the substrate (Nα-p-tosyl-L-arginine methyl ester hydrochloride, TAME) and the product (Nα-p-tosyl-L-arginine, TA) with on-line capillary zone electrophoresis. After investigating various synthesizing conditions, it was found that the microreactor with poly(N,N'-methylenebisacrylamide) as spacer can deliver the highest activity, yielding a rapid reaction rate. After repeatedly sampling and analyzing for 100 times, the monolithic trypsin microreactor still remained 87.5% of its initial activity. It was demonstrated that thiol-ene "click" strategy for the construction of enzyme microreactor is a promising method for the highly selective immobilization of proteins under mild conditions, especially enzymes with free thiol radicals. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Thiol Disulfide Homeostasis in Schizophrenic Patients Using Atypical Antipsychotic Drugs

    PubMed Central

    Ersan, Etem Erdal; Aydin, Hüseyin; Erdoğan, Serpil; Erşan, Serpil; Alişik, Murat; Bakir, Sevtap; Erel, Özcan; Koç, Derya

    2018-01-01

    Objective Schizophrenia is a severe, debilitating mental disorder characterized by behavioral abnormalities. Although several studies have investigated the role of oxidative stress and the effects of antipsychotic drugs on oxidative markers in schizophrenia, adequate information is not available on these issues. The aim of this study is to determine the changes in oxidative status and thiol disulfide homeostasis in schizophrenic patients using atypical antipsychotic drugs. Methods Thirteen schizophrenic patients using atypical antipsychotic drugs and 30 healthy controls were included this study. The concentrations of total oxidant status (TOS), total antioxidant status (TAS), native thiol, total thiol, and disulfide levels were determined in the study population. Results The TAS (p=0.001), total thiol, and native thiol levels (p<0.001) were higher in the patients compared to the controls, whereas the TOS and disulfide levels were lower in the patients than in the controls (p<0.001). Conclusion These results may suggest that atypical antipsychotic drugs have a useful therapeutic effect by reducing oxidative stress via the inhibition of the formation of disulfide bonds. The study population number was one of the limitations of this study. Therefore, further studies are needed to establish the association between thiol disulfide homeostasis in schizophrenic patients using atypical antipsychotic drugs. PMID:29397665

  9. Evaluation of normalization methods in mammalian microRNA-Seq data

    PubMed Central

    Garmire, Lana Xia; Subramaniam, Shankar

    2012-01-01

    Simple total tag count normalization is inadequate for microRNA sequencing data generated from the next generation sequencing technology. However, so far systematic evaluation of normalization methods on microRNA sequencing data is lacking. We comprehensively evaluate seven commonly used normalization methods including global normalization, Lowess normalization, Trimmed Mean Method (TMM), quantile normalization, scaling normalization, variance stabilization, and invariant method. We assess these methods on two individual experimental data sets with the empirical statistical metrics of mean square error (MSE) and Kolmogorov-Smirnov (K-S) statistic. Additionally, we evaluate the methods with results from quantitative PCR validation. Our results consistently show that Lowess normalization and quantile normalization perform the best, whereas TMM, a method applied to the RNA-Sequencing normalization, performs the worst. The poor performance of TMM normalization is further evidenced by abnormal results from the test of differential expression (DE) of microRNA-Seq data. Comparing with the models used for DE, the choice of normalization method is the primary factor that affects the results of DE. In summary, Lowess normalization and quantile normalization are recommended for normalizing microRNA-Seq data, whereas the TMM method should be used with caution. PMID:22532701

  10. A Diversity-Oriented Library of Fluorophore-Modified Receptors Constructed from a Chemical Library of Synthetic Fluorophores.

    PubMed

    Nakano, Shun; Tamura, Tomoki; Das, Raj Kumar; Nakata, Eiji; Chang, Young-Tae; Morii, Takashi

    2017-11-16

    The practical application of biosensors can be determined by evaluating the sensing ability of fluorophore-modified derivatives of a receptor with appropriate recognition characteristics for target molecules. One of the key determinants for successfully obtaining a useful biosensor is wide variation in the fluorophores attached to a given receptor. Thus, using a larger fluorophore-modified receptor library provides a higher probability of obtaining a practically useful biosensor. However, no effective method has yet been developed for constructing such a diverse library of fluorophore-modified receptors. Herein, we report a method for constructing fluorophore-modified receptors by using a chemical library of synthetic fluorophores with a thiol-reactive group. This library was converted into a library of fluorophore-modified adenosine-binding ribonucleopeptide (RNP) receptors by introducing the fluorophores to the Rev peptide of the RNP complex by alkylation of the thiol group. This method enabled the construction of 263 fluorophore-modified ATP-binding RNP receptors and allowed the selection of suitable receptor-based fluorescent sensors that target ATP. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Toposelective electrochemical desorption of thiol SAMs from neighboring polycrystalline gold surfaces.

    PubMed

    Tencer, Michal; Berini, Pierre

    2008-11-04

    We describe a method for the selective desorption of thiol self-assembled monolayers from gold surfaces having micrometer-scale separations on a substrate. In an electrolyte solution, the electrical resistance between the adjacent areas can be much lower than the resistance between a surface and the counter electrode. Also, both reductive and oxidative thiol desorption may occur. Therefore, the potentials of the surfaces must be independently controlled with a multichannel potentiostat and operating windows for a given thiol/electrolyte system must be established. In this study operating windows were established for 1-dodecanethiol-based SAMs in phosphate buffer, phosphate-buffered saline, and sodium hydroxide solution, and selective SAM removal was successfully performed in a four-electrode configuration.

  12. Phospholipase A2 activation regulates cytotoxicity of methylmercury in vascular endothelial cells.

    PubMed

    Mazerik, Jessica N; Hagele, Thomas; Sherwani, Shariq; Ciapala, Valorie; Butler, Susan; Kuppusamy, M Lakshmi; Hunter, Melissa; Kuppusamy, Periannan; Marsh, Clay B; Parinandi, Narasimham L

    2007-01-01

    Mercury has been identified as a risk factor for cardiovascular disease among humans. Through diet, mainly fish consumption, humans are exposed to methylmercury, the biomethylated organic form of environmental mercury. As the endothelium is an important player in homeostasis of the cardiovascular system, here, the authors tested their hypothesis that methylmercury activates the lipid signaling enzyme phospholipase A(2) (PLA(2)) in vascular endothelial cells (ECs), causing upstream regulation of cytotoxicity. To test this hypothesis, the authors used bovine pulmonary artery ECs (BPAECs) cultured in monolayers, following labeling of their membrane phospholipids with [(3)H]arachidonic acid (AA). The cells were exposed to methylmercury chloride (MMC) and then the release of free AA (index of PLA(2) activity) and lactate dehydrogenase (LDH; index of cytotoxicity) were determined by liquid scintillation counting and spectrophotometry, respectively. MMC significantly activated PLA(2) in a dose-dependent (5 to 15 microM) and time-dependent (0 to 60 min) fashion. Sulfhydryl (thiol-protective) agents, calcium chelators, antioxidants, and PLA(2)-specific inhibitors attenuated the MMC-induced PLA(2) activation, suggesting the role of thiols, reactive oxygen species (ROS), and calcium in the activation of PLA(2) in BPAECs. MMC also induced the loss of thiols and increase of lipid peroxidation in BPAECs. MMC induced cytotoxicity in BPAECs as observed by the altered cell morphology and LDH leak, which was significantly attenuated by PLA(2) inhibitors. This study established that PLA(2) activation through thiols, calcium, and oxidative stress was associated with the cytotoxicity of MMC in BPAECs, drawing attention to the involvement of PLA(2) signaling in the methylmercury-induced vascular endothelial dysfunctions.

  13. Bisphosphonate-decorated lipid nanoparticles designed as drug carriers for bone diseases.

    PubMed

    Wang, Guilin; Mostafa, Nesrine Z; Incani, Vanessa; Kucharski, Cezary; Uludağ, Hasan

    2012-03-01

    A conjugate of distearoylphosphoethanolamine-polyethylene glycol with 2-(3-mercaptopropylsulfanyl)-ethyl-1,1-bisphosphonic acid (thiolBP) was synthesized and incorporated into micelles and liposomes to create mineral-binding nanocarriers for therapeutic agents. The micelles and liposomes were used to encapsulate the anticancer drug doxorubicin (DOX) and a model protein lysozyme (LYZ) by using lipid film hydration (LFH) and reverse-phase evaporation vesicle (REV) methods. The results indicated that the micelles and LFH-derived liposomes were better at DOX loading than the REV-derived liposomes, while the REV method was preferable for encapsulating LYZ. The affinity of the micellar and liposomal formulations to hydroxyapatite (HA) was assessed in vitro, and the results indicated that all the thiolBP-incorporated nanocarriers had stronger HA affinity than their counterparts without thiolBP. The thiolBP-decorated liposomes also displayed a strong binding to a collagen/HA composite scaffold in vitro. More importantly, thiolBP-decorated liposomes gave increased retention in the collagen/HA scaffolds after subcutaneously implantation in rats. The designed liposomes were able to entrap the bone morphogenetic protein-2 in a bioactive form, indicating that the proposed nanocarriers could deliver bioactive factors locally in mineralized scaffolds for bone tissue engineering. Copyright © 2011 Wiley Periodicals, Inc.

  14. Self-organized fluorescent nanosensors for ratiometric Pb2+ detection.

    PubMed

    Arduini, Maria; Mancin, Fabrizio; Tecilla, Paolo; Tonellato, Umberto

    2007-07-31

    Silica nanoparticles (60 nm diameter) doped with fluorescent dyes and functionalized on the surface with thiol groups have been proved to be efficient fluorescent chemosensors for Pb2+ ions. The particles can detect a 1 microM metal ion concentration with a good selectivity, suffering only interference from Cu2+ ions. Analyte binding sites are provided by the simple grafting of the thiol groups on the nanoparticles. Once bound to the particles surface, the Pb2+ ions quench the emission of the reporting dyes embedded. Sensor performances can be improved by taking advantage of the ease of production of multishell silica particles. On one hand, signaling units can be concentrated in the external shells, allowing a closer interaction with the surface-bound analyte. On the other, a second dye can be buried in the particle core, far enough from the surface to be unaffected by the Pb2+ ions, thus producing a reference signal. In this way, a ratiometric system is easily prepared by simple self-organization of the particle components.

  15. Distribution and abundance of organic thiols

    NASA Technical Reports Server (NTRS)

    Fahey, R.

    1985-01-01

    The role of glutathione (GSH) in protecting against the toxicity of oxygen and oxygen by products is well established for all eukaryotes studied except Entamoeba histolytica which lacks mitochrondria, chloroplasts, and microtubules. The GSH is not universal among prokaryotes. Entamoeba histolytica does not produce GSH or key enzymes of GSH metabolism. A general method of thiol analysis based upon fluorescent labeling with monobromobimane and HPLC separation of the resulting thiol derivatives was developed to determine the occurrence of GSH and other low molecular weight thiols in bacteria. Glutathione is the major thiol in cyanobacteria and in most bacteria closely related to the purple photosynthetic bacteria, but GSH was not found in archaebacteria, green bacteria, or GRAM positive bacteria. It suggested that glutathione metabolism was incorporated into eukaryotes at the time that mitochondria and chloroplasts were acquired by endosymbiosis. In Gram positive aerobes, coenzyme A occurs at millimolar levels and CoA disulfide reductases are identified. The CoA, rather than glutathione, may function in the oxygen detoxification processes of these organisms.

  16. Silymarin Ameliorates Oxidative Stress and Enhances Antioxidant Defense System Capacity in Cadmium-Treated Mice.

    PubMed

    Farjad, Elham; Momeni, Hamid Reza

    2018-10-01

    Cadmium is an environmental pollutant which induces oxidative stress while silymarin as an antioxidant is able to scavenge free radicals. The aim of the present study was to investigate the effect of silymarin on oxidative stress markers and antioxidant defense system capacity in mice treated with cadmium chloride. In this experimental study, adult mice were divided into four groups as follow: i. Control, ii. Cadmium chloride (5 mg/kg b.w., s.c.), iii. Silymarin+cadmium chloride, and iv. Silymarin (100 mg/kg b.w., i.p.). Mice were treated with cadmium chloride for 24 hours and silymarin was administered 24 hours before the cadmium. Blood samples were then collected from the experimental groups and their sera were prepared. To investigate oxidative stress markers in the serum, the amount of malondialdehyde (MDA) and thiol groups (-SH) were evaluated. To measure the total antioxidant power in the serum, Ferric Reducing/ Antioxidant Power (FRAP) method was used. In addition, the activity of enzymes including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) was assessed to evaluate serum antioxidant defense power. In the cadmium-treated group, the amount of MDA significantly increased as compared to the control group. In silymarin+cadmium group, silymarin significantly ameliorated the level of MDA compared to the cadmium group. In addition, cadmium significantly reduced serum FRAP, the activity of antioxidant defense system enzymes and thiol groups compared to the control. In silymarin+cadmium group, silymarin could significantly reverse the reduction of these markers compared to the cadmium group. Administration of silymarin alone caused a significant increase in serum FRAP, the activity of antioxidant defense system enzymes and thiol groups compared to the control group. Silymarin as a powerful antioxidant reverses the toxic effect of cadmium on the serum levels of lipid peroxidation, total antioxidant power, antioxidant defense system enzymes activity and thiol groups. Copyright© by Royan Institute. All rights reserved.

  17. Thiol oxidation by nitrosative stress: Cellular localization in human spermatozoa.

    PubMed

    Cabrillana, María E; Uribe, Pamela; Villegas, Juana V; Álvarez, Juan; Sánchez, Raúl; Fornés, Miguel W

    2016-10-01

    Peroxynitrite is a highly reactive nitrogen species and when it is generated at high levels it causes nitrosative stress, an important cause of impaired sperm function. High levels of peroxynitrite have been shown to correlate with decreased semen quality in infertile men. Thiol groups in sperm are mainly found in enzymes, antioxidant molecules, and structural proteins in the axoneme. Peroxynitrite primarily reacts with thiol groups of cysteine-containing proteins. Although it is well known that peroxynitrite oxidizes sulfhydryl groups in sperm, the subcellular localization of this oxidation remains unknown. The main objective of this study was to establish the subcellular localization of peroxynitrite-induced nitrosative stress in thiol groups and its relation to sperm motility in human spermatozoa. For this purpose, spermatozoa from healthy donors were exposed in vitro to 3-morpholinosydnonimine (SIN-1), a compound which generates peroxynitrite. In order to detect peroxynitrite and reduced thiol groups, the fluorescent probes, dihydrorhodamine 123 and monobromobimane (mBBr), were used respectively. Sperm viability was analyzed by propidium iodide staining. Peroxynitrite generation and thiol redox state were monitored by confocal microscopy whereas sperm viability was evaluated by flow cytometry. Sperm motility was analyzed by CASA using the ISAS(®) system. The results showed that exposure of human spermatozoa to peroxynitrite results in increased thiol oxidation which is mainly localized in the sperm head and principal piece regions. Thiol oxidation was associated with motility loss. The high susceptibility of thiol groups to peroxynitrite-induced oxidation could explain, at least in part, the negative effect of reactive nitrogen species on sperm motility. DHR: dihydrorhodamine 123; mBBr: monobromobimane ONOO(-): peroxynitrite RNS: reactive nitrogen species RFI: relative fluorescence intensity SIN-1: 3-morpholinosydnonimine CASA: Computer-Aided Sperm Analysis PARP: poli ADP ribose polimerasa VCL: curvilinear velocity VSL: straight-line velocity VAP: average path velocity PRDXs: peroxiredoxins ODF: outer dense fiber ODF1: outer dense fiber 1 PI: propidium iodide DMSO: dimethyl sulfoxide SD: standard deviation analysis of variance.

  18. Thiol Modification of Psyllium Husk Mucilage and Evaluation of Its Mucoadhesive Applications

    PubMed Central

    Bhatia, Meenakshi

    2013-01-01

    Thiol functionalization of psyllium was carried out to enhance its mucoadhesive potential. Thiolation of psyllium was achieved by esterification with thioglycolic acid. Thiolation was observed to change the surface morphology of psyllium from fibrous to granular and result in a slight increase in the crystallinity and swelling. Thiolated psyllium was found to contain 3.282 m moles of thiol groups/g of the polymer. Mucoadhesive applications of thiolated psylium were explored by formulating gels using metronidazole as the model drug. On comparative evaluation thiolated psyllium gels showed 3-fold higher mucoadhesive strength than the psyllium gels as determined by modified physical balance using chicken buccal pouch. The results of in vitro release study revealed that thiolated psyllium gels provided a prolonged release of metronidazole. Further, the psyllium and thiolated psyllium gels were found to release the drug following first-order kinetics by combination of polymer relaxation and diffusion through the matrix. PMID:24348147

  19. Nanosilver - does it have only one face?

    PubMed

    Likus, Wirginia; Bajor, Grzegorz; Siemianowicz, Krzysztof

    2013-01-01

    Silver nanoparticles (NPs) have at least one dimension of a particle smaller than 100 nm and contain 20-15,000 silver atoms. Due to its antibacterial activity nanosilver (NS) is used for medical purposes. NS particles can be obtained by various methods. Potentially, the best method of the NS synthesis for medical purposes is based on a brief flow of electric current between two silver electrodes placed in deionized water. It is accepted that the major antibacterial effect of silver is its partial oxidation and releasing silver ions, which interact with thiol groups of peptidoglicans of bacterial cell wall, and proteins of the cell membrane causing cell lysis. Silver ions can also bind to bacterial DNA preventing its replication and stopping synthesis of bacterial proteins. The rise in exposure to silver NPs has spurred interest into their toxicology. NS undergoes a set of biochemical transformations including accelerated oxidative dissolution in gastric acid, binding to thiol groups of serum and tissue proteins, exchange between thiol groups, sulfides and selenides, binding to selenoproroteins and photoreduction in skin to zerovalent metallic silver. Animal studies have shown that exposure to NS may lead to liver and spleen damage. NS can also stimulate an increased secretion of proinflammatory cytokines by monocytes. As a spectrum of NS applications is still growing, the complex evaluation of a safety of its use becomes an important task. This requires an elucidation of not only the influence of NS on human cells and organism, but also its biotransformation in organism and in environment.

  20. S-protected thiolated hydroxyethyl cellulose (HEC): Novel mucoadhesive excipient with improved stability.

    PubMed

    Leonaviciute, Gintare; Bonengel, Sonja; Mahmood, Arshad; Ahmad Idrees, Muneeb; Bernkop-Schnürch, Andreas

    2016-06-25

    The aim of this study was the design of novel S-protected thiolated hydroxyethyl cellulose (HEC) and the assessment of its mucoadhesive properties and biodegradability compared to the corresponding unmodified polymer. Thiolated HEC was S-protected via disulfide bond formation between 6-mercaptonicotinamide (6-MNA) and the thiol substructures of the polymer. In vitro screening of mucoadhesive properties was accomplished using two different methods: rotating cylinder studies and viscosity measurements. Moreover, biodegradability of these polymers by cellulase, xylanase and lysozyme was evaluated. MTT and LDH assays were performed on Caco-2 cells to determine the cytotoxicity of S-protected thiolated HEC. Thiolated HEC displayed 280.09±1.70μmol of free thiol groups per gram polymer. S-protected thiolated HEC exhibiting 270.8±21.11μmol immobilized 6-MNA ligands per gram of polymer was shown being 2.4-fold more mucoadhesive compared to thiolated HEC. No mucoadhesion was observed in case of unmodified HEC. Results were in a good agreement with rheological studies. The presence of free thiol moieties likely caused lower degree of hydrolysis by xylanase, whereas the degradation by both enzymes cellulase and xylanase was more hampered when 6-MNA was introduced as ligand for thiol group's protection. Findings in cell viability revealed that all three conjugates were non-toxic. S-protection of thiolated hydroxyethyl cellulose improved mucoadhesive properties and provided pronounced stability towards enzymatic attack, that makes this excipient superior for non-invasive drug administration over thiolated and unmodified forms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Chemical groups and structural characterization of lignin via thiol-mediated demethylation

    Treesearch

    Lihong Hu; Hui Pan; Yonghong Zhou; Chung-Yun Hse; Chengguo Liu; Baofang Zhang; Bin Xu

    2014-01-01

    A new approach to increase the reactivity of lignin by thiol-mediated demethylation was investigated in this study. Demethylated lignin was characterized by the changes in its hydroxyl and methoxyl groups, molecular weight, and other properties using titration and spectroscopy methods including FT-IR, 1H NMR, UV,and GPC. The total...

  2. A lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells based on a 1,8-naphthalimide derivative.

    PubMed

    Liang, Beibei; Wang, Baiyan; Ma, Qiujuan; Xie, Caixia; Li, Xian; Wang, Suiping

    2018-03-05

    Biological thiols, like cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), play crucial roles in biological systems and in lysosomal processes. Highly selective probes for detecting biological thiols in lysomes of living cells are rare. In this work, a lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells was designed and synthesized based on a 1,8-naphthalimide derivative. The probe has a 4-(2-aminoethyl)morpholine unit as a lysosome-targetable group and an acrylate group as the thiol recognition unit as well as a fluorescence quencher. In the absence of biothiols, the probe displayed weak fluorescence due to the photoinduced electron transfer (PET) process. Upon the addition of biothiols, the probe exhibited an enhanced fluorescence emission centered at 550nm due to cleavage of the acrylate moiety. The probe had high selectivity toward biothiols. Moreover, the probe features fast response time, excitation in the visible region and ability of working in a wide pH range. The linear response range covers a concentration range of Cys from 1.5×10 -7 to 1.0×10 -5 mol·L -1 and the detection limit is 6.9×10 -8 mol·L -1 for Cys. The probe has been successfully applied to the confocal imaging of biothiols in lysosomes of A549 cells with low cell toxicity. Furthermore, the method was successfully applied to the determination of thiols in a complex multicomponent mixture such as human serum, which suggests our proposed method has great potential for diagnostic purposes. All of such good properties prove it can be used to monitor biothiols in lysosomes of living cells and to be a good fluorescent probe for the selective detection of thiols. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Synthesis of Single-walled Carbon Nanotubes Coated with Thiol-reactive Gel via Emulsion Polymerization.

    PubMed

    Nagai, Yukiko; Tsutsumi, Yusuke; Nakashima, Naotoshi; Fujigaya, Tsuyohiko

    2018-06-15

    Single-walled carbon nanotubes (SWNTs) have unique near-infrared absorption and photoemission properties that are attractive for in vivo biological applications such as photothermal cancer treatment and bioimaging. Therefore, a smart functionalization strategy for SWNTs to create biocompatible surfaces and introduce various ligands to target active cancer cells without losing the unique optical properties of the SWNTs is strongly desired. This paper reports the de-sign and synthesis of a SWNT/gel hybrid containing maleimide groups, which react with various thiol compounds through Michael addition reactions. In this hybrid, the method called carbon nanotube micelle polymerization was used to non-covalently modify the surface of SWNTs with a cross-linked polymer gel layer. This method can form an extremely stable gel layer on SWNTs; such stability is essential for in vivo biological applications. The monomer used to form the gel layer contained a maleimide group, which was protected with furan in endo-form. The resulting hybrid was treated in water to induce deprotection via retro Diels-Alder reaction and then functionalized with thiol com-pounds through Michael addition. The functionalization of the hybrid was explored using a thiol-containing fluores-cent dye as a model thiol and the formation of the SWNT-dye conjugate was confirmed by energy transfer from the dye to SWNTs. Our strategy offers a promising SWNT-based platform for biological functionalization for cancer targeting, imaging, and treatment.

  4. A novel sulfate-reducing bacteria detection method based on inhibition of cysteine protease activity.

    PubMed

    Qi, Peng; Zhang, Dun; Wan, Yi

    2014-11-01

    Sulfate-reducing bacteria (SRB) have been extensively studied in corrosion and environmental science. However, fast enumeration of SRB population is still a difficult task. This work presents a novel specific SRB detection method based on inhibition of cysteine protease activity. The hydrolytic activity of cysteine protease was inhibited by taking advantage of sulfide, the characteristic metabolic product of SRB, to attack active cysteine thiol group in cysteine protease catalytic sites. The active thiol S-sulfhydration process could be used for SRB detection, since the amount of sulfide accumulated in culture medium was highly related with initial bacterial concentration. The working conditions of cysteine protease have been optimized to obtain better detection capability, and the SRB detection performances have been evaluated in this work. The proposed SRB detection method based on inhibition of cysteine protease activity avoided the use of biological recognition elements. In addition, compared with the widely used most probable number (MPN) method which would take up to at least 15days to accomplish whole detection process, the method based on inhibition of papain activity could detect SRB in 2 days, with a detection limit of 5.21×10(2) cfu mL(-1). The detection time for SRB population quantitative analysis was greatly shortened. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Volatile trace compounds released from municipal solid waste at the transfer stage: Evaluation of environmental impacts and odour pollution.

    PubMed

    Zhao, Yan; Lu, Wenjing; Wang, Hongtao

    2015-12-30

    Odour pollution caused by municipal solid waste is a public concern. This study quantitatively evaluated the concentration, environmental impacts, and olfaction of volatile trace compounds released from a waste transfer station. Seventy-six compounds were detected, and ethanol presented the highest releasing rate and ratio of 14.76 kg/d and 12.30 g/t of waste, respectively. Life cycle assessment showed that trichlorofluoromethane and dichlorodifluoromethane accounted for more than 99% of impact potentials to global warming and approximately 70% to human toxicity (non-carcinogenic). The major contributor for both photochemical ozone formation and ecotoxicity was ethanol. A detection threshold method was also used to evaluate odour pollution. Five compounds including methane thiol, hydrogen sulphide, ethanol, dimethyl disulphide, and dimethyl sulphide, with dilution multiples above one, were considered the critical compounds. Methane thiol showed the highest contribution to odour pollution of more than 90%, as indicated by its low threshold. Comparison of the contributions of the compounds to different environmental aspects indicated that typical pollutants varied based on specific evaluation targets and therefore should be comprehensively considered. This study provides important information and scientific methodology to elucidate the impacts of odourant compounds to the environment and odour pollution. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Thiol-ene mediated neoglycosylation of collagen patches: a preliminary study.

    PubMed

    Russo, Laura; Battocchio, Chiara; Secchi, Valeria; Magnano, Elena; Nappini, Silvia; Taraballi, Francesca; Gabrielli, Luca; Comelli, Francesca; Papagni, Antonio; Costa, Barbara; Polzonetti, Giovanni; Nicotra, Francesco; Natalello, Antonino; Doglia, Silvia M; Cipolla, Laura

    2014-02-11

    Despite the relevance of carbohydrates as cues in eliciting specific biological responses, the covalent surface modification of collagen-based matrices with small carbohydrate epitopes has been scarcely investigated. We report thereby the development of an efficient procedure for the chemoselective neoglycosylation of collagen matrices (patches) via a thiol-ene approach, between alkene-derived monosaccharides and the thiol-functionalized material surface. Synchrotron radiation-induced X-ray photoelectron spectroscopy (SR-XPS), Fourier transform-infrared (FT-IR), and enzyme-linked lectin assay (ELLA) confirmed the effectiveness of the collagen neoglycosylation. Preliminary biological evaluation in osteoarthritic models is reported. The proposed methodology can be extended to any thiolated surface for the development of smart biomaterials for innovative approaches in regenerative medicine.

  7. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.

    PubMed

    Dröse, Stefan; Brandt, Ulrich; Wittig, Ilka

    2014-08-01

    The respiratory chain of the inner mitochondrial membrane is a unique assembly of protein complexes that transfers the electrons of reducing equivalents extracted from foodstuff to molecular oxygen to generate a proton-motive force as the primary energy source for cellular ATP-synthesis. Recent evidence indicates that redox reactions are also involved in regulating mitochondrial function via redox-modification of specific cysteine-thiol groups in subunits of respiratory chain complexes. Vice versa the generation of reactive oxygen species (ROS) by respiratory chain complexes may have an impact on the mitochondrial redox balance through reversible and irreversible thiol-modification of specific target proteins involved in redox signaling, but also pathophysiological processes. Recent evidence indicates that thiol-based redox regulation of the respiratory chain activity and especially S-nitrosylation of complex I could be a strategy to prevent elevated ROS production, oxidative damage and tissue necrosis during ischemia-reperfusion injury. This review focuses on the thiol-based redox processes involving the respiratory chain as a source as well as a target, including a general overview on mitochondria as highly compartmentalized redox organelles and on methods to investigate the redox state of mitochondrial proteins. This article is part of a Special Issue entitled: Thiol-Based Redox Processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. DEPLETION OF CELLULAR PROTEIN THIOLS AS AN INDICATOR OF ARYLATION IN ISOLATED TROUT HEPATOCYTES EXPOSED TO 1,4-BENZOQUINONE

    EPA Science Inventory

    A method for the measurement of protein thiols (PrSH), un-reacted as well as oxidized, i.e. dithiothreitol recoverable, was adapted for the determination of PrSH depletion in isolated rainbow trout hepatocytes exposed to an arylating agent, 1,4-benzoquinone (BQ). Toxicant analysi...

  9. Thiol-ene/oxidation tandem reaction under visible light photocatalysis: synthesis of alkyl sulfoxides.

    PubMed

    Guerrero-Corella, Andrea; María Martinez-Gualda, Ana; Ahmadi, Fereshteh; Ming, Enrique; Fraile, Alberto; Alemán, José

    2017-09-19

    The photocatalyzed synthesis of sulfoxides from alkenes and thiols has been carried out using Eosin Y. This is a metal-free method which uses a low catalyst loading, atmospheric oxygen as the oxidant, and visible light conditions (green light). A mechanism has been proposed that is consistent with the experimental results.

  10. Albumin Antioxidant Response to Stress in Diabetic Nephropathy Progression

    PubMed Central

    Medina-Navarro, Rafael; Corona-Candelas, Itzia; Barajas-González, Saúl; Díaz-Flores, Margarita; Durán-Reyes, Genoveva

    2014-01-01

    Background A new component of the protein antioxidant capacity, designated Response Surplus (RS), was recently described. A major feature of this component is the close relationship between protein antioxidant capacity and molecular structure. Oxidative stress is associated with renal dysfunction in patients with renal failure, and plasma albumin is the target of massive oxidation in nephrotic syndrome and diabetic nephropathy. The aim of the present study was to explore the albumin redox state and the RS component of human albumin isolated from diabetic patients with progressive renal damage. Methods/Principal Findings Serum aliquots were collected and albumin isolated from 125 diabetic patients divided into 5 groups according to their estimated glomerular filtration rate (GFR). In addition to clinical and biochemical variables, the albumin redox state, including antioxidant capacity, thiol group content, and RS component, were evaluated. The albumin antioxidant capacity and thiol group content were reciprocally related to the RS component in association with GFR reduction. The GFR decline and RS component were significantly negatively correlated (R = –0.83, p<0.0001). Age, creatinine, thiol groups, and antioxidant capacity were also significantly related to the GFR decline (R = –0.47, p<0.001; R = –0.68, p<0.0001; R = 0.44, p<0.001; and R = 0.72, p<0.0001). Conclusion/Significance The response of human albumin to stress in relation to the progression of diabetic renal disease was evaluated. The findings confirm that the albumin molecular structure is closely related to its redox state, and is a key factor in the progression of diabetes nephropathy. PMID:25187963

  11. Evaluation of micro-colorimetric lipid determination method with samples prepared using sonication and accelerated solvent extraction methods

    EPA Science Inventory

    Two common laboratory extraction techniques were evaluated for routine use with the micro-colorimetric lipid determination method developed by Van Handel (1985) [E. Van Handel, J. Am. Mosq. Control Assoc. 1(1985) 302] and recently validated for small samples by Inouye and Lotufo ...

  12. General and practical formation of thiocyanates from thiols.

    PubMed

    Frei, Reto; Courant, Thibaut; Wodrich, Matthew D; Waser, Jerome

    2015-02-02

    A new method for the cyanation of thiols and disulfides using cyanobenziodoxol(on)e hypervalent iodine reagents is described. Both aliphatic and aromatic thiocyanates can be accessed in good yields in a few minutes at room temperature starting from a broad range of thiols with high chemioselectivity. The complete conversion of disulfides to thiocyanates was also possible. Preliminary computational studies indicated a low energy concerted transition state for the cyanation of the thiolate anion or radical. The developed thiocyanate synthesis has broad potential for various applications in synthetic chemistry, chemical biology and materials science. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Quantitative interference by cysteine and N-acetylcysteine metabolites during the LC-MS/MS bioanalysis of a small molecule.

    PubMed

    Barricklow, Jason; Ryder, Tim F; Furlong, Michael T

    2009-08-01

    During LC-MS/MS quantification of a small molecule in human urine samples from a clinical study, an unexpected peak was observed to nearly co-elute with the analyte of interest in many study samples. Improved chromatographic resolution revealed the presence of at least 3 non-analyte peaks, which were identified as cysteine metabolites and N-acetyl (mercapturic acid) derivatives thereof. These metabolites produced artifact responses in the parent compound MRM channel due to decomposition in the ionization source of the mass spectrometer. Quantitative comparison of the analyte concentrations in study samples using the original chromatographic method and the improved chromatographic separation method demonstrated that the original method substantially over-estimated the analyte concentration in many cases. The substitution of electrospray ionization (ESI) for atmospheric pressure chemical ionization (APCI) nearly eliminated the source instability of these metabolites, which would have mitigated their interference in the quantification of the analyte, even without chromatographic separation. These results 1) demonstrate the potential for thiol metabolite interferences during the quantification of small molecules in pharmacokinetic samples, and 2) underscore the need to carefully evaluate LC-MS/MS methods for molecules that can undergo metabolism to thiol adducts to ensure that they are not susceptible to such interferences during quantification.

  14. High throughput assay for evaluation of reactive carbonyl scavenging capacity.

    PubMed

    Vidal, N; Cavaille, J P; Graziani, F; Robin, M; Ouari, O; Pietri, S; Stocker, P

    2014-01-01

    Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal.

  15. Selenite Protection of Tellurite Toxicity Toward Escherichia coli

    PubMed Central

    Vrionis, Helen A.; Wang, Siyuan; Haslam, Bronwyn; Turner, Raymond J.

    2015-01-01

    In this work the influence of selenite on metal resistance in Escherichia coli was examined. Both synergistic and antagonistic resistance and toxicities were found upon co exposure with selenite. In wild type cells co-exposure to selenite had little effect on arsenic resistance, decreased resistance to cadmium and mercury but led to a dramatically increased resistance to tellurite of 32-fold. Due to the potential importance of thiol chemistry in metal biochemistry, deletion strains in γ-glutamylcysteine synthetase (key step in glutathione biosynthesis, encoded by gshA), thioredoxin (trxA), glutaredoxin (grxA), glutathione oxidoreductase (gor), and the periplasmic glutathione transporter (cydD) were also evaluated for resistance to various metals in the presence of selenite. The protective effect of selenite on tellurite toxicity was seen in several of the mutants and was pronounced in the gshA mutant were resistance to tellurite was increased up to 1000-fold relative to growth in the absence of selenite. Thiol oxidation studies revealed a faster rate of loss of reduced thiol content in the cell with selenite than with tellurite, indicating differential thiol reactivity. Selenite addition resulted in reactive oxygen species (ROS) production equivalent to levels associated with H2O2 addition. Tellurite addition resulted in considerably lower ROS generation while vanadate and chromate treatment did not increase ROS production above that of background. This work shows increased resistance toward most oxyanions in mutants of thiol redox suggesting that metalloid reaction with thiol components such as glutathione actually enhances toxicity of some metalloids. PMID:26732755

  16. Formation of peroxynitrite during thiol-mediated reduction of sodium nitroprusside.

    PubMed

    Aleryani, S; Milo, E; Kostka, P

    1999-10-18

    Aerobic incubations of equimolar concentrations (5-500 microM) of sodium nitroprusside (SNP) and dithiothreitol (DTT) carried out at pH 7.4 in the absence of light caused a concentration-dependent increase in the rates of oxidation of dihydrorhodamine-123. The enhancement of the rates of oxidation under such conditions was only partially sensitive to the inhibition by 100 mM dimethyl sulfoxide implying the involvement of both peroxynitrite and hydroxyl radicals in the observed effects. The oxidation of dihydrorhodamine-123 in the presence of SNP and DTT was nearly completely abolished by superoxide dismutase (20 U/ml). It was found that such an effect of the enzyme was related primarily to the stabilization of an intermediate of SNP reduction formed upstream to the liberation of nitrosonium ligand. Increased rates of oxidation of dihydrorhodamine-123 were also observed during the reduction of SNP with either L-cysteine or glutathione. It is concluded that thiol-mediated reduction of SNP under aerobic conditions is accompanied by the formation of oxygen-derived free radicals. Nitrosonium ligand liberated from the product(s) of SNP reduction is, under such conditions, converted to peroxynitrite.

  17. Highly Stable Bonding of Thiol Monolayers to Hydrogen-Terminated Si via Supercritical Carbon Dioxide: Toward a Super Hydrophobic and Bioresistant Surface.

    PubMed

    Bhartia, Bhavesh; Puniredd, Sreenivasa Reddy; Jayaraman, Sundaramurthy; Gandhimathi, Chinnasamy; Sharma, Mohit; Kuo, Yen-Chien; Chen, Chia-Hao; Reddy, Venugopal Jayarama; Troadec, Cedric; Srinivasan, Madapusi Palavedu

    2016-09-21

    Oxide-free silicon chemistry has been widely studied using wet-chemistry methods, but for emerging applications such as molecular electronics on silicon, nanowire-based sensors, and biochips, these methods may not be suitable as they can give rise to defects due to surface contamination, residual solvents, which in turn can affect the grafted monolayer devices for practical applications. Therefore, there is a need for a cleaner, reproducible, scalable, and environmentally benign monolayer grafting process. In this work, monolayers of alkylthiols were deposited on oxide-free semiconductor surfaces using supercritical carbon dioxide (SCCO2) as a carrier fluid owing to its favorable physical properties. The identity of grafted monolayers was monitored with Fourier transform infrared (FTIR) spectroscopy, high-resolution X-ray photoelectron spectroscopy (HRXPS), XPS, atomic force microscopy (AFM), contact angle measurements, and ellipsometry. Monolayers on oxide-free silicon were able to passivate the surface for more than 50 days (10 times than the conventional methods) without any oxide formation in ambient atmosphere. Application of the SCCO2 process was further extended by depositing alkylthiol monolayers on fragile and brittle 1D silicon nanowires (SiNWs) and 2D germanium substrates. With the recent interest in SiNWs for biological applications, the thiol-passivated oxide-free silicon nanowire surfaces were also studied for their biological response. Alkylthiol-functionalized SiNWs showed a significant decrease in cell proliferation owing to their superhydrophobicity combined with the rough surface morphology. Furthermore, tribological studies showed a sharp decrease in the coefficient of friction, which was found to be dependent on the alkyl chain length and surface bond. These studies can be used for the development of cost-effective and highly stable monolayers for practical applications such as solar cells, biosensors, molecular electronics, micro- and nano- electromechanical systems, antifouling agents, and drug delivery.

  18. Method of making gold thiolate and photochemically functionalized microcantilevers

    DOEpatents

    Boiadjiev, Vassil I [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Bonnesen, Peter V [Knoxville, TN; Goretzki, Gudrun [Nottingham, GB

    2009-08-25

    Highly sensitive sensor platforms for the detection of specific reagents, such as chromate, gasoline and biological species, using microcantilevers and other microelectromechanical systems (MEMS) whose surfaces have been modified with photochemically attached organic monolayers, such as self-assembled monolayers (SAM), or gold-thiol surface linkage are taught. The microcantilever sensors use photochemical hydrosilylation to modify silicon surfaces and gold-thiol chemistry to modify metallic surfaces thereby enabling individual microcantilevers in multicantilever array chips to be modified separately. Terminal vinyl substituted hydrocarbons with a variety of molecular recognition sites can be attached to the surface of silicon via the photochemical hydrosilylation process. By focusing the activating UV light sequentially on selected silicon or silicon nitride hydrogen terminated surfaces and soaking or spotting selected metallic surfaces with organic thiols, sulfides, or disulfides, the microcantilevers are functionalized. The device and photochemical method are intended to be integrated into systems for detecting specific agents including chromate groundwater contamination, gasoline, and biological species.

  19. Synchrotron radiation μCT and histology evaluation of bone-to-implant contact.

    PubMed

    Neldam, Camilla Albeck; Sporring, Jon; Rack, Alexander; Lauridsen, Torsten; Hauge, Ellen-Margrethe; Jørgensen, Henrik L; Jørgensen, Niklas Rye; Feidenhansl, Robert; Pinholt, Else Marie

    2017-09-01

    The purpose of this study was to evaluate bone-to-implant contact (BIC) in two-dimensional (2D) histology compared to high-resolution three-dimensional (3D) synchrotron radiation micro computed tomography (SR micro-CT). High spatial resolution, excellent signal-to-noise ratio, and contrast establish SR micro-CT as the leading imaging modality for hard X-ray microtomography. Using SR micro-CT at voxel size 5 μm in an experimental goat mandible model, no statistically significant difference was found between the different treatment modalities nor between recipient and reconstructed bone. The histological evaluation showed a statistically significant difference between BIC in reconstructed and recipient bone (p < 0.0001). Further, no statistically significant difference was found between the different treatment modalities which we found was due to large variation and subsequently due to low power. Comparing histology and SR micro-CT evaluation a bias of 5.2% was found in reconstructed area, and 15.3% in recipient bone. We conclude that for evaluation of BIC with histology and SR micro-CT, SR micro-CT cannot be proven more precise than histology for evaluation of BIC, however, with this SR micro-CT method, one histologic bone section is comparable to the 3D evaluation. Further, the two methods complement each other with knowledge on BIC in 2D and 3D. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. Dual-energy micro-CT imaging of pulmonary airway obstruction: correlation with micro-SPECT

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Befera, N.; Clark, D.; Qi, Y.; Johnson, G. A.

    2014-03-01

    To match recent clinical dual energy (DE) CT studies focusing on the lung, similar developments for DE micro-CT of the rodent lung are required. Our group has been actively engaged in designing pulmonary gating techniques for micro- CT, and has also introduced the first DE micro-CT imaging method of the rodent lung. The aim of this study was to assess the feasibility of DE micro-CT imaging for the evaluation of airway obstruction in mice, and to compare the method with micro single photon emission computed tomography (micro-SPECT) using technetium-99m labeled macroaggregated albumin (99mTc-MAA). The results suggest that the induced pulmonary airway obstruction causes either atelectasis, or air-trapping similar to asthma or chronic bronchitis. Atelectasis could only be detected at early time points in DE micro-CT images, and is associated with a large increase in blood fraction and decrease in air fraction. Air trapping had an opposite effect with larger air fraction and decreased blood fraction shown by DE micro-CT. The decrease in perfusion to the hypoventilated lung (hypoxic vasoconstriction) is also seen in micro-SPECT. The proposed DE micro-CT technique for imaging localized airway obstruction performed well in our evaluation, and provides a higher resolution compared to micro-SPECT. Both DE micro-CT and micro-SPECT provide critical, quantitative lung biomarkers for image-based anatomical and functional information in the small animal. The methods are readily linked to clinical methods allowing direct comparison of preclinical and clinical results.

  1. Lignin-Based Materials Through Thiol-Maleimide "Click" Polymerization.

    PubMed

    Buono, Pietro; Duval, Antoine; Averous, Luc; Habibi, Youssef

    2017-03-09

    In the present report an environmentally friendly approach to transforming renewable feedstocks into value-added materials is proposed. This transformation pathway was conducted under green conditions, without the use of solvents or catalyst. First, controlled modification of lignin, a major biopolymer present in wood and plants, was achieved by esterification with 11-maleimidoundecylenic acid (11-MUA), a derivative from castor oil that contains maleimide groups, following its transformation into 11-maleimidoundecanoyl chloride (11-MUC). Different degrees of substitution were achieved by using various amounts of the 11-MUC, leading to an efficient conversion of lignin hydroxy groups, as demonstrated by 1 H and 31 P NMR analyses. These fully biobased maleimide-lignin derivatives were subjected to an extremely fast (ca. 1 min) thiol-ene "click" polymerization with thiol-containing linkers. Aliphatic and aromatic thiol linkers bearing two to four thiol groups were used to tune the reactivity and crosslink density. The properties of the resulting materials were evaluated by swelling tests and thermal and mechanical analyses, which showed that varying the degree of functionality of the linker and the linker structure allowed accurate tailoring of the thermal and mechanical properties of the final materials, thus providing interesting perspectives for lignin in functional aromatic polymers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Natural dendrimers: Synthesis and in vitro characterization of glycogen-cysteamine conjugates.

    PubMed

    Perrone, Mara; Lopedota, Angela; Liberati, Elisa; Russo, Vincenzo; Cutrignelli, Annalisa; Laquintana, Valentino; de Sousa, Irene Pereira; Franco, Massimo; Tongiani, Serena; Denora, Nunzio; Bernkop-Schnürch, Andreas

    2017-06-01

    The aim of this study was to synthesize, characterize and evaluate the mucoadhesive properties of the first thiolated hyperbranched natural polysaccharide with biodegradability and biocompatibility features. In detail, glycogen-cysteamine conjugates were synthesized through a first step of oxidative ring opening applying increasing concentrations of sodium periodate, to obtain polymers with different degrees of oxidation, and a second step of reductive amination with a constant amount of cysteamine. The obtained glycogen-cysteamine conjugates were characterized regarding their content of free and total thiol groups by Ellman's assay, biocompatibility, swelling/erosion behavior, rheological synergism and mucoadhesive properties in comparison to the unmodified glycogen. The higher the concentration of periodate was, the higher was the content of total thiol groups being in the range of 255.7±12-1194.5±82μmol/g, biocompatibility remained unaffected by these structural changes. On the contrary, the mucoadhesive properties, evaluated by tensile, rheological synergism and rotating cylinder studies, appear to be influenced by the thiol groups concentration on the glycogen. In particular the glycogen-cysteamine conjugate exhibiting the highest degree of thiolation showed a 79-fold increase in viscosity over a time period of 8h, as well as, remained attached on freshly excised porcine mucosa 32-fold longer than the unmodified polymer. The higher was the amount of conjugated thiol groups, the higher was the water absorption capacity of glycogen-cysteamine tablets in Simulated Intestinal Fluid pH 6.8 (SIF). The introduction of thiol moieties on polymer changed the characteristics of the polysaccharide by improving mucoadhesion properties. Therefore, this work represents the first study describing thiolated natural dendrimers as potential platform useful to realize appropriate mucoadhesive nanocarrier systems suitable to prolong mucosal residence time. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Click-PEGylation - A mobility shift approach to assess the redox state of cysteines in candidate proteins.

    PubMed

    van Leeuwen, Lucie A G; Hinchy, Elizabeth C; Murphy, Michael P; Robb, Ellen L; Cochemé, Helena M

    2017-07-01

    The redox state of cysteine thiols is critical for protein function. Whereas cysteines play an important role in the maintenance of protein structure through the formation of internal disulfides, their nucleophilic thiol groups can become oxidatively modified in response to diverse redox challenges and thereby function in signalling and antioxidant defences. These oxidative modifications occur in response to a range of agents and stimuli, and can lead to the existence of multiple redox states for a given protein. To assess the role(s) of a protein in redox signalling and antioxidant defence, it is thus vital to be able to assess which of the multiple thiol redox states are present and to investigate how these alter under different conditions. While this can be done by a range of mass spectrometric-based methods, these are time-consuming, costly, and best suited to study abundant proteins or to perform an unbiased proteomic screen. One approach that can facilitate a targeted assessment of candidate proteins, as well as proteins that are low in abundance or proteomically challenging, is by electrophoretic mobility shift assays. Redox-modified cysteine residues are selectively tagged with a large group, such as a polyethylene glycol (PEG) polymer, and then the proteins are separated by electrophoresis followed by immunoblotting, which allows the inference of redox changes based on band shifts. However, the applicability of this method has been impaired by the difficulty of cleanly modifying protein thiols by large PEG reagents. To establish a more robust method for redox-selective PEGylation, we have utilised a Click chemistry approach, where free thiol groups are first labelled with a reagent modified to contain an alkyne moiety, which is subsequently Click-reacted with a PEG molecule containing a complementary azide function. This strategy can be adapted to study reversibly reduced or oxidised cysteines. Separation of the thiol labelling step from the PEG conjugation greatly facilitates the fidelity and flexibility of this approach. Here we show how the Click-PEGylation technique can be used to interrogate the redox state of proteins. Copyright © 2017. Published by Elsevier Inc.

  4. Synthesis of aryl thioethers through the N-chlorosuccinimide-promoted cross-coupling reaction of thiols with Grignard reagents.

    PubMed

    Cheng, Jun-Hao; Ramesh, Chintakunta; Kao, Hsin-Lun; Wang, Yu-Jen; Chan, Chien-Ching; Lee, Chin-Fa

    2012-11-16

    A convenient one-pot approach for the synthesis of aryl sulfides through the coupling of thiols with Grignard reagents in the presence of N-chlorosuccinimide is described. The sulfenylchlorides were formed when thiols were treated with N-chlorosuccinimide, and the resulting sulfenylchlorides were then directly reacted with Grignard reagents to provide aryl sulfides in good to excellent yields under mild reaction conditions. Functional groups including ester, fluoro, and chloro are tolerated by the reaction conditions employed. It is important to note that this method has a short reaction time (30 min in total) and represents an alternative approach for the synthesis of aryl sulfides over the existing protocols.

  5. Indirect spectrophotometric determination of sodium ceftriaxone with n-propyl alcohol-ammonium sulfate-water system by extraction flotation of copper(II).

    PubMed

    Zhao, Wei; Zhang, Yan; Li, Quanmin

    2008-05-01

    Although the determination methods of sodium ceftriaxone has been increasingly reported, these methods have their inherent limits preventing them from being broadly applied in common laboratories. In order to circumvent this problem, a rapid and simple method for the indirect spectrophotometric determination of sodium ceftriaxone is reported. Sodium ceftriaxone was degraded completely in the presence of 0.20 mol/l sodium hydroxide in boiling water bath for 20 min. The thiol group (-SH) of the degradation product (I) of sodium ceftriaxone could reduce cupric to cuprous ions, and the resulting which was precipitated with the thiol group (-SH) of the degradation product (II) at pH 4.0. By determining the residual amount of copper (II), the indirect determination of sodium ceftriaxone can be achieved. Standard curve of sodium ceftriaxone versus the flotation yield of copper(II) showed that sodium ceftriaxone could be determined in low concentrations. The linear range of sodium ceftriaxone was 0.70-32 microg/ml and the detection limit evaluated by calibration curve (3sigma/k) was found to be 0.60 microg/ml. A simple and efficient method was developed and it has been successfully applied to the determination of sodium ceftriaxone in human serum and urine samples, respectively. It is expected that this method will find broad applications in the detection of cephalosporin derivatives with similar structure.

  6. Method for detecting the reactivity of chemicals towards peptides as an alternative test method for assessing skin sensitization potential.

    PubMed

    Cho, Sun-A; Jeong, Yun Hyeok; Kim, Ji Hoon; Kim, Seoyoung; Cho, Jun-Cheol; Heo, Yong; Heo, Young; Suh, Kyung-Do; Shin, Kyeho; An, Susun

    2014-02-10

    Cosmetics are normally composed of various ingredients. Some cosmetic ingredients can act as chemical haptens reacting toward proteins or peptides of human skin and they can provoke an immunologic reaction, called as skin sensitization. This haptenation process is very important step of inducing skin sensitization and evaluating the sensitizing potentials of cosmetic ingredients is very important for consumer safety. Therefore, animal alternative methods focusing on monitoring haptenation potential are undergoing vigorous research. To examine the further usefulness of spectrophotometric methods to monitor reactivity of chemicals toward peptides for cosmetic ingredients. Forty chemicals (25 sensitizers and 15 non-sensitizers) were reacted with 2 synthetic peptides, e.g., the cysteine peptides (Ac-RFAACAA-COOH) with free thiol group and the lysine peptides (Ac-RFAAKAA-COOH) with free amine group. Unreacted peptides can be detected after incubating with 5,5'-dithiobis-2-nitrobenzoic acid or fluorescamine™ as detection reagents for free thiol and amine group, respectively. Chemicals were categorized as sensitizers when they induced more than 10% depletion of cysteine peptides or more than 30% depletion of lysine peptides. The sensitivity, specificity, and accuracy were 80.0%, 86.7% and 82.5%, respectively. These results demonstrate that spectrophotometric methods can be an easy, fast, and high-throughput screening tools predicting the skin sensitization potential of chemical including cosmetic ingredient. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Rapid disruption of intestinal epithelial tight junction and barrier dysfunction by ionizing radiation in mouse colon in vivo: protection by N-acetyl-l-cysteine

    PubMed Central

    Shukla, Pradeep K.; Gangwar, Ruchika; Manda, Bhargavi; Meena, Avtar S.; Yadav, Nikki; Szabo, Erzsebet; Balogh, Andrea; Lee, Sue Chin; Tigyi, Gabor

    2016-01-01

    The goals of this study were to evaluate the effects of ionizing radiation on apical junctions in colonic epithelium and mucosal barrier function in mice in vivo. Adult mice were subjected to total body irradiation (4 Gy) with or without N-acetyl-l-cysteine (NAC) feeding for 5 days before irradiation. At 2–24 h postirradiation, the integrity of colonic epithelial tight junctions (TJ), adherens junctions (AJ), and the actin cytoskeleton was assessed by immunofluorescence microscopy and immunoblot analysis of detergent-insoluble fractions for TJ and AJ proteins. The barrier function was evaluated by measuring vascular-to-luminal flux of fluorescein isothiocyanate (FITC)-inulin in vivo and luminal-to-mucosal flux in vitro. Oxidative stress was evaluated by measuring protein thiol oxidation. Confocal microscopy showed that radiation caused redistribution of occludin, zona occludens-1, claudin-3, E-cadherin, and β-catenin, as well as the actin cytoskeleton as early as 2 h postirradiation, and this effect was sustained for at least 24 h. Feeding NAC before irradiation blocked radiation-induced disruption of TJ, AJ, and the actin cytoskeleton. Radiation increased mucosal permeability to inulin in colon, which was blocked by NAC feeding. The level of reduced-protein thiols in colon was depleted by radiation with a concomitant increase in the level of oxidized-protein thiol. NAC feeding blocked the radiation-induced protein thiol oxidation. These data demonstrate that radiation rapidly disrupts TJ, AJ, and the actin cytoskeleton by an oxidative stress-dependent mechanism that can be prevented by NAC feeding. PMID:26822914

  8. Synthesis of soybean oil-based thiol oligomers.

    PubMed

    Wu, Jennifer F; Fernando, Shashi; Weerasinghe, Dimuthu; Chen, Zhigang; Webster, Dean C

    2011-08-22

    Industrial grade soybean oil (SBO) and thiols were reacted to generate thiol-functionalized oligomers via a thermal, free radical initiated thiol-ene reaction between the SBO double bond moieties and the thiol functional groups. The effect of the reaction conditions, including thiol concentration, catalyst loading level, reaction time, and atmosphere, on the molecular weight and the conversion to the resultant soy-thiols were examined in a combinatorial high-throughput fashion using parallel synthesis, combinatorial FTIR, and rapid gel permeation chromatography (GPC). High thiol functionality and concentration, high thermal free radical catalyst concentration, long reaction time, and the use of a nitrogen reaction atmosphere were found to favor fast consumption of the SBO, and produced high molecular weight products. The thiol conversion during the reaction was inversely affected by a high thiol concentration, but was favored by a long reaction time and an air reaction atmosphere. These experimental observations were explained by the initial low affinity of the SBO and thiol, and the improved affinity between the generated soy-thiol oligomers and unreacted SBO during the reaction. The synthesized soy-thiol oligomers can be used for renewable thiol-ene UV curable materials and high molecular solids and thiourethane thermal cure materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. In vitro screening of 50 highly prescribed drugs for thiol adduct formation--comparison of potential for drug-induced toxicity and extent of adduct formation.

    PubMed

    Gan, Jinping; Ruan, Qian; He, Bing; Zhu, Mingshe; Shyu, Wen C; Humphreys, W Griffith

    2009-04-01

    Reactive metabolite formation has been associated with drug-induced liver, skin, and hematopoietic toxicity of many drugs that has resulted in serious clinical toxicity, leading to clinical development failure, black box warnings, or, in some cases, withdrawal from the market. In vitro and in vivo screening for reactive metabolite formation has been proposed and widely adopted in the pharmaceutical industry with the aim of minimizing the property and thus the risk of drug-induced toxicity (DIT). One of the most common screening methods is in vitro thiol trapping of reactive metabolites. Although it is well-documented that many hepatotoxins form thiol adducts, there is no literature describing the adduct formation potential of safer drugs that are widely used. The objective of this study was to quantitatively assess the thiol adduct formation potential of 50 drugs (10 associated with DIT and 40 not associated) and document apparent differences in adduct formation between toxic and safer drugs. Dansyl glutathione was used as a trapping agent to aid the quantitation of adducts following in vitro incubation of drugs with human liver microsomes in the presence and absence of NADPH. Metabolic turnover of these drugs was also monitored by LC/UV. Overall, 15 out of the 50 drugs screened formed detectable levels of thiol adducts. There were general trends toward more positive findings in the DIT group vs the non-DIT group. These trends became more marked when the relative amount of thiol adducts was taken into account and improved further when dose and total daily reactive metabolite burdens were considered. In conclusion, there appears to be a general trend between the extent of thiol adduct formation and the potential for DIT, which would support the preclinical measurement and minimization of the property through screening of thiol adduct formation as part of an overall discovery optimization paradigm.

  10. Preferential inhibition of xanthine oxidase by 2-amino-6-hydroxy-8-mercaptopurine and 2-amino-6-purine thiol.

    PubMed

    Kalra, Sukirti; Jena, Gopabandhu; Tikoo, Kulbhushan; Mukhopadhyay, Anup Kumar

    2007-05-18

    The anticancer drug, 6-mercaptopurine (6MP) is subjected to metabolic clearance through xanthine oxidase (XOD) mediated hydroxylation, producing 6-thiouric acid (6TUA), which is excreted in urine. This reduces the effective amount of drug available for therapeutic efficacy. Co-administration of allopurinol, a suicide inhibitor of XOD, which blocks the hydroxylation of 6MP inadvertently enhances the 6MP blood level, counters this reduction. However, allopurinol also blocks the hydroxylation of hypoxanthine, xanthine (released from dead cancer cells) leading to their accumulation in the body causing biochemical complications such as xanthine nephropathy. This necessitates the use of a preferential XOD inhibitor that selectively inhibits 6MP transformation, but leaves xanthine metabolism unaffected. Here, we have characterized two such unique inhibitors namely, 2-amino-6-hydroxy-8-mercaptopurine (AHMP) and 2-amino-6-purinethiol (APT) on the basis of IC50 values, residual activity in bi-substrate simulative reaction and the kinetic parameters like Km, Ki, kcat. The IC50 values of AHMP for xanthine and 6MP as substrate are 17.71 +/- 0.29 microM and 0.54 +/- 0.01 microM, respectively and the IC50 values of APT for xanthine and 6MP as substrates are 16.38 +/- 0.21 microM and 2.57 +/- 0.08 microM, respectively. The Ki values of XOD using AHMP as inhibitor with xanthine and 6MP as substrate are 5.78 +/- 0.48 microM and 0.96 +/- 0.01 microM, respectively. The Ki values of XOD using APT as inhibitor with xanthine and 6MP as substrate are 6.61 +/- 0.28 microM and 1.30 +/- 0.09 microM. The corresponding Km values of XOD using xanthine and 6MP as substrate are 2.65 +/- 0.02 microM and 6.01 +/- 0.03 microM, respectively. The results suggest that the efficiency of substrate binding to XOD and its subsequent catalytic hydroxylation is much superior for xanthine in comparison to 6MP. In addition, the efficiency of the inhibitor binding to XOD is much more superior when 6MP is the substrate instead of xanthine. We further undertook the toxicological evaluation of these inhibitors in a single dose acute toxicity study in mice and our preliminary experimental results suggested that the inhibitors were equally non-toxic in the tested doses. We conclude that administration of either APT or AHMP along with the major anti-leukemic drug 6MP might serve as a good combination cancer chemotherapy regimen.

  11. Investigation of molybdenum-crosslinker interfaces for affinity based electrochemical biosensing applications

    NASA Astrophysics Data System (ADS)

    Kamakoti, Vikramshankar; Shanmugam, Nandhinee Radha; Tanak, Ambalika Sanjeev; Jagannath, Badrinath; Prasad, Shalini

    2018-04-01

    Molybdenum (Mo) has been investigated for implementation as an electrode material for affinity based biosensing towards devloping flexibe electronic biosensors. Treatment of the native oxide of molybdenum was investigated through two surface treatment strategies namely thiol and carbodiimide crosslinking methods. The binding interaction between cross-linker molecules and Mo electrode surface has been characterized using Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and optical microscopy. The efficacy of treatment of Mo with its native oxide using carbodiimide cross linking methodology was established. The carbodiimide cross-linking chemistry was found to possess better surface coverage and binding affinity with Molybdenum electrode surface when compared to thiol cross-linking chemistry.Electrochemical characterization of Mo electrode using Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltametry (CV) techniques was performed to evaluate the effect of ionic properties of solution buffer on the Mo electrode's performance. Affinity based biosensing of C-Reactive Protein (CRP) has been demonstrated on a flexible nanoporous polymeric substrate with detection threshold of 100 pg/ml in synthetic urine buffer medium. The biosensor has been evaluated to be developed as a dipstick based point of care device for detection of biomarkers in urine.

  12. Occupational exposure to asphalt fume can cause oxidative DNA damage among road paving workers.

    PubMed

    Bal, Ceylan; Ağış, Erol R; Büyükşekerci, Murat; Gündüzöz, Meşide; Tutkun, Lütfiye; Yılmaz, Ömer H

    2018-06-01

    We designed the present study to determine the effect of occupational exposure to asphalt fumes on oxidative status and DNA damage in road paving workers. Sixty road paving workers exposed to asphalt fumes and forty non-exposed control subjects were recruited. Occupational exposure to PAHs was assessed by urinary 1-hydroxypyrene (1-OHP) excretion. Serum thiol disulfide homeostasis (TDH), total oxidant status (TOS) and total antioxidant status (TAS) and urinary 8-hydro-deoxyguanosine (8-OH-dG) level were evaluated by automated colourimetric method. The urinary concentrations of 1-OHP and 8-OH-dG were significantly higher in the exposed group than in the control group (P < 0.001). Disulfide/thiol ratio, TOS, and TAS were also significantly higher for the asphalt workers. A positive correlation existed between urinary 1-OHP and 8-OH-dG, TOS and TAS. Study results indicate that exposure to PAHs induces oxidative stress and causes genotoxic effects in asphalt workers. © 2018 Wiley Periodicals, Inc.

  13. Synthesis, characterization of thiolated karaya gum and evaluation of effect of pH on its mucoadhesive and sustained release properties.

    PubMed

    Bahulkar, Swati S; Munot, Neha M; Surwase, Sachin S

    2015-10-05

    Present study aims at synthesis and characterization of thiolated gum karaya by reacting karaya gum with 80% thioglycolic acid resulting in esterification and immobilization of thiol groups on polymeric backbone. Immobilized thiol groups were found to be 5.026 mM/g determined by Ellman's method. It was characterized by FTIR, DSC and XRD. Directly compressible tablets prepared using thiolated gum displayed more disintegration time, swelling and mucoadhesion with increase in pH of medium simulating gastric and intestinal environment than plain gum. Controlled drug release for more than 24h by Fickian diffusion following Korsemeyer-Peppas model was observed with Metoprolol Succinate as a model drug as compared to plain gum which released more than 90% of the drug within 2h. Synthesized thiomer showed no cytotoxicity determined using HepG2 cell line. According to these results, thiolated gum karaya seems to be promising excipient for the development of mucoadhesive drug delivery systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Evaluation and improvement of micro-surfacing mix design method and modelling of asphalt emulsion mastic in terms of filler-emulsion interaction

    NASA Astrophysics Data System (ADS)

    Robati, Masoud

    This Doctorate program focuses on the evaluation and improving the rutting resistance of micro-surfacing mixtures. There are many research problems related to the rutting resistance of micro-surfacing mixtures that still require further research to be solved. The main objective of this Ph.D. program is to experimentally and analytically study and improve rutting resistance of micro-surfacing mixtures. During this Ph.D. program major aspects related to the rutting resistance of micro-surfacing mixtures are investigated and presented as follow: 1) evaluation of a modification of current micro-surfacing mix design procedures: On the basis of this effort, a new mix design procedure is proposed for type III micro-surfacing mixtures as rut-fill materials on the road surface. Unlike the current mix design guidelines and specification, the new mix design is capable of selecting the optimum mix proportions for micro-surfacing mixtures; 2) evaluation of test methods and selection of aggregate grading for type III application of micro-surfacing: Within the term of this study, a new specification for selection of aggregate grading for type III application of micro-surfacing is proposed; 3) evaluation of repeatability and reproducibility of micro-surfacing mixture design tests: In this study, limits for repeatability and reproducibility of micro-surfacing mix design tests are presented; 4) a new conceptual model for filler stiffening effect on asphalt mastic of micro-surfacing: A new model is proposed, which is able to establish limits for minimum and maximum filler concentrations in the micro-surfacing mixture base on only the filler important physical and chemical properties; 5) incorporation of reclaimed asphalt pavement and post-fabrication asphalt shingles in micro-surfacing mixture: The effectiveness of newly developed mix design procedure for micro-surfacing mixtures is further validated using recycled materials. The results present the limits for the use of RAP and RAS amount in micro-surfacing mixtures; 6) new colored micro-surfacing formulations with improved durability and performance: The significant improvement of around 45% in rutting resistance of colored and conventional micro-surfacing mixtures is achieved through employing low penetration grade bitumen polymer modified asphalt emulsion stabilized using nanoparticles.

