Pierre, Pernilla Videhult; Engmér, Cecilia; Wallin, Inger; Laurell, Göran; Ehrsson, Hans
2009-02-01
High concentrations of the antioxidant thiosulfate reach scala tympani perilymph after i.v. administration in the guinea pig. Thiosulfate concentrations in perilymph remain elevated longer than in blood. This warrants further studies on the possibility of obtaining otoprotection by thiosulfate administration several hours before that of cisplatin without compromising the anticancer effect caused by cisplatin inactivation in the blood compartment. Thiosulfate may reduce cisplatin-induced ototoxicity, presumably by oxidative stress relief and formation of inactivate platinum complexes. This study aimed to explore to what extent thiosulfate reaches scala tympani perilymph after systemic administration in the guinea pig. Scala tympani perilymph (1 microl) was aspirated from the basal turn of each cochlea up to 3 h after thiosulfate administration (103 mg/kg b.w., i.v.). Blood samples were also taken. Thiosulfate was quantified by HPLC and fluorescence detection. Substantial thiosulfate concentrations were found in perilymph. The area under the concentration-time curve for thiosulfate in perilymph and blood was 3100 microMxmin and 6300 microMxmin, respectively. The highest thiosulfate concentrations in perilymph were found at the first sampling at about 10 min. Due to a more rapid elimination from blood, perilymph concentrations exceeded those of blood towards the end of the experiment.
Frederiksen, Trine-Maria; Finster, Kai
2003-06-01
The enzymatic pathways of elemental sulfur and thiosulfate disproportionation were investigated using cell-free extract of Desulfocapsa sulfoexigens. Sulfite was observed to be an intermediate in the metabolism of both compounds. Two distinct pathways for the oxidation of sulfite have been identified. One pathway involves APS reductase and ATP sulfurylase and can be described as the reversion of the initial steps of the dissimilatory sulfate reduction pathway. The second pathway is the direct oxidation of sulfite to sulfate by sulfite oxidoreductase. This enzyme has not been reported from sulfate reducers before. Thiosulfate reductase, which cleaves thiosulfate into sulfite and sulfide, was only present in cell-free extract from thiosulfate disproportionating cultures. We propose that this enzyme catalyzes the first step in thiosulfate disproportionation. The initial step in sulfur disproportionation was not identified. Dissimilatory sulfite reductase was present in sulfur and thiosulfate disproportionating cultures. The metabolic function of this enzyme in relation to elemental sulfur or thiosulfate disproportionation was not identified. The presence of the uncouplers HQNO and CCCP in growing cultures had negative effects on both thiosulfate and sulfur disproportionation. CCCP totally inhibited sulfur disproportionation and reduced thiosulfate disproportionation by 80% compared to an unamended control. HQNO reduced thiosulfate disproportionation by 80% and sulfur disproportionation by 90%.
Kawano, Yusuke; Onishi, Fumito; Shiroyama, Maeka; Miura, Masashi; Tanaka, Naoyuki; Oshiro, Satoshi; Nonaka, Gen; Nakanishi, Tsuyoshi; Ohtsu, Iwao
2017-09-01
Sulfate (SO 4 2- ) is an often-utilized and well-understood inorganic sulfur source in microorganism culture. Recently, another inorganic sulfur source, thiosulfate (S 2 O 3 2- ), was proposed to be more advantageous in microbial growth and biotechnological applications. Although its assimilation pathway is known to depend on O-acetyl-L-serine sulfhydrylase B (CysM in Escherichia coli), its metabolism has not been extensively investigated. Therefore, we aimed to explore another yet-unidentified CysM-independent thiosulfate assimilation pathway in E. coli. ΔcysM cells could accumulate essential L-cysteine from thiosulfate as the sole sulfur source and could grow, albeit slowly, demonstrating that a CysM-independent thiosulfate assimilation pathway is present in E. coli. This pathway is expected to consist of the initial part of the thiosulfate to sulfite (SO 3 2- ) conversion, and the latter part might be shared with the final part of the known sulfate assimilation pathway [sulfite → sulfide (S 2- ) → L-cysteine]. This is because thiosulfate-grown ΔcysM cells could accumulate a level of sulfite and sulfide equivalent to that of wild-type cells. The catalysis of thiosulfate to sulfite is at least partly mediated by thiosulfate sulfurtransferase (GlpE), because its overexpression could enhance cellular thiosulfate sulfurtransferase activity in vitro and complement the slow-growth phenotype of thiosulfate-grown ΔcysM cells in vivo. GlpE is therefore concluded to function in the novel CysM-independent thiosulfate assimilation pathway by catalyzing thiosulfate to sulfite. We applied this insight to L-cysteine overproduction in E. coli and succeeded in enhancing it by GlpE overexpression in media containing glucose or glycerol as the main carbon source, by up to ~1.7-fold (1207 mg/l) or ~1.5-fold (1529 mg/l), respectively.
21 CFR 582.6807 - Sodium thiosulfate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium thiosulfate. 582.6807 Section 582.6807 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium thiosulfate. (a) Product. Sodium thiosulfate. (b) Tolerance. 0.1 percent. (c) Limitations...
21 CFR 582.6807 - Sodium thiosulfate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium thiosulfate. 582.6807 Section 582.6807 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium thiosulfate. (a) Product. Sodium thiosulfate. (b) Tolerance. 0.1 percent. (c) Limitations...
21 CFR 582.6807 - Sodium thiosulfate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium thiosulfate. 582.6807 Section 582.6807 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium thiosulfate. (a) Product. Sodium thiosulfate. (b) Tolerance. 0.1 percent. (c) Limitations...
21 CFR 582.6807 - Sodium thiosulfate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium thiosulfate. 582.6807 Section 582.6807 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium thiosulfate. (a) Product. Sodium thiosulfate. (b) Tolerance. 0.1 percent. (c) Limitations...
21 CFR 582.6807 - Sodium thiosulfate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium thiosulfate. 582.6807 Section 582.6807 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium thiosulfate. (a) Product. Sodium thiosulfate. (b) Tolerance. 0.1 percent. (c) Limitations...
Recovering gold from thiosulfate leach pulps via ion exchange
NASA Astrophysics Data System (ADS)
Nicol, Michael J.; O'Malley, Glen
2002-10-01
Increasing environmental and occupational safety concerns about the use of cyanide in gold processing has increased interest in more acceptable alternative lixiviants, the most promising of which is thiosulfate. However, the thiosulfate process lacks a proven inpulp method of recovering the dissolved gold because activated carbon is not effective for the absorption of the gold-thiosulfate complex. This paper describes work aimed at evaluating the effectiveness of commercially available anion exchange resins for the recovery of gold from thiosulfate leach liquors and pulps.
21 CFR 184.1807 - Sodium thiosulfate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium thiosulfate. 184.1807 Section 184.1807 Food... Specific Substances Affirmed as GRAS § 184.1807 Sodium thiosulfate. (a) Sodium thiosulfate (Na2S2O3·5H2O, CAS Reg. No. 010102-0917-097) is also known as sodium hyposulfite. It is prepared synthetically by the...
21 CFR 184.1807 - Sodium thiosulfate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium thiosulfate. 184.1807 Section 184.1807 Food... Specific Substances Affirmed as GRAS § 184.1807 Sodium thiosulfate. (a) Sodium thiosulfate (Na2S2O3·5H2O, CAS Reg. No. 010102-0917-097) is also known as sodium hyposulfite. It is prepared synthetically by the...
21 CFR 184.1807 - Sodium thiosulfate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium thiosulfate. 184.1807 Section 184.1807 Food... Specific Substances Affirmed as GRAS § 184.1807 Sodium thiosulfate. (a) Sodium thiosulfate (Na2S2O3·5H2O, CAS Reg. No. 010102-0917-097) is also known as sodium hyposulfite. It is prepared synthetically by the...
21 CFR 184.1807 - Sodium thiosulfate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium thiosulfate. 184.1807 Section 184.1807 Food... Specific Substances Affirmed as GRAS § 184.1807 Sodium thiosulfate. (a) Sodium thiosulfate (Na2S2O3·5H2O, CAS Reg. No. 010102-0917-097) is also known as sodium hyposulfite. It is prepared synthetically by the...
21 CFR 184.1807 - Sodium thiosulfate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium thiosulfate. 184.1807 Section 184.1807 Food... GRAS § 184.1807 Sodium thiosulfate. (a) Sodium thiosulfate (Na2S2O3·5H2O, CAS Reg. No. 010102-0917-097) is also known as sodium hyposulfite. It is prepared synthetically by the reaction of sulfides and...
Heinzinger, N K; Fujimoto, S Y; Clark, M A; Moreno, M S; Barrett, E L
1995-01-01
The phs chromosomal locus of Salmonella typhimurium is essential for the dissimilatory anaerobic reduction of thiosulfate to hydrogen sulfide. Sequence analysis of the phs region revealed a functional operon with three open reading frames, designated phsA, phsB, and phsC, which encode peptides of 82.7, 21.3, and 28.5 kDa, respectively. The predicted products of phsA and phsB exhibited significant homology with the catalytic and electron transfer subunits of several other anaerobic molybdoprotein oxidoreductases, including Escherichia coli dimethyl sulfoxide reductase, nitrate reductase, and formate dehydrogenase. Simultaneous comparison of PhsA to seven homologous molybdoproteins revealed numerous similarities among all eight throughout the entire frame, hence, significant amino acid conservation among molybdoprotein oxidoreductases. Comparison of PhsB to six other homologous sequences revealed four highly conserved iron-sulfur clusters. The predicted phsC product was highly hydrophobic and similar in size to the hydrophobic subunits of the molybdoprotein oxidoreductases containing subunits homologous to phsA and phsB. Thus, phsABC appears to encode thiosulfate reductase. Single-copy phs-lac translational fusions required both anaerobiosis and thiosulfate for full expression, whereas multicopy phs-lac translational fusions responded to either thiosulfate or anaerobiosis, suggesting that oxygen and thiosulfate control of phs involves negative regulation. A possible role for thiosulfate reduction in anaerobic respiration was examined. Thiosulfate did not significantly augment the final densities of anaerobic cultures grown on any of the 18 carbon sources tested. on the other hand, washed stationary-phase cells depleted of ATP were shown to synthesize small amounts of ATP on the addition of the formate and thiosulfate, suggesting that the thiosulfate reduction plays a unique role in anaerobic energy conservation by S typhimurium. PMID:7751291
Protection against cyanide-induced convulsions with alpha-ketoglutarate.
Yamamoto, H
1990-04-30
Protection against convulsions induced by cyanide was observed after treatment with alpha-ketoglutarate, either alone or in combination with sodium thiosulfate, a classical antagonist for cyanide intoxication. However, sodium thiosulfate alone did not protect against cyanide (30 mg/kg)-induced convulsions. gamma-Aminobutyric acid (GABA) levels in brain were decreased by 31% in KCN-treated mice exhibiting convulsions. The combined administration of alpha-ketoglutarate and sodium thiosulfate completely abolished the decrease of GABA levels induced by cyanide. Furthermore, sodium thiosulfate alone also completely abolished the decrease of GABA levels. These results suggest that the depletion of brain GABA levels may not directly contribute to the development of convulsions induced by cyanide. On the other hand, cyanide increased calcium levels by 32% in brain crude mitochondrial fractions in mice with convulsions. The increased calcium levels were completely abolished by the combined administration of alpha-ketoglutarate and sodium thiosulfate, but not affected by sodium thiosulfate alone. These findings support the hypothesis proposed by Johnson et al. (Toxicol. Appl. Pharmacol., 84 (1986) 464) and Robinson et al. (Toxicology, 35 (1985) 59) that calcium may play an important role in mediating cyanide neurotoxicity.
Xu, Y.; Schoonen, M.A.A.; Nordstrom, D. Kirk; Cunningham, K.M.; Ball, J.W.
1998-01-01
Thiosulfate (S2O2-3), polythionate (SxO2-6), dissolved sulfide (H2S), and sulfate (SO2-4) concentrations in thirty-nine alkaline and acidic springs in Yellowstone National Park (YNP) were determined. The analyses were conducted on site, using ion chromatography for thiosulfate, polythionate, and sulfate, and using colorimetry for dissolved sulfide. Thiosulfate was detected at concentrations typically less than 2 ??mol/L in neutral and alkaline chloride springs with low sulfate concentrations (C1-/SO2-4 > 25). The thiosulfate concentration levels are about one to two orders of magnitude lower than the concentration of dissolved sulfide in these springs. In most acid sulfate and acid sulfate-chloride springs (Cl-/SO2-4 < 10), thiosulfate concentrations were also typically lower than 2 ??mol/L. However, in some chloride springs enriched with sulfate (Cl-/SO2-4 between 10 to 25), thiosulfate was found at concentrations ranging from 9 to 95 ??mol/L, higher than the concentrations of dissolved sulfide in these waters. Polythionate was detected only in Cinder Pool, Norris Geyser basin, at concentrations up to 8 ??mol/L, with an average S-chain-length from 4.1 to 4.9 sulfur atoms. The results indicate that no thiosulfate occurs in the deeper parts of the hydrothermal system. Thiosulfate may form, however, from (1) hydrolysis of native sulfur by hydrothermal solutions in the shallower parts (<50 m) of the system, (2) oxidation of dissolved sulfide upon mixing of a deep hydrothermal water with aerated shallow groundwater, and (3) the oxidation of dissolved sulfide by dissolved oxygen upon discharge of the hot spring. Upon discharge of a sulfide-containing hydrothermal water, oxidation proceeds rapidly as atmospheric oxygen enters the water. The transfer of oxygen is particularly effective if the hydrothermal discharge is turbulent and has a large surface area.
Pyne, Prosenjit; Alam, Masrure; Rameez, Moidu Jameela; Mandal, Subhrangshu; Sar, Abhijit; Mondal, Nibendu; Debnath, Utsab; Mathew, Boby; Misra, Anup Kumar; Mandal, Amit Kumar; Ghosh, Wriddhiman
2018-04-18
The SoxXAYZB(CD) 2 -mediated pathway of bacterial sulfur-chemolithotrophy explains the oxidation of thiosulfate, sulfide, sulfur and sulfite, but not tetrathionate. Advenella kashmirensis, which oxidizes tetrathionate to sulfate, besides forming it as an intermediate during thiosulfate-oxidation, possesses a soxCDYZAXOB operon. Knock-out-mutations proved that only SoxBCD is involved in A. kashmirensis tetrathionate-oxidation, whereas thiosulfate-to-tetrathionate-conversion is Sox-independent. Expression of two glutathione-metabolism-related proteins increased under chemolithotrophic conditions, as compared to the chemoorganotrophic one. Substrate-dependent oxygen-consumption pattern of whole-cells, and sulfur-oxidizing enzyme activities of cell-free-extracts, measured in the presence/absence of thiol-inhibitors/glutathione, corroborated glutathione-involvement in tetrathionate-oxidation. Furthermore, proteome analyses detected a sulfite:acceptor oxidoreductase (SorAB) exclusively under chemolithotrophic conditions, while expression of a methanol dehydrogenase (XoxF) homolog, subsequently named thiol dehydrotransferase (ThdT), was found to increase three- and ten-fold during thiosulfate-to-tetrathionate-conversion and tetrathionate-oxidation, respectively. A thdT-knocked-out mutant did not oxidize tetrathionate, but converted half of the supplied 40-mM-S thiosulfate to tetrathionate. Knock-out of another thiosulfate dehydrogenase (tsdA) gene proved that both ThdT and TsdA individually converted ∼20-mM-S thiosulfate to tetrathionate. The overexpressed and isolated ThdT protein exhibited PQQ-dependent thiosulfate dehydrogenation, whereas its PQQ-independent thiol-transfer activity involving tetrathionate and glutathione potentially produced a glutathione:sulfodisulfane adduct and sulfite. SoxBCD and SorAB were hypothesized to oxidize the aforesaid adduct and sulfite, respectively. This article is protected by copyright. All rights reserved. © 2018 John Wiley & Sons Ltd.
Anaerobic oxidation of methane coupled to thiosulfate reduction in a biotrickling filter.
Cassarini, Chiara; Rene, Eldon R; Bhattarai, Susma; Esposito, Giovanni; Lens, Piet N L
2017-09-01
Microorganisms from an anaerobic methane oxidizing sediment were enriched with methane gas as the substrate in a biotrickling filter (BTF) using thiosulfate as electron acceptor for 213days. Thiosulfate disproportionation to sulfate and sulfide were the dominating sulfur conversion process in the BTF and the sulfide production rate was 0.5mmoll -1 day -1 . A specific group of sulfate reducing bacteria (SRB), belonging to the Desulforsarcina/Desulfococcus group, was enriched in the BTF. The BTF biomass showed maximum sulfate reduction rate (0.38mmoll -1 day -1 ) with methane as sole electron donor, measured in the absence of thiosulfate in the BTF. Therefore, a BTF fed with thiosulfate as electron acceptor can be used to enrich SRB of the DSS group and activate the inoculum for anaerobic oxidation of methane coupled to sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Houghton, J.L.; Foustoukos, D.; Flynn, T.M.; Vetriani, C.; Bradley, A.S.; Fike, D.A.
2017-01-01
Summary Previous studies of the stoichiometry of thiosulfate oxidation by colorless sulfur bacteria have failed to demonstrate mass balance of sulfur, indicating that unidentified oxidized products must be present. Here we present reaction stoichiometry and kinetics under variable pH conditions during the growth of Thiomicrospira thermophila strain EPR85, isolated from diffuse hydrothermal fluids at the East Pacific Rise. At pH 8.0, thiosulfate is stoichiometrically converted to sulfate. At lower pH, the products of thiosulfate oxidation are extracellular elemental sulfur and sulfate. We were able to replicate previous experiments and identify the missing sulfur as tetrathionate, consistent with previous reports of the activity of thiosulfate dehydrogenase. Tetrathionate was formed under slightly acidic conditions. Genomic DNA from T. thermophila strain EPR85 contains genes homologous to those in the Sox pathway (soxAXYZBCDL), as well as rhodanese and thiosulfate dehydrogenase. No other sulfur oxidizing bacteria containing sox(CD)2 genes have been reported to produce extracellular elemental sulfur. If the apparent modified Sox pathway we observe in T. thermophila is present in marine Thiobacillus and Thiomicrospira species, production of extracellular elemental sulfur may be biogeochemically important in marine sulfur cycling. PMID:26914243
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houghton, J. L.; Foustoukos, D. I.; Flynn, T. M.
Previous studies of the stoichiometry of thiosulfate oxidation by colorless sulfur bacteria have failed to demonstrate mass balance of sulfur, indicating that unidentified oxidized products must be present. Here the reaction stoichiometry and kinetics under variable pH conditions during the growth of Thiomicrospira thermophila strain EPR85, isolated from diffuse hydrothermal fluids at the East Pacific Rise, is presented. At pH 8.0, thiosulfate was stoichiometrically converted to sulfate. At lower pH, the products of thiosulfate oxidation were extracellular elemental sulfur and sulfate. Here, we were able to replicate previous experiments and identify the missing sulfur as tetrathionate, consistent with previous reportsmore » of the activity of thiosulfate dehydrogenase. Tetrathionate was formed under slightly acidic conditions. Genomic DNA from T. thermophila strain EPR85 contains genes homologous to those in the Sox pathway ( soxAXYZBCDL), as well as rhodanese and thiosulfate dehydrogenase. No other sulfur oxidizing bacteria containing sox(CD)2 genes have been reported to produce extracellular elemental sulfur. If the apparent modified Sox pathway we observed in T. thermophila is present in marine Thiobacillus and Thiomicrospira species, production of extracellular elemental sulfur may be biogeochemically important in marine sulfur cycling.« less
Houghton, J. L.; Foustoukos, D. I.; Flynn, T. M.; ...
2016-03-21
Previous studies of the stoichiometry of thiosulfate oxidation by colorless sulfur bacteria have failed to demonstrate mass balance of sulfur, indicating that unidentified oxidized products must be present. Here the reaction stoichiometry and kinetics under variable pH conditions during the growth of Thiomicrospira thermophila strain EPR85, isolated from diffuse hydrothermal fluids at the East Pacific Rise, is presented. At pH 8.0, thiosulfate was stoichiometrically converted to sulfate. At lower pH, the products of thiosulfate oxidation were extracellular elemental sulfur and sulfate. Here, we were able to replicate previous experiments and identify the missing sulfur as tetrathionate, consistent with previous reportsmore » of the activity of thiosulfate dehydrogenase. Tetrathionate was formed under slightly acidic conditions. Genomic DNA from T. thermophila strain EPR85 contains genes homologous to those in the Sox pathway ( soxAXYZBCDL), as well as rhodanese and thiosulfate dehydrogenase. No other sulfur oxidizing bacteria containing sox(CD)2 genes have been reported to produce extracellular elemental sulfur. If the apparent modified Sox pathway we observed in T. thermophila is present in marine Thiobacillus and Thiomicrospira species, production of extracellular elemental sulfur may be biogeochemically important in marine sulfur cycling.« less
Dereven'kov, Ilia A; Salnikov, Denis S; Makarov, Sergei V; Boss, Gerry R; Koifman, Oskar I
2013-11-21
We studied the kinetics of reactions of cob(I)alamin and cob(I)inamide with thiosulfate, sulfite, and dithionite by UV-Visible (UV-Vis) and stopped-flow spectroscopy. We found that the two Co(I) species were oxidized by these sulfur-containing compounds to Co(II) forms: oxidation by excess thiosulfate leads to penta-coordinate complexes and oxidation by excess sulfite or dithionite leads to hexa-coordinate Co(II)-SO2(-) complexes. The net scheme involves transfer of three electrons in the case of oxidation by thiosulfate and one electron for oxidation by sulfite and dithionite. On the basis of kinetic data, the nature of the reactive oxidants was suggested, i.e., HS2O3(-) (for oxidation by thiosulfate), S2O5(2-), HSO3(-), and aquated SO2 (for oxidation by sulfite), and S2O4(2-) and SO2(-) (for oxidation by dithionite). No difference was observed in kinetics with cob(i)alamin or cob(i)inamide as reductants.
Landry, Greg M; Hirata, Taku; Anderson, Jacob B; Cabrero, Pablo; Gallo, Christopher J R; Dow, Julian A T; Romero, Michael F
2016-01-15
Nephrolithiasis is one of the most common urinary tract disorders, with the majority of kidney stones composed of calcium oxalate (CaOx). Given its prevalence (US occurrence 10%), it is still poorly understood, lacking progress in identifying new therapies because of its complex etiology. Drosophila melanogaster (fruitfly) is a recently developed model of CaOx nephrolithiasis. Effects of sulfate and thiosulfate on crystal formation were investigated using the Drosophila model, as well as electrophysiological effects on both Drosophila (Slc26a5/6; dPrestin) and mouse (mSlc26a6) oxalate transporters utilizing the Xenopus laevis oocyte heterologous expression system. Results indicate that both transport thiosulfate with a much higher affinity than sulfate Additionally, both compounds were effective at decreasing CaOx crystallization when added to the diet. However, these results were not observed when compounds were applied to Malpighian tubules ex vivo. Neither compound affected CaOx crystallization in dPrestin knockdown animals, indicating a role for principal cell-specific dPrestin in luminal oxalate transport. Furthermore, thiosulfate has a higher affinity for dPrestin and mSlc26a6 compared with oxalate These data indicate that thiosulfate's ability to act as a competitive inhibitor of oxalate via dPrestin, can explain the decrease in CaOx crystallization seen in the presence of thiosulfate, but not sulfate. Overall, our findings predict that thiosulfate or oxalate-mimics may be effective as therapeutic competitive inhibitors of CaOx crystallization. Copyright © 2016 the American Physiological Society.
Mixotrophic and autotrophic growth of Thiobacillus acidophilus on glucose and thiosulfate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pronk, J.T.; Meulenberg, R.; van den Berg, D.J.C.
1990-11-01
Mixotrophic growth of the facultatively autotrophic acidophile Thiobacillus acidophilus on mixtures of glucose and thiosulfate or tetrathionate was studied in substrate-limited chemostat cultures. Growth yields in mixotrophic cultures were higher than the sum of the heterotrophic and autographic growth yields. Pulse experiments with thiosulfate indicated that tetrathionate is an intermediate during thiosulfate oxidation by cell suspensions of T. acidophilus. From mixotrophic growth studied, the energetic value of thiosulfate and tetrathionate redox equivalents was estimated to be 50% of that of redox equivalents derived from glucose oxidation. Ribulose 1,5-bisphosphate carboxylase (RuBPCase) activities in cell extracts and rates of sulfur compound oxidationmore » by cell suspensions increased with increasing thiosulfate/glucose ratios in the influent medium of the mixotrophic cultures. Significant RuBPCase and sulfur compound-oxidizing activities were detected in heterotrophically grown T. acidophilus. Polyhedral inclusion bodies (carboxysomes) could be observed at low frequencies in thin sections of cells grown in heterotrophic, glucose-limited chemostat cultures. Highest RuBPCase activities and carboxysome abundancy were observed in cells from autotrophic, CO{sub 2}-limited chemostat cultures. The maximum growth rate at which thiosulfate was still completely oxidized was increased when glucose was utilized simultaneously. This, together with the fact that even during heterotrophic growth the organism exhibited significant activities of enzymes involved in autotrophic metabolism, indicates that T. acidophilus is well adapted to a mixotrophic lifestyle. In this respect, T. acidophilus may have a competitive advantage over autotrophic acidophiles with respect to the sulfur compound oxidation in environments in which organic compounds are present.« less
Non-SRB sulfidogenic bacteria in oilfield production facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crolet, J.L.; Magot, M.F.
1996-03-01
The characterization of strictly anaerobic bacteria which can reduce thiosulfate into hydrogen sulfide is described. Although thiosulfate reduction is a common metabolism in the bacterial world, its implication regarding microbiologically influenced corrosion has never been investigated. Thiosulfate is in ecosystems where hydrogen sulfide and oxygen come in contact. An example is a sour oil-transporting pipeline in the Gulf of Guinea. In one year, this line corroded by pitting to a depth of about 1 cm.
2014-01-01
Core sets of sox genes were detected in several genome sequenced members of the environmental important OM60/NOR5 clade of marine gammaproteobacteria. However, emendation of media with thiosulfate did not result in stimulation of growth in two of these strains and cultures of Congregibacter litoralis DSM 17192T did not oxidize thiosulfate to sulfate in concentrations of one mmol L−1 or above. On the other hand, a significant production of sulfate was detected upon growth with the organic sulfur compounds, cysteine and glutathione. It was found that degradation of glutathione resulted in the formation of submillimolar amounts of thiosulfate in the closely related sox-negative strain Chromatocurvus halotolerans DSM 23344T. It is proposed that the Sox multienzyme complex in Congregibacter litoralis and related members of the OM60/NOR5 clade is adapted to the oxidation of submillimolar amounts of thiosulfate and nonfunctional at higher concentrations of reduced inorganic sulfur compounds. Pelagic bacteria thriving in the oxic zones of marine environments may rarely encounter amounts of thiosulfate, which would allow its utilization as electron donor for lithoautotrophic or mixotrophic growth. Consequently, in evolution the Sox multienzyme complex in some of these bacteria may have been optimized for the effective utilization of trace amounts of thiosulfate generated from the degradation of organic sulfur compounds. PMID:25006520
Electrochemical Corrosion of Stainless Steel in Thiosulfate Solutions Relevant to Gold Leaching
NASA Astrophysics Data System (ADS)
Choudhary, Lokesh; Wang, Wei; Alfantazi, Akram
2016-01-01
This study aims to characterize the electrochemical corrosion behavior of stainless steel in the ammoniacal thiosulfate gold leaching solutions. Electrochemical corrosion response was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy, while the semi-conductive properties and the chemical composition of the surface film were characterized using Mott-Schottky analysis and X-ray photoelectron spectroscopy, respectively. The morphology of the corroded specimens was analyzed using scanning electron microscopy. The stainless steel 316L showed no signs of pitting in the ammoniacal thiosulfate solutions.
Rodgers, Allen; Gauvin, Daniel; Edeh, Samuel; Allie-Hamdulay, Shameez; Jackson, Graham; Lieske, John C
2014-01-01
Urinary sulfate (SO4(2-)) and thiosulfate (S2O3(2-)) can potentially bind with calcium and decrease kidney stone risk. We modeled the effects of these species on the concentration of ionized calcium (iCa) and on supersaturation (SS) of calcium oxalate (CaOx) and calcium phosphate (CaP), and measured their in vitro effects on iCa and the upper limit of stability (ULM) of these salts. Urine data from 4 different types of stone patients were obtained from the Mayo Nephrology Clinic (Model 1). A second data set was obtained from healthy controls and hypercalciuric stone formers in the literature who had been treated with sodium thiosulfate (STS) (Model 2). The Joint Expert Speciation System (JESS) was used to calculate iCa and SS. In Model 1, these parameters were calculated as a function of sulfate and thiosulfate concentrations. In Model 2, data from pre- and post STS urines were analyzed. ULM and iCa were determined in human urine as a function of sulfate and thiosulfate concentrations. Calculated iCa and SS values for all calcium salts decreased with increasing sulfate concentration. Thiosulfate had no effect on these parameters. In Model 2, calculated iCa and CaOx SS increased after STS treatment, but CaP SS decreased, perhaps due to a decrease in pH after STS treatment. In confirmatory in vitro experiments supplemental sulfate, but not thiosulfate, significantly increased the calcium needed to achieve the ULM of CaP and tended to increase the oxalate needed to reach the ULM of CaOx. Sulfate also significantly decreased iCa in human urine, while thiosulfate had no effect. Increasing urinary sulfate could theoretically reduce CaOx and CaP stone risk. Although STS may reduce CaP stone risk by decreasing urinary pH, it might also paradoxically increase iCa and CaOx SS. As such, STS may not be a viable treatment option for stone disease.
Brito, José A.; Gutierres, André; Denkmann, Kevin; Dahl, Christiane; Archer, Margarida
2014-01-01
The ability to perform the very simple oxidation of two molecules of thiosulfate to tetrathionate is widespread among prokaryotes. Despite the prevalent occurrence of tetrathionate formation and its well documented significance within the sulfur cycle, little is known about the enzymes that catalyze the oxidative condensation of two thiosulfate anions. To fill this gap, the thiosulfate dehydrogenase (TsdA) enzyme from the purple sulfur bacterium Allochromatium vinosum was recombinantly expressed in Escherichia coli, purified and crystallized, and a crystallographic data set was collected. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 79.2, b = 69.9, c = 57.9 Å, β = 129.3°, contained one monomer per asymmetric unit and diffracted to a resolution of 1.98 Å. PMID:25286955
Spring, S; Kämpfer, P; Schleifer, K H
2001-07-01
Two novel thiosulfate-oxidizing strains were isolated from sediment of the littoral zone of a freshwater lake (Lake Chiemsee, Bavaria, Germany). The new isolates, designated CS-K1 and CS-K2T, were gram-negative, slightly curved rods with pointed ends that were motile by means of single polar flagella. Both strains were obligately aerobic and grew on a variety of organic substrates, but not autotrophically. The utilization of thiosulfate led to an increase in the growth yield, indicating that these strains were able to grow chemolithoheterotrophically by oxidation of thiosulfate to sulfate. The optimum thiosulfate concentrations for growth were determined to be 10 mM for strain CS-K1 and 20 mM for strain CS-K2T. Phylogenetically, both strains were affiliated to the beta-Proteobacteria. Their characterization by a polyphasic approach resulted in the placement of both strains into a single species that is related only distantly to any known type species. Thus, the creation of a novel taxon is proposed, with the name Limnobacter thiooxidans gen. nov., sp. nov., to include the novel strains. In addition, the phylogenetic position of the chemolithoheterotrophic strain 'Thiobacillus' Q was determined.
ERIC Educational Resources Information Center
Tykodi, R. J.
1990-01-01
The use of the thiosulfate ion in teaching the concepts of gas formation, precipitate formation, complex formation, acid-base interaction, redox interaction, time evolution of chemical processes, catalysis, and stoichiometry is discussed. Several demonstrations and activities are detailed. (CW)
Wash efficiency tests. [silver sulfide as an index of the storability of photographic film
NASA Technical Reports Server (NTRS)
Maas, K. A.
1972-01-01
Processed film products were tested for residual thiosulfate by precipitation as colored silver sulfide. The quantity of thiosulfate was determined and correlated with the expected storage life of the film.
Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation.
Daeffler, Kristina N-M; Galley, Jeffrey D; Sheth, Ravi U; Ortiz-Velez, Laura C; Bibb, Christopher O; Shroyer, Noah F; Britton, Robert A; Tabor, Jeffrey J
2017-04-03
There is a groundswell of interest in using genetically engineered sensor bacteria to study gut microbiota pathways, and diagnose or treat associated diseases. Here, we computationally identify the first biological thiosulfate sensor and an improved tetrathionate sensor, both two-component systems from marine Shewanella species, and validate them in laboratory Escherichia coli Then, we port these sensors into a gut-adapted probiotic E. coli strain, and develop a method based upon oral gavage and flow cytometry of colon and fecal samples to demonstrate that colon inflammation (colitis) activates the thiosulfate sensor in mice harboring native gut microbiota. Our thiosulfate sensor may have applications in bacterial diagnostics or therapeutics. Finally, our approach can be replicated for a wide range of bacterial sensors and should thus enable a new class of minimally invasive studies of gut microbiota pathways. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Selective detection of thiosulfate-containing peptides using tandem mass spectrometry.
Raftery, Mark J
2005-01-01
Incubation of proteins or peptides containing disulfide bonds (S-S) with sodium sulfite (Na(2)SO(3)) cleaves S-S bonds producing approximately equimolar amounts of free thiols (-SH) and thiosulfates (-S-SO(3)H), a process known as sulfitolysis. Proteins and peptides containing thiosulfates were separated by reverse-phase high-performance liquid chromatography (RP-HPLC) and characterized by mass spectrometry (MS) and peptide mapping. The mass of the thiosulfate-containing peptide formed from oxidized insulin B chain was 3478.02 Da, 80 Da greater than the reduced peptide and corresponding precisely to addition of sulfur trioxide (SO(3)). Disulfide bond cleavage was also observed using RP-HPLC and MS after incubation of the intramolecular homodimer of mouse S100A8 (mass 20614 Da). The mass of HPLC-separated A8-SH was 10308 Da, and 10388 Da for A8-S-SO(3)H. Loss of SO(3) from multiply charged precursor ions was generally observed at elevated declustering potentials in the source region or within q(2) at relatively low collision energies (approximately 20 V). The characteristic loss of SO(3) at low collision energies preceded peptide backbone fragmentations at higher collision energies. Accurate mass measurement and charge-state discrimination, using a hybrid quadrupole time-of-flight mass spectrometer, allowed specific detection of thiosulfate-containing peptides. An information-dependent acquisition method, where the switch criterion was loss of m/z 79.9568, specifically identified 11 thiosulfate-containing peptides using nano-LC/MS from a tryptic digest of bovine serum albumin (BSA).
Liang, Renxing; Grizzle, Robert S.; Duncan, Kathleen E.; McInerney, Michael J.; Suflita, Joseph M.
2014-01-01
Thermophilic sulfide-producing microorganisms from an oil pipeline network were enumerated with different sulfur oxyanions as electron acceptors at 55°C. Most-probable number (MPN) analysis showed that thiosulfate-reducing bacteria were the most numerous sulfidogenic microorganisms in pipeline inspection gauge (PIG) scrapings. Thiosulfate-reducing and methanogenic enrichments were obtained from the MPN cultures that were able to use yeast extract as the electron donor. Molecular analysis revealed that both enrichments harbored the same dominant bacterium, which belonged to the genus Anaerobaculum. The dominant archaeon in the methanogenic enrichment was affiliated with the genus Methanothermobacter. With yeast extract as the electron donor, the general corrosion rate by the thiosulfate-reducing enrichment (8.43 ± 1.40 milli-inch per year, abbreviated as mpy) was about 5.5 times greater than the abiotic control (1.49 ± 0.15 mpy), while the comparable measures for the methanogenic culture were 2.03 ± 0.49 mpy and 0.62 ± 0.07 mpy, respectively. Total iron analysis in the cultures largely accounted for the mass loss of iron measured in the weight loss determinations. Profilometry analysis of polished steel coupons incubated in the presence of the thiosulfate-reducing enrichment revealed 59 pits over an area of 71.16 mm2, while only 6 pits were evident in the corresponding methanogenic incubations. The results show the importance of thiosulfate-utilizing, sulfide-producing fermentative bacteria such as Anaerobaculum sp. in the corrosion of carbon steel, but also suggest that Anaerobaculum sp. are of far less concern when growing syntrophically with methanogens. PMID:24639674
Liang, Renxing; Grizzle, Robert S; Duncan, Kathleen E; McInerney, Michael J; Suflita, Joseph M
2014-01-01
Thermophilic sulfide-producing microorganisms from an oil pipeline network were enumerated with different sulfur oxyanions as electron acceptors at 55°C. Most-probable number (MPN) analysis showed that thiosulfate-reducing bacteria were the most numerous sulfidogenic microorganisms in pipeline inspection gauge (PIG) scrapings. Thiosulfate-reducing and methanogenic enrichments were obtained from the MPN cultures that were able to use yeast extract as the electron donor. Molecular analysis revealed that both enrichments harbored the same dominant bacterium, which belonged to the genus Anaerobaculum. The dominant archaeon in the methanogenic enrichment was affiliated with the genus Methanothermobacter. With yeast extract as the electron donor, the general corrosion rate by the thiosulfate-reducing enrichment (8.43 ± 1.40 milli-inch per year, abbreviated as mpy) was about 5.5 times greater than the abiotic control (1.49 ± 0.15 mpy), while the comparable measures for the methanogenic culture were 2.03 ± 0.49 mpy and 0.62 ± 0.07 mpy, respectively. Total iron analysis in the cultures largely accounted for the mass loss of iron measured in the weight loss determinations. Profilometry analysis of polished steel coupons incubated in the presence of the thiosulfate-reducing enrichment revealed 59 pits over an area of 71.16 mm(2), while only 6 pits were evident in the corresponding methanogenic incubations. The results show the importance of thiosulfate-utilizing, sulfide-producing fermentative bacteria such as Anaerobaculum sp. in the corrosion of carbon steel, but also suggest that Anaerobaculum sp. are of far less concern when growing syntrophically with methanogens.
NASA Astrophysics Data System (ADS)
Xu, Y.; Schoonen, M. A. A.; Nordstrom, D. K.; Cunningham, K. M.; Ball, J. W.
2000-04-01
Cinder Pool is an acid-sulfate-chloride boiling spring in Norris Geyser Basin, Yellowstone National Park. The pool is unique in that its surface is partially covered with mm-size, black, hollow sulfur spherules, while a layer of molten sulfur resides at the bottom of the pool (18 m depth). The sulfur speciation in the pool was determined on four different days over a period of two years. Samples were taken to evaluate changes with depth and to evaluate the importance of the sulfur spherules on sulfur redox chemistry. All analyses were conducted on site using a combination of ion chromatography and colorimetric techniques. Dissolved sulfide (H2S), thiosulfate (S2O32-), polythionates (SxO62-), and sulfate were detected. The polythionate concentration was highly variable in time and space. The highest concentrations were found in surficial samples taken from among the sulfur spherules. With depth, the polythionate concentrations dropped off. The maximum observed polythionate concentration was 8 μM. Thiosulfate was rather uniformly distributed throughout the pool and concentrations ranged from 35 to 45 μM. Total dissolved sulfide concentrations varied with time, concentrations ranged from 16 to 48 μM. Sulfate was relatively constant, with concentrations ranging from 1150 to 1300 μM. The sulfur speciation of Cinder Pool is unique in that the thiosulfate and polythionate concentrations are significantly higher than for any other acid-sulfate spring yet sampled in Yellowstone National Park. Complementary laboratory experiments show that thiosulfate is the intermediate sulfoxyanion formed from sulfur hydrolysis under conditions similar to those found in Cinder Pool and that polythionates are formed via the oxidation of thiosulfate by dissolved oxygen. This last reaction is catalyzed by pyrite that occurs as a minor constituent in the sulfur spherules floating on the pool's surface. Polythionate decomposition proceeds via two pathways: (1) a reaction with H2S, yielding thiosulfate and elemental sulfur; and (2) by disproportionation to sulfate and thiosulfate. This study demonstrates that the presence of a subaqueous molten sulfur pool and sulfur spherules in Cinder Pool is of importance in controlling the pathways of aqueous sulfur redox reactions. Some of the insights gained at Cinder Pool may be relevant to acid crater lakes where sulfur spherules are observed and variations in polythionate concentrations are used to monitor and predict volcanic activity.
The reaction of Grignard reagents with Bunte salts: a thiol-free synthesis of sulfides.
Reeves, Jonathan T; Camara, Kaddy; Han, Zhengxu S; Xu, Yibo; Lee, Heewon; Busacca, Carl A; Senanayake, Chris H
2014-02-21
S-Alkyl, S-aryl, and S-vinyl thiosulfate sodium salts (Bunte salts) react with Grignard reagents to give sulfides in good yields. The S-alkyl Bunte salts are prepared from odorless sodium thiosulfate by an SN2 reaction with alkyl halides. A Cu-catalyzed coupling of sodium thiosulfate with aryl and vinyl halides was developed to access S-aryl and S-vinyl Bunte salts. The reaction is amenable to a broad structural array of Bunte salts and Grignard reagents. Importantly, this route to sulfides avoids the use of malodorous thiol starting materials or byproducts.
Viana, Lilian Ávila; Düsman, Elisângela; Vicentini, Veronica Elisa Pimenta
2014-02-01
Cassava (Manihot esculenta Crantz), a plant used as food and an ingredient in industry, contains cyanogenic glycosides. The cassava root contains wastewater, popularly known as manipueira, which is a toxic substance. Its ingestion by animals causes poisoning although they react positively to treatment with sodium thiosulfate. The present research evaluates the cytotoxicity and the mutagenicity of liquid waste produced in the process of industrialization of the bitter cassava, olho-junto variety. The liquid wastes are characterized as press water, which is obtained when the cassava roots are pressed; pond water, which is press water stored in impounded ponds; and a solution of sodium thiosulfate, pure and with other waste. The system tests comprised root meristematic cells of Allium cepa L. and bone marrow cells of Rattus norvegicus. Treatment with saline solution was cytotoxic for Allium cepa L. and significantly reduced cell division rate. Although no treatment was cytotoxic in any of the tests with rats, the thiosulfate solution was clastogenic for the chromosomal aberrations test. Since it is harmful to the genetic material submitted within the conditions of current research, sodium thiosulfate should only be used in emergency conditions in which the benefits exceed the risks. © 2013 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, J M; Martin, S I; Masterson, B
2000-12-07
Experiments were undertaken to evaluate extreme conditions under which candidate materials intended for use in a proposed nuclear waste repository might be susceptible to corrosion by endogenous microorganisms. Thiobucillus ferrooxidans, a sulfur-oxidizing bacterium, was grown in continuous culture using thiosulfate as an energy source; thiosulfate is oxidized to sulfate as a metabolic endproduct by this organism. Culture conditions were optimized to produce a high-density, metabolically active culture throughout a period of long term incubation in the presence of Alloy 22 (a high nickel-based alloy) and Titanium grade 7 (Tigr7) material coupons. After seven months incubation under these conditions, material couponsmore » were withdrawn and analyzed by high resolution microscopy and energy dispersive x-ray analyses. Alloy 22 coupons showed no detectable signs of corrosion. Tigr7, however, demonstrated distinct roughening of the coupon surface, and [presumably solubilized and precipitated] titanium was detected on Alloy 22 coupons incubated in the same T. ferrooxiduns culture vessel. Control coupons of these materials incubated in sterile thiosulfate medium did not demonstrate any signs of corrosion, thus showing that observed corrosive effects were due to the T. ferrooxidans metabolic activities. T. ferrooxidans intermediates of thiosulfate oxidation or sulfate may have caused the corrosive effects observed on Tigr7.« less
Thiosulfate leaching of gold from waste mobile phones.
Ha, Vinh Hung; Lee, Jae-chun; Jeong, Jinki; Hai, Huynh Trung; Jha, Manis K
2010-06-15
The present communication deals with the leaching of gold from the printed circuit boards (PCBs) of waste mobile phones using an effective and less hazardous system, i.e., a copper-ammonia-thiosulfate solution, as an alternative to the conventional and toxic cyanide leaching of gold. The influence of thiosulfate, ammonia and copper sulfate concentrations on the leaching of gold from PCBs of waste mobile phones was investigated. Gold extraction was found to be enhanced with solutions containing 15-20 mM cupric, 0.1-0.14 M thiosulfate, and 0.2-0.3 M ammonia. Similar trends were obtained for the leaching of gold from two different types of scraps and PCBs of waste mobile phones. From the scrap samples, 98% of the gold was leached out using a solution containing 20 mM copper, 0.12 M thiosulfate and 0.2 M ammonia. Similarly, the leaching of gold from the PCBs samples was also found to be good, but it was lower than that of scrap samples in similar experimental conditions. In this case, only 90% of the gold was leached, even with a contact time of 10h. The obtained data will be useful for the development of processes for the recycling of gold from waste mobile phones. Copyright 2010 Elsevier B.V. All rights reserved.
Implications of mercury speciation in thiosulfate treated plants.
Wang, Jianxu; Feng, Xinbin; Anderson, Christopher W N; Wang, Heng; Zheng, Lirong; Hu, Tiandou
2012-05-15
Mercury uptake was induced in two cultivars of Brassica juncea under field conditions using thiosulfate. Analysis was conducted to better understand the mechanism of uptake, speciation of mercury in plants, and redistribution of mercury in the soil. Plant mercury and sulfur concentrations were increased after thiosulfate treatment, and a linear correlation between mercury and sulfur was observed. Mercury may be absorbed and transported in plants as the Hg-thiosulfate complex. The majority of mercury in treated plant tissues (two cultivars) was bound to sulfur in a form similar to β-HgS (66-94%). Remaining mercury was present in forms similar to Hg-cysteine (1-10%) and Hg-dicysteine (8-28%). The formation of β-HgS may relate to the transport and assimilation of sulfate in plant tissues. Mercury-thiosulfate complex could decompose to mercuric and sulfate ions in the presence of free protons inside the plasma membrane, while sulfide ions would be produced by the assimilation of sulfate. The concomitant presence of mercuric ions and S(2-) would precipitate β-HgS. The mercury concentration in the rhizosphere decreased in the treated relative to the nontreated soil. The iron/manganese oxide and organic-bound fractions of soil mercury were transformed to more bioavailable forms (soluble and exchangeable and specifically sorbed) and taken up by plants.
Gamma-glutamylcysteine and thiosulfate are the major low-molecular-weight thiols in halobacteria
NASA Technical Reports Server (NTRS)
Newton, Gerald L.; Javor, Barbara
1985-01-01
Six representative species of extremely halophilic bacteria were found to contain approximately millimolar concentrations of gamma-glutamylcysteine in the absence of significant glutathione. Thiosulfate also accumulated in the halobacteria, apparently as a major product of cysteine oxidation.
Spirakis, C.S.
1991-01-01
The precipitation of extremely 34S-rich barite in the late stage of mineralization in the Mississippi Valleytype deposits of the Illinois-Kentucky district (U.S.A.) may be explained by reactions involving thiosulfate (S2O3=). Inorganic processes are known to concentrate 34S in the sulfonate site of thiosulfate and 32S in the sulfate site. In the mineralizing solution, these inorganic processes may have fractionated sulfur between the two sites by about 40 per mil. At the low temperatures of the late barite stage of mineralization, bacteria are known to metabolize thiosulfate by various reactions. In one of these, dissimilatory reduction, hydrogen sulfide and sulfite are produced. Isotopically light sulfite is preferentially reduced to sulfide by bacteria to leave a residual sulfite enriched in 34S. Part of the residual sulfite may be oxidized to form isotopically heavy sulfate; part may recombine with hydrogen sulfide to form thiosulfate. The recombination also enriches the sulfonate site in 34S and the sulfane site in 32S. Recycling the newly formed thiosulfate through the above steps further enriches sulfite and sulfate from oxidation of sulfite in 34S. During genesis of the ores, the aggregate effect of these reactions may have been the precipitation of extremely 34S-rich barite. The sequence of reactions suggested above requires the presence of organic matter. Previously proposed reactions to account for the precipitation of sulfide minerals and fluorite and for the carbonate paragenesis also require the presence of organic matter. Thus, organic matter in the host rocks may cause the various ore-zone reactions and account for the localization of the ores. ?? 1991 Springer-Verlag.
Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales
Booker, Anne E.; Borton, Mikayla A.; Daly, Rebecca A.; Welch, Susan A.; Nicora, Carrie D.; Hoyt, David W.; Wilson, Travis; Purvine, Samuel O.; Wolfe, Richard A.; Sharma, Shikha; Mouser, Paula J.; Cole, David R.; Lipton, Mary S.; Wrighton, Kelly C.
