NASA Astrophysics Data System (ADS)
Lin, Yan-Cheng; Chou, Wu-Ching; Susha, Andrei S.; Kershaw, Stephen V.; Rogach, Andrey L.
2013-03-01
The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NC powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.
Water-soluble CdTe nanocrystals under high pressure
NASA Astrophysics Data System (ADS)
Lin, Yan-Cheng
2015-02-01
The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NCs powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.
Tekdaş, Duygu Aydın; Durmuş, Mahmut; Yanık, Hülya; Ahsen, Vefa
2012-07-01
Thiol stabilized CdTe quantum dot (QD) nanoparticles were synthesized in aqueous phase and were used as energy donors to tetra-triethyleneoxythia substituted aluminum, gallium and indium phthalocyanines through fluorescence resonance energy transfer (FRET). Energy transfer occurred from the QDs to phthalocyanines upon photoexcitation of the QDs. An enhancement in efficiency of energy transfer with the nature of the carboxylic thiol stabilizer on the QDs was observed. As a result of the nanoparticle and the phthalocyanine mixing, the photoluminescence efficiency of the phthalocyanine moieties in the mixtures does not strictly follow the quantum yields of the bare phthalocyanines. The photochemistry study of phthalocyanines in the presence of the QDs revealed high singlet oxygen quantum yield, hence the possibility of using QDs in combination with phthalocyanines as photosensitizers in photodynamic therapy of cancer. The fluorescence of the CdTe quantum dots-phthalocyanine conjugates (QDs-Pc) were effectively quenched by addition of 1,4-benzoquinone. Copyright © 2012 Elsevier B.V. All rights reserved.
Hydrothermal synthesis of thiol-capped CdTe nanoparticles and their optical properties.
Bu, Hang-Beom; Kikunaga, Hayato; Shimura, Kunio; Takahasi, Kohji; Taniguchi, Taichi; Kim, DaeGwi
2013-02-28
Water soluble nanoparticles (NPs) with a high emission property were synthesized via hydrothermal routes. In this report, we chose thiol ligand N-acetyl-L-cysteine as the ideal stabilizer and have successfully employed it to synthesize readily size-controllable CdTe NPs in a reaction of only one step. Hydrothermal synthesis of CdTe NPs has been carried out in neutral or basic conditions so far. We found out that the pH value of precursor solutions plays an important role in the uniformity of the particle size. Actually, high quality CdTe NPs were synthesized under mild acidic conditions of pH 5. The resultant NPs indicated good visible light-emitting properties and stability. Further, the experimental results showed that the reaction temperature influenced significantly the growth rate and the maximum size of the NPs. The CdTe NPs with a high photoluminescence quantum yield (the highest value: 57%) and narrower half width at half maximum (the narrowest value: 33 nm) were attained in very short time, within 40 minutes, reaching diameters of 2.3 to 4.3 nm. The PL intensity was increased with an increase in the reaction time, reflecting the suppression of nonradiative recombination processes. Furthermore, the formation of CdTe/CdS core-shell structures was discussed from the viewpoint of PL dynamics and X-ray diffraction studies.
NASA Astrophysics Data System (ADS)
Jocelin, G.; Arivarasan, A.; Ganesan, M.; Prasad, N. Rajendra; Sasikala, G.
2016-04-01
Quantum dots (QDs) are gaining widespread recognition for its luminescence behavior and unique photo physical properties as a bio-marker and inorganic fluorophore. In spite of such rampant advantages, its application is clinically hampered depending on the surface coating decreasing its luminescence efficiency. The present study reports preparation of CdTe QDs capped with biologically active thiol based material, mercaptosuccinic acid (MSA) for diagnosis of oral cancer (KB) cells by acting as a fluorophore marking targeted tumor cells and at the same time exhibiting certain cytotoxic effects. Synthesized MSA coated CdTe QDs is spherical in shape with an average particle size of 3-5nm. In vitro, the rapid uptake of MSA CdTe QDs in oral cancer cell lines were assessed through fluorescence microscopy. Further, this study evaluates the therapeutic efficiency of MSA CdTe QDs in human oral cancer cell lines using MTT analysis. MSA CdTe QDs exhibit significant cytotoxicity in oral cancer cells in a dose dependent manner with low IC50 when compared with other raw CdTe QDs. MSA CdTe QDs were also treated with human lymphocytes (normal cells) to assess and compare the toxicity profile of QDs in normal and oral tumors. The results of our present study strengthen our hypothesis of using MSA CdTe QDs as detector for tracking and fluorescence imaging of oral cancer cells and exhibiting sufficient cytotoxicity in them.
Kotresh, M G; Inamdar, L S; Shivkumar, M A; Adarsh, K S; Jagatap, B N; Mulimani, B G; Advirao, G M; Inamdar, S R
2017-06-01
In this paper, a systematic investigation of the interaction of bovine serum albumin (BSA) with water-soluble CdTe quantum dots (QDs) of two different sizes capped with carboxylic thiols is presented based on steady-state and time-resolved fluorescence measurements. Efficient Förster resonance energy transfer (FRET) was observed to occur from BSA donor to CdTe acceptor as noted from reduction in the fluorescence of BSA and enhanced fluorescence from CdTe QDs. FRET parameters such as Förster distance, spectral overlap integral, FRET rate constant and efficiency were determined. The quenching of BSA fluorescence in aqueous solution observed in the presence of CdTe QDs infers that fluorescence resonance energy transfer is primarily responsible for the quenching phenomenon. Bimolecular quenching constant (k q ) determined at different temperatures and the time-resolved fluorescence data provide additional evidence for this. The binding stoichiometry and various thermodynamic parameters are evaluated by using the van 't Hoff equation. The analysis of the results suggests that the interaction between BSA and CdTe QDs is entropy driven and hydrophobic forces play a key role in the interaction. Binding of QDs significantly shortened the fluorescence lifetime of BSA which is one of the hallmarks of FRET. The effect of size of the QDs on the FRET parameters are discussed in the light of FRET parameters obtained. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Ayyaswamy, Arivarasan; Ganapathy, Sasikala; Alsalme, Ali; Alghamdi, Abdulaziz; Ramasamy, Jayavel
2015-12-01
Zinc and sulfur alloyed CdTe quantum dots (QDs) sensitized TiO2 photoelectrodes have been fabricated for quantum dots sensitized solar cells. Alloyed CdTe QDs were prepared in aqueous phase using mercaptosuccinic acid (MSA) as a capping agent. The influence of co-doping on the structural property of CdTe QDs was studied by XRD analysis. The enhanced optical absorption of alloyed CdTe QDs was studied using UV-vis absorption and fluorescence emission spectra. The capping of MSA molecules over CdTe QDs was confirmed by the FTIR and XPS analyses. Thermogravimetric analysis confirms that the prepared QDs were thermally stable up to 600 °C. The photovoltaic performance of alloyed CdTe QDs sensitized TiO2 photoelectrodes were studied using J-V characteristics under the illumination of light with 1 Sun intensity. These results show the highest photo conversion efficiency of η = 1.21%-5% Zn & S alloyed CdTe QDs.
NASA Astrophysics Data System (ADS)
Labeb, Mohmed; Sakr, Abdel-Hamed; Soliman, Moataz; Abdel-Fettah, Tarek M.; Ebrahim, Shaker
2018-05-01
Cadmium telluride (CdTe) quantum dots (QDs) were prepared from an aqueous solution containing CdCl2 and Te precursor in the presence of thioglycolic acid (TGA) or L-cysteine as capping agents. Two optical sensors have been developed for Hg2+ ions with very low concentration in the range of nanomolar (nM) or picomolar (pM) depending on the type of capping agents and based on photoluminescence (PL) quenching of CdTe QDs. It was observed that low concentrations of Hg2+ ions quench the fluorescence spectra of CdTe QDs and TGA capped CdTe QDs exhibited a linear response to Hg2+ ions in the concentration range from 1.25 to 10 nM. Moreover, it was found that L-cysteine capped CdTe QDs optical sensor with a sensitivity of 6 × 109 M-1, exhibited a linear coefficient of 0.99 and showed a detection limit of 2.7 pM in range from 5 to 25 pM of Hg2+ ions was achieved. In contrast to the significant response that was observed for Hg2+, a weak signal response was noted upon the addition of other metal ions indicating an excellent selectivity of CdTe QDs towards Hg2+.
Fluorescence Determination of Warfarin Using TGA-capped CdTe Quantum Dots in Human Plasma Samples.
Dehbozorgi, A; Tashkhourian, J; Zare, S
2015-11-01
In this study, some effort has been performed to provide low temperature, less time consuming and facile routes for the synthesis of CdTe quantum dots using ultrasound and water soluble capping agent thioglycolic acid. TGA-capped CdTe quantum dots were characterized through x-ray diffraction, transmission electron microscopy, Fourier transform infrared, ultraviolet-visible and fluorescence spectroscopy. The prepared quantum dots were used for warfarin determination based on the quenching of the fluorescence intensity in aqueous solution. Under the optimized conditions, the linear range of quantum dots fluorescence intensity versus the concentration of warfarin was 0.1-160.0 μM, with the correlation coefficient of 0.9996 and a limit of detection of 77.5 nM. There was no interference to coexisting foreign substances. The selectivity of the sensor was also tested and the results show that the developed method possesses a high selectivity for warfarin.
Glutathione-capped CdTe nanocrystals as probe for the determination of fenbendazole
NASA Astrophysics Data System (ADS)
Li, Qin; Tan, Xuanping; Li, Jin; Pan, Li; Liu, Xiaorong
2015-04-01
Water-soluble glutathione (GSH)-capped CdTe quantum dots (QDs) were synthesized. In pH 7.1 PBS buffer solution, the interaction between GSH-capped CdTe QDs and fenbendazole (FBZ) was investigated by spectroscopic methods, including fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, and resonance Rayleigh scattering (RRS) spectroscopy. In GSH-capped CdTe QDs solution, the addition of FBZ results in the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs. And the quenching intensity (enhanced RRS intensity) was proportional to the concentration of FBZ in a certain range. Investigation of the interaction mechanism, proved that the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs by FBZ is the result of electrostatic attraction. Based on the quenching of fluorescence (enhancement of RRS) of GSH-capped CdTe QDs by FBZ, a novel, simple, rapid and specific method for FBZ determination was proposed. The detection limit for FBZ was 42 ng mL-1 (3.4 ng mL-1) and the quantitative determination range was 0-2.8 μg mL-1 with a correlation of 0.9985 (0.9979). The method has been applied to detect FBZ in real simples and with satisfactory results.
Amjadi, Mohammad; Jalili, Roghayeh; Manzoori, Jamshid L
2016-05-01
A novel fluorescent nanosensor using molecularly imprinted silica nanospheres embedded CdTe quantum dots (CdTe@SiO2 @MIP) was developed for detection and quantification of chloramphenicol (CAP). The imprinted sensor was prepared by synthesis of molecularly imprinting polymer (MIP) on the hydrophilic CdTe quantum dots via reverse microemulsion method using small amounts of solvents. The resulting CdTe@SiO2 @MIP nanoparticles were characterized by fluorescence, UV-vis absorption and FT-IR spectroscopy and transmission electron microscopy. They preserved 48% of fluorescence quantum yield of the parent quantum dots. CAP remarkably quenched the fluorescence of prepared CdTe@SiO2 @MIP, probably via electron transfer mechanism. Under the optimal conditions, the relative fluorescence intensity of CdTe@SiO2 @MIP decreased with increasing CAP by a Stern-Volmer type equation in the concentration range of 40-500 µg L(-1). The corresponding detection limit was 5.0 µg L(-1). The intra-day and inter-day values for the precision of the proposed method were all <4%. The developed sensor had a good selectivity and was applied to determine CAP in spiked human and bovine serum and milk samples with satisfactory results. Copyright © 2015 John Wiley & Sons, Ltd.
Glutathione-capped CdTe nanocrystals as probe for the determination of fenbendazole.
Li, Qin; Tan, Xuanping; Li, Jin; Pan, Li; Liu, Xiaorong
2015-04-15
Water-soluble glutathione (GSH)-capped CdTe quantum dots (QDs) were synthesized. In pH 7.1 PBS buffer solution, the interaction between GSH-capped CdTe QDs and fenbendazole (FBZ) was investigated by spectroscopic methods, including fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, and resonance Rayleigh scattering (RRS) spectroscopy. In GSH-capped CdTe QDs solution, the addition of FBZ results in the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs. And the quenching intensity (enhanced RRS intensity) was proportional to the concentration of FBZ in a certain range. Investigation of the interaction mechanism, proved that the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs by FBZ is the result of electrostatic attraction. Based on the quenching of fluorescence (enhancement of RRS) of GSH-capped CdTe QDs by FBZ, a novel, simple, rapid and specific method for FBZ determination was proposed. The detection limit for FBZ was 42 ng mL(-1) (3.4 ng mL(-1)) and the quantitative determination range was 0-2.8 μg mL(-1) with a correlation of 0.9985 (0.9979). The method has been applied to detect FBZ in real simples and with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.
Photo-induced interaction of thioglycolic acid (TGA)-capped CdTe quantum dots with cyanine dyes
NASA Astrophysics Data System (ADS)
Abdelbar, Mostafa F.; Fayed, Tarek A.; Meaz, Talaat M.; Ebeid, El-Zeiny M.
2016-11-01
The photo-induced interaction of three different sizes of thioglycolic acid (TGA)-capped CdTe quantum dots (CdTe QDs) with two monomethine cyanine dyes belonging to the thiazole orange (TO) family has been studied. Positively charged cyanines interact with QDs surface which is negatively charged due to capping agent carboxylate ions. The energy transfer parameters including Stern-Volmer constant, Ksv, number of binding sites, n, quenching sphere radius, r, the critical energy transfer distance, R0, and energy transfer efficiencies, E have been calculated. The effect of structure and the number of aggregating molecules have been studied as a function of CdTe QDs particle size. Combining organic and inorganic semiconductors leads to increase of the effective absorption cross section of the QDs which can be utilized in novel nanoscale designs for light-emitting, photovoltaic and sensor applications. A synthesized triplet emission of the studied dyes was observed using CdTe QDs as donors and this is expected to play a potential role in molecular oxygen sensitization and in photodynamic therapy (PDT) applications.
NASA Astrophysics Data System (ADS)
Guo, Yuan; Zeng, Xiaoqing; Yuan, Haiyan; Huang, Yunmei; Zhao, Yanmei; Wu, Huan; Yang, Jidong
2017-08-01
In this study, a novel method for chiral recognition of phenylglycinol (PG) enantiomers was proposed. Firstly, water-soluble N-acetyl-L-cysteine (NALC)-capped CdTe quantum dots (QDs) were synthesized and experiment showed that the fluorescence intensity of the reaction system slightly enhancement when added PG enantiomers to NALC-capped CdTe quantum dots (QDs), but the R-PG and S-PG could not be distinguished. Secondly, when there was Ag+ presence in the reaction system, the experiment result was extremely interesting, the PG enantiomers cloud make NALC-capped CdTe QDs produce different fluorescence signal, in which the fluorescence of S-PG + Ag+ + NALC-CdTe system was significantly enhanced, and the fluorescence of R-PG + Ag+ + NALC-CdTe system was markedly decreased. Thirdly, all the enhanced and decreased of the fluorescence intensity were directly proportional to the concentration of R-PG and S-PG in the linearly range 10- 5-10- 7 mol·L- 1, respectively. So, the new method for simultaneous determination of the PG enantiomers was built too. The experiment result of the method was satisfactory with the detection limit of PG can reached 10- 7 mol·L- 1 and the related coefficient of S-PG and R-PG are 0.995 and 0.980, respectively. The method was highly sensitive, selective and had wider detection range compared with other methods.
NASA Astrophysics Data System (ADS)
Wu, Tianshu; He, Keyu; Zhan, Qinglin; Ang, Shengjun; Ying, Jiali; Zhang, Shihan; Zhang, Ting; Xue, Yuying; Tang, Meng
2015-12-01
As quantum dots (QDs) are widely used in biomedical applications, the number of studies focusing on their biological properties is increasing. While several studies have attempted to evaluate the toxicity of QDs towards neural cells, the in vivo toxic effects on the nervous system and the molecular mechanisms are unclear. The aim of the present study was to investigate the neurotoxic effects and the underlying mechanisms of water-soluble cadmium telluride (CdTe) QDs capped with 3-mercaptopropionic acid (MPA) in Caenorhabditis elegans (C. elegans). Our results showed that exposure to MPA-capped CdTe QDs induced behavioral defects, including alterations to body bending, head thrashing, pharyngeal pumping and defecation intervals, as well as impaired learning and memory behavior plasticity, based on chemotaxis or thermotaxis, in a dose-, time- and size-dependent manner. Further investigations suggested that MPA-capped CdTe QDs exposure inhibited the transporters and receptors of glutamate, serotonin and dopamine in C. elegans at the genetic level within 24 h, while opposite results were observed after 72 h. Additionally, excessive reactive oxygen species (ROS) generation was observed in the CdTe QD-treated worms, which confirmed the common nanotoxicity mechanism of oxidative stress damage, and might overcome the increased gene expression of neurotransmitter transporters and receptors in C. elegans induced by long-term QD exposure, resulting in more severe behavioral impairments.
NASA Astrophysics Data System (ADS)
Kaviyarasan, Kulandaivelu; Anandan, Sambandam; Mangalaraja, Ramalinga Viswanathan; Asiri, Abdullah M.; Wu, Jerry J.
2016-08-01
Mercaptosuccinic acid capped Cadmium telluride quantum dots have been successfully synthesized via aqueous phase method. The products were well characterized by a number of analytical techniques, including FT-IR, XRD, HRTEM, and a corrected particle size analysis by the statistical treatment of several AFM measurements. Chemiluminescence experiments were performed to explore the resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and acceptor CdTe QDs. The combination of such donor and acceptor dramatically reduce the fluorescence while compared to pristine CdTe QDs without any exciting light source, which is due to the occurrence of chemiluminescence resonance energy transfer (CRET) processes.
Red Light-Emitting Diode Based on Blue InGaN Chip with CdTe x S(1 - x) Quantum Dots
NASA Astrophysics Data System (ADS)
Wang, Rongfang; Wei, Xingming; Qin, Liqin; Luo, Zhihui; Liang, Chunjie; Tan, Guohang
2017-01-01
Thioglycolic acid-capped CdTe x S(1 - x) quantum dots (QDs) were synthesized through a one-step approach in an aqueous medium. The CdTe x S(1 - x) QDs played the role of a color conversion center. The structural and luminescent properties of the obtained CdTe x S(1 - x) QDs were investigated. The fabricated red light-emitting hybrid device with the CdTe x S(1 - x) QDs as the phosphor and a blue InGaN chip as the excitation source showed a good luminance. The Commission Internationale de L'Eclairage coordinates of the light-emitting diode (LED) at (0.66, 0.29) demonstrated a red LED. Results showed that CdTe x S(1 - x) QDs can be excited by blue or near-UV regions. This feature presents CdTe x S(1 - x) QDs with an advantage over wavelength converters for LEDs.
Synthesis and characterization of surface-modified colloidal CdTe Quantum Dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajh, T.; Micic, O.I.; Nozik, A.J.
1993-11-18
The controlled synthesis of quantized colloidal CdTe nanocrystals (in aqueous solutions) with narrow size distributions and stabilized against rapid oxidation was achieved by capping the quantum dot particles with 3-mercapto-1,2-propanediol. Nanocrystals (i.e., quantum dots) with mean diameters of 20, 25, 35, and 40 A were produced. Optical absorption spectra showed strong excitonic peaks at the smallest size; the absorption coefficient was shown to follow an inverse cube dependence on particle diameter, while the extinction coefficient per particle remained constant. The quantum yield for photoluminescence increased with decreasing particle size and reached 20% at 20 A. The valence band edges ofmore » the CdTe quantum dots were determined by pulse radiolysis experiments (hole injection from oxidizing radicals); the bandgaps were estimated from pulse radiolysis data (redox potentials of hole and electron injecting radicals) and from the optical spectra. The dependence of the CdTe bandgap on quantum dot size was found to be much weaker than predicted by the effective mass approximation; this result is consistent with recently published theoretical calculations by several groups. 36 refs., 5 figs., 1 tab.« less
O'Hara, Tony; Seddon, Brian; O'Connor, Andrew; McClean, Siobhán; Singh, Baljit; Iwuoha, Emmanuel; Fuku, Xolile; Dempsey, Eithne
2017-01-27
Recent studies have suggested that certain nanomaterials can interfere with optically based cytotoxicity assays resulting in underestimations of nanomaterial toxicity. As a result there has been growing interest in the use of whole cell electrochemical biosensors for nanotoxicity applications. Herein we report application of an electrochemical cytotoxicity assay developed in house (TOXOR) in the evaluation of toxic effects of mercaptosuccinic acid capped cadmium telluride quantum dots (MSA capped CdTe QDs), toward mammalian cells. MSA capped CdTe QDs were synthesized, characterized, and their cytotoxicity toward A549 human lung epithelial cells investigated. The internalization of QDs within cells was scrutinized via confocal microscopy. The cytotoxicity assay is based on the measurement of changes in cellular enzyme acid phosphatase upon 24 h exposure to QDs. Acid phosphatase catalyzes dephosphorylation of 2-naphthyl phosphate to 2-naphthol (determined by chronocoulometry) and is indicative of metabolic activity in cells. The 24 h IC50 (concentration resulting in 50% reduction in acid phosphatase activity) value for MSA capped CdTe QDs was found to be 118 ± 49 μg/mL using the TOXOR assay and was in agreement with the MTT assay (157 ± 31 μg/mL). Potential uses of this electrochemical assay include the screening of nanomaterials, environmental toxins, in addition to applications in the pharmaceutical, food, and health sectors.
Synthesis of CdSe/ZnS and CdTe/ZnS Quantum Dots: Refined Digestive Ripening
Cingarapu, Sreeram; Yang, Zhiqiang; Sorensen, Christopher M.; ...
2012-01-01
We report synthesis of CdSe and CdTe quantum dots (QDs) from the bulk CdSe and CdTe material by evaporation/co-condensation using the solvated metal atom dispersion (SMAD) technique and refined digestive ripening. The outcomes of this new process are (1) the reduction of digestive ripening time by employing ligands (trioctylphosphine oxide (TOPO) and oleylamine (OA)) as capping agent as well as digestive ripening solvent, (2) ability to tune the photoluminescence (PL) from 410 nm to 670 nm, (3) demonstrate the ability of SMAD synthesis technique for other semiconductors (CdTe), (4) direct comparison of CdSe QDs growth with CdTe QDs growth based on digestivemore » ripening times, and (5) enhanced PL quantum yield (QY) of CdSe QDs and CdTe QDs upon covering with a ZnS shell. Further, the merit of this synthesis is the use of bulk CdSe and CdTe as the starting materials, which avoids usage of toxic organometallic compounds, eliminates the hot injection procedure, and size selective precipitation processes. It also allows the possibility of scale up. These QDs were characterized by UV-vis, photoluminescence (PL), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and powder XRD.« less
SERS and integrative imaging upon internalization of quantum dots into human oral epithelial cells.
Cepeda-Pérez, Elisa; López-Luke, Tzarara; Plascencia-Villa, Germán; Perez-Mayen, Leonardo; Ceja-Fdez, Andrea; Ponce, Arturo; Vivero-Escoto, Juan; de la Rosa, Elder
2016-07-01
CdTe quantum dots (QDs) are widely used in bio-applications due to their size and highly efficient optical properties. However internalization mechanisms thereof for the variety of freshly extracted, not cultivated human cells and their specific molecular interactions remains an open topic for discussion. In this study, we assess the internalization mechanism of CdTe quantum dots (3.3 nm) capped with thioglycolic acid using non cultivated oral epithelial cells obtained from healthy donors. Naked gold nanoparticles (40 nm) were successfully used as nanosensors for surface-enhanced Raman spectroscopy to efficiently identify characteristic Raman peaks, providing new evidence indicating that the first interactions of these QDs with epithelial cells occurred preferentially with aromatic rings and amine groups of amino acid residues and glycans from trans-membrane proteins and cytoskeleton. Using an integrative combination of advanced imaging techniques, including ultra-high resolution SEM, high resolution STEM coupled with EDX spectroscopy together with the results obtained by Raman spectroscopy, it was determined that thioglycolic acid capped CdTe QDs are efficiently internalized into freshly extracted oral epithelial cells only by facilitated diffusion, distributed into cytoplasm and even within the cell nucleus in three minutes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Domain and network aggregation of CdTe quantum rods within Langmuir Blodgett monolayers
NASA Astrophysics Data System (ADS)
Zimnitsky, Dmitry; Xu, Jun; Lin, Zhiqun; Tsukruk, Vladimir V.
2008-05-01
Control over the organization of quantum rods was demonstrated by changing the surface area at the air-liquid interface by means of the Langmuir-Blodgett (LB) technique. The LB isotherm of CdTe quantum rods capped with a mixture of alkylphosphines shows a transition point in the liquid-solid state, which is caused by the inter-rod reorganization. As we observed, at low surface pressure the quantum rods are assembled into round-shaped aggregates composed of a monolayer of nanorods packed in limited-size clusters with random orientation. The increase of the surface pressure leads to the rearrangement of these aggregates into elongated bundles composed of uniformly oriented nanorod clusters. Further compression results in denser packing of nanorods aggregates and in the transformation of monolayered domains into a continuous network of locally ordered quantum rods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cingarapu, Sreeram; Yang, Zhiqiang; Sorensen, Christopher M.
We report synthesis of CdSe and CdTe quantum dots (QDs) from the bulk CdSe and CdTe material by evaporation/co-condensation using the solvated metal atom dispersion (SMAD) technique and refined digestive ripening. The outcomes of this new process are (1) the reduction of digestive ripening time by employing ligands (trioctylphosphine oxide (TOPO) and oleylamine (OA)) as capping agent as well as digestive ripening solvent, (2) ability to tune the photoluminescence (PL) from 410 nm to 670 nm, (3) demonstrate the ability of SMAD synthesis technique for other semiconductors (CdTe), (4) direct comparison of CdSe QDs growth with CdTe QDs growth based on digestivemore » ripening times, and (5) enhanced PL quantum yield (QY) of CdSe QDs and CdTe QDs upon covering with a ZnS shell. Further, the merit of this synthesis is the use of bulk CdSe and CdTe as the starting materials, which avoids usage of toxic organometallic compounds, eliminates the hot injection procedure, and size selective precipitation processes. It also allows the possibility of scale up. These QDs were characterized by UV-vis, photoluminescence (PL), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and powder XRD.« less
NASA Astrophysics Data System (ADS)
Liu, Haijian; Li, Ming; Jiang, Linye; Shen, Feng; Hu, Yufeng; Ren, Xueqin
2017-02-01
Arginine plays an important role in many biological functions, whose detection is very significant. Herein, a sensitive, simple and cost-effective fluorescent method for the detection of arginine has been developed based on the inner filter effect (IFE) of citrate-stabilized gold nanoparticles (AuNPs) on the fluorescence of thioglycolic acid-capped CdTe quantum dots (QDs). When citrate-stabilized AuNPs were mixed with thioglycolic acid-capped CdTe QDs, the fluorescence of CdTe QDs was significantly quenched by AuNPs via the IFE. With the presence of arginine, arginine could induce the aggregation and corresponding absorption spectra change of AuNPs, which then IFE-decreased fluorescence could gradually recover with increasing amounts of arginine, achieving fluorescence ;turn on; sensing for arginine. The detection mechanism is clearly illustrated and various experimental conditions were also optimized. Under the optimum conditions, a decent linear relationship was obtained in the range from 16 to 121 μg L- 1 and the limit of detection was 5.6 μg L- 1. And satisfactory results were achieved in arginine analysis using arginine injection, compound amino acid injection, even blood plasma as samples. Therefore, the present assay showed various merits, such as simplicity, low cost, high sensitivity and selectivity, making it promising for sensing arginine in biological samples.
High luminescent L-cysteine capped CdTe quantum dots prepared at different reaction times
NASA Astrophysics Data System (ADS)
Kiprotich, Sharon; Onani, Martin O.; Dejene, Francis B.
2018-04-01
This paper reports a facile synthesis route of high luminescent L-cysteine capped CdTe quantum dots (QDs). The effect of reaction time on the growth mechanism, optical and physical properties of the CdTe QDs was investigated in order to find the suitability of them towards optical and medical applications. The representative high-resolution transmission microscopy (HRTEM) analysis showed that the as-obtained CdTe QDs appeared as spherical particles with excellent monodispersity. The images exhibited clear lattice fringes which are indicative of good crystallinity. The X-ray diffraction (XRD) pattern displayed polycrystalline nature of the QDs which correspond well to zinc blende phase of bulk CdTe. The crystallite sizes calculated from the Scherrer equation were less than 10 nm for different reaction times which were in close agreement with the values estimated from HRTEM. An increase in reaction time improved crystallinity of the sample as explained by highest peak intensity of the XRD supported by the photoluminescence emission spectra which showed high intensity at a longer growth time. It was observed that for prolonged growth time the emission bands were red shifted from about 517-557 nm for 5-180 min of reaction time due to increase in particle sizes. Ultraviolet and visible analysis displayed well-resolved absorption bands which were red shifted upon an increase in reaction time. There was an inverse relation between the band gap and reaction time. Optical band gap decreases from 3.98 to 2.59 eV with the increase in reaction time from 15 to 180 min.
NASA Astrophysics Data System (ADS)
Cao, Ming; Liu, Meigui; Cao, Chun; Xia, Yunsheng; Bao, Linjun; Jin, Yingqiong; Yang, Song; Zhu, Changqing
2010-03-01
A novel method for the determination of berberine has been developed based on quenching of the fluorescence of thioglycolic acid-capped CdTe quantum dots (TGA-CdTe QDs) by berberine in aqueous solutions. Under optimum conditions, the relative fluorescence intensity was linearly proportional to the concentration of berberine between 2.5 × 10 -8 and 8.0 × 10 -6 mol L -1 with a detection limit of 6.0 × 10 -9 mol L -1. The method has been applied to the determination of berberine in real samples, and satisfactory results were obtained. The mechanism of the proposed reaction was also discussed.
A novel fluorescent assay for edaravone with aqueous functional CdSe quantum dots
NASA Astrophysics Data System (ADS)
Liao, Ping; Yan, Zheng-Yu; Xu, Zhi-Ji; Sun, Xiao
2009-06-01
Aqueous thiol-capped CdSe QDs with a narrow, symmetric emission were prepared under a low temperature. Based on the fluorescence enhancement of thiol-stabilized CdSe quantum dots (QDs) caused by edaravone, a simple, rapid and specific quantitative method was proposed to the edaravone determination. The concentration dependence of fluorescence intensity followed the binding of edaravone to surface of the thiol-capped CdSe QDs was effectively described by a modified Langmuir-type binding isotherm. Factors affecting the fluorescence detection for edaravone with thiol-stabilized CdSe QDs were studied, such as the effect of pH, reaction time, the concentration of CdSe QDs and so on. Under the optimal conditions, the calibration plot of C/( I - I0) with concentration of edaravone was linear in the range of (1.45-17.42) μg/mL (0.008-0.1 μmol/L) with correlation coefficient of 0.998. The limit of detection (LOD) (3 σ/ κ) was 0.15 μg/mL (0.0009 μmol/mL). Possible interaction mechanism was discussed.
Boehme, Simon C; Walvis, T Ardaan; Infante, Ivan; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Houtepen, Arjan J
2014-07-22
Understanding and controlling charge transfer between different kinds of colloidal quantum dots (QDs) is important for devices such as light-emitting diodes and solar cells and for thermoelectric applications. Here we study photoinduced electron transfer between CdTe and CdSe QDs in a QD film. We find that very efficient electron trapping in CdTe QDs obstructs electron transfer to CdSe QDs under most conditions. Only the use of thiol ligands results in somewhat slower electron trapping; in this case the competition between trapping and electron transfer results in a small fraction of electrons being transferred to CdSe. However, we demonstrate that electron trapping can be controlled and even avoided altogether by using the unique combination of electrochemistry and transient absorption spectroscopy. When the Fermi level is raised electrochemically, traps are filled with electrons and electron transfer from CdTe to CdSe QDs occurs with unity efficiency. These results show the great importance of knowing and controlling the Fermi level in QD films and open up the possibility of studying the density of trap states in QD films as well as the systematic investigation of the intrinsic electron transfer rates in donor-acceptor films.
Dutta, Priyanka; Saikia, Dilip; Adhikary, Nirab Chandra; Sarma, Neelotpal Sen
2015-11-11
This work reports the development of highly fluorescent materials for the selective and efficient detection of picric acid explosive in the nanomolar range by fluorescence quenching phenomenon. Poly(vinyl alcohol) grafted polyaniline (PPA) and its nanocomposites with 2-mercaptosuccinic acid (MSA)-capped CdTe quantum dots (PPA-Q) and with MSA-capped CdTe/ZnS core/shell quantum dots (PPA-CSQ) are synthesized in a single step free radical polymerization reaction. The thermal stability and photo stability of the polymer increases in the order of PPA < PPA-Q < PPA-CSQ. The polymers show remarkably high selectivity and efficient sensitivity toward picric acid, and the quenching efficiency for PPA-CSQ reaches up to 99%. The detection limits of PPA, PPA-Q, and PPA-CSQ for picric acid are found to be 23, 1.6, and 0.65 nM, respectively, which are remarkably low. The mechanism operating in the quenching phenomenon is proposed to be a combination of a strong inner filter effect and ground state electrostatic interaction between the polymers and picric acid. A portable and cost-effective electronic device for the visual detection of picric acid by the sensory system is successfully fabricated. The device is further employed for quantitative detection of picric acid in real water samples.
Abdelhamid, Hani Nasser; Chen, Zhen-Yu; Wu, Hui-Fen
2017-08-01
In most applications of quantum dots (QDs) for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS), one side of QDs is supported by a solid substrate (stainless - steel plate), whereas the other side is in contact with the target analytes. Therefore, the surface capping agent of QDs is a key parameter for laser desorption/ionization mass spectrometry (LDI-MS). Cadmium telluride quantum dots (CdTe QDs) modified with different capping agents are synthesized, characterized, and applied for surface tuning laser desorption/ionization mass spectrometry (STLDI-MS). Data shows that CdTe quantum dot modified cysteine (cys@CdTe QDs) has an absorption that matches with the wavelength of the N 2 laser (337 nm). The synergistic effect of large surface area and absorption of the laser irradiation of cys@CdTe QDs enhances the LDI-MS process for small - molecule analysis, including α-, β-, and γ-cyclodextrin, gramicidin D, perylene, pyrene, and triphenylphosphine. Cys@CdTe QDs are also applied using Al foils as substrates. Aluminum foil combined with cys@CdTe QDs enhances the ionization efficiency and is cheap compared to traditional matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) with a stainless - steel plate.
USDA-ARS?s Scientific Manuscript database
The transport of polyacrylic acid capped cadmium telluride (CdTe) quantum dots (QDs) and carboxylate-modified latex (CML) nanoparticles (NPs) was studied in packed columns at various electrolyte concentrations and cation types. The breakthrough curves (BTCs) of QDs and CML NPs in acid-treated Accus...
Differential effects of β-mercaptoethanol on CdSe/ZnS and InP/ZnS quantum dots.
Georgin, Marcel; Carlini, Lina; Cooper, Daniel; Bradforth, Stephen E; Nadeau, Jay L
2013-07-07
The small thiol β-mercaptoethanol (BME) has been used as an anti-blinking reagent for CdSe/ZnS quantum dots (QDs), although its effects on QD photoluminescence are complex. It acts as an antioxidant as well as a hole scavenger on both CdSe and CdTe, which leads to changes in emission intensity and lifetime that vary qualitatively according to BME concentration, time of incubation, and pH of the solution. Because the band edge energies of InP/ZnS are shifted from those of CdTe and CdSe, it may be expected that thiols including BME might be unable to trap holes from these QDs. In this study, we use steady-state and time-resolved emission spectroscopy with physical fitting models combined with blinking analysis to compare the effects of different concentrations of BME on CdSe/ZnS vs. InP/ZnS QDs over time. We also find excellent correspondence between simple physical model parameters and blinking off times, a finding that will be useful for all blinking studies involving semiconductor nanoparticles. BME alters blinking in InP/ZnS QDs with a single ZnS shell, but not those with double thickness shells. The effects are similar to those seen with CdSe/ZnS, despite very different effects of BME on steady-state spectra, and highly pH-dependent.
A novel quantum dot-laccase hybrid nanobiosensor for low level determination of dopamine.
Shamsipur, Mojtaba; Shanehasz, Maryam; Khajeh, Khosro; Mollania, Nasrin; Kazemi, Sayyed Habib
2012-12-07
This work reports a novel nanobiosensor based on a thioglycolic acid (TGA)-capped CdTe quantum dot-laccase (Lac) enzyme system for sensitive detection of dopamine (DA). The enzyme used catalyzes the oxidation of DA to dopamine-o-quinone (DOQ), which can selectively quench the strong luminescence of CdTe nanocrystals at neutral pH. The relationship between luminescence intensity of CdTe nanocrystals and DA concentration is nicely described by the Stern-Volmer equation. At an optimum pH of 7.4, the proposed sensor gives a linear calibration over a DA concentration range of 0.3 to 100 μM, with a limit of detection of 0.16 μM and a response time of 2 min. The relative standard deviation for seven replicate determinations of 6.0 μM of DA was found to be 3.7%. The sensor was successfully applied to the determination of DA in a blood plasma sample and in a DA injection formulation.
Yang, Qiong; Tan, Xuanping; Yang, Jidong
2016-02-01
A sensitive and simple method for the determination of enoxacin (ENX) was developed based on the fluorescence quenching effect of ENX for glutathione (GSH)-capped CdTe quantum dots (QDs). Under optimum conditions, a good linear relationship was obtained from 4.333 × 10(-9) mol⋅L(-1) to 1.4 × 10(-5) mol⋅L(-1) with a correlation coefficient (R) of 0.9987, and the detection limit (3σ/K) was 1.313 × 10(-9) mol⋅L(-1). The corresponding mechanism has been proposed on the basis of electron transfer supported by ultraviolet-visible (UV) light absorption, fluorescence spectroscopy, and the measurement of fluorescence lifetime. The method has been applied to the determination of ENX in pharmaceutical formulations (enoxacin gluconate injections and commercial tablets) with satisfactory results. The proposed method manifested several advantages such as high sensitivity, short analysis time, low cost and ease of operation. Copyright © 2015 John Wiley & Sons, Ltd.
Ding, Xiaojie; Qu, Lingbo; Yang, Ran; Zhou, Yuchen; Li, Jianjun
2015-06-01
Cysteamine (CA)-capped CdTe quantum dots (QDs) (CA-CdTe QDs) were prepared by the reflux method and utilized as an efficient nano-sized fluorescent sensor to detect mercury (II) ions (Hg(2+) ). Under optimum conditions, the fluorescence quenching effect of CA-CdTe QDs was linear at Hg(2+) concentrations in the range of 6.0-450 nmol/L. The detection limit was calculated to be 4.0 nmol/L according to the 3σ IUPAC criteria. The influence of 10-fold Pb(2+) , Cu(2+) and Ag(+) on the determination of Hg(2+) was < 7% (superior to other reports based on crude QDs). Furthermore, the detection sensitivity and selectivity were much improved relative to a sensor based on the CA-CdTe QDs probe, which was prepared using a one-pot synthetic method. This CA-CdTe QDs sensor system represents a new feasibility to improve the detection performance of a QDs sensor by changing the synthesis method. Copyright © 2014 John Wiley & Sons, Ltd.
Qian, Jing; Hua, Mengjuan; Wang, Chengquan; Wang, Kan; Liu, Qian; Hao, Nan; Wang, Kun
2016-11-23
New strategies for onsite determination of trace 2,4,6-trinitrotoluene (TNT) explosives have become a research hotspot for homeland security needs against terrorism and environmental concerns. Herein, we designed a ratiometric fluorescence nanohybrid comprising 3-mercaptopropionic acid-capped green-emitting CdTe quantum dots (gQDs) encapsulated into SiO 2 sphere and l-cysteine (Lcys)-capped red-emitting CdTe QDs (rQDs) conjugated onto SiO 2 surface. The surface Lcys can be used as not only the stabilizer of the rQDs but also the primary amine provider which can react with TNT to form Meisenheimer complexes. Without any additional surface modification procedure, the fluorescence of rQDs equipped with Lcys was selectively quenched by TNT because electrons of the rQDs transferred to TNT molecules due to the formation of Meisenheimer complexes. Meanwhile, the embedded gQDs always remained constant. Upon exposure to increasing amounts of TNT, the fluorescence of rQDs could be gradually quenched and consequently the logarithm of the dual emission intensity ratios exhibited a good linear negative correlation with TNT concentration over a range of 10 nM-8 μM with a low detection limit of 3.3 nM. One can perform onsite visual determination of TNT with high resolution because the ratiometric fluorescence nanosensing system exhibited obvious fluorescence color changes. This sensing strategy has been successfully applied in real samples and already integrated in a filter paper-based assay, which enables potential fields use application featuring easy handling and cost-effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.
Fabrication and characterization of Au/n-CdTe Schottky barrier under illumination and dark
NASA Astrophysics Data System (ADS)
Bera, Swades Ranjan; Saha, Satyajit
2018-04-01
CdTe nanoparticles have been grown by chemical reduction method using EDA as capping agent. These are used to fabricate Schottky barrier in a simple cost-effective way at room temperature. The grown nanoparticles are structurally characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM). The optical properties of nano CdTe is characterized by UV-Vis absorption spectra, PL spectra. The band gap of the CdTe nanoparticles is increased as compared to CdTe bulk form indicating there is blue shift. The increase of band gap is due to quantum confinement. Photoluminescence spectra shows peak which corresponds to emission from surface state. CdTe nanofilm is grown on ITO coated glass substrate by dipping it on toluene containing dispersed CdTe nanoparticles. Schottky barrier of Au/n-CdTe is fabricated on ITO coated glass by vacuum deposition of gold. I- V and C- V characteristics of Au/n-CdTe Schottky barrier junction have been studied under dark and light condition. It is found that these characteristics are influenced by surface or interface traps. The values of barrier height, ideality factor, donor concentration and series resistance are obtained from the reverse bias capacitance-voltage measurements.
Biomimetic, Mild Chemical Synthesis of CdTe-GSH Quantum Dots with Improved Biocompatibility
Pérez-Donoso, José M.; Monrás, Juan P.; Bravo, Denisse; Aguirre, Adam; Quest, Andrew F.; Osorio-Román, Igor O.; Aroca, Ricardo F.; Chasteen, Thomas G.; Vásquez, Claudio C.
2012-01-01
Multiple applications of nanotechnology, especially those involving highly fluorescent nanoparticles (NPs) or quantum dots (QDs) have stimulated the research to develop simple, rapid and environmentally friendly protocols for synthesizing NPs exhibiting novel properties and increased biocompatibility. In this study, a simple protocol for the chemical synthesis of glutathione (GSH)-capped CdTe QDs (CdTe-GSH) resembling conditions found in biological systems is described. Using only CdCl2, K2TeO3 and GSH, highly fluorescent QDs were obtained under pH, temperature, buffer and oxygen conditions that allow microorganisms growth. These CdTe-GSH NPs displayed similar size, chemical composition, absorbance and fluorescence spectra and quantum yields as QDs synthesized using more complicated and expensive methods. CdTe QDs were not freely incorporated into eukaryotic cells thus favoring their biocompatibility and potential applications in biomedicine. In addition, NPs entry was facilitated by lipofectamine, resulting in intracellular fluorescence and a slight increase in cell death by necrosis. Toxicity of the as prepared CdTe QDs was lower than that observed with QDs produced by other chemical methods, probably as consequence of decreased levels of Cd+2 and higher amounts of GSH. We present here the simplest, fast and economical method for CdTe QDs synthesis described to date. Also, this biomimetic protocol favors NPs biocompatibility and helps to establish the basis for the development of new, “greener” methods to synthesize cadmium-containing QDs. PMID:22292028
Super fast detection of latent fingerprints with water soluble CdTe quantum dots.
Cai, Kaiyang; Yang, Ruiqin; Wang, Yanji; Yu, Xuejiao; Liu, Jianjun
2013-03-10
A new method based on the use of highly fluorescent water-soluble cadmium telluride (CdTe) quantum dots (QDs) capped with mercaptosuccinic acid (MSA) was explored to develop latent fingerprints. After optimized the effectiveness of QDs method contains pH value and developing time, super fast detection was achieved. Excellent fingerprint images were obtained in 1-3s after immersed the latent fingerprints into quantum dots solution on various non-porous surfaces, i.e. adhesive tape, transparent tape, aluminum foil and stainless steel. High sensitivity of the new latent fingerprints develop method was obtained by developing the fingerprints pressed on aluminum foil successively with the same finger. Compared with methyl violet and rhodamine 6G, the MSA-CdTe QDs showed the higher develop speed and fingerprint image quality. Clear image can be maintained for months by extending exposure time of CCD camera, storing fingerprints in a low temperature condition and secondary development. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Quantum dot coating of baculoviral vectors enables visualization of transduced cells and tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Ying; Lo, Seong Loong; Zheng, Yuangang
2013-04-26
Highlights: •The use of quantum dot (QD)-labeled viral vectors for in vivo imaging is not well investigated. •A new method to label enveloped baculovirus with glutathione-capped CdTe QDs is developed. •The labeling enables the identification of transduced, cultured cells based on fluorescence. •The labeling also allows evaluation of viral transduction in a real-time manner in living mice. •The method has the potential to assess viral vector-based gene therapy protocols in future. -- Abstract: Imaging of transduced cells and tissues is valuable in developing gene transfer vectors and evaluating gene therapy efficacy. We report here a simple method to use brightmore » and photostable quantum dots to label baculovirus, an emerging gene therapy vector. The labeling was achieved through the non-covalent interaction of glutathione-capped CdTe quantum dots with the virus envelope, without the use of chemical conjugation. The quantum dot labeling was nondestructive to viral transduction function and enabled the identification of baculoviral vector-transduced, living cells based on red fluorescence. When the labeled baculoviral vectors were injected intravenously or intraventricularly for in vivo delivery of a transgene into mice, quantum dot fluorescence signals allow us monitor whether or not the injected tissues were transduced. More importantly, using a dual-color whole-body imaging technology, we demonstrated that in vivo viral transduction could be evaluated in a real-time manner in living mice. Thus, our method of labeling a read-to-use gene delivery vector with quantum dots could be useful towards the improvement of vector design and will have the potential to assess baculovirus-based gene therapy protocols in future.« less
Piveteau, Laura; Ong, Ta-Chung; Rossini, Aaron J; Emsley, Lyndon; Copéret, Christophe; Kovalenko, Maksym V
2015-11-04
Understanding the chemistry of colloidal quantum dots (QDs) is primarily hampered by the lack of analytical methods to selectively and discriminately probe the QD core, QD surface and capping ligands. Here, we present a general concept for studying a broad range of QDs such as CdSe, CdTe, InP, PbSe, PbTe, CsPbBr3, etc., capped with both organic and inorganic surface capping ligands, through dynamic nuclear polarization (DNP) surface enhanced NMR spectroscopy. DNP can enhance NMR signals by factors of 10-100, thereby reducing the measurement times by 2-4 orders of magnitude. 1D DNP enhanced spectra acquired in this way are shown to clearly distinguish QD surface atoms from those of the QD core, and environmental effects such as oxidation. Furthermore, 2D NMR correlation experiments, which were previously inconceivable for QD surfaces, are demonstrated to be readily performed with DNP and provide the bonding motifs between the QD surfaces and the capping ligands.
NASA Astrophysics Data System (ADS)
Sun, Haoyu; Yang, Bingjun; Cui, Erqian; Liu, Rutao
2014-11-01
Quantum dots (QDs) are recognized as some of the most promising semiconductor nanocrystals in biomedical applications. However, the potential toxicity of QDs has aroused wide public concern. Catalase (CAT) is a common enzyme in animal and plant tissues. For the potential application of QDs in vivo, it is important to investigate the interaction of QDs with CAT. In this work, the effect of N-Acetyl-L-cysteine-Capped CdTe Quantum Dots with fluorescence emission peak at 612 nm (QDs-612) on CAT was investigated by fluorescence, synchronous fluorescence, fluorescence lifetime, ultraviolet-visible (UV-vis) absorption and circular dichroism (CD) techniques. Binding of QDs-612 to CAT caused static quenching of the fluorescence, the change of the secondary structure of CAT and the alteration of the microenvironment of tryptophan residues. The association constants K were determined to be K288K = 7.98 × 105 L mol-1 and K298K = 7.21 × 105 L mol-1. The interaction between QDs-612 and CAT was spontaneous with 1:1 stoichiometry approximately. The CAT activity was also inhibited for the bound QDs-612. This work provides direct evidence about enzyme toxicity of QDs-612 to CAT in vitro and establishes a new strategy to investigate the interaction between enzyme and QDs at a molecular level, which is helpful for clarifying the bioactivities of QDs in vivo.
Sheng, Zhen; Chen, Ligang
2017-10-01
The concentration of L-cysteine (Cys) and glutathione (GSH) is closely related to the critical risk of various diseases. In our study, a new rapid method for the determination of Cys and GSH in water and urine samples has been developed using a fluorescent probe technique, which was based on crystal violet (CV)-functionalized CdTe quantum dots (QDs). The original QDs emitted fluorescence light, which was turned off upon adding CV. This conjugation of CV and QDs could be attributed to electrostatic interaction between COO - of mercaptopropionic acid (MPA) on the surface of QDs and N + of CV in aqueous solution. In addition, Förster resonance energy transfer (FRET) also occurred between CdTe QDs and CV. After adding Cys or GSH to the solution, Cys or GSH exhibited a stronger binding preference toward Cd 2+ than Cd 2+ -MPA, which disturbed the interaction between MPA and QDs. Thus, most MPA was able to be separated from the surface of QDs because of the participation of Cys or GSH. Then, the fluorescence intensity of the CdTe QDs was enhanced. Good linear relationships were obtained in the range of 0.02-40 μg mL -1 and 0.02-50 μg mL -1 , and the detection limits were calculated as 10.5 ng mL -1 and 8.2 ng mL -1 , for Cys and GSH, respectively. In addition, the concentrations of biological thiols in water and urine samples were determined by the standard addition method using Cys as the standard; the quantitative recoveries were in the range of 97.3-105.8%, and relative standard deviations (RSDs) ranged from 2.5 to 3.7%. The method had several unique properties, such as simplicity, lower cost, high sensitivity, and environmental acceptability. Graphical abstract Crystal violet-functionalized CdTe quantum dots for detecting L-cysteine and glutathione with switch-on fluorescent strategy.
Cao, Yujuan; Wei, Jiongling; Wu, Wei; Wang, Song; Hu, Xiaogang; Yu, Ying
2015-09-01
In the present work, the CdTe quantum dots were covalently conjugated with permethylated-β-cyclodextrin (OMe-β-CD) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride as cross-linking reagent. The obtained functional quantum dots (OMe-β-CD/QDs) showed highly luminescent, water solubility and photostability as well as good inclusion ability to malachite green. A sensitive fluorescence method was developed for the analysis of malachite green in different samples. The good linearity was 2.0 × 10(-7)-1.0 × 10(-5) mol/L and the limit of detect was 1.7 × 10(-8) mol/L. The recoveries for three environmental water samples were 92.0-108.2 % with relative standard deviation (RSD) of 0.24-1.87 %, while the recovery for the fish sample was 94.3 % with RSD of 1.04 %. The results showed that the present method was sensitive and convenient to determine malachite green in complex samples. Graphical Abstract The analytical mechanism of OMe-β-CD/QDs and its linear response to MG.
Dong, Chaoqing; Irudayaraj, Joseph
2012-10-11
Aqueous quantum dots (QDs) directly synthesized with various thiol ligands have been investigated as imaging probes in living cells. However, the effect of the surface chemistry of these ligands on QDs' cellular uptakes and their intracellular fate remains poorly understood. In this work, four CdTe QDs were directly synthesized under aqueous conditions using four different thiols as stabilizers and their interactions with cells were investigated. Fluorescence correlation spectroscopy (FCS), X-ray photoelectron spectroscopy (XPS), and zeta potential measurements on QDs primarily show that the surface structure of these QDs is highly dependent on the thiol ligands used in the preparation of QDs' precursors, including its layer thicknesses, densities, and surface charges. Subsequently, FCS integrated with the maximum-entropy-method-based FCS (MEMFCS) was used to investigate the concentration distribution and dynamics of these QDs in living A-427 cells. Our findings indicate that QDs' surface characteristics affect cell membrane adsorption and subsequent internalization. More critically, we show that the cellular uptake of aqueous QDs is dependent on their hydrodynamic diameter and might have the potential to escape trapped environments to accumulate in the cytoplasm.
Simulation studies on structural and thermal properties of alkane thiol capped gold nanoparticles.
Devi, J Meena
2017-06-01
The structural and thermal properties of the passivated gold nanoparticles were explored employing molecular dynamics simulation for the different surface coverage densities of the self-assembled monolayer (SAM) of alkane thiol. The structural properties of the monolayer protected gold nanoparticles such us overall shape, organization and conformation of the capping alkane thiol chains were found to be influenced by the capping density. The structural order of the thiol capped gold nanoparticles enhances with the increase in the surface coverage density. The specific heat capacity of the alkane thiol capped gold nanoparticles was found to increase linearly with the thiol coverage density. This may be attributed to the enhancement in the lattice vibrational energy. The present simulation results suggest, that the structural and thermal properties of the alkane thiol capped gold nanoparticles may be modified by the suitable selection of the SAM coverage density. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Minwei; Ping, Hong; Cao, Xianyi; Li, Hongkun; Guan, Fengrui; Sun, Chunyan; Liu, Jingbo
2012-01-01
Water-soluble CdTe quantum dots of different sizes capped with thioglycolic acid (TGA-CdTe QDs) were synthesised via a microwave-assisted method. It was found that melamine could quench the fluorescence emission of TGA-CdTe QDs in aqueous solution. Based on this, a novel method for the determination of melamine has been developed. Under optimum conditions, the fluorescence intensity of TGA-CdTe QDs versus melamine concentrations gave a linear response according to the Stern-Volmer equation. The proposed method has been successfully used to detect melamine in liquid milk with a detection limit of 0.04 mg L⁻¹, and the whole process including sample pre-treatment could be accomplished within 30 min. The obvious merits provided by this method, such as simplicity, rapidity, low cost and high sensitivity would make it promising for on-site screening of melamine adulterant in milk products. The possible mechanism involved in the interaction of melamine with TGA-CdTe QDs is discussed.
NASA Astrophysics Data System (ADS)
Kiprotich, Sharon; Dejene, Francis B.; Ungula, Jatani; Onani, Martin O.
2016-01-01
This paper explains one pot synthesis of type II water soluble L-cysteine capped cadmium telluride (CdTe) core shell quantum dots using cadmium acetate, potassium tellurite and L-cysteine as the starting materials. The reaction was carried out in a single three necked flask without nitrogen under reflux at 100 °C. Results from PL show a sharp absorption excitonic band edge of the CdTe core with respect to the core shell which loses its shoulder during the growth of the shell on the core. The PL spectra indicate a drastic shift in emission window of the core which is simultaneously accompanied by an increase in emission intensity. X-ray diffraction pattern confirms the formation of hexagonal phase for all samples. Some difference in absorption edges were observed due to varying synthesis time of CdTe NPs. The position of the absorption band is observed to shift towards the lower wavelength side for shorter durations of synthesis.
Folic acid-CdTe quantum dot conjugates and their applications for cancer cell targeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suriamoorthy, Preethi; Zhang, Xing; Hao, Guiyang
2010-12-01
In this study, we report the preparation,luminescence, and targeting properties of folic acid- CdTe quantum dot conjugates. Water-soluble CdTe quantum dots were synthesized and conjugated with folic acid using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-N-hydroxysuccinimide chemistry. The in-fluence of folic acid on the luminescence properties of CdTe quantum dots was investigated, and no energy transfer between them was observed. To investigate the efficiency of folic acid-CdTe nanoconjugates for tumor targeting, pure CdTe quantum dots and folic acid-coated CdTe quantum dots were incubated with human naso- pharyngeal epidermal carcinoma cell line with positive expressing folic acid receptors (KB cells) and lung cancer cells without expressionmore » of folic acid receptors (A549 cells). For the cancer cells with positive folate receptors (KB cells), the uptake for CdTe quantum dots is very low, but for folic acid-CdTe nanoconjugates, the uptake is very high. For the lung cancer cells without folate receptors (A549 cells), the uptake for folic acid- CdTe nanoconjugates is also very low. The results indicate that folic acid is an effective targeting molecule for tumor cells with overexpressed folate receptors.« less
Turn-off-on chemiluminescence determination of cyanide.
Han, Suqin; Wang, Jianbo; Jia, Shize
2015-02-01
A flow injection chemiluminescence (FI-CL) method was developed for the determination of cyanide (CN(-) ) based on the recovered CL signal by Cu(2+) inhibiting a glutathione (GSH)-capped CdTe quantum dot (QD) and hydrogen peroxide system. In an alkaline medium, strong CL signals were observed from the reaction of CdTe QDs and H2O2 , and addition of Cu(2+) could cause significant CL inhibition of the CdTe QDs-H2O2 system. In the presence of CN(-) , Cu(2+) can be removed from the surface of CdTe QDs via the formation of particularly stable [Cu(CN)n ]((n-1)-) species, and the CL signal of the CdTe QDs-H2O2 system was efficiently recovered. Thus, the CL signals of CdTe QDs-H2O2 system were turned off and turned on by the addition of Cu(2+) and CN(-) , respectively. Further, the results showed that among the tested ions, only CN(-) could recover the CL signal, which suggested that the CdTe QDs-H2O2 -Cu(2+) CL system had highly selectivity for CN(-) . Under optimum conditions, the CL intensity and the concentration of CN(-) show a good linear relationship in the range 0.0-650.0 ng/mL (R(2) = 0.9996). The limit of detection for CN(-) was 6.0 ng/mL (3σ). This method has been applied to detect CN(-) in river water and industrial wastewater with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.
Aqueous phase transfer of InP/ZnS nanocrystals conserving fluorescence and high colloidal stability.
Tamang, Sudarsan; Beaune, Grégory; Texier, Isabelle; Reiss, Peter
2011-12-27
Small thiol-containing amino acids such as cysteine are appealing surface ligands for transferring semiconductor quantum dots (QDs) from organic solvents to the aqueous phase. They provide a compact hydrodynamic diameter and low nonspecific binding in biological environment. However, cysteine-capped QDs generally exhibit modest colloidal stability in water and their fluorescence quantum yield (QY) is significantly reduced as compared to organics. We demonstrate that during phase transfer the deprotonation of the thiol group by carefully adjusting the pH is of crucial importance for increasing the binding strength of cysteine to the QD surface. As a result, the colloidal stability of cysteine-capped InP/ZnS core/shell QDs is extended from less than one day to several months. The developed method is of very general character and can be used also with other hydrophilic thiols and various other types of QDs, e.g., CdSe/CdS/ZnS and CuInS(2)/ZnS QDs as well as CdSe and CdSe/CdS nanorods. We show that the observed decrease of QY upon phase transfer with cysteine is related to the generation of cysteine dimer, cystine. This side-reaction implies the formation of disulfide bonds, which efficiently trap photogenerated holes and inhibit radiative recombination. On the other hand, this process is not irreversible. By addition of an appropriate reducing agent, tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the QY can be partially recovered. When TCEP is already added during the phase transfer, the QY of cysteine-capped InP/ZnS QDs can be maintained almost quantitatively. Finally, we show that penicillamine is a promising alternative to cysteine for the phase transfer of QDs, as it is much less prone to disulfide formation.
NASA Astrophysics Data System (ADS)
Škarková, Pavlína; Novotný, Karel; Lubal, Přemysl; Jebavá, Alžběta; Pořízka, Pavel; Klus, Jakub; Farka, Zdeněk; Hrdlička, Aleš; Kaiser, Jozef
2017-05-01
In this study, the feasibility of Quantum dots (QDs) 2D distribution mapping on the substrate by Laser-Induced Breakdown Spectroscopy (LIBS) was examined. The major objective of this study was to describe phenomena occurring after applying aqueous solutions of QDs onto filtration paper. Especially, the influence of pH and presence of Cu2 + cations in QDs solutions on LIBS signal was investigated. Cadmium Telluride QDs (CdTe QDs) were prepared by formation of nanosized semiconductor particles in so called ;one-pot; synthesis. CdTe QDs were capped by glutathione or by 3-mercaptopropionic acid. The technique described in this work allows detection of QDs injected on the selected substrate - filtration paper. Results obtained from LIBS experiments were collated with a comparative method, fluorescence microscopy, which showed variations in the distribution of QDs on the substrate surface and possibilities for quenching. Due to the immediate signal response, relatively simple instrumentation and automatization possibility, LIBS offers promising and fast alternative to other techniques, as it is able to detect also nanoparticles with no visible luminescence.
Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene.
Chen, Hsiang-Yu; Lo, Michael K F; Yang, Guanwen; Monbouquette, Harold G; Yang, Yang
2008-09-01
Polymer-inorganic nanocrystal composites offer an attractive means to combine the merits of organic and inorganic materials into novel electronic and photonic systems. However, many applications of these composites are limited by the solubility and distribution of the nanocrystals in the polymer matrices. Here we show that blending CdTe nanoparticles into a polymer-fullerene matrix followed by solvent annealing can achieve high photoconductive gain under low applied voltages. The surface capping ligand renders the nanoparticles highly soluble in the polymer blend, thereby enabling high CdTe loadings. An external quantum efficiency as high as approximately 8,000% at 350 nm was achieved at -4.5 V. Hole-dominant devices coupled with atomic force microscopy images show a higher concentration of nanoparticles near the cathode-polymer interface. The nanoparticles and trapped electrons assist hole injection into the polymer under reverse bias, contributing to efficiency values in excess of 100%.
Zhang, Hongyan; Sun, Pan; Liu, Chang; Gao, Huanyu; Xu, Linru; Fang, Jin; Wang, Meng; Liu, Jinling; Xu, Shukun
2011-01-01
Functionalized CdTe-CdS core-shell quantum dots (QDs) were synthesized in aqueous solution via water-bathing combined hydrothermal method using L-cysteine (L-Cys) as a stabilizer. This method possesses both the advantages of water-bathing and hydrothermal methods for preparing high-quality QDs with markedly reduced synthesis time, and better stability than a lone hydrothermal method. The QDs were characterized by transmission electronic microscopy and powder X-ray diffraction and X-ray photoelectron spectroscopy. The CdTe-CdS QDs with core-shell structure showed both enhanced fluorescence and better photo stability than nude CdTe QDs. After conjugating with antibody rabbit anti-CEACAM8 (CD67), the as-prepared l-Cys capped CdTe-CdS QDs were successfully used as fluorescent probes for the direct immuno-labeling and imaging of HeLa cells. It was indicated that this kind of QD would have application potential in bio-labeling and cell imaging. Copyright © 2009 John Wiley & Sons, Ltd.
Ramírez-Herrera, Doris E; Rodríguez-Velázquez, Eustolia; Alatorre-Meda, Manuel; Paraguay-Delgado, Francisco; Tirado-Guízar, Antonio; Taboada, Pablo; Pina-Luis, Georgina
2018-04-11
In the present work, we synthesize Near Infrared (NIR)-emitting alloyed mercaptopropionic acid (MPA)-capped CdTeSe quantum dots (QDs) in a single-step one-hour process, without the use of an inert atmosphere or any pyrophoric ligands. The quantum dots are water soluble, non-toxic, and highly photostable and have high quantum yields (QYs) up to 84%. The alloyed MPA-capped CdTeSe QDs exhibit a red-shifted emission, whose color can be tuned between visible and NIR regions (608-750 nm) by controlling the Te:Se molar ratio in the precursor mixtures and/or changing the time reaction. The MPA-capped QDs were characterized by UV-visible absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and zeta potential measurements. Photostability studies were performed by irradiating the QDs with a high-power xenon lamp. The ternary MPA-CdTeSe QDs showed greater photostability than the corresponding binary MPA-CdTe QDs. We report the Förster resonance energy transfer (FRET) from the MPA-capped CdTeSe QDs as energy donors and Cyanine5 NHS-ester (Cy5) dye as an energy acceptor with efficiency ( E ) up to 95%. The distance between the QDs and dye ( r ), the Förster distance ( R ₀), and the binding constant ( K ) are reported. Additionally, cytocompatibility and cell internalization experiments conducted on human cancer cells (HeLa) cells revealed that alloyed MPA-capped CdTeSe QDs are more cytocompatible than MPA-capped CdTe QDs and are capable of ordering homogeneously all over the cytoplasm, which allows their use as potential safe, green donors for biological FRET applications.
Ramírez-Herrera, Doris E.; Rodríguez-Velázquez, Eustolia; Alatorre-Meda, Manuel; Paraguay-Delgado, Francisco; Tirado-Guízar, Antonio; Taboada, Pablo; Pina-Luis, Georgina
2018-01-01
In the present work, we synthesize Near Infrared (NIR)-emitting alloyed mercaptopropionic acid (MPA)-capped CdTeSe quantum dots (QDs) in a single-step one-hour process, without the use of an inert atmosphere or any pyrophoric ligands. The quantum dots are water soluble, non-toxic, and highly photostable and have high quantum yields (QYs) up to 84%. The alloyed MPA-capped CdTeSe QDs exhibit a red-shifted emission, whose color can be tuned between visible and NIR regions (608–750 nm) by controlling the Te:Se molar ratio in the precursor mixtures and/or changing the time reaction. The MPA-capped QDs were characterized by UV-visible absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and zeta potential measurements. Photostability studies were performed by irradiating the QDs with a high-power xenon lamp. The ternary MPA-CdTeSe QDs showed greater photostability than the corresponding binary MPA-CdTe QDs. We report the Förster resonance energy transfer (FRET) from the MPA-capped CdTeSe QDs as energy donors and Cyanine5 NHS-ester (Cy5) dye as an energy acceptor with efficiency (E) up to 95%. The distance between the QDs and dye (r), the Förster distance (R0), and the binding constant (K) are reported. Additionally, cytocompatibility and cell internalization experiments conducted on human cancer cells (HeLa) cells revealed that alloyed MPA-capped CdTeSe QDs are more cytocompatible than MPA-capped CdTe QDs and are capable of ordering homogeneously all over the cytoplasm, which allows their use as potential safe, green donors for biological FRET applications. PMID:29641435
Meng, Peijun; Xiong, Yamin; Wu, Yingting; Hu, Yue; Wang, Hui; Pang, Yuanfeng; Jiang, Shuqing; Han, Sihai; Huang, Peili
2018-05-09
In view of the significance and urgency of the speciation analysis of quantum dots (QDs) and their degradation products for clarifying their degradation rules and toxicity mechanisms, a method for the identification and quantification of CdTe QDs and corresponding ionic species in complex matrices was developed using capillary zone electrophoresis (CZE) coupled to inductively coupled plasma-mass spectrometry (ICP-MS). The quality assessment of commercial CdTe QDs and serum pharmacokinetics of synthesized CdTe QDs in rats were successfully undertaken using the developed CZE-ICP-MS method.
Gaponik, Nikolai; Gerlach, Matthias; Donegan, John F; Savateeva, Diana; Rogach, Andrey L
2006-01-01
We have studied the photoluminescence and Raman spectra of a system consisting of a polystyrene latex microsphere coated by CdTe colloidal quantum dots. The cavity-induced enhancement of the Raman scattering allows the observation of Raman spectra from only a monolayer of CdTe quantum dots. Periodic structure with very narrow peaks in the photoluminescence spectra of a single microsphere was detected both in the Stokes and anti-Stokes spectral regions, arising from the coupling between the emission of quantum dots and spherical cavity modes.
FRET Studies Between CdTe Capped by Small-Molecule Ligands and Fluorescent Protein
NASA Astrophysics Data System (ADS)
Zhang, Yue; Zhou, Dejian; He, Junhui
2014-12-01
Water-soluble luminescent semiconductor nanocrystals also known as quantum dots (QDs) that have prominent photostability, wide absorption cross sections and tunable narrow emission, have been shown as promising probes in immunoassays. QDs are often used as donors in fluorescence resonance energy transfer (FRET) based sensors using organic dyes or fluorescent proteins as acceptors. Here, the FRET between a QD donor and fluorescent protein acceptors has been studied. The fluorescent protein (FP)mCherry appended with a hexa-histidine-tag could effectively self-assemble onto CdTe to produce small donor-acceptor distances and hence highly efficient FRET (efficiency > 80%) at relatively low FP:CdTe copy numbers (ca.1). Using the Förster dipole-dipole interaction formula, the Förster radius (R0) and respective donor-acceptor distances for the CdTe-FP FRET systems have been calculated. The binding constants (Kd) of the QD-FP systems have also been evaluated by the emission spectra.
Nanoparticle-assisted high photoconductive gain in polymer/fullerene matrix
Chen, Hsiang-Yu; Lo, Michael K. F.; Yang, Guanwen; Monbouquette, Harold G.; Yang, Yang
2014-01-01
Polymer/inorganic nanocrystal composites1–10 offer an attractive means to combine the merits of organic and inorganic materials into novel electronic and photonic systems. However, many applications of these composites are limited by the solubility11 and distribution of nanocrystals (NCs) in polymer matrices. Here, a high photoconductive gain has been achieved by blending cadmium telluride (CdTe) nanoparticles (NPs) into a polymer/fullerene matrix followed by a solvent annealing12 process. The NP surface capping ligand, N-phenyl-N’-methyldithiocarbamate, renders the NPs highly soluble in the polymer blend thereby enabling high nanocrystal loadings. An external quantum efficiency (EQE) as high as ~8000% (at 350nm) is reached at −4.5V. Hole-dominant devices coupled with AFM images are studied to uncover the probable mechanism. We observe a higher concentration of CdTe NPs is located near the cathode/polymer interface. These NPs with trapped electrons assist hole injection into the polymer under reverse bias, which contributes to greater than 100% EQE. PMID:18772915
Jiang, Hui; Ju, Huangxian
2007-09-01
This work elucidated the detailed electrochemiluminescence (ECL) process of the thioglycolic acid-capped CdSe quantum dots (QDs) film/peroxide aqueous system. The QDs were first electrochemically reduced to form electrons-injected QDs approximately -1.1 V, which then reduced hydrogen peroxide to produce OH* radical. The intermediate OH* radical was a key species for producing holes-injected QDs. The ECL emission with a peak at -1.114 V was demonstrated to come from the 1Se-1Sh transition emission. Using thiol compounds as the model molecules to annihilate the OH* radical, their quenching effects on ECL emission were studied. This effect led to a novel strategy for ECL sensing of the scavengers of hydroxyl radical. The detection results of thiol compounds showed high sensitivity, good precision, and acceptable accuracy, suggesting the promising application of the proposed method for quick detection of both scavengers and generators of hydroxyl radical in different fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiupei, E-mail: xiupeiyang@163.com; College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000; Lin, Jia
2015-06-15
Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination.more » The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH{sub 3}{sup +} moiety of doxorubicin and the −COO{sup −} moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum.« less
CdTe quantum dots for an application in the life sciences
NASA Astrophysics Data System (ADS)
Thi Dieu Thuy, Ung; Toan, Pham Song; Chi, Tran Thi Kim; Duy Khang, Dinh; Quang Liem, Nguyen
2010-12-01
This report highlights the results of the preparation of semiconductor CdTe quantum dots (QDs) in the aqueous phase. The small size of a few nm and a very high luminescence quantum yield exceeding 60% of these materials make them promisingly applicable to bio-medicine labeling. Their strong, two-photon excitation luminescence is also a good characteristic for biolabeling without interference with the cell fluorescence. The primary results for the pH-sensitive CdTe QDs are presented in that fluorescence of CdTe QDs was used as a proton sensor to detect proton flux driven by adenosine triphosphate (ATP) synthesis in chromatophores. In other words, these QDs could work as pH-sensitive detectors. Therefore, the system of CdTe QDs on chromatophores prepared from the cells of Rhodospirillum rubrum and the antibodies against the beta-subunit of F0F1-ATPase could be a sensitive detector for the avian influenza virus subtype A/H5N1.