  15. Development of buccal drug delivery systems based on a thiolated polymer.

    PubMed

    Langoth, Nina; Kalbe, Jochen; Bernkop-Schnürch, Andreas

    2003-02-18

    The purpose of the present study was to investigate the benefit of thiolated polymers (thiomers) for the development of buccal drug delivery systems. L-Cysteine was thereby covalently attached to polycarbophil (PCP) mediated by a carbodiimide. The resulting conjugate displayed 140.5+/-8.4 microM thiol groups per gram polymer. Disintegration studies were carried out with tablets based on unmodified polymer and conjugated polymer, respectively. Due to the formation of disulfide bonds within the thiolated polymer, the stability of matrix-tablets based on this polymer was strongly improved. Additionally tensile studies were carried out, which were in good correlation with further results obtained by mucoadhesion studies, using the rotating cylinder method. These results showed that tablets based on thiolated PCP remained attached on freshly excised porcine mucosa 1.8 times longer than the corresponding control. Moreover, the enzyme inhibitory properties of polymers were evaluated as well. Thiolated PCP increased the stability of the synthetic substrate for aminopeptidase N-leu-p-nitroanilide (N-leu-pNA) and the model drug leucin-enkephalin (leu-enkephalin) against enzymatic degradation on buccal mucosa. Due to the use of thiolated polymers also a controlled drug release for leu-enkephalin was guaranteed over a time period for more than 24 h. Results of the present studies suggest that thiolated polymers represent a very useful tool for buccal delivery of peptide drugs.

  16. A Targeting Microbubble for Ultrasound Molecular Imaging

    PubMed Central

    Yeh, James Shue-Min; Sennoga, Charles A.; McConnell, Ellen; Eckersley, Robert; Tang, Meng-Xing; Nourshargh, Sussan; Seddon, John M.; Haskard, Dorian O.; Nihoyannopoulos, Petros

    2015-01-01

    Rationale Microbubbles conjugated with targeting ligands are used as contrast agents for ultrasound molecular imaging. However, they often contain immunogenic (strept)avidin, which impedes application in humans. Although targeting bubbles not employing the biotin-(strept)avidin conjugation chemistry have been explored, only a few reached the stage of ultrasound imaging in vivo, none were reported/evaluated to show all three of the following properties desired for clinical applications: (i) low degree of non-specific bubble retention in more than one non-reticuloendothelial tissue; (ii) effective for real-time imaging; and (iii) effective for acoustic quantification of molecular targets to a high degree of quantification. Furthermore, disclosures of the compositions and methodologies enabling reproduction of the bubbles are often withheld. Objective To develop and evaluate a targeting microbubble based on maleimide-thiol conjugation chemistry for ultrasound molecular imaging. Methods and Results Microbubbles with a previously unreported generic (non-targeting components) composition were grafted with anti-E-selectin F(ab’)2 using maleimide-thiol conjugation, to produce E-selectin targeting microbubbles. The resulting targeting bubbles showed high specificity to E-selectin in vitro and in vivo. Non-specific bubble retention was minimal in at least three non-reticuloendothelial tissues with inflammation (mouse heart, kidneys, cremaster). The bubbles were effective for real-time ultrasound imaging of E-selectin expression in the inflamed mouse heart and kidneys, using a clinical ultrasound scanner. The acoustic signal intensity of the targeted bubbles retained in the heart correlated strongly with the level of E-selectin expression (|r|≥0.8), demonstrating a high degree of non-invasive molecular quantification. Conclusions Targeting microbubbles for ultrasound molecular imaging, based on maleimide-thiol conjugation chemistry and the generic composition described, may possess properties (i)–(iii) desired for clinical applications. PMID:26161541

  17. Photoluminescence and time-resolved carrier dynamics in thiol-capped CdTe nanocrystals under high pressure

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Cheng; Chou, Wu-Ching; Susha, Andrei S.; Kershaw, Stephen V.; Rogach, Andrey L.

    2013-03-01

    The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NC powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.

  18. Species-Specific Standard Redox Potential of Thiol-Disulfide Systems: A Key Parameter to Develop Agents against Oxidative Stress

    NASA Astrophysics Data System (ADS)

    Mirzahosseini, Arash; Noszál, Béla

    2016-11-01

    Microscopic standard redox potential, a new physico-chemical parameter was introduced and determined to quantify thiol-disulfide equilibria of biological significance. The highly composite, codependent acid-base and redox equilibria of thiols could so far be converted into pH-dependent, apparent redox potentials (E’°) only. Since the formation of stable metal-thiolate complexes precludes the direct thiol-disulfide redox potential measurements by usual electrochemical techniques, an indirect method had to be elaborated. In this work, the species-specific, pH-independent standard redox potentials of glutathione were determined primarily by comparing it to 1-methylnicotinamide, the simplest NAD+ analogue. Secondarily, the species-specific standard redox potentials of the two-electron redox transitions of cysteamine, cysteine, homocysteine, penicillamine, and ovothiol were determined using their microscopic redox equilibrium constants with glutathione. The 30 different, microscopic standard redox potential values show close correlation with the respective thiolate basicities and provide sound means for the development of potent agents against oxidative stress.

  19. A novel strategy for global analysis of the dynamic thiol redox proteome.

    PubMed

    Martínez-Acedo, Pablo; Núñez, Estefanía; Gómez, Francisco J Sánchez; Moreno, Margoth; Ramos, Elena; Izquierdo-Álvarez, Alicia; Miró-Casas, Elisabet; Mesa, Raquel; Rodriguez, Patricia; Martínez-Ruiz, Antonio; Dorado, David Garcia; Lamas, Santiago; Vázquez, Jesús

    2012-09-01

    Nitroxidative stress in cells occurs mainly through the action of reactive nitrogen and oxygen species (RNOS) on protein thiol groups. Reactive nitrogen and oxygen species-mediated protein modifications are associated with pathophysiological states, but can also convey physiological signals. Identification of Cys residues that are modified by oxidative stimuli still poses technical challenges and these changes have never been statistically analyzed from a proteome-wide perspective. Here we show that GELSILOX, a method that combines a robust proteomics protocol with a new computational approach that analyzes variance at the peptide level, allows a simultaneous analysis of dynamic alterations in the redox state of Cys sites and of protein abundance. GELSILOX permits the characterization of the major endothelial redox targets of hydrogen peroxide in endothelial cells and reveals that hypoxia induces a significant increase in the status of oxidized thiols. GELSILOX also detected thiols that are redox-modified by ischemia-reperfusion in heart mitochondria and demonstrated that these alterations are abolished in ischemia-preconditioned animals.

  20. Heterofunctional Glycopolypeptides by Combination of Thiol-Ene Chemistry and NCA Polymerization.

    PubMed

    Krannig, Kai-Steffen; Schlaad, Helmut

    2016-01-01

    Glycopolypeptides are prepared either by the polymerization of glycosylated amino acid N-carboxyanhydrides (NCAs) or by the post-polymerization functionalization of polypeptides with suitable functional groups. Here we present a method for the in-situ functionalization and (co-) polymerization of allylglycine N-carboxyanhydride in a facile one-pot procedure, combining radical thiol-ene photochemistry and nucleophilic ring-opening polymerization techniques, to yield well-defined heterofunctional glycopolypeptides.

  1. Thiol-Reactive Star Polymers Display Enhanced Association with Distinct Human Blood Components.

    PubMed

    Glass, Joshua J; Li, Yang; De Rose, Robert; Johnston, Angus P R; Czuba, Ewa I; Khor, Song Yang; Quinn, John F; Whittaker, Michael R; Davis, Thomas P; Kent, Stephen J

    2017-04-12

    Directing nanoparticles to specific cell types using nonantibody-based methods is of increasing interest. Thiol-reactive nanoparticles can enhance the efficiency of cargo delivery into specific cells through interactions with cell-surface proteins. However, studies to date using this technique have been largely limited to immortalized cell lines or rodents, and the utility of this technology on primary human cells is unknown. Herein, we used RAFT polymerization to prepare pyridyl disulfide (PDS)-functionalized star polymers with a methoxy-poly(ethylene glycol) brush corona and a fluorescently labeled cross-linked core using an arm-first method. PDS star polymers were examined for their interaction with primary human blood components: six separate white blood cell subsets, as well as red blood cells and platelets. Compared with control star polymers, thiol-reactive nanoparticles displayed enhanced association with white blood cells at 37 °C, particularly the phagocytic monocyte, granulocyte, and dendritic cell subsets. Platelets associated with more PDS than control nanoparticles at both 37 °C and on ice, but they were not activated in the duration examined. Association with red blood cells was minor but still enhanced with PDS nanoparticles. Thiol-reactive nanoparticles represent a useful strategy to target primary human immune cell subsets for improved nanoparticle delivery.

  2. A fluorescent-based HPLC assay for quantification of cysteine and cysteamine adducts in Escherichia coli-derived proteins.

    PubMed

    Soriano, Brian D; Tam, Lei-Ting T; Lu, Hsieng S; Valladares, Violeta G

    2012-01-01

    Recombinant proteins expressed in Escherichia coli are often produced as unfolded, inactive forms accumulated in inclusion bodies. Redox-coupled thiols are typically employed in the refolding process in order to catalyze the formation of correct disulfide bonds at maximal folding efficiency. These thiols and the recombinant proteins can form mixed disulfide bonds to generate thiol-protein adducts. In this work, we apply a fluorescent-based assay for the quantification of cysteine and cysteamine adducts as observed in E. coli-derived proteins. The thiols are released by reduction of the adducted protein, collected and labeled with a fluorescent reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. The derivatized thiols are separated by reversed-phase HPLC and can be accurately quantified after method optimization. The estimated thiol content represents total amount of adducted forms present in the analyzed samples. The limit of quantification (LOQ) was established; specifically, the lowest amount of quantifiable cysteine adduction is 30 picograms and the lowest amount of quantifiable cysteamine adduction is 60 picograms. The assay is useful for quantification of adducts in final purified products as well as in-process samples from various purification steps. The assay indicates that the purification process accomplishes a decrease in cysteine adduction from 0.19 nmol adduct/nmol protein to 0.03 nmol adduct/nmol protein as well as a decrease in cysteamine adduction from 0.24 nmol adduct/nmol protein to 0.14 nmol adduct/nmol protein. Copyright © 2011. Published by Elsevier B.V.

  3. Green tea extract impairs meat emulsion properties by disturbing protein disulfide cross-linking.

    PubMed

    Jongberg, Sisse; Terkelsen, Linda de S; Miklos, Rikke; Lund, Marianne N

    2015-02-01

    The dose-dependent effects of green tea extract (100, 500, or 1500ppm) on the textural and oxidative stability of meat emulsions were investigated, and compared to a control meat emulsion without extract. All levels of green tea extract inhibited formation of TBARS as a measure for lipid oxidation. Overall protein thiol oxidation and myosin heavy chain (MHC) cross-linking were inhibited by 100ppm green tea extract without jeopardizing the textural stability, while increasing concentrations of extract resulted in reduced thiol concentration and elevated levels of non-reducible protein modifications. Addition of 1500ppm green tea extract was found to modify MHC as evaluated by SDS-PAGE combining both protein staining and specific thiol staining, indicating that protein modifications generated through reactions of green tea phenolic compounds with protein thiols, disrupted the meat emulsion properties leading to reduced water holding capacity and textural stability. Hence, a low dose of green tea extract preserves both the textural and the oxidative stability of the meat proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Separation of thiol and cyanide hydrolysis products of chemical warfare agents by capillary electrophoresis.

    PubMed

    Copper, Christine L; Collins, Greg E

    2004-03-01

    The fluorescence derivatizing agent, o-phthalaldehyde (OPA), has been applied to the separation and detection of cyanide and several structurally similar thiols by capillary electrophoresis (CE)-laser induced fluorescence (LIF). Of particular interest to this investigation was the separation of 2-dimethylaminoethanethiol, 2-diethylaminoethanethiol, and cyanide, each of which are hydrolysis products or hydrolysis product simulants of the chemical warfare (CW) agents O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX), O-isobutyl S-2-diethylaminoethyl methylphosphonothiolate (R-VX), and tabun (GA). Other structurally similar thiols simultaneously resolved by this method include 1-pentanethiol and 2-mercaptoethanol. Instrumental parameters were probed and optimum values for capillary length (50 cm) and inner diameter (75 microm), injection time (30 s) and field strength (15 kV) were determined. Sample stacking methods enabled detection limits of 9.3 microg/L for cyanide, 1.8 microg/L for 2-diethylaminoethanethiol, 35 microg/L for 2-dimethylaminoethanethiol, 15 microg/L for 2-mercaptoethanol, and 89 microg/L for 1-pentanethiol. The linearity of the method was verified over an order of magnitude and the reproducibility was found to be 3.0%.

  5. The Evaluation of Micro Teaching Method Used in the Training of Primary School Teachers in Turkey

    ERIC Educational Resources Information Center

    Musa, Taskaya Serdarhan

    2014-01-01

    Micro teaching, one of the most frequently used methods in the pre-service education of teachers, is used in many lectures for the training of teachers in the faculties of education in Turkey. Micro teaching is a teaching method which is especially used in the pre-service training of teachers and it aims to train prospective teachers by making…

  6. The use of a mercury biosensor to evaluate the bioavailability of mercury-thiol complexes and mechanisms of mercury uptake in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ndu, Udonna; Barkay, Tamar; Mason, Robert P.

    We discuss as mercury (Hg) biosensors are sensitive to only intracellular Hg, they are useful in the investigation of Hg uptake mechanisms and the effects of speciation on Hg bioavailability to microbes. In this study, bacterial biosensors were used to evaluate the roles that several transporters such as the glutathione, cystine/cysteine, and Mer transporters play in the uptake of Hg from Hg-thiol complexes by comparing uptake rates in strains with functioning transport systems to strains where these transporters had been knocked out by deletion of key genes. The Hg uptake into the biosensors was quantified based on the intracellular conversionmore » of inorganic mercury (Hg(II)) to elemental mercury (Hg(0)) by the enzyme MerA. It was found that uptake of Hg from Hg-cysteine (Hg(CYS) 2) and Hg-glutathione (Hg(GSH) 2) complexes occurred at the same rate as that of inorganic complexes of Hg(II) into Escherichia coli strains with and without intact Mer transport systems. However, higher rates of Hg uptake were observed in the strain with a functioning Mer transport system. These results demonstrate that thiol-bound Hg is bioavailable to E. coli and that this bioavailability is higher in Hg-resistant bacteria with a complete Mer system than in non-resistant strains. No difference in the uptake rate of Hg from Hg(GSH) 2 was observed in E. coli strains with or without functioning glutathione transport systems. There was also no difference in uptake rates between a wildtype Bacillus subtilis strain with a functioning cystine/cysteine transport system, and a mutant strain where this transport system had been knocked out. These results cast doubt on the viability of the hypothesis that the entire Hg-thiol complex is taken up into the cell by a thiol transporter. It is more likely that the Hg in the Hg-thiol complex is transferred to a transport protein on the cell membrane and is subsequently internalized.« less

  7. The use of a mercury biosensor to evaluate the bioavailability of mercury-thiol complexes and mechanisms of mercury uptake in bacteria

    DOE PAGES

    Ndu, Udonna; Barkay, Tamar; Mason, Robert P.; ...

    2015-09-15

    We discuss as mercury (Hg) biosensors are sensitive to only intracellular Hg, they are useful in the investigation of Hg uptake mechanisms and the effects of speciation on Hg bioavailability to microbes. In this study, bacterial biosensors were used to evaluate the roles that several transporters such as the glutathione, cystine/cysteine, and Mer transporters play in the uptake of Hg from Hg-thiol complexes by comparing uptake rates in strains with functioning transport systems to strains where these transporters had been knocked out by deletion of key genes. The Hg uptake into the biosensors was quantified based on the intracellular conversionmore » of inorganic mercury (Hg(II)) to elemental mercury (Hg(0)) by the enzyme MerA. It was found that uptake of Hg from Hg-cysteine (Hg(CYS) 2) and Hg-glutathione (Hg(GSH) 2) complexes occurred at the same rate as that of inorganic complexes of Hg(II) into Escherichia coli strains with and without intact Mer transport systems. However, higher rates of Hg uptake were observed in the strain with a functioning Mer transport system. These results demonstrate that thiol-bound Hg is bioavailable to E. coli and that this bioavailability is higher in Hg-resistant bacteria with a complete Mer system than in non-resistant strains. No difference in the uptake rate of Hg from Hg(GSH) 2 was observed in E. coli strains with or without functioning glutathione transport systems. There was also no difference in uptake rates between a wildtype Bacillus subtilis strain with a functioning cystine/cysteine transport system, and a mutant strain where this transport system had been knocked out. These results cast doubt on the viability of the hypothesis that the entire Hg-thiol complex is taken up into the cell by a thiol transporter. It is more likely that the Hg in the Hg-thiol complex is transferred to a transport protein on the cell membrane and is subsequently internalized.« less

  8. Evaluation of Fine Aggregate Morphology by Image Method and Its Effect on Skid-Resistance of Micro-Surfacing.

    PubMed

    Xiao, Yue; Wang, Feng; Cui, Peide; Lei, Lei; Lin, Juntao; Yi, Mingwei

    2018-05-29

    Micro-surfacing is a widely used pavement preventive maintenance technology used all over the world, due to its advantages of fast construction, low maintenance cost, good waterproofness, and skid-resistance performance. This study evaluated the fine aggregate morphology and surface texture of micro-surfacing by AIMS (aggregate image measurement system), and explored the effect of aggregate morphology on skid-resistance of single-grade micro-surfacing. Sand patch test and British pendulum test were also used to detect skid-resistance for comparison with the image-based method. Wet abrasion test was used to measure skid-resistance durability for feasibility verification of single-grade micro-surfacing. The results show that the effect of Form2D on the skid-resistance of micro-surfacing is much stronger than that of angularity. Combining the feasibility analysis of durability and skid-resistance, 1.18⁻2.36 grade micro-surfacing meets the requirements of durability and skid-resistance at the same time. This study also determined that, compared with British pendulum test, the texture result obtained by sand patch test fits better with results of image method.

  9. Size distributions of micro-bubbles generated by a pressurized dissolution method

    NASA Astrophysics Data System (ADS)

    Taya, C.; Maeda, Y.; Hosokawa, S.; Tomiyama, A.; Ito, Y.

    2012-03-01

    Size of micro-bubbles is widely distributed in the range of one to several hundreds micrometers and depends on generation methods, flow conditions and elapsed times after the bubble generation. Although a size distribution of micro-bubbles should be taken into account to improve accuracy in numerical simulations of flows with micro-bubbles, a variety of the size distribution makes it difficult to introduce the size distribution in the simulations. On the other hand, several models such as the Rosin-Rammler equation and the Nukiyama-Tanazawa equation have been proposed to represent the size distribution of particles or droplets. Applicability of these models to the size distribution of micro-bubbles has not been examined yet. In this study, we therefore measure size distribution of micro-bubbles generated by a pressurized dissolution method by using a phase Doppler anemometry (PDA), and investigate the applicability of the available models to the size distributions of micro-bubbles. Experimental apparatus consists of a pressurized tank in which air is dissolved in liquid under high pressure condition, a decompression nozzle in which micro-bubbles are generated due to pressure reduction, a rectangular duct and an upper tank. Experiments are conducted for several liquid volumetric fluxes in the decompression nozzle. Measurements are carried out at the downstream region of the decompression nozzle and in the upper tank. The experimental results indicate that (1) the Nukiyama-Tanasawa equation well represents the size distribution of micro-bubbles generated by the pressurized dissolution method, whereas the Rosin-Rammler equation fails in the representation, (2) the bubble size distribution of micro-bubbles can be evaluated by using the Nukiyama-Tanasawa equation without individual bubble diameters, when mean bubble diameter and skewness of the bubble distribution are given, and (3) an evaluation method of visibility based on the bubble size distribution and bubble number density is proposed, and the evaluated visibility agrees well with the visibility measured in the upper tank.

  10. Modification of porous silicon rugate filters through thiol-yne photochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soeriyadi, Alexander H., E-mail: alexander.soeriyadi@unsw.edu.au; Zhu, Ying, E-mail: alexander.soeriyadi@unsw.edu.au; Gooding, J. Justin, E-mail: justin.gooding@unsw.edu.au

    2014-02-24

    Porous silicon (PSi) has a considerable potential as biosensor platform. In particular, the ability to modify the surface chemistry of porous silicon is of interest. Here we present a generic method to modify the surface of porous silicon through thiol-yne photochemistry initiated by a radical initiator. Firstly, a freshly etched porous silicon substrate is modified through thermal hydrosilylation with 1,8-nonadiyne to passivate the surface and introduce alkyne functionalities. The alkyne functional surface could then be further reacted with thiol species in the presence of a radical initiator and UV light. Functionalization of the PSi rugate filter is followed with opticalmore » reflectivity measurements as well as high resolution X-ray photoelectron spectroscopy (XPS)« less

  11. Drying effects on the antioxidant properties of tomatoes and ginger.

    PubMed

    Gümüşay, Özlem Aktürk; Borazan, Alev Akpınar; Ercal, Nuran; Demirkol, Omca

    2015-04-15

    In this study, the effects of four different drying processes, sun drying (SD), oven drying (OD), vacuum oven drying (VOD) and freeze drying (FD) for tomatoes (Solanum lycopersicum) and ginger (Zingiber officinale) in terms of thiolic and phenolic contents have been studied. Thiol content, total phenolic content (TPC), ascorbic acid (AA) content, and cupric ion reducing antioxidant capacity (CUPRAC) were determined in fresh and dried samples. Glutathione (GSH) and cysteine (Cys) were determined as the thiol contents of tomatoes and ginger. Significant losses were observed in the contents of TPC, AA, GSH and Cys and CUPRAC values in all samples that were dried using the thermal method. There was a statistically significant difference in the losses of the TPC, AA, and thiol contents between the use of thermal drying and freeze drying (except Cys in tomatoes) methods. Freeze dried tomato and ginger samples have been found to have better antioxidant properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. ortho- and meta-substituted aromatic thiols are efficient redox buffers that increase the folding rate of a disulfide-containing protein.

    PubMed

    Gough, Jonathan D; Barrett, Elvis J; Silva, Yenia; Lees, Watson J

    2006-08-20

    Thiol based redox buffers are used to enhance the folding rates of disulfide-containing proteins in vitro. Traditionally, small molecule aliphatic thiols such as glutathione are employed. Recently, we have demonstrated that aromatic thiols can further enhance protein-folding rates. In the presence of para-substituted aromatic thiols the folding rate of a disulfide-containing protein was increased by 4-23 times over that measured for glutathione. However, several important practical issues remain to be addressed. Aromatic thiols have never been tested in the presence of denaturants such as guanidine hydrochloride. Only two of the para-substituted aromatic thiols previously examined are commercially available. To expand the number of aromatic thiols for protein folding, several commercially available meta- and ortho-substituted aromatic thiols were studied. Furthermore, an ortho-substituted aromatic thiol, easily obtained from inexpensive starting materials, was investigated. Folding rates of scrambled ribonuclease A at pH 6.0, 7.0 and 7.7, with ortho- and meta-substituted aromatic thiols, were up to 10 times greater than those with glutathione. In the presence of the common denaturant guanidine hydrochloride (0.5M) aromatic thiols provided 100% yield of active protein while maintaining equivalent folding rates.

  13. Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and bacoside-A content in medicinal plant Bacopa monnieri L.

    PubMed

    Sinha, Sarita; Saxena, Rohit

    2006-03-01

    The effect of Fe was investigated in medicinally important plant, Bacopa monnieri L. and the response on malondialdehyde (MDA) content, superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX) was found different in roots and leaves of the metal treated plants. Iron induced stress was observed as indicated by high level of lipid peroxidation, being more steep increase in leaves than roots. In roots, SOD activity was found to increase in metal treated plants except 80 and 160 microM at 72 h, whereas, it decreased in leaves except 10 and 40 microM after 48 h as compared to their respective controls. Among H2O2 eliminating enzymes, POD activity increased in roots, however, it decreased in leaves except at 10 and 40 microM Fe after 48 h as compared to control. At 24 and 48 h, APX activity and ascorbic acid content followed the similar trend and were found to increase in both parts of the metal treated plants as compared to their respective controls. The level of cysteine content in the roots increased at initial period of exposure; however, no marked change in its content was noticed in leaves. In both roots and leaves, non-protein thiol content was found to increase except at higher metal concentrations at 72 h. The data of proline content have shown significant (p<0.01) increase at 40 microM onwards in both part of the plants after 48 and 72 h. Correlation coefficient was evaluated between metal accumulations with various parameters and also between different antioxidant parameters with MDA. Since the level of bacoside-A (active constituent) content in metal treated plants increases, therefore, it is advisable to assess the biological activity of the plants before using for medicinal purposes, particularly in developing countries.

  14. N-acetylcysteine reverses immunotoxic effects of methyl mercury and augments murine lymphocyte proliferation in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omara, F.; Fournier, M.; Bernier, J.

    1995-12-31

    N-Acetylcysteine (NAC) is a thiol antioxidant used clinically to treat chronic inflammatory lung disorders and acetaminophen poisoning in humans. The authors evaluated in vitro the effect of NAC on mitogen-induced blastogenesis in C57BI/6 mouse splenocytes by {sup 3}H-thymidine uptake, and its ability to protect against the immunotoxic effects of methyl mercury on lymphocyte proliferation. Lymphocyte proliferation stimulated by optimal and suboptimal concentrations of concanavalin A (Con A), lipopolysaccharide (LPS), or a combination of calcium ionophore A23187 and phorbol-12-myristate-13-acetate (PMA) were markedly enhanced by NAC. NAC itself was a weak mitogen. The kinetics of the NAC effect on splenocyte proliferation weremore » mitogen dependent. NAC enhanced Con A-induced splenocyte proliferation in a dose-dependent and linear manner but enhanced the LPS-induced response at 50--400 {micro}g/ml of NAC followed by a decline in response to control value at higher concentrations. In splenocytes stimulated with PMA plus A23187, NAC increased proliferation at 50--200 pg/ml followed by a constant response at 200--1,000 {micro}g/ml NAC. When splenocytes were stimulated with higher concentrations of Con A (10 {micro}g/ml) or LPS (150 {micro}g/ml) which markedly suppress splenocyte proliferation, NAC significantly enhanced the Con A-induced response and reversed the inhibitory effect of high concentrations of LPS. NAC also protected lymphocytes against mitogen activation-induced cell death. Methyl mercury at 5 {times} 10{sup {minus}7}--1 {times} 10{sup {minus}6} suppressed Con A- and LPS-induced splenocyte proliferation by over 80%. However, NAC completely reversed the immunotoxic effects of methyl mercury on the mitogen-induced splenocyte proliferation even when the cells were pre-incubated with methyl mercury for 6 or 24 hr before stimulation with the mitogens.« less

  15. Quantitative and comparative liquid chromatography-electrospray ionization-mass spectrometry analyses of hydrogen sulfide and thiol metabolites derivaitized with 2-iodoacetanilide isotopologues.

    PubMed

    Lee, Der-Yen; Huang, Wei-Chieh; Gu, Ting-Jia; Chang, Geen-Dong

    2018-06-01

    Hydrogen sulfide (H 2 S), previously known as a toxic gas, is now recognized as a gasotransmitter along with nitric oxide and carbon monoxide. However, only few methods are available for quantitative determination of H 2 S in biological samples. 2-Iodoacetanilide (2-IAN), a thiol-reacting agent, has been used to tag the reduced cysteine residues of proteins for quantitative proteomics and for detection of cysteine oxidation modification. In this article, we proposed a new method for quantitative analyses of H 2 S and thiol metabolites using the procedure of pre-column 2-IAN derivatization coupled with liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). 13 C 6 -Labeled and label-free 2-IAN efficiently react with H 2 S and thiol compounds at pH 9.5 and 65 °C. The derivatives exhibit excellent stability at alkaline conditions, high resolution on reverse phase liquid chromatography and great sensitivity for ESI-MS detection. The measurement of H 2 S, l-cysteine, glutathione, and DL-homocysteine derivatives was validated using 13 C 6 -labeled standard in LC-ESI-MS analyses and exhibited 10 nM-1 μM linear ranges for DL-homocysteine and glutathione and 1 nM-1 μM linear ranges for l-cysteine and H 2 S. In addition, the sequence of derivatization and extraction of metabolites is important in the quantification of thiol metabolites suggesting the presence of matrix effects. Most importantly, labeling with 2-IAN and 13 C 6 -2-IAN isotopologues could achieve quantitative and matched sample comparative analyses with minimal bias using our extraction and labeling procedures before LC-MS analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Activation of intestinal brush border guanylate cyclase by aromatic disulphide compounds.

    PubMed Central

    elDeib, M M; Parker, C D; White, A A

    1991-01-01

    Guanylate cyclase in pig intestinal brush border membranes was stimulated by certain aromatic disulphides. The most effective were 6-thioguanine disulphide [(TGS)2], 6-mercaptopurine disulphide, 6,6'-dithiodinicotinic acid, 5,5'-dithiobis-(2-nitrobenzoic acid) and 5-carboxy-2-thiouracil disulphide. (TGS)2 stimulated activity 15-fold when present at 0.1 mM. The optimum concentration for each disulphide was different, and higher concentrations were inhibitory. There was no activation by alkyl disulphides or by N-ethylmaleimide. Activation by 50 microM-(TGS)2 was partially reversed by later addition of 0.1 mM-dithiothreitol, whereas activation by the Escherichia coli heat-stable enterotoxin STa was relatively unaffected. Pretreatment of the membranes with (TGS)2 produced a concentration-dependent inhibition of STa-stimulated activity, while stimulating basal activity, until the activities were equal at 50 microM. Activity was [Mg2+]-dependent, the optimal [Mg2+] progressively increasing as the enzyme was stimulated by (TGS)2, STa and Lubrol PX respectively. However, (TGS)2 pretreatment prevented the shift to higher [Mg2+]optima induced by STa or Lubrol alone. Substitution of Mn2+ for Mg2+ in the reaction elevated basal activity and eliminated by activation (TGS)2. (TGS)2 only inhibited Mn2(+)-dependent activity (both basal and stimulated). The affinity of 125I-STa for its receptor was slightly increased by (TGS)2. We propose that (TGS)2 undergoes thiol-disulphide exchange with at least three different protein thiols of decreasing reactivity. The first is associated with Mg2(+)-dependent activation, the second is associated with a tonic inhibition of activity and the third is associated with the catalytic activity, although probably not at the active site. PMID:1673335

  17. Characterization of thiol-conjugated metabolites of ginger components shogaols in mouse and human rrine and modulation of the glutathione levels in cancer cells by [6]-shogaol

    PubMed Central

    Chen, Huadong; Soroka, Dominique N.; Hu, Yuhui; Chen, Xiaoxin; Sang, Shengmin

    2013-01-01

    Scope Shogaols, a series of major constituents in dried ginger with the most abundant being [6]-, [8]-, and [10]-shogaols, show much higher anti-cancer potencies than gingerols. Previously, we reported the mercapturic acid pathway as a major metabolic route for [6]-shogaol in mice. However, it is still unclear how the side chain length affects the metabolism of shogaols and how shogaols are metabolized in humans. Methods and results We first investigate the metabolism of [10]-shogaol in mouse urine, and then investigate the biotransformation of shogaols in human urine. Our results show that eight major thiol-conjugated metabolites of [10]-shogaol were detected in mouse urine, while six major thiol-conjugated metabolites of [6]-shogaol, two thiol-conjugated metabolites of [8]-shogaol, and two thiol-conjugated metabolites of [10]-shogaol were detected in urine collected from human after drinking ginger tea, using liquid chromatography/electrospray ionization tandem mass spectrometry. Our results clearly indicate the mercapturic acid pathway is a major metabolic route for [10]-shogaol in mice and for shogaols in human. Furthermore, we also investigated the regulation of glutathione (GSH) by [6]-shogaol in human colon cancer cells HCT-116. Our results show [6]-shogaol, after initially depleting glutathione levels, can subsequently restore and increase GSH levels over time. Conclusion Shogaols are metabolized extensively in mouse and human to form thiol-conjugated metabolites and GSH might play an important role in the cancer preventative activity of ginger. PMID:23322393

  18. Micro-Droplet Detection Method for Measuring the Concentration of Alkaline Phosphatase-Labeled Nanoparticles in Fluorescence Microscopy

    PubMed Central

    Li, Rufeng; Wang, Yibei; Xu, Hong; Fei, Baowei; Qin, Binjie

    2017-01-01

    This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP) was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1) Gaussian filtering to remove the noise of overall fluorescent targets, (2) a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3) an red maximizing inter-class variance thresholding method (OTSU) to segment the enhanced image for getting the binary map of the overall micro-droplets, (4) a circular Hough transform (CHT) method to detect overall micro-droplets and (5) an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy. PMID:29160812

  19. Micro-Droplet Detection Method for Measuring the Concentration of Alkaline Phosphatase-Labeled Nanoparticles in Fluorescence Microscopy.

    PubMed

    Li, Rufeng; Wang, Yibei; Xu, Hong; Fei, Baowei; Qin, Binjie

    2017-11-21

    This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP) was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1) Gaussian filtering to remove the noise of overall fluorescent targets, (2) a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3) an red maximizing inter-class variance thresholding method (OTSU) to segment the enhanced image for getting the binary map of the overall micro-droplets, (4) a circular Hough transform (CHT) method to detect overall micro-droplets and (5) an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy.

  20. A sensitive high-performance liquid chromatographic method for the determination of 6-mercaptopurine in plasma using precolumn derivatization and fluorescence detection.

    PubMed

    Warren, D J; Slørdal, L

    1993-02-01

    A sensitive high-performance liquid chromatographic (HPLC) method for measuring plasma concentrations of 6-mercaptopurine (6-MP) is described. After protein precipitation with 5-sulfosalicylic acid, samples are subjected to precolumn derivatization using the thiol-reactive fluorophore monobromobimane (mBrB). The drug-mBrB adduct is then resolved by isocratic elution from a C18 reversed-phase support and quantified by fluorescence detection. Recovery of 6-MP after protein precipitation was consistently > 85% and the drug-mBrB adduct was found to be stable for at least 2 weeks at room temperature. With plasma samples containing 30 nM 6-MP, the assay displayed within-run (n = 6) and between-day (n = 6) coefficients of variation of 2.2 and 10.6%, respectively. The limit of detection for 6-MP in plasma was 3 nM (500 pg/ml) and the standard curve was linear up to 3 microM. Using this method, we have observed that 6-MP is stable in heparinized whole blood for at least 24 h provided samples are maintained on ice. Since this method requires few manipulations during sample preparation and is readily adaptable to automated techniques, it may prove useful in the routine clinical laboratory setting.

  1. EPR Characterization of Dinitrosyl Iron Complexes with Thiol-Containing Ligands as an Approach to Their Identification in Biological Objects: An Overview.

    PubMed

    Vanin, Anatoly F

    2018-06-01

    The overview demonstrates how the use of only one physico-chemical approach, viz., the electron paramagnetic resonance method, allowed detection and identification of dinitrosyl iron complexes with thiol-containing ligands in various animal and bacterial cells. These complexes are formed in biological objects in the paramagnetic (electron paramagnetic resonance-active) mononuclear and diamagnetic (electron paramagnetic resonance-silent) binuclear forms and control the activity of nitrogen monoxide, one of the most universal regulators of metabolic processes in the organism. The analysis of electronic and spatial structures of dinitrosyl iron complex sheds additional light on the mechanism whereby dinitrosyl iron complex with thiol-containing ligands function in human and animal cells as donors of nitrogen monoxide and its ionized form, viz., nitrosonium ions (NO + ).

  2. A novel fluorescent assay for edaravone with aqueous functional CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Liao, Ping; Yan, Zheng-Yu; Xu, Zhi-Ji; Sun, Xiao

    2009-06-01

    Aqueous thiol-capped CdSe QDs with a narrow, symmetric emission were prepared under a low temperature. Based on the fluorescence enhancement of thiol-stabilized CdSe quantum dots (QDs) caused by edaravone, a simple, rapid and specific quantitative method was proposed to the edaravone determination. The concentration dependence of fluorescence intensity followed the binding of edaravone to surface of the thiol-capped CdSe QDs was effectively described by a modified Langmuir-type binding isotherm. Factors affecting the fluorescence detection for edaravone with thiol-stabilized CdSe QDs were studied, such as the effect of pH, reaction time, the concentration of CdSe QDs and so on. Under the optimal conditions, the calibration plot of C/( I - I0) with concentration of edaravone was linear in the range of (1.45-17.42) μg/mL (0.008-0.1 μmol/L) with correlation coefficient of 0.998. The limit of detection (LOD) (3 σ/ κ) was 0.15 μg/mL (0.0009 μmol/mL). Possible interaction mechanism was discussed.

  3. Covalent Incorporation of Ionic Liquid into Ion-Conductive Networks via Thiol-Ene Photopolymerization.

    PubMed

    Tibbits, Andrew C; Yan, Yushan S; Kloxin, Christopher J

    2017-07-01

    Ene-functionalized ionic liquids with a range of different cationic groups and counteranions react stoichiometrically within a tetrathiol-divinyl ether formulation within 20 minutes to form thiol-ene polymers with measurable ionic conductivities via a photoinitiated polymerization and crosslinking reaction. Dynamic mechanical analysis indicates that these networks are more spatially heterogeneous and possess higher glass transition temperatures (T g ) compared with thiol-ene formulations without charge. While tuning the molar content of ionic liquid monomer is one method for adjusting the crosslink and charge densities of the thiol-ene polymeric ionic liquid networks, the presence of cation-anion interactions also plays a critical role in dictating the thermomechanical and conductive properties. Particularly, while cationic structure effects are not significant on the polymer properties, the use of a weakly coordinating hydrophobic anion (bistriflimide) instead of bromide-based networks results in an apparent decrease in hydrated ion conductivity (7.4 to 1.5 mS cm -1 ) and T g (-9.6 to -17.8 °C). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cysteine-containing peptide tag for site-specific conjugation of proteins

    DOEpatents

    Backer, Marina V.; Backer, Joseph M.

    2008-04-08

    The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety bound to the targeting moiety; the biological conjugate having a covalent bond between the thiol group of SEQ ID NO:2 and a functional group in the binding moiety. The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety that comprises an adapter protein, the adapter protein having a thiol group; the biological conjugate having a disulfide bond between the thiol group of SEQ ID NO:2 and the thiol group of the adapter protein. The present invention is also directed to biological sequences employed in the above biological conjugates, as well as pharmaceutical preparations and methods using the above biological conjugates.

  5. Cysteine-containing peptide tag for site-specific conjugation of proteins

    DOEpatents

    Backer, Marina V.; Backer, Joseph M.

    2010-10-05

    The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety bound to the targeting moiety; the biological conjugate having a covalent bond between the thiol group of SEQ ID NO:2 and a functional group in the binding moiety. The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety that comprises an adapter protein, the adapter protein having a thiol group; the biological conjugate having a disulfide bond between the thiol group of SEQ ID NO:2 and the thiol group of the adapter protein. The present invention is also directed to biological sequences employed in the above biological conjugates, as well as pharmaceutical preparations and methods using the above biological conjugates.

  6. Hydrangea-like magneto-fluorescent nanoparticles through thiol-inducing assembly

    NASA Astrophysics Data System (ADS)

    Chen, Shun; Zhang, Junjun; Song, Shaokun; Xiong, Chuanxi; Dong, Lijie

    2017-01-01

    Magneto-fluorescent nanoparticles (NPs), recognized as an emerging class of materials, have drawn much attention because of their potential applications. Due to surface functionalization and thiol-metal bonds, a simple method has been put forward for fabricating hydrangea-like magneto-fluorescent Fe3O4-SH@QD NPs, through assembling thiol-modified Fe3O4 NPs with sub-size multi-layer core/shell CdSe/CdS/ZnS QDs. After a refined but controllable silane hydrolysis process, thiol-modified Fe3O4 was fabricated, resulting in Fe3O4-SH@QD NPs with QDs, while preventing the quenching of the QDs. As a result, the core Fe3O4 NPs were 18 nm in diameter, while the scattered CdSe/CdS/ZnS QDs were 7 nm in diameter. The resultant magneto-fluorescent Fe3O4-SH@QD NPs exhibit efficient fluorescence, superparamagnetism at room temperature, and rapid response to the external field, which make them ideal candidates for difunctional probes in MRI and bio-labels, targeting and photodynamic therapy, and cell tracking and separation.

  7. Advanced Oxidation Protein Products-Modified Albumin Induces Differentiation of RAW264.7 Macrophages into Dendritic-Like Cells Which Is Modulated by Cell Surface Thiols.

    PubMed

    Garibaldi, Silvano; Barisione, Chiara; Marengo, Barbara; Ameri, Pietro; Brunelli, Claudio; Balbi, Manrico; Ghigliotti, Giorgio

    2017-01-10

    Local accumulation of Advanced Oxidation Protein Products (AOPP) induces pro-inflammatory and pro-fibrotic processes in kidneys and is an independent predictor of renal fibrosis and of rapid decline of eGFR in patients with chronic kidney disease (CKD). In addition to kidney damage, circulating AOPP may be regarded as mediators of systemic oxidative stress and, in this capacity, they might play a role in the progression of atherosclerotic damage of arterial walls. Atherosclerosis is a chronic inflammatory disease that involves activation of innate and adaptive immunity. Dendritic cells (DCs) are key cells in this process, due to their role in antigen presentation, inflammation resolution and T cell activation. AOPP consist in oxidative modifications of proteins (such as albumin and fibrinogen) that mainly occur through myeloperoxidase (MPO)-derived hypochlorite (HOCl). HOCl modified proteins have been found in atherosclerotic lesions. The oxidizing environment and the shifts in cellular redox equilibrium trigger inflammation, activate immune cells and induce immune responses. Thus, surface thiol groups contribute to the regulation of immune functions. The aims of this work are: (1) to evaluate whether AOPP-proteins induce activation and differentiation of mature macrophages into dendritic cells in vitro; and (2) to define the role of cell surface thiol groups and of free radicals in this process. AOPP-proteins were prepared by in vitro incubation of human serum albumin (HSA) with HOCl. Mouse macrophage-like RAW264.7 were treated with various concentrations of AOPP-HSA with or without the antioxidant N -acetyl cysteine (NAC). Following 48 h of HSA-AOPP treatment, RAW264.7 morphological changes were evaluated by microscopic observation, while markers of dendritic lineage and activation (CD40, CD86, and MHC class II) and allogeneic T cell proliferation were evaluated by flow cytometry. Cell surface thiols were measured by AlexaFluor-maleimide binding, and ROS production was assessed as DCF fluorescence by flow cytometry. HSA-AOPP induced the differentiation of RAW264.7 cells into a dendritic-like phenotype, as shown by morphological changes, by increased CD40, CD86 and MHC class II surface expression and by induction of T cell proliferation. The cell surface thiols dose dependently decreased following HSA-AOPP treatment, while ROS production increased. NAC pre-treatment enhanced the amount of cell surface thiols and prevented their reduction due to treatment with AOPP. Both ROS production and RAW264.7 differentiation into DC-like cells induced by HSA-AOPP were reduced by NAC. Our results highlight that oxidized plasma proteins modulate specific immune responses of macrophages through a process involving changes in the thiol redox equilibrium. We suggest that this mechanism may play a role in determining the rapid progression of the atherosclerotic process observed in CKD patients.

  8. Thiol-ene click chemistry derived cationic cyclodextrin chiral stationary phase and its enhanced separation performance in liquid chromatography.

    PubMed

    Yao, Xiaobin; Tan, Timothy Thatt Yang; Wang, Yong

    2014-01-24

    This work is the first demonstration of a simple thiol-ene click chemistry to anchor vinyl imidazolium β-CD onto thiol silica to form a novel cationic native cyclodextrin (CD) chiral stationary phase (CSP). The CSP afforded high enantioseparation ability towards dansyl (Dns) amino acids, carboxylic aryl compounds and flavonoids in chiral HPLC. The current CSP demonstrates the highest resolving ability (selectivity >1.1, resolution >1.5) towards Dns amino acids in a mobile phase buffered at pH=6.5, with the resolution of Dns-dl-leucine as high as 6.97. 2,4-dichloride propionic acid (2,4-ClPOPA) was well resolved with the selectivity and resolution of 1.37 and 4.88, respectively. Compared to a previously reported native CD-CSP based on a triazole linkage, the current cationic CD-CSP shows a stronger retention and higher resolution towards acidic chiral compounds, ascribed to the propitious strong electrostatic attraction. Stability evaluation results indicated that thiol-ene reaction can provide a facile and robust approach for the preparation of positively charged CD CSPs. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. High performance liquid chromatography analysis of aliphatic thiols in alimentary supplements and pharmaceuticals using menadione as a new useful derivatization reagent.

    PubMed

    Gatti, Rita; Vitellaro, Valeria

    2013-12-04

    The use of menadione (MD) as a pre-column reagent for high performance liquid chromatography (HPLC) analysis of aliphatic thiols is proposed. The reaction was carried out for 5 min at room temperature and pH 8.5. The developed method was applied to the N-acetylcysteine (NAC) analysis of alimentary supplements and pharmaceutical formulations. The effect of the complex matrix was evaluated by the study of the thiol derivatization reaction both in standard and in placebo solutions. The yield of NAC-MD adduct was found to be quantitative at a reagent to thiol molar ratio of about 4 in comparison with an authentic specimen of synthesized NAC adduct, which was characterized by (1)H NMR, IR and UV. The routine chromatographic separations were performed on a Synergi MAX-RP column using a mobile phase consisting of methanol/triethylammonium (TEA) phosphate buffer (pH 3; 0.05 mol L(-1)) 70:30 (v/v) at a flow-rate of 0.4 mL min(-1). UV-diode array detection was used setting the wavelength at λ=260 nm. The validation parameters such as linearity, sensitivity, accuracy, precision, selectivity and ruggedness were found to be highly satisfactory. Similar linear responses were observed by standard and placebo solutions (determination coefficient: 0.9996). Limit of detection was about 0.019 μg g(-1). Intra-day precision (relative standard deviation, R.S.D.) was ≤0.81% for NAC to internal standard (IS) peak area ratio, ≤0.28% and ≤0.32%, respectively, for NAC and IS retention times (tR), without significant differences between intra- and inter-day data. NAC recovery studies gave good results (100.12%) with R.S.D.=1.05%. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The nitrative and oxidative stress in blood platelets isolated from breast cancer patients: the protectory action of aronia melanocarpa extract.

    PubMed

    Kedzierska, Magdalena; Olas, Beata; Wachowicz, Barbara; Stochmal, Anna; Oleszek, Wieslaw; Jeziorski, Arkadiusz; Piekarski, Janusz

    2010-01-01

    Since mechanisms involved in the relationship between oxidative stress and breast cancer are still unclear, the aim of our present study was to evaluate oxidative/nitrative modifications of blood platelet proteins by measuring the level of biomarkers of oxidative/nitrative stress such as carbonyl groups, thiol groups and 3-nitrotyrosine in proteins in patients with benign breast diseases and in patients with invasive breast cancer, and compare with the control group. Levels of carbonyl groups and 3-nitrotyrosine residues in platelet proteins were measured by ELISA and a competition ELISA, respectively. The method with 5,5′-dithio-bis(2-nitro-benzoic acid) has been used to analyse free thiol groups in platelet proteins. Patients were hospitalized in the Department of Oncological Surgery, Medical University of Lodz, Poland. Exogenous antioxidants reduce oxidative stress, therefore we also investigated in a model system in vitro the effects of a polyphenol rich extract of Aronia melanocarpa (Rosaceae, final concentration of 50 µg/ml, 5 min, 37°C) on modified blood platelet proteins as well from patients with breast cancer and from the healthy group. We demonstrated in platelet proteins from patients with invasive breast cancer a higher level of carbonyl groups than in the control healthy group (p < 0.02). The level of 3-nitrotyrosine in platelet proteins from patients with invasive breast cancer was also significantly higher than in the healthy subject group (p < 0.001). In contrast, the amount of thiol groups in platelet proteins from patients was significantly lower (about < 50%) than in control blood platelets. In a model system in vitro we also observed that the extract from berries of A. melanocarpa (50 µg/ml, 5 min, 37°C) due to antioxidant action, significantly reduced the oxidative/nitrative stress (measured by thiol groups and 3-nitrotyrosine) in platelets, not only from the healthy group, but also from patients with benign breast diseases and in patients with invasive breast cancer.

  11. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies.

    PubMed

    Terrill, Jessica R; Radley-Crabb, Hannah G; Iwasaki, Tomohito; Lemckert, Frances A; Arthur, Peter G; Grounds, Miranda D

    2013-09-01

    The muscular dystrophies comprise more than 30 clinical disorders that are characterized by progressive skeletal muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for pathogenesis generally remains unknown. It is considered that disturbed levels of reactive oxygen species (ROS) contribute to the pathology of many muscular dystrophies. Reactive oxygen species and oxidative stress may cause cellular damage by directly and irreversibly damaging macromolecules such as proteins, membrane lipids and DNA; another major cellular consequence of reactive oxygen species is the reversible modification of protein thiol side chains that may affect many aspects of molecular function. Irreversible oxidative damage of protein and lipids has been widely studied in Duchenne muscular dystrophy, and we have recently identified increased protein thiol oxidation in dystrophic muscles of the mdx mouse model for Duchenne muscular dystrophy. This review evaluates the role of elevated oxidative stress in Duchenne muscular dystrophy and other forms of muscular dystrophies, and presents new data that show significantly increased protein thiol oxidation and high levels of lipofuscin (a measure of cumulative oxidative damage) in dysferlin-deficient muscles of A/J mice at various ages. The significance of this elevated oxidative stress and high levels of reversible thiol oxidation, but minimal myofibre necrosis, is discussed in the context of the disease mechanism for dysferlinopathies, and compared with the situation for dystrophin-deficient mdx mice. © 2013 The Authors Journal compilation © 2013 FEBS.

  12. Automatic Detection and Evaluation of Solar Cell Micro-Cracks in Electroluminescence Images Using Matched Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    A method for detecting micro-cracks in solar cells using two dimensional matched filters was developed, derived from the electroluminescence intensity profile of typical micro-cracks. We describe the image processing steps to obtain a binary map with the location of the micro-cracks. Finally, we show how to automatically estimate the total length of each micro-crack from these maps, and propose a method to identify severe types of micro-cracks, such as parallel, dendritic, and cracks with multiple orientations. With an optimized threshold parameter, the technique detects over 90 % of cracks larger than 3 cm in length. The method shows great potentialmore » for quantifying micro-crack damage after manufacturing or module transportation for the determination of a module quality criterion for cell cracking in photovoltaic modules.« less

  13. Development of Selective Colorimetric Probes for Hydrogen Sulfide Based on Nucleophilic Aromatic Substitution

    PubMed Central

    Montoya, Leticia A.; Pearce, Taylor F.; Hansen, Ryan J.; Zakharov, Lev N.; Pluth, Michael D.

    2013-01-01

    Hydrogen sulfide is an important biological signalling molecule and an important environmental target for detection. A major challenge in developing H2S detection methods is separating the often similar reactivity of thiols and other nucleophiles from H2S. To address this need, the nucleophilic aromatic substitution (SNAr) reaction of H2S with electron-poor aromatic electrophiles was developed as a strategy to separate H2S and thiol reactivity. Treatment of aqueous solutions of nitrobenzofurazan (7-nitro-1,2,3-benzoxadiazole, NBD) thioethers with H2S resulted in thiol extrusion and formation of nitrobenzofurazan thiol (λmax = 534 nm). This reactivity allows for unwanted thioether products to be converted to the desired nitrobenzofurazan thiol upon reaction with H2S. The scope of the reaction was investigated using a Hammett linear free energy relationship study, and the determined ρ = +0.34 is consistent with the proposed SN2Ar reaction mechanism. The efficacy of the developed probes was demonstrated in buffer and in serum with associated sub-micromolar detection limits as low as 190 nM (buffer) and 380 nM (serum). Furthermore, the sigmoidal response of nitrobenzofurazan electrophiles with H2S can be fit to accurately quantify H2S. The developed detection strategy offers a manifold for H2S detection that we foresee being applied in various future applications. PMID:23735055

  14. Surface plasmon resonance based spectrophotometric determination of medicinally important thiol compounds using unmodified silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Vaishnav, Sandeep K.; Patel, Kuleshwar; Chandraker, Kumudini; Korram, Jyoti; Nagwanshi, Rekha; Ghosh, Kallol K.; Satnami, Manmohan L.

    2017-05-01

    The determination of thiol based biological molecules and drugs, such as cysteine (Cys) (I), α-lipoic acid (II), and sodium 2-sulfanylethane sulphonate (Mesna (III)) in human plasma are becoming progressively more important due to the growing body of knowledge about their essential role in numerous biological pathways. Herein we demonstrate a sensitive colorimetric sensor for the determination of medicinally important thiol drugs based on aggregation of the citrate capped silver nanoparticles (Ag NPs). This approach exploited the high affinity of thiols towards the Ag NPs surface which could tempt replacement of the citrate shell by the thiolate shell of target molecules, resulting in aggregation of the NPs through intermolecular electrostatic interaction or hydrogen-bonding. Because of aggregation, the plasmon band at around 400 nm decreases gradually, along with the appearance of a new band connoting a red shift. The calibration curves are derived from the intensity ratios of A530/A400, which display a linear relation in the range of 1 μM-150 μM, 5 μM-200 μM and 10 μM-130 μM, respectively. The obtained detection limits (3σ) were found to be 1.5 μM, 5.6 μM and 10.2 μM for compound I-III, respectively. The proposed method has been successfully applied for the detection of thiol compounds in real samples.

  15. Development of selective colorimetric probes for hydrogen sulfide based on nucleophilic aromatic substitution.

    PubMed

    Montoya, Leticia A; Pearce, Taylor F; Hansen, Ryan J; Zakharov, Lev N; Pluth, Michael D

    2013-07-05

    Hydrogen sulfide is an important biological signaling molecule and an important environmental target for detection. A major challenge in developing H2S detection methods is separating the often similar reactivity of thiols and other nucleophiles from H2S. To address this need, the nucleophilic aromatic substitution (SNAr) reaction of H2S with electron-poor aromatic electrophiles was developed as a strategy to separate H2S and thiol reactivity. Treatment of aqueous solutions of nitrobenzofurazan (7-nitro-1,2,3-benzoxadiazole, NBD) thioethers with H2S resulted in thiol extrusion and formation of nitrobenzofurazan thiol (λmax = 534 nm). This reactivity allows for unwanted thioether products to be converted to the desired nitrobenzofurazan thiol upon reaction with H2S. The scope of the reaction was investigated using a Hammett linear free energy relationship study, and the determined ρ = +0.34 is consistent with the proposed SN2Ar reaction mechanism. The efficacy of the developed probes was demonstrated in buffer and in serum with associated submicromolar detection limits as low as 190 nM (buffer) and 380 nM (serum). Furthermore, the sigmoidal response of nitrobenzofurazan electrophiles with H2S can be fit to accurately quantify H2S. The developed detection strategy offers a manifold for H2S detection that we foresee being applied in various future applications.

  16. Arsenic speciation in tissues of the hyperaccumulator P. calomelanos var. austroamericana using X-ray absorption spectroscopy.

    PubMed

    Kachenko, Anthony G; Gräfe, Markus; Singh, Balwant; Heald, Steve M

    2010-06-15

    The fate and chemical speciation of arsenic (As) during uptake, translocation, and storage by the As hyperaccumulating fern Pityrogramma calomelanos var. austroamericana (Pteridaceae) were examined using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and synchrotron-based micro-X-ray absorption near edge structure (micro-XANES) and micro-X-ray fluorescence (micro-XRF) spectroscopies. Chemical analysis revealed total As concentration was ca. 6.5 times greater in young fronds (5845 mg kg(-1) dry weight (DW)) than in old fronds (903 mg kg(-1) DW). In pinnae, As concentration decreased from the base (6822 mg kg(-1) DW) to the apex (4301 mg kg(-1) DW) of the fronds. The results from micro-XANES and micro-XRF of living tissues suggested that more than 60% of arsenate (As(V)) absorbed was reduced to arsenite (As(III)) in roots, prior to transport through vascular tissues as As(V) and As(III). In pinnules, As(III) was the predominant redox species (72-90%), presumably as solvated, oxygen coordinated compounds. The presence of putative As(III)-sulphide (S(2-)) coordination throughout the fern tissues (4-25%) suggests that S(2-) functional groups may contribute in the biochemical reduction of As(V) to As(III) during uptake and transport at a whole-plant level. Organic arsenicals and thiol-rich compounds were not detected in the species and are unlikely to play a role in As hyperaccumulation in this fern. The study provides important insights into homeostatic regulation of As following As uptake in P. calomelanos var. austroamericana.

  17. Evaluation of micro-organism-detaching efficacy from meat samples by spindle or stomacher treatment and quality analysis of suspensions.

    PubMed

    Kim, S-J; Kim, D-K; Kang, D-H

    2016-04-01

    We investigated and compared the efficacy of a new apparatus for detaching micro-organisms from meat samples. The efficacy of Spindle and stomacher in detaching micro-organisms from meat samples was evaluated. Also, evaluation of appropriateness of suspensions generated by both methods for carrying out molecular biological analysis was implemented. A nearly identical correlation and high R(2) were obtained between Spindle and stomacher in Aerobic Plate Count (APC), and no significant differences were observed in detachment of three major foodborne pathogens. The suspension generated by the Spindle showed lower turbidity and total protein concentration. Also, significantly different threshold cycles were observed in Real-time PCR analysis using suspensions generated by both methods. The Spindle shows nearly identical efficacy with stomacher treatment in detaching micro-organisms from meat samples. Furthermore, the high quality of suspensions generated by the Spindle, in terms of turbidity and total protein assay, allows for a lower threshold cycle than stomached suspension in Real-time PCR. The Spindle could be an alternative method for detaching micro-organisms, yielding a higher quality of suspensions which may be better suited for further molecular microbiological analysis. © 2016 The Society for Applied Microbiology.

  18. The method of micro-motion cycle feature extraction based on confidence coefficient evaluation criteria

    NASA Astrophysics Data System (ADS)

    Tang, Chuanzi; Ren, Hongmei; Bo, Li; Jing, Huang

    2017-11-01

    In radar target recognition, the micro motion characteristics of target is one of the characteristics that researchers pay attention to at home and abroad, in which the characteristics of target precession cycle is one of the important characteristics of target movement characteristics. Periodic feature extraction methods have been studied for years, the complex shape of the target and the scattering center stack lead to random fluctuations of the RCS. These random fluctuations also exist certain periodicity, which has a great influence on the target recognition result. In order to solve the problem, this paper proposes a extraction method of micro-motion cycle feature based on confidence coefficient evaluation criteria.

  19. Regulation of potassium transport in human lens epithelial cells.

    PubMed

    Lauf, Peter K; Warwar, Ronald; Brown, Thomas L; Adragna, Norma C

    2006-01-01

    The major K influx pathways and their response to thiol modification by N-ethylmaleimide (NEM) and protein kinase and phosphatase inhibitors were characterized in human lens epithelial B3 (HLE-B3) cells with Rb as K congener. Ouabain (0.1 mM) and bumetanide (5 microM) discriminated between the Na/K pump ( approximately 35% of total Rb influx) and Na-K-2Cl cotransport (NKCC) ( approximately 50%). Cl-replacement with nitrate or sulfamate revealed <10% residual [ouabain+bumetanide]-insensitive K-Cl cotransport (KCC). At 0.3-0.5 mM, NEM stimulated the Na/K pump by 2-fold independent of external Na, KCC between 2 and 4-fold, and abolished approximately 90% of NKCC. Calyculin-A, a serine/threonine protein phosphatase-1 inhibitor, did not affect NKCC but inhibited KCC, whereas 10 microM staurosporine, a serine/threonine kinase inhibitor, abolished NKCC, and stimulated KCC only when followed by NEM treatment. The tyrosine-kinase inhibitor genistein, at concentrations >100 microM, activated the Na/K pump and abolished NKCC but did not affect KCC. The data suggest at least partial inverse regulation of KCC and NKCC in HLE-B3 cells by signaling cascades involving serine, threonine and tyrosine phosphorylation/dephosphorylation equilibria.

  20. Towards of Vanadium Pentoxide Nanotubes and Thiols using Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Lavayen, V.; Gonzalez, G.; Cardenas, G.; Sotomayor Torres, C. M.

    2005-09-01

    The template-directed synthesis is a promising route to realise 1-D nanostructures, an example of which is the formation of vanadium pentoxide nanotubes. In this work we report the interchange of long alkyl amines with alkyl thiols, this reaction was followed using gold nanoparticles prepared by the Chemical Liquid Deposition (CLD) method. The diameter of the gold clusters was 9 Å with a stability of about 85 days. SEM, TEM, EDAX and electron diffraction was the techniques used for the characterization of the reactions.

  1. Highly ordered gold nanotubes using thiols at a cleavable block copolymer interface.

    PubMed

    Ryu, Ja-Hyoung; Park, Soojin; Kim, Bokyung; Klaikherd, Akamol; Russell, Thomas P; Thayumanavan, S

    2009-07-29

    We have prepared functionalized nanoporous thin films from a polystyrene-block-polyethylene oxide block copolymer, which was made cleavable due to the intervening disulfide bond. The cleavage reaction of the disulfide bond leaves behind free thiol groups inside the nanopores of polystyrene thin film. This nanoporous thin film can be used as a template for generating gold nanoring structures. This strategy can provide a facile method to form a highly ordered array of biopolymer or metal-polymer composite structures.

  2. Drug interactions with potential rubber closure extractables. Identification of thiol-disulfide exchange reaction products of captopril and thiurams.

    PubMed

    Corredor, Claudia; Tomasella, Frank P; Young, Joel

    2009-01-02

    Mixtures of thiuram disulfides are frequently used as accelerators in rubber stoppers for injectables and sterilized powders for injection. Rapid reactions of thiuram disulfides between themselves and with thiols yield mixed disulfides due to thiol-disulfide exchange. The possibility of exchange reactions of thiuram disulfides extracted from rubber stoppers and drug products containing pendant thiol groups have not been reported in the analysis of potential stopper extractables. In this paper we report the formation and identification of mixed thiuram disulfides of N,N,N',N'-dimethylthiuram disulfide (TMTD), N,N,N',N'-dibutylthiuram disulfide (TBTD), and captopril (a thiol-containing drug). A reversed-phase HPLC method was developed for the determination of TMTD, TBTD, captopril and their disulfides in aqueous vehicles, using a YMC ODS AQ column at 35 degrees C and mobile phases A and B consisting of acetonitrile:water:trifluoroacetic acid (TFA) (20:80:0.1) and acetonitrile:TFA (100:0.1), respectively. The captopril-TBTD and captopril-TMTD disulfides were identified by MS, with molecular ions at m/z 420.9 and m/z of 337.1, respectively. Possible structures for the fragment ions in the spectra are provided. Mixed captopril-thiuram formation was studied as a function of pH. Captopril-TMTD formation was enhanced at pH 6.0, reaching a maximum of 31.3% in 4.1h. At pH 4.0 and 2.2, the mixed captopril adduct product was still detected in solution after 20h. The impact of the formation of mixed disulfide products of thiol-containing drugs with thiurams in the HPLC profile of extractables and leachables studies is discussed.

  3. A quantitative metabolomics peek into planarian regeneration.

    PubMed

    Natarajan, Nivedita; Ramakrishnan, Padma; Lakshmanan, Vairavan; Palakodeti, Dasaradhi; Rangiah, Kannan

    2015-05-21

    The fresh water planarian species Schmidtea mediterranea is an emerging stem cell model because of its capability to regenerate a whole animal from a small piece of tissue. It is one of the best model systems to address the basic mechanisms essential for regeneration. Here, we are interested in studying the roles of various amines, thiols and nucleotides in planarian regeneration, stem cell function and growth. We developed mass spectrometry based quantitative methods and validated the differential enrichment of 35 amines, 7 thiol metabolites and 4 nucleotides from both intact and regenerating planarians. Among the amines, alanine in sexual and asparagine in asexual are the highest (>1000 ng/mg) in the intact planarians. The levels of thiols such as cysteine and GSH are 651 and 1107 ng mg(-1) in planarians. Among the nucleotides, the level of cGMP is the lowest (0.03 ng mg(-1)) and the level of AMP is the highest (187 ng mg(-1)) in both of the planarian strains. We also noticed increasing levels of amines in both anterior and posterior regenerating planarians. The blastema from day 3 regenerating planarians also showed higher amounts of many amines. Interestingly, the thiol (cysteine and GSH) levels are well maintained during planarian regeneration. This suggests an inherent and effective mechanism to control induced oxidative stress because of the robust regeneration and stem cell proliferation. Like in intact planarians, the level of cGMP is also very low in regenerating planarians. Surprisingly, the levels of amines and thiols in head regenerating blastemas are ∼3 times higher compared to those for tail regenerating blastemas. Thus our results strongly indicate the potential roles of amines, thiols and nucleotides in planarian regeneration.