2017-01-01
ABSTRACT Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance of Halanaerobium strains within the in situ microbial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by a Halanaerobium strain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis of Halanaerobium isolate genomes and reconstructed genomes from metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using a Halanaerobium isolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentative Halanaerobium uses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics. IMPORTANCE Although thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our research demonstrates that dominant microbial populations in these subsurface ecosystems contain the conserved capacity for the reduction of thiosulfate to sulfide and that this process is likely occurring in the environment. Sulfide generation (also known as “souring”) is considered deleterious in the oil and gas industry because of both toxicity issues and impacts on corrosion of the subsurface infrastructure. Critically, the capacity for sulfide generation via reduction of sulfate was not detected in our data sets. Given that current industry wellhead tests for sulfidogenesis target canonical sulfate-reducing microorganisms, these data suggest that new approaches to the detection of sulfide-producing microorganisms may be necessary. PMID:28685163
Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booker, Anne E.; Borton, Mikayla A.; Daly, Rebecca A.
ABSTRACT Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance ofHalanaerobiumstrains within thein situmicrobial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by aHalanaerobiumstrain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis ofHalanaerobiumisolate genomes and reconstructed genomes frommore » metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using aHalanaerobiumisolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentativeHalanaerobiumuses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics. IMPORTANCEAlthough thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our research demonstrates that dominant microbial populations in these subsurface ecosystems contain the conserved capacity for the reduction of thiosulfate to sulfide and that this process is likely occurring in the environment. Sulfide generation (also known as “souring”) is considered deleterious in the oil and gas industry because of both toxicity issues and impacts on corrosion of the subsurface infrastructure. Critically, the capacity for sulfide generation via reduction of sulfate was not detected in our data sets. Given that current industry wellhead tests for sulfidogenesis target canonical sulfate-reducing microorganisms, these data suggest that new approaches to the detection of sulfide-producing microorganisms may be necessary.« less
Sand, Wolfgang
1987-01-01
Biogenic sulfuric acid corrosion of concrete surfaces caused by thiobacilli was reproduced in simulation experiments. At 9 months after inoculation with thiobacilli, concrete blocks were severely corroded. The sulfur compounds hydrogen sulfide, thiosulfate, and methylmercaptan were tested for their corrosive action. With hydrogen sulfide, severe corrosion was noted. The flora was dominated by Thiobacillus thiooxidans. Thiosulfate led to medium corrosion and a dominance of Thiobacillus neapolitanus and Thiobacillus intermedius. Methylmercaptan resulted in negligible corrosion. A flora of heterotrophs and fungi grew on the blocks. This result implies that methylmercaptan cannot be degraded by thiobacilli. PMID:16347391
Xu, Y.; Schoonen, M.A.A.; Nordstrom, D. Kirk; Cunningham, K.M.; Ball, J.W.
2000-01-01
Cinder Pool is an acid-sulfate-chloride boiling spring in Norris Geyser Basin, Yellowstone National Park. The pool is unique in that its surface is partially covered with mm-size, black, hollow sulfur spherules, while a layer of molten sulfur resides at the bottom of the pool (18 m depth). The sulfur speciation in the pool was determined on four different days over a period of two years. Samples were taken to evaluate changes with depth and to evaluate the importance of the sulfur spherules on sulfur redox chemistry. All analyses were conducted on site using a combination of ion chromatography and colorimetric techniques. Dissolved sulfide (H2S), thiosulfate (S2O32−), polythionates (SxO62−), and sulfate were detected. The polythionate concentration was highly variable in time and space. The highest concentrations were found in surficial samples taken from among the sulfur spherules. With depth, the polythionate concentrations dropped off. The maximum observed polythionate concentration was 8 μM. Thiosulfate was rather uniformly distributed throughout the pool and concentrations ranged from 35 to 45 μM. Total dissolved sulfide concentrations varied with time, concentrations ranged from 16 to 48 μM. Sulfate was relatively constant, with concentrations ranging from 1150 to 1300 μM. The sulfur speciation of Cinder Pool is unique in that the thiosulfate and polythionate concentrations are significantly higher than for any other acid-sulfate spring yet sampled in Yellowstone National Park. Complementary laboratory experiments show that thiosulfate is the intermediate sulfoxyanion formed from sulfur hydrolysis under conditions similar to those found in Cinder Pool and that polythionates are formed via the oxidation of thiosulfate by dissolved oxygen. This last reaction is catalyzed by pyrite that occurs as a minor constituent in the sulfur spherules floating on the pool's surface. Polythionate decomposition proceeds via two pathways: (1) a reaction with H2S, yielding thiosulfate and elemental sulfur; and (2) by disproportionation to sulfate and thiosulfate. This study demonstrates that the presence of a subaqueous molten sulfur pool and sulfur spherules in Cinder Pool is of importance in controlling the pathways of aqueous sulfur redox reactions. Some of the insights gained at Cinder Pool may be relevant to acid crater lakes where sulfur spherules are observed and variations in polythionate concentrations are used to monitor and predict volcanic activity.
USDA-ARS?s Scientific Manuscript database
Soil fumigation is important for food production but has the potential to discharge toxic chemicals into the environment, which may adversely affect human and ecosystem health. A field experiment was conducted to evaluate the effect of applying ammonium thiosulfate fertilizer to the soil surface pr...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radha, S.; Milius, Wolfgang; Breu, Josef, E-mail: josef.breu@uni-bayreuth.de
2013-08-15
The thiosulfate-intercalated layered double hydroxide of Zn and Al undergoes reversible hydration with a variation in the relative humidity of the ambient. The hydrated and dehydrated phases, which represent the end members of the hydration cycle, both adopt the structure of the 3R{sub 1} polytype. In the intermediate range of relative humidity values (40–60%), the hydrated and dehydrated phases coexist. The end members of the hydration cycle adopt the structure of the same polytype, and vary only in their basal spacings. This points to the possibility that all the intermediate phases have a kinetic origin. - Graphical abstract: Basal spacingmore » evolution of the thiosulfate ion intercalated [Zn–Al] LDH during one complete hydration–dehydration cycle as a function of relative humidity. Display Omitted - Highlights: • Thiosulfate intercalated [Zn–Al] LDHs were synthesized by co-precipitation. • The LDH exhibits reversible hydration with variation in humidity. • Both the end members of the hydration cycle adopt the same polytype structure. • The interstratified intermediates observed are kinetic in origin.« less
Physiological characterization of strain DCB-1, a unique dehalogenating sulfidogenic bacterium.
Stevens, T O; Linkfield, T G; Tiedje, J M
1988-01-01
Strain DCB-1 is an obligately anaerobic bacterium which carries out the reductive dehalogenation of halobenzoates and was previously known to grow only on pyruvate plus 20% ruminal fluid. When various electron acceptors were supplied, thiosulfate and sulfite were found to stimulate growth. Sulfide was produced from thiosulfate. Cytochrome c and desulfoviridin were detected. The mol% G+C was 49 (at the thermal denaturation temperature). Of 55 carbon sources tested, only pyruvate supported growth as the sole carbon source in mineral medium. Lactate, acetate, L- and D-malate, glycerol, and L- and D-arabinose stimulated growth when supplemented with 10% ruminal fluid and 20 mM thiosulfate. In mineral medium, pyruvate was converted to acetate and lactate, with small amounts of succinate and fumarate accumulating transiently. During growth with thiosulfate, all of these products accumulated transiently. Addition of excess hydrogen to pyruvate-grown cultures resulted in diversion of carbon to formate, lactate, and butyrate, which caused a decrease in cell yield. We conclude that strain DCB-1 is a new type of sulfidogenic bacterium. PMID:3223760
Protein changes in Lepidium sativum L. exposed to Hg during soil phytoremediation.
Smolinska, Beata; Szczodrowska, Agnieszka; Leszczynska, Joanna
2017-08-03
Some investigations have been carried out in this study to find the best technique of soil reclamation in mercurypolluted soil. In this study, we examined Lepidium sativum L. as a plant useful for Hg phytoextraction. The simultaneous application of compost and thiosulfate was explored as a possible method of enhancing the process of phytoextraction. The results of the investigations of plant protein changes during assisted Hg phytoextraction were also provided. The results of the study show that combined use of compost and thiosulfate significantly increased both the total Hg accumulation and its translocation to aerial plant tissues. Plant protein analysis showed that L. sativum L. has the ability to respond to environmental stress condition by the activation of additional proteins. The additional proteins, like homocysteine methyltransferase, ribulose bisphosphate carboxylases (long and short chains), 14-3-3-like protein, and biosynthesis-related 40S ribosomal protein S15, were activated in plant shoots only in experiments carried out in Hg-polluted soil. There were no protein changes observed in plants exposed to compost and thiosulfate. It suggests that the combined use of compost and thiosulfate decreased Hg toxicity.
Beard, Simón; Paradela, Alberto; Albar, Juan P.; Jerez, Carlos A.
2011-01-01
Production of sulfur globules during sulfide or thiosulfate oxidation is a characteristic feature of some sulfur bacteria. Although their generation has been reported in Acidithiobacillus ferrooxidans, its mechanism of formation and deposition, as well as the physiological significance of these globules during sulfur compounds oxidation, are currently unknown. Under oxygen-sufficient conditions (OSC), A. ferrooxidans oxidizes thiosulfate to tetrathionate, which accumulates in the culture medium. Tetrathionate is then oxidized by a tetrathionate hydrolase (TTH) generating thiosulfate, elemental sulfur, and sulfate as final products. We report here a massive production of extracellular conspicuous sulfur globules in thiosulfate-grown A. ferrooxidans cultures shifted to oxygen-limiting conditions (OLC). Concomitantly with sulfur globule deposition, the extracellular concentration of tetrathionate greatly diminished and sulfite accumulated in the culture supernatant. A. ferrooxidans cellular TTH activity was negligible in OLC-incubated cells, indicating that this enzymatic activity was not responsible for tetrathionate disappearance. On the other hand, supernatants from both OSC- and OLC-incubated cells showed extracellular TTH activity, which most likely accounted for tetrathionate consumption in the culture medium. The extracellular TTH activity described here: (i) gives experimental support to the TTH-driven model for hydrophilic sulfur globule generation, (ii) explains the extracellular location of A. ferrooxidans sulfur deposits, and (iii) strongly suggests that the generation of sulfur globules in A. ferrooxidans corresponds to an early step during its adaptation to an anaerobic lifestyle. PMID:21833324
NASA Astrophysics Data System (ADS)
Tiburcio Munive, G.; Encinas Romero, M. A.; Vazquez, V. M.; Valenzuela García, J. L.; Valenzuela Soto, A.; Coronado Lopez, J. H.
2017-10-01
A novel process was studied to extract economic metals from refractory ores that are difficult to leach with cyanide and ammonium thiosulfate, such as the well-known mangano argentiferous minerals, which are minerals of manganese, iron, and silver. The mineral under consideration originates from the tailings of the Monte del Favor, Hostotipaquillo Jalisco, Mexico. The sample was characterized by x-ray diffractometry, atomic absorption spectroscopy, scanning electron microscopy, and microanalysis by energy-dispersive x-ray spectroscopy. First, the material was passed through a 100-mesh screen, and then it was subjected to reductive leaching by varying the liquid-solid ( L/ S) ratio from 2:1 to 10:1 (observations were carried out at a ratio of 5:1, which yielded higher extraction of manganese). With H2SO4 and Na2SO3 as the reducing agents, manganese extraction of up to 96.05% was achieved during the first 3 h with a mineral head of manganese 3.58%, acid consumption of 90.74 g/L, and sulfite consumption of 25.8 g/L. The mineral was then filtered and proceeded to neutralize the acidity, reaching a pH of 8 with calcium hydroxide. Then, the material was subjected to a new leaching of gold and silver values with ammonium thiosulfate. The L/ S ratio was varied (1:1, 2:1, 3:1, 4:1), and the contact time and the concentration of ammonium thiosulfate was investigated, while controlling the pH using Ca(OH)2 and NH4Cl. An L/ S ratio of 2:1 showed the best extraction of silver (97.06%) and gold (86.66%), and the thiosulfate consumption was 10.36 g/L. The mineral head of gold and silver was 0.30 g/ton and 310 g/ton, respectively. The pH was maintained between 9.8 and 8.4, such that ammonium thiosulfate stabilized with lime, and ammonium chloride did not suffer any decomposition.
Pol, Arjan; van der Drift, Chris; Op den Camp, Huub J M
2007-02-01
The carbon disulfide (CS2)-oxidizing bacterium Thiomonas sp. WZW was enriched and isolated using activated sewage sludge as inoculum. Growth of Thiomonas sp. WZW was observed on CS2, thiosulfate, dimethylsulfide (DMS), dimethyldisulfide (DMDS), and H2S. No growth occurred on dimethylsulfoxide, methanol, acetate, and on complex media with glucose, yeast extract, or tryptone. DMDS-grown cells respired CS2, DMS, and DMDS, while thiosulfate-grown cells did not respire CS2. Chemostat cultures growing on thiosulfate could be rapidly adapted to growth on CS2. Growth was observed between pH 6 and 8. The Ks values for CS2, thiosulfate, and sulfide of CS2-grown cells were between 5 and 10 microM. CS2 was inhibitory above 0.3 mM. A lab-scale biotrickling filter with lava stone as carrier material for treatment of CS2-polluted air was inoculated with Thiomonas sp. WZW. A rapid start up (95% removal in 1 week) was obtained at an inlet CS2 concentration of 2 cmol l(-1) and an initial space velocity (SV) of 54 h(-1). Subsequent thiosulfate addition for a week during start up increased the removal to 99%. The step-wise increase of SV to 130 h(-1) and a CS2 concentration to 3 micromol l(-1) resulted in a stable performance with a removal efficiency of 95%. Feeding mixtures of volatile sulfur compounds showed simultaneous conversion of H2S, CS2, dimethyldisulfide (DMDS), and DMS, with a preference in this order.
Mishanina, Tatiana V.; Yadav, Pramod K.; Ballou, David P.; Banerjee, Ruma
2015-01-01
The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be −123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. PMID:26318450
Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma
2015-10-09
The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Factors Affecting Oxidation of Thiosalts by Thiobacilli
Silver, M.; Dinardo, O.
1981-01-01
The effects of temperature, initial pH, and the concentrations of ammonium, phosphate, and heavy metals on the oxidation of thiosalts by an authentic strain of Thiobacillus thiooxidans (ATCC 8085) and by a mixed culture isolated from a base metal-processing mill effluent pond were studied. The optimum temperature was 30°C and the optimum initial pH was 3.75 for both cultures using thiosulfate and for the mixed culture using tetrathionate. T. thiooxidans ATCC 8085 did not oxidize tetrathionate. For a thiosalt concentration of 2,000 ppm (2,000 mg/liter), maximal rates of destruction occurred at concentrations of ammonium ion above 2 mg/liter and in the presence of 1 mg of phosphate per liter. Under optimal conditions, the rate of thiosulfate oxidation by the pure culture was 55 ± 3 mg/liter per h; the mixed culture oxidized thiosulfate at the rate of 40 ± 1 mg/liter per h and tetrathionate at the rate of 50 ± 2 mg/liter per h. Metal ions caused normal inhibition kinetics in the oxidation of thiosulfate by T. thiooxidans ATCC 8085. Ki values were calculated for cadmium (16 mg/liter), copper (0.46 mg/liter), lead (2 mg/liter), silver (3.1 mg/liter), and zinc (33 mg/liter). Only a slight additive effect was apparent in the presence of all of these metal ions. The mixed culture of thiosalt-oxidizing bacteria was less sensitive to heavy metal inhibition; the order of inhibition of thiosulfate oxidation was Cd < Zn < Pb < Ag < Cu, and that of tetrathionate oxidation was Zn < Cd < Pb < Ag < Cu. PMID:16345785
Lohmayer, Regina; Kappler, Andreas; Lösekann-Behrens, Tina
2014-01-01
Iron(III) (oxyhydr)oxides can represent the dominant microbial electron acceptors under anoxic conditions in many aquatic environments, which makes understanding the mechanisms and processes regulating their dissolution and transformation particularly important. In a previous laboratory-based study, it has been shown that 0.05 mM thiosulfate can reduce 6 mM ferrihydrite indirectly via enzymatic reduction of thiosulfate to sulfide by the sulfur-reducing bacterium Sulfurospirillum deleyianum, followed by abiotic reduction of ferrihydrite coupled to reoxidation of sulfide. Thiosulfate, elemental sulfur, and polysulfides were proposed as reoxidized sulfur species functioning as electron shuttles. However, the exact electron transfer pathway remained unknown. Here, we present a detailed analysis of the sulfur species involved. Apart from thiosulfate, substoichiometric amounts of sulfite, tetrathionate, sulfide, or polysulfides also initiated ferrihydrite reduction. The portion of thiosulfate produced during abiotic ferrihydrite-dependent reoxidation of sulfide was about 10% of the total sulfur at maximum. The main abiotic oxidation product was elemental sulfur attached to the iron mineral surface, which indicates that direct contact between microorganisms and ferrihydrite is necessary to maintain the iron reduction process. Polysulfides were not detected in the liquid phase. Minor amounts were found associated either with microorganisms or the mineral phase. The abiotic oxidation of sulfide in the reaction with ferrihydrite was identified as rate determining. Cysteine, added as a sulfur source and a reducing agent, also led to abiotic ferrihydrite reduction and therefore should be eliminated when sulfur redox reactions are investigated. Overall, we could demonstrate the large impact of intermediate sulfur species on biogeochemical iron transformations. PMID:24632263
Response of carnation (Dianthus caryophyllus) cultivars to different postharvest preservatives.
Adugna, Biniam; Belew, Derbew; Kassa, Negussie
2013-10-01
Experiments were conducted to assess the effect of selected pulsing solutions on the days to flower bud shrinkage, leaf wilting and petal edge drying occurrence of carnation cultivars (Green-Go and Galy). The pulsing solutions used for this investigation were Silver Thiosulfate (STS) (0.2, 0.6, 1 mM) and also ethanol (6, 8, 10%), both received equal amount of sucrose (10%). Besides, to simulate the actual practice of the farm (0.4 mM Silver Thiosulfate (STS) plus 0.3 mM T.O.G) was used as a standard control. Senescence symptoms such as flower bud shrinkage, petal edge drying and leaf wilting were monitored. The results obtained showed that 1 mM STS plus 25 g sucrose achieved rapid petal edge drying for Green-Go cultivar. On the other hand, positive effects were also observed in days to flower bud shrinkage extended by 6 mM Silver Thiosulfate (STS) plus 25 g sucrose and being in par with 8% ethanol plus 25 g sucrose for Green-Go cultivar. Subsequently, the standard control, 0.6 mM Silver Thiosulfate (STS) plus 25 g sucrose and 8% ethanol plus 25 g sucrose attended comparable increment on the days to leaf wilting occurrences.
NASA Technical Reports Server (NTRS)
Fry, B.; Gest, H.; Hayes, J. M.
1985-01-01
The purple photosynthetic bacterium Chromatium vinosum, strain D, catalyzes several oxidations of reduced sulfur compounds under anaerobic conditions in the light: e.g., sulfide --> sulfur --> sulfate, sulfite --> sulfate, and thiosulfate --> sulfur + sulfate. Here it is shown that no sulfur isotope effect is associated with the last of these processes; isotopic compositions of the sulfur and sulfate produced can differ, however, if the sulfane and sulfonate positions within the thiosulfate have different isotopic compositions. In the second process, an observed change from an inverse to a normal isotope effect during oxidation of sulfite may indicate the operation of 2 enzymatic pathways. In contrast to heterotrophic anaerobic reduction of oxidized sulfur compounds, anaerobic oxidations of inorganic sulfur compounds by photosynthetic bacteria are characterized by relatively small isotope effects.
Observations of non SRB sulfidogenic bacteria from oilfield production facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crolet, J.L.; Magot, M.F.
1995-10-01
The first step is the failure of a major sealine transporting sour oil by a form of internal pitting apparently involving sulfate reducing bacteria(SRB). Then possible mechanisms were studied, where the theoretical roles of sulfate and thiosulfate were compared. Afterwards, the presence of thiosulfate was effectively identified in the produced water, and the growth of the local SRB was shown to be stronger on S{sub 2}O{sub 3}{sup {minus}} than on SO{sub 4}{sup {minus}}. Also non SRB fermentative strains, able to produce tremendous amount of H{sub 2}S and organic acids from thiosulfate and heavy nutrients (i.e. peptides) were collected. This mightmore » change the approach to microbially induced corrosion (MIC), in the oil and gas industry.« less
Engineering Bacterial Thiosulfate and Tetrathionate Sensors for Detecting Gut Inflammation
2017-04-03
Article Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation Kristina N-M Daeffler1 , Jeffrey D Galley2, Ravi U...interest in using genetically engineered sensor bacteria to study gut microbiota pathways, and diagnose or treat associated diseases. Here, we...understood. Genetically engineered sensor bacteria have untapped potential as tools for analyzing gut pathways. Bacteria have evolved sensors of a large
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-28
... 505(b) of the Federal Food, Drug, and Cosmetic Act (the FD&C Act) (21 U.S.C. 355(b)): Division of.... Methemoglobinemia can lead to neurological and cardiac symptoms due to lack of adequate oxygen in body tissues. The... discrepancies in dosing may lead to underdosing of sodium thiosulfate in children. III. Legal Status of Products...
Bebarta, Vikhyat S; Brittain, Matthew; Chan, Adriano; Garrett, Norma; Yoon, David; Burney, Tanya; Mukai, David; Babin, Michael; Pilz, Renate B; Mahon, Sari B; Brenner, Matthew; Boss, Gerry R
2017-06-01
The 2 antidotes for acute cyanide poisoning in the United States must be administered by intravenous injection. In the out-of-hospital setting, intravenous injection is not practical, particularly for mass casualties, and intramuscular injection would be preferred. The purpose of this study is to determine whether sodium nitrite and sodium thiosulfate are effective cyanide antidotes when administered by intramuscular injection. We used a randomized, nonblinded, parallel-group study design in 3 mammalian models: cyanide gas inhalation in mice, with treatment postexposure; intravenous sodium cyanide infusion in rabbits, with severe hypotension as the trigger for treatment; and intravenous potassium cyanide infusion in pigs, with apnea as the trigger for treatment. The drugs were administered by intramuscular injection, and all 3 models were lethal in the absence of therapy. We found that sodium nitrite and sodium thiosulfate individually rescued 100% of the mice, and that the combination of the 2 drugs rescued 73% of the rabbits and 80% of the pigs. In all 3 species, survival in treated animals was significantly better than in control animals (log rank test, P<.05). In the pigs, the drugs attenuated an increase in the plasma lactate concentration within 5 minutes postantidote injection (difference: plasma lactate, saline solution-treated versus nitrite- or thiosulfate-treated 1.76 [95% confidence interval 1.25 to 2.27]). We conclude that sodium nitrite and sodium thiosulfate administered by intramuscular injection are effective against severe cyanide poisoning in 3 clinically relevant animal models of out-of-hospital emergency care. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Dimethyl trisulfide: A novel cyanide countermeasure.
Rockwood, Gary A; Thompson, David E; Petrikovics, Ilona
2016-12-01
In the present studies, the in vitro and in vivo efficacies of a novel cyanide countermeasure, dimethyl trisulfide (DMTS), were evaluated. DMTS is a sulfur-based molecule found in garlic, onion, broccoli, and similar plants. DMTS was studied for effectiveness as a sulfur donor-type cyanide countermeasure. The sulfur donor reactivity of DMTS was determined by measuring the rate of the formation of the cyanide metabolite thiocyanate. In experiments carried out in vitro in the presence of the sulfurtransferase rhodanese (Rh) and at the experimental pH of 7.4, DMTS was observed to convert cyanide to thiocyanate with greater than 40 times higher efficacy than does thiosulfate, the sulfur donor component of the US Food and Drug Administration-approved cyanide countermeasure Nithiodote ® In the absence of Rh, DMTS was observed to be almost 80 times more efficient than sodium thiosulfate in vitro The fact that DMTS converts cyanide to thiocyanate more efficiently than does thiosulfate both with and without Rh makes it a promising sulfur donor-type cyanide antidote (scavenger) with reduced enzyme dependence in vitro The therapeutic cyanide antidotal efficacies for DMTS versus sodium thiosulfate were measured following intramuscular administration in a mouse model and expressed as antidotal potency ratios (APR = LD 50 of cyanide with antidote/LD 50 of cyanide without antidote). A dose of 100 mg/kg sodium thiosulfate given intramuscularly showed only slight therapeutic protection (APR = 1.1), whereas the antidotal protection from DMTS given intramuscularly at the same dose was substantial (APR = 3.3). Based on these data, DMTS will be studied further as a promising next-generation countermeasure for cyanide intoxication. © The Author(s) 2016.
Qian, Jin; Zhang, Mingkuan; Wu, Yaoguo; Niu, Juntao; Chang, Xing; Yao, Hairui; Hu, Sihai; Pei, Xiangjun
2018-06-12
To exploit the advantages of less electron donor consumptions in partial-denitrification (denitratation, NO 3 - → NO 2 - ) as well as less sludge production in autotrophic denitrification (AD) and anammox, a novel biological nitrogen removal (BNR) process through combined anammox and thiosulfate-driven denitratation was proposed here. In this study, the ratio of S 2 O 3 2- -S/NO 3 - -N and pH are confirmed to be two key factors affecting the thiosulfate-driven denitratation activity and nitrite accumulation. Simultaneous high denitratation activity and substantial nitrite accumulation were observed at initial S 2 O 3 2- -S/NO 3 - -N ratio of 1.5:1 and pH of 8.0. The optimal pH for the anammox reaction is determined to be 8.0. A sequential batch reactor (SBR) and an up-flow anaerobic sludge blanket (UASB) reactor were established to proceed the anammox and the high-rate thiosulfate-driven denitratation, respectively. Under the ambient temperature of 35 °C, the total nitrogen removal efficiency and capacity are 73% and 0.35 kg N/day/m 3 in the anammox-SBR. At HRT of 30 min, the NO 3 - removal efficiency could achieve above 90% with the nitrate-to-nitrite transformation ratio of 0.8, implying the great potential to apply the thiosulfate-driven denitratation & anammox system for BNR with minimal sludge production. Without the occurrence of denitritation (NO 2 - → N 2 O → N 2 ), theoretically no N 2 O could be emitted from this BNR system. This study could shed light on how to operate a high rate BNR system targeting to electron donor and energy savings as well as biowastes minimization and greenhouse gas reductions. Copyright © 2018. Published by Elsevier Ltd.
Method for aqueous gold thiosulfate extraction using copper-cyanide pretreated carbon adsorption
Young, Courtney; Melashvili, Mariam; Gow, Nicholas V
2013-08-06
A gold thiosulfate leaching process uses carbon to remove gold from the leach liquor. The activated carbon is pretreated with copper cyanide. A copper (on the carbon) to gold (in solution) ratio of at least 1.5 optimizes gold recovery from solution. To recover the gold from the carbon, conventional elution technology works but is dependent on the copper to gold ratio on the carbon.
Cambal, Leah K.; Swanson, Megan R.; Yuan, Quan; Weitz, Andrew C.; Li, Hui-Hua; Pitt, Bruce R.; Pearce, Linda L.; Peterson, Jim
2011-01-01
Sodium nitrite alone is shown to ameliorate sub-lethal cyanide toxicity in mice when given from ~1 hour before until 20 minutes after the toxic dose as demonstrated by the recovery of righting ability. An optimum dose (12 mg/kg) was determined to significantly relieve cyanide toxicity (5.0 mg/kg) when administered to mice intraperitoneally. Nitrite so administered was shown to rapidly produce NO in the bloodsteam as judged by the dose dependent appearance of EPR signals attributable to nitrosylhemoglobin and methemoglobin. It is argued that antagonism of cyanide inhibition of cytochrome c oxidase by NO is the crucial antidotal activity rather than the methemoglobin-forming action of nitrite. Concomitant addition of sodium thiosulfate to nitrite-treated blood resulted in the detection of sulfidomethemoblobin by EPR spectroscopy. Sulfide is a product of thiosulfate hydrolysis and, like cyanide, is known to be a potent inhibitor of cytochrome c oxidase; the effects of the two inhibitors being essentially additive under standard assay conditions, rather than dominated by either one. The findings afford a plausible explanation for an observed detrimental effect in mice associated with the use of the standard nitrite-thiosulfate combination therapy at sub-lethal levels of cyanide intoxication. PMID:21534623
The Role of Hydrogen for Sulfurimonas denitrificans’ Metabolism
Han, Yuchen; Perner, Mirjam
2014-01-01
Sulfurimonas denitrificans was originally isolated from coastal marine sediments. It can grow with thiosulfate and nitrate or sulfide and oxygen. Recently sequencing of its genome revealed that it encodes periplasmic and cytoplasmic [NiFe]-hydrogenases but the role of hydrogen for its metabolism has remained unknown. We show the first experimental evidence that S. denitrificans can indeed express a functional hydrogen uptake active hydrogenase and can grow on hydrogen. In fact, under the provided conditions it grew faster and denser on hydrogen than on thiosulfate alone and even grew with hydrogen in the absence of reduced sulfur compounds. In our experiments, at the time points tested, the hydrogen uptake activity appeared to be related to the periplasmic hydrogenase and not to the cytoplasmic hydrogenase. Our data suggest that under the provided conditions S. denitrificans can grow more efficiently with hydrogen than with thiosulfate. PMID:25170905
Kanaev, A T; Bulaev, A G; Semenchenko, G V; Kanaeva, Z K; Shilmanova, A A
2016-01-01
The percolation biooxidation parameters of ore from the Bakyrchik deposit were studied. An investigation of the technological parameters (such as the concentration of leaching agents, irrigation intensity, and pauses at various stages of the leaching) revealed the optimal mode for precious metal extraction. The stages of the ore processing were biooxidation, gold extraction by cyanidation or thiosulfate leaching, and biological destruction of cyanide. The gold and silver recovery rates by cyanidation were 64.0 and 57.3%, respectively. The gold and silver recovery rates by thiosulfate leaching were 64.0 and 57.3%, respectively. Gold and silver recovery rates from unoxidized ore (control experiment) by cyanidation were 20.9 and 26.8%, respectively. Thiosulfate leaching of unoxidized ore allowed the extraction of 38.8 and 24.2% of the gold and silver, respectively. Cyanidation residues were treated with bacteria of the genus Alcaligenes in order to destruct cyanide.
Christel, Stephan; Fridlund, Jimmy; Buetti-Dinh, Antoine; Buck, Moritz; Watkin, Elizabeth L; Dopson, Mark
2016-04-01
Acidithiobacillus ferrivorans is an acidophile implicated in low-temperature biomining for the recovery of metals from sulfide minerals. Acidithiobacillus ferrivorans obtains its energy from the oxidation of inorganic sulfur compounds, and genes encoding several alternative pathways have been identified. Next-generation sequencing of At. ferrivorans RNA transcripts identified the genes coding for metabolic and electron transport proteins for energy conservation from tetrathionate as electron donor. RNA transcripts suggested that tetrathionate was hydrolyzed by the tetH1 gene product to form thiosulfate, elemental sulfur and sulfate. Despite two of the genes being truncated, RNA transcripts for the SoxXYZAB complex had higher levels than for thiosulfate quinone oxidoreductase (doxDAgenes). However, a lack of heme-binding sites in soxX suggested that DoxDA was responsible for thiosulfate metabolism. Higher RNA transcript counts also suggested that elemental sulfur was metabolized by heterodisulfide reductase (hdrgenes) rather than sulfur oxygenase reductase (sor). The sulfite produced as a product of heterodisulfide reductase was suggested to be oxidized by a pathway involving the sat gene product or abiotically react with elemental sulfur to form thiosulfate. Finally, several electron transport complexes were involved in energy conservation. This study has elucidated the previously unknown At. ferrivorans tetrathionate metabolic pathway that is important in biomining. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Steinitz, Benjamin; Barr, Nurit; Tabib, Yona; Vaknin, Yiftach; Bernstein, Nirit
2010-11-01
Plant regeneration and transformation in vitro is often improved by adding silver ion (Ag(+)) to the culture media as AgNO(3) or silver thiosulfate (STS). Ag(+) reacts with substances to form insoluble precipitates, while thiosulfate (S(2)O(3) (2-)) interferes with these reactions. We studied the implications of silver precipitation and S(2)O(3) (2-) in the medium for culture development by (1) examining formation of Ag(+) precipitates from AgNO(3) versus STS in agar gels and their possible dependence on agar type; (2) comparing Corymbia maculata culture responses to AgNO(3) and STS and determining which better suits control of culture development; (3) clarifying whether STS-dependent alterations in culture development are due to Ag(+) alone or also to a separate influence of S(2)O(3) (2-). Silver precipitates appeared in aqueous gels of four agar brands supplemented with AgNO(3), but not in Phytagel(™), which remained transparent. No precipitation was observed in gels with STS. Indole-3-butyric acid (IBA)-mediated adventitious root induction and shoot growth were higher in C. maculata shoot tips cultured on gels with STS versus AgNO(3) (6-25 μM Ag(+)). IBA-treated shoot tips exhibited enhanced adventitious root regeneration, accelerated root elongation, increased frequency of lateral root formation, and stimulated shoot growth mediated by 100-250 μM sodium thiosulfate (Na(2)S(2)O(3)) in medium without Ag(+). The potency of S(2)O(3) (2-) in facilitating culture development has never been recognized. It is inferred that superiority of STS in stimulating multiple responses of C. maculata culture results from sustained biological activity of Ag(+) through prevention of its precipitation, and from impact of S(2)O(3) (2-) on cell differentiation and growth.
Chen, Q; Hu, K; Miura, Y
1999-09-01
An ion chromatographic method was used to separate the species of L-ascorbic acid, sulfite and thiosulfate in their mixtures. This method is based on the separation of each anion in their mixtures by using a separation column, and then on the fluorimetric measurement of cerium (III) formed by a postcolumn reaction of cerium (IV) with the species of L-ascorbic acid, sulfite and thiosulfate in the effluent. The optimal conditions for separating and determining the above three species have been established. By using a 3 mmol/L carbonate eluent, the species of L-ascorbic acid, sulfite and thiosulfate could be eluted at the proper retention times of 1.7, 2.6 and 5.0 min, respectively, and these three anions could be separated completely. The effects of the concentrations of cerium (IV) and sulfuric acid in the postcolumn reaction solution on the chromatographic peak-height were tested in order to obtain the optimal peak-height. It was found that the peak-height at first increases rapidly with an increase in the concentration of cerium (IV) and sulfuric acid respectively up to a certain concertation, then increases slowly. These critical concentrations of cerium (IV) and sulfuric acid also depend on the amount of the analyte injected. Meanwhile the baseline signals of the sepectra increase with an increase in the concentration of cerium (IV). Some concentrations above the critical concentration of sulfuric acid could be selected as the optimal concentration of sulfuric acid, but the concentration of cerium (IV) should be optimized by establishing a compromise between the higher peak-height and the lower baseline signal. The detection limit of this method was found to be 1 mumol/L for thiosulfate when an amount of 100 microL analyte was injected.
NASA Astrophysics Data System (ADS)
Girguis, P. R.; Beinart, R.
2014-12-01
Symbioses between animals and chemoautotrophic bacteria dominate many hydrothermal vents. In these associations, symbiotic bacteria harness energy and "fix" carbon from the oxidation of reduced chemicals such as sulfide, methane, and hydrogen that are found in venting fluids. At vents along the Eastern Lau Spreading Center (ELSC) in the South Pacific, snails and mussels with chemoautotrophic symbionts have been shown to harness energy via the oxidation of sulfide. However, partially oxidized sulfur species such as thiosulfate and polysulfides have also been detected in abundance in their habitats. No studies to date have established whether thiosulfate or other partially oxidized sulfur compounds are used by these symbiotic associations, nor have studies constrained the potential role that symbioses might play in sulfur biogeochemical cycles at diffuse vent flows. To address these questions, we used high-pressure, flow through incubations to study three symbiotic molluscs from the ELSC - the snails Alviniconcha and Ifremeria nautilei and the mussel Bathymodiolus brevior - at conditions mimicking those in situ. Via the use of isotopically labeled inorganic carbon, shipboard mass spectrometry and voltammetric microelectrodes, we quantified the production and consumption of different sulfur compounds by each of these symbioses. We established that the uptake and oxidation of either sulfide or thiosulfate could -to varying degrees- support carbon fixation in all three species. Notably, we also observed that some symbioses excreted thiosulfate and polysulfides under sulfidic conditions, suggesting that these symbioses are a source of partially oxidized sulfur species in the environment. We further observed spatial disparity in the carbon fixation rates among the individuals in our incubations that have implications for the variability of productivity in situ.Collectively, these data reveal that thiosulfate can support net autotrophy, and may be an ecologically important energy source for vent symbioses. Furthermore, symbioses-mediated sulfur transformations may influence the ecology of the free-living community by governing the production and consumption of reduced sulfur species in this habitat.
2015-05-01
starch , sulfuric acid. Other: DI water, nitric acid. A more in depth description of chemical properties and suppliers is included in Appendix C. 21...titrated with thiosulfate colorimetrically until the iodine is reduced back to iodide (turning clear). Starch was added near the end of the titration to...potassium iodide, sodium bicarbonate, sodium thiosulfate, starch , sulfuric acid. Other: DI water, nitric acid;. A more in depth description of chemical
Meillier, Andrew; Heller, Cara
2015-01-01
Cyanide is rapidly reacting and causes arrest of aerobic metabolism. The symptoms are diffuse and lethal and require high clinical suspicion. Remediation of symptoms and mortality is highly dependent on quick treatment with a cyanide antidote. Presently, there are two widely accepted antidotes: sodium thiosulfate and hydroxocobalamin. These treatments act on different components of cyanide's metabolism. Here, we present two cases resulting from the same source of cyanide poisoning and the use of both antidotes separately used with differing outcomes.
Identification of the yeast mitochondrial transporter for oxaloacetate and sulfate.
Palmieri, L; Vozza, A; Agrimi, G; De Marco, V; Runswick, M J; Palmieri, F; Walker, J E
1999-08-06
Saccharomyces cerevisiae encodes 35 members of the mitochondrial carrier family, including the OAC protein. The transport specificities of some family members are known, but most are not. The function of the OAC has been revealed by overproduction in Escherichia coli, reconstitution into liposomes, and demonstration that the proteoliposomes transport malonate, oxaloacetate, sulfate, and thiosulfate. Reconstituted OAC catalyzes both unidirectional transport and exchange of substrates. In S. cerevisiae, OAC is in inner mitochondrial membranes, and deletion of its gene greatly reduces transport of oxaloacetate sulfate, thiosulfate, and malonate. Mitochondria from wild-type cells swelled in isoosmotic solutions of ammonium salts of oxaloacetate, sulfate, thiosulfate, and malonate, indicating that these anions are cotransported with protons. Overexpression of OAC in the deletion strain increased greatly the [(35)S]sulfate/sulfate and [(35)S]sulfate/oxaloacetate exchanges in proteoliposomes reconstituted with digitonin extracts of mitochondria. The main physiological role of OAC appears to be to use the proton-motive force to take up into mitochondria oxaloacetate produced from pyruvate by cytoplasmic pyruvate carboxylase.
Zhang, Yujie; Leng, Yumin; Miao, Lijing; Xin, Junwei; Wu, Aiguo
2013-04-21
A simple, rapid colorimetric detection method for Pb(2+) in aqueous solution has been developed by using sodium thiosulfate (Na2S2O3) and hexadecyl trimethyl ammonium bromide (CTAB) modified gold nanoparticles (Au NPs). Na2S2O3 was added into the Au NP solution and thiosulfate ions (S2O3(2-)) were adsorbed on the surface of the Au NPs due to electrostatic interactions. Au atoms on the surface of the Au NPs were then oxidized to Au(i) by the O2 that existed in the solution in presence of thiosulfate. The addition of Pb(2+) (the final concentration was lower than 10 μM), accelerated the leaching of the Au NPs, and Pb-Au alloys also formed on the surface of the Au NPs. There was an obvious decrease in the surface plasmon resonance (SPR) absorption of the Au NPs. The lowest concentration for Pb(2+) that could be detected by the naked eye was 0.1 μM and using UV-vis spectroscopy was 40 nM. This is lower than the lead toxic level defined by the US Environmental Protection Agency (US EPA), which is 75 nM. In this method, CTAB, as a stabilizing agent for Au NPs, can accelerate the adsorption of S2O3(2-) on the surface of the Au NPs, which shortened the detection time to within 30 min. Moreover, this detection method is simple, cheap and environmentally friendly.
Meillier, Andrew; Heller, Cara
2015-01-01
Cyanide is rapidly reacting and causes arrest of aerobic metabolism. The symptoms are diffuse and lethal and require high clinical suspicion. Remediation of symptoms and mortality is highly dependent on quick treatment with a cyanide antidote. Presently, there are two widely accepted antidotes: sodium thiosulfate and hydroxocobalamin. These treatments act on different components of cyanide's metabolism. Here, we present two cases resulting from the same source of cyanide poisoning and the use of both antidotes separately used with differing outcomes. PMID:26543483
Liu, Li-Jun; Stockdreher, Yvonne; Koch, Tobias; Sun, Shu-Tao; Fan, Zheng; Josten, Michaele; Sahl, Hans-Georg; Wang, Qian; Luo, Yuan-Ming; Liu, Shuang-Jiang; Dahl, Christiane; Jiang, Cheng-Ying
2014-01-01
Conserved clusters of genes encoding DsrE and TusA homologs occur in many archaeal and bacterial sulfur oxidizers. TusA has a well documented function as a sulfurtransferase in tRNA modification and molybdenum cofactor biosynthesis in Escherichia coli, and DsrE is an active site subunit of the DsrEFH complex that is essential for sulfur trafficking in the phototrophic sulfur-oxidizing Allochromatium vinosum. In the acidothermophilic sulfur (S0)- and tetrathionate (S4O62−)-oxidizing Metallosphaera cuprina Ar-4, a dsrE3A-dsrE2B-tusA arrangement is situated immediately between genes encoding dihydrolipoamide dehydrogenase and a heterodisulfide reductase-like complex. In this study, the biochemical features and sulfur transferring abilities of the DsrE2B, DsrE3A, and TusA proteins were investigated. DsrE3A and TusA proved to react with tetrathionate but not with NaSH, glutathione persulfide, polysulfide, thiosulfate, or sulfite. The products were identified as protein-Cys-S-thiosulfonates. DsrE3A was also able to cleave the thiosulfate group from TusA-Cys18-S-thiosulfonate. DsrE2B did not react with any of the sulfur compounds tested. DsrE3A and TusA interacted physically with each other and formed a heterocomplex. The cysteine residue (Cys18) of TusA is crucial for this interaction. The single cysteine mutants DsrE3A-C93S and DsrE3A-C101S retained the ability to transfer the thiosulfonate group to TusA. TusA-C18S neither reacted with tetrathionate nor was it loaded with thiosulfate with DsrE3A-Cys-S-thiosulfonate as the donor. The transfer of thiosulfate, mediated by a DsrE-like protein and TusA, is unprecedented not only in M. cuprina but also in other sulfur-oxidizing prokaryotes. The results of this study provide new knowledge on oxidative microbial sulfur metabolism. PMID:25122768
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitvitsky, Victor; Yadav, Pramod K.; An, Sojin
Hydrogen sulfide is a cardioprotective signaling molecule but is toxic at elevated concentrations. Red blood cells can synthesize H2S but, lacking organelles, cannot dispose of H2S via the mitochondrial sulfide oxidation pathway. We have recently shown that at high sulfide concentrations, ferric hemoglobin oxidizes H2S to a mixture of thiosulfate and iron-bound polysulfides in which the latter species predominates. Here, we report the crystal structure of human hemoglobin containing low spin ferric sulfide, the first intermediate in heme-catalyzed sulfide oxidation. The structure provides molecular insights into why sulfide is susceptible to oxidation in human hemoglobin but is stabilized against itmore » in HbI, a specialized sulfide-carrying hemoglobin from a mollusk adapted to life in a sulfide-rich environment. We have also captured a second sulfide bound at a postulated ligand entry/exit site in the α-subunit of hemoglobin, which, to the best of our knowledge, represents the first direct evidence for this site being used to access the heme iron. Hydrodisulfide, a postulated intermediate at the junction between thiosulfate and polysulfide formation, coordinates ferric hemoglobin and, in the presence of air, generated thiosulfate. At low sulfide/heme iron ratios, the product distribution between thiosulfate and iron-bound polysulfides was approximately equal. The iron-bound polysulfides were unstable at physiological glutathione concentrations and were reduced with concomitant formation of glutathione persulfide, glutathione disulfide, and H2S. Hence, although polysulfides are unlikely to be stable in the reducing intracellular milieu, glutathione persulfide could serve as a persulfide donor for protein persulfidation, a posttranslational modification by which H2S is postulated to signal.« less
Hernández-Eugenio, Guadalupe; Fardeau, Marie-Laure; Cayol, Jean-Luc; Patel, Bharat K C; Thomas, Pierre; Macarie, Hervé; Garcia, Jean-Louis; Ollivier, Bernard
2002-09-01
A strictly anaerobic, gram-positive, sporulating rod (0.5-0.6 x 2.0-4.0 microm), designated strain Lup 21T, was isolated from an upflow anaerobic sludge blanket (UASB) reactor treating cheese-factory wastewater. Strain Lup 21T was motile by means of peritrichous flagella, had a G+C content of 31.4 mol% and grew optimally at 37 degrees C, pH 7.4, in the absence of NaCl. It is a heterotrophic micro-organism, utilizing proteinaceous compounds (gelatin, peptides, Casamino acids and various single amino acids) but unable to use any of the carbohydrates tested as a carbon and energy source. It reduced thiosulfate and elemental sulfur to sulfide in the presence of Casamino acids as carbon and energy sources. Acetate, butyrate, isobutyrate, isovalerate, CO2 and sulfide were end products from oxidation of gelatin and Casamino acids in the presence of thiosulfate as an electron acceptor. In the absence of thiosulfate, serine, lysine, methionine and histidine were fermented. On the basis of 16S rRNA similarity, strain Lup 21T was related to members of the low-G+C Clostridiales group, Clostridium subterminale DSM 6970T being the closest relative (with a sequence similarity of 99.4%). DNA-DNA hybridization was 56% with this species. On the basis of phenotypic, genotypic and phylogenetic characteristics, the isolate was designated as a novel species of the genus Clostridium, Clostridium thiosulfatireducens sp. nov. The type strain is strain Lup 21T (= DSM 13105T = CIP 106908T).
Microbial reduction of manganese oxides - Interactions with iron and sulfur
NASA Technical Reports Server (NTRS)
Myers, Charles R.; Nealson, Kenneth H.
1988-01-01
Alteromonas putrefaciens (strain MR-1) is capable of rapid Mn(IV) reduction under conditions of neutral pH and temperatures characteristic of the Oneida Lake, New York, sediments from which it was isolated. MR-1 also reduces Fe(3+) to Fe(2+), and disproportionates thiosulfate to sulfide and sulfite; independently, the Fe(2+) and sulfide act as rapid reductants of Mn. The addition of Fe(3+) or thiosulfate to cultures of MR-1 in the presence of oxidized Mn increases the rate and the extent of Mn reduction relative to that observed in the absence of Fe(3+) or thiosulfate. Furthermore, when Fe(3+) and Mn oxides are present conjointly, Fe(2+) does not appear until the reduction of the oxidized Mn is complete. These results demonstrate that the observed rates of Fe(2+) and sulfide production may underestimate the total rates of Fe and sulfate reduction in those environments containing oxidized Mn. These results also demonstrate the potential impact that a single microbe can exert on sediment geochemistry, and provide the basis for preliminary models of the complexity of microbial and geochemical interactions that occur.
Eklund, Lars; Hofer, Tomas S; Weiss, Alexander K H; Tirler, Andreas O; Persson, Ingmar
2014-09-07
Theoretical ab initio quantum mechanical charge field molecular dynamics (QMCF MD) has been applied in conjunction with experimental large angle X-ray scattering (LAXS) to study the structure and dynamics of the hydrated thiosulfate ion, S2O3(2-), in aqueous solution. The S-O and SC-ST bond distances have been determined to be 1.479(5) and 2.020(6) Å by LAXS and to be 1.478 and 2.017 Å by QMCF MD simulations, which are slightly longer than the mean values found in the solid state, 1.467 and 2.002 Å, respectively. This is due to the hydrogen bonds formed at hydration. The water dynamics show that water molecules are exchanged at the hydrated oxygen and sulfur atoms, and that the water exchange is ca. 50% faster at the sulfur atom than at the oxygen atoms with mean residence times, τ0.5, of 2.4 and 3.6 ps, respectively. From this point of view the water exchange dynamics mechanism resembles the sulfate ion, while it is significantly different from the sulfite ion. This shows that the lone electron-pair in the sulfite ion has a much larger impact on the water exchange dynamics than a substitution of an oxygen atom for a sulfur one. The LAXS data did give mean SCOaq1 and SCOaq2 distances of 3.66(2) and 4.36(10) Å, respectively, and SC-Othio and OthioOaq1, SC-ST and STOaq2 distances of 1.479(5), 2.845(10), 2.020(6) and 3.24(5) Å, respectively, giving SC-OthioOaq1 and SC-STOaq2 angles close to 110°, strongly indicating a tetrahedral geometry around the terminal thiosulfate sulfur and the oxygens, and thereby, three water molecules are hydrogen bound to each of them. The hydrogen bonds between thiosulfate oxygens and the hydrating water molecules are stronger and with longer mean residence times than those between water molecules in the aqueous bulk, while the opposite is true for the hydrogen bonds between the terminal thiosulfate sulfur and the hydrating water molecules. The hydration of all oxo sulfur ions is discussed using the detailed observations for the sulfate, thiosulfate and sulfite ions, and the structure of the hydrated peroxodisulfate ion, S2O8(2-), in aqueous solution has been determined by means of LAXS to support the general observations. The mean S-O bond distances are 1.448(2) and 1.675(5) Å to the oxo and peroxo oxygens, respectively.