NASA Astrophysics Data System (ADS)
Syed, Asad; Ahmad, Absar
2013-04-01
The growing demand for semiconductor [quantum dots (Q-dots)] nanoparticles has fuelled significant research in developing strategies for their synthesis and characterization. They are extensively investigated by the chemical route; on the other hand, use of microbial sources for biosynthesis witnessed the highly stable, water dispersible nanoparticles formation. Here we report, for the first time, an efficient fungal-mediated synthesis of highly fluorescent CdTe quantum dots at ambient conditions by the fungus Fusarium oxysporum when reacted with a mixture of CdCl2 and TeCl4. Characterization of these biosynthesized nanoparticles was carried out by different techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Photoluminescence (PL), X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. CdTe nanoparticles shows antibacterial activity against Gram positive and Gram negative bacteria. The fungal based fabrication provides an economical, green chemistry approach for production of highly fluorescent CdTe quantum dots.
Baines, Tom; Papageorgiou, Giorgos; Hutter, Oliver S; Bowen, Leon; Durose, Ken; Major, Jonathan D
2018-04-25
CdTe wires have been fabricated via a catalyst free method using the industrially scalable physical vapor deposition technique close space sublimation. Wire growth was shown to be highly dependent on surface roughness and deposition pressure, with only low roughness surfaces being capable of producing wires. Growth of wires is highly (111) oriented and is inferred to occur via a vapor-solid-solid growth mechanism, wherein a CdTe seed particle acts to template the growth. Such seed particles are visible as wire caps and have been characterized via energy dispersive X-ray analysis to establish they are single phase CdTe, hence validating the self-catalysation route. Cathodoluminescence analysis demonstrates that CdTe wires exhibited a much lower level of recombination when compared to a planar CdTe film, which is highly beneficial for semiconductor applications.
Bose, Riya; Manna, Goutam; Pradhan, Narayan
2014-04-09
Giant nanostructures which are difficult to design by the classical growth process can be fabricated in a facilitated and well programmed surface ligand removal protocol employing the thiol-gold strong interaction chemistry. When thiol capped small ZnSe seed nanocrystals are treated with amine capped gold particles, gold snatches the thiol ligands from ZnSe and forces them to agglomerate leading to the giant crystalline ZnSe nanostructures. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ensafi, Ali A; Nasr-Esfahani, Parisa; Rezaei, B
2017-12-15
In this work, molecularly imprinted polymers (MIPs) were used on the surface of cadmium telluride quantum dots (CdTe QDs) for the simultaneous determination of folic acid (FA) and methotrexate (MTX). For this purpose, two different sizes of CdTe QDs with emission peaks in the yellow (QD Y ) and orange (QD O ) spectral regions were initially synthesized and capped with MIPs. FA and MTX were used as templates for the synthesis of the two composites and designated as QD Y -MIPs and QD O -MIPs, respectively. Fourier transform infrared spectroscopy, transmission electron microscopy, and fluorescence spectroscopy were employed to characterize the composites. QD Y -MIPs and QD O -MIPs were then mixed (to form QDs-MIPs) and excited at identical excitation wavelengths; they emitted two different emission wavelengths without any spectral overlap. The fluorescence signals of QD Y -MIPs and QD O -MIPs diminished in intensity with increasing concentration of the corresponding template molecules. Under optimal conditions, the dynamic range was 0.5-20 μmol L -1 for FA and MTX, and the detection limits for FA and MTX were 32.0 nmol L -1 and 34.0 nmol L -1 , respectively. The reproducibility of the method was checked for 12.5 μmol L -1 of FA and MTX to find RSD values of 4.2% and 6.3%, respectively. Finally, the applicability of the method was checked using human blood plasma samples. Results indicated the successful application of the method as a fluorescent probe for the rapid and simultaneous detection of FA and MTX in real samples. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Duan, Huimin; Li, Leilei; Wang, Xiaojiao; Wang, Yanhui; Li, Jianbo; Luo, Chuannan
2016-01-01
A sensitive chemiluminescence (CL) sensor based on chemiluminescence resonance energy transfer (CRET) in CdTe quantum dots@luminol (CdTe QDs@luminol) nanomaterials combined with chitosan/graphene oxide-magnetite-molecularly imprinted polymer (Cs/GM-MIP) for sensing chrysoidine was developed. CdTe QDs@luminol was designed to not only amplify the signal of CL but also reduce luminol consumption in the detection of chrysoidine. On the basis of the abundant hydroxy and amino, Cs and graphene oxide were introduced into the GM-MIP to improve the adsorption ability. The adsorption capacities of chrysoidine by both Cs/GM-MIP and non-imprinted polymer (Cs/GM-NIP) were investigated, and the CdTe QDs@luminol and Cs/GM-MIP were characterized by UV-vis, FTIR, SEM and TEM. The proposed sensor can detect chrysoidine within a linear range of 1.0 × 10- 7 - 1.0 × 10- 5 mol/L with a detection limit of 3.2 × 10- 8 mol/L (3δ) due to considerable chemiluminescence signal enhancement of the CdTe quantum dots@luminol detector and the high selectivity of the Cs/GM-MIP system. Under the optimal conditions of CL, the CdTe QDs@luminol-Cs/GM-MIP-CL sensor was used for chrysoidine determination in samples with satisfactory recoveries in the range of 90-107%.
NASA Astrophysics Data System (ADS)
Dezhurov, Sergey V.; Krylsky, Dmitry V.; Rybakova, Anastasia V.; Ibragimova, Sagila A.; Gladyshev, Pavel P.; Vasiliev, Alexey A.; Morenkov, Oleg S.
2018-03-01
A fast and efficient one-pot synthesis of thiol-terminated poly(vinylpirrolidone-co-maleic anhydride-co-ethylene glycol dimethacrylate) based heterobifunctional polymer (PTVP) has been developed. The polymer was used for the modification of quantum dots (QDs) to prepare water soluble and stable QDs with emission quantum yield as high as 80%. Using carbodiimide method, PTVP-capped red light-emitting QDs were conjugated to model monoclonal antibodies specific to glycoprotein B (gB) of Aujeszky’s disease virus (ADV) and successfully used in the lateral flow assay (LFA) for the detection of ADV gB in biological fluids. A comparative analysis of the sensitivity of the method was carried out using three types of QDs emitting in the red and far-red region.
Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route
NASA Astrophysics Data System (ADS)
Wen, Li; Lin, Zhonghua; Gu, Pingying; Zhou, Jianzhang; Yao, Bingxing; Chen, Guoliang; Fu, Jinkun
2009-02-01
Monodispersed gold nanoparticles capped with a self-assembled monolayer of dodecanethiol were biosynthesized extracellularly by an efficient, simple, and environmental friendly procedure, which involved the use of Bacillus megatherium D01 as the reducing agent and the use of dodecanethiol as the capping ligand at 26 °C. The kinetics of gold nanoparticle formation was followed by transmission electron microscope (TEM) and UV-vis spectroscopy. It was shown that reaction time was an important parameter in controlling the morphology of gold nanoparticles. The effect of thiol on the shape, size, and dispersity of gold nanoparticles was also studied. The results showed that the presence of thiol during the biosynthesis could induce the formation of small size gold nanoparticles (<2.5 nm), hold the shape of spherical nanoparticles, and promote the monodispersity of nanoparticles. Through the modulation of reaction time and the use of thiol, monodispersed spherical gold nanoparticles capped with thiol of 1.9 ± 0.8 nm size were formed by using Bacillus megatherium D01.
[Oxidative damage effects induced by CdTe quantum dots in mice].
Xie, G Y; Chen, W; Wang, Q K; Cheng, X R; Xu, J N; Huang, P L
2017-07-20
Objective: To investigate Oxidative damage effects induced by CdTe Quantum Dots (QDs) in mice. Methods: 40 ICR mice were randomly divided into 5 groups: one control group (normal saline) ; four CdTe QDs (exposed by intravenous injection of 0.2 ml of CdTe QDs at the concentration of 0、0.5、5.0、50.0 and 500.0 nmol/ml respectively) . After 24 h, the mice were decapitated and the blood was collected for serum biochemically indexes、hematology indexes, the activities of SOD、GSH-Px and the concentration of MDA were all detected. Results: The results showed in the four CdTe QDs exposure groups, the level of CRE、PLT and the concentration of MDA were all significantly lower than those of the control group ( P <0.05 or P <0.01) ; the activities GSH - Px in 50.0 and 500.0 nmol/ml CdTe QDs group were significantly higher than those of control group ( P <0.01) . Conclusion: It was suggested that CdTe QDs at 0.5 nmol/ml could induce Oxidative damage effects in mice.
Kumar, A; Biradar, A M
2011-04-01
We present here the dielectric and electro-optical studies of cadmium telluride quantum dots (CdTe QDs) doped ferroelectric liquid crystals (FLCs). It has been observed that the doping of CdTe QDs not only induced a pronounced memory effect but also affected the physical parameters of FLC material (LAHS19). The modifications in the physical parameters and memory effect of LAHS19 are found to depend on the concentration ratio of CdTe QDs. The lower concentration of CdTe QDs (1-3 wt%) enhanced the values of spontaneous polarization and rotational viscosity of LAHS19 material but did not favor the memory effect, whereas a higher concentration of CdTe QDs (>5 wt%) degraded the alignment of LAHS19 material. The doping of ∼5 wt% of CdTe QDs is found to be the most suitable for achieving good memory effect without significantly affecting the material parameters. ©2011 American Physical Society
Study of CdTe quantum dots grown using a two-step annealing method
NASA Astrophysics Data System (ADS)
Sharma, Kriti; Pandey, Praveen K.; Nagpal, Swati; Bhatnagar, P. K.; Mathur, P. C.
2006-02-01
High size dispersion, large average radius of quantum dot and low-volume ratio has been a major hurdle in the development of quantum dot based devices. In the present paper, we have grown CdTe quantum dots in a borosilicate glass matrix using a two-step annealing method. Results of optical characterization and the theoretical model of absorption spectra have shown that quantum dots grown using two-step annealing have lower average radius, lesser size dispersion, higher volume ratio and higher decrease in bulk free energy as compared to quantum dots grown conventionally.
Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin
2011-01-01
Semiconductor nanoparticles (quantum dots) are promising fluorescent markers, but it is very little known about interaction of quantum dots with biological molecules. In this study, interaction of CdTe quantum dots coated with thioglycolic acid (TGA) with bovine serum albumin was investigated. Steady state spectroscopy, atomic force microscopy, electron microscopy and dynamic light scattering methods were used. It was explored how bovine serum albumin affects stability and spectral properties of quantum dots in aqueous media. CdTe–TGA quantum dots in aqueous solution appeared to be not stable and precipitated. Interaction with bovine serum albumin significantly enhanced stability and photoluminescence quantum yield of quantum dots and prevented quantum dots from aggregating. PMID:27502633
Green synthesis of water soluble semiconductor nanocrystals and their applications
NASA Astrophysics Data System (ADS)
Wang, Ying
II-VI semiconductor nanomaterials, e.g. CdSe and CdTe, have attracted great attention over the past decades due to their fascinating optical and electrical properties. The research presented here focuses on aqueous semiconductor nanomaterials. The work can be generally divided into three parts: synthesis, property study and application. The synthetic work is devoted to develop new methods to prepare shape- and structure-controlled II-VI semiconductor nanocrystals including nanoparticles and nanowires. CdSe and CdSe CdS semiconductor nanocrystals have been synthesized using sodium citrate as a stabilizer. Upon prolonged illumination with visible light, photoluminescence quantum yield of those quantum dots can be enhanced up to 5000%. The primary reason for luminescence enhancement is considered to be the removing of specific surface states (photocorrosion) and the smoothing of the CdSe core surface (photoannealing). CdTe nanowires are prepared through self-organization of stabilizer-depleted CdTe nanoparticles. The dipolar-dipolar attraction is believed to be the driving force of nanowire formation. The rich surface chemistry of CdTe nanowire is reflected by the formation of silica shell with different morphologies when nanowires with different capping ligands are used. Te and Se nanowires are prepared by chemical decomposition of CdTe and CdSe nanoparticles in presence of an external chemical stimulus, EDTA. These results not only provide a new example of NP→NW transformation, but also lead to a better understanding of the molecular process occurring in the stabilizer-depleted nanoparticles. The applications of those semiconductor materials are primarily based on the construction of nano-structured ultrathin films with desirable functions by using layer-by-layer technique (LBL). We demonstrate that light-induced micro-scale multicolor luminescent patterns can be obtained on photoactivable CdSe/CdS nanoparticles thin films by combining the advantages of LBL as well as high-throughput and simplicity of photolithography. Photoconductive LBL thin films are fabricated from Te nanowires. The thin film has distinctively metallic mirror-like appearance and displays strong photoconductance effect characteristic of narrow band-gap semiconductors. In-situ reduction of gold results in formation of Au nanoparticles adhering to Te nanowires, which leads to the disappearance of photoconductivity of the Te thin film. Those nanomaterials are considered for various applications, such as light emitting devices, data storage materials, biosensors, photodetectors.
ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Mingli; Yin, Huancai; Bai, Pengli
This paper aimed to investigate the role of adenosine triphosphate-binding cassette (ABC) transporters on the efflux and the toxicity of nanoparticles in liver and kidney cells. In this study, we synthesized CdTe quantum dots (QDs) that were monodispersed and emitted green fluorescence (maximum peak at 530 nm). Such QDs tended to accumulate in human hepatocellular carcinoma cells (HepG2), human kidney cells 2 (HK-2), and Madin-Darby canine kidney (MDCK) cells, and cause significant toxicity in all the three cell lines. Using specific inhibitors and inducers of P-glycoprotein (Pgp) and multidrug resistance associated proteins (Mrps), the cellular accumulation and subsequent toxicity ofmore » QDs in HepG2 and HK-2 cells were significantly affected, while only slight changes appeared in MDCK cells, corresponding well with the functional expressions of ABC transporters in cells. Moreover, treatment of QDs caused concentration- and time- dependent induction of ABC transporters in HepG2 and HK-2 cells, but such phenomenon was barely found in MDCK cells. Furthermore, the effects of CdTe QDs on ABC transporters were found to be greater than those of CdCl{sub 2} at equivalent concentrations of cadmium, indicating that the effects of QDs should be a combination of free Cd{sup 2+} and specific properties of QDs. Overall, these results indicated a strong dependence between the functional expressions of ABC transporters and the efflux of QDs, which could be an important reason for the modulation of QDs toxicity by ABC transporters. - Highlights: • ABC transporters contributed actively to the cellular efflux of CdTe quantum dots. • ABC transporters affected the cellular toxicity of CdTe quantum dots. • Treatment of CdTe quantum dots induced the gene expression of ABC transporters. • Free Cd{sup 2+} should be partially involved in the effects of QDs on ABC transporters. • Cellular efflux of quantum dots could be an important modulator for its toxicity.« less
NASA Astrophysics Data System (ADS)
Pandey, Praveen K.; Sharma, Kriti; Nagpal, Swati; Bhatnagar, P. K.; Mathur, P. C.
2003-11-01
CdTe quantum dots embedded in glass matrix are grown using two-step annealing method. The results for the optical transmission characterization are analysed and compared with the results obtained from CdTe quantum dots grown using conventional single-step annealing method. A theoretical model for the absorption spectra is used to quantitatively estimate the size dispersion in the two cases. In the present work, it is established that the quantum dots grown using two-step annealing method have stronger quantum confinement, reduced size dispersion and higher volume ratio as compared to the single-step annealed samples. (
Xu, Shoufang; Lu, Hongzhi; Li, Jinhua; Song, Xingliang; Wang, Aixiang; Chen, Lingxin; Han, Shaobo
2013-08-28
Molecularly imprinted polymers (MIPs) with trinitrophenol (TNP) as a dummy template molecule capped with CdTe quantum dots (QDs) were prepared using 3-aminopropyltriethoxy silane (APTES) as the functional monomer and tetraethoxysilane (TEOS) as the cross linker through a seed-growth method via a sol-gel process (i.e., DMIP@QDs) for the sensing of 2,4,6-trinitrotoluene (TNT) on the basis of electron-transfer-induced fluorescence quenching. With the presence and increase of TNT in sample solutions, a Meisenheimer complex was formed between TNT and the primary amino groups on the surface of the QDs. The energy of the QDs was transferred to the complex, resulting in the quenching of the QDs and thus decreasing the fluorescence intensity, which allowed the TNT to be sensed optically. DMIP@QDs generated a significantly reduced fluorescent intensity within less than 10 min upon binding TNT. The fluorescence-quenching fractions of the sensor presented a satisfactory linearity with TNT concentrations in the range of 0.8-30 μM, and its limit of detection could reach 0.28 μM. The sensor exhibited distinguished selectivity and a high binding affinity to TNT over its possibly competing molecules of 2,4-dinitrophenol (DNP), 4-nitrophenol (4-NP), phenol, and dinitrotoluene (DNT) because there are more nitro groups in TNT and therefore a stronger electron-withdrawing ability and because it has a high similarity in shape and volume to TNP. The sensor was successfully applied to determine the amount of TNT in soil samples, and the average recoveries of TNT at three spiking levels ranged from 90.3 to 97.8% with relative standard deviations below 5.12%. The results provided an effective way to develop sensors for the rapid recognition and determination of hazardous materials from complex matrices.
NASA Astrophysics Data System (ADS)
Dong, Liang; Hou, Changjun; Yang, Mei; Fa, Huanbao; Wu, Huixiang; Shen, Caihong; Huo, Danqun
2016-06-01
Cyanazine residue poses a great threat to human health and its derivatives would remain in soils, natural waters, and other environmental domains for a long time. Herein, a simple, rapid, and ultra-sensitive analytical method for the determination of cyanazine (CZ) based on inner filter effect (IFE) of Au nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (QDs) is first described in this study. With the presence of citrate-stabilized AuNPs, the fluorescence of GSH-capped CdTe QDs was remarkably quenched by AuNPs via IFE. The fluorescence of the AuNP-CdTe QD system was recovered upon addition of CZ. CZ can adsorb on to the surface of AuNPs due to its cyano group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the IFE of AuNPs on CdTe QDs was weakened, and the fluorescence intensity of CdTe QDs was recovered accordingly. A good linear correlation for detection of CZ was exhibited from 0.05 to 9 μM, and the detection limit reached 0.1568 μM, which was much lower than the safety limit required by the USA, the UK, and China. In order to probe into the selectivity of AuNPs towards CZ over other pesticides, various frequently used pesticides were mixed with AuNPs. AuNP composite solution shows good selectivity towards CZ among other pesticides. This method was successfully carried out for the assessment of CZ in real samples with satisfactory results, which revealed many advantages such as high sensitivity, low cost, and non-time-consuming compared with traditional methods.
CdTe quantum-dot-modified ZnO nanowire heterostructure
NASA Astrophysics Data System (ADS)
Shahi, Kanchana; Singh, R. S.; Singh, Ajaya Kumar; Aleksandrova, Mariya; Khenata, Rabah
2018-03-01
The effect of CdTe quantum-dot (QD) decoration on the photoluminescence (PL) behaviour of ZnO nanowire (NW) array is presented in the present work. Highly crystalline and vertically 40-50 nm diameter range and 1 µm in length aligned ZnO NWs are synthesized using low-cost method. The crystallinity and morphology of the NWs are studied by scanning electron microscopy and X-ray powder diffraction methods.Optical properties of the nanowires are studied using photo-response and PL spectroscopy. CdTe QDs are successfully synthesized on ZnO nanowire surface by dip-coating method. ZnO NWs are sensitized with CdTe QDs characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, and PL spectroscopy. The highly quenched PL intensity indicates the charge transfer at interface between CdTe QDs and ZnO NWs and is due to the formation of type-II heterostructure between QDs and NWs. Photo-response behaviour of heterostructure of the film is also been incorporated in the present work.
CdTe quantum dots as a novel biosensor for Serratia marcescens and Lipopolysaccharide.
Ebrahim, Sh; Reda, M; Hussien, A; Zayed, D
2015-01-01
The main objective of this work is to synthesize CdTe quantum dots (QDs) conjugated with Concanavalin A (Con A) as a novel biosensor to be selective and specific for the detection of Lipopolysaccharide (LPS). In addition, the conjugated CdTe QDs-Con A was used as fluorescence labels to capture Serratia marcescens bacteria through the recognition between CdTe QDs-Con A and LPS of S. marcescens. The appearance of the lattice plans in the high resolution transmission electron photograph indicated a high crystalline with an average size of 4-5 nm for the CdTe QDs. The results showed that the relative fluorescence intensity of CdTe QDs-Con A decreased linearly with LPS concentration in the range from 10 to 90 fg/mL and with correlation coefficient (R(2)) equal to 0.9713. LPS surrounding the S. marcescens bacteria was bound to the CdTe QDs-Con A and leads to quenching of PL intensity. It was found that a good linear relationship between the relative PL intensity and the logarithmic of cell population of S. marcescens in range from 1×10 to 1×10(6) CFU/mL at pH 7 with R(2) of 0.952 was established. Copyright © 2015 Elsevier B.V. All rights reserved.
Adsorption kinetics of alkanethiol-capped gold nanoparticles at the hexane-water interface
NASA Astrophysics Data System (ADS)
Ferdous, Sultana; Ioannidis, Marios A.; Henneke, Dale
2011-12-01
The pendant drop technique was used to characterize the adsorption behavior of n-dodecane-1-thiol and n-hexane-1-thiol-capped gold nanoparticles at the hexane-water interface. The adsorption process was studied by analyzing the dynamic interfacial tension versus nanoparticle concentration, both at early times and at later stages (i.e., immediately after the interface between the fluids is made and once equilibrium has been established). A series of gold colloids were made using nanoparticles ranging in size from 1.60 to 2.85 nm dissolved in hexane for the interfacial tension analysis. Following free diffusion of nanoparticles from the bulk hexane phase, adsorption leads to ordering and rearrangement of the nanoparticles at the interface and formation of a dense monolayer. With increasing interfacial coverage, the diffusion-controlled adsorption for the nanoparticles at the interface was found to change to an interaction-controlled assembly and the presence of an adsorption barrier was experimentally verified. At the same bulk concentration, different sizes of n-dodecane-1-thiol nanoparticles showed different absorption behavior at the interface, in agreement with the findings of Kutuzov et al. (Phys Chem Chem Phys 9:6351-6358, 2007). The experiments additionally demonstrated the important role played by the capping agent. At the same concentration, gold nanoparticles stabilized by n-hexane-1-thiol exhibited greater surface activity than gold nanoparticles of the same size stabilized by n-dodecane-1-thiol. These findings contribute to the design of useful supra-colloidal structures by the self-assembly of alkane-thiol-capped gold nanoparticles at liquid-liquid interfaces.
Jin, Meng; Mou, Zhao-Li; Zhang, Rui-Ling; Liang, Si-Si; Zhang, Zhi-Qi
2017-05-15
The development of a simple and accurate quantitative method for the determination of 6-mercaptopurine (6-MP) is of great importance because of its serious side effects. Ratiometric fluorescence (RF) sensors are not subject to interference from environmental factors, and exhibit enhanced precision and accuracy. Therefore, a novel RF sensor for the selective detection of 6-MP was developed based on a dual-emission nanosensor. The nanosensor was fabricated by combining a blue-emission metal-organic framework (MOF) NH 2 -MIL-53(Al) (λ em =425nm) with green-emission 3-mercaptopropionic acid-capped CdTe quantum dots (MPA-CdTe QDs) (λ em =528nm) under a single excitation wavelength (335nm). Upon addition of 6-MP, the fluorescence of NH 2 -MIL-53(Al) in the nanohybrid was selectively quenched due to strong inner filter effects, while the fluorescence of the MPA-CdTe QDs was enhanced. The novel RF sensor exhibited higher selectivity towards 6-MP than CdTe QDs alone, and higher sensitivity than MOFs alone. 6-MP could be detected in the range of 0-50μM with a detection limit of 0.15μM (S/N=3). The developed sensor was applied for the determination of 6-MP in human urine samples and satisfactory results were obtained. Overall, a novel and efficient fluorescence-based method was developed for the detection of 6-MP in biosamples. Copyright © 2016 Elsevier B.V. All rights reserved.
Synthesis and Properties of Water-Soluble Blue-Emitting Mn-Alloyed CdTe Quantum Dots
NASA Astrophysics Data System (ADS)
Tynkevych, Olena; Karavan, Volodymyr; Vorona, Igor; Filonenko, Svitlana; Khalavka, Yuriy
2018-05-01
In this work, we prepared CdTe quantum dots, and series of Cd1-xMnxTe-alloyed quantum dots with narrow size distribution by an ion-exchange reaction in water solution. We found that the photoluminescence peaks are shifted to higher energies with the increasing Mn2+ content. So far, this is the first report of blue-emitting CdTe-based quantum dots. By means of cyclic voltammetry, we detected features of electrochemical activity of manganese energy levels formed inside the Cd1-xMnxTe-alloyed quantum dot band gap. This allowed us to estimate their energy position. We also demonstrate paramagnetic behavior for Cd1-xMnxTe-alloyed quantum dots which confirmed the successful ion-exchange reaction.
Synthesis of positively charged CdTe quantum dots and detection for uric acid
NASA Astrophysics Data System (ADS)
Zhang, Tiliang; Sun, Xiangying; Liu, Bin
2011-09-01
The CdTe dots (QDs) coated with 2-Mercaptoethylamine was prepared in aqueous solution and characterized with fluorescence spectroscopy, UV-Vis absorption spectra, high-resolution transmission electron microscopy and infrared spectroscopy. When the λex = 350 nm, the fluorescence peak of positively charged CdTe quantum dots is at 592 nm. The uric acid is able to quench their fluorescence. Under optimum conditions, the change of fluorescence intensity is linearly proportional to the concentration of uric acid in the range 0.4000-3.600 μmol L -1, and the limit of detection calculated according to IUPAC definitions is 0.1030 μmol L -1. Compared with routine method, the present method determines uric acid in human serum with satisfactory results. The mechanism of this strategy is due to the interaction of the tautomeric keto/hydroxyl group of uric acid and the amino group coated at the CdTe QDs.
Fan, Junpeng; Shao, Ming; Lai, Lu; Liu, Yi; Xie, Zhixiong
2016-01-01
Cadmium telluride quantum dots (CdTe QDs) are used as near-infrared probes in biologic and medical applications, but their cytological effects and mechanism of potential toxicity are still unclear. In this study, we evaluated the toxicity of CdTe QDs of different sizes and investigated their mechanism of toxicity in the yeast Saccharomyces cerevisiae. A growth inhibition assay revealed that orange-emitting CdTe (O-CdTe) QDs (half inhibitory concentration [IC50] =59.44±12.02 nmol/L) were more toxic than green-emitting CdTe QDs (IC50 =186.61±19.74 nmol/L) to S. cerevisiae. Further studies on toxicity mechanisms using a transmission electron microscope and green fluorescent protein tagged Atg8 processing assay revealed that O-CdTe QDs could partially inhibit autophagy at a late stage, which differs from the results reported in mammalian cells. Moreover, autophagy inhibited at a late stage by O-CdTe QDs could be partially recovered by enhancing autophagy with rapamycin (an autophagy activator), combined with an increased number of living cells. These results indicate that inhibition of autophagy acts as a toxicity mechanism of CdTe QDs in S. cerevisiae. This work reports a novel toxicity mechanism of CdTe QDs in yeast and provides valuable information on the effect of CdTe QDs on the processes of living cells.
Toxicity evaluation of hydrophilic CdTe quantum dots and CdTe@SiO2 nanoparticles in mice.
Sadaf, Asma; Zeshan, Basit; Wang, Zhuyuan; Zhang, Ruohu; Xu, Shuhong; Wang, Chunlei; Cui, Yiping
2012-11-01
Quantum dots have drawn tremendous attention in the field of in vitro and small animal in vivo fluorescence imaging in the last decade. However, concerns over the cytotoxicity of their heavy metal constituents have limited their use in clinical applications. Here, we report our comparative studies on the toxicities of quantum dots (QDs) and silica coated CdTe nanoparticles (NPs) to mice after intravenous injection. The blood cells analysis showed significant increased level of white blood cells (WBCs) in groups treated with CdTe QDs as compared to the control while red blood cells (RBCs) and platelet counts were normal in treated as well as control groups. The concentration of biochemical markers of hepatic damage, alanine amino transferase (ALT) and aspartate aminotransferase (AST) were in the normal range in all the groups. However, renal function analyses of mice showed significantly increased in the concentration of blood urea nitrogen (BUN) and creatinine (CREA) in mice treated with CdTe QDs while remained within normal ranges in both the CdTe@SiO2 NPs and control group. The results of histopathology showed that the CdTe QDs caused mild nephrotoxicity while other organs were normal and no abnormalities were detected in control and CdTe@SiO2 treated group. These findings suggest that the nephrotoxicity could be minimized by silica coating which would be useful for many biomedical applications.
NASA Astrophysics Data System (ADS)
Franke, M.; Leubner, S.; Dubavik, A.; George, A.; Savchenko, T.; Pini, C.; Frank, P.; Melnikau, D.; Rakovich, Y.; Gaponik, N.; Eychmüller, A.; Richter, A.
2017-04-01
Microfluidic devices present the basis of modern life sciences and chemical information processing. To control the flow and to allow optical readout, a reliable sensor material that can be easily utilized for microfluidic systems is in demand. Here, we present a new optical readout system for pH sensing based on pH sensitive, photoluminescent glutathione capped cadmium telluride quantum dots that are covalently immobilized in a poly(acrylate) hydrogel. For an applicable pH sensing the generated hybrid material is integrated in a microfluidic sensor chip setup. The hybrid material not only allows in situ readout, but also possesses valve properties due to the swelling behavior of the poly(acrylate) hydrogel. In this work, the swelling property of the hybrid material is utilized in a microfluidic valve seat, where a valve opening process is demonstrated by a fluid flow change and in situ monitored by photoluminescence quenching. This discrete photoluminescence detection (ON/OFF) of the fluid flow change (OFF/ON) enables upcoming chemical information processing.
Synthesis and Properties of Water-Soluble Blue-Emitting Mn-Alloyed CdTe Quantum Dots.
Tynkevych, Olena; Karavan, Volodymyr; Vorona, Igor; Filonenko, Svitlana; Khalavka, Yuriy
2018-05-02
In this work, we prepared CdTe quantum dots, and series of Cd 1-x Mn x Te-alloyed quantum dots with narrow size distribution by an ion-exchange reaction in water solution. We found that the photoluminescence peaks are shifted to higher energies with the increasing Mn 2+ content. So far, this is the first report of blue-emitting CdTe-based quantum dots. By means of cyclic voltammetry, we detected features of electrochemical activity of manganese energy levels formed inside the Cd 1-x Mn x Te-alloyed quantum dot band gap. This allowed us to estimate their energy position. We also demonstrate paramagnetic behavior for Cd 1-x Mn x Te-alloyed quantum dots which confirmed the successful ion-exchange reaction.
CDTE alloys and their application for increasing solar cell performance
NASA Astrophysics Data System (ADS)
Swanson, Drew E.
Cadmium Telluride (CdTe) thin film solar is the largest manufactured solar cell technology in the United States and is responsible for one of the lowest costs of utility scale solar electricity at a purchase agreement of $0.0387/kWh. However, this cost could be further reduced by increasing the cell efficiency. To bridge the gap between the high efficiency technology and low cost manufacturing, a research and development tool and process was built and tested. This fully automated single vacuum PV manufacturing tool utilizes multiple inline close space sublimation (CSS) sources with automated substrate control. This maintains the proven scalability of the CSS technology and CSS source design but with the added versatility of independent substrate motion. This combination of a scalable deposition technology with increased cell fabrication flexibility has allowed for high efficiency cells to be manufactured and studied. The record efficiency of CdTe solar cells is lower than fundamental limitations due to a significant deficit in voltage. It has been modeled that there are two potential methods of decreasing this voltage deficiency. The first method is the incorporation of a high band gap film at the back contact to induce a conduction-band barrier that can reduce recombination by reflecting electrons from the back surface. The addition of a Cd1-x MgxTe (CMT) layer at the back of a CdTe solar cell should induce this desired offset and reflect both photoelectrons and forward-current electrons away from the rear surface. Higher collection of photoelectrons will increase the cells current and the reduction of forward current will increase the cells voltage. To have the optimal effect, CdTe must have reasonable carrier lifetimes and be fully depleted. To achieve this experimentally, CdTe layers have been grown sufficiently thin to help produce a fully depleted cell. A variety of measurements including performance curves, transmission electron microscopy, x-ray photoelectron spectroscopy, and energy-dispersive x-ray spectroscopy were performed to characterize these cells. Voltage improvements on the order of 50 mV are presented at a thin (1 ?m) CdTe absorber condition. However an overall reduction in fill factor (FF) is seen, with a strong reduction in FF as the magnesium incorporation is increased. Detailed material characterization shows the formation of oxides at the back of CdMgTe during the passivation process. A CdTe capping layer is added to reduce oxidation and help maintain the uniformity of the CdMgTe layer. A tellurium back contact is also added in place of a carbon paint back contact, reducing the impact of the valance band offset (VBO) from the CMT. With the addition of the capping layer and tellurium back contact a consistent 50 mV increase is seen with improved FF. However this voltage increase is well below modeled Voc increases of 150 mV. CMT double hetero-structures are manufactured and analyzed to estimate the interface recombination at the CdTe/CMT interface. The CdTe/CMT interface is approximated at 2*105 cm s-1 and modeling is referenced predicting significant reduction in performance based on this interface quality. To improve interface quality by removing the need for a vacuum break, the deposition hardware is incorporated into the primary deposition system. Second, CdTe has a somewhat higher band gap than optimal for single-junction terrestrial solar-cell power generation. A reduction in the band gap could therefore result in an overall improvement in performance. To reduce the band gap, selenium was alloyed with CdTe using a novel co-sublimation extension of the close-space-sublimation process. Co-sublimated layers of CdSeTe with various selenium concentrations were characterized for optical absorption and atomic concentrations, as well as to track changes in their morphology and crystallinity. The lower band-gap CdSeTe films were then incorporated into the front of CdTe cells. This two-layer band-gap structure demonstrated higher current collection and increased quantum efficiency at longer wavelengths. Material characterization shows the diffusion of selenium through the CdTe during passivation resulting in improved in lifetime and a reduced voltage deficit at lower band gaps.
Ma, Qiang; Li, Yang; Lin, Zi-Han; Tang, Guangchao; Su, Xing-Guang
2013-10-21
In this paper, CdTe quantum dot (QD)@silica nanobeads were used as modulated photoluminescence (PL) sensors for the sensing of ascorbic acid in aqueous solution for the first time. The sensor was developed based on the different quenching effects of Fe(2+) and Fe(3+) on the PL intensity of the CdTe QD@ silica nanobeads. Firstly, the PL intensity of the CdTe QDs was quenched in the presence of Fe(3+). Although both Fe(2+) and Fe(3+) could quench the PL intensity of the CdTe QDs, the quenching efficiency were quite different for Fe(2+) and Fe(3+). The PL intensity of the CdTe QD@silica nanobeads can be quenched by about 15% after the addition of Fe(3+) (60 μmol L(-1)), while the PL intensity of the CdTe QD@silica nanobeads can be quenched about 49% after the addition of Fe(2+) (60 μmol L(-1)). Therefore, the PL intensity of the CdTe QD@silica nanobeads decreased significantly when Fe(3+) was reduced to Fe(2+) by ascorbic acid. To confirm the strategy of PL modulation in this sensing system, trace H2O2 was introduced to oxidize Fe(2+) to Fe(3+). As a result, the PL intensity of the CdTe QD@silica nanobeads was partly recovered. The proposed sensor could be used for ascorbic acid sensing in the concentration range of 3.33-400 μmol L(-1), with a detection limit (3σ) of 1.25 μmol L(-1) The feasibility of the proposed sensor for ascorbic acid determination in tablet samples was also studied, and satisfactory results were obtained.
Yu, Hong-Wei; Jiang, Jing-Hui; Zhang, Ze; Wan, Guang-Cai; Liu, Zhi-Yong; Chang, Dong; Pan, Hong-Zhi
2017-02-15
The assembly of quantum dots (QDs) in a simply method opens up opportunities to obtain access to the full potential of assembled QDs by virtue of the collective properties of the ensembles. In this study, quantum dots CdTe and graphene (Gr) nanocomposite was constructed for the simultaneous determination of uric acid (UA) and dopamine (DA). The CdTe QDs-Gr nanocomposite was prepared by ultrasonication and was characterized with microscopic techniques. The nanocomposite modified electrode was characterized by cyclicvoltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effects between CdTe QDs and Gr, the fabricated electrode exhibited excellent electrochemical catalytic activities, good biological compatibility and high sensitivity toward the oxidation of UA and DA. Under optimum conditions, in the co-existence system the linear calibration plots for UA and DA were obtained over the range of 3-600 μM and 1-500 μM with detection limits of 1.0 μM and 0.33 μM. The fabricated biosensor also exhibits the excellent repeatability, reproducibility, storage stability along with acceptable selectivity. Copyright © 2016. Published by Elsevier Inc.
Tiwari, A; Dhoble, S J; Kher, R S
2015-11-01
Mercaptoethanol (ME), mercaptopropionic acid (MPA) and L-cysteine (L-Cys) having -SH functional groups were used as surface passivating agents for the wet chemical synthesis of ZnS nanoparticles. The effect of the thiol group on the optical and photoluminescence (PL) properties of ZnS nanoparticles was studied. L-Cysteine-capped ZnS nanoparticles showed the highest PL intensity among the studied capping agents, with a PL emission peak at 455 nm. The PL intensity was found to be dependent on the concentration of Zn(2+) and S(2-) precursors. The effect of buffer on the PL intensity of L-Cys-capped ZnS nanoparticles was also studied. UV/Vis spectra showed blue shifting of the absorption edge. Copyright © 2015 John Wiley & Sons, Ltd.
2016-03-21
ORIGINAL PAPER Silicon solar cell efficiency improvement employing the photoluminescent, down-shifting effects of carbon and CdTe quantum dots Elias...smaller influence on solar cell performance, they are con- sidered to be a more attractive option due to their afford- ability and minimal impact in the...Photovoltaics Solar cells Introduction There is a generalized trend to demonstrate higher solar cell efficiency with more affordable devices to promote
Novel aspects of application of cadmium telluride quantum dots nanostructures in radiation oncology
NASA Astrophysics Data System (ADS)
Fazaeli, Yousef; Zare, Hakimeh; Karimi, Shokufeh; Rahighi, Reza; Feizi, Shahzad
2017-08-01
In the last two decades, quantum dots nanomaterials have garnered a great deal of scientific interest because of their unique properties. Quantum dots (QDs) are inorganic fluorescent nanocrystals in the size range between 1 and 20 nm. Due to their structural properties, they possess distinctive properties and behave in different way from crystals in macro scale, in many branches of human life. Cadmium telluride quantum dots (CdTe QDs) were labeled with 68Ga radio nuclide for fast in vivo targeting and coincidence imaging of tumors. Using instant paper chromatography, the physicochemical properties of the Cadmium telluride quantum dots labeled with 68Ga NPs (68Ga@ CdTe QDs) were found high enough stable in organic phases, e.g., a human serum, to be reliably used in bioapplications. In vivo biodistribution of the 68Ga@ CdTe QDs nanoconposite was investigated in rats bearing fibro sarcoma tumor after various post-injection periods of time. The 68Ga NPs exhibited a rapid as well as high tumor uptake in a very short period of time (less than 10 min), resulting in an efficient tumor targeting/imaging agent. Meantime, the low lipophilicity of the 68Ga NPs caused to their fast excretion throughout the body by kidneys (as also confirmed by the urinary tract). Because of the short half-life of 68Ga radionuclide, the 68Ga@ CdTe QDs with an excellent tumor targeting/imaging and fast washing out from the body can be suggested as one of the most effective and promising nanomaterials in nanotechnology-based cancer diagnosis and therapy.
Experimental observation of Fano effect in Ag nanoparticle-CdTe quantum dot hybrid system
NASA Astrophysics Data System (ADS)
Gurung, Sabina; Jayabalan, J.; Singh, Asha; Khan, Salahuddin; Chari, Rama
2018-04-01
We have experimentally measured the optical properties of Ag nanoparticle-CdTe quantum dot hybrid system and compared it with that of bare CdTe quantum dot colloid. It has been shown that the photoluminescence line shape of CdTe quantum dots becomes asymmetric in presence of Ag nanoparticles. The observed changes in the PL spectrum closely match the expected changes in the line shape due to Fano interaction between discrete level and continuum levels. Our experiment shows that a very small fraction of metal nanoparticles in the metal-semiconductor hybrid is sufficient to induce such changes in line shape which is in contrary to the earlier reported theoretical prediction on metal-semiconductor hybrid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Xiao; Wang, Hao; Yi, Qinghua
2015-11-16
Due to the different emission mechanism between fluorescent carbon dots and semiconductor quantum dots (QDs), it is of interest to explore the potential emission in hetero-structured carbon dots/semiconducting QDs. Herein, we design carbon dots coated CdTe QDs (CDQDs) and investigate their inherent emission. We demonstrate switchable emission for the hetero-interactions of the CDQDs. Optical analyses indicate electron transfer between the carbon dots and the CdTe QDs. A heterojunction electron process is proposed as the driving mechanism based on N atom protonation of the carbon dots. This work advances our understanding of the interaction mechanism of the heterostructured CDQDs and benefitsmore » the future development of optoelectronic nanodevices with new functionalities.« less
NASA Astrophysics Data System (ADS)
Slyusarenko, N. V.; Gerasimova, M. A.; Slabko, V. V.; Slyusareva, E. A.
2017-07-01
Polymer particles with sizes 0.3-0.4 μm are synthesized based on chitosan and chondroitin sulfate with incorporated CdTe (core) and CdSe/ZnS (core-shell) quantum dots. Their morphological and spectral properties are investigated by the methods of dynamic scattering, electron microscopy, and absorption and luminescence spectroscopy at temperatures from 10 to 80°C. Spectral effects associated with a change in temperature (a red shift and a decrease in the amplitude of the photoluminescence spectrum) can be explained by the temperature expansion of the quantum dots and activation of surface traps. It is shown that the temperature sensitivity of spectra of the quantum dots incorporated into the biopolymer particles is not less than in water. To develop an optical temperature sensor, the core quantum dots are more preferable than the core-shell quantum dots.
Pan, Ling-Yun; Pan, Gen-Cai; Zhang, Yong-Lai; Gao, Bing-Rong; Dai, Zhen-Wen
2013-02-01
As the priority of interconnects and active components in nanoscale optical and electronic devices, three-dimensional hyper-branched nanostructures came into focus of research. Recently, a novel crystallization route, named as "nonclassical crystallization," has been reported for three-dimensional nanostructuring. In this process, Quantum dots are used as building blocks for the construction of the whole hyper-branched structures instead of ions or single-molecules in conventional crystallization. The specialty of these nanostructures is the inheritability of pristine quantum dots' physical integrity because of their polycrystalline structures, such as quantum confinement effect and thus the luminescence. Moreover, since a longer diffusion length could exist in polycrystalline nanostructures due to the dramatically decreased distance between pristine quantum dots, the exciton-exciton interaction would be different with well dispersed quantum dots and single crystal nanostructures. This may be a benefit for electron transport in solar cell application. Therefore, it is very necessary to investigate the exciton-exciton interaction in such kind of polycrystalline nanostructures and their optical properites for solar cell application. In this research, we report a novel CdTe hyper-branched nanostructures based on self-assembly of CdTe quantum dots. Each branch shows polycrystalline with pristine quantum dots as the building units. Both steady state and time-resolved spectroscopy were performed to investigate the properties of carrier transport. Steady state optical properties of pristine quantum dots are well inherited by formed structures. While a suppressed multi-exciton recombination rate was observed. This result supports the percolation of carriers through the branches' network.
A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature
NASA Astrophysics Data System (ADS)
Liu, Yan; Shen, Qihui; Yu, Dongdong; Shi, Weiguang; Li, Jixue; Zhou, Jianguang; Liu, Xiaoyang
2008-06-01
One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660 nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals.
Adegoke, Oluwasesan; Seo, Min-Woong; Kato, Tatsuya; Kawahito, Shoji; Park, Enoch Y
2016-12-15
Ultrasensitive, rapid and selective diagnostic probes are urgently needed to overcome the limitations of traditional probes for norovirus (NV). Here, we report the detection of NV genogroup II via nucleic acid hybridization technology using a quantum dot (QD)-conjugated molecular beacon (MB) probe. To boost the sensitivity of the MB assay system, an ultrasensitive QD fluorophore with unique optical properties was synthesized, characterized and exploited as a fluorescence signal generator. Alloyed thioglycolic (TGA)-capped CdZnSeS QDs with a high photoluminescence (PL) quantum yield (QY) value of 92% were synthesized, and a modified silanization method was employed to encapsulate the thiol-capped QDs in a silica layer. The resulting highly luminescent alloyed SiO2-coated CdZnSeS QDs had a remarkable PL QY value of 98%. Transmission electron microscopy and dynamic light scattering confirmed the monodispersity of the alloyed nanocrystals, and zeta potential analysis confirmed their colloidal stability. Powder X-ray diffraction and PL lifetime measurements confirmed the surface modification of the QDs. The alloyed TGA-capped and SiO2-coated CdZnSeS QD-conjugated MB bioprobes detected extremely low concentrations of NV RNA. Ultrasensitive detection of low concentrations of NV RNA with a limit of detection (LOD) of 8.2copies/mL in human serum and a LOD of 9.3 copies/mL in buffer was achieved using the SiO2-coated CdZnSeS QD-MB probes, an increase in sensitivity of 3-fold compared with the detection limit for NV RNA using TGA-capped CdZnSeS QD-MBs. The additional merits of our detection system are rapidity, specificity and improved sensitivity over conventional molecular test probes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Aga, R S; Gunther, D; Ueda, A; Pan, Z; Collins, W E; Mu, R; Singer, K D
2009-11-18
A photosensitized high-surface area transparent electrode has been employed to increase the short circuit current of a photovoltaic device with a blend of poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM) as the active layer. This is achieved by directly growing ZnO nanowires on indium tin oxide (ITO) film via a physical vapor method. The nanowire surface is then decorated with CdTe quantum dots by pulsed electron-beam deposition (PED). The nanowires alone provided a 20-fold increase in the short circuit current under visible light illumination. This was further increased by a factor of approximately 1.5 by the photosensitization effect of CdTe, which has an optical absorption of up to 820 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirose, Takuya; Tamai, Naoto, E-mail: tamai@kwansei.ac.jp; Kutsuma, Yasunori
We have prepared epitaxial graphene by a Si sublimation method from 4H-SiC. Single-particle spectroscopy of CdTe quantum dots (QDs) on epitaxial graphene covered with polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG) showed the suppression of luminescence blinking and ∼10 times decreased luminescence intensity as compared with those on a glass. The electronic coupling constant, H{sub 01}, between CdTe QDs and graphene was calculated to be (3.3 ± 0.4) × 10{sup 2 }cm{sup −1} in PVP and (3.7 ± 0.8) × 10{sup 2 }cm{sup −1} in PEG based on Marcus theory of electron transfer and Tang-Marcus model of blinking with statistical distribution.
NASA Astrophysics Data System (ADS)
Zhou, Zhiping; Ying, Haiqin; Liu, Yanyan; Xu, Wanzhen; Yang, Yanfei; Luan, Yu; Lu, Yi; Liu, Tianshu; Yu, Shui; Yang, Wenming
2017-05-01
This paper demonstrates a facile method to synthesize surface molecular imprinting polymer (MIP) on SiO2-coated CdTe QDs for selective detection of sulfadimidine (SM2). The fluorescent MIP sensor was prepared using cadmium telluride quantum dots (CdTe QDs) as the material of fluorescent signal readout, sulfadimidine as template molecule, 3-aminopropyltriethoxysilane (APTES) as functional monomer and tetraethyloxysilane (TEOS) as cross-linking agent. The CdTe cores were embed in the silicon shells by a sol-gel reaction and then the molecular imprinting layers were immobilized on the surface of the SiO2-coated CdTe QDs. Under the optimized conditions, the relative fluorescent intensity weakened in a linear way with the increasing concentration of sulfadimidine in the range of 10-60 μmol L-1. The practical application of the fluorescent MIP sensor was evaluated by means of analyzing sulfadimidine in the real milk samples. The recoveries were at the range of 90.3-99.6% and the relative standard deviation (RSD) ranged from 1.9 to 3.1%, which indicates the successful synthesis of the fluorescent MIP sensor. This sensor provides an alternative solution for selective determination of sulfadimidine from real milk samples.
Hydrophilic ionic liquid-passivated CdTe quantum dots for mercury ion detection.
Chao, Mu-Rong; Chang, Yan-Zin; Chen, Jian-Lian
2013-04-15
A hydrophilic ionic liquid, 1-ethyl-3-methylimidazolium dicyanamide (EMIDCA), was used as a medium for the synthesis of highly luminescent CdTe nanocrystals (NCs) capped with thioglycolic acid (TGA). The synthesis was performed for 8 h at 130 °C, was similar to nanocrystal preparation in an aqueous medium, and used safe, low-cost inorganic salts as precursors. After the reaction, the photoluminescence quantum yield of the CdTe NCs (NC(IL-130)) prepared in EMIDCA was significantly higher than that of the nanocrystals prepared in water (NC(w)) at 100 °C (86% vs. 35%). Moreover, the emission wavelength and particle size of NC(IL-130) were smaller than NC(w) (450 nm vs. 540 nm and 4.0 nm vs. 5.2 nm, respectively). The activation of NC(IL-130) was successful due to the coordinated action of two ligands, EMIDCA and TGA, in the primary steps of the NC formation pathway. An increase or decrease in the synthesis temperature, to 160 °C or 100 °C, respectively, was detrimental to the luminescence quality. However, the quenching effect of Hg²⁺ on the fluorescence signals of the NC(IL-130) was distinctively unique, whereas certain interfering ions, such as Pb²⁺, Fe³⁺, Co²⁺, Ni²⁺, Ag⁺, and Cu²⁺, could also quench the emission of the NC(w). Based on the Perrin model, the quenching signals of NC(w) and NC(IL-130) were well correlated with the Hg²⁺ concentrations in the phosphate buffer (pH 7.5, 50 mM). In comparison with the NC(w), the NC(IL-130) had a high tolerance of the interfering ions coexisting with the Hg²⁺ analyte, high recovery of Hg²⁺ spiked in the BSA- or FBS-containing medium, and high stability of fluorescence quenching signals between trials and days. The NC(IL-130) nanocrystals can potentially be used to develop a probe system for the determination of Hg²⁺ in physiological samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Cadmium sulfate and CdTe-quantum dots alter DNA repair in zebrafish (Danio rerio) liver cells.
Tang, Song; Cai, Qingsong; Chibli, Hicham; Allagadda, Vinay; Nadeau, Jay L; Mayer, Gregory D
2013-10-15
Increasing use of quantum dots (QDs) makes it necessary to evaluate their toxicological impacts on aquatic organisms, since their contamination of surface water is inevitable. This study compares the genotoxic effects of ionic Cd versus CdTe nanocrystals in zebrafish hepatocytes. After 24h of CdSO4 or CdTe QD exposure, zebrafish liver (ZFL) cells showed a decreased number of viable cells, an accumulation of Cd, an increased formation of reactive oxygen species (ROS), and an induction of DNA strand breaks. Measured levels of stress defense and DNA repair genes were elevated in both cases. However, removal of bulky DNA adducts by nucleotide excision repair (NER) was inhibited with CdSO4 but not with CdTe QDs. The adverse effects caused by acute exposure of CdTe QDs might be mediated through differing mechanisms than those resulting from ionic cadmium toxicity, and studying the effects of metallic components may be not enough to explain QD toxicities in aquatic organisms. Copyright © 2013 Elsevier Inc. All rights reserved.
Boldt, Klaus; Jander, Sebastian; Hoppe, Kathrin; Weller, Horst
2011-10-25
We present the characterization of the organic ligand shell of CdSe/Cd(x)Zn(1-x)S/ZnS nanoparticles by means of fluorescence quenching experiments. Both electron scavengers and acceptors for resonance energy transfer were employed as probes. Different quenching behavior for short and long chain thiol ligands in water was found. It could be shown that poly(ethylene oxide) (PEO)-capping of the particles comprises a densely packed inner shell and a loosely packed outer shell in which ions and small molecules diffuse unhindered. A quantitative uptake of quencher molecules into the PEO shell was observed, through which the particle volume including the ligand sphere could be determined.
Zimmermann, Aleksandra; Horak, Jeannie; Sánchez-Muñoz, Orlando L; Lämmerhofer, Michael
2015-08-28
A series of new mixed-mode reversed-phase/weak anion-exchange (RP/WAX) phases have been synthesized by immobilization of N-undecenyl-3-α-aminotropane onto thiol-modified silica gel by thiol-ene click chemistry and subsequent introduction of acidic thiol-endcapping functionalities of different type and surface densities. Click chemistry allowed to adjust a controlled surface concentration of the RP/WAX ligand in such a way that a sufficient quantity of residual thiols remained unmodified which have been capped by thiol click with either 3-butenoic acid or allylsulfonic acid as co-ligands. In another embodiment, performic acid oxidation of N-undecenyl-3-α-aminotropane-derivatized thiol-modified silica gave a RP/WAX phase with high density of sulfonic acid end-capping groups. ζ-Potential determinations confirmed the fine-tuned pI of these mixed-mode stationary phases which was shifted from 9.5 to 8.2, 7.8, and 6.5 with 3-butenoic acid and allylsulfonic acid end-capping as well as performic acid oxidation. For acidic solutes, the co-ionic endcapping leads to strongly reduced retention times and clearly allowed elution of these analytes under lower ionic strength thus milder elution conditions. In spite of the acidic endcapping, the new mixed-mode phases maintained their hydrophobic and anion-exchange selectivity as well as their multimodal nature featuring RP and HILIC elution domains at acetonitrile percentages below and above 50%, respectively. Column classification by principal component analysis of an extended retention map in comparison to a set of polar commercial and in-house synthesized stationary phases confirmed complementarity of the new mixed-mode phases with respect to HILIC, polar RP, amino and commercial mixed-mode phases. Copyright © 2015 Elsevier B.V. All rights reserved.
Acetate- and thiol-capped monodisperse ruthenium nanoparticles: XPS, XAS, and HRTEM studies.
Chakroune, Nassira; Viau, Guillaume; Ammar, Souad; Poul, Laurence; Veautier, Delphine; Chehimi, Mohamed M; Mangeney, Claire; Villain, Françoise; Fiévet, Fernand
2005-07-19
Monodisperse ruthenium nanoparticles were prepared by reduction of RuCl3 in 1,2-propanediol. The mean particle size was controlled by appropriate choice of the reduction temperature and the acetate ion concentration. Colloidal solutions in toluene were obtained by coating the metal particles with dodecanethiol. High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XANES and EXAFS for the Ru K-absorption edge) were performed on particles of two different diameters, 2 and 4 nm, and in different environments, polyol/acetate or thiol. For particles stored in polyol/acetate XPS studies revealed superficial oxidation limited to one monolayer and a surface coating containing mostly acetate ions. Analysis of the EXAFS spectra showed both oxygen and ruthenium atoms around the ruthenium atoms with a Ru-Ru coordination number N smaller than the bulk value, as expected for fine particles. In the case of 2 nm acetate-capped particles N is consistent with particles made up of a metallic core and an oxidized monolayer. For 2 nm thiol-coated particles, a Ru-S bond was evidenced by XPS and XAS. For the 4 nm particles XANES and XPS studies showed that most of the ruthenium atoms are in the zerovalent state. Nevertheless, in both cases, when capped with thiol, the Ru-Ru coordination number inferred from EXAFS is much smaller than for particles of the same size stored in polyol. This is attributed to a structural disorganization of the particles by thiol chemisorption. HRTEM studies confirm the marked dependence of the structural properties of the ruthenium particles on their chemical environment; they show the acetate-coated particles to be single crystals, whereas the thiol-coated particles appear to be polycrystalline.
Taniguchi, Shohei; Green, Mark; Lim, Teck
2011-03-16
The room-temperature chemical transformation of spherical CdTe nanoparticles into anisotropic alloyed CdHgTe particles using mercury bromide in a toluene/methanol system at room temperature has been investigated. The resulting materials readily dissolved in toluene and exhibited a significant red-shift in the optical properties toward the infrared region. Structural transformations were observed, with electron microscopy showing that the CdTe nanoparticles were chemically attached ('welded') to other CdTe nanoparticles, creating highly complex anisotropic heterostructures which also incorporated mercury.
Melt-growth dynamics in CdTe crystals
Zhou, X. W.; Ward, D. K.; Wong, B. M.; ...
2012-06-01
We use a new, quantum-mechanics-based bond-order potential (BOP) to reveal melt growth dynamics and fine scale defect formation mechanisms in CdTe crystals. Previous molecular dynamics simulations of semiconductors have shown qualitatively incorrect behavior due to the lack of an interatomic potential capable of predicting both crystalline growth and property trends of many transitional structures encountered during the melt → crystal transformation. Here, we demonstrate successful molecular dynamics simulations of melt growth in CdTe using a BOP that significantly improves over other potentials on property trends of different phases. Our simulations result in a detailed understanding of defect formation during themore » melt growth process. Equally important, we show that the new BOP enables defect formation mechanisms to be studied at a scale level comparable to empirical molecular dynamics simulation methods with a fidelity level approaching quantum-mechanical methods.« less
Nanowire growth and sublimation: CdTe quantum dots in ZnTe nanowires
NASA Astrophysics Data System (ADS)
Orrù, M.; Robin, E.; Den Hertog, M.; Moratis, K.; Genuist, Y.; André, R.; Ferrand, D.; Cibert, J.; Bellet-Amalric, E.
2018-04-01
The role of the sublimation of the compound and of the evaporation of the constituents from the gold nanoparticle during the growth of semiconductor nanowires is exemplified with CdTe-ZnTe heterostructures. Operating close to the upper temperature limit strongly reduces the amount of Cd present in the gold nanoparticle and the density of adatoms on the nanowire sidewalls. As a result, the growth rate is small and strongly temperature dependent, but a good control of the growth conditions allows the incorporation of quantum dots in nanowires with sharp interfaces and adjustable shape, and it minimizes the radial growth and the subsequent formation of additional CdTe clusters on the nanowire sidewalls, as confirmed by photoluminescence. Uncapped CdTe segments dissolve into the gold nanoparticle when interrupting the flux, giving rise to a bulblike (pendant-droplet) shape attributed to the Kirkendall effect.
CdTe quantum dot as a fluorescence probe for vitamin B12 in dosage form
NASA Astrophysics Data System (ADS)
Vaishnavi, E.; Renganathan, R.
2013-11-01
We here report the CdTe quantum dot (CdTe QDs)-based sensor for probing vitamin B12 derivatives in aqueous solution. In this paper, simple and sensitive fluorescence quenching measurements has been employed. The Stern-Volmer constant (KSV), quenching rate constant (kq) and binding constant (K) were rationalized from fluorescence quenching measurement. Furthermore, the fluorescence resonance energy transfer (FRET) mechanism was discussed. This method was applicable over the concentration ranging from 1 to 14 μg/mL (VB12) with correlation coefficient of 0.993. The limit of detection (LOD) of VB12 was found to be 0.15 μg/mL. Moreover, the present approach opens a simple pathway for developing cost-effective, sensitive and selective QD-based fluorescence sensors/probes for biologically significant VB12 in pharmaceutical sample with mean recoveries in the range of 100-102.1%.
CdTe quantum dot as a fluorescence probe for vitamin B(12) in dosage form.
Vaishnavi, E; Renganathan, R
2013-11-01
We here report the CdTe quantum dot (CdTe QDs)-based sensor for probing vitamin B12 derivatives in aqueous solution. In this paper, simple and sensitive fluorescence quenching measurements has been employed. The Stern-Volmer constant (KSV), quenching rate constant (kq) and binding constant (K) were rationalized from fluorescence quenching measurement. Furthermore, the fluorescence resonance energy transfer (FRET) mechanism was discussed. This method was applicable over the concentration ranging from 1 to 14μg/mL (VB12) with correlation coefficient of 0.993. The limit of detection (LOD) of VB12 was found to be 0.15μg/mL. Moreover, the present approach opens a simple pathway for developing cost-effective, sensitive and selective QD-based fluorescence sensors/probes for biologically significant VB12 in pharmaceutical sample with mean recoveries in the range of 100-102.1%. Copyright © 2013 Elsevier B.V. All rights reserved.
Voltammetry as a Tool for Characterization of CdTe Quantum Dots
Sobrova, Pavlina; Ryvolova, Marketa; Hubalek, Jaromir; Adam, Vojtech; Kizek, Rene
2013-01-01
Electrochemical detection of quantum dots (QDs) has already been used in numerous applications. However, QDs have not been well characterized using voltammetry, with respect to their characterization and quantification. Therefore, the main aim was to characterize CdTe QDs using cyclic and differential pulse voltammetry. The obtained peaks were identified and the detection limit (3 S/N) was estimated down to 100 fg/mL. Based on the convincing results, a new method for how to study stability and quantify the dots was suggested. Thus, the approach was further utilized for the testing of QDs stability. PMID:23807507
Nano-bio assemblies for artificial light harvesting systems
NASA Astrophysics Data System (ADS)
Bain, Dipankar; Maity, Subarna; Patra, Amitava
2018-02-01
Ultrasmall fluorescent gold nanoclusters (Au NCs) have drawn considerable research interest owing to their molecular like properties such as d-sp and sp-sp transitions, and intense fluorescence. Fluorescent Au NCs have especial attraction in biological system owing to their biocompatibility and high photostability. Recently, several strategies have been adapted to design an artificial light-harvesting system using Au NCs for potential applications. Here, we have designed Au nanoclusters based dsDNA (double stranded deoxyribonucleic acid) nano assemblies where the Au nanocluster is covalently attached with Alexa Fluor 488 (A488) dye tagged dsDNA. Investigation reveals that the incorporation of Ag+ into dsDNA enhances the rate of energy transfer from A488 to Au NCs. In addition cadmium telluride quantum dot (CdTe QDs) based Au NCs hybrid material shows the significant enhancement of energy transfer 35% to 83% with changing the capping ligand of Au NCs from glutathione (GSH) to bovine serum albumin (BSA) protein. Another hybrid system is developed using carbon dots and dye encapsulated BSA-protein capped Au NCs for efficient light harvesting system with 83% energy transfer efficiency. Thus, Au NCs base nano bio assemblies may open up new possibilities for the construction of artificial light harvesting system.
NASA Astrophysics Data System (ADS)
Soheyli, Ehsan; Sahraei, Reza; Nabiyouni, Gholamreza
2017-03-01
In the present study, a series of aqueous-based ZnSe(S) nanocrystals (NCs) was prepared at different solution pH ranging from 8 to 11.9, and using N-acetyl-L-cysteine (NAC) as capping agent. In addition to zinc blende structure, the X-ray diffraction studies demonstrated the quantum size regime of the ZnSe(S) NCs. To gain further insight toward the influence of the quantum confinement and pH values on optical properties of the as-prepared NCs, their UV-visible absorption and photoluminescence spectra were systematically analyzed. The absorption spectra experienced a red shift from 340 to 382 nm as the pH increased from 8.0 to 11.9, indicating the growth of the as-prepared ZnSe(S) NCs. The emission spectra also show the obvious red shift and the relative area of excitonic to trap emission, firstly increases from pH = 8.0 to 10.7, and then decreases by further increasing of the solution pH. The initial behavior might be due to the improved surface passivation of the trap dangling states by better deprotonation of thiol groups in NAC, whereas at pH >10.7, the faster growth rate of the ZnSe(s) NCs may lead to the formation of many defect sites. All of these phenomena were combined in the scheme which displays the effect of quantum confinement and solution pH on variation of the excitonic and trap-related emissions.
Near-unity quantum yields from chloride treated CdTe colloidal quantum dots
Page, Robert C.; Espinobarro-Velazquez, Daniel; Leontiadou, Marina A.; ...
2014-10-27
Colloidal quantum dots (CQDs) are promising materials for novel light sources and solar energy conversion. However, trap states associated with the CQD surface can produce non-radiative charge recombination that significantly reduces device performance. Here a facile post-synthetic treatment of CdTe CQDs is demonstrated that uses chloride ions to achieve near-complete suppression of surface trapping, resulting in an increase of photoluminescence (PL) quantum yield (QY) from ca. 5% to up to 97.2 ± 2.5%. The effect of the treatment is characterised by absorption and PL spectroscopy, PL decay, scanning transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. We find thismore » process also dramatically improves the air-stability of the CQDs: before treatment the PL is largely quenched after 1 hour of air-exposure, whilst the treated samples showed a PL QY of nearly 50% after more than 12 hours.« less
Concentration and size dependence of peak wavelength shift on quantum dots in colloidal suspension
NASA Astrophysics Data System (ADS)
Rinehart, Benjamin S.; Cao, Caroline G. L.
2016-08-01
Quantum dots (QDs) are semiconductor nanocrystals that have significant advantages over organic fluorophores, including their extremely narrow Gaussian emission bands and broad absorption bands. Thus, QDs have a wide range of potential applications, such as in quantum computing, photovoltaic cells, biological sensing, and electronics. For these applications, aliasing provides a detrimental effect on signal identification efficiency. This can be avoided through characterization of the QD fluorescence signals. Characterization of the emissivity of CdTe QDs as a function of concentration (1 to 10 mg/ml aqueous) was conducted on 12 commercially available CdTe QDs (emission peaks 550 to 730 nm). The samples were excited by a 50-mW 405-nm laser with emission collected via a free-space CCD spectrometer. All QDs showed a redshift effect as concentration increased. On average, the CdTe QDs exhibited a maximum shift of +35.6 nm at 10 mg/ml and a minimum shift of +27.24 nm at 1 mg/ml, indicating a concentration dependence for shift magnitude. The concentration-dependent redshift function can be used to predict emission response as QD concentration is changed in a complex system.
Tunable single and double emission semiconductor nanocrystal quantum dots: a multianalyte sensor
NASA Astrophysics Data System (ADS)
Ratnesh, Ratneshwar Kumar; Singh Mehata, Mohan
2018-07-01
We have prepared stable colloidal CdTe and CdTe/ZnS core–shell quantum dots (QDs) using hot injection chemical route. The developed CdTe QDs emit tunable single and dual photoluminescence (PL) bands, originating from the direct band edge and the surface state of QDs, as evident by the steady-state and time-resolved spectroscopy. The developed CdTe and CdTe/ZnS QDs act as optical sensors for the detection of metal ions (e.g., Fe2+ and Pb2+) in the feed water. The PL quenching in the presence of analytes has been examined by both the steady-state and time-resolved PL spectroscopy. The linear Stern–Volmer (S–V) plots obtained for PL intensity and lifetime as a function of metal ion concentration demonstrates the diffusion-mediated collisional quenching as a dominant mechanism together with the possibility of fluorescence resonance energy transfer. Thus, the prepared core and core–shell QDs which cover a broad spectral range of white light with high quantum yield (QY) are highly sensitive to the detection of metal ions in feed water and are also important for biological applications (Ratnesh and Mehata 2017 Spectrochim. Acta A: Mol. Biomol. Spectro. 179 201–10).
Chemiluminescence Resonance Energy Transfer-based Detection for Microchip Electrophoresis
Huang, Yong; Shi, Ming; Liu, Rongjun
2010-01-01
Since the channels in micro- and nanofluidic devices are extremely small, a sensitive detection is required following microchip electrophoresis (MCE). This work describes a highly sensitive and yet universal detection scheme based on chemiluminescence resonance energy transfer (CRET) for MCE. It was found that an efficient CRET occurred between a luminol donor and a CdTe quantum dot (QD) acceptor in the luminol-NaBrO-QD system, and that it was sensitively suppressed by the presence of certain organic compounds of biological interest including biogenic amines and thiols, amino acids, organic acids, and steroids. These findings allowed developing sensitive MCE-CL assays for the tested compounds. The proposed MCE-CL methods showed desired analytical figures of merit such as a wide concentration range of linear response. Detection limits obtained were ~10−9 M for biogenic amines including dopamine and epinephrine, and ~ 10−8 M for biogenic thiols (e.g. glutathione and acetylcysteine), organic acids (i.e. ascorbic acid and uric acid), estrogens, and native amino acids. These were 10 to 1000 times more sensitive than those of previously reported MCE-based methods with chemiluminescence, electrochemical, or laser induced fluorescence detection for quantifying corresponding compounds. To evaluate the applicability of the present MCE-CL method for analyzing real biological samples, it was used to determine amino acids in individual human red blood cells. Nine amino acids including Lys, Ser, Ala, Glu, Trp, etc. were detected. The contents ranged from 3 to 31 amol /cell. The assay proved to be simple, quick, reproducible, and very sensitive. PMID:20121202
Poplawsky, Jonathan D.; Guo, Wei; Paudel, Naba; ...
2016-07-27
The published external quantum efficiency data of the world-record CdTe solar cell suggests that the device uses bandgap engineering, most likely with a CdTe xSe 1₋x alloy layer to increase the short-circuit current and overall device efficiency. Here atom probe tomography, transmission electron microscopy and electron beam-induced current are used to clarify the dependence of Se content on the photoactive properties of CdTe xSe 1₋x alloy layers in bandgap-graded CdTe solar cells. Four solar cells were prepared with 50, 100, 200 and 400 nm-thick CdSe layers to reveal the formation, growth, composition, structure and photoactivity of the CdTe xSe 1₋xmore » alloy with respect to the degree of Se diffusion. Finally, the results show that the CdTe xSe 1₋x layer photoactivity is highly dependent on the crystalline structure of the alloy (zincblende versus wurtzite), which is also dependent on the Se and Te concentrations.« less
Kuttig, Jan D; Steiding, Christian; Kolditz, Daniel; Hupfer, Martin; Karolczak, Marek; Kalender, Willi A
2015-06-01
To investigate the dose saving potential of direct-converting CdTe photon-counting detector technology for dedicated breast CT. We analyzed the modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) of two detector technologies, suitable for breast CT (BCT): a flat-panel energy-integrating detector with a 70 μm and a 208 μm thick gadolinium oxysulfide (GOS) and a 150 μm thick cesium iodide (CsI) scintillator and a photon-counting detector with a 1000 μm thick CdTe sensor. The measurements for GOS scintillator thicknesses of 70 μm and 208 μm delivered 10% pre-sampled MTF values of 6.6 mm(-1) and 3.2 mm(-1), and DQE(0) values of 23% and 61%. The 10% pre-sampled MTF value for the 150 μm thick CsI scintillator 6.9 mm(-1), and the DQE(0) value was 49%. The CdTe sensor reached a 10% pre-sampled MTF value of 8.5 mm(-1) and a DQE(0) value of 85%. The photon-counting CdTe detector technology allows for significant dose reduction compared to the energy-integrating scintillation detector technology used in BCT today. Our comparative evaluation indicates that a high potential dose saving may be possible for BCT by using CdTe detectors, without loss of spatial resolution. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Thiol antioxidant-functionalized CdSe/ZnS quantum dots: Synthesis, Characterization, Cytotoxicity
Zheng, Hong; Mortensen, Luke J.; DeLouise, Lisa A.