  4. UV-induced hydrogen-atom transfer in 3,6-dithiopyridazine and in model compounds 2-thiopyridine and 3-thiopyridazine.

    PubMed

    Rostkowska, Hanna; Lapinski, Leszek; Reva, Igor; Almeida, Bruno J A N; Nowak, Maciej J; Fausto, Rui

    2011-11-10

    Monomeric 3,6-dithiopyridazine (3-mercapto- 6(1H)-pyridazinethione) was studied using the matrix-isolation method combined with quantum chemical calculations. The monomers of 3,6-dithiopyridazine, trapped from the gas phase into a low-temperature Ar matrix, were found to adopt the thione-thiol structure. In agreement with this experimental observation, the thione-thiol form was predicted (at the QCISD level) to be more stable by 13.5 kJ mol(-1) and by 39.6 kJ mol(-1) than the dithiol and the dithione tautomers, respectively. Monomers of 3,6-dithiopyridazine isolated in Ar matrixes were then irradiated with broadband UV (λ > 335 nm) light. Upon such irradiation, the thione-thiol form of the compound converted into the dithiol tautomer. The same phototransformation was observed when monochromatic λ = 385 nm laser light was used for irradiation. This allowed a first observation and spectral characterization of the dithiol form of 3,6-dithiopyridazine. Subsequent irradiation of the UV-generated dithiol tautomer with shorter-wavelength UV (λ > 275 nm) light led to partial repopulation of the thione-thiol form. Spectral signatures of the analogous photoreversibility were also found for the phototautomeric transformation in the model compound 3-thiopyridazine. The reliability of the QCISD predictions of relative energies of thiol and thione tautomeric forms was tested on the archetype example of 2-thiopyridine. For this compound, the comparison of the computed relative energy 10.9 kJ mol(-1) with the experimental estimate 10.0 ± 1.5 kJ mol(-1) (both in favor of the thiol form) was more than satisfactory.

  5. A colorimetric detection of acrylamide in potato chips based on nucleophile-initiated thiol-ene Michael addition.

    PubMed

    Hu, Qinqin; Fu, Yingchun; Xu, Xiahong; Qiao, Zhaohui; Wang, Ronghui; Zhang, Ying; Li, Yanbin

    2016-02-07

    Acrylamide (AA), a neurotoxin and a potential carcinogen, has been found in various thermally processed foods such as potato chips, biscuits, and coffee. Simple, cost-effective, and sensitive methods for the rapid detection of AA are needed to ensure food safety. Herein, a novel colorimetric method was proposed for the visual detection of AA based on a nucleophile-initiated thiol-ene Michael addition reaction. Gold nanoparticles (AuNPs) were aggregated by glutathione (GSH) because of a ligand-replacement, accompanied by a color change from red to purple. In the presence of AA, after the thiol-ene Michael addition reaction between GSH and AA with the catalysis of a nucleophile, the sulfhydryl group of GSH was consumed by AA, which hindered the subsequent ligand-replacement and the aggregation of AuNPs. Therefore, the concentration of AA could be determined by the visible color change caused by dispersion/aggregation of AuNPs. This new method showed high sensitivity with a linear range from 0.1 μmol L(-1) to 80 μmol L(-1) and a detection limit of 28.6 nmol L(-1), and especially revealed better selectivity than the fluorescence sensing method reported previously. Moreover, this new method was used to detect AA in potato chips with a satisfactory result in comparison with the standard methods based on chromatography, which indicated that the colorimetric method can be expanded for the rapid detection of AA in thermally processed foods.

  6. Irreversible bonding of polyimide and polydimethylsiloxane (PDMS) based on a thiol-epoxy click reaction

    NASA Astrophysics Data System (ADS)

    Hoang, Michelle V.; Chung, Hyun-Joong; Elias, Anastasia L.

    2016-10-01

    Polyimide is one of the most popular substrate materials for the microfabrication of flexible electronics, while polydimethylsiloxane (PDMS) is the most widely used stretchable substrate/encapsulant material. These two polymers are essential in fabricating devices for microfluidics, bioelectronics, and the internet of things; bonding these materials together is a crucial challenge. In this work, we employ click chemistry at room temperature to irreversibly bond polyimide and PDMS through thiol-epoxy bonds using two different methods. In the first method, we functionalize the surfaces of the PDMS and polyimide substrates with mercaptosilanes and epoxysilanes, respectively, for the formation of a thiol-epoxy bond in the click reaction. In the second method, we functionalize one or both surfaces with mercaptosilane and introduce an epoxy adhesive layer between the two surfaces. When the surfaces are bonded using the epoxy adhesive without any surface functionalization, an extremely small peel strength (<0.01 N mm-1) is measured with a peel test, and adhesive failure occurs at the PDMS surface. With surface functionalization, however, remarkably higher peel strengths of ~0.2 N mm-1 (method 1) and  >0.3 N mm-1 (method 2) are observed, and failure occurs by tearing of the PDMS layer. We envision that the novel processing route employing click chemistry can be utilized in various cases of stretchable and flexible device fabrication.

  7. Labeling Thiols on Proteins, Living Cells, and Tissues with Enhanced Emission Induced by FRET

    PubMed Central

    Yuan, Yue; Wang, Xijun; Mei, Bin; Zhang, Dongxin; Tang, Anming; An, Linna; He, Xiaoxiao; Jiang, Jun; Liang, Gaolin

    2013-01-01

    Using N-(2-Aminoethyl)maleimide-cysteine(StBu) (Mal-Cys) as a medium, protein thiols were converted into N-terminal cysteines. After a biocompatible condensation reaction between the N-terminal cysteine and fluorescent probe 2-cyanobenzothiazole-Gly-Gly-Gly-fluorescein isothiocyanate (CBT-GGG-FITC), a new fluorogenic structure Luciferin-GGG-FITC was obtained. The latter exhibits near one order of magnitude (7 folds) enhanced fluorescence emission compared to the precursor moiety due to fluorescence resonance energy transfer (FRET) effect between the newly formed luciferin structure and the FITC motif. Theoretical investigations revealed the underlying mechanism that satisfactorily explained the experimental results. With this method, enhanced fluorescence imaging of thiols on proteins, outer membranes of living cells, translocation of membrane proteins, and endothelial cell layers of small arteries was successfully achieved. PMID:24343586

  8. Photostability and Performance of Polystyrene Films Containing 1,2,4-Triazole-3-thiol Ring System Schiff Bases.

    PubMed

    Ali, Gassan Q; El-Hiti, Gamal A; Tomi, Ivan Hameed R; Haddad, Raghad; Al-Qaisi, Alaa J; Yousif, Emad

    2016-12-09

    Series of 4-(4-substituted benzylideneamino)-5-(3,4,5-trimethoxyphenyl)-4 H -1,2,4-triazole-3-thiols were synthesized and their structures were confirmed. The synthesized Schiff bases were used as photostabilizers for polystyrene against photodegradation. Polystyrene polymeric films containing synthesized Schiff bases (0.5% by weight) were irradiated (λ max = 365 nm and light intensity = 6.43 × 10 -9 ein·dm -3 ·s -1 ) at room temperature. The photostabilization effect of 1,2,4-triazole-3-thiols Schiff bases was determined using various methods. All the additives used enhanced the photostability of polystyrene films against irradiation compared with the result obtained in the absence of Schiff base. The Schiff bases can act as photostabilizers for polystyrene through the direct absorption of UV radiation and/or radical scavengers.

  9. Labeling Thiols on Proteins, Living Cells, and Tissues with Enhanced Emission Induced by FRET

    NASA Astrophysics Data System (ADS)

    Yuan, Yue; Wang, Xijun; Mei, Bin; Zhang, Dongxin; Tang, Anming; An, Linna; He, Xiaoxiao; Jiang, Jun; Liang, Gaolin

    2013-12-01

    Using N-(2-Aminoethyl)maleimide-cysteine(StBu) (Mal-Cys) as a medium, protein thiols were converted into N-terminal cysteines. After a biocompatible condensation reaction between the N-terminal cysteine and fluorescent probe 2-cyanobenzothiazole-Gly-Gly-Gly-fluorescein isothiocyanate (CBT-GGG-FITC), a new fluorogenic structure Luciferin-GGG-FITC was obtained. The latter exhibits near one order of magnitude (7 folds) enhanced fluorescence emission compared to the precursor moiety due to fluorescence resonance energy transfer (FRET) effect between the newly formed luciferin structure and the FITC motif. Theoretical investigations revealed the underlying mechanism that satisfactorily explained the experimental results. With this method, enhanced fluorescence imaging of thiols on proteins, outer membranes of living cells, translocation of membrane proteins, and endothelial cell layers of small arteries was successfully achieved.

  10. Analysis of the enamel hypoplasia using micro-CT scanner versus classical method.

    PubMed

    Marchewka, Justyna; Skrzat, Janusz; Wróbel, Andrzej

    2014-01-01

    This article demonstrates the use of micro-CT scanning of the teeth surface for recognizing and evaluating severity of the enamel hypoplasia. To test capabilities of the microtomography versus classical method of evaluation hypoplastic defects of the enamel we selected two human teeth (C, M(2)) showing different types of enamel hypoplasia: linear, pits, and groove. Examined samples derive from archeological material dated on XVII-XVIII AD and excavated in Poland. In the current study we proved that micro-CT scanning is a powerful technique not only for imaging all kinds of the enamel hypoplasia but also allows to perform accurate measurements of the enamel defects. We figure out that contrary to the classical method of scoring enamel defects, the micro-computed tomography yields adequate data which serve for estimating the length of stress episode and length of interval between them.

  11. Gel Permeation Chromatography Characterization of the Chain Length Distributions in Thiol-Acrylate Photopolymer Networks

    PubMed Central

    Rydholm, Amber E.; Held, Nicole L.; Bowman, Christopher N.; Anseth, Kristi S.

    2008-01-01

    Crosslinked, degradable networks formed from the photopolymerization of thiol and acrylate monomers are explored as potential biomaterials. The degradation behavior and material properties of these networks are influenced by the molecular weight of the nondegradable thiol-polyacrylate backbone chains that form during photopolymerization. Here, gel permeation chromatography was used to characterize the thiol-polyacrylate backbone chain lengths in degraded thiol-acrylate networks. Increasing thiol functionality from 1 to 4 increased the backbone molecular weight (M̄w = 2.3 ± 0.07 × 104 Da for monothiol and 3.6 ± 0.1 × 104 Da for tetrathiol networks). Decreasing thiol functional group concentration from 30 to 10 mol% also increased the backbone lengths (M̄w = 7.3 ± 1.1 × 104 Da for the networks containing 10 mol% thiol groups as compared to 3.6 ± 0.1 × 104 Da for 30 mol% thiol). Finally, the backbone chain lengths were probed at various stages of degradation and an increase in backbone molecular weight was observed as mass loss progressed from 10 to 70%. PMID:19079733

  12. [Research progress of polyethylene inserts wear measurement and evaluation in total knee arthroplasty].

    PubMed

    Zhao, Feng; Wang, Chuan; Fan, Yubo

    2015-01-01

    Wear of polyethylene (PE) tibial inserts is a significant cause of implant failure of total knee arthroplasty (TKA). PE inserts wear measurement and evaluation is the key in TKA researches. There are many methods to measure insert wear. Qualitative methods such as observation are used to determine the wear and its type. Quantitative methods such as gravimetric analysis, coordinate measuring machines (CMM) and micro-computed tomography (micro-CT) are used to measure the mass, volume and geometry of wear. In this paper, the principle, characteristics and research progress of main insert wear evaluation method were introduced and the problems and disadvantages were analyzed.

  13. Modeling and Reconstruction of Micro-structured 3D Chitosan/Gelatin Porous Scaffolds Using Micro-CT

    NASA Astrophysics Data System (ADS)

    Gong, Haibo; Li, Dichen; He, Jiankang; Liu, Yaxiong; Lian, Qin; Zhao, Jinna

    2008-09-01

    Three dimensional (3D) channel networks are the key to promise the uniform distribution of nutrients inside 3D hepatic tissue engineering scaffolds and prompt elimination of metabolic products out of the scaffolds. 3D chitosan/gelatin porous scaffolds with predefined internal channels were fabricated and a combination of light microscope, laser confocal microscopy and micro-CT were employed to characterize the structure of porous scaffolds. In order to evaluate the flow field distribution inside the micro-structured 3D scaffolds, a computer reconstructing method based on Micro-CT was proposed. According to this evaluating method, a contrast between 3D porous scaffolds with and without predefined internal channels was also performed to assess scaffolds' fluid characters. Results showed that the internal channel of the 3D scaffolds formed the 3D fluid channel network; the uniformity of flow field distribution of the scaffolds fabricated in this paper was better than the simple porous scaffold without micro-fluid channels.

  14. Marginal and Internal Adaptation of Zirconia Crowns: A Comparative Study of Assessment Methods.

    PubMed

    Cunali, Rafael Schlögel; Saab, Rafaella Caramori; Correr, Gisele Maria; Cunha, Leonardo Fernandes da; Ornaghi, Bárbara Pick; Ritter, André V; Gonzaga, Carla Castiglia

    2017-01-01

    Marginal and internal adaptation is critical for the success of indirect restorations. New imaging systems make it possible to evaluate these parameters with precision and non-destructively. This study evaluated the marginal and internal adaptation of zirconia copings fabricated with two different systems using both silicone replica and microcomputed tomography (micro-CT) assessment methods. A metal master model, representing a preparation for an all-ceramic full crown, was digitally scanned and polycrystalline zirconia copings were fabricated with either Ceramill Zi (Amann-Girrbach) or inCoris Zi (Dentslpy-Sirona), n=10. For each coping, marginal and internal gaps were evaluated by silicone replica and micro-CT assessment methods. Four assessment points of each replica cross-section and micro-CT image were evaluated using imaging software: marginal gap (MG), axial wall (AW), axio-occlusal angle (AO) and mid-occlusal wall (MO). Data were statistically analyzed by factorial ANOVA and Tukey test (a=0.05). There was no statistically significant difference between the methods for MG and AW. For AO, there were significant differences between methods for Amann copings, while for Dentsply-Sirona copings similar values were observed. For MO, both methods presented statistically significant differences. A positive correlation was observed determined by the two assessment methods for MG values. In conclusion, the assessment method influenced the evaluation of marginal and internal adaptation of zirconia copings. Micro-CT showed lower marginal and internal gap values when compared to the silicone replica technique, although the difference was not always statistically significant. Marginal gap and axial wall assessment points showed the lower gap values, regardless of ceramic system and assessment method used.

  15. Hydrogen sulfide deactivates common nitrobenzofurazan-based fluorescent thiol labeling reagents.

    PubMed

    Montoya, Leticia A; Pluth, Michael D

    2014-06-17

    Sulfhydryl-containing compounds, including thiols and hydrogen sulfide (H2S), play important but differential roles in biological structure and function. One major challenge in separating the biological roles of thiols and H2S is developing tools to effectively separate the reactivity of these sulfhydryl-containing compounds. To address this challenge, we report the differential responses of common electrophilic fluorescent thiol labeling reagents, including nitrobenzofurazan-based scaffolds, maleimides, alkylating agents, and electrophilic aldehydes, toward cysteine and H2S. Although H2S reacted with all of the investigated scaffolds, the photophysical response to each scaffold was significantly different. Maleimide-based, alkylating, and aldehydic thiol labeling reagents provided a diminished fluorescence response when treated with H2S. By contrast, nitrobenzofurazan-based labeling reagents were deactivated by H2S addition. Furthermore, the addition of H2S to thiol-activated nitrobenzofurazan-based reagents reduced the fluorescence signal, thus establishing the incompatibility of nitrobenzofurazan-based thiol labeling reagents in the presence of H2S. Taken together, these studies highlight the differential reactivity of thiols and H2S toward common thiol-labeling reagents and suggest that sufficient care must be taken when labeling or measuring thiols in cellular environments that produce H2S due to the potential for both false-positive and eroded responses.

  16. Fabrication of an Optical Fiber Micro-Sphere with a Diameter of Several Tens of Micrometers.

    PubMed

    Yu, Huijuan; Huang, Qiangxian; Zhao, Jian

    2014-06-25

    A new method to fabricate an integrated optical fiber micro-sphere with a diameter within 100 µm, based on the optical fiber tapering technique and the Taguchi method is proposed. Using a 125 µm diameter single-mode (SM) optical fiber, an optical fiber taper with a cone angle is formed with the tapering technique, and the fabrication optimization of a micro-sphere with a diameter of less than 100 µm is achieved using the Taguchi method. The optimum combination of process factors levels is obtained, and the signal-to-noise ratio (SNR) of three quality evaluation parameters and the significance of each process factors influencing them are selected as the two standards. Using the minimum zone method (MZM) to evaluate the quality of the fabricated optical fiber micro-sphere, a three-dimensional (3D) numerical fitting image of its surface profile and the true sphericity are subsequently realized. From the results, an optical fiber micro-sphere with a two-dimensional (2D) diameter less than 80 µm, 2D roundness error less than 0.70 µm, 2D offset distance between the micro-sphere center and the fiber stylus central line less than 0.65 µm, and true sphericity of about 0.5 µm, is fabricated.

  17. Radio protective effect of black mulberry extract on radiation-induced damage in bone marrow cells and liver in the rat

    NASA Astrophysics Data System (ADS)

    Ghasemnezhad Targhi, Reza; Homayoun, Mansour; Mansouri, Somaieh; Soukhtanloo, Mohammad; Soleymanifard, Shokouhozaman; Seghatoleslam, Masoumeh

    2017-01-01

    Ionizing radiation by producing free radicals induces tissue oxidative stress and has clastogenic and cytotoxic effects. The radio protective effect of black mulberry extract (BME) has been investigated on liver tissue and bone marrow cells in the rat. Intraperitoneal (ip) administration of 200 mg/kg BME three days before and three days after 3 Gy and 6 Gy gamma irradiation significantly reduced the frequencies of micro nucleated polychromatic erythrocytes (MnPCEs) and micro nucleated norm chromatic erythrocyte (MnNCEs) and increased PCE/PCE+NCE ratio in rat bone marrow compared to the non-treated irradiated groups. Moreover, this concentration of BME extract decreased the level of malondialdehyde (MDA) and superoxide dismutase (SOD), as well as enhanced the total thiol content and catalase activity in rat's liver compared to the non-treated irradiated groups. It seems that BME extract with antioxidant activity reduced the genotoxicity and cytotoxicity induced by gamma irradiation in bone marrow cells and liver in the rat.

  18. Thiols in the alphaIIbbeta3 integrin are necessary for platelet aggregation.

    PubMed

    Manickam, Nagaraj; Sun, Xiuhua; Hakala, Kevin W; Weintraub, Susan T; Essex, David W

    2008-07-01

    Sulfhydryl groups of platelet surface proteins are important in platelet aggregation. While p-chloromercuribenzene sulphonate (pCMBS) has been used in most studies on platelet surface thiols, the specific thiol-proteins that pCMBS reacts with to inhibit aggregation have not been well defined. Since the thiol-containing P2Y(12) ADP receptor is involved in most types of platelet aggregation, we used the ADP scavenger apyrase and the P2Y(12) receptor antagonist 2-MeSAMP to examine thiol-dependent reactions in the absence of contributions from this receptor. We provide evidence for a non-P2Y(12) thiol-dependent reaction near the final alphaIIbbeta3-dependent events of aggregation. We then used 3-(N-maleimidylpropionyl)biocytin (MPB) and pCMBS to study thiols in alphaIIbbeta3. As previously reported, disruption of the receptor was required to obtain labelling of thiols with MPB. Specificity of labelling for thiols in the alphaIIb and beta3 subunits was confirmed by identification of the purified proteins by mass spectrometry and by inhibition of labelling with 5,5'-dithiobis-(2-nitrobenzoic acid). In contrast to MPB, pCMBS preferentially reacted with thiols in alphaIIbbeta3 and blocked aggregation under physiological conditions. Similarly, pCMBS preferentially inhibited signalling-independent activation of alphaIIbbeta3 by Mn(2+). Our results suggest that the thiols in alphaIIbbeta3 that are blocked by pCMBS are important in the activation of this integrin.

  19. Replication fidelity improvement of PMMA microlens array based on weight evaluation and optimization

    NASA Astrophysics Data System (ADS)

    Jiang, Bing-yan; Shen, Long-jiang; Peng, Hua-jiang; Yin, Xiang-lin

    2007-12-01

    High replication fidelity is a prerequisite of high quality plastic microlens array in injection molding. But, there's not an economical and practical method to evaluate and improve the replication fidelity until now. Based on part weight evaluation and optimization, this paper presents a new method of replication fidelity improvement. Firstly, a simplified analysis model of PMMA micro columns arrays (5×16) with 200μm diameter was set up. And then, Flow (3D) module of Moldflow MPI6.0 based on Navier-Stokes equations was used to calculate the weight of the micro columns arrays in injection molding. The effects of processing parameters (melt temperature, mold temperature, injection time, packing pressure and packing time) on the part weight were investigated in the simulations. The simulation results showed that the mold temperature and the injection time have important effects on the filling of micro columns; the optimal mold temperature and injection time for better replication fidelity could be determined by the curves of mold temperature vs part weight and injection time vs part weight. At last, the effects of processing parameters on part weight of micro columns array were studied experimentally. The experimental results showed that the increase of melt temperature and mold temperature can make the packing pressure transfer to micro cavity more effectively through runner system, and increase the part weight. From the observation results of the image measuring apparatus, it was discovered that the higher the part weight, the better the filling of the microstructures. In conclusion, part weight can be used to evaluate the replication fidelity of micro-feature structured parts primarily; which is an economical and practical method to improve the replication fidelity of microlens arrays based on weight evaluation and optimization.

  20. Analysis of function-related interactions of ATP, sodium and potassium ions with Na+- and K+-transporting ATPase studied with a thiol reagent as tool.

    PubMed

    Grosse, R; Eckert, K; Malur, J; Repke, K R

    1978-01-01

    The paper describes the interaction of ATP, Na+ and K+ with (NaK)-ATPase exploiting the inactivation by reaction with NBD-chloride as an analytical tool for the evaluation of enzyme ligandation with the various effectors. 1. The inactivation of (NaK)-ATPase by reaction with NBD-chloride showing under all conditions studied a pseudo first-order rate rests on the alkylation of thiol groups in or near catalytic centre. ATP bound to catalytic centre prevents from enzyme inactivation by NDD-chloride through protection of these thiol groups from alkylation. Na+ and K+ affect the reactivity of the thiol groups towards NBD-chloride either indirectly via influencing ATP binding or more directly via changing the conformation of catalytic centre. Proceeding from these interrelations, the interaction of the various effectors with the enzyme was analyzed. 2. The K'D-values of various nucleotides determined by our approach correspond to the values obtained by independent methods. As shown for the first time, two catalytic centres per enzyme molecule exist. They exhibit high or low affinity to both ATP and ADP apparently caused by anticooperative interaction of the half-units of the enzyme through intersubunit communication ("half-of-the-sites reactivity"). 3. In the absence of ATP, Na+ or K+ ligandation of (NaK)-ATPase produce opposite effects on the reactivity of the thiol groups of catalytic centres reflecting different changes of their conformation. This corresponds to the well-known antagonistic effect of Na+ and K+ on some partial reactions of (NaK)-ATPase. The Na+ and K+ concentrations required to change thiol reactivity are rather high, i.e. the ionophoric centres for both Na+ and K+ are not readily accessible for cation complexation in the absence of enzyme complexation with ATP. 4. Na+ being without effect on ATP binding to the enzyme also does not influence the inactivating reaction with NBD-chloride while K+ by decreasing ATP binding dramatically decreases the protective effect of ATP. The K+ affinity of the enzyme-ATP complex is by more than two orders of magnitude higher than that of free enzyme. Na+ ligandation of the K+-liganded enzyme-ATP complex reverses the effect of K+ ligandation and produces a protective effect which distinctly surpasses that of the complexation of free enzyme with ATP. Hence, the enzyme molecule carries simultaneously ionophoric centres for both Na+ and K+. 5. The findings that per enzyme molecule ionophoric centres for Na+ and K+, and two catalytic centres with anticooperative interaction coexist corroborate the corresponding basic predictions of the flip-flop concept of (NaK)-ATPase pump mechanism, and explain some peculiar kinetic features of transport and enzyme activities of (NaK)-ATPase.

  1. Superhydrophobic and Slippery Lubricant-Infused Flexible Transparent Nanocellulose Films by Photoinduced Thiol-Ene Functionalization.

    PubMed

    Guo, Jiaqi; Fang, Wenwen; Welle, Alexander; Feng, Wenqian; Filpponen, Ilari; Rojas, Orlando J; Levkin, Pavel A

    2016-12-14

    Films comprising nanofibrillated cellulose (NFC) are suitable substrates for flexible devices in analytical, sensor, diagnostic, and display technologies. However, some major challenges in such developments include their high moisture sensitivity and the complexity of current methods available for functionalization and patterning. In this work, we present a facile process for tailoring the surface wettability and functionality of NFC films by a fast and versatile approach. First, the NFC films were coated with a layer of reactive nanoporous silicone nanofilament by polycondensation of trichlorovinylsilane (TCVS). The TCVS afforded reactive vinyl groups, thereby enabling simple UV-induced functionalization of NFC films with various thiol-containing molecules via the photo "click" thiol-ene reaction. Modification with perfluoroalkyl thiols resulted in robust superhydrophobic surfaces, which could then be further transformed into transparent slippery lubricant-infused NFC films that displayed repellency against both aqueous and organic liquids with surface tensions as low as 18 mN·m -1 . Finally, transparent and flexible NFC films incorporated hydrophilic micropatterns by modification with OH, NH 2 , or COOH surface groups, enabling space-resolved superhydrophobic-hydrophilic domains. Flexibility, transparency, patternability, and perfect superhydrophobicity of the produced nanocellulose substrates warrants their application in biosensing, display protection, and biomedical and diagnostics devices.

  2. Contact-Engineered Electrical Properties of MoS2 Field-Effect Transistors via Selectively Deposited Thiol-Molecules.

    PubMed

    Cho, Kyungjune; Pak, Jinsu; Kim, Jae-Keun; Kang, Keehoon; Kim, Tae-Young; Shin, Jiwon; Choi, Barbara Yuri; Chung, Seungjun; Lee, Takhee

    2018-05-01

    Although 2D molybdenum disulfide (MoS 2 ) has gained much attention due to its unique electrical and optical properties, the limited electrical contact to 2D semiconductors still impedes the realization of high-performance 2D MoS 2 -based devices. In this regard, many studies have been conducted to improve the carrier-injection properties by inserting functional paths, such as graphene or hexagonal boron nitride, between the electrodes and 2D semiconductors. The reported strategies, however, require relatively time-consuming and low-yield transfer processes on sub-micrometer MoS 2 flakes. Here, a simple contact-engineering method is suggested, introducing chemically adsorbed thiol-molecules as thin tunneling barriers between the metal electrodes and MoS 2 channels. The selectively deposited thiol-molecules via the vapor-deposition process provide additional tunneling paths at the contact regions, improving the carrier-injection properties with lower activation energies in MoS 2 field-effect transistors. Additionally, by inserting thiol-molecules at the only one contact region, asymmetric carrier-injection is feasible depending on the temperature and gate bias. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Proteomic methods for analysis of S-nitrosation⋄

    PubMed Central

    Kettenhofen, Nicholas; Broniowska, Katarzyna; Keszler, Agnes; Zhang, Yanhong; Hogg, Neil

    2007-01-01

    This review discusses proteomic methods to detect and identify S-nitrosated proteins. Protein S-nitrosation, the post-translational modification of thiol residues to form S-nitrosothiols, has been suggested to be a mechanism of cellular redox signaling by which nitric oxide can alter cellular function through modification of protein thiol residues. It has become apparent that methods that will detect and identify low levels of S-nitrosated protein in complex protein mixtures are required in order to fully appreciate the range, extent and selectivity of this modification in both physiological and pathological conditions. While many advances have been made in the detection of either total cellular S-nitrosation or individual S-nitrosothiols, proteomic methods for the detection of S-nitrosation are in relative infancy. This review will discuss the major methods that have been used for the proteomic analysis of protein S-nitrosation and discuss the pros and cons of this methodology. PMID:17360249

  4. Effect of thiolated polymers to textural and mucoadhesive properties of vaginal gel formulations prepared with polycarbophil and chitosan.

    PubMed

    Cevher, Erdal; Sensoy, Demet; Taha, Mohamed A M; Araman, Ahmet

    2008-01-01

    The aim of this study was to design and evaluate of mucoadhesive gel formulations for the vaginal application of clomiphene citrate (CLM) for local treatment of human papilloma virus (HPV) infections. Chitosan (CHI) and polycarbophil (PC) were covalently modified using the thioglycolic acid and L-cysteine, respectively. The formation of thiol conjugates of chitosan (CHI-TG) and polycarbophil (PC-CYS) were confirmed by FT-IR analysis and PC-CYS and CHI-TG were found to have 148.42 +/- 4.16 and 41.17 +/- 2.34 micromol of thiol groups per gram of polymer, respectively. One percent CLM gels were prepared by combination of various concentrations of PC and CHI with thiolated conjugates of these polymers. Hardness, compressibility, elasticity, adhesiveness and cohesiveness of the gels were measured by Texture profile analysis and the vaginal mucoadhesion was investigated by mucoadhesion test. The increasing in the amount of the thiol conjugates was found to enhance the elasticity, cohesiveness, adhesiveness and mucoadhesion of the gel formulations but not their hardness and compressibility when compared to gels prepared using their respective parent formulations. Slower release rate of CLM from gels was achieved when the polymer concentrations were increased in the gel formulations. PC and its thiol conjugate were found to prolong the release of CLM longer than 70 h unlike gel formulations prepared using CHI and its thiol conjugate which were able to release CLM up to 12 h. Stability of CLM was preserved during the 3 month stability analysis under controlled room temperature and accelerated conditions.

  5. Thiol oxidation of hemolymph proteins in oysters Crassostrea brasiliana as markers of oxidative damage induced by urban sewage exposure.

    PubMed

    Trevisan, Rafael; Flores-Nunes, Fabrício; Dolores, Euler S; Mattos, Jacó J; Piazza, Clei E; Sasaki, Sílvio T; Taniguchi, Satie; Montone, Rosalinda C; Bícego, Márcia C; Dos Reis, Isis M M; Zacchi, Flávia L; Othero, Bárbara N M; Bastolla, Camila L V; Mello, Danielle F; Fraga, Ana Paula M; Wendt, Nestor; Toledo-Silva, Guilherme; Razzera, Guilherme; Dafre, Alcir L; de Melo, Cláudio M R; Bianchini, Adalto; Marques, Maria R F; Bainy, Afonso C D

    2017-07-01

    Urban sewage is a concerning issue worldwide, threatening both wildlife and human health. The present study investigated protein oxidation in mangrove oysters (Crassostrea brasiliana) exposed to seawater from Balneário Camboriú, an important tourist destination in Brazil that is affected by urban sewage. Oysters were exposed for 24 h to seawater collected close to the Camboriú River (CAM1) or 1 km away (CAM2). Seawater from an aquaculture laboratory was used as a reference. Local sewage input was marked by higher levels of coliforms, nitrogen, and phosphorus in seawater, as well as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), linear alkylbenzenes (LABs), and fecal steroid in sediments at CAM1. Exposure of oysters to CAM1 caused marked bioaccumulation of LABs and decreased PAH and PCB concentrations after exposure to both CAM1 and CAM2. Protein thiol oxidation in gills, digestive gland, and hemolymph was evaluated. Lower levels of reduced protein thiols were detected in hemolymph from CAM1, and actin, segon, and dominin were identified as targets of protein thiol oxidation. Dominin susceptibility to oxidation was confirmed in vitro by exposure to peroxides and hypochlorous acid, and 2 cysteine residues were identified as potential sites of oxidation. Overall, these data indicate that urban sewage contamination in local waters has a toxic potential and that protein thiol oxidation in hemolymph could be a useful biomarker of oxidative stress in bivalves exposed to contaminants. Environ Toxicol Chem 2017;36:1833-1845. © 2016 SETAC. © 2016 SETAC.

  6. Ascorbate and Apple Phenolics Affect Protein Oxidation in Emulsion-Type Sausages during Storage and in Vitro Digestion.

    PubMed

    Rysman, Tine; Van Hecke, Thomas; De Smet, Stefaan; Van Royen, Geert

    2016-05-25

    The effect of sodium ascorbate and apple phenolics on the oxidative stability of emulsion-type sausages during storage and digestion was investigated. Emulsion-type sausages containing 0.05% sodium ascorbate or 3% freeze-dried apple pomace were subjected to chilled illuminated storage and subsequent in vitro digestion. Lipid oxidation was assessed as TBARS, and protein oxidation was evaluated as thiol oxidation, total carbonyls, and γ-glutamic and α-amino adipic semialdehyde. Proteolysis was measured after digestion to evaluate protein digestibility. The results suggest the presence of protein-ascorbate and protein-phenol interactions, which may decrease protein digestibility and may interfere with spectrophotometric methods for measuring oxidation.

  7. Thiol/disulfide status regulates the activity of thiol-containing kinases related to energy homeostasis in rat kidney.

    PubMed

    Rech, Virginia C; Mezzomo, Nathana J; Athaydes, Genaro A; Feksa, Luciane R; Figueiredo, Vandré C; Kessler, Adriana; Franceschi, Itiane D DE; Wannmacher, Clovis M D

    2018-01-01

    Considering that thiol-containing enzymes like kinases are critical for several metabolic pathways and energy homeostasis, we investigated the effects of cystine dimethyl ester and/or cysteamine administration on kinases crucial for energy metabolism in the kidney of Wistar rats. Animals were injected twice a day with 1.6 µmol/g body weight cystine dimethyl ester and/or 0.26 µmol/g body weight cysteamine from the 16th to the 20th postpartum day and euthanized after 12 hours. Pyruvate kinase, adenylate kinase, creatine kinase activities and thiol/disulfide ratio were determined. Cystine dimethyl ester administration reduced thiol/disulfide ratio and inhibited the kinases activities. Cysteamine administration increased the thiol/disulfide ratio and co-administration with cystine dimethyl ester prevented the inhibition of the enzymes. Regression between the thiol/disulfide ratio, and the kinases activities were significant. These results suggest that redox status may regulate energy metabolism in the rat kidney. If thiol-containing enzymes inhibition and oxidative stress occur in patients with cystinosis, it is possible that lysosomal cystine depletion may not be the only beneficial effect of cysteamine administration, but also its antioxidant and thiol-protector effect.

  8. Electrochemical and spectroscopic characterization of surface sol-gel processes.

    PubMed

    Chen, Xiaohong; Wilson, George S

    2004-09-28

    (3-Mercaptopropyl)trimethoxysilane (MTS) forms a unique film on a platinum substrate by self-assembly and sol-gel cross-linking. The gelating and drying states of the self-assembled MTS sol-gel films were probed by use of electrochemical and spectroscopic methods. The thiol moiety was the only active group within the sol-gel network. Gold nanoparticles were employed to detect the availability of the thiol group and their interaction further indicated the physicochemical states of the sol-gel inner structure. It was found that the thiol groups in the open porous MTS aerogel matrix were accessible to the gold nanoparticles while thiol groups in the compact MTS xerogel network were not accessible to the gold nanoparticles. The characteristics of the sol-gel matrix change with time because of its own irreversible gelating and drying process. The present work provides direct evidence of gold nanoparticle binding with thiol groups within the sol-gel structures and explains the different permeability of "aerogel" and "xerogel" films of MTS on the basis of electrochemical and spectroscopic results. Two endogenous species, hydrogen peroxide and ascorbic acid, were used to test the permeability of the self-assembled sol-gel film in different states. The MTS xerogel film on the platinum electrode was extremely selective against ascorbic acid while maintaining high sensitivity to hydrogen peroxide in contrast to the relatively high permeability of ascorbic acid in the MTS aerogel film. This study showed the potential of the MTS sol-gel film as a nanoporous material in biosensor development.

  9. Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery.

    PubMed

    Prestwich, Glenn D

    2008-01-01

    The acceptance of the new paradigm of 3-D cell culture is currently constrained by the lack of a biocompatible material in the marketplace that offers ease of use, experimental flexibility, and a seamless transition from in vitro to in vivo applications. I describe the development of a covalently cross-linked mimic of the extracellular matrix (sECM), now commercially available, for 3-D culture of cells in vitro and for translational use in vivo. These bio-inspired, biomimetic materials can be used "as is" in drug discovery, toxicology, cell banking, and, ultimately, medicine. For cell therapy and the development of clinical combination products, the sECM biomaterials must be highly reproducible, manufacturable, approvable, and affordable. To obtain integrated, functional, multicellular systems that recapitulate tissues and organs, the needs of the true end users, physicians and patients, must dictate the key design criteria. In chemical terms, the sECM consists of chemically-modified hyaluronan (HA), other glycosaminoglycans (GAGs), and ECM polypeptides containing thiol residues that are cross-linked using biocompatible polyvalent electrophiles. For example, co-cross-linking the semisynthetic thiol-modified HA-like GAG with thiol-modified gelatin produces Extracel as a hydrogel. This hydrogel may be formed in situ in the presence of cells or tissues to provide an injectable cell-delivery vehicle. Alternately, an Extracel hyrogel can be lyophilized to create a macroporous scaffold, which can then be employed for 3-D cell culture. In this Account, we describe four applications of sECMs that are relevant to the evaluation of drug efficacy and drug toxicity. First, the uses of sECMs to promote both in vitro and in vivo growth of healthy cellularized 3-D tissues are summarized. Primary or cell-line-derived cells, including fibroblasts, chondrocytes, hepatocytes, adult and embryonic stem cells, and endothelial and epithelial cells have been used. Second, primary hepatocytes retain their biochemical phenotypes and achieve greater longevity in 3-D culture in Extracel. This constitutes a new 3-D method for rapid evaluation of hepatotoxicity in vitro. Third, cancer cell lines are readily grown in 3-D culture in Extracel, offering a method for rapid evaluation of new anticancer agents in a more physiological ex vivo tumor model. This system has been used to evaluate signal transduction modifiers obtained from our research on lipid signaling. Fourth, a new "tumor engineering" xenograft model uses orthotopic injection of Extracel-containing tumor cells in nude mice. This approach allows production of patient-specific mice using primary human tumor samples and offers a superior metastatic cancer model. Future applications of the injectable cell delivery and 3-D cell culture methods include chemoattractant and angiogenesis assays, high-content automated screening of chemical libraries, pharmacogenomic and toxicogenomic studies with cultured organoids, and personalized treatment models. In summary, the sECM technology offers a versatile "translational bridge" from in vitro to in vivo to facilitate drug discovery in both academic and pharmaceutical laboratories.

  10. Syntheses, spectroscopic characterization, thermal study, molecular modeling, and biological evaluation of novel Schiff's base benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) with Ni(II), and Cu(II) metal complexes

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gautam, Seema; Rajor, Hament Kumar; Bhatia, Rohit

    2015-02-01

    Novel Schiff's base ligand, benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) was synthesized by the condensation of benzil and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio. The structure of ligand was determined on the basis of elemental analyses, IR, 1H NMR, mass, and molecular modeling studies. Synthesized ligand behaved as tetradentate and coordinated to metal ion through sulfur atoms of thiol ring and nitrogen atoms of imine group. Ni(II), and Cu(II) complexes were synthesized with this nitrogen-sulfur donor (N2S2) ligand. Metal complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, IR, electronic spectra, EPR, thermal, and molecular modeling studies. All the complexes showed molar conductance corresponding to non-electrolytic nature, expect [Ni(L)](NO3)2 complex, which was 1:2 electrolyte in nature. [Cu(L)(SO4)] complex may possessed square pyramidal geometry, [Ni(L)](NO3)2 complex tetrahedral and rest of the complexes six coordinated octahedral/tetragonal geometry. Newly synthesized ligand and its metal complexes were examined against the opportunistic pathogens. Results suggested that metal complexes were more biological sensitive than free ligand.

  11. Evaluation of oxidative stress status and antioxidant capacity in patients with renal cell carcinoma

    PubMed Central

    Karaguzel, Ersagun; Okulu, Emrah; Gudeloglu, Ahmet; Ener, Kemal; Ozayar, Asim; Erel, Ozcan

    2015-01-01

    Introduction We evaluated and compared the serum oxidative stress and antioxidant enzymes in patients with renal cell carcinoma (RCC) and the control group. Material and methods The prospective study consisted of 97 patients with RCC (Group 1) and 80 age and sex matched healthy volunteers (Group 2). Group 1 and 2 were compared concerning serum mean total oxidant status (TOS), total antioxidant capacity (TAC), paraoxonase-1 (PON-1), arylesterase, total thiol, catalase (CAT), myeloperoxidase (MPO) and ceruloplasmin. Results Patients’ mean age was 58.5 ±12.3 and 56.9 ±15.8 years, respectively, in Group 1 and 2. No statistically significant differences were detected between the groups in terms of oxidative stress parameters and antioxidant capacity measured in the serum of patients including, TOS, TAC, PON1, arylesterase, total thiol, CAT, MPO, and ceruloplasmin levels (p >0.05 for all parameters). The PON-1 value was significantly higher in patients with pT1 stage than pT3 stage (p = 0.007). The arylesterase value was significantly higher in patients with Fuhrman's nuclear grade 3 than grade 2 (p = 0.035). There was no correlation between these parameters level and Fuhrman's nuclear grade, stage, or histopathological tumor type. Conclusions Our results demonstrated that evaluation of these parameters in the serum of patients with localized RCC may not be used as a marker to discriminate between patients with RCC and healthy people. PMID:26855793

  12. Changes in Thiol-Disulfide Homeostasis of the Body to Surgical Trauma in Laparoscopic Cholecystectomy Patients.

    PubMed

    Polat, Murat; Ozcan, Onder; Sahan, Leyla; Üstündag-Budak, Yasemin; Alisik, Murat; Yilmaz, Nigar; Erel, Özcan

    2016-12-01

    We aimed to investigate the short-term effect of laparoscopic surgery on serum thiol-disulfide homeostasis levels as a marker of oxidant stress of surgical trauma in elective laparoscopic cholecystectomy patients. Venous blood samples were collected, and levels of native thiols, total thiols, and disulfides were determined with a novel automated assay. Total antioxidant capacity (measured as the ferric-reducing ability of plasma) and serum ischemia modified albumin, expressed as absorbance units assayed by the albumin cobalt binding test, were determined. The major findings of the present study were that native thiol (283 ± 45 versus 241 ± 61 μmol/L), total thiol (313 ± 49 versus 263 ± 67 μmol/L), and disulfide (14.9 ± 4.6 versus 11.0 ± 6.1 μmol/L) levels were decreased significantly during operation and although they increased, they did not return to preoperation levels 24 hours after laparoscopic surgery compared to the levels at baseline. Disulfide/native thiol and disulfide/total thiol levels did not change during laparoscopic surgery. The decrease in plasma level of native and total thiol groups suggests impairment of the antioxidant capacity of plasma; however, the delicate balance between the different redox forms of thiols was maintained during surgery.

  13. Homo- and heteroleptic bismuth(III/V) thiolates from N-heterocyclic thiones: synthesis, structure and anti-microbial activity.

    PubMed

    Luqman, Ahmad; Blair, Victoria L; Brammananth, Rajini; Crellin, Paul K; Coppel, Ross L; Andrews, Philip C

    2014-10-27

    Homo- and heteroleptic bismuth thiolato complexes have been synthesised and characterised from biologically relevant tetrazole-, imidazole-, thiadiazole- and thiazole-based heterocyclic thiones (thiols): 1-methyl-1H-tetrazole-5-thiol (1-MMTZ(H)); 4-methyl-4H-1,2,4-triazole-3-thiol (4-MTT(H)); 1-methyl-1H-imidazole-2-thiol (2-MMI(H)); 5-methyl-1,3,4-thiadiazole-2-thiol (5-MMTD(H)); 1,3,4-thiadiazole-2-dithiol (2,5-DMTD(H)2 ); and 4-(4-bromophenyl)thiazole-2-thiol (4-BrMTD(H)). Reaction of BiPh3 with 1-MMTZ(H) produced the rare Bi(V) thiolato complex [BiPh(1-MMTZ)4 ], which undergoes reduction in DMSO to give [BiPh(1-MMTZ)2 {(1-MMTZ(H)}2 ]. Reactions with PhBiCl2 or BiPh3 generally produced monophenylbismuth thiolates, [BiPh(SR)2 ]. The crystal structures of [BiPh(1-MMTZ)2 {1-MMTZ(H)}2 ], [BiPh(5-MMTD)2 ], [BiPh{2,5-DMTD(H)}2 (Me2 CO)] and [Bi(4-BrMTD)3 ] were obtained. Evaluation of the bactericidal properties against M. smegmatis, S. aureus, MRSA, VRE, E. faecalis and E. coli showed complexes containing the anionic ligands 1- MMTZ, 4-MTT and 4-BrMTD to be most effective. The dithiolato dithione complexes [BiPh(4-MTT)2 {4-MTT(H)}2 ] and [BiPh(1-MMTZ)2 {1-MMTZ(H)}2 ] were most effective against all the bacteria: MICs 0.34 μM for [BiPh(4-MTT)2 {4-MTT(H)}2 ] against VRE, and 1.33 μM for [BiPh(1-MMTZ)2 {1-MMTZ(H)}2 ] against M. smegmatis and S. aureus. Tris-thiolato Bi(III) complexes were least effective overall. All complexes showed little or no toxicity towards mammalian COS-7 cells at 20 μg mL(-1) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Designing an ultra-sensitive aptasensor based on an AgNPs/thiol-GQD nanocomposite for TNT detection at femtomolar levels using the electrochemical oxidation of Rutin as a redox probe.

    PubMed

    Shahdost-Fard, Faezeh; Roushani, Mahmoud

    2017-01-15

    In this paper, for the first time a highly sensitive and low-cost electrochemical aptasensor was fabricated based on a silver nanoparticles/thiol functionalized graphene quantum dot (AgNPs/thiol-GQD) nanocomposite for the measurement of 2,4,6-Trinitrotoluen (TNT) as a nitroaromatic explosive. For the first time Rutin (RU) as a biological molecule with inherent properties was used as the redox probe in the development of the TNT aptasensor was used. The system was based on a TNT-binding aptamer which is covalently attached onto the surface of a glassy carbon electrode (GCE) modified with the nanocomposite for the formation of a sensing layer and improving the performance of the aptasensor. Using the proposed nanocomposite provides a specific platform with increased surface area which is capable of loading more Aptamer (Ap) molecules as a receptor element of TNT on the electrode surface. So, TNT molecules is in an upward position to be measured and the obtained results indicate that the aptasensor exhibits two wide linear ranges and an unprecedented LOD compared with previously reported analytical methods for TNT detection. Applicability of the developed aptasensor to easily detect TNT in real samples was evaluated. It seems that the proposed strategy can be expanded to other nanoparticles and is expected to have promising implications in the design of electrochemical sensors or biosensors for the detection of various targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Assessment of the aroma impact of major odor-active thiols in pan-roasted white sesame seeds by calculation of odor activity values.

    PubMed

    Tamura, Hitoshi; Fujita, Akira; Steinhaus, Martin; Takahisa, Eisuke; Watanabe, Hiroyuki; Schieberle, Peter

    2011-09-28

    Eleven odor-active thiols, namely, 2-methyl-1-propene-1-thiol, (Z)-3-methyl-1-butene-1-thiol, (E)-3-methyl-1-butene-1-thiol, (Z)-2-methyl-1-butene-1-thiol, (E)-2-methyl-1-butene-1-thiol, 2-methyl-3-furanthiol, 3-mercapto-2-pentanone, 2-mercapto-3-pentanone, 4-mercapto-3-hexanone, 3-mercapto-3-methylbutyl formate, and 2-methyl-3-thiophenethiol, recently identified in an extract prepared from white sesame seeds, were quantitated in sesame using stable isotope dilution analyses. For that purpose, the following deuterium-labeled compounds were synthesized and used as internal standards in the quantitation assays: [2H6]-2-methyl-1-propene-1-thiol, [2H3]-(E)- and [2H3]-(Z)-2-methyl-1-butene-1-thiol, [2H3]-2-methyl-3-furanthiol, [2H2]-3-mercapto-2-pentanone, [2H3]-4-mercapto-3-hexanone, [2H6]-3-mercapto-3-methylbutyl formate, and [2H3]-2-methyl-3-thiophenethiol. On the basis of the results obtained, odor activity values (OAVs) were calculated as ratio of the concentration and odor threshold of the individual compounds in cooking oil. According to their high OAVs, particularly the 3-methyl-1-butene-1-thiols (OAV: 2400) and the 2-methyl-1-butene-1-thiols (OAV: 960) were identified as the most odor-active compounds in pan-roasted white sesame seeds. These compounds were therefore suggested to be mainly responsible for the characteristic but rather unstable sulfury aroma of freshly pan-roasted white sesame seeds.

  16. Thiol surface functionalization via continuous phase plasma polymerization of allyl mercaptan, with subsequent maleimide-linked conjugation of collagen.

    PubMed

    Stynes, Gil D; Gengenbach, Thomas R; Kiroff, George K; Morrison, Wayne A; Kirkland, Mark A

    2017-07-01

    Thiol groups can undergo a large variety of chemical reactions and are used in solution phase to conjugate many bioactive molecules. Previous research on solid substrates with continuous phase glow discharge polymerization of thiol-containing monomers may have been compromised by oxidation. Thiol surface functionalization via glow discharge polymerization has been reported as requiring pulsing. Herein, continuous phase glow discharge polymerization of allyl mercaptan (2-propene-1-thiol) was used to generate significant densities of thiol groups on a mixed macrodiol polyurethane and tantalum. Three general classes of chemistry are used to conjugate proteins to thiol groups, with maleimide linkers being used most commonly. Here the pH specificity of maleimide reactions was used effectively to conjugate surface-bound thiol groups to amine groups in collagen. XPS demonstrated surface-bound thiol groups without evidence of oxidation, along with the subsequent presence of maleimide and collagen. Glow discharge reactor parameters were optimized by testing the resistance of bound collagen to degradation by 8 M urea. The nature of the chemical bonding of collagen to surface thiol groups was effectively assessed by colorimetric assay (ELISA) of residual collagen after incubation in 8 M urea over 8 days and after incubation with keratinocytes over 15 days. The facile creation of useable solid-supported thiol groups via continuous phase glow discharge polymerization of allyl mercaptan opens a route for attaching a vast array of bioactive molecules. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1940-1948, 2017. © 2017 Wiley Periodicals, Inc.

  17. S-protected thiolated chitosan for oral delivery of hydrophilic macromolecules: evaluation of permeation enhancing and efflux pump inhibitory properties.

    PubMed

    Dünnhaupt, Sarah; Barthelmes, Jan; Rahmat, Deni; Leithner, Katharina; Thurner, Clemens C; Friedl, Heike; Bernkop-Schnürch, Andreas

    2012-05-07

    The objective of this study was the investigation of permeation enhancing and P-glycoprotein (P-gp) inhibition effects of a novel thiolated chitosan, the so-named S-protected thiolated chitosan. Mediated by a carbodiimide, increasing amounts of thioglycolic acid (TGA) were covalently bound to chitosan (CS) in the first step of modification. In the second step, these thiol groups of thiolated chitosan were protected by disulfide bond formation with the thiolated aromatic residue 6-mercaptonicotinamide (6-MNA). Mucoadhesive properties of all conjugates were evaluated in vitro on porcine intestinal mucosa based on tensile strength investigations. Permeation enhancing effects were evaluated ex vivo using rat intestinal mucosa and in vitro via Caco-2 cells using the hydrophilic macromolecule FD(4) as the model drug. Caco-2 cells were further used to show P-gp inhibition effects by using Rho-123 as P-gp substrate. Apparent permeability coefficients (P(app)) were calculated and compared to values obtained from each buffer control. Three different thiolated chitosans were generated in the first step of modification, which displayed increasing amounts of covalently attached free thiol groups on the polymer backbone. In the second modification step, more than 50% of these free thiol groups were covalently linked with 6-MNA. Within 3 h of permeation studies on excised rat intestine, P(app) values of all S-protected chitosans were at least 1.3-fold higher compared to those of corresponding thiomers and more than twice as high as that of unmodified chitosan. Additional permeation studies on Caco-2 cells confirmed these results. Because of the chemical modification and higher amount of reactive thiol groups, all S-protected thiolated chitosans exhibit at least 1.4-fold pronounced P-gp inhibition effects in contrast to their corresponding thiomers. These features approve S-protected thiolated chitosan as a promising excipient for various drug delivery systems providing improved permeation enhancing and efflux inhibition effects.

  18. Thiolation of arabinoxylan and its application in the fabrication of controlled release mucoadhesive oral films.

    PubMed

    Hanif, Muhammad; Zaman, Muhammad

    2017-03-20

    Mucoadhesion is an important property that helps oral drug delivery system to remain attached with buccal mucosa and hence to improve the delivery of the drug. The current study was designed to achieve the thiol modification of Arabinoxylan (ARX) and to develop a mucoadhesive oral film for the improved delivery of tizanidine hydrochloride (TZN HCl). Synthesis of thiolated arabinoxylan (TARX) was accomplished by esterification of ARX with thioglycolic acid (TGA). TARX was further used for the development of mucoadhesive oral films which were prepared by using a solvent casting technique. Formulation of the films was designed and optimized by using central composite design (CCRD), selecting TARX (X 1 ) and glycerol (X 2 ) as variables. Prepared film formulations were evaluated for mechanical strength, ex-vivo mucoadhesion, in-vitro drug release, ex-vivo drug permeation, surface morphology and drug contents. Thiolation of ARX was confirmed by fourier transform infra-red spectroscopy (FTIR) as a peak related to thiol group appeared at 2516 cm -1 . The claim of successful thiolation of ARX was strengthened by the presence of 2809.003 ± 1.03 μmoles of thiol contents per gram of the polymer, which was determined by Ellman's reagent method. From the results, it was observed that the films were of satisfactory mechanical strength and mucoadhesiveness with folding endurance greater than 300 and mucoadhesive strength 11.53 ± 0.17 N, respectively. Reasonable drug retention was observed during in-vitro dissolution (85.03% cumulative drug release) and ex-vivo permeation (78.90% cumulative amount of permeated drug) studies conducted for 8 h. Effects of varying concentrations of both polymer and plasticizer on prepared mucoadhesive oral films were evaluated by ANOVA and it was observed that glycerol can enhanced the dissolution as well as permeation of the drug while TARX has opposite impact on these parameters. In nutshell, TARX in combination with glycerolwas found to be suitable for the development of controlled release mucoadhesive oral films of TZN HCl. Schematic diagram showing conversion of ARX to TARX, TARX to oral film and evaluation of fabricated oral film.

  19. Evaluation of local free carrier concentrations in individual heavily-doped GaN:Si micro-rods by micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Mohajerani, M. S.; Khachadorian, S.; Schimpke, T.; Nenstiel, C.; Hartmann, J.; Ledig, J.; Avramescu, A.; Strassburg, M.; Hoffmann, A.; Waag, A.

    2016-02-01

    Three-dimensional III-nitride micro-structures are being developed as a promising candidate for the future opto-electrical devices. In this study, we demonstrate a quick and straight-forward method to locally evaluate free-carrier concentrations and a crystalline quality in individual GaN:Si micro-rods. By employing micro-Raman mapping and analyzing lower frequency branch of A1(LO)- and E1(LO)-phonon-plasmon-coupled modes (LPP-), the free carrier concentrations are determined in axial and planar configurations, respectively. Due to a gradual doping profile along the micro-rods, a highly spatially resolved mapping on the sidewall is exploited to reconstruct free carrier concentration profile along the GaN:Si micro-rods. Despite remarkably high free carrier concentrations above 1 × 1020 cm-3, the micro-rods reveal an excellent crystalline quality, without a doping-induced stress.

  20. Combining Orthogonal Chain-End Deprotections and Thiol-Maleimide Michael Coupling: Engineering Discrete Oligomers by an Iterative Growth Strategy.

    PubMed

    Huang, Zhihao; Zhao, Junfei; Wang, Zimu; Meng, Fanying; Ding, Kunshan; Pan, Xiangqiang; Zhou, Nianchen; Li, Xiaopeng; Zhang, Zhengbiao; Zhu, Xiulin

    2017-10-23

    Orthogonal maleimide and thiol deprotections were combined with thiol-maleimide coupling to synthesize discrete oligomers/macromolecules on a gram scale with molecular weights up to 27.4 kDa (128mer, 7.9 g) using an iterative exponential growth strategy with a degree of polymerization (DP) of 2 n -1. Using the same chemistry, a "readable" sequence-defined oligomer and a discrete cyclic topology were also created. Furthermore, uniform dendrons were fabricated using sequential growth (DP=2 n -1) or double exponential dendrimer growth approaches (DP=22n -1) with significantly accelerated growth rates. A versatile, efficient, and metal-free method for construction of discrete oligomers with tailored structures and a high growth rate would greatly facilitate research into the structure-property relationships of sophisticated polymeric materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Resin-assisted Enrichment of N-terminal Peptides for Characterizing Proteolytic Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jong Seo; Dai, Ziyu; Aryal, Uma K.

    2013-06-17

    Proteolytic processing is a ubiquitous, irreversible posttranslational modification that plays an important role in cellular regulation in all living organisms. Herein we report a resin-assisted positive selection method for specifically enriching protein N-terminal peptides to facilitate the characterization of proteolytic processing events by liquid chromatography-tandem mass spectrometry. In this approach, proteins are initially reduced and alkylated and their lysine residues are converted to homoarginines. Then, protein N-termini are selectively converted to reactive thiol groups. We demonstrate that these sequential reactions were achieved with nearly quantitative efficiencies. Thiol-containing N-terminal peptides are then captured (>98% efficiency) by a thiol-affinity resin, a significantmore » improvement over the traditional avidin/biotin enrichment. Application to cell lysates of Aspergillus niger, a filamentous fungus of interest for biomass degradation, enabled the identification of 1672 unique protein N-termini and proteolytic cleavage sites from 690 unique proteins.« less

  2. End-specific strategies of attachment of long double stranded DNA onto gold-coated nanofiber arrays

    NASA Astrophysics Data System (ADS)

    Peckys, Diana B.; de Jonge, Niels; Simpson, Michael L.; McKnight, Timothy E.

    2008-10-01

    We report the effective and site-specific binding of long double stranded (ds)DNA to high aspect ratio carbon nanofiber arrays. The carbon nanofibers were first coated with a thin gold layer to provide anchorage for two controllable binding methods. One method was based on the direct binding of thiol end-labeled dsDNA. The second and enhanced method used amine end-labeled dsDNA bound with crosslinkers to a carboxyl-terminated self-assembled monolayer. The bound dsDNA was first visualized with a fluorescent, dsDNA-intercalating dye. The specific binding onto the carbon nanofiber was verified by a high resolution detection method using scanning electron microscopy in combination with the binding of neutravidin-coated fluorescent microspheres to the immobilized and biotinylated dsDNA. Functional activity of thiol end-labeled dsDNA on gold-coated nanofiber arrays was verified with a transcriptional assay, whereby Chinese hamster lung cells (V79) were impaled upon the DNA-modified nanofibers and scored for transgene expression of the tethered template. Thiol end-labeled dsDNA demonstrated significantly higher expression levels than nanofibers prepared with control dsDNA that lacked a gold-binding end-label. Employing these site-specific and robust techniques of immobilization of dsDNA onto nanodevices can be of advantage for the study of DNA/protein interactions and for gene delivery applications.

  3. Simple and Rapid Quantitative Determination of Thiol-Containing Toxicants Using Silver Nanoparticles as an Affinity Probe

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Tapadia, K.

    2017-01-01

    A rapid and low-cost nano-drop spectrophotometric method using citrate-modified silver nanoparticles (Ag NPs) for the determination of thiol-containing toxicants was developed. The introduction of thioglycolic acid (TGA) and thiourea (TU) reduced the overall surface charge of Ag NPs, resulting in aggregation of Ag NPs, and a colorimetric response that was individually correlated with the concentration of TGA and TU. Under optimum experimental conditions, the maximum molar absorptivity values for TGA and TU were 1.04 × 105 and 2.13 × 105 L × mol-1 × cm-1, respectively, at λmax of 415 nm. The linear range used was 0.5-2.5 mg/L for TGA, and 0.3-1.5 mg/L for TU. The detection limits (3S) and % relative standard deviation (RSD) for the method were found to be 3 ppb, 2 ppb, and ±1.13%, ±0.96% for TGA and TU, respectively. This new chromogenic method provided a facile and sensitive scheme for the determination of TGA and TU, and could be applied for the determination of thiol-containing biomolecules. This scheme was tested for the analysis of real samples such as urine, blood, and environmental samples.

  4. Dynamic disulfide/thiol homeostasis in lead exposure denoted by a novel method.

    PubMed

    Bal, Ceylan; Ağış, Erol Rauf; Gündüzöz, Meşide; Büyükşekerci, Murat; Alışık, Murat; Şen, Orhan; Tutkun, Engin; Yılmaz, Ömer Hınç

    2017-05-01

    Lead is a toxic heavy metal, and prevention of human exposure to lead has not been accomplished yet. The toxicity of lead is continually being investigated, and the molecular mechanisms of its toxicity are still being revealed. In this study, we used a novel method to examine thiol (SH)/disulfide homeostasis in workers who were occupationally exposed to lead. A total of 80 such workers and 70 control subjects were evaluated, and their native and total SH values were measured in serum using a novel method; their blood lead levels were also assessed. The novel method used for SH measurements was based on the principle of measuring native SH, after which disulfide bonds were reduced and total SHs were measured. These measurements allowed us to calculate disulfide amounts, disulfide/total SH percent ratios, disulfide/native SH percent ratios, and native SH /total SH percent ratios. We found that disulfide levels were significantly higher in workers who were exposed to lead (21.08(11.1-53.6) vs. 17.9(1.7-25), p < 0.001). Additionally, the disulfide/native SH and disulfide/total SH percent ratios were higher in exposed workers, while the native SH/total SH percent ratios were higher in the control subjects. Furthermore, the lead and disulfide levels showed a positive correlation, with p < 0.001 and a correlation coefficient of 0.378. Finally, the novel method used in this study successfully showed a switch from SH to disulfide after lead exposure, and the method is fully automated, easy, cheap, reliable, and reproducible. Use of this method in future cases may provide valuable insights into the management of lead exposure.

  5. Induction Curing of Thiol-acrylate and Thiolene Composite Systems

    PubMed Central

    Ye, Sheng; Cramer, Neil B.; Stevens, Blake E.; Sani, Robert L.; Bowman, Christopher N.

    2011-01-01

    Induction curing is demonstrated as a novel type of in situ radiation curing that maintains most of the advantages of photocuring while eliminating the restriction of light accessibility. Induction curing is utilized to polymerize opaque composites comprised of thiol-acrylate and thiol-ene resins, nanoscale magnetic particles, and carbon nanotubes. Nanoscale magnetic particles are dispersed in the resin and upon exposure to the magnetic field, these particles lead to induction heating that rapidly initiates the polymerization. Heat transfer profiles and reaction kinetics of the samples are modeled during the reactions with varying induction heater power, species concentration, species type and sample thickness, and the model is compared with the experimental results. Thiol-ene polymerizations achieved full conversion between 1.5 minutes and 1 hour, depending on the field intensity and the composition, with the maximum reaction temperature decreasing from 146 – 87 °C when the induction heater power was decreased from 8 – 3 kW. The polymerization reactions of the thiol-acrylate system were demonstrated to achieve full conversion between 0.6 and 30 minutes with maximum temperatures from 139 to 86 °C. The experimental behavior was characterized and the temperature profile modeled for the thiol-acrylate composite comprised of sub100nm nickel particles and induction heater power in the range of 32 to 20 kW. A 9°C average deviation was observed between the modeling and experimental results for the maximum temperature rise. The model also was utilized to predict reaction temperatures and kinetics for systems with varying thermal initiator concentration, initiator half-life, monomer molecular weight and temperature gradients in samples with varying thickness, thereby demonstrating that induction curing represents a designable and tunable polymerization method. Finally, induction curing was utilized to cure thiol-acrylate systems containing carbon nanotubes where 1 wt% carbon nanotubes resulted in systems where the storage modulus increased from 17.6 ± 0.2 to 21.6 ± 0.1 MPa and an electrical conductivity that increased from <10−7 to 0.33 ± 0.5 S/m. PMID:21765552

  6. Acrolein oxidizes the cytosolic and mitochondrial thioredoxins in human endothelial cells.

    PubMed

    Szadkowski, Adam; Myers, Charles R

    2008-01-14

    Acrolein is a reactive aldehyde that is a widespread environmental pollutant and can be generated endogenously from lipid peroxidation. The thioredoxin (Trx) system in endothelial cells plays a major role in the maintenance of cellular thiol redox balance, and is critical for cell survival. Normally, cells maintain the cytosolic (Trx1) and mitochondrial (Trx2) thioredoxins largely in the reduced state. In human microvascular endothelial cells, Trx1 was more sensitive than Trx2 to oxidation by acrolein. A 30-min exposure to 2.5 microM acrolein caused partial oxidation of Trx1 but not Trx2. The active site dithiol of Trx1 was essentially completely oxidized by 5 microM acrolein whereas 12.5 microM was required for complete oxidation of Trx2. Partial recovery of the Trx1 redox status was observed over a 4h acrolein-free recovery period, with increases in the reduced form and decreases in the fully oxidized form. For cells treated with 2.5 or 5 microM acrolein the recovery did not require protein synthesis, whereas protein synthesis was required for the return of reduced Trx1 in cells treated with 12.5 microM acrolein. Pretreatment of cells with N-acetylcysteine (NAC) resulted in partial protection of Trx1 from oxidation by acrolein. In cells treated with acrolein for 30 min, followed by a 14- to 16-h acrolein-free period, small but significant cytotoxic effects were observed with 2.5 microM acrolein whereas all cells were adversely affected by >or= 12.5 microM. NAC pretreatment significantly decreased the percentage of stressed cells subsequently exposed to 5 or 12.5 microM acrolein. Given the critical role of the thioredoxins in cell survival, the ability of acrolein to oxidize both thioredoxins should be taken into account for a thorough understanding of its cytotoxic effects.