Wang, Zheng; Fei, Xiang; He, Sheng-Bing; Huang, Jung-Chen; Zhou, Wei-Li
2017-11-01
This study was carried out to investigate the possibility of a thiosulfate-driven autotrophic denitrification for nitrate-N removal from micro-polluted surface water. The aim was to study the effects of [Formula: see text] ratio (S/N molar ratio) and hydraulic retention time (HRT) on the autotrophic denitrification performance. Besides, utilization efficiencies of [Formula: see text] along the biofilter and the restart-up of the bioreactor were also investigated. Autotrophic denitrification using thiosulfate as an electron donor for treating micro-polluted surface water without the addition of external alkalinity proved to be feasible and the biofilter could be readied in two weeks. Average nitrate-N removal efficiencies at HRTs of 0.5, 1 and 2 h were 78.7%, 87.8% and 97.4%, respectively, and corresponding removal rates were 186.24, 103.92 and 58.56 g [Formula: see text], respectively. When water temperature was in the range of 8-12°C and HRT was 1 h, average nitrate-N removal efficiencies of 41.9%, 97.1% and 97.0%, nitrite accumulation concentrations of 1.45, 0.46 and 0.22 mg/L and thiosulfate utilization efficiencies of 100%, 98.8% and 92.1% were obtained at S/N ratios of 1.0, 1.2 and 1.5, respectively. Besides, the autotrophic denitrification rate in the filtration media layer was the highest along the biofilter at an S/N ratio of 1.5. Finally, after a one-month period of starvation, the biofilter could be restarted successfully in three weeks without inoculation of seed sludge.
Kamel, Alaa; Tomasino, Stephen F
2017-03-01
An analytical method for determining the presence and levels of residual active ingredients found in neutralized suspensions of phenolic and quaternary ammonium salt-based antimicrobial products was developed using solid-phase extraction in combination with LC-tandem MS. A single-laboratory validation of the method was performed at three concentration levels for the quaternary ammonium compounds (also referred to as benzalkonium chlorides or BACs) and the phenols in the presence of letheen broth neutralizer at 2.5 and 2.75 μg/mL, respectively, as well as at dilutions of 1:10 and 1:100 in those concentrations. The method's lowest LODs were 0.005 μg/g for BACs and 0.006 μg/g for phenols. The average recovery of the fortified samples for both active ingredients ranged between 80 and 124%, and RSDs were generally <20%. In a related study, the effectiveness of letheen broth with and without sodium thiosulfate was evaluated as a neutralizer for sodium hypochlorite. The results showed that letheen broth without sodium thiosulfate neutralizes chlorine concentrations up to 60 ppm, and that 200 μg sodium thiosulfate are required to neutralize a 72 ppm concentrated chlorine solution in letheen broth.
Höfler, Saskia; Lorenz, Christin; Busch, Tjorven; Brinkkötter, Mascha; Tohge, Takayuki; Fernie, Alisdair R; Braun, Hans-Peter; Hildebrandt, Tatjana M
2016-07-01
Amino acid catabolism is essential for adjusting pool sizes of free amino acids and takes part in energy production as well as nutrient remobilization. The carbon skeletons are generally converted to precursors or intermediates of the tricarboxylic acid cycle. In the case of cysteine, the reduced sulfur derived from the thiol group also has to be oxidized in order to prevent accumulation to toxic concentrations. Here we present a mitochondrial sulfur catabolic pathway catalyzing the complete oxidation of l-cysteine to pyruvate and thiosulfate. After transamination to 3-mercaptopyruvate, the sulfhydryl group from l-cysteine is transferred to glutathione by sulfurtransferase 1 and oxidized to sulfite by the sulfur dioxygenase ETHE1. Sulfite is then converted to thiosulfate by addition of a second persulfide group by sulfurtransferase 1. This pathway is most relevant during early embryo development and for vegetative growth under light-limiting conditions. Characterization of a double mutant produced from Arabidopsis thaliana T-DNA insertion lines for ETHE1 and sulfurtransferase 1 revealed that an intermediate of the ETHE1 dependent pathway, most likely a persulfide, interferes with amino acid catabolism and induces early senescence. © 2016 Scandinavian Plant Physiology Society.
Eichmann, Cédric; Tzitzilonis, Christos; Bordignon, Enrica; Maslennikov, Innokentiy; Choe, Senyon; Riek, Roland
2014-08-22
The solution NMR structure of the α-helical integral membrane protein YgaP from Escherichia coli in mixed 1,2-diheptanoyl-sn-glycerol-3-phosphocholine/1-myristoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) micelles is presented. In these micelles, YgaP forms a homodimer with the two transmembrane helices being the dimer interface, whereas the N-terminal cytoplasmic domain includes a rhodanese-fold in accordance to its sequence homology to the rhodanese family of sulfurtransferases. The enzymatic sulfur transfer activity of full-length YgaP as well as of the N-terminal rhodanese domain only was investigated performing a series of titrations with sodium thiosulfate and potassium cyanide monitored by NMR and EPR. The data indicate the thiosulfate concentration-dependent addition of several sulfur atoms to the catalytic Cys-63, which process can be reversed by the addition of potassium cyanide. The catalytic reaction induces thereby conformational changes within the rhodanese domain, as well as on the transmembrane α-helices of YgaP. These results provide insights into a potential mechanism of YgaP during the catalytic thiosulfate activity in vivo. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Aqueous pyrite oxidation by dissolved oxygen and by ferric iron
Moses, Carl O.; Nordstrom, D. Kirk; Herman, Janet S.; Mills, Aaron L.
1987-01-01
Rates of aqueous, abiotic pyrite oxidation were measured in oxygen-saturated and anaerobic Fe(III)-saturated solutions with initial pH from 2 to 9. These studies included analyses of sulfite, thiosulfate, polythionates and sulfate and procedures for cleaning oxidation products from pyrite surfaces were evaluated. Pyrite oxidation in oxygen-saturated solutions produced (1) rates that were only slightly dependent on initial pH, (2) linear increases in sulfoxy anions and (3) thiosulfate and polythionates at pH > 3.9. Intermediate sulfoxy anions were observed only at high stirring rates. In anaerobic Fe(III)-saturated solutions, no intermediates were observed except traces of sulfite at pH 9. The faster rate of oxidation in Fe(III)-saturated solutions supports a reaction mechanism in which Fe(III) is the direct oxidant of pyrite in both aerobic and anaerobic systems. The proposal of this mechanism is also supported by theoretical considerations regarding the low probability of a direct reaction between paramagnetic molecular oxygen and diamagnetic pyrite. Results from a study of sphalerite oxidation support the hypothesis that thiosulfate is a key intermediate in sulfate production, regardless of the bonding structure of the sulfide mineral.
A SERS characterization of the stability of polythionates at the gold-electrolyte interface
NASA Astrophysics Data System (ADS)
Mirza, Jeff; Smith, Scott R.; Baron, Janet Y.; Choi, Yeonuk; Lipkowski, Jacek
2015-01-01
A gold nanorod (AuNR) array electrode was employed to record SERS spectra as a function of immersion time in electrolyte solutions of tetrathionate, trithionate, the [Au(S2O3)2]3- complex, sulfide and thiosulfate. The generalized two-dimensional correlation spectroscopy was employed to deconvolute broad bands in the SERS spectra. The results show that the polythionates, tetrathionate and trithionate, sulfide, and the [Au(S2O3)2]3- complex decompose to form cyclo-S8, polymeric and monoatomic sulfur at the gold surface. The relative amount of these different forms of sulfur in the film formed at the surface depends on the nature of the electrolyte species. The decomposition of tetrathionate leads predominantly to the formation of cyclo-S8. Comparable amounts of all three forms of sulfur are formed in the solution of the [Au(S2O3)2]3- complex. Monoatomic sulfur is formed predominantly at the gold surface in solutions of trithionate and thiosulfate. In contrast to the previous suggestions, the results of this study demonstrate that polythionates are not present in the passive layer during gold leaching from thiosulfate solutions at a prolonged leaching times.
Alcántara, S; Velasco, A; Revah, S
2004-10-01
The elemental sulfur formation by the partial oxidation of thiosulfate by both a sulfoxidizing consortium and by Thiobacillus thioparus ATCC 23645 was studied under aerobic conditions in chemostat. Steady state was attained with essentially total conversion to sulfate when the dissolved oxygen concentration was 5 mgO2 l(-1) and below a dilution rate (D) of 3.0 d(-1)for the consortium and 0.9 d(-1) for T thioparus. The consortium formed elemental sulfur in steady state under oxygen limitation. Fifty percent of the theoretical elemental sulfur yield was obtained with a dissolved oxygen concentration of 0.2 mgO2 l(-1). Growth of T thioparus was negatively affected with a concentration below 1.9 mgO2 l(-1). Consortium yield from batch cultures was 2.1 g(-1) (protein) mol(-1) (thiosulfate), which was comparable with the values obtained in the chemostat at dilution rates of 0.4 d(-1) and 1.2 d(-1). The consortium showed a maximum degradation rate of 0.105 g(thiosulfate) g(-1) (protein) min(-1) and a saturation rate for S2O3(2-) of 1.9 mM.
Guo, Jianbo; Zhang, Chao; Lian, Jing; Lu, Caicai; Chen, Zhi; Song, Yuanyuan; Guo, Yankai; Xing, Yajuan
2017-11-01
Perchlorate (ClO 4 - ) contamination is more and more concerned due to the hazards to humans. Based on the common primary bacterium (Helicobacteraceae) of both thiosulfate-acclimated sludge (T-Acc) and sulfur-acclimated sludge (S-Acc) for perchlorate reduction, the rapid start-up of sulfur-based perchlorate reduction reactor (SBPRR) was hypothesized by inoculating T-Acc. Furthermore, the performance of SBPRR, the SO 4 2- yield, kinetics of ClO 4 - reduction and the extracellular polymeric substances (EPS) of biofilm confirmed the hypothesis. The start-up time of R3 (reactor inoculating T-Acc) was 0.18 and 0.21 times that of R1 (control) and R2 (reactor with the influent containing thiosulfate), respectively. The SO 4 2- yield of R3 was lower than that of R2 and R1 with perchlorate removal rate 166.7mg/(Lh). The kinetic study and EPS demonstrated that inoculating T-Acc was beneficial for the development of biofilm. Consequently, the present study indicated that SBPRR can be rapidly and successfully started-up via inoculation of T-Acc. Copyright © 2017 Elsevier Ltd. All rights reserved.
2014-01-01
Background The paper presents a quantification of main (hydrogen sulfide and sulfate), as well as of intermediate sulfur species (zero-valent sulfur (ZVS), thiosulfate, sulfite, thiocyanate) in the Yellowstone National Park (YNP) hydrothermal springs and pools. We combined these measurements with the measurements of quadruple sulfur isotope composition of sulfate, hydrogen sulfide and zero-valent sulfur. The main goal of this research is to understand multiple sulfur isotope fractionation in the system, which is dominated by complex, mostly abiotic, sulfur cycling. Results Water samples from six springs and pools in the Yellowstone National Park were characterized by pH, chloride to sulfate ratios, sulfide and intermediate sulfur species concentrations. Concentrations of sulfate in pools indicate either oxidation of sulfide by mixing of deep parent water with shallow oxic water, or surface oxidation of sulfide with atmospheric oxygen. Thiosulfate concentrations are low (<6 μmol L-1) in the pools with low pH due to fast disproportionation of thiosulfate. In the pools with higher pH, the concentration of thiosulfate varies, depending on different geochemical pathways of thiosulfate formation. The δ34S values of sulfate in four systems were close to those calculated using a mixing line of the model based on dilution and boiling of a deep hot parent water body. In two pools δ34S values of sulfate varied significantly from the values calculated from this model. Sulfur isotope fractionation between ZVS and hydrogen sulfide was close to zero at pH < 4. At higher pH zero-valent sulfur is slightly heavier than hydrogen sulfide due to equilibration in the rhombic sulfur–polysulfide – hydrogen sulfide system. Triple sulfur isotope (32S, 33S, 34S) fractionation patterns in waters of hydrothermal pools are more consistent with redox processes involving intermediate sulfur species than with bacterial sulfate reduction. Small but resolved differences in ∆33S among species and between pools are observed. Conclusions The variation of sulfate isotopic composition, the origin of differences in isotopic composition of sulfide and zero–valent sulfur, as well as differences in ∆33S of sulfide and sulfate are likely due to a complex network of abiotic redox reactions, including disproportionation pathways. PMID:24959098
Rein, Joshua L.; Miyata, Kana N.; Dadzie, Kobena A.; Gruber, Steven J.; Sulica, Roxana; Winchester, James F.
2014-01-01
Calcific uremic arteriolopathy (CUA) is a rare and potentially fatal disorder of calcification involving subcutaneous small vessels and fat in patients with renal insufficiency. We describe the successful use of intravenous sodium thiosulfate (STS) for the treatment of CUA in two patients. The first case was complicated by the development of a severe anion gap metabolic acidosis, which was accompanied by a seizure. Both patients had complete wound healing within five months. Although STS should be considered in the treatment of CUA, little is known about pharmacokinetics and additional studies are required to determine dosing strategies to minimize severe potential side effects. PMID:25506005
Biological Nitrogen Removal through Nitritation Coupled with Thiosulfate-Driven Denitritation
Qian, Jin; Zhou, Junmei; Zhang, Zhen; Liu, Rulong; Wang, Qilin
2016-01-01
A novel biological nitrogen removal system based on nitritation coupled with thiosulfate-driven denitritation (Nitritation-TDD) was developed to achieve a high nitrogen removal rate and low sludge production. A nitritation sequential batch reactor (nitritation SBR) and an anoxic up-flow sludge bed (AnUSB) reactor were applied for effective nitritation and denitritation, respectively. Above 75% nitrite was accumulated in the nitritation SBR with an influent ammonia loading rate of 0.43 kg N/d/m3. During Nitritation-TDD operation, particle sizes (d50) of the sludge decreased from 406 to 225 um in nitritation SBR and from 327–183 um in AnUSB reactor. Pyrosequencing tests revealed that ammonium-oxidizing bacteria (AOB) population was stabilized at approximately 7.0% (calculated as population of AOB-related genus divided by the total microbial population) in the nitritation SBR. In contrast, nitrite-oxidizing bacteria (NOB) population decreased from 6.5–0.6% over the same time, indicating the effective nitrite accumulation in the nitritation SBR. Thiobacillus, accounting for 34.2% in the AnUSB reactor, was mainly responsible for nitrogen removal via autotrophic denitritation, using an external source of thiosulfate as electron donor. Also, it was found that free nitrous acid could directly affect the denitritation activity. PMID:27272192
Respiration of arsenate and selenate by hyperthermophilic archaea.
Huber, R; Sacher, M; Vollmann, A; Huber, H; Rose, D
2000-10-01
A novel, strictly anaerobic, hyperthermophilic, facultative organotrophic archaeon was isolated from a hot spring at Pisciarelli Solfatara, Naples, Italy. The rod-shaped cells grew chemolithoautotrophically with carbon dioxide as carbon source, hydrogen as electron donor and arsenate, thiosulfate or elemental sulfur as electron acceptor. H2S was formed from sulfur or thiosulfate, arsenite from arsenate. Organotrophically, the new isolate grew optimally in the presence of an inorganic electron acceptor like sulfur, selenate or arsenate. Cultures, grown on arsenate and thiosulfate or arsenate and L-cysteine, precipitated realgar (As2S2). During growth on selenate, elemental selenium was produced. The G+C content of the DNA was 58.3 mol%. Due to 16S rRNA gene sequence analysis combined with physiological and morphological criteria, the new isolate belongs to the Thermoproteales order. It represents a new species within the genus Pyrobaculum, the type species of which we name Pyrobaculum arsenaticum (type strain PZ6*, DSM 13514, ATCC 700994). Comparative studies with different Pyrobaculum-species showed, that Pyrobaculum aerophilum was also able to grow organotrophically under anaerobic culture conditions in the presence of arsenate, selenate and selenite. During growth on selenite, elemental selenium was formed as final product. In contrast to P. arsenaticum, P. aerophilum could use selenate or arsenate for lithoautotrophic growth with carbon dioxide and hydrogen.
Sigalevich, Pavel; Cohen, Yehuda
2000-01-01
A chemostat coculture of the sulfate-reducing bacterium Desulfovibrio oxyclinae and the facultatively aerobic heterotroph Marinobacter sp. strain MB was grown for 1 week under anaerobic conditions at a dilution rate of 0.05 h−1. It was then exposed to an oxygen flux of 223 μmol min−1 by gassing the growth vessel with 5% O2. Sulfate reduction persisted under these conditions, though the amount of sulfate reduced decreased by 45% compared to the amount reduced during the initial anaerobic mode. After 1 week of growth under these conditions, sulfate was excluded from the incoming medium. The sulfate concentration in the growth vessel decreased exponentially from 4.1 mM to 2.5 μM. The coculture consumed oxygen effectively, and no residual oxygen was detected during either growth mode in which oxygen was supplied. The proportion of D. oxyclinae cells in the coculture as determined by in situ hybridization decreased from 86% under anaerobic conditions to 70% in the microaerobic sulfate-reducing mode and 34% in the microaerobic sulfate-depleted mode. As determined by the most-probable-number (MPN) method, the numbers of viable D. oxyclinae cells during the two microaerobic growth modes decreased compared to the numbers during the anaerobic growth mode. However, there was no significant difference between the MPN values for the two modes when oxygen was supplied. The patterns of consumption of electron donors and acceptors suggested that when oxygen was supplied in the absence of sulfate and thiosulfate, D. oxyclinae performed incomplete aerobic oxidation of lactate to acetate. This is the first observation of oxygen-dependent growth of a sulfate-reducing bacterium in the absence of either sulfate or thiosulfate. Cells harvested during the microaerobic sulfate-depleted stage and exposed to sulfate and thiosulfate in a respiration chamber were capable of anaerobic sulfate and thiosulfate reduction. PMID:11055958
Potential Repercussions Associated with Halanaerobium Colonization of Hydraulically Fractured Shales
NASA Astrophysics Data System (ADS)
Booker, A. E.; Borton, M.; Daly, R. A.; Nicora, C.; Welch, S.; Dusane, D.; Johnston, M.; Sharma, S.; Mouser, P. J.; Cole, D. R.; Lipton, M. S.; Wrighton, K. C.; Wilkins, M.
2017-12-01
Hydraulic fracturing of black shale formations has greatly increased U.S. oil and natural gas recovery. Bacterial Halanaerobium strains become the dominant microbial community member in produced fluids from many fractured shales, regardless of their geographic location. Halanaerobium is not native to the subsurface, but is inadvertently introduced during the drilling and fracturing process. The accumulation of biomass in pipelines and reservoirs is detrimental due to possible well souring, microbially-induced corrosion, and pore clogging. Here, we used Halanaerobium strains isolated from a hydraulically fractured well in the Utica Shale, proteogenomics, isotopic and geochemical field observations, and laboratory growth experiments to identify detrimental effects associated with Halanaerobium growth. Analysis of Halanaerobium isolate genomes and reconstructed genomes from metagenomic datasets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes that can convert thiosulfate to sulfide. Furthermore, laboratory growth curves confirmed the capability of Halanaerobium to grow across a wide range of pressures (14-7000 PSI). Shotgun proteomic measurements were used to track the higher abundance of rhodanese and anaerobic sulfite reductase enzymes present when thiosulfate was available in the growth media. This technique also identified a higher abundance of proteins associated with the production of extracellular polymeric substances when Halanaerobium was grown under increasing pressures. Halanaerobium culture based assays identified thiosulfate-dependent sulfide production, while pressure incubations revealed higher cellular attachment to quartz surfaces. Increased production of sulfide and organic acids during stationary growth phase suggests that fermentative Halanaerobium use thiosulfate to remove excess reductant, aiding in NAD+ recovery. Additionally, the increased cellular attachment to surfaces under pressure indicates Halanaerobium has the capability of forming cellular clusters that could clog the shale fracture network and limit natural gas recovery. These findings bring awareness to the detrimental effects that could arise from Halanaerobium growth in hydraulically fractured shales throughout the U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Neal X., E-mail: xuechen@iupui.edu; O’Neill, Kalisha; Akl, Nader Kassis
Highlights: • High phosphorus can induce calcification of adipocytes, even when fully differentiated. • Adipocytes can induce vascular calcification in an autocrine manner. • Sodium thiosulfate inhibits adipocyte calcification. - Abstract: Background: Calcification can occur in fat in multiple clinical conditions including in the dermis, breasts and in the abdomen in calciphylaxis. All of these are more common in patients with advanced kidney disease. Clinically, hyperphosphatemia and obesity are risk factors. Thus we tested the hypothesis that adipocytes can calcify in the presence of elevated phosphorus and/or that adipocytes exposed to phosphorus can induce vascular smooth muscle cell (VSMC) calcification.more » Methods: 3T3-L1 preadipocytes were induced into mature adipocytes and then treated with media containing high phosphorus. Calcification was assessed biochemically and PCR performed to determine the expression of genes for osteoblast and adipocyte differentiation. Adipocytes were also co-cultured with bovine VSMC to determine paracrine effects, and the efficacy of sodium thiosulfate was determined. Results: The results demonstrated that high phosphorus induced the calcification of differentiated adipocytes with increased expression of osteopontin, the osteoblast transcription factor Runx2 and decreased expression of adipocyte transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (CEBPα), indicating that high phosphorus led to a phenotypic switch of adipocytes to an osteoblast like phenotype. Sodium thiosulfate, dose dependently decreased adipocyte calcification and inhibited adipocyte induced increase of VSMC calcification. Co-culture studies demonstrated that adipocytes facilitated VSMC calcification partially mediated by changes of secretion of leptin and vascular endothelial growth factor (VEGF) from adipocytes. Conclusion: High phosphorus induced calcification of mature adipocytes, and adipocytes exposed to elevated phosphorus can induce calcification of VSMC in a paracrine manner. Sodium thiosulfate inhibited this calcification and decreased the secretin of leptin and VEGF from adipocytes. These results suggest that adipocyte exposure to elevated phosphorus may be a pathogenic factor in calcification observed in the skin in calciphylaxis and other diseases.« less
Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification.
Subhash, N; Sriram, R; Kurian, Gino A
2015-11-01
Vascular bed calcification is a common feature of ends stage renal disease that may lead to a complication in cardiovascular and cerebrovascular beds, which is a promoting cause of myocardial infarction, stroke, dementia and aneurysms. Sodium thiosulfate (STS) due to its multiple properties such as antioxidant and calcium chelation has been reported to prevent vascular calcification in uremic rats, without mentioning its impact on cerebral function. Moreover, the previous studies have not explored the effect of STS on the mitochondrial dysfunction, one of the main pathophysiological features associated with the disease and the main site for STS metabolism. The present study addresses this limitation by using a rat model where 0.75% adenine was administered to induce vascular calcification and 400 mg/kg b wt. of STS was given as preventive and curative agent. The blood and urine chemistries along with histopathology of aorta confirms the renal protective effect of STS in two modes of administration. The brain oxidative stress assessment was made through TBARS level, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, found to be in the near normal level. STS administration not only reduced the mitochondrial oxidative stress (measured by TBARS, SOD, GPx and CAT) but also preserved the mitochondrial respiratory enzyme activities (NADH dehydrogenase, Succinate dehydrogenase and Malate dehydrogenase) and its physiology (measured by P/O ratio and RCR). In fact, the protective effect of STS was prominent, when it was administered as a curative agent, where low H2S and high thiosulfate level was observed along with low cystathionine β synthase activity, confirms thiosulfate mediated renal protection. In conclusion, STS when given after induction of calcification is protective to the brain by preserving its mitochondria, compared to the treatment given concomitantly. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lee, Jerry Y; Iglesias, Brenda; Chu, Caleb E; Lawrence, Daniel J P; Crane, Edward Jerome
2017-06-01
A novel anaerobic, hyperthermophilic archaeon was isolated from a mud volcano in the Salton Sea geothermal system in southern California, USA. The isolate, named strain 521T, grew optimally at 90 °C, at pH 5.5-7.3 and with 0-2.0 % (w/v) NaCl, with a generation time of 10 h under optimal conditions. Cells were rod-shaped and non-motile, ranging from 2 to 7 µm in length. Strain 521T grew only in the presence of thiosulfate and/or Fe(III) (ferrihydrite) as terminal electron acceptors under strictly anaerobic conditions, and preferred protein-rich compounds as energy sources, although the isolate was capable of chemolithoautotrophic growth. 16S rRNA gene sequence analysis places this isolate within the crenarchaeal genus Pyrobaculum. To our knowledge, this is the first Pyrobaculum strain to be isolated from an anaerobic mud volcano and to reduce only either thiosulfate or ferric iron. An in silico genome-to-genome distance calculator reported <25 % DNA-DNA hybridization between strain 521T and eight other Pyrobaculum species. Due to its genotypic and phenotypic differences, we conclude that strain 521T represents a novel species, for which the name Pyrobaculum igneiluti sp. nov. is proposed. The type strain is 521T (=DSM 103086T=ATCC TSD-56T).
Eberly, Jed O; Indest, Karl J; Hancock, Dawn E; Jung, Carina M; Crocker, Fiona H
2016-06-01
Removal of 3-nitro-1,2,4-triazol-5-one (NTO) was investigated in conjunction with heterotrophic and autotrophic denitrifying growth conditions by a microbial consortium from a wastewater treatment plant. Microcosms were supplemented with molasses, methanol, or thiosulfate. Cultures were passaged twice by transferring 10 % of the culture volume to fresh media on days 11 and 21. Rates of NTO removal were 18.71 ± 0.65, 9.04 ± 2.61, and 4.34 ± 2.72 mg/L/day while rates of nitrate removal were 20.08 ± 1.13, 21.58 ± 1.20, and 24.84 ± 1.26 mg/L/day, respectively, for molasses, methanol, or thiosulfate. Metagenomic analysis showed that Proteobacteria and Firmicutes were the major phyla in the microbial communities. In molasses supplemented cultures, the community profile at the family level changed over time with Pseudomonadaceae the most abundant (67.4 %) at day 11, Clostridiaceae (65.7 %) at day 21, and Sporolactobacillaceae (35.4 %) and Clostridiaceae (41.0 %) at day 29. Pseudomonadaceae was the dominant family in methanol and thiosulfate supplemented cultures from day 21 to 29 with 76.6 and 81.6 % relative abundance, respectively.
Orlova, Maria V; Tarlachkov, Sergey V; Dubinina, Galina A; Belousova, Elena V; Tutukina, Maria N; Grabovich, Margarita Y
2016-12-01
Diazotrophic Alphaproteobacteria of the genus Azospirillum are usually organotrophs, although some strains of Azospirillum lipoferum are capable of hydrogen-dependent autotrophic growth. Azospirillum thiophilum strain was isolated from a mineral sulfide spring, a biotope highly unusual for azospirilla. Here, the metabolic pathways utilized by A. thiophilum were revealed based on comprehensive analysis of its genomic organization, together with physiological and biochemical approaches. The A. thiophilum genome contained all the genes encoding the enzymes of carbon metabolism via glycolysis, tricarboxylic acid cycle and glyoxylate cycle. Genes for a complete set of enzymes responsible for autotrophic growth, with an active Calvin-Benson-Bassham cycle, were also revealed, and activity of the key enzymes was determined. Microaerobic chemolithoautotrophic growth of A. thiophilum was detected in the presence of thiosulfate and molecular hydrogen, being in line with the discovery of the genes encoding the two enzymes involved in dissimilatory thiosulfate oxidation, the Sox-complex and thiosulfate dehydrogenase and Ni-Fe hydrogenases. Azospirillum thiophilum utilizes methanol and formate, producing CO 2 that can further be metabolized via the Calvin cycle. Finally, it is capable of anaerobic respiration, using tetrathionate as a terminal electron acceptor. Such metabolic versatility is of great importance for adaptation of A. thiophilum to constantly changing physicochemical environment. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic bacteria
NASA Technical Reports Server (NTRS)
Fischer, U.
1985-01-01
Dissimilatory sulfur metabolism in phototrophic sulfur bacteria provides the bacteria with electrons for photosynthetic electron transport chain and, with energy. Assimilatory sulfate reduction is necessary for the biosynthesis of sulfur-containing cell components. Sulfide, thiosulfate, and elemental sulfur are the sulfur compounds most commonly used by phototrophic bacteria as electron donors for anoxygenic photosynthesis. Cytochromes or other electron transfer proteins, like high-potential-iron-sulfur protein (HIPIP) function as electron acceptors or donors for most enzymatic steps during the oxidation pathways of sulfide or thiosulfate. Yet, heme- or siroheme-containing proteins themselves undergo enzymatic activities in sulfur metabolism. Sirohemes comprise a porphyrin-like prosthetic group of sulfate reductase. eenzymatic reactions involve electron transfer. Electron donors or acceptors are necessary for each reaction. Cytochromes and iron sulfur problems, are able to transfer electrons.
Simultaneous production of bio-ethanol and bleached pulp from red algae.
Yoon, Min Ho; Lee, Yoon Woo; Lee, Chun Han; Seo, Yung Bum
2012-12-01
The red algae, Gelidium corneum, was used to produce bleached pulp for papermaking and ethanol. Aqueous extracts obtained at 100-140 °C were subjected to saccharification, purification, fermentation, and distillation to produce ethanol. The solid remnants were bleached with chlorine dioxide and peroxide to make pulp. In the extraction process, sulfuric acid and sodium thiosulfate were added to increase the extract yield and to improve de-polymerization of the extracts, as well as to generate high-quality pulp. An extraction process incorporating 5% sodium thiosulfate by dry weight of the algae provided optimal production conditions for the production of both strong pulp and a high ethanol yield. These results suggest that it might be possible to utilize algae instead of trees and starch for pulp and ethanol production, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Jurkowska, Halina; Roman, Heather B.; Hirschberger, Lawrence L.; Sasakura, Kiyoshi; Nagano, Tetsuo; Hanaoka, Kenjiro; Krijt, Jakub
2016-01-01
The oxidation of cysteine in mammalian cells occurs by two routes: a highly regulated direct oxidation pathway in which the first step is catalyzed by cysteine dioxygenase (CDO) and by desulfhydration-oxidation pathways in which the sulfur is released in a reduced oxidation state. To assess the effect of a lack of CDO on production of hydrogen sulfide (H2S) and thiosulfate (an intermediate in the oxidation of H2S to sulfate) and to explore the roles of both cystathionine γ-lyase (CTH) and cystathionine β-synthase (CBS) in cysteine desulfhydration by liver, we investigated the metabolism of cysteine in hepatocytes isolated from Cdo1-null and wild-type mice. Hepatocytes from Cdo1-null mice produced more H2S and thiosulfate than did hepatocytes from wild-type mice. The greater flux of cysteine through the cysteine desulfhydration reactions catalyzed by CTH and CBS in hepatocytes from Cdo1-null mice appeared to be the consequence of their higher cysteine levels, which were due to the lack of CDO and hence lack of catabolism of cysteine by the cysteinesulfinate-dependent pathways. Both CBS and CTH appeared to contribute substantially to cysteine desulfhydration, with estimates of 56 % by CBS and 44 % by CTH in hepatocytes from wild-type mice, and 63 % by CBS and 37 % by CTH in hepatocytes from Cdo1-null mice. PMID:24609271
Influence of sulfur oxyanions on reductive dehalogenation activities in Desulfomonile tiedjei.
Townsend, G T; Suflita, J M
1997-01-01
The inhibition of aryl reductive dehalogenation reactions by sulfur oxyanions has been demonstrated in environmental samples, dehalogenating enrichments, and the sulfate-reducing bacterium Desulfomonile tiedjei; however, this phenomenon is not well understood. We examined the effects of sulfate, sulfite, and thiosulfate on reductive dehalogenation in the model microorganism D. tiedjei and found separate mechanisms of inhibition due to these oxyanions under growth versus nongrowth conditions. Dehalogenation activity was greatly reduced in extracts of cells grown in the presence of both 3-chlorobenzoate, the substrate or inducer for the aryl dehalogenation activity, and either sulfate, sulfite, or thiosulfate, indicating that sulfur oxyanions repress the requisite enzymes. In extracts of fully induced cells, thiosulfate and sulfite, but not sulfate, were potent inhibitors of aryl dehalogenation activity even in membrane fractions lacking the cytoplasmically located sulfur oxyanion reductase. These results suggest that under growth conditions, sulfur oxyanions serve as preferred electron acceptors and negatively influence dehalogenation activity in D. tiedjei by regulating the amount of active aryl dehalogenase in cells. Additionally, in vitro inhibition by sulfur oxyanions is due to the interaction of the reactive species with enzymes involved in dehalogenation and need not involve competition between two respiratory processes for reducing equivalents. Sulfur oxyanions also inhibited tetrachloroethylene dehalogenation by the same mechanisms, further indicating that chloroethylenes are fortuitously dehalogenated by the aryl dehalogenase. The commonly observed inhibition of reductive dehalogenation reactions under sulfate-reducing conditions may be due to similar regulation mechanisms in other dehalogenating microorganisms that contain multiple respiratory activities. PMID:9293011
Finster, K; Liesack, W; Thamdrup, B
1998-01-01
A mesophilic, anaerobic, gram-negative bacterium, strain SB164P1, was enriched and isolated from oxidized marine surface sediment with elemental sulfur as the sole energy substrate in the presence of ferrihydrite. Elemental sulfur was disproportionated to hydrogen sulfide and sulfate. Growth was observed exclusively in the presence of a hydrogen sulfide scavenger, e.g., ferrihydrite. In the absence of a scavenger, sulfide and sulfate production were observed but no growth occurred. Strain SB164P1 grew also by disproportionation of thiosulfate and sulfite. With thiosulfate, the growth efficiency was higher in ferrihydrite-supplemented media than in media without ferrihydrite. Growth coupled to sulfate reduction was not observed. However, a slight sulfide production occurred in cultures incubated with formate and sulfate. Strain SB164P1 is the first bacterium described that grows chemolithoautotrophically exclusively by the disproportionation of inorganic sulfur compounds. Comparative 16S rDNA sequencing analysis placed strain SB164P1 into the delta subclass of the class Proteobacteria. Its closest relative is Desulfocapsa thiozymogenes, and slightly more distantly related are Desulfofustis glycolicus and Desulforhopalus vacuolatus. This phylogenetic cluster of organisms, together with members of the genus Desulfobulbus, forms one of the main lines of descent within the delta subclass of the Proteobacteria. Due to the common phenotypic characteristics and the phylogenetic relatedness to Desulfocapsa thiozymogenes, we propose that strain SB164P1 be designated the type strain of Desulfocapsa sulfoexigens sp. nov.
Finster, Kai; Liesack, Werner; Thamdrup, Bo
1998-01-01
A mesophilic, anaerobic, gram-negative bacterium, strain SB164P1, was enriched and isolated from oxidized marine surface sediment with elemental sulfur as the sole energy substrate in the presence of ferrihydrite. Elemental sulfur was disproportionated to hydrogen sulfide and sulfate. Growth was observed exclusively in the presence of a hydrogen sulfide scavenger, e.g., ferrihydrite. In the absence of a scavenger, sulfide and sulfate production were observed but no growth occurred. Strain SB164P1 grew also by disproportionation of thiosulfate and sulfite. With thiosulfate, the growth efficiency was higher in ferrihydrite-supplemented media than in media without ferrihydrite. Growth coupled to sulfate reduction was not observed. However, a slight sulfide production occurred in cultures incubated with formate and sulfate. Strain SB164P1 is the first bacterium described that grows chemolithoautotrophically exclusively by the disproportionation of inorganic sulfur compounds. Comparative 16S rDNA sequencing analysis placed strain SB164P1 into the delta subclass of the class Proteobacteria. Its closest relative is Desulfocapsa thiozymogenes, and slightly more distantly related are Desulfofustis glycolicus and Desulforhopalus vacuolatus. This phylogenetic cluster of organisms, together with members of the genus Desulfobulbus, forms one of the main lines of descent within the delta subclass of the Proteobacteria. Due to the common phenotypic characteristics and the phylogenetic relatedness to Desulfocapsa thiozymogenes, we propose that strain SB164P1 be designated the type strain of Desulfocapsa sulfoexigens sp. nov. PMID:9435068
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motl, Nicole; Skiba, Meredith A.; Kabil, Omer
Hydrogen sulfide (H2S) is a signaling molecule that is toxic at elevated concentrations. In eukaryotes, it is cleared via a mitochondrial sulfide oxidation pathway, which comprises sulfide quinone oxidoreductase, persulfide dioxygenase (PDO), rhodanese, and sulfite oxidase and converts H2S to thiosulfate and sulfate. Natural fusions between the non-heme iron containing PDO and rhodanese, a thiol sulfurtransferase, exist in some bacteria. However, little is known about the role of the PDO–rhodanese fusion (PRF) proteins in sulfur metabolism. Herein, we report the kinetic properties and the crystal structure of a PRF from the Gram-negative endophytic bacterium Burkholderia phytofirmans. The crystal structures ofmore » wild-type PRF and a sulfurtransferase-inactivated C314S mutant with and without glutathione were determined at 1.8, 2.4, and 2.7 Å resolution, respectively. We found that the two active sites are distant and do not show evidence of direct communication. The B. phytofirmans PRF exhibited robust PDO activity and preferentially catalyzed sulfur transfer in the direction of thiosulfate to sulfite and glutathione persulfide; sulfur transfer in the reverse direction was detectable only under limited turnover conditions. Together with the kinetic data, our bioinformatics analysis reveals that B. phytofirmans PRF is poised to metabolize thiosulfate to sulfite in a sulfur assimilation pathway rather than in sulfide stress response as seen, for example, with the Staphylococcus aureus PRF or sulfide oxidation and disposal as observed with the homologous mammalian proteins.« less
Computer-assisted Crystallization.
ERIC Educational Resources Information Center
Semeister, Joseph J., Jr.; Dowden, Edward
1989-01-01
To avoid a tedious task for recording temperature, a computer was used for calculating the heat of crystallization for the compound sodium thiosulfate. Described are the computer-interfacing procedures. Provides pictures of laboratory equipment and typical graphs from experiments. (YP)
Determination of Total Sulfur, Sulfate, Sulfite, Thiosulfate, and Sulfolipids in Plants.
Kurmanbayeva, Assylay; Brychkova, Galina; Bekturova, Aizat; Khozin, Inna; Standing, Dominic; Yarmolinsky, Dmitry; Sagi, Moshe
2017-01-01
In response to oxidative stress the biosynthesis of the ROS scavenger, glutathione is induced. This requires the induction of the sulfate reduction pathway for an adequate supply of cysteine, the precursor for glutathione. Cysteine also acts as the sulfur donor for the sulfuration of the molybdenum cofactor, crucial for the last step of ABA biosynthesis. Sulfate and sulfite are, respectively, the precursor and intermediate for cysteine biosynthesis and there is evidence for stress-induced sulfate uptake and further downstream, enhanced sulfite generation by 5'-phosphosulfate (APS) reductase (APR, EC 1.8.99.2) activity. Sulfite reductase (SiR, E.C.1.8.7.1) protects the chloroplast against toxic levels of sulfite by reducing it to sulfide. In case of sulfite accumulation as a result of air pollution or stress-induced premature senescence, such as in extended darkness, sulfite can be oxidized to sulfate by sulfite oxidase. Additionally sulfite can be catalyzed to thiosulfate by sulfurtransferases or to UDP-sulfoquinovose by SQD1, being the first step toward sulfolipid biosynthesis.Determination of total sulfur in plants can be accomplished using many techniques such as ICP-AES, high-frequency induction furnace, high performance ion chromatography, sulfur combustion analysis, and colorimetric titration. Here we describe a total sulfur detection method in plants by elemental analyzer (EA). The used EA method is simple, sensitive, and accurate, and can be applied for the determination of total S content in plants.Sulfate anions in the soil are the main source of sulfur, required for normal growth and development, of plants. Plants take up sulfate ions from the soil, which are then reduced and incorporated into organic matter. Plant sulfate content can be determined by ion chromatography with carbonate eluents.Sulfite is an intermediate in the reductive assimilation of sulfate to the essential amino acids cysteine and methionine, and is cytotoxic above a certain threshold if not rapidly metabolized and can wreak havoc at the cellular and whole plant levels. Plant sulfite content affects carbon and nitrogen homeostasis Therefore, methods capable of determining sulfite levels in plants are of major importance. Here we present two robust laboratory protocols which can be used for sulfite detection in plants.Thiosulfate is an essential sulfur intermediate less toxic than sulfite which is accumulating in plants in response to sulfite accumulation. The complexity of thiosulfate detection is linked to its chemical properties. Here we present a rapid, sensitive, and accurate colorimetric method based on the enzymatic conversion of thiosulfate to thiocyanate.The plant sulfolipid sulfoquinovosyldiacylglycerol (SQDG) accounts for a large fraction of organic sulfur in the biosphere. Aside from sulfur amino acids, SQDG represents a considerable sink for sulfate in plants and is the only sulfur-containing anionic glycerolipid that is found in the photosynthetic membranes of plastids. We present the separation of sulfolipids from other fatty acids in two simple ways: by one- and two-dimensional thin-layer chromatography.
Manta, Carmen; Peralta-Altier, Gabriela; Gioia, Larissa; Méndez, María F; Seoane, Gustavo; Ovsejevi, Karen
2013-11-27
A thiol-β-cyclodextrin was synthesized by a simple and environmentally friendly three-step method comprising epoxy activation of β-cyclodextrin, thiosulfate-mediated oxirane opening, and further reduction of the S-alkyl thiosulfate to a thiol group. The final step was optimized by using thiopropyl-agarose, a solid phase reducing agent with many advantages over soluble ones. β-Cyclodextrin thiolation was confirmed by titration with a thiol-reactive reagent, NMR studies, and MALDI-TOF/TOF. Thiolated cyclodextrin had an average value of one thiol group per molecule. Thiol-β-cyclodextrin proved to be an excellent agent for controlling polyphenol oxidase activity. This copper-containing enzyme is responsible for browning in fruits and vegetables. Under the same conditions, thiol-β-cyclodextrin generated a reductive microenvironment that increased the antibrowning effect on Red Delicious apples compared to unmodified β-cyclodextrin.
Evaluation of gold and silver leaching from printed circuit board of cellphones.
Petter, P M H; Veit, H M; Bernardes, A M
2014-02-01
Electronic waste has been increasing proportionally with the technology. So, nowadays, it is necessary to consider the useful life, recycling, and final disposal of these equipment. Metals, such as Au, Ag, Cu, Sn and Ni can be found in the printed circuit boards (PCB). According to this, the aims of this work is to characterize the PCBs of mobile phones with aqua regia; obtaining "reference" values of leaching, to gold and silver, with cyanide and nitric acid, respectively; and study the process of leaching of these metals in alternative leaching with sodium thiosulfate and ammonium thiosulfate. The metals were characterized by digesting the sample with aqua regia for 1 and 2h at 60°C and 80°C. The leaching of Au with a commercial reagent (cyanide) and the Ag with HNO3were made. The leaching of Au and Ag with alternative reagents: Na2S2O3, and (NH4)2S2O3 in 0.1M concentration with the addition of CuSO4, NH4OH, and H2O2, was also studied. The results show that the digestion with aqua regia was efficient to characterize the metals present in the PCBs of mobile phones. However, the best method to solubilize silver was by digesting the sample with nitric acid. The leaching process using sodium thiosulfate was more efficient when an additional concentration of 0.015 and 0.030 M of the CuSO4 was added. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rahal, Hassiba; Kihal, Rafiaa; Affoune, Abed Mohamed; Ghers, Mokhtar; Djazi, Faycal
2017-06-01
Zinc oxide thin films have been grown by electrodeposition technique onto Cu and ITO-coated glass substrates from an aqueous zinc nitrate solution with addition of sodium thiosulfate at 90 °C. The effects of sodium thiosulfate on the electrochemical deposition of ZnO were investigated by cyclic voltammetry and chronoamperometry techniques. Deposited films were obtained at -0.60 V vs. SCE and characterized by XRD, SEM, FTIR, optical, photoelectrochemical and electrical measurements. Thickness of the deposited film was measured to be 357 nm. X-ray diffraction results indicated that the synthesized ZnO has a pure hexagonal wurtzite structure with a marked preferential orientation along (002) plane. FTIR results confirmed the presence of ZnO films at peak 558 cm-1. SEM images showed uniform, compact morphology without any cracks and films composed of large flower-like ZnO agglomerates with star-shape. Optical properties of ZnO reveal a high optical transmission (> 80 % ) and high absorption coefficient (α > {10}5 {{cm}}-1) in visible region. The optical energy band gap was found to be 3.28 eV. Photoelectrochemical measurements indicated that the ZnO films had n-type semiconductor conduction. Electrical properties of ZnO films showed a low electrical resistivity of 6.54 {{Ω }}\\cdot {cm}, carrier concentration of -1.3× {10}17 {{cm}}-3 and mobility of 7.35 cm2 V-1 s-1. Project supported by the Algerian Ministry of Higher Education and Scientific Research, Algeria (No. J0101520090018).
A distal ligand mutes the interaction of hydrogen sulfide with human neuroglobin
Ruetz, Markus; Kumutima, Jacques; Lewis, Brianne E.; Filipovic, Milos R.; Lehnert, Nicolai; Stemmler, Timothy L.; Banerjee, Ruma
2017-01-01
Hydrogen sulfide is a critical signaling molecule, but high concentrations cause cellular toxicity. A four-enzyme pathway in the mitochondrion detoxifies H2S by converting it to thiosulfate and sulfate. Recent studies have shown that globins like hemoglobin and myoglobin can also oxidize H2S to thiosulfate and hydropolysulfides. Neuroglobin, a globin enriched in the brain, was reported to bind H2S tightly and was postulated to play a role in modulating neuronal sensitivity to H2S in conditions such as stroke. However, the H2S reactivity of the coordinately saturated heme in neuroglobin is expected a priori to be substantially lower than that of the 5-coordinate hemes present in myoglobin and hemoglobin. To resolve this discrepancy, we explored the role of the distal histidine residue in muting the reactivity of human neuroglobin toward H2S. Ferric neuroglobin is slowly reduced by H2S and catalyzes its inefficient oxidative conversion to thiosulfate. Mutation of the distal His64 residue to alanine promotes rapid binding of H2S and its efficient conversion to oxidized products. X-ray absorption, EPR, and resonance Raman spectroscopy highlight the chemically different reaction options influenced by the distal histidine ligand. This study provides mechanistic insights into how the distal heme ligand in neuroglobin caps its reactivity toward H2S and identifies by cryo-mass spectrometry a range of sulfide oxidation products with 2–6 catenated sulfur atoms with or without oxygen insertion, which accumulate in the absence of the His64 ligand. PMID:28246171
Characterization and mediation of microbial deterioration of concrete bridge structures.
DOT National Transportation Integrated Search
2013-04-01
Samples obtained from deteriorated bridge structures in Texas were cultured in growth medium containing thiosulfate as an energy source and investigated for acid production, type of acid produced by microbes and the bio-deterioration of concrete cyli...
Steudel, Ralf; Steudel, Yana
2010-01-21
Certain sulfur bacteria oxidize thiosulfate enzymatically to sulfate, and derivatives of the amino acid cysteine play an important role as intermediates in this process. Since some of the proposed intermediates have so far been of hypothetical nature, we have investigated the structures and thermodynamic properties of more than 60 related derivatives of cysteine (CysH) by high-level quantum chemical calculations both in the gas phase and in a polarizable continuum using the PCM method to simulate an aqueous solution. Most of these molecules and anions were studied for the first time. Especially for the smaller species several conformational isomers of similar energy were identified; their relative stabilities are mainly determined by intramolecular hydrogen bonds. In contrast to the thiolate ion [Cys](-), the gaseous anions [CysS](-), [CysSO(2)](-), [CysSO(3)](-) and [CysSSO(3)](-) are most stable as zwitterions containing an NH(3) rather than an NH(2) group. This result also holds for the polarizable continuum. On the other hand, the related neutral molecules CysH, CysSH and CysSO(2)H are predicted to exist as NH(2) derivatives rather than zwitterions in the gas phase and this connectivity is predicted for CysH and CysSH also in the polarizable continuum. A model molecule of composition C(4)H(7)N(2)O(2)SH (abbreviated as RSH) simulating the structural environment of a cysteine residue within the peptide chain near the corresponding reaction center of the thiosulfate oxidizing enzyme complex "Sox" was used to elucidate the geometry of the proposed reaction intermediates as well as their thermodynamic properties. In the polarizable phase, the S-sulfonate ions [CysSO(3)](-) and [RSSO(3)](-) are predicted to react exothermically with water to the corresponding thiol and hydrogensulfate ions. These results support the proposed mechanism for enzymatic thiosulfate metabolism. Sulfur dioxide and hydrogensulfite anions are predicted to react exothermically and exergonically with thiolate and persulfide anions to give the corresponding S-sulfinate species [RSSO(2)](-) and [RSSSO(2)](-), respectively. The latter ions help to explain the inhibition of certain thiolate based enzymes by aqueous sulfite, disulfite and dithionite anions in sulfur oxidizing microorganisms.