2016-01-01
Nanotechnology is a growing industry with wide ranging applications in consumer product and technology development. In the biomedical field, nanoparticles are finding increasing use as imaging agents for biomolecular labeling and tumor targeting. The nanoparticle physiochemical properties must be tailored for the specific application but chemical and physical stability in the biological milieu (no oxidation, aggregation, agglomeration or toxicity) are often required. Nanoparticles used for biomolecular fluorescent imaging should also have high quantum yield (QY). The aim of this paper is to examine the QY, stability, and cell toxicity of a series of positive, negative and neutral surface charge quantum dot (QD) nanoparticles. Simple protocols are described to prepare water soluble QDs by modifying the surface with thiol containing antioxidant ligands and polymers keeping the QD core/shell composition constant. The ligands used to produce negatively charged QDs include glutathione (GSH), N-acetyl-L-cysteine (NAC), dihydrolipoic acid (DHLA), tiopronin (TP), bucilliamine (BUC), and mercaptosuccinic acid (MSA). Ligands used to produce positively charged QDs include cysteamine (CYS) and polyethylenimine (PEI). Dithiothreitol (DTT) was used to produce neutral charged QDs. Commercially available nonaqueous octadecylamine (ODA) capped QDs served as the starting material. Our results suggest that QD uptake and cytotoxicity are both dependent on surface ligand coating composition. The negative charged GSH coated QDs show superior performance exhibiting low cytotoxicity, high stability, high QY and therefore are best suited for bioimaging applications. PEI coated QD also show superior performance exhibiting high QY and stability. However, they are considerably more cytotoxic due to their high positive charge which is an advantageous property that can be exploited for gene transfection and/or tumor targeting applications. The synthetic procedures described are straightforward and can be easily adapted in most laboratory settings. PMID:23620993
Kang, Jing; Li, Xuwen; Geng, Jiayang; Han, Lu; Tang, Jieli; Jin, Yongri; Zhang, Yihua
2012-10-15
In this paper, 3-mercaptocarboxylic acid (MPA) modified CdTe quantum dots (QDs) were used as sensitizers, to enhance the chemiluminescence (CL) of the calcein/K(3)Fe(CN)(6) system. A new CL system of CdTe/calcein/K(3)Fe(CN)(6) was developed. The effects of reactant concentrations and the particle sizes of CdTe QDs on the CL emission were investigated in detail. The possible enhancement mechanism of the CL was also further investigated based on the photoluminescence (PL) and CL spectra. Polyphenols such as chlorogenic acid, quercetin, hyperin, catechin and kaempferol, were observed to inhibit the CL signal of the CdTe/calcein/K(3)Fe(CN)(6) system and determined by the proposed method. The proposed method was applied to the determination of hyperin in seed of Cuscuta chinensis Lam. and the results obtained were satisfactory. Copyright © 2012 Elsevier Ltd. All rights reserved.
Automated tagging of pharmaceutically active thiols under flow conditions using monobromobimane.
Tzanavaras, Paraskevas D; Karakosta, Theano D
2011-03-25
The thiol-specific derivatization reagent monobromobimane (MBB) is applied--for the first time--under flow conditions. Sequential injection analysis allows the handling of precise volumes of the reagent in the micro-liter range. The effect of the main chemical and instrumental variables was investigated using captopril (CAP), N-acetylcysteine (NAC) and penicillamine (PEN) as representative pharmaceutically active thiols. Previously reported hydrolysis of MBB due to interaction with nucleophilic components of the buffers was avoided kinetically under flow conditions. The proposed analytical scheme is suitable for the fluorimetric determination of thiols at a sampling rate of 36 h(-1). Copyright © 2010 Elsevier B.V. All rights reserved.
Wen, Qiannan; Kershaw, Stephen V; Kalytchuk, Sergii; Zhovtiuk, Olga; Reckmeier, Claas; Vasilevskiy, Mikhail I; Rogach, Andrey L
2016-04-26
We have studied light emission kinetics and analyzed carrier recombination channels in HgTe quantum dots that were initially grown in H2O. When the solvent is replaced by D2O, the nonradiative recombination rate changes highlight the role of the vibrational degrees of freedom in the medium surrounding the dots, including both solvent and ligands. The contributing energy loss mechanisms have been evaluated by developing quantitative models for the nonradiative recombination via (i) polaron states formed by strong coupling of ligand vibration modes to a surface trap state (nonresonant channel) and (ii) resonant energy transfer to vibration modes in the solvent. We conclude that channel (i) is more important than (ii) for HgTe dots in either solution. When some of these modes are removed from the relevant spectral range by the H2O to D2O replacement, the polaron effect becomes weaker and the nonradiative lifetime increases. Comparisons with CdTe quantum dots (QDs) served as a reference where the resonant energy loss (ii) a priori was not a factor, also confirmed by our experiments. The solvent exchange (H2O to D2O), however, is found to slightly increase the overall quantum yield of CdTe samples, probably by increasing the fraction of bright dots in the ensemble. The fundamental study reported here can serve as the foundation for the design and optimization principles of narrow bandgap quantum dots aimed at applications in long wavelength colloidal materials for infrared light emitting diodes and photodetectors.
Cadmium telluride quantum dots induce apoptosis in human breast cancer cell lines.
Naderi, Saeed; Zare, Hakimeh; Taghavinia, Nima; Irajizad, Azam; Aghaei, Mahmoud; Panjehpour, Mojtaba
2018-05-01
Semiconductor quantum dots (QDs), especially those containing cadmium, have undergone marked improvements and are now widely used nanomaterials in applicable biological fields. However, great concerns exist regarding their toxicity in biomedical applications. Because of the lack of sufficient data regarding the toxicity mechanism of QDs, this study aimed to evaluate the cytotoxicity of three types of QDs: CdTe QDs, high yield CdTe QDs, and CdTe/CdS core/shell QDs on two human breast cancer cell lines MDA-MB468 and MCF-7. The breast cancer cells were treated with different concentrations of QDs, and cell viability was evaluated via MTT assay. Hoechst staining was applied for observation of morphological changes due to apoptosis. Apoptotic DNA fragmentation was visualized by the agarose gel electrophoresis assay. Flow cytometric annexin V/propidium iodide (PI) measurement was used for apoptosis detection. A significant decrease in cell viability was observed after QDs treatment ( p < 0.05). Apoptotic bodies and chromatin condensation was observed by Hoechst staining. DNA fragmentation assay demonstrated a DNA ladder profile in the exposed cells and also annexin V/PI flow cytometry confirmed apoptosis in a dose-dependent manner. Our results revealed that CdTe, high yield CdTe, and CdTe/CdS core/shell QDs induce apoptosis in breast cancer cell lines in a dose-dependent manner. This study would help realizing the underlying cytotoxicity mechanism, at least partly, of CdTe QDs and may provide information for the development of nanotoxicology and safe use of biological applications of QDs.
Interfacial charge transfer between CdTe quantum dots and Gram negative vs. Gram positive bacteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumas, E.; Gao, C.; Suffern, D.
Oxidative toxicity of semiconductor and metal nanomaterials to cells has been well established. However, it may result from many different mechanisms, some requiring direct cell contact and others resulting from the diffusion of reactive species in solution. Published results are contradictory due to differences in particle preparation, bacterial strain, and experimental conditions. It has been recently found that C{sub 60} nanoparticles can cause direct oxidative damage to bacterial proteins and membranes, including causing a loss of cell membrane potential (depolarization). However, this did not correlate with toxicity. In this study we perform a similar analysis using fluorescent CdTe quantum dots,more » adapting our tools to make use of the particles fluorescence. We find that two Gram positive strains show direct electron transfer to CdTe, resulting in changes in CdTe fluorescence lifetimes. These two strains also show changes in membrane potential upon nanoparticle binding. Two Gram negative strains do not show these effects - nevertheless, they are over 10-fold more sensitive to CdTe than the Gram positives. We find subtoxic levels of Cd{sup 2+} release from the particles upon irradiation of the particles, but significant production of hydroxyl radicals, suggesting that the latter is a major source of toxicity. These results help establish mechanisms of toxicity and also provide caveats for use of certain reporter dyes with fluorescent nanoparticles which will be of use to anyone performing these assays. The findings also suggest future avenues of inquiry into electron transfer processes between nanomaterials and bacteria.« less
Yaacobi-Gross, Nir; Garphunkin, Natalia; Solomeshch, Olga; Vaneski, Aleksandar; Susha, Andrei S; Rogach, Andrey L; Tessler, Nir
2012-04-24
We show that it is possible to combine several charge generation strategies in a single device structure, the performance of which benefits from all methods used. Exploiting the inherent type II heterojunction between layered structures of CdSe and CdTe colloidal quantum dots, we systematically study different ways of combining such nanocrystals of different size and surface chemistry and with different linking agents in a bilayer solar cell configuration. We demonstrate the beneficial use of two distinctly different sizes of NCs not only to improve the solar spectrum matching but also to reduce exciton binding energy, allowing their efficient dissociation at the interface. We further make use of the ligand-induced quantum-confined Stark effect in order to enhance charge generation and, hence, overall efficiency of nanocrystal-based solar cells.
CdTe and CdSe Quantum Dots Cytotoxicity: A Comparative Study on Microorganisms
Gomes, Suzete A.O.; Vieira, Cecilia Stahl; Almeida, Diogo B.; Santos-Mallet, Jacenir R.; Menna-Barreto, Rubem F. S.; Cesar, Carlos L.; Feder, Denise
2011-01-01
Quantum dots (QDs) are colloidal semiconductor nanocrystals of a few nanometers in diameter, being their size and shape controlled during the synthesis. They are synthesized from atoms of group II–VI or III–V of the periodic table, such as cadmium telluride (CdTe) or cadmium selenium (CdSe) forming nanoparticles with fluorescent characteristics superior to current fluorophores. The excellent optical characteristics of quantum dots make them applied widely in the field of life sciences. Cellular uptake of QDs, location and translocation as well as any biological consequence, such as cytotoxicity, stimulated a lot of scientific research in this area. Several studies pointed to the cytotoxic effect against micoorganisms. In this mini-review, we overviewed the synthesis and optical properties of QDs, and its advantages and bioapplications in the studies about microorganisms such as protozoa, bacteria, fungi and virus. PMID:22247686
Studying nanotoxic effects of CdTe quantum dots in Trypanosoma cruzi
NASA Astrophysics Data System (ADS)
Stahl, C. V.; Almeida, D. B.; de Thomaz, A. A.; Fontes, A.; Menna-Barreto, R. F. S.; Santos-Mallet, J. R.; Cesar, C. L.; Gomes, S. A. O.; Feder, D.
2010-02-01
Many studies have been done in order to verify the possible nanotoxicity of quantum dots in some cellular types. Protozoan pathogens as Trypanosoma cruzi, etiologic agent of Chagas1 disease is transmitted to humans either by blood-sucking triatomine vectors, blood transfusion, organs transplantation or congenital transmission. The study of the life cycle, biochemical, genetics, morphology and others aspects of the T. cruzi is very important to better understand the interactions with its hosts and the disease evolution on humans. Quantum dot, nanocrystals, highly luminescent has been used as tool for experiments in in vitro and in vivo T. cruzi life cycle development in real time. We are now investigating the quantum dots toxicity on T. cruzi parasite cells using analytical methods. In vitro experiments were been done in order to test the interference of this nanoparticle on parasite development, morphology and viability (live-death). Ours previous results demonstrated that 72 hours after parasite incubation with 200 μM of CdTe altered the development of T. cruzi and induced cell death by necrosis in a rate of 34%. QDs labeling did not effect: (i) on parasite integrity, at least until 7 days; (ii) parasite cell dividing and (iii) parasite motility at a concentration of 2 μM CdTe. This fact confirms the low level of cytotoxicity of these QDs on this parasite cell. In summary our results is showing T. cruzi QDs labeling could be used for in vivo cellular studies in Chagas disease.
In-well pumped mid-infrared PbTe/CdTe quantum well vertical external cavity surface emitting lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khiar, A., E-mail: amir.khiar@jku.at; Witzan, M.; Hochreiner, A.
2014-06-09
Optical in-well pumped mid-infrared vertical external cavity surface emitting lasers based on PbTe quantum wells embedded in CdTe barriers are realized. In contrast to the usual ternary barrier materials of lead salt lasers such as PbEuTe of PbSrTe, the combination of narrow-gap PbTe with wide-gap CdTe offers an extremely large carrier confinement, preventing charge carrier leakage from the quantum wells. In addition, optical in-well pumping can be achieved with cost effective and readily available near infrared lasers. Free carrier absorption, which is a strong loss mechanism in the mid-infrared, is strongly reduced due to the insulating property of CdTe. Lasingmore » is observed from 85 K to 300 K covering a wavelength range of 3.3–4.2 μm. The best laser performance is achieved for quantum well thicknesses of 20 nm. At low temperature, the threshold power is around 100 mW{sub P} and the output power more than 700 mW{sub P}. The significance of various charge carrier loss mechanisms are analyzed by modeling the device performance. Although Auger losses are quite low in IV–VI semiconductors, an Auger coefficient of C{sub A} = 3.5 × 10{sup −27} cm{sup 6} s{sup −1} was estimated for the laser structure, which is attributed to the large conduction band offset.« less
Istif, Emin; Kagkoura, Antonia; Hernandez-Ferrer, Javier; Stergiou, Anastasios; Skaltsas, Theodosis; Arenal, Raul; Benito, Ana M; Maser, Wolfgang K; Tagmatarchis, Nikos
2017-12-27
The self-assembly of novel core-shell nanoensembles consisting of regioregular poly(3-hexylthiophene) nanoparticles (P3HT NPs ) of 100 nm as core and semiconducting CdTe quantum dots (CdTe QDs ) as shell with a thickness of a few tens of nanometers was accomplished by employing a reprecipitation approach. The structure, morphology, and composition of CdTe QDs /P3HT NPs nanoensembles were confirmed by high-resolution scanning transmission microscopy and dynamic light-scattering studies. Intimate interface contact between the CdTe QDs shell and the P3HT NPs core leads to the stabilization of the CdTe QDs /P3HT NPs nanoensemble as probed by the steady-state absorption spectroscopy. Effective quenching of the characteristic photoluminescence of CdTe QDs at 555 nm, accompanied by simultaneous increase in emission of P3HT NPs at 660 and 720 nm, reveals photoinduced charge-transfer processes. Probing the redox properties of films of CdTe QDs /P3HT NPs further proves the formation of a stabilized core-shell system in the solid state. Photoelectrochemical assays on CdTe QDs /P3HT NPs films show a reversible on-off photoresponse at a bias voltage of +0.8 V with a 3 times increased photocurrent compared to CdTe QDs . The improved charge separation is directly related to the unique core-shell configuration, in which the outer CdTe QDs shell forces the P3HT NPs core to effectively act as electron acceptor. The creation of novel donor-acceptor core-shell hybrid materials via self-assembly is transferable to other types of conjugated polymers and semiconducting nanoparticles. This work, therefore, opens new pathways for the design of improved optoelectronic devices.
NASA Astrophysics Data System (ADS)
Tseng, Yu-Ting; Cherng, Rochelle; Harroun, Scott G.; Yuan, Zhiqin; Lin, Tai-Yuan; Wu, Chien-Wei; Chang, Huan-Tsung; Huang, Chih-Ching
2016-05-01
In this study, we have developed a simple photoassisted ligand assembly to fine-tune the photoluminescence (PL) of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide-capped gold nanodots (11-MUTAB-Au NDs). The 11-MUTAB-Au NDs (size: ca. 1.8 nm), obtained from the reaction of gold nanoparticles (ca. 3 nm) and 11-MUTAB, exhibited weak, near-infrared (NIR) PL at 700 nm with a quantum yield (QY) of 0.37% upon excitation at 365 nm. The PL QY of the Au NDs increased to 11.43% after reaction with 11-mercaptoundecanoic acid (11-MUA) for 30 min under ultraviolet (UV) light, which was accompanied by a PL wavelength shift to the green region (~520 nm). UV-light irradiation accelerates 11-MUA assembly on the 11-MUTABAu NDs (11-MUA/11-MUTAB-Au NDs) through a radical-mediated reaction. Furthermore, the PL wavelength of the 11-MUA/11-MUTAB-Au NDs can be switched to 640 nm via cysteamine under UV-light irradiation. We propose that the PL of the Au NDs with NIR and visible emissions was originally from the surface thiol-Au complexes and the Au core, respectively. These dramatically different optical properties of the Au NDs were due to variation in the surface ligands, as well as the densities and surface oxidant states of the surface Au atoms/ions. These effects can be controlled by assembling surface thiol ligands and accelerated by UV irradiation.In this study, we have developed a simple photoassisted ligand assembly to fine-tune the photoluminescence (PL) of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide-capped gold nanodots (11-MUTAB-Au NDs). The 11-MUTAB-Au NDs (size: ca. 1.8 nm), obtained from the reaction of gold nanoparticles (ca. 3 nm) and 11-MUTAB, exhibited weak, near-infrared (NIR) PL at 700 nm with a quantum yield (QY) of 0.37% upon excitation at 365 nm. The PL QY of the Au NDs increased to 11.43% after reaction with 11-mercaptoundecanoic acid (11-MUA) for 30 min under ultraviolet (UV) light, which was accompanied by a PL wavelength shift to the green region (~520 nm). UV-light irradiation accelerates 11-MUA assembly on the 11-MUTABAu NDs (11-MUA/11-MUTAB-Au NDs) through a radical-mediated reaction. Furthermore, the PL wavelength of the 11-MUA/11-MUTAB-Au NDs can be switched to 640 nm via cysteamine under UV-light irradiation. We propose that the PL of the Au NDs with NIR and visible emissions was originally from the surface thiol-Au complexes and the Au core, respectively. These dramatically different optical properties of the Au NDs were due to variation in the surface ligands, as well as the densities and surface oxidant states of the surface Au atoms/ions. These effects can be controlled by assembling surface thiol ligands and accelerated by UV irradiation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00795c
Valentine, Andrew J S; Talapin, Dmitri V; Mazziotti, David A
2017-04-27
Recent work found that soldering CdTe quantum dots together with a molecular CdTe polymer yielded field-effect transistors with much greater electron mobility than quantum dots alone. We present a computational study of the CdTe polymer using the active-space variational two-electron reduced density matrix (2-RDM) method. While analogous complete active-space self-consistent field (CASSCF) methods scale exponentially with the number of active orbitals, the active-space variational 2-RDM method exhibits polynomial scaling. A CASSCF calculation using the (48o,64e) active space studied in this paper requires 10 24 determinants and is therefore intractable, while the variational 2-RDM method in the same active space requires only 2.1 × 10 7 variables. Natural orbitals, natural-orbital occupations, charge gaps, and Mulliken charges are reported as a function of polymer length. The polymer, we find, is strongly correlated, despite possessing a simple sp 3 -hybridized bonding scheme. Calculations reveal the formation of a nearly saturated valence band as the polymer grows and a charge gap that decreases sharply with polymer length.
Gold nanoparticles with different capping systems: an electronic and structural XAS analysis.
López-Cartes, C; Rojas, T C; Litrán, R; Martínez-Martínez, D; de la Fuente, J M; Penadés, S; Fernández, A
2005-05-12
Gold nanoparticles (NPs) have been prepared with three different capping systems: a tetralkylammonium salt, an alkanethiol, and a thiol-derivatized neoglycoconjugate. Also gold NPs supported on a porous TiO(2) substrate have been investigated. X-ray absorption spectroscopy (XAS) has been used to determine the electronic behavior of the different capped/supported systems regarding the electron/hole density of d states. Surface and size effects, as well as the role of the microstructure, have been also studied through an exhaustive analysis of the EXAFS (extended X-ray absorption fine structure) data. Very small gold NPs functionalized with thiol-derivatized molecules show an increase in d-hole density at the gold site due to Au-S charge transfer. This effect is overcoming size effects (which lead to a slightly increase of the d-electron density) for high S:Au atomic ratios and core-shell microstructures where an atomically abrupt Au-S interface likely does not exist. It has been also shown that thiol functionalization of very small gold NPs is introducing a strong distortion as compared to fcc order. To the contrary, electron transfer from reduced support oxides to gold NPs can produce a higher increase in d-electron density at the gold site, as compared to naked gold clusters.
Zhang, Kui; Mei, Qingsong; Guan, Guijian; Liu, Bianhua; Wang, Suhua; Zhang, Zhongping
2010-11-15
The development of a simple and on-site assay for the detection of organophosphorus pesticed residues is very important for food safety and exosystem protection. This paper reports the surface coordination-originated fluorescence resonance energy transfer (FRET) of CdTe quantum dots (QDs) and a simple ligand-replacement turn-on mechanism for the highly sensitive and selective detection of organophosphorothioate pesticides. It has been demonstrated that coordination of dithizone at the surface of CdTe QDs in basic media can strongly quench the green emission of CdTe QDs by a FRET mechanism. Upon the addition of organophosphorothioate pesticides, the dithizone ligands at the CdTe QD surface are replaced by the hydrolyzate of the organophosphorothioate, and hence the fluorescence is turned on. The fluorescence turn on is immediate, and the limit of detection for chlorpyrifos is as low as ∼0.1 nM. Two consecutive linear ranges allow a wide determination of chlorpyrifos concentrations from 0.1 nM to 10 μM. Importantly, the fluorescence turn-on chemosensor can directly detect chlorpyrifos residues in apples at a limit of 5.5 ppb, which is under the maximum residue limit allowed by the U.S. Environmental Protection Agency. The very simple strategy reported here should facilitate the development of fluorescence turn-on chemosensors for chemo/biodetection.
Ordered CdTe/CdS Arrays for High-Performance Solar Cells
NASA Astrophysics Data System (ADS)
Zubía, David; López, Cesar; Rodríguez, Mario; Escobedo, Arev; Oyer, Sandra; Romo, Luis; Rogers, Scott; Quiñónez, Stella; McClure, John
2007-12-01
The deposition of uniform arrays of CdTe/CdS heterostructures suitable for solar cells via close-spaced sublimation is presented. The approach used to create the arrays consists of two basic steps: the deposition of a patterned growth mask on CdS, and the selective-area deposition of CdTe. CdTe grains grow selectively on the CdS but not on the SiO2 due to the differential surface mobility between the two surfaces. Furthermore, the CdTe mesas mimic the size and shape of the window opening in the SiO2. Measurements of the current density in the CdTe were high at 28 mA/cm2. To our knowledge, this is the highest reported current density for these devices. This implies that either the quantum efficiency is very high or the electrons generated throughout the CdTe are being concentrated by the patterned structure analogous to solar concentration. The enhancement in crystal uniformity and the relatively unexplored current concentration phenomenon could lead to significant performance improvements.
Dong, Chaoqing; Chowdhury, Basudev; Irudayaraj, Joseph
2013-05-21
Understanding the biophysical and chemical interactions of nanoprobes and their fate upon entering live cells is critical for developing fundamental insights related to intracellular diagnostics, drug delivery and targeting. In this article we report herein a single molecule analysis procedure to quantitate site-specific exclusive membrane binding of N-acetyl-L-cysteine (NAC)-capped cadmium telluride (CdTe) quantum dots (QDs) in A-427 lung carcinoma cells (k(eq) = 0.075 ± 0.011 nM(-1)), its relative intracellular distribution and dynamics using fluorescence correlation spectroscopy (FCS) combined with scanning confocal fluorescence lifetime imaging (FLIM). In particular, we demonstrate that the binding efficacy of QDs to the cell membrane is directly related to their size and the targeting of QDs to specific membrane sites is exclusive. We also show that QDs are efficiently internalized by endocytosis and enclosed within the endosome and organelle-dependent diffusion dynamics can be monitored in live cells.
Adhesion of CdTe quantum dots on model membranes and internalization into RBL-2H3 cells.
Zhang, Mengmeng; Wei, Xiaoran; Ding, Lei; Hu, Jingtian; Jiang, Wei
2017-06-01
Quantum dots (QDs) have attracted broad attention due to their special optical properties and promising prospect in medical and biological applications. However, the process of QDs on cell membrane is worth further investigations because such process may lead to harmful effects on organisms and also important for QD application. In this study, adhesion of amino- and carboxyl-coated CdTe QDs (A-QDs and C-QDs) on cell membrane and the subsequent internalization are studied using a series of endocytosis-free model membranes, including giant and small unilamellar vesicles, supported lipid bilayers and giant plasma membrane vesicles (GPMVs). The adhered QD amounts on model membranes are quantified by a quartz crystal microbalance. The CdTe QD adhesion on model membranes is governed by electrostatic forces. Positively charged A-QDs adhere on GPMV surface and passively penetrate the plasma membrane via endocytosis-free mechanism, but negatively charged C-QDs cannot. Rat basophilic leukemia (RBL-2H3) cells are exposed to CdTe QDs to monitor the QD internalization process. Both A- and C-QDs are internalized by RBL-2H3 cells mainly via endocytosis. CdTe QDs do not accumulate on the plasma membrane of living cells due to the fast endocytosis and the weakened electrostatic attraction in biological medium, resulting in low chance of passive penetration. The suspended cells after trypsin digestion take more QDs than the adherent cells. A-QDs cause lower cell viability than C-QDs, probably because the approach of positively charged QDs to cells is favored and the smaller aggregates of A-QDs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wu, Tianshu; He, Keyu; Ang, Shengjun; Ying, Jiali; Zhang, Shihan; Zhang, Ting; Xue, Yuying; Tang, Meng
2016-01-01
With the rapid development of nanotechnology, quantum dots (QDs) as advanced nanotechnology products have been widely used in neuroscience, including basic neurological studies and diagnosis or therapy for neurological disorders, due to their superior optical properties. In recent years, there has been intense concern regarding the toxicity of QDs, with a growing number of studies. However, knowledge of neurotoxic consequences of QDs applied in living organisms is lagging behind their development, even if several studies have attempted to evaluate the toxicity of QDs on neural cells. The aim of this study was to evaluate the adverse effects of intrahippocampal injection in rats of 3-mercaptopropionic acid (MPA)-modified CdTe QDs and underlying mechanisms. First of all, we observed impairments in learning efficiency and spatial memory in the MPA-modified CdTe QD-treated rats by using open-field and Y-maze tests, which could be attributed to pathological changes and disruption of ultrastructure of neurons and synapses in the hippocampus. In order to find the mechanisms causing these effects, transcriptome sequencing (RNA-seq), an advanced technology, was used to gain the potentially molecular targets of MPA-modified CdTe QDs. According to ample data from RNA-seq, we chose the signaling pathways of PI3K-Akt and MPAK-ERK to do a thorough investigation, because they play important roles in synaptic plasticity, long-term potentiation, and spatial memory. The data demonstrated that phosphorylated Akt (p-Akt), p-ERK1/2, and c-FOS signal transductions in the hippocampus of rats were involved in the mechanism underlying spatial learning and memory impairments caused by 3.5 nm MPA-modified CdTe QDs.
Density of Trap States and Auger-mediated Electron Trapping in CdTe Quantum-Dot Solids.
Boehme, Simon C; Azpiroz, Jon Mikel; Aulin, Yaroslav V; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Infante, Ivan; Houtepen, Arjan J
2015-05-13
Charge trapping is an ubiquitous process in colloidal quantum-dot solids and a major limitation to the efficiency of quantum dot based devices such as solar cells, LEDs, and thermoelectrics. Although empirical approaches led to a reduction of trapping and thereby efficiency enhancements, the exact chemical nature of the trapping mechanism remains largely unidentified. In this study, we determine the density of trap states in CdTe quantum-dot solids both experimentally, using a combination of electrochemical control of the Fermi level with ultrafast transient absorption and time-resolved photoluminescence spectroscopy, and theoretically, via density functional theory calculations. We find a high density of very efficient electron traps centered ∼0.42 eV above the valence band. Electrochemical filling of these traps increases the electron lifetime and the photoluminescence quantum yield by more than an order of magnitude. The trapping rate constant for holes is an order of magnitude lower that for electrons. These observations can be explained by Auger-mediated electron trapping. From density functional theory calculations we infer that the traps are formed by dicoordinated Te atoms at the quantum dot surface. The combination of our unique experimental determination of the density of trap states with the theoretical modeling of the quantum dot surface allows us to identify the trapping mechanism and chemical reaction at play during charge trapping in these quantum dots.
Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase.
Li, Xinyu; Zhou, Yunlong; Zheng, Zhaozhu; Yue, Xiuli; Dai, Zhifei; Liu, Shaoqin; Tang, Zhiyong
2009-06-02
A blood glucose sensor has been developed based on the multilayer films of CdTe semiconductor quantum dots (QDs) and glucose oxidase (GOD) by using the layer-by-layer assembly technique. When the composite films were contacted with glucose solution, the photoluminescence of QDs in the films was quickly quenched because the enzyme-catalyzed reaction product (H2O2) of GOD and glucose gave rise to the formation of surface defects on QDs. The quenching rate was a function of the concentration of glucose. The linear range and sensitivity for glucose determination could be adjusted by controlling the layers of QDs and GOD. The biosensor was used to successfully determine the concentration of blood glucose in real serum samples without sample pretreatment and exhibited satisfactory reproducibility and accuracy.
Mordorski, Breanne; Pelgrift, Robert; Adler, Brandon; Krausz, Aimee; da Costa Neto, Alexandre Batista; Liang, Hongying; Gunther, Leslie; Clendaniel, Alicea; Harper, Stacey; Friedman, Joel M; Nosanchuk, Joshua D; Nacharaju, Parimala; Friedman, Adam J
2015-02-01
Nitric oxide (NO), an essential agent of the innate immune system, exhibits multi-mechanistic antimicrobial activity. Previously, NO-releasing nanoparticles (NO-np) demonstrated increased antimicrobial activity when combined with glutathione (GSH) due to formation of S-nitrosoglutathione (GSNO), a transnitrosylating agent. To capitalize on this finding, we incorporated the thiol-containing ACE-inhibitor, captopril, with NO-np to form SNO-CAP-np, nanoparticles that both release NO and form S-nitrosocaptopril. In the presence of GSH, SNO-CAP-np demonstrated increased transnitrosylation activity compared to NO-np, as exhibited by increased GSNO formation. Escherichia coli and methicillin-resistant Staphylococcus aureus were highly susceptible to SNO-CAP-np in a dose-dependent fashion, with E. coli being most susceptible, and SNO-CAP-np were nontoxic in zebrafish embryos at translatable concentrations. Given SNO-CAP-np's increased transnitrosylation activity and increased E. coli susceptibility compared to NO-np, transnitrosylation rather than free NO is likely responsible for overcoming E. coli's resistance mechanisms and ultimately killing the pathogen. This team of authors incorporated the thiol-containing ACE-inhibitor, captopril, into a nitric oxide releasing nanoparticle system, generating nanoparticles that both release NO and form S-nitrosocaptopril, with pronounced toxic effects on MRSA and E. coli in the presented model system. Copyright © 2015 Elsevier Inc. All rights reserved.
Crisp, Ryan W.; Pach, Gregory F.; Kurley, J. Matthew; ...
2017-01-10
Here, we developed a monolithic CdTe-PbS tandem solar cell architecture in which both the CdTe and PbS absorber layers are solution-processed from nanocrystal inks. Due to their tunable nature, PbS quantum dots (QDs), with a controllable band gap between 0.4 and ~1.6 eV, are a promising candidate for a bottom absorber layer in tandem photovoltaics. In the detailed balance limit, the ideal configuration of a CdTe (E g = 1.5 eV)-PbS tandem structure assumes infinite thickness of the absorber layers and requires the PbS band gap to be 0.75 eV to theoretically achieve a power conversion efficiency (PCE) of 45%.more » But, modeling shows that by allowing the thickness of the CdTe layer to vary, a tandem with efficiency over 40% is achievable using bottom cell band gaps ranging from 0.68 and 1.16 eV. In a first step toward developing this technology, we explore CdTe-PbS tandem devices by developing a ZnTe-ZnO tunnel junction, which appropriately combines the two subcells in series. Furthermore, we examine the basic characteristics of the solar cells as a function of layer thickness and bottom-cell band gap and demonstrate open-circuit voltages in excess of 1.1 V with matched short circuit current density of 10 mA/cm 2 in prototype devices.« less
Crisp, Ryan W; Pach, Gregory F; Kurley, J Matthew; France, Ryan M; Reese, Matthew O; Nanayakkara, Sanjini U; MacLeod, Bradley A; Talapin, Dmitri V; Beard, Matthew C; Luther, Joseph M
2017-02-08
We developed a monolithic CdTe-PbS tandem solar cell architecture in which both the CdTe and PbS absorber layers are solution-processed from nanocrystal inks. Due to their tunable nature, PbS quantum dots (QDs), with a controllable band gap between 0.4 and ∼1.6 eV, are a promising candidate for a bottom absorber layer in tandem photovoltaics. In the detailed balance limit, the ideal configuration of a CdTe (E g = 1.5 eV)-PbS tandem structure assumes infinite thickness of the absorber layers and requires the PbS band gap to be 0.75 eV to theoretically achieve a power conversion efficiency (PCE) of 45%. However, modeling shows that by allowing the thickness of the CdTe layer to vary, a tandem with efficiency over 40% is achievable using bottom cell band gaps ranging from 0.68 and 1.16 eV. In a first step toward developing this technology, we explore CdTe-PbS tandem devices by developing a ZnTe-ZnO tunnel junction, which appropriately combines the two subcells in series. We examine the basic characteristics of the solar cells as a function of layer thickness and bottom-cell band gap and demonstrate open-circuit voltages in excess of 1.1 V with matched short circuit current density of 10 mA/cm 2 in prototype devices.
Glutathione-mediated release of Bodipy® from PEG cofunctionalized gold nanoparticles
Kumar, Dhiraj; Meenan, Brian J; Dixon, Dorian
2012-01-01
Gold nanoparticles synthesized via sodium citrate reduction of chloroauric acid (HAuCl4) were functionalized with either various concentrations of thiol-terminated Bodipy® FL L-cystine (0.5, 1.0, 1.5, and 2.0 μg/mL) or Bodipy-poly(ethylene glycol) at concentrations of 0.5–18.75, 1.0–12.50, and 1.5–6.25 μg/mL to form a mixed monolayer of BODIPY-PEG. Thiol-terminated Bodipy, a fluorescing molecule, was used as the model drug, while PEG is widely used in drug-delivery applications to shield nanoparticles from unwanted immune responses. Understanding the influence of PEG-capping on payload release is critical because it is the most widely used type of nanoparticle functionalization in drug delivery studies. It has been previously reported that glutathione can trigger release of thiol-bound payloads from gold nanoparticles. Bodipy release from Bodipy capped and from Bodipy-PEG functionalized gold nanoparticles was studied at typical intracellular glutathione levels. It was observed that the addition of PEG capping inhibits the initial burst release observed in gold nanoparticles functionalized only with Bodipy and inhibits nanoparticle aggregation. Efficient and controlled payload release was observed in gold nanoparticles cofunctionalized with only a limited amount of PEG, thus enabling the coattachment of large amounts of drug, targeting groups or other payloads. PMID:22915847
Quantum Dots Microstructured Optical Fiber for X-Ray Detection
NASA Technical Reports Server (NTRS)
DeHaven, Stan; Williams, Phillip; Burke, Eric
2015-01-01
Microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide are presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dot application technique are discussed.
McDaniel, Hunter
2017-10-17
Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.
Gui, Rijun; Jin, Hui; Liu, Xifeng; Wang, Zonghua; Zhang, Feifei; Xia, Jianfei; Yang, Min; Bi, Sai
2014-12-07
Under the two-photon excitation, upconversion luminescent "INHIBIT" and "OR" logic gates of water-dispersed CdTe quantum dots (QDs) were constituted by conjugating the QDs with dopamine. This facilitated the development of a novel QDs-based upconversion luminescent probe for efficient turn-on sensing of glutathione.
Compact and highly stable quantum dots through optimized aqueous phase transfer
NASA Astrophysics Data System (ADS)
Tamang, Sudarsan; Beaune, Grégory; Poillot, Cathy; De Waard, Michel; Texier-Nogues, Isabelle; Reiss, Peter
2011-03-01
A large number of different approaches for the aqueous phase transfer of quantum dots have been proposed. Surface ligand exchange with small hydrophilic thiols, such as L-cysteine, yields the lowest particle hydrodynamic diameter. However, cysteine is prone to dimer formation, which limits colloidal stability. We demonstrate that precise pH control during aqueous phase transfer dramatically increases the colloidal stability of InP/ZnS quantum dots. Various bifunctional thiols have been applied. The formation of disulfides, strongly diminishing the fluorescence QY has been prevented through addition of appropriate reducing agents. Bright InP/ZnS quantum dots with a hydrodynamic diameter <10 nm and long-term stability have been obtained. Finally we present in vitro studies of the quantum dots functionalized with the cell-penetrating peptide maurocalcine.
Toward the in vivo study of captopril-conjugated quantum dots
NASA Astrophysics Data System (ADS)
Manabe, Noriyoshi; Hoshino, Akiyoshi; Liang, Yi-qiang; Goto, Tomomasa; Kato, Norihiro; Yamamoto, Kenji
2005-04-01
Photo-luminescent semiconductor quantum dots are nanometer-size probes that have the potential to be applied to the fields of the bio-imaging and the study of the cell mobility inside the body. At the same time, on the other hand, quantum dots are expected to carry some kind of molecules to the local organ inside of the animal body, which leads to the expectation that they can be used as a medicine-carrier. For this purpose, we conjugate (2S)-1-[(2s)-2-Methyl-3-sulfanylpropionyl]pyrrolidine-2-carboxylic acid (cap) with the quantum dot. Cap has the effect as an anti-hypertension drug, which inhibits angiotensin 1 converting enzyme. We conjugated the quantum dot with cap by the exchange reaction avoiding the regions which holds medicinal effect. Quantum dot conjugated with cap (QD-cap) were 3-times brighter than thioglycerol-coated quantum dots (QD-OH). The particle size of cap was 1.1nm and that of QD-cap was 12nm. QD-cap was permeated into the HeLa cells, while QD-MUA were taken into the HeLa cells by endocytosis. In addition, no apoptosis was detected against the cells that permeated QD-cap, because there was no damage to DNA. These results indicated that QD-conjugated medicines (QD-medicine) could be safe in the experiment on the level of the cell. More over, when QD-cap was intravenously injected into Stroke-prone Spontaneously Hypertensive Rats (SHRSP), they reduced blood pressure at systole. Therefore, the anti-hypertension effect of cap remained after conjugated with the quantum dot. These results suggested that QD-medicine were effective on the animal level.
Gui, Rijun; Wan, Ajun; Liu, Xifeng; Yuan, Wen; Jin, Hui
2014-05-21
Hydrodynamic size-minimized quantum dots (QDs) have outstanding physicochemical properties for applications in multicolor molecular and cellular imaging at the level of single molecules and nanoparticles. In this study, we have reported the aqueous synthesis of Ag2S QDs by using thiol-based multidentate polymers as capping reagents. By regulating the composition of the precursors (AgNO3 and sulfur-N2H4·H2O complex) and multidentate polymers (poly(acrylic acid)-graft-cysteamine-graft-ethylenediamine), as well as the reaction time, Ag2S QDs (2.6-3.7 nm) are prepared, displaying tunable photoluminescence (PL) emission from red to the second near-infrared region (687-1096 nm). The small hydrodynamic thickness (1.6-1.9 nm) of the multidentate polymers yields a highly compact coating for the QDs, which results in the bright fluorescent QDs with high PL quantum yields (QYs: 14.2-16.4%). Experimental results confirm that the QDs have high PL stability and ultralow cytotoxicity, as well as high PLQYs and small hydrodynamic sizes (4.5-5.6 nm) similar to fluorescent proteins (27-30 kDa), indicating the feasibility of highly effective PL imaging in cells and living animals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ping, E-mail: mse_yangp@ujn.edu.cn; Matras-Postolek, Katarzyna; Song, Xueling
2015-10-15
Graphical abstract: Highly luminescent quantum dots (QDs) with tunable photoluminescence (PL) wavelength were assembled into various morphologies including chain, hollow spheres, fibers, and ring structures through sol–gel processes. The PL properties during assembly as investigated. - Highlights: • Highly luminescent quantum dots (QDs) were synthesized from several ligands. • The evolution of PL in self-assembly via sol–gel processes was investigated. • CdTe QDs were assembled into a chain by controlling hydrolysis and condensation reactions. • Hollow spheres, fibers, and ring structures were created via CdSe/ZnS QDs in sol–gel processes. - Abstract: Highly luminescent quantum dots (QDs) with tunable photoluminescence (PL)more » wavelength were synthesized from several ligands to investigate the PL evolution in QD self-assembly via sol–gel processes. After ligand exchange, CdTe QDs were assembled into a chain by controlling the hydrolysis and condensation reaction of 3-mercaptopropyl-trimethoxysilane. The chain was then coated with a SiO{sub 2} shell from tetraethyl orthosilicate (TEOS). Hollow spheres, fibers, and ring structures were created from CdSe/ZnS QDs via various sol–gel processes. CdTe QDs revealed red-shifted and narrowed PL spectrum after assembly compared with their initial one. In contrast, the red-shift of PL spectra of CdSe/ZnS QDs is small. By optimizing experimental conditions, SiO{sub 2} spheres with multiple CdSe/ZnS QDs were fabricated using TEOS and MPS. The QDs in these SiO{sub 2} spheres retained their initial PL properties. This result is useful for application because of their high stability and high PL efficiency of 33%.« less
Jia, Nengqin; Lian, Qiong; Tian, Zhong; Duan, Xin; Yin, Min; Jing, Lihong; Chen, Shouhui; Shen, Hebai; Gao, Mingyuan
2010-01-29
Novel multi-color fluorescent nanoprobes were prepared by electrostatically assembling differently sized CdTe quantum dots on polyethylenimine (PEI) functionalized multi-walled carbon nanotubes (MWNTs). The structural and optical properties of the nano-assemblies (MWNTs-PEI-CdTe) were characterized by transmission electron microscopy (TEM), electron diffraction spectra (EDS), Raman spectroscopy, confocal microscopy and photoluminescence spectroscopy (PL), respectively. Electrochemical impedance spectroscopy (EIS) was also applied to investigate the electrostatic assembling among oxidized MWNTs, PEI and CdTe. Furthermore, confocal fluorescence microscopy was used to monitor the nano-assemblies' delivery into tumor cells. It was found that the nano-assemblies exhibit efficient intracellular transporting and strong intracellular tracking. These properties would make this luminescent nano-assembly an excellent building block for the construction of intracellular nanoprobes, which could hold great promise for biomedical applications.
NASA Astrophysics Data System (ADS)
de Sa, Arsenio; Moura, Isabel; Abreu, Ana S.; Oliveira, Manuel; Ferreira, Miguel F.; Machado, Ana V.
2017-05-01
The entrapment of quantum dots (QDs) in the inner part of micelles formed by surfactant polymers is a powerful methodology to prepare stable and photoluminescent core nanoparticles with enhanced optical properties. These features are crucial for the application of QDs in the design of hybrid assemblies for light harvesting applications, where energy transfer processes are required. The present work was focused on the synthesis of a surfactant homopolymer, poly (acrylic acid) (PAA) macroRAFT, to be used as a stabilizer of hydrophobic cadmium telluride (CdTe) QDs in aqueous solution. PAA macroRAFT was synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization in a single chemical reaction. Its micelles were used to entangle and entrap hydrophobic CdTe QDs, with different molar ratio of polymer and QDs. The morphology and optical properties of the entrapped QDs were determined. The results showed that PAA macroRAFT is able to form micelles with a critical micelle concentration of 2.08 mg/mL. It was also noticed that the molar ratio of polymer and QDs have high influence on the QDs' morphology and their optical properties. The QDs' photoluminescence quantum yield was enhanced approximately 23% upon their entrapment in PAA macroRAFT micelles, using 60 equivalents of polymer. Moreover, while in solution, QDs are well-dispersed, having a 3.5 nm diameter, upon being entrapped in the micelles, tend to form clusters with a size around 100 nm.
Sun, Hongsheng; Xing, Yugui; Wu, Qinan; Yang, Ping
2015-02-01
A highly luminescent silica film was fabricated using tetraethyl orthosilicate (TEOS) and 3-aminopropyltrimethoxysilane (APS) through a controlled sol-gel reaction. The pre-hydrolysis of TEOS and APS which resulted in the mixture of TEOS and APS in a molecular level is a key for the formation of homogenous films. The aminopropyl groups in APS play an important role for obtaining homogeneous film with high photoluminescence (PL). Red-emitting hybrid SiO2-coated CdTe nano-crystals (NCs) were fabricated by a two-step synthesis including a thin SiO2 coating via a sol-gel process and a subsequent refluxing using green-emitting CdTe NCs. The hybrid SiO2-coated CdTe NCs were embedded in a functional SiO2 film via a two-step process including adding the NCs in SiO2 sol with a high viscosity and almost without ethanol and a subsequent spinning coating. The hybrid SiO2-coated CdTe NCs retained their initial PL efficiency (54%) in the film. Being encapsulated with the hybrid NCs in the film, no change on the absorption and PL spectra of red-emitting CdTe NCs (632 nm) was observed. This indicates the hybrid NCs is stable enough during preparation. This phenomenon is ascribed to the controlled sol-gel process and a hybrid SiO2 shell on CdTe NCs. Because these films exhibited high PL efficiency and stability, they will be utilizable for potential applications in many fields.
Lighting up micromotors with quantum dots for smart chemical sensing.
Jurado-Sánchez, B; Escarpa, A; Wang, J
2015-09-25
A new "on-the-fly" chemical optical detection strategy based on the incorporation of fluorescence CdTe quantum dots (QDs) on the surface of self-propelled tubular micromotors is presented. The motion-accelerated binding of trace Hg to the QDs selectively quenches the fluorescence emission and leads to an effective discrimination between different mercury species and other co-existing ions.
Bifunctional Diaminoterephthalate Fluorescent Dye as Probe for Cross-Linking Proteins.
Wallisch, Melanie; Sulmann, Stefan; Koch, Karl-Wilhelm; Christoffers, Jens
2017-05-11
Diaminoterephthalates are fluorescent dyes and define scaffolds, which can be orthogonally functionalized at their two carboxylate residues with functional residues bearing task specific reactive groups. The synthesis of monofunctionalized dyes with thiol groups for surface binding, an azide for click chemistry, and a biotinoylated congener for streptavidin binding is reported. Two bifunctionalized dyes were prepared: One with an azide for click chemistry and a biotin for streptavidin binding, the other with a maleimide for reaction with thiol and a cyclooctyne moiety for ligation with copper-free click chemistry. In general, the compounds are red to orange, fluorescent materials with an absorption at about 450 nm and an emission at 560 nm with quantum yields between 2-41 %. Of particular interest is the maleimide-functionalized compound, which shows low fluorescence quantum yield (2 %) by itself. After addition of a thiol, the fluorescence is "turned on"; quantum yield 41 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Meng-Lin; Peng, J. S.; Lee, Sanboh, E-mail: sblee@mx.nthu.edu.tw
We studied the digestive ripening of thiol-capped gold nanoparticles under simultaneous action of electric field and reflux heating in a silicone oil bath at 130 °C, using transmission electron microscopy. Observation revealed that a polydispersed gold nanoparticle system reached the state of nearly monodispersity under the action of an electric field and the thiol-capped gold nanoparticles carried negative charges. The electric field caused the increase of the particle size for the nearly monodispersed gold nanoparticle system. The self-assembly of the nearly monodisperse gold nanoparticles under the action of an electric field of a high field intensity was observed. The gold nanoparticlesmore » tended to form self-assembled nanostructures of six-fold symmetry. This study provides a new route for system engineering to control the particle size of metallic nanoparticles by electric field and digestive ripening.« less
Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells
2013-01-01
Hybrid thin film solar cell based on all-inorganic nanoparticles is a new member in the family of photovoltaic devices. In this work, a novel and performance-efficient inorganic hybrid nanostructure with continuous charge transportation and collection channels is demonstrated by introducing CdTe nanotetropods (NTs) and CdSe quantum dots (QDs). Hybrid morphology is characterized, demonstrating an interpenetration and compacted contact of NTs and QDs. Electrical measurements show enhanced charge transfer at the hybrid bulk heterojunction interface of NTs and QDs after ligand exchange which accordingly improves the performance of solar cells. Photovoltaic and light response tests exhibit a combined optic-electric contribution from both CdTe NTs and CdSe QDs through a formation of interpercolation in morphology as well as a type II energy level distribution. The NT and QD hybrid bulk heterojunction is applicable and promising in other highly efficient photovoltaic materials such as PbS QDs. PMID:24139059
NASA Astrophysics Data System (ADS)
Hoa Nguyen, Thi; Dieu Thuy Ung, Thi; Hien Vu, Thi; Tran, Thi Kim Chi; Quyen Dong, Van; Khang Dinh, Duy; Liem Nguyen, Quang
2012-09-01
This report highlights the fabrication of fluorescence biosensors based on CdTe quantum dots (QDs) for specific detection of H5N1 avian influenza virus. The core biosensor was composed of (i) the highly luminescent CdTe/CdS QDs, (ii) chromatophores extracted from bacteria Rhodospirillum rubrum, and (iii) the antibody of β-subunit. This core part was linked to the peripheral part of the biosensor via a biotin-streptavidin-biotin bridge and finally connected to the H5N1 antibody to make it ready for detecting H5N1 avian influenza virus. Detailed studies of each constituent were performed showing the image of QDs-labeled chromatophores under optical microscope, proper photoluminescence (PL) spectra of CdTe/CdS QDs, chromatophores and the H5N1 avian influenza viruses.
Persistent spin helix manipulation by optical doping of a CdTe quantum well
NASA Astrophysics Data System (ADS)
Passmann, F.; Anghel, S.; Tischler, T.; Poshakinskiy, A. V.; Tarasenko, S. A.; Karczewski, G.; Wojtowicz, T.; Bristow, A. D.; Betz, M.
2018-05-01
Time-resolved Kerr-rotation microscopy explores the influence of optical doping on the persistent spin helix in a [001]-grown CdTe quantum well at cryogenic temperatures. Electron spin-diffusion dynamics reveal a momentum-dependent effective magnetic field providing SU(2) spin-rotation symmetry, consistent with kinetic theory. The Dresselhaus and Rashba spin-orbit coupling parameters are extracted independently from rotating the spin helix with external magnetic fields applied parallel and perpendicular to the effective magnetic field. Most importantly, a nonuniform spatiotemporal precession pattern is observed. The kinetic-theory framework of spin diffusion allows for modeling of this finding by incorporating the photocarrier density into the Rashba (α) and the Dresselhaus (β3) parameters. Corresponding calculations are further validated by an excitation-density-dependent measurement. This work shows universality of the persistent spin helix by its observation in a II-VI compound and the ability to fine-tune it by optical doping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varade, Vaibhav, E-mail: vaibhav.tvarade@gmail.com; Jagtap, Amardeep M.; Koteswara Rao, K. S. R.
2015-06-07
Temperature and photo-dependent current–voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT:PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler–Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (∼ 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Φ{sub B} ≈ 0.68 eV) ismore » estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed.« less
Osipovich, Nikolai P; Poznyak, Sergei K; Lesnyak, Vladimir; Gaponik, Nikolai
2016-04-21
The application of electrochemical methods for the characterization of colloidal quantum dots (QDs) attracts considerable attention as these methods may allow for monitoring of some crucial parameters, such as energetic levels of conduction and valence bands as well as surface traps and ligands under real conditions of colloidal solution. In the present work we extend the applications of cyclic voltammetry (CV) to in situ monitoring of degradation processes of water-soluble CdTe QDs. This degradation occurs under lowering of pH to the values around 5, i.e. under conditions relevant to bioimaging applications of these QDs, and is accompanied by pronounced changes of their photoluminescence. Observed correlations between characteristic features of CV diagrams and the fluorescence spectra allowed us to propose mechanisms responsible for evolution of the photoluminescence properties as well as degradation pathway of CdTe QDs at low pH.
Xu, Peipei; Li, Jingyuan; Shi, Lixin; Selke, Matthias; Chen, Baoan; Wang, Xuemei
2013-01-01
We prepared and studied novel fluorescent nanocomposites based on gambogic acid (GA) and cadmium–tellurium (CdTe) quantum dots (CdTe QDs) modified with cysteamine for purpose of cancer cell labeling and combined treatment. The nanocomposites were denoted as GA-CdTe. Characterization results indicated that the CdTe QDs can readily bind onto cell plasma membranes and then be internalized into cancer cells for real-time labeling and tracing of human liver hepatocellular carcinoma cell line (HepG2) cells. GA-CdTe significantly enhanced drug accumulation in HepG2 cells and inhibited cancer cell proliferation. GA-CdTe nanocomposites also improved the drug action of GA molecules in HepG2 cells and induced the G2/M phase arrest of the cancer cell cycle, promoting cell apoptosis. Given the sensitive, pH-triggered release of GA-CdTe, the side effects of GA anticancer agents on normal cells/tissues in the blood circulation markedly decreased. Efficient drug release and accumulation in target tumor cells were also facilitated. Thus, the fluorescent GA-CdTe offered a new strategy for potential multimode cancer therapy and provided new channels for research into naturally-active compounds extracted from traditional Chinese medicinal plants. PMID:24109183
Xu, Peipei; Li, Jingyuan; Shi, Lixin; Selke, Matthias; Chen, Baoan; Wang, Xuemei
2013-01-01
We prepared and studied novel fluorescent nanocomposites based on gambogic acid (GA) and cadmium-tellurium (CdTe) quantum dots (CdTe QDs) modified with cysteamine for purpose of cancer cell labeling and combined treatment. The nanocomposites were denoted as GA-CdTe. Characterization results indicated that the CdTe QDs can readily bind onto cell plasma membranes and then be internalized into cancer cells for real-time labeling and tracing of human liver hepatocellular carcinoma cell line (HepG2) cells. GA-CdTe significantly enhanced drug accumulation in HepG2 cells and inhibited cancer cell proliferation. GA-CdTe nanocomposites also improved the drug action of GA molecules in HepG2 cells and induced the G2/M phase arrest of the cancer cell cycle, promoting cell apoptosis. Given the sensitive, pH-triggered release of GA-CdTe, the side effects of GA anticancer agents on normal cells/tissues in the blood circulation markedly decreased. Efficient drug release and accumulation in target tumor cells were also facilitated. Thus, the fluorescent GA-CdTe offered a new strategy for potential multimode cancer therapy and provided new channels for research into naturally-active compounds extracted from traditional Chinese medicinal plants.
Thiolated graphene - a new platform for anchoring CdSe quantum dots for hybrid heterostructures
NASA Astrophysics Data System (ADS)
Debgupta, Joyashish; Pillai, Vijayamohanan K.
2013-04-01
Effective organization of small CdSe quantum dots on graphene sheets has been achieved by a simple solution exchange with thiol terminated graphene prepared by diazonium salt chemistry. This generic methodology of CdSe QD attachment to any graphene surface has remarkable implications in designing hybrid heterostructures.Effective organization of small CdSe quantum dots on graphene sheets has been achieved by a simple solution exchange with thiol terminated graphene prepared by diazonium salt chemistry. This generic methodology of CdSe QD attachment to any graphene surface has remarkable implications in designing hybrid heterostructures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00363a
Exploring the core level shift origin of sulfur and thiolates on Pd(111) surfaces.
Salvarezza, Roberto Carlos; Carro, Pilar
2015-10-07
Thiol molecules on planar metal surfaces are widely used for building sensing and electronic devices and also as capping agents to protect and to control the size and shape of nanoparticles. In the case of Pd the thiol molecules exhibit a complex behavior because C-S bond scission is possible, resulting in a significant amount of co-adsorbed S. Therefore identification of these species on Pd is a key point for many applications, a task that is usually achieved by XPS. Here we show, from DFT calculations, that the core level shift (CLS) of the S 2p binding energy (BE) of thiol and sulfur on different thiol-Pd(111) surface models strongly depends on the adsorbed or subsurface state of sulfur atoms. Our results reflect the complexity of S 2p BE behavior and contribute to understanding and reanalyzing the experimental data of thiolated Pd surfaces.
Quantum Dots Microstructured Optical Fiber for X-Ray Detection
NASA Technical Reports Server (NTRS)
DeHaven, S. L.; Williams, P. A.; Burke, E. R.
2015-01-01
A novel concept for the detection of x-rays with microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide is presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dots application technique are discussed.
L-Cysteine Capped CdSe Quantum Dots Synthesized by Photochemical Route.
Singh, Avinash; Kunwar, Amit; Rath, M C
2018-05-01
L-cysteine capped CdSe quantum dots were synthesized via photochemical route in aqueous solution under UV photo-irradiation. The as grown CdSe quantum dots exhibit broad fluorescence at room temperature. The CdSe quantum dots were found to be formed only through the reactions of the precursors, i.e., Cd(NH3)2+4 and SeSO2-3 with the photochemically generated 1-hydroxy-2-propyl radicals, (CH3)2COH radicals, which are formed through the process of H atom abstraction by the photoexcited acetone from 2-propanol. L-Cysteine was found to act as a suitable capping agent for the CdSe quantum dots and increases their biocompatability. Cytotoxicty effects of these quantum dots were evaluated in Chinese Hamster Ovary (CHO) epithelial cells, indicated a significant lower level for the L-cysteine capped CdSe quantum dots as compare to the bare ones.
Zhao, Chuanzhen; Bai, Zelong; Liu, Xiangyou; Zhang, Yijia; Zou, Bingsuo; Zhong, Haizheng
2015-08-19
An efficient ligand exchange strategy for aqueous phase transfer of hydrophobic CuInS2/ZnS quantum dots was developed by employing glutathione (GSH) and mercaptopropionic acid (MPA) as the ligands. The whole process takes less than 20 min and can be scaled up to gram amount. The material characterizations show that the final aqueous soluble samples are solely capped with GSH on the surface. Importantly, these GSH-capped CuInS2/ZnS quantum dots have small size (hydrodynamic diameter <10 nm), moderate fluorescent properties (up to 34%) as well as high stability in aqueous solutions (stable for more than three months in 4 °C without any significant fluorescence quenching). Moreover, this ligand exchange strategy is also versatile for the aqueous phase transfer of other hydrophobic quantum dots, for instance, CuInSe2 and CdSe/ZnS quantum dots. We further demonstrated that GSH-capped quantum dots could be suitable fluorescence markers to penetrate cell membrane and image the cells. In addition, the GSH-capped CuInS2 quantum dots also have potential use in other fields such as photocatalysis and quantum dots sensitized solar cells.
NASA Astrophysics Data System (ADS)
Kang, Zhitao; Banishev, Alexandr A.; Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Xiao, Pan; Christensen, James; Zhou, Min; Summers, Christopher J.; Dlott, Dana D.; Thadhani, Naresh N.
2016-07-01
The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.
Zeng, Xianxiang; Ma, Shishi; Bao, Jianchun; Tu, Wenwen; Dai, Zhihui
2013-12-17
On the basis of the absorption and emission spectra overlap, an enhanced resonance energy transfer caused by excition-plasmon resonance between reduced graphene oxide (RGO)-Au nanoparticles (AuNPs) and CdTe quantum dots (QDs) was obtained. With the synergy of AuNPs and RGO as a planelike energy acceptor, it resulted in the enhancement of energy transfer between excited CdTe QDs and RGO-AuNPs nanocomposites. Upon the novel sandwichlike structure formed via DNA hybridization, the exciton produced in CdTe QDs was annihilated. A damped photocurrent was obtained, which was acted as the background signal for the development of a universal photoelectrochemical (PEC) platform. With the use of carcinoembryonic antigen (CEA) as a model which bonded to its specific aptamer and destroyed the sandwichlike structure, the energy transfer efficiency was lowered, leading to PEC response augment. Thus a signal-on PEC aptasensor was constructed. Under 470 nm irradiation at -0.05 V, the PEC aptasensor for CEA determination exhibited a linear range from 0.001 to 2.0 ng mL(-1) with a detection limit of 0.47 pg mL(-1) at a signal-to-noise ratio of 3 and was satisfactory for clinical sample detection. Since different aptamers can specifically bind to different target molecules, the designed strategy has an expansive application for the construction of versatile PEC platforms.
Huan, Juan; Liu, Qian; Fei, Airong; Qian, Jing; Dong, Xiaoya; Qiu, Baijing; Mao, Hanping; Wang, Kun
2015-11-15
An amplified solid-state electrochemiluminescence (ECL) biosensor for detection of cholesterol in near-infrared (NIR) range was constructed based on CdTe quantum dots (QDs) decorated multiwalled carbon nanotubes@reduced graphene nanoribbons (CdTe-MWCNTs@rGONRs), which were prepared by electrostatic interactions. The CdTe QDs decorated on the MWCNTs@rGONRs resulted in the amplified ECL intensity by ~4.5 fold and decreased onset potential by ~100 mV. By immobilization of the cholesterol oxidase (ChOx) and NIR CdTe-MWCNTs@rGONRs on the electrode surface, a solid-state ECL biosensor for cholesterol detection was constructed. When cholesterol was added to the detection solution, the immobilized ChOx catalyzed the oxidation of cholesterol to generate H2O2, which could be used as the co-reactant in the ECL system of CdTe-MWCNTs@rGONRs. The as-prepared biosensor exhibited good performance for cholesterol detection including good reproducibility, selectivity, and acceptable linear range from 1 μM to 1mM with a relative low detection limit of 0.33 μM (S/N=3). The biosensor was successfully applied to the determination of cholesterol in biological fluid and food sample, which would open a new possibility for development of solid-state ECL biosensors with NIR emitters. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Zhitao; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245; Banishev, Alexandr A.
The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersedmore » in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.« less
NASA Astrophysics Data System (ADS)
Gualdrón-Reyes, A. F.; Cárdenas-Arenas, A.; Martínez, C. A.; Kouznetsov, V. V.; Meléndez, A. M.
2017-01-01
In order to fabricate a solar cell, ordered TiO2 nanotube (TNT) arrays were prepared by double anodization. TNT arrays with variable lengths were obtained by changing the duration of the anodizing process of up to 3h. TNT membranes were transferred to indium tin oxide substrates and attached with a B-TiO2 sol. TNT photoanode with the best photoelectrochemical performance was sensitized with CdS by SILAR method. On other hand, CdTe quantum dots prepared via colloidal synthesis were deposited on TNT photoanodes for 2h, 4h and 6h. In addition, TNT/CdS was loaded with CdTe quantum dots for 4 h. Morphology and chemical modification of TiO2 were characterized by FESEM and XPS, while their photoelectrochemical performance was measured by open-circuit photopotential and photovoltammetry under visible light. TiO2 nanotubes grown during 2.5h showed the highest photocurrent due to presence of Ti3+ donor states by N and F co-doping, increasing the number of photogenerated electrons transported to back collector. TNT/CdS/CdTe photoanode reach the highest conversion efficiency under AM 1.5G simulated solar illumination.
Capillary electrophoresis-driven synthesis of water-soluble CdTe quantum dots in nanoliter scale
NASA Astrophysics Data System (ADS)
Nejdl, Lukas; Hynek, David; Adam, Vojtech; Vaculovicova, Marketa
2018-04-01
‘Green nanotechnology’ is a term used for the design of nanomaterials and processes that reduce or eliminate the use and/or generation of hazardous substances. In this paper, a capillary electrophoresis (CE)-driven synthesis of CdTe quantum dots (QDs) and their subsequent conjugation with a metal-binding protein metallothionein (isofom MT1) is reported. Even though the toxic materials (cadmium and potassium borohydride) were used for synthesis, the proposed method can be labeled as ‘environmentally friendly’ because the whole process (synthesis of QDs and MT1 conjugation) was carried out under mild conditions: ultra-low volume (nanoliter scale), relatively low temperature (50 °C), atmospheric pressure, and completed in a short time (under 90 s). Prepared QDs were also characterized by classical fluorescence spectroscopy and transmission electron microscopy. This study opens up new possibilities for the utilization of classical CE in the synthesis of nanoparticles and on-line labeling of biomolecules in the nanoliter scale in short period of time.
Capillary electrophoresis-driven synthesis of water-soluble CdTe quantum dots in nanoliter scale.
Nejdl, Lukas; Hynek, David; Adam, Vojtech; Vaculovicova, Marketa
2018-04-20
'Green nanotechnology' is a term used for the design of nanomaterials and processes that reduce or eliminate the use and/or generation of hazardous substances. In this paper, a capillary electrophoresis (CE)-driven synthesis of CdTe quantum dots (QDs) and their subsequent conjugation with a metal-binding protein metallothionein (isofom MT1) is reported. Even though the toxic materials (cadmium and potassium borohydride) were used for synthesis, the proposed method can be labeled as 'environmentally friendly' because the whole process (synthesis of QDs and MT1 conjugation) was carried out under mild conditions: ultra-low volume (nanoliter scale), relatively low temperature (50 °C), atmospheric pressure, and completed in a short time (under 90 s). Prepared QDs were also characterized by classical fluorescence spectroscopy and transmission electron microscopy. This study opens up new possibilities for the utilization of classical CE in the synthesis of nanoparticles and on-line labeling of biomolecules in the nanoliter scale in short period of time.
Tuning optical properties of water-soluble CdTe quantum dots for biological applications
NASA Astrophysics Data System (ADS)
Schulze, Anne S.; Tavernaro, Isabella; Machka, Friederike; Dakischew, Olga; Lips, Katrin S.; Wickleder, Mathias S.
2017-02-01
In this study, two different synthetic methods in aqueous solution are presented to tune the optical properties of CdTe and CdSe semiconductor nanoparticles. Additionally, the influence of different temperatures, pressures, precursor ratios, surface ligands, bases, and core components in the synthesis was investigated with regard to the particle sizes and optical properties. As a result, a red shift of the emission and absorption maxima with increasing reaction temperature (100 to 220°C), pressure (1 to 25 bar), and different ratios of core components of alloyed semiconductor nanoparticles could be observed without a change of the particle size. An increase in particle size from 2.5 to 5 nm was only achieved by variation of the mercaptocarboxylic acid ligands in combination with the reaction time and used base. To get a first hint on the cytotoxic effects and cell uptake of the synthesized quantum dots, in vitro tests mesenchymal stem cells (MSCs) were carried out.
Photosensitization of InP/ZnS quantum dots for anti-cancer and anti-microbial applications
NASA Astrophysics Data System (ADS)
Nadeau, Jay; Chibli, Hicham; Carlini, Lina
2012-03-01
Cadmium-free quantum dots (QDs), such as those made from InP, show similar optical properties to those containing toxic heavy metals and thus provide a promising alternative for imaging and therapeutics. The band gap of InP is similar to that of CdTe, so photosensitization of InP QDs with porphyrins or other dyes should lead to generation of reactive oxygen species, useful for targeted destruction of malignant cells or pathogenic bacteria. Here we show the results of measurements of singlet oxygen and superoxide generation from InP QDs with single and double ZnS shells compared with CdTe and CdSe/ZnS. Reactive oxygen species are measured using colorimetric or fluorescent reporter assays and spin-trap electron paramagnetic resonance (EPR) spectroscopy. We find that the size of the InP QDs and the thickness of the ZnS shell both strongly influence ROS generation. These results suggest future approaches to the design of therapeutic nanoparticles.
NASA Astrophysics Data System (ADS)
Oh, K.; Han, M.; Kim, K.; Heo, Y.; Moon, C.; Park, S.; Nam, S.
2016-02-01
For quality assurance in radiation therapy, several types of dosimeters are used such as ionization chambers, radiographic films, thermo-luminescent dosimeter (TLD), and semiconductor dosimeters. Among them, semiconductor dosimeters are particularly useful for in vivo dosimeters or high dose gradient area such as the penumbra region because they are more sensitive and smaller in size compared to typical dosimeters. In this study, we developed and evaluated Cadmium Telluride (CdTe) dosimeters, one of the most promising semiconductor dosimeters due to their high quantum efficiency and charge collection efficiency. Such CdTe dosimeters include single crystal form and polycrystalline form depending upon the fabrication process. Both types of CdTe dosimeters are commercially available, but only the polycrystalline form is suitable for radiation dosimeters, since it is less affected by volumetric effect and energy dependence. To develop and evaluate polycrystalline CdTe dosimeters, polycrystalline CdTe films were prepared by thermal evaporation. After that, CdTeO3 layer, thin oxide layer, was deposited on top of the CdTe film by RF sputtering to improve charge carrier transport properties and to reduce leakage current. Also, the CdTeO3 layer which acts as a passivation layer help the dosimeter to reduce their sensitivity changes with repeated use due to radiation damage. Finally, the top and bottom electrodes, In/Ti and Pt, were used to have Schottky contact. Subsequently, the electrical properties under high energy photon beams from linear accelerator (LINAC), such as response coincidence, dose linearity, dose rate dependence, reproducibility, and percentage depth dose, were measured to evaluate polycrystalline CdTe dosimeters. In addition, we compared the experimental data of the dosimeter fabricated in this study with those of the silicon diode dosimeter and Thimble ionization chamber which widely used in routine dosimetry system and dose measurements for radiation therapy.
Bond order potential module for LAMMPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-09-11
pair_bop is a module for performing energy calculations using the Bond Order Potential (BOP) for use in the parallel molecular dynamics code LAMMPS. The bop pair style computes BOP based upon quantum mechanical incorporating both sigma and pi bondings. By analytically deriving the BOP pair bop from quantum mechanical theory its transferability to different phases can approach that of quantum mechanical methods. This potential is extremely effective at modeling 111-V and II-VI compounds such as GaAs and CdTe. This potential is similar to the original BOP developed by Pettifor and later updated by Murdock et al. and Ward et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loginova, Y.F.; Dezhurov, S.V.; Zherdeva, V.V.
Highlights: Black-Right-Pointing-Pointer New QDs coated with combination of polythiol ligands and silica shell were synthesized. Black-Right-Pointing-Pointer We examine the QDs stability in digestive tract of mice after per os administration. Black-Right-Pointing-Pointer The polymer/silica shell prevents QDs degradation and fluorescence quenching in vivo. -- Abstract: CdSe-core, ZnS-capped semiconductor quantum dots (QDs) are of great potential for biomedical applications. However, applications in the gastrointestinal tract for in vivo imaging and therapeutic purposes are hampered by their sensitivity to acidic environments and potential toxicity. Here we report the use of coatings with a combination of polythiol ligands and silica shell (QDs PolyT-APS) tomore » stabilize QDs fluorescence under acidic conditions. We demonstrated the stability of water-soluble QDs PolyT-APS both in vitro, in strong acidic solutions, and in vivo. The biodistribution, stability and photoluminescence properties of QDs in the gastrointestinal tract of mice after per os administration were assessed. We demonstrated that QDs coated with current traditional materials - mercapto compounds (QDs MPA) and pendant thiol group (QDs PolyT) - are not capable of protecting QDs from chemically induced degradation and surface modification. Polythiol ligands and silica shell quantum dots (QDs PolyT-APS) are suitable for biological and biomedical applications in the gastrointestinal tract.« less
NASA Astrophysics Data System (ADS)
Li, Pei-Ni; Ghule, Anil V.; Chang, Jia-Yaw
2017-06-01
Compared to the use of an organic system, a synthetic method based on aqueous solutions offers the potential for simple, environmentally friendly, low-cost fabrication with high synthetic reproducibility and easy upscaling. Here, AgInSe2 quantum dots (QDs) capped with different types of thiol molecules [thioglycolic acid (TGA), 3-mercaptopropionic acid (MPA), or glutathione (GSH)] are prepared within 15 min in aqueous media under microwave irradiation. The GSH-stabilized AgInSe2 QDs are demonstrated to be effective light harvesters in a QD-sensitized solar cell (QDSSC), showing ∼23% better efficiency than cells using TGA- and MPA-stabilized AgInSe2 QDs. The performance enhancement is attributed to the multidentate chelating effect of the GSH stabilizer, which provides efficient charge injection from QDs into the conduction band of TiO2 in the photoanode. Electrochemical impedance spectroscopy and intensity-modulated photocurrent spectroscopy/intensity-modulated photovoltage spectroscopy measurements are adopted for more detailed study of the interfacial properties and electron transport characteristics of these AgInSe2 QDSSCs. More importantly, the GSH-stabilized AgInSe2 QDSSC with TiCl4 treatment exhibits an excellent power conversion efficiency of 5.69% with an average value of 5.48 ± 0.19% under 100 mW cm-2 illumination, which is one of the highest values observed for a QDSSC sensitized with a Ag-based metal chalcogenide.
Synthesis and Characterization of Mercaptoacetic Acid Capped Cadmium Sulphide Quantum Dots.