  7. Enzyme-free detection of sequence-specific microRNAs based on nanoparticle-assisted signal amplification strategy.

    PubMed

    Li, Ru-Dong; Wang, Qian; Yin, Bin-Cheng; Ye, Bang-Ce

    2016-03-15

    Developing direct and convenient methods for microRNAs (miRNAs) analysis is of great significance in understanding biological functions of miRNAs, and early diagnosis of cancers. We have developed a rapid, enzyme-free method for miRNA detection based on nanoparticle-assisted signal amplification coupling fluorescent metal nanoclusters as signal output. The proposed method involves two processes: target miRNA-mediated nanoparticle capture, which consists of magnetic microparticle (MMP) probe and CuO nanoparticle (NP) probe, and nanoparticle-mediated amplification for signal generation, which consists of fluorescent DNA-Cu/Ag nanocluster (NC) and 3-mercaptopropionic acid (MPA). In the presence of target miRNA, MMP probe and NP probe sandwich-capture the target miRNA via their respective complementary sequence. The resultant sandwich complex (MMP probe-miRNA-CuO NP probe) is separated using a magnetic field and further dissolved by acidolysis to turn CuO NP into a great amount of copper (II) ions (Cu(2+)). Cu(2+) could disrupt the interactions between thiol moiety of MPA and the fluorescent Cu/Ag NCs by preferentially reacting with MPA to form a disulfide compound as intermediate. By this way, the fluorescence emission of the DNA-Cu/Ag NCs in the presence of MPA increases upon the increasing concentration of Cu(2+), which is directly proportional to the amount of target miRNA. The proposed method allows quantitative detection of a liver-specific miR-221-5p in the range of 5 pM to 1000 pM with a detection limit of ~0.73 pM, and shows a good ability to discriminate single-base difference. Moreover, the detection assay can be applied to detect miRNA in cancerous cell lysates in excellent agreement with that from a commercial miRNA detection kit. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Simulation studies on structural and thermal properties of alkane thiol capped gold nanoparticles.

    PubMed

    Devi, J Meena

    2017-06-01

    The structural and thermal properties of the passivated gold nanoparticles were explored employing molecular dynamics simulation for the different surface coverage densities of the self-assembled monolayer (SAM) of alkane thiol. The structural properties of the monolayer protected gold nanoparticles such us overall shape, organization and conformation of the capping alkane thiol chains were found to be influenced by the capping density. The structural order of the thiol capped gold nanoparticles enhances with the increase in the surface coverage density. The specific heat capacity of the alkane thiol capped gold nanoparticles was found to increase linearly with the thiol coverage density. This may be attributed to the enhancement in the lattice vibrational energy. The present simulation results suggest, that the structural and thermal properties of the alkane thiol capped gold nanoparticles may be modified by the suitable selection of the SAM coverage density. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Intracellular redox state determines whether nitric oxide is toxic or protective to rat oligodendrocytes in culture.

    PubMed

    Rosenberg, P A; Li, Y; Ali, S; Altiok, N; Back, S A; Volpe, J J

    1999-08-01

    We found that several nitric oxide donors had similar potency in killing mature and immature forms of oligodendrocytes (OLs). Because of the possibility of interaction of nitric oxide with intracellular thiols, we tested the effect of the nitrosonium ion donor S-nitrosylglutathione (SNOG) in OL cultures in the setting of cystine deprivation, which has been shown to cause intracellular glutathione depletion. Surprisingly, the presence of 200 microM SNOG completely protected OLs against the toxicity of cystine depletion. This protection appeared to be due to nitric oxide, because it could be blocked by hemoglobin and potentiated by inclusion of superoxide dismutase. We tested the effect of three additional NO* donors and found that protection was not seen with diethylamine NONOate, a donor with a half-life measured in minutes, but was seen with dipropylenetriamine NONOate and diethylaminetriamine NONOate, donors with half-lives measured in hours. This need for donors with longer half-lives for the protective effect suggested that NO* was required when intracellular thiol concentrations were falling, a process evolving over hours in medium depleted of cystine. These studies suggest a novel protective role for nitric oxide in oxidative stress injury and raise the possibility that intracerebral nitric oxide production might be a mechanism of defense against oxidative stress injury in OLs.

  10. Molar cusp deformation evaluated by micro-CT and enamel crack formation to compare incremental and bulk-filling techniques.

    PubMed

    Oliveira, Laís Rani Sales; Braga, Stella Sueli Lourenço; Bicalho, Aline Arêdes; Ribeiro, Maria Tereza Hordones; Price, Richard Bengt; Soares, Carlos José

    2018-07-01

    To describe a method of measuring the molar cusp deformation using micro-computed tomography (micro-CT), the propagation of enamel cracks using transillumination, and the effects of hygroscopic expansion after incremental and bulk-filling resin composite restorations. Twenty human molars received standardized Class II mesio-occlusal-distal cavity preparations. They were restored with either a bulk-fill resin composite, X-tra fil (XTRA), or a conventional resin composite, Filtek Z100 (Z100). The resin composites were tested for post-gel shrinkage using a strain gauge method. Cusp deformation (CD) was evaluated using the images obtained using a micro-CT protocol and using a strain-gauge method. Enamel cracks were detected using transillumination. The post-gel shrinkage of Z100 was higher than XTRA (P < 0.001). The amount of cusp deformation produced using Z100 was higher compared to XTRA, irrespective of the measurement method used (P < 0.001). The thinner lingual cusp always had a higher CD than the buccal cusp, irrespective of the measurement method (P < 0.001). A positive correlation (r = 0.78) was found between cusp deformation measured by micro-CT or by the strain-gauge method. After hygroscopic expansion of the resin composite, the cusp displacement recovered around 85% (P < 0.001). After restoration, Z100 produced more cracks than XTRA (P = 0.012). Micro-CT was an effective method for evaluating the cusp deformation. Transillumination was effective for detecting enamel cracks. There were fewer negative effects of polymerization shrinkage in bulk-fill resin restorations using XTRA than for the conventional incremental filling technique using conventional composite resin Z100. Shrinkage and cusp deformation are directly related to the formation of enamel cracks. Cusp deformation and crack propagation may increase the risk of tooth fracture. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Low-molecular-weight thiols in streptomycetes and their potential role as antioxidants.

    PubMed Central

    Newton, G L; Fahey, R C; Cohen, G; Aharonowitz, Y

    1993-01-01

    The intracellular low-molecular-weight thiols present in five gram-positive Streptomyces species and one Flavobacterium species were analyzed by high-performance liquid chromatography after fluorescence labeling with monobromobimane. Bacteria were chosen to include penicillin and cephalosporin beta-lactam producers and nonproducers. No significant amount of glutathione was found in any of the streptomycetes. Major intracellular thiols in all strains examined were cysteine, coenzyme A, sulfide, thiosulfate, and an unknown thiol designated U17. Those streptomycetes that make beta-lactam antibiotics also produce significant amounts of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV), a key intermediate in their biosynthesis. In Streptomyces clavuligerus, a potent producer of beta-lactams, the level of ACV was low during the early phase of growth and increased rapidly toward the end of exponential growth, paralleling that of antibiotic production. These and other observations indicate that ACV does not function as a protective thiol in streptomycetes. U17 may have this role since it was the major thiol in all streptomycetes and appeared to occur at levels about 10-fold higher than those of the other thiols measured, including ACV. Purification and amino acid analysis of U17 indicated that it contains cysteine and an unusual amine that is not one of the common amino acids. This thiol is identical to an unknown thiol found previously in Micrococcus roseus and Streptomyces griseus. A high level of ergothioneine was found in Streptomyces lactamdurans, and several unidentified thiols were detected in this and other streptomycetes. PMID:8478335

  12. Microfluidic chip based micro RNA detection through the combination of fluorescence and surface enhanced Raman scattering techniques

    NASA Astrophysics Data System (ADS)

    Wang, Zhile; Zong, Shenfei; Wang, Zhuyuan; Wu, Lei; Chen, Peng; Yun, Binfeng; Cui, Yiping

    2017-03-01

    We present a novel microfluidic chip based method for the detection of micro RNA (miRNA) via the combination of fluorescence and surface enhanced Raman scattering (SERS) spectroscopies. First, silver nanoparticles (Ag NPs) are immobilized onto a glass slide, forming a SERS enhancing substrate. Then a specificially designed molecular beacon (MB) is attached to the SERS substrate. The 3‧ end of the MB is decorated with a thiol group to facilitate the attachment of the MB, while the 5‧ end of the MB is labeled with an organic dye 6-FAM, which is used both as the fluorophore and SERS reporter. In the absence of target miRNA, the MB will form a hairpin structure, making 6-FAM close to the Ag NPs. Hence, the fluorescence of 6-FAM will be quenched and the Raman signal of 6-FAM will be enhanced. On the contrary, with target miRNA present, hybridization between the miRNA and MB will unfold the MB and increase the distance between 6-FAM and the Ag NPs. Thus the fluorescence of 6-FAM will recover and the SERS signal of 6-FAM will decrease. So the target miRNA will simultaneously introduce opposite changing trends in the intensities of the fluorescence and SERS signals. By combining the opposite changes in the two optical spectra, an improved sensitivity and linearity toward the target miRNA is achieved as compared with using solely fluorescence or SERS. Moreover, introducing the microfluidic chip can reduce the reaction time, reagent dosage and complexity of detection. With the improved sensitivity and simplicity, we anticipate that the presented method can have great potential in the investigation of miRNA related diseases.

  13. Signal transduction of flumazenil-induced preconditioning in myocytes.

    PubMed

    Yao, Z; McPherson, B C; Liu, H; Shao, Z; Li, C; Qin, Y; Vanden Hoek, T L; Becker, L B; Schumacker, P T

    2001-03-01

    The objective of this study was to examine the role of oxygen radicals, protein kinase C (PKC), and ATP-sensitive K(+) (K(ATP)) channels in mediating flumazenil-produced preconditioning. Chick cardiomyocyte death was quantified using propidium iodide, and oxygen radical generation was assessed using 2',7'-dichlorofluorescin oxidation. Preconditioning was initiated with 10 min of ischemia followed by 10 min of reoxygenation. Alternatively, flumazenil was infused for 10 min and removed 10 min before ischemia. Flumazenil (10 microM) and preconditioning increased oxygen radicals [1,693 +/- 101 (n = 3) and 1,567 +/- 98 (n = 3), respectively, vs. 345 +/- 53 (n = 3) in control] and reduced cell death similarly [22 +/- 3% (n = 5) and 18 +/- 2% (n = 6), respectively, vs. controls 49 +/- 5% (n = 8)]. Protection and increased oxygen radicals by flumazenil were abolished by pretreatment with the antioxidant thiol reductant 2-mercaptopropionyl glycine (800 microM; 52 +/- 10%, n = 6). Specific PKC inhibitors Go-6976 (0.1 microM) and chelerythrine (2 microM), given during ischemia and reoxygenation, blocked flumazenil-produced protection (47 +/- 5%, n = 6). The PKC activator phorbol 12-myristate 13-acetate (0.2 microM), given during ischemia and reoxygenation, reduced cell death similarly to that with flumazenil [17 +/- 4% (n = 6) and 22 +/- 3% (n = 5)]. Finally, 5-hydroxydecanoate (1 mM), a selective mitochondrial K(ATP) channel antagonist given during ischemia and reoxygenation, abolished the protection of flumazenil and phorbol 12-myristate 13-acetate. Thus flumazenil mimics preconditioning to reduce cell death in cardiomyocytes. Oxygen radicals activate mitochondrial K(ATP) channels via PKC during the process.

  14. Domain Regeneration for Cross-Database Micro-Expression Recognition

    NASA Astrophysics Data System (ADS)

    Zong, Yuan; Zheng, Wenming; Huang, Xiaohua; Shi, Jingang; Cui, Zhen; Zhao, Guoying

    2018-05-01

    In this paper, we investigate the cross-database micro-expression recognition problem, where the training and testing samples are from two different micro-expression databases. Under this setting, the training and testing samples would have different feature distributions and hence the performance of most existing micro-expression recognition methods may decrease greatly. To solve this problem, we propose a simple yet effective method called Target Sample Re-Generator (TSRG) in this paper. By using TSRG, we are able to re-generate the samples from target micro-expression database and the re-generated target samples would share same or similar feature distributions with the original source samples. For this reason, we can then use the classifier learned based on the labeled source samples to accurately predict the micro-expression categories of the unlabeled target samples. To evaluate the performance of the proposed TSRG method, extensive cross-database micro-expression recognition experiments designed based on SMIC and CASME II databases are conducted. Compared with recent state-of-the-art cross-database emotion recognition methods, the proposed TSRG achieves more promising results.

  15. The roles of protein disulphide isomerase family A, member 3 (ERp57) and surface thiol/disulphide exchange in human spermatozoa-zona pellucida binding.

    PubMed

    Wong, Chi-Wai; Lam, Kevin K W; Lee, Cheuk-Lun; Yeung, William S B; Zhao, Wei E; Ho, Pak-Chung; Ou, Jian-Ping; Chiu, Philip C N

    2017-04-01

    Are multimeric sperm plasma membrane protein complexes, ERp57 and sperm surface thiol content involved in human spermatozoa-zona pellucida (ZP) interaction? ERp57 is a component of a multimeric spermatozoa-ZP receptor complex involved in regulation of human spermatozoa-ZP binding via up-regulation of sperm surface thiol content. A spermatozoon acquires its fertilization capacity within the female reproductive tract by capacitation. Spermatozoa-ZP receptor is suggested to be a composite structure that is assembled into a functional complex during capacitation. Sperm surface thiol content is elevated during capacitation. ERp57 is a protein disulphide isomerase that modulates the thiol-disulphide status of proteins. The binding ability and components of protein complexes in extracted membrane protein fractions of spermatozoa were studied. The roles of capacitation, thiol-disulphide reagent treatments and ERp57 on sperm functions and sperm surface thiol content were assessed. Spermatozoa were obtained from semen samples from normozoospermic men. Human oocytes were obtained from an assisted reproduction programme. Blue native polyacrylamide gel electrophoresis, western ligand blotting and mass spectrometry were used to identify the components of solubilized ZP/ZP3-binding complexes. The localization and expression of sperm surface thiol and ERp57 were studied by immunostaining and sperm surface protein biotinylation followed by western blotting. Sperm functions were assessed by standard assays. Several ZP-binding complexes were isolated from the cell membrane of capacitated spermatozoa. ERp57 was a component of one of these complexes. Capacitation significantly increased the sperm surface thiol content, acrosomal thiol distribution and ERp57 expression on sperm surface. Sperm surface thiol and ERp57 immunoreactivity were localized to the acrosomal region of spermatozoa, a region responsible for ZP-binding. Up-regulation of the surface thiol content or ERp57 surface expression in vitro stimulated ZP-binding capacity of human spermatozoa. Blocking of ERp57 function by specific antibody or inhibitors against ERp57 reduced the surface thiol content and ZP-binding capacity of human spermatozoa. N/A. The mechanisms by which up-regulation of surface thiol content stimulates spermatozoa-ZP binding have not been depicted. Thiol-disulphide exchange is a crucial event in capacitation. ERp57 modulates the event and the subsequent fertilization process. Modulation of the surface thiol content of the spermatozoa of subfertile men may help to increase fertilization rate in assisted reproduction. This work was supported by The Hong Kong Research Grant Council Grant HKU764611 and HKU764512M to P.C.N.C. The authors have no competing interests. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  16. A curved surface micro-moiré method and its application in evaluating curved surface residual stress

    NASA Astrophysics Data System (ADS)

    Zhang, Hongye; Wu, Chenlong; Liu, Zhanwei; Xie, Huimin

    2014-09-01

    The moiré method is typically applied to the measurement of deformations of a flat surface while, for a curved surface, this method is rarely used other than for projection moiré or moiré interferometry. Here, a novel colour charge-coupled device (CCD) micro-moiré method has been developed, based on which a curved surface micro-moiré (CSMM) method is proposed with a colour CCD and optical microscope (OM). In the CSMM method, no additional reference grating is needed as a Bayer colour filter array (CFA) installed on the OM in front of the colour CCD image sensor performs this role. Micro-moiré fringes with high contrast are directly observed with the OM through the Bayer CFA under the special condition of observing a curved specimen grating. The principle of the CSMM method based on a colour CCD micro-moiré method and its application range and error analysis are all described in detail. In an experiment, the curved surface residual stress near a welded seam on a stainless steel tube was investigated using the CSMM method.

  17. Relevance of Micro-leakage to Orthodontic Bonding - a Review

    PubMed Central

    M, Karandish

    2016-01-01

    As it is seen, by passing the evolutionary process of banding of orthodontic attachments to the bonding ones, orthodontics have witnessed many developments, such as application of new adhesives, optimized base designs, new bracket materials, curing methods and more efficient primers. The studies often address the morphological, micro-leakage, and shear bond tests to evaluate bond efficacy. Among studies endeavored to develop the bond strength of brackets, some observed the reduction of micro-leakage of bracket-adhesive and enamel-adhesive interfaces. Owing to the importance of micro-leakage in orthodontics, this study aimed at reviewing the micro-leakage values directly relevant to the enamel decay and debonding of the brackets. To reach the best bond strength, the researchers tried to design different studies to evaluate the effect of variables and prevent any possible side effects in clinical situations. It is noticed that most studies have mainly focused on adhesives, enamel preparation and methods of curing which are discussed in this review. The literature was reviewed by searching databases, using micro-leakage and orthodontic bonding as the keywords . Having found the relevant studies, the researchers entered them into the database. After reviewing numerous studies conducted in this field, the type of adhesive or curing method was not found to have determinative role in the value of micro-leakage although more standardized studies are needed. PMID:28959751

  18. Visible light-initiated interfacial thiol-norbornene photopolymerization for forming islet surface conformal coating

    PubMed Central

    Shih, Han; Mirmira, Raghavendra G.; Lin, Chien-Chi

    2015-01-01

    A cytocompatible visible light-mediated interfacial thiol-norbornene photopolymerization scheme was developed for creating hydrogel conformal coating on pancreatic islets. The step-growth thiol-norbornene reaction affords high consistency and tunability in gel coating thickness. Furthermore, isolated islets coated with thiol-norbornene gel maintained their viability and function in vitro. PMID:26509035

  19. Functional thiols as repair and doping agents of defective MoS2 monolayers

    NASA Astrophysics Data System (ADS)

    Förster, Anja; Gemming, Sibylle; Seifert, Gotthard

    2018-06-01

    Recent experimental and theoretical studies indicate that thiols (R-SH) can be used to repair sulfur vacancy defects in MoS2 monolayers (MLs). This density functional theory study investigates how the thiol repair mechanism process can be used to dope MoS2 MLs. Fluorinated thiols as well as amine-containing ones are used to p- and n-dope the MoS2 ML, respectively. It is shown that functional groups are only physisorbed on the repaired MoS2 surface. This explains the reversible doping with fluorinated thiols.

  20. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1980-01-01

    Discusses analytical methods selected from current research articles. Groups information by topics of general interest, including acids, aldehydes and ketones, nitro compounds, phenols, and thiols. Cites 97 references. (CS)

  1. Detection of thiol-based redox switch processes in parasites - facts and future.

    PubMed

    Rahbari, Mahsa; Diederich, Kathrin; Becker, Katja; Krauth-Siegel, R Luise; Jortzik, Esther

    2015-05-01

    Malaria and African trypanosomiasis are tropical diseases caused by the protozoa Plasmodium and Trypanosoma, respectively. The parasites undergo complex life cycles in the mammalian host and insect vector, during which they are exposed to oxidative and nitrosative challenges induced by the host immune system and endogenous processes. Attacking the parasite's redox metabolism is a target mechanism of several known antiparasitic drugs and a promising approach to novel drug development. Apart from this aspect, oxidation of cysteine residues plays a key role in protein-protein interaction, metabolic responses to redox events, and signaling. Understanding the role and dynamics of reactive oxygen species and thiol switches in regulating cellular redox homeostasis is crucial for both basic and applied biomedical approaches. Numerous techniques have therefore been established to detect redox changes in parasites including biochemical methods, fluorescent dyes, and genetically encoded probes. In this review, we aim to give an insight into the characteristics of redox networks in the pathogens Plasmodium and Trypanosoma, including a comprehensive overview of the consequences of specific deletions of redox-associated genes. Furthermore, we summarize mechanisms and detection methods of thiol switches in both parasites and discuss their specificity and sensitivity.

  2. Glutamine Supplementation Attenuates Ethanol-Induced Disruption of Apical Junctional Complexes in Colonic Epithelium and Ameliorates Gut Barrier Dysfunction and Fatty Liver in Mice

    PubMed Central

    Chaudhry, Kamaljit K.; Shukla, Pradeep K.; Mir, Hina; Manda, Bhargavi; Gangwar, Ruchika; Yadav, Nikki; McMullen, Megan; Nagy, Laura E.; Rao, RadhaKrishna

    2015-01-01

    Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of glutamine in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed Gln-free diet and absent in mice fed Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury. PMID:26365579

  3. Synergistic extraction and spectrophotometric determination of copper(II) using 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol: Analysis of alloys, pharmaceuticals and biological samples

    NASA Astrophysics Data System (ADS)

    Kamble, Ganesh S.; Kolekar, Sanjay S.; Anuse, Mansing A.

    2011-05-01

    A simple and selective spectrophotometric method was developed for the determination of copper(II) with 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol [2',4'-dinitro APTPT] as a chromogenic reagent. The procedure was based on the synergistic extraction of copper(II) with 2',4'-dinitro APTPT in the presence of 0.5 mol L -1 pyridine to give green colored ternary complex of a molar ratio 1:2:2 (M:L:Py) in the pH range 8.7-10.5. It exhibits a maximum absorption of colored complex at 445 nm and 645 nm in chloroform against the reagent blank. Beer's law was followed in the concentration range 10-80 μg mL -1 of copper(II) and optimum range of 20-70 μg mL -1 the metal as evaluated from Ringbom's plot. The molar absorptivity and Sandell's sensitivity of copper(II)-2',4'-dinitro APTPT-pyridine complex in chloroform are 0.87 × 10 3 L mol -1 cm -1 and 0.072 μg cm -2, respectively. The interfering effects of various cations and anions were also studied, and use of suitable masking agents enhances the selectivity of the method. The proposed method is rapid, reproducible and successfully applied for the determination of copper(II) in binary and synthetic mixtures, alloys, pharmaceutical formulations, environmental and fertilizer samples. Comparison of the results with those obtained using an atomic absorption spectrophotometer also tested the validity of the method.

  4. Intercalation of gaseous thiols and sulfides into Ag+ ion-exchanged aluminum dihydrogen triphosphate.

    PubMed

    Hayashi, Aki; Saimen, Hiroki; Watanabe, Nobuaki; Kimura, Hitomi; Kobayashi, Ayumi; Nakayama, Hirokazu; Tsuhako, Mitsutomo

    2005-08-02

    Ag(+) ion-exchanged layered aluminum dihydrogen triphosphate (AlP) with the interlayer distance of 0.85 nm was synthesized by the ion-exchange of proton in triphosphate with Ag(+) ion. The amount of exchanged Ag(+) ion depended on the concentration of AgNO(3) aqueous solution. Ag(+) ion-exchanged AlP adsorbed gaseous thiols and sulfides into the interlayer region. The adsorption amounts of thiols were more than those of sulfides, thiols with one mercapto group > thiol with two mercapto groups > sulfides, and depended on the amount of exchanged Ag(+) ion in the interlayer region. The thiols with one mercapto group were intercalated to expand the interlayer distance of Ag(+) ion-exchanged AlP, whereas there was no expansion in the adsorption of sulfide. In the case of thiol with two mercapto groups, there was observed contraction of the interlayer distance through the bridging with Ag(+) ions of the upper and lower sides of the interlayer region.

  5. DNA biosensor for detection of Salmonella typhi from blood sample of typhoid fever patient using gold electrode modified by self-assembled monolayers of thiols

    NASA Astrophysics Data System (ADS)

    Suryapratiwi, Windha Novita; Paat, Vlagia Indira; Gaffar, Shabarni; Hartati, Yeni Wahyuni

    2017-05-01

    Electrochemical biosensors are currently being developed in order to handle various clinical problems in diagnosing infectious diseases caused by pathogenic bacteria, or viruses. On this research, voltammetric DNA biosensor using gold electrode modified by thiols with self-assembled monolayers had been developed to detect a certain sequence of Salmonella typhi DNA from blood sample of typhoid fever patient. Thiol groups of cysteamines (Cys) and aldehyde groups from glutaraldehydes (Glu) were used as a link to increase the performance of gold electrode in detecting guanine oxidation signal of hybridized S. typhi DNA and ssDNA probe. Standard calibration method was used to determine analytical parameters from the measurements. The result shown that, the detection of S. typhi DNA from blood sample of typhoid fever patient can be carried out by voltammetry using gold electrode modified by self-assembled monolayers of thiols. A characteristic oxidation potential of guanine using Au/Cys/Gluwas obtained at +0.17 until +0.20 V. Limit of detection and limit of quantification from this measurements were 1.91μg mL-1 and 6.35 μg mL-1. The concentration of complement DNA from sample was 6.96 μg mL-1.

  6. Moderate physical exercise induces the oxidation of human blood protein thiols.

    PubMed

    Inayama, Takayo; Oka, Jun; Kashiba, Misato; Saito, Makoto; Higuchi, Mitsuru; Umegaki, Keizo; Yamamoto, Yorihiro; Matsuda, Mitsuo

    2002-03-15

    Exercise is known to induce the oxidation of blood low-molecular-weight (LMW) thiols such as reduced glutathione (GSH). We previously reported that full-marathon running induced a decrease in human plasma levels of protein-bound sulfhydryl groups (p-SHs). Moderate exercise, a 30-min running at the intensity of the individual ventilatory threshold, performed by untrained healthy females caused a significant decrease in erythrocyte levels of p-SHs (mostly hemoglobin cysteine residues) and LMW thiols, but their levels returned to each baseline by 2 h. No significant change in plasma LMW thiols was observed. However, plasma levels of p-SHs significantly decreased after running and remained unchanged after 24 h. These results suggest that moderate exercise causes the oxidation of blood thiols, especially protein-bound thiols.

  7. Semi-automated method to measure pneumonia severity in mice through computed tomography (CT) scan analysis

    NASA Astrophysics Data System (ADS)

    Johri, Ansh; Schimel, Daniel; Noguchi, Audrey; Hsu, Lewis L.

    2010-03-01

    Imaging is a crucial clinical tool for diagnosis and assessment of pneumonia, but quantitative methods are lacking. Micro-computed tomography (micro CT), designed for lab animals, provides opportunities for non-invasive radiographic endpoints for pneumonia studies. HYPOTHESIS: In vivo micro CT scans of mice with early bacterial pneumonia can be scored quantitatively by semiautomated imaging methods, with good reproducibility and correlation with bacterial dose inoculated, pneumonia survival outcome, and radiologists' scores. METHODS: Healthy mice had intratracheal inoculation of E. coli bacteria (n=24) or saline control (n=11). In vivo micro CT scans were performed 24 hours later with microCAT II (Siemens). Two independent radiologists scored the extent of airspace abnormality, on a scale of 0 (normal) to 24 (completely abnormal). Using the Amira 5.2 software (Mercury Computer Systems), a histogram distribution of voxel counts between the Hounsfield range of -510 to 0 was created and analyzed, and a segmentation procedure was devised. RESULTS: A t-test was performed to determine whether there was a significant difference in the mean voxel value of each mouse in the three experimental groups: Saline Survivors, Pneumonia Survivors, and Pneumonia Non-survivors. It was found that the voxel count method was able to statistically tell apart the Saline Survivors from the Pneumonia Survivors, the Saline Survivors from the Pneumonia Non-survivors, but not the Pneumonia Survivors vs. Pneumonia Non-survivors. The segmentation method, however, was successfully able to distinguish the two Pneumonia groups. CONCLUSION: We have pilot-tested an evaluation of early pneumonia in mice using micro CT and a semi-automated method for lung segmentation and scoring system. Statistical analysis indicates that the system is reliable and merits further evaluation.

  8. Syntheses, spectroscopic characterization, thermal study, molecular modeling, and biological evaluation of novel Schiff's base benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) with Ni(II), and Cu(II) metal complexes.

    PubMed

    Chandra, Sulekh; Gautam, Seema; Rajor, Hament Kumar; Bhatia, Rohit

    2015-02-25

    Novel Schiff's base ligand, benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) was synthesized by the condensation of benzil and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio. The structure of ligand was determined on the basis of elemental analyses, IR, (1)H NMR, mass, and molecular modeling studies. Synthesized ligand behaved as tetradentate and coordinated to metal ion through sulfur atoms of thiol ring and nitrogen atoms of imine group. Ni(II), and Cu(II) complexes were synthesized with this nitrogen-sulfur donor (N2S2) ligand. Metal complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, IR, electronic spectra, EPR, thermal, and molecular modeling studies. All the complexes showed molar conductance corresponding to non-electrolytic nature, expect [Ni(L)](NO3)2 complex, which was 1:2 electrolyte in nature. [Cu(L)(SO4)] complex may possessed square pyramidal geometry, [Ni(L)](NO3)2 complex tetrahedral and rest of the complexes six coordinated octahedral/tetragonal geometry. Newly synthesized ligand and its metal complexes were examined against the opportunistic pathogens. Results suggested that metal complexes were more biological sensitive than free ligand. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Enzymatic degradation of thiolated chitosan.

    PubMed

    Laffleur, Flavia; Hintzen, Fabian; Rahmat, Deni; Shahnaz, Gul; Millotti, Gioconda; Bernkop-Schnürch, Andreas

    2013-10-01

    The objective of this study was to evaluate the biodegradability of thiolated chitosans in comparison to unmodified chitosan. Mediated by carbodiimide, thioglycolic acid (TGA) and mercaptonicotinic acid (MNA) were covalently attached to chitosan via formation an amide bond. Applying two different concentrations of carbodiimide 50 and 100 mM, two chitosan TGA conjugates (TGA A and TGA B) were obtained. According to chitosan solution (3% m/v) thiomer solutions were prepared and chitosanolytic enzyme solutions were added. Lysozyme, pectinase and cellulase were examined in chitosan degrading activity. The enzymatic degradability of these thiomers was investigated by viscosity measurements with a plate-plate viscometer. The obtained chitosan TGA conjugate A displayed 267.7 µmol and conjugate B displayed 116.3 µmol of immobilized thiol groups. With 325.4 µmol immobilized thiol groups, chitosan MNA conjugate displayed the most content of thiol groups. In rheological studies subsequently the modification proved that chitosan TGA conjugates with a higher coupling rate of thiol groups were not only degraded to a lesser extent by 20.9-26.4% but also more slowly. Chitosan mercaptonicotinic acid was degraded by 31.4-50.1% depending the investigated enzyme and even faster than unmodified chitosan. According to these results the biodegradability can be influenced by various modifications of the polymer which showed in particular that the rate of biodegradation is increased when MNA is the ligand, whereas the degradation is hampered when TGA is used as ligand for chitosan.

  10. Synthesis and In Vitro Evaluation of Thiolated Carrageenan.

    PubMed

    Suchaoin, Wongsakorn; Bonengel, Sonja; Hussain, Shah; Huck, Christian W; Ma, Benjamin N; Bernkop-Schnürch, Andreas

    2015-08-01

    The aim of this study was to generate and characterize a thiolated carrageenan. Thiolated carrageenan (carrageenan-SH) was synthesized from kappa (κ)- and iota (ι)-carrageenan by bromine replacement of the hydroxyl moieties followed by substitution to thiol groups using thiourea. Thiolated κ- and ι-carrageenan exhibited 176.57 ± 20.11 and 109.51 ± 18.26 μmol thiol groups per gram polymer, respectively. The resazurin test in Caco-2 cells revealed no toxic effect of both thiolated carrageenans at a concentration below 0.1% (w/v). Regarding efflux pump inhibitory effect, cellular accumulation of multidrug-resistance protein 2 substrate, sulforhodamine 101, was 1.38- and 1.35-fold increased in cells treated with thiolated κ- and ι-carrageenan, respectively. Modification of κ- and ι-carrageenan led to 3.9- and 2.0-fold increase in dynamic viscosity of mucus-thiolated carrageenan mixture within 4 h. Furthermore, residence time of κ- and ι-carrageenan-SH on porcine intestinal mucosa was 6.4- and 1.8-fold prolonged, respectively, as demonstrated by rotating cylinder method, indicating improved mucoadhesive properties. Hence, thiolation of carrageenans led to novel pharmaceutical excipients for various applications. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Specificity of the trypanothione-dependent Leishmania major glyoxalase I: structure and biochemical comparison with the human enzyme.

    PubMed

    Ariza, Antonio; Vickers, Tim J; Greig, Neil; Armour, Kirsten A; Dixon, Mark J; Eggleston, Ian M; Fairlamb, Alan H; Bond, Charles S

    2006-02-01

    Trypanothione replaces glutathione in defence against cellular damage caused by oxidants, xenobiotics and methylglyoxal in the trypanosomatid parasites, which cause trypanosomiasis and leishmaniasis. In Leishmania major, the first step in methylglyoxal detoxification is performed by a trypanothione-dependent glyoxalase I (GLO1) containing a nickel cofactor; all other characterized eukaryotic glyoxalases use zinc. In kinetic studies L. major and human enzymes were active with methylglyoxal derivatives of several thiols, but showed opposite substrate selectivities: N1-glutathionylspermidine hemithioacetal is 40-fold better with L. major GLO1, whereas glutathione hemithioacetal is 300-fold better with human GLO1. Similarly, S-4-bromobenzylglutathionylspermidine is a 24-fold more potent linear competitive inhibitor of L. major than human GLO1 (Kis of 0.54 microM and 12.6 microM, respectively), whereas S-4-bromobenzylglutathione is >4000-fold more active against human than L. major GLO1 (Kis of 0.13 microM and >500 microM respectively). The crystal structure of L. major GLO1 reveals differences in active site architecture to both human GLO1 and the nickel-dependent Escherichia coli GLO1, including increased negative charge and hydrophobic character and truncation of a loop that may regulate catalysis in the human enzyme. These differences correlate with the differential binding of glutathione and trypanothione-based substrates, and thus offer a route to the rational design of L. major-specific GLO1 inhibitors.

  12. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin.

    PubMed Central

    Stamler, J S; Jaraki, O; Osborne, J; Simon, D I; Keaney, J; Vita, J; Singel, D; Valeri, C R; Loscalzo, J

    1992-01-01

    We have recently shown that nitric oxide or authentic endothelium-derived relaxing factor generated in a biologic system reacts in the presence of specific protein thiols to form S-nitrosoprotein derivatives that have endothelium-derived relaxing factor-like properties. The single free cysteine of serum albumin, Cys-34, is particularly reactive toward nitrogen oxides (most likely nitrosonium ion) under physiologic conditions, primarily because of its anomalously low pK; given its abundance in plasma, where it accounts for approximately 0.5 mM thiol, we hypothesized that this plasma protein serves as a reservoir for nitric oxide produced by the endothelial cell. To test this hypothesis, we developed a methodology, which involves UV photolytic cleavage of the S--NO bond before reaction with ozone for chemiluminescence detection, with which to measure free nitric oxide, S-nitrosothiols, and S-nitrosoproteins in biologic systems. We found that human plasma contains approximately 7 microM S-nitrosothiols, of which 96% are S-nitrosoproteins, 82% of which is accounted for by S-nitroso-serum albumin. By contrast, plasma levels of free nitric oxide are only in the 3-nM range. In rabbits, plasma S-nitrosothiols are present at approximately 1 microM; 60 min after administration of NG-monomethyl-L-arginine at 50 mg/ml, a selective and potent inhibitor of nitric oxide synthetases, S-nitrosothiols decreased by approximately 40% (greater than 95% of which were accounted for by S-nitrosoproteins, and approximately 80% of which was S-nitroso-serum albumin); this decrease was accompanied by a concomitant increase in mean arterial blood pressure of 22%. These data suggest that naturally produced nitric oxide circulates in plasma primarily complexed in S-nitrosothiol species, principal among which is S-nitroso-serum albumin. This abundant, relatively long-lived adduct likely serves as a reservoir with which plasma levels of highly reactive, short-lived free nitric oxide can be regulated for the maintenance of vascular tone. PMID:1502182

  13. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin.

    PubMed

    Stamler, J S; Jaraki, O; Osborne, J; Simon, D I; Keaney, J; Vita, J; Singel, D; Valeri, C R; Loscalzo, J

    1992-08-15

    We have recently shown that nitric oxide or authentic endothelium-derived relaxing factor generated in a biologic system reacts in the presence of specific protein thiols to form S-nitrosoprotein derivatives that have endothelium-derived relaxing factor-like properties. The single free cysteine of serum albumin, Cys-34, is particularly reactive toward nitrogen oxides (most likely nitrosonium ion) under physiologic conditions, primarily because of its anomalously low pK; given its abundance in plasma, where it accounts for approximately 0.5 mM thiol, we hypothesized that this plasma protein serves as a reservoir for nitric oxide produced by the endothelial cell. To test this hypothesis, we developed a methodology, which involves UV photolytic cleavage of the S--NO bond before reaction with ozone for chemiluminescence detection, with which to measure free nitric oxide, S-nitrosothiols, and S-nitrosoproteins in biologic systems. We found that human plasma contains approximately 7 microM S-nitrosothiols, of which 96% are S-nitrosoproteins, 82% of which is accounted for by S-nitroso-serum albumin. By contrast, plasma levels of free nitric oxide are only in the 3-nM range. In rabbits, plasma S-nitrosothiols are present at approximately 1 microM; 60 min after administration of NG-monomethyl-L-arginine at 50 mg/ml, a selective and potent inhibitor of nitric oxide synthetases, S-nitrosothiols decreased by approximately 40% (greater than 95% of which were accounted for by S-nitrosoproteins, and approximately 80% of which was S-nitroso-serum albumin); this decrease was accompanied by a concomitant increase in mean arterial blood pressure of 22%. These data suggest that naturally produced nitric oxide circulates in plasma primarily complexed in S-nitrosothiol species, principal among which is S-nitroso-serum albumin. This abundant, relatively long-lived adduct likely serves as a reservoir with which plasma levels of highly reactive, short-lived free nitric oxide can be regulated for the maintenance of vascular tone.

  14. Cu2+-imprinted cross-linked chitosan resin as micro-column packing materials for online chemiluminescence determination of trace copper.

    PubMed

    Nie, Feng; Hao, Liang; Gao, Mei; Wu, Yingchun; Li, Xinsheng; Yu, Sha

    2011-01-01

    The Cu(2+)-imprinted cross-linked chitosan resin was synthesized and the binding characteristic of the resin to Cu(2+) was evaluated. The prepared resin was packed into a micro-glass column and used as micro-separating column. The micro-separating column was connected into the chemiluminescence flow system and placed in front of the window of the photomultiplier tube. Based on the luminol-hydrogen peroxide chemiluminescence system, a flow injection online chemiluminescence method for determination of trace copper was developed and trace Cu(2+) in complex samples was successfully determined. The proposed method improved the shortcomings of chemiluminescence method's poor selectivity. Copyright © 2010 John Wiley & Sons, Ltd.

  15. Reversible inactivation of CO dehydrogenase with thiol compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreß, Oliver; Gnida, Manuel; Pelzmann, Astrid M.

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceedsmore » at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in the assembly of the bimetallic cluster might proceed.« less

  16. Inhibitory effects of ethyl acetate extract of Teucrium polium on in vitro protein glycoxidation.

    PubMed

    Ardestani, Amin; Yazdanparast, Razieh

    2007-12-01

    Regarding the involvement of free radicals and oxidative reactions in protein glycoxidation processes, compounds with antioxidant activities have been tested in order to reduce or to stop glycoxidation. In this study, we evaluated the antioxidant potential of several organic fractions of Teucrium polium extract using different model systems including total antioxidant capacity by the phosphomolybdenum method, ferric reducing antioxidant power and Trolox equivalent antioxidant capacity assays, antioxidant activity in linoleic acid emulsion system and scavenging of 1,1-diphenyl-2-picrylhydrazyl radical. The results indicated that the ethyl acetate (EtOAc) fraction of T. polium possesses the highest antioxidant activity and total phenolic and flavonoid contents. Given the link between glycation and oxidation, we proposed that the EtOAc fraction might possess significant in vitro antiglycation activities as well. Our data confirmed the inhibitory effect of EtOAc fraction on bovine serum albumin (BSA) glycoxidation measured in terms of advanced glycation end products (AGEs) and pentosidine formation as well as protein oxidation markers including protein carbonyl formation (PCO) and loss of protein thiols. Reducing sugars such as ribose and glucose increase fluorescence intensity of glycated BSA in terms of total AGEs and pentosidine during 21 day of exposure. Moreover, sugars cause more PCO formation and also oxidize thiol groups more in glycated than in native BSA. EtOAc extract at different concentrations (10-100 microg/ml) has significantly quenched the fluorescence intensity of glycated BSA. Furthermore, we demonstrated that the inhibitory effect of EtOAc extract in preventing oxidative protein damages including effect on PCO formation and thiol oxidation which are believe to form under the glycoxidation process. These results clearly demonstrate that, the EtOAc fraction, owning to its antioxidant content, is capable of suppressing the formation of AGEs and protein oxidation in vitro.

  17. Kinetic Resolution of sec-Thiols by Enantioselective Oxidation with Rationally Engineered 5-(Hydroxymethyl)furfural Oxidase.

    PubMed

    Pickl, Mathias; Swoboda, Alexander; Romero, Elvira; Winkler, Christoph K; Binda, Claudia; Mattevi, Andrea; Faber, Kurt; Fraaije, Marco W

    2018-03-05

    Various flavoprotein oxidases were recently shown to oxidize primary thiols. Herein, this reactivity is extended to sec-thiols by using structure-guided engineering of 5-(hydroxymethyl)furfural oxidase (HMFO). The variants obtained were employed for the oxidative kinetic resolution of racemic sec-thiols, thus yielding the corresponding thioketones and nonreacted R-configured thiols with excellent enantioselectivities (E≥200). The engineering strategy applied went beyond the classic approach of replacing bulky amino acid residues with smaller ones, as the active site was additionally enlarged by a newly introduced Thr residue. This residue established a hydrogen-bonding interaction with the substrates, as verified in the crystal structure of the variant. These strategies unlocked HMFO variants for the enantioselective oxidation of a range of sec-thiols. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Activation energy determinations suggest that thiols reverse autooxidation of tetrahydrobiopterin by a different mechanism than ascorbate.

    PubMed

    Valent, Sándor; Tóth, Miklós

    2006-01-01

    In neutral aqueous solutions tetrahydrobiopterin is oxidized by dioxygen in a reaction that is succinctly described as autooxidation. Ascorbate and thiols moderate this reaction by reversing the oxidative process. In the present study the effect of various thiols on the apparent Arrhenius activation energy of tetrahydrobiopterin autooxidation was characterized and compared to that of ascorbate determined previously. We observed that - in sharp contrast to ascorbate - the efficiency of thiols to protect tetrahydrobiopterin decreased with the elevation of temperature from 22 to 37 degrees C. Accordingly, the apparent Arrhenius activation energies (in kJ/mol) measured in the presence of thiols were consistently greater than the value determined with tetrahydrobiopterin alone (59.6 +/- 1.4) or in the presence of ascorbate (59.9 +/- 2.8). Thus, the energy values were 88.8+/-1.1 with glutathione, 87.6 +/- 2.1 with N-acetylcysteine, 79.2 +/- 1.6 with cysteine, 75.1 +/- 2.4 with dithiotreitol and 70.3 +/- 0.9 with homocysteine. Since thiols are as potent reducing agents as ascorbate, these findings suggest that thiols and ascorbate protect tetrahydrobiopterin from oxidation acting at different steps of the oxidation process. It is likely that thiols reduce quinoidal dihydrobiopterin, whereas ascorbate scavenges the trihydrobiopterin radical to tetrahydrobiopterin. Furthermore, the results indicate that thiols are excellent tools to protect tetrahydrobiopterin from autooxidative decomposition in laboratory experiments conducted at relatively low temperatures, whereas the protective effect diminishes at 37 degrees C, i.e. under physiological conditions.

  19. Synthesis, Characterization and Cytotoxicity Evaluation of Nitric Oxide-Iron Oxide magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Haddad, P. S.; Britos, T. N.; Santos, M. C.; Seabra, A. B.; Palladino, M. V.; Justo, G. Z.

    2015-05-01

    The present work is focused on the synthesis, characterization and cytotoxic evaluation of superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs have been proposed for an increasing number of biomedical applications, such as drug-delivery. To this end, toxicological studies of their potential effects in biological systems must be better evaluated. The aim of this study was to examine the in vitro cytotoxicity of thiolated (SH) and S-nitrosated (S-NO) SPIONs in cancer cell lines. SPIONs were prepared by the coprecipitation method using ferrous and ferric chlorides in aqueous solution. The nanoparticles (Fe3O4) were coated with thiol containing molecule cysteine (Cys) (molar ratio SPIONs:ligand = 1:20), leading to the formation of an aqueous dispersion of thiolated nanoparticles (SH- SPIONs). These particles were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results obtained showed that Cys-SPIONs have a mean diameter of 14 nm at solid state and present super paramagnetic behavior at room temperature. Thiol groups on the surface of the nanoparticles were nitrosated through the addition of sodium nitrite leading to the formation of S-NOCys-SPIONs (S-nitrosated-Cys-SPIONs), which act as spontaneous nitric oxide (NO) donor). The cytotoxicity of thiolated and S-nitrosated nanoparticles was evaluated in acute T cell leukemia (Jurkat cell line) and Lewis lung carcinoma (3LL) cells. The results showed that at low concentrations thiolated (Cys) and S- nitrosated (S-NOCyst) SPIONs display low cytotoxicity in both cell types. However, at higher concentrations, Cys-SPIONs exhibited cytotoxic effects, whereas S-NOCys-SPIONs protected them, and also promoted cell proliferation.

  20. Modification of Ag nanoparticles with mixed thiols for improved SERS detection of poorly adsorbing target molecules: detection of MDMA.

    PubMed

    Stewart, Alan; Bell, Steven E J

    2011-04-21

    Here we report an example of a mixed thiol monolayer on the surface of Ag nanoparticles which promotes adsorption and quantitative SERS detection of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy"); the thiols in the mixed monolayers act synergistically since MDMA does not adsorb onto colloids modified with either of the thiols separately. © The Royal Society of Chemistry 2011

  1. Thiol Redox and pKa Properties of Mycothiol, the Predominant Low-Molecular-Weight Thiol Cofactor in the Actinomycetes.

    PubMed

    Sharma, Sunil V; Van Laer, Koen; Messens, Joris; Hamilton, Chris J

    2016-09-15

    The thiol pKa and standard redox potential of mycothiol, the major low-molecular-weight thiol cofactor in the actinomycetes, are reported. The measured standard redox potential reveals substantial discrepancies in one or more of the other previously measured intracellular parameters that are relevant to mycothiol redox biochemistry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 1: Copper-Catalyzed Oxidation.

    PubMed

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2016-05-25

    Sulfidic off-odors as a result of hydrogen sulfide (H2S) and low-molecular-weight thiols are commonly encountered in wine production. These odors are usually removed by the process of Cu(II) fining, a process that remains poorly understood. The present study aims to elucidate the underlying mechanisms by which Cu(II) interacts with H2S and thiol compounds (RSH) under wine-like conditions. Copper complex formation was monitored along with H2S, thiol, oxygen, and acetaldehyde concentrations after the addition of Cu(II) (50 or 100 μM) to air-saturated model wine solutions containing H2S, cysteine, 6-sulfanylhexan-1-ol, or 3-sulfanylhexan-1-ol (300 μM each). The presence of H2S and thiols in excess to Cu(II) led to the rapid formation of ∼1.4:1 H2S/Cu and ∼2:1 thiol/Cu complexes, resulting in the oxidation of H2S and thiols and reduction of Cu(II) to Cu(I), which reacted with oxygen. H2S was observed to initially oxidize rather than form insoluble copper sulfide. The proposed reaction mechanisms provide insight into the extent to which H2S can be selectively removed in the presence of thiols in wine.

  3. Identification of novel aroma-active thiols in pan-roasted white sesame seeds.

    PubMed

    Tamura, Hitoshi; Fujita, Akira; Steinhaus, Martin; Takahisa, Eisuke; Watanabe, Hiroyuki; Schieberle, Peter

    2010-06-23

    Screening for aroma-active compounds in an aroma distillate obtained from freshly pan-roasted sesame seeds by aroma extract dilution analysis revealed 32 odorants in the FD factor range of 2-2048, 29 of which could be identified. The highest FD factors were found for the coffee-like smelling 2-furfurylthiol, the caramel-like smelling 4-hydroxy-2,5-dimethyl-3(2H)-furanone, the coffee-like smelling 2-thenylthiol (thiophen-2-yl-methylthiol), and the clove-like smelling 2-methoxy-4-vinylphenol. In addition, 9 odor-active thiols with sulfurous, meaty, and/or catty, black-currant-like odors were identified for the first time in roasted sesame seeds. Among them, 2-methyl-1-propene-1-thiol, (Z)-3-methyl-1-butene-1-thiol, (E)-3-methyl-1-butene-1-thiol, (Z)-2-methyl-1-butene-1-thiol, (E)-2-methyl-1-butene-1-thiol, and 4-mercapto-3-hexanone were previously unknown as food constituents. Their structures were confirmed by comparing their mass spectra and retention indices as well as their sensory properties with those of synthesized reference compounds. The relatively unstable 1-alkene-1-thiols represent a new class of food odorants and are suggested as the key contributors to the characteristic, but quickly vanishing, aroma of freshly ground roasted sesame seeds.

  4. Incessant formation of chain-like mesoporous silica with a superior binding capacity for mercury.

    PubMed

    Ravi, S; Selvaraj, M

    2014-04-14

    A novel incessant formation of chain like mesoporous silica (ICMS) has been easily materialized using a mixed surfactant (Pluronic P123 and FC-4) as a structuring reagent in conjunction with a thiol precursor (3-MPS) through a one-pot synthetic method. A particular thiol concentration facilitated the interaction of the micelle head groups to form long-chain micelles, where FC-4 enhanced further growth. The rapid interactions of the micelles and the condensation of silicic acid and its oligomeric derivatives by coordinating 3-MPS through hydrogen bonding interactions leads to form ICMS. The characterization results for the ICMS illustrated that it has an ordered hexagonal pore geometry. The capability of the ICMS for Hg(2+) adsorption was extensively studied under different optimal parameters and the adsorption isothermal values clearly fit with the Langmuir and Freundlich isothermal plots. This novel material exhibited an unprecedentedly high binding affinity toward even microgram levels of mercury ions in wastewater, compared to other thiol-based mesoporous silica.

  5. Recent trends in electrochemical biosensors of superoxide dismutases.

    PubMed

    Balamurugan, Murugesan; Santharaman, Paulraj; Madasamy, Thangamuthu; Rajesh, Seenivasan; Sethy, Niroj Kumar; Bhargava, Kalpana; Kotamraju, Srigiridhar; Karunakaran, Chandran

    2018-09-30

    Superoxide dismutases (SODs), a family of ubiquitous enzymes, provide essential protection to biological systems against uncontrolled reactions with oxygen- and nitrogen- based radical species. We review first the role of SODs in oxidative stress and the other biological functions such as peroxidase, nitrite oxidase, thiol oxidase activities etc., implicating its role in neurodegenerative, cardiovascular diseases, and ageing. Also, this review focuses on the development of electrochemical label-free immunosensor for SOD1 and the recent advances in biosensing assay methods based on their catalytic and biological functions with various substrates including reactive oxygen species (superoxide anion radical, hydrogen peroxide), nitric oxide metabolites (nitrite, nitrate) and thiols using thiol oxidase activity. Furthermore, we emphasize the progress made in improving the detection performance through incorporation of the SOD into conducting polymers and nanocomposite matrices. In addition, we address the potential opportunities, challenges, advances in electrochemical-sensing platforms and development of portable analyzer for point-of-care applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Water-soluble CdTe nanocrystals under high pressure

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Cheng

    2015-02-01

    The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NCs powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.

  7. Stoichiometry of mercury-thiol complexes on bacterial cell envelopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Bhoopesh; Shoenfelt, Elizabeth; Yu, Qiang

    We have examined the speciation of Hg(II) complexed with intact cell suspensions (1013 cells L- 1) of Bacillus subtilis, a common gram-positive soil bacterium, Shewanella oneidensis MR-1, a facultative gram-negative aquatic organism, and Geobacter sulfurreducens, a gram-negative anaerobic bacterium capable of Hg-methylation at Hg(II) loadings spanning four orders of magnitude (120 nM to 350 μM) at pH 5.5 (± 0.2). The coordination environments of Hg on bacterial cells were analyzed using synchrotron based X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy at the Hg LIII edge. The abundance of thiols on intact cells wasmore » determined by a fluorescence-spectroscopy based method using a soluble bromobimane, monobromo(trimethylammonio)bimane (qBBr) to block thiol sites, and potentiometric titrations of biomass with and without qBBr treatment. The chemical forms of S on intact bacterial cells were determined using S k-edge XANES spectroscopy.« less

  8. Click and chemically triggered declick reactions through reversible amine and thiol coupling via a conjugate acceptor

    NASA Astrophysics Data System (ADS)

    Diehl, Katharine L.; Kolesnichenko, Igor V.; Robotham, Scott A.; Bachman, J. Logan; Zhong, Ye; Brodbelt, Jennifer S.; Anslyn, Eric V.

    2016-10-01

    The coupling and decoupling of molecular units is a fundamental undertaking of organic chemistry. Herein we report the use of a very simple conjugate acceptor, derived from Meldrum's acid, for the sequential ‘clicking’ together of an amine and a thiol in aqueous conditions at neutral pH. Subsequently, this linkage can be ‘declicked’ by a chemical trigger to release the original amine and thiol undisturbed. The reactivity differs from that of other crosslinking agents because the selectivity for sequential functionalization derives from an altering of the electrophilicity of the conjugate acceptor on the addition of the amine. We describe the use of the procedure to modify proteins, create multicomponent libraries and synthesize oligomers, all of which can be declicked to their starting components in a controlled fashion when desired. Owing to the mild reaction conditions and ease of use in a variety of applications, the method is predicted to have wide utility.

  9. Applying micro-costing methods to estimate the costs of pharmacy interventions: an illustration using multi-professional clinical medication reviews in care homes for older people.

    PubMed

    Sach, Tracey H; Desborough, James; Houghton, Julie; Holland, Richard

    2014-11-06

    Economic methods are underutilised within pharmacy research resulting in a lack of quality evidence to support funding decisions for pharmacy interventions. The aim of this study is to illustrate the methods of micro-costing within the pharmacy context in order to raise awareness and use of this approach in pharmacy research. Micro-costing methods are particularly useful where a new service or intervention is being evaluated and for which no previous estimates of the costs of providing the service exist. This paper describes the rationale for undertaking a micro-costing study before detailing and illustrating the process involved. The illustration relates to a recently completed trial of multi-professional medication reviews as an intervention provided in care homes. All costs are presented in UK£2012. In general, costing methods involve three broad steps (identification, measurement and valuation); when using micro-costing, closer attention to detail is required within all three stages of this process. The mean (standard deviation; 95% confidence interval (CI) ) cost per resident of the multi-professional medication review intervention was £104.80 (50.91; 98.72 to 109.45), such that the overall cost of providing the intervention to all intervention home residents was £36,221.29 (95% CI, 32 810.81 to 39 631.77). This study has demonstrated that micro-costing can be a useful method, not only for estimating the cost of a pharmacy intervention to feed into a pharmacy economic evaluation, but also as a source of information to help inform those designing pharmacy services about the potential time and costs involved in delivering such services. © 2014 Royal Pharmaceutical Society.

  10. Thiol-ene chemistry guided preparation of thiolated polymeric nanocomposite for anodic stripping voltammetric analysis of Cd2+ and Pb2+.

    PubMed

    Su, Zhaohong; Liu, Ying; Zhang, Yi; Xie, Qingji; Chen, Li; Huang, Yi; Fu, Yingchun; Meng, Yue; Li, Xuejiao; Ma, Ming; Yao, Shouzhuo

    2013-02-21

    We report on the thiol-ene chemistry guided preparation of a novel thiolated polymeric nanocomposite involving polyaniline (PANI), a functionalized thiol, e.g., sulfur-rich 2,5-dimercapto-1,3,4-thiadiazole (DMcT), and multiwalled carbon nanotubes (MWCNTs) for the sensitive differential pulse anodic stripping voltammetric determination of Cd(2+) and Pb(2+) on a glassy carbon electrode (GCE). Briefly, the thiol-ene reaction of a thiol with oxidized PANI that was chemically synthesized in the presence of solution-dispersed acidified MWCNTs yielded a thiolated polymeric nanocomposite of thiol-PANI/MWCNTs. The thiols examined include DMcT, 1,6-hexanedithiol and β-mercaptoethanol. Quartz crystal microbalance, cyclic voltammetry, scanning electron microscopy, Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy were used for film characterization and process monitoring. Under the optimized conditions, the obtained Bi/Nafion/DMcT-PANI/MWCNTs/GCE can sensitively sense Cd(2+) and Pb(2+) with limits of detection of 0.01 and 0.04 μg L(-1), respectively.

  11. Determination of captopril in biological samples by high-performance liquid chromatography with ThioGlo 3 derivatization.

    PubMed

    Aykin, N; Neal, R; Yusof, M; Ercal, N

    2001-11-01

    Captopril, a well-known angiotensin converting enzyme (ACE) inhibitor, is widely used for treatment of arterial hypertension. Recent studies suggest that it may also act as a scavenger of free radicals because of its thiol group. Therefore, the present study describes a rapid, sensitive and relatively simple method for the detection of captopril in biological tissues with reverse-phase HPLC. Captopril was first derivatized with ThioGlo 3 [3H-Naphto[2,1-b]pyran,9-acetoxy-2-(4-(2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl)phenyl-3-oxo-)]. It was then detected by fluorescence-HPLC using an Astec C(18) column as the stationary phase and a water:acetonitrile:acetic acid:phosphoric acid mixture (50:50; 1 mL/L acids) as the mobile phase (excitation wavelength, 365 nm; emission wavelength, 445 nm). The calibration curve for captopril was linear over a range of 10-2500 nM and the coefficient of variation acquired for the within- and between-run precision for captopril was 0.5 and 3.8%, respectively. The detection limit of captopril with this method was found to be 200 fmol/20 microL injection volume. Its relative recovery from biological samples was determined to the range from 93.3 to 105.3%. Based on these results, we believe that our method is advantageous for captopril determination. Copyright 2001 John Wiley & Sons, Ltd.

  12. Development of polymer-polysaccharide hydrogels for controlling drug delivery

    NASA Astrophysics Data System (ADS)

    Baldwin, Aaron David

    The use of polymers as biomaterials has evolved over the past several decades, encompassing an expanding synthetic toolbox and many bio-mimetic approaches. Both synthetic and natural polymers have been used as components for biomaterials as their unique chemical structures can provide specific functions for desired applications. Of these materials, heparin, a highly sulfated naturally occurring polysaccharide, has been investigated extensively as a core component in drug delivery platforms and tissue engineering. The goal of this work was to further explore the use of heparin via conjugation with synthetic polymers for applications in drug delivery. We begin by investigating low molecular weight heparin (LMWH), a depolymerized heparin that is used medicinally in the prevention of thrombosis by subcutaneous injection or intravenous drip. Certain disease states or disorders require frequent administration with invasive delivery modalities leading to compliance issues for individuals on prolonged therapeutic courses. To address these issues, a long-term delivery method was developed for LMWH via subcutaneous injection of in situ hydrogelators. This therapy was accomplished by chemical modification of LMWH with maleimide functionality so that it may be crosslinked into continuous hydrogel networks with four-arm thiolated polyethylene glycol (PEG-SH). These hydrogels degrade via hydrolysis over a period of weeks and release bioactive LMWH with first-order kinetics as determined by in vitro and in vivo models, thus indicating the possibility of an alternative means of heparin delivery over current accepted methodologies. Evaluation of the maleimide-thiol chemistries applied in the LMWH hydrogels revealed reversibility for some conjugates under reducing conditions. Addition chemistries, such as maleimide-thiol reactions, are widely employed in biological conjugates and are generally accepted as stable. Here we show that the resulting succinimide thioether formed by the Michael type addition of thiol derivatives to N-ethylmaleimide (NEM) undergoes retro and exchange reactions in the presence of other thiol compounds at physiological pH and temperature. Model studies of NEM conjugated to various thiols (4-mercaptophenylacetic acid (MPA), N-acetylcysteine, or 3-mercaptopropionic acid (MP)), incubated with a naturally occurring reducing agent, glutathione, showed half-lives from 20-80 hrs with extents of conversion from 20-90% for MPA and N-acetylcysteine conjugates. The kinetics of the retro reactions and extent of exchange can be modulated by the Michael donor's reactivity; therefore the degradation of maleimide-thiol adducts could be tuned for controlled release of drugs or degradation of materials at timescales different than those currently possible via disulfide-mediated release. The reduction sensitive maleimide-thiol chemistry was then investigated as a crosslinking mechanism for LMWH hydrogels. Crosslinking maleimide functionalized LMWH with PEG functionalized with thiophenyl functionalities imparted glutathione sensitivity. 4-mercaptophenylpropionic acid and 2,2-dimethyl-3-(4-mercaptophenyl)propionic acid, induced sensitivity to glutathione as shown by a decrease in degradation time of 4x and 5x respectively. The pseudo-first order retro reaction constants were approximately an order of magnitude slower than hydrogels crosslinked via disulfide linkages, indicating the potential use of the retro succinimide-thioether covalent bonds for reduction mediated release and/or degradation with increased blood stability and prolonged drug delivery timescales compared to disulfide chemistries. In summary, this work highlights the use of polymer-polysaccharide hydrogels composed of LMWH and PEG as investigated for drug delivery and as a tool for elucidating a novel reduction sensitive controlled release mechanism.

  13. Micro-costing studies in the health and medical literature: protocol for a systematic review

    PubMed Central

    2014-01-01

    Background Micro-costing is a cost estimation method that allows for precise assessment of the economic costs of health interventions. It has been demonstrated to be particularly useful for estimating the costs of new interventions, for interventions with large variability across providers, and for estimating the true costs to the health system and to society. However, existing guidelines for economic evaluations do not provide sufficient detail of the methods and techniques to use when conducting micro-costing analyses. Therefore, the purpose of this study is to review the current literature on micro-costing studies of health and medical interventions, strategies, and programs to assess the variation in micro-costing methodology and the quality of existing studies. This will inform current practice in conducting and reporting micro-costing studies and lead to greater standardization in methodology in the future. Methods/Design We will perform a systematic review of the current literature on micro-costing studies of health and medical interventions, strategies, and programs. Using rigorously designed search strategies, we will search Ovid MEDLINE, EconLit, BIOSIS Previews, Embase, Scopus, and the National Health Service Economic Evaluation Database (NHS EED) to identify relevant English-language articles. These searches will be supplemented by a review of the references of relevant articles identified. Two members of the review team will independently extract detailed information on the design and characteristics of each included article using a standardized data collection form. A third reviewer will be consulted to resolve discrepancies. We will use checklists that have been developed for critical appraisal of health economics studies to evaluate the quality and potential risk of bias of included studies. Discussion This systematic review will provide useful information to help standardize the methods and techniques for conducting and reporting micro-costing studies in research, which can improve the quality and transparency of future studies and enhance comparability and interpretation of findings. In the long run, these efforts will facilitate clinical and health policy decision-making about resource allocation. Trial registration Systematic review registration: PROSPERO CRD42014007453. PMID:24887208

  14. Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum).

    PubMed

    Pandey, Nalini; Singh, Gaurav Kumar

    2012-03-01

    Pea plants (Pisum sativum cv. Swati) exposed to different concentration of cadmium (50,100, 200 microM Cd) under controlled glass house conditions were quantified for different physiological parameters and antioxidative enzymes. In pea plants, Cd produced a significant inhibition of growth and induced chlorosis, marginal yellowing and necrosis in young leaves, the effect being most pronounced at 200 microM Cd supply. An alteration in the activated oxygen metabolism of pea plants were also detected as evidenced by an increase in concentration of H2O2 and TBARS along with decrease in the chlorophyll and carotenoid concentration in leaves. Cadmium toxicity induced an increase in non-protein thiol, ascorbate, proline and cysteine concentration. A significant increment in the activity of SOD, APX and GR, and a decrease in CAT was observed as a result of Cd treatment. The enhanced activity of SOD and inhibition of CAT and POD produces a high build up of H2O2 which appears to be the main cause of oxidative stress due to Cd toxicity in pea plants.