Information Management Systems in the Undergraduate Instrumental Analysis Laboratory.
ERIC Educational Resources Information Center
Merrer, Robert J.
1985-01-01
Discusses two applications of Laboratory Information Management Systems (LIMS) in the undergraduate laboratory. They are the coulometric titration of thiosulfate with electrogenerated triiodide ion and the atomic absorption determination of calcium using both analytical calibration curve and standard addition methods. (JN)
Mingo, Felix Sebastian; Diekert, Gabriele; Studenik, Sandra
2016-02-01
The O-demethylation of phenyl methyl ethers under anaerobic conditions is a metabolic feature of acetogens and Desulfitobacterium spp. Desulfitobacteria as well as most acetogens are Gram-positive bacteria with a low GC content and belong to the phylum Firmicutes. The consumption of the phenyl methyl ether syringate was studied in enrichment cultures originating from five different topsoils. Desulfitobacterium spp. were detected in all topsoils via quantitative PCR. Desulfitobacteria could be enriched using the O-demethylation of syringate as a growth-selective process. The enrichment was significantly favoured by an external electron acceptor such as 3-chloro-4-hydroxyphenylacetate or thiosulfate. Upon cultivation in the presence of syringate and thiosulfate, which naturally occur in soil, a maximum number of 16S rRNA gene copies of Desulfitobacterium spp. was reached within the first three subcultivation steps and accounted for 3-10% of the total microbial community depending on the soil type. Afterwards, a loss of Desulfitobacterium gene copies was observed. Community analyses revealed that Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the main phyla in the initial soil samples. Upon addition of syringate and thiosulfate as growth substrates, these phyla were rapidly outcompeted by Firmicutes, which were under-represented in soil. The main Firmicutes genera identified were Alkalibaculum, Clostridium, Sporobacterium, Sporomusa and Tissierella, which might be responsible for outcompeting the desulfitobacteria. Most of these organisms belong to the acetogens, which have previously been described to demethylate phenyl methyl ethers. The shift of the native community structure to almost exclusively Firmicutes supports the participation of members of this phylum in environmental demethylation processes.
Clock Reaction: Outreach Attraction
ERIC Educational Resources Information Center
Carpenter, Yuen-ying; Phillips, Heather A.; Jakubinek, Michael B.
2010-01-01
Chemistry students are often introduced to the concept of reaction rates through demonstrations or laboratory activities involving the well-known iodine clock reaction. For example, a laboratory experiment involving thiosulfate as an iodine scavenger is part of the first-year general chemistry laboratory curriculum at Dalhousie University. With…
Egorova, M A; Tsaplina, I A; Zakharchuk, L M; Bogdanova, T I; Krasil'nikova, E N
2004-01-01
The moderately thermophilic acidophilic bacterium Sulfobacillus thermosulfidooxidans subsp. asporogenes strain 41 is capable of utilizing sulfides of gold-arsenic concentrate and elemental sulfur as a source of energy. The growth in the presence of S0 under auto- or mixotrophic conditions was less stable compared with the media containing iron monoxide. The enzymes involved in oxidation of sulfur inorganic compounds--thiosulfate-oxidizing enzyme, tetrathionate hydrolase, rhodonase, adenylyl sulfate reductase, sulfite oxidase, and sulfur oxygenase--were discovered in the cells of Sulfobacillus grown in the mineral medium containing 0.02% yeast extract and either sulfur or iron monoxide and thiosulfate. Cell-free extracts of the cultures grown in the medium with sulfur under auto- or mixotrophic conditions displayed activity of the key enzyme of the Calvin cycle--ribulose bisphosphate carboxylase--and several other enzymes involved in heterotrophic fixation of carbonic acid. Activities of carboxylases depended on the composition of cultivation media.
Pattern formation in the iodate-sulfite-thiosulfate reaction-diffusion system.
Liu, Haimiao; Pojman, John A; Zhao, Yuemin; Pan, Changwei; Zheng, Juhua; Yuan, Ling; Horváth, Attila K; Gao, Qingyu
2012-01-07
Sodium polyacrylate-induced pH pattern formation and starch-induced iodine pattern formation were investigated in the iodate-sulfite-thiosulfate (IST) reaction in a one-side fed disc gel reactor (OSFR). As binding agents of the autocatalyst of hydrogen ions or iodide ions, different content of sodium polyacrylate or starch has induced various types of pattern formation. We observed pH pulses, striped patterns, mixed spots and stripes, and hexagonal spots upon increasing the content of sodium polyacrylate and observed iodine pulses, branched patterns, and labyrinthine patterns upon increasing the starch content in the system. Coexistence of a pH front and an iodine front was also studied in a batch IST reaction-diffusion system. Both pH and iodine front instabilities were observed in the presence of sodium polyacrylate, i.e., cellular fronts and transient Turing structures resulting from the decrease in diffusion coefficients of activators. The mechanism of multiple feedback may explain the different patterns in the IST reaction-diffusion system.
Pitting Corrosion of alloy 690 in thiosulfate-containing chloride solutions
NASA Astrophysics Data System (ADS)
Tsai, Wen-Ta; Wu, Tsung-Feng
2000-01-01
The effects of thiosulfate ion and solution pH on pitting corrosion of Alloy 690 in chloride solution were explored. Potentiodynamic polarization measurements were conducted to evaluate pitting corrosion susceptibility of Alloy 690 in these environments. The results showed that pitting corrosion occurred in the mill-annealed (1050°C/5min) Alloy 690 in 1 wt% NaCl solution but not in 0.1 M Na 2S 2O 3 solution. The value of pitting nucleation potential ( Enp) determined in 1 wt% NaCl solution (without Na 2S 2O 3 ) increased with increasing solution pH value in the range of 2-10. The addition of Na 2S 2O 3 to 1 wt% NaCl solution greatly affected the pitting corrosion behavior, which was dependent on concentration. The preformed nickel sulfide surface film due to the presence of Na 2S 2O 3 caused Alloy 690 to become more susceptible to pitting corrosion in 1 wt% NaCl solution.
Walczak, Alexandra B; Yee, Nathan; Young, Lily Y
2018-01-01
This genome report describes the draft genome and physiological characteristics of Bosea sp. WAO (=DSM 102914), a novel strain of the genus Bosea in the family Bradyrhizobiaceae . Bosea sp. WAO was isolated from pulverized pyritic shale containing elevated levels of arsenic. This aerobic, gram negative microorganism is capable of facultative chemolithoautotrophic growth under aerobic conditions by oxidizing the electron donors arsenite, elemental sulfur, thiosulfate, polysulfide, and amorphous sulfur. The draft genome is of a single circular chromosome 6,125,776 bp long consisting of 21 scaffolds with a G + C content of 66.84%. A total 5727 genes were predicted of which 5665 or 98.92% are protein-coding genes and 62 RNA genes. We identified the genes aioA and aioB , which encode the large and small subunits of the arsenic oxidase respectively. We also identified the genes for the complete sulfur oxidation pathway sox which is used to oxidize thiosulfate to sulfate.
Sulfur-based autotrophic denitrification from the micro-polluted water.
Zhou, Weili; Liu, Xu; Dong, Xiaojing; Wang, Zheng; Yuan, Ying; Wang, Hui; He, Shengbing
2016-06-01
Eutrophication caused by high concentrations of nutrients is a huge problem for many natural lakes and reservoirs. Removing the nitrogen contamination from the low C/N water body has become an urgent need. Autotrophic denitrification with the sulfur compound as electron donor was investigated in the biofilter reactors. Through the lab-scale experiment, it was found that different sulfur compounds and different carriers caused very different treatment performances. Thiosulfate was selected to be the best electron donor and ceramsite was chosen as the suitable carrier due to the good denitrification efficiency, low cost and the good resistibility against the high hydraulic loads. Later the optimum running parameters of the process were determined. Then the pilot-scale experiment was carried out with the real micro-polluted water from the West Lake, China. The results indicated that the autotrophic denitrification with thiosulfate as electron donor was feasible and applicable for the micro-polluted lake water. Copyright © 2016. Published by Elsevier B.V.
Nitrocobinamide, a New Cyanide Antidote That Can Be Administered by Intramuscular Injection
Chan, Adriano; Jiang, Jingjing; Fridman, Alla; Guo, Ling T.; Shelton, G. Diane; Liu, Ming-Tao; Green, Carol; Haushalter, Kristofer J.; Patel, Hemal H.; Lee, Jangwoen; Yoon, David; Burney, Tanya; Mukai, David; Mahon, Sari B.; Brenner, Matthew; Pilz, Renate B.; Boss, Gerry R.
2015-01-01
Currently available cyanide antidotes must be given by intravenous injection over 5–10 min, making them illsuited for treating many people in the field, as could occur in a major fire, an industrial accident, or a terrorist attack. These scenarios call for a drug that can be given quickly, e.g., by intramuscular injection. We have shown that aquohydroxocobinamide is a potent cyanide antidote in animal models of cyanide poisoning, but it is unstable in solution and poorly absorbed after intramuscular injection. Here we show that adding sodium nitrite to cobinamide yields a stable derivative (referred to as nitrocobinamide) that rescues cyanide-poisoned mice and rabbits when given by intramuscular injection. We also show that the efficacy of nitrocobinamide is markedly enhanced by coadministering sodium thiosulfate (reducing the total injected volume), and we calculate that ∼1.4 mL each of nitrocobinamide and sodium thiosulfate should rescue a human from a lethal cyanide exposure. PMID:25650735
Application of a 2-step process for the biological treatment of sulfidic spent caustics.
de Graaff, Marco; Klok, Johannes B M; Bijmans, Martijn F M; Muyzer, Gerard; Janssen, Albert J H
2012-03-01
This research demonstrates the feasibility and advantages of a 2-step process for the biological treatment of sulfidic spent caustics under halo-alkaline conditions (i.e. pH 9.5; Na(+) = 0.8 M). Experiments with synthetically prepared solutions were performed in a continuously fed system consisting of two gas-lift reactors in series operated at aerobic conditions at 35 °C. The detoxification of sulfide to thiosulfate in the first step allowed the successful biological treatment of total-S loading rates up to 33 mmol L(-1) day(-1). In the second, biological step, the remaining sulfide and thiosulfate was completely converted to sulfate by haloalkaliphilic sulfide oxidizing bacteria. Mathematical modeling of the 2-step process shows that under the prevailing conditions an optimal reactor configuration consists of 40% 'abiotic' and 60% 'biological' volume, whilst the total reactor volume is 22% smaller than for the 1-step process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Morton, Nicholas M.; Beltram, Jasmina; Carter, Roderick N.; Michailidou, Zoi; Gorjanc, Gregor; Fadden, Clare Mc; Barrios-Llerena, Martin E.; Rodriguez-Cuenca, Sergio; Gibbins, Matthew T. G.; Aird, Rhona E.; Moreno-Navarrete, José Maria; Munger, Steven C.; Svenson, Karen L.; Gastaldello, Annalisa; Ramage, Lynne; Naredo, Gregorio; Zeyda, Maximilian; Wang, Zhao V.; Howie, Alexander F.; Saari, Aila; Sipilä, Petra; Stulnig, Thomas M.; Gudnason, Vilmundur; Kenyon, Christopher J.; Seckl, Jonathan R.; Walker, Brian R.; Webster, Scott P.; Dunbar, Donald R.; Churchill, Gary A.; Vidal-Puig, Antonio; Fernandez-Real, José Manuel; Emilsson, Valur; Horvat, Simon
2017-01-01
Discovery of genetic mechanisms for resistance to obesity and diabetes may illuminate new therapeutic strategies for the treatment of this global health challenge. We used the polygenic Lean mouse model, selected for low adiposity over 60 generations, to identify thiosulfate sulfurtransferase (Tst, Rhodanese) as a candidate obesity-resistance gene with selectively increased adipocyte expression. Elevated adipose Tst expression correlated with indices of metabolic health across diverse mouse strains. Transgenic overexpression of Tst in adipocytes protected mice from diet-induced obesity and insulin-resistant diabetes. Tst gene deficiency markedly exacerbated diabetes whereas pharmacological TST activation ameliorated diabetes in mice in vivo. Mechanistically, TST selectively augmented mitochondrial function combined with degradation of reactive oxygen species and sulfide. In humans, adipose TST mRNA correlated positively with adipose insulin sensitivity and negatively with fat mass. Genetic identification of Tst as a beneficial regulator of adipocyte mitochondrial function may have therapeutic significance for type 2 diabetes. PMID:27270587
Berglund, Fredrik; Forster, Roy P.
1958-01-01
A characterization was attempted of the mechanisms involved in the tubular transport of inorganic divalent ions by the aglomerular kidney of Lophius, attention being paid particularly to the possible existence of transport maxima (Tm) and to competition for transport among related substances undergoing tubular excretion. Excretory rates of divalent ions in non-treated fish during standard laboratory conditions paralleled spontaneous changes in urine flow. Tm rates of excretion were reached for magnesium, sulfate, and thiosulfate with corresponding plasma levels of 2 to 5, 5 to 17, and 4 to 12 µM/ml. respectively. Elevation of magnesium chloride levels in plasma markedly depressed calcium excretion; sodium thiosulfate similarly depressed sulfate excretion. Experimental observations suggest the existence of a transport system for divalent cations separate from another for divalent anions. Within each transport system the ion with the higher excretion rate depressed competitively transfer of the other ion. Neither system was influenced by probenecid (benemid) in doses which markedly depressed the simultaneous excretion rate of p-aminohippuric acid. PMID:13491814
Reduction of Cr(VI) to Cr(III) in Artificially-Contaminated Soil using Chemical Reagents
NASA Astrophysics Data System (ADS)
Kostarelos, Konstantinos; Rao, Ennio; Reale, Daniela
2010-05-01
The presence of hexavalent chromium (CrVI) in soil is an environmental concern due to its effect on human health. The concern arises from the leaching and the seepage of Cr(VI) from soil to groundwater. A remediation approach that has been studied in the literature is that of reducing the hexavalent chromium to its trivalent form using a chemical reagent, namely ferrous sulfate heptahydrate (FeSO4.7H20). In this study, we compared performance of ferrous sulfate heptahydrate to sodium thiosulfate (Na2S2O3), a less costly reductant. The means of measuring the performance of the reductants is the US EPA's Toxicity Characteristic Leaching Procedure (TCLP), which states that the total chromium release from the soil must be less than 5 ppm. Because this treatment approach is pH sensitive and thus, susceptible to acid rain effects, it was studied with the intention that it be coupled with a stabilization/fixation approach so as to provide a second level of treatment; i.e., it is not intended to be the stand-alone treatment approach. In this study, the reductants were initially used to treat a contaminated, artificial soil and allowed to cure for varying time periods to determine the minimum curing time. Contaminated artificial soil were then prepared using the same percentage of white sand, kaolinite clay and potassium chromate and varying amount of water as a function of the humidity of the specimens in order to illucidate the effect of moisture on the reductant performance. Finally, the reductant (either ferrous sulfate heptahydrate or sodium thiosulfate) was added in varying doses to determine the best ratio Cr/reagent dose. Chromium release from the soil was evaluated with a modified Toxicity Characteristic Leaching Procedure (TCLP) test after allowing the samples to cure. Results indicated that chromium(VI) released from the specimens was less than 5 ppm for the samples treated with either ferrous sulfate heptahydrate (99.9% of reduction) and sodium thiosulfate (98.7% of reduction) with ratio Cr/reagent equal to 18.7 in both cases. In addition, samples treated with ferrous sulfate also exhibited a binding effect. In summary, reduction to a lower valence state can be an effective treatment option when coupled with a stabilization/solidification treatment, so that any chromium subsequently leached from the treated soil into groundwater is the less toxic and less mobile trivalent form of chromium. An alternative to ferrous sulfate heptahydrate, the less-expensive sodium thiosulfate, performed well as a reductant and is suggested for further study.
Evaluation of Physical Strength of Wheat Straw Under Different Fertilizer Treatments and Rates
USDA-ARS?s Scientific Manuscript database
Application of nitrogen (N) fertilizer as urea ammonium nitrate and N plus sulfur fertilizer as ammonium thiosulfate as a mist on crop residue to stimulate microbial activity and subsequent decomposition of the residue is often debated, particularly for its potential to solve stand establishment iss...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganji, Rakesh; Murugapiran, Senthil K.; Ong, John C.
The draft genome of Thermocrinis jamiesonii GBS1 T is 1,315,625 bp in 10 contigs and encodes 1,463 predicted genes. The presence of sox genes and various glycoside hydrolases and the absence of uptake NiFe hydrogenases ( hyaB) are consistent with a requirement for thiosulfate and suggest the ability to use carbohydrate polymers.
Evaluation of thiosulfate as a substitute for hydrogen sulfide in sour corrosion fatigue studies
NASA Astrophysics Data System (ADS)
Kappes, Mariano Alberto
This work evaluates the possibility of replacing hydrogen sulfide (H 2S) with thiosulfate anion (S2O32- ) in sour corrosion fatigue studies. H2S increases the corrosion fatigue crack growth rate (FCGR) and can be present in carbon steel risers and flowlines used in off-shore oil production. Corrosion tests with gaseous H2S require special facilities with safety features, because H2S is a toxic and flammable gas. The possibility of replacing H2S with S2O32-, a non-toxic anion, for studying stress corrosion cracking of stainless and carbon steels in H2S solutions was first proposed by Tsujikawa et al. ( Tsujikawa et al., Corrosion, 1993. 49(5): p. 409-419). In this dissertation, Tsujikawa work will be extended to sour corrosion fatigue of carbon steels. H2S testing is often conducted in deareated condition to avoid oxygen reaction with sulfide that yields sulfur and to mimic oil production conditions. Nitrogen deareation was also adopted in S2O3 2- testing, and gas exiting the cell was forced through a sodium hydroxide trap. Measurements of the sulfide content of this trap were used to estimate the partial pressure of H2S in nitrogen, and Henry's law was used to estimate the content of H2S in the solution in the cell. H2S was produced by a redox reaction of S2O 32-, which required electrons from carbon steel corrosion. This reaction is spontaneous at the open circuit potential of steel. Therefore, H2S concentration was expected to be maximum at the steel surface, and this concentration was estimated by a mass balance analysis. Carbon steel specimens exposed to S2O32- containing solutions developed a film on their surface, composed by iron sulfide and cementite. The film was not passivating and a good conductor of electrons. Hydrogen permeation experiments proved that this film controls the rate of hydrogen absorption of steels exposed to thiosulfate containing solutions. The absorption of hydrogen in S2O3 2- solutions was compared with the absorption of hydrogen in solutions saturated with different H2S partial pressures. The partial pressure was selected so that the concentration of H2S in the solution saturated with the gas would be the same as that reached in the surface of steel freely corroding in the thiosulfate solution. For solutions obtained by bubbling H2S, the rate of hydrogen absorption increased with the partial pressure of the gas, but the rate of hydrogen absorption reached a maximum at 10-3 M S2O3 2-, despite the surface concentration of H2S increased with the concentration of S2O32-. This effect was associated with the formation of thicker films, which inhibited the absorption of hydrogen. FCGR were evaluated at constant stress intensity factor range. Crack length was monitored in-situ by the direct current potential drop (DCPD) method. FCGR increased with the partial pressure of H2S in nitrogen. FCGR was controlled not only by the amount of hydrogen present in the steel, but also by inhibiting contributions like crack closure and crack tip blunting. FCGR in dilute thiosulfate solutions was near that measured in a solution saturated with a partial pressure of H2S equal to 0.56 kPa, in accord with hydrogen permeation results.
Chemical Kinetics, Heat Transfer, and Sensor Dynamics Revisited in a Simple Experiment
ERIC Educational Resources Information Center
Sad, Maria E.; Sad, Mario R.; Castro, Alberto A.; Garetto, Teresita F.
2008-01-01
A simple experiment about thermal effects in chemical reactors is described, which can be used to illustrate chemical reactor models, the determination and validation of their parameters, and some simple principles of heat transfer and sensor dynamics. It is based in the exothermic reaction between aqueous solutions of sodium thiosulfate and…
Destruction of methyl bromide sorbed to activated carbon by thiosulfate and electrolysis
USDA-ARS?s Scientific Manuscript database
Methyl bromide is widely used as a fumigant for post-harvest and quarantine uses at port facilities due to the low treatment times required, but it is vented to the atmosphere after its use. Due to the potential contributions of methyl bromide to stratospheric ozone depletion, technologies for the c...
2009-01-01
the quantum mechanical calculations in this paper. M.A.Z. further thanks Drs. Clarence Broomfield and Alan Brimfield for their assistance on this... fluorescence . Eur. J. Biochem. 28, 89–93. (8) Leininger, K. R., and Westley, J. (1968) The mechanism of the rhodanese-catalyzed thiosulfate-cyanide
40 CFR 63.457 - Test methods and procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of methane or n-hexane and air at a concentration of approximately, but less than, 10,000 parts per million by volume methane or n-hexane. (e) Negative pressure procedures. To demonstrate negative pressure... between 6.95 and 7.05. (4) To prepare the 0.1 normality (N) sodium thiosulfate solution, dissolve 25 g of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... formulation Surfactant α-Alkyl(C6-C15)-ω-hydroxypoly(oxyethylene)sulfate, and its ammonium, calcium, magnesium..., related adjuvants of surfactants Alkyl (C8-C18) sulfate and its ammonium, calcium, isopropylamine... stearate Surfactant Ammonium sulfate Solid diluent, carrier Ammonium thiosulfate Intensifier when used with...
Singh, Poonam; Rao, Pooja; Bhattacharya, Rahul
2013-12-01
We assessed the dose-dependent effect of potassium cyanide (KCN) on thiosulfate sulfurtransferase (TST), 3-mercaptopyruvate sulfurtransferase (3-MPST), and cystathionine λ-lyase (CST) activities in mice. The time-dependent effect of 0.5 LD50 KCN on cyanide level and cytochrome c oxidase (CCO), TST, 3-MPST, and CST activities was also examined. Furthermore, TST, 3-MPST, and CST activities were measured in stored mice cadavers. Hepatic and renal TST activity increased by 0.5 LD50 KCN but diminished by ≥2.0 LD50. After 0.5 LD50 KCN, the elevated hepatic cyanide level was accompanied by increased TST, 3-MPST, and CST activities, and CCO inhibition. Elevated renal cyanide level was only accompanied by increased 3-MPST activity. No appreciable change in enzyme activities was observed in mice cadavers. The study concludes that high doses of cyanide exert saturating effects on its detoxification enzymes, indicating their exogenous use during cyanide poisoning. Also, these enzymes are not reliable markers of cyanide poisoning in autopsied samples. © 2013 Wiley Periodicals, Inc.
Investigation of transient forms of sulfur during biological treatment of spent caustic.
Kalantari, Hamed; Nosrati, Mohsen; Shojaosadati, Seyed Abbas; Shavandi, Mahmoud
2018-06-01
In the present study, the production of various transient forms of sulfur during biological oxidation of sulfidic spent caustics under haloalkaline conditions in a stirred tank bioreactor is investigated. Also, the effects of abiotic aeration (chemical oxidation), dissolved oxygen (DO) concentration and sodium concentration on forms of sulfur during biological treatment are demonstrated. Thioalkalivibrio versutus strain was used for sulfide oxidation in spent caustic (SC). The aeration had an important effect on sulfide oxidation and its final products. At DO concentrations above 2 mg l -1 , majority of sulfide was oxidized to sulfate. Maximum sulfide removal efficiency (%R) and yield of sulfate production [Formula: see text] was obtained in Na + concentration ranging from 0.6 to 2 M. Abiotic aeration, which is the most important factor of production of thiosulfate, resulted in the formation of an undesired product-polysulfide. However, abiotic aeration can be used as a pretreatment to biological treatment. In the bioreactor the removal efficiency was obtained as 82.7% and various forms of sulfur such as polysulfide, biosulfur, thiosulfate and sulfate was observed during biological treatment of SC.
Zhang, Chao; Guo, Jianbo; Lian, Jing; Lu, Caicai; Ngo, Huu Hao; Guo, Wenshan; Song, Yuanyuan; Guo, Yankai
2017-10-01
The mechanism for perchlorate reduction was investigated using thiosulfate-driven (T-driven) perchlorate reduction bacteria. The influences of various environmental conditions on perchlorate reduction, including pH, temperature and electron acceptors were examined. The maximum perchlorate removal rate was observed at pH 7.5 and 40 °C. Perchlorate reduction was delayed due to the coexistence of perchlorate-chlorate and perchlorate-nitrate. The mechanism of the T-driven perchlorate reduction electron transport chain (ETC) was also investigated by utilizing different inhibitors. The results were as follows: firstly, the NADH dehydrogenase was not involved in the ETC; secondly, the FAD dehydrogenase and quinone loop participated in the ETC; and thirdly, cytochrome oxidase was the main pathway in the ETC. Meanwhile, microbial consortium structure analysis indicated that Sulfurovum which can oxidize sulfur compounds coupled to the reduction of nitrate or perchlorate was the primary bacterium in the T-driven and sulfur-driven consortium. This study generates a better understanding of the mechanism of T-driven perchlorate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Houghton, J.; Wills, E.; Fike, D. A.
2012-12-01
Microbially mediated reactions involving elemental sulfur in low temperature hydrothermal environments are a critical component of the net hydrothermal flux of sulfur to the global oceans. We assess here the physiological impact on sulfur speciation and isotopic composition of two microbial strains at a range of pH conditions consistent with the sharp gradients found in seafloor hydrothermal environments. Thiomicrospira thermophila and T. crunogena, both isolated from hydrothermal vents at East Pacific Rise, were grown with thiosulfate as the electron donor under aerobic, closed system conditions at controlled pH and optimal temperature (35°C). T. thermophila at pH 8 produced sulfate at a 1:1 ratio with thiosulfate consumption during exponential growth, with the ratio decreasing as pH decreases. This stoichiometric ratio decreases more steeply as a function of pH during metabolism by T. crunogena. Sulfate:thiosulfate ratios less than one indicate the production of alternative oxidized sulfur compounds such as polythionates. The rate of sulfate production is comparable in both strains and is dependent on pH, decreasing from 0.8mM/hr at pH 8 to 0.2mM/hr at pH 5.6. Fractionation of 34S expressed as Δ34S between reactant and product range from 0‰ to 3‰ for both sulfate and elemental sulfur produced, with no difference between products in pH buffered experiments (pH 5.6 and 8.0). However, in unbuffered experiments during which growth causes pH to decrease from 7 to below 4.5, Δ34S(S2O3-SO4) is consistently larger than Δ34S(S2O3-S) in both strains by a factor of 2. The metabolic activity of these (and similar) strains indicate that complex and cryptic sulfur cycling may be occurring in the subsurface, associated with only minimal variation in the δ34S isotopic composition of sulfate and elemental sulfur.
Druschel, G.K.; Schoonen, M.A.A.; Nordstorm, D.K.; Ball, J.W.; Xu, Y.; Cohn, C.A.
2003-01-01
A sampling protocol for the retention, extraction, and analysis of sulfoxyanions in hydrothermal waters has been developed in the laboratory and tested at Yellowstone National Park and Green Lake, NY. Initial laboratory testing of the anion-exchange resin Bio-Rad??? AG1-X8 indicated that the resin was well suited for the sampling, preservation, and extraction of sulfate and thiosulfate. Synthetic solutions containing sulfate and thiosulfate were passed through AG1-X8 resin columns and eluted with 1 and 3 M KCl, respectively. Recovery ranged from 89 to 100%. Comparison of results for water samples collected from five pools in Yellowstone National Park between on-site IC analysis (U.S. Geological Survey mobile lab) and IC analysis of resin-stored sample at SUNY-Stony Brook indicates 96 to 100% agreement for three pools (Cinder, Cistern, and an unnamed pool near Cistern) and 76 and 63% agreement for two pools (Sulfur Dust and Frying Pan). Attempts to extract polythionates from the AG1-X8 resin were made using HCl solutions, but were unsuccessful. Bio-Rad??? AG2-X8, an anion-exchange resin with weaker binding sites than the AG1-X8 resin, is better suited for polythionate extraction. Sulfate and thiosulfate extraction with this resin has been accomplished with KCl solutions of 0.1 and 0.5 M, respectively. Trithionate and tetrathionate can be extracted with 4 M KCl. Higher polythionates can be extracted with 9 M hydrochloric acid. Polythionate concentrations can then be determined directly using ion chromatographic methods, and laboratory results indicate recovery of up to 90% for synthetic polythionate solutions using AG2-X8 resin columns. ?? The Royal Society of Chemistry and the Division of Geochemistry of the American Chemical Society 2003.
40 CFR 63.457 - Test methods and procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... volume of hydrocarbon in air); and (ii) A mixture of methane or n-hexane and air at a concentration of approximately, but less than, 10,000 parts per million by volume methane or n-hexane. (e) Negative pressure... between 6.95 and 7.05. (4) To prepare the 0.1 normality (N) sodium thiosulfate solution, dissolve 25 g of...
NASA Astrophysics Data System (ADS)
Adlim, M.; Zarlaida, F.; Khaldun, I.; Dewi, R.; Jamilah, M.
2018-03-01
Mercury pollution in atmosphere is dominated by mercury vapour release from coal burning and gold-amalgam separation in gold mining. The initial steps in formulating a compatible mercury absorbent for mercury stabilization was fabrication of pellet supported colloidal sulphur. Sulphur is used to stabilize mercury vapour by formation of metacinnabar that has much lower toxicity. The sulphur reactivity toward mercury vapour can be enhanced by using colloidal sulphur nanoparticles immobilized on compatible pellets. Clay pellets would have heat resistance but in fact, they were less stable in aqueous solution although their stability increased with inclusion of rice husk ash and sawdust or pineapple leaf fibre in the composite. Pellets made of rice husk ash and polyvinyl acetate were stable in water at least for 24 hours. Sulphur from thiosulfate precursor that immobilized onto surface of pellet using chitosan as the stabilizer and the binding agent gave lower sulphur content compared to sulphur from other precursors (sulphur powder and sulphur-CS2). Sulphur from thiosulfate precursor was in form of colloid, has nanosize, and disperse particles on the surface of rice husk ash pellets. Sulphur immobilization methods affect on sulphur particles exposure on the pellet surface.
Janosch, Claudia; Remonsellez, Francisco; Sand, Wolfgang; Vera, Mario
2015-10-21
The sulfur oxygenase reductase (Sor) catalyzes the oxygen dependent disproportionation of elemental sulfur, producing sulfite, thiosulfate and sulfide. Being considered an "archaeal like" enzyme, it is also encoded in the genomes of some acidophilic leaching bacteria such as Acidithiobacillus caldus, Acidithiobacillus thiooxidans, Acidithiobacillus ferrivorans and Sulfobacillus thermosulfidooxidans, among others. We measured Sor activity in crude extracts from Sb. thermosulfidooxidans DSM 9293(T). The optimum temperature for its oxygenase activity was achieved at 75 °C, confirming the "thermophilic" nature of this enzyme. Additionally, a search for genes probably involved in sulfur metabolism in the genome sequence of Sb. thermosulfidooxidans DSM 9293(T) was done. Interestingly, no sox genes were found. Two sor genes, a complete heterodisulfidereductase (hdr) gene cluster, three tetrathionate hydrolase (tth) genes, three sulfide quinonereductase (sqr), as well as the doxD component of a thiosulfate quinonereductase (tqo) were found. Seven At. caldus strains were tested for Sor activity, which was not detected in any of them. We provide evidence that an earlier reported Sor activity from At. caldus S1 and S2 strains most likely was due to the presence of a Sulfobacillus contaminant.
Tengölics, Roland; Mészáros, Lívia; Győri, E; Doffkay, Zsolt; Kovács, Kornél L; Rákhely, Gábor
2014-10-01
Thiocapsa. roseopersicina BBS has four active [NiFe] hydrogenases, providing an excellent opportunity to examine their metabolic linkages to the cellular redox processes. Hyn is a periplasmic membrane-associated hydrogenase harboring two additional electron transfer subunits: Isp1 is a transmembrane protein, while Isp2 is located on the cytoplasmic side of the membrane. In this work, the connection of HynSL to various electron transport pathways is studied. During photoautotrophic growth, electrons, generated from the oxidation of thiosulfate and sulfur, are donated to the photosynthetic electron transport chain via cytochromes. Electrons formed from thiosulfate and sulfur oxidation might also be also used for Hyn-dependent hydrogen evolution which was shown to be light and proton motive force driven. Hyn-linked hydrogen uptake can be promoted by both sulfur and nitrate. The electron flow from/to HynSL requires the presence of Isp2 in both directions. Hydrogenase-linked sulfur reduction could be inhibited by a QB site competitive inhibitor, terbutryne, suggesting a redox coupling between the Hyn hydrogenase and the photosynthetic electron transport chain. Based on these findings, redox linkages of Hyn hydrogenase are modeled. Copyright © 2014 Elsevier B.V. All rights reserved.
Janosch, Claudia; Remonsellez, Francisco; Sand, Wolfgang; Vera, Mario
2015-01-01
The sulfur oxygenase reductase (Sor) catalyzes the oxygen dependent disproportionation of elemental sulfur, producing sulfite, thiosulfate and sulfide. Being considered an “archaeal like” enzyme, it is also encoded in the genomes of some acidophilic leaching bacteria such as Acidithiobacillus caldus, Acidithiobacillus thiooxidans, Acidithiobacillus ferrivorans and Sulfobacillus thermosulfidooxidans, among others. We measured Sor activity in crude extracts from Sb. thermosulfidooxidans DSM 9293T. The optimum temperature for its oxygenase activity was achieved at 75 °C, confirming the “thermophilic” nature of this enzyme. Additionally, a search for genes probably involved in sulfur metabolism in the genome sequence of Sb. thermosulfidooxidans DSM 9293T was done. Interestingly, no sox genes were found. Two sor genes, a complete heterodisulfidereductase (hdr) gene cluster, three tetrathionate hydrolase (tth) genes, three sulfide quinonereductase (sqr), as well as the doxD component of a thiosulfate quinonereductase (tqo) were found. Seven At. caldus strains were tested for Sor activity, which was not detected in any of them. We provide evidence that an earlier reported Sor activity from At. caldus S1 and S2 strains most likely was due to the presence of a Sulfobacillus contaminant. PMID:27682113
Miranda-Tello, Elizabeth; Fardeau, Marie-Laure; Sepúlveda, José; Fernández, Luis; Cayol, Jean-Luc; Thomas, Pierre; Ollivier, Bernard
2003-09-01
A novel Gram-positive, anaerobic and thermophilic bacterium, strain MET79(T), was isolated from an oil well located in the Gulf of Mexico. Cells were straight rods, motile by a subpolar flagellum. Spores were formed in old cultures. Inner gas vacuoles swelled the cells when exposed to air. The optimum growth conditions were 55 degrees C, pH 7.5 and 1 % NaCl. Yeast extract was required for growth. Strain MET79(T) fermented several sugars, some organic acids and Casamino acids. Glucose was fermented into lactate, acetate, butyrate, H(2) and CO(2). Strain MET79(T) reduced thiosulfate to hydrogen sulfide and nitrate to ammonium. The DNA G+C content was 30.9 mol%. The closest phylogenetic relative of strain MET79(T) was Caloranaerobacter azorensis (88.7 % 16S rDNA sequence similarity). As strain MET79(T) (=DSM 15102(T)=CIP 107615(T)) was physiologically and phylogenetically different from its closest relatives, it is assigned as the type strain of a novel species of a new genus, Garciella nitratireducens gen. nov., sp. nov.
Gold--a controversial sensitizer. European Environmental and Contact Dermatitis Research Group.
Bruze, M; Andersen, K E
1999-06-01
Until recently, gold allergy was considered to be extremely rare. Gold has been used and worshipped for thousands of years without any obvious complaints of skin problems, either in those participating in mining and other ways of prospecting, or in those wearing jewellery. When studies on contact allergy to gold sodium thiosulfate were published at the beginning of the 1990s, the allergic nature of the reported positive patch test reactions to gold was questioned. The major argument for such questioning was the lack of demonstrable clinical relevance in most positive reactors. A major reason for the questioning may have been confusion in differentiating between contact allergy and allergic contact dermatitis. To arrive at a diagnosis of allergic contact dermatitis, 3 steps have, in principle, to be fulfilled: (i) establishment of contact allergy; (ii) demonstration of present exposure; (iii) assessment of clinical relevance, i.e., causing or aggravating a contact dermatitis. In this paper, these steps are discussed with regard to gold. With our present knowledge of contact allergy-allergic contact dermatitis, we do not recommend including gold sodium thiosulfate in the standard series. It should be applied for scientific purposes and when allergic contact dermatitis from gold is suspected.
Cyanide - Mechanism of Prophylaxis and Effect on Cytochrome Oxidase.
1981-08-15
thiosulfate by chlorpromazine was studied alone and in various combinations with the classic cyanide antidotal combination of sodium nitrite and sodium...greater in the groups given oxygen over the respective groups given air, but the difference was signi- ficant only with groups receiving oxygen alone or...cyanide intoxication by chlorpromazine, parti- cularly when it is employed in combination with the classic cyanide antagonists, sodium nitrite and
Mefferd, Chrisabelle C.; Zhou, En-Min; Yu, Tian-Tian; ...
2016-04-28
The draft genomes ofThermus tengchongensisYIM 77401 andT. caliditerraeYIM 77777 are 2,562,314 and 2,218,114 bp and encode 2,726 and 2,305 predicted genes, respectively. Gene content and growth experiments demonstrate broad metabolic capacity, including starch hydrolysis, thiosulfate oxidation, arsenite oxidation, incomplete denitrification, and polysulfide reduction.
Ganji, Rakesh; Murugapiran, Senthil K.; Ong, John C.; ...
2016-10-20
The draft genome of Thermocrinis jamiesonii GBS1 T is 1,315,625 bp in 10 contigs and encodes 1,463 predicted genes. The presence of sox genes and various glycoside hydrolases and the absence of uptake NiFe hydrogenases ( hyaB) are consistent with a requirement for thiosulfate and suggest the ability to use carbohydrate polymers.
Stress Corrosion Cracking of Aluminum Alloys
2012-09-10
Hossain and B. J, O’Toole: Stress Corrosion Cracking of Martensitic Stainless Steel for Transmutation Application, Presented at 2003 International...SCC of marternsitic stainless steel by Roy,[12] and learn the annealing effect on SCC of carbon steel by Haruna.[13] The application of slow...observations. In his study on SCC of AISI 304 stainless steel , Roychowdhury[3] detected no apparent SCC in solutions containing 1 ppm thiosulfate and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kublanov, Ilya V.; Sigalova, Olga M.; Gavrilov, Sergey N.
The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to implement nitrate reduction with acetate or molecular hydrogen as electron donors. The genome encoded five different [NiFe]- and [FeFe]-hydrogenases, one of which, group 1 [NiFe]-hydrogenase, is presumably involved in lithoheterotrophic growth, three other produce H 2 during fermentation, and one is apparently bidirectional. The ability to reduce nitrate is determined by a nitrate reductase of the Nap family,more » while nitrite reduction to ammonia is presumably catalyzed by an octaheme cytochrome c nitrite reductase εHao. The genome contained genes of respiratory polysulfide/thiosulfate reductase, however, elemental sulfur and thiosulfate were not used as the electron acceptors for anaerobic respiration with acetate or H 2, probably due to the lack of the gene of the maturation protein. Nevertheless, elemental sulfur and thiosulfate stimulated growth on fermentable substrates (peptides), being reduced to sulfide, most probably through the action of the cytoplasmic sulfide dehydrogenase and/or NAD(P)-dependent [NiFe]-hydrogenase (sulfhydrogenase) encoded by the genome. Surprisingly, the genome of this anaerobic microorganism encoded all genes for cytochrome c oxidase, however, its maturation machinery seems to be non-operational due to genomic rearrangements of supplementary genes. Despite the fact that sugars were not among the substrates reported when C. abyssi was first described, our genomic analysis revealed multiple genes of glycoside hydrolases, and some of them were predicted to be secreted. This finding aided in bringing out four carbohydrates that supported the growth of C. abyssi: starch, cellobiose, glucomannan and xyloglucan. The genomic analysis demonstrated the ability of C. abyssi to synthesize nucleotides and most amino acids and vitamins. Finally, the genomic sequence allowed us to perform a phylogenomic analysis, based on 38 protein sequences, which confirmed the deep branching of this lineage and justified the proposal of a novel phylum Calditrichaeota.« less
Kublanov, Ilya V.; Sigalova, Olga M.; Gavrilov, Sergey N.; ...
2017-02-20
The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to implement nitrate reduction with acetate or molecular hydrogen as electron donors. The genome encoded five different [NiFe]- and [FeFe]-hydrogenases, one of which, group 1 [NiFe]-hydrogenase, is presumably involved in lithoheterotrophic growth, three other produce H 2 during fermentation, and one is apparently bidirectional. The ability to reduce nitrate is determined by a nitrate reductase of the Nap family,more » while nitrite reduction to ammonia is presumably catalyzed by an octaheme cytochrome c nitrite reductase εHao. The genome contained genes of respiratory polysulfide/thiosulfate reductase, however, elemental sulfur and thiosulfate were not used as the electron acceptors for anaerobic respiration with acetate or H 2, probably due to the lack of the gene of the maturation protein. Nevertheless, elemental sulfur and thiosulfate stimulated growth on fermentable substrates (peptides), being reduced to sulfide, most probably through the action of the cytoplasmic sulfide dehydrogenase and/or NAD(P)-dependent [NiFe]-hydrogenase (sulfhydrogenase) encoded by the genome. Surprisingly, the genome of this anaerobic microorganism encoded all genes for cytochrome c oxidase, however, its maturation machinery seems to be non-operational due to genomic rearrangements of supplementary genes. Despite the fact that sugars were not among the substrates reported when C. abyssi was first described, our genomic analysis revealed multiple genes of glycoside hydrolases, and some of them were predicted to be secreted. This finding aided in bringing out four carbohydrates that supported the growth of C. abyssi: starch, cellobiose, glucomannan and xyloglucan. The genomic analysis demonstrated the ability of C. abyssi to synthesize nucleotides and most amino acids and vitamins. Finally, the genomic sequence allowed us to perform a phylogenomic analysis, based on 38 protein sequences, which confirmed the deep branching of this lineage and justified the proposal of a novel phylum Calditrichaeota.« less
Evaluation of gold and silver leaching from printed circuit board of cellphones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petter, P.M.H., E-mail: patymhp@yahoo.com.br; Veit, H.M.; Bernardes, A.M.
2014-02-15
Highlights: • Printed circuit boards (PCB) of mobile phones have large amounts of metals with high economic value such as gold and silver. • Dissolution of gold was done with a cyanide-based reagent and silver with nitric acid. • Leaching of PCB with Na{sub 2}S{sub 2}O{sub 3} and (NH{sub 4}){sub 2}S{sub 2}O{sub 3} to examine the feasibility of using these reagents was done. - Abstract: Electronic waste has been increasing proportionally with the technology. So, nowadays, it is necessary to consider the useful life, recycling, and final disposal of these equipment. Metals, such as Au, Ag, Cu, Sn and Nimore » can be found in the printed circuit boards (PCB). According to this, the aims of this work is to characterize the PCBs of mobile phones with aqua regia; obtaining “reference” values of leaching, to gold and silver, with cyanide and nitric acid, respectively; and study the process of leaching of these metals in alternative leaching with sodium thiosulfate and ammonium thiosulfate. The metals were characterized by digesting the sample with aqua regia for 1 and 2 h at 60 °C and 80 °C. The leaching of Au with a commercial reagent (cyanide) and the Ag with HNO{sub 3}were made. The leaching of Au and Ag with alternative reagents: Na{sub 2}S{sub 2}O{sub 3,} and (NH{sub 4}){sub 2}S{sub 2}O{sub 3} in 0.1 M concentration with the addition of CuSO{sub 4}, NH{sub 4}OH, and H{sub 2}O{sub 2}, was also studied. The results show that the digestion with aqua regia was efficient to characterize the metals present in the PCBs of mobile phones. However, the best method to solubilize silver was by digesting the sample with nitric acid. The leaching process using sodium thiosulfate was more efficient when an additional concentration of 0.015 and 0.030 M of the CuSO{sub 4} was added.« less
Decontamination of Casualties from Battlefield Under CW and BW Attack
1984-11-15
anion present. Thus the films containing periodide, perbromide, chlorochromate , permanganate, dichromate, and pyridinium azide each had a detectable...38 4. Preparation of Azide Films 38 5. Preparation of Hydroxide Films 39 6. Preparation of Thiosulfate Film 39 7. Preparation of Chlorochromate Films...dichromate, hypochlorite, m-chioroperbenzoaite and related polymers of BD-5-Q film. . Preparation of Chlorochromate Films Chromium trioxide (CrO 3 , 9.8 g
Acute cyanide toxicity caused by apricot kernel ingestion.
Suchard, J R; Wallace, K L; Gerkin, R D
1998-12-01
A 41-year-old woman ingested apricot kernels purchased at a health food store and became weak and dyspneic within 20 minutes. The patient was comatose and hypothermic on presentation but responded promptly to antidotal therapy for cyanide poisoning. She was later treated with a continuous thiosulfate infusion for persistent metabolic acidosis. This is the first reported case of cyanide toxicity from apricot kernel ingestion in the United States since 1979.
Lu, Hongsheng; Sato, Yoshinori; Fujimura, Reiko; Nishizawa, Tomoyasu; Kamijo, Takashi; Ohta, Hiroyuki
2011-02-01
A Gram-negative, aerobic, heterotrophic bacterium, designated KP1-19(T), was isolated from a 22-year-old volcanic deposit at a site lacking vegetation on the island of Miyake, Japan. Strain KP1-19(T) was able to use thiosulfate (optimum concentration 10 mM) as an additional energy source. 16S rRNA gene sequence analysis indicated that strain KP1-19(T) was closely related to Limnobacter thiooxidans CS-K2(T) within the class Betaproteobacteria (97.7 % 16S rRNA gene sequence similarity). The cellular fatty acid profile was characteristic of the genus Limnobacter: the major fatty acids (>5 %) were C(16 : 0), C(16 : 1)ω7c and C(18 : 1)ω7c and minor amounts of C(10 : 0) 3-OH were also found. DNA-DNA relatedness between strain KP1-19(T) and L. thiooxidans LMG 19593(T) was 18 %. Therefore, strain KP1-19(T) represents a novel species, for which the name Limnobacter litoralis sp. nov. is proposed. The type strain is KP1-19(T) (=LMG 24869(T) =NBRC 105857(T) =CIP 109929(T)).
Hashemabadi, Davood
2014-07-01
The purpose of this study was to evaluate the efficacy of silver nano-particles (SNP) and silver thiosulfate (STS) in extending the vase life of cut carnation (Dianthus caryophyllus L. cv. 'Tempo') flowers. Pulse treatments of SNP @ 0, 5, 10 and 15 mg l(-1) and STS @ 0, 0.1, 0.2 and 0.3 mM were administered to carnation flowers for 24 hr. The longest vase life (16.1 days) was observed in flowers treated with 15 mg l(-1) of SNP + 0.2 mM STS. The least chlorophyll was destroyed in flowers treated with 15 mg I(-1) of SNP + 0.3 mM STS. Our findings showed that the 15 mg l(-1) SNP treatment inhibited bacterial growth in the preservative solution. The control flowers bloomed faster than the treated flowers. The maximum peroxidase activity and the minimum lipid peroxidation were obtained in cut flowers that were treated with 15 mg l(-1) of SNP and 0.3 mM STS. Overall, results of the study revealed that SNP and STS treatment extended the longevity of cut carnation 'Tempo' flowers by reducing oxidative stress, improving anti-oxidant system, reducing bacterial populations and delaying flowering.
NASA Astrophysics Data System (ADS)
Thamdrup, Bo; Finster, Kai; Fossing, Henrik; Hansen, Jens Würgler; Jørgensen, Bo Barker
1994-01-01
Depth distributions of thiosulfate (S 2O 32-) and sulfite (SO 32-) were measured in the porewaters of a Danish salt marsh and subtidal marine sediments by HPLC analysis after derivatization with DTNP [2,2'-dithiobis(5-nitropyridine)]. The distributions were compared to the redox zonation as indicated by Eh and Mn 2+, Fe 2+ and H 2S distributions. Concentrations of S 2O 32- varied from below detection (<50 nM) to 600 nM while SO 32- concentrations generally were 2-3 times higher, 100-1500 nM. Depth distributions of the two species were roughly similar. Lowest concentrations were found in the oxidized zone, including both the oxic surface layer and the suboxic zone of intense manganese and iron reduction, and concentrations tended to increase through the suboxic and into the reduced, sulfidic zone. The similarity of SO 32- and S 2O 32- profiles suggested a close coupling of the cycling of the two species. Rates of consumption were suggested as the main factor governing their distribution. Rapid turnover times for S 2O 32- and H 2S of 4 and 1.1 h, respectively, were estimated for the upper 0-1 cm of a subtidal sediment.
Atypical one-carbon metabolism of an acetogenic and hydrogenogenic Moorella thermoacetica strain.