Wageh, S; Maize, Mai; Donia, A M; Al-Ghamdi, Ahmed A; Umar, Ahmad
2015-12-01
This paper reports the facile synthesis and detailed characterization of mercaptoacetic acid capped cadmium sulphide (CdS) quantum dots using various cadmium precursors. The mercaptoacetic acid capped CdS quantum dots were prepared by facile and simple wet chemical method and characterized by several techniques such as energy dispersive spectroscopy (EDS), X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, UV-vis. spectroscopy, photoluminescence spectroscopy, high-resolution transmission microscopy (HRTEM) and thremogravimetric analysis. The EDS studies revealed that the prepared quantum dots possess higher atomic percentage of sulfur compared to cadmium due to the coordination of thiolate to the quantum dots surfaces. The X-ray and absorption analyses exhibited that the size of quantum dots prepared by cadmium acetate is larger than the quantum dots prepared by cadmium chloride and cadmium nitrate. The increase in size can be attributed to the low stability constant of cadmium acetate in comparison with cadmium chloride and cadmium nitrate. The FTIR and thermogravimetric analysis showed that the nature of capping molecule on the surface of quantum dots are different depending on the cadmium precursors which affect the emission from CdS quantum dots. Photoemission spectroscopy revealed that the emission of quantum dots prepared by cadmium acetate has high intensity band edge emission along with low intensity trapping state emission. However the CdS quantum dots prepared by cadmium chloride and cadmium nitrate produced only trapping state emissions.
Li, Zhuo; Wang, Yong; Ni, Yongnian; Kokot, Serge
2015-08-15
A magnetic and fluorescent nano-composite was prepared. It comprised of a core of Fe3O4 nanoparticles (NPs), a silica shell and satellitic Au nano-clusters (AuNCs) capped with bovine serum albumin (BSA). This nano-composite has many desirable properties, e.g. magnetism, red emission, high water solubility, and high resistance to photo-bleaching. On addition of the analyte, 6-mercaptopurine (6-MP) or indeed other similar thiols, AuNCs formed aggregates because the existing cross-links within the Fe3O4 NPs@SiO2 and AuNC structure were broken in favor of the gold-thiol bonds. On suitable irradiation of such aggregates, red fluorescence was emitted at 613 nm. It decreased significantly as a function of the added 6-MP concentration, and the quenching ratio (F0 - F) / F0 was related linearly to the concentration of 6-MP in the range of 0.01 to 0.5 μmol L(-1). The detection limit was 0.004 μmol L(-1) (S/N=3). The method was strongly selective for 6-MP in the presence of oxidants, phenols, heavy-metal ions, and especially bio-thiols. Copyright © 2015 Elsevier B.V. All rights reserved.
2013-01-01
Background Quantum dots (QDs) have been used as novel fluorescent nanoprobes for various bioapplications. The degradation of QDs, and consequent release of free cadmium ions, have been suggested to be the causes of their overall toxicity. However, in contrast to sufficient investigations regarding the biological fate of QDs, a paucity of studies have reported their chemical fate in vivo. Therefore, the overall aim of our study was to understand the chemical fate of QDs in vivo and explore analytical techniques or methods that could be used to define the chemical fate of QDs in vivo. Methods Male ICR mice were administered a single intravenous dose (0.2 μmol/kg) of aqueous synthesized CdTe/ZnS aqQDs. Inductively coupled plasma-mass spectrometry (ICP-MS) was used to simultaneously measure the concentrations of cadmium (Cd) and tellurium (Te) in the blood and tissues over the course of a 28 day period. We compared the blood kinetic parameters and biodistributions of Cd and Te, and used the molar ratio of Cd:Te as a marker for QDs degradation. Results Cd and Te display different blood kinetics and biodistribution profiles. The Cd:Te ratio in the blood did not vary significantly within the first hour compared with intact CdTe/ZnS aqQDs. The Cd:Te ratio decreased gradually over time from the 6 h time point on. Cd accumulated in the liver, kidneys, and spleen. Te was distributed primarily to the kidneys. Sharp time-dependent increases in the Cd:Te ratio were found in liver tissues. Conclusions QDs can undergo degradation in vivo. In vitro, QDs are chemically stable and do not elicit the same biological responses or consequences as they do in vivo. Our methods might provide valuable information regarding the degradation of QDs in vivo and may enable the design and development of QDs for biological and biomedical applications. PMID:23915017
Liu, Na; Mu, Ying; Chen, Yi; Sun, Hubo; Han, Sihai; Wang, Mengmeng; Wang, Hui; Li, Yanbo; Xu, Qian; Huang, Peili; Sun, Zhiwei
2013-08-06
Quantum dots (QDs) have been used as novel fluorescent nanoprobes for various bioapplications. The degradation of QDs, and consequent release of free cadmium ions, have been suggested to be the causes of their overall toxicity. However, in contrast to sufficient investigations regarding the biological fate of QDs, a paucity of studies have reported their chemical fate in vivo. Therefore, the overall aim of our study was to understand the chemical fate of QDs in vivo and explore analytical techniques or methods that could be used to define the chemical fate of QDs in vivo. Male ICR mice were administered a single intravenous dose (0.2 μmol/kg) of aqueous synthesized CdTe/ZnS aqQDs. Inductively coupled plasma-mass spectrometry (ICP-MS) was used to simultaneously measure the concentrations of cadmium (Cd) and tellurium (Te) in the blood and tissues over the course of a 28 day period. We compared the blood kinetic parameters and biodistributions of Cd and Te, and used the molar ratio of Cd:Te as a marker for QDs degradation. Cd and Te display different blood kinetics and biodistribution profiles. The Cd:Te ratio in the blood did not vary significantly within the first hour compared with intact CdTe/ZnS aqQDs. The Cd:Te ratio decreased gradually over time from the 6 h time point on. Cd accumulated in the liver, kidneys, and spleen. Te was distributed primarily to the kidneys. Sharp time-dependent increases in the Cd:Te ratio were found in liver tissues. QDs can undergo degradation in vivo. In vitro, QDs are chemically stable and do not elicit the same biological responses or consequences as they do in vivo. Our methods might provide valuable information regarding the degradation of QDs in vivo and may enable the design and development of QDs for biological and biomedical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rod, R.L.; Bunshah, R.; Stafsudd, O.
1980-05-15
Thin film gold/polycrystalline cadmium telluride Schottky solar cells made by electrodepositing the semiconductor on an ITO-coated glass substrate serving also as an ohmic contact demonstrated an internal efficiency of 4% over 2 mm/sup 2/ areas. During the year being reported upon, Monosolar devoted mator attention to refining the electroplating process and determining the parameters governing CdTe film stoichiometry, grain size, substrate adhesion, and quality. UCLA acting as a Monosolar sub-contractor characterized both the CdTe films themselves and solar cells made from them. Techniques were developed for making measurements on films often less than 1 micron in thickness. The highest valuesmore » achieved for efficiency parameters, not necessarily all in the same cell, were V/sub oc/ = 0.5 V, J/sub sc/ = 11 mA/cm/sup 2/, and fill factor = 0.55 before corrections in the absence of anti-reflection coatings. Typical resistivities for n-CdTe films were 10/sup 5/ ..cap omega..-cm. Lifetimes of about 10/sup -10/ sec were measured. Absorption coefficient of these films is in the order of 10/sup 4/ for lambda < 0.7 ..mu..m. Measured energy gap for these CdTe films is 1.55 eV, sightly higher than the 1.45 eV value for single crystal CdTe. The activation energy of the dominating trap level is 0.55 eV. Trap density is in the order of 10/sup 16//cm/sup 3/. Schottky diodes were of excellent quality and pinhole-free. The measured barrier height varied between 0.75 and 0.85 eV. Rectification ratios of 10/sup 4/ were obtained reproducibly. Films measure about 1 inch square. Indications are that larger and more efficient low cost solar devices can readily be obtained soon using the techniques developed in this program.« less
Zhang, S L; Xue, F; Wu, R; Cui, J; Jiang, Z M; Yang, X J
2009-04-01
Conductive atomic force microscopy has been employed to study the topography and conductance distribution of individual GeSi quantum dots (QDs) and quantum rings (QRs) during the transformation from QDs to QRs by depositing an Si capping layer on QDs. The current distribution changes significantly with the topographic transformation during the Si capping process. Without the capping layer, the QDs are dome-shaped and the conductance is higher at the ring region between the center and boundary than that at the center. After capping with 0.32 nm Si, the shape of the QDs changes to pyramidal and the current is higher at both the center and the arris. When the Si capping layer increases to 2 nm, QRs are formed and the current of individual QRs is higher at the rim than that at the central hole. By comparing the composition distributions obtained by scanning Auger microscopy and atomic force microscopy combined with selective chemical etching, the origin of the current distribution change is discussed.
NASA Astrophysics Data System (ADS)
Huang, Xiaolin; Zhan, Shengnan; Xu, Hengyi; Meng, Xianwei; Xiong, Yonghua; Chen, Xiaoyuan
2016-04-01
Herein, for the first time we report an improved competitive fluorescent enzyme linked immunosorbent assay (ELISA) for the ultrasensitive detection of ochratoxin A (OTA) by using hydrogen peroxide (H2O2)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (QDs). In this immunoassay, catalase (CAT) was labeled with OTA as a competitive antigen to connect the fluorescence signals of the QDs with the concentration of the target. Through the combinatorial use of H2O2-induced fluorescence quenching of CdTe QDs as a fluorescence signal output and the ultrahigh catalytic activity of CAT to H2O2, our proposed method could be used to perform a dynamic linear detection of OTA ranging from 0.05 pg mL-1 to 10 pg mL-1. The half maximal inhibitory concentration was 0.53 pg mL-1 and the limit of detection was 0.05 pg mL-1. These values were approximately 283- and 300-folds lower than those of horseradish peroxidase (HRP)-based conventional ELISA, respectively. The reported method is accurate, highly reproducible, and specific against other mycotoxins in agricultural products as well. In summary, the developed fluorescence immunoassay based on H2O2-induced fluorescence quenching of CdTe QDs can be used for the rapid and highly sensitive detection of mycotoxins or haptens in food safety monitoring.Herein, for the first time we report an improved competitive fluorescent enzyme linked immunosorbent assay (ELISA) for the ultrasensitive detection of ochratoxin A (OTA) by using hydrogen peroxide (H2O2)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (QDs). In this immunoassay, catalase (CAT) was labeled with OTA as a competitive antigen to connect the fluorescence signals of the QDs with the concentration of the target. Through the combinatorial use of H2O2-induced fluorescence quenching of CdTe QDs as a fluorescence signal output and the ultrahigh catalytic activity of CAT to H2O2, our proposed method could be used to perform a dynamic linear detection of OTA ranging from 0.05 pg mL-1 to 10 pg mL-1. The half maximal inhibitory concentration was 0.53 pg mL-1 and the limit of detection was 0.05 pg mL-1. These values were approximately 283- and 300-folds lower than those of horseradish peroxidase (HRP)-based conventional ELISA, respectively. The reported method is accurate, highly reproducible, and specific against other mycotoxins in agricultural products as well. In summary, the developed fluorescence immunoassay based on H2O2-induced fluorescence quenching of CdTe QDs can be used for the rapid and highly sensitive detection of mycotoxins or haptens in food safety monitoring. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01136e
Zhang, Bingpo; Lu, Ping; Liu, Henan; ...
2015-06-05
Quantum oscillations are observed in the 2DEG system at the interface of novel heterostructures, PbTe/CdTe (111), with nearly identical lattice parameters (a PbTe = 0.6462 nm, a CdTe = 0.648 nm) but very different lattice structures (PbTe: rock salt, CdTe: zinc blende). The 2DEG formation mechanism, a mismatch in the bonding configurations of the valence electrons at the interface, is uniquely different from the other known 2DEG systems. The aberration-corrected scanning transmission electron microscope (AC-STEM) characterization indicates an abrupt interface without cation interdiffusion due to a large miscibility gap between the two constituent materials. As a result, electronic transport measurementsmore » under magnetic field up to 60 T, with the observation of Landau level filling factor ν = 1, unambiguously reveal a π Berry phase, suggesting the Dirac Fermion nature of the 2DEG at the heterostructure interface, and the PbTe/CdTe heterostructure being a new candidate for 2D topological crystalline insulators.« less
Wu, Le; Lin, Zheng-Zhong; Zhong, Hui-Ping; Peng, Ai-Hong; Chen, Xiao-Mei; Huang, Zhi-Yong
2017-08-15
A sensitive fluorescence sensor for the detection of malachite green (MG) was fabricated by grafting molecularly imprinted polymers (MIPs) onto the surface of CdTe quantum dots (QDs). The MIP-coated QDs were synthesized via a reverse microemulsion method using (3-aminopropyl)triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) as functional monomer and cross-linker, respectively. The optimum molar ratio of MG, functional monomer and cross-linker was 1:3:10. The MIP-coated QDs exhibited uniform spheres with diameter around 49nm and excellent fluorescence emission at λ ex 370nm. A linear relationship with two segments between the relative fluorescence intensities and the MG concentrations ranging from 0.08 to 20μmol·L -1 could be obtained with a detection limit of 12μg·kg -1 . The fluorescent probe was successfully applied to the determination of MG in fish samples with the spiked recoveries ranging from 94.3% to 109.5% which were in accordance with those of the measurement by HPLC-UV. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cyclotron resonance in HgTe/CdTe-based heterostructures in high magnetic fields
2012-01-01
Cyclotron resonance study of HgTe/CdTe-based quantum wells with both inverted and normal band structures in quantizing magnetic fields was performed. In semimetallic HgTe quantum wells with inverted band structure, a hole cyclotron resonance line was observed for the first time. In the samples with normal band structure, interband transitions were observed with wide line width due to quantum well width fluctuations. In all samples, impurity-related magnetoabsorption lines were revealed. The obtained results were interpreted within the Kane 8·8 model, the valence band offset of CdTe and HgTe, and the Kane parameter EP being adjusted. PMID:23013642
Advances in all-sputtered CdTe solar cells on flexible substrates
NASA Astrophysics Data System (ADS)
Wieland, Kristopher; Mahabaduge, Hasitha; Vasko, Anthony; Compaan, Alvin
2010-03-01
The University of Toledo II-VI semiconductor group has developed magnetron sputtering (MS) for the deposition of thin films of CdS, CdTe, and related materials for photovoltaic applications. On glass superstrates, we have reached air mass 1.5 efficiencies of 14%.[1] Recently we have studied the use of MS for the fabrication of thin-film CdS/CdTe cells on flexible polyimide superstrates. This takes advantage of the high film quality that can be achieved at substrate temperatures below 300 C when RF MS is used. Our recent CdS/CdTe solar cells have reached 10.5% on flexible polyimide substrates. [2] This all-sputtered cell (except for back contact) has a structure of polyimide/ZnO:Al/ZnO/CdS/CdTe/Cu/Au. The physics of this device will be discussed through the use of spectral quantum efficiency and current-voltage measurements as a function of CdTe layer thickness. Pathways toward further increases in device efficiencies will also be discussed. [1] Appl. Phys. Lett. 85, 684 (2004) [2] Phys. Stat. Sol. (B) 241, No. 3, 779--782 (2004)
Spectroscopy characterization and quantum yield determination of quantum dots
NASA Astrophysics Data System (ADS)
Contreras Ortiz, S. N.; Mejía Ospino, E.; Cabanzo, R.
2016-02-01
In this paper we show the characterization of two kinds of quantum dots: hydrophilic and hydrophobic, with core and core/shell respectively, using spectroscopy techniques such as UV-Vis, fluorescence and Raman. We determined the quantum yield in the quantum dots using the quinine sulphate as standard. This salt is commonly used because of its quantum yield (56%) and stability. For the CdTe excitation, we used a wavelength of 549nm and for the CdSe/ZnS excitation a wavelength of 527nm. The results show that CdSe/ZnS (49%) has better fluorescence, better quantum dots, and confirm the fluorescence result. The quantum dots have shown a good fluorescence performance, so this property will be used to replace dyes, with the advantage that quantum dots are less toxic than some dyes like the rhodamine. In addition, in this work we show different techniques to find the quantum dots emission: fluorescence spectrum, synchronous spectrum and Raman spectrum.
Zheng, Xiaoli; Xu, Qun; He, Linghao; Yu, Ning; Wang, Shanshan; Chen, Zhimin; Fu, JianWei
2011-05-19
Graphene oxide (GO) sheets were noncovalently modified with an amphiphilic double-crystalline block copolymer, polyethylene-b-poly(ethylene oxide) (PE-b-PEO) with assistance of supercritical CO(2) (SC CO(2)) in this work. The resulting PE-b-PEO/GO nanohybrids were characterized by transmission electron microscopy (TEM), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), and Raman spectra. Distinct morphologies of PE-b-PEO decorating on the surface of GO were obtained in different solvent systems and at different SC CO(2) pressures. We found that the solvent system and the SC CO(2) have significant influence on the crystallization, aggregation, or assembly behaviors of PE-b-PEO molecular chains on the GO sheets. The formation mechanism of the distinct nanohybrid structures is attributed to a relevant easy heteronucleation and the limited crystal growth of the block polymer on the surface of GO. The resulting modified GO sheets could find a broad spectrum of applications not only in producing graphene-based nanocomposites but also being used as a template to fabricate multifunctional structures due to the unique properties of PE-b-PEO. As a proof-of-concept, we further decorated the GO sheets with the as-prepared Au nanoparticles (Au NPs) and CdTe nanoparticles (CdTe NPs) with PE-b-PEO as the interlinker. Using the thiol-terminated PE-b-PEO as an interlinker, Au NPs can be densely assembled on the surface of GO via robust Au-S bonds. Furthermore, the photoluminescence quenching of CdTe NPs was more notable for PE-b-PEO/GO-CdTe hybrid compared to the GO-CdTe hybrid, suggesting that the electron transfer from the CdTe NPs to the GO sheets was enhanced with the PE-b-PEO interlinker. The availability of these affordable graphene-based multifunctional structures and their fundamental properties will open up new opportunities for nanoscience and nanotechnology and accelerate their applications. © 2011 American Chemical Society
Kim, Seongwoong; Kim, Sungsoo; Ko, Young Chun; Sohn, Honglae
2015-07-01
Photoluminescent porous silicon were prepared by an electrochemical etch of n-type silicon under the illumination with a 300 W tungsten filament bulb for the duration of etch. The red photoluminescence emitting at 650 nm with an excitation wavelength of 450 nm is due to the quantum confinement of silicon quantum dots in porous silicon. HO-terminated red luminescent PS was obtained by an electrochemical treatment of fresh PS with the current of 150 mA for 60 seconds in water and sodium chloride. As-prepared PS was sonicated, fractured, and centrifuged in toluene solution to obtain photoluminescence silicon quantum dots. Dichlorotetraphenylsilole exhibiting an emission band at 520 nm was reacted with HO-terminated silicon quantum dots to give a silole-capped silicon quantum dots. The optical characterization of silole-derivatized silicon quantum dots was investigated by UV-vis and fluorescence spectrometer. The fluorescence emission efficiency of silole-capped silicon quantum dots was increased by about 2.5 times due to F6rster resonance energy transfer from silole moiety to silicon quantum dots.
NASA Astrophysics Data System (ADS)
Borse, Vivek; Sadawana, Mayur; Srivastava, Rohit
2016-04-01
Synthesis of quantum dots (QDs) in aqueous medium is advantageous as compared to the organic solvent mediated synthesis, as the aqueous synthesis is less toxic, reagent effective, easily reproducible and importantly, synthesized QDs have biological compatibility. The QDs should be aqueous in nature for use in cell imaging, drug labeling, tracking and delivery. Structural modifications are necessary to enable their use in biosensing application. In this work, mercaptopropionic acid capped cadmium telluride QDs (MPA-CdTe QDs) were synthesized by hydrothermal method and characterized by various techniques. Water and various biochemical buffers were used to study the fluorescence intensity stability of the QDs at different physicochemical conditions. QDs stored in 4° C showed excellent stability of fluorescence intensity values as compared to the samples stored at room temperature. Staphylococcal protein A (SPA) was conjugated with the QDs (SPA-QDs) and characterized using UV and fluorescence spectroscopy, zeta potential, HRTEM, FTIR, and AFM. Blue shift was observed in the fluorescence emission spectra that may be due to reduction in the surface charge as carboxyl groups on QDs were replaced by amino groups of SPA. This SPA conjugated to QDs enables binding of the C-terminal of antibodies on its surface allowing N-terminal binding site remain free to bind with antigenic biomarkers. Thus, the biosensor i.e. antibody bound on SPA-QDs would bind to the antigenic biomarkers in sample and the detection system could be developed. As QDs have better fluorescence properties than organic dyes, this biosensor will provide high sensitivity and quantitative capability in diagnostics.
Bruneau, A; Fortier, M; Gagne, F; Gagnon, C; Turcotte, P; Tayabali, A; Davis, T L; Auffret, M; Fournier, M
2013-03-01
The increasing use of products derived from nanotechnology has raised concern about their potential toxicity to aquatic life. This study sought to examine the comparative immunotoxicity of capped cadmium sulphide/cadmium telluride (CdS/CdTe) quantum dots (QDs) and possible impact of particle/aggregate size on two bivalves (Mytilus edulis and Elliptio complanata) and a fish (Oncorhynchus mykiss). The QDs were dispersed in sterile water and fractionated using a series of micro/ultrafiltration membranes of decreasing pore size: 450 nm, 100 nm, 50 nm, 25 nm, 100 kDa (6.8 nm), 30 kDa (4.6 nm), 10 kDa (3.2 nm) and 1 kDa (1.5 nm). The total concentrations of cadmium and tellurium were determined for the filtered material and for that retained on the filters (retentate). The immunotoxicity was determined by measuring cell viability and phagocytosis. Results revealed that nanoparticles retained on the ultrafilters had a higher Cd/Te ratio compared to the permeate fraction (ratio of 5 and 2 respectively) which could indicate that the CdS core was not associated with the permeable fraction of Cd. Our results demonstrate that the toxicity of CdS/CdTe QDs was concentration and size dependent. Large CdS/CdTe QD aggregates (25 nm < size < 100 nm) reduced phagocytosis more than did smaller nanoparticles (<25 nm). Moreover, our results revealed that the different species responded differently to these fractions. Mytilus edulis hemocytes were less sensitive to CdS/CdTe QDs than the Oncorhynchus mykiss macrophage and Elliptio complanata hemocytes.
NASA Astrophysics Data System (ADS)
Ahn, Junyeong; Yang, Bohm-Jung
2017-04-01
We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and twofold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems, where a direct transition between two insulators is generally predicted, we find that the topological phase transition in systems with an additional twofold rotation symmetry is mediated by an emergent stable 2D Weyl semimetal phase between two insulators. Here the central role is played by the so-called space-time inversion symmetry, the combination of time-reversal and twofold rotation symmetries, which guarantees the quantization of the Berry phase around a 2D Weyl point even in the presence of strong spin-orbit coupling. Pair creation and pair annihilation of Weyl points accompanying partner exchange between different pairs induces a jump of a 2D Z2 topological invariant leading to a topological phase transition. According to our theory, the topological phase transition in HgTe /CdTe quantum well structure is mediated by a stable 2D Weyl semimetal phase because the quantum well, lacking inversion symmetry intrinsically, has twofold rotation about the growth direction. Namely, the HgTe /CdTe quantum well can show 2D Weyl semimetallic behavior within a small but finite interval in the thickness of HgTe layers between a normal insulator and a quantum spin Hall insulator. We also propose that few-layer black phosphorus under perpendicular electric field is another candidate system to observe the unconventional topological phase transition mechanism accompanied by the emerging 2D Weyl semimetal phase protected by space-time inversion symmetry.
Quantum dot nanocrystals having guanosine imprinted nanoshell for DNA recognition.
Diltemiz, Sibel Emir; Say, Ridvan; Büyüktiryaki, Sibel; Hür, Deniz; Denizli, Adil; Ersöz, Arzu
2008-05-30
Molecular imprinted polymers (MIPs) as a recognition element for sensors are increasingly of interest and MIP nanoparticles have started to appear in the literature. In this study, we have proposed a novel thiol ligand-capping method with polymerizable methacryloylamido-cysteine (MAC) attached to CdS quantum dots (QDs), reminiscent of a self-assembled monolayer and have reconstructed surface shell by synthetic host polymers based on molecular imprinting method for DNA recognition. In this method, methacryloylamidohistidine-platinium (MAH-Pt(II)) is used as a new metal-chelating monomer via metal coordination-chelation interactions and guanosine templates of DNA. Nanoshell sensors with guanosine templates give a cavity that is selective for guanosine and its analogues. The guanosine can simultaneously chelate to Pt(II) metal ion and fit into the shape-selective cavity. Thus, the interaction between Pt(II) ion and free coordination spheres has an effect on the binding ability of the CdS QD nanosensor. The binding affinity of the guanosine imprinted nanocrystals has investigated by using the Langmuir and Scatchard methods, and experiments have shown the shape-selective cavity formation with O6 and N7 of a guanosine nucleotide (K(a) = 4.841x10(6) mol L(-1)) and a free guanine base (K(a) = 0.894x10(6) mol L(-1)). Additionally, the guanosine template of the nanocrystals is more favored for single stranded DNA compared to double stranded DNA.
NASA Technical Reports Server (NTRS)
1987-01-01
A planar (5 mm diameter) indium gallium arsenide detector having a high (greater than 50 pct) quantum efficiency from the visible into the infrared spectrum (500 to 1700 nm) was fabricated. Quantum efficiencies as high as 37 pct at 510 nm, 58 pct at 820 nm and 62 pct at 1300 nm and 1550 nm were measured. A planar InP/InGaAs detector structure was also fabricated using vapor phase epitaxy to grow device structures with 0, 0.2, 0.4 and 0.6 micrometer thick InP caps. Quantum efficiency was studied as a function of cap thickness. Conventional detector structures were also used by completely etching off the InP cap after zinc diffusion. Calibrated quantum efficiencies were measured. Best results were obtained with devices whose caps were completely removed by etching. Certain problems still remain with these detectors including non-uniform shunt resistance, reproducibility, contact resistance and narrow band anti-reflection coatings.
Advantages of InGaN/GaN multiple quantum wells with two-step grown low temperature GaN cap layers
NASA Astrophysics Data System (ADS)
Zhu, Yadan; Lu, Taiping; Zhou, Xiaorun; Zhao, Guangzhou; Dong, Hailiang; Jia, Zhigang; Liu, Xuguang; Xu, Bingshe
2017-11-01
Two-step grown low temperature GaN cap layers (LT-cap) are employed to improve the optical and structural properties of InGaN/GaN multiple quantum wells (MQWs). The first LT-cap layer is grown in nitrogen atmosphere, while a small hydrogen flow is added to the carrier gas during the growth of the second LT-cap layer. High-resolution X-ray diffraction results indicate that the two-step growth method can improve the interface quality of MQWs. Room temperature photoluminescence (PL) tests show about two-fold enhancement in integrated PL intensity, only 25 meV blue-shift in peak energy and almost unchanged line width. On the basis of temperature-dependent PL characteristics analysis, it is concluded that the first and the second LT-cap layer play a different role during the growth of MQWs. The first LT-cap layer acts as a protective layer, which protects quantum well from serious indium loss and interface roughening resulting from the hydrogen over-etching. The hydrogen gas employed in the second LT-cap layer is in favor of reducing defect density and indium segregation. Consequently, interface/surface and optical properties are improved by adopting the two-step growth method.
Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan
2016-06-15
In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Qingqing; Zhan, Guoqing; Li, Chunya
2014-01-03
Using N-acetyl-L-cysteine (NAC) as a stabilizer, well water-dispersed, high-quality and stable CdHgSe quantum dots were facilely synthesized via a simple aqueous phase method. The as-prepared NAC capped CdHgSe quantum dots were thoroughly characterized by fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. A novel method for the selective determination of hemoglobin (Hb) was developed based on fluorescence quenching of the NAC capped CdHgSe quantum dots. A number of key factors including pH value of phosphate buffer solution, quantum dots concentration, the adding sequence of reagents and reaction time that influence the analytical performance of the NAC capped CdHgSe quantum dots in Hb determination were investigated. Under the optimal experimental conditions, the change of fluorescence intensity (ΔI) was linearly proportional to the concentration of Hb in the range of 4.0×10(-9)-4.4×10(-7) mol L(-1) with a detection limit of 2.0×10(-9) mol L(-1). The developed method has been successfully employed to determine Hb in human urine samples. Copyright © 2013. Published by Elsevier B.V.
Quantum efficiency as a device-physics interpretation tool for thin-film solar cells
NASA Astrophysics Data System (ADS)
Nagle, Timothy J.
2007-12-01
Thin-film solar cells made from CdTe and CIGS p-type absorbers are promising candidates for generating pollution-free electricity. The challenge faced by the thin-film photovoltaics (PV) community is to improve the electrical properties of devices, without straying from low-cost, industry-friendly techniques. This dissertation will focus on the use of quantum-efficiency (QE) measurements to deduce the device physics of thin-film devices, in the hope of improving electrical properties and efficiencies of PV materials. Photons which are absorbed, but not converted into electrical energy can modify the energy bands in the solar cell. Under illumination, photoconductivity in the CdS window layer can result in bands different from those in the dark. QE data presented here was taken under a variety of light-bias conditions. These results suggest that 0.10 sun of white-light bias incident on the CdS layer is usually sufficient to achieve accurate QE results. QE results are described by models based on carrier collection by drift and diffusion, and photon absorption. These models are sensitive to parameters such as carrier mobility and lifetime. Comparing calculated QE curves with experiments, it was determined that electron lifetimes in CdTe are less than 0.1 ns. Lifetime determinations also suggest that copper serves as a recombination center in CdTe. The spatial uniformity of QE results has been investigated with the LBIC apparatus, and several experiments are described which investigate cell uniformity. Electrical variations that occur in solar cells often occur in a nonuniform fashion, and can be detected with the LBIC apparatus. Studies discussed here include investigation of patterned deposition of Cu in back-contacts, the use of high-resistivity TCO layers to mitigate nonuniformity, optical effects, and local shunts. CdTe devices with transparent back contacts were also studied with LBIC, including those that received a strong bromine/dichrol/hydrazine (BDH) etch and those that received a weak bromine etch at the back contact. Back-side results showed improved uniformity in BDH-etched devices, attributed to better back contacts in these devices. In thin-absorber devices, the uniformity trend would likely extend to front-side measurements.
Wang, Fudong; Buhro, William E
2017-12-26
Crystal-phase control is one of the most challenging problems in nanowire growth. We demonstrate that, in the solution-phase catalyzed growth of colloidal cadmium telluride (CdTe) quantum wires (QWs), the crystal phase can be controlled by manipulating the reaction chemistry of the Cd precursors and tri-n-octylphosphine telluride (TOPTe) to favor the production of either a CdTe solute or Te, which consequently determines the composition and (liquid or solid) state of the Bi x Cd y Te z catalyst nanoparticles. Growth of single-phase (e.g., wurtzite) QWs is achieved only from solid catalysts (y ≪ z) that enable the solution-solid-solid growth of the QWs, whereas the liquid catalysts (y ≈ z) fulfill the solution-liquid-solid growth of the polytypic QWs. Factors that affect the precursor-conversion chemistry are systematically accounted for, which are correlated with a kinetic study of the composition and state of the catalyst nanoparticles to understand the mechanism. This work reveals the role of the precursor-reaction chemistry in the crystal-phase control of catalytically grown colloidal QWs, opening the possibility of growing phase-pure QWs of other compositions.
NASA Astrophysics Data System (ADS)
Tirado-Guizar, Antonio; Paraguay-Delgado, Francisco; Pina-Luis, Georgina E.
2016-12-01
A new ‘turn-on’ Förster resonance energy transfer (FRET) nanosensor for l-tryptophan based on molecularly imprinted quantum dots (QDs) is proposed. The approach combines the advantages of the molecular imprinting technique, the fluorescent characteristics of the QDs and the energy transfer process. Silica-coated CdTe QDs were first synthesized and then molecularly imprinted using a sol-gel process without surfactants. The final composite presents stable fluorescence which increases with the addition of l-tryptophan. This ‘turn-on’ response is due to a FRET mechanism from the l-tryptophan as donor to the imprinted QD as acceptor. QDs are rarely applied as acceptors in FRET systems. The nanosensor shows selectivity towards l-tryptophan in the presence of other amino acids and interfering ions. The l-tryptophan nanosensor exhibits a linear range between 0 and 8 µM concentration, a detection limit of 350 nM and high selectivity. The proposed sensor was successfully applied for the detection of l-tryptophan in saliva. This novel sensor may offer an alternative approach to the design of a new generation of imprinted nanomaterials for the recognition of different analytes.
Li, Jingwen; Li, Xinming; Shi, Xiujuan; He, Xuewen; Wei, Wei; Ma, Nan; Chen, Hong
2013-10-09
We describe here a simple fluorometric assay for the highly sensitive detection of caspase-3 activities on the basis of the inner-filter effect of gold nanoparticles (AuNPs) on CdTe quantum dots (QDs). The method takes advantage of the high molar absorptivity of the plasmon band of gold nanoparticles as well as the large absorption band shift from 520 to 680 nm upon nanoparticle aggregation. When labeled with a peptide possessing the caspase-3 cleavage sequence (DEVD), the monodispersed Au-Ps (peptide-modified AuNPs) exhibited a tendency to aggregate when exposed to caspase-3, which induced the absorption band transition from 520 to 680 nm and turned on the fluorescence of the CdTe QDs for caspase-3 sensing. Under optimum conditions, a high sensitivity towards caspase-3 was achieved with a detection limit as low as 18 pM, which was much lower than the corresponding assays based on absorbance or other approaches. Overall, we demonstrated a facile and sensitive approach for caspase-3 detection, and we expected that this method could be potentially generalized to design more fluorescent assays for sensing other bioactive entities.
CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells
NASA Astrophysics Data System (ADS)
Swanson, Drew E.; Reich, Carey; Abbas, Ali; Shimpi, Tushar; Liu, Hanxiao; Ponce, Fernando A.; Walls, John M.; Zhang, Yong-Hang; Metzger, Wyatt K.; Sampath, W. S.; Holman, Zachary C.
2018-05-01
As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extending Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications.
NASA Astrophysics Data System (ADS)
Vaishnav, Sandeep K.; Patel, Kuleshwar; Chandraker, Kumudini; Korram, Jyoti; Nagwanshi, Rekha; Ghosh, Kallol K.; Satnami, Manmohan L.
2017-05-01
The determination of thiol based biological molecules and drugs, such as cysteine (Cys) (I), α-lipoic acid (II), and sodium 2-sulfanylethane sulphonate (Mesna (III)) in human plasma are becoming progressively more important due to the growing body of knowledge about their essential role in numerous biological pathways. Herein we demonstrate a sensitive colorimetric sensor for the determination of medicinally important thiol drugs based on aggregation of the citrate capped silver nanoparticles (Ag NPs). This approach exploited the high affinity of thiols towards the Ag NPs surface which could tempt replacement of the citrate shell by the thiolate shell of target molecules, resulting in aggregation of the NPs through intermolecular electrostatic interaction or hydrogen-bonding. Because of aggregation, the plasmon band at around 400 nm decreases gradually, along with the appearance of a new band connoting a red shift. The calibration curves are derived from the intensity ratios of A530/A400, which display a linear relation in the range of 1 μM-150 μM, 5 μM-200 μM and 10 μM-130 μM, respectively. The obtained detection limits (3σ) were found to be 1.5 μM, 5.6 μM and 10.2 μM for compound I-III, respectively. The proposed method has been successfully applied for the detection of thiol compounds in real samples.
Zhao, Yang; Tan, Lu; Gao, Xiaoshan; Jie, Guifen; Huang, Tingyu
2018-07-01
Herein, we successfully devised a novel photoelectrochemical (PEC) platform for ultrasensitive detection of adenosine by target-triggering cascade multiple cycle amplification based on the silver nanoparticles-assisted ion-exchange reaction with CdTe quantum dots (QDs). In the presence of target adenosine, DNA s1 is released from the aptamer and then hybridizes with hairpin DNA (HP1), which could initiate the cycling cleavage process under the reaction of nicking endonuclease. Then the product (DNA b) of cycle I could act as the "DNA trigger" of cycle II to further generate a large number of DNA s1, which again go back to cycle I, thus a cascade multiple DNA cycle amplification was carried out to produce abundant DNA c. These DNA c fragments with the cytosine (C)-rich loop were captured by magnetic beads, and numerous silver nanoclusters (Ag NCs) were synthesized by AgNO 3 and sodium borohydride. The dissolved AgNCs released numerous silver ions which could induce ion exchange reaction with the CdTe QDs, thus resulting in greatly amplified change of photocurrent for target detection. The detection linear range for adenosine was 1.0 fM ~10 nM with the detection limit of 0.5 fM. The present PEC strategy combining cascade multiple DNA cycle amplification and AgNCs-induced ion-exchange reaction with QDs provides new insight into rapid, and ultrasensitive PEC detection of different biomolecules, which showed great potential for detecting trace amounts in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier B.V. All rights reserved.
Tang, Song; Allagadda, Vinay; Chibli, Hicham; Nadeau, Jay L; Mayer, Gregory D
2013-10-01
Recent advances in the ability to manufacture and manipulate materials at the nanometer scale have led to increased production and use of many types of nanoparticles. Quantum dots (QDs) are small, fluorescent nanoparticles composed of a core of semiconductor material (e.g. cadmium selenide, zinc sulfide) and shells or dopants of other elements. Particle core composition, size, shell, and surface chemistry have all been found to influence toxicity in cells. The aim of this study was to compare the toxicities of ionic cadmium (Cd) and zinc (Zn) and Cd- and Zn-containing QDs in zebrafish liver cells (ZFL). As expected, Cd(2+) was more toxic than Zn(2+), and the general trend of IC50-24 h values of QDs was determined to be CdTe < CdSe/ZnS or InP/ZnS, suggesting that ZnS-shelled CdSe/ZnS QDs were more cytocompatible than bare core CdTe crystals. Smaller QDs showed greater toxicity than larger QDs. Isolated mRNA from these exposures was used to measure the expression of metal response genes including metallothionein (MT), metal response element-binding transcription factor (MTF-1), divalent metal transporter (DMT-1), zrt and irt like protein (ZIP-1) and the zinc transporter, ZnT-1. CdTe exposure induced expression of these genes in a dose dependent manner similar to that of CdSO4 exposure. However, CdSe/ZnS and InP/ZnS altered gene expression of metal homeostasis genes in a manner different from that of the corresponding Cd or Zn salts. This implies that ZnS shells reduce QD toxicity attributed to the release of Cd(2+), but do not eliminate toxic effects caused by the nanoparticles themselves.
Visualization of hormone binding proteins in vivo based on Mn-doped CdTe QDs
NASA Astrophysics Data System (ADS)
Liu, Fang fei; Yu, Ying; Lin, Bi xia; Hu, Xiao gang; Cao, Yu juan; Wu, Jian zhong
2014-10-01
Daminozide (B9) is a growth inhibitor with important regulatory roles in plant growth and development. Locating and quantifying B9-binding proteins in plant tissues will assist in investigating the mechanism behind the signal transduction of B9. In this study, red fluorescent Mn-doped CdTe quantum dots (CdTeMn QDs) were synthesized by a high-temperature hydrothermal process. Since CdTeMn QDs possess a maximum fluorescence emission peak at 610 nm, their fluorescence properties are more stable than those of CdTe QDs. A B9-CdTeMn probe was synthesized by coupling B9 with CdTeMn QDs. The fluorescence intensity of the probe is double that of CdTeMn QDs; its fluorescence stability is also superior under different ambient conditions. The probe retains the biological activity of B9 and is unaffected by interference from the green fluorescent protein present in plants. Therefore, we used this probe to label B9-binding proteins selectively in root tissue sections of mung bean seedlings. These proteins were observed predominantly on the surfaces of the cell membranes of the cortex and epidermal parenchyma.
Nanoscale imaging of photocurrent and efficiency in CdTe solar cells
Leite, Marina S.; National Inst. of Standards and Technology; Abashin, Maxim; ...
2014-10-15
The local collection characteristics of grain interiors and grain boundaries in thin film CdTe polycrystalline solar cells are investigated using scanning photocurrent microscopy. The carriers are locally generated by light injected through a small aperture (50-300 nm) of a near-field scanning optical microscope in an illumination mode. Possible influence of rough surface topography on light coupling is examined and eliminated by sculpting smooth wedges on the granular CdTe surface. By varying the wavelength of light, nanoscale spatial variations in external quantum efficiency are mapped. We find that the grain boundaries (GBs) are better current collectors than the grain interiors (GIs).more » The increased collection efficiency is caused by two distinct effects associated with the material composition of GBs. First, GBs are charged, and the corresponding built-in field facilitates the separation and the extraction of the photogenerated carriers. Second, the GB regions generate more photocurrent at long wavelength corresponding to the band edge, which can be caused by a smaller local band gap. As a result, resolving carrier collection with nanoscale resolution in solar cell materials is crucial for optimizing the polycrystalline device performance through appropriate thermal processing and passivation of defect and surfaces.« less
Bistable resistive memory behavior in gelatin-CdTe quantum dot composite film
NASA Astrophysics Data System (ADS)
Vallabhapurapu, Sreedevi; Rohom, Ashwini; Chaure, N. B.; Du, Shengzhi; Srinivasan, Ananthakrishnan
2018-05-01
Bistable memory behavior has been observed for the first time in gelatin type A thin film dispersed with functionalized CdTe quantum dots. The two terminal device with the polymer nanocomposite layer sandwiched between an indium tin oxide coated glass plate and an aluminium top electrode performs as a bistable resistive random access memory module. Butterfly shaped (O-shaped with a hysteresis in forward and reverse sweeps) current-voltage response is observed in this device. The conduction mechanism leading to the bistable electrical switching has been deduced to be a combination of ohmic and electron hopping.
Magnetic field effect on the Coulomb interaction of acceptors in semimagnetic quantum dot
NASA Astrophysics Data System (ADS)
Kalpana, P.; Merwyn, A.; Reuben, Jasper D.; Nithiananthi, P.; Jayakumar, K.
2015-06-01
The Coulomb interaction of holes in a Semimagnetic Cd1-xMnxTe / CdTe Spherical and Cubical Quantum Dot (SMQD) in a magnetic field is studied using variational approach in the effective mass approximation. Since these holes in QD show a pronounced collective behavior, while distinct single particle phenomena is suppressed, their interaction in confined potential becomes very significant. It has been observed that acceptor-acceptor interaction is more in cubical QD than in spherical QD which can be controlled by the magnetic field. The results are presented and discussed.
Transformation of self-assembled InAs/InP quantum dots into quantum rings without capping.
Sormunen, Jaakko; Riikonen, Juha; Mattila, Marco; Tiilikainen, Jouni; Sopanen, Markku; Lipsanen, Harri
2005-08-01
Transformation of self-assembled InAs quantum dots (QDs) on InP(100) into quantum rings (QRs) is studied. In contrast to the typical approach to III--V semiconductor QR growth, the QDs are not capped to form rings. Atomic force micrographs reveal a drastic change from InAs QDs into rings after a growth interruption in tertiarybutylphosphine ambient. Strain energy relief in the InAs QD is discussed and a mechanism for dot-to-ring transformation by As/P exchange reactions is proposed.
A Search for Interstellar Monohydric Thiols
NASA Astrophysics Data System (ADS)
Gorai, Prasanta; Das, Ankan; Das, Amaresh; Sivaraman, Bhalamurugan; Etim, Emmanuel E.; Chakrabarti, Sandip K.
2017-02-01
It has been pointed out by various astronomers that a very interesting relationship exists between interstellar alcohols and the corresponding thiols (sulfur analog of alcohols) as far as the spectroscopic properties and chemical abundances are concerned. Monohydric alcohols such as methanol and ethanol are widely observed and 1-propanol was recently claimed to have been seen in Orion KL. Among the monohydric thiols, methanethiol (chemical analog of methanol) has been firmly detected in Orion KL and Sgr B2(N2) and ethanethiol (chemical analog of ethanol) has been observed in Sgr B2(N2), though the confirmation of this detection is yet to come. It is very likely that higher order thiols could be observed in these regions. In this paper, we study the formation of monohydric alcohols and their thiol analogs. Based on our quantum chemical calculation and chemical modeling, we find that the Tg conformer of 1-propanethiol is a good candidate of astronomical interest. We present various spectroscopically relevant parameters of this molecule to assist in its future detection in the interstellar medium.
NASA Astrophysics Data System (ADS)
Vimal, Tripti; Kumar Gupta, Swadesh; Katiyar, Rohit; Srivastava, Atul; Czerwinski, Michal; Krup, Katarzyna; Kumar, Sandeep; Manohar, Rajiv
2017-09-01
The influence of silver nanoparticles dispersed in a Ferroelectric Liquid Crystal (FLC) on the properties of the resultant composite system has been investigated by thermal, electro-optical, and dielectric methods. We show that the concentration of thiol capped silver nanoparticles is a critical factor in governing the alignment of nanoparticles (NPs) in the host FLC. The orientation of NPs in composite samples affects the ordering of the LC (Liquid Crystal) phase and consequently changes the various phase transition temperatures of the host LC. Formation of self-assembled 2D (two dimensional) arrays of nanoparticles is observed for high concentration of dopant in the LC, oriented perpendicular to the direction of rubbing. We propose that the molecular interaction between the thiol capped NPs and LC molecules is the key factor behind such an arrangement of NPs. Orientation of NPs has affected the relaxation behaviour and various other material parameters, significantly. A noteworthy change in DC conductivity articulates our proposed idea of the formation of 2D array of NPs perpendicular to the direction of rubbing. This comprehensive study endorses the importance of dopant concentration in modifying the properties of the host LC material.
Design principles for HgTe based topological insulator devices
NASA Astrophysics Data System (ADS)
Sengupta, Parijat; Kubis, Tillmann; Tan, Yaohua; Povolotskyi, Michael; Klimeck, Gerhard
2013-07-01
The topological insulator properties of CdTe/HgTe/CdTe quantum wells are theoretically studied. The CdTe/HgTe/CdTe quantum well behaves as a topological insulator beyond a critical well width dimension. It is shown that if the barrier (CdTe) and well-region (HgTe) are altered by replacing them with the alloy CdxHg1-xTe of various stoichiometries, the critical width can be changed. The critical quantum well width is shown to depend on temperature, applied stress, growth directions, and external electric fields. Based on these results, a novel device concept is proposed that allows to switch between a normal semiconducting and topological insulator state through application of moderate external electric fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, J.; Zhao, D. G., E-mail: dgzhao@red.semi.ac.cn; Jiang, D. S.
2015-02-07
The optical and structural properties of InGaN/GaN multi-quantum wells (MQWs) with different thicknesses of low temperature grown GaN cap layers are investigated. It is found that the MQW emission energy red-shifts and the peak intensity decreases with increasing GaN cap layer thickness, which may be partly caused by increased floating indium atoms accumulated at quantum well (QW) surface. They will result in the increased interface roughness, higher defect density, and even lead to a thermal degradation of QW layers. An extra growth interruption introduced before the growth of GaN cap layer can help with evaporating the floating indium atoms, andmore » therefore is an effective method to improve the optical properties of high indium content InGaN/GaN MQWs.« less
NASA Astrophysics Data System (ADS)
Akimov, I. A.; Salewski, M.; Kalitukha, I. V.; Poltavtsev, S. V.; Debus, J.; Kudlacik, D.; Sapega, V. F.; Kopteva, N. E.; Kirstein, E.; Zhukov, E. A.; Yakovlev, D. R.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Korenev, V. L.; Kusrayev, Yu. G.; Bayer, M.
2017-11-01
The exchange interaction between magnetic ions and charge carriers in semiconductors is considered to be a prime tool for spin control. Here, we solve a long-standing problem by uniquely determining the magnitude of the long-range p -d exchange interaction in a ferromagnet-semiconductor (FM-SC) hybrid structure where a 10-nm-thick CdTe quantum well is separated from the FM Co layer by a CdMgTe barrier with a thickness on the order of 10 nm. The exchange interaction is manifested by the spin splitting of acceptor bound holes in the effective magnetic field induced by the FM. The exchange splitting is directly evaluated using spin-flip Raman scattering by analyzing the dependence of the Stokes shift ΔS on the external magnetic field B . We show that in a strong magnetic field, ΔS is a linear function of B with an offset of Δp d=50 -100 μ eV at zero field from the FM induced effective exchange field. On the other hand, the s -d exchange interaction between conduction band electrons and FM, as well as the p -d contribution for free valence band holes, are negligible. The results are well described by the model of indirect exchange interaction between acceptor bound holes in the CdTe quantum well and the FM layer mediated by elliptically polarized phonons in the hybrid structure.
Wang, Jianhao; Zhu, Zhilan; Qiu, Lin; Wang, Jianpeng; Wang, Xiang; Xiao, Qicai; Xia, Jiang; Liu, Li; Liu, Xiaoqian; Feng, Wei; Wang, Jinmei; Miao, Peng; Gao, Liqian
2018-07-06
Small molecules with free thiol groups always show high binding affinity to quantum dots (QDs). However, it is still highly challenging to detect the binding capacity between thiol-containing molecules and QDs inside a capillary. To conquer this limitation, a capillary electrophoresis with fluorescence detection (CE-FL) based assay was proposed and established to investigate the binding capacity between QDs and a poly-thiolated peptide (ATTO 590-DDSSGGCCPGCC, ATTO-C4). Interestingly, the results showed that interval time had a great influence on QDs and ATTO-C4 self-assembly, which can be attributed to longer interval time benefitting the binding of QDs to ATTO-C4. The stability assays on ATTO-C4-QD assembly indicated that high concentration of imidazole or GSH had a high capability of competing with the bound ATTO-C4, evidenced by dramatically dropping of S 625 /S 565 ratio from 0.78 to 0.30 or 0.29. Therefore, all these results above suggested that this novel CE-FL based detection assay could be successfully applied to the binding studies between QDs and thiol-containing biomolecules.
NASA Astrophysics Data System (ADS)
Wang, Jianhao; Zhu, Zhilan; Qiu, Lin; Wang, Jianpeng; Wang, Xiang; Xiao, Qicai; Xia, Jiang; Liu, Li; Liu, Xiaoqian; Feng, Wei; Wang, Jinmei; Miao, Peng; Gao, Liqian
2018-07-01
Small molecules with free thiol groups always show high binding affinity to quantum dots (QDs). However, it is still highly challenging to detect the binding capacity between thiol-containing molecules and QDs inside a capillary. To conquer this limitation, a capillary electrophoresis with fluorescence detection (CE-FL) based assay was proposed and established to investigate the binding capacity between QDs and a poly-thiolated peptide (ATTO 590-DDSSGGCCPGCC, ATTO-C4). Interestingly, the results showed that interval time had a great influence on QDs and ATTO-C4 self-assembly, which can be attributed to longer interval time benefitting the binding of QDs to ATTO-C4. The stability assays on ATTO-C4-QD assembly indicated that high concentration of imidazole or GSH had a high capability of competing with the bound ATTO-C4, evidenced by dramatically dropping of S 625/S 565 ratio from 0.78 to 0.30 or 0.29. Therefore, all these results above suggested that this novel CE-FL based detection assay could be successfully applied to the binding studies between QDs and thiol-containing biomolecules.
Solution-Processed Solar Cells via Nanocrystal Inks and Molecular Solutions
NASA Astrophysics Data System (ADS)
Miskin, Caleb K.
On February 15, 2008 the National Academy of Engineering unveiled their fourteen grand challenges of engineering for the 21st century. At the top of the list and voted by the public as the most important challenge was the thrust to make solar energy economical. My research has been dedicated to solving this millennial challenge by developing routes to high-efficiency, solution-processed photovoltaics (PV) for low-cost and low-energy manufacturing. My research has primarily advanced two methods for solution processed PV. In one method, semiconducting nanocrystals are synthesized and then suspended in an appropriate solvent to form an ink. The ink is then applied to a substrate by a variety of high-throughput methods such as spray coating or doctor blading and then annealed to form a polycrystalline absorber layer for solar energy. I have applied this method with great success to Cu2ZnSnS 4, a promising earth-abundant, non-toxic semiconductor. A challenge with this material is its propensity to form binary and ternary undesired phases. Using advanced nano-characterization techniques, my colleagues and I have been able to determine the spatially resolved composition of these nanoparticles and have found them to be highly non-uniform. In addition, I developed synthesis techniques aimed at controlling the nucleation and growth of this material to improve nanocrystal compositional homogeneity. Though particles produced in this work still exhibit some non-uniformities, they are greatly improved. When combined with optimized fabrication techniques, I have been able to advance the efficiency of nanocrystal ink based solar cells of CZTS from 7.2 to 9.0 percent in our lab. Another promising route to solution-processed PV is by directly coating molecular precursor solutions (rather than first forming nanocrystals) and annealing the coating to form the polycrystalline solar absorber layer. Unfortunately, a major challenge is that many metals, metal salts, and chalcogens that would be useful precursors to such films have poor solubility in organic solvents compatible with roll-to-roll manufacturing techniques. Interestingly, we have found that mixtures of commonly available thiols and amines are able to dissolve at room temperature and pressure a host of metals and salts that are otherwise insoluble in either solvent by itself. In this work, I have primarily focused on CdTe--which has been by far the most successful technology in terms of production cost ($/peak watt) and energy payback time for thin-film solar cells. In this research thrust I demonstrate for the first time the fabrication of CdTe thin-films via a solution-processed molecular precursor approach by dissolving CdCl2 and Te in ethylenediamine and 1-propanethiol. The films are formed by spin-coating thin layers of the solution and then annealing each layer until a 1.5 mum thick film is achieved. I have achieved 0.5% efficient devices by this method. As thiol-amine mixtures have the potential to leave residual sulfur in these films, other novel solvent systems are presented as future work. While amine-thiol mixtures are excellent solvents for many materials, they do not dissolve lead chalcogenides with ease. I leverage this to develop room-temperature synthesis routes to PbS, PbSe, PbTe, and PbSxSe 1-x nanoparticles. This is achieved by mixing a lead salt dissolved in thiol-amine with a chalcogen dissolved in thiol-amine at room temperature. We find that when particles produced in this manner are pressed into pellets, they show comparable thermoelectric performance to more complicated and energy intensive synthesis techniques. Ultimately, we wish to enable the use of these particles in room-temperature fabricated quantum dot solar cells. This requires the synthesis of highly monodisperse, stable colloids and is the subject of future work using thiol-amine mixtures and related aqueous analogues.
CdCl2 Passivation of Polycrystalline CdMgTe and CdZnTe Absorbers for Tandem Photovoltaic Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, Wyatt K; Swanson, Drew; Reich, Carey
As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extendingmore » Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications.« less
Zhu, Shuzhe; Li, Zhan-Wei; Zhao, Hanying
2015-04-14
Patchy particles are a type of colloidal particles with one or more well-defined patches on the surfaces. The patchy particles with multiple compositions and functionalities have found wide applications from the fundamental studies to practical uses. In this research patchy micelles with thiol groups in the patches were prepared based on coassembly of free block copolymer chains and block copolymer brushes on silica particles. Thiol-terminated and cyanoisopropyl-capped polystyrene-block-poly(N-isopropylacrylamide) block copolymers (PS-b-PNIPAM-SH and PS-b-PNIPAM-CIP) were synthesized by reversible addition-fragmentation chain transfer polymerization and chemical modifications. Pyridyl disulfide-functionalized silica particles (SiO2-SS-Py) were prepared by four-step surface chemical reactions. PS-b-PNIPAM brushes on silica particles were prepared by thiol-disulfide exchange reaction between PS-b-PNIPAM-SH and SiO2-SS-Py. Surface micelles on silica particles were prepared by coassembly of PS-b-PNIPAM-CIP and block copolymer brushes. Upon cleavage of the surface micelles from silica particles, patchy micelles with thiol groups in the patches were obtained. Dynamic light scattering, transmission electron microscopy, and zeta-potential measurements demonstrate the preparation of patchy micelles. Gold nanoparticles can be anchored onto the patchy micelles through S-Au bonds, and asymmetric hybrid structures are formed. The thiol groups can be oxidized to disulfides, which results in directional assembly of the patchy micelles. The self-assembly behavior of the patchy micelles was studied experimentally and by computer simulation.
Ge-cap quantum-well bulk FinFET for 5 nm node CMOS integration
NASA Astrophysics Data System (ADS)
Dwi Kurniawan, Erry; Peng, Kang-Hui; Yang, Shang-Yi; Yang, Yi-Yun; Thirunavukkarasu, Vasanthan; Lin, Yu-Hsien; Wu, Yung-Chun
2018-04-01
We propose the use of Ge-cap quantum-well (QW) bulk FinFET for 5 nm CMOS integration, which is a Si channel wrapped with Ge around three sides of the fin channel. The simulation results show that the Ge-cap FinFET structure demonstrates better performance than pure Si, pure Ge, and Si-cap FinFET structures. By optimizing Si fin width and Ge-cap thickness, the on-state current of nFET and pFET can also be symmetric without changing the total fin width (F Wp = F Wn). The electrons in Ge-cap nFinFET concentrate in the Si channel because of QWs formed in the lowest conduction band of the Ge and Si heterostructure, while the holes in Ge-cap pFinFET prefer to stay in Ge surfaces owing to QWs formed in the Ge valence band. The physics studies of this device have made the design rules relevant for the application of the CMOS inverter and static random access memory (SRAM) application technology.
Atomic and electronic structure of the CdTe(111)B–(2√3 × 4) orthogonal surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bekenev, V. L., E-mail: bekenev@ipms.kiev.ua; Zubkova, S. M.
2017-01-15
The atomic and electronic structure of four variants of Te-terminated CdTe(111)B–(2√3 × 4) orthogonal polar surface (ideal, relaxed, reconstructed, and reconstructed with subsequent relaxation) are calculated ab initio for the first time. The surface is modeled by a film composed of 12 atomic layers with a vacuum gap of ~16 Å in the layered superlattice approximation. To close Cd dangling bonds on the opposite side of the film, 24 fictitious hydrogen atoms with a charge of 1.5 electrons each are added. Ab initio calculations are performed using the Quantum Espresso program based on density functional theory. It is demonstrated thatmore » relaxation leads to splitting of the four upper layers. The band energy structures and total and layer-by-layer densities of electronic states for the four surface variants are calculated and analyzed.« less
Development of a (Hg, Cd)Te photodiode detector, Phase 2. [for 10.6 micron spectral region
NASA Technical Reports Server (NTRS)
1972-01-01
High speed sensitive (Hg,Cd)Te photodiode detectors operating in the 77 to 90 K temperature range have been developed for the 10.6 micron spectral region. P-N junctions formed by impurity (gold) diffusion in p-type (Hg, Cd) Te have been investigated. It is shown that the bandwidth and quantum efficiency of a diode are a constant for a fixed ratio of mobility/lifetime ratio of minority carriers. The minority carrier mobility and lifetime uniquely determine the bandwidth and quantum efficiency and indicate the shallow n on p (Hg,Cd) Te diodes are preferable as high performance, high frequency devices.
Effect of magnetic field on the donor impurity in CdTe/Cd1-xMnxTe quantum well wire
NASA Astrophysics Data System (ADS)
Kalpana, P.; Reuben, A. Merwyn Jasper D.; Nithiananthi, P.; Jayakumar, K.
2016-05-01
The donor impurity binding energy in CdTe / Cd1-xMnxTe QWW with square well confinement along x - direction and parabolic confinement along y - direction under the influence of externally applied magnetic field has been computed using variational principle in the effective mass approximation. The spin polaronic shift has also been computed. The results are presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dantas, Noelio Oliveira; Lima Fernandes, Guilherme de; Almeida Silva, Anielle Christine
2014-09-29
In this study, we synthesized Cd{sub 1−x}Mn{sub x}Te ultrasmall quantum dots (USQDs) in SiO{sub 2}-Na{sub 2}CO{sub 3}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3} glass system using the fusion method. Growth of these Cd{sub 1−x}Mn{sub x}Te USQDs was confirmed by optical absorption, atomic force microscopy (AFM), magnetic force microscopy (MFM), scanning transmission electron microscopy (TEM), and electron paramagnetic resonance (EPR) measurements. The blueshift of absorption transition with increasing manganese concentration gives evidence of incorporation of manganese ions (Mn{sup 2+}) in CdTe USQDs. AFM, TEM, and MFM confirmed, respectively, the formation of high quality Cd{sub 1−x}Mn{sub x}Te USQDs with uniformly distributed size and magneticmore » phases. Furthermore, EPR spectra showed six lines associated to the S = 5/2 spin half-filled d-state, characteristic of Mn{sup 2+}, and confirmed that Mn{sup 2+} are located in the sites core and surface of the CdTe USQD. Therefore, synthesis of high quality Cd{sub 1−x}Mn{sub x}Te USQDs may allow the control of optical and magnetic properties.« less
Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chibli, H.; Carlini, L.; Park, S.
Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to whatmore » is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.« less
NASA Astrophysics Data System (ADS)
Zhu, Jian; Chang, Hui; Li, Jian-Jun; Li, Xin; Zhao, Jun-Wu
2018-01-01
The effect of silicon-coated gold nanoparticles with different gold core diameter and silica shell thickness on the fluorescence emission of CdTe quantum dots (QDs) was investigated. For gold nanoparticles with a diameter of 15 nm, silica coating can only results in fluorescence recover of the bare gold nanoparticle-induced quenching of QDs. However, when the size of gold nanoparticle is increased to 60 nm, fluorescence enhancement of the QDs could be obtained by silica coating. Because of the isolation of the silica shell-reduced quenching effect and local electric field effect, the fluorescence of QDs gets intense firstly and then decreases. The maximum fluorescence enhancement takes place as the silica shell has a thickness of 30 nm. This enhanced fluorescence from silicon-coated gold nanoparticles is demonstrated for sensing of Hg2 +. Under optimal conditions, the enhanced fluorescence intensity decreases linearly with the concentration of Hg2 + ranging from 0 to 200 ng/mL. The limit of detection for Hg2 + is 1.25 ng/mL. Interference test and real samples detection indicate that the influence from other metal ions could be neglected, and the Hg2 + could be specifically detected.
NASA Astrophysics Data System (ADS)
Xiao, Pan; Kang, Zhitao; Bansihev, Alexandr A.; Breidenich, Jennifer; Scripka, David A.; Christensen, James M.; Summers, Christopher J.; Dlott, Dana D.; Thadhani, Naresh N.; Zhou, Min
2016-01-01
Laser-driven shock compression experiments and corresponding finite element method simulations are carried out to investigate the blueshift in the optical emission spectra under continuous laser excitation of a dilute composite consisting of 0.15% CdTe quantum dots by weight embedded in polyvinyl alcohol polymer. This material is a potential candidate for use as internal stress sensors. The analyses focus on the time histories of the wavelength blue-shift for shock loading with pressures up to 7.3 GPa. The combined measurements and calculations allow a relation between the wavelength blueshift and pressure for the loading conditions to be extracted. It is found that the blueshift first increases with pressure to a maximum and subsequently decreases with pressure. This trend is different from the monotonic increase of blueshift with pressure observed under conditions of quasistatic hydrostatic compression. Additionally, the blueshift in the shock experiments is much smaller than that in hydrostatic experiments at the same pressure levels. The differences in responses are attributed to the different stress states achieved in the shock and hydrostatic experiments and the time dependence of the mechanical response of the polymer in the composite. The findings offer a potential guide for the design and development of materials for internal stress sensors for shock conditions.
Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.
Chibli, Hicham; Carlini, Lina; Park, Soonhyang; Dimitrijevic, Nada M; Nadeau, Jay L
2011-06-01
Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.
Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation
NASA Astrophysics Data System (ADS)
Chibli, Hicham; Carlini, Lina; Park, Soonhyang; Dimitrijevic, Nada M.; Nadeau, Jay L.
2011-06-01
Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.
Liu, Dingbin; Qu, Weisi; Chen, Wenwen; Zhang, Wei; Wang, Zhuo; Jiang, Xingyu
2010-12-01
We provide a highly sensitive and selective assay to detect Hg(2+) in aqueous solutions using gold nanoparticles modified with quaternary ammonium group-terminated thiols at room temperature. The mechanism is the abstraction of thiols by Hg(2+) that led to the aggregation of nanoparticles. With the assistance of solar light irradiation, the detection limit can be as low as 30 nM, which satisfies the guideline concentration of Hg(2+) in drinking water set by the WHO. In addition, the dynamic range of detection is wide (3 × 10(-8)-1 × 10(-2) M). This range, to our best knowledge, is the widest one that has been reported so far in gold nanoparticle (AuNP)-based assays for Hg(2+).
Ab initio calculations of supramolecular complexes of fullerene C60 with CdTe and CdS
NASA Astrophysics Data System (ADS)
Kvyatkovskii, O. E.; Zakharova, I. B.; Ziminov, V. M.
2014-06-01
This paper presents the results of ab initio quantum-chemical calculations of supramolecular complexes C60CdHal, [C60]4CdHal, and [C60]6CdHal (Hal = S, Te), which simulate the defects forming in fullerite during the absorption or adsorption of cadmium telluride (sulfide). Calculations of the electronic structure of complexes with inclusion of their relaxation to the equilibrium state have been performed in terms of the density functional theory with the B3LYP hybrid functional. The obtained enthalpies of formation of complexes show that their formation leads to the energy gain of the order of 0.5-1.5 eV depending on the complex type. It has been shown that the formation of tetrahedral complexes [C60]4CdTe with the intercalated CdTe molecule is possible only with a considerable distortion of the tetrahedral void. The energy spectrum of low-lying excited electron states for the linear and octahedral complexes has been calculated. It has been found that a decrease in symmetry with the formation of complexes leads to the appearance of excited states of allowed singlet transitions in the electron spectrum, which are forbidden in optical spectra of initial components.
Zhu, Qing; Cai, Fudong; Zhang, Jing; Zhao, Kang; Deng, Anping; Li, Jianguo
2016-12-15
β-adrenergic agonists (β-agonists) recognized as a growth promoter will reflect the health of human. Sensitive detection of β-agonists in foodstuff is valuable for the health of animals and human. A novel ultrasensitive competition-type electrochemiluminescent (ECL) immunosensor was developed for detecting brombuterol (Brom) based on CdTe Quantum dot (QDs) and polyamidoamine dendrimer (PAMAM, G2) modified graphene oxide (GO) (CdTe QDs-PAMAM-GO composite) as bioprobe for the first time. The surface of glassy carbon electrode (GCE) was coated with AuNPs-ZnO NRs composite film as the platform, which facilitated the electronic transmission rate to enhance the ECL intensity and provide enough active sites for capturing antibody. The resulting ECL immunosensor enabled the real samples detection of Brom with a lower detection limit of 0.3pgmL(-1) (S/N=3) and a wider linear range from 0.001 to 500ngmL(-1). The proposed immunosensor coupled with the excellent advantages of CdTe QDs-PAMAM-GO and AuNPs-ZnO NRs composite displayed high sensitivity and long-term stability, and provided an approach for determining other important biomarkers. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Du, Yixuan; Zhang, Xiaowei; Li, Yunbo
2018-01-01
Janus metamaterials membrane had been fabricated using self-assembly strategy at the oil/water interface with thiol-terminated polymers. Janus metamaterials membrane exhibits a characteristic surface plasmon absorption band, in which the peak position is sensitive to the addition of polymer. The optical transmission surface plasmon resonance (T-SPR) peak has a blue shift at the visible region with addition of thiol-terminated polystyrene (PS-SH). With thiol-terminated poly (ethylene glycol) (PEG-SH) attachment onto the surface side of gold nanoparticles (AuNPs), the T-SPR band has a successive blue shift. One surprising thing is that it has a flat terrace on T-SPR band from 580 to 740 nm. In addition, The T-SPR of Janus metamaterials membrane dramatically changed with the addition PS-SH when the PEG-SH was capped on the opposite side. The morphologies of AuNPs membrane and Janus metamaterials membrane support the above mentioned result of SPR. In virtue of tunable SPR band, the Janus metamaterials membrane has great potential application in science-based design of optical sensing sensors and surface-enhanced optic sensitive detection.
Schiffmann, Christoph; Sebastiani, Daniel
2011-05-10
We present an algorithmic extension of a numerical optimization scheme for analytic capping potentials for use in mixed quantum-classical (quantum mechanical/molecular mechanical, QM/MM) ab initio calculations. Our goal is to minimize bond-cleavage-induced perturbations in the electronic structure, measured by means of a suitable penalty functional. The optimization algorithm-a variant of the artificial bee colony (ABC) algorithm, which relies on swarm intelligence-couples deterministic (downhill gradient) and stochastic elements to avoid local minimum trapping. The ABC algorithm outperforms the conventional downhill gradient approach, if the penalty hypersurface exhibits wiggles that prevent a straight minimization pathway. We characterize the optimized capping potentials by computing NMR chemical shifts. This approach will increase the accuracy of QM/MM calculations of complex biomolecules.
Imaging as characterization techniques for thin-film cadmium telluride photovoltaics
NASA Astrophysics Data System (ADS)
Zaunbrecher, Katherine
The goal of increasing the efficiency of solar cell devices is a universal one. Increased photovoltaic (PV) performance means an increase in competition with other energy technologies. One way to improve PV technologies is to develop rapid, accurate characterization tools for quality control. Imaging techniques developed over the past decade are beginning to fill that role. Electroluminescence (EL), photoluminescence (PL), and lock-in thermography are three types of imaging implemented in this study to provide a multifaceted approach to studying imaging as applied to thin-film CdTe solar cells. Images provide spatial information about cell operation, which in turn can be used to identify defects that limit performance. This study began with developing EL, PL, and dark lock-in thermography (DLIT) for CdTe. Once imaging data were acquired, luminescence and thermography signatures of non-uniformities that disrupt the generation and collection of carriers were identified and cataloged. Additional data acquisition and analysis were used to determine luminescence response to varying operating conditions. This includes acquiring spectral data, varying excitation conditions, and correlating luminescence to device performance. EL measurements show variations in a cell's local voltage, which include inhomogeneities in the transparent-conductive oxide (TCO) front contact, CdS window layer, and CdTe absorber layer. EL signatures include large gradients, local reduction of luminescence, and local increases in luminescence on the interior of the device as well as bright spots located on the cell edges. The voltage bias and spectral response were analyzed to determine the response of these non-uniformities and surrounding areas. PL images of CdTe have not shown the same level of detail and features compared to their EL counterparts. Many of the signatures arise from reflections and severe inhomogeneities, but the technique is limited by the external illumination source used to excite carriers. Measurements on unfinished CdS and CdTe films reveal changes in signal after post-deposition processing treatments. DLIT images contained heat signatures arising from defect-related current crowding. Forward- and reverse-bias measurements revealed hot spots related to shunt and weak-diode defects. Modeling and previous studies done on Cu(In,Ga)Se 2 thin-film solar cells aided in identifying the physical causes of these thermographic and luminescence signatures. Imaging data were also coupled with other characterization techniques to provide a more comprehensive examination of nonuniform features and their origins and effects on device performance. These techniques included light-beam-induced-current (LBIC) measurements, which provide spatial quantum efficiency maps of the cell at varying resolutions, as well as time-resolved photoluminescence and spectral PL mapping. Local drops in quantum efficiency seen in LBIC typically corresponded with reductions in EL signal while minority-carrier lifetime values acquired by time-resolved PL measurements correlate with PL intensity.
Kalarestaghi, Alireza; Bayat, Mansour; Hashemi, Seyed Jamal; Razavilar, Vadood
2015-09-01
Recently, some new nanobiosensors using different nanoparticles or microarray systems for detection of mycotoxins have been designed . However, rapid, sensitive and early detection of aflatoxicosis would be very helpful to distinguish high-risk persons. We report a highly sensitive competitive immunoassay using magnetic/silica core shell as a signal intensifier for the determination of aflatoxin B1 using fluorescence resonance energy transfer (FRET) from Cd/Te quantum dots (antiaflatoxin B1 antibody immobilized on the surface of Cd/Te quantum dots) to Rhodamine 123 (Rho 123-labeled aflatoxin B1 bound to albumin). The specific immune-reaction between the anti-aflatoxin B1 antibody on the QDs and the labeledaflatoxin B1 brings the Rho 123 fluorophore (acting as the acceptor) and the QDs (acting as the donor) in close spatial proximity and causes FRET to occur upon photo-excitation of the QDs. Using magnetic/silica core shell to intensify the obtained signal is the novelty of this study. Cd/Te QDs were synthesized by the simultaneous reduction of cadmium chloride and tellurium in the presence of sodium borohydride under nitrogen atmosphere. Magnetic nanoparticles were synthesized using FeSO 4 and FeCl 3 (1:2 molar ratio) and ammonia as an oxidizing agent under nitrogen atmosphere. The prepared magnetic nanoparticles shelled by silica using tetraethoxysilane in the presence of ammonia. Nanoparticles synthesis and monodispersity confirmed by TEM. Immobilization of Cd/Te QDs to antibodies and labeling of aflatoxin B1-albumin by Rho 123 were performed by EDC/NHS reaction in reaction mixture buffer, pH 6, at room temperature. By using the magnetic/silica core shell sensitivity of the system changed from 2×10 -11 in our previous study to 2×10 -12 in this work. The feasibility of the method established by the detection of aflatoxin B1 in spiked human serum. There is a linear relationship between the decreased fluorescence intensity of Rho 123 with increasing concentration of aflatoxin B1 in spiked samples, over the range of 0.01-0.06 μmol.mL -1 . This homogeneous competitive detection scheme is simple, rapid and efficient, and does not require multiple separation steps and excessive washing.