  15. SurvMicro: assessment of miRNA-based prognostic signatures for cancer clinical outcomes by multivariate survival analysis.

    PubMed

    Aguirre-Gamboa, Raul; Trevino, Victor

    2014-06-01

    MicroRNAs (miRNAs) play a key role in post-transcriptional regulation of mRNA levels. Their function in cancer has been studied by high-throughput methods generating valuable sources of public information. Thus, miRNA signatures predicting cancer clinical outcomes are emerging. An important step to propose miRNA-based biomarkers before clinical validation is their evaluation in independent cohorts. Although it can be carried out using public data, such task is time-consuming and requires a specialized analysis. Therefore, to aid and simplify the evaluation of prognostic miRNA signatures in cancer, we developed SurvMicro, a free and easy-to-use web tool that assesses miRNA signatures from publicly available miRNA profiles using multivariate survival analysis. SurvMicro is composed of a wide and updated database of >40 cohorts in different tissues and a web tool where survival analysis can be done in minutes. We presented evaluations to portray the straightforward functionality of SurvMicro in liver and lung cancer. To our knowledge, SurvMicro is the only bioinformatic tool that aids the evaluation of multivariate prognostic miRNA signatures in cancer. SurvMicro and its tutorial are freely available at http://bioinformatica.mty.itesm.mx/SurvMicro. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. S-protected thiolated chitosan: Synthesis and in vitro characterization

    PubMed Central

    Dünnhaupt, Sarah; Barthelmes, Jan; Thurner, Clemens C.; Waldner, Claudia; Sakloetsakun, Duangkamon; Bernkop-Schnürch, Andreas

    2012-01-01

    Purpose of the present study was the generation and evaluation of novel thiolated chitosans, so-named S-protected thiolated chitosans as mucosal drug delivery systems. Stability of all conjugates concerning swelling and disintegration behavior as well as drug release was examined. Mucoadhesive properties were evaluated in vitro on intestinal mucosa. Different thiolated chitosans were generated displaying increasing amounts of attached free thiol groups on the polymer, whereby more than 50% of these thiol groups were linked with 6-mercaptonicotinamide. Based on the implementation of this hydrophobic residue, the swelling behavior was 2-fold decreased, whereas stability was essentially improved. Their mucoadhesive properties were 2- and 14-fold increased compared to corresponding thiolated and unmodified chitosans, respectively. Release studies out of matrix tablets comprising the novel conjugates revealed a controlled release of a model peptide. Accordingly, S-protected thiomers represent a promising type of mucoadhesive polymers for the development of various mucosal drug delivery systems. PMID:22839999

  17. Bisphosphonate-coated BSA nanoparticles lack bone targeting after systemic administration.

    PubMed

    Wang, Guilin; Kucharski, Cezary; Lin, Xiaoyue; Uludağ, Hasan

    2010-09-01

    A polymeric conjugate of polyethyleneimine-graft-poly(ethylene glycol) and 2-(3-mercaptopropylsulfanyl)-ethyl-1,1-bisphosphonic acid (PEI-PEG-thiolBP) was prepared and used for surface coating of bovine serum albumin (BSA) nanoparticles (NPs) designed for bone-specific delivery of bone morphogenetic protein-2 (BMP-2). The NP coating was achieved with a dialysis and an evaporation method, and the obtained NPs were characterized by particle size, zeta-potential, morphology, and cytotoxicity in vitro. The particle size and surface charge of the NPs could be effectively tuned by the PEG and thiolBP substitution ratios of the conjugate, the coating method, and the polymer concentration used for coating. The PEG modification on PEI reduced the toxicity of PEI and the coated NPs, based on in vitro assessment with human C2C12 cells and rat bone marrow stromal cells. On the basis of an alkaline phosphatase (ALP) induction assay, the NP-encapsulated BMP-2 displayed full retention of its bioactivity, except for BMP-2 in PEI-coated NPs. By encapsulating (125)I-labeled BMP-2, the polymer-coated NPs were assessed for hydroxyapatite (HA) affinity; all NP-encapsulated BMP-2 showed significant affinity to HA as compared with free BMP-2 in vitro, and the PEI-PEG-thiolBP coated NPs improved the in vivo retention of BMP-2 compared with uncoated NPs. However, the biodistribution of NPs after intravenous injection in a rat model indicated no beneficial effects of thiolBP-coated NPs for bone targeting. Our results suggested that the BP-conjugated NPs are useful for localized delivery of BMP-2 in bone repair and regeneration, but they are not effective for bone targeting after intravenous administration.

  18. Analysis of Heme Iron Coordination in DGCR8: The Heme-Binding Component of the Microprocessor Complex.

    PubMed

    Girvan, Hazel M; Bradley, Justin M; Cheesman, Myles R; Kincaid, James R; Liu, Yilin; Czarnecki, Kazimierz; Fisher, Karl; Leys, David; Rigby, Stephen E J; Munro, Andrew W

    2016-09-13

    DGCR8 is the RNA-binding partner of the nuclease Drosha. Their complex (the "Microprocessor") is essential for processing of long, primary microRNAs (pri-miRNAs) in the nucleus. Binding of heme to DGCR8 is essential for pri-miRNA processing. On the basis of the split Soret ultraviolet-visible (UV-vis) spectrum of ferric DGCR8, bis-thiolate sulfur (cysteinate, Cys(-)) heme iron coordination of DGCR8 heme iron was proposed. We have characterized DGCR8 heme ligation using the Δ276 DGCR8 variant and combined electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), electron nuclear double resonance, resonance Raman, and electronic absorption spectroscopy. These studies indicate DGCR8 bis-Cys heme iron ligation, with conversion from bis-thiolate (Cys(-)/Cys(-)) axial coordination in ferric DGCR8 to bis-thiol (CysH/CysH) coordination in ferrous DGCR8. Pri-miRNA binding does not perturb ferric DGCR8's optical spectrum, consistent with the axial ligand environment being separated from the substrate-binding site. UV-vis absorption spectra of the Fe(II) and Fe(II)-CO forms indicate discrete species exhibiting peaks with absorption coefficients substantially larger than those for ferric DGCR8 and that previously reported for a ferrous form of DGCR8. Electron-nuclear double resonance spectroscopy data exclude histidine or water as axial ligands for ferric DGCR8 and favor bis-thiolate coordination in this form. UV-vis MCD and near-infrared MCD provide data consistent with this conclusion. UV-vis MCD data for ferrous DGCR8 reveal features consistent with bis-thiol heme iron coordination, and resonance Raman data for the ferrous-CO form are consistent with a thiol ligand trans to the CO. These studies support retention of DGCR8 cysteine coordination upon reduction, a conclusion distinct from those of previous studies of a different ferrous DGCR8 isoform.

  19. Investigation of a thiolated polymer in gene delivery

    NASA Astrophysics Data System (ADS)

    Bacalocostantis, Irene

    Thiol-containing bioreducible polymers show significant potential as delivery vectors in gene therapy, a rapidly growing field which seeks to treat genetic-based disorders by delivering functional synthetic genes to diseased cells. Studies have shown that thiolated polymers exhibit improved biodegradability and prolonged in vivo circulation times over non-thiolated polymers. However, the extent to which thiol concentrations impact the carrier's delivery potential has not been well explored. The aim of this dissertation is to investigate how relative concentrations of free thiols and disulfide crosslinks impact a polymeric carriers delivery performance with respect to DNA packaging, complex stability, cargo protection, gene release, internalization efficiency and cytotoxicity. To accomplish this goal, several fluorescent polymers containing varying concentrations of thiol groups were synthesized by conjugating thiol-pendant chains onto the primary amines of cationic poly(allylamine). In vitro delivery assays and characterization techniques were employed to assess the effect of thiols in gene delivery.

  20. Investigation of thiol derivatized gold nanoparticle sensors for gas analysis

    NASA Astrophysics Data System (ADS)

    Stephens, Jared S.

    Analysis of volatile organic compounds (VOCs) in air and exhaled breath by sensor array is a very useful testing technique. It can provide non-invasive, fast, inexpensive testing for many diseases. Breath analysis has been very successful in identifying cancer and other diseases by using a chemiresistor sensor or array with gold nanoparticles to detect biomarkers. Acetone is a biomarker for diabetes and having a portable testing device could help to monitor diabetic and therapeutic progress. An advantage to this testing method is it is conducted at room temperature instead of 200 degrees Celsius. 3. The objective of this research is to determine the effect of thiol derivatized gold nanoparticles based on sensor(s) detection of VOCs. The VOCs to be tested are acetone, ethanol, and a mixture of acetone and ethanol. Each chip is tested under all three VOCs and three concentration levels (0.1, 1, and 5.0 ppm). VOC samples are used to test the sensors' ability to detect and differentiate VOCs. Sensors (also referred to as a chip) are prepared using several types of thiol derivatized gold nanoparticles. The factors are: thiol compound and molar volume loading of the thiol in synthesis. The average resistance results are used to determine the VOC selectivity of the sensors tested. The results show a trend of increasing resistance as VOC concentration is increased relative to dry air; which is used as baseline for VOCs. Several sensors show a high selectivity to one or more VOCs. Overall the 57 micromoles of 4-methoxy-toluenethiol sensor shows the strongest selectivity for VOCs tested. 3. Gerfen, Kurt. 2012. Detection of Acetone in Air Using Silver Ion Exchanged ZSM-5 and Zinc Oxide Sensing Films. Master of Science thesis, University of Louisville.

  1. Proteome-wide detection and quantitative analysis of irreversible cysteine oxidation using long column UPLC-pSRM.

    PubMed

    Lee, Chia-Fang; Paull, Tanya T; Person, Maria D

    2013-10-04

    Reactive oxygen species (ROS) play an important role in normal biological functions and pathological processes. ROS is one of the driving forces for oxidizing proteins, especially on cysteine thiols. The labile, transient, and dynamic nature of oxidative modifications poses enormous technical challenges for both accurate modification site determination and quantitation of cysteine thiols. The present study describes a mass spectrometry-based approach that allows effective discovery and quantification of irreversible cysteine modifications. The utilization of a long reverse phase column provides high-resolution chromatography to separate different forms of modified cysteine thiols from protein complexes or cell lysates. This Fourier transform mass spectrometry (FT-MS) approach enabled detection and quantitation of ataxia telangiectasia mutated (ATM) complex cysteine sulfoxidation states using Skyline MS1 filtering. When we applied the long column ultra high pressure liquid chromatography (UPLC)-MS/MS analysis, 61 and 44 peptides from cell lysates and cells were identified with cysteine modifications in response to in vitro and in vivo H2O2 oxidation, respectively. Long column ultra high pressure liquid chromatography pseudo selected reaction monitoring (UPLC-pSRM) was then developed to monitor the oxidative level of cysteine thiols in cell lysate under varying concentrations of H2O2 treatment. From UPLC-pSRM analysis, the dynamic conversion of sulfinic (S-O2H) and sulfonic acid (S-O3H) was observed within nucleoside diphosphate kinase (Nm23-H1) and heat shock 70 kDa protein 8 (Hsc70). These methods are suitable for proteome-wide studies, providing a highly sensitive, straightforward approach to identify proteins containing redox-sensitive cysteine thiols in biological systems.

  2. Nondestructive chemical imaging of wood at the micro-scale: advanced technology to complement macro-scale evaluations

    Treesearch

    Barbara L. Illman; Julia Sedlmair; Miriam Unger; Carol Hirschmugl

    2013-01-01

    Chemical images help understanding of wood properties, durability, and cell wall deconstruction for conversion of lignocellulose to biofuels, nanocellulose and other value added chemicals in forest biorefineries. We describe here a new method for nondestructive chemical imaging of wood and wood-based materials at the micro-scale to complement macro-scale methods based...

  3. Allicin-inspired thiolated fluoroquinolones as antibacterials against ESKAPE pathogens.

    PubMed

    Sheppard, Jordan G; Long, Timothy E

    2016-11-15

    Thiolated fluoroquinolones were synthesized from ciprofloxacin and evaluated for antimicrobial activity against a panel of pathogenic bacteria. Gram-positive species including methicillin-resistant Staphylococcus aureus (MRSA) exhibited the highest level of increased sensitivity toward ciprofloxacin bound with a N-propylthio substituent. Evidence was found that the antibiotics form disulfides with low molecular weight thiols in bacteria and potentiate generation of cytosolic reactive oxygen species (ROS). In final analysis, the enhanced anti-MRSA activity of thiolated fluoroquinolones was attributed to increased cell permeability and reaction with cytosolic thiols that yields an inactive disulfide metabolite and the parent drug ciprofloxacin as an inhibitor of DNA synthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Detection of periodontopathogenic bacteria in pregnant women by traditional anaerobic culture method and by a commercial molecular genetic method.

    PubMed

    Urbán, Edit; Terhes, Gabriella; Radnai, Márta; Gorzó, István; Nagy, Elisabeth

    2010-06-01

    To culture facultative and strict anaerobic bacteria is a well-established method for analyzing subgingival plaque samples. Micro-IDent and micro-IDent Plus (HAIN Lifescience GmbH, Nehren, Germany) tests are two commercially available rapid PCR-based methods for the identification and quantification of putative periodontopathogen bacteria. In this study, we compared these commercial PCR-based hybridization methods with conventional anaerobic culture technique. A total of 36 subgingival plaque samples were collected from periodontal pockets of pregnant women with chronic localized periodontitis. Aliquots of these samples were evaluated with species-specific probes provided by micro-IDent and micro-IDent Plus tests simultaneously, and from the same samples anaerobic and capnophylic bacteria were cultured on selective media. The overall agreement between both methods was excellent for Eubacterium nodatum, Tannerella forsythia and Porphyromonas gingivalis (97-92%), fair for Capnocytophaga sp, Eikenella corrodens, Actinobacillus actinomycetemcomitans, and Prevotella intermedia (91-89%) and poor for Fusobacterium nucleatum, Parvimonas micra (Micromonas micros), and Campylobacter rectus (86-78%). Discrepancies in the results may be explained by inability of culture method to distinguish between closely related taxa (e.i P. intermedia/Prevotella. nigrescens), and problems of keeping periodontopathogen bacteria viable, which is required for successful detection by standard culture method. Nucleic acid-based methods may replace cultivation method as frequently used methods in microbiological diagnosis of progressive periodontitis, thus micro-IDent and micro-IDent Plus tests can be recommended where culture of periodontopathogenic bacteria is not performed in routine microbiology laboratories to analyze subgingival plaque samples. 2010 Elsevier Ltd. All rights reserved.

  5. Thiolated alkyl-modified carbomers: Novel excipients for mucoadhesive emulsions.

    PubMed

    Bonengel, Sonja; Hauptstein, Sabine; Leonaviciute, Gintare; Griessinger, Julia; Bernkop-Schnürch, Andreas

    2015-07-30

    The aim of this study was the design and evaluation of mucoadhesive emulsifying polymeric excipients. Three thiol bearing ligands with increasing pKa values of their sulfhydryl group, namely 4-aminothiophenol (pKa=6.86), l-cysteine (pKa=8.4) and d/l-homocysteine (pKa=10.0) were coupled to the polymeric backbone of alkyl-modified carbomer (PA1030). Resulting conjugates displayed 818.5μmol 4-aminothiophenol, 698.5μmol cysteine and 651.5μmol homocysteine per gram polymer and were evaluated regarding the reactivity of thiol groups, emulsifying and mucoadhesive properties. In general, the synthesized conjugates showed a pH dependent reactivity, whereby the fastest oxidation occurred in PA1030-cysteine, as almost no free thiol groups could be detected after 120min. Emulsification of medium chain triglycerides was feasible with all synthesized conjugates leading to oil-in-water-emulsions. Emulsions with PA1030-cysteine displayed the highest stability and the smallest droplet size among the tested formulations. Oxidation and consequently cross-linking of the thiomers prior to the emulsification process led to an overall decreased emulsion stability. Evaluating mucosal residence time of thiomer emulsions on porcine buccal mucosa, a 9.2-fold higher amount of formulation based on PA1030-cysteine remained on the mucosal tissue within 3h compared to the unmodified polymer. According to these results, the highest reactive ligand l-cysteine seems to be most promising in order to obtain thiolated polymers for the preparation of mucoadhesive o/w-emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Evolution of thiol protective systems in prokaryotes

    NASA Technical Reports Server (NTRS)

    Fahey, R. C.; Newton, G. L.

    1986-01-01

    Biological thiols are essential elements in most aspects of cell function but undergo rapid oxidation to disulfides in the presence of oxygen. The evolution of systems to protect against such oxygen toxicity was essential to the emergence of aerobic life. The protection system used by eukaryotes is based upon glutathione (GSH) and GSH-dependent enzymes but many bacteria lack GSH and apparently use other mechanisms. The objective of this research is to elaborate the thiol protective mechanisms employed by prokaryotes of widely divergent evolutionary origin and to understand why GSH became the central thiol employed in essentially all higher organisms. Thiol-selective fluorescent labeling and HPLC analysis has been used to determine key monothiol components.

  7. Insulin-induced hypoglycemia and stress oxidative state in healthy people.

    PubMed

    Yousefzade, Gholamreza; Nakhaee, Akram

    2012-12-01

    The purpose of this study is to assess the immediate effects of insulin-induced hypoglycemia on the natural antioxidant superoxide dismutase activity, malondialdehyde concentration, total antioxidative capacity and total thiol group concentration in young healthy subjects. In this clinical trial, 16 healthy men with the mean age of 29.3 ± 5.3 years (range 21-39 years) became volunteers to participate the study. Hypoglycemia was induced by intravenous administration of regular insulin 0.1 U/kg. Before and after inducing hypoglycemia, SOD activity was determined in red blood cells, whereas the MDA concentration was determined by thiobarbituric acid reactive substance method, total thiol groups by high-performance liquid chromatography method and total antioxidant capacity by ferric reducing/antioxidant power. A significant increase was seen in the TBARS levels following insulin-induced hypoglycemia (0.19 ± 0.07 vs. 0.38 ± 0.16 nmol/g, P < 0.001), while a significant decrement occurred in the antioxidant power (FRAP value) (321.4 ± 63.4 vs. 231.4 ± 57.5, P < 0.001), total thiol concentration (2.3 ± 0.8 vs. 1.3 ± 0.5, P = 0.001) and SOD enzyme activity (29.4 ± 8.2 vs. 23.1 ± 6.1, P < 0.001) subsequent the hypoglycemia with insulin.

  8. Amine functional magnetic nanoparticles via waterborne thiol-ene suspension photopolymerization for antibody immobilization.

    PubMed

    Muhsir, Pelin; Çakmakçi, Emrah; Demir, Serap; Ogan, Ayşe

    2018-05-28

    The modification of magnetic nanoparticles (MNPs) via different routes for biomolecule binding is an attractive area of research. Waterborne thiol-ene suspension photopolymerization (TESP) can be a useful method for preparing functional MNPs. In this study, for the very first time waterborne TESP was performed in the presence of MNPs. Neat MNPs were coated and in situ functionalized with amine groups by using thiol-ene chemistry. Engrailed-2 (EN2) protein, a potential biomarker for various cancers such as prostate cancer, bladder cancer, breast cancer and ovarian cancer, is known to be a strong binder to a specific DNA sequence (50-TAATTA-30) to regulate transcription. Anti-EN2 antibodies were immobilized onto these MNPs by physical adsorption and covalent bonding methods, respectively. The amount of the physically immobilized antibodies (0.54 mg/g) were found to be lower than the loading of the covalently bonded antibodies (1.775 mg/g). The biomarker level in the artificial solutions prepared was determined by enzyme-linked immunosorbent assay. Coated MNPs were characterized by FTIR, TGA, SEM and STEM. After TESP, the average diameter of the neat magnetite nanoparticles increased from ∼15 nm to ∼32 nm. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A novel method for calculating the dynamic capillary force and correcting the pressure error in micro-tube experiment.

    PubMed

    Wang, Shuoliang; Liu, Pengcheng; Zhao, Hui; Zhang, Yuan

    2017-11-29

    Micro-tube experiment has been implemented to understand the mechanisms of governing microcosmic fluid percolation and is extensively used in both fields of micro electromechanical engineering and petroleum engineering. The measured pressure difference across the microtube is not equal to the actual pressure difference across the microtube. Taking into account the additional pressure losses between the outlet of the micro tube and the outlet of the entire setup, we propose a new method for predicting the dynamic capillary pressure using the Level-set method. We first demonstrate it is a reliable method for describing microscopic flow by comparing the micro-model flow-test results against the predicted results using the Level-set method. In the proposed approach, Level-set method is applied to predict the pressure distribution along the microtube when the fluids flow along the microtube at a given flow rate; the microtube used in the calculation has the same size as the one used in the experiment. From the simulation results, the pressure difference across a curved interface (i.e., dynamic capillary pressure) can be directly obtained. We also show that dynamic capillary force should be properly evaluated in the micro-tube experiment in order to obtain the actual pressure difference across the microtube.

  10. Assay of free captopril in human plasma as monobromobimane derivative, using RPLC/(+)ESI/MS/MS: validation aspects and bioequivalence evaluation.

    PubMed

    Medvedovici, Andrei; Albu, Florin; Sora, Iuliana Daniela; Udrescu, Stefan; Galaon, Toma; David, Victor

    2009-10-01

    A sensitive method for determination of free captopril as monobromobimane derivative in plasma samples is discussed. The internal standard (IS) was 5-methoxy-1H-benzimidazole-2-thiol. Derivatization with monobromobimane immediately after blood collection and plasma preparation prevents oxidation of captopril to the corresponding disulfide compound and enhances the ionization yield. Consequently, derivatization enhances sample stability and detection sensitivity. Addition of the internal standard was made immediately after plasma preparation. The internal standard was also derivatized by monobromobimane, as it contains a thiol functional group. Preparation of plasma samples containing captopril and IS derivatives was based upon protein precipitation through addition of acetonitrile, in a volumetric ratio 1:2. The reversed-phase liquid chromatographic separation was achieved on a rapid resolution cartridge Zorbax SB-C(18), monitored through positive electrospray ionization and tandem MS detection using the multiple-reaction monitoring mode. Transitions were 408-362 amu for the captopril derivative and 371-260 amu for the internal standard derivative. The kinetics of captopril oxidation to the corresponding disulfide compound in plasma matrix was also studied using the proposed method. A linear log-log calibration was obtained over the concentration interval 2.5-750 ng/mL. A low limit of quantitation in the 2.5 ng/mL range was obtained. The analytical method was fully validated and successfully applied in a three-way, three-period, single-dose (50 mg), block-randomized bioequivalence study for two pharmaceutical formulations (captopril LPH 25 and 50 mg) against the comparator Capoten 50 mg. Copyright (c) 2009 John Wiley & Sons, Ltd.

  11. Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection.

    PubMed

    Kamra, Tripta; Zhou, Tongchang; Montelius, Lars; Schnadt, Joachim; Ye, Lei

    2015-01-01

    Molecularly imprinted polymers (MIPs) have a predesigned molecular recognition capability that can be used to build robust chemical sensors. MIP-based chemical sensors allow label-free detection and are particularly interesting due to their simple operation. In this work we report the use of thiol-terminated MIP microspheres to construct surfaces for detection of a model organic analyte, nicotine, by surface enhanced Raman scattering (SERS). The nicotine-imprinted microspheres are synthesized by RAFT precipitation polymerization and converted into thiol-terminated microspheres through aminolysis. The thiol groups on the MIP surface allow the microspheres to be immobilized on a gold-coated substrate. Three different strategies are investigated to achieve surface enhanced Raman scattering in the vicinity of the imprinted sites: (1) direct sputtering of gold nanoparticles, (2) immobilization of gold colloids through the MIP's thiol groups, and (3) trapping of the MIP microspheres in a patterned SERS substrate. For the first time we show that large MIP microspheres can be turned into selective SERS surfaces through the three different approaches of assembly. The MIP-based sensing surfaces are used to detect nicotine to demonstrate the proof of concept. As synthesis and surface functionalization of MIP microspheres and nanoparticles are well established, the methods reported in this work are handy and efficient for constructing label-free chemical sensors, in particular for those based on SERS detection.

  12. Selection and Application of Sulfide Oxidizing Microorganisms Able to Withstand Thiols in Gas Biodesulfurization Systems.

    PubMed

    Roman, Pawel; Klok, Johannes B M; Sousa, João A B; Broman, Elias; Dopson, Mark; Van Zessen, Erik; Bijmans, Martijn F M; Sorokin, Dimitry Y; Janssen, Albert J H

    2016-12-06

    After the first commercial applications of a new biological process for the removal of hydrogen sulfide (H 2 S) from low pressure biogas, the need arose to broaden the operating window to also enable the removal of organosulfur compounds from high pressure sour gases. In this study we have selected microorganisms from a full-scale biodesulfurization system that are capable of withstanding the presence of thiols. This full-scale unit has been in stable operation for more than 10 years. We investigated the microbial community by using high-throughput sequencing of 16S rRNA gene amplicons which showed that methanethiol gave a competitive advantage to bacteria belonging to the genera Thioalkalibacter (Halothiobacillaceae family) and Alkalilimnicola (Ectothiorhosdospiraceae family). The sulfide-oxidizing potential of the acclimatized population was investigated under elevated thiol loading rates (4.5-9.1 mM d -1 ), consisting of a mix of methanethiol, ethanethiol, and propanethiol. With this biomass, it was possible to achieve a stable bioreactor operation at which 80% of the supplied H 2 S (61 mM d -1 ) was biologically oxidized to elemental sulfur. The remainder was chemically produced thiosulfate. Moreover, we found that a conventionally applied method for controlling the oxygen supply to the bioreactor, that is, by maintaining a redox potential set-point value, appeared to be ineffective in the presence of thiols.

  13. The role of oxidative stress in streptozotocin-induced diabetic nephropathy in rats.

    PubMed

    Fernandes, Sheila Marques; Cordeiro, Priscilla Mendes; Watanabe, Mirian; Fonseca, Cassiane Dezoti da; Vattimo, Maria de Fatima Fernandes

    2016-10-01

    The objective of this study was to evaluate the role of oxidative stress in an experimental model of streptozotocin-induced diabetic nephropathy in rats. Wistar, adult, male rats were used in the study. Animals were divided in the following groups: Citrate (control, citrate buffer 0.01M, pH 4.2 was administrated intravenously - i.v - in the caudal vein), Uninephrectomy+Citrate (left uninephrectomy-20 days before the study), DM (streptozotocin, 65 mg/kg, i.v, on the 20th day of the study), Uninephrectomy+DM. Physiological parameters (water and food intake, body weight, blood glucose, kidney weight, and relative kidney weight); renal function (creatinine clearance), urine albumin (immunodiffusion method); oxidative metabolites (urinary peroxides, thiobarbituric acid reactive substances, and thiols in renal tissue), and kidney histology were evaluated. Polyphagia, polydipsia, hyperglycemia, and reduced body weight were observed in diabetic rats. Renal function was reduced in diabetic groups (creatinine clearance, p < 0.05). Uninephrectomy potentiated urine albumin and increased kidney weight and relative kidney weight in diabetic animals (p < 0.05). Urinary peroxides and thiobarbituric acid reactive substances were increased, and the reduction in thiol levels demonstrated endogenous substrate consumption in diabetic groups (p < 0.05). The histological analysis revealed moderate lesions of diabetic nephropathy. This study confirms lipid peroxidation and intense consumption of the antioxidant defense system in diabetic rats. The association of hyperglycemia and uninephrectomy resulted in additional renal injury, demonstrating that the model is adequate for the study of diabetic nephropathy.

  14. pH-responsive thiolated chitosan nanoparticles for oral low-molecular weight heparin delivery: in vitro and in vivo evaluation.

    PubMed

    Fan, Bo; Xing, Yang; Zheng, Ying; Sun, Chuan; Liang, Guixian

    2016-01-01

    The aim of present study was to investigate a pH-responsive and mucoadhesive nanoparticle system for oral bioavailability enhancement of low-molecular weight heparin (LMWH). The thioglycolic acid (TGA) was first covalently attached to chitosan (CS) with 396.97 ± 54.54 μmol thiol groups per gram of polymer and then the nanoparticles were prepared with thiolated chitosan (TCS) and pH-sensitive polymer hydroxypropyl methylcellulose phthalate (HPMCP) by ionic cross-linking method. The obtained nanoparticles were characterized for the shape, particle size, zeta potential, drug entrapment efficiency and loading capacity. In vitro results revealed the acid stability of pH-responsive nanoparticles, which had a significant control over LMWH release and could effectively protect entrapped drugs in simulated gastric conditions. By the attachment of the thiol ligand, an improvement of permeation-enhancing effect on freshly excised carp intestine (1.86-fold improvement) could be found. The mucoadhesive properties were evaluated using fluorescently labeled TCS or CS nanoparticles. As compared with the controls, a significant improvement of mucoadhesion on rat intestinal mucosa was observed in TCS/HPMCP nanoparticles via confocal laser scanning microscopy. The activated partial thromboplastin time (APTT) was significantly prolonged and an increase in the oral bioavailability of LMWH was turned out to be pronounced after oral delivered LMWH-loaded TCS/HPMCP nanoparticles in rats, which suggested enhanced anticoagulant effects and improved absorption of LMWH. In conclusion, pH-responsive TCS/HPMCP nanoparticles hold promise for oral delivery of LMWH.

  15. Pectin-cysteine conjugate: synthesis and in-vitro evaluation of its potential for drug delivery.

    PubMed

    Majzoob, Sayeh; Atyabi, Fatemeh; Dorkoosh, Farid; Kafedjiiski, Krum; Loretz, Brigitta; Bernkop-Schnürch, Andreas

    2006-12-01

    This study was aimed at improving certain properties of pectin by introduction of thiol moieties on the polymer. Thiolated pectin was synthesized by covalent attachment of cysteine. Pectin-cysteine conjugate was evaluated for its ability to be degraded by pectinolytic enzyme. The toxicity profile of the thiolated polymer in Caco-2-cells, its permeation enhancing effect and its mucoadhesive and swelling properties were studied. Moreover insulin-loaded hydrogel beads of the new polymer were examined for their stability in simulated gastrointestinal conditions and their drug release profile. The new polymer displayed 892.27 +/- 68.68 micromol thiol groups immobilized per g polymer, and proved to have retained its biodegradability, upon addition of Pectinex Ultra SPL in-vitro, determined by viscosity measurements and titration method. Pectin-cysteine showed no severe toxicity in Caco-2 cells, as tested by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Moreover, the synthesized polymer exhibited a relative permeation enhancement ratio of 1.61 for sodium fluorescein, compared to unmodified pectin. Pectin-cysteine conjugate exhibited approximately 5-fold increased in in-vitro adhesion duration and significantly improved cohesive properties. Zinc pectin-cysteine beads showed improved stability in simulated gastrointestinal media; however, insulin release from these beads followed the same profile as unmodified zinc pectinate beads. Due to favourable safety and biodegradability profile, and improved cohesive and permeation-enhancing properties, pectin-cysteine might be a promising excipient in various transmucosal drug delivery systems.

  16. Carvedilol: relation between antioxidant activity and inhibition of the mitochondrial permeability transition.

    PubMed

    Oliveira, Paulo J; Esteves, Telma; Rolo, Anabela P; Monteiro, Pedro; Gonçalves, Lino; Palmeira, Carlos M; Moreno, António J

    2003-01-01

    The mitochondrial permeability transition (MPT) is an event related to severe oxidative stress (for example, during myocardial ischemia and reperfusion) and excessive mitochondrial calcium accumulation, also being implicated in cell death. In this study, we compared the effect of carvedilol on the cardiac MPT induced by calcium and phosphate (Ca/Pi) and calcium/carboxyatractyloside (Ca/Catr). Oxidative stress plays a major role in MPT induction by Ca/Pi, leading to the oxidation of protein thiol groups, in contrast with Ca/Catr, where such oxidation is secondary to MPT induction and is not caused by oxidative stress. Mitochondria were isolated from rat hearts and parameters related to MPT induction were evaluated (n = 5 for each inducer): mitochondrial swelling and oxidation of protein thiol groups (both measured by spectrophotometry). Using Ca/Pi, carvedilol protected mitochondria from MPT induction, particularly in its high conductance form. Its effect was demonstrated by analyzing the decrease in mitochondrial swelling amplitude. Simultaneously, we observed inhibition of protein thiol group oxidation (p < 0.001). By contrast, carvedilol did not show any protective effect with Ca/Catr. Carvedilol was only effective against the MPT when the oxidation of protein thiol groups was the cause and not the consequence of the MPT phenomenon. The results clearly show that during myocardial aggressions (ischemia and reperfusion, for example), the protective effect of carvedilol is primarily due to an antioxidant mechanism, inhibiting the production and effects of reactive oxygen species.

  17. Quinone-induced protein modifications: Kinetic preference for reaction of 1,2-benzoquinones with thiol groups in proteins.

    PubMed

    Li, Yuting; Jongberg, Sisse; Andersen, Mogens L; Davies, Michael J; Lund, Marianne N

    2016-08-01

    Oxidation of polyphenols to quinones serves as an antioxidative mechanism, but the resulting quinones may induce damage to proteins as they react through a Michael addition with nucleophilic groups, such as thiols and amines to give protein adducts. In this study, rate constants for the reaction of 4-methylbenzoquinone (4MBQ) with proteins, thiol and amine compounds were determined under pseudo first-order conditions by UV-vis stopped-flow spectrophotometry. The chemical structures of the adducts were identified by LC-ESI-MS/MS. Proteins with free thiols were rapidly modified by 4MBQ with apparent second order rate constants, k2 of (3.1±0.2)×10(4)M(-1)s(-1) for bovine serum albumin (BSA) and (4.8±0.2)×10(3)M(-1)s(-1) for human serum albumin at pH 7.0. These values are at least 12-fold greater than that for α-lactalbumin (4.0±0.2)×10(2)M(-1)s(-1), which does not contain any free thiols. Reaction of Cys-34 of BSA with N-ethylmaleimide reduced the thiol concentration by ~59%, which resulted in a decrease in k2 by a similar percentage, consistent with rapid adduction at Cys-34. Reaction of 4MBQ with amines (Gly, Nα-acetyl-l-Lys, Nε-acetyl-l-Lys and l-Lys) and the guanidine group of Nα-acetyl-l-Arg was at least 5×10(5) slower than with low-molecular-mass thiols (l-Cys, Nα-acetyl-l-Cys, glutathione). The thiol-quinone interactions formed colorless thiol-phenol products via an intermediate adduct, while the amine-quinone interactions generated colored amine-quinone products that require oxygen involvement. These data provide strong evidence for rapid modification of protein thiols by quinone species which may be of considerable significance for biological and food systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Synthesis of novel thiol-functionalized mesoporous silica nanorods and their sorbent properties on heavy metals

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Cai, Qiang; Sun, Lin-Hao; Zhang, Wei; Jiang, Xing-Yu

    2012-09-01

    Novel thiol-functionalized mesoporous silica nanorods (MSNRs) were synthesized through a base co-condensation method, in which two organoalkoxysilanes, tetraethoxylsilane (TEOS) and bis[3-(triethoxysilyl)propyl]tetrasulfide (TESPT), were used as silica precursors simultaneously. TESPT was firstly used for both morphology control and inner surface functionalization of mesoporous silica hybrid materials. The microstructures as well as porous character of the MSNRs were characterized by means of SEM, XRD, TEM and N2 sorption measurements. Infrared spectrum analysis and heavy metal ions (Ag+ and Cd2+) adsorption measurements were carried out to confirm the functionalized framework of MSNRs.

  19. Surface Functionalization of Diamond Films by Photoreaction of Elemental Sulfur and Their Surface Properties

    NASA Astrophysics Data System (ADS)

    Nakamura, Takako; Ohana, Tsuguyori

    2012-08-01

    A useful method for direct sulfurization of diamond film surfaces by photoreaction of elemental sulfur was developed. The introduction of thiol groups onto the diamond films was confirmed by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and scanning electron microscopy (SEM) analyses. The sulfur-modified diamond films attached to gold nanoparticles by self-assembly. The degrees of thiol group introduction and gold attachment were found to depend on photoirradiation time by monitoring by XPS. The gold-modified diamond film was observed to act as a surface-enhanced Raman scattering substrate for measurement of picric acid.

  20. Assessing consumption of bioactive micro-particles by filter-feeding Asian carp

    USGS Publications Warehouse

    Jensen, Nathan R.; Amberg, Jon J.; Luoma, James A.; Walleser, Liza R.; Gaikowski, Mark P.

    2012-01-01

    Silver carp Hypophthalmichthys molitrix (SVC) and bighead carp H. nobilis (BHC) have impacted waters in the US since their escape. Current chemical controls for aquatic nuisance species are non-selective. Development of a bioactive micro-particle that exploits filter-feeding habits of SVC or BHC could result in a new control tool. It is not fully understood if SVC or BHC will consume bioactive micro-particles. Two discrete trials were performed to: 1) evaluate if SVC and BHC consume the candidate micro-particle formulation; 2) determine what size they consume; 3) establish methods to evaluate consumption of filter-feeders for future experiments. Both SVC and BHC were exposed to small (50-100 μm) and large (150-200 μm) micro-particles in two 24-h trials. Particles in water were counted electronically and manually (microscopy). Particles on gill rakers were counted manually and intestinal tracts inspected for the presence of micro-particles. In Trial 1, both manual and electronic count data confirmed reductions of both size particles; SVC appeared to remove more small particles than large; more BHC consumed particles; SVC had fewer overall particles in their gill rakers than BHC. In Trial 2, electronic counts confirmed reductions of both size particles; both SVC and BHC consumed particles, yet more SVC consumed micro-particles compared to BHC. Of the fish that ate micro-particles, SVC consumed more than BHC. It is recommended to use multiple metrics to assess consumption of candidate micro-particles by filter-feeders when attempting to distinguish differential particle consumption. This study has implications for developing micro-particles for species-specific delivery of bioactive controls to help fisheries, provides some methods for further experiments with bioactive micro-particles, and may also have applications in aquaculture.

  1. Ultrasensitive electrochemical sensing platform for microRNA based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification.

    PubMed

    Shuai, Hong-Lei; Huang, Ke-Jing; Xing, Ling-Li; Chen, Ying-Xu

    2016-12-15

    An ultrasensitive electrochemical biosensor for microRNA (miRNA) is developed based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification. WO3-Gr is prepared by a simple hydrothermal method and then coupled with gold nanoparticles to act as a sensing platform. The thiol-terminated capture probe H1 is immobilized on electrode through Au-S interaction. In the presence of target miRNA, H1 opens its hairpin structure by hybridization with target miRNA. This hybridization can be displaced from the structure by another stable biotinylated hairpin DNA (H2), and target miRNA is released back to the sample solution for next cycle. Thus, a large amount of H1-H2 duplex is produced after the cyclic process. At this point, a lot of signal indicators streptavidin-conjugated alkaline phosphatase (SA-ALP) are immobilized on the electrode by the specific binding of avidin-biotin. Then, thousands of ascorbic acid, which is the enzymatic product of ALP, induces the electrochemical-chemical-chemical redox cycling to produce a strongly electrochemical response in the presence of ferrocene methanol and tris (2-carboxyethyl) phosphine. Under the optimal experimental conditions, the established biosensor can detect target miRNA down to 0.05fM (S/N=3) with a linear range from 0.1fM to 100pM, and discriminate target miRNA from mismatched miRNA with a high selectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Inactivation of Penicillins by Thiol Broth

    PubMed Central

    Murray, Patrick R.; Niles, Ann C.

    1982-01-01

    Thiol broth with sodium polyanetholesulfonate inactivated penicillin G, carbenicillin, nafcillin, oxacillin, and gentamicin, but had no effect on cephalothin, cefoxitin, clindamycin, chloramphenicol, erythromycin, and tetracycline. Only Thiol broth was capable of this inactivation, which was not influenced by the presence of blood. PMID:7153352

  3. Image Quality Performance Measurement of the microPET Focus 120

    NASA Astrophysics Data System (ADS)

    Ballado, Fernando Trejo; López, Nayelli Ortega; Flores, Rafael Ojeda; Ávila-Rodríguez, Miguel A.

    2010-12-01

    The aim of this work is to evaluate the characteristics involved in the image reconstruction of the microPET Focus 120. For this evaluation were used two different phantoms; a miniature hot-rod Derenzo phantom and a National Electrical Manufacturers Association (NEMA) NU4-2008 image quality (IQ) phantom. The best image quality was obtained when using OSEM3D as the reconstruction method reaching a spatial resolution of 1.5 mm with the Derenzo phantom filled with 18F. Image quality test results indicate a superior image quality for the Focus 120 when compared to previous microPET models.

  4. Evaluation of shrinkage and cracking in concrete of ring test by acoustic emission method

    NASA Astrophysics Data System (ADS)

    Watanabe, Takeshi; Hashimoto, Chikanori

    2015-03-01

    Drying shrinkage of concrete is one of the typical problems related to reduce durability and defilation of concrete structures. Lime stone, expansive additive and low-heat Portland cement are used to reduce drying shrinkage in Japan. Drying shrinkage is commonly evaluated by methods of measurement for length change of mortar and concrete. In these methods, there is detected strain due to drying shrinkage of free body, although visible cracking does not occur. In this study, the ring test was employed to detect strain and age cracking of concrete. The acoustic emission (AE) method was adopted to detect micro cracking due to shrinkage. It was recognized that in concrete using lime stone, expansive additive and low-heat Portland cement are effective to decrease drying shrinkage and visible cracking. Micro cracking due to shrinkage of this concrete was detected and evaluated by the AE method.

  5. Modification of the mitochondrial sulfonylurea receptor by thiol reagents.

    PubMed

    Szewczyk, A; Wójcik, G; Lobanov, N A; Nalecz, M J

    1999-08-19

    The purpose of this study was to investigate the effects exerted by thiol-modifying reagents on themitochondrial sulfonylurea receptor. The thiol-oxidizing agents (timerosal and 5, 5'-dithio-bis(2-nitrobenzoic acid)) were found to produce a large inhibition (70% to 80%) of specific binding of [(3)H]glibenclamide to the beef heart mitochondrial membrane. Similar effects were observed with membrane permeable (N-ethylmaleimide) and non-permeable (mersalyl) thiol modifying agents. Glibenclamide binding was also decreased by oxidizing agents (hydrogen peroxide) but not by reducing agents (reduced gluthatione, dithiothreitol and the 2,3-dihydroxy-1,4-dithiolbutane). The results suggest that intact thiol groups, facing the mitochondrial matrix, are essential for glibenclamide binding to the mitochondrial sulfonylurea receptor. Copyright 1999 Academic Press.

  6. O-acetylserine(thiol)lyase from spinach (Spinacia oleracea L.) leaf: cDNA cloning, characterization, and overexpression in Escherichia coli of the chloroplast isoform.

    PubMed

    Rolland, N; Droux, M; Lebrun, M; Douce, R

    1993-01-01

    The last enzymatic step for L-cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL, EC 4.2.99.8) which synthesizes L-cysteine from O-acetylserine and "sulfide." We have isolated and characterized a full-length cDNA (1432 bp) from a lambda gt11 library of spinach leaf encoding the complete precursor of the chloroplast isoform. The 1149-nucleotide open reading frame coding for O-acetylserine(thiol)lyase was in the direction opposite that of the lambda gt11 beta-galactosidase gene. The derived amino acid sequence indicates that the protein precursor consists of 383 amino acid residues including a N-terminal presequence peptide of 52 residues. The amino acid sequence of mature spinach chloroplast O-acetylserine(thiol)lyase shows 40 and 57% homology with its bacterial counterparts. Sequence comparison with several pyridoxal 5'-phosphate-containing proteins reveals the presence of a lysine residue assumed to be involved in cofactor binding. A synthetic cDNA was constructed, coding for the entire 331-amino-acid mature O-acetylserine(thiol)lyase and for an initiating methionine. A high level of expression of the active mature chloroplast isoform was achieved in an Escherichia coli strain carrying the T7 RNA polymerase system (F. W. Studier, A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff, 1990, in Methods in Enzymology, D. V. Goeddel, Ed., Vol. 185, pp. 60-89, Academic Press, San Diego, CA). Addition of pyridoxine to the bacterial growth medium enhanced the enzyme activity due to the recombinant protein. The extent of production is 25-fold higher than in chloroplast from spinach leaves and the recombinant protein presents the relative molecular mass and immunological properties of the natural enzyme from spinach leaf chloroplast. This work, together with our previous biochemical studies, are in accordance with a prokaryotic type enzyme for L-cysteine biosynthesis in higher plant chloroplasts. Southern blot analysis indicated that O-acetylserine(thiol)lyase is encoded by multiple genes in the spinach leaf genomic DNA.

  7. CHRONOS: a time-varying method for microRNA-mediated subpathway enrichment analysis.

    PubMed

    Vrahatis, Aristidis G; Dimitrakopoulou, Konstantina; Balomenos, Panos; Tsakalidis, Athanasios K; Bezerianos, Anastasios

    2016-03-15

    In the era of network medicine and the rapid growth of paired time series mRNA/microRNA expression experiments, there is an urgent need for pathway enrichment analysis methods able to capture the time- and condition-specific 'active parts' of the biological circuitry as well as the microRNA impact. Current methods ignore the multiple dynamical 'themes'-in the form of enriched biologically relevant microRNA-mediated subpathways-that determine the functionality of signaling networks across time. To address these challenges, we developed time-vaRying enriCHment integrOmics Subpathway aNalysis tOol (CHRONOS) by integrating time series mRNA/microRNA expression data with KEGG pathway maps and microRNA-target interactions. Specifically, microRNA-mediated subpathway topologies are extracted and evaluated based on the temporal transition and the fold change activity of the linked genes/microRNAs. Further, we provide measures that capture the structural and functional features of subpathways in relation to the complete organism pathway atlas. Our application to synthetic and real data shows that CHRONOS outperforms current subpathway-based methods into unraveling the inherent dynamic properties of pathways. CHRONOS is freely available at http://biosignal.med.upatras.gr/chronos/ tassos.bezerianos@nus.edu.sg Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Detecting metastasis of gastric carcinoma using high-resolution micro-CT system: in vivo small animal study

    NASA Astrophysics Data System (ADS)

    Liu, Junting; Tian, Jie; Liang, Jimin; Li, Xiangsi; Yang, Xiang; Chen, Xiaofeng; Chen, Yi; Zhou, Yuanfang; Wang, Xiaorui

    2011-03-01

    Immunocytochemical and immunofluorescence staining are used for identifying the characteristics of metastasis in traditional ways. Micro-computed tomography (micro-CT) is a useful tool for monitoring and longitudinal imaging of tumor in small animal in vivo. In present study, we evaluated the feasibility of the detection for metastasis of gastric carcinoma by high-resolution micro-CT system with omnipaque accumulative enhancement method in the organs. Firstly, a high-resolution micro-CT ZKKS-MCT-sharp micro-CT was developed by our research group and Guangzhou Zhongke Kaisheng Medical Technology Co., Ltd. Secondly, several gastric carcinoma models were established through inoculating 2x106 BGC-823 gastric carcinoma cells subcutaneously. Thirdly, micro-CT scanning was performed after accumulative enhancement method of intraperitoneal injection of omnipaque contrast agent containing 360 mg iodine with a concentration of 350 mg I/ml. Finally, we obtained high-resolution anatomical information of the metastasis in vivo in a BALB/c NuNu nude mouse, the 3D tumor architecture is revealed in exquisite detail at about 35 μm spatial resolution. In addition, the accurate shape and volume of the micrometastasis as small as 0.78 mm3 can be calculated with our software. Overall, our data suggest that this imaging approach and system could be used to enhance the understanding of tumor proliferation, metastasis and could be the basis for evaluating anti-tumor therapies.

  9. Evaluation of laser ablation crater relief by white light micro interferometer

    NASA Astrophysics Data System (ADS)

    Gurov, Igor; Volkov, Mikhail; Zhukova, Ekaterina; Ivanov, Nikita; Margaryants, Nikita; Potemkin, Andrey; Samokhvalov, Andrey; Shelygina, Svetlana

    2017-06-01

    A multi-view scanning method is suggested to assess a complicated surface relief by white light interferometer. Peculiarities of the method are demonstrated on a special object in the form of quadrangular pyramid cavity, which is formed at measurement of micro-hardness of materials using a hardness gauge. An algorithm of the joint processing of multi-view scanning results is developed that allows recovering correct relief values. Laser ablation craters were studied experimentally, and their relief was recovered using the developed method. It is shown that the multi-view scanning reduces ambiguity when determining the local depth of the laser ablation craters micro relief. Results of experimental studies of the multi-view scanning method and data processing algorithm are presented.

  10. Detoxification of Atrazine by Low Molecular Weight Thiols in Alfalfa (Medicago sativa).

    PubMed

    Zhang, Jing Jing; Xu, Jiang Yan; Lu, Feng Fan; Jin, She Feng; Yang, Hong

    2017-10-16

    Low molecular weight (LMW) thiols in higher plants are a group of sulfur-rich nonprotein compounds and play primary and multiple roles in cellular redox homeostasis, enzyme activities, and xenobiotics detoxification. This study focused on identifying thiols-related protein genes from the legume alfalfa exposed to the herbicide atrazine (ATZ) residues in environment. Using high-throughput RNA-sequencing, a set of ATZ-responsive thiols-related protein genes highly up-regulated and differentially expressed in alfalfa was identified. Most of the differentially expressed genes (DEGs) were involved in regulation of biotic and abiotic stress responses. By analyzing the genes involved in thiols-mediated redox homeostasis, we found that many of them were thiols-synthetic enzymes such as γ-glutamylcysteine synthase (γECS), homoglutathione synthetase (hGSHS), and glutathione synthetase (GSHS). Using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), we further characterized a group of ATZ-thiols conjugates, which are the detoxified forms of ATZ in plants. Cysteine S-conjugate ATZ-HCl+Cys was the most important metabolite detected by MS. Several other ATZ-conjugates were also examined as ATZ-detoxified metabolites. Such results were validated by characterizing their analogs in rice. Our data showed that some conjugates under ATZ stress were detected in both plants, indicating that some detoxified mechanisms and pathways can be shared by the two plant species. Overall, these results indicate that LMW thiols play critical roles in detoxification of ATZ in the plants.

  11. Tumor Xenograft Response to Redox-Active Therapies Assessed by Magnetic Resonance Imaging Using a Thiol-Bearing DOTA Complex of Gadolinium1

    PubMed Central

    Guntle, Gerald P; Jagadish, Bhumasamudram; Mash, Eugene A; Powis, Garth; Dorr, Robert T; Raghunand, Natarajan

    2012-01-01

    Gd-LC6-SH is a thiol-bearing DOTA complex of gadolinium designed to bind plasma albumin at the conserved Cys34 site. The binding of Gd-LC6-SH shows sensitivity to the presence of competing thiols. We hypothesized that Gd-LC6-SH could provide magnetic resonance imaging (MRI) enhancement that is sensitive to tumor redox state and that the prolonged retention of albumin-bound Gd-LC6-SH in vivo can be exploited to identify a saturating dose above which the shortening of MRI longitudinal relaxation time (T1) of tissue is insensitive to the injected gadolinium dose. In the Mia-PaCa-2 pancreatic tumor xenograft model in SCID mice, both the small-molecule Gd-DTPA-BMA and the macromolecule Galbumin MRI contrast agents produced dose-dependent decreases in tumor T1. By contrast, the decreases in tumor T1 provided by Gd-LC6-SH at 0.05 and 0.1 mmol/kg were not significantly different at longer times after injection. SCID mice bearing Mia-PaCa-2 or NCI-N87 tumor xenografts were treated with either the glutathione synthesis inhibitor buthionine sulfoximine or the thiol-oxidizing anticancer drug Imexon, respectively. In both models, there was a significantly greater increase in tumor R1 (=1/T1) 60 minutes after injection of Gd-LC6-SH in drug-treated animals relative to saline-treated controls. In addition, Mercury Orange staining for nonprotein sulfhydryls was significantly decreased by drug treatment relative to controls in both tumor models. In summary, these studies show that thiol-bearing complexes of gadolinium such as Gd-LC6-SH can serve as redox-sensitive MRI contrast agents for detecting differences in tumor redox status and can be used to evaluate the effects of redox-active drugs. PMID:22741038

  12. Micro-computed tomography assessment of human alveolar bone: bone density and three-dimensional micro-architecture.

    PubMed

    Kim, Yoon Jeong; Henkin, Jeffrey

    2015-04-01

    Micro-computed tomography (micro-CT) is a valuable means to evaluate and secure information related to bone density and quality in human necropsy samples and small live animals. The aim of this study was to assess the bone density of the alveolar jaw bones in human cadaver, using micro-CT. The correlation between bone density and three-dimensional micro architecture of trabecular bone was evaluated. Thirty-four human cadaver jaw bone specimens were harvested. Each specimen was scanned with micro-CT at resolution of 10.5 μm. The bone volume fraction (BV/TV) and the bone mineral density (BMD) value within a volume of interest were measured. The three-dimensional micro architecture of trabecular bone was assessed. All the parameters in the maxilla and the mandible were subject to comparison. The variables for the bone density and the three-dimensional micro architecture were analyzed for nonparametric correlation using Spearman's rho at the significance level of p < .05. A wide range of bone density was observed. There was a significant difference between the maxilla and mandible. All micro architecture parameters were consistently higher in the mandible, up to 3.3 times greater than those in the maxilla. The most linear correlation was observed between BV/TV and BMD, with Spearman's rho = 0.99 (p = .01). Both BV/TV and BMD were highly correlated with all micro architecture parameters with Spearman's rho above 0.74 (p = .01). Two aspects of bone density using micro-CT, the BV/TV and BMD, are highly correlated with three-dimensional micro architecture parameters, which represent the quality of trabecular bone. This noninvasive method may adequately enhance evaluation of the alveolar bone. © 2013 Wiley Periodicals, Inc.

  13. Parameter Prediction of Hydraulic Fracture for Tight Reservoir Based on Micro-Seismic and History Matching

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Ma, Xiaopeng; Li, Yanlai; Wu, Haiyang; Cui, Chenyu; Zhang, Xiaoming; Zhang, Hao; Yao, Jun

    Hydraulic fracturing is an important measure for the development of tight reservoirs. In order to describe the distribution of hydraulic fractures, micro-seismic diagnostic was introduced into petroleum fields. Micro-seismic events may reveal important information about static characteristics of hydraulic fracturing. However, this method is limited to reflect the distribution area of the hydraulic fractures and fails to provide specific parameters. Therefore, micro-seismic technology is integrated with history matching to predict the hydraulic fracture parameters in this paper. Micro-seismic source location is used to describe the basic shape of hydraulic fractures. After that, secondary modeling is considered to calibrate the parameters information of hydraulic fractures by using DFM (discrete fracture model) and history matching method. In consideration of fractal feature of hydraulic fracture, fractal fracture network model is established to evaluate this method in numerical experiment. The results clearly show the effectiveness of the proposed approach to estimate the parameters of hydraulic fractures.

  14. Scale effects and a method for similarity evaluation in micro electrical discharge machining

    NASA Astrophysics Data System (ADS)

    Liu, Qingyu; Zhang, Qinhe; Wang, Kan; Zhu, Guang; Fu, Xiuzhuo; Zhang, Jianhua

    2016-08-01

    Electrical discharge machining(EDM) is a promising non-traditional micro machining technology that offers a vast array of applications in the manufacturing industry. However, scale effects occur when machining at the micro-scale, which can make it difficult to predict and optimize the machining performances of micro EDM. A new concept of "scale effects" in micro EDM is proposed, the scale effects can reveal the difference in machining performances between micro EDM and conventional macro EDM. Similarity theory is presented to evaluate the scale effects in micro EDM. Single factor experiments are conducted and the experimental results are analyzed by discussing the similarity difference and similarity precision. The results show that the output results of scale effects in micro EDM do not change linearly with discharge parameters. The values of similarity precision of machining time significantly increase when scaling-down the capacitance or open-circuit voltage. It is indicated that the lower the scale of the discharge parameter, the greater the deviation of non-geometrical similarity degree over geometrical similarity degree, which means that the micro EDM system with lower discharge energy experiences more scale effects. The largest similarity difference is 5.34 while the largest similarity precision can be as high as 114.03. It is suggested that the similarity precision is more effective in reflecting the scale effects and their fluctuation than similarity difference. Consequently, similarity theory is suitable for evaluating the scale effects in micro EDM. This proposed research offers engineering values for optimizing the machining parameters and improving the machining performances of micro EDM.

  15. Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science.

    PubMed

    Svarcová, Silvie; Kocí, Eva; Bezdicka, Petr; Hradil, David; Hradilová, Janka

    2010-09-01

    The uniqueness and limited amounts of forensic samples and samples from objects of cultural heritage together with the complexity of their composition requires the application of a wide range of micro-analytical methods, which are non-destructive to the samples, because these must be preserved for potential late revision. Laboratory powder X-ray micro-diffraction (micro-XRD) is a very effective non-destructive technique for direct phase analysis of samples smaller than 1 mm containing crystal constituents. It compliments optical and electron microscopy with elemental micro-analysis, especially in cases of complicated mixtures containing phases with similar chemical composition. However, modification of X-ray diffraction to the micro-scale together with its application for very heterogeneous real samples leads to deviations from the standard procedure. Knowledge of both the limits and the phenomena which can arise during the analysis is crucial for the meaningful and proper application of the method. We evaluated basic limits of micro-XRD equipped with a mono-capillary with an exit diameter of 0.1 mm, for example the size of irradiated area, appropriate grain size, and detection limits allowing identification of given phases. We tested the reliability and accuracy of quantitative phase analysis based on micro-XRD data in comparison with conventional XRD (reflection and transmission), carrying out experiments with two-phase model mixtures simulating historic colour layers. Furthermore, we demonstrate the wide use of micro-XRD for investigation of various types of micro-samples (contact traces, powder traps, colour layers) and we show how to enhance data quality by proper choice of experiment geometry and conditions.

  16. Correlation Between Resonance Frequency Analysis and Bone Quality Assessments at Dental Implant Recipient Sites.

    PubMed

    Fu, Min-Wen; Fu, Earl; Lin, Fu-Gong; Chang, Wei-Jeng; Hsieh, Yao-Dung; Shen, E-Chin

    To evaluate whether primary implant stability could be used to predict bone quality, the association between the implant stability quotient (ISQ) value and the bone type at the implant site was evaluated. Ninety-five implant sites in 50 patients were included. Bone type (categorized by Lekholm and Zarb) at the implant site was initially assessed using presurgical dental radiography. During the preparation of the implant site, a bone core specimen was carefully obtained. The bone type was assessed by tactile sensation during the drilling operation, according to the Misch criteria. The primary stability of the inserted implant was evaluated by resonance frequency analysis (RFA). The ISQ value was recorded. The bone core specimen was then examined by stereomicroscopy or microcomputed tomography (micro-CT), and the bone type was determined by the surface characteristics of the specimen, based on Lekholm and Zarb classification. Agreement between the bone quality assessed by the four methods (ie, presurgical radiography, tactile sensation, stereomicroscopy, and micro-CT) was tested by Cohen's kappa statistics, whereas the association between the ISQ value and the bone type was evaluated by the generalized linear regression model. The mean ISQ score was 72.6, and the score was significantly influenced by the maxillary or mandibular arch (P = .001). The bone type at the implant sites varied according to the assessment method. However, a significant influence of the arch was repeatedly noted when using radiography or tactile sensation. Among the four bone-quality assessment methods, a weak agreement existed only between stereomicroscopy and micro-CT, especially in the maxilla (κ = 0.469). A negative association between the ISQ value and the bone type assessed by stereomicroscopy or by micro-CT was significant in the maxilla, but not in the mandible, after adjustments for sex, age, and right/left side (P = .013 and P = .027 for stereomicroscopy and micro-CT, respectively). The ISQ value was weakly associated with the bone type when assessed by stereomicroscopy or micro-CT in the maxilla. Caution is necessary if RFA is used as a tool to evaluate bone quality at the implant site, especially in the mandible.

  17. Design, fabrication, and evaluation of on-chip micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Beidaghi, Majid; Chen, Wei; Wang, Chunlei

    2011-06-01

    Development of miniaturized electronic systems has stimulated the demand for miniaturized power sources that can be integrated into such systems. Among the different micro power sources micro electrochemical energy storage and conversion devices are particularly attractive because of their high efficiency and relatively high energy density. Electrochemical micro-capacitors or micro-supercapacitors offer higher power density compared to micro-batteries and micro-fuel cells. In this paper, development of on-chip micro-supercapacitors based on interdigitated C-MEMS electrode microarrays is introduced. C-MEMS electrodes are employed both as electrode material for electric double layer capacitor (EDLC) or as three dimensional (3D) current collectors of EDLC or pseudo-capacitive materials. Recent advancements in fabrication methods of C-MEMS based micro-supercapacitors are discussed and electrochemical properties of C-MEMS electrodes and it composites are reviewed.

  18. Thiol biochemistry of prokaryotes

    NASA Technical Reports Server (NTRS)

    Fahey, Robert C.

    1986-01-01

    The present studies have shown that GSH metabolism arose in the purple bacteria and cyanobacteria where it functions to protect against oxygen toxicity. Evidence was obtained indicating that GSH metabolism was incorporated into eucaryotes via the endosymbiosis giving rise to mitochrondria and chloroplasts. Aerobic bacteria lacking GSH utilize other thiols for apparently similar functions, the thiol being coenzyme A in Gram positive bacteria and chi-glutamylcysteine in the halobacteria. The thiol biochemistry of prokaryotes is thus seen to be much more highly diversified than that of eucaryotes and much remains to be learned about this subject.

  19. Au-thiol interaction chemistry to influence the structural transformation of semiconductor nanocrystals and formation of giant nanostructures.

    PubMed

    Bose, Riya; Manna, Goutam; Pradhan, Narayan

    2014-04-09

    Giant nanostructures which are difficult to design by the classical growth process can be fabricated in a facilitated and well programmed surface ligand removal protocol employing the thiol-gold strong interaction chemistry. When thiol capped small ZnSe seed nanocrystals are treated with amine capped gold particles, gold snatches the thiol ligands from ZnSe and forces them to agglomerate leading to the giant crystalline ZnSe nanostructures. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nitroolefin-based BODIPY as a novel water-soluble ratiometric fluorescent probe for detection of endogenous thiols

    NASA Astrophysics Data System (ADS)

    Kang, Jin; Huo, Fangjun; Chao, Jianbin; Yin, Caixia

    2018-04-01

    Small molecule biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play many crucial roles in physiological processes. In this work, we have prepared a nitroolefin-based BODIPY fluorescent probe with excellent water solubility for detection thiols, which displayed ratiometric fluorescent signal for thiols. Incorporation of a nitroolefin unit to the BODIPY dye would transform it into a strong Michael acceptor, which would be highly susceptible to sulfhydryl nucleophiles. This probe shows an obvious ratio change upon response with thiols, an increase of the emission at 517 nm along with a concomitant decrease of fluorescence peak at 573 nm. Moreover, these successes of intracellular imaging experiments in A549 cells indicated that this probe is suitable for imaging of ex-/endogenous thiols in living cells.

  1. Short communication: characterization of soluble thiols in bovine milk.

    PubMed

    Niero, G; De Marchi, M; Masi, A; Penasa, M; Cassandro, M

    2015-09-01

    Antioxidants are molecules essential for the maintenance of cell homeostasis and their intake through the diet has positive effects on human health. Among antioxidants, low-molecular-weight (LMW) thiols represent an important class of compounds. The aim of this study was to identify LMW thiols in bovine milk. A total of 96 individual milk samples from Brown Swiss, Holstein-Friesian, Alpine Grey, and Simmental cattle breeds were collected in 8 herds. The LMW thiols were extracted from the soluble fraction of milk and, following a derivatization protocol, they were separated by reverse phase HPLC and detected fluorimetrically. Six thiol species were detected and 2, glutathione (GSH) and cysteine-glycine (Cys-Gly), were identified and quantified. Regardless of the breed, the average concentration of Cys-Gly in milk was greater than that of GSH. Overall, milk from dual-purpose breeds (Simmental and Alpine Grey) was richer in LMW thiols than milk from dairy cows (Holstein-Friesian and Brown Swiss). Glutathione and Cys-Gly, closely linked metabolically, were strongly correlated. Pearson correlations of Cys-Gly with protein and casein contents were moderately low, and no relationship was found between GSH and milk chemical composition. Future research should focus on the identification of all detected LMW thiol species. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Presence of closely spaced protein thiols on the surface of mammalian cells.

    PubMed Central

    Donoghue, N.; Yam, P. T.; Jiang, X. M.; Hogg, P. J.

    2000-01-01

    It has been proposed that certain cell-surface proteins undergo redox reactions, that is, transfer of hydrogens and electrons between closely spaced cysteine thiols that can lead to reduction, formation, or interchange of disulfide bonds. This concept was tested using a membrane-impermeable trivalent arsenical to identify closely spaced thiols in cell-surface proteins. We attached the trivalent arsenical, phenylarsenoxide, to the thiol of reduced glutathione to produce 4-(N-(S-glutathionylacetyl)amino)phenylarsenoxide (GSAO). GSAO bound tightly to synthetic, peptide, and protein dithiols like thioredoxin, but not to monothiols. To identify cell-surface proteins that contain closely spaced thiols, we attached a biotin moiety through a spacer arm to the primary amino group of the gamma-glutamyl residue of GSAO (GSAO-B). Incorporation of GSAO-B into proteins was assessed by measuring the biotin using streptavidin-peroxidase. Up to 12 distinct proteins were labeled with GSAO-B on the surface of endothelial and fibrosarcoma cells. The pattern of labeled proteins differed between the different cell types. Protein disulfide isomerase was one of the proteins on the endothelial and fibrosarcoma cell surface that incorporated GSAO-B. These findings demonstrate that the cell-surface environment can support the existence of closely spaced protein thiols and suggest that at least some of these thiols are redox active. PMID:11206065

  3. In vitro evaluation of thiolated polydimethylaminoethylmethacrylate hydrogel sub-microparticles for oral insulin delivery.