Jiang, Bo; Henstra, Anne-Meint; Paulo, Paula L; Balk, Melike; van Doesburg, Wim; Stams, Alfons J M
2009-02-01
A thermophilic spore-forming bacterium (strain AMP) was isolated from a thermophilic methanogenic bioreactor that was fed with cobalt-deprived synthetic medium containing methanol as substrate. 16S rRNA gene analysis revealed that strain AMP was closely related to the acetogenic bacterium Moorella thermoacetica DSM 521(T) (98.3% sequence similarity). DNA-DNA hybridization showed 75.2 +/- 4.7% similarity to M. thermoacetica DSM 521(T), suggesting that strain AMP is a M. thermoacetica strain. Strain AMP has a unique one-carbon metabolism compared to other Moorella species. In media without cobalt growth of strain AMP on methanol was only sustained in coculture with a hydrogen-consuming methanogen, while in media with cobalt it grew acetogenically in the absence of the methanogen. Addition of thiosulfate led to sulfide formation and less acetate formation. Growth of strain AMP with CO resulted in the formation of hydrogen as the main product, while other CO-utilizing Moorella strains produce acetate as product. Formate supported growth only in the presence of thiosulfate or in coculture with the methanogen. Strain AMP did not grow with H(2)/CO(2), unlike M. thermoacetica (DSM 521(T)). The lack of growth with H(2)/CO(2) likely is due to the absence of cytochrome b in strain AMP.
Arrestier, Romain; Dudreuilh, Caroline; Remy, Philippe; Boulahia, Ghada; Bentaarit, Bouteina; Leibler, Claire; Adedjouma, Amir; Kofman, Tomek; Matignon, Marie; Sahali, Dil; Dufresne, Roger; Deux, Jean-Francois; Colin, Charlotte; Grimbert, Philippe; Lang, Philippe; Bartolucci, Pablo; Maitre, Bernard; Tran Van Nhieu, Jeanne; Audard, Vincent
2016-01-01
Abstract Calciphylaxis is a small vessel vasculopathy, characterized by medial wall calcification that develops in a few patients with chronic renal failure. The prognosis of skin calciphylaxis has improved considerably since the introduction of sodium thiosulfate (STS), but it remains unclear whether this therapy is effective against organ lesions related to calciphylaxis. Pulmonary calciphylaxis is a usually fatal medical condition that may occur in association with skin involvement in patients with end-stage renal disease. We report here the case of a 49-year-old woman homozygous sickle cell disease patient on chronic hemodialysis with biopsy-proven systemic calciphylaxis involving the lungs and skin. On admission, ulcerative skin lesions on the lower limbs and bilateral pulmonary infiltrates on chest computerized tomography scan were the main clinical and radiological findings. Skin and bronchial biopsies demonstrated calciphylaxis lesions. The intravenous administration of STS in association with cinacalcet for 8 consecutive months led to a clear improvement in skin lesions and thoracic lesions on chest computerized tomography scan. This case suggests for the first time that organ lesions related to calciphylaxis, and particularly lung injury, are potentially reversible. This improvement probably resulted from the combination of 3 interventions (more frequent dialysis, cinacalcet, and STS), rather than the administration of STS alone. PMID:26871829
2016-08-02
at mechanical ventilation of a severely exposed casualty until atropine takes effect . Administering supplemental oxygen as available. Chapter 3 3-10...Scavengers; hydroxocobalamin, and dicobalt edetate (2) Provision of S-Groups, thiosulfate (3) Assisted ventilation (4) Oxygen cyanogen... temperature index for light work. Refer to table 1-3 on page 1-12 for work and rest cycles and also water consumption chart. Chapter 1 1-12 ATP 4
Rackl, Daniel; Yoo, Chun-Jae; Jones, Christopher W; Davies, Huw M L
2017-06-16
A tandem reaction system has been developed for the preparation of donor/acceptor-substituted diazo compounds in continuous flow coupled to dirhodium-catalyzed C-H functionalization or cyclopropanation. Hydrazones were oxidized in flow by solid-supported N-iodo-p-toluenesulfonamide potassium salt (PS-SO 2 NIK) to generate the diazo compounds, which were then purified by passing through a column of molecular sieves/sodium thiosulfate.
Lu, Hongsheng; Fujimura, Reiko; Sato, Yoshinori; Nanba, Kenji; Kamijo, Takashi; Ohta, Hiroyuki
2008-01-01
The role of microbes in the early development of ecosystems on new volcanic materials seems to be crucial to primary plant succession but is not well characterized. Here we analyzed the bacterial community colonizing 22-year-old volcanic deposits of the Miyake-jima Island (Japan) using culture-based and 16S rRNA gene clone library methods. The majority of 91 bacterial isolates were placed phylogenetically in two clusters (A and B) of the Betaproteobacteria. Cluster A (82% of isolates) was related to the genus Limnobacter and Cluster B (9%) was affiliated with the Herbaspirillum clade. The clone library analysis supported the predominance of Cluster B rather than Cluster A. Strain KP1-50 of Cluster B was able to grow on a mineral medium under an atmosphere of H(2), O(2), and CO(2) (85:5:10), and characterized by its large-subunit gene of ribulose 1,5-bisphosphate carboxylase/oxygenase (rbcL) and nitrogenase reductase gene (nifH). In contrast, strains of Cluster A did not grow chemolithoautotrophically with H(2), O(2), and CO(2) but increased their cell biomass with the addition of thiosulfate to the succinate medium, suggesting the use of thiosulfate as an energy source. From phenotypic characterization, it was suggested that the Cluster A and B strains were novel species in the genus Limnobacter and Herbaspirillum, respectively.
NASA Astrophysics Data System (ADS)
Ullrich, Maria K.; Pope, James G.; Seward, Terry M.; Wilson, Nathaniel; Planer-Friedrich, Britta
2013-07-01
Champagne Pool, a sulfidic hot spring in New Zealand, exhibits distinct diurnal variations in antimony (Sb) and arsenic (As) concentrations, with daytime high and night-time low concentrations. To identify the underlying mobilization mechanisms, five sites along the drainage channel of Champagne Pool were sampled every 2 h during a 24 h period. Temporal variations in elemental concentrations and Sb, As, and sulfur (S) speciation were monitored in the discharging fluid. Total trace element concentrations in filtered and unfiltered samples were analyzed using ICP-MS, and Sb, As and S species were determined by IC-ICP-MS. Sulfur speciation in the drainage channel was dominated by thiosulfate and sulfide at night, while sulfate dominated during the day. The distinct diurnal changes suggest that the transformations are caused by phototrophic sulfur-oxidizing bacteria. These bacteria metabolize thiosulfate and sulfide in daylight to form sulfate and, as suggested by modeling with PhreeqC, elemental sulfur. Sulfide consumption during the day results in undersaturation of antimony sulfides, which triggers the additional release of dissolved Sb. For As, diurnal cycles were much more pronounced in speciation than in total concentrations, with di- and trithioarsenate forming at night due to excess sulfide, and monothioarsenate forming from arsenite and elemental sulfur during the day. Sulfur speciation was thus found to control Sb and As in terms of both solubility and speciation.
L-Cysteine Metabolism and Fermentation in Microorganisms.
Takagi, Hiroshi; Ohtsu, Iwao
L-Cysteine is an important amino acid both biologically and commercially. Although most amino acids are industrially produced by microbial fermentation, L-cysteine has been mainly produced by protein hydrolysis. Due to environmental and safety problems, synthetic or biotechnological products have been preferred in the market. Here, we reviewed L-cysteine metabolism, including biosynthesis, degradation, and transport, and biotechnological production (including both enzymatic and fermentation processes) of L-cysteine. The metabolic regulation of L-cysteine including novel sulfur metabolic pathways found in microorganisms is also discussed. Recent advancement in biochemical studies, genome sequencing, structural biology, and metabolome analysis has enabled us to use various approaches to achieve direct fermentation of L-cysteine from glucose. For example, worldwide companies began to supply L-cysteine and its derivatives produced by bacterial fermentation. These companies successfully optimized the original metabolism of their private strains. Basically, a combination of three factors should be required for improving L-cysteine fermentation: that is, (1) enhancing biosynthesis: overexpression of the altered cysE gene encoding feedback inhibition-insensitive L-serine O-acetyltransferase (SAT), (2) weakening degradation: knockout of the genes encoding L-cysteine desulfhydrases, and (3) exploiting export system: overexpression of the gene involved in L-cysteine transport. Moreover, we found that "thiosulfate" is much more effective sulfur source than commonly used "sulfate" for L-cysteine production in Escherichia coli, because thiosulfate is advantageous for saving consumption of NADPH and relating energy molecules.
Destro, M. T.; Leitao, M.; Farber, J. M.
1996-01-01
Volume 62, no. 2, p. 705, column 2, line 5 from bottom: "neutralized with chlorine" should read "chlorine neutralized by the addition of 5 ml of a 1% solution of sodium thiosulfate." Page 706, Table 1, footnote b: Footnote b should read "The designation in parentheses is the area or type of sample collected as indicated in Table 3." Page 709, Tables 3 and 4: Tables 3 and 4 should read as shown below. PMID:16535326
2012-06-01
effects, but vomiting , arthralgias, and injection site pain have been reported in humans.7,26,38,39 In addition, animal studies have reported a higher...treatment of acute cyanide poisoning in adult beagle dogs . Clin Toxicol (Phila). 2006;44(suppl 1):5-15. 15. Posner MA, Tobey RE, McElroy H...cobalamine and acute cyanide poisoning in dogs . Life Sci. 1965;4:1785-1789. 18. Borron SW, Baud FJ, Barriot P, et al. Prospective study of hydroxocobalamin
Development and Evaluation of Integrity Assessment Tests for Polymeric Hermetic Seals
2006-02-19
Knoxville, the wires were pulled from the seals and then the packages were dipped in the microorganism Enterobacter aerogene . The polytrays were exposed for...inoculated) 5 samples Total Polytrays 80 Microorganism Washes 1. Prepare Cultures of Enterobacter aerogenes a. 5 tubes (10 mL each) in...initial number – 6 log CFU/mL a. Add two tubes (20 mL) of Enterobacter aerogenes culture to 5 gallons of water with sodium thiosulfate b. Ca. 9 log CFU
Simavorian, P S; Saakian, I L; Gevorkian, D A
1991-04-01
It has been established that the development of acute pancreatitis is accompanied by the reduced activity of glutamate dehydrogenase in the mitochondrial fraction of pancreas, pronounced in the focus of tissue necrosis and less expressed in the reactive inflammation focus. Besides this in the pancreas redistribution of enzyme, activity in the subcellular organelles takes place and enzyme activity emerges in the cytosol and further--in the blood and peritoneum liquid. Sodium thiosulfate has a marked correlation effect.
Grossoehme, Nicholas; Kehl-Fie, Thomas E; Ma, Zhen; Adams, Keith W; Cowart, Darin M; Scott, Robert A; Skaar, Eric P; Giedroc, David P
2011-04-15
All strains of Staphylococcus aureus encode a putative copper-sensitive operon repressor (CsoR) and one other CsoR-like protein of unknown function. We show here that NWMN_1991 encodes a bona fide Cu(I)-inducible CsoR of a genetically unlinked copA-copZ copper resistance operon in S. aureus strain Newman. In contrast, an unannotated open reading frame found between NWMN_0027 and NWMN_0026 (denoted NWMN_0026.5) encodes a CsoR-like regulator that represses expression of adjacent genes by binding specifically to a pair of canonical operator sites positioned in the NWMN_0027-0026.5 intergenic region. Inspection of these regulated genes suggests a role in assimilation of inorganic sulfur from thiosulfate and vectorial sulfur transfer, and we designate NWMN_0026.5 as CstR (CsoR-like sulfur transferase repressor). Expression analysis demonstrates that CsoR and CstR control their respective regulons in response to distinct stimuli with no overlap in vivo. Unlike CsoR, CstR does not form a stable complex with Cu(I); operator binding is instead inhibited by oxidation of the intersubunit cysteine pair to a mixture of disulfide and trisulfide linkages by a likely metabolite of thiosulfate assimilation, sulfite. CsoR is unreactive toward sulfite under the same conditions. We conclude that CsoR and CstR are paralogs in S. aureus that function in the same cytoplasm to control distinct physiological processes.
Grossoehme, Nicholas; Kehl-Fie, Thomas E.; Ma, Zhen; Adams, Keith W.; Cowart, Darin M.; Scott, Robert A.; Skaar, Eric P.; Giedroc, David P.
2011-01-01
All strains of Staphylococcus aureus encode a putative copper-sensitive operon repressor (CsoR) and one other CsoR-like protein of unknown function. We show here that NWMN_1991 encodes a bona fide Cu(I)-inducible CsoR of a genetically unlinked copA-copZ copper resistance operon in S. aureus strain Newman. In contrast, an unannotated open reading frame found between NWMN_0027 and NWMN_0026 (denoted NWMN_0026.5) encodes a CsoR-like regulator that represses expression of adjacent genes by binding specifically to a pair of canonical operator sites positioned in the NWMN_0027–0026.5 intergenic region. Inspection of these regulated genes suggests a role in assimilation of inorganic sulfur from thiosulfate and vectorial sulfur transfer, and we designate NWMN_0026.5 as CstR (CsoR-like sulfur transferase repressor). Expression analysis demonstrates that CsoR and CstR control their respective regulons in response to distinct stimuli with no overlap in vivo. Unlike CsoR, CstR does not form a stable complex with Cu(I); operator binding is instead inhibited by oxidation of the intersubunit cysteine pair to a mixture of disulfide and trisulfide linkages by a likely metabolite of thiosulfate assimilation, sulfite. CsoR is unreactive toward sulfite under the same conditions. We conclude that CsoR and CstR are paralogs in S. aureus that function in the same cytoplasm to control distinct physiological processes. PMID:21339296
Vázquez-Rodríguez, Adiari I.; Hansel, Colleen M.; Zhang, Tong; ...
2015-06-23
Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. In this study, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanismsmore » at play. We show that the abundant and widespread sulfur-oxidizing bacteria of the genus Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus thioparus cultures led to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of thiosulfate, which served a dual role by enhancing HgS dissolution through Hg complexation and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. Lastly, they also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment.« less
Lupton, F S; Conrad, R; Zeikus, J G
1984-01-01
Desulfovibrio vulgaris Madison and Thermodesulfobacterium commune contained functionally distinct hydrogenase activities, one which exchanged 3H2 into 3H2O and was inhibited by carbon monoxide and a second activity which produced H2 in the presence of CO. Cell suspensions of D. vulgaris used either lactate, pyruvate, or CO as the electron donor for H2 production in the absence of sulfate. Both sulfidogenic species produced and consumed hydrogen as a trace gas during growth on lactate or pyruvate as electron donors and on thiosulfate or sulfate as electron acceptors. Higher initial levels of hydrogen were detected during growth on lactate-sulfate than on pyruvate-sulfate. D. vulgaris but not T. commune also produced and then consumed CO during growth on organic electron donors and sulfate or thiosulfate. High partial pressures of exogenous H2 inhibited growth and substrate consumption when D. vulgaris was cultured on pyruvate alone but not when it was metabolizing pyruvate plus sulfate or lactate plus sulfate. The data are discussed in relation to supporting two different models for the physiological function of H2 metabolism during growth of sulfidogenic bacteria on organic electron donors plus sulfate. A trace H2 transformation model is proposed for control of redox processes during growth on either pyruvate or lactate plus sulfate, and an obligate H2 cycling model is proposed for chemiosmotic energy coupling during growth on CO plus sulfate. PMID:6480553
Vázquez-Rodríguez, Adiari I.; Hansel, Colleen M.; Zhang, Tong; Lamborg, Carl H.; Santelli, Cara M.; Webb, Samuel M.; Brooks, Scott C.
2015-01-01
Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. Here, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanisms at play. We show that the abundant and widespread sulfur-oxidizing bacteria of the genus Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus thioparus cultures led to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of thiosulfate, which served a dual role by enhancing HgS dissolution through Hg complexation and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. They also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment. PMID:26157421
Doolette, Casey L; McLaughlin, Michael J; Kirby, Jason K; Navarro, Divina A
2015-12-30
Silver nanoparticles (AgNPs) can enter terrestrial systems as sulfidised AgNPs (Ag2S-NPs) through the application of biosolids to soil. However, the bioavailability of Ag2S-NPs in soils is unknown. The two aims of this study were to investigate (1) the bioavailability of Ag to lettuce (Lactuca sativa) using a soil amended with biosolids containing Ag2S-NPs and (2) the effect of commonly used agricultural fertilisers/amendments on the bioavailability of Ag, AgNPs and Ag2S-NPs to lettuce. The study used realistic AgNP exposure pathways and exposure concentrations. The plant uptake of Ag from biosolids-amended soil containing Ag2S-NPs was very low for all Ag treatments (0.02%). Ammonium thiosulfate and potassium chloride fertilisation significantly increased the Ag concentrations of plant roots and shoots. The extent of the effect varied depending on the type of Ag. Ag2S-NPs, the realistic form of AgNPs in soil, had the lowest bioavailability. The potential risk of AgNPs in soils is low; even in the plants that had the highest Ag concentrations (Ag(+)+thiosulfate), only 0.06% of added Ag was found in edible plant parts (shoots). Results from the study suggest that agricultural practises must be considered when carrying out risk assessments of AgNPs in terrestrial systems; such practises can affect AgNP bioavailability. Copyright © 2015 Elsevier B.V. All rights reserved.
Fukuyama, Yuto; Omae, Kimiho; Yoneda, Yasuko; Yoshida, Takashi; Sako, Yoshihiko
2018-05-04
Carboxydothermus species are some of the most studied thermophilic carboxydotrophs. Their varied carboxydotrophic growth properties suggest distinct strategies for energy conservation via CO metabolism. In this study, we used comparative genome analysis of the genus Carboxydothermus to show variations in the CO dehydrogenase/energy-converting hydrogenase gene cluster, which is responsible for CO metabolism with H 2 production (hydrogenogenic CO metabolism). Indeed, ability or inability to produce H 2 with CO oxidation is explained by the presence or absence of this gene cluster in C. hydrogenoformans , C. islandicus , and C. ferrireducens Interestingly, despite its hydrogenogenic CO metabolism, C. pertinax lacks the Ni-CO dehydrogenase catalytic subunit (CooS-I) and its transcriptional regulator encoding genes in this gene cluster probably due to inversion. Transcriptional analysis in C. pertinax showed that the Ni-CO dehydrogenase gene ( cooS-II ) and distantly encoded energy-converting hydrogenase related genes were remarkably upregulated under 100% CO. In addition, when thiosulfate was available as a terminal electron acceptor under 100% CO, C. pertinax maximum cell density and maximum specific growth rate were 3.1-fold and 1.5-fold higher, respectively, than when thiosulfate was absent. The amount of H 2 produced was only 63% of the consumed CO, less than expected according to hydrogenogenic CO oxidation: CO + H 2 O → CO 2 + H 2 Accordingly, C. pertinax would couple CO oxidation by Ni-CO dehydrogenase-II with simultaneous reduction of not only H 2 O but thiosulfate when grown under 100% CO. IMPORTANCE Anaerobic hydrogenogenic carboxydotrophs are thought to fill a vital niche with scavenging potentially toxic CO and producing H 2 as available energy source for thermophilic microbes. This hydrogenogenic carboxydotrophy relies on a Ni-CO dehydrogenase/energy-converting hydrogenase gene cluster. This feature is thought to be as common to these organisms. However, hydrogenogenic carboxydotroph, Carboxydothermus pertinax lacks the gene for the Ni-CO dehydrogenase catalytic subunit encoded in the gene cluster. Here, we performed a comparative genome analysis of the genus Carboxydothermus , transcriptional analysis, and cultivation study under 100% CO to prove their hydrogenogenic CO metabolism. Results revealed that C. pertinax could couple Ni-CO dehydrogenase-II alternatively to the distal energy-converting hydrogenase. Furthermore, C. pertinax represents an example of the functioning of Ni-CO dehydrogenase which does not always correspond with its genomic context owing to the versatility of CO metabolism and the low redox potential of CO. Copyright © 2018 American Society for Microbiology.
Microbial Thiocyanate Utilization under Highly Alkaline Conditions
Sorokin, Dimitry Y.; Tourova, Tatyana P.; Lysenko, Anatoly M.; Kuenen, J. Gijs
2001-01-01
Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS−) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase activity which converted cyanate (CNO−) to ammonia and CO2. On the other hand, cyanase activity either was absent or was present at very low levels in the autotrophic strains grown on thiocyanate as the sole energy and N source. As a result, large amounts of cyanate were found to accumulate in the media during utilization of thiocyanate at pH 10 in batch and thiocyanate-limited continuous cultures. This is a first direct proof of a “cyanate pathway” in pure cultures of thiocyanate-degrading bacteria. Since it is relatively stable under alkaline conditions, cyanate is likely to play a role as an N buffer that keeps the alkaliphilic bacteria safe from inhibition by free ammonia, which otherwise would reach toxic levels during dissimilatory degradation of thiocyanate. PMID:11157213
Thiosulfate as an Antidote to Mustard Poisoning, A Review of the Literature.
1982-09-01
FRANCISCO CA UNCLASSIFIED K D MCKINLEY ET AL. SEP 82 LRIR-127 F/G 61209 N MENOMONEE NONIEhhhhhhhhhEND 1168 UL 1.0. * 1.25 I 1,1.6 MICROCOPY RESOLUTION TEST...ORGANIZATION NAME AND ADDRESS 10. PRORA ELEMENT. PROJECT, TASK AREA &J’WORC UNIT N UMSIERS Division of Research Support, Letterman ArmyPojN/3124A7 Institute...block 2,If different fram Report) I& SUPPLI111ENTARY NOTES I9. KEY WORDS (Centinue n reverse side If natessy and identlity5 b ock number) Sodium
Differential cytochrome content and reductase activity in Geospirillum barnesii strain SeS3
Stolz, J.F.; Gugliuzza, T.; Switzer, Blum J.; Oremland, R.; Martinez, Murillo F.
1997-01-01
The protein composition, cytochrome content, and reductase activity in the dissimilatory selenate-reducing bacterium Geospirillum barnesii strain SeS3, grown with thiosulfate, nitrate, selenate, or fumarate as the terminal electron acceptor, was investigated. Comparison of seven high-molecular-mass membrane proteins (105.3, 90.3, 82.6, 70.2, 67.4, 61.1, and 57.3 kDa) by SDS-PAGE showed that their detection was dependent on the terminal electron acceptor used. Membrane fractions from cells grown on thiosulfate contained a 70.2-kDa c-type cytochrome with absorbance maxima at 552, 522, and 421 nm. A 61.1-kDa c-type cytochrome with absorption maxima at 552, 523, and 423 nm was seen in membrane fractions from cells grown on nitrate. No c-type cytochromes were detected in membrane fractions of either selenate- or fumarate-grown cells. Difference spectra, however, revealed the presence of a cytochrome b554 (absorption maxima at 554, 523, and 422 nm) in membrane fractions from selenate-grown cells and a cytochrome b556 (absorption maxima at 556, 520, and 416 nm) in membrane fractions from fumarate-grown cells. Analysis of reductase activity in the different membrane fractions showed variability in substrate specificity. However, enzyme activity was greatest for the substrate on which the cells had been grown (e.g., membranes from nitrate-grown cells exhibited the greatest activity with nitrate). These results show that protein composition, cytochrome content, and reductase activity are dependent on the terminal electron acceptor used for growth.
Nasi, Sonia; Ea, Hang-Korng; Lioté, Frédéric; So, Alexander; Busso, Nathalie
2016-01-01
Objectives Calcium-containing crystals participate in the pathogenesis of OA. Sodium thiosulfate (STS) has been shown to be an effective treatment in calcification disorders such as calciphylaxis and vascular calcification. This study investigated the effects and mechanisms of action of STS in a murine model of OA and in chondrocyte calcification. Methods Hydroxyapatite (HA) crystals-stimulated murine chondrocytes and macrophages were treated with STS. Mineralization and cellular production of IL-6, MCP-1 and reactive oxygen species (ROS) were assayed. STS's effects on genes involved in calcification, inflammation and cartilage matrix degradation were studied by RT-PCR. STS was administered in the menisectomy model of murine OA, and the effect on periarticular calcific deposits and cartilage degeneration was investigated by micro-CT-scan and histology. Results In vitro, STS prevented in a dose-dependent manner calcium crystal deposition in chondrocytes and inhibited Annexin V gene expression. In addition, there was a reduction in crystal-induced IL-6 and MCP-1 production. STS also had an antioxidant effect, diminished HA-induced ROS generation and abrogated HA-induced catabolic responses in chondrocytes. In vivo, administration of STS reduced the histological severity of OA, by limiting the size of new periarticular calcific deposits and reducing the severity of cartilage damage. Conclusions STS reduces the severity of periarticular calcification and cartilage damage in an animal model of OA via its effects on chondrocyte mineralization and its attenuation of crystal-induced inflammation as well as catabolic enzymes and ROS generation. Our study suggests that STS may be a disease-modifying drug in crystal-associated OA. PMID:27391970
Nasi, Sonia; Ea, Hang-Korng; Lioté, Frédéric; So, Alexander; Busso, Nathalie
2016-01-01
Calcium-containing crystals participate in the pathogenesis of OA. Sodium thiosulfate (STS) has been shown to be an effective treatment in calcification disorders such as calciphylaxis and vascular calcification. This study investigated the effects and mechanisms of action of STS in a murine model of OA and in chondrocyte calcification. Hydroxyapatite (HA) crystals-stimulated murine chondrocytes and macrophages were treated with STS. Mineralization and cellular production of IL-6, MCP-1 and reactive oxygen species (ROS) were assayed. STS's effects on genes involved in calcification, inflammation and cartilage matrix degradation were studied by RT-PCR. STS was administered in the menisectomy model of murine OA, and the effect on periarticular calcific deposits and cartilage degeneration was investigated by micro-CT-scan and histology. In vitro, STS prevented in a dose-dependent manner calcium crystal deposition in chondrocytes and inhibited Annexin V gene expression. In addition, there was a reduction in crystal-induced IL-6 and MCP-1 production. STS also had an antioxidant effect, diminished HA-induced ROS generation and abrogated HA-induced catabolic responses in chondrocytes. In vivo, administration of STS reduced the histological severity of OA, by limiting the size of new periarticular calcific deposits and reducing the severity of cartilage damage. STS reduces the severity of periarticular calcification and cartilage damage in an animal model of OA via its effects on chondrocyte mineralization and its attenuation of crystal-induced inflammation as well as catabolic enzymes and ROS generation. Our study suggests that STS may be a disease-modifying drug in crystal-associated OA.
Díaz-Cárdenas, C; López, G; Patel, B K C; Baena, S
2010-04-01
A mesophilic, strictly anaerobic, slightly halophilic bacterium, designated strain USBA 82(T), was isolated from a terrestrial saline spring in the Colombian Andes. The non-spore-forming curved rods (5-7 x 1.3 microm) with pointed or rounded ends, stained Gram-negative and were motile by means of laterally inserted flagella. The strain grew optimally at 30 degrees C (growth range 20-40 degrees C), pH 7.3 (growth range pH 5.5-8.5) and 2 % (w/v) NaCl (growth range 0.1-7 % NaCl). The strain fermented peptides, amino acids and a few organic acids, but growth was not observed on carbohydrates, alcohols or fatty acids. The strain reduced thiosulfate and sulfur to sulfide. Sulfate, sulfite, nitrate and nitrite were not used as electron acceptors. On peptone alone, acetate, succinate, propionate and traces of ethanol were formed, but in the presence of thiosulfate, acetate and succinate were formed. The G+C content of the chromosomal DNA was 52 mol% (T(m)). 16S rRNA gene sequence analysis indicated that strain USBA 82(T) was affiliated to Dethiosulfovibrio peptidovorans within the phylum Synergistetes with a similarity value of approximately 93 %. Based on the differences between the new strain and the type species of the genus Dethiosulfovibrio, we suggest that strain USBA 82(T) represents a novel species of the genus for which the name Dethiosulfovibrio salsuginis sp. nov. is proposed. The type strain is USBA 82(T) (=DSM 21565(T)=KCTC 5659(T)).
Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria.
Lefèvre, Christopher T; Viloria, Nathan; Schmidt, Marian L; Pósfai, Mihály; Frankel, Richard B; Bazylinski, Dennis A
2012-02-01
Two novel magnetotactic bacteria (MTB) were isolated from sediment and water collected from the Badwater Basin, Death Valley National Park and southeastern shore of the Salton Sea, respectively, and were designated as strains BW-2 and SS-5, respectively. Both organisms are rod-shaped, biomineralize magnetite, and are motile by means of flagella. The strains grow chemolithoautotrophically oxidizing thiosulfate and sulfide microaerobically as electron donors, with thiosulfate oxidized stoichiometrically to sulfate. They appear to utilize the Calvin-Benson-Bassham cycle for autotrophy based on ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity and the presence of partial sequences of RubisCO genes. Strains BW-2 and SS-5 biomineralize chains of octahedral magnetite crystals, although the crystals of SS-5 are elongated. Based on 16S rRNA gene sequences, both strains are phylogenetically affiliated with the Gammaproteobacteria class. Strain SS-5 belongs to the order Chromatiales; the cultured bacterium with the highest 16S rRNA gene sequence identity to SS-5 is Thiohalocapsa marina (93.0%). Strain BW-2 clearly belongs to the Thiotrichales; interestingly, the organism with the highest 16S rRNA gene sequence identity to this strain is Thiohalospira alkaliphila (90.2%), which belongs to the Chromatiales. Each strain represents a new genus. This is the first report of magnetite-producing MTB phylogenetically associated with the Gammaproteobacteria. This finding is important in that it significantly expands the phylogenetic diversity of the MTB. Physiology of these strains is similar to other MTB and continues to demonstrate their potential in nitrogen, iron, carbon and sulfur cycling in natural environments.
Billaut-Laden, Ingrid; Allorge, Delphine; Crunelle-Thibaut, Aurélie; Rat, Emmanuel; Cauffiez, Christelle; Chevalier, Dany; Houdret, Nicole; Lo-Guidice, Jean-Marc; Broly, Franck
2006-08-01
Rhodanese or thiosulfate sulfurtransferase (TST) is a mitochondrial matrix enzyme that plays roles in cyanide detoxification, the formation of iron-sulfur proteins and the modification of sulfur-containing enzymes. Transsulfuration reaction catalyzed by TST is also involved in H(2)S detoxification. To date, no polymorphism of the human TST gene had been reported. We developed a screening strategy based on a PCR-SSCP method to search for mutations in the 3 exons of TST and their proximal flanking regions. This strategy has been applied to DNA samples from 50 unrelated French individuals of Caucasian origin. Eleven polymorphisms consisting in seven nucleotide substitutions in non-coding regions, two silent mutations and two missense mutations were characterized. The functional consequences of the identified mutations were assessed in vivo by measurement of erythrocyte TST activity and/or in vitro using heterologous expression in Saccharomyces cerevisiae or transient transfection assay in HT29 and Caco-2 cell lines. The P(285)A variant appears to encode a protein with a 50% decrease of in vitro intrinsic clearance compared to the wild-type enzyme. Additionally, the six polymorphisms located upstream the ATG initiation codon are responsible for a significant decrease (ranging from 40% to 73%) in promoter activity of a reporter gene compared to the corresponding wild-type sequence. This work constitutes the first report of the existence of a functional genetic polymorphism affecting TST activity and should be of great help to investigate certain disorders for which impairment of CN(-) or H(2)S detoxification have been suggested to be involved.
Sodium Thiosulfate Therapy for Calcific Uremic Arteriolopathy
Brunelli, Steven M.; Meade, Debra; Wang, Weiling; Hymes, Jeffrey; Lacson, Eduardo
2013-01-01
Summary Background and objective Calcific uremic arteriolopathy (CUA) is an often fatal condition with no effective treatment. Multiple case reports and case series have described intravenous sodium thiosulfate (STS) administration in CUA, but no studies have systematically evaluated this treatment. Design, setting, participants, & measurements This study included 172 patients undergoing maintenance hemodialysis who had CUA and were treated with STS between August 2006 and June 2009 at Fresenius Medical Care North America. Of these, 85% completed STS therapy. Clinical, laboratory, and mortality data were abstracted from clinical information systems. Responses to survey questionnaires sent to treating physicians regarding patient-level outcomes were available for 53 patients. Effect on CUA lesions and mortality were summarized as CUA outcomes. Relevant laboratory measures, weight (using pairwise comparisons of values before, during, and after STS), and adverse events were summarized as safety parameters. Results Mean age of the cohort was 55 years, and 74% of patients were women. Median STS dose was 25 g, and median number of doses was 38. Among surveyed patients, CUA completely resolved in 26.4%, markedly improved in 18.9%, improved in 28.3%, and did not improve in 5.7%; in the remaining patients (20.8%), the response was unknown. One-year mortality in patients treated with STS was 35%. Adverse events, laboratory abnormalities, and weight-related changes were mild. Significant reductions in serum phosphorous (P=0.02) and parathyroid hormone (P=0.01) were noted during STS treatment in patients who completed the therapy. Conclusions Although conclusive evidence regarding its efficacy is lacking, a majority of patients who received STS demonstrated clinical improvement in this study. PMID:23520041
2018-05-02
Adult Central Nervous System Germ Cell Tumor; Adult Embryonal Tumor With Multilayered Rosettes, C19MC-Altered; Adult Medulloblastoma; Adult Pineoblastoma; Adult Supratentorial Embryonal Tumor, Not Otherwise Specified; Atypical Teratoid/Rhabdoid Tumor; Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Embryonal Tumor With Multilayered Rosettes, C19MC-Altered; Medulloepithelioma; Ototoxicity; Recurrent Adult Brain Neoplasm; Recurrent Childhood Central Nervous System Embryonal Neoplasm; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Supratentorial Embryonal Tumor, Not Otherwise Specified
Lü, Chuanjuan; Xia, Yongzhen; Liu, Daixi; Zhao, Rui; Gao, Rui
2017-01-01
ABSTRACT Production of sulfide (H2S, HS−, and S2−) by heterotrophic bacteria during aerobic growth is a common phenomenon. Some bacteria with sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO) can oxidize self-produced sulfide to sulfite and thiosulfate, but other bacteria without these enzymes release sulfide into the medium, from which H2S can volatilize into the gas phase. Here, we report that Cupriavidus necator H16, with the fccA and fccB genes encoding flavocytochrome c sulfide dehydrogenases (FCSDs), also oxidized self-produced H2S. A mutant in which fccA and fccB were deleted accumulated and released H2S. When fccA and fccB were expressed in Pseudomonas aeruginosa strain Pa3K with deletions of its sqr and pdo genes, the recombinant rapidly oxidized sulfide to sulfane sulfur. When PDO was also cloned into the recombinant, the recombinant with both FCSD and PDO oxidized sulfide to sulfite and thiosulfate. Thus, the proposed pathway is similar to the pathway catalyzed by SQR and PDO, in which FCSD oxidizes sulfide to polysulfide, polysulfide spontaneously reacts with reduced glutathione (GSH) to produce glutathione persulfide (GSSH), and PDO oxidizes GSSH to sulfite, which chemically reacts with polysulfide to produce thiosulfate. About 20.6% of sequenced bacterial genomes contain SQR, and only 3.9% contain FCSD. This is not a surprise, since SQR is more efficient in conserving energy because it passes electrons from sulfide oxidation into the electron transport chain at the quinone level, while FCSD passes electrons to cytochrome c. The transport of electrons from the latter to O2 conserves less energy. FCSDs are grouped into three subgroups, well conserved at the taxonomic level. Thus, our data show the diversity in sulfide oxidation by heterotrophic bacteria. IMPORTANCE Heterotrophic bacteria with SQR and PDO can oxidize self-produced sulfide and do not release H2S into the gas phase. C. necator H16 has FCSD but not SQR, and it does not release H2S. We confirmed that the bacterium used FCSD for the oxidation of self-produced sulfide. The bacterium also oxidized added sulfide. The common presence of SQRs, FCSDs, and PDOs in heterotrophic bacteria suggests the significant role of heterotrophic bacteria in sulfide oxidation, participating in sulfur biogeochemical cycling. Further, FCSDs have been identified in anaerobic photosynthetic bacteria and chemolithotrophic bacteria, but their physiological roles are unknown. We showed that heterotrophic bacteria use FCSDs to oxidize self-produced sulfide and extraneous sulfide, and they may be used for H2S bioremediation. PMID:28864655
Simulation-Based Sodium Thiosulfate Dosing Strategies for the Treatment of Calciphylaxis
Singh, Rajendra Pratap; Derendorf, Hartmut
2011-01-01
Summary Background and objectives Calciphylaxis remains a poorly understood life-threatening disorder with limited therapeutic options. Sodium thiosulfate (STS) has reported efficacy, thought to be because solubilizing calcium deposits promote clearance by hemodialysis (HD). Lack of rigorous pharmacokinetic studies makes it problematic for determining proper STS dosing given the expanding range of dialysis prescriptions and intensities. Design, setting, participants, & measurements The purpose of this study was to determine the dosing strategies for STS during different dialysis regimens. Given reported successes using an empiric 25 g, intravenous, 3 times per week after HD, simulations were performed to predict dosing guidelines for alternative, more or less intense dialysis to produce equivalent area under the curve drug exposure. The modeled prescriptions varied HD time from 12 to 40 h/wk over three to six sessions (Qb 200 to 400 ml/min, Qd 500 to 800 ml/min), and continuous venovenous hemodialysis at low flow rates (Qb 100 to 200 ml/min, Qd 35 to 50 ml/min), using high-flux polysulfone hemofilters. Results Simulations showed a marked variation in STS doses depending on HD frequency and duration. Blood and dialysate flows have a less prominent effect. Assuming no residual renal function, HD prescription permutations caused the dose to vary from 72 to 245 g/wk (70-kg adult), and the simulations provide specific guidelines for clinicians. Conclusions Based on the success reported for one STS dosing regimen and assuming area under the curve exposure of STS is proportional to its effect, pharmacokinetic simulations can be used to calculate the dose for alternative, higher or lower intensity dialysis regimens. These strategies are imperative to assure adequate treatment for this mortal disease, as well as to avoid toxicity from excess dosing. PMID:21441129
Sodium thiosulfate treatment for calcific uremic arteriolopathy in children and young adults.
Araya, Carlos E; Fennell, Robert S; Neiberger, Richard E; Dharnidharka, Vikas R
2006-11-01
In adult patients with ESRD, calcific uremic arteriolopathy (CUA) is an uncommon but life-threatening complication. No effective therapy exists, although anecdotal case reports highlight the use of sodium thiosulfate (STS), a calcium-chelating agent with antioxidant properties. CUA is rare in children, and STS use has not been reported. The objective of this study was to determine the influence of STS treatment on three patients with CUA in a pediatric chronic dialysis unit. The patients were between 12 and 21 yr of age; two were male; and primary diagnoses were obstructive uropathy, renal dysplasia, and calcineurin nephrotoxicity. Time from ESRD to CUA diagnosis was 1, 9, and 20 yr. Diagnosis was made by tissue biopsy and three-phase bone scan. Pain was the presenting symptom. Initial treatment included discontinuation of calcitriol and use of non-calcium-based phosphate binders and low-calcium dialysate concentration. STS dosage was 25 g/1.73 m(2) per dose intravenously after each hemodialysis session. For optimization of removal of calcium deposits, patient three received a combination of STS and continuous venovenous hemofiltration for the first 10 d. All patients demonstrated rapid pain relief. Within weeks, skin induration and joint mobility of the extremities improved. Radiographic evidence of reduction in the calcium deposits occurred within 3 mo of initiation of STS. The only complication was prolonged QT interval in one patient as a result of hypocalcemia, who was resolved by use of a higher dialysate calcium concentration. STS seems well tolerated in children and young adults with CUA and has mild adverse effects. For determination of its efficacy, optimum dosage, duration of therapy, and dialysis modality, controlled trials are needed.
Weissgerber, Thomas; Dobler, Nadine; Polen, Tino; Latus, Jeanette; Stockdreher, Yvonne
2013-01-01
The purple sulfur bacterium Allochromatium vinosum DSM 180T is one of the best-studied sulfur-oxidizing anoxygenic phototrophic bacteria, and it has been developed into a model organism for laboratory-based studies of oxidative sulfur metabolism. Here, we took advantage of the organism's high metabolic versatility and performed whole-genome transcriptional profiling to investigate the response of A. vinosum cells upon exposure to sulfide, thiosulfate, elemental sulfur, or sulfite compared to photoorganoheterotrophic growth on malate. Differential expression of 1,178 genes was observed, corresponding to 30% of the A. vinosum genome. Relative transcription of 551 genes increased significantly during growth on one of the different sulfur sources, while the relative transcript abundance of 627 genes decreased. A significant number of genes that revealed strongly enhanced relative transcription levels have documented sulfur metabolism-related functions. Among these are the dsr genes, including dsrAB for dissimilatory sulfite reductase, and the sgp genes for the proteins of the sulfur globule envelope, thus confirming former results. In addition, we identified new genes encoding proteins with appropriate subcellular localization and properties to participate in oxidative dissimilatory sulfur metabolism. Those four genes for hypothetical proteins that exhibited the strongest increases of mRNA levels on sulfide and elemental sulfur, respectively, were chosen for inactivation and phenotypic analyses of the respective mutant strains. This approach verified the importance of the encoded proteins for sulfur globule formation during the oxidation of sulfide and thiosulfate and thereby also documented the suitability of comparative transcriptomics for the identification of new sulfur-related genes in anoxygenic phototrophic sulfur bacteria. PMID:23873913
[Incidence and characteristics of calciphylaxis in Martinique (2006-2012)].
Aoun, A; Baubion, E; Banydeen, R; Djiconkpode, I; Ekindi, N; Ureña-Torres, P; Riaux, A; Sadreux, T; Dueymes, J-M; Quist, D; Derancourt, C
2014-12-01
Calciphylaxis is a rare and severe disease with an annual incidence of around 1 % in dialysis patients. The main study aim was to determine its incidence in Martinique, where there is a significant population of patients on dialysis. All patients diagnosed with calciphylaxis between 2006 and 2012 and living in Martinique were included, retrospectively. Social, demographic, biological, anatomic, pathological, histological and outcome data were analysed. Fifteen patients were included (8 women, 7 men). The incidence of calciphylaxis in this population was about 4.62/1,000,000 inhabitants per year. All patients presented very painful skin ulcerations and necrosis, chiefly on the lower extremities in 53.3 % of cases. All patients were on haemodialysis and two had undergone renal transplantation. Fourteen of the 15 patients were presenting secondary hyperparathyroidism, 12 had hypertension, 9 peripheral arterial disease, 8 obesity and 8 diabetes mellitus. Raised calcium and phosphorus were noted in 8 patients, with hypoalbuminaemia in 9 patients. Treatment with sodium thiosulfate was given for 8 patients, and was beneficial for all after a mean duration of 3.4 months. After 6 months of follow-up, 8 of the 15 patients were cured, 1 showed improvement and 6 had died. To our knowledge, this is the first study to examine the incidence of calciphylaxis in the general population. The relatively large number of patients could be accounted for by the high number of comorbidities in end-stage renal disease patients in Martinique, including obesity, diabetes, hypertension and arteritis. Treatment with sodium thiosulfate was beneficial for 8 patients. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Nguyen, Tuan Manh; Kim, Jaisoo
2017-07-01
Three Gram-negative, strictly aerobic, chemolithoheterotrophic bacterial strains, designated UCM-30, UCM-33, and UCM-39 T , were isolated in South Korea. Based on their 16S rRNA gene sequences, the three isolated strains were found to be similar to Limnobacter thiooxidans CS-K2 T (97.41-97.68%), Limnobacter litoralis KP1-19 T (95.55-95.76%), and various genera belonging to the class Betaproteobacteria (90.34-93.34%). DNA-DNA hybridization showed 79.3-83.9% similarity between the genomic DNA of UCM-39 T , UCM-30, and UCM-33, while the sequence similarity between UCM-39 T and L. thiooxidans KACC 13837T or L. litoralis LMG 24869T was 23.7% and 18.6%, respectively. The DNA G+C content of UCM 39T was 59.7 mol%, the major ubiquinone was Q-8, and the optimal oxidation rate was observed at 10 mM thiosulfate. The major fatty acids (≥ 10%) were summed features 3 (C 16:1 ω7c and/or C 16:1 ω6c) and 8 (C 18:1 ω7c and/or C 18:1 ω6c), and C 16:0 . The major polar lipids (diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol) were found in all members of genus Limnobacter. Based on phenotypic, physiological, and phylogenetic analyses, the UCM-39T strain was found to be significantly distinct to represent a novel species affiliated to the genus Limnobacter. We propose to name it Limnobacter humi sp. nov. with the type strain UCM-39 T (=KACC 18574 T =NBRC 111650 T ).
Ferreira, Fernanda Stoduto; Horvath, Mariana Bandeira; Tondo, Eduardo Cesar
2013-01-01
The objective of the present study was to assess the growth and the recovery of Salmonella (S.) Enteritidis SE86 in different diluents, culture media and using different plating methods after the exposure to 200 mg/kg sodium dichloroisocyanurate (NaDCC). Before and after NaDCC exposure, SE86 was cultured at 30 °C and 7 °C in the following diluents: Peptone water (P), Saline solution (SaS), Peptone water+Saline solution (P+SaS), Peptone water+Tween 80+Lecithin+Sodium thiosulfate (P+N) and Saline solution+Tween 80+Lecithin+Sodium thiosulfate (SaS+N). The SaS diluent was chosen because it was able to maintain cells viable without growth and was further used for plating SE86 on non selective medium (Tryptic Soy Agar-TSA) and on selective media (Mannitol Lysine Crystal Violet Brilliant Green Agar-MLCB; Brilliant Green Agar-BGA; Salmonella Shigella Agar-SS and Xylose Lysine Dextrose–XLD). The Thin Agar Layer method (TAL) i.e., selective media overlayed with non selective TSA was also evaluated. Results indicated that SE86 not exposed to NaDCC was able to grow in P, P+N, SaS+N and P+SaS, but not in SaS, that was able to maintain cells viable. SE86 exposed to NaDCC demonstrated similar counts after dilution in SaS and the plating on non selective TSA, selective media MLCB, BGA, SS and XLD and on TAL media. SE86, S. Typhimurium and S. Bredeney, exposed or not exposed to NaDCC, showed no significant differences in counts on TSA, XLD and XLD overlayed with TSA, suggesting that all those media may be used to quantify NaDCC-exposed Salmonella by plating method. PMID:24516446
Auria, Richard; Boileau, Céline; Davidson, Sylvain; Casalot, Laurence; Christen, Pierre; Liebgott, Pierre Pol; Combet-Blanc, Yannick
2016-01-01
Thermotoga maritima is a hyperthermophilic bacterium known to produce hydrogen from a large variety of substrates. The aim of the present study is to propose a mathematical model incorporating kinetics of growth, consumption of substrates, product formations, and inhibition by hydrogen in order to predict hydrogen production depending on defined culture conditions. Our mathematical model, incorporating data concerning growth, substrates, and products, was developed to predict hydrogen production from batch fermentations of the hyperthermophilic bacterium, T. maritima . It includes the inhibition by hydrogen and the liquid-to-gas mass transfer of H 2 , CO 2 , and H 2 S. Most kinetic parameters of the model were obtained from batch experiments without any fitting. The mathematical model is adequate for glucose, yeast extract, and thiosulfate concentrations ranging from 2.5 to 20 mmol/L, 0.2-0.5 g/L, or 0.01-0.06 mmol/L, respectively, corresponding to one of these compounds being the growth-limiting factor of T. maritima . When glucose, yeast extract, and thiosulfate concentrations are all higher than these ranges, the model overestimates all the variables. In the window of the model validity, predictions of the model show that the combination of both variables (increase in limiting factor concentration and in inlet gas stream) leads up to a twofold increase of the maximum H 2 -specific productivity with the lowest inhibition. A mathematical model predicting H 2 production in T. maritima was successfully designed and confirmed in this study. However, it shows the limit of validity of such mathematical models. Their limit of applicability must take into account the range of validity in which the parameters were established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, John C.; Dodsworth, Jeremy A.; Hedlund, Brian P.
2015-12-01
An obligately thermophilic, chemolithotrophic, microaerophilic bacterium, designated strain GBS1T, was isolated from the water column of Great Boiling Spring, Nevada, USA. Thiosulfate was required for growth. Although capable of autotrophy, growth of GBS1T was enhanced in the presence of acetate, peptone, or Casamino acids. Growth occurred at 70-85 °C with an optimum at 80 °C, at pH 6.5-7.75 with an optimum at pH 7.25, at 0.5-8% oxygen with an optimum at 1-2%, and at ≤200 mM sodium chloride. The doubling time under optimal growth conditions was 1.3 hrs, with a final cell density of 6.2±0.5 x 107 cells/mL. Non-motile, rod-shapedmore » cells 1.4-2.4 x 0.4-0.6 µm occurred singly or in pairs. Major cellular fatty acids (>5% of total) were C20:1ω9c (44.8%), C18:0 (26.0%), C16:0 (9.9%) and C20:0 (5.4%). Phylogenetic analysis of the GBS1T 16S rRNA gene sequence indicated an affiliation with Thermocrinis ruber and other Thermocrinis spp., but comparisons of 16S rRNA gene identity (≤97.10%) and in silico estimated DNA-DNA hybridization values (≤18.4%) with Thermocrinis spp. indicate that his strain is distinct from described species. Based on phenotypic, genotypic, and phylogenetic characteristics, the name Thermocrinis jamiesonii sp. nov. is proposed, with GBS1T (= JCM 19133T = DSM 27162T) as the type strain.« less
Evaluation of proposed precipitation mechanisms for Mississippi Valley-type deposits
Spirakis, C.S.; Heyl, A.V.