Yuan, Jipei; Guo, Weiwei; Wang, Erkang
2008-02-15
In this paper, we attempt to construct a simple and sensitive detection method for both phenolic compounds and hydrogen peroxide, with the successful combination of the unique property of quantum dots and the specificity of enzymatic reactions. In the presence of H2O2 and horseradish peroxidase, phenolic compounds can quench quantum dots' photoluminescence efficiently, and the extent of quenching is severalfold to more than 100-fold increase. Quinone intermediates produced from the enzymatic catalyzed oxidation of phenolic compounds were believed to play the main role in the photoluminescence quenching. Using a quantum dots-enzyme system, the detection limits for phenolic compounds and hydrogen peroxide were detected to be approximately 10(-7) mol L(-1). The coupling of efficient quenching of quantum dot photoluminescence by quinone and the effective enzymatic reactions make this a simple and sensitive method for phenolic compound detection and great potential in the development of H2O2 biosensors for various analytes.
NASA Astrophysics Data System (ADS)
Hasnahena, S. T.; Roy, M.
2018-01-01
A chemical sensor based on multi-walled carbon nanotube (MWCNT) decorated with densely populated thiol-capped gold nanoparticles (AuNPs) with sizes smaller than 3 nm for sensing low concentrations of ammonia gas is reported. The functionalized MWCNTs, subsequently decorated with AuNPs following an easy fabrication route were exposed to NH3 gas at the room temperature and the electrical resistance of the sensor changed upon exposure. The sensor also partially recovered the initial state after sensing in the normal air environment (without any dry air or N2 gas purge). The gold nanoparticles decoration is found to enhance the sensitivity and selectivity of MWCNT towards NH3 gas under ambient conditions with a reduced response and recovery time. The material was structurally characterized by Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. Thermal stability of the sensor till 574 °C was demonstrated by TGA analysis. This papers describes how thiol-capped AuNPs are uniformly decorated on the outer walls of the MWCNTs with a separation of 2-3 nm making use of the ionic nature of Au and how this uniform distribution of AuNPs increases the active sites for absorption of NH3 gas molecules leading to sensing its low concentrations.
Phase transfer of 1- and 2-dimensional Cd-based nanocrystals
NASA Astrophysics Data System (ADS)
Kodanek, Torben; Banbela, Hadeel M.; Naskar, Suraj; Adel, Patrick; Bigall, Nadja C.; Dorfs, Dirk
2015-11-01
In this work, luminescent CdSe@CdS dot-in-rod nanocrystals, CdSe@CdS/ZnS nanorods as well as CdSe-CdS core-crown nanoplatelets were transferred into aqueous phase via ligand exchange reactions. For this purpose, bifunctional thiol-based ligands were employed, namely mercaptoacetic acid (MAA), 3-mercaptopropionic acid (MPA), 11-mercaptoundecanoic acid (MUA) as well as 2-(dimethylamino)ethanthiol (DMAET). Systematic investigations by means of photoluminescence quantum yield measurements as well as photoluminescence decay measurements have shown that the luminescence properties of the transferred nanostructures are affected by hole traps (induced by the thiol ligands themselves) as well as by spatial insulation and passivation against the environment. The influence of the tips of the nanorods on the luminescence is, however, insignificant. Accordingly, different ligands yield optimum results for different nanoparticle samples, mainly depending on the inorganic passivation of the respective samples. In case of CdSe@CdS nanorods, the highest emission intensities have been obtained by using short-chain ligands for the transfer preserving more than 50% of the pristine quantum yield of the hydrophobic nanorods. As opposed to this, the best possible quantum efficiency for the CdSe@CdS/ZnS nanorods has been achieved via MUA. The gained knowledge could be applied to transfer for the first time 2-dimensional CdSe-CdS core-crown nanoplatelets into water while preserving significant photoluminescence (up to 12% quantum efficiency).In this work, luminescent CdSe@CdS dot-in-rod nanocrystals, CdSe@CdS/ZnS nanorods as well as CdSe-CdS core-crown nanoplatelets were transferred into aqueous phase via ligand exchange reactions. For this purpose, bifunctional thiol-based ligands were employed, namely mercaptoacetic acid (MAA), 3-mercaptopropionic acid (MPA), 11-mercaptoundecanoic acid (MUA) as well as 2-(dimethylamino)ethanthiol (DMAET). Systematic investigations by means of photoluminescence quantum yield measurements as well as photoluminescence decay measurements have shown that the luminescence properties of the transferred nanostructures are affected by hole traps (induced by the thiol ligands themselves) as well as by spatial insulation and passivation against the environment. The influence of the tips of the nanorods on the luminescence is, however, insignificant. Accordingly, different ligands yield optimum results for different nanoparticle samples, mainly depending on the inorganic passivation of the respective samples. In case of CdSe@CdS nanorods, the highest emission intensities have been obtained by using short-chain ligands for the transfer preserving more than 50% of the pristine quantum yield of the hydrophobic nanorods. As opposed to this, the best possible quantum efficiency for the CdSe@CdS/ZnS nanorods has been achieved via MUA. The gained knowledge could be applied to transfer for the first time 2-dimensional CdSe-CdS core-crown nanoplatelets into water while preserving significant photoluminescence (up to 12% quantum efficiency). Electronic supplementary information (ESI) available: Further TEM images, further extinction spectra, particle size distribution and discussion about optical properties of the hydrophobic nanostructures. See DOI: 10.1039/c5nr06221g
Multisegment nanowire sensors for the detection of DNA molecules.
Wang, Xu; Ozkan, Cengiz S
2008-02-01
We describe a novel application for detecting specific single strand DNA sequences using multisegment nanowires via a straightforward surface functionalization method. Nanowires comprising CdTe-Au-CdTe segments are fabricated using electrochemical deposition, and electrical characterization indicates a p-type behavior for the multisegment nanostructures, in a back-to-back Schottky diode configuration. Such nanostructures modified with thiol-terminated probe DNA fragments could function as high fidelity sensors for biomolecules at very low concentration. The gold segment is utilized for functionalization and binding of single strand DNA (ssDNA) fragments while the CdTe segments at both ends serve to modulate the equilibrium Fermi level of the heterojunction device upon hybridization of the complementary DNA fragments (cDNA) to the ssDNA over the Au segment. Employing such multisegment nanowires could lead to the fabrication more sophisticated and high multispecificity biosensors via selective functionalization of individual segments for biowarfare sensing and medical diagnostics applications.
Bandgap engineered reverse type-I CdTe/InP/ZnS core-shell nanocrystals for the near-infrared.
Kim, Sunghoon; Shim, Wooyoung; Seo, Heonjin; Hyun Bae, Je; Sung, Jaeyoung; Choi, Seung Hong; Moon, Woo Kyung; Lee, Gwang; Lee, Bunyeoul; Kim, Sang-Wook
2009-03-14
New quantum dots were fabricated with a core/shell/shell structure consisting of CdTe core/InP shell/ZnS shell of which the InP shell causes a red-shift to the NIR region and the ZnS shell imparts photo-stability; toxicity tests on mammalian cells and NIR imaging of a mouse highlight their potential applications in biomedical imaging.
In vitro immunotoxicology of quantum dots and comparison with dissolved cadmium and tellurium.
Bruneau, Audrey; Fortier, Marlene; Gagne, Francois; Gagnon, Christian; Turcotte, Patrice; Tayabali, Azam; Davis, Thomas A; Auffret, Michel; Fournier, Michel
2015-01-01
The increasing use of products derived from nanotechnology has raised concerns about their potential toxicity, especially at the immunocompetence level in organisms. This study compared the immunotoxicity of cadmium sulfate/cadmium telluride (CdS/Cd-Te) mixture quantum dots (QDs) and their dissolved components, cadmium chloride (CdCl2 )/sodium telluride (NaTeO3 ) salts, and a CdCl2 /NaTeO3 mixture on four animal models commonly used in risk assessment studies: one bivalve (Mytilus edulis), one fish (Oncorhynchus mykiss), and two mammals (mice and humans). Our results of viability and phagocytosis biomarkers revealed that QDs were more toxic than dissolved metals for blue mussels. For other species, dissolved metals (Cd, Te, and Cd-Te mixture) were more toxic than the nanoparticles (NPs). The most sensitive species toward QDs, according to innate immune cells, was humans (inhibitory concentration [IC50 ] = 217 μg/mL). However, for adaptative immunity, lymphoblastic transformation in mice was decreased for small QD concentrations (EC50 = 4 μg/mL), and was more sensitive than other model species tested. Discriminant function analysis revealed that blue mussel hemocytes were able to discriminate the toxicity of QDs, Cd, Te, and Cd-Te mixture (Partial Wilk's λ = 0.021 and p < 0.0001). For rainbow trout and human cells, the immunotoxic effects of QDs were similar to those obtained with the dissolved fraction of Cd and Te mixture. For mice, the toxicity of QDs markedly differed from those observed with Cd, Te, and dissolved Cd-Te mixture. The results also suggest that aquatic species responded more differently than vertebrates to these compounds. The results lead to the recommendation that mussels and mice were most able to discriminate the effects of Cd-based NPs from the effects of dissolved Cd and Te at the immunocompetence level. © 2013 Wiley Periodicals, Inc.
Sexithiophenes as efficient luminescence quenchers of quantum dots
Mason, Christopher R; Li, Yang; O’Brien, Paul; Findlay, Neil J
2011-01-01
Summary Sexithiophenes 1a and 1b, in which a 4-(dimethylamino)phenyl unit is incorporated as an end-capping group, were synthesised and characterised by cyclic voltammetry, absorption spectroscopy and UV–vis spectroelectrochemistry. Additionally, their ability to function as effective luminescence quenchers for quantum dot emission was studied by photoluminescence spectroscopy and compared with the performance of alkyl end-capped sexithiophenes 2a and 2b. PMID:22238551
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeltik, Aydan; Guzelturk, Burak; Akhavan, Shahab
2013-12-23
We report enhanced sensitization of silicon through nonradiative energy transfer (NRET) of the excitons in an energy-gradient structure composed of a cascaded bilayer of green- and red-emitting CdTe quantum dots (QDs) on bulk silicon. Here NRET dynamics were systematically investigated comparatively for the cascaded energy-gradient and mono-dispersed QD structures at room temperature. We show experimentally that NRET from the QD layer into silicon is enhanced by 40% in the case of an energy-gradient cascaded structure as compared to the mono-dispersed structures, which is in agreement with the theoretical analysis based on the excited state population-depopulation dynamics of the QDs.
NASA Astrophysics Data System (ADS)
Süleymanoğlu, Nevin; Ustabaş, Reşat; Direkel, Şahin; Alpaslan, Yelda Bingöl; Ünver, Yasemin
2017-12-01
Thiol-thione tautomerism of 1,2,4-triazole derivative with Schiff base was investigated by spectroscopic methods and quantum mechanical calculations. Theoretical study of thiol-thione tautomeric forms of 1,2,4-triazole derivative with Schiff base; 1,2,4-triazole-thiol form, 1-((5-mercapto-4-(thiophene-2-ylmethyleneamino)-4H-1,2,4-triazole-3-yl)methyl)-3-(thiophene-2-ylmethyl)-4-(thiophene-2-ylmethyleneamino)-1H-1,2,4-triazole-5(4H)-one (I) and 1,2,4-triazole-thione form, 3-(thiophene-2-ylmethyl)-4-(thiophene-2-ylmethyleneamino)-1-((4-(thiophene-2-ylmethyleneamino)-5-thioxo-4,5-dihydro-1H-1,2,4-triazole-3-yl)methyl)-1H-1,2,4-triazole-5(4H)-one (II) was performed by the density functional theory (DFT) method with 6-311++G(d,p) basis set. Structural parameters were obtained and spectral parameters of NMR, FTIR and UV-vis were compared with experimental ones to determine structural details. In vitro antileishmanial activity was studied against Leishmania infantum promastigots by microdilution broth assay with Alamar Blue Dye. The results indicate that 1,2,4-triazole derivative exists in both thiol and thione form and, can be evaluated as antiparasitic in term of antileishmanial activity.
NASA Astrophysics Data System (ADS)
Xing, Yao; Zhao, Degang; Jiang, Desheng; Liu, Zongshun; Zhu, Jianjun; Chen, Ping; Yang, Jing; Liu, Wei; Liang, Feng; Liu, Shuangtao; Zhang, Liqun; Wang, Wenjie; Li, Mo; Zhang, Yuantao; Du, Guotong
2018-05-01
In InGaN/GaN multi-quantum wells (MQWs), a low temperature cap (LT-cap) layer is grown between the InGaN well layer and low temperature GaN barrier layer. During the growth, a temperature ramp-up and ramp-down process is added between LT-cap and barrier layer growth. The effect of temperature ramp-up time duration on structural and optical properties of quantum wells is studied. It is found that as the ramp-up time increases, the Indium floating layer on the top of the well layer can be diminished effectively, leading to a better interface quality between well and barrier layers, and the carrier localization effect is enhanced, thereby the internal quantum efficiency (IQE) of QWs increases surprisingly. However, if the ramp-up time is too long, the carrier localization effect is weaker, which may increase the probabilities of carriers to meet with nonradiative recombination centers. Meanwhile, more nonradiative recombination centers will be introduced into well layers due to the indium evaporation. Both of them will lead to a reduction of internal quantum efficiency (IQE) of MQWs.
CdTe devices and method of manufacturing same
Gessert, Timothy A.; Noufi, Rommel; Dhere, Ramesh G.; Albin, David S.; Barnes, Teresa; Burst, James; Duenow, Joel N.; Reese, Matthew
2015-09-29
A method of producing polycrystalline CdTe materials and devices that incorporate the polycrystalline CdTe materials are provided. In particular, a method of producing polycrystalline p-doped CdTe thin films for use in CdTe solar cells in which the CdTe thin films possess enhanced acceptor densities and minority carrier lifetimes, resulting in enhanced efficiency of the solar cells containing the CdTe material are provided.
Influence of surface states of CuInS2 quantum dots in quantum dots sensitized photo-electrodes
NASA Astrophysics Data System (ADS)
Peng, Zhuoyin; Liu, Yueli; Wu, Lei; Zhao, Yinghan; Chen, Keqiang; Chen, Wen
2016-12-01
Surface states are significant factor for the enhancement of electrochemical performance in CuInS2 quantum dot sensitized photo-electrodes. DDT, OLA, MPA, and S2- ligand capped CuInS2 quantum dot sensitized photo-electrodes are prepared by thermolysis, solvethermal and ligand-exchange processes, respectively, and their optical properties and photoelectrochemical properties are investigated. The S2- ligand enhances the UV-vis absorption and electron-hole separation property as well as the excellent charge transfer performance of the photo-electrodes, which is attributed to the fact that the atomic S2- ligand for the interfacial region of quantum dots may improve the electron transfer rate. These S2--capped CuInS2 quantum dot sensitized photo-electrodes exhibit the excellent photoelectrochemical efficiency and IPCE peak value, which is higher than that of the samples with DDT, OLA and MPA ligands.
Liu, Linlin; Ma, Qiang; Li, Yang; Liu, ZiPing; Su, Xingguang
2015-01-15
In this work, a novel facile signal-off electrochemiluminescence (ECL) biosensor has been developed for the determination of glucose based on the integration of chitosan (CHIT), CdTe quantum dots (CdTe QDs) and Au nanoparticles (Au NPs) on the glassy carbon electrode (GCE). Chitosan displays high water permeability, hydrophilic property, strong hydrogel ability and good adhesion to load the double nanoparticles to the glassy carbon electrode surfaces. Au NPs are efficient glucose oxidase (GOx)-mimickess to catalytically oxidize glucose, similar to the natural process. Upon the addition of glucose, the Au NPs catalyzed glucose to produce gluconic acid and hydrogen peroxide (H2O2) based on the consumption of dissolved oxygen (O2), which resulted in a quenching effect on the ECL emission. Therefore, the determination of glucose could be achieved by monitoring the signal-off ECL biosensor. Under the optimum conditions, the ECL intensity of CdTe QDs and the concentration of glucose have a good linear relationship in the range of 0.01-10 mmol L(-1). The limit of detection for glucose was 5.28 μmol L(-1) (S/N=3). The biosensor showed good sensitivity, selectivity, reproducibility and stability. The proposed biosensor has been employed for the detection of glucose in human serum samples with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.
Shi, Jian-Jun; Zhu, Jing-Chun; Zhao, Ming; Wang, Yan; Yang, Ping; He, Jie
2018-06-01
An ultrasensitive photoelectrochemical (PEC) aptasensor for lead ion (Pb 2+ ) detection was fabricated based on MoS 2 -CdS:Mn nanocomposites and sensitization effect of CdTe quantum dots (QDs). MoS 2 -CdS:Mn modified electrode was used as the PEC matrix for the immobilization of probe DNA (pDNA) labeled with CdTe QDs. Target DNA (tDNA) were hybridized with pDNA to made the QDs locate away from the electrode surface by the rod-like double helix. The detection of Pb 2+ was based on the conformational change of the pDNA to G-quadruplex structure in the presence of Pb 2+ , which made the labeled QDs move close to the electrode surface, leading to the generation of sensitization effect and evident increase of the photocurrent intensity. The linear range was 50 fM to 100 nM with a detection limit of 16.7 fM. The recoveries of the determination of Pb 2+ in real samples were in the range of 102.5-108.0%. This proposed PEC aptasensor provides a new sensing strategy for various heavy metal ions at ultralow levels. Copyright © 2018 Elsevier B.V. All rights reserved.
A Quick and Parallel Analytical Method Based on Quantum Dots Labeling for ToRCH-Related Antibodies
NASA Astrophysics Data System (ADS)
Yang, Hao; Guo, Qing; He, Rong; Li, Ding; Zhang, Xueqing; Bao, Chenchen; Hu, Hengyao; Cui, Daxiang
2009-12-01
Quantum dot is a special kind of nanomaterial composed of periodic groups of II-VI, III-V or IV-VI materials. Their high quantum yield, broad absorption with narrow photoluminescence spectra and high resistance to photobleaching, make them become a promising labeling substance in biological analysis. Here, we report a quick and parallel analytical method based on quantum dots for ToRCH-related antibodies including Toxoplasma gondii, Rubella virus, Cytomegalovirus and Herpes simplex virus type 1 (HSV1) and 2 (HSV2). Firstly, we fabricated the microarrays with the five kinds of ToRCH-related antigens and used CdTe quantum dots to label secondary antibody and then analyzed 100 specimens of randomly selected clinical sera from obstetric outpatients. The currently prevalent enzyme-linked immunosorbent assay (ELISA) kits were considered as “golden standard” for comparison. The results show that the quantum dots labeling-based ToRCH microarrays have comparable sensitivity and specificity with ELISA. Besides, the microarrays hold distinct advantages over ELISA test format in detection time, cost, operation and signal stability. Validated by the clinical assay, our quantum dots-based ToRCH microarrays have great potential in the detection of ToRCH-related pathogens.
Zhai, Hong; Feng, Ting; Dong, Lingyu; Wang, Liyun; Wang, Xiangfeng; Liu, Hailing; Liu, Yuan; Chen, Luan; Xie, MengXia
2016-08-01
A novel dual emission ratiometric fluorescence probe for determination of glucose has been developed. The reference dye fluorescence isothiocyanate (FITC) has been encapsulated in the silica nanoparticles and then the red emission CdTe QDs were grafted on the surface of the silica particles to obtain the fluorescence probe. With glucose and dopamine as substrates, the glucose level was proportional to the fluorescence ratio change of above probe caused by dopamine oxidation, which was produced via bienzyme catalysis (glucose oxidase and horseradish peroxidase). The established approach was sensitive and selective, and has been applied to determine the glucose in beverage, urine and serum samples. The average recoveries of the glucose at various spiking levels ranged from 95.5% to 108.9% with relative standard deviations from 1.5% to 4.3%. The results provided a clue to develop sensors for rapid determination of the target analytes from complex matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.
Organic-Inorganic Nanostructure Architecture via Directly Capping Fullerenes onto Quantum Dots.
Lee, Jae Kwan; Kim, Jonggi; Yang, Changduk
2011-12-01
A new form of fullerene-capped CdSe nanoparticles (PCBA-capped CdSe NPs), using carboxylate ligands with [60]fullerene capping groups that provides an effective synthetic methodology to attach fullerenes noncovalently to CdSe, is presented for usage in nanotechnology and photoelectric fields. Interestingly, either the internal charge transfer or the energy transfer in the hybrid material contributes to photoluminescence (PL) quenching of the CdSe moieties.
Designing quantum dots for solotronics.
Kobak, J; Smoleński, T; Goryca, M; Papaj, M; Gietka, K; Bogucki, A; Koperski, M; Rousset, J-G; Suffczyński, J; Janik, E; Nawrocki, M; Golnik, A; Kossacki, P; Pacuski, W
2014-01-01
Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory.
Designing quantum dots for solotronics
Kobak, J.; Smoleński, T.; Goryca, M.; Papaj, M.; Gietka, K.; Bogucki, A.; Koperski, M.; Rousset, J.-G.; Suffczyński, J.; Janik, E.; Nawrocki, M.; Golnik, A.; Kossacki, P.; Pacuski, W.
2014-01-01
Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory. PMID:24463946
NASA Astrophysics Data System (ADS)
Miranda, Érica; Tofanello, Aryane; Brito, Adrianne; Lopes, David; Giacomelli, Fernando; Albuquerque, Lindomar; Costa, Fanny; Ferreira, Fabio; Araujo-Chaves, Juliana; de Castro, Carlos; Nantes, Iseli
2016-03-01
The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3-12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from fifteen days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After two months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination with the gold surface. Therefore, the cysteine side chain of albumins is important for the colloidal stabilization of GNPs rather than as the reducing agent for the synthesis. Despite the presence of more reactive gold species at more acidic pH values, i.e., below
NASA Astrophysics Data System (ADS)
Kalpana, Panneer Selvam; Jayakumar, Kalyanasundaram
2017-11-01
We study the effect of magnetic field on the Coulomb interaction between the two electrons confined inside a CdTe/Cd1-xMnxTe Quantum Well (QW), Quantum Well Wire (QWW) and Quantum Dot (QD) for the composition of Mn2+ ion, x = 0.3. The two particle Schrodinger equation has been solved using variational technique in the effective mass approximation. The results show that the applied magnetic field tremendously alters the Coulomb interaction of the electrons and their binding to the donor impurity by shrinking the spatial extension of the two particle wavefunction and leads to tunnelling through the barrier. The qualitative phenomenon involved in such variation of electron - electron interaction with the magnetic field has also been explained through the 3D - plot of the probability density function.
Kaur, Rajnish; Vellingiri, Kowsalya; Kim, Ki-Hyun; Paul, A K; Deep, Akash
2016-07-01
The hybrid structures of metal organic frameworks (MOFs) and nanoparticles may offer the realization of effective photocatalytic materials due to combined benefits of the porous and molecular sieving properties of MOF matrix and the functional characteristics of encapsulated nanoparticles. In this study, cadmium telluride (CdTe) quantum dots (QD) are conjugated with a europium-MOF for the synthesis of a novel nanocomposite material with photocatalytic properties. Successful synthesis of a QD/Eu-MOF nanocomposite was characterized with various spectroscopic and microscopic techniques. This QD/Eu-MOF is found to be an effective catalyst to complete the degradation of Rhodamine 6G dye within 50 min. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Anilkumar, M.; Bindu, K. R.; Sneha Saj, A.; Anila, E. I.
2016-08-01
Toxicity of nanoparticles remains to be a major issue in their application to the biomedical field. Aloe vera (AV) is one of the most widely exploited medicinal plants that have a multitude of amazing properties in the field of medicine. Methanol extract of Aloe vera can be used as a novel stabilising agent for quantum dots to reduce toxicity. We report the synthesis, structural characterization, antibacterial activity and cytotoxicity studies of ZnS:Mn quantum dots synthesized by the colloidal precipitation method, using methanol extract of Aloe vera (AVME) as the capping agent. The ZnS:Mn quantum dots capped with AVME exhibit superior performances in biocompatibility and antibacterial activity compared with ZnS:Mn quantum dots without encapsulation. Project supported by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India.
NASA Astrophysics Data System (ADS)
Maxwell, Graham Lane
CdTe photovoltaic technology has the potential to become a leading energy producer in the coming decades. Its physical properties are well suited for photovoltaic energy conversion. A key processing step in the production of high efficiency CdTe/CdS solar cells is a post-CdTe deposition heat treatment with CdCl2, which can improve performance by promoting CdTe rectrystallization, QE response, defect passivation and others. Understanding the effects of the CdCl2 treatment is crucial in order to optimize processing conditions and improve performance. This study investigates the effects of variations of CdCl2 treatment duration on CdTe/CdS solar cells manufactured at Colorado State University. In order to investigate the optimal time of CdCl 2 treatment, sample solar cells were tested for microstructural and performance properties. Device microstructure was analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Device performance was analyzed using current density-voltage (J-V) measurements, time-resolved photoluminescence (TRPL), quantum efficiency (QE), and laser beam induced current (LBIC) measurements. Little change in microstructure was observed with extended CdCl 2 treatment and is attributed to the high CdTe deposition temperatures used by heat pocket deposition (HPD). This deposition technique allows for large initial grains to be formed with low lattice strain energy which prevents recrystallization and grain growth that is often seen with other deposition techniques. The CdCl2 treatment initially improves performance significantly, but it was shown to that extending the CdCl2 treatment can reduce performance. Overall performance was reduced despite an increase in minority carrier lifetime values. The mechanism of reduced performance is suggested to be the formation of a low bandgap CdTe layer resulting from sulfur diffusion from the CdS layer. Sulfur diffusion primarily occurs during the CdCl 2 treatment and also leads to thinning of the CdS layer. Solar cell modeling was employed to investigate possible mechanisms for performance degradation. Modeling was done with AMPS and SCAPS modeling software. Models were created to investigate the effects of minority carrier lifetime, CdS thickness, and a low bandgap CdTe layer. Modeling results showed that the formation of a low bandgap CdTe layer combined with CdS thinning reduces device performance. Further research is needed using a statistically significant number of samples to investigate other possible degradation mechanisms associated with extended CdCl2 treatment.
NASA Astrophysics Data System (ADS)
Ren, Yingkun; Wang, Yongbo; Yang, Min; Liu, Enzhou; Hu, Xiaoyun; Zhang, Xu; Fan, Jun
2018-07-01
In this paper, L-cysteine (L-cys) and mercaptopropionic acid (MPA) co-capped ZnS quantum dots (QDs) with dual emissions have been successfully synthesized by a one-pot aqueous-phase synthesis method. The intensities of the dual emissions could be controlled by regulating the molar ratio of L-cys to MPA, and the fluorescence color also turned from blue to yellow accordingly. The relationship between the ligands and fluorescence was investigated and the results indicated that L-cys could cause two emissions and MPA improved the emission intensity. In addition, the L-cys-MPA co-capped ZnS QDs showed high photostability under UV irradiation. Therefore, the L-cys-MPA co-capped ZnS QDs, which show the dual emissions and tunable emission intensities, have great potentials for use in ratiometric fluorescence sensors and multicolor bioimaging.
Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong
2014-07-09
Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg(2+) ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples.
Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong
2014-01-01
Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg2+ ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples. PMID:25005836
The effect of Au amount on size uniformity of self-assembled Au nanoparticles
NASA Astrophysics Data System (ADS)
Chen, S.-H.; Wang, D.-C.; Chen, G.-Y.; Chen, K.-Y.
2008-03-01
The self-assembled fabrication of nanostructure, a dreaming approach in the area of fabrication engineering, is the ultimate goal of this research. A finding was proved through previous research that the size of the self-assembled gold nanoparticles could be controlled with the mole ratio between AuCl4- and thiol. In this study, the moles of Au were fixed, only the moles of thiol were adjusted. Five different mole ratios of Au/S with their effect on size uniformity were investigated. The mole ratios were 1:1/16, 1:1/8, 1:1, 1:8, 1:16, respectively. The size distributions of the gold nanoparticles were analyzed by Mac-View analysis software. HR-TEM was used to derive images of self-assembled gold nanoparticles. The result reached was also the higher the mole ratio between AuCl4- and thiol the bigger the self-assembled gold nanoparticles. Under the condition of moles of Au fixed, the most homogeneous nanoparticles in size distribution derived with the mole ratio of 1:1/8 between AuCl4- and thiol. The obtained nanoparticles could be used, for example, in uniform surface nanofabrication, leading to the fabrication of ordered array of quantum dots.
Fan, Bo; Gillies, Elizabeth R
2017-08-07
The ability to disrupt polymer assemblies in response to specific stimuli provides the potential to release drugs selectively at certain sites or conditions in vivo. However, most stimuli-responsive delivery systems require many stimuli-initiated events to release drugs. "Self-immolative polymers" offer the potential to provide amplified responses to stimuli as they undergo complete end-to-end depolymerization following the cleavage of a single end-cap. Herein, linker end-caps were developed to conjugate self-immolative poly(ethyl glyoxylate) (PEtG) with poly(ethylene oxide) (PEO) to form amphiphilic block copolymers. These copolymers were self-assembled to form nanoparticles in aqueous solution. Cleavage of the linker end-caps were triggered by a thiol reducing agent, UV light, H 2 O 2 , and combinations of these stimuli, resulting in nanoparticle disintegration. Low stimuli concentrations were effective in rapidly disrupting the nanoparticles. Nile red, doxorubin, and curcumin were encapsulated into the nanoparticles and were selectively released upon application of the appropriate stimulus. The ability to tune the stimuli-responsiveness simply by changing the linker end-cap makes this new platform highly attractive for applications in drug delivery.
Ordered nanoparticle arrays formed on engineered chaperonin protein templates
NASA Technical Reports Server (NTRS)
McMillan, R. Andrew; Paavola, Chad D.; Howard, Jeanie; Chan, Suzanne L.; Zaluzec, Nestor J.; Trent, Jonathan D.
2002-01-01
Traditional methods for fabricating nanoscale arrays are usually based on lithographic techniques. Alternative new approaches rely on the use of nanoscale templates made of synthetic or biological materials. Some proteins, for example, have been used to form ordered two-dimensional arrays. Here, we fabricated nanoscale ordered arrays of metal and semiconductor quantum dots by binding preformed nanoparticles onto crystalline protein templates made from genetically engineered hollow double-ring structures called chaperonins. Using structural information as a guide, a thermostable recombinant chaperonin subunit was modified to assemble into chaperonins with either 3 nm or 9 nm apical pores surrounded by chemically reactive thiols. These engineered chaperonins were crystallized into two-dimensional templates up to 20 microm in diameter. The periodic solvent-exposed thiols within these crystalline templates were used to size-selectively bind and organize either gold (1.4, 5 or 10nm) or CdSe-ZnS semiconductor (4.5 nm) quantum dots into arrays. The order within the arrays was defined by the lattice of the underlying protein crystal. By combining the self-assembling properties of chaperonins with mutations guided by structural modelling, we demonstrate that quantum dots can be manipulated using modified chaperonins and organized into arrays for use in next-generation electronic and photonic devices.
Size and shape tunability of self-assembled InAs/GaAs nanostructures through the capping rate
NASA Astrophysics Data System (ADS)
Utrilla, Antonio D.; Grossi, Davide F.; Reyes, Daniel F.; Gonzalo, Alicia; Braza, Verónica; Ben, Teresa; González, David; Guzman, Alvaro; Hierro, Adrian; Koenraad, Paul M.; Ulloa, Jose M.
2018-06-01
The practical realization of epitaxial quantum dot (QD) nanocrystals led before long to impressive experimental advances in optoelectronic devices, as well as to the emergence of new technological fields. However, the necessary capping process is well-known to hinder a precise control of the QD morphology and therefore of the possible electronic structure required for certain applications. A straightforward approach is shown to tune the structural and optical properties of InAs/GaAs QDs without the need for any capping material different from GaAs or annealing process. The mere adjust of the capping rate allows controlling kinetically the QD dissolution process induced by the surface In-Ga intermixing taking place during overgrowth, determining the final metastable structure. While low capping rates make QDs evolve into more thermodynamically favorable quantum ring structures, increasing capping rates help preserve the QD height and shape, simultaneously improving the luminescence properties. Indeed, a linear relationship between capping rate and QD height is found, resulting in a complete preservation of the original QD geometry for rates above ∼2.0 ML s-1. In addition, the inhibition of In diffusion from the QDs top to the areas in between them yields thinner WLs, what could improve the performance of several QD-based optoelectronic devices.
Photoluminescence Study of Plasma-Induced Damage of GaInN Single Quantum Well
NASA Astrophysics Data System (ADS)
Izumi, Shouichiro; Minami, Masaki; Kamada, Michiru; Tatsumi, Tetsuya; Yamaguchi, Atsushi A.; Ishikawa, Kenji; Hori, Masaru; Tomiya, Shigetaka
2013-08-01
Plasma-induced damage (PID) due to Cl2/SiCl4/Ar plasma etching of the GaN capping layer (CAP)/GaInN single quantum well (SQW)/GaN structure was investigated by conventional photoluminescence (PL), transmission electron microscopy (TEM), and time-resolved and temperature-dependent photoluminescence (TRPL). SQW PL intensity remained constant initially, although plasma etching of the CAP layer proceeded, but when the etching thickness reached a certain amount (˜60 nm above the SQW), PL intensity started to decrease sharply. On the other hand, TEM observations show that the physical damage (structural damage) was limited to the topmost surface region. These findings can be explained by the results of TRPL studies, which revealed that there exist two different causes of PID. One is an increase in the number of nonradiative recombination centers, which mainly affects the PL intensity. The other is an increase in the quantum level fluctuation owing mainly to physical damage.
Stable CdS QDs with intense broadband photoluminescence and high quantum yields
NASA Astrophysics Data System (ADS)
Mandal, Abhijit; Saha, Jony; De, Goutam
2011-11-01
Aqueous synthesis of CdS quantum dots (QDs) using thiolactic acid (TLA) as a capping agent was reported. These QDs exhibited excellent colloidal and photostability over a span of 2 years and showed intense broadband and almost white photoluminescence suitable for solid state lighting devices. The photoluminescence (PL) property of the aqueous CdS QDs is optimized by adjusting various processing parameters. The highest quantum yield (QY) achieved for TLA capped CdS QDs of average size 3.5 nm was ˜50%. Luminescence lifetime measurements of CdS-TLA QDs indicated longer lifetimes and a larger contribution of the surface-related emission, indicating removal of quenching defects.
Luminescent behavior of cadmium sulfide quantum dots for gallic acid estimation
NASA Astrophysics Data System (ADS)
Singh, Suman; Garg, Sourav; Chahal, Jitender; Raheja, Khushboo; Singh, Deepak; Singla, M. L.
2013-03-01
Thioglycolic acid capped cadmium sulfide (CdS/T) quantum dots have been synthesized using wet chemistry and their optical behavior has been investigated using UV-visible absorption and fluorescence spectroscopy. The role of the capping agent, sulfide source concentration, pH and temperature has been studied and discussed. Studies showed that alkaline pH leads to a decrease in the size of quantum dots and reflux temperature above 70 °C resulted in red-shift of emission spectra which is due to narrowing of the bandgap. Further, to reduce the toxicity and photochemical instability of quantum dots, the quantum dots have been functionalized with polyethylene glycol (PEG), which resulted in a 20% enhancement of the fluorescence intensity. The application potential of CdS/T-PEG quantum dots was further studied using gallic acid as a model compound. The sensing is based on fluorescence quenching of quantum dots in the presence of gallic acid, and this study showed linearity in the range from 1.3 × 10-8 to 46.5 × 10-8 mM, with a detection limit of 3.6 × 10-8 mM.
Hua, Xin; Zhou, Zhenxian; Yuan, Liang; Liu, Songqin
2013-07-25
A novel strategy for selective collection and detection of breast cancer cells (MCF-7) based on aptamer-cell interaction was developed. Mucin 1 protein (MUC1) aptamer (Apt1) was covalently conjugated to magnetic beads to capture MCF-7 cell through affinity interaction between Apt1 and MUC1 protein that overexpressed on the surface of MCF-7 cells. Meanwhile, a nano-bio-probe was constructed by coupling of nucleolin aptamer AS1411 (Apt2) to CdTe quantum dots (QDs) which were homogeneously coated on the surfaces of monodispersed silica nanoparticles (SiO2 NPs). The nano-bio-probe displayed similar optical and electrochemical performances to free CdTe QDs, and remained high affinity to nucleolin overexpressed cells through the interaction between AS1411 and nucleolin protein. Photoluminescence (PL) and square-wave voltammetric (SWV) assays were used to quantitatively detect MCF-7 cells. Improved selectivity was obtained by using these two aptamers together as recognition elements simultaneously, compared to using any single aptamer. Based on the signal amplification of QDs coated silica nanoparticles (QDs/SiO2), the detection sensitivity was enhanced and a detection limit of 201 and 85 cells mL(-1) by PL and SWV method were achieved, respectively. The proposed strategy could be extended to detect other cells, and showed potential applications in cell imaging and drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.
Evolution of oxygenated cadmium sulfide (CdS:O) during high-temperature CdTe solar cell fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meysing, Daniel M.; Reese, Matthew O.; Warren, Charles W.
Oxygenated cadmium sulfide (CdS:O) produced by reactive sputtering has emerged as a promising alternative to conventional CdS for use as the n-type window layer in CdTe solar cells. Here, complementary techniques are used to expose the window layer (CdS or CdS:O) in completed superstrate devices and combined with a suite of materials characterization to elucidate its evolution during high temperature device processing. During device fabrication amorphous CdS:O undergoes significant interdiffusion with CdTe and recrystallization, forming CdS1-yTey nanocrystals whose Te fraction approaches solubility limits. Significant oxygen remains after processing, concentrated in sulfate clusters dispersed among the CdS1-yTey alloy phase, accounting formore » ~30% of the post-processed window layer based on cross-sectional microscopy. Interdiffusion and recrystallization are observed in devices with un-oxygenated CdS, but to a much lesser extent. Etching experiments suggest that the CdS thickness is minimally changed during processing, but the CdS:O window layer is reduced from 100 nm to 60-80 nm, which is confirmed by microscopy. Alloying reduces the band gap of the CdS:O window layer to 2.15 eV, but reductions in thickness and areal density improve its transmission spectrum, which is well matched to device quantum efficiency. The changes to the window layer in the reactive environments of device fabrication are profoundly different than what occurs by thermal annealing in an inert environment, which produced films with a band gap of 2.4 eV for both CdS and CdS:O. These results illustrate for the first time the significant changes that occur to the window layer during processing that are critical to the performance of CdTe solar cells.« less
Structural, optical and enhanced power filtering application of PEG capped Zn1-xCoxS quantum dots
NASA Astrophysics Data System (ADS)
Vineeshkumar, T. V.; Prasanth, S.; Pragash, R.; Unnikrishnan, N. V.; Sudarsanakumar, C.
2018-04-01
Zn1-xCoxS (x= 0.05, 0.1, 0.15 and 0.2) quantum dots were synthesized successfully using co precipitation technique in polyethylene glycol (PEG) matrix. The PEG acted as a capping agent as well as a reducing agent. The structural and optical properties of the samples were studied by x-ray diffraction (XRD), TEM analysis and UV-Visible absorption. Nonlinear optical properties were measured using open aperture z-scan technique, employing frequency doubled (532 nm) pumping sources.
Ma, Meng-Nan; Zhuo, Ying; Yuan, Ruo; Chai, Ya-Qin
2015-11-17
A highly sensitive electrochemiluminescent (ECL) aptasensor was constructed using semicarbazide (Sem) as co-reaction accelerator to promote the ECL reaction rate of CdTe quantum dots (CdTe QDs) and the co-reactant of peroxydisulfate (S2O8(2-)) for boosting signal amplification. The co-reaction accelerator is a species that when it is introduced into the ECL system containing luminophore and co-reactant, it can interact with co-reactant rather than luminophore to promote the ECL reaction rate of luminophore and co-reactant; thus the ECL signal is significantly amplified in comparison with that in which only luminophore and co-reactant are present. In this work, the ECL signal probes were first fabricated by alternately assembling the Sem and Au nanoparticles (AuNPs) onto the surfaces of hollow Au nanocages (AuNCs) via Au-N bond to obtain the multilayered nanomaterials of (AuNPs-Sem)n-AuNCs for immobilizing amino-terminated detection aptamer of thrombin (TBA2). Notably, the Sem with two -NH2 terminal groups could not only serve as cross-linking reagent to assemble AuNPs and AuNCs but also act as co-reaction accelerator to enhance the ECL reaction rate of CdTe QDs and S2O8(2-) for signal amplification. With the sandwich-type format, TBA2 signal probes could be trapped on the CdTe QD-based sensing interface in the presence of thrombin (TB) to achieve a considerably enhanced ECL signal in S2O8(2-) solution. As a result, the Sem in the TBA2 signal probes could accelerate the reduction of S2O8(2-) to produce the more oxidant mediators of SO4(•-), which further boosted the production of excited states of CdTe QDs to emit light. With the employment of the novel co-reaction accelerator Sem, the proposed ECL biosensor exhibited ultrahigh sensitivity to quantify the concentration of TB from 1 × 10(-7) to 1 nM with a detection limit of 0.03 fM, which demonstrated that the co-reaction accelerator could provide a simple, efficient, and low-cost approach for signal amplification and hold great potential for other ECL biosensors construction.
Gong, Wenjing; Wu, Ruibo; Zhang, Yingkai
2015-01-01
Zinc-dependent histone deacetylases (HDACs) play a critical role in transcriptional repression and gene silencing, and are among the most attractive targets for the development of new therapeutics against cancer and various other diseases. Two HDAC inhibitors have been approved by FDA as anti-cancer drugs: one is SAHA whose hydroxamate is directly bound to zinc, the other is FK228 whose active form may use thiol as the zinc binding group. In spite of extensive studies, it remains to be ambiguous regarding how thiol and hydroxamate are bound to the zinc active site of HDACs. In this work, our computational approaches center on Born-Oppenheimer ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics with umbrella sampling, which allow for modeling of the zinc active site with reasonable accuracy while properly including dynamics and effects of protein environment. Meanwhile, an improved short-long effective function (SLEF2) to describe non-bonded interactions between zinc and other atoms has been employed in initial MM equilibrations. Our ab initio QM/MM MD simulations have confirmed that hydroxamate is neutral when it is bound to HDAC8, and found that thiol is deprotonated when directly bound to zinc in the HDAC active site. By comparing thiol and hydroxamate, our results elucidated the differences in their binding environment in the HDAC active sites, and emphasized the importance of the linker design to achieve more specific binding towards class IIa HDACs. PMID:26452222
Gong, Wenjing; Wu, Ruibo; Zhang, Yingkai
2015-11-15
Zinc-dependent histone deacetylases (HDACs) play a critical role in transcriptional repression and gene silencing, and are among the most attractive targets for the development of new therapeutics against cancer and various other diseases. Two HDAC inhibitors have been approved by FDA as anti-cancer drugs: one is SAHA whose hydroxamate is directly bound to zinc, the other is FK228 whose active form may use thiol as the zinc binding group. In spite of extensive studies, it remains to be ambiguous regarding how thiol and hydroxamate are bound to the zinc active site of HDACs. In this work, our computational approaches center on Born-Oppenheimer ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics with umbrella sampling, which allow for modeling of the zinc active site with reasonable accuracy while properly including dynamics and effects of protein environment. Meanwhile, an improved short-long effective function (SLEF2) to describe non-bonded interactions between zinc and other atoms has been employed in initial MM equilibrations. Our ab initio QM/MM MD simulations have confirmed that hydroxamate is neutral when it is bound to HDAC8, and found that thiol is deprotonated when directly bound to zinc in the HDAC active site. By comparing thiol and hydroxamate, our results elucidated the differences in their binding environment in the HDAC active sites, and emphasized the importance of the linker design to achieve more specific binding toward class IIa HDACs. © 2015 Wiley Periodicals, Inc.
Li, Qi; Luo, Tian-Yi; Zhou, Meng; Abroshan, Hadi; Huang, Jingchun; Kim, Hyung J; Rosi, Nathaniel L; Shao, Zhengzhong; Jin, Rongchao
2016-09-27
Silicon nanoparticles (NPs) have been widely accepted as an alternative material for typical quantum dots and commercial organic dyes in light-emitting and bioimaging applications owing to silicon's intrinsic merits of least toxicity, low cost, and high abundance. However, to date, how to improve Si nanoparticle photoluminescence (PL) performance (such as ultrahigh quantum yield, sharp emission peak, high stability) is still a major issue. Herein, we report surface nitrogen-capped Si NPs with PL quantum yield up to 90% and narrow PL bandwidth (full width at half-maximum (fwhm) ≈ 40 nm), which can compete with commercial dyes and typical quantum dots. Comprehensive studies have been conducted to unveil the influence of particle size, structure, and amount of surface ligand on the PL of Si NPs. Especially, a general ligand-structure-based PL energy law for surface nitrogen-capped Si NPs is identified in both experimental and theoretical analyses, and the underlying PL mechanisms are further discussed.
Rostkowska, Hanna; Lapinski, Leszek; Reva, Igor; Almeida, Bruno J A N; Nowak, Maciej J; Fausto, Rui
2011-11-10
Monomeric 3,6-dithiopyridazine (3-mercapto- 6(1H)-pyridazinethione) was studied using the matrix-isolation method combined with quantum chemical calculations. The monomers of 3,6-dithiopyridazine, trapped from the gas phase into a low-temperature Ar matrix, were found to adopt the thione-thiol structure. In agreement with this experimental observation, the thione-thiol form was predicted (at the QCISD level) to be more stable by 13.5 kJ mol(-1) and by 39.6 kJ mol(-1) than the dithiol and the dithione tautomers, respectively. Monomers of 3,6-dithiopyridazine isolated in Ar matrixes were then irradiated with broadband UV (λ > 335 nm) light. Upon such irradiation, the thione-thiol form of the compound converted into the dithiol tautomer. The same phototransformation was observed when monochromatic λ = 385 nm laser light was used for irradiation. This allowed a first observation and spectral characterization of the dithiol form of 3,6-dithiopyridazine. Subsequent irradiation of the UV-generated dithiol tautomer with shorter-wavelength UV (λ > 275 nm) light led to partial repopulation of the thione-thiol form. Spectral signatures of the analogous photoreversibility were also found for the phototautomeric transformation in the model compound 3-thiopyridazine. The reliability of the QCISD predictions of relative energies of thiol and thione tautomeric forms was tested on the archetype example of 2-thiopyridine. For this compound, the comparison of the computed relative energy 10.9 kJ mol(-1) with the experimental estimate 10.0 ± 1.5 kJ mol(-1) (both in favor of the thiol form) was more than satisfactory.
Chen, Hongqi; Ling, Bo; Yuan, Fei; Zhou, Cailing; Chen, Jingguo; Wang, Lun
2012-01-01
A highly sensitive flow-injection chemiluminescence (FIA-CL) method based on the CdTe nanocrystals and potassium permanganate chemiluminescence system was developed for the determination of L-ascorbic acid. It was found that sodium hexametaphosphate (SP), as an enhancer, could increase the chemiluminescence (CL) emission from the redox reaction of CdTe quantum dots with potassium permanganate in near-neutral pH conditions. L-ascorbic acid is suggested as a sensitive enhancer for use in the above energy-transfer excitation process. Under optimal conditions, the calibration graph of emission intensity against logarithmic l-ascorbic acid concentration was linear in the range 1.0 × 10(-9)-5.0 × 10(-6) mol/L, with a correlation coefficient of 0.9969 and relative standard deviation (RSD) of 2.3% (n = 7) at 5.0 × 10(-7) mol/L. The method was successfully used to determine L-ascorbic acid in vitamin C tablets. The possible mechanism of the chemiluminescence in the system is also discussed. Copyright © 2012 John Wiley & Sons, Ltd.
Poplawsky, Jonathan D.; Guo, Wei; Paudel, Naba; Ng, Amy; More, Karren; Leonard, Donovan; Yan, Yanfa
2016-01-01
The published external quantum efficiency data of the world-record CdTe solar cell suggests that the device uses bandgap engineering, most likely with a CdTexSe1−x alloy layer to increase the short-circuit current and overall device efficiency. Here atom probe tomography, transmission electron microscopy and electron beam-induced current are used to clarify the dependence of Se content on the photoactive properties of CdTexSe1−x alloy layers in bandgap-graded CdTe solar cells. Four solar cells were prepared with 50, 100, 200 and 400 nm-thick CdSe layers to reveal the formation, growth, composition, structure and photoactivity of the CdTexSe1−x alloy with respect to the degree of Se diffusion. The results show that the CdTexSe1−x layer photoactivity is highly dependent on the crystalline structure of the alloy (zincblende versus wurtzite), which is also dependent on the Se and Te concentrations. PMID:27460872
Macdonald, Thomas J.; Wu, Ke; Sehmi, Sandeep K.; Noimark, Sacha; Peveler, William J.; du Toit, Hendrik; Voelcker, Nicolas H.; Allan, Elaine; MacRobert, Alexander J.; Gavriilidis, Asterios; Parkin, Ivan P.
2016-01-01
A simple procedure to develop antibacterial surfaces using thiol-capped gold nanoparticles (AuNPs) is shown, which effectively kill bacteria under dark and light conditions. The effect of AuNP size and concentration on photo-activated antibacterial surfaces is reported and we show significant size effects, as well as bactericidal activity with crystal violet (CV) coated polyurethane. These materials have been proven to be powerful antibacterial surfaces against both Gram-positive and Gram-negative bacteria. AuNPs of 2, 3 or 5 nm diameter were swell-encapsulated into PU before a coating of CV was applied (known as PU-AuNPs-CV). The antibacterial activity of PU-AuNPs-CV samples was tested against Staphylococcus aureus and Escherichia coli as representative Gram-positive and Gram-negative bacteria under dark and light conditions. All light conditions in this study simulated a typical white-light hospital environment. This work demonstrates that the antibacterial activity of PU-AuNPs-CV samples and the synergistic enhancement of photoactivity of triarylmethane type dyes is highly dependent on nanoparticle size and concentration. The most powerful PU-AuNPs-CV antibacterial surfaces were achieved using 1.0 mg mL−1 swell encapsulation concentrations of 2 nm AuNPs. After two hours, Gram-positive and Gram-negative bacteria were reduced to below the detection limit (>4 log) under dark and light conditions. PMID:27982122
1987-05-01
possibilities and the latter providing a photodetector with low dark currents . Some mention will also be made of structures devised by Nakagawa7 ,8...developments concerning the growth and the characterization of Hgl_xCdxTe-Cdte SLs and related Hg based superlattice systems. These SLs are now currently ...minority carriers in the base region. When a current is flowing, the drift velocities of minority and majority carriers are oppositely directed, and
NASA Astrophysics Data System (ADS)
Thanh Hop Tran, Thi; Huong Do, Thi Mai; Hoang, Mai Ha; Tuyen Nguyen, Duc; Le, Quang Tuan; Nghia Nguyen, Duc; Ngo, Trinh Tung
2015-01-01
In this paper, the fluorescence resonance energy transfer (FRET) effect has been used for fabrication of nanosensor for the detection of clenbuterol. In the nanosensor, the CdTe quantum dots (QDs) are the donors while the acceptor is the super-macromolecule formed by the diazoation coupling mechanism between diazo clenbuterol and naphthylethylene diamine. Changes in fluorescence intensities of nanosensor were used to determine the clenbuterol concentration. We have successfully fabricated a nanosensor for detection of clenbuterol sensible to clenbuterol concentration of 10-12 g ml-1.
First-principles study of roles of Cu and Cl in polycrystalline CdTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ji-Hui; Park, Ji-Sang; Metzger, Wyatt
2016-01-28
Cu and Cl treatments are important processes to achieve high efficiency polycrystalline cadmium telluride (CdTe) solar cells, thus it will be beneficial to understand the roles they play in both bulk CdTe and CdTe grain boundaries (GBs). Using first-principles calculations, we systematically study Cu and Cl-related defects in bulk CdTe. We find that Cl has only a limited effect on improving p-type doping and too much Cl can induce deep traps in bulk CdTe, whereas Cu can enhance p-type doping of bulk CdTe. In the presence of GBs, we find that, in general, Cl and Cu will prefer to staymore » at GBs, especially for those with Te-Te wrong bonds, in agreement with experimental observations.« less
NASA Astrophysics Data System (ADS)
Kuo, Tien-Chuan
For many applications, such as infrared detector and high speed devices, we need high quality cadmium telluride (CdTe) films. To fabricate CdTe films we are using a home -built Closed Hot Wall Epitaxy system (CHWE). This system consists of two growth chambers, preheat chamber, substrate exchange load lock and ultra-high vacuum system. It can exchange the substrates without disturbing the vacuum environment and prevents the source materials from contamination. Two different substrate materials, Si and InSb, are used in this work. Deposition parameters were varied in order to determine the growth condition for obtaining good quality CdTe films. The characteristics of the films were investigated by Scanning Electron Microscope, X-ray diffractormeter and Auger Electron Spectroscope. The electrical properties of Al/CdTe/InSb MIS diodes are also examined. Experimental results show that the quality of the CdTe films on these two substrates are functions of the source and substrate temperatures. The surface of CdTe films grown on Si substrate are rougher than CdTe films grown on InSb substrate. X -ray patterns show that the crystal orientations of the CdTe films are, (100) and (111), similar to those of the substrates under optimum growth conditions. The CdTe film are stoichiometric based on the results of Auger survey. Electrical measurement also indicates that CdTe films grown on InSb substrates have very high purity and are insulator. The induced stresses due to the differences of lattice constant and thermal expansion coefficient between CdTe films and substrates were observed in CdTe films. The critical thickness of CdTe films on InSb substrates are measured by X-ray diffraction to be 2.63 um.
Raman characterization of a new Te-rich binary compound: CdTe2.
Rousset, Jean; Rzepka, Edouard; Lincot, Daniel
2009-04-02
Structural characterization by Raman spectroscopy of CdTe thin films electrodeposited in acidic conditions is considered in this work. This study focuses on the evolution of material properties as a function of the applied potential and the film thickness, demonstrating the possibility to obtain a new Te-rich compound with a II/VI ratio of 1/2 under specific bath conditions. Raman measurements carried out on etched samples first allow the elimination of the assumption of a mixture of phases CdTe + Te and tend to confirm the formation of the CdTe(2) binary compound. The signature of this phase on the Raman spectrum is the increase of the LO band intensity compared to that obtained for the CdTe. The influence of the laser power is also considered. While no effect is observed on CdTe films, the increase of the incident irradiation power leads to the decomposition of the CdTe(2) compound into two more stable phases namely CdTe and Te.
First-principles study of roles of Cu and Cl in polycrystalline CdTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang
2016-01-25
In this study, Cu and Cl treatments are important processes to achieve high efficiency polycrystalline cadmium telluride (CdTe) solar cells, thus it will be beneficial to understand the roles they play in both bulk CdTe and CdTe grain boundaries (GBs). Using first-principles calculations, we systematically study Cu and Cl-related defects in bulk CdTe. We find that Cl has only a limited effect on improving p-type doping and too much Cl can induce deep traps in bulk CdTe, whereas Cu can enhance ptype doping of bulk CdTe. In the presence of GBs, we find that, in general, Cl and Cu willmore » prefer to stay at GBs, especially for those with Te-Te wrong bonds, in agreement with experimental observations.« less
Influence of EDTA{sup 2-} on the hydrothermal synthesis of CdTe nanocrystallites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong Haibo; School of Materials Science and Engineering, University of Jinan, Jinan 250022; Hao Xiaopeng, E-mail: xphao@sdu.edu.cn
2011-12-15
Transformation from Te nanorods to CdTe nanoparticles was achieved with the assistance of EDTA as a ligand under hydrothermal conditions. Experimental results showed that at the beginning of reaction Te nucleated and grew into nanorods. With the proceeding of reaction, CdTe nucleus began to emerge on the surface, especially on the tips of Te nanorods. Finally, nearly monodispersed hexagonal CdTe nanoparticles with diameters of about 200 nm were obtained. The effects of EDTA on the morphology and formation of CdTe nanoparticles were discussed in consideration of the strong ligand-effect of EDTA, which greatly decreased the concentration of Cd{sup 2+}. Furthermore,more » the possible formation process of CdTe nanoparticles from Te nanorods was further proposed. The crystal structure and morphology of the products were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). - Graphical Abstract: Firstly, Te nucleated and grew into nanorods in the presence of EDTA{sup 2-}. Then CdTe nucleus began to emerge on Te nanorods and finally monodispersed CdTe nanoparticles were obtained. Highlights: Black-Right-Pointing-Pointer EDTA serves as a strong ligand with Cd{sup 2+}. Black-Right-Pointing-Pointer The existence of EDTA constrains the nucleation of CdTe and promotes the formation of Te nanorods. Black-Right-Pointing-Pointer With the proceeding of reaction, CdTe nucleus began to emerge on the surface, especially on the tips of Te nanorods. Black-Right-Pointing-Pointer Nearly monodispersed hexagonal CdTe nanoparticles with diameters of about 200 nm were finally obtained.« less
NASA Astrophysics Data System (ADS)
Wei, Shutian; Zhu, Zhilin; Wang, Zhixiao; Wei, Gugangfen; Wang, Pingjian; Li, Hai; Hua, Zhen; Lin, Zhonghai
2016-07-01
Size-controllable monodisperse CdSe nanocrystals with different organic capping were prepared based on the hot-injection method. The effective separation of nucleation and growth was achieved by rapidly mixing two highly reactive precursors. As a contrast, we prepared CdSe/CdS nanocrystals (NCs) successfully based on the selective ion layer adsorption and reaction (SILAR) technique. This inorganic capping obtained higher photoluminescence quantum yield (PLQY) of 59.3% compared with organic capping of 40.8%. Furthermore, the CdSe-epoxy resin (EP) composites were prepared by adopting a flexible ex situ method, and showed excellent stability in the ambient environment for one year. So the composites with both high PLQY of nanocrystals and excellent stability are very promising to device application.
A simple and facile synthesis of MPA capped CdSe and CdSe/CdS core/shell nanoparticles
NASA Astrophysics Data System (ADS)
Sukanya, D.; Sagayaraj, P.
2015-06-01
II-VI semiconductor nanostructures, in particular, CdSe quantum dots have drawn a lot of attention because of their promising potential applications in biological tagging, photovoltaic, display devices etc. due to their excellent optical properties, high emission quantum yield, size dependent emission wavelength and high photostability. In this paper, we describe the synthesis and properties of mercaptopropionic acid capped CdSe and CdSe/CdS nanoparticles through a simple and efficient co-precipitation method followed by hydrothermal treatment. The growth process, characterization and the optical absorption as a function of wavelength for the synthesized MPA capped CdSe and CdSe/CdS nanoparticles have been determined using X-ray diffraction study (XRD), Ultraviolet-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and High Resolution Transmission Electron Microscopy (HRTEM).
Tulsani, Srikanth Reddy; Rath, Arup Kumar
2018-07-15
The solution-processed quantum dot (QD) solar cell technology has seen significant advancements in recent past to emerge as a potential contender for the next generation photovoltaic technology. In the development of high performance QD solar cell, the surface ligand chemistry has played the important role in controlling the doping type and doping density of QD solids. For instance, lead sulfide (PbS) QDs which is at the forefront of QD solar cell technology, can be made n-type or p-type respectively by using iodine or thiol as the surfactant. The advancements in surface ligand chemistry enable the formation of p-n homojunction of PbS QDs layers to attain high solar cell performances. It is shown here, however, that poor Fermi level alignment of thiol passivated p-type PbS QD hole transport layer with the n-type PbS QD light absorbing layer has rendered the photovoltaic devices from realizing their full potential. Here we develop a control surface oxidation technique using facile ultraviolet ozone treatment to increase the p-doping density in a controlled fashion for the thiol passivated PbS QD layer. This subtle surface modification tunes the Fermi energy level of the hole transport layer to deeper values to facilitate the carrier extraction and voltage generation in photovoltaic devices. In photovoltaic devices, the ultraviolet ozone treatment resulted in the average gain of 18% in the power conversion efficiency with the highest recorded efficiency of 8.98%. Copyright © 2018 Elsevier Inc. All rights reserved.
GaAs droplet quantum dots with nanometer-thin capping layer for plasmonic applications.
Park, Suk In; Trojak, Oliver Joe; Lee, Eunhye; Song, Jin Dong; Kyhm, Jihoon; Han, Ilki; Kim, Jongsu; Yi, Gyu-Chul; Sapienza, Luca
2018-05-18
We report on the growth and optical characterization of droplet GaAs quantum dots (QDs) with extremely-thin (11 nm) capping layers. To achieve such result, an internal thermal heating step is introduced during the growth and its role in the morphological properties of the QDs obtained is investigated via scanning electron and atomic force microscopy. Photoluminescence measurements at cryogenic temperatures show optically stable, sharp and bright emission from single QDs, at visible wavelengths. Given the quality of their optical properties and the proximity to the surface, such emitters are good candidates for the investigation of near field effects, like the coupling to plasmonic modes, in order to strongly control the directionality of the emission and/or the spontaneous emission rate, crucial parameters for quantum photonic applications.
GaAs droplet quantum dots with nanometer-thin capping layer for plasmonic applications
NASA Astrophysics Data System (ADS)
In Park, Suk; Trojak, Oliver Joe; Lee, Eunhye; Song, Jin Dong; Kyhm, Jihoon; Han, Ilki; Kim, Jongsu; Yi, Gyu-Chul; Sapienza, Luca
2018-05-01
We report on the growth and optical characterization of droplet GaAs quantum dots (QDs) with extremely-thin (11 nm) capping layers. To achieve such result, an internal thermal heating step is introduced during the growth and its role in the morphological properties of the QDs obtained is investigated via scanning electron and atomic force microscopy. Photoluminescence measurements at cryogenic temperatures show optically stable, sharp and bright emission from single QDs, at visible wavelengths. Given the quality of their optical properties and the proximity to the surface, such emitters are good candidates for the investigation of near field effects, like the coupling to plasmonic modes, in order to strongly control the directionality of the emission and/or the spontaneous emission rate, crucial parameters for quantum photonic applications.
NREL Collaboration Breaks 1-Volt Barrier in CdTe Solar Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-05-01
NREL scientists have worked with Washington State University and the University of Tennessee to improve the maximum voltage available from CdTe solar cells. Changes in dopants, stoichiometry, interface design, and defect chemistry improved the CdTe conductivity and carrier lifetime by orders of magnitude, thus enabling CdTe solar cells with open-circuit voltages exceeding 1 volt for the first time. Values of current density and fill factor for CdTe solar cells are already at high levels, but sub-par voltages has been a barrier to improved efficiencies. With voltages pushed beyond 1 volt, CdTe cells have a path to produce electricity at costsmore » less than fossil fuels.« less
Space-charge limited current in CdTe thin film solar cell
NASA Astrophysics Data System (ADS)
Li, Qiang; Shen, Kai; Li, Xun; Yang, Ruilong; Deng, Yi; Wang, Deliang
2018-04-01
In this study, we demonstrate that space-charge limited current (SCLC) is an intrinsic current shunting leakage in CdTe thin film solar cells. The SCLC leakage channel, which is formed by contact between the front electrode, CdTe, and the back electrode, acts as a metal-semiconductor-metal (MSM) like transport path. The presence of SCLC leaking microchannels in CdTe leads to a band bending at the MSM structure, which enhances minority carrier recombination and thus decreases the minority carrier lifetime in CdTe thin film solar cells. SCLC was found to be a limiting factor both for the fill factor and the open-circuit voltage of CdTe thin film solar cells.
Huang, Ke; Xu, Kailai; Zhu, Wei; Yang, Lu; Hou, Xiandeng; Zheng, Chengbin
2016-01-05
A low-cost, simple, and highly selective analytical method was developed for sensitive visual detection of selenium in human urine both outdoors and at home, by coupling hydride generation with headspace solid-phase extraction using quantum dots (QDs) immobilized on paper. The visible fluorescence from the CdTe QDs immobilized on paper was quenched by H2Se from hydride generation reaction and headspace solid-phase extraction. The potential mechanism was investigated by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) as well as Density Functional Theory (DFT). Potential interferences from coexisting ions, particularly Ag(+), Cu(2+), and Zn(2+), were eliminated. The selectivity was significantly increased because the selenium hydride was effectively separated from sample matrices by hydride generation. Moreover, due to the high sampling efficiency of hydride generation and headspace solid phase extraction, the sensitivity and the limit of detection (LOD) were significantly improved compared to conventional methods. A LOD of 0.1 μg L(-1) and a relative standard deviation (RSD, n = 7) of 2.4% at a concentration of 20 μg L(-1) were obtained when using a commercial spectrofluorometer as the detector. Furthermore, a visual assay based on the proposed method was developed for the detection of Se, 5 μg L(-1) of selenium in urine can be discriminated from the blank solution with the naked eye. The proposed method was validated by analysis of certified reference materials and human urine samples with satisfactory results.
Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil.
Kranz, Lukas; Gretener, Christina; Perrenoud, Julian; Schmitt, Rafael; Pianezzi, Fabian; La Mattina, Fabio; Blösch, Patrick; Cheah, Erik; Chirilă, Adrian; Fella, Carolin M; Hagendorfer, Harald; Jäger, Timo; Nishiwaki, Shiro; Uhl, Alexander R; Buecheler, Stephan; Tiwari, Ayodhya N
2013-01-01
Roll-to-roll manufacturing of CdTe solar cells on flexible metal foil substrates is one of the most attractive options for low-cost photovoltaic module production. However, various efforts to grow CdTe solar cells on metal foil have resulted in low efficiencies. This is caused by the fact that the conventional device structure must be inverted, which imposes severe restrictions on device processing and consequently limits the electronic quality of the CdTe layer. Here we introduce an innovative concept for the controlled doping of the CdTe layer in the inverted device structure by means of evaporation of sub-monolayer amounts of Cu and subsequent annealing, which enables breakthrough efficiencies up to 13.6%. For the first time, CdTe solar cells on metal foil exceed the 10% efficiency threshold for industrialization. The controlled doping of CdTe with Cu leads to increased hole density, enhanced carrier lifetime and improved carrier collection in the solar cell. Our results offer new research directions for solving persistent challenges of CdTe photovoltaics.
High fidelity polycrystalline CdTe/CdS heterostructures via molecular dynamics
Aguirre, Rodolfo; Chavez, Jose Juan; Zhou, Xiaowang; ...
2017-06-20
Molecular dynamics simulations of polycrystalline growth of CdTe/CdS heterostructures have been performed. First, CdS was deposited on an amorphous CdS substrate, forming a polycrystalline film. Subsequently, CdTe was deposited on top of the polycrystalline CdS film. Cross-sectional images show grain formation at early stages of the CdS growth. During CdTe deposition, the CdS structure remains almost unchanged. Concurrently, CdTe grain boundary motion was detected after the first 24.4 nanoseconds of CdTe deposition. With the elapse of time, this grain boundary pins along the CdS/CdTe interface, leaving only a small region of epitaxial growth. CdTe grains are larger than CdS grainsmore » in agreement with experimental observations in the literature. Crystal phase analysis shows that zinc blende structure dominates over the wurtzite structure inside both CdS and CdTe grains. Composition analysis shows Te and S diffusion to the CdS and CdTe films, respectively. Lastly, these simulated results may stimulate new ideas for studying and improving CdTe solar cell efficiency.« less
Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil
NASA Astrophysics Data System (ADS)
Kranz, Lukas; Gretener, Christina; Perrenoud, Julian; Schmitt, Rafael; Pianezzi, Fabian; La Mattina, Fabio; Blösch, Patrick; Cheah, Erik; Chirilă, Adrian; Fella, Carolin M.; Hagendorfer, Harald; Jäger, Timo; Nishiwaki, Shiro; Uhl, Alexander R.; Buecheler, Stephan; Tiwari, Ayodhya N.
2013-08-01
Roll-to-roll manufacturing of CdTe solar cells on flexible metal foil substrates is one of the most attractive options for low-cost photovoltaic module production. However, various efforts to grow CdTe solar cells on metal foil have resulted in low efficiencies. This is caused by the fact that the conventional device structure must be inverted, which imposes severe restrictions on device processing and consequently limits the electronic quality of the CdTe layer. Here we introduce an innovative concept for the controlled doping of the CdTe layer in the inverted device structure by means of evaporation of sub-monolayer amounts of Cu and subsequent annealing, which enables breakthrough efficiencies up to 13.6%. For the first time, CdTe solar cells on metal foil exceed the 10% efficiency threshold for industrialization. The controlled doping of CdTe with Cu leads to increased hole density, enhanced carrier lifetime and improved carrier collection in the solar cell. Our results offer new research directions for solving persistent challenges of CdTe photovoltaics.
Processing and Characterization of Thin Cadmium Telluride Solar Cells
NASA Astrophysics Data System (ADS)
Wojtowicz, Anna
Cadmium telluride (CdTe) has the highest theoretical limit to conversion efficiency of single-junction photovoltaic (PV) technologies today. However, despite a maximum theoretical open-circuit voltage of 1.20 V, record devices have historically had voltages pinned around only 900 mV. Voltage losses due to high recombination rates remains to be the most complex hurdle to CdTe technology today, and the subject of on-going research in the physics PV group at Colorado State University. In this work, an ultrathin CdTe device architecture is proposed in an effort to reduce bulk recombination and boost voltages. By thinning the CdTe layer, a device's internal electric field extends fully towards the back contact. This quickly separates electrons-hole pairs throughout the bulk of the device and reduces overall recombination. Despite this advantage, very thin CdTe layers also present a unique set of optical and electrical challenges which result in performance losses not as prevalent in thicker devices. When fabricating CdTe solar cells, post-deposition treatments applied to the absorber layer are a critical step for achieving high efficiency devices. Exposure of the polycrystalline CdTe film to a chlorine species encourages the passivation of dangling bonds and larger grain formation, while copper-doping improves device uniformity and voltages. This work focuses on experiments conducted via close-space sublimation to optimize CdCl2 and CuCl treatments for thin CdTe solar cells. Sweeps of both exposure and anneal time were performed for both post-deposition treatments on CdTe devices with 1.0 mum absorber layers. The results demonstrate that thin CdTe devices require substantially less post-deposition processing than standard thicker devices as expected. Additionally, the effects of CdTe growth temperature on thin devices is briefly investigated. The results suggest that higher growth temperatures lead to both electrical and stoichiometric changes in CdTe closely associated with lower carrier lifetimes and poorer overall performance.
Hydrogen bonding as the origin of the switching behavior in dithiolated phenylene-vinylene oligomers
NASA Astrophysics Data System (ADS)
Obodo, J. T.; Gkionis, K.; Rungger, I.; Sanvito, S.; Schwingenschlögl, U.
2013-08-01
We investigate theoretically the switching behavior of a dithiolated phenylene-vinylene oligomer sandwiched between Au(111) electrodes using self-interaction corrected density-functional theory combined with the nonequilibrium Green's-function method for quantum transport. The molecule presents a configurational bistability, which can be exploited in constructing molecular memories, switches, and sensors. We find that protonation of the terminating thiol groups is at the origin of the change in conductance. H bonding at the thiol group weakens the S-Au bond and reduces by about one order of magnitude the transmission coefficient at the Fermi level, and thus the linear response conductance. Furthermore, protonation downshifts in energy the position of the highest occupied molecular orbital, so that the current of the protonated species is lower than that of the unprotonated one along the entire bias range investigated, from -1.5 to 1.5 V. A second protonation at the opposite thiol group has only minor effects and no further drastic reduction in transmission takes place. Our results allow us to re-interpret the experimental data originally attributing the conductance reduction to H dissociation.