    PubMed

    Sonia, T A; Sharma, Chandra P

    2013-04-01

    In this investigation, novel cationic thiomer, Thiolated polydimethylaminoethylmethacrylate (PDCys) is synthesised and the feasibility of PDCys sub-microparticles as oral insulin delivery carriers is evaluated in vitro. The presence of both positive charge and thiol group in the same matrix plays a vital role in improving the paracellular permeability. Thiol groups interacts with cysteine rich subdomains via disulfide bond formation and positive charge interacts with sialic residues of mucus glycoproteins via electrostatic interaction, thereby increasing the mucoadhesivity. Cytotoxic evaluation by MTT assay shows that PDCys is nontoxic. Force and Work of adhesion of PDCys was found found to be higher than that of parent polymer. ELISA and Circular dichroism spectra confirms that PDCys retains the biological activity and conformation of insulin. Moreover, PDCys is capable of opening the tight junctions by actin and occludin filament dislocation. Furthermore, permeation of FD4 on Caco-2 cells is improved by 3.9 fold compared to the parent polymer. Preliminary studies suggest that thiolated particles can serve as potential vehicles for oral insulin delivery.

  4. Nitric oxide-based protein modification: formation and site-specificity of protein S-nitrosylation

    PubMed Central

    Kovacs, Izabella; Lindermayr, Christian

    2013-01-01

    Nitric oxide (NO) is a reactive free radical with pleiotropic functions that participates in diverse biological processes in plants, such as germination, root development, stomatal closing, abiotic stress, and defense responses. It acts mainly through redox-based modification of cysteine residue(s) of target proteins, called protein S-nitrosylation.In this way NO regulates numerous cellular functions and signaling events in plants. Identification of S-nitrosylated substrates and their exact target cysteine residue(s) is very important to reveal the molecular mechanisms and regulatory roles of S-nitrosylation. In addition to the necessity of protein–protein interaction for trans-nitrosylation and denitrosylation reactions, the cellular redox environment and cysteine thiol micro-environment have been proposed important factors for the specificity of protein S-nitrosylation. Several methods have recently been developed for the proteomic identification of target proteins. However, the specificity of NO-based cysteine modification is still less defined. In this review, we discuss formation and specificity of S-nitrosylation. Special focus will be on potential S-nitrosylation motifs, site-specific proteomic analyses, computational predictions using different algorithms, and on structural analysis of cysteine S-nitrosylation. PMID:23717319

  5. METHOD FOR MICRORNA ISOLATION FROM CLINICAL SERUM SAMPLES

    PubMed Central

    Li, Yu; Kowdley, Kris V.

    2012-01-01

    MicroRNAs are a group of intracellular non-coding RNA molecules that have been implicated in a variety of human diseases. Due to their high stability in blood, microRNAs released into circulation could be potentially utilized as non-invasive biomarkers for diagnosis or prognosis. Current microRNA isolation protocols are specifically designed for solid tissues and are impractical for biomarker development utilizing small-volume serum samples on a large scale. Thus, a protocol for microRNA isolation from serum is needed to accommodate these conditions in biomarker development. To establish such a protocol, we developed a simplified approach to normalize sample input by using single synthetic spike-in microRNA. We evaluated three commonly used commercial microRNA isolation kits for the best performance by comparing RNA quality and yield. The manufacturer’s protocol was further modified to improve the microRNA yield from 200 μL of human serum. MicroRNAs isolated from a large set of clinical serum samples were tested on the miRCURY LNA real-time PCR panel and confirmed to be suitable for high-throughput microRNA profiling. In conclusion, we have established a proven method for microRNA isolation from clinical serum samples suitable for microRNA biomarker development. PMID:22982505

  6. Hydrodynamic size-dependent cellular uptake of aqueous QDs probed by fluorescence correlation spectroscopy.

    PubMed

    Dong, Chaoqing; Irudayaraj, Joseph

    2012-10-11

    Aqueous quantum dots (QDs) directly synthesized with various thiol ligands have been investigated as imaging probes in living cells. However, the effect of the surface chemistry of these ligands on QDs' cellular uptakes and their intracellular fate remains poorly understood. In this work, four CdTe QDs were directly synthesized under aqueous conditions using four different thiols as stabilizers and their interactions with cells were investigated. Fluorescence correlation spectroscopy (FCS), X-ray photoelectron spectroscopy (XPS), and zeta potential measurements on QDs primarily show that the surface structure of these QDs is highly dependent on the thiol ligands used in the preparation of QDs' precursors, including its layer thicknesses, densities, and surface charges. Subsequently, FCS integrated with the maximum-entropy-method-based FCS (MEMFCS) was used to investigate the concentration distribution and dynamics of these QDs in living A-427 cells. Our findings indicate that QDs' surface characteristics affect cell membrane adsorption and subsequent internalization. More critically, we show that the cellular uptake of aqueous QDs is dependent on their hydrodynamic diameter and might have the potential to escape trapped environments to accumulate in the cytoplasm.

  7. Hydrogen bonding as the origin of the switching behavior in dithiolated phenylene-vinylene oligomers

    NASA Astrophysics Data System (ADS)

    Obodo, J. T.; Gkionis, K.; Rungger, I.; Sanvito, S.; Schwingenschlögl, U.

    2013-08-01

    We investigate theoretically the switching behavior of a dithiolated phenylene-vinylene oligomer sandwiched between Au(111) electrodes using self-interaction corrected density-functional theory combined with the nonequilibrium Green's-function method for quantum transport. The molecule presents a configurational bistability, which can be exploited in constructing molecular memories, switches, and sensors. We find that protonation of the terminating thiol groups is at the origin of the change in conductance. H bonding at the thiol group weakens the S-Au bond and reduces by about one order of magnitude the transmission coefficient at the Fermi level, and thus the linear response conductance. Furthermore, protonation downshifts in energy the position of the highest occupied molecular orbital, so that the current of the protonated species is lower than that of the unprotonated one along the entire bias range investigated, from -1.5 to 1.5 V. A second protonation at the opposite thiol group has only minor effects and no further drastic reduction in transmission takes place. Our results allow us to re-interpret the experimental data originally attributing the conductance reduction to H dissociation.

  8. Electrochemical Oxidation of l-selenomethionine and Se-methylseleno-l-cysteine at a Thiol-Compound-Modified Gold Electrode: Its Application in a Flow-Through Voltammetric Sensor.

    PubMed

    Wang, Lai-Hao; Zhang, Yu-Han

    2017-02-16

    A flow-electrolytic cell that consists of a bare gold wire or of different thiol-compound-modified gold electrodes (such as 2,4-thiazolidinedione, 2-mercapto-5-thiazoline, 2-mercaptothiazoline, l-cysteine, thioglycolic acid) was designed to be used in a voltammetric detector to identify l-selenomethionine and Se-methylseleno-l-cysteine using high-performance liquid chromatography. Both l-selenomethionine and Se-methylseleno-l-cysteine are more efficiently electrochemically oxidized on a thiol/gold than on a bare gold electrode. For the DC mode, and for measurements with suitable experimental parameters, a linear concentration from 10 to 1600 ng·mL -1 was found. The limits of quantification for l-selenomethionine and Se-methylseleno-l-cysteine were below 10 ng·mL -1 . The method can be applied to the quantitative determination of l-selenomethionine and Se-methylseleno-l-cysteine in commercial selenium-containing supplement products. Findings using high-performance liquid chromatography with a flow-through voltammetric detector and ultraviolet detector are comparable.

  9. Thiolated hydroxyethyl cellulose: design and in vitro evaluation of mucoadhesive and permeation enhancing nanoparticles.

    PubMed

    Rahmat, Deni; Müller, Christiane; Barthelmes, Jan; Shahnaz, Gul; Martien, Ronny; Bernkop-Schnürch, Andreas

    2013-02-01

    Within this study, HEC-cysteamine nanoparticles with free thiol groups in the range of 117-1548 μmol/g were designed and characterized. Nanoparticles were generated via ionic gelation of the cationic polymer with tripolyphosphate (TPP) followed by covalent crosslinking via disulfide bond formation using H2O2 as oxidant. The mean diameter of the particles was in the range of 270-360 nm, and zeta potential was determined to be +4 to +10 mV. Nanoparticles were evaluated in terms of mucoadhesive, permeation enhancing, and biocompatible properties as well as biodegradability. The particles remained attached to porcine intestinal mucosa up to 70% after 3h of incubation. The more nanoparticles were oxidized; however, the less were their mucoadhesive properties. Nanoparticles applied in a concentration of 0.5% (m/v) with the highest content of free thiol groups improved the transport of fluorescein isothiocyanate dextran 4 (FD4) across Caco-2 cell monolayer 3.94-fold in comparison with control (buffer). In addition, the transport of FD4 was even 1.84-fold enhanced in the presence of 0.5% (m/v) nanoparticles with the lowest free thiol group content. The higher the disulfide bond content within nanoparticles was, to a lower degree nanoparticles were hydrolyzed by cellulase. None of these nanoparticles showed pronounced cytotoxicity. Accordingly, HEC-cysteamine could be a promising excipient for nanoparticulate delivery systems for poorly absorbed drugs. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis

    NASA Astrophysics Data System (ADS)

    Papadopoulou, D. N.; Zachariadis, G. A.; Anthemidis, A. N.; Tsirliganis, N. C.; Stratis, J. A.

    2004-12-01

    Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level).

  11. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels.

    PubMed

    Smith, M Ryan; Vayalil, Praveen K; Zhou, Fen; Benavides, Gloria A; Beggs, Reena R; Golzarian, Hafez; Nijampatnam, Bhavitavya; Oliver, Patsy G; Smith, Robin A J; Murphy, Michael P; Velu, Sadanandan E; Landar, Aimee

    2016-08-01

    Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP), decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231) breast adenocarcinoma cells up to 6 days after an initial 24h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR) in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10µM) of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC) protein levels, although other protein levels were unaffected. This study demonstrates for the first time that mitochondrial thiol modification inhibits metabolism via inhibition of both aconitase and GAC in a breast cancer cell model. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Amaranth addition to enzymatically modified wheat flour improves dough functionality, bread immunoreactivity and quality.

    PubMed

    Heredia-Sandoval, N G; Calderón de la Barca, A M; Carvajal-Millán, E; Islas-Rubio, A R

    2018-01-24

    Consumers with gluten-related disorders require gluten-free (GF) foods to avoid an immune response. Alternative to the use of non-gluten containing grains to prepare GF bread, the gluten reactivity has been greatly reduced using a proline specific cleavage enzyme, however, the gluten functionality was lost. The aim of this study was to evaluate the effect of adding an amaranth flour blend (AFB) to enzymatically modified wheat-flour proteins on dough functionality and to evaluate the immunoreactivity and acceptability of the prepared bread. First, wheat flour (20% w/v, substrate) was hydrolyzed using 8.4 U mg -1 protein Aspergillus niger prolyl-endopeptidase (AnPEP) for 8 h at 40 °C under constant agitation. Four types of breads were prepared with the same formulation except for the type of flour (14% w.b.): wheat flour (WF), WF-AFB unmodified not incubated, WF-AFB unmodified incubated and WF-AFB modified. The protein composition and free thiols were analyzed before and after amaranth addition, and the flour and bread proteins were run using SDS-PAGE and immune-detected in blots with IgA from celiac disease patients. The immunoreactive gluten content, specific volume and bread acceptability were evaluated. The polymeric proteins and free thiol groups of WF decreased after AnPEP treatment. The electrophoretic patterns of the modified flour and bread proteins were different and the IgA-immunodetection in blots was highly reduced, particularly for the higher molecular weight subunits. The addition of AFB to the modified wheat flour prepared using AnPEP improved the dough functionality by increasing the thiol groups and allowed the preparation of a sensorially acceptable bread with only 60 mg kg -1 immunoreactive gluten.

  13. Detection of Free Thiols and Fluorescence Response of Phycoerythrin Chromophore after Ultraviolet-B Radiation Stress.

    PubMed

    Kannaujiya, Vinod K; Sinha, Rajeshwar P

    2017-03-01

    The chemistry of thiol-chromophore linkage plays a central role in the nature of fluorescence of phycoerythrin (PE). Interaction of thiol and chromophore is crucial for the energy transfer, redox signal and inhibition of oxidative damage. In the present investigation the effects of ultraviolet-B radiation on an emission fluorescence intensity and wavelength shift in PE due to interaction between thiol and chromophore by remarkable strategy of detection technique was studied. Purification of PE was done by using a gel permeation and ion exchange chromatography that yielded a quite high purity index (6.40) in a monomeric (αβ) form. UV-B radiation accelerated the quenching efficiency (24.9 ± 1.52%) by reducing fluorescence emission intensity of thiol linked chromophore after 240 min of UV-B exposure. However, after blocking of transiently released free thiol by N-ethylmaleimide, quenching efficiency was increased (36.8 ± 2.80%) with marked emission wavelength shift towards shorter wavelengths up to 562 nm as compared to 575 nm in control. Emission fluorescence of free thiol was at maximum after 240 min that was detected specifically by monobromobimane (mBrB) molecular probe. The association/dissociation of bilin chromophore was analyzed by SDS- and Native-PAGE that also indicated a complete reduction in emission fluorescence. Our work clearly shows an early detection of free thiols and relative interaction with chromophore after UV-B radiation which might play a significant role in structural and functional integrity of terminal PE.

  14. Erythrocyte membrane stability to hydrogen peroxide is decreased in Alzheimer disease.

    PubMed

    Gilca, Marilena; Lixandru, Daniela; Gaman, Laura; Vîrgolici, Bogdana; Atanasiu, Valeriu; Stoian, Irina

    2014-01-01

    The brain and erythrocytes have similar susceptibility toward free radicals. Therefore, erythrocyte abnormalities might indicate the progression of the oxidative damage in Alzheimer disease (AD). The aim of this study was to investigate erythrocyte membrane stability and plasma antioxidant status in AD. Fasting blood samples (from 17 patients with AD and 14 healthy controls) were obtained and erythrocyte membrane stability against hydrogen peroxide and 2,2'-azobis-(2-amidinopropane) dihydrochloride (AAPH), serum Trolox equivalent antioxidant capacity (TEAC), residual antioxidant activity or gap (GAP), erythrocyte catalase activity (CAT), erythrocyte superoxide dismutase (SOD) activity, erythrocyte nonproteic thiols, and total plasma thiols were determined. A significant decrease in erythrocyte membrane stability to hydrogen peroxide was found in AD patients when compared with controls (P<0.05). On the contrary, CAT activity (P<0.0001) and total plasma thiols (P<0.05) were increased in patients with AD compared with controls. Our results indicate that the most satisfactory measurement of the oxidative stress level in the blood of patients with AD is the erythrocyte membrane stability to hydrogen peroxide. Reduced erythrocyte membrane stability may be further evaluated as a potential peripheral marker for oxidative damage in AD.

  15. Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide

    PubMed Central

    Fomenko, Dmitri E.; Koc, Ahmet; Agisheva, Natalia; Jacobsen, Michael; Kaya, Alaattin; Malinouski, Mikalai; Rutherford, Julian C.; Siu, Kam-Leung; Jin, Dong-Yan; Winge, Dennis R.; Gladyshev, Vadim N.

    2011-01-01

    Hydrogen peroxide is thought to regulate cellular processes by direct oxidation of numerous cellular proteins, whereas antioxidants, most notably thiol peroxidases, are thought to reduce peroxides and inhibit H2O2 response. However, thiol peroxidases have also been implicated in activation of transcription factors and signaling. It remains unclear if these enzymes stimulate or inhibit redox regulation and whether this regulation is widespread or limited to a few cellular components. Herein, we found that Saccharomyces cerevisiae cells lacking all eight thiol peroxidases were viable and withstood redox stresses. They transcriptionally responded to various redox treatments, but were unable to activate and repress gene expression in response to H2O2. Further studies involving redox transcription factors suggested that thiol peroxidases are major regulators of global gene expression in response to H2O2. The data suggest that thiol peroxidases sense and transfer oxidative signals to the signaling proteins and regulate transcription, whereas a direct interaction between H2O2 and other cellular proteins plays a secondary role. PMID:21282621

  16. An Indirect Method to Measure Abutment Screw Preload: A Pilot Study Based on Micro-CT Scanning.

    PubMed

    Rezende, Carlos Eduardo E; Griggs, Jason Alan; Duan, Yuanyuan; Mushashe, Amanda M; Nolasco, Gisele Maria Correr; Borges, Ana Flávia Sanches; Rubo, José Henrique

    2015-01-01

    This study aimed to measure the preload in different implant platform geometries based on micro-CT images. External hexagon (EH) implants and Morse Tapered (MT) implants (n=5) were used for the preload measurement. The abutment screws were scanned in micro-CT to obtain their virtual models, which were used to record their initial length. The abutments were screwed on the implant with a 20 Ncm torque and the set composed by implant, abutment screw and abutment were taken to the micro-CT scanner to obtain virtual slices of the specimens. These slices allowed the measurement of screw lengths after torque application and based on the screw elongation. Preload values were calculated using the Hooke's Law. The preloads of both groups were compared by independent t-test. Removal torque of each specimen was recorded. To evaluate the accuracy of the micro-CT technique, three rods with known lengths were scanned and the length of their virtual model was measured and compared with the original length. One rod was scanned four times to evaluate the measuring method variation. There was no difference between groups for preload (EH = 461.6 N and MT = 477.4 N), but the EH group showed higher removal torque values (13.8 ± 4.7 against 8.2 ± 3.6 N cm for MT group). The micro-CT technique showed a variability of 0.053% and repeatability showed an error of 0.23 to 0.28%. Within the limitations of this study, there was no difference between external hexagon and Morse taper for preload. The method using micro-CT may be considered for preload calculation.

  17. Evaluation of Electromagnetic Near-Field Measurement Technique as Non-Destructive Testing for Composite Structures

    NASA Astrophysics Data System (ADS)

    Raad Hussein, Alaa; Badri Albarody, Thar M.; Megat Yusoff, Puteri Sri Melor Bt

    2018-05-01

    Nowadays there is no viable non-destructive method that could detect flaws in complex composite products. Such a method could provide unique tools to allow engineers to minimize time consumption and cost during the evaluation of various product parameters without disturbing production. The latest research and development on propagation waves introduce micro, radio and millimetre waves as new potential non-destructive test methods for evaluation of mechanical flaws and prediction of failure in a product during production. This paper focuses on recent developments, usage, classification of electromagnetic waves under the range of radio frequency, millimetre and micro-waves. In addition, this paper reviews the application of propagation wave and proposed a new health monitoring technique based on Doppler Effect for vibration measurement in complex composite structures. Doppler Effect is influenced by dynamic behaviour of the composite structures and both are effect by flaws occurred inside the structure. Composite manufacturers, especially Aerospace industry are demanding these methods comprehensively inspect and evaluate the damages and defects in their products.

  18. Redox-Triggered Bonding-Induced Emission of Thiol-Functionalized Gold Nanoclusters for Luminescence Turn-On Detection of Molecular Oxygen.

    PubMed

    Ao, Hang; Feng, Hui; Zhao, Mengting; Zhao, Meizhi; Chen, Jianrong; Qian, Zhaosheng

    2017-11-22

    Most optical sensors for molecular oxygen were developed based on the quenching effect of the luminescence of oxygen-sensitive probes; however, the signal turn-off mode of these probes is undesirable to quantify and visualize molecular oxygen. Herein, we report a novel luminescence turn-on detection strategy for molecular oxygen via the specific oxygen-triggered bonding-induced emission of thiol-functionalized gold nanoclusters. Thiol-functionalized gold nanoclusters were prepared by a facile one-step synthesis, and as-prepared gold nanoclusters possess significant aggregation-induced emission (AIE) property. It is the first time to discover the oxygen-triggered bonding-induced emission (BIE) behavior of gold nanoclusters, which results in disulfide-linked covalent bonding assemblies with intensely red luminescence. This specific redox-triggered BIE is capable of quantitatively detecting dissolved oxygen in aqueous solution in a light-up manner, and trace amount of dissolved oxygen at ppb level is achieved based on this detection method. A facile and convenient test strip for oxygen detection was also developed to monitor molecular oxygen in a gas matrix. Covalent bonding-induced emission is proven to be a more efficient way to attain high brightness of AIEgens than a physical aggregation-induced emission process, and provides a more convenient and desirable detection method for molecular oxygen than the previous sensors.

  19. The utility of vitamin K3 (menadione) against pancreatic cancer.

    PubMed

    Osada, Shinji; Tomita, Hiroyuki; Tanaka, Yoshihiro; Tokuyama, Yasuharu; Tanaka, Hidenori; Sakashita, Fumio; Takahashi, Takao

    2008-01-01

    To evaluate the efficacy of vitamin K3 (VK3) against pancreatic cancer, the molecular mechanism of VK3 or gemcitabine (GEM)-induced inhibition of proliferation was characterized. The cell viability was determined using the 3-[4,5-dimethylthiazol]-2,5-diphenyl tetrazolium bromide (MTT) test method. The expressions of cellular proteins were evaluated by Western blot analysis. For morphological studies of the in vivo transplanted cancer cells, the tissues were stained with hematoxylin and eosin. The IC50 of VK3 for pancreatic cancer cells was calculated for 42.1 +/- 3.5 microM. Western blot analysis showed that VK3 induced rapid phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) 30 minutes after application. ERK but not JNK phosphorylation was maintained for at least 12 hours. Activation of apoptosis by VK3, as shown by molecular weight shifts of the pro-activated 32-kDa form of caspase-3 and poly(ADP-ribose)polymerase (PARP) cleavage of the 112-kDa form, was found. Treatment with the thiol antioxidant, L-cysteine (>0.2 mM), completely abrogated the VK3-induced phosphorylation of ERK, but not the JNK, and inhibition of proliferation. A caspase-3 inhibitor antagonized caspase-3 activation, but had no inhibitory effect on the proliferative activity of VK3. GEM at concentrations >0.1 microg/ml was found to inhibit cell proliferation after 24 hours. GEM also induced phosphorylation of JNK, activation of caspase-3 and accumulation of cyclin B1. Local application of VK3 was found to induce extensive tumor tissue necrosis, but slight hematemesis without necrosis was observed 48 hours after GEM injection. In Western blot, ERK but not JNK phosphorylation, was clearly detected in response to VK3 injection into the tumor tissue. The action of VK3 may lead to a favorable outcome against pancreatic cancer, and the detection of ERK phosphorylation in the tissue is important for predicting this effect.

  20. S-protected thiolated chitosan: synthesis and in vitro characterization.

    PubMed

    Dünnhaupt, Sarah; Barthelmes, Jan; Thurner, Clemens C; Waldner, Claudia; Sakloetsakun, Duangkamon; Bernkop-Schnürch, Andreas

    2012-10-01

    Purpose of the present study was the generation and evaluation of novel thiolated chitosans, so-named S-protected thiolated chitosans as mucosal drug delivery systems. Stability of all conjugates concerning swelling and disintegration behavior as well as drug release was examined. Mucoadhesive properties were evaluated in vitro on intestinal mucosa. Different thiolated chitosans were generated displaying increasing amounts of attached free thiol groups on the polymer, whereby more than 50% of these thiol groups were linked with 6-mercaptonicotinamide. Based on the implementation of this hydrophobic residue, the swelling behavior was 2-fold decreased, whereas stability was essentially improved. Their mucoadhesive properties were 2- and 14-fold increased compared to corresponding thiolated and unmodified chitosans, respectively. Release studies out of matrix tablets comprising the novel conjugates revealed a controlled release of a model peptide. Accordingly, S-protected thiomers represent a promising type of mucoadhesive polymers for the development of various mucosal drug delivery systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Metallothionein quantification in clams by reversed-phase high-performance liquid chromatography coupled to fluorescence detection after monobromobimane derivatization.

    PubMed

    Alhama, José; Romero-Ruiz, Antonio; López-Barea, Juan

    2006-02-24

    In this paper, we describe a highly specific, sensitive and reliable method for total metallothionein (MT) quantification by RP-HPLC coupled to fluorescence detection following reaction with monobromobimane of thiols from metal-depleted MT after heat-denaturation of extracts in the presence of sodium dodecyl sulphate (SDS). SDS-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed the identity of the peak resolved (t(R)=16.44) with MT: a highly fluorescent protein of approximately 8.3 kDa, in agreement with the high thiol content and low MT size. Other heat-resistant and Cys-containing proteins of 35 kDa were efficiently separated. The new method was successfully used to quantify MT content in digestive gland of clams from southern Spanish coastal sites with different metal levels, and is proposed as a tool for using MTs as biomarker in monitoring programmes.

  2. A Biological Approach for the Synthesis of Bismuth Nanoparticles: Using Thiolated M13 Phage as Scaffold.

    PubMed

    Vera-Robles, L Irais; Escobar-Alarcón, Luis; Picquart, Michel; Hernández-Pozos, J Luis; Haro-Poniatowski, Emmanuel

    2016-04-05

    We report the synthesis of Bi nanoparticles (Bi NPs) using the M13 phage as scaffold. The p8 protein of the phage is functionalized with thiol groups of different lengths, and these thiolated regions act as nucleation centers for Bi(3+) ions. The size distribution, shape, and resilience to oxidation of the Bi NPs depend on the length of the thiol group used. The NPs are characterized by high resolution transmission electron microscopy, Raman, and IR spectroscopies, matrix assisted laser desorption/ionization, and optical absorption. These results show that the nanoparticles are crystalline and have a typical diameter of ∼3.0 nm. The method of preparation presented here is reproducible and implies "greener" conditions than those reported elsewhere. To the best of our knowledge, this is the first report of bismuth nanoparticles synthesized by a biomineralization method.

  3. Structural Basis of a Thiol-Disulfide Oxidoreductase in the Hedgehog-Forming Actinobacterium Corynebacterium matruchotii.

    PubMed

    Luong, Truc Thanh; Tirgar, Reyhaneh; Reardon-Robinson, Melissa E; Joachimiak, Andrzej; Osipiuk, Jerzy; Ton-That, Hung

    2018-05-01

    The actinobacterium Corynebacterium matruchotii has been implicated in nucleation of oral microbial consortia leading to biofilm formation. Due to the lack of genetic tools, little is known about basic cellular processes, including protein secretion and folding, in this organism. We report here a survey of the C. matruchotii genome, which encodes a large number of exported proteins containing paired cysteine residues, and identified an oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA (MdbA Cd ). Crystallization studies uncovered that the 1.2-Å resolution structure of C. matruchotii MdbA (MdbA Cm ) possesses two conserved features found in actinobacterial MdbA enzymes, a thioredoxin-like fold and an extended α-helical domain. By reconstituting the disulfide bond-forming machine in vitro , we demonstrated that MdbA Cm catalyzes disulfide bond formation within the actinobacterial pilin FimA. A new gene deletion method supported that mdbA is essential in C. matruchotii Remarkably, heterologous expression of MdbA Cm in the C. diphtheriae Δ mdbA mutant rescued its known defects in cell growth and morphology, toxin production, and pilus assembly, and this thiol-disulfide oxidoreductase activity required the catalytic motif CXXC. Altogether, the results suggest that MdbA Cm is a major thiol-disulfide oxidoreductase, which likely mediates posttranslocational protein folding in C. matruchotii by a mechanism that is conserved in Actinobacteria IMPORTANCE The actinobacterium Corynebacterium matruchotii has been implicated in the development of oral biofilms or dental plaque; however, little is known about the basic cellular processes in this organism. We report here a high-resolution structure of a C. matruchotii oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA. By biochemical analysis, we demonstrated that C. matruchotii MdbA catalyzes disulfide bond formation in vitro Furthermore, a new gene deletion method revealed that deletion of mdbA is lethal in C. matruchotii Remarkably, C. matruchotii MdbA can replace C. diphtheriae MdbA to maintain normal cell growth and morphology, toxin production, and pilus assembly. Overall, our studies support the hypothesis that C. matruchotii utilizes MdbA as a major oxidoreductase to catalyze oxidative protein folding. Copyright © 2018 American Society for Microbiology.

  4. Proteome-wide Light/Dark Modulation of Thiol Oxidation in Cyanobacteria Revealed by Quantitative Site-specific Redox Proteomics*

    PubMed Central

    Guo, Jia; Nguyen, Amelia Y.; Dai, Ziyu; Su, Dian; Gaffrey, Matthew J.; Moore, Ronald J.; Jacobs, Jon M.; Monroe, Matthew E.; Smith, Richard D.; Koppenaal, David W.; Pakrasi, Himadri B.; Qian, Wei-Jun

    2014-01-01

    Reversible protein thiol oxidation is an essential regulatory mechanism of photosynthesis, metabolism, and gene expression in photosynthetic organisms. Herein, we present proteome-wide quantitative and site-specific profiling of in vivo thiol oxidation modulated by light/dark in the cyanobacterium Synechocystis sp. PCC 6803, an oxygenic photosynthetic prokaryote, using a resin-assisted thiol enrichment approach. Our proteomic approach integrates resin-assisted enrichment with isobaric tandem mass tag labeling to enable site-specific and quantitative measurements of reversibly oxidized thiols. The redox dynamics of ∼2,100 Cys-sites from 1,060 proteins under light, dark, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (a photosystem II inhibitor) conditions were quantified. In addition to relative quantification, the stoichiometry or percentage of oxidation (reversibly oxidized/total thiols) for ∼1,350 Cys-sites was also quantified. The overall results revealed broad changes in thiol oxidation in many key biological processes, including photosynthetic electron transport, carbon fixation, and glycolysis. Moreover, the redox sensitivity along with the stoichiometric data enabled prediction of potential functional Cys-sites for proteins of interest. The functional significance of redox-sensitive Cys-sites in NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, peroxiredoxin (AhpC/TSA family protein Sll1621), and glucose 6-phosphate dehydrogenase was further confirmed with site-specific mutagenesis and biochemical studies. Together, our findings provide significant insights into the broad redox regulation of photosynthetic organisms. PMID:25118246

  5. One-step fabrication of PEGylated fluorescent nanodiamonds through the thiol-ene click reaction and their potential for biological imaging

    NASA Astrophysics Data System (ADS)

    Huang, Hongye; Liu, Meiying; Tuo, Xun; Chen, Junyu; Mao, Liucheng; Wen, Yuanqing; Tian, Jianwen; Zhou, Naigen; Zhang, Xiaoyong; Wei, Yen

    2018-05-01

    Over the past years, fluorescent carbon nanoparticles have got growing interest for biological imaging. Fluorescent nanodiamonds (FNDs) are novel fluorescent carbon nanoparticles with multitudinous useful properties, including remarkable fluorescence properties, extremely low toxicity and high refractive index. However, facile preparation of FNDs with designable properties and functions from non-fluorescent detonation nanodiamonds (DNDs) has demonstrated to be challengeable. In this work, we reported for the first time that preparation of Polyethylene glycol (PEG) functionalized FNDs through a one-step thiol-ene click reaction using thiol containing PEG (PEG-SH) as the coating agent. Based on the characterization results, we demonstrated that PEG-SH could be efficiently introduced on DNDs to obtain FNDs through the thiol-ene click chemistry. The resultant FND-PEG composites showed high water dispersibility, strong fluorescence and low cytotoxicity. Moreover, FND-PEG composites could be internalized by cells and displayed good cell dyeing performance. All of these features implied that FND-PEG composites are of great potential for biological imaging. Taken together, a facile one-step strategy based on the one-step thiol-ene click reaction has been developed for efficient preparation of FND-PEG composites from non-fluorescent DNDs. The strategy should be also useful for fabrication of many other functional FNDs via using different thiol containing compounds for the universality of thiol-ene click reaction.

  6. Design and fabrication of semi-transparent screen based on micro-patterns for direct-view type head-up display in automobiles

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Yong; Kim, Hyo-Jun; Kim, Young-Joo

    2016-02-01

    A semi-transparent screen with hemisphere micro-patterns was proposed and designed to enhance the brightness uniformity of the display image toward the driver for a direct-view type head-up display. The hemisphere micro-patterns were designed to consider the inclined angle of the windshield for efficient reflection and scattering toward to the driver. The density and radius of the hemisphere micro-patterns were adjusted as a function of position on the screen based on the geometrical calculation and analyzed by the commercial optical simulation tool based on a ray-tracing method. The designed hemisphere micro-patterns was fabricated by the thermal reflow method and evaluated to confirm the uniform illumination. From the results, the semi-transparent screen with variable micro-patterns shows the 91.9 % of brightness uniformity with the enhanced luminance compare to a screen without micro-patterns. A luminance of fabricated screen also shows good agreement with the simulation result to reflect the clear and bright driving information to the driver.

  7. Micro-invasive interventions for managing proximal dental decay in primary and permanent teeth.

    PubMed

    Dorri, Mojtaba; Dunne, Stephen M; Walsh, Tanya; Schwendicke, Falk

    2015-11-05

    Proximal dental lesions, limited to dentine, are traditionally treated by invasive (drill and fill) means. Non-invasive alternatives (e.g. fluoride varnish, flossing) might avoid substance loss but their effectiveness depends on patients' adherence. Recently, micro-invasive approaches for treating proximal caries lesions have been tried. These interventions install a barrier either on top (sealing) or within (infiltrating) the lesion. Different methods and materials are currently available for micro-invasive treatments, such as sealing via resin sealants, (polyurethane) patches/tapes, glass ionomer cements (GIC) or resin infiltration. To evaluate the effects of micro-invasive treatments for managing proximal caries lesions in primary and permanent dentition in children and adults. We searched the following databases to 31 December 2014: the Cochrane Oral Health Group Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE via OVID, EMBASE via OVID, LILACs via BIREME Virtual Health Library, Web of Science Conference Proceedings, ZETOC Conference Proceedings, Proquest Dissertations and Theses, ClinicalTrials.gov, OpenGrey and the World Health Organization (WHO) International Clinical Trials Registry Platform. We searched the metaRegister of Controlled Trials to 1 October 2014. There were no language or date restrictions in the searches of the electronic databases. We included randomised controlled trials of at least six months' duration that compared micro-invasive treatments for managing non-cavitated proximal dental decay in primary teeth, permanent teeth or both, versus non-invasive measures, invasive means, no intervention or placebo. We also included studies that compared different types of micro-invasive treatments. Two review authors independently screened search results, extracted data and assessed the risk of bias. We used standard methodological procedures expected by Cochrane to evaluate risk of bias and synthesise data. We conducted meta-analyses with the random-effects model, using the Becker-Balagtas method to calculate the odds ratio (OR) for lesion progression. We assessed the quality of the evidence using GRADE methods. We included eight trials, which randomised 365 participants. The trials all used a split-mouth design, some with more than one pair of lesions treated within the same participant. Studies took place in university or dental public health clinics in Brazil, Colombia, Denmark, Germany, Thailand, Greenland and Chile. Six studies evaluated the effects of micro-invasive treatments in the permanent dentition and two studies on the primary dentition, with caries risk ranging from low to high. Investigators measured caries risk in different studies either by caries experience alone or by using the Cariogram programme, which combines eight contributing factors, including caries experience, diet, saliva and other factors related to caries. The follow-up period in the trials ranged from one to three years. All studies used lesion progression as the primary outcome, evaluating it by different methods of reading radiographs. Four studies received industry support to carry out the research, with one of them being carried out by inventors of the intervention.We judged seven studies to be at high overall risk of bias, primarily due to lack of blinding of participants and personnel. We evaluated intervention effects for all micro-invasive therapies and analysed subgroups according to the different treatment methods reported in the included studies.Our meta-analysis, which pooled the most sensitive set of data (in terms of measurement method) from studies presenting data in a format suitable for meta-analysis, showed that micro-invasive treatment significantly reduced the odds of lesion progression compared with non-invasive treatment (e.g fluoride varnish) or oral hygiene advice (e.g to floss) (OR 0.24, 95% CI 0.14 to 0.41; 602 lesions; seven studies; I(2) = 32%). There was no evidence of subgroup differences (P = 0.36).The four studies that measured adverse events reported no adverse events after micro-invasive treatment. Most studies did not report on any further outcomes.We assessed the quality of evidence for micro-invasive treatments as moderate. It remains unclear which micro-invasive treatment is more advantageous, or if certain clinical conditions or patient characteristics are better suited for micro-invasive treatments than others. The available evidence shows that micro-invasive treatment of proximal caries lesions arrests non-cavitated enamel and initial dentinal lesions (limited to outer third of dentine, based on radiograph) and is significantly more effective than non-invasive professional treatment (e.g. fluoride varnish) or advice (e.g. to floss). We can be moderately confident that further research is unlikely to substantially change the estimate of effect. Due to the small number of studies, it does remain unclear which micro-invasive technique offers the greatest benefit, or whether the effects of micro-invasive treatment confer greater or lesser benefit according to different clinical or patient considerations.

  8. Real-time colorimetric detection of DNA methylation of the PAX1 gene in cervical scrapings for cervical cancer screening with thiol-labeled PCR primers and gold nanoparticles

    PubMed Central

    Huang, Jin; Liou, Yu-Ligh; Kang, Ya-Nan; Tan, Zhi-Rong; Peng, Ming-Jing; Zhou, Hong-Hao

    2016-01-01

    Background DNA methylation can induce carcinogenesis by silencing key tumor suppressor genes. Analysis of aberrant methylation of tumor suppressor genes can be used as a prognostic and predictive biomarker for cancer. In this study, we propose a colorimetric method for the detection of DNA methylation of the paired box gene 1 (PAX1) gene in cervical scrapings obtained from 42 patients who underwent cervical colposcopic biopsy. Methods A thiolated methylation-specific polymerase chain reaction (MSP) primer was used to generate MSP products labeled with the thiol group at one end. After bisulfite conversion and MSP amplification, the unmodified gold nanoparticles (AuNPs) were placed in a reaction tube and NaCl was added to induce aggregation of bare AuNPs without generating polymerase chain reaction products. After salt addition, the color of AuNPs remained red in the methylated PAX1 gene samples because of binding to the MSP-amplified products. By contrast, the color of the AuNP colloid solution changed from red to blue in the non-methylated PAX1 gene samples because of aggregation of AuNPs in the absence of the MSP-amplified products. Furthermore, PAX1 methylation was quantitatively detected in cervical scrapings of patients with varied pathological degrees of cervical cancer. Conventional quantitative MSP (qMSP) was also performed for comparison. Results The two methods showed a significant correlation of the methylation frequency of the PAX1 gene in cervical scrapings with severity of cervical cancer (n=42, P<0.05). The results of the proposed method showed that the areas under the receiver operating characteristic curve (AUCs) of PAX1 were 0.833, 0.742, and 0.739 for the detection of cervical intraepithelial neoplasms grade 2 and worse lesions (CIN2+), cervical intraepithelial neoplasms grade 3 and worse lesions (CIN3+), and squamous cell carcinoma, respectively. The sensitivity and specificity for detecting CIN2+ lesions were 0.941 and 0.600, respectively, with a cutoff value of 31.27%. The proposed method also showed superior sensitivity over qMSP methods for the detection of CIN2+ and CIN3+ (0.941 vs 0.824 and 1.000 vs 0.800, respectively). Furthermore, the novel method exhibited higher AUC (0.833) for the detection of CIN2+ than qMSP (0.807). Conclusion The results of thiol-labeled AuNP method were clearly observed by the naked eyes without requiring any expensive equipment. Therefore, the thiol-labeled AuNP method could be a simple but efficient strategy for cervical cancer screening. PMID:27789946

  9. A fast and sensitive method for evaluating nuclides migration characteristics in rock medium by using micro-channel reactor concept

    NASA Astrophysics Data System (ADS)

    Okuyama, Keita; Sasahira, Akira; Noshita, Kenji; Yoshida, Takuma; Kato, Kazuyuki; Nagasaki, Shinya; Ohe, Toshiaki

    Experimental effort to evaluate the barrier performance of geologic disposal requires relatively long testing periods and chemically stable conditions. We have developed a new technique, the micro mock-up method, to present a fast and sensitive method to measure both nuclide diffusivity and sorption coefficient within a day to overcome such disadvantage of the conventional method. In this method, a Teflon plate having a micro channel (10-200 μm depth, 2, 4 mm width) is placed just beneath the rock sample plate, radionuclide solution is injected into the channel with constant rate. The breakthrough curve is being measured until a steady state. The outlet flux in the steady state however does not meet the inlet flux because of the matrix diffusion into the rock body. This inlet-outlet difference is simply related to the effective diffusion coefficient ( De) and the distribution coefficient ( Kd) of rock sample. Then, we adopt a fitting procedure to speculate Kd and De values by comparing the observation to the theoretical curve of the two-dimensional diffusion-advection equation. In the present study, we measured De of 3H by using both the micro mock-up method and the conventional through-diffusion method for comparison. The obtained values of De by two different ways for granite sample (Inada area of Japan) were identical: 1.0 × 10 -11 and 9.0 × 10 -12 m 2/s but the testing period was much different: 10 h and 3 days, respectively. We also measured the breakthrough curve of 85Sr and the resulting Kd and De agreed well to the previous study obtained by the batch sorption experiments with crushed samples. The experimental evidence and the above advantages reveal that the micro mock-up method based on the microreactor concept is powerful and much advantageous when compared to the conventional method.

  10. Bromo- and thiomaleimides as a new class of thiol-mediated fluorescence 'turn-on' reagents.

    PubMed

    Youziel, Judith; Akhbar, Ahmed R; Aziz, Qadeer; Smith, Mark E B; Caddick, Stephen; Tinker, Andrew; Baker, James R

    2014-01-28

    Bromo- and thiomaleimides are shown to serve as highly effective quenchers of a covalently attached fluorophore. Reactions with thiols that lead to removal of the maleimide conjugation, or detachment of the fluorophore from the maleimide, result in 'turn-on' of the fluorescence. These reagents thus offer opportunities in thiol sensing and intracellular reporting.

  11. Separation and quantification of monothiols and phytochelatins from a wide variety of cell cultures and tissues of trees and other plants using high performance liquid chromatography

    Treesearch

    Rakesh Minocha; P. Thangavel; Om Parkash Dhankher; Stephanie Long

    2008-01-01

    The HPLC method presented here for the quantification of metal-binding thiols is considerably shorter than most previously published methods. It is a sensitive and highly reproducible method that separates monobromobimane tagged monothiols (cysteine, glutathione, γ-glutamylcysteine) along with polythiols (PC2, PC3...

  12. First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles.

    PubMed

    Gabl, R; Feucht, H-D; Zeininger, H; Eckstein, G; Schreiter, M; Primig, R; Pitzer, D; Wersing, W

    2004-01-15

    A novel integrated bio-sensor technology based on thin-film bulk acoustic wave resonators on silicon is presented and the feasibility of detecting DNA and protein molecules proofed. The detection principle of these sensors is label-free and relies on a resonance frequency shift caused by mass loading of an acoustic resonator, a principle very well known from quartz crystal micro balances. Integrated ZnO bulk acoustic wave resonators with resonance frequencies around 2 GHz have been fabricated, employing an acoustic mirror for isolation from the silicon substrate. DNA oligos have been thiol-coupled to the gold electrode by on-wafer dispensing. In a further step, samples have either been hybridised or alternatively a protein has been coupled to the receptor. The measurement results show the new bio-sensor being capable of both, detecting proteins as well as the DNA hybridisation without using a label. Due to the substantially higher oscillation frequency, these sensors already show much higher sensitivity and resolution comparable to quartz crystal micro balances. The potential for these sensors and sensors arrays as well as technological challenges will be discussed in detail.

  13. Electrochemical DNA sensor for Neisseria meningitidis detection.

    PubMed

    Patel, Manoj K; Solanki, Pratima R; Kumar, Ashok; Khare, Shashi; Gupta, Sunil; Malhotra, Bansi D

    2010-08-15

    Meningitis sensor based on nucleic acid probe of Neisseria meningitidis has been fabricated by immobilization of 5'-thiol end labeled single stranded deoxyribonucleic acid probe (ssDNA-SH) onto gold (Au) coated glass electrode. This ssDNA-SH/Au electrode hybridized with the genomic DNA (G-dsDNA/Au) and amplified DNA (PCR-dsDNA/Au) has been characterized using atomic force microscopy (AFM), Fourier transforms infrared spectroscopy (FT-IR) and electrochemical techniques. The ssDNA-SH/Au electrode can specifically detect upto 10-60 ng/microl of G-dsDNA-SH/Au and PCR-dsDNA-SH/Au of meningitis within 60s of hybridization time at 25 degrees C by cyclic voltammetry (CV) using methylene blue (MB) as electro-active DNA hybridization indicator. The values of sensitivities of the G-dsDNA-SH/Au and PCR-dsDNA-SH/Au electrodes have been determined as 0.0115 microA/ng cm(-2) and 0.0056 microA/ng cm(-2), respectively with regression coefficient (R) as 0.999. This DNA bioelectrode is stable for about 4 months when stored at 4 degrees C. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Development of a test method that will allow evaluation and quantification of the effects of healing on asphalt mixture [summary].

    DOT National Transportation Integrated Search

    2012-01-01

    Top-down cracking in flexible pavement is one of the most common and crucial modes of pavement distress in Florida, reducing both service quality and life of flexible pavement. The process begins with micro-cracks (micro-damage), which grow and merge...

  15. Studies of the mechanisms of turbine fuel instability

    NASA Technical Reports Server (NTRS)

    Daniel, S. R.

    1983-01-01

    The formation of insoluble deposits in a Jet A, a Diesel, and a model fuel (1/10 v/v tetralin/dodecane) was studied. Experiments were conducted using glass containers at 394 K with an air/fuel ratio of 14/1. The effects of addition of ppm levels of various compounds on deposit formation were evaluated. Nitrogen heterocycles were shown to produce a basicity dependent acceleration of deposition. Thiols and thiophene were shown to increase deposition while sulfides and disulfides act as inhibitors. Copper metal and its salts also promote deposition. Results of various instrumental analyses of deposits and development of a high performance liquid chromatographic method for monitoring deposit precursors are discussed.

  16. Mechanism of protein decarbonylation.

    PubMed

    Wong, Chi-Ming; Marcocci, Lucia; Das, Dividutta; Wang, Xinhong; Luo, Haibei; Zungu-Edmondson, Makhosazane; Suzuki, Yuichiro J

    2013-12-01

    Ligand/receptor stimulation of cells promotes protein carbonylation that is followed by the decarbonylation process, which might involve thiol-dependent reduction (C.M. Wong et al., Circ. Res. 102:301-318; 2008). This study further investigated the properties of this protein decarbonylation mechanism. We found that the thiol-mediated reduction of protein carbonyls is dependent on heat-labile biologic components. Cysteine and glutathione were efficient substrates for decarbonylation. Thiols decreased the protein carbonyl content, as detected by 2,4-dinitrophenylhydrazine, but not the levels of malondialdehyde or 4-hydroxynonenal protein adducts. Mass spectrometry identified proteins that undergo thiol-dependent decarbonylation, which include peroxiredoxins. Peroxiredoxin-2 and -6 were carbonylated and subsequently decarbonylated in response to the ligand/receptor stimulation of cells. siRNA knockdown of glutaredoxin inhibited the decarbonylation of peroxiredoxin. These results strengthen the concept that thiol-dependent decarbonylation defines the kinetics of protein carbonylation signaling. © 2013 Elsevier Inc. All rights reserved.

  17. Mechanism of protein decarbonylation

    PubMed Central

    Wong, Chi-Ming; Marcocci, Lucia; Das, Dividutta; Wang, Xinhong; Luo, Haibei; Zungu-Edmondson, Makhosazane; Suzuki, Yuichiro J.

    2013-01-01

    Ligand/receptor-stimulation of cells promotes protein carbonylation that is followed by the decarbonylation process, which might involve thiol-dependent reduction (Wong et al., Circ. Res. 102 301-318, 2008). The present study further investigated the properties of this protein decarbonylation mechanism. We found that the thiol-mediated reduction of protein carbonyls is dependent on heat-labile biologic components. Cysteine and glutathione were found to be efficient substrates for decarbonylation. Thiols decreased the protein carbonyl content, as detected by 2,4-dinitrophenylhydrazine, but not the levels of malondialdehyde or 4-hydroxynonenal protein adducts. Mass spectrometry identified proteins that undergo thiol-dependent decarbonylation, which include peroxiredoxins. Peroxiredoxins-2 and -6 were found to be carbonylated and subsequent decarbonylated in response to the ligand/receptor-stimulation of cells. siRNA knockdown of glutaredoxin inhibited the decarbonylation of peroxiredoxin. These results strengthen the concept that thiol-dependent decarbonylation defines the kinetics of protein carbonylation signaling. PMID:24044890

  18. Thiol oxidation and di-tyrosine formation in human plasma proteins induced by inflammatory concentrations of hypochlorous acid.

    PubMed

    Colombo, Graziano; Clerici, Marco; Altomare, Alessandra; Rusconi, Francesco; Giustarini, Daniela; Portinaro, Nicola; Garavaglia, Maria Lisa; Rossi, Ranieri; Dalle-Donne, Isabella; Milzani, Aldo

    2017-01-30

    In this study, we assessed the oxidative damage occurring in plasma proteins when human blood was exposed to inflammatory concentrations of hypochlorous acid (HOCl). We used specific thiol labelling and Western blot analyses to determine protein thiol oxidation, as well as analytical gel filtration HPLC coupled to fluorescence detection to explore formation of high molecular weight (HMW) protein aggregates. Thiol-containing proteins oxidized by HOCl were identified by redox proteomics. Mass spectrometry (MS) analysis was performed to elucidate the protein composition of HMW aggregates. α1-antitrypsin, transthyretin, and haptoglobin showed thiol oxidation at HOCl concentrations higher than those causing complete oxidation of albumin. At the highest HOCl concentrations, formation of carbonylated and di-tyrosine cross-linked HMW protein aggregates also occurred. MS analysis identified fibrinogen, complement C3 and apolipoprotein A-I as components of HMW protein aggregates. These results could be relevant for human diseases characterized by inflammatory conditions in which myeloperoxidase and HOCl are involved. In this study we evaluated the oxidative damage occurring on plasma proteins when reconstituted human blood was exposed to inflammatory concentrations of hypochlorous acid (HOCl). Pathophysiological concentrations of HOCl are able to induce different modifications on plasma proteins such as carbonylation, sulfhydryl oxidation and formation of high molecular weight (HMW) protein aggregates characterized by di-tyrosine fluorescence. There are two relevant aspects emerging from this paper. The first one consists on identifying low abundant proteins undergoing sulfhydryl oxidation by biotin-maleimide derivatization followed by MALDI-TOF mass spectrometry. This approach suggests three low-abundant proteins undergoing HOCl-induced oxidation: transthyretin, α1-antitrypsin, and haptoglobin. In addition, we analysed HMW protein aggregates forming after HOCl exposure. These aggregates are characterized by carbonylation, intra- and/or intermolecular di-tyrosine bridges. After their isolation from SDS-PAGE gel electrophoresis, using electrospray tandem mass spectrometry coupled to reversed-phase nanoscale capillary liquid chromatography, we identified some protein constituents of these HMW aggregates such as α, β, γ fibrinogen chains, apolipoprotein A-I and complement C3. In particular, our work highlights how fibrinogen is an important constituent of HOCl-induced HMW protein aggregates validating the mass spectrometry result with additional experiments. Further investigations are required in order to evaluate the possibility to use carbonylated and di-Tyr cross-linked HMW protein aggregates as (early) biomarkers for disease progression in inflammatory conditions in which myeloperoxidase and HOCl are involved. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Depletion of mitochondrial coenzyme A and glutathione by 4-dimethylaminophenol and formation of mixed thioethers.

    PubMed

    Eckert, K G; Elbers, F R; Eyer, P

    1989-10-01

    4-Dimethylaminophenol (DMAP), an antidote in cyanide poisoning, has been shown to produce kidney lesions in rats, to damage isolated rat kidney tubules and to impair mitochondrial functions as already described for 4-aminophenol. Since DMAP upon oxidation forms bis- and tris-substituted thioethers with GSH, it was anticipated that mitochondrial toxicity of DMAP might result from CoA depletion. In a model reaction DMAP was oxidized by oxyhemoglobin in the presence of CoA and GSH resulting in formation of tris-(CoA-S-yl)-DMAP, tris-(GSH-S-yl)-DMAP and two mixed thioethers, namely, (CoA-S-yl)-bis-(GSH-S-yl)-DMAP and (GSH-S-yl)-bis-(CoA-S-yl)-DMAP. The compounds were isolated by HPLC and identified spectroscopically, by amino acid analysis and Raney-Nickel desulfuration. Rat liver mitochondria (5 mg protein/ml) incubated under state IV conditions with 20 and 50 microM DMAP were depleted of GSH and total coenzyme A with formation of GSSG and the above-mentioned thioethers which were quantified by isotope dilution techniques using [14C]-labelled DMAP and the isolated, inactive thioethers. The results confirm earlier suggestions that part of the cytotoxicity of DMAP may result from depletion of vital mitochondrial thiols, particularly CoA. Since 4-aminophenol reacts analogously, similar cytotoxic effects can be expected from compounds which on (aut)oxidation form quinoid systems capable of 1.4-addition reactions with nucleophilic thiols.

  20. Evaluation of partial 16S ribosomal DNA sequencing for identification of nocardia species by using the MicroSeq 500 system with an expanded database.

    PubMed

    Cloud, Joann L; Conville, Patricia S; Croft, Ann; Harmsen, Dag; Witebsky, Frank G; Carroll, Karen C

    2004-02-01

    Identification of clinically significant nocardiae to the species level is important in patient diagnosis and treatment. A study was performed to evaluate Nocardia species identification obtained by partial 16S ribosomal DNA (rDNA) sequencing by the MicroSeq 500 system with an expanded database. The expanded portion of the database was developed from partial 5' 16S rDNA sequences derived from 28 reference strains (from the American Type Culture Collection and the Japanese Collection of Microorganisms). The expanded MicroSeq 500 system was compared to (i). conventional identification obtained from a combination of growth characteristics with biochemical and drug susceptibility tests; (ii). molecular techniques involving restriction enzyme analysis (REA) of portions of the 16S rRNA and 65-kDa heat shock protein genes; and (iii). when necessary, sequencing of a 999-bp fragment of the 16S rRNA gene. An unknown isolate was identified as a particular species if the sequence obtained by partial 16S rDNA sequencing by the expanded MicroSeq 500 system was 99.0% similar to that of the reference strain. Ninety-four nocardiae representing 10 separate species were isolated from patient specimens and examined by using the three different methods. Sequencing of partial 16S rDNA by the expanded MicroSeq 500 system resulted in only 72% agreement with conventional methods for species identification and 90% agreement with the alternative molecular methods. Molecular methods for identification of Nocardia species provide more accurate and rapid results than the conventional methods using biochemical and susceptibility testing. With an expanded database, the MicroSeq 500 system for partial 16S rDNA was able to correctly identify the human pathogens N. brasiliensis, N. cyriacigeorgica, N. farcinica, N. nova, N. otitidiscaviarum, and N. veterana.

  1. Enzymatic Continuous Flow Synthesis of Thiol-Terminated Poly(δ-Valerolactone) and Block Copolymers.

    PubMed

    Zhu, Ning; Huang, Weijun; Hu, Xin; Liu, Yihuan; Fang, Zheng; Guo, Kai

    2018-04-01

    Thiol-terminated poly(δ-valerolactone) is directly synthesized via enzymatic 6-mercapto-1-hexanol initiated ring-opening polymerization in both batch and microreactor. By using Candida antartica Lipase B immobilized tubular reactor, narrowly dispersed poly(δ-valerolactone) with higher thiol fidelity is more efficiently prepared in contrast to the batch reactor. Moreover, the integrated enzyme packed tubular reactor system is established to perform the chain extension experiments. Thiol-terminated poly(δ-valerolactone)-block-poly(ε-caprolactone) and poly(ε-caprolactone)-block-poly(δ-valerolactone) are easily prepared by modulating the monomer introduction sequence. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The yeast Hsp70 Ssa1 is a sensor for activation of the heat shock response by thiol-reactive compounds

    PubMed Central

    Wang, Yanyu; Gibney, Patrick A.; West, James D.; Morano, Kevin A.

    2012-01-01

    The heat shock transcription factor HSF1 governs the response to heat shock, oxidative stresses, and xenobiotics through unknown mechanisms. We demonstrate that diverse thiol-reactive molecules potently activate budding yeast Hsf1. Hsf1 activation by thiol-reactive compounds is not consistent with the stresses of misfolding of cytoplasmic proteins or cytotoxicity. Instead, we demonstrate that the Hsp70 chaperone Ssa1, which represses Hsf1 in the absence of stress, is hypersensitive to modification by a thiol-reactive probe. Strikingly, mutation of two conserved cysteine residues to serine in Ssa1 rendered cells insensitive to Hsf1 activation and subsequently induced thermotolerance by thiol-reactive compounds, but not by heat shock. Conversely, substitution with the sulfinic acid mimic aspartic acid resulted in constitutive Hsf1 activation. Cysteine 303, located within the nucleotide-binding domain, was found to be modified in vivo by a model organic electrophile, demonstrating that Ssa1 is a direct target for thiol-reactive molecules through adduct formation. These findings demonstrate that Hsp70 is a proximal sensor for Hsf1-mediated cytoprotection and can discriminate between two distinct environmental stressors. PMID:22809627

  3. Chemical synthesis of oligonucleotides containing a free sulphydryl group and subsequent attachment of thiol specific probes.

    PubMed Central

    Connolly, B A; Rider, P

    1985-01-01

    Oligonucleotides containing a free sulphydryl group at their 5'-termini have been synthesised and further derivatised with thiol specific probes. The nucleotide sequence required is prepared using standard solid phase phosphoramidite techniques and an extra round of synthesis is then performed using the S-triphenylmethyl O-methoxymorpholinophosphite derivatives of 2-mercaptoethanol, 3-mercaptopropan (1) ol or 6-mercaptohexan (1) ol. After cleavage from the resin and removal of the phosphate and base protecting groups, this yields an oligonucleotide containing an S-triphenylmethyl group attached to the 5'-phosphate group via a two, three or six carbon chain. The triphenylmethyl group can be readily removed with silver nitrate to give the free thiol. With the three and six carbon chain oligonucleotides, this thiol can be used, at pH 8, for the attachment of thiol specific probes as illustrated by the reaction with fluorescent conjugates of iodoacetates and maleiimides. However, oligonucleotides containing a thiol attached to the 5'-phosphate group via a two carbon chain are unstable at pH 8 decomposing to the free 5'-phosphate and so are unsuitable for further derivatisation. PMID:4011448

  4. A Central Role for Thiols in Plant Tolerance to Abiotic Stress

    PubMed Central

    Zagorchev, Lyuben; Seal, Charlotte E.; Kranner, Ilse; Odjakova, Mariela

    2013-01-01

    Abiotic stress poses major problems to agriculture and increasing efforts are being made to understand plant stress response and tolerance mechanisms and to develop new tools that underpin successful agriculture. However, the molecular mechanisms of plant stress tolerance are not fully understood, and the data available is incomplete and sometimes contradictory. Here, we review the significance of protein and non-protein thiol compounds in relation to plant tolerance of abiotic stress. First, the roles of the amino acids cysteine and methionine, are discussed, followed by an extensive discussion of the low-molecular-weight tripeptide, thiol glutathione, which plays a central part in plant stress response and oxidative signalling and of glutathione-related enzymes, including those involved in the biosynthesis of non-protein thiol compounds. Special attention is given to the glutathione redox state, to phytochelatins and to the role of glutathione in the regulation of the cell cycle. The protein thiol section focuses on glutaredoxins and thioredoxins, proteins with oxidoreductase activity, which are involved in protein glutathionylation. The review concludes with a brief overview of and future perspectives for the involvement of plant thiols in abiotic stress tolerance. PMID:23549272

  5. Confirmation of 1-Phenylethane-1-thiol as the Character Impact Aroma Compound in Curry Leaves and Its Behavior during Tissue Disruption, Drying, and Frying.

    PubMed

    Steinhaus, Martin

    2017-03-15

    The most odor-active compounds previously identified by application of an aroma extract dilution analysis were quantitated in freshly picked curry leaves, either by stable isotope dilution assays in combination with GC-GC-MS or by GC-FID after simultaneous extraction/fractionation. Odor activity values (OAVs) were calculated as ratios of concentrations to odor threshold values. The topmost OAVs were obtained for (3Z)-hex-3-enal (grassy; OAV 180 000), (1S)-1-phenylethane-1-thiol (sulfury, burnt; OAV 150 000), (1R)-1-phenylethane-1-thiol (sulfury, burnt; OAV 120 000), (3R)-linalool (citrusy; OAV 58 000), and myrcene (geranium leaf-like; OAV 23 000). The high OAVs calculated for its enantiomers confirmed 1-phenylethane-1-thiol as character impact compound of the typical sulfury and burnt aroma of curry leaves. The 1-phenylethane-1-thiol concentration in curry leaves decreased upon tissue disruption and drying, as well as upon frying of fresh leaves. By contrast, frying of dried leaves led to an increase of 1-phenylethane-1-thiol, indicating a yet unknown thermolabile precursor.

  6. The Effect of Allium cepa Extract on Lung Oxidant, Antioxidant, and Immunological Biomarkers in Ovalbumin-Sensitized Rats

    PubMed Central

    Marefati, N.; Eftekhar, N.; Kaveh, M.; Boskabadi, J.; Beheshti, F.; Boskabady, M.H.

    2018-01-01

    Objectives To evaluate the effects of Allium cepa (A. cepa) on levels of oxidants, antioxidants, and immunological markers in bronchoalveolar lavage fluids (BALF) of sensitized rats. Materials and Methods Oxidant/antioxidant markers and cytokines in BALF of control rats treated with saline (group C), ovalbumin-sensitized rats (group S), rats treated with 1.25 μg/mL dexamethasone and 3 doses of A. cepa extract (35, 70, and 140 mg/kg body weight [BW]/day) (S + AC) were investigated. Comparison of the results between groups was performed using analysis of variance with the Tukey-Kramer post hoc test. Results The oxidant markers nitrogen dioxide (NO2), nitrate (NO3–), and malondialdehyde (MDA), and immunological markers interleukin (IL)-4 and immunoglobulin E (IgE) were significantly higher, but the antioxidant markers superoxide dismutase (SOD), catalase (CAT), thiol, and interferon (IFN)-γ, and the IFN-γ/IL-4 ratio were lower in sensitized rats compared to control rats (p < 0.001 to p < 0.01). Compared to group S, the levels of the following markers were significantly lower: NO2, NO3–, and IgE in groups treated with the A. cepa extract, MDA and IL-4 levels in groups treated with 70 and 140 mg/kg BW/day of the A. cepa extract, and all these markers as well as IFN-γ in rats treated with dexamethasone (p < 0.001 to p < 0.05). However, there were significantly higher levels of SOD and CAT and an increased IFN-γ/IL-4 ratio (groups treated with 70 and 140 mg/kg BW/day of the A. cepa extract), and levels of thiol and IFN-γ (group treated with 140 mg/kg BW/day of the A. cepa extract) as well as SOD, CAT, and thiol (dexamethasone-treated group) versus group S (p < 0.00 to p < 0.05). Conclusion A. cepa showed antioxidant and immunomodulatory properties in sensitized rats. PMID:29471299

  7. The effect of hydro-ethanolic extract of Curcuma longa rhizome and curcumin on total and differential WBC and serum oxidant, antioxidant biomarkers in rat model of asthma

    PubMed Central

    Shakeri, Farzaneh; Soukhtanloo, Mohammad; Boskabady, Mohammad Hossein

    2017-01-01

    Objective(s): The effects of Curcuma longa (C. longa) and curcumin on total and differential WBC count and oxidant, antioxidant biomarkers, in rat model of asthma were evaluated. Materials and Methods: Total and differential WBC count in the blood, NO2, NO3, MDA, SOD, CAT and thiol levels in serum were examined in control, asthma, Asthmatic rats treated with C. longa (0.75, 1.50, and 3.00 mg/ml), curcumin (0.15, 0.30, and 0.60 mg/ml), and dexamethasone (1.25 μg/ml) rats. Results: Total and most differential WBC count, NO2, NO3 and MDA were increased but lymphocytes, SOD, CAT and thiol were decreased in asthmatic animals compared to controls (P<0.001). Total WBC, NO2 and NO3 were significantly reduced in treated groups with dexamethasone and all concentrations of C. longa and curcumin compared to asthmatic group (P<0.001 for all cases). MDA was significantly decreased, but SOD, CAT and thiol increased in treated asthma animals with dexamethasone and two higher concentrations of C. longa and curcumin (P<0.01 to P<0.001). There were significant improvement in eosinophil percentage due to treatment of highest concentration of the extract and curcumin, neutrophil and monocyte due to highest concentration of curcumin and lymphocyte due to highest concentration of the extract and two higher concentrations of curcumin compared to asthmatic group (P<0.01 to P<0.001). Dexamethasone treatment improved monocyte (P<0.001) and lymphocyte (P<0.01) percentages. Conclusion: Antioxidant and anti-inflammatory effects of C. longa extract and its constituent curcumin in animal model of asthma was observed which suggest a therapeutic potential for the plant and its constituent on asthma. PMID:28293392

  8. Macro and micro wettability of hydrophobic siloxane films with hierarchical surface roughness

    NASA Astrophysics Data System (ADS)

    Terpilowski, Konrad; Goncharuk, Olena; Gun’ko, Vladimir M.