1996-01-01
The mechanism of precipitation is an important aspect of any genetic model for Mississippi Valley-type deposits. Yet most of the precipitation mechanisms for minerals in the Mississippi Valley-type association have serious flaws. Solution mixing would require an unlikely series of solutions to account for the various minerals in the ores, and it does not account for the universal occurrence of organic matter in the ores nor for the oxidation state of sulfur in pyrite in the ores. Sulfate reduction addresses some of these problems, but is inconsistent with kinetic data and could not be reversed to account for the oscillations between precipitation and dissolution of sulfide minerals in the ores. Carbon dioxide effervescence does not address the precipitation of most minerals in the ores, and all of the evidence for effervescence may be explained in other ways. Cooling of the mineralizing solution could precipitate many minerals, but fluid inclusion data suggest that, in many deposits, the solution did not cool significantly as any particular stage formed. A credible genetic model also must explain why all of the minerals precipitated at the same sites; any combination of the above mechanisms which suggests that unrelated mechanisms occurred at the same sites by coincidence is unlikely. The most reasonable scenario is that a hot, thiosulfate-bearing mineralizing solution reacted in various ways with organic matter at the sites of mineralization to precipitate the ore minerals. The organic matter acted as a reductant, source of carbon dioxide, source of organic acids, and a substrate for bacterial metabolism of thiosulfate in various stages of mineralization. Thus organic matter links all stages of the mineralization to the same sites. ?? 1995 Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Dong, Y.; Srivastava, V.; Bulone, V.; Keating, K. M.; Khetani, R. S.; Fields, C. J.; Inskeep, W.; Sanford, R. A.; Yau, P. M.; Imai, B. S.; Hernandez, A. G.; Wright, C.; Band, M.; Cann, I. K.; Ahrén, D.; Fouke, K. W.; Sivaguru, M.; Fried, G.; Fouke, B. W.
2017-12-01
The filamentous heat-loving bacterium Sulfurihydrogenibium yellowstonense makes up more than 90% of the microbial community that inhabits turbulent, dysoxic hot spring outflow channels (66-71°C, 6.2-6.5 pH, 0.5-0.75 m/s flow rate) at Mammoth Hot Spring in Yellowstone National Park. These environments contain abundantly available inorganic substrates (e.g., CO2, sulfide and thiosulfate) and are associated with extensive CaCO3 (travertine) precipitation driven in part by CO2 off-gassing. Evidence from integrated Meta-Omics analyses of DNA, RNA, and proteins (metagenomics, metatranscriptomics and metaproteomics) extracted from these S. yellowstonense-dominated communities have detected 1499 non-rRNA open reading frames (ORFs), their transcripts and cognate proteins. During chemoautotrophy and CO2 carbon fixation, chaperons facilitate enzymatic stability and functionalities under elevated temperature. High abundance transcripts and proteins for Type IV pili and exopolysaccharides (EPS) are consistent with S. yellowstonense forming strong (up to 0.5 m) intertwined microbial filaments (fettuccini streamers) composed of linked individual cells that withstand hydrodynamic shear forces and extremely rapid travertine mineralization. Their primary energy source is the oxidation of reduced sulfur (e.g., sulphide, sulfur or thiosulfate) and the simultaneous uptake of extremely low concentrations of dissolved O2 facilitated by bd-type cytochromes. Field observations indicate that the fettuccini microbial filaments build up ridged travertine platforms on the bottom of the springs, parallel to the water flow, where living filaments attach almost exclusively to the top of each ridge. This maximizes their access to miniscule amounts of dissolved oxygen, while optimizing their ability to rapidly form down-flow branched filaments and thus survive in these stressful environments that few other microbes can inhabit.
NASA Astrophysics Data System (ADS)
Zhou, K.; Sylvan, J. B.; Hallam, S. J.
2017-12-01
The Bacteroidetes are a ubiquitous phylum of bacteria found in a wide variety of habitats. Marine Bacteroidetes are known to utilize complex carbohydrates and have a potentially important role in the global carbon cycle through processing these compounds, which are not digestible by many other microbes. Some members of the phylum are known to perform denitrification and are facultative anaerobes, but Bacteroidetes are not known to participate in sulfur redox cycling. Recently, it was shown that a clade of uncultured Bacteroidetes, including the VC2.1_Bac22 group, appears to be endemic to sulfidic environments, including hydrothermal vent sulfide chimneys, sediments and marine water column oxygen minimum zones (OMZs). This clade, dubbed the Sulfiphilic Bacteroidetes, is not detected in 16S rRNA amplicon studies from non-sulfidic environments. To test the hypothesis that the Sulphiphilic Bacteroidetes are involved in sulfur redox chemistry, we updated our meta-analysis of the clade using 16s rRNA sequences from public databases and employed single-cell genomics to survey their genomic potential using 19 single amplified genomes (SAGs) isolated from the seasonally anoxic Saanich Inlet, a seasonally hypoxic basin in British Columbia. Initial analysis of these SAGs indicates the Sulphiphilic Bacteroidetes may perform sulfur redox reactions using a three gene psrABC operon encoding the polysulfide reductase enzyme complex with a thiosulfate sulfurtransferase (rhodanese), which putatively uses cyanide to convert thiosulfate to sulfite, just upstream. Interestingly, this is the same configuration as discovered recently in some Marine Group A bacteria. Further aspects of the Sulphiphilic Bacteroidetes' genomic potential will be presented in light of their presence in sulfidic environments.
Taylor, Barrie F.; Hoare, Derek S.
1969-01-01
A new facultatively autotrophic Thiobacillus has been isolated in pure culture. The general physiological characteristics of the organism are described together with a redescription of Thiobacillus novellus. The new isolate differs from T. novellus in its ability to grow heterotrophically at faster rates and on a greater range of organic compounds. It can be transferred readily between autotrophic and heterotrophic conditions. It can grow anaerobically by nitrate respiration on a number of organic compounds, but not on thiosulfate. Some problems in the nomenclature and taxonomy of the thiobacilli are discussed with reference to the new isolate. Images PMID:5344108
Buckingham, J.S.; Carroll, J.L.
1959-12-22
A process is described for reducing the extractability of ruthenium, zirconium, and niobium values into hexone contained in an aqueous nitric acid uranium-containing solution. The solution is made acid-deficient, heated to between 55 and 70 deg C, and at that temperature a water-soluble inorganic thiosulfate is added. By this, a precipitate is formed which carries the bulk of the ruthenium, and the remainder of the ruthenium as well as the zirconium and niobium are converted to a hexone-nonextractable form. The rutheniumcontaining precipitate can either be removed from the solu tion or it can be dissolved as a hexone-non-extractable compound by the addition of sodium dichromate prior to hexone extraction.
Wet-air oxidation cleans up black wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-09-01
Sterling Organics produces the analgesic paracetamol (acetaminophen) at its Dudley, England, plant. The wastewater from the batch process contains intermediates such as para-aminophenol (PAP) and byproducts such as thiosulfates, sulfites and sulfides. To stay ahead of increasingly strict environmental legislation, Sterling Organics installed a wet-air oxidation system at the Dudley facility in August 1992. The system is made by Zimpro Environmental Inc. (Rothschild, Wis.). Zimpro's wet-air oxidation system finds a way around the limitations of purely chemical or physical processes. In the process, compressed air at elevated temperature and pressure oxidizes the process intermediates and byproducts and removes the colormore » from the wastewater.« less
The Microbial Sulfur Cycle at Extremely Haloalkaline Conditions of Soda Lakes
Sorokin, Dimitry Y.; Kuenen, J. Gijs; Muyzer, Gerard
2011-01-01
Soda lakes represent a unique ecosystem with extremely high pH (up to 11) and salinity (up to saturation) due to the presence of high concentrations of sodium carbonate in brines. Despite these double extreme conditions, most of the lakes are highly productive and contain a fully functional microbial system. The microbial sulfur cycle is among the most active in soda lakes. One of the explanations for that is high-energy efficiency of dissimilatory conversions of inorganic sulfur compounds, both oxidative and reductive, sufficient to cope with costly life at double extreme conditions. The oxidative part of the sulfur cycle is driven by chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria (SOB), which are unique for soda lakes. The haloalkaliphilic SOB are present in the surface sediment layer of various soda lakes at high numbers of up to 106 viable cells/cm3. The culturable forms are so far represented by four novel genera within the Gammaproteobacteria, including the genera Thioalkalivibrio, Thioalkalimicrobium, Thioalkalispira, and Thioalkalibacter. The latter two were only found occasionally and each includes a single species, while the former two are widely distributed in various soda lakes over the world. The genus Thioalkalivibrio is the most physiologically diverse and covers the whole spectrum of salt/pH conditions present in soda lakes. Most importantly, the dominant subgroup of this genus is able to grow in saturated soda brines containing 4 M total Na+ – a so far unique property for any known aerobic chemolithoautotroph. Furthermore, some species can use thiocyanate as a sole energy source and three out of nine species can grow anaerobically with nitrogen oxides as electron acceptor. The reductive part of the sulfur cycle is active in the anoxic layers of the sediments of soda lakes. The in situ measurements of sulfate reduction rates and laboratory experiments with sediment slurries using sulfate, thiosulfate, or elemental sulfur as electron acceptors demonstrated relatively high sulfate reduction rates only hampered by salt-saturated conditions. However, the highest rates of sulfidogenesis were observed not with sulfate, but with elemental sulfur followed by thiosulfate. Formate, but not hydrogen, was the most efficient electron donor with all three sulfur electron acceptors, while acetate was only utilized as an electron donor under sulfur-reducing conditions. The native sulfidogenic populations of soda lakes showed a typical obligately alkaliphilic pH response, which corresponded well to the in situ pH conditions. Microbiological analysis indicated a domination of three groups of haloalkaliphilic autotrophic sulfate-reducing bacteria belonging to the order Desulfovibrionales (genera Desulfonatronovibrio, Desulfonatronum, and Desulfonatronospira) with a clear tendency to grow by thiosulfate disproportionation in the absence of external electron donor even at salt-saturating conditions. Few novel representatives of the order Desulfobacterales capable of heterotrophic growth with volatile fatty acids and alcohols at high pH and moderate salinity have also been found, while acetate oxidation was a function of a specialized group of haloalkaliphilic sulfur-reducing bacteria, which belong to the phylum Chrysiogenetes. PMID:21747784
Wood, A P; Kelly, D P; McDonald, I R; Jordan, S L; Morgan, T D; Khan, S; Murrell, J C; Borodina, E
1998-02-01
The isolation and properties of a novel species of pink-pigmented methylotroph, Methylobacterium thiocyanatum, are described. This organism satisfied all the morphological, biochemical, and growth-substrate criteria to be placed in the genus Methylobacterium. Sequencing of the gene encoding its 16S rRNA confirmed its position in this genus, with its closest phylogenetic relatives being M. rhodesianum, M. zatmanii and M. extorquens, from which it differed in its ability to grow on several diagnostic substrates. Methanol-grown organisms contained high activities of hydroxypyruvate reductase -3 micromol NADH oxidized min-1 (mg crude extract protein)-1], showing that the serine pathway was used for methylotrophic growth. M. thiocyanatum was able to use thiocyanate or cyanate as the sole source of nitrogen for growth, and thiocyanate as the sole source of sulfur in the absence of other sulfur compounds. It tolerated high concentrations (at least 50 mM) of thiocyanate or cyanate when these were supplied as nitrogen sources. Growing cultures degraded thiocyanate to produce thiosulfate as a major sulfur end product, apparently with the intermediate formation of volatile sulfur compounds (probably hydrogen sulfide and carbonyl sulfide). Enzymatic hydrolysis of thiocyanate by cell-free extracts was not demonstrated. Cyanate was metabolized by means of a cyanase enzyme that was expressed at approximately sevenfold greater activity during growth on thiocyanate [Vmax 634 +/- 24 nmol NH3 formed min-1 (mg protein)-1] than on cyanate [89 +/- 9 nmol NH3 min-1 (mg protein)-1]. Kinetic study of the cyanase in cell-free extracts showed the enzyme (1) to exhibit high affinity for cyanate (Km 0.07 mM), (2) to require bicarbonate for activity, (3) to be subject to substrate inhibition by cyanate and competitive inhibition by thiocyanate (Ki 0.65 mM), (4) to be unaffected by 1 mM ammonium chloride, (5) to be strongly inhibited by selenocyanate, and (6) to be slightly inhibited by 5 mM thiosulfate, but unaffected by 0.25 mM sulfide or 1 mM thiosulfate. Polypeptides that might be a cyanase subunit (mol.wt. 17.9 kDa), a cyanate (and/or thiocyanate) permease (mol.wt. 25.1 and 27.2 kDa), and a putative thiocyanate hydrolase (mol.wt. 39.3 kDa) were identified by SDS-PAGE. Correlation of the growth rate of cultures with thiocyanate concentration (both stimulatory and inhibitory) and the kinetics of cyanase activity might indicate that growth on thiocyanate involved the intermediate formation of cyanate, hence requiring cyanase activity. The very high activity of cyanase observed during growth on thiocyanate could be in compensation for the inhibitory effect of thiocyanate on cyanase. Alternatively, thiocyanate may be a nonsubstrate inducer of cyanase, while thiocyanate degradation itself proceeds by a carbonyl sulfide pathway not involving cyanate. A formal description of the new species (DSM 11490) is given.
Park, Sora; Seon, Jiyun; Byun, Imgyu; Cho, Sunja; Park, Taejoo; Lee, Taeho
2010-05-01
The applicability of modified spent caustic (MSC) as an electron donor for denitrification was evaluated in a lab-scale reactor for the Bardenpho process under various electron donor conditions: (A) no electron donor, (B) methanol, (C) thiosulfate and (D) MSC conditions. TN removal efficiency varied in each condition, 23.1%, 87.8%, 83.7% and 71.7%, respectively. The distribution ratio of nitrifying bacteria and DGGE profile including sulfur-reducing or oxidizing bacteria also varied depending on the conditions. These results indicated that the MSC would be used as an efficient electron donor for denitrification by autotrophic denitrifier in wastewater treatment process. Copyright 2009 Elsevier Ltd. All rights reserved.
Sodium Thiosulfate for Recovery of Bond Strength to Dentin Treated with Sodium Hypochlorite.
Pimentel Corrêa, Ana Carolina; Cecchin, Doglas; de Almeida, José Flávio Affonso; Gomes, Brenda Paula Figueiredo de Almeida; Zaia, Alexandre Augusto; Ferraz, Caio Cezar Randi
2016-02-01
The aim of this study was to evaluate the efficacy of sodium thiosulfate (Na2S2O3) for restoring adhesion to pulp chamber dentin treated with sodium hypochlorite (NaOCl) and EDTA. Sixty-three crowns of bovine incisors were cut to expose the dentin pulp chamber. The specimens were polished and randomly distributed into 9 groups (n = 7) according to the following protocols used: 0.9% sodium chloride for 30 minutes (negative control), 5.25% NaOCl for 30 minutes, 17% EDTA for 3 minutes, and 5.25% NaOCl for 1 minute (positive control). The other groups, after treatments with NaOCl and EDTA, were immersed in 0.5% or 5% Na2S2O3 for 1, 5, and 10 minutes or just immersed in an inert solution for 10 minutes (0.9% sodium chloride). After drying the specimens, Scotchbond Multi-Purpose (3M ESPE, St Paul, MN) was applied to the pulp chamber dentin followed by Filtek Z250 composite (3M ESPE). Six rectangular slabs were obtained from each specimen, and the dentin/resin interface was tested by using a universal testing machine. The resulting data were submitted to 1-way analysis of variance and the Duncan test (P = .05). There was a significant decrease in bond strength regarding NaOCl and EDTA (P < .05). When 5% Na2S2O3 was used for 10 minutes, the bond strength was found to be statistically equal to the negative control and higher than the positive control (P < .05). The use of Na2S2O3 can significantly increase the bond strength of composite resin to NaOCl/EDTA-treated dentin, allowing adhesive restorations to be immediately applied after endodontic treatment. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Raudabaugh, Daniel B.; Miller, Andrew N.
2013-01-01
Pseudogymnoascus destructans, the causal agent of bat white-nose syndrome, has caused nearly six million deaths in North American bats since its introduction into the United States in 2006. Current research has shown that caves can harbor P. destructans even after the infected bats are removed and bats no longer visit or inhabit previously infected caves. Our research focuses on elucidating reservoir requirements by investigating the nutritional capabilities of and substrate suitability requirements for six different P. destructans isolates from various localities including Illinois, Indiana, New York (Type specimen), and Pennsylvania. Enzyme assays implicate that both urease and b-glucosidase appear to be constitutive, lipase and esterase activity were more rapid than proteinase activity on 6% gelatin, gelatin degradation was accompanied by medium alkalinization, the reduction of thiosulfate generated hydrogen sulfide gas, chitinase and manganese dependent peroxidase activity were not visually demonstrated within eight weeks, and keratinase activity was not evident at pH 8 within eight weeks. We demonstrate that all P. destructans isolates are capable of growth and sporulation on dead fish, insect, and mushroom tissues. Sole nitrogen source assays demonstrated that all P. destructans isolates exhibit Class 2 nitrogen utilization and that growth-dependent interactions occur among different pH and nitrogen sources. Substrate suitability assays demonstrated that all isolates could grow and sporulate on media ranging from pH 5–11 and tolerated media supplemented with 2000 mg/L of calcium and 700 mg/L of three separated sulfur compounds: thiosulfate L-cysteine, and sulfite. All isolates were intolerant to PEG-induced matric potential with delayed germination and growth at −2.5 MPa with no visible germination at −5 MPa. Interestingly, decreasing the surface tension with Tween 80 permitted germination and growth of P. destructans in −5 MPa PEG medium within 14 days suggesting a link between substrate suitability and aqueous surface tension altering substances. PMID:24205191
Raudabaugh, Daniel B; Miller, Andrew N
2013-01-01
Pseudogymnoascus destructans, the causal agent of bat white-nose syndrome, has caused nearly six million deaths in North American bats since its introduction into the United States in 2006. Current research has shown that caves can harbor P. destructans even after the infected bats are removed and bats no longer visit or inhabit previously infected caves. Our research focuses on elucidating reservoir requirements by investigating the nutritional capabilities of and substrate suitability requirements for six different P. destructans isolates from various localities including Illinois, Indiana, New York (Type specimen), and Pennsylvania. Enzyme assays implicate that both urease and b-glucosidase appear to be constitutive, lipase and esterase activity were more rapid than proteinase activity on 6% gelatin, gelatin degradation was accompanied by medium alkalinization, the reduction of thiosulfate generated hydrogen sulfide gas, chitinase and manganese dependent peroxidase activity were not visually demonstrated within eight weeks, and keratinase activity was not evident at pH 8 within eight weeks. We demonstrate that all P. destructans isolates are capable of growth and sporulation on dead fish, insect, and mushroom tissues. Sole nitrogen source assays demonstrated that all P. destructans isolates exhibit Class 2 nitrogen utilization and that growth-dependent interactions occur among different pH and nitrogen sources. Substrate suitability assays demonstrated that all isolates could grow and sporulate on media ranging from pH 5-11 and tolerated media supplemented with 2000 mg/L of calcium and 700 mg/L of three separated sulfur compounds: thiosulfate L-cysteine, and sulfite. All isolates were intolerant to PEG-induced matric potential with delayed germination and growth at -2.5 MPa with no visible germination at -5 MPa. Interestingly, decreasing the surface tension with Tween 80 permitted germination and growth of P. destructans in -5 MPa PEG medium within 14 days suggesting a link between substrate suitability and aqueous surface tension altering substances.
[Chlorobaculum macestae sp. nov., a new green sulfur bacterium].
Koppen, O I; Berg, I A; Lebedeva, N V; Taisova, A S; Kolganova, T V; Slobodova, N V; Bulygina, E S; Turova, T P; Ivanovskiĭ, R N
2008-01-01
The investigated green sulfur bacterium, strain M, was isolated from a sulfidic spring on the Black Sea Coast of the Caucasus. The cells of strain M are straight or curved rods 0.6-0.9 x 1.8-4.2 microm in size. According to the cell wall structure, the bacteria are gram-negative. Chlorosomes are located along the cell periphery. Strain M is an obligate anaerobe capable of photoautotrophic growth on sulfide, thiosulfate, and H2. It utilizes ammonium, urea, casein hydrolysate, and N2 as nitrogen sources and sulfide, thiosulfate, and elemental sulfur as sulfur sources. Bacteriochlorophyll c and the carotenoid chlorobactene are the main pigments. The optimal growth temperature is 25-28 degrees C; the optimal pH is 6.8. The strain does not require NaCl. Vitamin B12 stimulates growth. The content of the G+C base pairs in the DNA of strain M is 58.3 mol %. In the phylogenetic tree constructed on the basis of analysis of nucleotide sequences of 16S rRNA genes, strain M forms a separate branch, which occupies an intermediate position between the phylogenetic cluster containing representatives of the genus Chlorobaculum (94.9-96.8%) and the cluster containing species of the genus Chlorobium (94.1-96.5%). According to the results of analysis of the amino acid sequence corresponding to the fmo gene, strain M represents a branch which, unlike that in the "ribosomal" tree, falls into the cluster of the genus Chlorobaculum (95.8-97.2%). Phylogenetic analysis of the amino acid sequence corresponding to the nifH gene placed species of the genera Chlorobaculum and Chlorobium into a single cluster, whereas strain M formed a separate branch. The results obtained allow us to describe strain M as a new species of the genus Chlorobaculum. Chlorobaculum macestae sp. nov.
Dodsworth, Jeremy A; Ong, John C; Williams, Amanda J; Dohnalkova, Alice C; Hedlund, Brian P
2015-12-01
An obligately thermophilic, chemolithotrophic, microaerophilic bacterium, designated strain GBS1T, was isolated from the water column of Great Boiling Spring, Nevada, USA. Thiosulfate was required for growth. Although capable of autotrophy, growth of GBS1T was enhanced in the presence of acetate, peptone or Casamino acids. Growth occurred at 70-85 °C with an optimum at 80 °C, at pH 6.50-7.75 with an optimum at pH 7.25, with 0.5-8 % oxygen with an optimum at 1-2 % and with ≤ 200 mM NaCl. The doubling time under optimal growth conditions was 1.3 h, with a final mean cell density of 6.2 ± 0.5 × 107 cells ml- 1. Non-motile, rod-shaped cells 1.4-2.4 × 0.4-0.6 μm in size occurred singly or in pairs. The major cellular fatty acids (>5 % of the total) were C20 : 1ω9c, C18 : 0, C16 : 0 and C20 : 0. Phylogenetic analysis of the GBS1T 16S rRNA gene sequence indicated an affiliation with Thermocrinis ruber and other species of the genus Thermocrinis, but determination of 16S rRNA gene sequence similarity ( ≤ 97.10 %) and in silico estimated DNA-DNA hybridization values ( ≤ 18.4 %) with the type strains of recognized Thermocrinis species indicate that the novel strain is distinct from described species. Based on phenotypic, genotypic and phylogenetic characteristics, a novel species, Thermocrinis jamiesonii sp. nov., is proposed, with GBS1T ( = JCM 19133T = DSM 27162T) as the type strain.
XANES: observation of quantum confinement in the conduction band of colloidal PbS quantum dots
NASA Astrophysics Data System (ADS)
Demchenko, I. N.; Chernyshova, M.; He, X.; Minikayev, R.; Syryanyy, Y.; Derkachova, A.; Derkachov, G.; Stolte, W. C.; Piskorska-Hommel, E.; Reszka, A.; Liang, H.
2013-04-01
The presented investigations aimed at development of inexpensive method for synthesized materials suitable for utilization of solar energy. This important issue was addressed by focusing, mainly, on electronic local structure studies with supporting x-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis of colloidal galena nano-particles (NPs) and quantum dots (QDs) synthesized using wet chemistry under microwave irradiation. Performed x-ray absorption near edge structure (XANES) analysis revealed an evidence of quantum confinement for the sample with QDs, where the bottom of the conduction band was shifted to higher energy. The QDs were found to be passivated with oxides at the surface. Existence of sulfate/sulfite and thiosulfate species in pure PbS and QDs, respectively, was identified.
Sheel, Anvita; Pant, Deepak
2018-01-01
The aim of present study was to develop a modified method of gold recovery from e-waste. Selective biosorption of gold from contact point of printed circuit board was achieved by using the combination of ammonium thiosulfate (AT) and Lactobacillus acidophilus (LA).Improvement in biosorption was due to the π-π interaction and resultant change in amide absorption bond between AT and LA, as evidenced by infrared spectroscopy. Selection was justified by some basic postulates of ionic radii and confirmed by inductively coupled plasma atomic emission spectroscopy. This methodology provides a unique leaching-sorption method for gold recovery and 85% of gold was recovered (from AT leachant) by the proposed combination. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tamazawa, Satoshi; Yamamoto, Kyosuke; Takasaki, Kazuto; Mitani, Yasuo; Hanada, Satoshi; Kamagata, Yoichi; Tamaki, Hideyuki
2016-01-01
We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ. PMID:27297893
Tamazawa, Satoshi; Yamamoto, Kyosuke; Takasaki, Kazuto; Mitani, Yasuo; Hanada, Satoshi; Kamagata, Yoichi; Tamaki, Hideyuki
2016-06-25
We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ.
Optimization of biological sulfide removal in a CSTR bioreactor.
Roosta, Aliakbar; Jahanmiri, Abdolhossein; Mowla, Dariush; Niazi, Ali; Sotoodeh, Hamidreza
2012-08-01
In this study, biological sulfide removal from natural gas in a continuous bioreactor is investigated for estimation of the optimal operational parameters. According to the carried out reactions, sulfide can be converted to elemental sulfur, sulfate, thiosulfate, and polysulfide, of which elemental sulfur is the desired product. A mathematical model is developed and was used for investigation of the effect of various parameters on elemental sulfur selectivity. The results of the simulation show that elemental sulfur selectivity is a function of dissolved oxygen, sulfide load, pH, and concentration of bacteria. Optimal parameter values are calculated for maximum elemental sulfur selectivity by using genetic algorithm as an adaptive heuristic search. In the optimal conditions, 87.76% of sulfide loaded to the bioreactor is converted to elemental sulfur.
Growth of strain SES-3 with arsenate and other diverse electron acceptors
Laverman, A.M.; Blum, J.S.; Schaefer, J.K.; Phillips, E.J.P.; Lovley, D.R.; Oremland, R.S.
1995-01-01
The selenate-respiring bacterial strain SES-3 was able to use a variety of inorganic electron acceptors to sustain growth. SES-3 grew with the reduction of arsenate to arsenite, Fe(III) to Fe(II), or thiosulfate to sulfide. It also grew in medium in which elemental sulfur, Mn(IV), nitrite, trimethylamine N-oxide, or fumarate was provided as an electron acceptor. Growth on oxygen was microaerophilic. There was no growth with arsenite or chromate. Washed suspensions of cells grown on selenate or nitrate had a constitutive ability to reduce arsenate but were unable to reduce arsenite. These results suggest that strain SES-3 may occupy a niche as an environmental opportunist by being able to take advantage of a diversity of electron acceptors.
NASA Astrophysics Data System (ADS)
Yang, M.; Geng, X.; Wang, Y. L.; Li, D. X.
2017-05-01
Three orthogonal tests are separately designed for each hydrometallurgical gold leaching process to finding the optimum reaction conditions of melting gold and palladium in each process. Under the optimum condition, the determination amount of gold and palladium in aqua regia—hydrofluoric acid, Sodium thiosulfate, and potassium iodide reaches 2.87g/kg and 8.34 g/kg, 2.39g/kg and 8.12 g/kg, 2.51g/kg and 7.84g/kg. From the result, the content of gold and palladium using the leaching process of combining Aqua regia, hydrofluoric acid and hydrogen peroxide is relatively higher than the other processes. In addition, the experiment procedure of aqua regia digestion operates easily, using less equipment, and its period is short.
Biomedical silver-109m isotope generator
Wanek, Philip M.; Steinkruger, Frederick J.; Moody, David C.
1987-01-01
A method, composition of matter, and apparatus for producing substantially pure Ag-109m for use in biomedical imaging techniques. Cd-109, which decays with a half-life of 453 days to Ag-109m is loaded onto an ion exchange column consisting of particulate tin phosphate. After secular equilibrium is reached in about ten minutes, Ag-109m may be selectively eluted from the column by means of a physiologically acceptable aqueous buffered eluent solution of sodium thiosulfate, and either ascorbic acid or dextrose. The breakthrough of toxic Cd-109 is on the order of 1.times.10.sup.-7, which is sufficiently low to permit administration of the Ag-109m-containing eluate, with but a minor pH adjustment, directly to a human patient within a matter of seconds.
Biomedical silver-109m isotope generator
Wanek, P.M.; Steinkruger, F.J.; Moody, D.C.
1985-03-05
A method, composition of matter, and apparatus for producing substantially pure Ag-109m for use in biomedical imaging techniques. Cd-109, which decays with a half-life of 453 days to Ag-109m, is loaded onto an ion exchange column consisting of particulate tin phosphate. After secular equilibrium is reached in about ten minutes, Ag-109m may be selectively eluted from the column by means of a physiologically acceptable aqueous buffered eluent solution of sodium thiosulfate, and either ascorbic acid or dextrose. The breakthrough of toxic Cd-109 is on the order of 1 x 10-7, which is sufficiently low to permit administration of the Ag-109m-containing eluate, with but a minor pH adjustment, directly to a human patient within a matter of seconds. 1 fig.
Martínez-Araya, Jorge Ignacio
2013-07-01
The intrinsic reactivity of cyanide when interacting with a silver cation was rationalized using the dual descriptor (DD) as a complement to the molecular electrostatic potential (MEP) in order to predict interactions at the local level. It was found that DD accurately explains covalent interactions that cannot be explained by MEP, which focuses on essentially ionic interactions. This allowed the rationalization of the reaction mechanism that yields silver cyanide in the gas phase. Other similar reaction mechanisms involving a silver cation interacting with water, ammonia, and thiosulfate were also explained by the combination of MEP and DD. This analysis provides another example of the usefulness of DD as a tool for gaining a deeper understanding of any reaction mechanism that is mainly governed by covalent interactions.
Effect of heat stable salts on MDEA solution corrosivity: Part 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rooney, P.C.; DuPart, M.S.; Bacon, T.R.
1997-04-01
A comprehensive coupon corrosion testing program was undertaken to address the effect of various heat stable salts on methyldiethanolamine (MDEA) corrosivity to carbon steel and various stainless steels. Corrosion rates of carbon steel, 304SS, 316SS and 410SS liquid and vapor coupons towards MDEA, and MDEA containing various anions, at 180 F and 250 F, were measured in a reactor. Corrosion results of two refinery plant solutions before and after caustic neutralization were also performed. Based on these results, guidelines were determined for heat stable amine salt (HSAS) levels of oxalates, sulfates, formates, acetates and thiosulfates. In addition, caustic neutralization guidelinesmore » for MDEA heat stable salts were determined. Ongoing results include MDEA corrosivity with succinates, and malonates, glycolates, SO{sub 2} and ammonia.« less
Antimony sulfide thin films prepared by laser assisted chemical bath deposition
NASA Astrophysics Data System (ADS)
Shaji, S.; Garcia, L. V.; Loredo, S. L.; Krishnan, B.; Aguilar Martinez, J. A.; Das Roy, T. K.; Avellaneda, D. A.
2017-01-01
Antimony sulfide (Sb2S3) thin films were prepared by laser assisted chemical bath deposition (LACBD) technique. These thin films were deposited on glass substrates from a chemical bath containing antimony chloride, acetone and sodium thiosulfate under various conditions of normal chemical bath deposition (CBD) as well as in-situ irradiation of the chemical bath using a continuous laser of 532 nm wavelength. Structure, composition, morphology, optical and electrical properties of the Sb2S3 thin films produced by normal CBD and LACBD were analyzed by X-Ray diffraction (XRD), Raman Spectroscopy, Atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and Photoconductivity. The results showed that LACBD is an effective synthesis technique to obtain Sb2S3 thin films for optoelectronic applications.
Radiolytic decomposition of ammonium halides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orlov, S.L.; Gromov, V.V.; Saunin, E.I.
1988-11-01
Chromatographic analyses were made of the gaseous products of the radiolysis of polycrystalline NH/sub 4/F, NH/sub 4/Cl, NH/sub 4/Br, and NH/sub 4/I, of particle size 0.25-0.5 mm. The irradiation was performed with /sup 60/Co ..sigma..-quanta, at room temperature in previously evacuated and sealed glass ampules. Determination was made of the amount of gas liberated into the space of the ampule during the irradiation, and of the amount retained in the crystal matrix and evolved on dissolution of the resulting samples in deaerated water. At the same time quantitative determinations of halogen were made by the thiosulfate method. It was shownmore » that hydrogen and nitrogen were formed in the radiolysis of all the compounds investigated. The yields are listed.« less
Shen, Jiangchuan; Keithly, Mary E.; Armstrong, Richard N.; Higgins, Khadine A.; Edmonds, Katherine A.; Giedroc, David P.
2016-01-01
Hydrogen sulfide (H2S) is both a lethal gas and an emerging gasotransmitter in humans, suggesting that cellular H2S level must be tightly regulated. CstB is encoded by the cst operon of the major human pathogen Staphylococcus aureus (S. aureus) and is under the transcriptional control of the persulfide sensor CstR and H2S. Here we show that CstB is a multifunctional Fe(II)-containing persulfide dioxygenase (PDO), analogous to the vertebrate protein ETHE1 (Ethylmalonic Encephalopathy Protein 1). Chromosomal deletion of ethe1 is fatal in vertebrates. In the presence of molecular oxygen (O2), hETHE1 oxidizes glutathione persulfide (GSSH) to generate sulfite and reduced glutathione. In contrast, CstB oxidizes major cellular low molecular weight (LMW) persulfide substrates from S. aureus, coenzyme A persulfide (CoASSH) and bacillithiol persulfide (BSSH), directly to generate thiosulfate (TS) and reduced thiols, thereby avoiding the cellular toxicity of sulfite. Both Cys201 in the N-terminal PDO domain (CstBPDO) and Cys408 in the C-terminal rhodanese domain (CstBRhod) strongly enhance the TS generating activity of CstB. CstB also possesses persulfide transferase (PT; reverse rhodanese) activity which generates TS when provided with LMW persulfides and sulfite, as well as conventional thiosulfate transferase (TST; rhodanese) activity; both activities require Cys408. CstB protects S. aureus against H2S toxicity with C201S and C408S cstB genes unable to rescue a NaHS-induced ΔcstB growth phenotype. Induction of the cst operon by NaHS reveals that functional CstB impacts the cellular TS concentrations. These data collectively suggest that CstB may have evolved to facilitate the clearance of LMW persulfides that occur upon the elevation of the level of cellular H2S and hence may have an impact on bacterial viability under H2S stress, in concert with the other enzymes encoded by the cst operon. PMID:26177047
Qian, Jin; Liu, Rulong; Wei, Li; Lu, Hui; Chen, Guang-Hao
2015-09-01
A sulfur cycle-based wastewater treatment process, namely the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated process (SANI(®) process) has been recently developed for organics and nitrogen removal with 90% sludge minimization and 35% energy reduction in the biological treatment of saline sewage from seawater toilet flushing practice in Hong Kong. In this study, sulfate- and sulfite-rich wastes from simple wet flue gas desulfurization (WFGD) were considered as a potential low-cost sulfur source to achieve beneficial co-treatment with non-saline (freshwater) sewage in continental areas, through a Mixed Denitrification (MD)-SANI process trialed with synthetic mixture of simple WFGD wastes and freshwater sewage. The system showed 80% COD removal efficiency (specific COD removal rate of 0.26 kg COD/kg VSS/d) at an optimal pH of 7.5 and complete denitrification through MD (specific nitrogen removal rate of 0.33 kg N/kg VSS/d). Among the electron donors in MD, organics and thiosulfate could induce a much higher denitrifying activity than sulfide in terms of both NO3(-) reduction and NO2(-) reduction, suggesting a much higher nitrogen removal rate in organics-, thiosulfate- and sulfide-based MD in MD-SANI compared to sulfide alone-based autotrophic denitrification in conventional SANI(®). Diverse sulfate/sulfite-reducing bacteria (SRB) genera dominated in the bacterial community of sulfate/sulfite-reducing up-flow sludge bed (SRUSB) sludge without methane producing bacteria detected. Desulfomicrobium-like species possibly for sulfite reduction and Desulfobulbus-like species possibly for sulfate reduction are the two dominant groups with respective abundance of 24.03 and 14.91% in the SRB genera. Diverse denitrifying genera were identified in the bacterial community of anoxic up-flow sludge bed (AnUSB) sludge and the Thauera- and Thiobacillus-like species were the major taxa. These results well explained the successful operation of the lab-scale MD-SANI process. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Role of Sulfide Oxidation Impairment in the Pathogenesis of Primary CoQ Deficiency.
Quinzii, Catarina M; Luna-Sanchez, Marta; Ziosi, Marcello; Hidalgo-Gutierrez, Agustin; Kleiner, Giulio; Lopez, Luis C
2017-01-01
Coenzyme Q (CoQ) is a lipid present in all cell membranes. One of the multiple metabolic functions of CoQ is to transport electrons in the reaction catalyzed by sulfide:quinone oxidoreductase (SQOR), the first enzyme of the oxidation pathway of sulfides (hydrogen sulfide, H 2 S). Early evidence of a defect in the metabolism of H 2 S in primary CoQ deficiency came from yeast studies in Schizosaccharomyces pombe strains defective for dps1 and ppt1 (homologs of PDSS1 and COQ2 , respectively), which have H 2 S accumulation. Our recent studies in human skin fibroblasts and in murine models of primary CoQ deficiency show that, also in mammals, decreased CoQ levels cause impairment of H 2 S oxidation. Patient fibroblasts carrying different mutations in genes encoding proteins involved in CoQ biosynthesis show reduced SQOR activity and protein levels proportional to the levels of CoQ. In Pdss2 kd / kd mice, kidney, the only organ clinically affected, shows reduced SQOR levels and downstream enzymes, accumulation of H 2 S, and glutathione depletion. Pdss2 kd / kd mice have also low levels of thiosulfate in plasma and urine, and increased C4-C6 acylcarnitines in blood, due to inhibition of short-chain acyl-CoA dehydrogenase. Also in Coq9 R 239 X mice, the symptomatic organ, cerebrum, shows accumulation of H 2 S, reduced SQOR, increase in thiosulfate sulfurtransferase and sulfite oxidase, and reduction in the levels of glutathione and glutathione enzymes, leading to alteration of the biosynthetic pathways of glutamate, serotonin, and catecholamines. Coq9 R 239 X mice have also reduced blood pressure, possible consequence of H 2 S-induced vasorelaxation. Since liver is not clinically affected in Pdss2 and Coq9 mutant mice, the effects of the impairment of H 2 S oxidation in this organ were not investigated, despite its critical role in metabolism. In conclusion, in vitro and in vivo studies of CoQ deficient models provide evidence of tissue-specific H 2 S oxidation impairment, an additional pathomechanism that should be considered in the understanding and treatment of primary CoQ deficiency.
Pang, Xin; Lin, Jianqiang; Liu, Xiangmei; Wang, Rui; Lin, Jianqun; Chen, Linxu
2017-01-01
Acidithiobacillus caldus is a chemolithoautotrophic sulfur-oxidizing bacterium that is widely used for bioleaching processes. Acidithiobacillus spp. are suggested to contain sulfur dioxygenases (SDOs) that facilitate sulfur oxidation. In this study, two putative sdo genes (A5904_0421 and A5904_1112) were detected in the genome of A. caldus MTH-04 by BLASTP searching with the previously identified SDO (A5904_0790). We cloned and expressed these genes, and detected the SDO activity of recombinant protein A5904_0421 by a GSH-dependent in vitro assay. Phylogenetic analysis indicated that A5904_0421and its homologous SDOs, mainly found in autotrophic bacteria, were distantly related to known SDOs and were categorized as a new subgroup of SDOs. The potential functions of genes A5904_0421 (termed sdo1) and A5904_0790 (termed sdo2) were investigated by generating three knockout mutants (Δsdo1, Δsdo2 and Δsdo1&2), two sdo overexpression strains (OE-sdo1 and OE-sdo2) and two sdo complemented strains (Δsdo1/sdo1’ and Δsdo2/sdo2’) of A. caldus MTH-04. Deletion or overexpression of the sdo genes did not obviously affect growth of the bacteria on S0, indicating that the SDOs did not play an essential role in the oxidation of extracellular elemental sulfur in A. caldus. The deletion of sdo1 resulted in complete inhibition of growth on tetrathionate, slight inhibition of growth on thiosulfate and increased GSH-dependent sulfur oxidation activity on S0. Transcriptional analysis revealed a strong correlation between sdo1 and the tetrathionate intermediate pathway. The deletion of sdo2 promoted bacterial growth on tetrathionate and thiosulfate, and overexpression of sdo2 altered gene expression patterns of sulfide:quinone oxidoreductase and rhodanese. Taken together, the results suggest that sdo1 is essential for the survival of A. caldus when tetrathionate is used as the sole energy resource, and sdo2 may also play a role in sulfur metabolism. PMID:28873420
Tum1 is involved in the metabolism of sterol esters in Saccharomyces cerevisiae.
Uršič, Katja; Ogrizović, Mojca; Kordiš, Dušan; Natter, Klaus; Petrovič, Uroš
2017-08-22
The only hitherto known biological role of yeast Saccharomyces cerevisiae Tum1 protein is in the tRNA thiolation pathway. The mammalian homologue of the yeast TUM1 gene, the thiosulfate sulfurtransferase (a.k.a. rhodanese) Tst, has been proposed as an obesity-resistance and antidiabetic gene. To assess the role of Tum1 in cell metabolism and the putative functional connection between lipid metabolism and tRNA modification, we analysed evolutionary conservation of the rhodanese protein superfamily, investigated the role of Tum1 in lipid metabolism, and examined the phenotype of yeast strains expressing the mouse homologue of Tum1, TST. We analysed evolutionary relationships in the rhodanese superfamily and established that its members are widespread in bacteria, archaea and in all major eukaryotic groups. We found that the amount of sterol esters was significantly higher in the deletion strain tum1Δ than in the wild-type strain. Expression of the mouse TST protein in the deletion strain did not rescue this phenotype. Moreover, although Tum1 deficiency in the thiolation pathway was complemented by re-introducing TUM1, it was not complemented by the introduction of the mouse homologue Tst. We further showed that the tRNA thiolation pathway is not involved in the regulation of sterol ester content in S. cerevisiae, as overexpression of the tE UUC , tK UUU and tQ UUG tRNAs did not rescue the lipid phenotype in the tum1Δ deletion strain, and, additionally, deletion of the key gene for the tRNA thiolation pathway, UBA4, did not affect sterol ester content. The rhodanese superfamily of proteins is widespread in all organisms, and yeast TUM1 is a bona fide orthologue of mammalian Tst thiosulfate sulfurtransferase gene. However, the mouse TST protein cannot functionally replace yeast Tum1 protein, neither in its lipid metabolism-related function, nor in the tRNA thiolation pathway. We show here that Tum1 protein is involved in lipid metabolism by decreasing the sterol ester content in yeast cells, and that this function of Tum1 is not exerted through the tRNA thiolation pathway, but through another, currently unknown pathway.
Gold leaching by organic base polythionates: new non-toxic and secure technology.
Smolyaninov, Vladislav; Shekhvatova, Galina; Vainshtein, Mikhail
2014-01-01
The article present a review on own experimental and some published data which are related with the gold leaching. It is well-known that the most common and usual process of the leaching with cyanide can be dangerous, needs a great water consumption, and additional costs for remediation of the poisoned and toxic sites. The experimental data described production of poythionates which are not toxic but perspective for the prosperous gold leaching. The paper dedicated to the safe gold leaching with thiosulfates and organic salts of polythionic acids (organic base polythionates). The method of production of these polythionates based on the Smolyaninov reaction is described in stages and in details for the first time. Possible application of the polythionates application in the gold leaching is discussed and its advantages are compared with the gold leaching by cyanation.
Lichenoid dermatitis after consumption of gold-containing liquor.
Russell, M A; Langley, M; Truett, A P; King, L E; Boyd, A S
1997-05-01
Medicinal gold has a well-known side effect profile that includes mucocutaneous eruptions. We describe three patients with a pruritic dermatitis that began after consumption of a gold-containing alcoholic beverage. Blood and urine gold levels, chemistry panels, hepatitis screens, skin biopsies, and patch tests were performed. The gold-containing liquor was analyzed for the presence and quantity of gold. The liquor consumed by all of the patients was a cinnamon schnapps with free-floating gold-colored flakes. Gold is present in the liquid portion of this liquor and in the solid flakes. Elevated levels of gold in the urine and blood were present in one patient 3 months after last drinking this beverage. Another patient had a positive patch test to gold sodium thiosulfate. All patients experienced improvement of their dermatitis after they stopped drinking the gold-containing liquor.
Myers, C R; Nealson, K H
1990-01-01
An oxidant pulse technique, with lactate as the electron donor, was used to study respiration-linked proton translocation in the manganese- and iron-reducing bacterium Shewanella putrefaciens MR-1. Cells grown anaerobically with fumarate or nitrate as the electron acceptor translocated protons in response to manganese (IV), fumarate, or oxygen. Cells grown anaerobically with fumarate also translocated protons in response to iron(III) and thiosulfate, whereas those grown with nitrate did not. Aerobically grown cells translocated protons only in response to oxygen. Proton translocation with all electron acceptors was abolished in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone (20 microM) and was partially to completely inhibited by the electron transport inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide (50 microM). PMID:2172208
Takai, Ken; Hirayama, Hisako; Sakihama, Yuri; Inagaki, Fumio; Yamato, Yu; Horikoshi, Koki
2002-01-01
Culture-dependent and -independent techniques were combined to characterize the physiological properties and the ecological impacts of culture-resistant phylotypes of thermophiles within the order Aquificales from a subsurface hot aquifer of a Japanese gold mine. Thermophilic bacteria phylogenetically associated with previously uncultured phylotypes of Aquificales were successfully isolated. 16S ribosomal DNA clone analysis of the entire microbial DNA assemblage and fluorescence in situ whole-cell hybridization analysis indicated that the isolates dominated the microbial population in the subsurface aquifer. The isolates were facultatively anaerobic, hydrogen- or sulfur/thiosulfate-oxidizing, thermophilic chemolithoautotrophs utilizing molecular oxygen, nitrate, ferric iron, arsenate, selenate, and selenite as electron acceptors. Their versatile energy-generating systems may reflect the geochemical conditions of their habitat in the geothermally active subsurface gold mine. PMID:12039766
Molecular determinants for FMN-binding in Desulfovibrio gigas flavoredoxin.
Broco, Manuela; Soares, Cláudio M; Oliveira, Solange; Mayhew, Stephen G; Rodrigues-Pousada, Claudina
2007-09-18
Flavoredoxin participates in Desulfovibrio gigas thiosulfate reduction pathway. Its 3-dimensional model was generated allowing the oxidized riboflavin-5'-phosphate (FMN) site to be predicted. Residues likely to be involved in FMN-binding were identified (N29, W35, T56, K92, H131 and F164) and mutated to alanine. Fluorescence titration with apoprotein showed that FMN is strongly bound in the wild-type protein. Comparison of K(d) values for mutants suggests that interactions with the phosphate group of FMN, contribute more to binding than the interactions with the isoalloxazine ring. The redox potential of bound FMN determined for wild-type and mutants revealed shifts to less negative values. These findings were correlated with the protein structure in order to contribute to a better understanding of the structure-function relationships in flavoredoxin.
Parameters for the Operation of Bacterial Thiosalt Oxidation Ponds
Silver, M.
1985-01-01
Shake flask and pH-controlled reactor tests were used to determine the mathematical parameters for a mixed-culture bacterial thiosalt treatment pond. Values determined were as follows: Km and Vmax (thiosulfate), 9.83 g/liter and 243.9 mg/liter per h, respectively; Ki (lead), 3.17 mg/liter; Ki (copper), 1.27 mg/liter; Q10 between 10 and 30°C, 1.95. From these parameters, the required bioxidation pond volume and residence time could be calculated. Soluble zinc (0.2 g/liter) and particulate mill products and by-products (0.25 g/liter) were not inhibitory. Correlation with an operating thiosalt biooxidation pond showed the parameters used to be valid for thiosalt concentrations up to at least 2 g/liter, lead concentrations of at least 10 mg/liter, and temperatures of >2°C. PMID:16346885
Phototrophic bacteria and their role in the biogeochemical sulfur cycle
NASA Technical Reports Server (NTRS)
Trueper, H. G.