Surface passivation for CdTe devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reese, Matthew O.; Perkins, Craig L.; Burst, James M.
2017-08-01
In one embodiment, a method for surface passivation for CdTe devices is provided. The method includes adjusting a stoichiometry of a surface of a CdTe material layer such that the surface becomes at least one of stoichiometric or Cd-rich; and reconstructing a crystalline lattice at the surface of the CdTe material layer by annealing the adjusted surface.
Jang, Gyoung Gug; Jacobs, Christopher B.; Ivanov, Ilia N.; ...
2015-07-24
Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. Furthermore, the capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm.
DNA Conjugation and DNA Directed Self-Assembly of Quantum Dots for Nanophotonic Applications
NASA Astrophysics Data System (ADS)
Samanta, Anirban
Colloidal quantum dots (QDs) or semiconductor nanocrystals are often used to describe 2--20 nm solution processed nanoparticles of various semiconductor materials that display quantum confinement effects. Compared to traditional fluorescent organic dyes, QDs provide many advantages. For biological applications it is necessary to develop reliable methods to functionalize QDs with hydrophilic biomolecules so that they may maintain their stability and functionality in physiological conditions. DNA, a molecule that encodes genetic information, is arguably the smartest molecule that nature has ever produced and one of the most explored bio-macromolecules. QDs that are functionalized with DNA can potentially be organized with nanometer precision by DNA directed self-assembly, and the resulting arrangements may facilitate the display of novel optical properties. The goal of this dissertation was to achieve a robust reliable yet simple strategy to link DNA to QDs so that they can be used for DNA directed self assembly by which we can engineer their optical properties. Presented here is a series of studies to achieve this goal. First we demonstrate the aqueous synthesis of colloidal nanocrystal heterostructures consisting of the CdTe core encapsulated by CdS/ZnS or CdSe/ZnS shells using glutathione (GSH), a tripeptide, as the capping ligand. We next employed this shell synthesis strategy to conjugate PS-PO chimeric DNA to QDs at the time of shell synthesis. We synthesized a library of DNA linked QDs emitting from UV to near IR that are very stable in high salt concentrations. These DNA functionalized QDs were further site-specifically organized on DNA origami in desired patterns directed by DNA self-assembly. We further extended our capability to functionalize DNA to real IR emitting CdxPb 1-xTe alloyed QDs, and demonstrated their stability by self-assembling them on DNA origami. The photo-physical properties of the QDs were further engineered by attaching a QD and a gold nanoparticle in controlled distances on the same DNA origami, which revealed a much longer range quenching effect than usual Forster Resonance Energy Transfer. We are currently engaged in enhancing the photoluminescence intensity of the QDs by bringing them in the plasmonic hot spots generated by a cluster of larger plasmonic nanoparticles.
Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering.
Pan, Jun; Quan, Li Na; Zhao, Yongbiao; Peng, Wei; Murali, Banavoth; Sarmah, Smritakshi P; Yuan, Mingjian; Sinatra, Lutfan; Alyami, Noktan M; Liu, Jiakai; Yassitepe, Emre; Yang, Zhenyu; Voznyy, Oleksandr; Comin, Riccardo; Hedhili, Mohamed N; Mohammed, Omar F; Lu, Zheng Hong; Kim, Dong Ha; Sargent, Edward H; Bakr, Osman M
2016-10-01
A two-step ligand-exchange strategy is developed, in which the long-carbon- chain ligands on all-inorganic perovskite (CsPbX 3 , X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-pair-capped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Borse, Vivek; Kashikar, Adisha; Srivastava, Rohit
2018-04-01
Quantum dots are the semiconductor nanocrystals having unique optical and electronic properties. Quantum dots are category of fluorescent labels utilized for biological tagging, biosensing, bioassays, bioimaging and in vivo imaging as they exhibit very small size, signal brightness, photostability, tuning of light emission range, longer photoluminescence decay time as compared to organic dyes. In this work, we have synthesized and characterized mercaptopropionic acid capped cadmium telluride quantum dots (MPA-CdTe QDs) using hydrothermal method. The study further reports fluorescence intensity stability of quantum dots suspended in different buffers of varying concentration (1-100 mM), stored at various photophysical conditions. Fluorescence intensity values were reduced with increase in buffer concentration. When the samples were stored at room temperature in ambient light condition the quantum dots suspended in different buffers lost the fluorescence intensity after day 15 (except TRIS II). Fluorescence intensity values were found stable for more than 30 days when the samples were stored in dark condition. Samples stored in refrigerator displayed modest fluorescence intensity even after 300 days of storage. Thus, storage of MPA-CdTe QDs in refrigerator may be the suitable choice to maintain its fluorescence stability for longer time for further application.
Design of epitaxial CdTe solar cells on InSb substrates
Song, Tao; Kanevce, Ana; Sites, James R.
2015-11-01
Epitaxial CdTe has been shown by others to have a radiative recombination rate approaching unity, high carrier concentration, and low defect density. It has, therefore, become an attractive candidate for high-efficiency solar cells, perhaps becoming competitive with GaAs. The choice of substrate is a key design feature for epitaxial CdTe solar cells, and several possibilities (CdTe, Si, GaAs, and InSb) have been investigated by others. All have challenges, and these have generally been addressed through the addition of intermediate layers between the substrate and CdTe absorber. InSb is an attractive substrate choice for CdTe devices, because it has a closemore » lattice match with CdTe, it has low resistivity, and it is easy to contact. However, the valence-band alignment between InSb and p-type CdTe, which can both impede hole current and enhance forward electron current, is not favorable. Three strategies to address the band-offset problem are investigated by numerical simulation: heavy doping of the back part of the CdTe layer, incorporation of an intermediate CdMgTe or CdZnTe layer, and the formation of an InSb tunnel junction. Lastly, wach of these strategies is predicted to be helpful for higher cell performance, but a combination of the first two should be most effective.« less
NASA Astrophysics Data System (ADS)
Echendu, O. K.; Dejene, B. F.; Dharmadasa, I. M.
2018-03-01
The effects of the type of anode material on the properties of electrodeposited CdTe thin films for photovoltaic application have been studied. Cathodic electrodeposition of two sets of CdTe thin films on glass/fluorine-doped tin oxide (FTO) was carried out in two-electrode configuration using graphite and platinum anodes. Optical absorption spectra of films grown with graphite anode displayed significant spread across the deposition potentials compared to those grown with platinum anode. Photoelectrochemical cell result shows that the CdTe grown with graphite anode became p-type after post-deposition annealing with prior CdCl2 treatment, as a result of carbon incorporation into the films, while those grown with platinum anode remained n-type after annealing. A review of recent photoluminescence characterization of some of these CdTe films reveals the persistence of a defect level at (0.97-0.99) eV below the conduction band in the bandgap of CdTe grown with graphite anode after annealing while films grown with platinum anode showed the absence of this defect level. This confirms the impact of carbon incorporation into CdTe. Solar cell made with CdTe grown with platinum anode produced better conversion efficiency compared to that made with CdTe grown using graphite anode, underlining the impact of anode type in electrodeposition.
Pandey, Vivek; Pandey, Gajanan; Tripathi, Vinay Kumar; Yadav, Sapna; Mudiam, Mohana Krishna Reddy
2016-03-01
Quantum dots (QDs), one of the fastest developing and most exciting fluorescent materials, have attracted increasing interest in bioimaging and biomedical applications. The long-term stability and emission in the visible region of QDs have proved their applicability as a significant fluorophore in cell labelling. In this study, an attempt has been made to explore the efficacy of L-cysteine as a capping agent for Mn-doped ZnS QD for intracellular imaging. A room temperature nucleation strategy was adopted to prepare non-toxic, water-dispersible and biocompatible Mn:ZnS QDs. Aqueous and room temperature QDs with L-cysteine as a capping agent were found to be non-toxic even at a concentration of 1500 µg/mL and have wide applications in intracellular imaging. Copyright © 2015 John Wiley & Sons, Ltd.
Lopes, Paulo; Silva, Maria A; Pons, Alexandre; Tominaga, Takatoshi; Lavigne, Valérie; Saucier, Cédric; Darriet, Philippe; Teissedre, Pierre-Louis; Dubourdieu, Denis
2009-11-11
This work outlines the results from an investigation to determine the effect of the oxygen dissolved at bottling and the specific oxygen barrier properties of commercially available closures on the composition, color and sensory properties of a Bordeaux Sauvignon Blanc wine during two years of storage. The importance of oxygen for wine development after bottling was also assessed using an airtight bottle ampule. Wines were assessed for the antioxidants (SO(2) and ascorbic acid), varietal thiols (4-mercapto-4-methylpentan-2-one, 3-mercaptohexan-1-ol), hydrogen sulfide and sotolon content, and color throughout 24 months of storage. In addition, the aroma and palate properties of wines were also assessed. The combination of oxygen dissolved at bottling and the oxygen transferred through closures has a significant effect on Sauvignon Blanc development after bottling. Wines highly exposed to oxygen at bottling and those sealed with a synthetic, Nomacorc classic closure, highly permeable to oxygen, were relatively oxidized in aroma, brown in color, and low in antioxidants and volatile compounds compared to wines sealed with other closures. Conversely, wines sealed under more airtight conditions, bottle ampule and screw cap Saran-tin, have the slowest rate of browning, and displayed the greatest contents of antioxidants and varietal thiols, but also high levels of H(2)S, which were responsible for the reduced dominating character found in these wines, while wines sealed with cork stoppers and screw cap Saranex presented negligible reduced and oxidized characters.
Spin manipulation and spin-lattice interaction in magnetic colloidal quantum dots
NASA Astrophysics Data System (ADS)
Moro, Fabrizio; Turyanska, Lyudmila; Granwehr, Josef; Patanè, Amalia
2014-11-01
We report on the spin-lattice interaction and coherent manipulation of electron spins in Mn-doped colloidal PbS quantum dots (QDs) by electron spin resonance. We show that the phase memory time,TM , is limited by Mn-Mn dipolar interactions, hyperfine interactions of the protons (1H) on the QD capping ligands with Mn ions in their proximity (<1 nm), and surface phonons originating from thermal fluctuations of the capping ligands. In the low Mn concentration limit and at low temperature, we achieve a long phase memory time constant TM˜0.9 μ s , thus enabling the observation of Rabi oscillations. Our findings suggest routes to the rational design of magnetic colloidal QDs with phase memory times exceeding the current limits of relevance for the implementation of QDs as qubits in quantum information processing.
Miao, Yang-Bao; Ren, Hong-Xia; Gan, Ning; Zhou, You; Cao, Yuting; Li, Tianhua; Chen, Yinji
2016-07-27
In this work, a novel homogeneous and signal "off-on" aptamer based fluorescence assay was successfully developed to detect chloramphenicol (CAP) residues in food based on the fluorescence resonance energy transfer (FRET). The vesicle nanotracer was prepared through labeling single stranded DNA binding protein (SSB) on limposome-CdSe/ZnS quantum dot (SSB/L-QD) complexes. It was worth mentioning that the signal tracer (SSB/L-QD) with vesicle shape, which was fabricated being encapsulated with a number of quantum dots and SSB. The nanotracer has excellent signal amplification effects. The vesicle composite probe was formed by combining aptamer labeled nano-gold (Au-Apt) and SSB/L-QD. Which based on SSB's specific affinity towards aptamer. This probe can't emit fluoresce which is in "off" state because the signal from SSB/L-QD as donor can be quenched by the Au-aptas acceptor. When CAP was added in the composite probe solution, the aptamer on the Au-Apt can be preferentially bounded with CAP then release from the composite probe, which can turn the "off" signal of SSB/L-QD tracer into "on" state. The assay indicates excellent linear response to CAP from 0.001 nM to 10 nM and detection limit down to 0.3 pM. The vesicle probes with size of 88 nm have strong signal amplification. Because a larger number of QDs can be labeled inside the double phosphorus lipid membrane. Besides, it was employed to detect CAP residues in the milk samples with results being agreed well with those from ELISA, verifying its accuracy and reliability. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Ling; Zhang, Junxian; Bai, Haili; Li, Xuan; Lv, Pintian; Guo, Ailing
2014-07-01
In this study, anti-Vibrio parahaemolyticus polyclonal and monoclonal antibodies were prepared through intradermal injection immune and lymphocyte hybridoma technique respectively. CdTe quantum dots (QDs) were synthesized at pH 9.3, 98 °C for 1 h with stabilizer of 2.7:1. The fluorescence intensity was 586.499, and the yield was 62.43%. QD probes were successfully prepared under the optimized conditions of pH 7.4, 37 °C for 1 h, 250 μL of 50 mg/mL EDC · HCl, 150 μL of 4 mg/mL NHS, buffer system of Na2HPO4-citric acid, and 8 μL of 2.48 mg/mL polyclonal antibodies. As gold nanoparticles could quench fluorescence of quantum dots, the concentration of V. parahaemolyticus could be detected through measuring the reduction of fluorescence intensity in immune sandwich reaction composed of quantum dot probe, gold-labeled antibody, and the sample. For pure culture, fluorescence intensity of the system was proportional with logarithm concentration of antigen, and the correlation coefficient was 99.764%. The fluorescence quenching immunoassay based on quantum dots is established for the first time to detect Vibrio parahaemolyticus. This method may be used as rapid testing procedure due to its high simplicity and sensitivity.
Functionalized magnetic-fluorescent hybrid nanoparticles for cell labelling.
Lou, Lei; Yu, Ke; Zhang, Zhengli; Li, Bo; Zhu, Jianzhong; Wang, Yiting; Huang, Rong; Zhu, Ziqiang
2011-05-01
A facile method of synthesizing 60 nm magnetic-fluorescent core-shell bifunctional nanocomposites with the ability to label cells is presented. Hydrophobic trioctylphosphine oxide (TOPO)-capped CdSe@ZnS quantum dots (QDs) were assembled on polyethyleneimine (PEI)-coated Fe(3)O(4) nanoparticles (MNP). Polyethyleneimine was utilized for the realization of multifunction, including attaching 4 nm TOPO capped CdSe@ZnS quantum dots onto magnetite particles, altering the surface properties of quantum dots from hydrophobic to hydrophilic as well as preventing the formation of large aggregates. Results show that these water-soluble hybrid nanocomposites exhibit good colloidal stability and retain good magnetic and fluorescent properties. Because TOPO-capped QDs are assembled instead of their water-soluble equivalents, the nanocomposites are still highly luminescent with no shift in the PL peak position and present long-term fluorescence stability. Moreover, TAT peptide (GRKKRRQRRRPQ) functionalized hybrid nanoparticles were also studied due to their combined magnetic enrichment and optical detection for cell separation and rapid cell labelling. A cell viability assay revealed good biocompatibility of these hybrid nanoparticles. The potential application of the new magnetic-fluorescent nanocomposites in biological and medicine is demonstrated. © The Royal Society of Chemistry 2011
Developmental toxicity of CdTe QDs in zebrafish embryos and larvae
NASA Astrophysics Data System (ADS)
Duan, Junchao; Yu, Yongbo; Li, Yang; Yu, Yang; Li, Yanbo; Huang, Peili; Zhou, Xianqing; Peng, Shuangqing; Sun, Zhiwei
2013-07-01
Quantum dots (QDs) have widely been used in biomedical and biotechnological applications. However, few studies focus on the assessing toxicity of QDs exposure in vivo. In this study, zebrafish embryos were treated with CdTe QDs (4 nm) during 4-96 h post-fertilization (hpf). Mortality, hatching rate, malformation, heart rate, and QDs uptake were detected. We also measured the larval behavior to analyze whether QDs had persistent effects on larvae locomotor activity at 144 hpf. The results showed that as the exposure dosages increased, the hatching rate and heart rate of zebrafish embryos were decreased, while the mortality increased. Exposure to QDs caused embryonic malformations, including head malformation, pericardial edema, yolk sac edema, bent spine, and yolk not depleted. QDs fluorescence was mainly localized in the intestines region. The larval behavior testing showed that the total swimming distance was decreased in a dose-dependent manner. The lowest dose (2.5 nM QDs) produced substantial hyperactivity while the higher doses groups (5, 10, and 20 nM QDs) elicited remarkably hypoactivity in dark periods. In summary, the data of this article indicated that QDs caused embryonic developmental toxicity, resulted in persistent effects on larval behavior.
Choice of Substrate Material for Epitaxial CdTe Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Tao; Kanevce, Ana; Sites, James R.
2015-06-14
Epitaxial CdTe with high quality, low defect density, and high carrier concentration should in principle yield high-efficiency photovoltaic devices. However, insufficient effort has been given to explore the choice of substrate for high-efficiency epitaxial CdTe solar cells. In this paper, we use numerical simulations to investigate three crystalline substrates: silicon (Si), InSb, and CdTe each substrate material are generally discussed.
NASA Astrophysics Data System (ADS)
Bejaoui, A.; Alonso, M. I.; Garriga, M.; Campoy-Quiles, M.; Goñi, A. R.; Hetsch, F.; Kershaw, S. V.; Rogach, A. L.; To, C. H.; Foo, Y.; Zapien, J. A.
2017-11-01
We report on the investigation by spectroscopic ellipsometry of films containing Cd1 - xHgxTe alloy quantum dots (QDs). The alloy QDs were fabricated from colloidal CdTe QDs grown by an aqueous synthesis process followed by an ion-exchange step in which Hg2+ ions progressively replace Cd2+. For ellipsometric studies, several films were prepared on glass substrates using layer-by-layer (LBL) deposition. The contribution of the QDs to the measured ellipsometric spectra is extracted from a multi-sample, transmission and multi- angle-of-incidence ellipsometric data analysis fitted using standard multilayer and effective medium models that include surface roughness effects, modeled by an effective medium approximation. The relationship of the dielectric function of the QDs retrieved from these studies to that of the corresponding II-VI bulk material counterparts is presented and discussed.
Attaching quantum dots to HER2 specific phage antibodies
NASA Astrophysics Data System (ADS)
Chu, Viet Ha; Nghiem, Thi Ha Lien; Huyen La, Thi; Dieu Thuy Ung, Thi; Huan Le, Quang; Thuan Tong, Kim; Liem Nguyen, Quang; Nhung Tran, Hong
2010-06-01
This work presents the results of the attachment of Qdot 655 ITKTM amino (PEG) quantum dots (QDs) (Invitrogen) and CdTe QDs (provided by Institute of Materials Science, VAST) to HER2 (Human Epidermal growth factor Receptor 2) specific phage antibodies (Abs) (provided by Institute of Biotechnology, VAST) in solution. The QDs were attached to the phage display specific HER2 Abs to form a complex QD-Ab. The QDs and complex QD-Ab were characterized by UV-VIS spectroscopy, transmission electron microscopy (TEM) and fluorescence microscopy. The fluorescence images show the QDs conjugated to the phage. Due to the QDs attaching to the surface, the phage dimensions were amplified, so its shape could be observed by optical microscopy. The complex QD-Ab was stable and lasted for a month. The results illustrate the value of the HER2 phage-QD complex as a cancer detection platform.
Yuan, Pingfan; Ma, Qiang; Meng, Rizeng; Wang, Chao; Dou, Wenchao; Wang, Guannan; Su, Xingguang
2009-05-01
Semiconductor nanocrystals (or quantum dots, QDs) have the potential to overcome some of the limitations encountered by traditional fluorophores in fluorescence labeling applications. The unique spectroscopic properties of QDs make them hold immense promise as versatile labels for biological applications. In this work, we employ the layer-by-layer (LbL) method for the construction of bio-functional multicolor QD-encoded microspheres. Polystyrene microspheres with diameter of 3 microm were used as templates for the deposition of different sized CdTe QDs/polyelectrolyte multilayers. Two different antigens, Chicken newcastle disease (CND) antigen and goat pox virus (GPV) antigen, were conjugated to two kinds of biofunctional multicolor microspheres with different optical encoding. The multicolor microspheres can capture corresponding antibodies labeled with QDs, QDs-CND antibody and QDs-GPV antibody in the fluoroimmunoassays. The microspheres can be distinguished from each other based on their optical encoding.
Near resonant and nonresonant third-order optical nonlinearities of colloidal InP/ZnS quantum dots
NASA Astrophysics Data System (ADS)
Wang, Y.; Yang, X.; He, T. C.; Gao, Y.; Demir, H. V.; Sun, X. W.; Sun, H. D.
2013-01-01
We have investigated the third-order optical nonlinearities of high-quality colloidal InP/ZnS core-shell quantum dots (QDs) using Z-scan technique with femtosecond pulses. The two-photon absorption cross-sections as high as 6.2 × 103 GM are observed at 800 nm (non-resonant regime) in InP/ZnS QDs with diameter of 2.8 nm, which is even larger than those of CdSe, CdS, and CdTe QDs at similar sizes. Furthermore, both of the 2.2 nm and 2.8 nm-sized InP/ZnS QDs exhibit strong saturable absorption in near resonant regime, which is attributed to large exciton Bohr radius in this material. These results strongly suggest the promising potential of InP/ZnS QDs for widespread applications, especially in two-photon excited bio-imaging and saturable absorbing.
Spatial luminescence imaging of dopant incorporation in CdTe Films
Guthrey, Harvey; Moseley, John; Colegrove, Eric; ...
2017-01-25
State-of-the-art cathodoluminescence (CL) spectrum imaging with spectrum-per-pixel CL emission mapping is applied to spatially profile how dopant elements are incorporated into Cadmium telluride (CdTe). Emission spectra and intensity monitor the spatial distribution of additional charge carriers through characteristic variations in the CL emission based on computational modeling. Our results show that grain boundaries play a role in incorporating dopants in CdTe exposed to copper, phosphorus, and intrinsic point defects in CdTe. Furthermore, the image analysis provides critical, unique feedback to understand dopant incorporation and activation in the inhomogeneous CdTe material, which has struggled to reach high levels of hole density.
Thermodynamic analysis of vapor-phase epitaxy of CdTe using a metallic Cd source
NASA Astrophysics Data System (ADS)
Iso, Kenji; Murakami, Hisashi; Koukitu, Akinori
2017-07-01
Thermodynamic analysis of CdTe growth using cost-effective metallic Cd and dialkyl telluride was performed. The major vapor species at source zone in equilibrium were gaseous Cd for the group-II precursor, and Te2 and H2Te for the group-VI precursors. The driving force for the CdTe deposition was still positive even at 650 °C. This indicates that CdTe formation from gaseous Cd can proceed thermodynamically. Furthermore, the calculations showed that CdTe decomposes at higher temperature and increasing the II/VI ratio increases the limit of the growth temperature, which coincides with the experimental results.
Miranda, Érica G. A.; Tofanello, Aryane; Brito, Adrianne M. M.; Lopes, David M.; Albuquerque, Lindomar J. C.; de Castro, Carlos E.; Costa, Fanny N.; Giacomelli, Fernando C.; Ferreira, Fabio F.; Araújo-Chaves, Juliana C.; Nantes, Iseli L.
2016-01-01
The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3–12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from 15 days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After 2 months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination with the gold surface. Therefore, the cysteine side chain of albumins is important for the colloidal stabilization of GNPs rather than as the reducing agent for the synthesis. Despite the presence of more reactive gold species at more acidic pH values, i.e., below 6.0, in these conditions the loss of native albumin structure impaired GNP synthesis. Alkaline pH values (9–12) combined the unfavorable conditions of denaturated protein structure with less reactive gold species. Therefore, an optimal condition for the synthesis of GNPs using serum albumins involves more reactive gold salt species combined with a reducing and negatively charged form of the protein, all favored at pH 6–7. PMID:27066476
Influence of the layer parameters on the performance of the CdTe solar cells
NASA Astrophysics Data System (ADS)
Haddout, Assiya; Raidou, Abderrahim; Fahoume, Mounir
2018-03-01
Influence of the layer parameters on the performances of the CdTe solar cells is analyzed by SCAPS-1D. The ZnO: Al film shows a high efficiency than SnO2:F. Moreover, the thinner window layer and lower defect density of CdS films are the factor in the enhancement of the short-circuit current density. As well, to increase the open-circuit voltage, the responsible factors are low defect density of the absorbing layer CdTe and high metal work function. For the low cost of cell production, ultrathin film CdTe cells are used with a back surface field (BSF) between CdTe and back contact, such as PbTe. Further, the simulation results show that the conversion efficiency of 19.28% can be obtained for the cell with 1-μm-thick CdTe, 0.1-μm-thick PbTe and 30-nm-thick CdS.
NASA Astrophysics Data System (ADS)
Choi, Seon Bin; Song, Man Suk; Kim, Yong
2018-04-01
The growth of CdTe nanowires, catalyzed by Sn, was achieved on fluorine-doped tin oxide glass by physical vapor transport. CdTe nanowires grew along the 〈0001〉 direction, with a very rare and phase-pure wurtzite structure, at 290 °C. CdTe nanowires grew under Te-limited conditions by forming SnTe nanostructures in the catalysts and the wurtzite structure was energetically favored. By polarization-dependent and power-dependent micro-photoluminescence measurements of individual nanowires, heavy and light hole-related transitions could be differentiated, and the fundamental bandgap of wurtzite CdTe at room temperature was determined to be 1.562 eV, which was 52 meV higher than that of zinc-blende CdTe. From the analysis of doublet photoluminescence spectra, the valence band splitting energy between heavy hole and light hole bands was estimated to be 43 meV.
Tang, Bo; Cao, Lihua; Xu, Kehua; Zhuo, Linhai; Ge, Jiechao; Li, Qingling; Yu, Lijuan
2008-01-01
A novel assembled nanobiosensor QDs-ConA-beta-CDs-AuNPs was designed for the direct determination of glucose in serum with high sensitivity and selectivity. The sensing approach is based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots (QDs) as an energy donor and gold nanoparticles (AuNPs) as an energy acceptor. The specific combination of concanavalin A (ConA)-conjugated QDs and thiolated beta-cyclodextrins (beta-SH-CDs)-modified AuNPs assembles a hyperefficient FRET nanobiosensor. In the presence of glucose, the AuNPs-beta-CDs segment of the nanobiosensor is displaced by glucose which competes with beta-CDs on the binding sites of ConA, resulting in the fluorescence recovery of the quenched QDs. Experimental results show that the increase in fluorescence intensity is proportional to the concentration of glucose within the range of 0.10-50 muM under the optimized experimental conditions. In addition, the nanobiosensor has high sensitivity with a detection limit as low as 50 nM, and has excellent selectivity for glucose over other sugars and most biological species present in serum. The nanobiosensor was applied directly to determine glucose in normal adult human serum, and the recovery and precision of the method were satisfactory. The unique combination of high sensitivity and good selectivity of this biosensor indicates its potential for the clinical determination of glucose directly and simply in serum, and provides the possibility to detect low levels of glucose in single cells or bacterial cultures. Moreover, the designed nanobiosensor achieves direct detection in biological samples, suggesting the use of nanobiotechnology-based assembled sensors for direct analytical applications in vivo or in vitro.
Ryvolova, Marketa; Smerkova, Kristyna; Chomoucka, Jana; Hubalek, Jaromir; Adam, Vojtech; Kizek, Rene
2013-03-01
Cisplatin, carboplatin, and oxaliplatin represent three generations of platinum based drugs applied successfully for cancer treatment. As a consequence of the employment of platinum based cytostatics in the cancer treatment, it became necessary to study the mechanism of their action. Current accepted opinion is the formation of Pt-DNA adducts, but the mechanism of their formation is still unclear. Nanomaterials, as a progressively developing branch, can offer a tool for studying the interactions of these drugs with DNA. In this study, fluorescent CdTe quantum dots (QDs, λem = 525 nm) were employed to investigate the interactions of platinum cytostatics (cisplatin, carboplatin, and oxaliplatin) with DNA fragment (500 bp, c = 25 μg/mL). Primarily, the fluorescent behavior of QDs in the presence of platinum cytostatics was monitored and major differences in the interaction of QDs with tested drugs were observed. It was found that the presence of carboplatin (c = 0.25 mg/mL) had no significant influence on QDs fluorescence; however cisplatin and oxaliplatin quenched the fluorescence significantly (average decrease of 20%) at the same concentration. Subsequently, the amount of platinum incorporated in DNA was determined by QDs fluorescence quenching. Best results were reached using oxaliplatin (9.4% quenching). Linear trend (R(2) = 0.9811) was observed for DNA platinated by three different concentrations of oxaliplatin (0.250, 0.125, and 0.063 mg/mL). Correlation with differential pulse voltammetric measurements provided linear trend (R(2) = 0.9511). As a conclusion, especially in the case of oxaliplatin-DNA adducts, the quenching was the most significant compared to cisplatin and nonquenching carboplatin. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Yaqi; Sun, Li; Qian, Jing; Long, Lingliang; Li, Henan; Liu, Qian; Cai, Jianrong; Wang, Kun
2017-06-15
With the increasing concern of potential health and environmental risk, it is essential to develop reliable methods for transgenic soybean detection. Herein, a simple, sensitive and selective assay was constructed based on homogeneous fluorescence resonance energy transfer (FRET) between CdTe quantum dots (QDs) and multiwalled carbon nanotubes@graphene oxide nanoribbons (MWCNTs@GONRs) to form the fluorescent "on-off-on" switching for simultaneous monitoring dual target DNAs of promoter cauliflower mosaic virus 35s (P35s) and terminator nopaline synthase (TNOS) from transgenic soybean. The capture DNAs were immobilized with corresponding QDs to obtain strong fluorescent signals (turning on). The strong π-π stacking interaction between single-stranded DNA (ssDNA) probes and MWCNTs@GONRs led to minimal background fluorescence due to the FRET process (turning off). The targets of P35s and TNOS were recognized by dual fluorescent probes to form double-stranded DNA (dsDNA) through the specific hybridization between target DNAs and ssDNA probes. And the dsDNA were released from the surface of MWCNTs@GONRs, which leaded the dual fluorescent probes to generate the strong fluorescent emissions (turning on). Therefore, this proposed homogeneous assay can be achieved to detect P35s and TNOS simultaneously by monitoring the relevant fluorescent emissions. Moreover, this assay can distinguish complementary and mismatched nucleic acid sequences with high sensitivity. The constructed approach has the potential to be a tool for daily detection of genetically modified organism with the merits of feasibility and reliability. Copyright © 2017 Elsevier B.V. All rights reserved.
Biocompatibility of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Ruan, Jing; Wang, Kan; Song, Hua; Xu, Xin; Ji, Jiajia; Cui, Daxiang
2011-12-01
Fluorescent magnetic nanoparticles exhibit great application prospects in biomedical engineering. Herein, we reported the effects of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles (FMNPs) on human embryonic kidney 293 (HEK293) cells and mice with the aim of investigating their biocompatibility. FMNPs with 150 nm in diameter were prepared, and characterized by high-resolution transmission electron microscopy and photoluminescence (PL) spectra and magnetometer. HEK293 cells were cultured with different doses of FMNPs (20, 50, and 100μ g/ml) for 1-4 days. Cell viability and adhesion ability were analyzed by CCK8 method and Western blotting. 30 mice were randomly divided into three groups, and were, respectively, injected via tail vein with 20, 60, and 100 μg FMNPs, and then were, respectively, raised for 1, 7, and 30 days, then their lifespan, important organs, and blood biochemical parameters were analyzed. Results show that the prepared water-soluble FMNPs had high fluorescent and magnetic properties, less than 50 μg/ml of FMNPs exhibited good biocompatibility to HEK293 cells, the cell viability, and adhesion ability were similar to the control HEK293 cells. FMNPs primarily accumulated in those organs such as lung, liver, and spleen. Lung exposed to FMNPs displayed a dose-dependent inflammatory response, blood biochemical parameters such as white blood cell count (WBC), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), displayed significant increase when the FMNPs were injected into mice at dose of 100μg. In conclusion, FMNPs exhibit good biocompatibility to cells under the dose of less than 50 μg/ml, and to mice under the dose of less than 2mg/kg body weight. The FMNPs' biocompatibility must be considered when FMNPs are used for in vivo diagnosis and therapy.
Detection of malachite green in fish based on magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs
NASA Astrophysics Data System (ADS)
Wu, Le; Lin, Zheng-Zhong; Zeng, Jun; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong
2018-05-01
A magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs was prepared using CdTe QDs and Fe3O4 nanoparticles as co-nucleus and molecularly imprinted polymers (MIPs) as specific recognition sites based on a reverse microemulsion method. With the specific enrichment and magnetic separation properties, the probe of CdTe QDs/nano-Fe3O4@MIPs was used to detect malachite green (MG) in fish samples. The TEM analysis showed that the particles of CdTe QDs/nano-Fe3O4@MIPs were spherical with average diameter around 53 nm, and a core-shell structure was well-shaped with several Fe3O4 nanoparticles and CdTe QDs embedded in each of the microsphere. Quick separation of the probes from solutions could be realized with a magnet, indicating the excellent magnetic property of CdTe QDs/nano-Fe3O4@MIPs. The probe exhibited high specific adsorption towards MG and excellent fluorescence emission at λem 598 nm. The fluorescence of CdTe QDs/nano-Fe3O4@MIPs could be linearly quenched by MG at the concentrations from 0.025 to 1.5 μmol L-1. The detection limit was 0.014 μmol L-1. The average recovery of spiked MG in fish samples was 105.2%. The result demonstrated that the as-prepared CdTe QDs/nano-Fe3O4@MIPs could be used as a probe to the detection of trace MG in fish samples.
Controlled UV-C light-induced fusion of thiol-passivated gold nanoparticles.
Pocoví-Martínez, Salvador; Parreño-Romero, Miriam; Agouram, Said; Pérez-Prieto, Julia
2011-05-03
Thiol-passivated gold nanoparticles (AuNPs) of a relatively small size, either decorated with chromophoric groups, such as a phthalimide (Au@PH) and benzophenone (Au@BP), or capped with octadecanethiol (Au@ODCN) have been synthesized and characterized by NMR and UV-vis spectroscopy as well as transmission electron microscopy (TEM). These NPs were irradiated in chloroform at different UV-wavelengths using either a nanosecond laser (266 and 355 nm, ca. 12 mJ/pulse, 10 ns pulse) or conventional lamps (300 nm < λ < 400 nm and ca. 240 nm < λ < 280 nm) and the new AuNPs were characterized by X-ray and UV-vis spectroscopy, as well as by TEM. Laser irradiation at 355 nm led to NP aggregation and precipitation, while the NPs were photostable under UV-A lamp illumination. Remarkably, laser excitation at 266 nm induced a fast (minutes time-scale) increase in the size of the NPs, producing huge spherical nanocrystals, while lamp-irradiation at UV-C wavelengths brought about nanonetworks of partially fused NPs with a larger diameter than the native NPs.
Oyman Eyrilmez, Gizem; Doran, Sean; Murtezi, Eljesa; Demir, Bilal; Odaci Demirkol, Dilek; Coskunol, Hakan; Timur, Suna; Yagci, Yusuf
2015-09-01
N-Acetyl-l-cysteine (NAC)-capped poly(methyl methacrylate)-b-polycaprolactone block copolymer (PMMA-b-PCL-NAC) was prepared using the previously described one-pot photoinduced sequential CuAAC/thiol-ene double click procedure. PMMA-b-PCL-NAC had previously shown good applicability as a matrix for cell adhesion of cells from the Vero cell line (African green monkey kidney epithelial). Here, in this work, PMMA-b-PCL-NAC served as an excellent immobilization matrix for biomolecule conjugation. Covalent binding of RGD (R: arginine, G: glycine, and D: aspartic acid) peptide sequence onto the PMMA-b-PCL-NAC-coated surface was performed via EDC chemistry. RGD-modified PMMA-b-PCL-NAC (PMMA-b-PCL-NAC-RGD) as a non-toxic cell proliferation platform was used for selective "integrin αvβ3-mediated cell adhesion and biosensing studies. Both optical and electrochemical techniques were used to monitor the adhesion differences between "integrin αvβ3" receptor positive and negative cell lines on to the designed biofunctional surfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fontana, Jake; Spillmann, Christopher; Naciri, Jawad; Ratna, Banahalli R
2014-05-09
This protocol describes a self-assembly technique to create macroscopic monolayer films composed of ligand-coated nanoparticles. The simple, robust and scalable technique efficiently functionalizes metallic nanoparticles with thiol-ligands in a miscible water/organic solvent mixture allowing for rapid grafting of thiol groups onto the gold nanoparticle surface. The hydrophobic ligands on the nanoparticles then quickly phase separate the nanoparticles from the aqueous based suspension and confine them to the air-fluid interface. This drives the ligand-capped nanoparticles to form monolayer domains at the air-fluid interface. The use of water-miscible organic solvents is important as it enables the transport of the nanoparticles from the interface onto template-free substrates. The flow is mediated by a surface tension gradient and creates macroscopic, high-density, monolayer nanoparticle-ligand films. This self-assembly technique may be generalized to include the use of particles of different compositions, size, and shape and may lead to an efficient assembly method to produce low-cost, macroscopic, high-density, monolayer nanoparticle films for wide-spread applications.
Superstrate sub-cell voltage-matched multijunction solar cells
Mascarenhas, Angelo; Alberi, Kirstin
2016-03-15
Voltage-matched thin film multijunction solar cell and methods of producing cells having upper CdTe pn junction layers formed on a transparent substrate which in the completed device is operatively positioned in a superstate configuration. The solar cell also includes a lower pn junction formed independently of the CdTe pn junction and an insulating layer between CdTe and lower pn junctions. The voltage-matched thin film multijunction solar cells further include a parallel connection between the CdTe pn junction and lower pn junctions to form a two-terminal photonic device. Methods of fabricating devices from independently produced upper CdTe junction layers and lower junction layers are also disclosed.
NASA Astrophysics Data System (ADS)
Hasani, Ebrahim; Raoufi, Davood
2018-04-01
Thermal evaporation is one of the promising methods for depositing CdTe thin films, which can obtain the thin films with the small thickness. In this work, CdTe nanoparticles have deposited on SiO2 substrates such as quartz (crystal) and glass (amorphous) at a temperature (Ts) of 150 °C under a vacuum pressure of 2 × 10‑5 mbar. The thickness of CdTe thin films prepared under vacuum pressure is 100 nm. X-ray diffraction analysis (XRD) results showed the formation of CdTe cubic phase with a strong preferential orientation of (111) crystalline plane on both substrates. The grain size (D) in this orientation obtained about 7.41 and 5.48 nm for quartz and glass respectively. Ultraviolet-visible spectroscopy (UV–vis) measurements indicated the optical band gap about 1.5 and 1.52 eV for CdTe thin films deposited on quartz and glass respectively. Furthermore, to show the effect of annealing temperature on structure and optical properties of CdTe thin films on quartz and glass substrates, the thin films have been annealed at temperatures 50 and 70 °C for one hour. The results of this work indicate that the structure’s parameters and optical properties of CdTe thin films change due to increase in annealing temperature.
Molybdenum oxide and molybdenum oxide-nitride back contacts for CdTe solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drayton, Jennifer A., E-mail: drjadrayton@yahoo.com; Geisthardt, Russell M., E-mail: Russell.Geisthardt@gmail.com; Sites, James R., E-mail: james.sites@colostate.edu
2015-07-15
Molybdenum oxide (MoO{sub x}) and molybdenum oxynitride (MoON) thin film back contacts were formed by a unique ion-beam sputtering and ion-beam-assisted deposition process onto CdTe solar cells and compared to back contacts made using carbon–nickel (C/Ni) paint. Glancing-incidence x-ray diffraction and x-ray photoelectron spectroscopy measurements show that partially crystalline MoO{sub x} films are created with a mixture of Mo, MoO{sub 2}, and MoO{sub 3} components. Lower crystallinity content is observed in the MoON films, with an additional component of molybdenum nitride present. Three different film thicknesses of MoO{sub x} and MoON were investigated that were capped in situ in Ni.more » Small area devices were delineated and characterized using current–voltage (J-V), capacitance–frequency, capacitance–voltage, electroluminescence, and light beam-induced current techniques. In addition, J-V data measured as a function of temperature (JVT) were used to estimate back barrier heights for each thickness of MoO{sub x} and MoON and for the C/Ni paint. Characterization prior to stressing indicated the devices were similar in performance. Characterization after stress testing indicated little change to cells with 120 and 180-nm thick MoO{sub x} and MoON films. However, moderate-to-large cell degradation was observed for 60-nm thick MoO{sub x} and MoON films and for C/Ni painted back contacts.« less
InAs/GaAs quantum-dot intermixing: comparison of various dielectric encapsulants
NASA Astrophysics Data System (ADS)
Alhashim, Hala H.; Khan, Mohammed Zahed Mustafa; Majid, Mohammed A.; Ng, Tien K.; Ooi, Boon S.
2015-10-01
We report on the impurity-free vacancy-disordering effect in InAs/GaAs quantum-dot (QD) laser structure based on seven dielectric capping layers. Compared to the typical SiO2 and Si3N4 films, HfO2 and SrTiO3 dielectric layers showed superior enhancement and suppression of intermixing up to 725°C, respectively. A QD peak ground-state differential blue shift of >175 nm (>148 meV) is obtained for HfO2 capped sample. Likewise, investigation of TiO2, Al2O3, and ZnO capping films showed unusual characteristics, such as intermixing-control caps at low annealing temperature (650°C) and interdiffusion-promoting caps at high temperatures (≥675°C). We qualitatively compared the degree of intermixing induced by these films by extracting the rate of intermixing and the temperature for ground-state and excited-state convergences. Based on our systematic characterization, we established reference intermixing processes based on seven different dielectric encapsulation materials. The tailored wavelength emission of ˜1060-1200 nm at room temperature and improved optical quality exhibited from intermixed QDs would serve as key materials for eventual realization of low-cost, compact, and agile lasers. Applications include solid-state laser pumping, optical communications, gas sensing, biomedical imaging, green-yellow-orange coherent light generation, as well as addressing photonic integration via area-selective, and postgrowth bandgap engineering.
Joshi, Kuldeep V; Joshi, Bhoomika K; Pandya, Alok; Sutariya, Pinkesh G; Menon, Shobhana K
2012-10-21
In this communication we report a p-sulfonatocalix[4]arene coated ZnS quantum dots "cup type" highly stable optical probe for the detection and determination of menadione (VK(3)) with high sensitivity and selectivity. The detection of VK(3) depends on supramolecular host-guest chemistry.
NASA Astrophysics Data System (ADS)
Sinha, Subhojyoti; Kumar Chatterjee, Sanat; Ghosh, Jiten; Kumar Meikap, Ajit
2013-03-01
We have used Rietveld refinement technique to extract the microstructural parameters of thioglycolic acid capped CdSe quantum dots. The quantum dot formation and its efficient capping are further confirmed by HR-TEM, UV-visible and FT-IR spectroscopy. Comparative study of the variation of dc conductivity with temperature (298 K ≤ T ≤ 460 K) is given considering Arrhenius formalism, small polaron hopping and Schnakenberg model. We observe that only Schnakenberg model provides good fit to the non-linear region of the variation of dc conductivity with temperature. Experimental variation of ac conductivity and dielectric parameters with temperature (298 K ≤ T ≤ 460 K) and frequency (80 Hz ≤ f ≤ 2 MHz) are discussed in the light of hopping theory and quantum confinement effect. We have elucidated the observed non-linearity in the I-V curves (measured within ±50 V), at dark and at ambient light, in view of tunneling mechanism. Tunnel exponents and non-linearity weight factors have also been evaluated in this regard.
NASA Astrophysics Data System (ADS)
Adegoke, Oluwasesan; Park, Enoch Y.
2016-06-01
The development of alloyed quantum dot (QD) nanocrystals with attractive optical properties for a wide array of chemical and biological applications is a growing research field. In this work, size-tunable engineered band gap composition-dependent alloying and fixed-composition alloying were employed to fabricate new L-cysteine-capped alloyed quaternary CdZnTeS QDs exhibiting different internal structures. Lattice parameters simulated based on powder X-ray diffraction (PXRD) revealed the internal structure of the composition-dependent alloyed CdxZnyTeS QDs to have a gradient nature, whereas the fixed-composition alloyed QDs exhibited a homogenous internal structure. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis confirmed the size-confined nature and monodispersity of the alloyed nanocrystals. The zeta potential values were within the accepted range of colloidal stability. Circular dichroism (CD) analysis showed that the surface-capped L-cysteine ligand induced electronic and conformational chiroptical changes in the alloyed nanocrystals. The photoluminescence (PL) quantum yield (QY) values of the gradient alloyed QDs were 27-61%, whereas for the homogenous alloyed QDs, the PL QY values were spectacularly high (72-93%). Our work demonstrates that engineered fixed alloying produces homogenous QD nanocrystals with higher PL QY than composition-dependent alloying.
Wu, Le; Lin, Zheng-Zhong; Zeng, Jun; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong
2018-05-05
A magnetic fluorescent probe of CdTe QDs/nano-Fe 3 O 4 @MIPs was prepared using CdTe QDs and Fe 3 O 4 nanoparticles as co-nucleus and molecularly imprinted polymers (MIPs) as specific recognition sites based on a reverse microemulsion method. With the specific enrichment and magnetic separation properties, the probe of CdTe QDs/nano-Fe 3 O 4 @MIPs was used to detect malachite green (MG) in fish samples. The TEM analysis showed that the particles of CdTe QDs/nano-Fe 3 O 4 @MIPs were spherical with average diameter around 53nm, and a core-shell structure was well-shaped with several Fe 3 O 4 nanoparticles and CdTe QDs embedded in each of the microsphere. Quick separation of the probes from solutions could be realized with a magnet, indicating the excellent magnetic property of CdTe QDs/nano-Fe 3 O 4 @MIPs. The probe exhibited high specific adsorption towards MG and excellent fluorescence emission at λ em 598nm. The fluorescence of CdTe QDs/nano-Fe 3 O 4 @MIPs could be linearly quenched by MG at the concentrations from 0.025 to 1.5μmolL -1 . The detection limit was 0.014μmolL -1 . The average recovery of spiked MG in fish samples was 105.2%. The result demonstrated that the as-prepared CdTe QDs/nano-Fe 3 O 4 @MIPs could be used as a probe to the detection of trace MG in fish samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Transportation of Nanoscale Cargoes by Myosin Propelled Actin Filaments
Persson, Malin; Gullberg, Maria; Tolf, Conny; Lindberg, A. Michael; Månsson, Alf; Kocer, Armagan
2013-01-01
Myosin II propelled actin filaments move ten times faster than kinesin driven microtubules and are thus attractive candidates as cargo-transporting shuttles in motor driven lab-on-a-chip devices. In addition, actomyosin-based transportation of nanoparticles is useful in various fundamental studies. However, it is poorly understood how actomyosin function is affected by different number of nanoscale cargoes, by cargo size, and by the mode of cargo-attachment to the actin filament. This is studied here using biotin/fluorophores, streptavidin, streptavidin-coated quantum dots, and liposomes as model cargoes attached to monomers along the actin filaments (“side-attached”) or to the trailing filament end via the plus end capping protein CapZ. Long-distance transportation (>100 µm) could be seen for all cargoes independently of attachment mode but the fraction of motile filaments decreased with increasing number of side-attached cargoes, a reduction that occurred within a range of 10–50 streptavidin molecules, 1–10 quantum dots or with just 1 liposome. However, as observed by monitoring these motile filaments with the attached cargo, the velocity was little affected. This also applied for end-attached cargoes where the attachment was mediated by CapZ. The results with side-attached cargoes argue against certain models for chemomechanical energy transduction in actomyosin and give important insights of relevance for effective exploitation of actomyosin-based cargo-transportation in molecular diagnostics and other nanotechnological applications. The attachment of quantum dots via CapZ, without appreciable modulation of actomyosin function, is useful in fundamental studies as exemplified here by tracking with nanometer accuracy. PMID:23437074
NASA Astrophysics Data System (ADS)
Luo, Bingwei; Deng, Yuan; Wang, Yao; Shi, Yongming; Cao, Lili; Zhu, Wei
2013-09-01
Three dimensional CdTe hierarchical nanotrees are initially prepared by a simple one-step magnetron sputtering method without any templates or additives. The CdTe hierarchical nanotrees are constructed by the spear-like vertical trunks and horizontal branches with the diameters of about 100 nm at bottom and became cuspidal on the top. The particular nanostructure imparts these materials superhydrophobic property, and this property can be preserved after placing in air for 90 days, and is stable even after the ultraviolet light and X-ray irradiation, respectively. This study provides a simple strategy to achieve superhydrophobic properties for CdTe materials at lower temperature, which opens a new potential for CdTe solar cell with self-cleaning property.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Leyre; Cebrian, Virginia; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid
Graphical abstract: - Highlights: • Morphological changes are observed for CTABr capped gold nanorods over time. • Polystyrenesulfonate (PSS) and polyethyleneglycol (PEG) coated nanorods are stable. • Re-suspendible and sterilizable colloids are prepared using those capping agents. • Those materials are efficient heat sinks potentially used in photothermal therapy. - Abstract: Suspensions in phosphate buffered saline (PBS) of gold nanorods stabilized with cetyltrimethyl ammonium chloride (CTABr), polystyrenesulfonate (PSS) and methyl-polyethyleneglycol-thiol (m-PEG-SH) have been prepared and the evolution of their colloidal stability and plasmonic response over time has been evaluated. Their performance after lyophilization, alcoholic sterilization and resuspension has also beenmore » characterized. Sub-cytotoxic doses on HeLa cells were calculated for the three surface functionalizations used. Their heating efficiency at different exposure times was also evaluated after being irradiated with near infrared light. The best results were obtained for m-PEG-SH stabilized rods, which were not only stable, sterilizable and lyophilizable, but also biocompatible at all doses tested, showing potential as a stable, re-suspendible and biocompatible hyperthermic agent.« less
Role of Halides in the Ordered Structure Transitions of Heated Gold Nanocrystal Superlattices
2015-01-01
Dodecanethiol-capped gold (Au) nanocrystal superlattices can undergo a surprisingly diverse series of ordered structure transitions when heated (Goodfellow, B. W.; Rasch, M. R.; Hessel, C. M.; Patel, R. N.; Smilgies, D.-M.; Korgel, B. A. Nano Lett.2013, 13, 5710–5714). These are the result of highly uniform changes in nanocrystal size, which subsequently force a spontaneous rearrangement of superlattice structure. Here, we show that halide-containing surfactants play an essential role in these transitions. In the absence of any halide-containing surfactant, superlattices of dodecanethiol-capped (1.9-nm-diameter) Au nanocrystals do not change size until reaching about 190–205 °C, at which point the gold cores coalesce. In the presence of halide-containing surfactant, such as tetraoctylphosphonium bromide (TOPB) or tetraoctylammounium bromide (TOAB), the nanocrystals ripen at much lower temperature and superlattices undergo various ordered structure transitions upon heating. Chloride- and iodide-containing surfactants induce similar behavior, destabilizing the Au–thiol bond and reducing the thermal stability of the nanocrystals. PMID:26013597
Laaksonen, Timo; Ahonen, Päivi; Johans, Christoffer; Kontturi, Kyösti
2006-10-13
The solubility of charged nanoparticles is critically dependent on pH. However, the concentration range available with bases such as NaOH is quite narrow, since the particles precipitate due to compression of the electric double layer when the ionic strength is increased. The stability of mercaptoundecanoic acid-capped Au nanoparticles is studied at a set pH using the hydroxide as base and different cations of various sizes. The counterions used are sodium (Na(+)), tetramethylammonium (TMA(+)), tetraethylammonium (TEA(+)), and tetrabutylammonium (TBA(+)). The particles precipitate in the 70-90 mM range with Na(+) as the counterion, but with quaternary ammonium hydroxides the particles are stable even in concentrations exceeding 1 M. The change in solubility is linked to a strongly adsorbed layer on the surface of the ligand shell of the nanoparticles. The increased concentration range obtained with TEAOH is further used to facilitate thiol exchange which occurs at a greater extent than would be achieved in NaOH solution.
van der Waals epitaxy of CdTe thin film on graphene
NASA Astrophysics Data System (ADS)
Mohanty, Dibyajyoti; Xie, Weiyu; Wang, Yiping; Lu, Zonghuan; Shi, Jian; Zhang, Shengbai; Wang, Gwo-Ching; Lu, Toh-Ming; Bhat, Ishwara B.
2016-10-01
van der Waals epitaxy (vdWE) facilitates the epitaxial growth of materials having a large lattice mismatch with the substrate. Although vdWE of two-dimensional (2D) materials on 2D materials have been extensively studied, the vdWE for three-dimensional (3D) materials on 2D substrates remains a challenge. It is perceived that a 2D substrate passes little information to dictate the 3D growth. In this article, we demonstrated the vdWE growth of the CdTe(111) thin film on a graphene buffered SiO2/Si substrate using metalorganic chemical vapor deposition technique, despite a 46% large lattice mismatch between CdTe and graphene and a symmetry change from cubic to hexagonal. Our CdTe films produce a very narrow X-ray rocking curve, and the X-ray pole figure analysis showed 12 CdTe (111) peaks at a chi angle of 70°. This was attributed to two sets of parallel epitaxy of CdTe on graphene with a 30° relative orientation giving rise to a 12-fold symmetry in the pole figure. First-principles calculations reveal that, despite the relatively small energy differences, the graphene buffer layer does pass epitaxial information to CdTe as the parallel epitaxy, obtained in the experiment, is energetically favored. The work paves a way for the growth of high quality CdTe film on a large area as well as on the amorphous substrates.
Role of the copper-oxygen defect in cadmium telluride solar cells
NASA Astrophysics Data System (ADS)
Corwine, Caroline R.
Thin-film CdTe is one of the leading materials used in photovoltaic (PV) solar cells. One way to improve device performance and stability is through understanding how various device processing steps alter defect states in the CdTe layer. Photoluminescence (PL) studies can be used to examine radiative defects in materials. This study uses low-temperature PL to probe the defects present in thin-film CdTe deposited for solar cells. One key defect seen in the thin-film CdTe was reproduced in single-crystal (sX) CdTe by systematic incorporation of known impurities in the thin-film growth process, hence demonstrating that both copper and oxygen were necessary for its formation. Polycrystalline (pX) thin-film glass/SnO2:F/CdS/CdTe structures were examined. The CdTe layer was grown via close-spaced sublimation (CSS), vapor transport deposition (VTD), and physical vapor deposition (PVD). After CdTe deposition, followed by a standard CdC12 treatment and a ZnTe:Cu back contact, a PL peak was seen at ˜1.46 eV from the free back surface of all samples (1.456 eV for CSS and PVD, 1.460-1.463 eV for VTD). However, before the Cu-containing contact was added, this peak was not seen from the front of the CdTe (the CdS/CdTe junction region) in any device with CdTe thickness greater than 4 mum. The CdCl2 treatment commonly used to increase CdTe grain size did not enhance or reduce the peak at ˜1.46 eV relative to the rest of the PL spectrum. When the Cu-containing contact was applied, the PL spectra from both the front and back of the CdTe exhibited the peak at 1.456 eV. The PL peak at ˜1.46 eV was present in thin-film CdTe after deposition, when the dominant impurities are expected to be both Cu from the CdTe source material and O introduced in the chamber during growth to assist in CdTe film density. Since Cu and/or O appeared to be involved in this defect, PL studies were done with sX CdTe to distinguish between the separate effects of Cu or O and the combined effect of Cu and O. Photoluminescence on the sX samples revealed a unique transition at 1.456 eV, identical to the one seen in CSS thin-film CdTe, only when both Cu and O were introduced simultaneously. Theoretical calculations indicate that this PL line is likely a transition between the valence band and a Cui-OTe donor complex 150 meV below the conduction band. Formation of a Cui-OT, donor complex was expected to limit the performance of the CdS/CdTe solar cell. However, this was difficult to observe in the prepared devices, likely because other beneficial processes occurred simultaneously, such as formation of CUCd acceptors in the CdTe layer and improvement in the quality of the back contact by including Cu. It was possible to see the theoretical effects of this defect using AMPS--1D numerical simulations. The simulated J-V curves indicated that a donor level 150 meV from the conduction band would reduce the Voc, hence reducing the overall device efficiency. Therefore, despite the lack of direct experimental evidence, it is very plausible that the CU i-OTe defect observed with photoluminescence may serve to limit the possible attainable efficiency in CdS/CdTe solar cells.
Self-organized formation of GaSb/GaAs quantum rings.
Timm, R; Eisele, H; Lenz, A; Ivanova, L; Balakrishnan, G; Huffaker, D L; Dähne, M
2008-12-19
Ring-shaped GaSb/GaAs quantum dots, grown by molecular beam epitaxy, were studied using cross-sectional scanning tunneling microscopy. These quantum rings have an outer shape of a truncated pyramid with baselengths around 15 nm and heights of about 2 nm but are characterized by a clear central opening extending over about 40% of the outer baselength. They form spontaneously during the growth and subsequent continuous capping of GaSb/GaAs quantum dots due to the large strain and substantial As-for-Sb exchange reactions leading to strong Sb segregation.
CdTe and CdSe quantum dots: synthesis, characterizations and applications in agriculture
NASA Astrophysics Data System (ADS)
Dieu Thuy Ung, Thi; Tran, Thi Kim Chi; Nga Pham, Thu; Nghia Nguyen, Duc; Khang Dinh, Duy; Liem Nguyen, Quang
2012-12-01
This paper highlights the results of the whole work including the synthesis of highly luminescent quantum dots (QDs), characterizations and testing applications of them in different kinds of sensors. Concretely, it presents: (i) the successful synthesis of colloidal CdTe and CdSe QDs, their core/shell structures with single- and/or double-shell made by CdS, ZnS or ZnSe/ZnS; (ii) morphology, structural and optical characterizations of the synthesized QDs; and (iii) testing examples of QDs as the fluorescence labels for agricultural-bio-medical objects (for tracing residual pesticide in agricultural products, residual clenbuterol in meat/milk and for detection of H5N1 avian influenza virus in breeding farms). Overall, the results show that the synthesized QDs have very good crystallinity, spherical shape and strongly emit at the desired wavelengths between ˜500 and 700 nm with the luminescence quantum yield (LQY) of 30-85%. These synthesized QDs were used in fabrication of the three testing fluorescence QD-based sensors for the detection of residual pesticides, clenbuterol and H5N1 avian influenza virus. The specific detection of parathion methyl (PM) pesticide at a content as low as 0.05 ppm has been realized with the biosensors made from CdTe/CdS and CdSe/ZnSe/ZnS QDs and the acetylcholinesterase (AChE) enzymes. Fluorescence resonance energy transfer (FRET)-based nanosensors using CdTe/CdS QDs conjugated with 2-amino-8-naphthol-6-sulfonic acid were fabricated that enable detection of diazotized clenbuterol at a content as low as 10 pg ml-1. For detection of H5N1 avian influenza virus, fluorescence biosensors using CdTe/CdS QDs bound on the surface of chromatophores extracted and purified from bacteria Rhodospirillum rubrum were prepared and characterized. The specific detection of H5N1 avian influenza virus in the range of 3-50 ng μl-1 with a detection limit of 3 ng μL-1 has been performed based on the antibody-antigen recognition.
NASA Astrophysics Data System (ADS)
Adegoke, Oluwasesan; Park, Enoch Y.
2016-11-01
In biosensor design, localized surface plasmon resonance (LSPR)-induced signal from gold nanoparticle (AuNP)-conjugated reporter can produce highly sensitive nanohybrid systems. In order to retain the physicochemical properties of AuNPs upon conjugation, high colloidal stability in aqueous solution is needed. In this work, the colloidal stability with respect to the zeta potential (ZP) of four negatively charged thiol-functionalized AuNPs, thioglycolic (TGA)-AuNPs, 3-mercaptopropionic acid (MPA)-AuNPs, l-cysteine-AuNPs and l-glutathione (GSH)-AuNPs, and a cationic cyteamine-capped AuNPs was studied at various pHs, ionic strength, and NP concentration. A strong dependence of the ZP charge on the nanoparticle (NP) concentration was observed. High colloidal stability was exhibited between pH 3 and 9 for the negatively charged AuNPs and between pH 3 and 7 for the cationic AuNPs. With respect to the ionic strength, high colloidal stability was exhibited at ≤104 μM for TGA-AuNPs, l-cysteine-AuNPs, and GSH-AuNPs, whereas ≤103 μM is recommended for MPA-AuNPs. For the cationic AuNPs, very low ionic strength of ≤10 μM is recommended due to deprotonation at higher concentration. GSH-AuNPs were thereafter bonded to SiO2-functionalized alloyed CdZnSeS/ZnSe1.0S1.3 quantum dots (SiO2-Qdots) to form a plasmon-enhanced AuNP-SiO2-Qdots fluorescent nanohybrid. The AuNP-SiO2-Qdots conjugate was afterward conjugated to a molecular beacon (MB), thus forming an ultrasensitive LSPR-induced SiO2-Qdots-MB biosensor probe that detected a perfect nucleotide DNA sequence at a concentration as low as 10 fg/mL. The limit of detection was 11 fg/mL (1.4 fM) while the biosensor probe efficiently distinguished between single-base mismatch and noncomplementary sequence target.
Magnetically Defined Qubits on 3D Topological Insulators
NASA Astrophysics Data System (ADS)
Ferreira, Gerson J.; Loss, Daniel
2014-03-01
We explore potentials that break time-reversal symmetry to confine the surface states of 3D topological insulators into quantum wires and quantum dots. A magnetic domain wall on a ferromagnet insulator cap layer provides interfacial states predicted to show the quantum anomalous Hall effect. Here, we show that confinement can also occur at magnetic domain heterostructures, with states extended in the inner domain, as well as interfacial QAHE states at the surrounding domain walls. The proposed geometry allows the isolation of the wire and dot from spurious circumventing surface states. For the quantum dots, we find that highly spin-polarized quantized QAHE states at the dot edge constitute a promising candidate for quantum computing qubits. See [Ferreira and Loss, Phys. Rev. Lett. 111, 106802 (2013)]. We explore potentials that break time-reversal symmetry to confine the surface states of 3D topological insulators into quantum wires and quantum dots. A magnetic domain wall on a ferromagnet insulator cap layer provides interfacial states predicted to show the quantum anomalous Hall effect. Here, we show that confinement can also occur at magnetic domain heterostructures, with states extended in the inner domain, as well as interfacial QAHE states at the surrounding domain walls. The proposed geometry allows the isolation of the wire and dot from spurious circumventing surface states. For the quantum dots, we find that highly spin-polarized quantized QAHE states at the dot edge constitute a promising candidate for quantum computing qubits. See [Ferreira and Loss, Phys. Rev. Lett. 111, 106802 (2013)]. We acknowledge support from the Swiss NSF, NCCR Nanoscience, NCCR QSIT, and the Brazillian Research Support Center Initiative (NAP Q-NANO) from Pró-Reitoria de Pesquisa (PRP/USP).
Spatial Distribution of Dopant Incorporation in CdTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guthrey, Harvey; Moseley, John; Colegrove, Eric
2016-11-21
In this work we use state-of-the-art cathodoluminescence (CL) spectrum imaging that provides spectrum-per-pixel mapping of the CL emission to examine how dopant elements are incorporated into CdTe. Emission spectra and intensity are used to monitor the spatial distribution of additional charge carriers through characteristic variations in the CL emission based on theoretical modeling. Our results show that grain boundaries play a role in the incorporation of dopants in CdTe, whether intrinsic or extrinsic. This type of analysis is crucial for providing feedback to design different processing schedules that optimize dopant incorporation in CdTe photovoltaic material, which has struggled to reachmore » high carrier concentration values. Here, we present results on CdTe films exposed to copper, phosphorus, and intrinsic doping treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiaowang; Chavez, Jose J.; Almeida, Sergio F.
Molecular dynamics simulations have been used to analyse microstructures of CdTe films grown on {112} surfaces of zinc-blende CdS. Interestingly, CdTe films grow in <331> orientations as opposed to <112> epitaxial orientations. At the CdTe-{331}/CdS-{112} interface, however, there exists an axis that is parallel to the <110> orientation of both CdS and CdTe. It is the direction orthogonal to this <110> that becomes different, being <116> for CdTe and <111> for CdS, respectively. Missing CdTe-{110} planes are found along the <110> axis, suggesting that the misfit strain is released by the conventional misfit dislocation mechanism along this axis. In themore » orthogonal axis, the misfit strain is found to be more effectively released by the new grain orientation mechanism. Our finding is supported by literature experimental observations of the change of growth direction when Cd 0.96Zn 0.04Te films are deposited on GaAs. Lastly the analyses of energetics clearly demonstrate the cause for the formation of the new orientation, and the insights gained from our studies can help understand the grain structures experimentally observed in lattice mismatched systems.« less
Zhou, Xiaowang; Chavez, Jose J.; Almeida, Sergio F.; ...
2016-07-25
Molecular dynamics simulations have been used to analyse microstructures of CdTe films grown on {112} surfaces of zinc-blende CdS. Interestingly, CdTe films grow in <331> orientations as opposed to <112> epitaxial orientations. At the CdTe-{331}/CdS-{112} interface, however, there exists an axis that is parallel to the <110> orientation of both CdS and CdTe. It is the direction orthogonal to this <110> that becomes different, being <116> for CdTe and <111> for CdS, respectively. Missing CdTe-{110} planes are found along the <110> axis, suggesting that the misfit strain is released by the conventional misfit dislocation mechanism along this axis. In themore » orthogonal axis, the misfit strain is found to be more effectively released by the new grain orientation mechanism. Our finding is supported by literature experimental observations of the change of growth direction when Cd 0.96Zn 0.04Te films are deposited on GaAs. Lastly the analyses of energetics clearly demonstrate the cause for the formation of the new orientation, and the insights gained from our studies can help understand the grain structures experimentally observed in lattice mismatched systems.« less
Performance and Metastability of CdTe Solar Cells with a Te Back-Contact Buffer Layer
NASA Astrophysics Data System (ADS)
Moore, Andrew
Thin-film CdTe photovoltaics are quickly maturing into a viable clean-energy solution through demonstration of competitive costs and performance stability with existing energy sources. Over the last half decade, CdTe solar technology has achieved major gains in performance; however, there are still aspects that can be improved to progress toward their theoretical maximum efficiency. Perhaps equally valuable as high photovoltaic efficiency and a low levelized cost of energy, is device reliability. Understanding the root causes for changes in performance is essential for accomplishing long-term stability. One area for potential performance enhancement is the back contact of the CdTe device. This research incorporated a thin-film Te-buffer layer into the contact structure, between the CdTe and contact metal. The device performance and characteristics of many different back contact configurations were rigorously studied. CdTe solar cells fabricated with the Te-buffer contact showed short-circuit current densities and open-circuit voltages that were on par with the traditional back-contacts used at CSU. However, the Te-buffer contact typically produced 2% larger fill-factors on average, leading to greater conversation efficiency. Furthermore, using the Te buffer allowed for incorporation of 50% less Cu, which is used for p-type doping but is also known to decrease lifetime and stability. This resulted in an additional 3% fill-factor gain with no change in other parameters compared to the standard-Cu treated device. In order to better understand the physical mechanisms of the Te-buffer contact, electrical and material properties of the Te layer were extracted and used to construct a simple energy band diagram. The Te layer was found to be highly p-type (>1018 cm-3) and possess a positive valence-band offset of 0.35-0.40 eV with CdTe. An existing simulation model incorporating the Te-layer properties was implemented and validated by comparing simulated results of CdTe device performance to experimental values. The Te layer improves performance is attributed to a reduction in the downward energy band bending between the CdTe and typical contact metals. The stability, or rather the metastability, of CdTe solar cells was also studied with a focus on the Te back contact. A metastable device has a series of quasi-stable local energy-minimuma which the device may transition among. This work primarily focused on changes, both beneficial and detrimental, caused by diffusion and drift of atoms in the CdTe lattice. As atoms moved and/or became ionized their defect states were shifted, which resulted in changes in the CdTe doping and recombination. Changes in performance for devices in equilibrium and under stress conditions were analyzed by electrical and material characterization. Mobile impurities and mechanisms responsible for the changes were identified--primarily the migration of interstitial Cu and Cl. The stability of CdTe solar cells with different back contacts were compared. It was found that any contact that included the Te layer was almost always more stable than the traditional contact used at CSU, most likely because of less sensitivity to the impurity profiles in the CdTe. Moreover, the Te contact configuration that introduced the least amount of Cu into the CdTe was discovered to be the most stable, both in storage and under stress conditions.
Low Temperature Synthesis of CdSe Quantum Dots with Amine Derivative and Their Chemical Kinetics
NASA Astrophysics Data System (ADS)
Seongmi Hwang,; Youngmin Choi,; Sunho Jeong,; Hakyun Jung,; Chang Gyoun Kim,; Teak-Mo Chung,; Beyong-Hwan Ryu,
2010-05-01
The chemical kinetics of growing CdSe nanocrystals was studied in order to investigate the effects of amine capping agents on the size of resulting quantum dots (QDs). CdSe QDs were prepared in phenyl ether, and the amine ligand dependence of QD size was determined. The results show that the size of CdSe nanocrystals can be regulated by controlling reaction rate, with smaller QDs being formed in slower processes. The results of photoluminescence (PL) studies show that the emission wavelengths of the QDs well correlate with particle size. This simple process for forming different-sized QDs, which uses a cheap solvent and various capping agents, has the potential for preparing CdSe nanocrystals more economically.
Influence of dilution with organic solvents on emission spectra of CdSe/ZnS quantum dots
NASA Astrophysics Data System (ADS)
Kumakura, Mitsutaka; Kinan, Asuka; Moriyasu, Takeshi
2017-04-01
The emission spectra of CdSe/ZnS core-shell dots have been monitored after the dilution of their toluene solution with organic solvents (toluene, n-hexane, diethyl ether, acetone, ethanol, and methanol). In addition to the well-known difference of the emission efficiency according to the solvent, we found their time variation depending on the solvent. From the discussion based on the solubility of the capping organic ligand, hexadecylamine (HDA), to each solvent it is suggested that the observed time variation is caused by the liquation of the capping molecules form the dot surface and the resulting change of the number of the trap site for charges in the quantum dot.
Protasenko, Vladimir; Bacinello, Daniel; Kuno, Masaru
2006-12-21
Absorption cross-sections and corresponding molar extinction coefficients of solution-based CdSe and CdTe nanowires (NWs) are determined. Chemically grown semiconductor NWs are made via a recently developed solution-liquid-solid (SLS) synthesis, employing low melting Au/Bi bimetallic nanoparticle "catalysts" to induce one-dimensional (1D) growth. Resulting wires are highly crystalline and have diameters between 5 and 12 nm as well as lengths exceeding 10 microm. Narrow diameters, below twice the corresponding bulk exciton Bohr radius of each material, place CdSe and CdTe NWs within their respective intermediate to weak confinement regimes. Supporting this are solution linear absorption spectra of NW ensembles showing blue shifts relative to the bulk band gap as well as structure at higher energies. In the case of CdSe, the wires exhibit band edge emission as well as strong absorption/emission polarization anisotropies at the ensemble and single-wire levels. Analogous photocurrent polarization anisotropies have been measured in recently developed CdSe NW photodetectors. To further support fundamental NW optical/electrical studies as well as to promote their use in device applications, experimental absorption cross-sections are determined using correlated transmission electron microscopy, UV/visible extinction spectroscopy, and inductively coupled plasma atomic emission spectroscopy. Measured CdSe NW cross-sections for 1 microm long wires (diameters, 6-42 nm) range from 6.93 x 10(-13) to 3.91 x 10(-11) cm2 at the band edge (692-715 nm, 1.73-1.79 eV) and between 3.38 x 10(-12) and 5.50 x 10(-11) cm2 at 488 nm (2.54 eV). Similar values are obtained for 1 microm long CdTe NWs (diameters, 7.5-11.5 nm) ranging from 4.32 x 10(-13) to 5.10 x 10(-12) cm2 at the band edge (689-752 nm, 1.65-1.80 eV) and between 1.80 x 10(-12) and 1.99 x 10(-11) cm2 at 2.54 eV. These numbers compare well with previous theoretical estimates of CdSe/CdTe NW cross-sections far to the blue of the band edge, having order of magnitude values of 1.0 x 10(-11) cm2 at 488 nm. In all cases, experimental NW absorption cross-sections are 4-5 orders of magnitude larger than those for corresponding colloidal CdSe and CdTe quantum dots. Even when volume differences are accounted for, band edge NW cross-sections are larger by up to a factor of 8. When considered along with their intrinsic polarization sensitivity, obtained NW cross-sections illustrate fundamental and potentially exploitable differences between 0D and 1D materials.