    2018-07-01

    A method has been proposed to control the macro- and micro-wetting properties of hydrophobic surfaces through changes in the roughness due to modifying siloxane films with silica microparticles (MP). An experimental and theoretical analysis of macro- and micro-wettability dependence on the roughness of a film surface was carried out by combination of SEM and XPS methods with evaluation of equilibrium contact angles from Tadmor’s equation. SEM images (environmental mode) allowed characterizing the mosaic hydrophobicity/hydrophilicity of the siloxane film surface. Hydrophobic siloxane films filled with silica MP were synthesized on the plasma activated and non-activated glass substrates by the sol-gel dip-coating method using tetraethylorthosilicate based precursor compositions with subsequent reaction with hexamethyldisilazane. The values of water contact angles higher than 150° indicating a superhydrophobic effect were observed for films with combining nano- and micro-hierarchical roughness. Moreover, considering wettability on the micro scale the hybrid effect was discovered and confirmed by the SEM and XPS studies showing the presence of not only hydrophobic but also hydrophilic surface domains.

  9. Development and validation of a stability-indicating RP-HPLC-FLD method for determination of 5-[(4-chlorophenoxy) methyl]-1, 3, 4-oxadiazole-2-thiol; A novel drug candidate.

    PubMed

    Shehzadi, Naureen; Hussain, Khalid; Islam, Muhammad; Bukhari, Nadeem Irfan; Asif, Noman; Khan, Muhammad Tanveer; Salman, Muhammad; Qamar, Shaista; Parveen, Sajida; Zahid, Fakhra; Shah, Arshad Ali; Bilal, Abida; Abbasi, Muhammad Athar; Siddiqui, Sabahat Zahra; Rehman, Azizur

    2018-03-01

    The present study describes the development and validation of a simple high performance liquid chromatographic method for the determination of a novel drug candidate, 5-[(4-chlorophenoxy) methyl]-1, 3, 4-oxadiazole-2-thiol. The stability-indicating capacity of the method was evaluated by subjecting the compound's solution to hydrolytic, oxidative, photolytic, transition metal- and thermal- stress. The chromatographic separation was achieved over a C18 column (Promosil, 5 µm, 4.60 × 250 mm), maintained at 25°C, using an isocratic mobile phase comprising a mixture of acetonitrile and acidified water of pH 2.67 (1:1, v/v), at a flow rate of 1.00 mL/min and detection using a fluorescent light detector (excitation at 250 nm and emission at 410 nm). The Beer's law was followed over the concentration range 2.50-50.00 μg/ml. The recovery (98.56-100.19%, SD <5%), intraday accuracy and precision (97.31-100.81%, RSD <5%), inter-day accuracy and precision (97.50-100.75%, RSD <5%) and intermediate accuracy and precision (98.10-99.91%, RSD <5%) indicated that the method was reliable, repeatable, reproducible and rugged. The resolution and selectivity factors of the compound's peak from the nearest resolving peak, particularly in case of dry heat and copper metal stress, were found to be greater than 2 and 1, respectively, which indicated specificity and selectivity. The compound was extensively decomposed in alkaline-hydrolytic, oxidative, metal- and dry heat- stress. However, the compound in acidic and neutral conditions was resistant to photolysis. The results of the present study indicate that the developed method is specific, selective, sensitive and suitable, hence, may be used for quality control, stability testing and preformulation studies.

  10. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites.

    PubMed

    Betel, Doron; Koppal, Anjali; Agius, Phaedra; Sander, Chris; Leslie, Christina

    2010-01-01

    mirSVR is a new machine learning method for ranking microRNA target sites by a down-regulation score. The algorithm trains a regression model on sequence and contextual features extracted from miRanda-predicted target sites. In a large-scale evaluation, miRanda-mirSVR is competitive with other target prediction methods in identifying target genes and predicting the extent of their downregulation at the mRNA or protein levels. Importantly, the method identifies a significant number of experimentally determined non-canonical and non-conserved sites.

  11. A novel method to predict the highest hardness of plasma sprayed coating without micro-defects

    NASA Astrophysics Data System (ADS)

    Zhuo, Yukun; Ye, Fuxing; Wang, Feng

    2018-04-01

    The plasma sprayed coatings are stacked by splats, which are regarded generally as the elementary units of coating. Many researchers have focused on the morphology and formation mechanism of splat. However, a novel method to predict the highest hardness of plasma sprayed coating without micro-defects is proposed according to the nanohardness of splat in this paper. The effectiveness of this novel method was examined by experiments. Firstly, the microstructure of splats and coating, meanwhile the 3D topography of the splats were observed by SEM (SU1510) and video microscope (VHX-2000). Secondly, the nanohardness of splats was evaluated by nanoindentation (NHT) in order to be compared with microhardness of coating measured by microhardness tester (HV-1000A). The results show that the nanohardness of splats with diameter of 70 μm, 100 μm and 140 μm were in the scope of 11∼12 GPa while the microhardness of coating were in the range of 8∼9 GPa. Because the splats had not micro-defects such as pores and cracks in the nanohardness evaluated nano-zone, the nanohardness of the splats can be utilized to predict the highest hardness of coating without micro-defects. This method indicates the maximum of sprayed coating hardness and will reduce the test number to get high hardness coating for better wear resistance.

  12. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 2: Iron- and Copper-Catalyzed Oxidation.

    PubMed

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2016-05-25

    Sulfidic off-odors arising during wine production are frequently removed by Cu(II) fining. In part 1 of this study ( 10.1021/acs.jafc.6b00641 ), the reaction of H2S and thiols with Cu(II) was examined; however, the interaction of iron and copper is also known to play an important synergistic role in mediating non-enzymatic wine oxidation. The interaction of these two metals in the oxidation of H2S and thiols (cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol) was therefore examined under wine-like conditions. H2S and thiols (300 μM) were reacted with Fe(III) (100 or 200 μM) alone and in combination with Cu(II) (25 or 50 μM), and concentrations of H2S and thiols, oxygen, and acetaldehyde were monitored over time. H2S and thiols were shown to be slowly oxidized in the presence of Fe(III) alone and were not bound to Fe(III) under model wine conditions. However, Cu(II) added to model wine containing Fe(III) was quickly reduced by H2S and thiols to form Cu(I) complexes, which then rapidly reduced Fe(III) to Fe(II). Oxidation of Fe(II) in the presence of oxygen regenerated Fe(III) and completed the iron redox cycle. In addition, sulfur-derived oxidation products were observed, and the formation of organic polysulfanes was demonstrated.

  13. Coordination chemistry controls the thiol oxidase activity of the B12-trafficking protein CblC

    PubMed Central

    Li, Zhu; Shanmuganathan, Aranganathan; Ruetz, Markus; Yamada, Kazuhiro; Lesniak, Nicholas A.; Kräutler, Bernhard; Brunold, Thomas C.; Koutmos, Markos; Banerjee, Ruma

    2017-01-01

    The cobalamin or B12 cofactor supports sulfur and one-carbon metabolism and the catabolism of odd-chain fatty acids, branched-chain amino acids, and cholesterol. CblC is a B12-processing enzyme involved in an early cytoplasmic step in the cofactor-trafficking pathway. It catalyzes the glutathione (GSH)-dependent dealkylation of alkylcobalamins and the reductive decyanation of cyanocobalamin. CblC from Caenorhabditis elegans (ceCblC) also exhibits a robust thiol oxidase activity, converting reduced GSH to oxidized GSSG with concomitant scrubbing of ambient dissolved O2. The mechanism of thiol oxidation catalyzed by ceCblC is not known. In this study, we demonstrate that novel coordination chemistry accessible to ceCblC-bound cobalamin supports its thiol oxidase activity via a glutathionyl-cobalamin intermediate. Deglutathionylation of glutathionyl-cobalamin by a second molecule of GSH yields GSSG. The crystal structure of ceCblC provides insights into how architectural differences at the α- and β-faces of cobalamin promote the thiol oxidase activity of ceCblC but mute it in wild-type human CblC. The R161G and R161Q mutations in human CblC unmask its latent thiol oxidase activity and are correlated with increased cellular oxidative stress disease. In summary, we have uncovered key architectural features in the cobalamin-binding pocket that support unusual cob(II)alamin coordination chemistry and enable the thiol oxidase activity of ceCblC. PMID:28442570

  14. Promoting Thiol Expression Increases The Durability of Antitumor T cell Functions

    PubMed Central

    Scurti, Gina; Thyagarajan, Krishnamurthy; Kaur, Navtej; Husain, Shahid; Fang, Quan; Naga, Osama S.; Simms, Patricia; Beeson, Gyda; Voelkel-Johnson, Christina; Garrett-Mayer, Elizabeth; Beeson, Craig C.; Nishimura, Michael I.; Mehrotra, Shikhar

    2014-01-01

    Ex vivo-expanded CD8+ T cells used for adoptive immunotherapy generally acquire an effector memory-like phenotype (TEM cells). With regard to therapeutic applications, two undesired features of this phenotype in vivo are limited persistence and reduced anti-tumor efficacy, relative to CD8+ T cells with a central memory-like phenotype (TCM cells). Further, there is incomplete knowledge about all the differences between TEM and TCM cells that may influence tumor treatment outcomes. Given that TCM cells survive relatively longer in oxidative tumor microenvironments, we investigated the hypothesis that TCM possess relatively greater anti-oxidative capacity than TEM cells. Here we report that TCM cells exhibit a relative increase compared to TEM cells in expression of cell surface thiols, a key target of cellular redox controls, along with other antioxidant molecules. Increased expression of redox regulators in TCM cells inversely correlated with the generation of reactive oxygen and nitrogen species, proliferative capacity and glycolytic enzyme levels. Notably, TCR-transduced T cells pretreated with thiol donors, such as N-acetyl cysteine or rapamycin, up-regulated thiol levels and antioxidant genes. A comparison of anti-tumor CD8+ T cell populations on the basis of surface thiol expression showed that thiol-high cells persisted longer in vivo and exerted superior tumor control. Our results suggest that higher levels of reduced cell surface thiols are a key characteristic of T cells that can control tumor growth, and that profiling this biomarker may have benefits to T cell adoptive immunotherapy protocols. PMID:25164014

  15. Thiol-redox signaling, dopaminergic cell death, and Parkinson's disease.

    PubMed

    Garcia-Garcia, Aracely; Zavala-Flores, Laura; Rodriguez-Rocha, Humberto; Franco, Rodrigo

    2012-12-15

    Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons of the substantia nigra pars compacta, which has been widely associated with oxidative stress. However, the mechanisms by which redox signaling regulates cell death progression remain elusive. Early studies demonstrated that depletion of glutathione (GSH), the most abundant low-molecular-weight thiol and major antioxidant defense in cells, is one of the earliest biochemical events associated with PD, prompting researchers to determine the role of oxidative stress in dopaminergic cell death. Since then, the concept of oxidative stress has evolved into redox signaling, and its complexity is highlighted by the discovery of a variety of thiol-based redox-dependent processes regulating not only oxidative damage, but also the activation of a myriad of signaling/enzymatic mechanisms. GSH and GSH-based antioxidant systems are important regulators of neurodegeneration associated with PD. In addition, thiol-based redox systems, such as peroxiredoxins, thioredoxins, metallothioneins, methionine sulfoxide reductases, transcription factors, as well as oxidative modifications in protein thiols (cysteines), including cysteine hydroxylation, glutathionylation, and nitrosylation, have been demonstrated to regulate dopaminergic cell loss. In this review, we summarize major advances in the understanding of the role of thiol-redox signaling in dopaminergic cell death in experimental PD. Future research is still required to clearly understand how integrated thiol-redox signaling regulates the activation of the cell death machinery, and the knowledge generated should open new avenues for the design of novel therapeutic approaches against PD.

  16. Targeting of sebaceous glands to treat acne by micro-insulated needles with radio frequency in a rabbit ear model.

    PubMed

    Kwon, Tae-Rin; Choi, Eun Ja; Oh, Chang Taek; Bak, Dong-Ho; Im, Song-I; Ko, Eun Jung; Hong, Hyuck Ki; Choi, Yeon Shik; Seok, Joon; Choi, Sun Young; Ahn, Gun Young; Kim, Beom Joon

    2017-04-01

    Many studies have investigated the application of micro-insulated needles with radio frequency (RF) to treat acne in humans; however, the use of a micro-insulated needle RF applicator has not yet been studied in an animal model. The purpose of this study was to evaluate the effectiveness of a micro-insulated needle RF applicator in a rabbit ear acne (REA) model. In this study, we investigated the effect of selectively destroying the sebaceous glands using a micro-insulated needle RF applicator on the formation of comedones induced by application of 50% oleic acid and intradermal injection of P. acnes in the orifices of the external auditory canals of rabbits. The effects of the micro-insulated needle RF applicator treatment were evaluated using regular digital photography in addition to 3D Primos imaging evaluation, Skin Visio Meter microscopic photography, and histologic analyses. Use of the micro-insulated needle RF applicator resulted in successful selective destruction of the sebaceous glands and attenuated TNF-alpha release in an REA model. The mechanisms by which micro-insulated needles with RF using 1 MHz exerts its effects may involve inhibition of comedone formation, triggering of the wound healing process, and destruction of the sebaceous glands and papules. The use of micro-insulated needles with RF applicators provides a safe and effective method for improving the appearance of symptoms in an REA model. The current in vivo study confirms that the micro-insulated needle RF applicator is selectively destroying the sebaceous glands. Lasers Surg. Med. 49:395-401, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. A chromenoquinoline-based fluorescent off-on thiol probe for bioimaging.

    PubMed

    Kand, Dnyaneshwar; Kalle, Arunasree Marasanapalli; Varma, Sreejith Jayasree; Talukdar, Pinaki

    2012-03-11

    A new chromenoquinoline-based fluorescent off-on thiol probe 2 is reported. In aqueous buffer solutions at physiological pH, the probe exhibited 223-fold enhancement in fluorescence intensity by a Michael addition of cysteine to the maleimide appended to a chromenoquinoline. Cell permeability and live cell imaging of thiols are also demonstrated. This journal is © The Royal Society of Chemistry 2012

  18. A Novel Tool for the Assessment Oxidative Stress in Age-Related Macular Degeneration: Thiol/Disulfide Homeostasis Revisited.

    PubMed

    Arıkan Yorgun, Mücella; Toklu, Yasin; Altınkaynak, Hasan; Tanrıverdi, Burak; Ergin, Merve; Biçer, Cemile

    2016-12-01

    To investigate thiol/disulfide status using a novel automated assay in patients with age-related macular degeneration (AMD) compared to age-matched healthy controls. A total of 64 AMD patients [51 (79%) non-exudative, 13 (21%) exudative AMD] and 21 age-matched healthy control subjects were enrolled in this study. Plasma total thiol, native thiol, disulfide levels were measured and native thiol/disulfide ratio (TDR) was calculated using a novel spectrophotometric assay. Patients with AMD had significantly lower levels of total thiol (434.8 ± 7.0 μmol/L vs. 472.2 ± 7.9 μmol/L, p < 0.001), native thiol (393.6 ± 6.5 μmol/L vs. 437.5 ± 7.1 μmol/L, p = 0.004) compared to healthy controls. However, plasma disulfide levels were higher in AMD patients (20.6 ± 0.9 μmol/L vs. 17.3 ± 1.3 μmol/L, p = 0.113) compared to healthy controls. The TDR was not statistically different between the early AMD group and healthy controls (24.2 ± 2.3 vs. 29.5 ± 3.1, p = 0.345). However, intermediate and advanced stage AMD groups had significantly lower levels of TDR compared to healthy controls (21.6 ± 2.6 vs. 29.5 ± 3.1, p = 0.023 and 20.3 ± 1.2 vs. 29.5 ± 3.1, p = 0.005, respectively). Native TDR was significantly lower in patients with exudative and non-exudative AMD (19.9 ± 2.3 vs. 29.5 ± 3.1, p = 0.024 and 21.8 ± 1.14 vs. 29.47 ± 3.1 respectively, p = 0.011). A greater extent of thiol consumption occurred in AMD patients compared to age-matched healthy controls. However, despite the similar levels of total thiol levels between several grades of AMD, the plasma native TDR value was decreased in accordance with the severity of the disease, which reflected the disease grade better.

  19. Micro-Sugar-Snap and -Wire-Cut Cookie Baking with Trans- and Zero-Trans-Fat Shortenings

    USDA-ARS?s Scientific Manuscript database

    The effect of trans- and zero-trans-fat shortenings on cookie-baking performance was evaluated, using the two AACC micro-cookie-baking methods. Regardless of fat type, sugar-snap cookies made with a given flour were larger in diameter, smaller in height, and greater in weight loss during baking tha...

  20. Method of saccharifying cellulose

    DOEpatents

    Johnson, E.A.; Demain, A.L.; Madia, A.

    1983-05-13

    A method is disclosed of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of thiol reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.

  1. Mechanism-based Proteomic Screening Identifies Targets of Thioredoxin-like Proteins*

    PubMed Central

    Nakao, Lia S.; Everley, Robert A.; Marino, Stefano M.; Lo, Sze M.; de Souza, Luiz E.; Gygi, Steven P.; Gladyshev, Vadim N.

    2015-01-01

    Thioredoxin (Trx)-fold proteins are protagonists of numerous cellular pathways that are subject to thiol-based redox control. The best characterized regulator of thiols in proteins is Trx1 itself, which together with thioredoxin reductase 1 (TR1) and peroxiredoxins (Prxs) comprises a key redox regulatory system in mammalian cells. However, there are numerous other Trx-like proteins, whose functions and redox interactors are unknown. It is also unclear if the principles of Trx1-based redox control apply to these proteins. Here, we employed a proteomic strategy to four Trx-like proteins containing CXXC motifs, namely Trx1, Rdx12, Trx-like protein 1 (Txnl1) and nucleoredoxin 1 (Nrx1), whose cellular targets were trapped in vivo using mutant Trx-like proteins, under conditions of low endogenous expression of these proteins. Prxs were detected as key redox targets of Trx1, but this approach also supported the detection of TR1, which is the Trx1 reductant, as well as mitochondrial intermembrane proteins AIF and Mia40. In addition, glutathione peroxidase 4 was found to be a Rdx12 redox target. In contrast, no redox targets of Txnl1 and Nrx1 could be detected, suggesting that their CXXC motifs do not engage in mixed disulfides with cellular proteins. For some Trx-like proteins, the method allowed distinguishing redox and non-redox interactions. Parallel, comparative analyses of multiple thiol oxidoreductases revealed differences in the functions of their CXXC motifs, providing important insights into thiol-based redox control of cellular processes. PMID:25561728

  2. UHPLC-MS/MS determination of varietal thiol precursors in Sauvignon Blanc grapes.

    PubMed

    Vanzo, Andreja; Janeš, Lucija; Požgan, Franc; Velikonja Bolta, Špela; Sivilotti, Paolo; Lisjak, Klemen

    2017-10-13

    Varietal thiol precursors in grapes are subject to metabolic changes during post-harvest treatments. Metabolic activity should therefore be limited after sampling to understand their biosynthesis in the berry and genetic regulation. In this study, berries were frozen in liquid nitrogen immediately after harvesting, transported in dry ice, stored briefly at -80 °C, cryo-milled and extracted without being thawed in cold methanol in a ratio of 1:4 (w/v). A UHPLC-MS/MS method for quantitative determination of the thiol precursors 3-S-glutathionylhexan-1-ol (G3MH), 3-S-cysteinylhexan-1-ol (Cys3MH), 4-S-glutathionyl-4-methylpentan-2-one (G4MMP) and 4-S-cysteinyl-4-methylpentan-2-one (Cys4MMP), glutathione, oxidized glutathione and L-methionine in grapes was developed. Reference material was provided through synthesis of precursors and their deuterium labelled analogues. The average thiol precursor content in grapes in 2013-15 was in the range 8-16 μg kg -1 for G3MH, 1-6 μg kg -1 for Cys3MH, 1-4 μg kg -1 for Cys4MMP and 0.3 μg kg -1 for G4MMP. In 2013 and 2014, the highest precursor content in mature Sauvignon Blanc grapes from vineyards located in Italy regarded G3MH, followed by Cys3MH, Cys4MMP and G4MMP. In 2015, G3MH was again the most abundant precursor, but followed by Cys4MMP, Cys3MH and G4MMP.

  3. Properties of selected S-nitrosothiols compared to nitrosylated WR-1065.

    PubMed

    Whiteside, William Michael; Sears, Devin N; Young, Paul R; Rubin, David B

    2002-05-01

    WR-1065 ([N-mercaptoethyl]-1-3-diaminopropane), the active form of the aminothiol drug Ethyol/Amifostine, protects against toxicity caused by radiation, chemotherapy and endotoxin. Because WR-1065 and other thiols readily bind nitric oxide (NO), injurious conditions or therapies that induce the production or mobilization of NO could alter the effects of WR-1065. S-Nitrosothiols were prepared from various thiols by a standard method to compare properties and stability. Heteromolecular quantum correlation 2D nuclear magnetic resonance was used to characterize nitrosylated glutathione (GSH) and WR-1065; both S- and N-nitrosothiols were observed, depending on the experimental conditions. Three categories of S-nitrosothiol stability were observed: (1) highly stable, with t(1/2) > 8 h, N-acetyl-L-cysteine nitrosothiol (t(1/2) 15 h) > GSH nitrosothiol (t(1/2) 8 h); (2) intermediate stability, t(1/2) approximately 2 h, cysteamine nitrosothiol and WR-1065 nitrosothiol; and (3) low stability, t(1/2) < 1 h, cysteine nitrosothiol and Captopril nitrosothiol. Similar relative rates were observed for Hg(+2)-induced denitrosylation: WR-1065 reacted faster than GSH nitrosothiol, while GSH nitrosothiol reacted faster than N-acetyl-L-cysteine nitrosothiol. Mostly mediated by mixed-NPSH disulfide formation, the activity of the redox-sensitive cysteine protease, cathepsin H, was inhibited by the S-nitrosothiols, with WR-1065 nitrosothiol > cysteine nitrosothiol > N-acetyl-L-cysteine nitrosothiol and GSH nitrosothiol. These observations indicate that, relative to other nitrosylated non-protein thiols, the S-nitrosothiol of WR-1065 is an unstable non-protein S-nitrosothiols with a high reactive potential in the modification of protein thiols.

  4. The effect of surface treatment on the microstructure of the skin of concrete

    NASA Astrophysics Data System (ADS)

    Sadowski, Łukasz; Stefaniuk, Damian

    2018-01-01

    The aim of this study is to better understand the heterogeneity and microstructural properties of the skin of concrete. The microstructural evaluation of the skin of concrete was performed using X-ray micro computed tomography (micro-CT). The concrete surface was treated using four methods, due to which different surfaces were obtained, i.e. a raw surface, a surface formed after contact with formwork, a grinded surface and also a shotblasted surface. The results of the pore structure obtained from the micro-CT images were used to assess the influence of selected surface treatment method on the nature of the skin of concrete. It was shown that the thickness and unique nature of the skin of concrete differ for various surface treatment methods.

  5. A CE-FL based method for real-time detection of in-capillary self-assembly of the nanoconjugates of polycysteine ligand and quantum dots.

    PubMed

    Wang, Jianhao; Zhu, Zhilan; Qiu, Lin; Wang, Jianpeng; Wang, Xiang; Xiao, Qicai; Xia, Jiang; Liu, Li; Liu, Xiaoqian; Feng, Wei; Wang, Jinmei; Miao, Peng; Gao, Liqian

    2018-07-06

    Small molecules with free thiol groups always show high binding affinity to quantum dots (QDs). However, it is still highly challenging to detect the binding capacity between thiol-containing molecules and QDs inside a capillary. To conquer this limitation, a capillary electrophoresis with fluorescence detection (CE-FL) based assay was proposed and established to investigate the binding capacity between QDs and a poly-thiolated peptide (ATTO 590-DDSSGGCCPGCC, ATTO-C4). Interestingly, the results showed that interval time had a great influence on QDs and ATTO-C4 self-assembly, which can be attributed to longer interval time benefitting the binding of QDs to ATTO-C4. The stability assays on ATTO-C4-QD assembly indicated that high concentration of imidazole or GSH had a high capability of competing with the bound ATTO-C4, evidenced by dramatically dropping of S 625 /S 565 ratio from 0.78 to 0.30 or 0.29. Therefore, all these results above suggested that this novel CE-FL based detection assay could be successfully applied to the binding studies between QDs and thiol-containing biomolecules.

  6. Growth of fluorescence gold clusters using photo-chemically activated ligands

    NASA Astrophysics Data System (ADS)

    Mishra, Dinesh; Aldeek, Fadi; Michael, Serge; Palui, Goutam; Mattoussi, Hedi

    2016-03-01

    Ligands made of lipoic acid (LA) appended with a polyethylene glycol (PEG) chain have been used in the aqueous phase growth of luminescent gold clusters with distinct emission from yellow to near-IR, using two different routes. In the first route, the gold-ligand complex was chemically reduced using sodium borohydride in alkaline medium, which gave near- IR luminescent gold clusters with maximum emission around 745 nm. In the second method, LA-PEG ligand was photochemically modified to a mixture of thiols, oligomers and oxygenated species under UV-irradiation, which was then used as both reducing agent and stabilizing ligand. By adjusting the pH, temperature, and time of the reaction, we were able to obtain clusters with two distinct emission properties. Refluxing the gold-ligand complex in alkaline medium in the presence of excess ligand gave yellow emission within the first two hours and the emission shifted to red after overnight reaction. Mass spectrometry and chemical assay were used to understand the photo-chemical transformation of Lipoic Acid (LA). Mass spectroscopic studies showed the photo-irradiated product contains thiols, oligomers (dimers, trimers and tetramers) as well as oxygenated species. The amount of thiol formed under different conditions of irradiation was estimated using Ellman's assay.

  7. Control of Gallium Oxide Growth on Liquid Metal Eutectic Gallium/Indium Nanoparticles via Thiolation.

    PubMed

    Farrell, Zachary J; Tabor, Christopher

    2018-01-09

    Eutectic gallium-indium alloy (EGaIn, a room-temperature liquid metal) nanoparticles are of interest for their unique potential uses in self-healing and flexible electronic devices. One reason for their interest is due to a passivating oxide skin that develops spontaneously on exposure to ambient atmosphere which resists deformation and rupture of the resultant liquid particles. It is then of interest to develop methods for control of this oxide growth process. It is hypothesized here that functionalization of EGaIn nanoparticles with thiolated molecules could moderate oxide growth based on insights from the Cabrera-Mott oxidation model. To test this, the oxidation dynamics of several thiolated nanoparticle systems were tracked over time with X-ray photoelectron spectroscopy. These results demonstrate the ability to suppress gallium oxide growth by up to 30%. The oxide progressively matures over a 28 day period, terminating in different final thicknesses as a function of thiol selection. These results indicate not only that thiols moderate gallium oxide growth via competition with oxygen for surface sites but also that different thiols alter the thermodynamics of oxide growth through modification of the EGaIn work function.

  8. A CE-FL based method for real-time detection of in-capillary self-assembly of the nanoconjugates of polycysteine ligand and quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Jianhao; Zhu, Zhilan; Qiu, Lin; Wang, Jianpeng; Wang, Xiang; Xiao, Qicai; Xia, Jiang; Liu, Li; Liu, Xiaoqian; Feng, Wei; Wang, Jinmei; Miao, Peng; Gao, Liqian

    2018-07-01

    Small molecules with free thiol groups always show high binding affinity to quantum dots (QDs). However, it is still highly challenging to detect the binding capacity between thiol-containing molecules and QDs inside a capillary. To conquer this limitation, a capillary electrophoresis with fluorescence detection (CE-FL) based assay was proposed and established to investigate the binding capacity between QDs and a poly-thiolated peptide (ATTO 590-DDSSGGCCPGCC, ATTO-C4). Interestingly, the results showed that interval time had a great influence on QDs and ATTO-C4 self-assembly, which can be attributed to longer interval time benefitting the binding of QDs to ATTO-C4. The stability assays on ATTO-C4-QD assembly indicated that high concentration of imidazole or GSH had a high capability of competing with the bound ATTO-C4, evidenced by dramatically dropping of S 625/S 565 ratio from 0.78 to 0.30 or 0.29. Therefore, all these results above suggested that this novel CE-FL based detection assay could be successfully applied to the binding studies between QDs and thiol-containing biomolecules.

  9. The effects of organosulfur compounds upon the storage stability of Jet A fuel. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Heneman, F. C.

    1981-01-01

    This study examined the effect of sulfur-containing compounds on the storage stability of Jet A turbine fuel. It was found that alkyl sulfides and disulfides increased the fuel's stability while all thiols and thiophene derivatives tested decreased fuel stability (increased deposit formation) at temperatures and sulfur concentrations selected. Linear Arrhenius plots of sulfur-spiked fuel samples demonstrated that deposit formation decreased with increased slope for all alkyl sulfides, alkyl disulfides, thiols, and thiophene derivatives. A plot of insoluble deposit vs. concentration of added alkyl sulfide produces a negative slope. It appears that the inhibiting mechanism for alkyl sulfides is a result of the compound's reactivity with intermediate soluble precursors to deposit in the fuel. A method of approximating the relative basicity of weak organosulfur bases was developed via measurement of their resonance chemical shifts in proton NMR. Linear plots of log gm. deposit vs. change in chemical shift (shift differences between sulfur bases neat and complexed with I2) were found for alkyl sulfides and alkyl thiols. This suggests the possibility that increased deposit formation is due to base catalysis with these compound classes.

  10. Modeling and evaluating of surface roughness prediction in micro-grinding on soda-lime glass considering tool characterization

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Gong, Yadong; Wang, Jinsheng

    2013-11-01

    The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality processing surface. Therefore, a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography is proposed in this paper. The differences of material removal mechanism between convention grinding process and micro-grinding process are analyzed. Topography characterization has been done on micro-grinding tools which are fabricated by electroplating. Models of grain density generation and grain interval are built, and new predicting model of micro-grinding surface roughness is developed. In order to verify the precision and application effect of the surface roughness prediction model proposed, a micro-grinding orthogonally experiment on soda-lime glass is designed and conducted. A series of micro-machining surfaces which are 78 nm to 0.98 μm roughness of brittle material is achieved. It is found that experimental roughness results and the predicting roughness data have an evident coincidence, and the component variable of describing the size effects in predicting model is calculated to be 1.5×107 by reverse method based on the experimental results. The proposed model builds a set of distribution to consider grains distribution densities in different protrusion heights. Finally, the characterization of micro-grinding tools which are used in the experiment has been done based on the distribution set. It is concluded that there is a significant coincidence between surface prediction data from the proposed model and measurements from experiment results. Therefore, the effectiveness of the model is demonstrated. This paper proposes a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography, which would provide significant research theory and experimental reference of material removal mechanism in micro-grinding of soda-lime glass.

  11. Study of the effect of thiols on the vasodilatory potency of S-nitrosothiols by using a modified aortic ring assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giustarini, Daniela, E-mail: giustarini@unisi.it; Tsikas, Dimitrios, E-mail: tsikas.dimitros@mh-hannover.de; Rossi, Ranieri, E-mail: ranieri@unisi.it

    2011-10-15

    Both low-molecular-mass thiols (LMM-SH) and protein thiols (P-SH) can modulate the biological activity of S-nitrosothiols (RSNO) via S-transnitrosation reactions. It has been difficult to evaluate the entity of this effect in blood circulation by in vitro assays with isolated aorta rings so far, because media rich in proteins cannot be used due to the foaming as a consequence of the needed gas bubbling. We have modified the original apparatus for organ bioassay in order to minimize foaming and to increase analytical performance. By using this modified bioassay we investigated the vasodilatory potency of various endogenous RSNOs in the presence ofmore » physiologically relevant concentrations of albumin and LMM-SH. Our results show that the sulfhydryl group of the cysteine moiety of albumin and LMM-SH has a dramatic effect on the vasodilatory potency of RSNO. Considering the equilibrium constants for S-transnitrosation reactions and the concentration of P-SH and LMM-SH we measured in healthy humans (aged 18-85 years), we infer that the age-dependency of hematic levels of LMM-SH may have a considerable impact in RSNO-mediated vasodilation. S-Nitrosoproteins such as S-nitrosoalbumin may constitute a relatively silent and constant amount of circulating RSNO. On the other hand, LMM-SH may mediate and control the biological actions of S-nitrosoproteins via S-transnitrosation reactions, by forming more potent nitric oxide-releasing LMM-S-nitrosothiols. Lifestyle habits, status of health and individual age are proven factors that, in turn, may influence the concentration of these compounds. These aspects should be taken into consideration when testing the vasodilatory effects of RSNO in pre-clinical studies. - Highlights: > A modification of the organ chamber apparatus for aortic ring bioassays is proposed. > The new apparatus can work in the presence of albumin at physiological concentrations. > Potency of RSNOs was studied in the presence of albumin and low molecular mass -SH. > Plasma thiol levels decrease with age. > Potency of RSNOs varies in dependence of age and more in general of plasma thiol status.« less

  12. Design strategies of fluorescent probes for selective detection among biothiols.

    PubMed

    Niu, Li-Ya; Chen, Yu-Zhe; Zheng, Hai-Rong; Wu, Li-Zhu; Tung, Chen-Ho; Yang, Qing-Zheng

    2015-10-07

    Simple thiol derivatives, such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play key roles in biological processes, and the fluorescent probes to detect such thiols in vivo selectively with high sensitivity and fast response times are critical for understanding their numerous functions. However, the similar structures and reactivities of these thiols pose considerable challenges to the development of such probes. This review focuses on various strategies for the design of fluorescent probes for the selective detection of biothiols. We classify the fluorescent probes for discrimination among biothiols according to reaction types between the probes and thiols such as cyclization with aldehydes, conjugate addition-cyclization with acrylates, native chemical ligation, and aromatic substitution-rearrangement.

  13. Crocin loaded nano-emulsions: Factors affecting emulsion properties in spontaneous emulsification.

    PubMed

    Mehrnia, Mohammad-Amin; Jafari, Seid-Mahdi; Makhmal-Zadeh, Behzad S; Maghsoudlou, Yahya

    2016-03-01

    Spontaneous emulsification may be used for encapsulating bioactive compounds in food and pharmaceutical industry. It has several advantages over high energy and other low energy methods including, protecting sensitive compounds against severe conditions of high energy method and its ability to minimize surfactant, removal of cosurfactant and thermal stability compared with other low energy methods. In this study, we examined possibility of encapsulating highly soluble crocin in W/O micro-emulsions using spontaneous method which further could be used for making double emulsions. Nonionic surfactants of Span 80 and polyglycerol polyricinoleate (PGPR) were used for making micro-emulsions that showed the high potential of PGPR for spontaneous method. Surfactant to water ratio (SWR%) was evaluated to find the highest amount of aqueous phase which can be dispersed in organic phase. Droplet size decreased by increasing SWR toward the SWR=100% which had the smallest droplet size and then increased at higher levels of surfactant. By increasing SWR, shear viscosity increased which showed the high effect of PGPR on rheological properties. This study shows in addition to W/O micro-emulsions, spontaneous method could be used for preparing stable O/W micro-emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Equivalent Electromagnetic Constants for Microwave Application to Composite Materials for the Multi-Scale Problem

    PubMed Central

    Fujisaki, Keisuke; Ikeda, Tomoyuki

    2013-01-01

    To connect different scale models in the multi-scale problem of microwave use, equivalent material constants were researched numerically by a three-dimensional electromagnetic field, taking into account eddy current and displacement current. A volume averaged method and a standing wave method were used to introduce the equivalent material constants; water particles and aluminum particles are used as composite materials. Consumed electrical power is used for the evaluation. Water particles have the same equivalent material constants for both methods; the same electrical power is obtained for both the precise model (micro-model) and the homogeneous model (macro-model). However, aluminum particles have dissimilar equivalent material constants for both methods; different electric power is obtained for both models. The varying electromagnetic phenomena are derived from the expression of eddy current. For small electrical conductivity such as water, the macro-current which flows in the macro-model and the micro-current which flows in the micro-model express the same electromagnetic phenomena. However, for large electrical conductivity such as aluminum, the macro-current and micro-current express different electromagnetic phenomena. The eddy current which is observed in the micro-model is not expressed by the macro-model. Therefore, the equivalent material constant derived from the volume averaged method and the standing wave method is applicable to water with a small electrical conductivity, although not applicable to aluminum with a large electrical conductivity. PMID:28788395

  15. Spray-deposition and photopolymerization of organic-inorganic thiol-ene resins for fabrication of superamphiphobic surfaces.

    PubMed

    Xiong, Li; Kendrick, Laken L; Heusser, Hannele; Webb, Jamie C; Sparks, Bradley J; Goetz, James T; Guo, Wei; Stafford, Christopher M; Blanton, Michael D; Nazarenko, Sergei; Patton, Derek L

    2014-07-09

    Superamphiphobic surfaces, exhibiting high contact angles and low contact angle hysteresis to both water and low surface tension liquids, have attracted a great deal attention in recent years because of the potential of these materials in practical applications such as liquid-resistant textiles, self-cleaning surfaces, and antifouling/anticorrosion coatings. In this work, we present a simple strategy for fabricating of superamphiphobic coatings based on photopolymerization of hybrid thiol-ene resins. Spray-deposition and UV photopolymerization of thiol-ene resins containing hydrophobic silica nanoparticles and perfluorinated thiols provide a multiscale topography and low-energy surface that endows the surface with superamphiphobicity. The wettability and chemical composition of the surfaces were characterized by contact-angle goniometry and X-ray photoelectron spectroscopy, respectively. The hierarchical roughness features of the thiol-ene surfaces were investigated with field-emission scanning electron microscopy. Droplet impact and sandpaper abrasion tests indicate the coatings respectively possess a robust antiwetting behavior and good mechanical durability.

  16. An excited state intramolecular proton transfer dye based fluorescence turn-on probe for fast detection of thiols and its applications in bioimaging

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Xue, Yuanyuan; Li, Haoyang; Zhu, Ruitao; Ren, Yuehong; Shi, Qinghua; Wang, Song; Guo, Wei

    2017-03-01

    In this study, a new fluorescent probe 2-(2‧-hydroxy-5‧-N-maleimide phenyl)-benzothiazole (probe 1), was designed and synthesized by linking the excited state intramolecular proton transfer (ESIPT) fluorophore to the maleimide group for selective detection of thiols in aqueous solution. The fluorescence of probe 1 is strongly quenched by maleimide group through the photo-induced electron transfer (PET) mechanism, but after reaction with thiol, the fluorescence of ESIPT fluorophore is restored, affording a large Stokes shifts. Upon addition of cysteine (Cys), probe 1 exhibited a fast response time (complete within 30 s) and a high signal-to-noise ratio (up to 23-fold). It showed a high selectivity and excellent sensitivity to thiols over other relevant biological species, with a detection limit of 3.78 × 10- 8 M (S/N = 3). Moreover, the probe was successfully applied to the imaging of thiols in living cells.

  17. Influence of Torulaspora delbrueckii in varietal thiol (3-SH and 4-MSP) release in wine sequential fermentations.

    PubMed

    Belda, Ignacio; Ruiz, Javier; Beisert, Beata; Navascués, Eva; Marquina, Domingo; Calderón, Fernando; Rauhut, Doris; Benito, Santiago; Santos, Antonio

    2017-09-18

    In last years, non-Saccharomyces yeasts have emerged as innovative tools to improve wine quality, being able to modify the concentration of sensory-impact compounds. Among them, varietal thiols released by yeasts, play a key role in the distinctive aroma of certain white wines. In this context, Torulaspora delbrueckii is in the spotlight because of its positive contribution to several wine quality parameters. This work studies the physiological properties of an industrial T. delbrueckii strain, for the production of wines with increased thiol concentrations. IRC7 gene, previously described in S. cerevisiae, has been identified in T. delbrueckii, establishing the genetics basis of its thiol-releasing capability. Fermentations involving T. delbrueckii showed improvements on several parameters (such as glycerol content, ethanol index, and major volatile compounds composition), but especially on thiols release. These results confirm the potential of T. delbrueckii on wine improvement, describing new metabolic features regarding the release of cysteinylated aroma precursors. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Spectroscopic Characterization of Extracellular Polymeric Substances from Escherichia coli and Serratia marcescens: Suppression using Sub-Inhibitory Concentrations of Bismuth Thiols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badireddy, Appala R.; Korpol, Bhoom Reddy; Chellam, Shankararaman

    2008-10-21

    Free and capsular EPS produced by Escherichia coli and Serratia marcescens were characterized in detail using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Total EPS production decreased upon treatment with sub-inhibitory concentrations of lipophilic bismuth thiols (bismuth dimercaptopropanol, BisBAL; bismuth ethanedithiol, BisEDT; and bismuth pyrithione, BisPYR), BisBAL being most effective. Bismuth thiols also influenced acetylation and carboxylation of polysaccharides in EPS from S. marcescens. Extensive homology between EPS samples in the presence and absence of bismuth was observed with proteins, polysaccharides, and nucleic acids varying predominantly only in the total amount expressed. Secondmore » derivative analysis of the amide I region of FTIR spectra revealed decreases in protein secondary structures in the presence of bismuth thiols. Hence, anti-fouling properties of bismuth thiols appear to originate in their ability to suppress O-acetylation and protein secondary structures in addition to total EPS secretion.« less

  19. DPPH and oxygen free radicals as pro-oxidant of biomolecules.

    PubMed

    Letelier, María Eugenia; Molina-Berríos, Alfredo; Cortés-Troncoso, Juan; Jara-Sandoval, José; Holst, Marianne; Palma, Karina; Montoya, Margarita; Miranda, Dante; González-Lira, Víctor

    2008-03-01

    Numerous investigations exist about the alterations that oxygen free radicals can provoke on biomolecules; these modifications can be prevented and/or reversed by different antioxidants agents. On the other hand, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), a stable nitrogen synthetic radical, is used to evaluate the antioxidant capacity of medicinal herbal products; however, the structural changes that this radical provoke on the herbal active principles are not clear yet. In this work, we compared the redox reactivity of oxygen free radicals and DPPH radical on phospholipids and protein thiol groups present in rat liver microsomes. Cu2+/ascorbate was used as generator system of oxygen free radical and as antioxidant, an extract of Buddleja globosa's leaves. Cu2+/ascorbate provoked microsomal lipid peroxidation, microsomal thiols oxidation and oxygen consumption; all of these phenomena were inhibited by B. globosa extract. On the other hand, DPPH was bleached in different extension by the herbal extract and phosphatidyl choline; beside, DPPH decreased microsomal thiols content, but this phenomenon were not prevented by the herbal extract. Furthermore, DPPH did not induce oxygen consumption and neither modified the oxygen consumption induced by Cu2+/ascorbate. Distinct redox mechanisms may explain the differences between the reactivity of DPPH and oxygen free radicals on biomolecules, which is discussed.

  20. Chloronitroimidazoles as radiosensitizers of hypoxic cells in vitro.

    PubMed

    Wideł, M; Watras, J; Suwiński, J; Salwińska, E

    1987-01-01

    Some results of the first more complex studies in vitro on radio-sensitizing efficiency, cytotoxicity and reactivity with blood-thiols of a series of 4- or 5-nitroimidazoles substituted in the 5, 4 or 2 position with chlorine are presented. The derivatives of 4-nitroimidazole substituted in 5 position ("ortho" position) with Cl show higher radiosensitizing efficiency than one may expect from their reduction potential, E1/2. At the same time they are extremely toxic, especially for aerobic cells. It is considered that high biological activity of ortho-substituted 4-nitroimidazoles is connected with their considerable chemical reactivity towards thiols and suppression of those natural protective compounds in the cells. The corresponding 5-nitro isomers are about tenfold weaker sensitizers, and simultaneously much less cytotoxic, either in aerobic or in hypoxic conditions. The chloro-4(5)-nitroimidazoles nonsubstituted at N-1 and ionizable in aqueous solution are relatively weaker at the same time less toxic radiosensitizers. It is evaluated that potential application in radiotherapy may have those chloronitroimidazoles which show low aerobic cytotoxicity, moderate radiosensitizing ability and no reactivity towards thiols. On the basis of the study in vitro, we have selected such a compound: 1-methyl-2-chloro-4-nitroimidazole (P13) for screening in vivo.

  1. N-acetylcysteine protects melanocytes against oxidative stress/damage and delays onset of UV-induced melanoma in mice

    PubMed Central

    Cotter, Murray A.; Thomas, Joshua; Cassidy, Pamela; Robinette, Kyle; Jenkins, Noah; Scott, R. Florell; Leachman, Sancy; Samlowski, Wolfram E.; Grossman, Douglas

    2008-01-01

    UV radiation is the major environmental risk factor for melanoma and a potent inducer of oxidative stress, which is implicated in the pathogenesis of several malignancies. We evaluated whether the thiol antioxidant N-acetylcysteine (NAC) could protect melanocytes from UV-induced oxidative stress/damage in vitro and from UV-induced melanoma in vivo. In melan-a cells, a mouse melanocyte line, NAC (1–10 mM) conferred protection from several UV-induced oxidative sequelae including production of intracellular peroxide, formation of the signature oxidative DNA lesion 8-oxoguanine (8-OG), and depletion of free reduced thiols (primarily glutathione). Mice transgenic for hepatocyte growth factor and Survivin, previously shown to develop melanoma following a single neonatal dose of UV irradiation, were administered NAC (7 mg/ml, mother’s drinking water) transplacentally and through nursing until two weeks after birth. Delivery of NAC in this manner reduced thiol depletion and blocked formation of 8-OG in skin following neonatal UV treatment. Mean onset of UV-induced melanocytic tumors was significantly delayed in NAC-treated compared to control mice (21 vs. 14 weeks, p=0.0003). Our data highlight the potential importance of oxidative stress in the pathogenesis of melanoma, and suggest that NAC may be useful as a chemopreventive agent. PMID:17908992

  2. The Mars Organic Analyzer: Instrumentation and Methods for Detecting Trace Organic Molecules in our Solar System

    NASA Astrophysics Data System (ADS)

    Stockton, A. M.; Kim, J.; Willis, P. A.; Lillis, R.; Amundson, R.; Beegle, L.; Butterworth, A.; Curtis, D.; Ehrenfreund, P.; Grunthaner, F.; Hazen, R.; Kaiser, R.; Ludlam, M.; Mora, M. F.; Scherer, J.; Turin, P.; Welten, K.; Williford, K.; Mathies, R. A.

    2014-07-01

    Mars Organic Analyzer was designed to give the Mars 2020 Mission capability to look for organic molecules, including amines, aldehydes, ketones, organic acids, thiols and polycyclic aromatic hydrocarbons, in martian samples with sub-ppb sensitivity.

  3. AN ELECTROPHORETIC PROFILING METHOD FOR THIOL-RICH PEPTIDES AND PROTEINS. (R825960)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  4. ;Click; analytics for ;click; chemistry - A simple method for calibration-free evaluation of online NMR spectra

    NASA Astrophysics Data System (ADS)

    Michalik-Onichimowska, Aleksandra; Kern, Simon; Riedel, Jens; Panne, Ulrich; King, Rudibert; Maiwald, Michael

    2017-04-01

    Driven mostly by the search for chemical syntheses under biocompatible conditions, so called "click" chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques possessing short set-up times. Here, we report on a fast and reliable calibration-free online NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement of 1H spectra with a time interval of 20 s per spectrum, and a robust, fully automated algorithm to interpret the obtained data. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was conducted in a variety of non-deuterated solvents while its time-resolved behaviour was characterized with step tracer experiments. Overlapping signals in online spectra during thiol-ene coupling could be deconvoluted with a spectral model using indirect hard modeling and were subsequently converted to either molar ratios (using a calibration-free approach) or absolute concentrations (using 1-point calibration). For various solvents the kinetic constant k for pseudo-first order reaction was estimated to be 3.9 h-1 at 25 °C. The obtained results were compared with direct integration of non-overlapping signals and showed good agreement with the implemented mass balance.

  5. Attenuation of Glucose-Induced Myoglobin Glycation and the Formation of Advanced Glycation End Products (AGEs) by (R)-α-Lipoic Acid In Vitro

    PubMed Central

    Ghelani, Hardik; Razmovski-Naumovski, Valentina; Pragada, Rajeswara Rao

    2018-01-01

    High-carbohydrate containing diets have become a precursor to glucose-mediated protein glycation which has been linked to an increase in diabetic and cardiovascular complications. The aim of the present study was to evaluate the protective effect of (R)-α-lipoic acid (ALA) against glucose-induced myoglobin glycation and the formation of advanced glycation end products (AGEs) in vitro. Methods: The effect of ALA on myoglobin glycation was determined via the formation of AGEs fluorescence intensity, iron released from the heme moiety of myoglobin and the level of fructosamine. The extent of glycation-induced myoglobin oxidation was measured via the levels of protein carbonyl and thiol. Results: The results showed that the co-incubation of ALA (1, 2 and 4 mM) with myoglobin (1 mg/mL) and glucose (1 M) significantly decreased the levels of fructosamine, which is directly associated with the decrease in the formation of AGEs. Furthermore, ALA significantly reduced the release of free iron from myoglobin which is attributed to the protection of myoglobin from glucose-induced glycation. The results also demonstrated a significant protective effect of ALA on myoglobin from oxidative damage, as seen from the decreased protein carbonyls and increased protein thiols. Conclusion: The anti-glycation properties of ALA suggest that ALA supplementation may be beneficial in the prevention of AGEs-mediated diabetic and cardiovascular complications. PMID:29419812

  6. Cadmium affects the mitochondrial viability and the acid soluble thiols concentration in liver, kidney, heart and gills of Ancistrus brevifilis (Eigenmann, 1920)

    PubMed Central

    Velasquez-Vottelerd, P.; Anton, Y.; Salazar-Lugo, R.

    2015-01-01

    The freshwater fish Ancistrus brevifilis, which is found in Venezuelan rivers, is considered a potential sentinel fish in ecotoxicological studies. The cadmium (Cd) effect on the mitochondrial viability (MV) and acid soluble thiols levels (AST) in A. brevifilis tissues (liver, kidney, heart, and gill) was evaluated. Forty-two fish with similar sizes and weights were randomly selected, of which 7 fish (with their respective replicate) were exposed for 7 and 30 days to a Cd sublethal concentration (0.1 mg.l-1). We determined the MV through a Janus Green B colorimetric assay and we obtained the concentration of AST by Ellman’s method. Mitochondrial viability decreased in fish exposed to Cd for 30 days with the liver being the most affected tissue. We also detected a significant decrease in AST levels was in fishes exposed to Cd for 7 days in liver and kidney tissues; these results suggests that AST levels are elevated in some tissues may act as cytoprotective and adaptive alternative mechanism related to the ROS detoxification, maintenance redox status and mitochondrial viability. Organ-specifics variations were observed in both assays. We conclude that the Cd exposure effect on AST levels and MV, vary across fish tissues and is related to the exposure duration, the molecule dynamics in different tissues, the organism and environmental conditions. PMID:26623384

  7. Purification and characterization of multiple forms of the pineapple-stem-derived cysteine proteinases ananain and comosain.

    PubMed Central

    Napper, A D; Bennett, S P; Borowski, M; Holdridge, M B; Leonard, M J; Rogers, E E; Duan, Y; Laursen, R A; Reinhold, B; Shames, S L

    1994-01-01

    A mixture of ananain (EC 3.4.22.31) and comosain purified from crude pineapple stem extract was found to contain numerous closely related enzyme forms. Chromatographic separation of the major enzyme forms was achieved after treatment of the mixture with thiol-modifying reagents: reversible modification with 2-hydroxyethyl disulphide provided enzyme for kinetic studies, and irreversible alkylation with bromotrifluoroacetone or iodoacetamide gave enzyme for structural analyses by 19F-n.m.r. and electrospray mass spectrometry respectively. Structural and kinetic analyses revealed comosain to be closely related to stem bromelain (EC 3.4.22.32), whereas ananain differed markedly from both comosain and stem bromelain. Nevertheless, differences were seen between comosain and stem bromelain in amino acid composition and kinetic specificity towards the epoxide inhibitor E-64. Differences between five isolatable alternative forms of ananain were characterized by amidolytic activity, thiol stoichiometry and accurate mass determinations. Three of the enzyme forms displayed ananain-like amidolytic activity, whereas the other two forms were inactive. Thiol-stoichiometry determinations revealed that the active enzyme forms contained one free thiol, whereas the inactive forms lacked the reactive thiol required for enzyme activity. M.s. provided direct evidence for oxidation of the active-site thiol to the corresponding sulphinic acid. Images Figure 3 Figure 4 PMID:8053898

  8. Relationship between Extracellular Low-Molecular-Weight Thiols and Mercury Species in Natural Lake Periphytic Biofilms.

    PubMed

    Leclerc, Maxime; Planas, Dolors; Amyot, Marc

    2015-07-07

    The uptake of mercury by microorganisms is a key step in the production of methylmercury, a biomagnifiable toxin. Mercury complexation by low-molecular-weight (LMW) thiols can affect its bioavailability and thus the production of methylmercury. Freshwater biofilms were sampled in the summer using artificial Teflon substrates submerged for over a year to allow natural community colonization in the littoral zone of a Boreal Shield lake. Inside biofilms, concentrations of different extracellular thiol species (thioglycolic acid, l-cysteine-l-glycine, cysteine, and glutathione) were up to 3 orders of magnitude greater than in the surrounding water column, potentially more readily controlling mercury speciation than in the water column. All biofilm thiols except thioglycolic acid were highly correlated to chlorophyll a, likely indicating an algal origin. Extracellular total mercury represented 3 ± 1% of all biofilm mercury and was preferentially found in the capsular fraction. Levels of LMW thiols of presumed algal origins were highly correlated with total mercury in the mobile colloidal fraction of biofilms. We propose that periphytic phototrophic microorganisms such as algae likely affect the bioavailability of mercury through the exudation of LMW thiols, and thus they may play a key role in the production of methylmercury in biofilms.

  9. Striped gold nanoparticles: New insights from molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velachi, Vasumathi, E-mail: vasuphy@gmail.com; Cordeiro, M. Natália D. S., E-mail: ncordeir@fc.up.pt; Bhandary, Debdip

    Recent simulations have improved our knowledge of the molecular-level structure and hydration properties of mixed self-assembled monolayers (SAMs) with equal and unequal alkyl thiols at three different arrangements, namely, random, patchy, and Janus. In our previous work [V. Vasumathi et al., J. Phys. Chem. C 119, 3199–3209 (2015)], we showed that the bending of longer thiols over shorter ones clearly depends on the thiols’ arrangements and chemical nature of their terminal groups. In addition, such a thiol bending revealed to have a strong impact on the structural and hydration properties of SAMs coated on gold nanoparticles (AuNPs). In this paper,more » we extend our previous atomistic simulation study to investigate the bending of longer thiols by increasing the stripe thickness of mixed SAMs of equal and unequal lengths coated on AuNPs. We study also the effect of stripe thickness on the structural morphology and hydration of the coated SAMs. Our results show that the structural and hydration properties of SAMs are affected by the stripe thickness for mixtures of alkyl thiols with unequal chain length but not for equal length. Hence, the stability of the stripe configuration depends on the alkyl’s chain length, the length difference between the thiol mixtures, and solvent properties.« less

  10. Formation of mercury sulfide from Hg(II)−thiolate complexes in natural organic matter

    USGS Publications Warehouse

    Alain Manceau,; Cyprien Lemouchi,; Mironel Enescu,; Anne-Claire Gaillot,; Martine Lanson,; Valerie Magnin,; Pieter Glatzel,; Poulin, Brett; Ryan, Joseph N.; Aiken, George R.; Isabelle Gautier-Lunea,; Kathryn L. Nagy,

    2015-01-01

    Methylmercury is the environmental form of neurotoxic mercury that is biomagnified in the food chain. Methylation rates are reduced when the metal is sequestered in crystalline mercury sulfides or bound to thiol groups in macromolecular natural organic matter. Mercury sulfide minerals are known to nucleate in anoxic zones, by reaction of the thiol-bound mercury with biogenic sulfide, but not in oxic environments. We present experimental evidence that mercury sulfide forms from thiol-bound mercury alone in aqueous dark systems in contact with air. The maximum amount of nanoparticulate mercury sulfide relative to thiol-bound mercury obtained by reacting dissolved mercury and soil organic matter matches that detected in the organic horizon of a contaminated soil situated downstream from Oak Ridge, TN, in the United States. The nearly identical ratios of the two forms of mercury in field and experimental systems suggest a common reaction mechanism for nucleating the mineral. We identified a chemical reaction mechanism that is thermodynamically favorable in which thiol-bound mercury polymerizes to mercury–sulfur clusters. The clusters form by elimination of sulfur from the thiol complexes via breaking of mercury–sulfur bonds as in an alkylation reaction. Addition of sulfide is not required. This nucleation mechanism provides one explanation for how mercury may be immobilized, and eventually sequestered, in oxygenated surface environments.

  11. Thiol-Based Redox Switches and Gene Regulation

    PubMed Central

    2011-01-01

    Abstract Cysteine is notable among the universal, proteinogenic amino acids for its facile redox chemistry. Cysteine thiolates are readily modified by reactive oxygen species (ROS), reactive electrophilic species (RES), and reactive nitrogen species (RNS). Although thiol switches are commonly triggered by disulfide bond formation, they can also be controlled by S-thiolation, S-alkylation, or modification by RNS. Thiol-based switches are common in both prokaryotic and eukaryotic organisms and activate functions that detoxify reactive species and restore thiol homeostasis while repressing functions that would be deleterious if expressed under oxidizing conditions. Here, we provide an overview of the best-understood examples of thiol-based redox switches that affect gene expression. Intra- or intermolecular disulfide bond formation serves as a direct regulatory switch for several bacterial transcription factors (OxyR, OhrR/2-Cys, Spx, YodB, CrtJ, and CprK) and indirectly regulates others (the RsrA anti-σ factor and RegB sensory histidine kinase). In eukaryotes, thiol-based switches control the yeast Yap1p transcription factor, the Nrf2/Keap1 electrophile and oxidative stress response, and the Chlamydomonas NAB1 translational repressor. Collectively, these regulators reveal a remarkable range of chemical modifications exploited by Cys residues to effect changes in gene expression. Antioxid. Redox Signal. 14, 1049—1063. PMID:20626317

  12. Thiol-Disulfide Exchange in Peptides Derived from Human Growth Hormone

    PubMed Central

    Chandrasekhar, Saradha; Epling, Daniel E.; Sophocleous, Andreas M.; Topp, Elizabeth M.

    2014-01-01

    Disulfide bonds stabilize proteins by crosslinking distant regions into a compact three-dimensional structure. They can also participate in hydrolytic and oxidative pathways to form non-native disulfide bonds and other reactive species. Such covalent modifications can contribute to protein aggregation. Here we present experimental data for the mechanism of thiol-disulfide exchange in tryptic peptides derived from human growth hormone in aqueous solution. Reaction kinetics were monitored to investigate the effect of pH (6.0-10.0), temperature (4-50 °C), oxidation suppressants (EDTA and N2 sparging) and peptide secondary structure (amide cyclized vs. open form). The concentrations of free thiol containing peptides, scrambled disulfides and native disulfide-linked peptides generated via thiol-disulfide exchange and oxidation reactions were determined using RP-HPLC and LC-MS. Concentration vs. time data were fitted to a mathematical model using non-linear least squares regression analysis. At all pH values, the model was able to fit the data with R2≥0.95. Excluding oxidation suppressants (EDTA and N2 sparging) resulted in an increase in the formation of scrambled disulfides via oxidative pathways but did not influence the intrinsic rate of thiol-disulfide exchange. In addition, peptide secondary structure was found to influence the rate of thiol-disulfide exchange. PMID:24549831

  13. A periodic mixed gaussians-plane waves DFT study on simple thiols on Au(111): adsorbate species, surface reconstruction, and thiols functionalization.

    PubMed

    Rajaraman, Gopalan; Caneschi, Andrea; Gatteschi, Dante; Totti, Federico

    2011-03-07

    Here we present DFT calculations based on a periodic mixed gaussians/plane waves approach to study the energetics, structure, bonding of SAMs of simple thiols on Au(111). Several open issues such as structure, bonding and the nature of adsorbate are taken into account. We started with methyl thiols (MeSH) on Au(111) to establish the nature of the adsorbate. We have considered several structural models embracing the reconstructed surface scenario along with the MeS˙-Au(ad)-MeS˙ type motif put forward in recent years. Our calculations suggest a clear preference for the homolytic cleavage of the S-H bond leading to a stable MeS˙ on a gold surface. In agreement with the recent literature studies, the reconstructed models of the MeS˙ species are found to be energetically preferred over unreconstructed models. Besides, our calculations reveal that the model with 1:2 Au(ad)/thiols ratio, i.e. MeS˙-Au(ad)-MeS˙, is energetically preferred compared to the clean and 1:1 ratio models, in agreement with the experimental and theoretical evidences. We have also performed Molecular Orbital/Natural Bond Orbital, MO/NBO, analysis to understand the electronic structure and bonding in different structural motifs and many useful insights have been gained. Finally, the studies have then been extended to alkyl thiols of the RSR' (R, R' = Me, Et and Ph) type and here our calculations again reveal a preference for the RS˙ type species adsorption for clean as well as for reconstructed 1:2 Au(ad)/thiols ratio models.

  14. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches.

    PubMed

    Nietzel, Thomas; Mostertz, Jörg; Hochgräfe, Falko; Schwarzländer, Markus

    2017-03-01

    Mitochondria are hotspots of cellular redox biochemistry. Respiration as a defining mitochondrial function is made up of a series of electron transfers that are ultimately coupled to maintaining the proton motive force, ATP production and cellular energy supply. The individual reaction steps involved require tight control and flexible regulation to maintain energy and redox balance in the cell under fluctuating demands. Redox regulation by thiol switching has been a long-standing candidate mechanism to support rapid adjustment of mitochondrial protein function at the posttranslational level. Here we review recent advances in our understanding of cysteine thiol switches in the mitochondrial proteome with a focus on their operation in vivo. We assess the conceptual basis for thiol switching in mitochondria and discuss to what extent insights gained from in vitro studies may be valid in vivo, considering thermodynamic, kinetic and structural constraints. We compare functional proteomic approaches that have been used to assess mitochondrial protein thiol switches, including thioredoxin trapping, redox difference gel electrophoresis (redoxDIGE), isotope-coded affinity tag (OxICAT) and iodoacetyl tandem mass tag (iodoTMT) labelling strategies. We discuss conditions that may favour active thiol switching in mitochondrial proteomes in vivo, and appraise recent advances in dissecting their impact using combinations of in vivo redox sensing and quantitative redox proteomics. Finally we focus on four central facets of mitochondrial biology, aging, carbon metabolism, energy coupling and electron transport, exemplifying the current emergence of a mechanistic understanding of mitochondrial regulation by thiol switching in living plants and animals. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  15. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions.

    PubMed

    Netto, Luis Eduardo S; de Oliveira, Marcos Antonio; Tairum, Carlos A; da Silva Neto, José Freire

    2016-01-01

    Thiol-disulfide exchange reactions are highly reversible, displaying nucleophilic substitutions mechanism (S(N)2 type). For aliphatic, low molecular thiols, these reactions are slow, but can attain million times faster rates in enzymatic processes. Thioredoxin (Trx) proteins were the first enzymes described to accelerate thiol-disulfide exchange reactions and their high reactivity is related to the high nucleophilicity of the attacking thiol. Substrate specificity in Trx is achieved by several factors, including polar, hydrophobic, and topological interactions through a groove in the active site. Glutaredoxin (Grx) enzymes also contain the Trx fold, but they do not share amino acid sequence similarity with Trx. A conserved glutathione binding site is a typical feature of Grx that can reduce substrates by two mechanisms (mono and dithiol). The high reactivity of Grx enzymes is related to the very acid pK(a) values of reactive Cys that plays roles as good leaving groups. Therefore, although distinct oxidoreductases catalyze similar thiol–disulfide exchange reactions, their enzymatic mechanisms vary. PDI and DsbA are two other oxidoreductases, but they are involved in disulfide bond formation, instead of disulfide reduction, which is related to the oxidative environment where they are found. PDI enzymes and DsbC are endowed with disulfide isomerase activity, which is related with their tetra-domain architecture. As illustrative description of specificity in thiol-disulfide exchange, redox aspects of transcription activation in bacteria, yeast, and mammals are presented in an evolutionary perspective. Therefore, thiol-disulfide exchange reactions play important roles in conferring specificity to pathways, a required feature for signaling.

  16. Evaluation of width and width uniformity of near-field electrospinning printed micro and sub-micrometer lines based on optical image processing

    NASA Astrophysics Data System (ADS)

    Zhao, Libo; Xia, Yong; Hebibul, Rahman; Wang, Jiuhong; Zhou, Xiangyang; Hu, Yingjie; Li, Zhikang; Luo, Guoxi; Zhao, Yulong; Jiang, Zhuangde

    2018-03-01

    This paper presents an experimental study using image processing to investigate width and width uniformity of sub-micrometer polyethylene oxide (PEO) lines fabricated by near-filed electrospinning (NFES) technique. An adaptive thresholding method was developed to determine the optimal gray values to accurately extract profiles of printed lines from original optical images. And it was proved with good feasibility. The mechanism of the proposed thresholding method was believed to take advantage of statistic property and get rid of halo induced errors. Triangular method and relative standard deviation (RSD) were introduced to calculate line width and width uniformity, respectively. Based on these image processing methods, the effects of process parameters including substrate speed (v), applied voltage (U), nozzle-to-collector distance (H), and syringe pump flow rate (Q) on width and width uniformity of printed lines were discussed. The research results are helpful to promote the NFES technique for fabricating high resolution micro and sub-micro lines and also helpful to optical image processing at sub-micro level.