1985-01-01
An essential step that cannot be bypassed in the biogeochemical cycle of sulfur today is dissimilatory sulfate reduction by anaerobic bacteria. The enormous amounts of sulfides produced by these are oxidized again either anaerobically by phototrophic bacteria or aerobically by thiobacilli and large chemotrophic bacteria (Beggiatoa, Thiovulum, etc.). Phototrophic bacteria use sulfide, sulfur, thiosulfate, and sulfite as electron donors for photosynthesis. The most obvious intermediate in their oxidative sulfur metabolism is a long chain polysulfide that appears as so called sulfur globules either inside (Chromatiaceae) or outside (Ectothiorhodospiraceae, Chlorobiaceae, and some of the Rhodospirillaceae) the cells. The assimilation of sulfur compounds in phototrophic bacteria is in principle identical with that of nonphototrophic bacteria. However, the Chlorobiaceae and some of the Chromatiaceae and Rhodospirillaceae, unable to reduce sulfate, rely upon reduced sulfur for biosynthetic purposes.
Inactivation of coliphage Q beta by potassium ferrate.
Kazama, F
1994-05-15
The kinetics of inactivation of a bacteriophage by potassium ferrate were studied with the F-specific RNA-coliphage Q beta. Inactivation in phosphate buffer (pH 6, 7 and 8) containing ferrate could be described by Hom's model. The inactivation rate depended on the pH. However, the relative effects of ferrate concentration and exposure time on inactivation were not affected by a change in pH from 6 to 8. In a study of the mechanism by which ferrate inactivated the virus, the efficiency of viral inactivation after ferrate decomposed in buffer was assayed. Inactivation was still effective and still followed Hom's equation after the complete decomposition of ferrate ion; however, the efficiency of that inactivation disappeared when sodium thiosulfate was added, suggesting that long-lived oxidative intermediates capable of viral inactivation were generated during the decomposition of ferrate ions.
Calciphylaxis: diagnosis and clinical features.
Hayashi, Matsuhiko
2013-08-01
Calciphylaxis is a relatively rare disease, observed mainly in patients on dialysis, associated with high mortality rates, and characterized by painful skin ulceration. The pathogenesis of calciphylaxis is virtually unknown, although several risk factors, including warfarin therapy, hypoalbuminemia, and disturbances in calcium-phosphate metabolism, have been reported. The prevalence of calciphylaxis in Japan is likely to be less than 1:10,000 dialysis patients per year based on our nationwide survey in 2009. However, the results of the survey also showed that about 60 % of nephrologists in Japan are not familiar with the disease itself and it is highly likely that calciphylaxis is being overlooked. To facilitate recognition of calciphylaxis, we have proposed diagnostic criteria. At present, there is no specific therapy for calciphylaxis and general supportive measures, especially antibiotics for the accompanying infection and wound care, are important. Recently, sodium thiosulfate has been increasingly used to treat calciphylaxis and its efficacy should be evaluated by large clinical trials.
Topical sodium metabisulfite for the treatment of calcinosis cutis: a promising new therapy.
Del Barrio-Díaz, P; Moll-Manzur, C; Álvarez-Veliz, S; Vera-Kellet, C
2016-09-01
Calcinosis cutis is a chronic calcium-mediated disease that causes significant morbidity. Multiple treatments have been tried, with varying results; indeed, to date, no standard treatment has been generally accepted. Sodium metabisulfite is an inorganic compound that, when it reacts with oxygen, becomes sodium sulfate, a metabolite of sodium thiosulfate that has a similar ability to inhibit calcium oxalate agglomeration. Four women diagnosed with calcinosis cutis, secondary to dermatomyositis, systemic sclerosis and radiodermatitis after breast cancer, were evaluated for their response to topical 25% sodium metabisulfite. In all patients a decrease in lesion size, erythema and pain from injuries was shown, with complete resolution of the associated ulcers. One patient had a complete response. None experienced adverse effects. Topical sodium metabisulfite is a promising emerging therapy that should be considered as a valid alternative treatment in calcinosis cutis. Randomized prospective studies are required to evaluate its true efficacy. © 2016 British Association of Dermatologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garland, T. R.; Wildung, R. E.; Harbert, H. P.
1979-04-01
Major cations, anions, trace elements and dissolved organic C were measured in percolate from retorted oil shale collected from irrigated lysimeters in the field at Anvil Points, Colorado, over a two year period. The investigations indicated that chemical equilibrium was not established over the monitoring period and major changes occurred in percolate composition as a function of applied water volume and water residence time in the shale. Field and laboratory studies indicated that several factors contributed to changes in the chemistry of the shale on weathering, including recarbonization of the surface horizons with atmospheric CO/sub 2/ and the activities ofmore » microorganisms in surface and subsurface horizons. However, the principal mechanism responsible for the decreases in pH and salt concentrations appeared to be the conversion of major quantities of sulfide in the retorted shale to sulfate through a thiosulfate intermediate.« less
Microbial diversity and community structure in an antimony-rich tailings dump.
Xiao, Enzong; Krumins, Valdis; Dong, Yiran; Xiao, Tangfu; Ning, Zengping; Xiao, Qingxiang; Sun, Weimin
2016-09-01
To assess the impact of antimony (Sb) on microbial community structure, 12 samples were taken from an Sb tailings pile in Guizhou Province, Southwest China. All 12 samples exhibited elevated Sb concentrations, but the mobile and bioaccessible fractions were small in comparison to total Sb concentrations. Besides the geochemical analyses, microbial communities inhabiting the tailing samples were characterized to investigate the interplay between the microorganisms and environmental factors in mine tailings. In all samples, Proteobacteria and Actinobacteria were the most dominant phyla. At the genus level, Thiobacillus, Limnobacter, Nocardioides, Lysobacter, Phormidium, and Kaistobacter demonstrated relatively high abundances. The two most abundant genera, Thiobacillus and Limnobacter, are characterized as sulfur-oxidizing bacteria and thiosulfate-oxidizing bacteria, respectively, while the genus Lysobacter contains arsenic (As)-resistant bacteria. Canonical correspondence analysis (CCA) indicates that TOC and the sulfate to sulfide ratio strongly shaped the microbial communities, suggesting the influence of the environmental factors in the indigenous microbial communities.
[The significance of extravasation in oncological care].
Zatkóné Puskás, Gabriella
2008-03-01
The treatment of cancer may be associated with various chemotherapy-induced mucocutaneous reactions. One of the mucocutaneous adverse effects of antineoplastic drugs is the toxic local tissue reaction, the extravasation, which occurs in less than 1-2% of cytotoxic infusions. The standard management of vesicant extravasation includes: discontinuing all local infusions, aspiration of any residual drug, elevating the involved limb, local cooling or warm compresses, local anesthesia, antidotes (sodium thiosulfate for alkylating agents, dimethylsulfoxide (DMSO) for anthracyclines and mitomycin, and hyaluronidase for the vinca alkaloids), and finally surgical debridement with plastic surgery reconstruction. Because the anthracyclines are topoisomerase II poisons that are antagonized by topoisomerase II catalytic inhibitors such as dexrazoxane, it seems to be the treatment of choice immediately after extravasation of doxorubicin, epirubicin, daunorubicin, etc. One systemic dose of dexrazoxane after the accident may significantly reduce the toxic tissue lesions. Repeated intralesional injections of GM-CSF may accelerate the wound healing without the need of skin grafts.
Lou, Tingting; Chen, Lingxin; Chen, Zhaopeng; Wang, Yunqing; Chen, Ling; Li, Jinhua
2011-11-01
A colorimetric, label-free, and nonaggregation-based silver coated gold nanoparticles (Ag/Au NPs) probe has been developed for detection of trace Cu(2+) in aqueous solution, based on the fact that Cu(2+) can accelerate the leaching rate of Ag/Au NPs by thiosulfate (S(2)O(3)(2-)). The leaching of Ag/Au NPs would lead to dramatic decrease in the surface plasmon resonance (SPR) absorption as the size of Ag/Au NPs decreased. This colorimetric strategy based on size-dependence of nanoparticles during their leaching process provided a highly sensitive (1.0 nM) and selective detection toward Cu(2+), with a wide linear detection range (5-800 nM) over nearly 3 orders of magnitude. The cost-effective probe allows rapid and sensitive detection of trace Cu(2+) ions in water samples, indicating its potential applicability for the determination of copper in real samples.
Potumarthi, Ravichandra; Mugeraya, Gopal; Jetty, Annapurna
2008-12-01
In the present studies, newly isolated Thiobacillus sp was used for the treatment of synthetic spent sulfide caustic in a laboratory-scale fluidized bed bioreactor. The sulfide oxidation was tested using Ca-alginate immobilized Thiobacillus sp. Initially, response surface methodology was applied for the optimization of four parameters to check the sulfide oxidation efficiency in batch mode. Further, reactor was operated in continuous mode for 51 days at different sulfide loading rates and retention times to test the sulfide oxidation and sulfate and thiosulfate formation. Sulfide conversions in the range of 90-98% were obtained at almost all sulfide loading rates and hydraulic retention times. However, increased loading rates resulted in lower sulfide oxidation capacity. All the experiments were conducted at constant pH of around 6 and temperature of 30 +/- 5 degrees C.
Sauer, Harald; Wollny, Caroline; Oster, Isabel; Tutdibi, Erol; Gortner, Ludwig; Gottschling, Sven; Meyer, Sascha
2015-05-01
The use of complementary and alternative medicine (CAM) is widespread in children with cancer and is poorly regulated. Case report. We describe a case of severe cyanide poisoning arising from CAM use. A severely agitated, encephalopathic, unresponsive 4-year-old boy (initial Glasgow Coma Scale of 3) with a history of metastatic ependymoma was brought to our emergency department by ambulance services. Initial blood gas analysis demonstrated severe metabolic/lactic acidosis. On detailed questioning of the parents, the use of CAM including intravenous and oral "vitamin B 17" (amygdalin) and oral apricot kernel was reported. After administering sodium thiosulfate, rapid improvement in his medical condition with complete recovery without need for further intensive care treatment was seen. Serum cyanide level was markedly elevated. Cyanide poisoning can be the cause of severe encephalopathy in children receiving CAM treatment with substances containing cyanogenic glycosides.
PRODUCTION AND NATURE OF LISTERIA MONOCYTOGENES HEMOLYSINS
Njoku-Obi, Augustine N.; Jenkins, Edward M.; Njoku-Obi, Jessie C.; Adams, Joanne; Covington, Verdell
1963-01-01
Njoku-Obi, Augustine N. (School of Veterinary Medicine, Tuskegee Institute, Ala.), Edward M. Jenkins, Jessie C. Njoku-Obi, Joanne Adams, and Verdell Covington. Production and nature of Listeria monocytogenes hemolysins. J. Bacteriol. 86:1–8. 1963.—Hemolysin produced by various strains of Listeria monocytogenes varied in quality and quantity, depending on medium, incubation temperature and time, and biological variations in the organisms. The hemolysin was inactivated by filtration (through Seitz, Selas, or sintered-glass filters), heat, oxygen, and formalin. Sodium thiosulfate reactivated hemolysin inactivated by filtration and oxygen. The hemolysin was protein in nature, migrating electrophoretically as a gamma-globulin, and highly antigenic in the rabbit. Although no toxicity was observed in intact mice injected with hemolysin, a possible leukocytolysis was noted with isolated mice peritoneal exudate cells. Due to the high antihemolytic activity of normal sera from various species, the possible use of an antilisteriolysin test in serological diagnosis is questioned. PMID:14051817
Phosphatase activity tunes two-component system sensor detection threshold.
Landry, Brian P; Palanki, Rohan; Dyulgyarov, Nikola; Hartsough, Lucas A; Tabor, Jeffrey J
2018-04-12
Two-component systems (TCSs) are the largest family of multi-step signal transduction pathways in biology, and a major source of sensors for biotechnology. However, the input concentrations to which biosensors respond are often mismatched with application requirements. Here, we utilize a mathematical model to show that TCS detection thresholds increase with the phosphatase activity of the sensor histidine kinase. We experimentally validate this result in engineered Bacillus subtilis nitrate and E. coli aspartate TCS sensors by tuning their detection threshold up to two orders of magnitude. We go on to apply our TCS tuning method to recently described tetrathionate and thiosulfate sensors by mutating a widely conserved residue previously shown to impact phosphatase activity. Finally, we apply TCS tuning to engineer B. subtilis to sense and report a wide range of fertilizer concentrations in soil. This work will enable the engineering of tailor-made biosensors for diverse synthetic biology applications.
Carboxydotrophy potential of uncultivated Hydrothermarchaeota from the oceanic crust deep biosphere
NASA Astrophysics Data System (ADS)
Carr, S. A.; Jungbluth, S.; Rappe, M. S.; Orcutt, B.
2017-12-01
The marine sedimentary and crustal subsurface biospheres harbor many uncultured microorganisms, including those belonging to Hydrothermarchaeota, formerly known as Marine Benthic Group E. SSU rRNA sequences of Hydrothermarchaeota have been identified in marine sediments across the globe, often in low abundance. Recently, crustal fluids from two subseafloor borehole observatories located on the eastern flank of the Juan de Fuca Ridge (i.e., CORKs at IODP Holes U1362A and U1362B), were collected for single-cell and metagenomic analyses. Both techniques revealed Hydrothermarchaeota to be prevalent in this system. Collectively, single-cell amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) depict Hydrothermarchaeota as opportunists, potentially capable of dissimilative and assimilative carboxydotrophy, sulfate reduction, thiosulfate reduction, nitrate reduction, chemotaxis, and motility. We propose that this diverse suit of metabolic potential may be advantageous for the hydrologically and geochemically dynamic subsurface crustal aquifer, an environment thought to be energy and nutrient limited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vairavmurthy, M.A.; Zhou, Weiqing
1995-04-01
The oxidation H{sub 2}S to sulfate involves a net transfer of eight electrons and occurs through the formation of several partially oxidized intermediates with oxidation states ranging from {minus}1 to +5. Known intermediates include elemental sulfur (oxidation state 0), polysulfides (outer sulfur: {minus}1, inner sulfur: 0), sulfite (+4) and thiosulfate (outer sulfur: {minus}1, inner sulfur: +5). A noticeable gap in this series of intermediates is that of a +2 sulfur oxidation state oxoacid/oxoanion species, which was never detected experimentally. Here, we present evidence of the transient existence of +2 oxidation state intermediate in the Ni(II)-catalyzed oxidation of aqueous sulfide. X-raymore » absorption near-edge structure (XANES) spectroscopy and Fourier-transform-infrared (FT-IR) spectroscopy were used to characterize this species; they suggest that it has a sulfoxylate ion (SO{sub 2}{sup 2{minus}}) structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, E.; Suzuki, S.; Fukuda, R.
Pharmacological means to accelerate the elimination of Cs-137 introduced into the living organism are studied. Male dd mice and male Wistar rats are individually housed in metal metabolism cages, and provided with commercial solid diet and water. Radioactivity is determined in urine, and feces for 24 hours and 4 days after subcutaneous injection of a tracer dose of Cs/sup 137/Cl, and in various organs after sacrifices at the ends of these periods. Effects of various chemicals on these results are compared. Twenty five chemicals were investigated. They include inorganic Na salts such as Na bicarbonate, Na carbonate, Na suliate, Namore » thiosulfate, primary and secondary Na phosphates, and organic Na salts such as Na lactate, lactated Ringer, Na acetate, Na glucuronate, Na salt of thioctic acid, ATP Na, and Na pentobarbiturate. Na bicarbonate, Na phosphates, Na sulfate, and Na thiosulfate are found as eifective, especially Na bicarbonate, K bicarbonate shows scarcely any effect, nor do other K salts. It is therefore assumed that Cs will exchange with Na ion in the tubular cells. LiCl is found to accelerate the excretion of Cs-137 from mice and rats. This result is of interest with respect to the periodic law, since it is known that for the elimination of Sr-90, Ca salts are ineffective or slightly effective, whereas Mg salts are effective. Of the diuretics, chlorothiazide, which is considered to increase the excretion of K, does nor increase the elimination of Cs-137 in any dose. This result is different from that of Diamox, a diuretic of the same nature. Cardiac glycosides and xanthine derivatives are effective. Out of digitalis preparations, Digitamin (Shionogi), Digilanogen C (Fujisawa), Digosin (Chugai) are effective. Digitoxin and strospeside are ineffective, and after their application, retention of Cs-137 is observed in the heart muscle. G- strophanthin is ineffective in a smaller dose, but increases the elimination of Cs-137 in a larger dose. Caffeine and sodium benzoate are also effective, but theophylline and theobromine are not so effective. Out of osmotic diuretics, Na ferrocyanate alone increases fecal excretion of Cs-137, and decreases the retention in the body. NaI and KI have scarcely any effect. Phosphomolybdic acid inhibits the elimination of Cs-137 and increases its retention. The above mentioned effective chemicals are also investigated for effects on the elimination of Sr-90. (JAIF)« less
Sulfur speciation and sulfide oxidation in the water column of the Black Sea
NASA Astrophysics Data System (ADS)
Luther, George W., III; Church, Thomas M.; Powell, David
We have applied sulfur speciation techniques to understand the chemistry and cycling of sulfur in Black Sea waters. The only reduced dissolved inorganic sulfur species detected (above the low minimum detection limits of the voltammetric methods employed) in the water column was hydrogen sulfide. The maximum concentration of sulfide (423 μM) is similar to previous reports. Using a cathodic stripping square wave voltammetry (CSSWV) method for nanomolar levels of sulfide, we determined the precise boundary between the "free" hydrogen sulfide (sulfidic) zone and the upper (oxic/suboxic) water column at the two stations studied. This boundary has apparently moved up by about 50 m in the past 20 years. Our results help demonstrate three chemically distinct zones of water in the central basin of the Black Sea: (1) the oxic [0-65 m], (2) the anoxic/nonsulfidic [65-100 m] and (3) the sulfidic [>100 m]. Sulfide bound to metals ("complexed" sulfide) is observed in both the oxic and anoxic/nonsulfidic zones of the water column. This supports previous studies on metal sulfide forms. From the electrochemical data, it is possible to estimate the strength of the complexation of sulfide to metals (log K = 10 to 11). Thiosulfate and sulfite were below our minimum detectable limit (MDL) of 50 nM using CSSWV. Elemental sulfur (MDL 5 nM) was detected below the onset of the hydrogen sulfide zone (90-100 m) with a maximum of 30-60 nM near 120 m. The sulfur speciation results for the Black Sea are lower by one order of magnitude or more than other marine systems such as the Cariaco Trench and salt marshes. New HPLC techniques were applied to detect thiols at submicromolar levels. The presence of thiols (2-mercaptoethylamine, 2-mercaptoethanol, N-acetylcysteine and glutathione) is correlated with the remineralization of organic matter at the oxic and anoxic/nonsulfidic interface. Water samples collected from the upper 50 m of the sulfidic zone showed significant sulfide oxidation on storage onboard ship even though they were filtered (0.2 μm) and handled to exclude oxygen contamination. Chemical additives such as formaldehyde, glutaraldehyde, hydroxylamine and ascorbic acid prevented or retarded the sulfide loss. Thiosulfate and azide did not inhibit sulfide loss. These studies suggest an anaerobic chemical oxidation of sulfide rather than a biological oxidation on stored and filtered samples.
The Role of Sulfide Oxidation Impairment in the Pathogenesis of Primary CoQ Deficiency
Quinzii, Catarina M.; Luna-Sanchez, Marta; Ziosi, Marcello; Hidalgo-Gutierrez, Agustin; Kleiner, Giulio; Lopez, Luis C.
2017-01-01
Coenzyme Q (CoQ) is a lipid present in all cell membranes. One of the multiple metabolic functions of CoQ is to transport electrons in the reaction catalyzed by sulfide:quinone oxidoreductase (SQOR), the first enzyme of the oxidation pathway of sulfides (hydrogen sulfide, H2S). Early evidence of a defect in the metabolism of H2S in primary CoQ deficiency came from yeast studies in Schizosaccharomyces pombe strains defective for dps1 and ppt1 (homologs of PDSS1 and COQ2, respectively), which have H2S accumulation. Our recent studies in human skin fibroblasts and in murine models of primary CoQ deficiency show that, also in mammals, decreased CoQ levels cause impairment of H2S oxidation. Patient fibroblasts carrying different mutations in genes encoding proteins involved in CoQ biosynthesis show reduced SQOR activity and protein levels proportional to the levels of CoQ. In Pdss2kd/kd mice, kidney, the only organ clinically affected, shows reduced SQOR levels and downstream enzymes, accumulation of H2S, and glutathione depletion. Pdss2kd/kd mice have also low levels of thiosulfate in plasma and urine, and increased C4–C6 acylcarnitines in blood, due to inhibition of short-chain acyl-CoA dehydrogenase. Also in Coq9R239X mice, the symptomatic organ, cerebrum, shows accumulation of H2S, reduced SQOR, increase in thiosulfate sulfurtransferase and sulfite oxidase, and reduction in the levels of glutathione and glutathione enzymes, leading to alteration of the biosynthetic pathways of glutamate, serotonin, and catecholamines. Coq9R239X mice have also reduced blood pressure, possible consequence of H2S-induced vasorelaxation. Since liver is not clinically affected in Pdss2 and Coq9 mutant mice, the effects of the impairment of H2S oxidation in this organ were not investigated, despite its critical role in metabolism. In conclusion, in vitro and in vivo studies of CoQ deficient models provide evidence of tissue-specific H2S oxidation impairment, an additional pathomechanism that should be considered in the understanding and treatment of primary CoQ deficiency. PMID:28790927
Peeters, J E; Mazás, E A; Masschelein, W J; Villacorta Martiez de Maturana, I; Debacker, E
1989-01-01
Demineralized water was seeded with controlled numbers of oocysts of Cryptosporidium parvum purified from fresh calf feces and subjected to different treatments with ozone or chlorine dioxide. The disinfectants were neutralized by sodium thiosulfate, and neonatal mice were inoculated intragastrically and sacrificed 7 days later for enumeration of oocyst production. Preliminary trials indicated that a minimum infection level of 1,000 oocysts (0.1-ml inoculum) per mouse was necessary to induce 100% infection. Treatment of water containing 10(4) oocysts per ml with 1.11 mg of ozone per liter (concentration at time zero [C0]) for 6 min totally eliminated the infectivity of the oocysts for neonatal mice. A level of 2.27 mg of ozone per liter (C0) was necessary to inactivate water containing 5 x 10(5) oocysts per ml within 8 min. Also, 0.4 mg of chlorine dioxide per liter (C0) significantly reduced infectivity within 15 min of contact, although some oocysts remained viable. PMID:2764564
Dubinina, G A; Grabovich, M Iu; Chernyshova, Iu Iu
2004-01-01
Two spirochete strains isolated earlier from "Thiodendron" bacterial sulfur mats grew better under microaerobic (0.3-0.5 mg O2/l) than under anaerobic conditions. The microaerobic growth of these strains was accompanied by a twofold increase in the cell yield and the efficiency of glucose utilization, despite an amount of ATP (and hence glucose) was spent in this case for the synthesis of exopolysaccharides. Glucose metabolism under microaerobic conditions gave rise to more oxidized products (acetate and carbon dioxide) than under anaerobic conditions (formate, ethanol, pyruvate, and hydrogen). The paper considers two putative mechanisms implemented by aerotolerant spirochetes: adaptive (the use of a more efficient pathway of glucose catabolism) and protective (an enhanced synthesis of exopolysaccharides and the reduction of hydrogen peroxide by the reduced sulfur compounds thiosulfate and sulfide, yielding elemental sulfur). The formation of "Thiodendron" bacterial sulfur mats in saltwater environments is also discussed.
Microbial colonization and growth on metal sulfides and other mineral surfaces
NASA Technical Reports Server (NTRS)
Caldwell, D.; Sundquist, A. R.; Lawrence, J.; Doyle, A. P.
1985-01-01
To determine whether a bacterial film forms on sulfur minerals in situ, various sulfur containing and other minerals were incubated in Penitencia Creek. The rate of cell growth and attachment within the surface microenvironment of mineral surfaces was also determined. To determine whether surfaces enriched with soluble sulfur substrates (cysteine, glutathione, thioglycolate, sulfite, and thiosulfate) increased the rate of growth or attachment of natural communities, membrane enrichments were incubated. These rates were determined as described by Caldwell et al. (1981, 1983). The growth of Pseudomonas fluorescens, a heterotrophic sulfur oxidizer, was studied in batch cell suspensions and in continuous culture. In batch culture the cells were oxygen limited (growth rate 0.33 per hour under oxygen limitations and 0.52 per hour when vigorously aerated). Growth within the film was glucose limited. Several behavioral phenomena were observed for cells growing within the hydrodynamic boundary layer. Despite a flow of 10 cm per second in the environment, the bacteria were able to move freely in both directions within the hydrodynamic boundary layer.
Microporous novolac-derived carbon beads/sulfur hybrid cathode for lithium-sulfur batteries
NASA Astrophysics Data System (ADS)
Choudhury, Soumyadip; Krüner, Benjamin; Massuti-Ballester, Pau; Tolosa, Aura; Prehal, Christian; Grobelsek, Ingrid; Paris, Oskar; Borchardt, Lars; Presser, Volker
2017-07-01
Novolac-derived nanoporous carbon beads were used as conductive matrix for lithium-sulfur battery cathodes. We employed a facile self-emulsifying synthesis to obtain sub-micrometer novolac-derived carbon beads with nanopores. After pyrolysis, the carbon beads showed already a specific surface area of 640 m2 g-1 which was increased to 2080 m2 g-1 after physical activation. The non-activated and the activated carbon beads represent nanoporous carbon with a medium and a high surface area, respectively. This allows us to assess the influence of the porosity on the electrochemical performance of lithium-sulfur battery cathodes. The carbon/sulfur hybrids were obtained from two different approaches of sulfur infiltration: melt-infusion of sulfur (annealing) and in situ formation of sulfur from sodium thiosulfate. The best performance (∼880 mAh gsulfur-1 at low charge rate; 5th cycle) and high performance stability (>600 mAh gsulfur-1 after 100 cycles) were found for the activated carbon beads when using melt infusion of sulfur.
Rennels, M B; Levine, M M; Daya, V; Angle, P; Young, C
1980-09-01
The occurrence of human cholera along the Gulf of Mexico and the isolation of Vibrio cholerae O1 from the Gulf and Chesapeake Bay make it imperative that microbiology laboratories along estuaries develop the capabilities to culture for these pathogens. In attempts to devise a simplified but efficient culture procedure, a selective medium, thiosulfate-citrate-bile salts-sucrose (TCBS) agar, was compared with a nonselective medium, gelatin agar (GA), and the utility of enrichment was examined. TCBS agar detected 99% of the stools found to be positive by all techniques combined, whereas GA identified only 80%. Of acute diarrheal stools, 96% were positive on direct plating, whereas only 66% of formed stools containing V. cholerae were detected by direct plating. Stools from patients with acute diarrhea can be plated directly into TCBS agar alone; stools from persons shedding low numbers of organisms (such as contacts, carriers, or patients receiving antibiotics) should be incubated first in an enrichment broth and then on TCBS agar.
Kappler, Ulrike; Davenport, Karen W.; Beatson, Scott; ...
2016-06-03
Thioalkalimicrobium cyclicum (Sorokin et al. 2002) is a member of the family Piscirickettsiaceae in the order Thiotrichales. The -proteobacterium belongs to the colourless sulfur-oxidizing bacteria isolated from saline soda lakes with stable alkaline pH, such as Lake Mono (California) and Soap Lake (Washington State). Strain ALM 1 T is characterized by its adaptation to life in the oxic/anoxic interface towards the less saline aerobic waters (mixolimnion) of the stable stratified alkaline salt lakes. Strain ALM 1 T is the first representative of the genus Thioalkalimicrobium whose genome sequence has been deciphered and the fourth genome sequence of a type strainmore » of the Piscirickettsiaceae to be published. As a result, the 1,932,455 bp long chromosome with its 1,684 protein-coding and 50 RNA genes was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program (CSP) 2008.« less
ISOLATION AND PROPERTIES OF AN IRON-OXIDIZING THIOBACILLUS
Razzell, W. E.; Trussell, P. C.
1963-01-01
Razzell, W. E. (British Columbia Research Council, Vancouver, Canada) and P. C. Trussell. Isolation and properties of an iron-oxidizing Thiobacillus. J. Bacteriol. 85:595–603. 1963. — An organism isolated from acidic copper-leaching waters has been shown to oxidize ferrous ions, sulfur, and metallic sulfides but exhibit peculiar responses to thiosulfate. The name Thiobacillus ferrooxidans has been used to describe it. A pH of 2.5 is optimal for growth on iron, sulfur, and metallic sulfides, but cells free from iron can be obtained from growth at pH 1.6, and sulfur cultures adjusted to pH 5.5 readily attain a pH of 1.8. A stationary cultivation procedure appears superior to percolation techniques for studying the oxidation of finely divided metallic sulfides. Concentrations of soluble copper in excess of 1 g per liter were obtained from chalcopyrite in less than 4 weeks. Chalcocite oxidation proceeded in the absence of iron. Sodium chloride inhibits iron oxidation without preventing oxidation of metallic sulfides by the organism. PMID:14042937
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kappler, Ulrike; Davenport, Karen W.; Beatson, Scott
Thioalkalimicrobium cyclicum (Sorokin et al. 2002) is a member of the family Piscirickettsiaceae in the order Thiotrichales. The -proteobacterium belongs to the colourless sulfur-oxidizing bacteria isolated from saline soda lakes with stable alkaline pH, such as Lake Mono (California) and Soap Lake (Washington State). Strain ALM 1 T is characterized by its adaptation to life in the oxic/anoxic interface towards the less saline aerobic waters (mixolimnion) of the stable stratified alkaline salt lakes. Strain ALM 1 T is the first representative of the genus Thioalkalimicrobium whose genome sequence has been deciphered and the fourth genome sequence of a type strainmore » of the Piscirickettsiaceae to be published. As a result, the 1,932,455 bp long chromosome with its 1,684 protein-coding and 50 RNA genes was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program (CSP) 2008.« less
Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales.
Daly, Rebecca A; Borton, Mikayla A; Wilkins, Michael J; Hoyt, David W; Kountz, Duncan J; Wolfe, Richard A; Welch, Susan A; Marcus, Daniel N; Trexler, Ryan V; MacRae, Jean D; Krzycki, Joseph A; Cole, David R; Mouser, Paula J; Wrighton, Kelly C
2016-09-05
Hydraulic fracturing is the industry standard for extracting hydrocarbons from shale formations. Attention has been paid to the economic benefits and environmental impacts of this process, yet the biogeochemical changes induced in the deep subsurface are poorly understood. Recent single-gene investigations revealed that halotolerant microbial communities were enriched after hydraulic fracturing. Here, the reconstruction of 31 unique genomes coupled to metabolite data from the Marcellus and Utica shales revealed that many of the persisting organisms play roles in methylamine cycling, ultimately supporting methanogenesis in the deep biosphere. Fermentation of injected chemical additives also sustains long-term microbial persistence, while thiosulfate reduction could produce sulfide, contributing to reservoir souring and infrastructure corrosion. Extensive links between viruses and microbial hosts demonstrate active viral predation, which may contribute to the release of labile cellular constituents into the extracellular environment. Our analyses show that hydraulic fracturing provides the organismal and chemical inputs for colonization and persistence in the deep terrestrial subsurface.
Wörner, Michael; Lioubashevski, Oleg; Basel, Matthew T; Niebler, Sandra; Gogritchiani, Eliso; Egner, Nicole; Heinz, Christian; Hoferer, Jürgen; Cipolloni, Michela; Janik, Katharine; Katz, Evgeny; Braun, Andre M; Willner, Itamar; Niederweis, Michael; Bossmann, Stefan H
2007-06-01
Nanostructures with long-term stability at the surface of gold electrodes are generated by reconstituting the porin MspA from Mycobacterium smegmatis into a specially designed monolayer of long-chain lipid surfactant on gold. Tailored surface coverage of gold electrodes with long-chain surfactants is achieved by electrochemically assisted deposition of organic thiosulfates (Bunte salts). The subsequent reconstitution of the octameric-pore MspA is guided by its extraordinary self-assembling properties. Importantly, electrochemical reduction of copper(II) yields copper nanoparticles within the MspA nanopores. Electrochemical impedance spectroscopy, reflection electron microscopy, and atomic force microscopy (AFM) show that: 1) the MspA pores within the self-assembled monolayer (SAM) are monodisperse and electrochemically active, 2) MspA reconstitutes in SAMs and with a 10-nm thickness, 3) AFM is a suitable method to detect pores within SAMs, and 4) the electrochemical reduction of Cu2+ to Cu0 under overpotential conditions starts within the MspA pores.
Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, Rebecca A.; Borton, Mikayla A.; Wilkins, Michael J.
Hydraulic fracturing is the industry standard for extracting hydrocarbons from shale formations. Attention has been paid to the economic benefits and environmental impacts of this process, yet the biogeochemical changes induced in the deep subsurface are poorly understood. Recent single-gene investigations revealed that halotolerant microbial communities were enriched after hydraulic fracturing. Here the reconstruction of 31 unique genomes coupled to metabolite data from the Marcellus and Utica shales revealed that methylamine cycling supports methanogenesis in the deep biosphere. Fermentation of injected chemical additives also sustains long-term microbial persistence, while sulfide generation from thiosulfate represents a poorly recognized corrosion mechanism inmore » shales. Extensive links between viruses and microbial hosts demonstrate active viral predation, which may contribute to the release of labile cellular constituents into the extracellular environment. Our analyses show that hydraulic fracturing provides the organismal and chemical inputs for colonization and persistence in the deep terrestrial subsurface.« less
Sulfate-Reducing Bacterium with Unusual Morphology and Pigment Content
Jones, H. E.
1971-01-01
A dissimilatory sulfate-reducing bacterium was isolated which differed in morphology and pigment content from previously described species. The organism was mesophilic, obligately anaerobic, gram-negative, nonsporulating, long, and slender with one polar flagellum. Whole cells fluoresced red at neutral pH when excited with light at 365 nm owing to the presence of a pink pigment. Desulfoviridin was present. Reduced minus oxidized spectra of whole cells showed peaks in the position of a c-type cytochrome characteristic of Desulfovibrio species and peaks at about 629 and 603 nm. CO difference spectra showed the presence of a CO-binding pigment with a peak at 593 nm. Lactate and pyruvate supported growth in the presence of sulfate but not in its absence. Sulfate, sulfite, and thiosulfate served as electron acceptors for growth. Hydrogenase was present. The deoxyribonucleic acid had a buoyant density of 1.722 g/cm3 and a guanosine plus cystosine molar percentage of total bases calculated by two different methods of 61.2 or 63.2. Images PMID:4929856
Electricity generation by Rhodopseudomonas palustris DX-1.
Xing, Defeng; Zuo, Yi; Cheng, Shaoan; Regan, John M; Logan, Bruce E
2008-06-01
Bacteria able to generate electricity in microbial fuel cells (MFCs) are of great interest, but there are few strains capable of high power production in these systems. Here we report that the phototrophic purple nonsulfur bacterium Rhodopseudomonas palustris DX-1, isolated from an MFC, produced electricity at higher power densities (2720 +/- 60 mW/m2) than mixed cultures in the same device. While Rhodopseudomonas species are known for their ability to generate hydrogen, they have not previously been shown to generate power in an MFC, and current was generated without the need for light or hydrogen production. Strain DX-1 utilizes a wide variety of substrates (volatile acids, yeast extract, and thiosulfate) for power production in different metabolic modes, making it highly useful for studying power generation in MFCs and generating power from a range of simple and complex sources of organic matter. These results demonstrate that a phototrophic purple nonsulfur bacterium can efficiently generate electricity by direct electron transfer in MFCs, providing another model microorganism for MFC investigations.
Metallization of Kevlar fibers with gold.
Little, Brian K; Li, Yunfeng; Cammarata, V; Broughton, R; Mills, G
2011-06-01
Electrochemical gold plating processes were examined for the metallization of Kevlar yarn. Conventional Sn(2+)/Pd(2+) surface activation coupled with electroless Ni deposition rendered the fibers conductive enough to serve as cathodes for electrochemical plating. The resulting coatings were quantified gravimetrically and characterized via adhesion tests together with XRD, SEM, TEM; the coatings effect on fiber strength was also probed. XRD data showed that metallic Pd formed during surface activation whereas amorphous phases and trace amounts of pure Ni metal were plated via the electroless process. Electrodeposition in a thiosulfate bath was the most efficient Au coating process as compared with the analogous electroless procedure, and with electroplating using a commercial cyanide method. Strongly adhering coatings resulted upon metallization with three consecutive electrodepositions, which produced conductive fibers able to sustain power outputs in the range of 1 W. On the other hand, metallization affected the tensile strength of the fiber and defects present in the metal deposits make questionable the effectiveness of the coatings as protective barriers. © 2011 American Chemical Society
Effect of nitrite on a thermophilic, methanogenic consortium from an oil storage tank.
Kaster, Krista M; Voordouw, Gerrit
2006-10-01
Samples from an oil storage tank (resident temperature 40 to 60 degrees C), which experienced unwanted periodic odorous gas emissions, contained up to 2,400/ml of thermophilic, lactate-utilizing, sulfate-reducing bacteria. Significant methane production was also evident. Enrichments on acetate gave sheathed filaments characteristic of the acetotrophic methanogen Methanosaeta thermophila of which the presence was confirmed by determining the PCR-amplified 16S rDNA sequence. 16S rDNA analysis of enrichments, grown on lactate- and sulfate-containing media, indicated the presence of bacteria related to Garciella nitratireducens, Clostridium sp. and Acinetobacter sp. These sulfidogenic enrichments typically produced sulfide to a maximum concentration of 5-7 mM in media containing excess lactate and 10 mM sulfate or thiosulfate. Both the production of sulfide and the consumption of acetate by the enrichment cultures were inhibited by low concentrations of nitrite (0.5-1.0 mM). Hence, addition of nitrite may be an effective way to prevent odorous gas emissions from the storage tank.
Branco Dos Santos, Filipe; Olivier, Brett G; Boele, Joost; Smessaert, Vincent; De Rop, Philippe; Krumpochova, Petra; Klau, Gunnar W; Giera, Martin; Dehottay, Philippe; Teusink, Bas; Goffin, Philippe
2017-08-25
Whooping cough is a highly-contagious respiratory disease caused by Bordetella pertussi s. Despite vaccination, its incidence has been rising alarmingly, and yet, the physiology of B. pertussis remains poorly understood. We combined genome-scale metabolic reconstruction, a novel optimization algorithm and experimental data to probe the full metabolic potential of this pathogen, using strain Tohama I as a reference. Experimental validation showed that B. pertussis secretes a significant proportion of nitrogen as arginine and purine nucleosides, which may contribute to modulation of the host response. We also found that B. pertussis can be unexpectedly versatile, being able to metabolize many compounds while displaying minimal nutrient requirements. It can grow without cysteine - using inorganic sulfur sources such as thiosulfate - and it can grow on organic acids such as citrate or lactate as sole carbon sources, providing in vivo demonstration that its TCA cycle is functional. Although the metabolic reconstruction of eight additional strains indicates that the structural genes underlying this metabolic flexibility are widespread, experimental validation suggests a role of strain-specific regulatory mechanisms in shaping metabolic capabilities. Among five alternative strains tested, three were shown to grow on substrate combinations requiring a functional TCA cycle, but only one could use thiosulfate. Finally, the metabolic model was used to rationally design growth media with over two-fold improvements in pertussis toxin production. This study thus provides novel insights into B. pertussis physiology, and highlights the potential, but also limitations of models solely based on metabolic gene content. IMPORTANCE The metabolic capabilities of Bordetella pertussis - the causative agent of whooping cough - were investigated from a systems-level perspective. We constructed a comprehensive genome-scale metabolic model for B. pertussis , and challenged its predictions experimentally. This systems approach shed light on new potential host-microbe interactions, and allowed to rationally design novel growth media with over two-fold improvements in pertussis toxin production. Most importantly, we also uncovered the potential for metabolic flexibility of B. pertussis (significantly larger range of substrates than previously alleged; novel active pathways allowing growth in minimal, nearly mineral nutrient combinations where only the carbon source must be organic), although our results also highlight the importance of strain-specific regulatory determinants in shaping metabolic capabilities. Deciphering the underlying regulatory mechanisms appears crucial for a comprehensive understanding of B. pertussis 's lifestyle and the epidemiology of whooping cough. The contribution of metabolic models in this context will require the extension of the genome-scale metabolic model to integrate this regulatory dimension. Copyright © 2017 Branco dos Santos et al.
Accelerated corrosion of stainless steel in thiocyanate-containing solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pistorius, P Chris; Li, Wen
2012-09-19
It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, whichmore » is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide (visible as a black corrosion product) forms during anodic dissolution. The sulfide is electronically conductive, and gives an increase of several orders of magnitude in the electrode capacitance; the sulfide also causes anodic activation to persist after the pure metals and steels were removed from the thiocyanate-containing electrolyte and transferred to a thiocyanate-free electrolyte. The main practical implications of this work are that low concentrations of reduced sulfur compounds strongly affect anodic dissolution of stainless steels, and that selecting steels with elevated concentrations of chromium, nickel or molybdenum would serve to limit the anodic dissolution rate in the presence of reduced sulfur compounds.« less
Olivier, Brett G.; Boele, Joost; Smessaert, Vincent; De Rop, Philippe; Krumpochova, Petra; Klau, Gunnar W.; Giera, Martin; Dehottay, Philippe; Goffin, Philippe
2017-01-01
ABSTRACT Whooping cough is a highly contagious respiratory disease caused by Bordetella pertussis. Despite widespread vaccination, its incidence has been rising alarmingly, and yet, the physiology of B. pertussis remains poorly understood. We combined genome-scale metabolic reconstruction, a novel optimization algorithm, and experimental data to probe the full metabolic potential of this pathogen, using B. pertussis strain Tohama I as a reference. Experimental validation showed that B. pertussis secretes a significant proportion of nitrogen as arginine and purine nucleosides, which may contribute to modulation of the host response. We also found that B. pertussis can be unexpectedly versatile, being able to metabolize many compounds while displaying minimal nutrient requirements. It can grow without cysteine, using inorganic sulfur sources, such as thiosulfate, and it can grow on organic acids, such as citrate or lactate, as sole carbon sources, providing in vivo demonstration that its tricarboxylic acid (TCA) cycle is functional. Although the metabolic reconstruction of eight additional strains indicates that the structural genes underlying this metabolic flexibility are widespread, experimental validation suggests a role of strain-specific regulatory mechanisms in shaping metabolic capabilities. Among five alternative strains tested, three strains were shown to grow on substrate combinations requiring a functional TCA cycle, but only one strain could use thiosulfate. Finally, the metabolic model was used to rationally design growth media with >2-fold improvements in pertussis toxin production. This study thus provides novel insights into B. pertussis physiology and highlights the potential, but also the limitations, of models based solely on metabolic gene content. IMPORTANCE The metabolic capabilities of Bordetella pertussis, the causative agent of whooping cough, were investigated from a systems-level perspective. We constructed a comprehensive genome-scale metabolic model for B. pertussis and challenged its predictions experimentally. This systems approach shed light on new potential host-microbe interactions and allowed us to rationally design novel growth media with >2-fold improvements in pertussis toxin production. Most importantly, we also uncovered the potential for metabolic flexibility of B. pertussis (significantly larger range of substrates than previously alleged; novel active pathways allowing growth in minimal, nearly mineral nutrient combinations where only the carbon source must be organic), although our results also highlight the importance of strain-specific regulatory determinants in shaping metabolic capabilities. Deciphering the underlying regulatory mechanisms appears to be crucial for a comprehensive understanding of B. pertussis's lifestyle and the epidemiology of whooping cough. The contribution of metabolic models in this context will require the extension of the genome-scale metabolic model to integrate this regulatory dimension. PMID:28842544
In vivo screening of candidate pretreatment compounds against cyanide using mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiser, R.C.; Olson, C.T.; Menton, R.G.
1993-05-13
An in vivo screening procedure was established at Battelle's Medical Research and Evaluation Facility (MREF) to evaluate the efficacy of candidate pretreatment compounds in mice challenged with the blood agent, sodium cyanide (NaCN). Male albino mice of ICR outbred stock weighing between 22.5 and 27.5 g are challenged by intramuscular (i.m.) injection, at a volume of 0.5 mL/kg, of a dose of NaCN twice the LD50 of untreated mice as determined on that day of testing. Candidate drugs are tested at fractions of their LD50 or their limit of solubility in the most optimum vehicle and given intraperitoneally (i.p.) tomore » separate groups of mice at either 60 or 15 min prior to NaCN challenge. Sodium thiosulfate (1000 mg/kg)/sodium nitrite (100 mg/kg) controls are injected i.p. only at 60 min prior to challenge. A test compound is deemed effective if, at any of three concentrations tested, or at either pretreatment time, it is statistically more efficacious in preventing lethality than is a negative control substance (candidate compound vehicle).« less
Bernius, Jean; Kraus, Sabine; Hughes, Sandra; Margraf, Dominik; Bartos, James; Newlon, Natalie; Sieper, Hans-Peter
2014-01-01
Asingle-laboratory validation study was conducted for the determination of total sulfur (S) in a variety of common, inorganic fertilizers by combustion. The procedure involves conversion of S species into SO2 through combustion at 1150 degrees C, absorption then desorption from a purge and trap column, followed by measurement by a thermal conductivity detector. Eleven different validation materials were selected for study, which included four commercial fertilizer products, five fertilizers from the Magruder Check Sample Program, one reagent grade product, and one certified organic reference material. S content ranged between 1.47 and 91% as sulfate, thiosulfate, and elemental and organically bound S. Determinations of check samples were performed on 3 different days with four replicates/day. Determinations for non-Magruder samples were performed on 2 different days. Recoveries ranged from 94.3 to 125.9%. ABS SL absolute SD among runs ranged from 0.038 to 0.487%. Based on the accuracy and precision demonstrated here, it is recommended that this method be collaboratively studied for the determination of total S in fertilizers.
Ranchou-Peyruse, Magali; Goñi-Urriza, Marisol; Guignard, Marion; Goas, Marjorie; Ranchou-Peyruse, Anthony; Guyoneaud, Rémy
2018-05-01
The strain BerOc1 T was isolated from brackish sediments contaminated with hydrocarbons and heavy metals. This strain has been used as a model strain of sulfate-reducer to study the biomethylation of mercury. The cells are vibrio-shaped, motile and not sporulated. Phylogeny and physiological traits placed this strain within the genus Pseudodesulfovibrio. Optimal growth was obtained at 30 °C, 1.5 % NaCl and pH 6.0-7.4. The estimated G+C content of the genomic DNA was 62.6 mol%. BerOc1 T used lactate, pyruvate, fumarate, ethanol and hydrogen. Terminal electron acceptors used were sulfate, sulfite, thiosulfate and DMSO. Only pyruvate could be used without a terminal electron acceptor. The major fatty acids were C18 : 0, anteiso-C15 : 0, C16 : 0 and C18 : 1ω7. The name Pseudodesulfovibrio hydrargyri sp. nov. is proposed for the type strain BerOc1 T (DSM 10384 T =JCM 31820 T ).
Vetter, R.D.; Fry, B.
1998-01-01
Total sulfur (S(TOT)), elemental sulfur (S??) and sulfur-isotope compositions (??34S) of marine animals were analyzed to determine whether these chemical characteristics could help distinguish animals with a sulfur-based, thiotrophic nutrition from animals whose nutrition is based on methanotrophy or on more normal consumption of phytoplankton-derived organic matter. The presence of S??was almost entirely confined to the symbiont-containing tissues of thiotrophs, but was sometimes undetectable in thiotrophic species where sulfide availability was probably low. When S??contents were subtracted, the remaining tissue-sulfur concentrations were similar for all nutritional groups. ??34S values were typically lower for thiotrophs than for other groups, although there was overlap in methanotroph and thiotroph values at some sites. Field evidence supported the existence of small to moderate (1 to 10???)34S fractionations in the uptake of sulfides and metabolism of thiosulfate. In general, a total sulfur content of >3% dry weight, the presence of elemental sulfur, and ??34S values less than + 5??? can be used to infer a thiotrophic mode of nutrition.
Method for the recovery of silver from waste photographic fixer solutions
Posey, F.A.; Palko, A.A.
The method of the present invention is directed to the recovery of silver from spent photographic fixer solutions and for providing an effluent essentially silver-free that is suitable for discharge into commercial sewage systems. The present method involves the steps of introducing the spent photographic fixer solution into an alkaline hypochlorite solution. The oxidizing conditions of the alkaline hypochlorite solution are maintained during the addition of the fixer solution so that the silver ion complexing agents of thiosulfate and sulfite ions are effectively destroyed. Hydrazine monohydrate is then added to the oxidizing solution to form a reducing solution to effect the formation of a precipitate of silver which can be readily removed by filtration of decanting. Experimental tests indicate that greater than 99.99% of the original silver in the spent photographic fixer can be efficiently removed by practicing the present method. Also, the chemical and biological oxygen demand of the remaining effluent is significantly reduced so as to permit the discharge thereof into sewage systems at levels in compliance with federal and state environmental standards.
Sulfide oxidation under chemolithoautotrophic denitrifying conditions.