Effect of capping layer on interlayer coupling in synthetic spin valves
NASA Astrophysics Data System (ADS)
Li, Kebin; Qiu, Jinjun; Han, Guchang; Guo, Zaibing; Zheng, Yuankai; Wu, Yihong; Li, Jinshan
2005-01-01
The magnetic and transport properties of high quality synthetic spin-valves with the structure of Ta/NiFe/IrMn/CoFe/Ru/CoFe/NOL/CoFe/Cu/CoFe/CL were studied by using magnetoresistance measurements. Here Ti, Hf, and Al are used as the capping layer. It is found that both the thickness and materials properties of the capping layers can affect the interlayer coupling field. The interlayer coupling field oscillates weakly with respect to the thickness of the Ti and Hf capping layers. Extremely strong ferromagnetic coupling has been observed when the thickness of the Al capping layer is in a certain range where resonant exchange coupling takes place. The strength of the interlayer coupling is inversely proportional to the square of the thickness of the spacer. It is a typical characteristic of quantum size effect.
SERS-fluorescence joint spectral encoded magnetic nanoprobes for multiplex cancer cell separation.
Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Wang, Chunlei; Xu, Shuhong; Cui, Yiping
2014-11-01
A new kind of cancer cell separation method is demonstrated, using surface-enhanced Raman scattering (SERS) and fluorescence dual-encoded magnetic nanoprobes. The designed nanoprobes can realize SERS-fluorescence joint spectral encoding (SFJSE) and greatly improve the multiplexing ability. The nanoprobes have four main components, that is, the magnetic core, SERS generator, fluorescent agent, and targeting antibody. These components are assembled with a multi-layered structure to form the nanoprobes. Specifically, silica-coated magnetic nanobeads (MBs) are used as the inner core. Au core-Ag shell nanorods (Au@Ag NRs) are employed as the SERS generators and attached on the silica-coated MBs. After burying these Au@Ag NRs with another silica layer, CdTe quantum dots (QDs), that is, the fluorescent agent, are anchored onto the silica layer. Finally, antibodies are covalently linked to CdTe QDs. SFJSE is fulfilled by using different Raman molecules and QDs with different emission wavelengths. By utilizing four human cancer cell lines and one normal cell line as the model cells, the nanoprobes can specifically and simultaneously separate target cancer cells from the normal ones. This SFJSE-based method greatly facilitates the multiplex, rapid, and accurate cancer cell separation, and has a prosperous potential in high-throughput analysis and cancer diagnosis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spectral response characterization of CdTe sensors of different pixel size with the IBEX ASIC
NASA Astrophysics Data System (ADS)
Zambon, P.; Radicci, V.; Trueb, P.; Disch, C.; Rissi, M.; Sakhelashvili, T.; Schneebeli, M.; Broennimann, C.
2018-06-01
We characterized the spectral response of CdTe sensors with different pixel sizes - namely 75, 150 and 300 μm - bonded to the latest generation IBEX single photon counting ASIC developed at DECTRIS, to detect monochromatic X-ray energy in the range 10-60 keV. We present a comparison of pulse height spectra recorded for several energies, showing the dependence on the pixel size of the non-trivial atomic fluorescence and charge sharing effects that affect the detector response. The extracted energy resolution, in terms of full width at half maximum or FWHM, ranges from 1.5 to 4 keV according to the pixel size and chip configuration. We devoted a careful analysis to the Quantum Efficiency and to the Spectral Efficiency - a newly-introduced measure that quantifies the impact of fluorescence and escape phenomena on the spectrum integrity in high- Z material based detectors. We then investigated the influence of the photon flux on the aforementioned quantities up to 180 ṡ 106 cts/s/mm2 and 50 ṡ 106 cts/s/mm2 for the 150 μm and 300 μm pixel case, respectively. Finally, we complemented the experimental data with analytical and with Monte Carlo simulations - taking into account the stochastic nature of atomic fluorescence - with an excellent agreement.
Li, Dong-Yan; He, Xi-Wen; Chen, Yang; Li, Wen-You; Zhang, Yu-Kui
2013-12-11
This work presented a novel strategy for the synthesis of the hybrid structure silica/CdTe/molecularly imprinted polymer (Si-NP/CdTe/MIP) to recognize and detect the template bovine hemoglobin (BHb). First, amino-functionalized silica nanoparticles (Si-NP) and carboxyl-terminated CdTe quantum dots (QDs) were assembled into composite nanoparticles (Si-NP/CdTe) using the EDC (1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride) chemistry. Next, Si-NP/CdTe/MIP was synthesized by anchoring molecularly imprinted polymer (MIP) layer on the surface of Si-NP/CdTe through the sol-gel technique and surface imprinting technique. The hybrid structure possessed the selectivity of molecular imprinting technique and the sensitivity of CdTe QDs as well as well-defined morphology. The binding experiment and fluorescence method demonstrated its special recognition performance toward the template BHb. Under the optimized conditions, the fluorescence intensity of the Si-NP/CdTe/MIP decreased linearly with the increase of BHb in the concentration range 0.02-2.1 μM, and the detection limit was 9.4 nM. Moreover, the reusability and reproducibility and the successful applications in practical samples indicated the synthesis of Si-NP/CdTe/MIP provided an alternative solution for special recognition and determination of protein from real samples.
CdTe1-x S x (x ⩽ 0.05) thin films synthesized by aqueous solution deposition and annealing
NASA Astrophysics Data System (ADS)
Pruzan, Dennis S.; Hahn, Carina E.; Misra, Sudhajit; Scarpulla, Michael A.
2017-11-01
While CdS thin films are commonly deposited from aqueous solutions, CdTe thin films are extremely difficult to deposit directly from aqueous solution. In this work, we report on polycrystalline CdTe1-x S x thin films synthesized via deposition from aqueous precursor solutions followed by annealing treatments and on their physical properties. The deposition method uses spin-coating of alternating Cd2+ and Te2- aqueous solutions and rinse steps to allow formation of the films but to shear off excess reactants and poorly-bonded solids. Films are then annealed in the presence of CdCl2 as is commonly done for CdTe photovoltaic absorber layers deposited by any means. Scanning electron microscopy (SEM) reveals low void fractions and grain sizes up to 4 µm and x-ray diffraction (XRD) shows that the films are primarily cubic CdTe1-x S x (x ⩽ 0.05) with random crystallographic orientation. Optical transmission yields bandgap absorption consistent with a CdTe1-x S x dilute alloy and low-temperature photoluminescence (PL) consists of an emission band centered at 1.35 eV consistent with donor-acceptor pair (DAP) transitions in CdTe1-x S x . Together, the crystalline quality and PL yield from films produced by this method represent an important step towards electroless, ligand-free solution processed CdTe and related alloy thin films suitable for optoelectronic device applications such as thin film heterojunction or nanodipole-based photovoltaics.
Polycrystalline Thin-Film Photovoltaics | Photovoltaic Research | NREL
(CdTe) We develop processes and a range of materials for CdTe photovoltaic (PV) devices. Our work partners. Our objectives are to improve CdTe PV performance, reduce costs, and advance fundamental processes and materials related to thin-film polycrystalline PV devices, and our measurements and
Amarasinghe, Mahisha; Colegrove, Eric; Moutinho, Helio; ...
2018-01-23
Grain structure influences both transport and recombination in CdTe solar cells. Larger grains generally are obtained with higher deposition temperatures, but commercially it is important to avoid softening soda-lime glass. Furthermore, depositing at lower temperatures can enable different substrates and reduced cost in the future. We examine how initial deposition temperatures and morphology influence grain size and lifetime after CdCl 2 recrystallization. Techniques are developed to estimate grain distribution quickly with low-cost optical microscopy, which compares well with electron backscatter diffraction data providing corroborative assessments of exposed CdTe grain structures. Average grain size increases as a function of CdCl 2more » temperature. For lower temperature close-spaced sublimation CdTe depositions, there can be more stress and grain segregation during recrystallization. However, the resulting lifetimes and grain sizes are similar to high-temperature CdTe depositions. The grain structures and lifetimes are largely independent of the presence and/or interdiffusion of Se at the interface, before and after the CdCl 2 treatment.« less
NASA Astrophysics Data System (ADS)
Vogt, A.; Schütt, S.; Frei, K.; Fiederle, M.
2017-11-01
This work investigates the potential of CdTe semiconducting layers used for radiation detection directly deposited on the Medipix readout-chip by MBE. Due to the high Z-number of CdTe and the low electron-hole pair creation energy a thin layer suffices for satisfying photon absorption. The deposition takes place in a modified MBE system enabling growth rates up to 10 μm/h while the UHV conditions allow the required high purity for detector applications. CdTe sensor layers deposited on silicon substrates show resistivities up to 5.8 × 108 Ω cm and a preferred (1 1 1) orientation. However, the resistivity increases with higher growth temperature and the orientation gets more random. Additionally, the deposition of a back contact layer sequence in one process simplifies the complex production of an efficient contact on CdTe with aligned work functions. UPS measurements verify a decrease of the work function of 0.62 eV induced by Te doping of the CdTe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amarasinghe, Mahisha; Colegrove, Eric; Moutinho, Helio
Grain structure influences both transport and recombination in CdTe solar cells. Larger grains generally are obtained with higher deposition temperatures, but commercially it is important to avoid softening soda-lime glass. Furthermore, depositing at lower temperatures can enable different substrates and reduced cost in the future. We examine how initial deposition temperatures and morphology influence grain size and lifetime after CdCl 2 recrystallization. Techniques are developed to estimate grain distribution quickly with low-cost optical microscopy, which compares well with electron backscatter diffraction data providing corroborative assessments of exposed CdTe grain structures. Average grain size increases as a function of CdCl 2more » temperature. For lower temperature close-spaced sublimation CdTe depositions, there can be more stress and grain segregation during recrystallization. However, the resulting lifetimes and grain sizes are similar to high-temperature CdTe depositions. The grain structures and lifetimes are largely independent of the presence and/or interdiffusion of Se at the interface, before and after the CdCl 2 treatment.« less
NASA Astrophysics Data System (ADS)
Tsai, Sheng-Chieh; Li, Ming-Jui; Fang, Hsin-Chiao; Tu, Chia-Hao; Liu, Chuan-Pu
2018-05-01
A facile method for fabricating blue light-emitting diodes (B-LEDs) with small embedded quantum dots (QDs) and enhanced light emission is demonstrated by tuning the temperature of the growing GaN capping layer to eliminate V-defects. As the growth temperature increases from 770 °C to 840 °C, not only does the density of the V-defects reduce from 4.12 ∗ 108 #/cm2 nm to zero on a smooth surface, but the QDs also get smaller. Therefore, the growth mechanism of smaller QDs assisted by elimination of V-defects is discussed. Photoluminescence and electroluminescence results show that smaller embedded QDs can improve recombination efficiency, and thus achieve higher peak intensity with smaller peak broadening. Accordingly, the external quantum efficiency of the B-LEDs with smaller QDs is enhanced, leading to a 6.8% increase in light output power in lamp-form package LEDs.
Preferential sites for InAsP/InP quantum wire nucleation using molecular dynamics
NASA Astrophysics Data System (ADS)
Nuñez-Moraleda, Bernardo; Pizarro, Joaquin; Guerrero, Elisa; Guerrero-Lebrero, Maria P.; Yáñez, Andres; Molina, Sergio Ignacio; Galindo, Pedro Luis
2014-11-01
In this paper, stress fields at the surface of the capping layer of self-assembled InAsP quantum wires grown on an InP (001) substrate have been determined from atomistic models using molecular dynamics and Stillinger-Weber potentials. To carry out these calculations, the quantum wire compositional distribution was extracted from previous works, where the As and P distributions were determined by electron energy loss spectroscopy and high-resolution aberration-corrected Z-contrast imaging. Preferential sites for the nucleation of wires on the surface of the capping layer were studied and compared with (i) previous simulations using finite element analysis to solve anisotropic elastic theory equations and (ii) experimentally measured locations of stacked wires. Preferential nucleation sites of stacked wires were determined by the maximum stress location at the MD model surface in good agreement with experimental results and those derived from finite element analysis. This indicates that MD simulations based on empirical potentials provide a suitable and flexible tool to study strain dependent atom processes.
Gong, Yan; Fan, Zhefeng
2015-04-15
We report a room-temperature phosphorescence (RTP) sensor for phosphopeptides based on zirconium (IV)-modulated mercaptopropionic acid (MPA)-capped Mn-doped ZnS quantum dots (QDs). This sensor incorporates the advantages of the well-known Zr(4+)-phosphopeptide affinity pair and the RTP properties of doped QDs. The RTP of Mn-doped ZnS QDs capped with MPA can be effectively quenched by Zr(4+). The high affinity of phosphopeptides to Zr(4+) enables the dissociation of the ion from the surface of MPA-capped ZnS QDs, thereby forming a stable complex with phosphopeptides in the solution, and recovering the RTP of the QDs. The Zr(4+)-induced RTP quenching and subsequent phosphopeptide-induced RTP recovery for MPA-capped ZnS QDs provide a solid basis for the present RTP sensor based on QDs for the detection of phosphopeptides. The detection limit for phosphopeptides is 0.9ngmL(-1), the relative standard deviations is 2.5%, and the recovery of urine and serum samples with phosphopeptides addition rangs from 96% to 105% at optimal conditions. The proposed method was successfully applied to biological fluids and obtained satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.
CdTe Photovoltaics for Sustainable Electricity Generation
NASA Astrophysics Data System (ADS)
Munshi, Amit; Sampath, Walajabad
2016-09-01
Thin film CdTe (cadmium telluride) is an important technology in the development of sustainable and affordable electricity generation. More than 10 GW of installations have been carried out using this technology around the globe. It has been demonstrated as a sustainable, green, renewable, affordable and abundant source of electricity. An advanced sublimation tool has been developed that allows highly controlled deposition of CdTe films onto commercial soda lime glass substrates. All deposition and treatment steps can be performed without breaking the vacuum within a single chamber in an inline process that can be conveniently scaled to a commercial process. In addition, an advanced cosublimation source has been developed to allow the deposition of ternary alloys such as Cd x Mg1- x Te to form an electron reflector layer which is expected to address the voltage deficits in current CdTe devices and to achieve very high efficiency. Extensive materials characterization, including but not limited to scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, high resolution transmission electron microscopy and electron back-scatter diffraction, has been performed to get a better understanding of the effects of processing conditions on CdTe thin film photovoltaics. This combined with computer modeling such as density function theory modeling gives a new insight into the mechanism of CdTe photovoltaic function. With all these efforts, CdTe photovoltaics has seen great progress in the last few years. Currently, it has been recorded as the cheapest source of electricity in the USA on a commercial scale, and further improvements are predicted to further reduce the cost while increasing its utilization. Here, we give an overview of the advantages of thin film CdTe photovoltaics as well as a brief review of the challenges that need to be addressed. Some fundamental studies of processing conditions for thin film CdTe are also presented along with fabrication conditions using the closed-space sublimation method.
Colegrove, Eric; Harvey, Steven P.; Yang, Ji -Hui; ...
2017-02-08
Group V dopants may be used for next-generation high-voltage cadmium telluride (CdTe) solar photovoltaics, but fundamental defect energetics and kinetics need to be understood. Here, antimony (Sb) diffusion is studied in single-crystal and polycrystalline CdTe under Cd-rich conditions. Diffusion profiles are determined by dynamic secondary ion mass spectroscopy and analyzed with analytical bulk and grain-boundary diffusion models. Slow bulk and fast grain-boundary diffusion are found. Density functional theory is used to understand formation energy and mechanisms. Lastly, the theory and experimental results create new understanding of group V defect kinetics in CdTe.
Properties of RF sputtered cadmium telluride (CdTe) thin films: Influence of deposition pressure
NASA Astrophysics Data System (ADS)
Kulkarni, R. R.; Pawbake, A. S.; Waykar, R. G.; Rondiya, S. R.; Jadhavar, A. A.; Pandharkar, S. M.; Karpe, S. D.; Diwate, K. D.; Jadkar, S. R.
2016-04-01
Influence of deposition pressure on structural, morphology, electrical and optical properties of CdTe thin films deposited at low substrate temperature (100°C) by RF magnetron sputtering was investigated. The formation of CdTe was confirmed by low angle XRD and Raman spectroscopy. The low angle XRD analysis revealed that the CdTe films have zinc blende (cubic) structure with crystallites having preferred orientation in (111) direction. Raman spectra show the longitudinal optical (LO) phonon mode peak ˜ 165.4 cm-1 suggesting high quality CdTe film were obtained over the entire range of deposition pressure studied. Scanning electron microscopy analysis showed that films are smooth, homogenous, and crack-free with no evidence of voids. The EDAX data revealed that CdTe films deposited at low deposition pressure are high-quality stoichiometric. However, for all deposition pressures, films are rich in Cd relative to Te. The UV-Visible spectroscopy analysis show the blue shift in absorption edge with increasing the deposition pressure while the band gap show decreasing trend. The highest electrical conductivity was obtained for the film deposited at deposition pressure 1 Pa which indicates that the optimized deposition pressure for our sputtering unit is 1 Pa. Based on the experimental results, these CdTe films can be useful for the application in the flexible solar cells and other opto-electronic devices.
NASA Astrophysics Data System (ADS)
Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.
2016-09-01
Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.
NASA Astrophysics Data System (ADS)
Song, Kun; Zhu, Xuanting; Tang, Kai; Bai, W.; Zhu, Liangqing; Yang, Jing; Zhang, Yuanyuan; Tang, Xiaodong; Chu, Junhao
2018-03-01
High-crystalline quality CdTe thin films are grown on the largely lattice-mismatched SrTiO3 (STO) (1 1 1) substrates by molecular beam epitaxy. A transformation from a three dimensional regime to a two dimensional one is observed by the reflection high energy electron diffraction (RHEED) and atomic force microscopy (AFM). The formation of an elastic deformation CdTe layer on STO (1 1 1), namely a pseudomorphic growth mode with a critical thickness of ∼40 nm, is supported by the RHEED, AFM and X-ray diffraction. Crystal structures and epitaxial relationships of CdTe epitaxial films on STO (1 1 1) are characterized by 2θ-ω scans and reciprocal space mapping. Two strong absorption peaks at the energies of ∼1.621 eV and ∼1.597 eV at 5 K are clearly observed for a ∼120 nm thick CdTe epitaxial film, which are proposed to be ascribed to the strained and unstrained epitaxial CdTe layers, respectively. Moreover, the presence of the exciton band while the absence of deep level defect states for the ∼120 nm thick CdTe film characterized by the temperature dependent photoluminescence spectra further supports the high-crystalline quality.
Properties of selected S-nitrosothiols compared to nitrosylated WR-1065.
Whiteside, William Michael; Sears, Devin N; Young, Paul R; Rubin, David B
2002-05-01
WR-1065 ([N-mercaptoethyl]-1-3-diaminopropane), the active form of the aminothiol drug Ethyol/Amifostine, protects against toxicity caused by radiation, chemotherapy and endotoxin. Because WR-1065 and other thiols readily bind nitric oxide (NO), injurious conditions or therapies that induce the production or mobilization of NO could alter the effects of WR-1065. S-Nitrosothiols were prepared from various thiols by a standard method to compare properties and stability. Heteromolecular quantum correlation 2D nuclear magnetic resonance was used to characterize nitrosylated glutathione (GSH) and WR-1065; both S- and N-nitrosothiols were observed, depending on the experimental conditions. Three categories of S-nitrosothiol stability were observed: (1) highly stable, with t(1/2) > 8 h, N-acetyl-L-cysteine nitrosothiol (t(1/2) 15 h) > GSH nitrosothiol (t(1/2) 8 h); (2) intermediate stability, t(1/2) approximately 2 h, cysteamine nitrosothiol and WR-1065 nitrosothiol; and (3) low stability, t(1/2) < 1 h, cysteine nitrosothiol and Captopril nitrosothiol. Similar relative rates were observed for Hg(+2)-induced denitrosylation: WR-1065 reacted faster than GSH nitrosothiol, while GSH nitrosothiol reacted faster than N-acetyl-L-cysteine nitrosothiol. Mostly mediated by mixed-NPSH disulfide formation, the activity of the redox-sensitive cysteine protease, cathepsin H, was inhibited by the S-nitrosothiols, with WR-1065 nitrosothiol > cysteine nitrosothiol > N-acetyl-L-cysteine nitrosothiol and GSH nitrosothiol. These observations indicate that, relative to other nitrosylated non-protein thiols, the S-nitrosothiol of WR-1065 is an unstable non-protein S-nitrosothiols with a high reactive potential in the modification of protein thiols.
Cellular interaction influenced by surface modification strategies of gelatin-based nanoparticles.
Tse, Wai Hei; Gyenis, Laszlo; Litchfield, David W; Zhang, Jin
2017-02-01
Theranostic applications of gelatin nanospheres require two major components, a method of detection and good biocompatibility. We characterized the response of UTA-6 human osteosarcoma cells to the introduction of functionalized 90 bloom-based gelatin nanospheres (158 ± 49 nm) modified with three elements in different order: (a) hybridization with cadmium-based quantum dots for optical detection, (b) bioconjugation with anti-human IgG FAB (anti-IgG) for cell targeting, with/without (c) capping with polyethylene glycol on the surface for enhanced biocompatibility. A one-pot process is developed for incorporating quantum dots and antibody with gelatin nanospheres. Path A of modifying gelatin nanospheres with quantum dots first followed by anti-IgG resulted in a significantly greater cellular viability than Path B with anti-IgG first followed by quantum dots. Capping with polyethylene glycol as the final step in modification yielded significantly opposing results with decreases in Path A and increases in Path B. Three-dimensional z-stacking fluorescent images of hybrid gelatin nanospheres with anti-IgG is observed to have an increase in cellular association. The observed results suggest the modification order for building hybrid nanospheres may have an impact on cellular response.
Quantum dots as optical labels for ultrasensitive detection of polyphenols.
Akshath, Uchangi Satyaprasad; Shubha, Likitha R; Bhatt, Praveena; Thakur, Munna Singh
2014-07-15
Considering the fact that polyphenols have versatile activity in-vivo, its detection and quantification is very much important for a healthy diet. Laccase enzyme can convert polyphenols to yield mono/polyquinones which can quench Quantum dots fluorescence. This phenomenon of charge transfer from quinones to QDs was exploited as optical labels to detect polyphenols. CdTe QD may undergo dipolar interaction with quinones as a result of broad spectral absorption due to multiple excitonic states resulting from quantum confinement effects. Thus, "turn-off" fluorescence method was applied for ultrasensitive detection of polyphenols by using laccase. We observed proportionate quenching of QDs fluorescence with respect to polyphenol concentration in the range of 100 µg to 1 ng/mL. Also, quenching of the photoluminescence was highly efficient and stable and could detect individual and total polyphenols with high sensitivity (LOD-1 ng/mL). Moreover, proposed method was highly efficient than any other reported methods in terms of sensitivity, specificity and selectivity. Therefore, a novel optical sensor was developed for the detection of polyphenols at a sensitive level based on the charge transfer mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.
Design Strategies for High-Efficiency CdTe Solar Cells
NASA Astrophysics Data System (ADS)
Song, Tao
With continuous technology advances over the past years, CdTe solar cells have surged to be a leading contributor in thin-film photovoltaic (PV) field. While empirical material and device optimization has led to considerable progress, further device optimization requires accurate device models that are able to provide an in-depth understanding of CdTe device physics. Consequently, this thesis is intended to develop a comprehensive model system for high-efficiency CdTe devices through applying basic design principles of solar cells with numerical modeling and comparing results with experimental CdTe devices. The CdTe absorber is central to cell performance. Numerical simulation has shown the feasibility of high energy-conversion efficiency, which requires both high carrier density and long minority carrier lifetime. As the minority carrier lifetime increases, the carrier recombination at the back surface becomes a limitation for cell performance with absorber thickness < 3 microm. Hence, either a thicker absorber or an appropriate back-surface-field layer is a requisite for reducing the back-surface recombination. When integrating layers into devices, more careful design of interfaces is needed. One consideration is the emitter/absorber interface. It is shown that a positive conduction-band offset DeltaEC ("spike") at the interface is beneficial to cell performance, since it can induce a large valence-band bending which suppresses the hole injection near the interface for the electron-hole recombination, but too large a spike is detrimental to photocurrent transport. In a heterojunction device with many defects at the emitter/absorber interface (high SIF), a thin and highly-doped emitter can induce strong absorber inversion and hence help maintain good cell performance. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. In terms of specific emitter materials, the calculations suggest that the (Mg,Zn)O alloy with 20% Mg, or a similar type-I heterojunction partner with moderate DeltaE C (e.g., Cd(S,O) or (Cd,Mg)Te with appropriate oxygen or magnesium ratios) should yield higher voltages and would therefore be better candidates for the CdTe-cell emitter. The CdTe/substrate interface is also of great importance, particularly in the growth of epitaxial monocrystalline CdTe cells. Several substrate materials have been discussed and all have challenges. These have generally been addressed through the addition of intermediate layers between the substrate and CdTe absorber. InSb is an attractive substrate choice for CdTe devices, because it has a close lattice match with CdTe, it has low resistivity, and it is easy to contact. However, the valence-band alignment between InSb and p-type CdTe, which can both impede hole current and enhance forward electron current, is not favorable. In addition, the CdTe/back contact interface plays a significant role in carrier transport for conventional polycrystalline thin-film CdTe devices. A significant back-contact barrier φb caused by metallic contact with low work function can block hole transport and enhance the forward current and thus result in a reduced VOC, particularly with fully-depleted CdTe devices. A buffer contact layer between CdTe absorber and metallic contact is strongly needed to mitigate this detrimental impact. The simulation has shown that a thin tellurium (Te) buffer as well as a highly doped p-type CdTe layer can assume such a role by reducing the downward valence-band bending caused by large φb and hence enhancing the extraction of the charge carriers. Finally, experimental CdTe cells are discussed in parallel with the simulation results to identify limiting mechanisms and give guidance for future efficiency improvement. For the monocrystalline CdTe cells made at NREL, it is found that the sputter damage causing large numbers of defect states near the Cd(S,O)/CdTe interface plays an important role in limiting cell performance, particularly for cells with low oxygen Cd(
Tiopronin Gold Nanoparticle Precursor Forms Aurophilic Ring Tetramer
Simpson, Carrie A.; Farrow, Christopher L.; Tian, Peng; Billinge, Simon J.L.; Huffman, Brian J.; Harkness, Kellen M.; Cliffel, David E.
2010-01-01
In the two step synthesis of thiolate-monolayer protected clusters (MPCs), the first step of the reaction is a mild reduction of gold(III) by thiols that generates gold(I) thiolate complexes as intermediates. Using tiopronin (Tio) as the thiol reductant, the characterization of the intermediate Au4Tio4 complex was accomplished with various analytical and structural techniques. Nuclear magnetic resonance (NMR), elemental analysis, thermogravimetric analysis (TGA), and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) were all consistent with a cyclic gold(I)-thiol tetramer structure, and final structural analysis was gathered through the use of powder diffraction and pair distribution functions (PDF). Crystallographic data has proved challenging for almost all previous gold(I)-thiolate complexes. Herein, a novel characterization technique when combined with standard analytical assessment to elucidate structure without crystallographic data proved invaluable to the study of these complexes. This in conjunction with other analytical techniques, in particular mass spectrometry, can elucidate a structure when crystallographic data is unavailable. In addition, luminescent properties provided evidence of aurophilicity within the molecule. The concept of aurophilicity has been introduced to describe a select group of gold-thiolate structures, which possess unique characteristics, mainly red photoluminescence and a distinct Au-Au intramolecular distance indicating a weak metal-metal bond as also evidenced by the structural model of the tetramer. Significant features of both the tetrameric and aurophilic properties of the intermediate gold(I) tiopronin complex are retained after borohydride reduction to form the MPC, including gold(I) tiopronin partial rings as capping motifs, or “staples”, and weak red photoluminescence that extends into the Near Infrared region. PMID:21067183
Review on first-principles study of defect properties of CdTe as a solar cell absorber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang
2016-07-15
CdTe is one of the leading materials for high-efficiency, low-cost, and thin-film solar cells. In this work, we review the recent first-principles study of defect properties of CdTe and present that: (1) When only intrinsic defects are present, p-type doping in CdTe is weak and the hole density is low due to the relatively deep acceptor levels of Cd vacancy. (2) When only intrinsic defects present, the dominant non-radiative recombination center in p-type CdTe is Te-2+/Cd, which limits the carrier lifetime to be around 200 ns. (3) Extrinsic p-type doping in CdTe by replacing Te with group V elements generallymore » will be limited by the formation of AX centers. This could be overcome through a non-equilibrium cooling process and the hole density can achieve 10^17 cm-3. However, the long-term stability will be a challenging issue. (4) Extrinsic p-type doping by replacing Cd with alkaline group I elements is limited by alkaline interstitials and a non-equilibrium cooling process can efficiently enhance the hole density to the order of 10^17 cm-3. (5) Cu and Cl treatments are discussed. In bulk CdTe, Cu can enhance p-type doping, but Cl is found to be unsuitable for this. Both Cu and Cl show segregation at grain boundaries, especially at those with Te-Te wrong bonds. (6) External impurities are usually incorporated by diffusion. Therefore, the diffusion processes in CdTe are investigated. We find that cation interstitial (Nai, Cui) diffusion follows relatively simple diffusion paths, but anion diffusion (Cli, Pi) follows more complicated paths due to the degenerated defect wavefunctions.« less
Nano interface potential influences in CdTe quantum dots and biolabeling
NASA Astrophysics Data System (ADS)
Kanagasubbulakshmi, S.; Kadirvelu, K.
2018-05-01
Nano interface influences in physiochemical properties of quantum dots (QDs) are the challenging approach to tailor its surface functionalities. In this study, a set of polar and non-polar solvents were selected to analyze the influences in solvent-based dynamic radius and surface potential of QDs. From the nano interface chemistry of polar and non-polar solvents, an appropriate mechanism of precipitation and hydrophobic ligand exchange strategy were elucidated by correlating Henry's equation. Further, the in vitro cytotoxic potential and antimicrobial activity of QDs were assessed to perform biolabeling. From the observations, an appropriate dosage of QDs was fixed to label the animal ((RAW 264.7 cell lines) and bacterial cells (Escherichia coli) for effective cell attachment. Biolabeling was achieved by tailoring nano interface chemistry of QDs without additional support of biomolecules. Bacterial cell wall-based interaction of QDs was evaluated using SEM and EDAX analysis. Thus, provided clear insights into the nano interface chemistry in the development of highly photostable QDs will be helpful in biomedical applications.
NASA Astrophysics Data System (ADS)
Amjadi, Mohammad; Jalili, Roghayeh
2018-02-01
We report on a ratiometric fluorescent sensor based on dual-emission molecularly imprinted mesoporous silica embedded with carbon dots and CdTe quantum dots (mMIP@CDs/QDs) for celecoxib (CLX) as target molecule. The fluorescence of the embedded CDs is insensitive to the analyte while the green emissive QDs are selectively quenched by it. This effect is much stronger for the MIP than for the non-imprinted polymer, which indicates a good recognition ability of the mesoporous MIP. The hybrid sensor also exhibited good selectivity to CLX over other substances. The ratio of the intensity at two wavelengths (F550/F440) proportionally decreased with the increasing of CLX concentration in the range of 0.08-0.90 μM. A detection limit as low as 57 nM was achieved. Experimental results testified that this sensor was highly sensitive and selective for the detection of CLX in human serum samples.
Burton, George L.; Diercks, David R.; Perkins, Craig L.; ...
2017-07-01
Recent studies have demonstrated that growth of CdTe on CdTe (100) and (211)B substrates via molecular beam epitaxy (MBE) results in planar defect densities 2 and 3 orders of magnitude higher than growth on InSb (100) substrates, respectively. To understand this shortcoming, MBE growth on CdTe substrates with a variety of substrate preparation methods is studied by scanning electron microscopy, secondary ion mass spectrometry, x-ray photoelectron spectroscopy, cross sectional transmission electron microscopy, and atom probe tomography (APT). Prior to growth, carbon is shown to remain on substrate surfaces even after atomic hydrogen cleaning. APT revealed that following the growth ofmore » films, trace amounts of carbon remained at the substrate/film interface. This residual carbon may lead to structural degradation, which was determined as the main cause of higher defect density.« less
APT mass spectrometry and SEM data for CdTe solar cells
Li, Chen; Paudel, Naba R.; Yan, Yanfa; ...
2016-03-16
Atom probe tomography (APT) data acquired from a CAMECA LEAP 4000 XHR for the CdS/CdTe interface for a non-CdCl 2 treated CdTe solar cell as well as the mass spectrum of an APT data set including a GB in a CdCl 2-treated CdTe solar cell are presented. Scanning electron microscopy (SEM) data showing the evolution of sample preparation for APT and scanning transmission electron microscopy (STEM) electron beam induced current (EBIC) are also presented. As a result, these data show mass spectrometry peak decomposition of Cu and Te within an APT dataset, the CdS/CdTe interface of an untreated CdTe solarmore » cell, preparation of APT needles from the CdS/CdTe interface in superstrate grown CdTe solar cells, and the preparation of a cross-sectional STEM EBIC sample.« less
Coexistence of optically active radial and axial CdTe insertions in single ZnTe nanowire.
Wojnar, P; Płachta, J; Zaleszczyk, W; Kret, S; Sanchez, Ana M; Rudniewski, R; Raczkowska, K; Szymura, M; Karczewski, G; Baczewski, L T; Pietruczik, A; Wojtowicz, T; Kossut, J
2016-03-14
We report on the growth, cathodoluminescence and micro-photoluminescence of individual radial and axial CdTe insertions in ZnTe nanowires. In particular, the cathodoluminescence technique is used to determine the position of each emitting object inside the nanowire. It is demonstrated that depending on the CdTe deposition temperature, one can obtain an emission either from axial CdTe insertions only, or from both, radial and axial heterostructures, simultaneously. At 350 °C CdTe grows only axially, whereas at 310 °C and 290 °C, there is also significant deposition on the nanowire sidewalls resulting in radial core/shell heterostructures. The presence of Cd atoms on the sidewalls is confirmed by energy dispersive X-ray spectroscopy. Micro-photoluminescence study reveals a strong linear polarization of the emission from both types of heterostructures in the direction along the nanowire axis.
Synthesis of Stable Citrate-Capped Silver Nanoprisms.
Haber, Jason; Sokolov, Konstantin
2017-10-10
Citrate-stabilized silver nanoprisms (AgNPrs) can be easily functionalized using well-developed thiol based surface chemistry that is an important requirement for biosensor applications utilizing localized surface plasmon resonance (LSPR) and surface-enhanced Raman Scattering (SERS). Unfortunately, currently available protocols for synthesis of citrate-coated AgNPrs do not produce stable nanoparticles thus limiting their usefulness in biosensing applications. Here we address this problem by carrying out a systematic study of citrate-stabilized, peroxide-based synthesis of AgNPrs to optimize reaction conditions for production of stable and reproducible nanoprisms. Our analysis showed that concentration of secondary reducing agent, l-ascorbic acid, is critical to AgNPr stability. Furthermore, we demonstrated that optimization of other synthesis conditions such as stabilizer concentration, rate of silver nitrate addition, and seed dilution result in highly stable nanoprisms with narrow absorbance peaks ranging from 450 nm into near-IR. In addition, the optimized reaction conditions can be used to produce AgNPrs in a one-pot synthesis instead of a previously described two-step reaction. The resulting nanoprisms can readily interact with thiols for easy surface functionalization. These studies provide an optimized set of parameters for precise control of citrate stabilized AgNPr synthesis for biomedical applications.
Suppression of dislocations by Sb spray in the vicinity of InAs/GaAs quantum dots
2014-01-01
The effect of Sb spray prior to the capping of a GaAs layer on the structure and properties of InAs/GaAs quantum dots (QDs) grown by molecular beam epitaxy (MBE) is studied by cross-sectional high-resolution transmission electron microscopy (HRTEM). Compared to the typical GaAs-capped InAs/GaAs QDs, Sb-sprayed QDs display a more uniform lens shape with a thickness of about 3 ~ 4 nm rather than the pyramidal shape of the non-Sb-sprayed QDs. Particularly, the dislocations were observed to be passivated in the InAs/GaAs interface region and even be suppressed to a large extent. There are almost no extended dislocations in the immediate vicinity of the QDs. This result is most likely related to the formation of graded GaAsSb immediately adjacent to the InAs QDs that provides strain relief for the dot/capping layer lattice mismatch. PACS 81.05.Ea; 81.07.-b; 81.07.Ta PMID:24948897
Colloidal 3-Mercaptopropionic Acid Capped Lead Sulfide Quantum Dots in a Low Boiling Point Solvent.
Reinhart, Chase C; Johansson, Erik
2017-04-26
Colloidal 3-mercaptopropionic acid (3-MPA) capped lead sulfide quantum dots were prepared in a variety of organic solvents stabilized with a quaternary ammonium halide salt. The stabilized colloids' optical properties were studied through optical absorption and emission spectroscopy and found to be dependent on both the concentration of a new ligand and stabilizer, and sample age. Nanocrystal ligand chemistry was studied through a combination of 1 H NMR and two-dimensional Nuclear Overhauser Effect Spectroscopy (NOESY) which revealed full displacement of the original oleate ligand to form a dynamically exchanging ligand shell. The colloids were studied optically and via NMR as they aged and revealed a quantitative conversion of monomeric 3-mercaptopropionic acid to its dimer, dithiodipropionic acid (dTdPA).
Zhang, Xiaoming; Neiner, Doinita; Wang, Shizhong; Louie, Angelique Y; Kauzlarich, Susan M
2007-01-24
Hydrogen capped silicon nanoparticles with strong blue photoluminescence were synthesized by the metathesis reaction of sodium silicide, NaSi, with NH 4 Br. The hydrogen capped Si nanoparticles were further terminated with octyl groups and then coated with a polymer to render them water soluble. The nanoparticles were characterized by TEM, FT-IR, UV-VIS absorption, and photoluminescence. The Si nanoparticles were shown to have an average diameter of 3.9 ±1.3 nm and exhibited room-temperature photoluminescence with a peak maximum at 438 nm with a quantum efficiency of 32% in hexane and 18% in water; the emission was stable in ambient air for up to 2 months. These nanoparticles could hold great potential as a non-heavy element containing quantum dot for applications in biology.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoming; Neiner, Doinita; Wang, Shizhong; Louie, Angelique Y.; Kauzlarich, Susan M.
2007-03-01
Hydrogen-capped silicon nanoparticles with strong blue photoluminescence were synthesized by the metathesis reaction of sodium silicide, NaSi, with NH4Br. The hydrogen-capped Si nanoparticles were further terminated with octyl groups and then coated with a polymer to render them water-soluble. The nanoparticles were characterized by TEM, FT-IR, UV-vis absorption and photoluminescence. The Si nanoparticles were shown to have an average diameter of 3.9 ± 1.3 nm and exhibited room temperature photoluminescence with a peak maximum at 438 nm with a quantum efficiency of 32% in hexane and 18% in water; the emission was stable in ambient air for up to 2 months. These nanoparticles could hold great potential as a non-heavy-element-containing quantum dot for applications in biology.
NASA Astrophysics Data System (ADS)
Tashkhourian, Javad; Absalan, Ghodratollah; Jafari, Marzieh; Zare, Saber
2016-01-01
A rapid, simple and inexpensive spectrofluorimetric sensor for determination of doxycycline based on its interaction with thioglycolic acid-capped cadmium telluride quantum dots (TGA/CdTe QDs) has been developed. Under the optimum experimental conditions, the sensor exhibited a fast response time of <10 s. The results revealed that doxycycline could quench the fluorescence of TGA/CdTe QDs via electron transfer from the QDs to doxycycline through a dynamic quenching mechanism. The sensor permitted determination of doxycycline in a concentration range of 1.9 × 10-6-6.1 × 10-5 mol L-1 with a detection limit of 1.1 × 10-7 mol L-1. The sensor was applied for determination of doxycycline in honey and human serum samples.
Gao, Yunan; Talgorn, Elise; Aerts, Michiel; Trinh, M Tuan; Schins, Juleon M; Houtepen, Arjan J; Siebbeles, Laurens D A
2011-12-14
PbSe quantum-dot solids are of great interest for low cost and efficient photodetectors and solar cells. We have prepared PbSe quantum-dot solids with high charge carrier mobilities using layer-by-layer dip-coating with 1,2-ethanediamine as substitute capping ligands. Here we present a time and energy resolved transient absorption spectroscopy study on the kinetics of photogenerated charge carriers, focusing on 0-5 ps after photoexcitation. We compare the observed carrier kinetics to those for quantum dots in dispersion and show that the intraband carrier cooling is significantly faster in quantum-dot solids. In addition we find that carriers diffuse from higher to lower energy sites in the quantum-dot solid within several picoseconds.
Supply Constraints Analysis | Energy Analysis | NREL
module cost, and future price could be critical to the economic viability of this PV technology. Even constraints on future CdTe PV module deployment and found that: CdTe PV modules can remain cost-competitive and 4070 GW of annual CdTe production by 2030. Cost estimates were based on NREL's manufacturing cost
Transport properties of nanocomposite and its simulation with L-R-C circuit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangopadhyay, Arnab, E-mail: agangulyphysics@gmail.com; Sarkar, Aditi, E-mail: agangulyphysics@gmail.com; Sarkar, A., E-mail: agangulyphysics@gmail.com
2014-04-24
The nano particles are represented in this communication by L-R-C equivalent circuit. The dc current voltage characteristics (CVC) of the proposed circuit have simulated using Circuit-Maker ® 2000. Experimental investigation on ZnO nano-composite with capping material gum acacia shows similar CVC. NPs are represented by C-R combinations to manifest the Coulomb blockade effect of a quantum dot. The capping material is represented by an inductor along with a resistance in series. Nine NPs with capping matrix are simulated. The dc current voltage characteristics (CVC) and gross feature of polarization nature obtained by experiment and simulation study are consistent.
Surface and interface of epitaxial CdTe film on CdS buffered van der Waals mica substrate
NASA Astrophysics Data System (ADS)
Yang, Y.-B.; Seewald, L.; Mohanty, Dibyajyoti; Wang, Y.; Zhang, L. H.; Kisslinger, K.; Xie, Weiyu; Shi, J.; Bhat, I.; Zhang, Shengbai; Lu, T.-M.; Wang, G.-C.
2017-08-01
Single crystal CdTe films are desirable for optoelectronic device applications. An important strategy of creating films with high crystallinity is through epitaxial growth on a proper single crystal substrate. We report the metalorganic chemical vapor deposition of epitaxial CdTe films on the CdS/mica substrate. The epitaxial CdS film was grown on a mica surface by thermal evaporation. Due to the weak van der Waals forces, epitaxy is achieved despite the very large interface lattice mismatch between CdS and mica (∼21-55%). The surface morphology of mica, CdS and CdTe were quantified by atomic force microscopy. The near surface structures, orientations and texture of CdTe and CdS films were characterized by the unique reflection high-energy electron diffraction surface pole figure technique. The interfaces of CdTe and CdS films and mica were characterized by X-ray pole figure technique and transmission electron microscopy. The out-of-plane and in-plane epitaxy of the heteroepitaxial films stack are determined to be CdTe(111)//CdS(0001)//mica(001) and [1 bar2 1 bar]CdTe//[ 1 bar100]CdS//[010]mica, respectively. The measured photoluminescence (PL), time resolved PL, photoresponse, and Hall mobility of the CdTe/CdS/mica indicate quality films. The use of van der Waals surface to grow epitaxial CdTe/CdS films offers an alternative strategy towards infrared imaging and solar cell applications.
Small band gap superlattices as intrinsic long wavelength infrared detector materials
NASA Technical Reports Server (NTRS)
Smith, Darryl L.; Mailhiot, C.
1990-01-01
Intrinsic long wavelength (lambda greater than or equal to 10 microns) infrared (IR) detectors are currently made from the alloy (Hg, Cd)Te. There is one parameter, the alloy composition, which can be varied to control the properties of this material. The parameter is chosen to set the band gap (cut-off wavelength). The (Hg, Cd)Te alloy has the zincblend crystal structure. Consequently, the electron and light-hole effective masses are essentially inversely proportional to the band gap. As a result, the electron and light-hole effective masses are very small (M sub(exp asterisk)/M sub o approx. M sub Ih/M sub o approx. less than 0.01) whereas the heavy-hole effective mass is ordinary size (M sub hh(exp asterisk)/M sub o approx. 0.4) for the alloy compositions required for intrinsic long wavelength IR detection. This combination of effective masses leads to rather easy tunneling and relatively large Auger transition rates. These are undesirable characteristics, which must be designed around, of an IR detector material. They follow directly from the fact that (Hg, Cd)Te has the zincblend crystal structure and a small band gap. In small band gap superlattices, such as HgTe/CdTe, In(As, Sb)/InSb and InAs/(Ga,In)Sb, the band gap is determined by the superlattice layer thicknesses as well as by the alloy composition (for superlattices containing an alloy). The effective masses are not directly related to the band gap and can be separately varied. In addition, both strain and quantum confinement can be used to split the light-hole band away from the valence band maximum. These band structure engineering options can be used to reduce tunneling probabilities and Auger transition rates compared with a small band gap zincblend structure material. Researchers discuss the different band structure engineering options for the various classes of small band gap superlattices.
Ramírez-García, Gonzalo; Oluwole, David O; Nxele, Siphesihle Robin; d'Orlyé, Fanny; Nyokong, Tebello; Bedioui, Fethi; Varenne, Anne
2017-02-01
In this work, we characterized different phtalocyanine-capped core/shell/shell quantum dots (QDs) in terms of stability, ζ-potential, and size at various pH and ionic strengths, by means of capillary electrophoresis (CE), and compared these results to the ones obtained by laser Doppler electrophoresis (LDE) and dynamic light scattering (DLS). The effect of the phthalocyanine metallic center (Zn, Al, or In), the number (one or four), and nature of substituents (carboxyphenoxy- or sulfonated-) of functionalization on the phthalocyanine physicochemical properties were evaluated. Whereas QDs capped with zinc mono-carboxyphenoxy-phtalocyanine (ZnMCPPc-QDs) remained aggregated in the whole analyzed pH range, even at low ionic strength, QDs capped with zinc tetracarboxyphenoxy phtalocyanine (ZnTPPc-QDs) were easily dispersed in buffers at pH equal to or higher than 7.4. QDs capped with aluminum tetrasulfonated phthalocyanine (AlTSPPc-QDs) and indium tetracarboxyphenoxy phthalocyanines (InTCPPc-QDs) were stable in aqueous suspension only at pH higher than 9.0 due to the presence of functional groups bound to the metallic center of the phthalocyanine. The ζ-potential values determined by CE for all the samples decreased when ionic strength increased, being well correlated with the aggregation of the nanoconjugates at elevated salt concentrations. The use of electrokinetic methodologies has provided insights into the colloidal stability of the photosensitizer-functionalized QDs in physiological relevant solutions and thereby, its usefulness for improving their design and applications for photodynamic therapy. Graphical Abstract Schematic illustration of the phthalocyanine capped QDs nanoconjugates and the capillary electrophoresis methods applied for size and ζ-potential characterization.
NASA Astrophysics Data System (ADS)
Tuteja, Mohit
Cadmium Telluride (CdTe), a chalcogenide semiconductor, is currently used as the absorber layer in one of the highest efficiency thin film solar cell technologies. Current efficiency records are over 22%. In 2011, CdTe solar cells accounted for 8% of all solar cells installed. This is because, in part, CdTe has a low degradation rate, high optical absorption coefficient, and high tolerance to intrinsic defects. Solar cells based on polycrystalline CdTe exhibit a higher short-circuit current, fill factor, and power conversion efficiency than their single crystal counterparts. This is despite the fact that polycrystalline CdTe devices exhibit lower open-circuit voltages. This is contrary to the observation for silicon and III-V semiconductors, where material defects cause a dramatic drop in device performance. For example, grain boundaries in covalently-bonded semiconductors (a) act as carrier recombination centers, and (b) lead to localized energy states, causing carrier trapping. Despite significant research to date, the mechanism responsible for the superior current collection properties of polycrystalline CdTe solar cells has not been conclusively answered. This dissertation focuses on the macro-scale electronic band structure, and micro scale electronic properties of grains and grain boundaries in device-grade CdTe thin films to answer this open question. My research utilized a variety of experimental techniques. Samples were obtained from leading groups fabricating the material and devices. A CdCl 2 anneal is commonly performed as part of this fabrication and its effects were also investigated. Photoluminescence (PL) spectroscopy was employed to study the band structure and defect states in CdTe polycrystals. Cadmium vacancy- and chlorine-related states lead to carrier recombination, as in CdTe films grown by other methods. Comparing polycrystalline and single crystal CdTe, showed that the key to explaining the improved performance of polycrystalline CdTe does not lie in macroscopic analysis. The nanoscale majority carrier concentration was studied using scanning microwave impedance microscopy, which revealed an existence of majority carrier depletion along the grain boundaries, independent of the growth process used, which was absent in films that were not subjected to CdCl2 annealing. This effect promotes carrier separation and collection. Conductive atomic force microscopy showed enhanced conduction of electrons along the grain boundaries in samples subjected to the CdCl2 anneal treatment while holes were shown to move through the grain bulk. The separation of conduction channels minimizes recombination while simultaneously reducing series resistance and hence enhancing fill factor. Several technical capabilities demonstrated in this work can be easily extended to other semiconductor materials.
NASA Astrophysics Data System (ADS)
Larramendi, S.; Vaillant Roca, Lidice; Saint-Gregoire, Pierre; Ferraz Dias, Johnny; Behar, Moni
2017-10-01
A ZnO nanorod structure was grown by the hydrothermal method and interpenetrated with CdTe using the isothermal closed space sublimation technique. The obtained structure was studied by using the Rutherford backscattering spectrometry (RBS), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM). The X-ray Diffraction (XRD) technique confirmed the presence of CdTe nanocrystals (NCs) of very small size formed on the surface and in the interspaces between the ZnO nanorods. The RBS observations together with the SEM observations give information on the obtained structure. Finally the photoluminescence studies show a strong energy confinement effect on the grown CdTe NCs.
Aqueous based synthesis of N-acetyl-L-cysteine capped ZnSe nanocrystals with intense blue emission
NASA Astrophysics Data System (ADS)
Soheyli, Ehsan; Sahraei, Reza; Nabiyouni, Gholamreza
2016-10-01
In this work a very simple reflux route for preparation of ZnSe nanocrystals with minor modification and faster preparation over conventional ones is introduced. X-ray diffraction analysis indicated that the ZnSe nanocrystals have a cubic structure. The complete disappearance of the S-H band in FT-IR spectrum of N-acetyl-L-cysteine capped ZnSe nanocrystals was an indication over formation of Zn-thiol covalent bonds at the surface of the nanocrystals which results in passivation of small nanocrystals. The strong size-quantization regime was responsible of significant blue shift in absorption/emission spectra. Using the well-known calculations, band gap and Urbach energy of the ZnSe nanocrystals were measured and their average size was estimated optically to be around 4.6 nm along with the TEM image. A dark blue emission with higher relative intensity of excitonic to trap emissions (compared to conventional method), very narrow excitonic emission peak of about 16 nm and remarkable stability was obtained from the ZnSe nanocrystals.
Panniello, Annamaria; Ingrosso, Chiara; Coupillaud, Paul; Tamborra, Michela; Binetti, Enrico; Curri, Maria Lucia; Agostiano, Angela; Taton, Daniel; Striccoli, Marinella
2014-01-01
Polymeric ionic liquids (PILs) are an interesting class of polyelectrolytes, merging peculiar physical-chemical features of ionic liquids with the flexibility, mechanical stability and processability typical of polymers. The combination of PILs with colloidal semiconducting nanocrystals leads to novel nanocomposite materials with high potential for batteries and solar cells. We report the synthesis and properties of a hybrid nanocomposite made of colloidal luminescent CdSe nanocrystals incorporated in a novel ex situ synthesized imidazolium-based PIL, namely, either a poly(N-vinyl-3-butylimidazolium hexafluorophosphate) or a homologous PIL functionalized with a thiol end-group exhibiting a chemical affinity with the nanocrystal surface. A capping exchange procedure has been implemented for replacing the pristine organic capping molecules of the colloidal CdSe nanocrystals with inorganic chalcogenide ions, aiming to disperse the nano-objects in the PILs, by using a common polar solvent. The as-prepared nanocomposites have been studied by TEM investigation, UV-Vis, steady-state and time resolved photoluminescence spectroscopy for elucidating the effects of the PIL functionalization on the morphological and optical properties of the nanocomposites. PMID:28788477
Three dimensional atom probe imaging of GaAsSb quantum rings.
Beltrán, A M; Marquis, E A; Taboada, A G; Ripalda, J M; García, J M; Molina, S I
2011-07-01
Unambiguous evidence of ring-shaped self-assembled GaSb nanostructures grown by molecular beam epitaxy is presented on the basis of atom-probe tomography reconstructions and dark field transmission electron microscopy imaging. The GaAs capping process causes a strong segregation of Sb out of the center of GaSb quantum dots, leading to the self-assembled GaAs(x)Sb(1-x) quantum rings of 20-30 nm in diameter with x ∼ 0.33. Copyright © 2011 Elsevier B.V. All rights reserved.
Quantum dot bioconjugates for ultrasensitive nonisotopic detection.
Chan, W C; Nie, S
1998-09-25
Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection. In comparison with organic dyes such as rhodamine, this class of luminescent labels is 20 times as bright, 100 times as stable against photobleaching, and one-third as wide in spectral linewidth. These nanometer-sized conjugates are water-soluble and biocompatible. Quantum dots that were labeled with the protein transferrin underwent receptor-mediated endocytosis in cultured HeLa cells, and those dots that were labeled with immunomolecules recognized specific antibodies or antigens.
Transparent ohmic contacts for solution-processed, ultrathin CdTe solar cells
Kurley, J. Matthew; Panthani, Matthew G.; Crisp, Ryan W.; ...
2016-12-19
Recently, solution-processing became a viable route for depositing CdTe for use in photovoltaics. Ultrathin (~500 nm) solar cells have been made using colloidal CdTe nanocrystals with efficiencies exceeding 12% power conversion efficiency (PCE) demonstrated by using very simple device stacks. Further progress requires an effective method for extracting charge carriers generated during light harvesting. Here, we explored solution-based methods for creating transparent Ohmic contacts to the solution-deposited CdTe absorber layer and demonstrated molecular and nanocrystal approaches to Ohmic hole-extracting contacts at the ITO/CdTe interface. Furthermore, we used scanning Kelvin probe microscopy to further show how the above approaches improved carriermore » collection by reducing the potential drop under reverse bias across the ITO/CdTe interface. Other methods, such as spin-coating CdTe/A 2CdTe 2 (A = Na, K, Cs, N 2H 5), can be used in conjunction with current/light soaking to improve PCE further.« less
Synthesis, biological targeting and photophysics of quantum dots
NASA Astrophysics Data System (ADS)
Clarke, Samuel Jon
Quantum dots (QDs) are inorganic nanoparticles that have exceptional optical properties. Currently, QDs have failed to reach their potential as fluorescent probes in live cells, due to the nontrivial requirements for biological interfacing. The goal of this thesis is to address technical hurdles related to the reproducible synthesis of QDs, strategies for the specific targeting of QDs to biological cells and to understanding and exploitation of the photophysical properties. High quality QDs of varying composition (CdSe, CdTe and core/shell CdSe/ZnS) were synthesized with an organometallic method. To prepare biocompatible QDs, three strategies were used. The simplest strategy used small mercaptocarboxylic acids, while performance improvements were realized with engineered-peptide and lipid-micelle coatings. For specific biological targeting of the QDs, conjugation strategies were devised to attach biomolecules, while spectroscopic characterization methods were developed to assess conjugation efficiencies. To target gram-negative bacterial cells, an electrostatic self-assembly method was used to attach an antibiotic selective for this class of bacteria, polymyxin B. To target dopamine neurotransmitter receptor, a covalent conjugation method was used to attach dopamine, the endogenous ligand for that receptor. It was shown that dopamine molecule enabled electron transfer to QDs and the photophysics was studied in detail. A novel conjugation and targeting strategy was explored to enable the selective binding of QDs to polyhistidine epitopes on membrane proteins. Epifluorescence microscopy was used to evaluate the biological activity of the three QD probes. Combined, they add to the QD 'toolkit' for live-cell imaging. Finally, due to its negative implications in biological imaging, the fluorescent intermittency (blinking) of CdTe QDs was investigated. It was shown that mercaptocarboxylic acids contribute to the blinking suppression of the QDs, results that may aid in the design of nonblinking QDs. Overall, these findings should be useful in the future design of QDs for biological imaging and biosensing applications.
Experimental and theoretical comparison of Sb, As, and P diffusion mechanisms and doping in CdTe
NASA Astrophysics Data System (ADS)
Colegrove, E.; Yang, J.-H.; Harvey, S. P.; Young, M. R.; Burst, J. M.; Duenow, J. N.; Albin, D. S.; Wei, S.-H.; Metzger, W. K.
2018-02-01
Fundamental material doping challenges have limited CdTe electro-optical applications. In this work, the As atomistic diffusion mechanisms in CdTe are examined by spatially resolving dopant incorporation in both single-crystalline and polycrystalline CdTe over a range of experimental conditions. Density-functional theory calculations predict experimental activation energies and indicate that As diffuses slowly through the Te sublattice and quickly along GBs similar to Sb. Because of its atomic size and associated defect chemistry, As does not have a fast interstitial diffusion component similar to P. Experiments to incorporate and activate P, As, and Sb in polycrystalline CdTe are conducted to examine if ex situ Group V doping can overcome historic polycrystalline doping limits. The distinct P, As, and Sb diffusion characteristics create different strategies for increasing hole density. Because fast interstitial diffusion is prominent for P, less aggressive diffusion conditions followed by Cd overpressure to relocate the Group V element to the Te lattice site is effective. For larger atoms, slower diffusion through the Te sublattice requires more aggressive diffusion, however further activation is not always necessary. Based on the new physical understanding, we have obtained greater than 1016 cm-3 hole density in polycrystalline CdTe films by As and P diffusion.
Physics of grain boundaries in polycrystalline photovoltaic semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Yanfa, E-mail: yanfa.yan@utoledo.edu; Yin, Wan-Jian; Wu, Yelong
2015-03-21
Thin-film solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this paper, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. However, in each solar cell device, the GBs can bemore » chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. Therefore, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.« less
NASA Astrophysics Data System (ADS)
Pandey, A. K.; Ahmad, Muhammad Shakeel; Alizadeh, Mahdi; Rahim, Nasrudin Abd
2018-07-01
The combined effect of dual sensitization and hetero-junction symmetry has been investigated on the performance of TiO2 based dye sensitized solar cell. CdTe nanoparticles have been introduced in TiO2 matrix to function as sensitizer as well as act as hetero-junction between D719 dye and TiO2 nanoarchitecture. Four concentrations of CdTe i.e. 0.5 wt%, 2 wt%, 5 wt% and 8 wt% have been investigated. Morphological and compositional studies have been conducted using scanning electron microscope (SEM) and X-ray diffraction (XRD) respectively. Light absorption characteristics have been investigated by employing Uv-vis spectroscopy and the overall performance has been studied using solar simulator and electrochemical impedance spectroscopy (EIS). Performance has been found to be increased with the addition of CdTe due to high electron density and reduction in recombination reactions. An increase of 41.73% in incident photo conversion efficiency (IPCE) and 75.57% in short circuit current density (Jsc) have been recorded for the specimens containing 5 wt% CdTe compared to bare TiO2 based DSSCs. Further addition of CdTe leads to reduction in overall performance of DSSCs.
Local Electronic Structure Changes in Polycrystalline CdTe with CdCl 2 Treatment and Air Exposure
Berg, Morgann; Kephart, Jason M.; Munshi, Amit; ...
2018-03-12
Postdeposition CdCl 2 treatment of polycrystalline CdTe is known to increase the photovoltaic device efficiency. However, the precise chemical, structural, and electronic changes that underpin this improvement are still debated. In this work, spectroscopic photoemission electron microscopy was used to spatially map the vacuum level and ionization energy of CdTe films, enabling the identification of electronic structure variations between grains and grain boundaries (GBs). In vacuo preparation and inert transfer of oxide-free CdTe surfaces isolated the separate effects of CdCl 2 treatment and ambient oxygen exposure. Qualitatively, grain boundaries displayed lower work function and downward band bending relative to grainmore » interiors, but only after air exposure of CdCl 2-treated CdTe. Analysis of numerous space charge regions at grain boundaries showed an average depletion width of 290 nm and an average band bending magnitude of 70 meV, corresponding to a GB trap density of 10 11 cm –2 and a net carrier density of 10 15 cm –3. Finally, these results suggest that both CdCl 2 treatment and oxygen exposure may be independently tuned to enhance the CdTe photovoltaic performance by engineering the interface and bulk electronic structure.« less
Obtaining Large Columnar CdTe Grains and Long Lifetime on CdSe, MgZnO, or CdS Layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amarasinghe, Mahisha; Colegrove, Eric M; Moseley, John
CdTe solar cells have reached efficiencies comparable to multicrystalline silicon and produce electricity at costs competitive with traditional energy sources. Recent efficiency gains have come partly from shifting from the traditional CdS window layer to new materials such as CdSe and MgZnO, yet substantial headroom still exists to improve performance. Thin film technologies including Cu(In,Ga)Se2, perovskites, Cu2ZnSn(S,Se)4, and CdTe inherently have many grain boundaries that can form recombination centers and impede carrier transport; however, grain boundary engineering has been difficult and not practical. In this work, it is demonstrated that wide columnar grains reaching through the entire CdTe layer canmore » be achieved by aggressive postdeposition CdTe recrystallization. This reduces the grain structure constraints imposed by nucleation on nanocrystalline window layers and enables diverse window layers to be selected for other properties critical for electro-optical applications. Computational simulations indicate that increasing grain size from 1 to 7 um can be equivalent to decreasing grain-boundary recombination velocity by three orders of magnitude. Here, large high-quality grains enable CdTe lifetimes exceeding 50 ns.« less
Experimental and theoretical comparison of Sb, As, and P diffusion mechanisms and doping in CdTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colegrove, E.; Yang, J-H; Harvey, S. P.
Fundamental material doping challenges have limited CdTe electro-optical applications. In this work, the As atomistic diffusion mechanisms in CdTe are examined by spatially resolving dopant incorporation in both single-crystalline and polycrystalline CdTe over a range of experimental conditions. Density-functional theory calculations predict experimental activation energies and indicate As diffuses slowly through the Te sublattice and quickly along GBs similar to Sb. Because of its atomic size and associated defect chemistry, As does not have a fast interstitial diffusion component similar to P. Experiments to incorporate and activate P, As, and Sb in polycrystalline CdTe are conducted to examine if ex-situmore » Group V doping can overcome historic polycrystalline doping limits. The distinct P, As, and Sb diffusion characteristics create different strategies for increasing hole density. Because fast interstitial diffusion is prominent for P, less aggressive diffusion conditions followed by Cd overpressure to relocate the Group V element to the Te lattice site is effective. For larger atoms, slower diffusion through the Te sublattice requires more aggressive diffusion, however further activation is not always necessary. Based on the new physical understanding, we have obtained greater than 10^16 cm^-3 hole density in polycrystalline CdTe films by As and P diffusion.« less
Experimental and theoretical comparison of Sb, As, and P diffusion mechanisms and doping in CdTe
Colegrove, E.; Yang, J-H; Harvey, S. P.; ...
2018-01-29
Fundamental material doping challenges have limited CdTe electro-optical applications. In this work, the As atomistic diffusion mechanisms in CdTe are examined by spatially resolving dopant incorporation in both single-crystalline and polycrystalline CdTe over a range of experimental conditions. Density-functional theory calculations predict experimental activation energies and indicate As diffuses slowly through the Te sublattice and quickly along GBs similar to Sb. Because of its atomic size and associated defect chemistry, As does not have a fast interstitial diffusion component similar to P. Experiments to incorporate and activate P, As, and Sb in polycrystalline CdTe are conducted to examine if ex-situmore » Group V doping can overcome historic polycrystalline doping limits. The distinct P, As, and Sb diffusion characteristics create different strategies for increasing hole density. Because fast interstitial diffusion is prominent for P, less aggressive diffusion conditions followed by Cd overpressure to relocate the Group V element to the Te lattice site is effective. For larger atoms, slower diffusion through the Te sublattice requires more aggressive diffusion, however further activation is not always necessary. Based on the new physical understanding, we have obtained greater than 10^16 cm^-3 hole density in polycrystalline CdTe films by As and P diffusion.« less
Physics of grain boundaries in polycrystalline photovoltaic semiconductors
Yan, Yanfa; Yin, Wan-Jian; Wu, Yelong; ...
2015-03-16
Thin-film solar cells based on polycrystalline Cu(In,Ga)Se 2 (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this study, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. Although, in each solar cell device, the GBs can bemore » chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. In conclusion, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.« less
Local Electronic Structure Changes in Polycrystalline CdTe with CdCl 2 Treatment and Air Exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Morgann; Kephart, Jason M.; Munshi, Amit
Postdeposition CdCl 2 treatment of polycrystalline CdTe is known to increase the photovoltaic device efficiency. However, the precise chemical, structural, and electronic changes that underpin this improvement are still debated. In this work, spectroscopic photoemission electron microscopy was used to spatially map the vacuum level and ionization energy of CdTe films, enabling the identification of electronic structure variations between grains and grain boundaries (GBs). In vacuo preparation and inert transfer of oxide-free CdTe surfaces isolated the separate effects of CdCl 2 treatment and ambient oxygen exposure. Qualitatively, grain boundaries displayed lower work function and downward band bending relative to grainmore » interiors, but only after air exposure of CdCl 2-treated CdTe. Analysis of numerous space charge regions at grain boundaries showed an average depletion width of 290 nm and an average band bending magnitude of 70 meV, corresponding to a GB trap density of 10 11 cm –2 and a net carrier density of 10 15 cm –3. Finally, these results suggest that both CdCl 2 treatment and oxygen exposure may be independently tuned to enhance the CdTe photovoltaic performance by engineering the interface and bulk electronic structure.« less
Electrodeposition of CdTe thin film from acetate-based ionic liquid bath
NASA Astrophysics Data System (ADS)
Waldiya, Manmohansingh; Bhagat, Dharini; Mukhopadhyay, Indrajit
2018-05-01
CdTe being a direct band gap semiconductor, is mostly used in photovoltaics. Here we present, the synthesis of CdTe thin film on fluorine doped tin oxide (FTO) substrate potentiostatically using 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]) ionic liquid (IL) bath at 90 °C. Major advantages of using electrodeposition involves process simplicity, large scalability & economic viability. Some of the benefits offered by IL electrolytic bath are low vapour pressure, wide electrochemical window, and good ionic mobility. Cd(CH3COO)2 (anhydrous) and TeO2 were used as the source precursors. The IL electrolytic bath temperature was kept at 90 °C for deposition, owing to the limited solubility of TeO2 in [Bmim][Ac] IL at room temperature. Cathodic electrodeposition was carried out using a three electrode cell setup at a constant potential of -1.20 V vs. platinum (Pt) wire. The CdTe/FTO thin film were annealed in argon (Ar) atmosphere. Optical study of nanostructured CdTe film were done using UV-Vis-IR and Raman spectroscopy. Raman analysis confirms the formation of CdTe having surface optics (SO) mode at 160.6 cm-1 and transverse optics (TO) mode at 140.5 cm-1. Elemental Te peaks at 123, 140.5 and 268 cm-1 were also observed. The optical band gap of Ar annealed CdTe thin film were found to be 1.47 eV (absorbance band edge ˜ 846 nm). The optimization of deposition parameters using acetate-based IL electrolytic bath to get nearly stoichiometric CdTe thin film is currently being explored.
Cadmium telluride leaching behavior: Discussion of Zeng et al. (2015).
Sinha, Parikhit
2015-11-01
Zeng et al. (2015) evaluate the leaching behavior and surface chemistry of II-VI semiconductor materials, CdTe and CdSe, in response to pH and O2. Under agitation in acidic and aerobic conditions, the authors found approximately 3.6%-6.4% (w/w) solubility of Cd content in CdTe in the Toxicity Characteristic Leaching Procedure (TCLP), Waste Extraction Test (WET), and dissolution test, with lower solubility (0.56-0.58%) under agitation in acidic and anoxic conditions. This range is comparable with prior long-term transformation and dissolution testing and bio-elution testing of CdTe (2.3%-4.1% w/w solubility of Cd content in CdTe). The implications for potential leaching behavior of CdTe-containing devices require further data. Since CdTe PV modules contain approximately 0.05% Cd content by mass, the starting Cd content in the evaluation of CdTe-containing devices would be lower by three orders of magnitude than the starting Cd content in the authors' study, and leaching potential would be further limited by the monolithic glass-adhesive laminate-glass structure of the device that encapsulates the semiconductor material. Experimental evaluation of leaching potential of CdTe PV modules crushed by landfill compactor has been conducted, with results of TCLP and WET tests on the crushed material below regulatory limits for Cd. CdTe PV recycling technology has been in commercial operation since 2005 with high yields for semiconductor (95%) and glass (90%) recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Surface and interface of epitaxial CdTe film on CdS buffered van der Waals mica substrate
Yang, Y. -B.; Seewald, L.; Mohanty, Dibyajyoti; ...
2017-03-31
We report single crystal CdTe films are desirable for optoelectronic device applications. An important strategy of creating films with high crystallinity is through epitaxial growth on a proper single crystal substrate. We report the metalorganic chemical vapor deposition of epitaxial CdTe films on the CdS/mica substrate. The epitaxial CdS film was grown on a mica surface by thermal evaporation. Due to the weak van der Waals forces, epitaxy is achieved despite the very large interface lattice mismatch between CdS and mica (~21–55%). The surface morphology of mica, CdS and CdTe were quantified by atomic force microscopy. The near surface structures, orientations and texture of CdTe and CdS films were characterized by the unique reflection high-energy electron diffraction surface pole figure technique. The interfaces of CdTe and CdS films and mica were characterized by X-ray pole figure technique and transmission electron microscopy. The out-of-plane and in-plane epitaxy of the heteroepitaxial films stack are determined to be CdTe(111)//CdS(0001)//mica(001) and [more » $$\\overline{1}2\\overline{1}$$] CdTe//[$$\\overline{1}100$$] CdS//[010] mica, respectively. The measured photoluminescence (PL), time resolved PL, photoresponse, and Hall mobility of the CdTe/CdS/mica indicate quality films. Finally, the use of van der Waals surface to grow epitaxial CdTe/CdS films offers an alternative strategy towards infrared imaging and solar cell applications.« less
Surface and interface of epitaxial CdTe film on CdS buffered van der Waals mica substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y. -B.; Seewald, L.; Mohanty, Dibyajyoti
We report single crystal CdTe films are desirable for optoelectronic device applications. An important strategy of creating films with high crystallinity is through epitaxial growth on a proper single crystal substrate. We report the metalorganic chemical vapor deposition of epitaxial CdTe films on the CdS/mica substrate. The epitaxial CdS film was grown on a mica surface by thermal evaporation. Due to the weak van der Waals forces, epitaxy is achieved despite the very large interface lattice mismatch between CdS and mica (~21–55%). The surface morphology of mica, CdS and CdTe were quantified by atomic force microscopy. The near surface structures, orientations and texture of CdTe and CdS films were characterized by the unique reflection high-energy electron diffraction surface pole figure technique. The interfaces of CdTe and CdS films and mica were characterized by X-ray pole figure technique and transmission electron microscopy. The out-of-plane and in-plane epitaxy of the heteroepitaxial films stack are determined to be CdTe(111)//CdS(0001)//mica(001) and [more » $$\\overline{1}2\\overline{1}$$] CdTe//[$$\\overline{1}100$$] CdS//[010] mica, respectively. The measured photoluminescence (PL), time resolved PL, photoresponse, and Hall mobility of the CdTe/CdS/mica indicate quality films. Finally, the use of van der Waals surface to grow epitaxial CdTe/CdS films offers an alternative strategy towards infrared imaging and solar cell applications.« less
Zhang, Xiaoming; Neiner, Doinita; Wang, Shizhong; Louie, Angelique Y.; Kauzlarich, Susan M.