  17. Depletion of Intracellular Thiols and Increased Production of 4-Hydroxynonenal that Occur During Cryopreservation of Stallion Spermatozoa Lead to Caspase Activation, Loss of Motility, and Cell Death.

    PubMed

    Martin Muñoz, Patricia; Ortega Ferrusola, Cristina; Vizuete, Guillermo; Plaza Dávila, Maria; Rodriguez Martinez, Heriberto; Peña, Fernando J

    2015-12-01

    Oxidative stress has been linked to sperm death and the accelerated senescence of cryopreserved spermatozoa. However, the molecular mechanisms behind this phenomenon remain poorly understood. Reactive oxygen species (ROS) are considered relevant signaling molecules for sperm function, only becoming detrimental when ROS homeostasis is lost. We hereby hypothesize that a major component of the alteration of ROS homeostasis in cryopreserved spermatozoa is the exhaustion of intrinsic antioxidant defense mechanisms. To test this hypothesis, semen from seven stallions was frozen using a standard technique. The parameters of sperm quality (motility, velocity, and membrane integrity) and markers of sperm senescence (caspase 3, 4-hydroxynonenal, and mitochondrial membrane potential) were assessed before and after cryopreservation. Changes in the intracellular thiol content were also monitored. Cryopreservation caused significant increases in senescence markers as well as dramatic depletion of intracellular thiols to less than half of the initial values (P < 0.001) postthaw. Interestingly, very high and positive correlations were observed among thiol levels with sperm functionality postthaw: total motility (r = 0.931, P < 0.001), progressive motility (r = 0.904, P < 0.001), and percentage of live spermatozoa without active caspase 3 (r = 0.996, P < 0.001). In contrast, negative correlations were detected between active caspase 3 and thiol content both in living (r = -0.896) and dead (r = -0.940) spermatozoa; additionally, 4-hydroxynonenal levels were negatively correlated with thiol levels (r = -0.856). In conclusion, sperm functionality postthaw correlates with the maintenance of adequate levels of intracellular thiols. The accelerated senescence of thawed spermatozoa is related to oxidative and electrophilic stress induced by increased production of 4-hydroxynoneal in thawed samples once intracellular thiols are depleted. © 2015 by the Society for the Study of Reproduction, Inc.

  18. Hydrogen-atom tunneling through a very high barrier; spontaneous thiol → thione conversion in thiourea isolated in low-temperature Ar, Ne, H2 and D2 matrices.

    PubMed

    Rostkowska, Hanna; Lapinski, Leszek; Nowak, Maciej J

    2018-05-23

    Spontaneous thiol → thione hydrogen-atom transfer has been investigated for molecules of thiourea trapped in Ar, Ne, normal-H2 (n-H2) and normal-D2 (n-D2) low-temperature matrices. The most stable thione isomer was the only form of the compound present in the matrices after their deposition. According to MP2/6-311++G(2d,p) calculations, the thiol tautomer should be higher in energy by 62.5 kJ mol-1. This less stable thiol form of the compound was photochemically generated in a thione → thiol process, occurring upon UV irradiation of the matrix. Subsequently, a very slow spontaneous conversion of the thiol tautomer into the thione form was observed for the molecules isolated in Ar, Ne, n-H2 and n-D2 matrices kept at 3.5 K and in the dark. Since the thiol → thione transformation in thiourea is a process involving the dissociation of a chemical bond, the barrier for this hydrogen-atom transfer is very high (104-181 kJ mol-1). Crossing such a high potential-energy barrier at a temperature as low as 3.5 K, is possible only by hydrogen-atom tunneling. The experimentally measured time constants of this tunneling process: 52 h (Ar), 76 h (Ne), 94 h (n-H2) and 94 h (n-D2), do not differ much from one another. Hence, the dependence of the tunneling rate on the matrix environment is not drastic. The progress of the thiol → thione conversion was also monitored for Ar matrices at different temperature: 3.5 K, 9 K and 15 K. For this temperature range, the experiments revealed no detectable temperature dependence of the rate of the tunneling process.

  19. Photoreduction of Hg(II) and photodemethylation of methylmercury: the key role of thiol sites on dissolved organic matter

    USGS Publications Warehouse

    Jeremiason, Jeffrey D.; Portner, Joshua C.; Aiken, George R.; Hiranaka, Amber J.; Dvorak, Michelle T.; Tran, Khuyen T.; Latch, Douglas E.

    2015-01-01

    This study examined the kinetics of photoreduction of Hg(II) and photodemethylation of methylmercury (MeHg+) attached to, or in the presence of, dissolved organic matter (DOM). Both Hg(II) and MeHg+ are principally bound to reduced sulfur groups associated with DOM in many freshwater systems. We propose that a direct photolysis mechanism is plausible for reduction of Hg(II) bound to reduced sulfur groups on DOM while an indirect mechanism is supported for photodemethylation of MeHg+ bound to DOM. UV spectra of Hg(II) and MeHg+ bound to thiol containing molecules demonstrate that the Hg(II)–S bond is capable of absorbing UV-light in the solar spectrum to a much greater extent than MeHg+–S bonds. Experiments with chemically distinct DOM isolates suggest that concentration of DOM matters little in the photochemistry if there are enough reduced S sites present to strongly bind MeHg+ and Hg(II); DOM concentration does not play a prominent role in photodemethylation other than to screen light, which was demonstrated in a field experiment in the highly colored St. Louis River where photodemethylation was not observed at depths ≥10 cm. Experiments with thiol ligands yielded slower photodegradation rates for MeHg+ than in experiments with DOM and thiols; rates in the presence of DOM alone were the fastest supporting an intra-DOM mechanism. Hg(II) photoreduction rates, however, were similar in experiments with only DOM, thiols plus DOM, or only thiols suggesting a direct photolysis mechanism. Quenching experiments also support the existence of an intra-DOM photodemethylation mechanism for MeHg+. Utilizing the difference in photodemethylation rates measured for MeHg+ attached to DOM or thiol ligands, the binding constant for MeHg+ attached to thiol groups on DOM was estimated to be 1016.7.

  20. Long-wavelength TCF-based fluorescence probes for the detection and intracellular imaging of biological thiols.

    PubMed

    Sedgwick, Adam C; Gardiner, Jordan E; Kim, Gyoungmi; Yevglevskis, Maksims; Lloyd, Matthew D; Jenkins, A Toby A; Bull, Steven D; Yoon, Juyoung; James, Tony D

    2018-05-08

    Two 'turn on' TCF-based fluorescence probes were developed for the detection of biological thiols (TCF-GSH and TCFCl-GSH). TCF-GSH was shown to have a high sensitivity towards glutathione (GSH) with a 0.28 μM limit of detection. Unfortunately, at higher GSH concentrations the fluorescence intensity of TCF-GSH decreased and toxicity was observed for TCF-GSH in live cells. However, TCFCl-GSH was shown to be able to detect GSH at biologically relevant concentrations with a 0.45 μM limit of detection. No toxicity was found for TCFCl-GSH and a clear 'turn on' with good photostability was observed for the exogenous addition of GSH, Cys and HCys. Furthermore, TCFCl-GSH was used to evaluate the effects of drug treatment on the levels of GSH in live cells.

  1. Thiolated xyloglucan: Synthesis, characterization and evaluation as mucoadhesive in situ gelling agent.

    PubMed

    Mahajan, Hitendra S; Tyagi, Vinod Kumar; Patil, Ravindra R; Dusunge, Sanket B

    2013-01-16

    The objective of present study was to enhance bioadhesive potential of xyloglucan by thiolation. Thiolation of xyloglucan was achieved with esterification with thioglycolic acid. Thiolated xyloglucan was characterized by NMR, DSC, and XRD analysis. Thiolated xyloglucan was determined to possess 4mmol of thiol groups/g of polymer by Ellman's method. Comparative evaluation of mucoadhesive property of ondansetron containing in situ gel system of xyloglucan and thiolated xyloglucan using sheep nasal mucosa revealed higher ex vivo bioadhesion time of thiolated xyloglucan as compared to xyloglucan. Improved mucoadhesive property of thiolated xyloglucan over the xyloglucan can be attributed to the formation of disulfide bond between mucus and thiolated xyloglucan. Ex vivo permeation study conducted using sheep nasal showed improved drug permeation in formulation based on thiolated xyloglucan. In conclusion, thiolation of xyloglucan improves its bioadhesion and drug permeation without affecting the resultant gel properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Synthesis and characterization of a novel mucoadhesive derivative of xyloglucan.

    PubMed

    Madgulkar, Ashwini R; Bhalekar, Mangesh R; Asgaonkar, Kalyani D; Dikpati, Amrita A

    2016-01-01

    A novel polymer in the form of a thiolated derivative of natural tamarind seed polysaccharide or xyloglucan was synthesized and its chacteristics as a mucoadhesive polymer were studied as a part of the study undertaken herein. The synthetic route followed involves a two-step reaction mechanism of firstly oxidizing xyloglucan and then further conjugating it with l-cysteine to form thiolated xyloglucan or thiomer via imine linkage. The thiomer thus formed was characterized using various analytical techniques as differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), and nuclear magnetic resonance (NMR). Ellman's method was used to determine the numbers of thiol groups/g of thiolated xyloglucan. Zeta potential measurements were carried out for thiolated xyloglucan. Viscosities of the formulated xyloglucan and thiolated xyloglucan gels were comparatively evaluated along with the evaluation of mucoadhesive properties of the gels using ex vivo bioadhesion study employing freshly excised sheep intestinal mucosa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Human Milk MicroRNA and Total RNA Differ Depending on Milk Fractionation

    PubMed Central

    Alsaweed, Mohammed; Hepworth, Anna R.; Lefèvre, Christophe; Hartmann, Peter E.; Geddes, Donna T.

    2015-01-01

    ABSTRACT MicroRNA have been recently discovered in human milk signifying potentially important functions for both the lactating breast and the infant. Whilst human milk microRNA have started to be explored, little data exist on the evaluation of sample processing, and analysis to ensure that a full spectrum of microRNA can be obtained. Human milk comprises three main fractions: cells, skim milk, and lipids. Typically, the skim milk fraction has been measured in isolation despite evidence that the lipid fraction may contain more microRNA. This study aimed to standardize isolation of microRNA and total RNA from all three fractions of human milk to determine the most appropriate sampling and analysis procedure for future studies. Three different methods from eight commercially available kits were tested for their efficacy in extracting total RNA and microRNA from the lipid, skim, and cell fractions of human milk. Each fraction yielded different concentrations of RNA and microRNA, with the highest quantities found in the cell and lipid fractions, and the lowest in skim milk. The column‐based phenol‐free method was the most efficient extraction method for all three milk fractions. Two microRNAs were expressed and validated in the three milk fractions by qPCR using the three recommended extraction kits for each fraction. High expression levels were identified in the skim and lipid milk factions for these microRNAs. These results suggest that careful consideration of both the human milk sample preparation and extraction protocols should be made prior to embarking upon research in this area. J. Cell. Biochem. 116: 2397–2407, 2015. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:25925799

  4. Human Milk MicroRNA and Total RNA Differ Depending on Milk Fractionation.

    PubMed

    Alsaweed, Mohammed; Hepworth, Anna R; Lefèvre, Christophe; Hartmann, Peter E; Geddes, Donna T; Hassiotou, Foteini

    2015-10-01

    MicroRNA have been recently discovered in human milk signifying potentially important functions for both the lactating breast and the infant. Whilst human milk microRNA have started to be explored, little data exist on the evaluation of sample processing, and analysis to ensure that a full spectrum of microRNA can be obtained. Human milk comprises three main fractions: cells, skim milk, and lipids. Typically, the skim milk fraction has been measured in isolation despite evidence that the lipid fraction may contain more microRNA. This study aimed to standardize isolation of microRNA and total RNA from all three fractions of human milk to determine the most appropriate sampling and analysis procedure for future studies. Three different methods from eight commercially available kits were tested for their efficacy in extracting total RNA and microRNA from the lipid, skim, and cell fractions of human milk. Each fraction yielded different concentrations of RNA and microRNA, with the highest quantities found in the cell and lipid fractions, and the lowest in skim milk. The column-based phenol-free method was the most efficient extraction method for all three milk fractions. Two microRNAs were expressed and validated in the three milk fractions by qPCR using the three recommended extraction kits for each fraction. High expression levels were identified in the skim and lipid milk factions for these microRNAs. These results suggest that careful consideration of both the human milk sample preparation and extraction protocols should be made prior to embarking upon research in this area. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.

  5. Solution-Processed Solar Cells via Nanocrystal Inks and Molecular Solutions

    NASA Astrophysics Data System (ADS)

    Miskin, Caleb K.

    On February 15, 2008 the National Academy of Engineering unveiled their fourteen grand challenges of engineering for the 21st century. At the top of the list and voted by the public as the most important challenge was the thrust to make solar energy economical. My research has been dedicated to solving this millennial challenge by developing routes to high-efficiency, solution-processed photovoltaics (PV) for low-cost and low-energy manufacturing. My research has primarily advanced two methods for solution processed PV. In one method, semiconducting nanocrystals are synthesized and then suspended in an appropriate solvent to form an ink. The ink is then applied to a substrate by a variety of high-throughput methods such as spray coating or doctor blading and then annealed to form a polycrystalline absorber layer for solar energy. I have applied this method with great success to Cu2ZnSnS 4, a promising earth-abundant, non-toxic semiconductor. A challenge with this material is its propensity to form binary and ternary undesired phases. Using advanced nano-characterization techniques, my colleagues and I have been able to determine the spatially resolved composition of these nanoparticles and have found them to be highly non-uniform. In addition, I developed synthesis techniques aimed at controlling the nucleation and growth of this material to improve nanocrystal compositional homogeneity. Though particles produced in this work still exhibit some non-uniformities, they are greatly improved. When combined with optimized fabrication techniques, I have been able to advance the efficiency of nanocrystal ink based solar cells of CZTS from 7.2 to 9.0 percent in our lab. Another promising route to solution-processed PV is by directly coating molecular precursor solutions (rather than first forming nanocrystals) and annealing the coating to form the polycrystalline solar absorber layer. Unfortunately, a major challenge is that many metals, metal salts, and chalcogens that would be useful precursors to such films have poor solubility in organic solvents compatible with roll-to-roll manufacturing techniques. Interestingly, we have found that mixtures of commonly available thiols and amines are able to dissolve at room temperature and pressure a host of metals and salts that are otherwise insoluble in either solvent by itself. In this work, I have primarily focused on CdTe--which has been by far the most successful technology in terms of production cost ($/peak watt) and energy payback time for thin-film solar cells. In this research thrust I demonstrate for the first time the fabrication of CdTe thin-films via a solution-processed molecular precursor approach by dissolving CdCl2 and Te in ethylenediamine and 1-propanethiol. The films are formed by spin-coating thin layers of the solution and then annealing each layer until a 1.5 mum thick film is achieved. I have achieved 0.5% efficient devices by this method. As thiol-amine mixtures have the potential to leave residual sulfur in these films, other novel solvent systems are presented as future work. While amine-thiol mixtures are excellent solvents for many materials, they do not dissolve lead chalcogenides with ease. I leverage this to develop room-temperature synthesis routes to PbS, PbSe, PbTe, and PbSxSe 1-x nanoparticles. This is achieved by mixing a lead salt dissolved in thiol-amine with a chalcogen dissolved in thiol-amine at room temperature. We find that when particles produced in this manner are pressed into pellets, they show comparable thermoelectric performance to more complicated and energy intensive synthesis techniques. Ultimately, we wish to enable the use of these particles in room-temperature fabricated quantum dot solar cells. This requires the synthesis of highly monodisperse, stable colloids and is the subject of future work using thiol-amine mixtures and related aqueous analogues.

  6. Characterization of microcracks by application of digital image correlation to SPM images

    NASA Astrophysics Data System (ADS)

    Keller, Juergen; Gollhardt, Astrid; Vogel, Dietmar; Michel, Bernd

    2004-07-01

    With the development of micro- and nanotechnological products such as sensors, MEMS/NEMS and their broad application in a variety of market segments new reliability issues will arise. The increasing interface-to-volume ratio in highly integrated systems and nanoparticle filled materials and unsolved questions of size effect of nanomaterials are challenges for experimental reliability evaluation. To fulfill this needs the authors developed the nanoDAC method (nano Deformation Analysis by Correlation), which allows the determination and evaluation of 2D displacement fields based on scanning probe microscopy (SPM) data. In-situ SPM scans of the analyzed object are carried out at different thermo-mechanical load states. The obtained topography-, phase- or error-images are compared utilizing grayscale cross correlation algorithms. This allows the tracking of local image patterns of the analyzed surface structure. The measurement results of the nanoDAC method are full-field displacement and strain fields. Due to the application of SPM equipment deformations in the micro-, nanometer range can be easily detected. The method can be performed on bulk materials, thin films and on devices i.e microelectronic components, sensors or MEMS/NEMS. Furthermore, the characterization and evaluation of micro- and nanocracks or defects in bulk materials, thin layers and at material interfaces can be carried out.

  7. Occurrence of low molecular weight thiols in biological systems

    NASA Technical Reports Server (NTRS)

    Fahey, Robert C.; Newton, Gerald L.

    1983-01-01

    Bromobimane labeling and high performance chromatography analysis were applied to various species of bacteria, plant tissues, and animal tissues. The reaction between thiols and monobromobimane is studied. Chromatograms revealing peaks produced by nonthiols and thiols are analyzed and compared. It is observed that all the bacteria species contain hydrogen sulfide, and glutathione is contained in facultative and aerobic gram-negative bacteria. For the plant tissues, the data reveal that mung bean sprouts contain homoglutathione and no glutathione; alfalfa sprouts contain homoglutathione and glutathione; the pea seed, nonlegumes, and fungi contain glutathione and no homoglutathione. It is detected that the main thiol in the animal tissues is glutathione. Based on the data, it is suggested that glutathione has an essential function in higher organisms.

  8. Evaluation of a broad-ranging and convenient enzyme-linked immunosorbent assay using the lysate of infected cells with five serotypes of Orientia tsutsugamushi, a causative agent of scrub typhus.

    PubMed

    Ogawa, Motohiko; Satoh, Masaaki; Saijo, Masayuki; Ando, Shuji

    2017-01-05

    Scrub typhus is a mite-borne rickettsiosis caused by infection of Orientia tsutsugamushi, which is endemic to several Asia-Pacific Rim countries, including Japan. Although micro-indirect immunofluorescent assay (micro-IFA) is the standard method for the serological diagnosis of scrub typhus, enzyme-linked immunosorbent assay (ELISA) is considered to be more objective, by providing digitized results as opposed to being subject to the judgment of the evaluator as in micro-IFA. Therefore, the aim of this study was to develop a broad-ranging ELISA using the five major prevalent serotypes of O. tsutsugamushi in Japan as the antigens. Furthermore, in contrast to previous studies that used purified microorganisms via ultracentrifugation, we directly used the infected cells, and evaluated the diagnostic accuracy of this simplified method to that of micro-IFA. Evaluation of paired patient sera against the five serotypes showed that the accuracy of ELISA relative to micro-IFA was 87.4 and 79.5% for immunoglobulin (Ig)M and IgG assays, respectively, at the optimized cut-off value. Further evaluation of patient sera against the expected serotype of the infecting strain showed that the accuracy of ELISA compared to micro-IFA increased to 100 and 97.4% in the IgM and IgG assays, respectively. This suggests that use of the five prevalent serotypes contributed to the increase of the accuracy of ELISA. When applying the criteria of serological diagnosis for paired sera samples to ELISA, all 19 patients were diagnosed as positive; a ≥4-fold elevation of the antibody titer was observed in 15 of 19 patients that were positive, and very high antibody titers were observed in both paired sera samples of the remaining four patients. In addition, all samples of healthy subjects and patients with other types of rickettsiosis were diagnosed as negative using these criteria. Our results suggest the excellent performance of the new broad-ranging and convenient ELISA, which appears to be applicable for the diagnosis of scrub typhus patients infected with the wide variety of prevalent strains in Japan. Furthermore, the ELISA is more objective than the micro-IFA, and can therefore provide more accurate diagnoses in Japan.

  9. Mucoadhesive Properties of Thiolated Pectin-Based Pellets Prepared by Extrusion-Spheronization Technique.

    PubMed

    Martins, André Luiz Lopes; de Oliveira, Aline Carlos; do Nascimento, Carolina Machado Ozório Lopes; Silva, Luís Antônio Dantas; Gaeti, Marilisa Pedroso Nogueira; Lima, Eliana Martins; Taveira, Stephânia Fleury; Fernandes, Kátia Flávia; Marreto, Ricardo Neves

    2017-05-01

    The aim of this study was to develop mucoadhesive pellets on a thiolated pectin base using the extrusion-spheronization technique. Thiolation of pectin was performed by esterification with thioglycolic acid. The molecular weight and thiol group content of the pectins were determined. Pellets containing pectin, microcrystalline cellulose, and ketoprofen were prepared and their mucoadhesive properties were evaluated through a wash-off test using porcine intestinal mucosa. The in vitro ketoprofen release was also evaluated. Thiolated pectin presented a thiol group content of 0.69 mmol/g. Thiolation caused a 13% increase in polymer molecular weight. Pellets containing thiolated pectin were still adhering to the intestinal mucosa after 480 min and showed a more gradual release of ketoprofen. Conversely, pellets prepared with nonthiolated pectin showed rapid disintegration and detached after only 15 min. It can be concluded that thiolated pectin-based pellets can be considered a potential platform for the development of mucoadhesive drug delivery systems for the oral route. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Analysis of chemical warfare agents. II. Use of thiols and statistical experimental design for the trace level determination of vesicant compounds in air samples.

    PubMed

    Muir, Bob; Quick, Suzanne; Slater, Ben J; Cooper, David B; Moran, Mary C; Timperley, Christopher M; Carrick, Wendy A; Burnell, Christopher K

    2005-03-18

    Thermal desorption with gas chromatography-mass spectrometry (TD-GC-MS) remains the technique of choice for analysis of trace concentrations of analytes in air samples. This paper describes the development and application of a method for analysing the vesicant compounds sulfur mustard and Lewisites I-III. 3,4-Dimercaptotoluene and butanethiol were used to spike sorbent tubes and vesicant vapours sampled; Lewisite I and II reacted with the thiols while sulfur mustard and Lewisite III did not. Statistical experimental design was used to optimise thermal desorption parameters and the optimum method used to determine vesicant compounds in headspace samples taken from a decontamination trial. 3,4-Dimercaptotoluene reacted with Lewisites I and II to give a common derivative with a limit of detection (LOD) of 260 microg m(-3), while the butanethiol gave distinct derivatives with limits of detection around 30 microg m(-3).

  11. Effect of the cooking method (grilling, roasting, frying and sous-vide) on the oxidation of thiols, tryptophan, alkaline amino acids and protein cross-linking in jerky chicken.

    PubMed

    Silva, Fábio A P; Ferreira, Valquíria C S; Madruga, Marta S; Estévez, Mario

    2016-08-01

    Broiler breast ( pectoralis major ) meat was submitted to salting with NaCl + NaNO 3 followed by a drying process to produce jerky-type chicken. The final product (raw broiler charqui) was desalted and then cooked using grilled, roasted, fried and sous-vide techniques. Sous-vide cooked samples showed lowest results of moisture loss compared to roasted and fried ones. Fatty acid profile suffered minor changes after cooking of broiler charqui. Regarding to protein oxidation, tryptophan fluorescence, protein carbonylation and disulphide bonds formation of chicken charqui were affected by cooking temperature while free thiol groups, Schiff base formation and hardness were mostly impacted by the length of cooking. Instrumental color of broiler charqui was affected by the type of cooking, being closely related with Maillard products formation. In conclusion, sous-vide technique seems to be the most advantageous cooking method to obtain high-quality ready-to-eat chicken charqui.

  12. Dual Sulfide-Disulfide Crosslinked Networks with Rapid and Room Temperature Self-Healability.

    PubMed

    An, So Young; Noh, Seung Man; Nam, Joon Hyun; Oh, Jung Kwon

    2015-07-01

    Polymer-based crosslinked networks with intrinsic self-repairing ability have emerged due to their built-in ability to repair physical damages. Here, novel dual sulfide-disulfide crosslinked networks (s-ssPxNs) are reported exhibiting rapid and room temperature self-healability within seconds to minutes, with no extra healing agents and no change under any environmental conditions. The method to synthesize these self-healable networks utilizes a combination of well-known crosslinking chemistry: photoinduced thiol-ene click-type radical addition, generating lightly sulfide-crosslinked polysulfide-based networks with excess thiols, and their oxidation, creating dynamic disulfide crosslinkages to yield the dual s-ssPxNs. The resulting s-ssPxN networks show rapid self-healing within 30 s to 30 min at room temperature, as well as self-healing elasticity with reversible viscoelastic properties. These results, combined with tunable self-healing kinetics, demonstrate the versatility of the method as a new means to synthesize smart multifunctional polymeric materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Evaluation of physicochemical properties of root-end filling materials using conventional and Micro-CT tests

    PubMed Central

    TORRES, Fernanda Ferrari Esteves; BOSSO-MARTELO, Roberta; ESPIR, Camila Galletti; CIRELLI, Joni Augusto; GUERREIRO-TANOMARU, Juliane Maria; TANOMARU-FILHO, Mario

    2017-01-01

    Abstract Objective To evaluate solubility, dimensional stability, filling ability and volumetric change of root-end filling materials using conventional tests and new Micro-CT-based methods. Material and Methods 7 Results The results suggested correlated or complementary data between the proposed tests. At 7 days, BIO showed higher solubility and at 30 days, showed higher volumetric change in comparison with MTA (p<0.05). With regard to volumetric change, the tested materials were similar (p>0.05) at 7 days. At 30 days, they presented similar solubility. BIO and MTA showed higher dimensional stability than ZOE (p<0.05). ZOE and BIO showed higher filling ability (p<0.05). Conclusions ZOE presented a higher dimensional change, and BIO had greater solubility after 7 days. BIO presented filling ability and dimensional stability, but greater volumetric change than MTA after 30 days. Micro-CT can provide important data on the physicochemical properties of materials complementing conventional tests. PMID:28877275

  14. The pharmacokinetic and pharmacodynamic interaction of clopidogrel and cilostazol in relation to CYP2C19 and CYP3A5 genotypes

    PubMed Central

    Kim, Ho‐Sook; Lim, Younghae; Oh, Minkyung; Ghim, Jong‐lyul; Kim, Eun‐Young; Kim, Dong‐Hyun

    2015-01-01

    Aim The primary objective of the present study was to evaluate the pharmacokinetic and pharmacodynamic interactions between clopidogrel and cilostazol in relation to the CYP2C19 and CYP3A5 genotypes. Methods In a randomized, three‐way crossover study, 27 healthy subjects were administered clopidogrel (300 mg), cilostazol (100 mg) or clopidogrel + cilostazol orally. Plasma concentrations of clopidogrel, cilostazol and their active metabolites (clopidogrel thiol metabolite, 3,4‐dehydrocilostazol and 4″‐trans‐hydroxycilostazol), and adenosine diphosphate‐induced platelet aggregation were measured for pharmacokinetic and pharmacodynamic assessment. Results The area under the plasma concentration–time curve (AUC) of the active thiol metabolite of clopidogrel was highest in the CYP2C19 extensive metabolizers (EM) and lowest in the poor metabolizers (PM). Cilostazol decreased the thiol metabolite AUC by 29% in the CYP3A5*1/*3 genotype [geometric mean ratio (GMR) 0.71; 90% confidence interval (CI) 0.58, 0.86; P = 0.020] but not in the CYP3A5*3/*3 genotype (GMR 0.93; 90% CI 0.80, 1.10; P = 0.446). Known effects of the CYP2C19 and CYP3A5 genotypes on the exposure of cilostazol and its metabolites were observed but there was no significant difference in the AUC of cilostazol and 3,4‐dehydrocilostazol between cilostazol and clopidogrel + cilostazol. The inhibition of platelet aggregation from 4 h to 24 h (IPA4–24) following the administration of clopidogrel alone was highest in the CYP2C19 EM genotype and lowest in the CYP2C19 PM genotype (59.05 ± 18.95 vs. 36.74 ± 13.26, P = 0.023). However, the IPA of the CYP2C19 PM following co‐administration of clopidogrel and cilostazol was comparable with that of the CYP2C19 EM and intermediate metabolizers (IM) only in CYP3A5*3/*3 subjects. Conclusions The additive antiplatelet effect of cilostazol plus clopidogrel is maximized in subjects with both the CYP2C19 PM and CYP3A5*3/*3 genotypes because of a lack of change of clopidogrel thiol metabolite exposure in CYP3A5*3/*3 as well as the highest cilostazol IPA in CYP2C19 PM and CYP3A5*3/*3 subjects. PMID:26426352

  15. Elastic interactions of a fatigue crack with a micro-defect by the mixed boundary integral equation method

    NASA Technical Reports Server (NTRS)

    Lua, Yuan J.; Liu, Wing K.; Belytschko, Ted

    1993-01-01

    In this paper, the mixed boundary integral equation method is developed to study the elastic interactions of a fatigue crack and a micro-defect such as a void, a rigid inclusion or a transformation inclusion. The method of pseudo-tractions is employed to study the effect of a transformation inclusion. An enriched element which incorporates the mixed-mode stress intensity factors is applied to characterize the singularity at a moving crack tip. In order to evaluate the accuracy of the numerical procedure, the analysis of a crack emanating from a circular hole in a finite plate is performed and the results are compared with the available numerical solution. The effects of various micro-defects on the crack path and fatigue life are investigated. The results agree with the experimental observations.

  16. Novel immobilization of a quaternary ammonium moiety on keratin fibers for medical applications.

    PubMed

    Yu, Dan; Cai, Jackie Y; Liu, Xin; Church, Jeffrey S; Wang, Lijing

    2014-09-01

    This paper introduces a new approach for immobilizing a quaternary ammonium moiety on a keratinous substrate for enhanced medical applications. The method involves the generation of thiols by controlled reduction of cystine disulfide bonds in the keratin, followed by reaction with [2-(acryloyloxy)ethyl]trimethylammonium chloride through thiol-ene click chemistry. The modified substrate was characterized with Raman and infrared spectroscopy, and assessed for its antibacterial efficacy and other performance changes. The results have demonstrated that the quaternary ammonium moiety has been effectively attached onto the keratin structure, and the resultant keratin substrate exhibits a multifunctional effect including antibacterial and antistatic properties, improved liquid moisture management property, improved dyeability and a non-leaching characteristic of the treated substrate. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  17. Assembly of Oriented Virus Arrays by Chemo-Selective Ligation Methods and Nanolithography Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camarero, J A; Cheung, C L; Lin, T

    2002-12-02

    The present work describes our ongoing efforts towards the creation of nano-scaled ordered arrays of protein/virus covalently attached to site-specific chemical linkers patterned by different nanolithograpy techniques. We will present a new and efficient solid-phase approach for the synthesis of chemically modified long alkyl-thiols. These compounds can be used to introduce chemoselective reacting groups onto gold and silicon-based surfaces. Furthermore, these modified thiols have been used to create nanometric patterns by using different nanolithography techniques. We will show that these patterns can react chemoselectively with proteins and/or virus which have been chemically or recombinantly modified to contain complementary chemical groupsmore » at specific positions thus resulting in the oriented attachment of the protein or virus to the surface.« less

  18. A micro-UAS to start prescribed fires

    USGS Publications Warehouse

    Beachly, Evan; Higgins, James; Laney, Christian; Elbaum, Sebastian; Detweiler, Carrick; Allen, Craig R.; Twidwell, Dirac

    2017-01-01

    Prescribed fires have many benefits, but existing ignition methods are dangerous, costly, or inefficient. This paper presents the design and evaluation of a micro-UAS that can start a prescribed fire from the air, while being operated from a safe distance and without the costs associated with aerial ignition from a manned aircraft. We evaluate the performance of the system in extensive controlled tests indoors. We verify the capabilities of the system to perform interior ignitions, a normally dangerous task, through the ignition of two prescribed fires alongside wildland firefighters.

  19. The relationship between potency of oxidative stress and severity of dilated cardiomyopathy.

    PubMed

    Demirbag, Recep; Yilmaz, Remzi; Erel, Ozcan; Gultekin, Unal; Asci, Durmus; Elbasan, Zafer

    2005-08-01

    It has been suggested that oxidative stress may have a role in the etiopathogenesis of congestive heart failure. To investigate and compare the oxidative-antioxidative status and oxidative stress index (OSI) of patients with idiopathic dilated cardiomyopathy (IDC) with those of healthy volunteers, and to determine the relationship between total antioxidant capacity (TAC) and ejection fraction (EF). Twenty-eight patients with IDC and 24 control subjects were enrolled in the study. Antioxidative status was evaluated by measuring the TAC and the vitamin C and thiol levels in the plasma. Oxidative status was evaluated by measuring the total peroxide level. The per cent ratio of TAC to total peroxide level was accepted as the OSI. EF was measured using Simpson's method. TAC and vitamin C and thiol levels of plasma were found to be significantly lower in patients with IDC than in control subjects (P < 0.001). In contrast, total peroxide levels and OSIs were significantly higher in patients with IDC than in control subjects (P = 0.002 and P = 0.002, respectively). An important positive correlation was found between TAC and EF (r = 0.772; P < 0.001). On the other hand, significant negative correlations were found between EF and OSI and between EF and total peroxide levels in patients. Oxidants are increased and antioxidants are decreased in patients with IDC; as a result, the oxidative-antioxidative balance is shifted to the oxidative side. There is a significant correlation between the potency of oxidative stress and the severity of IDC. It is believed that supplementation of antioxidants in the treatment of IDC may be helpful to these patients.

  20. Automated Bone Segmentation and Surface Evaluation of a Small Animal Model of Post-Traumatic Osteoarthritis.

    PubMed

    Ramme, Austin J; Voss, Kevin; Lesporis, Jurinus; Lendhey, Matin S; Coughlin, Thomas R; Strauss, Eric J; Kennedy, Oran D

    2017-05-01

    MicroCT imaging allows for noninvasive microstructural evaluation of mineralized bone tissue, and is essential in studies of small animal models of bone and joint diseases. Automatic segmentation and evaluation of articular surfaces is challenging. Here, we present a novel method to create knee joint surface models, for the evaluation of PTOA-related joint changes in the rat using an atlas-based diffeomorphic registration to automatically isolate bone from surrounding tissues. As validation, two independent raters manually segment datasets and the resulting segmentations were compared to our novel automatic segmentation process. Data were evaluated using label map volumes, overlap metrics, Euclidean distance mapping, and a time trial. Intraclass correlation coefficients were calculated to compare methods, and were greater than 0.90. Total overlap, union overlap, and mean overlap were calculated to compare the automatic and manual methods and ranged from 0.85 to 0.99. A Euclidean distance comparison was also performed and showed no measurable difference between manual and automatic segmentations. Furthermore, our new method was 18 times faster than manual segmentation. Overall, this study describes a reliable, accurate, and automatic segmentation method for mineralized knee structures from microCT images, and will allow for efficient assessment of bony changes in small animal models of PTOA.

  1. Evaluation of remineralization capacity of casein phosphopeptide-amorphous calcium phosphate on the carbamide peroxide treated enamel

    PubMed Central

    Penumatsa, Narendra Varma; Kaminedi, Raja Rajeswari; Baroudi, Kusai; Barakath, Ola

    2015-01-01

    Objective: The aim of this study was to evaluate the potential of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) in remineralizing the bleached enamel surface using micro-hardness. Materials and Methods: Thirty human enamel slabs were randomly divided into three groups (n = 10). Groups A and B were exposed to 20% carbamide peroxide and 35% carbamide peroxide gel, respectively. After the exposure to the bleaching agent, the slabs were kept in artificial saliva for 1-week. Group C (control group) were kept in artificial saliva for 1-week. Vickers micro-hardness test was performed by Leica VMHT-Mot micro-hardness tester. CPP-ACP (Gc Tooth Mousse, Melbourne, Australia) was then applied to specimens of Groups A and B for 3 min for 2 weeks. Micro-hardness values of postbleach Group A (Ar) and Group B (Br) were recorded and statistically analyzed by paired t-test and one-way analysis of variance at the significance level of α =0.05. Results: There was a significant decrease in micro-hardness of enamel in carbamide peroxide bleached groups. However, there was a significant increase in micro-hardness after the remineralization by CPP-ACP and the extent of remineralization is more for the Group B. Conclusions: That bleaching agents reduced enamel micro-hardness and the use of CPP-ACP after bleaching can significantly enhance the micro-hardness of bleached enamel. PMID:26538923

  2. Inhibition of Carbamyl Phosphate Synthetase-I and Glutamine Synthetase by Hepatotoxic Doses of Acetaminophen in Mice

    PubMed Central

    Gupta, Sanjiv; Rogers, Lynette K.; Taylor, Sarah K.; Smith, Charles V.

    2016-01-01

    The primary mechanisms proposed for acetaminophen-induced hepatic necrosis should deplete protein thiols, either by covalent binding and thioether formation or by oxidative reactions such as S-thiolations. However, in previous studies we did not detect significant losses of protein thiol contents in response to administration of hepatotoxic doses of acetaminophen in vivo. In the present study we employed derivatization with the thiol-specific agent monobromobimane and separation of proteins by SDS–PAGE to investigate the possible loss of specific protein thiols during the course of acetaminophen-induced hepatic necrosis. Fasted adult male mice were given acetaminophen, and protein thiol status was examined subsequently in subcellular fractions isolated by differential centrifugation. No decreases in protein thiol contents were indicated, with the exception of a marked decrease in the fluorescent intensity, but not of protein content, as indicated by staining with Coomassie blue, of a single band of approximately 130 kDa in the mitochondrial fractions of acetaminophen-treated mice. This protein was identified by isolation and N-terminal sequence analysis as carbamyl phosphate synthetase-I (CPS-I) (EC 6.3.4.16). Hepatic CPS-I activities were decreased in mice given hepatotoxic doses of acetaminophen. In addition, hepatic glutamine synthetase activities were lower, and plasma ammonia levels were elevated in mice given hepatotoxic doses of acetaminophen. The observed hyperammonemia may contribute to the adverse effects of toxic doses of acetaminophen, and elucidation of the specific mechanisms responsible for the hyperammonemia may prove to be useful clinically. However, the preferential depletion of protein thiol content of a mitochondrial protein by chemically reactive metabolites generated in the endoplasmic reticulum presents a challenging and potentially informative mechanistic question. PMID:9344900

  3. Purification and Kinetic Properties of Serine Acetyltransferase Free of O-Acetylserine(thiol)lyase from Spinach Chloroplasts.

    PubMed

    Ruffet, M. L.; Droux, M.; Douce, R.

    1994-02-01

    Serine acetyltransferase, a key enzyme in the L-cysteine biosynthetic pathway, was purified over 300,000-fold from the stroma of spinach (Spinacia oleracea) leaf chloroplasts. The purification procedure consisted of ammonium sulfate precipitation, anion-exchange chromatography (Trisacryl M DEAE and Mono Q HR10/10), hydroxylapatite chromatography, and gel filtration (Superdex 200). The purified enzyme exhibited a specific activity higher than 200 units mg-1 and a subunit molecular mass of about 33 kD upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Moreover, the purified serine acetyltransferase appeared to be essentially free of O-acetyleserine(thiol)lyase, another enzyme component in the L-cysteine biosynthetic pathway. A steady-state kinetic analysis indicated that the mechanism of the enzyme-catalyzed reaction involves a double displacement. The apparent Km for the two substrates, L-serine and acetyl-coenzyme A, were 2.29 [plus or minus] 0.43 and 0.35 [plus or minus] 0.02 mM, respectively. The rate of L-cysteine synthesis in vitro was measured in a coupled enzyme assay using extensively purified O-acetylserine(thiol)lyase and serine acetyltransferase. This rate was maximum when the assay contained approximately a 400-fold excess of O-acetylserine(thiol)lyase over serine acetyltransferase. Measurements of the relative level of O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma indicated that the former enzyme was present in much larger quantities than the latter. Thus, the activity ratio for these two enzymes [O-acetylserine(thiol)lyase activity/serine acetyltransferase activity] measured in the stromal protein extract was 345. This strongly suggested that all the O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma are involved in bringing a full synthesis of L-cysteine in the chloroplast.

  4. Purification and Kinetic Properties of Serine Acetyltransferase Free of O-Acetylserine(thiol)lyase from Spinach Chloroplasts.

    PubMed Central

    Ruffet, M. L.; Droux, M.; Douce, R.

    1994-01-01

    Serine acetyltransferase, a key enzyme in the L-cysteine biosynthetic pathway, was purified over 300,000-fold from the stroma of spinach (Spinacia oleracea) leaf chloroplasts. The purification procedure consisted of ammonium sulfate precipitation, anion-exchange chromatography (Trisacryl M DEAE and Mono Q HR10/10), hydroxylapatite chromatography, and gel filtration (Superdex 200). The purified enzyme exhibited a specific activity higher than 200 units mg-1 and a subunit molecular mass of about 33 kD upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Moreover, the purified serine acetyltransferase appeared to be essentially free of O-acetyleserine(thiol)lyase, another enzyme component in the L-cysteine biosynthetic pathway. A steady-state kinetic analysis indicated that the mechanism of the enzyme-catalyzed reaction involves a double displacement. The apparent Km for the two substrates, L-serine and acetyl-coenzyme A, were 2.29 [plus or minus] 0.43 and 0.35 [plus or minus] 0.02 mM, respectively. The rate of L-cysteine synthesis in vitro was measured in a coupled enzyme assay using extensively purified O-acetylserine(thiol)lyase and serine acetyltransferase. This rate was maximum when the assay contained approximately a 400-fold excess of O-acetylserine(thiol)lyase over serine acetyltransferase. Measurements of the relative level of O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma indicated that the former enzyme was present in much larger quantities than the latter. Thus, the activity ratio for these two enzymes [O-acetylserine(thiol)lyase activity/serine acetyltransferase activity] measured in the stromal protein extract was 345. This strongly suggested that all the O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma are involved in bringing a full synthesis of L-cysteine in the chloroplast. PMID:12232109

  5. Oral-Fluid Thiol-Detection Test Identifies Underlying Active Periodontal Disease Not Detected by the Visual Awake Examination.

    PubMed

    Queck, Katherine E; Chapman, Angela; Herzog, Leslie J; Shell-Martin, Tamara; Burgess-Cassler, Anthony; McClure, George David

    Periodontal disease in dogs is highly prevalent but can only be accurately diagnosed by performing an anesthetized oral examination with periodontal probing and dental radiography. In this study, 114 dogs had a visual awake examination of the oral cavity and were administered an oral-fluid thiol-detection test prior to undergoing a a full-mouth anesthetized oral examination and digital dental radiographs. The results show the visual awake examination underestimated the presence and severity of active periodontal disease. The thiol-detection test was superior to the visual awake examination at detecting the presence and severity of active periodontal disease and was an indicator of progression toward alveolar bone loss. The thiol-detection test detected active periodontal disease at early stages of development, before any visual cues were present, indicating the need for intervention to prevent periodontal bone loss. Early detection is important because without intervention, dogs with gingivitis (active periodontal disease) progress to irreversible periodontal bone loss (stage 2+). As suggested in the current AAHA guidelines, a thiol-detection test administered in conjunction with the visual awake examination during routine wellness examinations facilitates veterinarian-client communication and mitigates under-diagnosis of periodontal disease and underutilization of dental services. The thiol-detection test can be used to monitor the periodontal health status of the conscious patient during follow-up examinations based on disease severity.

  6. Thiol/disulfide redox states in signaling and sensing

    PubMed Central

    Go, Young-Mi; Jones, Dean P.

    2015-01-01

    Rapid advances in redox systems biology are creating new opportunities to understand complexities of human disease and contributions of environmental exposures. New understanding of thiol-disulfide systems have occurred during the past decade as a consequence of the discoveries that thiol and disulfide systems are maintained in kinetically controlled steady-states displaced from thermodynamic equilibrium, that a widely distributed family of NADPH oxidases produces oxidants that function in cell signaling, and that a family of peroxiredoxins utilize thioredoxin as a reductant to complement the well-studied glutathione antioxidant system for peroxide elimination and redox regulation. This review focuses on thiol/disulfide redox state in biologic systems and the knowledge base available to support development of integrated redox systems biology models to better understand the function and dysfunction of thiol-disulfide redox systems. In particular, central principles have emerged concerning redox compartmentalization and utility of thiol/disulfide redox measures as indicators of physiologic function. Advances in redox proteomics show that, in addition to functioning in protein active sites and cell signaling, cysteine residues also serve as redox sensors to integrate biologic functions. These advances provide a framework for translation of redox systems biology concepts to practical use in understanding and treating human disease. Biological responses to cadmium, a widespread environmental agent, are used to illustrate the utility of these advances to the understanding of complex pleiotropic toxicities. PMID:23356510

  7. Thiol-Based Selective Extraction Assay to Comparatively Assess Bioavailable Mercury in Sediments

    PubMed Central

    Ticknor, Jonathan L.; Kucharzyk, Katarzyna H.; Porter, Kaitlyn A.; Deshusses, Marc A.; Hsu-Kim, Heileen

    2015-01-01

    Abstract Bioaccumulation of methylmercury in the aquatic food web is governed in part by the methylation of inorganic divalent mercury (Hg(II)) by anaerobic microorganisms. In sulfidic settings, a small fraction of total Hg(II) is typically bioavailable to methylating microorganisms. Quantification of this fraction is difficult due to uncertainties in the speciation of Hg(II) and the mechanisms of uptake by methylating microbes. However, recent studies have shown that the bioavailable fraction is likely to include a portion of Hg(II) associated with solid phases, that is, nanostructured mercuric sulfides. Moreover, addition of thiols to suspensions of methylating cultures coincides with increased uptake into cells and methylmercury production. Here, we present a thiol-based selective extraction assay to provide information on the bioavailable Hg fraction in sediments. In the procedure, sediment samples were exposed to a nitrogen-purged solution of glutathione (GSH) for 30 min and the amount of GSH-leachable mercury was quantified. In nine sediment samples from a marine location, the relative GSH-leachable mercury concentration was strongly correlated to the relative amount of methylmercury in the sediments (r2=0.91, p<0.0001) across an order of magnitude of methylmercury concentration values. The approach was further applied to anaerobic sediment slurry microcosm experiments in which sediments were cultured under the same microbial growth conditions but were amended with multiple forms of Hg with a known spectrum of bioavailability. GSH-leachable Hg concentrations increased with observed methylmercury concentrations in the microcosms, matching the trend of species bioavailability in our previous work. Results suggest that a thiol-based selective leaching approach is an improvement compared with other proposed methods to assess Hg bioavailability in sediment and that this approach could provide a basis for comparison of sites where Hg methylation is a concern. PMID:26244001

  8. Low-Level Mercury Can Enhance Procoagulant Activity of Erythrocytes: A New Contributing Factor for Mercury-Related Thrombotic Disease

    PubMed Central

    Lim, Kyung-Min; Kim, Sujin; Noh, Ji-Yoon; Kim, Keunyoung; Jang, Won-Hee; Bae, Ok-Nam; Chung, Seung-Min; Chung, Jin-Ho

    2010-01-01

    Background Associations between cardiovascular diseases and mercury have been frequently described, but underlying mechanisms are poorly understood. Objectives We investigate the procoagulant activation of erythrocytes, an important contributor to thrombosis, by low-level mercury to explore the roles of erythrocytes in mercury-related cardiovascular diseases. Methods We used freshly isolated human erythrocytes and ex vivo and in vivo thrombosis models in rats to investigate mercury-induced procoagulant activity. Results Prolonged exposure to low-dose mercuric ion (Hg2+; 0.25–5 μM for 1–48 hr) induced erythrocyte shape changes from discocytes to echinocytes to spherocytes, accompanied by microvesicle (MV) generation. These MVs and remnant erythrocytes expressed phosphatidylserine (PS), an important mediator of procoagulant activation. Hg2+ inhibited flippase, an enzyme that recovers PS into the inner leaflet of the cell membrane, and activated scramblase, an enzyme that alters lipid asymmetry in the cell membrane. Consistent with these activity changes, Hg2+ increased intracellular calcium and depleted ATP and protein thiol. A thiol supplement reversed Hg2+-induced MV generation and PS exposure and inhibited the increase in calcium ion (Ca2+) and depletion of ATP, indicating that free-thiol depletion was critical to Hg2+-mediated procoagulant activity. The procoagulant activity of Hg2+-treated erythrocytes was demonstrated by increased thrombin generation and endothelial cell adhesion. We further confirmed Hg2+-mediated procoagulant activation of erythrocytes in ex vivo and in vivo rat thrombosis models, where Hg2+ treatment (0.5–2.5 mg/kg) increased PS exposure and thrombus formation significantly. Conclusion This study demonstrated that mercury could provoke procoagulant activity in erythrocytes through protein-thiol depletion–mediated PS exposure and MV generation, ultimately leading to enhanced thrombosis. PMID:20308036

  9. Proteomic Identification and Quantification of S-glutathionylation in Mouse Macrophages Using Resin-Assisted Enrichment and Isobaric Labeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Dian; Gaffrey, Matthew J.; Guo, Jia

    2014-02-11

    Protein S-glutathionylation (SSG) is an important regulatory posttranslational modification of protein cysteine (Cys) thiol redox switches, yet the role of specific cysteine residues as targets of modification is poorly understood. We report a novel quantitative mass spectrometry (MS)-based proteomic method for site-specific identification and quantification of S-glutathionylation across different conditions. Briefly, this approach consists of initial blocking of free thiols by alkylation, selective reduction of glutathionylated thiols and enrichment using thiol affinity resins, followed by on-resin tryptic digestion and isobaric labeling with iTRAQ (isobaric tags for relative and absolute quantitation) for MS-based identification and quantification. The overall approach was validatedmore » by application to RAW 264.7 mouse macrophages treated with different doses of diamide to induce glutathionylation. A total of 1071 Cys-sites from 690 proteins were identified in response to diamide treatment, with ~90% of the sites displaying >2-fold increases in SSG-modification compared to controls.. This approach was extended to identify potential SSG modified Cys-sites in response to H2O2, an endogenous oxidant produced by activated macrophages and many pathophysiological stimuli. The results revealed 364 Cys-sites from 265 proteins that were sensitive to S-glutathionylation in response to H2O2 treatment. These proteins covered a range of molecular types and molecular functions with free radical scavenging, and cell death and survival included as the most significantly enriched functional categories. Overall the results demonstrate that our approach is effective for site-specific identification and quantification of S-glutathionylated proteins. The analytical strategy also provides a unique approach to determining the major pathways and cell processes most susceptible to glutathionylation at a proteome-wide scale.« less

  10. Scanning electron microscope image signal-to-noise ratio monitoring for micro-nanomanipulation.

    PubMed

    Marturi, Naresh; Dembélé, Sounkalo; Piat, Nadine

    2014-01-01

    As an imaging system, scanning electron microscope (SEM) performs an important role in autonomous micro-nanomanipulation applications. When it comes to the sub micrometer range and at high scanning speeds, the images produced by the SEM are noisy and need to be evaluated or corrected beforehand. In this article, the quality of images produced by a tungsten gun SEM has been evaluated by quantifying the level of image signal-to-noise ratio (SNR). In order to determine the SNR, an efficient and online monitoring method is developed based on the nonlinear filtering using a single image. Using this method, the quality of images produced by a tungsten gun SEM is monitored at different experimental conditions. The derived results demonstrate the developed method's efficiency in SNR quantification and illustrate the imaging quality evolution in SEM. © 2014 Wiley Periodicals, Inc.

  11. The chemical foundations of nitroalkene fatty acid signaling through addition reactions with thiols.

    PubMed

    Turell, Lucía; Steglich, Martina; Alvarez, Beatriz

    2018-03-22

    Nitroalkene fatty acids can be formed in vivo and administered exogenously. They exert pleiotropic signaling actions with cytoprotective and antiinflammatory effects. The presence of the potent electron withdrawing nitro group confers electrophilicity to the adjacent β-carbon. Thiols (precisely, thiolates) are strong nucleophiles and can react with nitroalkene fatty acids through reversible Michael addition reactions. In addition, nitroalkene fatty acids can undergo several other processes including metabolic oxidation, reduction, esterification, nitric oxide release and partition into hydrophobic compartments. The signaling actions of nitroalkenes are mainly mediated by reactions with critical thiols in regulatory proteins. Thus, the thio-Michael addition reaction provides a framework for understanding the molecular basis of the biological effects of nitroalkene fatty acids at the crossroads of thiol signaling and electrophilic lipid signaling. In this review, we describe the reactions of nitroalkene fatty acids in biological contexts. We focus on the Michael addition-elimination reaction with thiols and its mechanism, and extrapolate kinetic and thermodynamic considerations to in vivo settings. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Electrophilic Triterpenoid Enones: A Comparative Thiol-Trapping and Bioactivity Study.

    PubMed

    Del Prete, Danilo; Taglialatela-Scafati, Orazio; Minassi, Alberto; Sirignano, Carmina; Cruz, Cristina; Bellido, Maria L; Muñoz, Eduardo; Appendino, Giovanni

    2017-08-25

    Bardoxolone methyl (1) is the quintessential member of triterpenoid cyanoacrylates, an emerging class of bioactive compounds capable of transient covalent binding to thiols. The mechanistic basis for this unusual "pulsed reactivity" profile and the mode of its biological translation are unknown. To provide clues on these issues, a series of Δ 1 -dehydrooleanolates bearing an electron-withdrawing group at C-2 (7a-m) were prepared from oleanolic acid (3a) and comparatively investigated in terms of reactivity with thiols and bioactivity against a series of electrophile-sensitive transcription factors (Nrf2, NF-κB, STAT3). The emerging picture suggests that the triterpenoid scaffold sharply decreases the reactivity of the enone system by steric encumbrance and that only strongly electrophilic and sterically undemanding substituents such as a cyanide or a carboxylate group can re-establish Michael reactivity, albeit in a transient way for the cyanide group. In general, a substantial dissection between the thiol-trapping ability and the modulation of biological end-points sensitive to thiol alkylation was observed, highlighting the role of shape complementarity for the activity of triterpenoid thia-Michael acceptors.

  13. Development of ionic gels using thiol-based monomers in ionic liquid

    NASA Astrophysics Data System (ADS)

    Ahmed, Kumkum; Naga, Naofumi; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    Ionic gels (IGs) using ionic liquids (ILs) can propose diverse applications in the field of optics, sensors and separation have opened wide prospects in materials science. ILs have attracted remarkable interest for gel polymer electrolytes and batteries based on their useful properties such as non-volatility, non-flammability, a wide electrochemical window, high thermal stability and a high ionic conductivity. The formation of gel in IL media makes it possible to immobilize ILs within organic or inorganic matrices and to take advantage of their unique properties in the solid state, thus eliminating some shortcomings related to shaping and risk of leakage. In this work for the first time we used multifunctional thiol monomers having uniform structure and good compatibility with the IL of our interest. Therefore we focused on developing thiol monomer-based IGs using multifunctional thiol monomers and acrylate crosslinkers utilizing thiol-ene reaction between monomer and crosslinking molecules in an IL medium and characterize their physico-chemical properties like thermal, conductive, mechanical properties etc.. This work has been focused mainly to improve the mechanical strength of IGs and make prospects of IGs in tribology and lubricants.

  14. Acid-Activatable Michael-Type Fluorescent Probes for Thiols and for Labeling Lysosomes in Live Cells.

    PubMed

    Dai, Chun-Guang; Du, Xiao-Jiao; Song, Qin-Hua

    2015-12-18

    A Michael addition is usually taken as a base-catalyzed reaction. Most fluorescent probes have been designed to detect thiols in slightly alkaline solutions (pH 7-9). The sensing reactions of almost all Michael-type fluorescent probes for thiols are faster in a high pH solution than in a low pH solution. In this work, we synthesized a series of 7-substituted 2-(quinolin-2-ylmethylene)malonic acids (QMAs, substituents: NEt2, OH, H, Cl, or NO2) and their ethyl esters (QMEs) as Michael-type fluorescent probes for thiols. The sensing reactions of QMAs and QMEs occur in distinct pH ranges, pH < 7 for QMAs and pH > 7 for QMEs. On the basis of experimental and theoretic studies, we have clarified the distinct pH effects on the sensing reactivity between QMAs and QMEs and demonstrated that two QMAs (NEt2, OH) are highly sensitive and selective fluorescent probes for thiols in acidic solutions (pH < 7) and promising dyes that can label lysosomes in live cells.

  15. A novel route for the removal of bodily heavy metal lead (II)

    NASA Astrophysics Data System (ADS)

    Huang, Weirong; Zhang, Penghua; Xu, Hui; Chang, Shengli; He, Yongju; Wang, Fei; Liang, Gaowei

    2015-09-01

    The lead ion concentration in bile is considerably higher than in blood, and bile is released into the alimentary tract. Thiol-modified SBA-15 administered orally can combine with lead ions in the alimentary tract. In this paper, the in vitro lead absorption of bile was investigated. This thiol-modified SBA-15 material was used in pharmacodynamics studies on rabbits. The result that the lead content in faeces was notably higher indicates that thiol-modified SBA-15 can efficiently remove lead. The mechanism could include the following: thiol-modified SBA-15 material cuts off the heavy metal lead recirculation in the process of bile enterohepatic circulation by chelating the lead in the alimentary tract, causing a certain proportion of lead to be removed by the thiol mesoporous material, and the lead is subsequently egested out of the body in faeces. The results indicate that this material might be a potential non-injection material for the removal bodily heavy metal lead in the alimentary tract. This material may also be a useful means of lead removal, especially for non-acute sub-poisoning symptoms.

  16. Topography of Escherichia coli ribosomal proteins. The order of reactivity of thiol groups*

    PubMed Central

    Bakardjieva, Anastasia; Crichton, Robert R.

    1974-01-01

    1. 30S and 50S ribosomal subunits of Escherichia coli were treated with N-[2,3-14C]-ethylmaleimide and iodo[14C]acetamide. 2. The proteins in the native subunits which reacted with the reagents were S1,‡ S2, S12, S13, S18, S21, L2, L5, L6, L10, L11, L15, L17, L20, L26+28 and L27. 3. Several proteins, such as S1, S12, S14, S18, L2, L6, L10, L11 and either L26 or 28, had thiol groups in an oxidized form and reacted to a greater extent after reduction with β-mercaptoethanol or dithiothreitol. 4. The total number of thiol groups in 30S and 50S subunits was determined as 16–17 and 26–27 respectively. The total number of thiol groups in each ribosomal protein was also determined. 5. The reaction of 30S and 50S subunits with iodoacetamide under several different conditions established the order of reactivity of thiol groups. PMID:4618476

  17. Is early cord clamping, delayed cord clamping or cord milking best?

    PubMed

    Vatansever, Binay; Demirel, Gamze; Ciler Eren, Elif; Erel, Ozcan; Neselioglu, Salim; Karavar, Hande Nur; Gundogdu, Semra; Ulfer, Gozde; Bahadir, Selcen; Tastekin, Ayhan

    2018-04-01

    To compare the antioxidant status of three cord clamping procedures (early clamping, delayed clamping and milking) by analyzing the thiol-disulfide balance. This randomized controlled study enrolled 189 term infants who were divided into three groups according to the cord clamping procedure: early clamping, delayed clamping and milking. Blood samples were collected from the umbilical arteries immediately after clamping, and the thiol/disulfide homeostasis was analyzed. The native and total thiol levels were significantly (p < .05) lower in the early cord clamping group compared with the other two groups. The disulfide/total thiol ratio was significantly (p = .026) lower in the delayed cord clamping and milking groups compared with the early clamping groups. Early cord clamping causes the production of more disulfide bonds and lower thiol levels, indicating that oxidation reactions are increased in the early cord clamping procedure compared with the delayed cord clamping and milking procedures. The oxidant capacity is greater with early cord clamping than with delayed clamping or cord milking. Delayed cord clamping or milking are beneficial in neonatal care, and we suggest that they be performed routinely in all deliveries.

  18. A Search for Interstellar Monohydric Thiols

    NASA Astrophysics Data System (ADS)

    Gorai, Prasanta; Das, Ankan; Das, Amaresh; Sivaraman, Bhalamurugan; Etim, Emmanuel E.; Chakrabarti, Sandip K.

    2017-02-01

    It has been pointed out by various astronomers that a very interesting relationship exists between interstellar alcohols and the corresponding thiols (sulfur analog of alcohols) as far as the spectroscopic properties and chemical abundances are concerned. Monohydric alcohols such as methanol and ethanol are widely observed and 1-propanol was recently claimed to have been seen in Orion KL. Among the monohydric thiols, methanethiol (chemical analog of methanol) has been firmly detected in Orion KL and Sgr B2(N2) and ethanethiol (chemical analog of ethanol) has been observed in Sgr B2(N2), though the confirmation of this detection is yet to come. It is very likely that higher order thiols could be observed in these regions. In this paper, we study the formation of monohydric alcohols and their thiol analogs. Based on our quantum chemical calculation and chemical modeling, we find that the Tg conformer of 1-propanethiol is a good candidate of astronomical interest. We present various spectroscopically relevant parameters of this molecule to assist in its future detection in the interstellar medium.

  19. Development and Evaluation of Micro-Electrocorticography Arrays for Neural Interfacing Applications

    NASA Astrophysics Data System (ADS)

    Schendel, Amelia Ann

    Neural interfaces have great promise for both electrophysiological research and therapeutic applications. Whether for the study of neural circuitry or for neural prosthetic or other therapeutic applications, micro-electrocorticography (micro-ECoG) arrays have proven extremely useful as neural interfacing devices. These devices strike a balance between invasiveness and signal resolution, an important step towards eventual human application. The objective of this research was to make design improvements to micro-ECoG devices to enhance both biocompatibility and device functionality. To best evaluate the effectiveness of these improvements, a cranial window imaging method for in vivo monitoring of the longitudinal tissue response post device implant was developed. Employment of this method provided valuable insight into the way tissue grows around micro-ECoG arrays after epidural implantation, spurring a study of the effects of substrate geometry on the meningeal tissue response. The results of the substrate footprint comparison suggest that a more open substrate geometry provides an easy path for the tissue to grow around to the top side of the device, whereas a solid device substrate encourages the tissue to thicken beneath the device, between the electrode sites and the brain. The formation of thick scar tissue between the recording electrode sites and the neural tissue is disadvantageous for long-term recorded signal quality, and thus future micro-ECoG device designs should incorporate open-architecture substrates for enhanced longitudinal in vivo function. In addition to investigating improvements for long-term device reliability, it was also desired to enhance the functionality of micro-ECoG devices for neural electrophysiology research applications. To achieve this goal, a completely transparent graphene-based device was fabricated for use with the cranial window imaging method and optogenetic techniques. The use of graphene as the conductive material provided the transparency necessary to image tissues directly below the micro-ECoG electrode sites, and to transmit light through the electrode sites to underlying neural tissue, for optical stimulation of neural cells. The flexibility and broad-spectrum transparency of graphene make it an ideal choice for thin-film, flexible electronic devices.

  20. Nanostructured disposable impedimetric sensors as tools for specific biomolecular interactions: sensitive recognition of concanavalin A.

    PubMed

    Loaiza, Oscar A; Lamas-Ardisana, Pedro J; Jubete, Elena; Ochoteco, Estibalitz; Loinaz, Iraida; Cabañero, Germán; García, Isabel; Penadés, Soledad

    2011-04-15

    The development of sensors to detect specific weak biological interactions is still today a challenging topic. Characteristics of carbohydrate-protein (lectin) interactions include high specificity and low affinity. This work describes the development of nanostructured impedimetric sensors for the detection of concanavalin A (Con A) binding to immobilized thiolated carbohydrate derivatives (D-mannose or D-glucose) onto screen-printed carbon electrodes (SPCEs) modified with gold nanoparticles. Thiolated D-galactose derivative was employed as negative control to evaluate the selectivity of the proposed methodology. After binding the thiolated carbohydrate to the nanostructured SPCEs, different functionalized thiols were employed to form mixed self-assembled monolayers (SAM). Electrochemical impedance spectroscopy (EIS) was employed as a technique to evaluate the binding of Con A to selected carbohydrates through the increase of electron transfer resistance of the ferri/ferrocyanide redox probe at the differently SAM modified electrodes. Different variables of the assay protocol were studied in order to optimize the sensor performance. Selective Con A determinations were only achieved by the formation of mixed SAMs with adequate functionalized thiols. Important differences were obtained depending on the chain lengths and functional groups of these thiols. For the 3-mercapto-1-propanesulfonate mixed SAMs, the electron transfer resistance varied linearly with the Con A concentration in the 2.2-40.0 μg mL(-1) range for D-mannose and D-glucose modified sensors. Low detection limits (0.099 and 0.078 pmol) and good reproducibility (6.9 and 6.1%, n=10) were obtained for the D-glucose and D-mannose modified sensors, respectively, without any amplification strategy. © 2011 American Chemical Society

Top