2010-01-01
Hydrogen capped silicon nanoparticles with strong blue photoluminescence were synthesized by the metathesis reaction of sodium silicide, NaSi, with NH4Br. The hydrogen capped Si nanoparticles were further terminated with octyl groups and then coated with a polymer to render them water soluble. The nanoparticles were characterized by TEM, FT-IR, UV-VIS absorption, and photoluminescence. The Si nanoparticles were shown to have an average diameter of 3.9 ±1.3 nm and exhibited room-temperature photoluminescence with a peak maximum at 438 nm with a quantum efficiency of 32% in hexane and 18% in water; the emission was stable in ambient air for up to 2 months. These nanoparticles could hold great potential as a non-heavy element containing quantum dot for applications in biology. PMID:25170189
Tashkhourian, Javad; Absalan, Ghodratollah; Jafari, Marzieh; Zare, Saber
2016-01-05
A rapid, simple and inexpensive spectrofluorimetric sensor for determination of doxycycline based on its interaction with thioglycolic acid-capped cadmium telluride quantum dots (TGA/CdTe QDs) has been developed. Under the optimum experimental conditions, the sensor exhibited a fast response time of <10s. The results revealed that doxycycline could quench the fluorescence of TGA/CdTe QDs via electron transfer from the QDs to doxycycline through a dynamic quenching mechanism. The sensor permitted determination of doxycycline in a concentration range of 1.9×10(-6)-6.1×10(-5)molL(-1) with a detection limit of 1.1×10(-7)molL(-1). The sensor was applied for determination of doxycycline in honey and human serum samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Hosseinzadeh, Ghader; Maghari, Ali; Farniya, Seyed Morteza Famil; Keihan, Amir Homayoun; Moosavi-Movahedi, Ali A
2017-08-01
Interaction of quantum dots (QDs) and proteins strongly influenced by the surface characteristics of the QDs at the protein-QD interface. For a precise control of these surface-related interactions, it is necessary to improve our understanding in this field. In this regard, in the present work, the interaction between the insulin and differently functionalized ZnS quantum dots (QDs) were studied. The ZnS QDs were functionalized with various functional groups of hydroxyl (OH), carboxyl (COOH), amine (NH 2 ), and amino acid (COOH and NH 2 ). The effect of surface hydrophobicity was also studied by changing the alkyl-chain lengths of mercaptocarboxylic acid capping agents. The interaction between insulin and the ZnS QDs were investigated by fluorescence quenching, synchronous fluorescence, circular dichroism (CD), and thermal aggregation techniques. The results reveal that among the studied QDs, mercaptosuccinic acid functionalized QDs has the strongest interaction (∆G ° =-51.50kJ/mol at 310K) with insulin, mercaptoethanol functionalized QDs destabilize insulin by increasing the beta-sheet contents, and only cysteine functionalized QDs improves the insulin stability by increasing the alpha-helix contents of the protein, and. Our results also indicate that by increasing the alkyl-chain length of capping agents, due to an increase in hydrophobicity of the QDs surface, the beta-sheet contents of insulin increase which results in the enhancement of insulin instability. Copyright © 2017 Elsevier B.V. All rights reserved.
Cui, J; Lv, Y; Yang, X J; Fan, Y L; Zhong, Z; Jiang, Z M
2011-03-25
The size uniformity of self-assembled SiGe quantum rings, which are formed by capping SiGe quantum dots with a thin Si layer, is found to be greatly influenced by the growth temperature and the areal density of SiGe quantum dots. Higher growth temperature benefits the size uniformity of quantum dots, but results in low Ge concentration as well as asymmetric Ge distribution in the dots, which induces the subsequently formed quantum rings to be asymmetric in shape or even broken somewhere in the ridge of rings. Low growth temperature degrades the size uniformity of quantum dots, and thus that of quantum rings. A high areal density results in the expansion and coalescence of neighboring quantum dots to form a chain, rather than quantum rings. Uniform quantum rings with a size dispersion of 4.6% and an areal density of 7.8×10(8) cm(-2) are obtained at the optimized growth temperature of 640°C.
Effect of Ligand Exchange on the Photoluminescence Properties of Cu-Doped Zn-In-Se Quantum Dots
NASA Astrophysics Data System (ADS)
Dong, Xiaofei; Xu, Jianping; Yang, Hui; Zhang, Xiaosong; Mo, Zhaojun; Shi, Shaobo; Li, Lan; Yin, Shougen
2018-04-01
The surface-bound ligands of a semiconductor nanocrystal can affect its electron transition behavior. We investigate the photoluminescence (PL) properties of Cu-doped Zn-In-Se quantum dots (QDs) through the exchange of oleylamine with 6-mercaptohexanol (MCH). Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies, and mass spectrometry reveal that the short-chain MCH molecules are bound to the QD surface. The emission peaks remain unchanged after ligand exchange, and the PL quantum yield is reduced from 49% to 38%. The effects of particle size and defect type on the change in PL behavior upon ligand substitution are excluded through high-resolution transmission electron microscopy, UV-Vis absorption, and PL spectroscopies. The origin of the decreased PL intensity is associated with increased ligand density and the stronger ligand electron-donating abilities of MCH-capped QDs that induce an increase in the nonradiative transition probability. A lower PL quenching transition temperature is observed for MCH-capped QDs and is associated with increasing electron-acoustic phonon coupling due to the lower melting temperature of MCH.
Sippel, Philipp; Albrecht, Wiebke; Mitoraj, Dariusz; Eichberger, Rainer; Hannappel, Thomas; Vanmaekelbergh, Daniel
2013-04-10
Solids composed of colloidal quantum dots hold promise for third generation highly efficient thin-film photovoltaic cells. The presence of well-separated conduction electron states opens the possibility for an energy-selective collection of hot and equilibrated carriers, pushing the efficiency above the one-band gap limit. However, in order to reach this goal the decay of hot carriers within a band must be better understood and prevented, eventually. Here, we present a two-photon photoemission study of the 1Pe→1Se intraband relaxation dynamics in a CdSe quantum dot solid that mimics the active layer in a photovoltaic cell. We observe fast hot electron relaxation from the 1Pe to the 1Se state on a femtosecond-scale by Auger-type energy donation to the hole. However, if the oleic acid capping is exchanged for hexanedithiol capping, fast deep hole trapping competes efficiently with this relaxation pathway, blocking the Auger-type electron-hole energy exchange. A slower decay becomes then visible; we provide evidence that this is a multistep process involving the surface.
Characterization of cap-shaped silver particles for surface-enhanced fluorescence effects.
Yamaguchi, Tetsuji; Kaya, Takatoshi; Takei, Hiroyuki
2007-05-15
Surface-enhanced fluorescence has potentially many desirable properties as an analytical method for medical diagnostics, but the effect observed so far is rather modest and only in conjunction with fluorophores with low quantum yields. Coupled with the fact that preparation of suitable surfaces at low costs has been difficult, this has limited its utilities. Here we report a novel method for forming uniform and reproducible surfaces with respectable enhancement ratios even for high-quantum-yield fluorophores. Formation of dense surface-adsorbed latex spheres on a flat surface via partial aggregation, followed by evaporation of silver, results in a film consisting of cap-shaped silver particles at high densities. Binding of fluorescence biomolecules, either through physisorption or antigen-antibody reaction, was performed, and enhancements close to 50 have been observed with fluorophores such as R-phycoerythrin and Alexa 546-labeled, bovine serum albumin, both of which have quantum yields around 0.8. We attribute this to the unique shape of the silver particle and the presence of abundant gaps among adjacent particles at high densities. The effectiveness of the new surface is also demonstrated with IL-6 sandwich assays.
NASA Astrophysics Data System (ADS)
Shi, Wenqin; Eijt, Stephan W. H.; Suchand Sandeep, C. S.; Siebbeles, Laurens D. A.; Houtepen, Arjan J.; Kinge, Sachin; Brück, Ekkes; Barbiellini, Bernardo; Bansil, Arun
2016-02-01
Positron Two Dimensional Angular Correlation of Annihilation Radiation (2D-ACAR) measurements reveal modifications of the electronic structure and composition at the surfaces of PbSe quantum dots (QDs), deposited as thin films, produced by various ligands containing either oxygen or nitrogen atoms. In particular, the 2D-ACAR measurements on thin films of colloidal PbSe QDs capped with oleic acid ligands yield an increased intensity in the electron momentum density (EMD) at high momenta compared to PbSe quantum dots capped with oleylamine. Moreover, the EMD of PbSe QDs is strongly affected by the small ethylenediamine ligands, since these molecules lead to small distances between QDs and favor neck formation between near neighbor QDs, inducing electronic coupling between neighboring QDs. The high sensitivity to the presence of oxygen atoms at the surface can be also exploited to monitor the surface oxidation of PbSe QDs upon exposure to air. Our study clearly demonstrates that positron annihilation spectroscopy applied to thin films can probe surface transformations of colloidal semiconductor QDs embedded in functional layers.
Directed Assembly of Quantum Dots in Diblock Copolymer Matrix
2007-08-01
behavior of a diblock copolymer, PS - b -poly(2-vinylpyridene) ( PS - b - P2VP ). Addition of 2.5-nm-diameter gold nanoparticles, functionalized with short...dispersion of variations in the relative surface coverage by short thiol-terminated PS ligands (3400 g/mol), also in a PS - b - P2VP matrix. As a result of...film of PS - b - P2VP . In that case, the particles were stabilized with tri-n-octylphosphine oxide (TOPO) ligands. When thin films were prepared from
NASA Astrophysics Data System (ADS)
Kistler, Marc; Estre, Nicolas; Merle, Elsa
2018-01-01
As part of its R&D activities on high-energy X-ray imaging for non-destructive characterization, the Nuclear Measurement Laboratory has started an upgrade of its imaging system currently implemented at the CEA-Cadarache center. The goals are to achieve a sub-millimeter spatial resolution and the ability to perform tomographies on very large objects (more than 100-cm standard concrete or 40-cm steel). This paper presentsresults on the detection part of the imaging system. The upgrade of the detection part needs a thorough study of the performance of two detectors: a series of CdTe semiconductor sensors and two arrays of segmented CdWO4 scintillators with different pixel sizes. This study consists in a Quantum Accounting Diagram (QAD) analysis coupled with Monte-Carlo simulations. The scintillator arrays are able to detect millimeter details through 140 cm of concrete, but are limited to 120 cm for smaller ones. CdTe sensors have lower but more stable performance, with a 0.5 mm resolution for 90 cm of concrete. The choice of the detector then depends on the preferred characteristic: the spatial resolution or the use on large volumes. The combination of the features of the source and the studies on the detectors gives the expected performance of the whole equipment, in terms of signal-over-noise ratio (SNR), spatial resolution and acquisition time.
Wang, Qian; Ruan, Yi-Fan; Zhao, Wei-Wei; Lin, Peng; Xu, Jing-Juan; Chen, Hong-Yuan
2018-03-20
In this study, semiconducting organic polymer dots (Pdots) and inorganic quantum dots (Qdots) were first utilized to construct the organic-inorganic nanodots heterojunction for the photoelectrochemical (PEC) bioanalysis application. Specifically, n-type CdS Qdots, p-type CdTe Qdots, and tetraphenylporphyrin (TPP)-doped poly[(9,9-dioctylfluorenyl-2,7-diyl)- co-(1,4-benzo-{2,1',3}-thiadazole)] (PFBT) Pdots were fabricated, and their energy levels, that is, their valence band (VB)/conduction band (CB) or lowest unoccupied molecular orbital (LUMO)/highest occupied molecular orbital (HOMO) values, were also determined. Then, these nanodots were integrated to construct four types of p-n and p-p organic-inorganic nanodots heterojunctions, that is, CdS Qdots/TPP-doped PFBT Pdots, TPP-doped PFBT Pdots/CdS Qdots, CdTe Qdots/TPP-doped PFBT Pdots, and TPP-doped PFBT Pdots/CdTe Qdots, on the transparent glass electrode. Upon light irradiation, four heterojunctions exhibited different PEC behaviors with some having prominent photocurrent enhancement. With the model molecule l-cysteine (l-cys) as target, the proposed PEC sensor exhibited good performances. In brief, this work presents the first semiconducting organic-inorganic nanodots heterojunction for PEC bioanalysis application, which could be easily used as a general platform for future PEC bioanalysis building. Besides, it is expected to inspire more interest in the design, development, and implementation of various organic-inorganic heterojunctions for advanced PEC bioanalysis in the future.
NASA Astrophysics Data System (ADS)
Xu, Zhihao; Gotoh, Kazuhiro; Deng, Tianguo; Sato, Takuma; Takabe, Ryota; Toko, Kaoru; Usami, Noritaka; Suemasu, Takashi
2018-05-01
We studied the surface passivation effect of hydrogenated amorphous silicon (a-Si:H) layers on BaSi2 films. a-Si:H was formed by an electron-beam evaporation of Si, and a supply of atomic hydrogen using radio-frequency plasma. Surface passivation effect was first investigated on a conventional n-Si(111) substrate by capping with 20 nm-thick a-Si:H layers, and next on a 0.5 μm-thick BaSi2 film on Si(111) by molecular beam epitaxy. The internal quantum efficiency distinctly increased by 4 times in a wide wavelength range for sample capped in situ with a 3 nm-thick a-Si:H layer compared to those capped with a pure a-Si layer.
Quantum dot-linked immunosorbent assay (QLISA) using orientation-directed antibodies.
Suzuki, Miho; Udaka, Hikari; Fukuda, Takeshi
2017-09-05
An approach similar to the enzyme-linked immunosorbent assay (ELISA), with the advantage of saving time and effort but exhibiting high performance, was developed using orientation-directed half-part antibodies immobilized on CdSe/ZnS quantum dots. ELISA is a widely accepted assay used to detect the presence of a target substance. However, it takes time to quantify the target with specificity and sensitivity owing to signal amplification. In this study, CdSe/ZnS quantum dots are introduced as bright and photobleaching-tolerant fluorescent materials. Since hydrophilic surface coating of quantum dots rendered biocompatibility and functional groups for chemical reactions, the quantum dots were modified with half-sized antibodies after partial reduction. The half-sized antibody could be bound to a quantum dot through a unique thiol site to properly display the recognition domain for the core process of ELISA, which is an antigen-antibody interaction. The reducing conditions were investigated to generate efficient conjugates of quantum dots and half-sized antibodies. This was applied to IL-6 detection, as the quantification of IL-6 is significant owing to its close relationships with various biomedical phenomena that cause different diseases. An ELISA-like assay with CdSe/ZnS quantum dot institution (QLISA; Quantum dot-linked immunosorbent assay) was developed to detect 0.05ng/mL IL-6, which makes it sufficiently sensitive as an immunosorbent assay. Copyright © 2017 Elsevier B.V. All rights reserved.
3D Lifetime Tomography Reveals How CdCl 2 Improves Recombination Throughout CdTe Solar Cells
Barnard, Edward S.; Ursprung, Benedikt; Colegrove, Eric; ...
2016-11-15
When using two-photon tomography, carrier lifetimes are mapped in polycrystalline CdTe photovoltaic devices. These 3D maps probe subsurface carrier dynamics that are inaccessible with traditional optical techniques. They reveal that CdCl 2 treatment of CdTe solar cells suppresses nonradiative recombination and enhances carrier lifetimes throughout the film with substantial improvements particularly near subsurface grain boundaries and the critical buried p-n junction.
Energy resolution improvement of CdTe detectors by using the principal component analysis technique
NASA Astrophysics Data System (ADS)
Alharbi, T.
2018-02-01
In this paper, we report on the application of the Principal Component Analysis (PCA) technique for the improvement of the γ-ray energy resolution of CdTe detectors. The PCA technique is used to estimate the amount of charge-trapping effect which is reflected in the shape of each detector pulse, thereby correcting for the charge-trapping effect. The details of the method are described and the results obtained with a CdTe detector are shown. We have achieved an energy resolution of 1.8 % (FWHM) at 662 keV with full detection efficiency from a 1 mm thick CdTe detector which gives an energy resolution of 4.5 % (FWHM) by using the standard pulse processing method.
Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe
Burst, James M.; Farrell, Stuart B.; Albin, David S.; ...
2016-11-01
CdTe defect chemistry is adjusted by annealing samples with excess Cd or Te vapor with and without extrinsic dopants. We observe that Group I (Cu and Na) elements can increase hole density above 10 16 cm -3, but compromise lifetime and stability. By post-deposition incorporation of a Group V dopant (P) in a Cd-rich ambient, lifetimes of 30 ns with 10 16 cm -3 hole density are achieved in single-crystal and polycrystalline CdTe without CdCl 2 or Cu. Furthermore, phosphorus doping appears to be thermally stable. In conclusion, this combination of long lifetime, high carrier concentration, and improved stability canmore » help overcome historic barriers for CdTe solar cell development.« less
Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burst, James M.; Farrell, Stuart B.; Albin, David S.
CdTe defect chemistry is adjusted by annealing samples with excess Cd or Te vapor with and without extrinsic dopants. We observe that Group I (Cu and Na) elements can increase hole density above 10 16 cm -3, but compromise lifetime and stability. By post-deposition incorporation of a Group V dopant (P) in a Cd-rich ambient, lifetimes of 30 ns with 10 16 cm -3 hole density are achieved in single-crystal and polycrystalline CdTe without CdCl 2 or Cu. Furthermore, phosphorus doping appears to be thermally stable. In conclusion, this combination of long lifetime, high carrier concentration, and improved stability canmore » help overcome historic barriers for CdTe solar cell development.« less
The next generation CdTe technology- Substrate foil based solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferekides, Chris
The main objective of this project was the development of one of the most promising Photovoltaic (PV) materials CdTe into a versatile, cost effective, and high throughput technology, by demonstrating substrate devices on foil substrates using high throughput fabrication conditions. The typical CdTe cell is of the superstrate configuration where the solar cell is fabricated on a glass superstrate by the sequential deposition of a TCO, n-type heterojunction partner, p-CdTe absorber, and back contact. Large glass modules are heavy and present significant challenges during manufacturing (uniform heating, etc.). If a substrate CdTe cell could be developed (the main goal ofmore » this project) a roll-to-toll high throughput technology could be developed.« less
NASA Astrophysics Data System (ADS)
Anichina, Kameliya; Mavrova, Anelia; Yancheva, Denitsa; Tsenov, Jordan; Dimitrov, Rasho
2017-12-01
The morphology of the crystal structure of some antitrichinellosis active benzimidazole derivatives including (1H-benzimidazol-2-ylthio)acetic acids, [1,3]thiazolo[3,2-a]benzimidazol-3(2H)-ones, 1H-benzimidazol-2-ylthioacetylpiperazines and starting 2-mercapto benzimidazoles, was studied by the use of Polarized Light Microscopy (PLM). Characterization of the crystal phase was complimented by Differential scanning calorimetry analysis (DSC) and spectroscopic data. DFT computations were performed in order to investigate the prototropic tautomerism and the geometry of the molecule of the synthesized compounds. One distinct type of crystal structure for each one of 5 or 6-methyl-(1H-benzimidazol-2-ylthio)acetic acid 6 was observed by PLM - dendritic and needle-shaped formations. Compound 14, containing a methyl substituent in the benzimidazole ring crystallized also into two phases; while for the unsubstituted compound 13 a separation of phases does not take place. The influence of the both solvents - chloroform and ethanol on the phase separation and the formation of the crystalline structure of compound 14 was investigated. The morphological study showed that the cyclization of 6 in the presence of acetic anhydride in pyridine medium led to a mixture of 6-methyl-[1,3]tiazolo[3,2-a]benzimidazol-3(2H)-one (10a) and 7-methyl-[1,3]thiazolo[3,2-a]-benzimidazole-3(2H)-one (10b), which crystallized in the form of fibrils and spherulites respectively. It was found that a difference in the crystal structures of substituted and unsubstituted benzimidazol-2-thiones, respectively benzimidazol-2-thiol derivatives exists, which may be due not only to the thiol-thione tautomerism but to the prototropic properties of the hydrogen atom in first position of the ring. The calculation results indicated that the thione form is more stable than the thiol tautomer by 51-55 kJ mol-1. But at the same time ΔG for the two thiol tautomers is below 0.5 kJ mol-1. In solid phase the 5(6)-substituted-1H-benzimidazol-2-thiols crystallized in two different crystal structures while the unsubstituted 1H-benzimidazol-2-thiol possess one type of crystal structure.
Complex absorbing potential based Lorentzian fitting scheme and time dependent quantum transport.
Xie, Hang; Kwok, Yanho; Jiang, Feng; Zheng, Xiao; Chen, GuanHua
2014-10-28
Based on the complex absorbing potential (CAP) method, a Lorentzian expansion scheme is developed to express the self-energy. The CAP-based Lorentzian expansion of self-energy is employed to solve efficiently the Liouville-von Neumann equation of one-electron density matrix. The resulting method is applicable for both tight-binding and first-principles models and is used to simulate the transient currents through graphene nanoribbons and a benzene molecule sandwiched between two carbon-atom chains.
Effect of Organic and Inorganic Passivation in Quantum-Dot-Sensitized Solar Cells.
de la Fuente, Mauricio Solis; Sánchez, Rafael S; González-Pedro, Victoria; Boix, Pablo P; Mhaisalkar, S G; Rincón, Marina E; Bisquert, Juan; Mora-Seró, Iván
2013-05-02
The effect of semiconductor passivation on quantum-dot-sensitized solar cells (QDSCs) has been systematically characterized for CdS and CdS/ZnS. We have found that passivation strongly depends on the passivation agent, obtaining an enhancement of the solar cell efficiency for compounds containing amine and thiol groups and, in contrast, a decrease in performance for passivating agents with acid groups. Passivation can induce a change in the position of TiO2 conduction band and also in the recombination rate and nature, reflected in a change in the β parameter. Especially interesting is the finding that β, and consequently the fill factor can be increased with the passivation treatment. Applying this strategy, record cells of 4.65% efficiency for PbS-based QDSCs have been produced.
Semiconductor electrolyte photovoltaic energy converter
NASA Technical Reports Server (NTRS)
Anderson, W. W.; Anderson, L. B.
1975-01-01
Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.
High-resolution CdTe detectors with application to various fields (Conference Presentation)
NASA Astrophysics Data System (ADS)
Takeda, Shin'ichiro; Orita, Tadashi; Arai, Yasuo; Sugawara, Hirotaka; Tomaru, Ryota; Katsuragawa, Miho; Sato, Goro; Watanabe, Shin; Ikeda, Hirokazu; Takahashi, Tadayuki; Furenlid, Lars R.; Barber, H. Bradford
2016-10-01
High-quality CdTe semiconductor detectors with both fine position resolution and high energy resolution hold great promise to improve measurement in various hard X-ray and gamma-ray imaging fields. ISAS/JAXA has been developing CdTe imaging detectors to meet scientific demands in latest celestial observation and severe environmental limitation (power consumption, vibration, radiation) in space for over 15 years. The energy resolution of imaging detectors with a CdTe Schottky diode of In/CdTe/Pt or Al/CdTe/Pt contact is a highlight of our development. We can extremely reduce a leakage current of devises, meaning it allows us to supply higher bias voltage to collect charges. The 3.2cm-wide and 0.75mm-thick CdTe double-sided strip detector with a strip pitch of 250 µm has been successfully established and was mounted in the latest Japanese X-ray satellite. The energy resolution measured in the test on ground was 2.1 keV (FWHM) at 59.5 keV. The detector with much finer resolution of 60 µm is ready, and it was actually used in the FOXSI rocket mission to observe hard X-ray from the sun. In this talk, we will focus on our research activities to apply space sensor technologies to such various imaging fields as medical imaging. Recent development of CdTe detectors, imaging module with pinhole and coded-mask collimators, and experimental study of response to hard X-rays and gamma-rays are presented. The talk also includes research of the Compton camera which has a configuration of accumulated Si and CdTe imaging detectors.
A computational ab initio study of surface diffusion of sulfur on the CdTe (111) surface
NASA Astrophysics Data System (ADS)
Naderi, Ebadollah; Ghaisas, S. V.
2016-08-01
In order to discern the formation of epitaxial growth of CdS shell over CdTe nanocrystals, kinetics related to the initial stages of the growth of CdS on CdTe is investigated using ab-initio methods. We report diffusion of sulfur adatom on the CdTe (111) A-type (Cd-terminated) and B-type (Te-terminated) surfaces within the density functional theory (DFT). The barriers are computed by applying the climbing Nudge Elastic Band (c-NEB) method. From the results surface hopping emerges as the major mode of diffusion. In addition, there is a distinct contribution from kick-out type diffusion in which a CdTe surface atom is kicked out from its position and is replaced by the diffusing sulfur atom. Also, surface vacancy substitution contributes to the concomitant dynamics. There are sites on the B- type surface that are competitively close in terms of the binding energy to the lowest energy site of epitaxy on the surface. The kick-out process is more likely for B-type surface where a Te atom of the surface is displaced by a sulfur adatom. Further, on the B-type surface, subsurface migration of sulfur is indicated. Furthermore, the binding energies of S on CdTe reveal that on the A-type surface, epitaxial sites provide relatively higher binding energies and barriers than on B-type.
A computational ab initio study of surface diffusion of sulfur on the CdTe (111) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naderi, Ebadollah, E-mail: enaderi42@gmail.com; Ghaisas, S. V.
2016-08-15
In order to discern the formation of epitaxial growth of CdS shell over CdTe nanocrystals, kinetics related to the initial stages of the growth of CdS on CdTe is investigated using ab-initio methods. We report diffusion of sulfur adatom on the CdTe (111) A-type (Cd-terminated) and B-type (Te-terminated) surfaces within the density functional theory (DFT). The barriers are computed by applying the climbing Nudge Elastic Band (c-NEB) method. From the results surface hopping emerges as the major mode of diffusion. In addition, there is a distinct contribution from kick-out type diffusion in which a CdTe surface atom is kicked outmore » from its position and is replaced by the diffusing sulfur atom. Also, surface vacancy substitution contributes to the concomitant dynamics. There are sites on the B- type surface that are competitively close in terms of the binding energy to the lowest energy site of epitaxy on the surface. The kick-out process is more likely for B-type surface where a Te atom of the surface is displaced by a sulfur adatom. Further, on the B-type surface, subsurface migration of sulfur is indicated. Furthermore, the binding energies of S on CdTe reveal that on the A-type surface, epitaxial sites provide relatively higher binding energies and barriers than on B-type.« less
Evaluation of ZnSe(S) Quantum Dots on the Cell Viability of Prostate Cancer Cell (PC3)
NASA Astrophysics Data System (ADS)
Calderón-Ortiz, E. R.; Bailón-Ruiz, S.; Martínez-Ferrer, M.; Rodríguez-Orengo, J. F.; Perales-Pérez, O.
2018-05-01
Nanomedicine is described as the process of diagnosing, treating, and preventing disease using nanostructured materials to improve human health. Quantum dots (QDs) host suitable optical properties for light-driven therapies, e.g., photo-dynamic therapy (PDT), for cancer treatment. The efficacy of QDs-assisted PDT relies on the capability of QDs to generate reactive oxygen species, which can be enhanced by inducing structural defects at the atomic level. Furthermore, data concerning the applicability of QDs-PDT in medicine is scarce, particularly for prostate cancer cells (PC3). On this basis, and as a first step in this research, the present report focused on the direct aqueous-synthesis of water-stable ZnSe(S) QDs via a microwave-assisted synthesis approach in the presence of thioglycolic acid (TGA) and mercaptopropionic acid (MPA). XRD analysis confirmed the face centered cubic structure in host ZnS; the average crystallite size was estimated at 10 nm. The photoluminescence of MPA-capped ZnSe(S) showed a strong main emission peak around 363 nm and a trap emission, attributed to structural defects, centered on 450 nm. The photoluminescence spectrum for TGA-capped ZnSe(S) QDs exhibited only the band gap peak around 390 nm, suggesting the absence of major structural defects. In turn, cell viability assays TGA-capped ZnSe(S) were not toxic at concentrations up to 100 ppm, whereas MPA-capped ZnSe(S) evidenced cytotoxicity at a concentration of 10 ppm. The lethal dose (LD50) for the MPA-capped ZnSe(S) in the PC3 cell line was 36 ppm and 35 ppm for 24 h and 48 h, respectively.
Determination of the mean inner potential of cadmium telluride via electron holography
NASA Astrophysics Data System (ADS)
Cassidy, C.; Dhar, A.; Shintake, T.
2017-04-01
Mean inner potential is a fundamental material parameter in solid state physics and electron microscopy and has been experimentally measured in CdTe, a technologically important semiconductor. As a first step, the inelastic mean free path for electron scattering in CdTe was determined, using electron energy loss spectroscopy, to enable precise thickness mapping of thin CdTe lamellae. The obtained value was λi(CdTe, 300 kV) = 192 ± 10 nm. This value is relatively large, given the high density of the material, and is discussed in the text. Next, electron diffraction and specimen tilting were employed to identify weakly diffracting lattice orientations, to enable the straightforward measurement of the electron phase shift. Finally, electron holography was utilized to quantitatively map the phase shift experienced by electron waves passing through a CdTe crystal, with several different propagation vectors. Utilization of both thickness and phase data allowed computation of mean inner potential as V0 (CdTe) = 14.0 ± 0.9 V, within the range of previous theoretical estimates.
Analysis of electroluminescence images in small-area circular CdTe solar cells
NASA Astrophysics Data System (ADS)
Bokalič, Matevž; Raguse, John; Sites, James R.; Topič, Marko
2013-09-01
The electroluminescence (EL) imaging process of small area solar cells is investigated in detail to expose optical and electrical effects that influence image acquisition and corrupt the acquired image. An approach to correct the measured EL images and to extract the exact EL radiation as emitted from the photovoltaic device is presented. EL images of circular cadmium telluride (CdTe) solar cells are obtained under different conditions. The power-law relationship between forward injection current and EL emission and a negative temperature coefficient of EL radiation are observed. The distributed Simulation Program with Integrated Circuit Emphasis (SPICE®) model of the circular CdTe solar cell is used to simulate the dark J-V curve and current distribution under the conditions used during EL measurements. Simulation results are presented as circularly averaged EL intensity profiles, which clearly show that the ratio between resistive parameters determines the current distribution in thin-film solar cells. The exact resistance values for front and back contact layers and for CdTe bulk layer are determined at different temperatures, and a negative temperature coefficient for the CdTe bulk resistance is observed.
NASA Astrophysics Data System (ADS)
Kiprotich, Sharon; Onani, Martin O.; Dejene, Francis B.
2018-04-01
We present L-cysteine capped CdOXTe1-X and CdTeXSe1-X nanoparticles (NPs) prepared in one pot. The as-prepared CdOXTe1-X NPs were found to have a hexagonal crystal structure of CdTe with a cubic phase of CdO. There was, however, change in phase to cubic type when 2 mM of Se was introduced into the CdTe at 60 min of reaction time. The average crystallite sizes obtained from X-ray diffraction analysis for CdOXTe1-X and CdTeXSe1-X NPs were in the range of 10-36 nm. The diffraction peaks shifted to higher diffraction angle with longer growth time. Scanning electron microscope images display change in shape and size as reaction progress. Photoluminescence (PL) emission was observed to shift from 510-566 nm and 620-653 nm for CdOXTe1-X and CdTeXSe1-X NPs respectively followed by variation in the peak intensities. The emission spectra displayed a good symmetry and a narrow full width at half maximum ranging from 41 to 100 nm in both cases. The absorbance analysis of the as-prepared NPs displayed well-resolved absorption bands. The optical band gaps of the as-prepared NPs were found to decrease with increase in reaction time. Reaction parameters such as pH, reaction time, reaction temperature and the molar concentration could have major effects on the optical properties of the as-prepared nanoparticles hence their need to control them.
Fluorescent carbon quantum dot hydrogels for direct determination of silver ions.
Cayuela, A; Soriano, M L; Kennedy, S R; Steed, J W; Valcárcel, M
2016-05-01
The paper reports for the first time the direct determination of silver ion (Ag(+)) using luminescent Carbon Quantum Dot hydrogels (CQDGs). Carbon Quantum Dots (CQDs) with different superficial moieties (passivate-CQDs with carboxylic groups, thiol-CQDs and amine-CQDs) were used to prepare hybrid gels using a low molecular weight hydrogelator (LMWG). The use of the gels results in considerable fluorescence enhancement and also markedly influences selectivity. The most selective CQDG system for Ag(+) ion detection proved to be those containing carboxylic groups onto their surface. The selectivity towards Ag(+) ions is possibly due to its flexible coordination sphere compared with other metal ions. This fluorescent sensing platform is based on the strong Ag-O interaction which can quench the photoluminescence of passivate-CQDs (p-CQDs) through charge transfer. The limit of detection (LOD) and quantification (LOQ) of the proposed method were 0.55 and 1.83µgmL(-1), respectively, being applied in river water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Broadband energy transfer to sensitizing dyes by mobile quantum dot mediators in solar cells
Adhyaksa, Gede Widia Pratama; Lee, Ga In; Baek, Se-Woong; Lee, Jung-Yong; Kang, Jeung Ku
2013-01-01
The efficiency of solar cells depends on absorption intensity of the photon collectors. Herein, mobile quantum dots (QDs) functionalized with thiol ligands in electrolyte are utilized into dye–sensitized solar cells. The QDs serve as mediators to receive and re–transmit energy to sensitized dyes, thus amplifying photon collection of sensitizing dyes in the visible range and enabling up–conversion of low-energy photons to higher-energy photons for dye absorption. The cell efficiency is boosted by dispersing QDs in electrolyte, thereby obviating the need for light scattering1 or plasmonic2 structures. Furthermore, optical spectroscopy and external quantum efficiency data reveal that resonance energy transfer due to the overlap between QD emission and dye absorption spectra becomes dominant when the QD bandgap is higher than the first excitonic peak of the dye, while co–sensitization resulting in a fast reduction of oxidized dyes is pronounced in the case of lower QD band gaps. PMID:24048384
NASA Astrophysics Data System (ADS)
Ghadi, Hemant; Sehara, Navneet; Murkute, Punam; Chakrabarti, Subhananda
2017-05-01
In this study, a theoretical model is developed for investigating the effect of thermal annealing on a single-layer quaternary-capped (In0.21Al0.21Ga0.58As) InAs quantum dot heterostructure (sample A) and compared to a conventional GaAs-capped sample (sample B). Strain, an interfacial property, aids in dot formation; however, it hinders interdiffusion (up to 650 °C), rendering thermal stability to heterostructures. Three diffusing species In/Al/Ga intermix because of the concentration gradient and temperature variation, which is modeled by Fick's law of diffusion. Ground-state energy for both carriers (electron and holes) is calculated by the Schrodinger equation at different annealing temperatures, incorporating strain computed by the concentration-dependent model. Change in activation energy due to strain decreases particle movement, thereby resulting in thermally stable structures at low annealing temperatures. At low temperature, the conduction band near the dot edge slightly decreases, attributed to the comparatively high strain. Calculated results are consistent with the experimental blue-shift i.e. towards lower wavelength of photoluminescence peak on the same sample with increasing annealing temperatures. Cross-sectional transmission microscopy (TEM) images substantiate the existence of dot till 800 °C for sample (A). With increasing annealing temperature, interdiffusion and dot sublimation are observed in XTEM images of samples A and B. Strain calculated from high-resolution X-ray diffraction (HRXRD) peaks and its decline with increasing temperature are in agreement with that calculated by the model. For highlighting the benefits of quaternary capping, InAlGaAs capping is theoretically and experimentally compared to GaAs capping. Concentration-dependent strain energy is calculated at every point and is further used for computing material interdiffusion, band profiles, and photoluminescence peak wavelength, which can provide better insights into strain energy behavior with temperature and help in the better understanding of thermal annealing.
Feng, Xiaobin; Gan, Ning; Zhang, Huairong; Yan, Qing; Li, Tianhua; Cao, Yuting; Hu, Futao; Yu, Hongwei; Jiang, Qianli
2015-12-15
A novel type of "dual-potential" electrochemiluminescence (ECL) aptasensor array was fabricated on a homemade screen-printed carbon electrode (SPCE) for simultaneous detection of malachite green (MG) and chloramphenicol (CAP) in one single assay. The SPCE substrate consisted of a common Ag/AgCl reference electrode, carbon counter electrode and two carbon working electrodes (WE1 and WE2). In the system, CdS quantum dots (QDs) were modified on WE1 as cathode ECL emitters and luminol-gold nanoparticles (L-Au NPs) were modified on WE2 as anode ECL emitters. Then the MG aptamer complementary strand (MG cDNA) and CAP aptamer complementary strand (CAP cDNA) were attached on CdS QDs and L-Au NPs, respectively. The cDNA would hybridize with corresponding aptamer that was respectively tagged with cyanine dye (Cy5) (as quenchers of CdS QDs) and chlorogenic acid (CA) (as quenchers of l-Au NPs) using poly(ethylenimine) (PEI) as a bridging agent. PEI could lead to a large number of quenchers on the aptamer, which increased the quenching efficiency. Upon MG and CAP adding, the targets could induce strand release due to the highly affinity of analytes toward aptamers. Meanwhile, it could release the Cy5 and CA, which recovered cathode ECL of CdS QDs and anode ECL of L-Au NPs simultaneously. This "dual-potential" ECL strategy could be used to detect MG and CAP with the linear ranges of 0.1-100 nM and 0.2-150 nM, with detection limits of 0.03 nM and 0.07 nM (at 3sB), respectively. More importantly, this designed method was successfully applied to determine MG and CAP in real fish samples and held great potential in the food analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Bandgap Shifting of an Ultra-Thin InGaAs/InP Quantum Well Infrared Photodetector
NASA Technical Reports Server (NTRS)
Sengupta, D. K.; Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Luong, E.; Hong, W.; Mumolo, J.; Bae, Y.; Stillman, G. E.; Jackson, S. L.;
1998-01-01
We demonstrate that SiO(sub 2) cap annealing in the ultra-thin p-type InGaAs/InP quantum wells can be used to produce large blue shifts of the band edge. A substantial bandgap blue shift, as much a 292.5 meV at 900 degrees C have been measured and the value of the bandgap shift can be controlled by the anneal time.
Tests of UFXC32k chip with CdTe pixel detector
NASA Astrophysics Data System (ADS)
Maj, P.; Taguchi, T.; Nakaye, Y.
2018-02-01
The paper presents the performance of the UFXC32K—a hybrid pixel detector readout chip working with CdTe detectors. The UFXC32K has a pixel pitch of 75 μm and can cope with both input signal polarities. This functionality allows operating with widely used silicon sensors collecting holes and CdTe sensors collecting electrons. This article describes the chip focusing on solving the issues connected to high-Z sensor material, namely high leakage currents, slow charge collection time and thick material resulting in increased charge-sharring effects. The measurements were conducted with higher X-ray energies including 17.4 keV from molybdenum. Conclusions drawn inside the paper show the UFXC32K's usability for CdTe sensors in high X-ray energy applications.
Suárez, Javier Amaya; Plata, Jose J; Márquez, Antonio M; Sanz, Javier Fdez
2017-06-07
Quantum dot-sensitized solar cells, QDSCs, are a clean and effective alternative to fossil fuels to reduce CO 2 emissions. However, the different components that constitute the QDSCs and the difficulty of isolating experimentally their effects on the performance of the whole system slow down the development of more efficient devices. In this work, DFT calculations are combined with a bottom-up approach to differentiate the effect of each component on the electronic structure and absorption spectra. First, Cu 2 S QDs were built including a U parameter to effectively describe the localization of electrons. The effect of capping agents is addressed using ligands with different electron-donating/withdrawing groups. The role of linkers and their adsorption on the oxide surface are also examined. Finally, we propose a main indirect electron injection mechanism based on the position of the peaks of the spectra.
Electrochemical modelling of QD-phospholipid interactions.
Zhang, Shengwen; Chen, Rongjun; Malhotra, Girish; Critchley, Kevin; Vakurov, Alexander; Nelson, Andrew
2014-04-15
The aggregation of quantum dots (QDs) and capping of individual QDs affects their activity towards biomembrane models. Electrochemical methods using a phospholipid layer on mercury (Hg) membrane model have been used to determine the phospholipid monolayer activity of thioglycollic acid (TGA) coated quantum dots (QDs) as an indicator of biomembrane activity. The particles were characterised for size and charge. The activity of the QDs towards dioleoyl phosphatidylcholine (DOPC) monolayers is pH dependent, and is most active at pH 8.2 within the pH range 8.2-6.5 examined in this work. This pH dependent activity is the result of increased particle aggregation coupled to decreasing surface charge emanating from the TGA carboxylic groups employed to stabilize the QD dispersion in aqueous media. Capping the QDs with CdS/ZnS lowers the particles' activity to phospholipid monolayers. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xiaowei; Minamimoto, Hiro; Murakoshi, Kei
2018-05-01
The vibrational characteristics of ligand-capped lead sulfide (PbS) quantum dots (QDs) were clarified via electrochemical surface-enhanced Raman spectroscopy (EC-SERS) using a hybridized system of gold (Au) nanodimers and PbS QDs under electrochemical potential control. Enhanced electromagnetic field caused by the coupling of QDs with plasmonic Au nanodimers allowed the characteristic behavior of the ligand oleic acid (OA) on the PbS QD surface to be detected under electrochemical potential control. Binding modes between the QDs and OA molecules were characterized using synchronous two-dimensional correlation spectra at distinct electrochemical potentials, confirming that the bidentate bridging mode was probably the most stable mode even under relatively negative potential polarization. Changes in binding modes and molecular orientations resulted in fluctuations in EC-SERS spectra. The present observations strongly recommend the validity of the QD-plasmonic nanostructure coupled system for sensitive molecular detection via EC-SERS.
NASA Astrophysics Data System (ADS)
Kulchat, Sirinan; Boonta, Wissuta; Todee, Apinya; Sianglam, Pradthana; Ngeontae, Wittaya
2018-05-01
A fluorescent sensor based on thioglycolic acid-capped cadmium sulfide quantum dots (TGA-CdS QDs) has been designed for the sensitive and selective detection of dopamine (DA). In the presence of dopamine (DA), the addition of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) activates the reaction between the carboxylic group of the TGA and the amino group of dopamine to form an amide bond, quenching the fluorescence of the QDs. The fluorescence intensity of TGA-CdS QDs can be used to sense the presence of dopamine with a limit of detection of 0.68 μM and a working linear range of 1.0-17.5 μM. This sensor system shows great potential application for dopamine detection in dopamine drug samples and for future easy-to-make analytical devices.
Selective etching of InGaAs/GaAs(100) multilayers of quantum-dot chains
NASA Astrophysics Data System (ADS)
Wang, Zh. M.; Zhang, L.; Holmes, K.; Salamo, G. J.
2005-04-01
We report selective chemical etching as a promising procedure to study the buried quantum dots in multiple InGaAs/GaAs layers. The dot layer-by-dot layer etching is demonstrated using a mixed solution of NH4OH:H2O2:H2O. Regular plan-view atomic force microscopy reveals that all of the exposed InGaAs layers have a chain-like lateral ordering despite the potential of significant In-Ga intermixing during capping. The vertical self-correlation of quantum dots in the chains is observed.
Hybrid grating reflectors: Origin of ultrabroad stopband
NASA Astrophysics Data System (ADS)
Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug
2016-04-01
Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well as a weak guided mode (GM) resonance. Most of the reflected power results from the FP resonance, while the GM resonance plays a key role in achieving a reflectance close to 100% as well as broadening the stopband. An HG sample with 7 InGaAlAs quantum wells included in the cap layer has been fabricated by directly wafer-bonding a III-V cap layer onto a Si grating layer. Its reflection property has been characterized. This heterogeneously integrated HG reflector may allow for a hybrid III-V on Si laser to be thermally efficient, which has promising prospects for silicon photonics light sources and high-speed operation.
Structural and electronic properties of rectangular CdTe nanowire: A DST study
NASA Astrophysics Data System (ADS)
Khan, Md. Shahzad; Bhatia, Manjeet; Srivastava, Anurag
2018-05-01
CdTe rectangular nanowire of different diameter in zinc-blende phase is investigated using density functional theory. Enhancement of diameter increased stability and improved electronic qualities suitable for device purpose applications. Cohesive energy per atom enhanced on enlarging diameter advocating the stability. Large diameter nanowire (22.62Å) exhibits bandgap of 1.21eV and electronic effective mass is observed to be 0.51me. The bonding between Cd-Te atoms are predominantly observed as covalent assuring its inertness towards moisture.
A Novel Oxidative Stress Mediator in Acute Appendicitis: Thiol/Disulphide Homeostasis
Turan, Umit; Kuvvetli, Adnan; Kilavuz, Huseyin; Karakaya, Burak; Ozaltun, Pınar; Alısık, Murat; Erel, Ozcan
2016-01-01
Aim. To investigate the role of a novel oxidative stress marker, thiol/disulphide homeostasis, in patients diagnosed with acute appendicitis (AA). Methods. In this study, seventy-one (43 male and 28 female) patients diagnosed with AA and 71 (30 male and 41 female) healthy volunteers were included. Age, gender, body mass index (BMI), haemoglobin (Hb), white blood cell (WBC), c-reactive protein (CRP), and thiol/disulphide homeostasis parameters (native thiol, total thiol, disulphide, disulphide/native thiol, native thiol/total thiol, and disulphide/total thiol ratios) were compared between the groups. Thiol/disulphide homeostasis was determined by a newly developed method by Erel and Neselioglu. Results. The native thiol, total thiol, and the native thiol/total thiol ratio levels were statistically significantly decreased in the AA compared with the control group (p < 0.001). Disulphide level and the ratios of disulphide/native thiol and disulphide/total thiol were higher in the AA group than in the control group (p < 0.001). There was a negative correlation of CRP with native thiol, total thiol, and native thiol/total thiol ratio while there was a positive correlation of CRP with disulphide/native thiol and disulphide/total thiol in the AA group. In the stepwise regression model, risk factors as disulphide/native thiol (OR = 1.368; p = 0.018) and CRP (OR = 1.635; p = 0.003) were determined as predictors of perforated appendicitis compared to the nonperforated group. Conclusion. This is the first study examining the thiol/disulphide homeostasis as a diagnostic aid in AA and establishing thiol/disulphide homeostatis balance shifted towards the disulphide formation due to thiol oxidation. Further studies are needed to optimize the use of this novel oxidative stress marker in AA. PMID:27642237
NASA Astrophysics Data System (ADS)
Jung, Daehwan; Ironside, Daniel J.; Bank, Seth R.; Gossard, Arthur C.; Bowers, John E.
2018-05-01
We report the effect of growth interruptions on the structural and optical properties of InAs/InAlGaAs/InP quantum dots using molecular beam epitaxy. We find that the surface quantum dots experience an unintended ripening process during the sample cooling stage, which reshapes the uncapped InAs nanostructures. To prevent this, we performed a partial capping experiment to effectively inhibit structural reconfiguration of surface InAs nanostructures during the cooling stage, revealing that InAs nanostructures first form quantum dashes and then transform into quantum dots via a ripening process. Our result suggests that the appearance of buried InAs/InAlGaAs nanostructures can be easily misunderstood by surface analysis.
NASA Astrophysics Data System (ADS)
Ikonnikov, A. V.; Zholudev, M. S.; Spirin, K. E.; Lastovkin, A. A.; Maremyanin, K. V.; Aleshkin, V. Ya; Gavrilenko, V. I.; Drachenko, O.; Helm, M.; Wosnitza, J.; Goiran, M.; Mikhailov, N. N.; Dvoretskii, S. A.; Teppe, F.; Diakonova, N.; Consejo, C.; Chenaud, B.; Knap, W.
2011-12-01
Cyclotron resonance spectra of 2D electrons in HgTe/CdxHg1-xTe (0 1 3) quantum well (QW) heterostructures with inverted band structure have been thoroughly studied in quasiclassical magnetic fields versus the electron concentration varied using the persistent photoconductivity effect. The cyclotron mass is shown to increase with QW width in contrast to QWs with normal band structure. The measured values of cyclotron mass are shown to be systematically less than those calculated using the 8 × 8 Kane model with conventional set of HgTe and CdTe material parameters. In quantizing pulsed magnetic fields (Landau level filling factor less than unity) up to 45 T, both intraband (CR) and interband magnetoabsorption have been studied at radiation wavelengths 14.8 and 11.4 µm for the first time. The results obtained are compared with the allowed transition energies between Landau levels in the valence and conduction bands calculated within the same model, the calculated energies being again systematically less (by 3-14%) than the observed optical transition energies.
NASA Astrophysics Data System (ADS)
Zhang, Yun-Peng; Sun, Peng; Zhang, Xu-Rui; Yang, Wu-Li; Si, Cheng-Shuai
2013-06-01
The purpose of this experiment was to investigate the visible imaging of gastric adenocarcinoma cells in vitro by targeting tumor-associated glycoprotein 72 (TAG-72) with near-infrared quantum dots (QDs). QDs with an emission wavelength of about 550 to 780 nm were conjugated to CC49 monoclonal antibodies against TAG-72, resulting in a probe named as CC49-QDs. A gastric adenocarcinoma cell line (MGC80-3) expressing high levels of TAG-72 was cultured for fluorescence imaging, and a gastric epithelial cell line (GES-1) was used for the negative control group. Transmission electron microscopy indicated that the average diameter of CC49-QDs was 0.2 nm higher compared with that of the primary QDs. Also, fluorescence spectrum analysis indicated that the CC49-QDs did not have different optical properties compared to the primary QDs. Immunohistochemical examination and in vitro fluorescence imaging of the tumors showed that the CC49-QDs probe could bind TAG-72 expressed on MGC80-3 cells.
Long-range p-d exchange interaction in a ferromagnet-semiconductor hybrid structure
NASA Astrophysics Data System (ADS)
Korenev, V. L.; Salewski, M.; Akimov, I. A.; Sapega, V. F.; Langer, L.; Kalitukha, I. V.; Debus, J.; Dzhioev, R. I.; Yakovlev, D. R.; Müller, D.; Schröder, C.; Hövel, H.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Kusrayev, Yu. G.; Bayer, M.
2016-01-01
Hybrid structures synthesized from different materials have attracted considerable attention because they may allow not only combination of the functionalities of the individual constituents but also mutual control of their properties. To obtain such a control an interaction between the components needs to be established. For coupling the magnetic properties, an exchange interaction has to be implemented which typically depends on wavefunction overlap and is therefore short-ranged, so that it may be compromised across the hybrid interface. Here we study a hybrid structure consisting of a ferromagnetic Co layer and a semiconducting CdTe quantum well, separated by a thin (Cd, Mg)Te barrier. In contrast to the expected p-d exchange that decreases exponentially with the wavefunction overlap of quantum well holes and magnetic atoms, we find a long-ranged, robust coupling that does not vary with barrier width up to more than 30 nm. We suggest that the resulting spin polarization of acceptor-bound holes is induced by an effective p-d exchange that is mediated by elliptically polarized phonons.
NASA Astrophysics Data System (ADS)
Tarasenko, S. A.; Durnev, M. V.; Nestoklon, M. O.; Ivchenko, E. L.; Luo, Jun-Wei; Zunger, Alex
2015-02-01
HgTe is a band-inverted compound which forms a two-dimensional topological insulator if sandwiched between CdTe barriers for a HgTe layer thickness above the critical value. We describe the fine structure of Dirac states in the HgTe/CdTe quantum wells of critical and close-to-critical thicknesses and show that the necessary creation of interfaces brings in another important physical effect: the opening of a significant anticrossing gap between the tips of the Dirac cones. The level repulsion driven by the natural interface inversion asymmetry of zinc-blende heterostructures considerably modifies the electron states and dispersion but preserves the topological transition at the critical thickness. By combining symmetry analysis, atomistic calculations, and extended k .p theory with interface terms, we obtain a quantitative description of the energy spectrum and extract the interface mixing coefficient. We discuss how the fingerprints of the predicted zero-magnetic-field splitting of the Dirac cones could be detected experimentally by studying magnetotransport phenomena, cyclotron resonance, Raman scattering, and THz radiation absorption.
Study of copper-free back contacts to thin film cadmium telluride solar cells
NASA Astrophysics Data System (ADS)
Viswanathan, Vijay
The goals of this project are to study Cu free back contact alternatives for CdS/CdTe thin film solar cells, and to research dry etching for CdTe surface preparation before contact application. In addition, an attempt has been made to evaluate the stability of some of the contacts researched. The contacts studied in this work include ZnTe/Cu2Te, Sb2Te 3, and Ni-P alloys. The ZnTe/Cu2Te contact system is studied as basically an extension of the earlier work done on Cu2Te at USF. RF sputtering from a compound target of ZnTe and Cu2Te respectively deposits these layers on etched CdTe surface. The effect of Cu2Te thickness and deposition temperature on contact and cell performance will be studied with the ZnTe depositions conditions kept constant. C-V measurements to study the effect of contact deposition conditions on CdTe doping will also be performed. These contacts will then be stressed to high temperatures (70--100°C) and their stability with stress time is analyzed. Sb2Te3 will be deposited on glass using RF sputtering, to study film properties with deposition temperature. The Sb2Te 3 contact performance will also be studied as a function of the Sb 2Te3 deposition temperature and thickness. The suitability of Ni-P alloys for back contacts to CdTe solar cells was studied by forming a colloidal mixture of Ni2P in graphite paste. The Ni-P contacts, painted on Br-methanol etched CdTe surface, will be studied as a function of Ni-P concentration (in the graphite paste), annealing temperature and time. Some of these cells will undergo temperature stress testing to determine contact behavior with time. Dry etching of CdTe will be studied as an alternative for wet etching processes currently used for CdTe solar cells. The CdTe surface is isotropically etched in a barrel reactor in N2, Ar or Ar:O 2 ambient. The effect of etching ambient, pressure, plasma power and etch time on contact performance will be studied.
One-step, low-temperature fabrication of CdS quantum dots by watermelon rind: a green approach
Lakshmipathy, Rajasekhar; Sarada, Nallani Chakravarthula; Chidambaram, K; Pasha, Sk Khadeer
2015-01-01
We investigated the one-step synthesis of CdS nanoparticles via green synthesis that used aqueous extract of watermelon rind as a capping and stabilizing agent. Preliminary phytochemical analysis depicted the presence of carbohydrates which can act as capping and stabilizing agents. Synthesized CdS nanoparticles were characterized using UV-visible, Fourier transform infrared spectroscopy, X-ray diffraction, EDX, dynamic light scattering, transmission electron microscopy, and atomic force microscopy techniques. The CdS nanoparticles were found to be size- and shape-controlled and were stable even after 3 months of synthesis. The results suggest that watermelon rind, an agro-waste, can be used for synthesis of CdS nanoparticles without any addition of stabilizing and capping agents. PMID:26491319
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chen; Paudel, Naba R.; Yan, Yanfa
Atom probe tomography (APT) data acquired from a CAMECA LEAP 4000 XHR for the CdS/CdTe interface for a non-CdCl 2 treated CdTe solar cell as well as the mass spectrum of an APT data set including a GB in a CdCl 2-treated CdTe solar cell are presented. Scanning electron microscopy (SEM) data showing the evolution of sample preparation for APT and scanning transmission electron microscopy (STEM) electron beam induced current (EBIC) are also presented. As a result, these data show mass spectrometry peak decomposition of Cu and Te within an APT dataset, the CdS/CdTe interface of an untreated CdTe solarmore » cell, preparation of APT needles from the CdS/CdTe interface in superstrate grown CdTe solar cells, and the preparation of a cross-sectional STEM EBIC sample.« less
High resistivity in undoped CdTe: carrier compensation of Te antisites and Cd vacancies
NASA Astrophysics Data System (ADS)
Lindström, A.; Mirbt, S.; Sanyal, B.; Klintenberg, M.
2016-01-01
In this paper, we focus on the high resistivity of intentionally undoped CdTe, where the most prevalent defects are Cd vacancies and Te antisites. Our calculated formation energies lead to the conclusion that the Fermi energy of undoped CdTe is at midgap due to carrier compensation of Te antisites and Cd vacancies, which explains the experimentally observed high resistivity. We use density functional theory with the hybrid functional of Heyd, Scuseria and Ernzerhof (HSE06) and show that the proper description of the native defects in general fails using the local density approximation (LDA) instead of HSE06. We conclude that LDA is insufficient to understand the high resistivity of undoped CdTe. We calculate the neutral and double acceptor state of the Te antisite to be intrinsic DX-centers.
NASA Astrophysics Data System (ADS)
Avetissov, I.; Kostikov, V.; Meshkov, V.; Sukhanova, E.; Grishechkin, M.; Belov, S.; Sadovskiy, A.
2014-01-01
A VGF growth setup assisted by axial vibrations of baffle submerged into CdTe melt with controlled Cd partial pressure was designed. An influence of baffle shape on flow velocity map, temperature distribution in CdTe melt and interface shape of growing crystal was analyzed by numerical simulation and physical modeling. To produce the desirable shape of crystal melt interface we slant under different angles vertical generatrix in a cylindrical disk and made chasing on faceplates of a disk. It was ascertained that a disk with conical generatrix formed more intensive convective flows from a faceplate with larger diameter. It was shown that at CdTe VGF crystal growth rate about 10 mm/h application of AVC technique made it possible to produce convex interface for 2 in. crystal diameter.
Direct Growth of CdTe on a (211) Si Substrate with Vapor Phase Epitaxy Using a Metallic Cd Source
NASA Astrophysics Data System (ADS)
Iso, Kenji; Gokudan, Yuya; Shiraishi, Masumi; Murakami, Hisashi; Koukitu, Akinori
2017-10-01
We successfully performed epitaxial CdTe growth on a Si (211) substrate with vapor-phase epitaxy using a cost-effective metallic cadmium source as a group-II precursor. The thermodynamic data demonstrate that the combination of metallic Cd and diisopropyl-telluride (DiPTe) with a H2 carrier gas enables the growth of CdTe crystals. A CdTe single crystal with a (422) surface orientation was obtained when a growth temperature between 600°C and 650°C was employed. The surface morphology and crystalline quality were improved with increasing film thickness. The full-width at half-maximum of the x-ray rocking curves with a film thickness of 15.7 μm for the skew-symmetrical (422) and asymmetrical (111) reflection were 528 arcsec and 615 arcsec, respectively.
NASA Astrophysics Data System (ADS)
Paulauskas, T.; Buurma, C.; Colegrove, E.; Guo, Z.; Sivananthan, S.; Chan, M. K. Y.; Klie, R. F.
2014-08-01
Poly-crystalline CdTe thin films on glass are used in commercial solar-cell superstrate devices. It is well known that post-deposition annealing of the CdTe thin films in a CdCl2 environment significantly increases the device performance, but a fundamental understanding of the effects of such annealing has not been achieved. In this Letter, we report a change in the stoichiometry across twin boundaries in CdTe and propose that native point defects alone cannot account for this variation. Upon annealing in CdCl2, we find that the stoichiometry is restored. Our experimental measurements using atomic-resolution high-angle annular dark field imaging, electron energy-loss spectroscopy, and energy dispersive X-ray spectroscopy in a scanning transmission electron microscope are supported by first-principles density functional theory calculations.
Optimization of material/device parameters of CdTe photovoltaic for solar cells applications
NASA Astrophysics Data System (ADS)
Wijewarnasuriya, Priyalal S.
2016-05-01
Cadmium telluride (CdTe) has been recognized as a promising photovoltaic material for thin-film solar cell applications due to its near optimum bandgap of ~1.5 eV and high absorption coefficient. The energy gap is near optimum for a single-junction solar cell. The high absorption coefficient allows films as thin as 2.5 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 20% have been produced with poly-CdTe materials. This paper examines n/p heterostructure device architecture. The performance limitations related to doping concentrations, minority carrier lifetimes, absorber layer thickness, and surface recombination velocities at the back and front interfaces is assessed. Ultimately, the paper explores device architectures of poly- CdTe and crystalline CdTe to achieve performance comparable to gallium arsenide (GaAs).
Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices.
Leschkies, Kurtis S; Divakar, Ramachandran; Basu, Joysurya; Enache-Pommer, Emil; Boercker, Janice E; Carter, C Barry; Kortshagen, Uwe R; Norris, David J; Aydil, Eray S
2007-06-01
We combine CdSe semiconductor nanocrystals (or quantum dots) and single-crystal ZnO nanowires to demonstrate a new type of quantum-dot-sensitized solar cell. An array of ZnO nanowires was grown vertically from a fluorine-doped tin oxide conducting substrate. CdSe quantum dots, capped with mercaptopropionic acid, were attached to the surface of the nanowires. When illuminated with visible light, the excited CdSe quantum dots injected electrons across the quantum dot-nanowire interface. The morphology of the nanowires then provided the photoinjected electrons with a direct electrical pathway to the photoanode. With a liquid electrolyte as the hole transport medium, quantum-dot-sensitized nanowire solar cells exhibited short-circuit currents ranging from 1 to 2 mA/cm2 and open-circuit voltages of 0.5-0.6 V when illuminated with 100 mW/cm2 simulated AM1.5 spectrum. Internal quantum efficiencies as high as 50-60% were also obtained.
NASA Astrophysics Data System (ADS)
Samadi, Naser; Narimani, Saeedeh
2016-06-01
In this paper, L-cysteine (Cys) coated CdS quantum dots (QDs) have been prepared, which have excellent water-solubility and are highly stable in aqueous solution. These QDs is proposed as sensitizers for the determination of Ceftriaxone. The quantum dot nanoparticles were structurally and optically characterized by Ultra Violet-Visible absorption Spectroscopy (UV-vis absorption spectroscopy), Fourier transform infrared spectroscopy (FT-IR spectra) and photoluminescence (PL) emission spectroscopy. High resolution transmission electron microscopy (HRTEM) confirms that the Cys-CdS QDs have a spherical structure with good crystallinity. Therefore, a new simple and selective PL analysis system was developed for the determination of Ceftriaxone (CFX). Under the optimum conditions, The response of L-Cys capped CdS QDs as the probe was linearly proportional to the concentration of Ceftriaxone ions in the range of 1.6 × 10- 9-1.1 × 10- 3 M with a correlation coefficient (R2) of 0.9902. The limit of detection of this system was found to be 1.3 nM. This method is simple, sensitive and low cost.
Gonzalez-Carrero, Soranyel; Francés-Soriano, Laura; González-Béjar, María; Agouram, Saïd; Galian, Raquel E; Pérez-Prieto, Julia
2016-10-01
CH 3 NH 3 PbBr 3 perovskite nanoparticles (P AD ) are prepared with a photoluminescence quantum yield of ≈100% in air atmosphere by using the quasi-spherical shaped 2-adamantylammonium bromide (ADBr) as the only capping ligand. The photostability under wet conditions of this kind of nanoparticles is enhanced by using cucurbit[7]uril-adamantylammonium (AD@CB) host-guest complexes as the capping ligand. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport
Zhang, Yingjie; Hellebusch, Daniel J.; Bronstein, Noah D.; ...
2016-06-21
The sensitivity of semiconductor photodetectors is limited by photocarrier recombination during the carrier transport process. We developed a new photoactive material that reduces recombination by physically separating hole and electron charge carriers. This material has a specific detectivity (the ability to detect small signals) of 5 × 10 17 Jones, the highest reported in visible and infrared detectors at room temperature, and 4-5 orders of magnitude higher than that of commercial single-crystal silicon detectors. The material was fabricated by sintering chloride-capped CdTe nanocrystals into polycrystalline films, where Cl selectively segregates into grain boundaries acting as n-type dopants. Photogenerated electrons concentratemore » in and percolate along the grain boundaries - a network of energy valleys, while holes are confined in the grain interiors. This electrostatic field-assisted carrier separation and percolation mechanism enables an unprecedented photoconductive gain of 10 10 e - per photon, and allows for effective control of the device response speed by active carrier quenching.« less
Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport
Zhang, Yingjie; Hellebusch, Daniel J.; Bronstein, Noah D.; Ko, Changhyun; Ogletree, D. Frank; Salmeron, Miquel; Alivisatos, A. Paul
2016-01-01
The sensitivity of semiconductor photodetectors is limited by photocarrier recombination during the carrier transport process. We developed a new photoactive material that reduces recombination by physically separating hole and electron charge carriers. This material has a specific detectivity (the ability to detect small signals) of 5 × 1017 Jones, the highest reported in visible and infrared detectors at room temperature, and 4–5 orders of magnitude higher than that of commercial single-crystal silicon detectors. The material was fabricated by sintering chloride-capped CdTe nanocrystals into polycrystalline films, where Cl selectively segregates into grain boundaries acting as n-type dopants. Photogenerated electrons concentrate in and percolate along the grain boundaries—a network of energy valleys, while holes are confined in the grain interiors. This electrostatic field-assisted carrier separation and percolation mechanism enables an unprecedented photoconductive gain of 1010 e− per photon, and allows for effective control of the device response speed by active carrier quenching. PMID:27323904
Ion-beam-induced damage formation in CdTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rischau, C. W.; Schnohr, C. S.; Wendler, E.
2011-06-01
Damage formation in <111>- and <112>-oriented CdTe single crystals irradiated at room temperature and 15 K with 270 keV Ar or 730 keV Sb ions was investigated in situ using Rutherford backscattering spectroscopy (RBS) in channeling configuration. Defect profiles were calculated from the RBS spectra using the computer code DICADA and additional energy-dependent RBS measurements were performed to identify the type of defects. At both temperatures no formation of a buried amorphous layer was detected even after prolonged irradiation with several 10{sup 16} ions/cm{sup 2}. The fact that CdTe is not rendered amorphous even at 15 K suggests that themore » high resistance to amorphization is caused by the high ionicity of CdTe rather than thermal effects. The calculated defect profiles show the formation of a broad defect distribution that extends much deeper into the crystal than the projected range of the implanted ions at both temperatures. The post-range defects in CdTe thus do not seem to be of thermal origin either, but are instead believed to result from migration driven by the electronic energy loss.« less
Lany, Stephan; Wolf, Herbert; Wichert, Thomas
2004-06-04
The In DX center and the DX-like configuration of the Cd host atom in CdTe are investigated using density functional theory. The simultaneous calculation of the atomic structure and the electric field gradient (EFG) allows one to correlate the theoretically predicted structure of the DX center with an experimental observable, namely, the EFG obtained from radioactive 111In/111Cd probe atoms in In doped CdTe. In this way, the experimental identification of the DX center structure is established.
Metal-Organic Vapor Phase Epitaxial Reactor for the Deposition of Infrared Detector Materials
2015-04-09
out during 2013. A set of growth experiments to deposit CdTe and ZnTe thin films on GaAs and Si substrates was carried out to test the system...After several dummy runs, a few growth runs to deposit CdTe and ZnTe, both doped and undoped, were grown on 3-inch diameter Si substrates or part of...to deposit CdTe and ZnTe on Si and GaAs substrates for use in this project. Some layers have been processed to make solar cells. Project 3
Akbas, Ayse; Kilinc, Fadime; Sener, Sertac; Aktaş, Akın; Baran, Pervin; Ergin, Merve
2017-09-01
Thiol-disulphide balance plays a major role in health and diseases. This balance may be disrupted by various diseases. We aimed to determine status of the effect of thiol-disulphide balance in urticaria. We aimed to investigate the thiol-disulphide balance in patients with acute urticaria (AUP) and chronic spontaneous urticaria (CSU). Study included 53 AUP and 47 healthy controls plus 57 patients with chronic spontaneous urticaria (CSUP) and 57 healthy controls. Levels of native thiols, disulphides and total thiols were evaluated in plasma using a new and automated spectrophotometric method. Ratios of disulphides/total thiols, disulphides/native thiols and native thiols/total thiols were calculated. For AU, there was no statistical difference compared to control group in levels of native thiols, disulphides and total thiols. For CSU, however, there was an increase in levels of native thiols, disulphides and total thiols and the ratio of thiol/disulphide in favour of disulphide. Thiol-disulphide balance was not affected by AU but shifted towards to disulphide in CSU indicating the presence of oxidative stress (OS).
Zhong, Xiaotian; He, Tao; Prashad, Amar S; Wang, Wenge; Cohen, Justin; Ferguson, Darren; Tam, Amy S; Sousa, Eric; Lin, Laura; Tchistiakova, Lioudmila; Gatto, Scott; D'Antona, Aaron; Luan, Yen-Tung; Ma, Weijun; Zollner, Richard; Zhou, Jing; Arve, Bo; Somers, Will; Kriz, Ronald
2017-04-20
Protein modifications by intricate cellular machineries often redesign the structure and function of existing proteins to impact biological networks. Disulfide bond formation between cysteine (Cys) pairs is one of the most common modifications found in extracellularly-destined proteins, key to maintaining protein structure. Unpaired surface cysteines on secreted mammalian proteins are also frequently found disulfide-bonded with free Cys or glutathione (GSH) in circulation or culture, the mechanism for which remains unknown. Here we report that these so-called Cys-capping modifications take place outside mammalian cells, not in the endoplasmic reticulum (ER) where oxidoreductase-mediated protein disulfide formation occurs. Unpaired surface cysteines of extracellularly-arrived proteins such as antibodies are uncapped upon secretion before undergoing disulfide exchange with cystine or oxidized GSH in culture medium. This observation has led to a feasible way to selectively modify the nucleophilic thiol side-chain of cell-surface or extracellular proteins in live mammalian cells, by applying electrophiles with a chemical handle directly into culture medium. These findings provide potentially an effective approach for improving therapeutic conjugates and probing biological systems. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mandal, Krishna C.; Krishna, Ramesh M.; Pak, Rahmi O.; Mannan, Mohammad A.
2014-09-01
CdTe and Cd0.9Zn0.1Te (CZT) crystals have been studied extensively for various applications including x- and γ-ray imaging and high energy radiation detectors. The crystals were grown from zone refined ultra-pure precursor materials using a vertical Bridgman furnace. The growth process has been monitored, controlled, and optimized by a computer simulation and modeling program developed in our laboratory. The grown crystals were thoroughly characterized after cutting wafers from the ingots and processed by chemo-mechanical polishing (CMP). The infrared (IR) transmission images of the post-treated CdTe and CZT crystals showed average Te inclusion size of ~10 μm for CdTe and ~8 μm for CZT crystal. The etch pit density was ≤ 5×104 cm-2 for CdTe and ≤ 3×104 cm-2 for CZT. Various planar and Frisch collar detectors were fabricated and evaluated. From the current-voltage measurements, the electrical resistivity was estimated to be ~ 1.5×1010 Ω-cm for CdTe and 2-5×1011 Ω-cm for CZT. The Hecht analysis of electron and hole mobility-lifetime products (μτe and μτh) showed μτe = 2×10-3 cm2/V (μτh = 8×10-5 cm2/V) and 3-6×10-3 cm2/V (μτh = 4- 6×10-5 cm2/V) for CdTe and CZT, respectively. Detectors in single pixel, Frisch collar, and coplanar grid geometries were fabricated. Detectors in Frisch grid and guard-ring configuration were found to exhibit energy resolution of 1.4% and 2.6 %, respectively, for 662 keV gamma rays. Assessments of the detector performance have been carried out also using 241Am (60 keV) showing energy resolution of 4.2% FWHM.
Sordo, Stefano Del; Abbene, Leonardo; Caroli, Ezio; Mancini, Anna Maria; Zappettini, Andrea; Ubertini, Pietro
2009-01-01
Over the last decade, cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. Among the traditional high performance spectrometers based on silicon (Si) and germanium (Ge), CdTe and CdZnTe detectors show high detection efficiency and good room temperature performance and are well suited for the development of compact and reliable detection systems. In this paper, we review the current status of research in the development of CdTe and CdZnTe detectors by a comprehensive survey on the material properties, the device characteristics, the different techniques for improving the overall detector performance and some major applications. Astrophysical and medical applications are discussed, pointing out the ongoing Italian research activities on the development of these detectors. PMID:22412323