Cardoso, Ricardo Beristain; Sierra-Alvarez, Reyes; Rowlette, Pieter; Flores, Elias Razo; Gómez, Jorge; Field, Jim A
2006-12-20
Chemolithoautotrophic denitrifying microorganisms oxidize reduced inorganic sulfur compounds coupled to the reduction of nitrate as an electron acceptor. These denitrifiers can be applied to the removal of nitrogen and/or sulfur contamination from wastewater, groundwater, and gaseous streams. This study investigated the physiology and kinetics of chemolithotrophic denitrification by an enrichment culture utilizing hydrogen sulfide, elemental sulfur, or thiosulfate as electron donor. Complete oxidation of sulfide to sulfate was observed when nitrate was supplemented at concentrations equal or exceeding the stoichiometric requirement. In contrast, sulfide was only partially oxidized to elemental sulfur when nitrate concentrations were limiting. Sulfide was found to inhibit chemolithotrophic sulfoxidation, decreasing rates by approximately 21-fold when the sulfide concentration increased from 2.5 to 10.0 mM, respectively. Addition of low levels of acetate (0.5 mM) enhanced denitrification and sulfate formation, suggesting that acetate was utilized as a carbon source by chemolithotrophic denitrifiers. The results of this study indicate the potential of chemolithotrophic denitrification for the removal of hydrogen sulfide. The sulfide/nitrate ratio can be used to control the fate of sulfide oxidation to either elemental sulfur or sulfate. Copyright 2006 Wiley Periodicals, Inc.
The evolution of glutathione metabolism in phototrophic microorganisms
NASA Technical Reports Server (NTRS)
Fahey, Robert C.; Buschbacher, Ralph M.; Newton, Gerald L.
1988-01-01
The low molecular weight thiol composition of a variety of phototropic microorganisms is examined in order to ascertain how evolution of glutathione (GSH) production is related to the evolution of oxygenic photosynthesis. Cells were extracted in the presence of monobromobimane (mBBr) to convert thiols (RSH) to fluorescent derivatives (RSmB) which were analyzed by high performance liquid chromatography (HPLC). Significant levels of GSH were not found in green sulfur bacteria. Substantial levels were present in purple bacteria, cyanobacteria, and eukaryotic algae. Other thiols measured included cysteine, gamma-glutamylcysteine, thiosulfate, coenzyme A, and sulfide. Many of the organisms also exhibited a marked ability to reduce mBBr to syn-(methyl,methyl)bimane, an ability which was quenched by treatment with 2-pyridyl disulfide or 5,5 prime-bisdithio - (2-nitrobenzoic acid) prior to reaction with mBBr. These observations indicate the presence of a reducing system capable of electron transfer to mBBr and reduction of reactive disulfides. The distribution of GSH in phototropic eubacteria indicates that GSH synthesis evolved at or around the time that oxygenic photosynthesis evolved.
Extravasation management: clinical update.
Schulmeister, Lisa
2011-02-01
To present a clinical update on the prevention, detection, and evidence-based management of vesicant chemotherapy extravasations. Journal articles, published and unpublished case reports, personal experience. In the 4 years that have elapsed since the publication of the original article, much more is known about vesicant chemotherapy extravasation, and effective evidence-based treatments now are available. The antidotes sodium thiosulfate for mechlorethamine extravasations and hyaluronidase for plant alkaloid extravasations are recommended by the manufacturers of these vesicants and cited in nursing guidelines. The anthracycline extravasation treatment dexrazoxane for injection, the first and only extravasation treatment with proven effectiveness, is now available as Totect (dexrazoxane; TopoTarget USA, Rockaway, NJ, USA) in the US and Savene (SpePharm, Amsterdam, The Netherlands) in Europe. Nurses who administer vesicant chemotherapy agents need to be aware of the most current evidence (or lack of evidence) for various types of extravasation treatment. Well-informed nurses are patient advocates and instrumental in detecting, managing, and documenting extravasations. Most importantly, nurses play a key role in preventing vesicant chemotherapy extravasations. Copyright © 2011 Elsevier Inc. All rights reserved.
Method for the recovery of silver from waste photographic fixer solutions
Posey, Franz A.; Palko, Aloysius A.
1984-01-01
The method of the present invention is directed to the recovery of silver from spent photographic fixer solutions and for providing an effluent essentially silver-free that is suitable for discharge into commercial sewage systems. The present method involves the steps of introducing the spent photographic fixer solution into an alkaline hypochlorite solution. The oxidizing conditions of the alkaline hypochlorite solution are maintained during the addition of the fixer solution so that the silver ion complexing agents of thiosulfate and sulfite ions are effectively destroyed. Hydrazine monohydrate is then added to the oxidizing solution to form a reducing solution to effect the formation of a precipitate of silver which can be readily removed by filtration or decanting. Experimental tests indicate that greater than 99.99% of the original silver in the spent photographic fixer can be efficiently removed by practicing the present method. Also, the chemical and biological oxygen demand of the remaining effluent is significantly reduced so as to permit the discharge thereof into sewage systems at levels in compliance with federal and state environmental standards.
Beller, Harry R.; Zhou, Peng; Jewell, Talia N. M.; ...
2016-07-05
Chemolithoautotrophic bacteria that oxidize reduced sulfur compounds, such as H 2 S, while fixing CO 2 are an untapped source of renewable bioproducts from sulfide-laden waste, such as municipal wastewater. In this study, we report engineering of the chemolithoautotrophic bacterium Thiobacillus denitrificans to produce up to 52-fold more fatty acids than the wild-type strain when grown with thiosulfate and CO 2 . A modified thioesterase gene from E. coli ('tesA) was integrated into the T. denitrificans chromosome under the control of P kan or one of two native T. denitrificans promoters. The relative strength of the two native promoters asmore » assessed by fatty acid production in engineered strains was very similar to that assessed by expression of the cognate genes in the wild-type strain. This proof-of-principle study suggests that engineering sulfide-oxidizing chemolithoautotrophic bacteria to overproduce fatty acid-derived products merits consideration as a technology that could simultaneously produce renewable fuels/chemicals as well as cost-effectively remediate sulfide-contaminated wastewater.« less
METHODS FOR DETERMINING SMALL AMOUNTS OF NIOBIUM AND TANTALUM IN ORES (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bykova, V.S.; Skrizhinskaya, V.I.
1960-01-01
Several current colorimetric methods for determining Nb and Ta were evaluated by comparing the results obtained from analyzing artificial mixtures and minerals, such as loparite, tantalite-columbite, perovskite, pyrochlore, cassiterite-tantalite and Ti-bearing minerals such as sphene. A modification of the thiosulfate method had a sensitivity of 0.05% Nb and was found useful when the sample contained less than 1% Ti. The dimethyl fluorene method for Ta was sensitive to 0.002% and could be used only if most of the Ti was previously removed from the sample. The pyrogallol extraction method, based on the extraction of complex Ta fluoride wtth cyclohexane, presentedmore » a sensitivity of 0.01% of Ta, similar to the pyrogallol-tannin method used for both elements. If their concentration is smaller, the samples must be analyzed subsequently according to the first two methods. The absorption method allows a determination of the two elements without separating them, if their concentration is higher than 0.5%, although the individual sensitivity of the method is 0.05% for Ta and 0.005% for Nb. (TTT)« less
NASA Astrophysics Data System (ADS)
Silva, Cesar R.; Simoni, Jose A.; Collins, Carol H.; Volpe, Pedro L. O.
1999-10-01
Ascorbic acid is suggested as the weighable compound for the standardization of iodine solutions in an analytical experiment in general chemistry. The experiment involves an iodometric titration in which iodine reacts with ascorbic acid, oxidizing it to dehydroascorbic acid. The redox titration endpoint is determined by the first iodine excess that is complexed with starch, giving a deep blue-violet color. The results of the titration of iodine solution using ascorbic acid as a calibration standard were compared with the results acquired by the classic method using a standardized solution of sodium thiosulfate. The standardization of the iodine solution using ascorbic acid was accurate and precise, with the advantages of saving time and avoiding mistakes due to solution preparation. The colorless ascorbic acid solution gives a very clear and sharp titration end point with starch. It was shown by thermogravimetric analysis that ascorbic acid can be dried at 393 K for 2 h without decomposition. This experiment allows general chemistry students to perform an iodometric titration during a single laboratory period, determining with precision the content of vitamin C in pharmaceutical formulations.
Fate of H2S during the cultivation of Chlorella sp. deployed for biogas upgrading.
González-Sánchez, Armando; Posten, Clemens
2017-04-15
The H 2 S may play a key role in the sulfur cycle among the biogas production by the anaerobic digestion of wastes and the biogas upgrading by a microalgae based technology. The biogas is upgraded by contacting with slightly alkaline aqueous microalgae culture, then CO 2 and H 2 S are absorbed. The dissolved H 2 S could limit or inhibit the microalgae growth. This paper evaluated the role of dissolved H 2 S and other sulfured byproducts under prevailing biogas upgrading conditions using a microalgal technology. At initial stages of batch cultivation the growth of Chlorella sp. was presumably inhibited by dissolved H 2 S. After 2 days, the sulfides were oxidized mainly by oxic chemical reactions to sulfate, which was later rapidly assimilated by Chlorella sp., allowing high growing rates. The fate of H 2 S during the microalgae cultivation at pH > 8.5 was assessed by a mathematical model where the pentasulfide, thiosulfate and sulfite were firstly produced and converted finally to sulfate for posterior assimilation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xie, Feng; Wang, Wei
2017-08-01
The feasibility of using emulsion liquid membranes (ELMs) with the guanidine extractant LIX 7950 as the mobile carrier for detoxifying copper-containing waste cyanide solutions has been determined. Relatively stable ELMs can be maintained under suitable stirring speed during mixing ELMs and the external solution. Effective extraction of copper cyanides by ELMs only occurs at pH below 11. High copper concentration in the external phase and high volume ratio of the external phase to ELMs result in high transport rates of copper and cyanide. High molar ratio of cyanide to copper tends to suppress copper extraction. The presence of thiocyanate ion significantly depresses the transport of copper and cyanide through the membrane while the thiosulfate ion produces less impact on copper removal by ELMs. Zinc and nickel cyanides can also be effectively extracted by ELMs. More than 90% copper and cyanide can be effectively removed from alkaline cyanide solutions by ELMs under suitable experimental conditions, indicating the effectiveness of using the designed ELM for recovering copper and cyanide from waste cyanide solutions.
Carter, Trish; Ratnam, Shobha
2013-01-01
Calciphylaxis is a rare and potentially devastating condition also referred to as uremic gangrene syndrome, calcific uremic arteriolopathy, metastatic calcification, and uremic small-vessel disease that can present in patients with end stage renal disease. This article reports a case of a 38-year-old African-American female on peritoneal dialysis for six years with a known history of non-adherence with diet, medications, and prescribed peritoneal dialysis treatment regimen. At her monthly clinic visit, the patient complained of burning sensation in the fingers of both hands with limited fine motor movement due to edema and severe pain. A presumptive diagnosis of calciphylaxis led to hospital admission with confirmation by X-ray of her hands. The patient was switched to hemodialysis with low calcium dialysate, aggressive reduction in phosphorus, diet counseling, use of cinacalcet, and six weeks of intravenous sodium thiosulfate infusion with hemodialysis treatments. The patient's condition improved with resolution of symptoms. This case was chosen based on the rarity of a calciphylaxis presentation and paucity of knowledge regarding diagnosis and treatment.
Guarino, C; Sciarrillo, R
2017-09-01
The Venice Lagoon is worldwide considered as a typical example of the human impact on the surrounding ecosystem. The development of the industrial zone of Porto Marghera begun in 1917 as an extension of the Venice Port, in order to sustain activities related to oil and coal, as well as to exploit the railway system. Despite the recent decrease in the number of employees, Porto Marghera is still one of the most important chemical districts in Italy. This study reports early results from the ongoing in-situ phytoextraction of potentially toxic elements (Cd, Hg, Zn) within the industrial area of Porto Marghera. Two agronomic plant species with high annual biomass yield (Helianthus annuus L., Brassica juncea (L.) Czern.) were used. This paper also reports the microcosms and mesocosms tests to evaluate the efficacy of the treatments to be applied to the in-situ phytoextraction process of the polluted site. The combined use of EDTA and Ammonium Thiosulfate during phytoextraction increases the efficiency of Cd, Hg, Zn removal from contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.
Riedel, Thomas; Fiebig, Anne; Göker, Markus; Klenk, Hans-Peter
2014-01-01
Roseibacterium elongatum Suzuki et al. 2006 is a pink-pigmented and bacteriochlorophyll a-producing representative of the Roseobacter group within the alphaproteobacterial family Rhodobacteraceae. Representatives of the marine ‘Roseobacter group’ were found to be abundant in the ocean and play an important role in global and biogeochemical processes. In the present study we describe the features of R. elongatum strain OCh 323T together with its genome sequence and annotation. The 3,555,102 bp long genome consists of one circular chromosome with no extrachromosomal elements and is one of the smallest known Roseobacter genomes. It contains 3,540 protein-coding genes and 59 RNA genes. Genome analysis revealed the presence of a photosynthetic gene cluster, which putatively enables a photoheterotrophic lifestyle. Gene sequences associated with quorum sensing, motility, surface attachment, and thiosulfate and carbon monoxide oxidation could be detected. The genome was sequenced as part of the activities of the Transregional Collaborative Research Centre 51 (TRR51) funded by the German Research Foundation (DFG). PMID:25197467
Riedel, Thomas; Fiebig, Anne; Göker, Markus; Klenk, Hans-Peter
2014-06-15
Roseibacterium elongatum Suzuki et al. 2006 is a pink-pigmented and bacteriochlorophyll a-producing representative of the Roseobacter group within the alphaproteobacterial family Rhodobacteraceae. Representatives of the marine 'Roseobacter group' were found to be abundant in the ocean and play an important role in global and biogeochemical processes. In the present study we describe the features of R. elongatum strain OCh 323(T) together with its genome sequence and annotation. The 3,555,102 bp long genome consists of one circular chromosome with no extrachromosomal elements and is one of the smallest known Roseobacter genomes. It contains 3,540 protein-coding genes and 59 RNA genes. Genome analysis revealed the presence of a photosynthetic gene cluster, which putatively enables a photoheterotrophic lifestyle. Gene sequences associated with quorum sensing, motility, surface attachment, and thiosulfate and carbon monoxide oxidation could be detected. The genome was sequenced as part of the activities of the Transregional Collaborative Research Centre 51 (TRR51) funded by the German Research Foundation (DFG).
Tetrathionate and Elemental Sulfur Shape the Isotope Composition of Sulfate in Acid Mine Drainage
Balci, Nurgul; Brunner, Benjamin; Turchyn, Alexandra V.
2017-01-01
Sulfur compounds in intermediate valence states, for example elemental sulfur, thiosulfate, and tetrathionate, are important players in the biogeochemical sulfur cycle. However, key understanding about the pathways of oxidation involving mixed-valance state sulfur species is still missing. Here we report the sulfur and oxygen isotope fractionation effects during the oxidation of tetrathionate (S4O62−) and elemental sulfur (S°) to sulfate in bacterial cultures in acidic conditions. Oxidation of tetrathionate by Acidithiobacillus thiooxidans produced thiosulfate, elemental sulfur and sulfate. Up to 34% of the tetrathionate consumed by the bacteria could not be accounted for in sulfate or other intermediate-valence state sulfur species over the experiments. The oxidation of tetrathionate yielded sulfate that was initially enriched in 34S (ε34SSO4−S4O6) by +7.9‰, followed by a decrease to +1.4‰ over the experiment duration, with an average ε34SSO4−S4O6 of +3.5 ± 0.2‰ after a month of incubation. We attribute this significant sulfur isotope fractionation to enzymatic disproportionation reactions occurring during tetrathionate decomposition, and to the incomplete transformation of tetrathionate into sulfate. The oxygen isotope composition of sulfate (δ18OSO4) from the tetrathionate oxidation experiments indicate that 62% of the oxygen in the formed sulfate was derived from water. The remaining 38% of the oxygen was either inherited from the supplied tetrathionate, or supplied from dissolved atmospheric oxygen (O2). During the oxidation of elemental sulfur, the product sulfate became depleted in 34S between −1.8 and 0‰ relative to the elemental sulfur with an average for ε34SSO4−S0 of −0.9 ± 0.2‰ and all the oxygen atoms in the sulfate derived from water with an average normal oxygen isotope fractionation (ε18OSO4−H2O) of −4.4‰. The differences observed in δ18OSO4 and the sulfur isotope composition of sulfate (δ34SSO4), acid production, and mixed valence state sulfur species generated by the oxidation of the two different substrates suggests a metabolic flexibility in response to sulfur substrate availability. Our results demonstrate that microbial processing of mixed-valence-state sulfur species generates a significant sulfur isotope fractionation in acidic environments and oxidation of mixed-valence state sulfur species may produce sulfate with characteristic sulfur and oxygen isotope signatures. Elemental sulfur and tetrathionate are not only intermediate-valence state sulfur compounds that play a central role in sulfur oxidation pathways, but also key factors in shaping these isotope patterns. PMID:28861071
Dean, Courtney; Xiao, Yeyuan; Roberts, Deborah J
2016-10-01
Little is known about the microbial communities native to surface-deposited pyritic oil sands tailings, an environment where acid rock drainage (ARD) could occur. The goal of this study was to enrich sulfur-oxidizing organisms from these tailings and determine whether different populations exist at pH levels 7, 4.5, and 2.5. Using growth-based methods provides model organisms for use in the future to predict potential activities and limitations of these organisms and to develop possible control methods. Thiosulfate-fed enrichment cultures were monitored for approximately 1 year. The results showed that the enrichments at pH 4.5 and 7 were established quicker than at pH 2.5. Different microbial community structures were found among the 3 pH environments. The sulfur-oxidizing microorganisms identified were most closely related to Halothiobacillus neapolitanus, Achromobacter spp., and Curtobacterium spp. While microorganisms related to Chitinophagaceae and Acidocella spp. were identified as the only possible iron-oxidizing and -reducing microbes. These results contribute to the general knowledge of the relatively understudied microbial communities that exist in pyritic oil sands tailings and indicate these communities may have a potential role in ARD generation, which may have implications for future tailings management.
Horstkotte, Burkhard; Alonso, Juan Carlos; Miró, Manuel; Cerdà, Víctor
2010-01-15
An integrated analyzer based on the multisyringe flow injection analysis approach is proposed for the automated determination of dissolved oxygen in seawater. The entire Winkler method including precipitation of manganese(II) hydroxide, fixation of dissolved oxygen, dissolution of the oxidized manganese hydroxide precipitate, and generation of iodine and tri-iodide ion are in-line effected within the flow network. Spectrophotometric quantification of iodine and tri-iodide at the isosbestic wavelength of 466nm renders enhanced method reliability. The calibration function is linear up to 19mgL(-1) dissolved oxygen and an injection frequency of 17 per hour is achieved. The multisyringe system features a highly satisfying signal stability with repeatabilities of 2.2% RSD that make it suitable for continuous determination of dissolved oxygen in seawater. Compared to the manual starch-end-point titrimetric Winkler method and early reported automated systems, concentrations and consumption of reagents and sample are reduced up to hundredfold. The versatility of the multisyringe assembly was exploited in the implementation of an ancillary automatic batch-wise Winkler titrator using a single syringe of the module for accurate titration of the released iodine/tri-iodide with thiosulfate.
Razmi, Habib; Azadbakht, Azadeh; Sadr, Moayad Hossaini
2005-11-01
A palladium hexacyanoferrate (PdHCF) film as an electrocatalytic material was obtained at an aluminum (Al) electrode by a simple electroless dipping method. The modified Al electrode demonstrated a well-behaved redox couple due to the redox reaction of the PdHCF film. The PdHCF film showed an excellent electrocatalytic activity toward the oxidation of hydrazine. The electrocatalytic oxidation of hydrazine was studied by cyclic voltammetry and rotating disk electrode voltammetry techniques. A calibration graph obtained for the hydrazine consisted of two segments (localized at concentration ranges 0.39-10 and 20-75 mM). The rate constant k and transfer coefficient alpha for the catalytic reaction and the diffusion coefficient of hydrazine in the solution D, were found to be 3.11 x 10(3) M(-1) s(-1), 0.52 and 8.03 x 10(-6) cm2 s(-1) respectively. The modified electrode was used to amperometric determination of hydrazine in photographic developer. The interference of ascorbic acid and thiosulfate were investigated and greatly reduced using a thin film of Nafion on the modified electrode. The modified electrode indicated reproducible behavior and a high level of stability during electrochemical experiments, making it particularly suitable for analytical purposes.
Watanabe, Miho; Kojima, Hisaya; Fukui, Manabu
2015-06-01
A novel sulfate-reducing bacterium, designated strain Pf12BT, was isolated from sediment of meromictic Lake Harutori in Japan. Cells were vibroid (1.0 × 3.0-4.0 μm), motile and Gram-stain-negative. For growth, the optimum pH was 7.0-7.5 and the optimum temperature was 42-45 °C. Strain Pf12BT used sulfate, thiosulfate and sulfite as electron acceptors. The G+C content of the genomic DNA was 55.4 mol%. Major cellular fatty acids were C16 : 0 and C18 : 0. The strain was desulfoviridin-positive. Phylogenetic analysis based on the 16S rRNA gene revealed that the novel strain belonged to the order Desulfovibrionales in the class Deltaproteobacteria. The closest relative was Desulfomicrobium baculatum DSM 4028T with which it shared 91 % 16S rRNA gene sequence similarity. On the basis of phylogenetic and phenotypic characterization, a novel species of a new genus belonging to the family Desulfomicrobiaceae is proposed, Desulfoplanes formicivorans gen. nov., sp. nov. The type strain of Desulfoplanes formicivorans is Pf12BT ( = NBRC 110391T = DSM 28890T).
Tomei Torres, Francisco A
2017-06-21
Drywall manufactured in China released foul odors attributed to volatile sulfur compounds. These included hydrogen sulfide, methyl mercaptan, and sulfur dioxide. Given that calcium sulfate is the main component of drywall, one would suspect bacterial reduction of sulfate to sulfide as the primary culprit. However, when the forensics, i.e., the microbial and chemical signatures left in the drywall, are studied, the evidence suggests that, rather than dissimilatory sulfate reduction, disproportionation of elemental sulfur to hydrogen sulfide and sulfate was actually the primary cause of the malodors. Forensic evidence suggests that the transformation of elemental sulfur went through several abiological and microbial stages: (1) partial volatilization of elemental sulfur during the manufacture of plaster of Paris, (2) partial abiotic disproportionation of elemental sulfur to sulfide and thiosulfate during the manufacture of drywall, (3) microbial disproportionation of elemental sulfur to sulfide and sulfate resulting in neutralization of all alkalinity, and acidification below pH 4, (4) acidophilic microbial disproportionation of elemental sulfur to sulfide and sulfuric acid, and (5) hydrogen sulfide volatilization, coating of copper fixtures resulting in corrosion, and oxidation to sulfur dioxide.
NASA Astrophysics Data System (ADS)
Sherazi, Tauqir A.; Rehman, Tayyiba; Naqvi, Syed Ali Raza; Shaikh, Ahson Jabbar; Shahzad, Sohail Anjum; Abbas, Ghazanfar; Raza, Rizwan; Waseem, Amir
2015-12-01
The surface of ultra-high molecular weight polyethylene (UHMWPE) powder was functionalized with styrene using chemical grafting technique. The grafting process was initiated through radical generation on base polymer matrix in the solid state by sodium thiosulfate, while peroxides formed at radical sites during this process were dissociated by ceric ammonium nitrate. Various factors were optimized and reasonably high level of monomer grafting was achieved, i.e., 15.6%. The effect of different acids as additive and divinyl benzene (DVB) as a cross-linking agent was also studied. Post-grafting sulfonation was conducted to introduce the ionic moieties to the grafted polymer. Ion-exchange capacity (IEC) was measured experimentally and is found to be 1.04 meq g-1, which is in close agreement with the theoretical IEC values. The chemical structure of grafted and functionalized polymer was characterized by attenuated total reflection infrared spectroscopy (ATR-FTIR) and thermal properties were investigated by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Thermal analysis depicts that the presence of radicals on the polymer chain accelerates the thermal decomposition process. The results signify that the chemical grafting is an effective tool for substantial surface modification and subsequent functionalization of polyethylene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, E.; Suzuki, S.; Tsuzuki, H.
Mice were subcutaneoulsy injected with Sr/sup 90/ or Sr/sup 85/, and effects of various drugs on their 3-day excretion and retention on the 4th day were investigated. Among chelating agents, NaCa citrate, NaMg citrate, NaSr citrate, Achromycin (or tetracycline), and aspartic MgK (alone or in combination with NH/sub 4/Cl) displayed Sr-eliminating effects. ATP increased only the excretion without diminishing the retention in bone. EDTA, DTPA, BADE, tricarballylate, Na citrate and NaPb citrate were not effective. Among salts, Mg salt, sulfite, and thiosulfate were effective in eliminating Sr. The last exerted a greater effect when given concurrently with Mg, Ca, ormore » Sr salt. Ca and Sr salt exerted no effect, and ammonium chloride promoted only urinary secretion, not extending to local or total excretion. Such salts as induce alkalosis conversely exerted inhibitory effects. Among hormones, glucocorticoids had Sreliminating effects. TSH was effective, and antithyroidal drugs conversely seemed to have excretion-diminishing effects. Among vitamins, cocarboxylase increased Sr excretion, but did not decrease the retention in bone. Also metabolic inhibitors were ineffective, and NaF conversely increased bone deposition of Sr. Among diuretics, SHdrugs, and weak chelating agents, there were no effective drugs. (JAIF)« less
Cracking characteristics of alloy 690 in thiosulfate containing chloride solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, H.H.; Tsai, W.T.
1999-07-01
The cracking characteristics of Alloy 690 in deaerated 1wt% NaCl solution with different Na{sub 2}S{sub 2}O{sub 2} concentrations, namely 0.01, 0.1, 0.2 and 0.5 M, at controlled anodic potentials was investigated by using slow strain rate testing (SSRT) with a strain rate of 1 x 10{sup {minus}6} s{sup {minus}1}. The results showed that the ultimate tensile strength and the ductility increased with increasing the concentration of Na{sub 2}S{sub 2}O{sub 3} at the same anodic potential, but decreased with increasing potential at a fixed concentration of Na{sub 2}S{sub 2}O{sub 3}. Pitting corrosion could occur on Alloy 690 in 1wt% NaCl solutionmore » with the concentration of Na{sub 2}S{sub 2}O{sub 3} {le} 0.1 M, depending on the potential. The susceptibilities of Alloy 690 to pitting corrosion and environmentally-assisted cracking in 1wt% NaCl solution were inhibited with the concentration of Na{sub 2}S{sub 2}O{sub 3} {ge} 0.2M, regardless of the potential.« less
NASA Astrophysics Data System (ADS)
Kai, J. J.; Yu, G. P.; Tsai, C. H.; Liu, M. N.; Yao, S. C.
1989-10-01
A series of heat treatments were performed to study the sensitization and the stress corrosion cracking (SCC) behavior of INCONEL Alloy 690. The microstructural evaluation and the chromium depletion near grain boundaries were carefully studied using analytical electron microscopy (AEM). The measured chromium depletion profiles were matched well to the calculated results from a thermodynamic/kinetic model. The constant extension rate test (CERT) was performed in the solution containing 0.001 M sodium thiosulfate (Na2S2O3) to study the SCC resistance of this alloy. The Huey test was also performed in a boiling 65 pct HNO3 solution for 48 hours to study the intergranular attack (IGA) resistance of this alloy. Both tests showed that INCONEL 690 has very good corrosion resistance. It is believed that the superior IGA and SCC resistances of this alloy are due to the high chromium concentration (≈30 wt pct). It is concluded in this study that INCONEL 690 may be a better alloy than INCONEL 600 for use as the steam generator (S/G) tubing material for pressurized water reactors (PWR's)
Microfluidic Platform for High-throughput Screening of Leach Chemistry.
Yang, Die; Priest, Craig
2018-06-20
We demonstrate an optofluidic screening platform for studying thiosulfate leaching of Au in a transparent microchannel. The approach permits in situ (optical) monitoring of Au thickness, reduced reagent use, rapid optimization of reagent chem-istry, screening of temperature, and determination of the activation energy. The results demonstrate the critical importance of the (1) preparation and storage of the leach solution, (2) deposition and annealing of the Au film, and (3) lixiviant chem-istry. The density of sputter deposited Au films decreased with depth resulting in accelerating leach rates during experiments. Atomic leach rates were determined and were constant throughout each experiment. Annealing above 270 °C was found to prevent leaching, which can be attributed to diffusion of the chromium adhesion layer into the Au film. The optofluidic analysis revealed leach rates that are sensitive to the stoichiometric ratio of thiosulphate, ammonia and copper in the leach solution, and optimized for 10 mM CuSO 4 , 1 M Na 2 S 2 O 3 and 1 M NH 4 OH. The temperature dependence of the leach rate gave an apparent activation energy of ~ 40 kJ.mol -1 , based on Arrhenius' relationship.
Johnson, Sarah Stewart; Chevrette, Marc Gerard; Ehlmann, Bethany L; Benison, Kathleen Counter
2015-01-01
The extremely acidic brine lakes of the Yilgarn Craton of Western Australia are home to some of the most biologically challenging waters on Earth. In this study, we employed metagenomic shotgun sequencing to generate a microbial profile of the depositional environment associated with the sulfur-rich sediments of one such lake. Of the 1.5 M high-quality reads generated, 0.25 M were mapped to protein features, which in turn provide new insights into the metabolic function of this community. In particular, 45 diverse genes associated with sulfur metabolism were identified, the majority of which were linked to either the conversion of sulfate to adenylylsulfate and the subsequent production of sulfide from sulfite or the oxidation of sulfide, elemental sulfur, and thiosulfate via the sulfur oxidation (Sox) system. This is the first metagenomic study of an acidic, hypersaline depositional environment, and we present evidence for a surprisingly high level of microbial diversity. Our findings also illuminate the possibility that we may be meaningfully underestimating the effects of biology on the chemistry of these sulfur-rich sediments, thereby influencing our understanding of past geobiological conditions that may have been present on Earth as well as early Mars.
Luna-Sánchez, Marta; Hidalgo-Gutiérrez, Agustín; Hildebrandt, Tatjana M; Chaves-Serrano, Julio; Barriocanal-Casado, Eliana; Santos-Fandila, Ángela; Romero, Miguel; Sayed, Ramy Ka; Duarte, Juan; Prokisch, Holger; Schuelke, Markus; Distelmaier, Felix; Escames, Germaine; Acuña-Castroviejo, Darío; López, Luis C
2017-01-01
Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain, but it also has several other functions in the cellular metabolism. One of them is to function as an electron carrier in the reaction catalyzed by sulfide:quinone oxidoreductase (SQR), which catalyzes the first reaction in the hydrogen sulfide oxidation pathway. Therefore, SQR may be affected by CoQ deficiency. Using human skin fibroblasts and two mouse models with primary CoQ deficiency, we demonstrate that severe CoQ deficiency causes a reduction in SQR levels and activity, which leads to an alteration of mitochondrial sulfide metabolism. In cerebrum of Coq9 R239X mice, the deficit in SQR induces an increase in thiosulfate sulfurtransferase and sulfite oxidase, as well as modifications in the levels of thiols. As a result, biosynthetic pathways of glutamate, serotonin, and catecholamines were altered in the cerebrum, and the blood pressure was reduced. Therefore, this study reveals the reduction in SQR activity as one of the pathomechanisms associated with CoQ deficiency syndrome. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.
Mitochondrial rhodanese: membrane-bound and complexed activity.
Ogata, K; Volini, M
1990-05-15
We have proposed that phosphorylated and dephosphorylated forms of the mitochondrial sulfurtransferase, rhodanese, function as converter enzymes that interact with membrane-bound iron-sulfur centers of the electron transport chain to modulate the rate of mitochondrial respiration (Ogata, K., Dai, X., and Volini, M. (1989) J. Biol. Chem. 204, 2718-2725). In the present studies, we have explored some structural aspects of the mitochondrial rhodanese system. By sequential extraction of lysed mitochondria with phosphate buffer and phosphate buffer containing 20 mM cholate, we have shown that 30% of the rhodanese activity of bovine liver is membrane-bound. Resolution of cholate extracts on Sephadex G-100 indicates that part of the bound rhodanese is complexed with other mitochondrial proteins. Tests with the complex show that it forms iron-sulfur centers when incubated with the rhodanese sulfur-donor substrate thiosulfate, iron ions, and a reducing agent. Experiments on the rhodanese activity of rat liver mitochondria give similar results. Taken together, the findings indicate that liver rhodanese is in part bound to the mitochondrial membrane as a component of a multiprotein complex that forms iron-sulfur centers. The findings are consistent with the role we propose for rhodanese in the modulation of mitochondrial respiratory activity.
Biosynthesis of Ergothioneine from Endogenous Hercynine in Mycobacterium smegmatis
Genghof, Dorothy S.; Van Damme, Olga
1968-01-01
Ergothioneine was synthesized and accumulated in growing cultures of Mycobacterium smegmatis when the medium was adequately supplied with sulfur. In a low sulfur medium, the accumulation was sharply limited although growth of the organism was apparently normal. Synthesis of hercynine, the precursor of ergothioneine, was unaffected by low sulfur levels and was markedly increased by addition of l-histidine, the precursor of hercynine. Resting-cell pellicle experiments, performed with cells grown on the low sulfur high histidine medium, showed that ergothioniene was synthesized from endogenous hercynine, when cysteine or compounds readily converted to cysteine (such as cystine, lanthionine, cystathionine, and thiazolidine carboxylic acid) were added. Homocysteine and djenkolic acid allowed for minimal synthesis of betaine, whereas methionine, S-methylcysteine, sodium sulfate, and sodium thiosulfate were unable to donate sulfur for ergothioniene synthesis under the experimental conditions employed. Addition of cysteine to a resting pellicle preparation caused the formation of 100 to 200 μg of ergothioneine per g of dry cells in 2.5 to 3 hr. A modified procedure for isolating ergothioneine and hercynine, employing a 75% ethyl alcohol extraction of wet organisms, followed by a single alumina column separation of the compounds, is described. PMID:5644441
Finster, Kai Waldemar; Kjeldsen, Kasper Urup; Kube, Michael; Reinhardt, Richard; Mussmann, Marc; Amann, Rudolf; Schreiber, Lars
2013-04-15
Desulfocapsa sulfexigens SB164P1 (DSM 10523) belongs to the deltaproteobacterial family Desulfobulbaceae and is one of two validly described members of its genus. This strain was selected for genome sequencing, because it is the first marine bacterium reported to thrive on the disproportionation of elemental sulfur, a process with a unresolved enzymatic pathway in which elemental sulfur serves both as electron donor and electron acceptor. Furthermore, in contrast to its phylogenetically closest relatives, which are dissimilatory sulfate-reducers, D. sulfexigens is unable to grow by sulfate reduction and appears metabolically specialized in growing by disproportionating elemental sulfur, sulfite or thiosulfate with CO2 as the sole carbon source. The genome of D. sulfexigens contains the set of genes that is required for nitrogen fixation. In an acetylene assay it could be shown that the strain reduces acetylene to ethylene, which is indicative for N-fixation. The circular chromosome of D. sulfexigens SB164P1 comprises 3,986,761 bp and harbors 3,551 protein-coding genes of which 78% have a predicted function based on auto-annotation. The chromosome furthermore encodes 46 tRNA genes and 3 rRNA operons.
Finster, Kai Waldemar; Kjeldsen, Kasper Urup; Kube, Michael; Reinhardt, Richard; Mussmann, Marc; Amann, Rudolf; Schreiber, Lars
2013-01-01
Desulfocapsa sulfexigens SB164P1 (DSM 10523) belongs to the deltaproteobacterial family Desulfobulbaceae and is one of two validly described members of its genus. This strain was selected for genome sequencing, because it is the first marine bacterium reported to thrive on the disproportionation of elemental sulfur, a process with a unresolved enzymatic pathway in which elemental sulfur serves both as electron donor and electron acceptor. Furthermore, in contrast to its phylogenetically closest relatives, which are dissimilatory sulfate-reducers, D. sulfexigens is unable to grow by sulfate reduction and appears metabolically specialized in growing by disproportionating elemental sulfur, sulfite or thiosulfate with CO2 as the sole carbon source. The genome of D. sulfexigens contains the set of genes that is required for nitrogen fixation. In an acetylene assay it could be shown that the strain reduces acetylene to ethylene, which is indicative for N-fixation. The circular chromosome of D. sulfexigens SB164P1 comprises 3,986,761 bp and harbors 3,551 protein-coding genes of which 78% have a predicted function based on auto-annotation. The chromosome furthermore encodes 46 tRNA genes and 3 rRNA operons. PMID:23961312
Discovery of anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats
Sorokin, Dimitry Y; Messina, Enzo; Smedile, Francesco; Roman, Pawel; Damsté, Jaap S Sinninghe; Ciordia, Sergio; Mena, Maria Carmen; Ferrer, Manuel; Golyshin, Peter N; Kublanov, Ilya V; Samarov, Nazar I; Toshchakov, Stepan V; La Cono, Violetta; Yakimov, Michail M
2017-01-01
Hypersaline anoxic habitats harbour numerous novel uncultured archaea whose metabolic and ecological roles remain to be elucidated. Until recently, it was believed that energy generation via dissimilatory reduction of sulfur compounds is not functional at salt saturation conditions. Recent discovery of the strictly anaerobic acetotrophic Halanaeroarchaeum compels to change both this assumption and the traditional view on haloarchaea as aerobic heterotrophs. Here we report on isolation and characterization of a novel group of strictly anaerobic lithoheterotrophic haloarchaea, which we propose to classify as a new genus Halodesulfurarchaeum. Members of this previously unknown physiological group are capable of utilising formate or hydrogen as electron donors and elemental sulfur, thiosulfate or dimethylsulfoxide as electron acceptors. Using genome-wide proteomic analysis we have detected the full set of enzymes required for anaerobic respiration and analysed their substrate-specific expression. Such advanced metabolic plasticity and type of respiration, never seen before in haloarchaea, empower the wide distribution of Halodesulfurarchaeum in hypersaline inland lakes, solar salterns, lagoons and deep submarine anoxic brines. The discovery of this novel functional group of sulfur-respiring haloarchaea strengthens the evidence of their possible role in biogeochemical sulfur cycling linked to the terminal anaerobic carbon mineralisation in so far overlooked hypersaline anoxic habitats. PMID:28106880
Impact of reaction conditions on the laccase-catalyzed conversion of bisphenol A.
Kim, Young-Jin; Nicell, James A
2006-08-01
The oxidative conversion of aqueous BPA catalyzed by laccase from Trametes versicolor was conducted in a closed, temperature-controlled system containing buffer for pH control. The effects of medium pH, buffer concentration, temperature and mediators and the impacts of dissolved wastewater constituents on BPA conversion were investigated. The optimal pH for BPA conversion was approximately 5, with greater than half maximal conversion and good enzyme stability in the range of 4-7. The stability of the enzyme was not impacted by buffer concentration, nor was BPA conversion. Despite the observation that the enzyme tended to be inactivated at elevated temperatures, enhanced conversion of BPA was observed up until a reaction temperature of 45 degrees C. Of the mediators studied, ABTS was most successful at enhancing the conversion of BPA. Dissolved wastewater constituents that were studied included various inorganic salts, organic compounds and heavy metal ions. BPA conversion was inhibited in the presence of anions such as sulfite, thiosulfate, sulfide, nitrite and cyanide. The metal ions Fe(III) and Cu(II) and the halogens chloride and fluoride substantially suppressed BPA conversion, but the presence of selected organic compounds did not significantly reduce the conversion of BPA.
Morphological Survey of Microbial Mats Near Deep-Sea Thermal Vents †
Jannasch, Holger W.; Wirsen, Carl O.
1981-01-01
A microscopic survey is presented of the most commonly observed and morphologically conspicuous microorganisms found attached to natural surfaces or to artificial materials deposited in the immediate vicinity of thermal submarine vents at the Galapagos Rift ocean spreading zone at a depth of 2,550 meters. Of special interest were the following findings: (i) all surfaces intermittently exposed to H2S-containing hydrothermal fluid were covered by layers, ca. 5 to 10 μm thick, of procaryotic, gram-negative cells interspaced with amorphous metal (Mn-Fe) deposits; (ii) although some of the cells were encased by dense metal deposits, there was little apparent correlation between metal deposition and the occurrence of microbial mats, (iii) highly differentiated forms appeared to be analogues of certain cyanobacteria, (iv) isolates from massive mats of a prosthecate bacterium could be identified as Hyphomicrobium spp., (v) intracellular membrane systems similar to those found in methylotrophic and nitrifying bacteria were observed in approximately 20% of the cells composing the mats, (vi) thiosulfate enrichments made from mat material resulted in isolations of different types of sulfur-oxidizing bacteria including the obligately chemolithotrophic genus Thiomicrospira. Images PMID:16345722
Nitrogen dioxide absorption in aqueous sodium sulfite
NASA Astrophysics Data System (ADS)
Shen, Chen Hua
The Clean Air Act of 1990 requires additional reduction of acid gases, sulfur dioxide, and nitrogen oxides released into the atmosphere from coal-fired electric power plants. In the case of older existing power plants, a possible retrofit strategy is to oxidize nitric oxide (NO, the major constituent of NOsbX in flue gas) to nitrogen dioxide (NOsb2) by the addition of methanol or other hydrocarbons into the duct at an optimum temperature regime. NOsb2 can then be removed by either modifying existing SOsb2 control equipment or by adding a limestone (CaCOsb3) slurry scrubbing process. Limestone reacts with SOsb2 to from CaSOsb3, and the free sulfite (SO{sb3sp{=}}) in the solution is reactive toward NOsb2. The focus of this research is to study the reaction between NOsb2 and aqueous sulfite at elevated temperature and in the presence of gas phase Osb2. The removal of NOsb2 by limestone slurry scrubbing involves the reaction between NOsb2 and SO{sb3sp{=}}, bisulfite (HSO{sb3sp{-}}) and water. The reactions between NOsb2 and SO{sb3sp{=}}/HSO{sb3sp{-}} are first order in both reactants, while the NOsb2-water reaction is second order in NOsb2 concentration. The rate constants of the above reactions and the NOsb2-thiosulfate (Ssb2O{sb3sp{=}}) reaction were determined at 55sp°C. SO{sb3sp{=}} was found to be the most reactive toward NOsb2, while the contribution of chemical reaction still dominated in the absorption of NOsb2 into water. The effect of gas phase SOsb2 and Osb2, and liquid phase additives such as Ssb2O{sb3sp{=}}, Casp{++}, Mgsp{++}, and Clsp{-} on NOsb2 absorption was also investigated. The absorption of NOsb2 catalyzes free radical reactions that lead to sulfite oxidation. A semi-empirical model was proposed to relate the rate of sulfite oxidation to the rate of NOsb2 absorption. Thiosulfate inhibits sulfite oxidation by providing an alternative route for the termination of the free radical reactions, and a fundamental model was derived to quantify the effect of Ssb2O{sb3sp{=}} on sulfite oxidation. The absorption of NOsb2 into aqueous bisulfide (HSsp{-}) was studied in an attempt to discover alternative scrubbing technologies. The reaction between NOsb2 and HSsp{-} is twice as fast as the NOsb2-SO{sb3sp{=}} reaction at 55sp°C. A semi-empirical model was proposed to relate NOsb2 absorption to HSsp{-} oxidation. This study has shown that acceptable level of NOsb2 removal by a conventional limestone slurry scrubber is not probable. However, aqueous scrubbing of NOsb2 by Nasb2SOsb3 and Nasb2S solutions are viable options. Furthermore, significant reduction in hold tank liquid depth and/or oxidizing air stoichiometry is possible by NOsb2 injection.
NASA Astrophysics Data System (ADS)
Jay, Z.; Beam, J.; Bailey, C.; Dohnalkova, A.; Planer-Friedrich, B.; Romine, M.; Inskeep, W. P.
2012-12-01
The order Thermoproteales (phylum Crenarchaeota) consists of thermophilic, rod-shaped organisms that are found globally in geothermal habitats ranging in pH from ~3-9. Nearly all isolated Thermoproteales couple the respiration of inorganic sulfur species (e.g. elemental sulfur, thiosulfate, sulfate) to the oxidation of hydrogen or complex organic carbon. Prior 16S rRNA and metagenome analysis revealed four prominent Thermoproteales-like populations in hypoxic, sulfidic hot springs In Yellowstone National Park (YNP), WY, USA (Monarch Geyser [80° C, pH 4], Cistern Spring [76° C, pH 5] and Joseph's Coat Hot Spring [JCHS; 80° C, pH 6]). The objectives of this study were to 1) characterize and compare the indigenous Thermoproteales-like de novo assemblies identified from metagenomic sequence data available for geothermal systems across YNP, 2) determine the metabolic potential of the Thermoproteales-like populations and evaluate their role in the geochemical cycling of organic and inorganic constituents, and 3) contrast both the sequenced genome and growth physiology of the first Thermoproteales isolated from YNP ("Pyrobaculum yellowstonensis" strain WP30), to the indigenous Thermoproteales-like de novo assemblies. Sequences related to either Caldivirga or Vulcanisaeta spp. (Type I Thermoproteales) were identified in both aerobic and anaerobic habitats ranging in pH ~3 - 6. Thermoproteus or Pyrobaculum spp. (Type-II Thermoproteales) were identified in anoxic habitats, but were constrained to pH values >4. Annotation of the de novo assemblies indicate that both Type-I and Type-II Thermoproteales populations are primarily heterotrophic, although key proteins of the autotrophic dicarboxylate/4-hydroxybutyrate cycle were also identified. Caldivirga/Vulcanisaeta-like populations appear to respire on elemental sulfur, sulfate, or molecular oxygen, while the Thermoproteus/Pyrobaculum-like population may also oxidize hydrogen and respire on elemental sulfur, thiosulfate, arsenate, or tetrathionate. One of the relevant Thermoproteales Type-II populations was isolated from JCHS and is an anaerobic heterotroph utilizing yeast extract as a carbon and energy source while respiring on elemental sulfur or arsenate, resulting in the production of sulfide or arsenite, respectively. The optimum growth temperature of strain WP30 (75° C) and pH range (4.5 - 7) corresponds well with characteristics of the sulfidic sediment used as the original inoculum. A draft genome of strain WP30 reveals that respiration may involve as many as four dimethylsulfoxide molybdopterin oxidoreductases including a putative sulfur reductase and an arsenate reductase. Sequences with high amino acid identity to these reductases were also identified in metagenome data sets from sites containin Type-II populations. Expression data of these terminal reductase genes during the growth of strain WP30 on either sulfur or arsenate were compared to expression results from field sites. These data provide insights regarding the diversity, distribution, and potential role of Thermoproteales-like populations in high-temperature environments of YNP.
Yam bean seed poisoning mimicking cyanide intoxication.
Hung, Y-M; Hung, S-Y; Olson, K R; Chou, K-J; Lin, S-L; Chung, H-M; Tung, C-N; Chang, J-C
2007-02-01
Yam bean is a common food in southern Taiwan. However, its seeds are rarely consumed. We describe five patients of yam bean seed poisoning in Taiwan, one of them life-threatening. The five patients presented with perioral numbness, nausea and vomiting after eating a same soup made from yam bean seeds. One of them, a 54-year-old woman, had difficulty breathing and lost consciousness. Physical examination showed dilated pupils and coma with no focal neurological signs. The initial blood pressure was normal. Laboratory data showed a severe anion gap metabolic acidosis, with a serum lactate level of 185 mg/dL. An initial diagnosis of cyanide intoxication was considered and she was given sodium nitrite and sodium thiosulfate i.v. Hypotension ensued shortly afterwards and pulmonary artery catheterization showed a decreased cardiac index. Aggressive fluid and inotropic therapy were given and the patient eventually recovered. The other four patients suffered only minor gastrointestinal and neurological symptoms and received supportive treatment. Cyanide levels were negative in all five patients. Yam bean seed poisoning can cause acute metabolic acidosis and altered mental status, which could be confused with acute cyanide intoxication from a cyanogenic glycoside-containing plant. To our knowledge, this is the first outbreak of yam bean seed poisoning reported in the English published work.
Besaury, Ludovic; Marty, Florence; Buquet, Sylvaine; Mesnage, Valérie; Muyzer, Gerard; Quillet, Laurent
2013-02-01
Cultivation and molecular-based approaches were used to study microbial diversity in two Chilean marine sediments contaminated with high (835 ppm) and very high concentrations of copper (1,533 ppm). The diversity of cultivable bacteria resistant to copper was studied at oxic and anoxic conditions, focusing on sulfate-, thiosulfate-, and iron-reducing bacteria. For both sediments, the cultivable bacteria isolated at oxic conditions were mostly affiliated to the genus Bacillus, while at anoxic conditions the majority of the cultivable bacteria found were closely related to members of the genera Desulfovibrio, Sphingomonas, and Virgibacillus. Copper resistance was between 100 and 400 ppm, with the exception of a strain affiliated to members of the genus Desulfuromonas, which was resistant up to 1,000 ppm of copper. In parallel, cloning and sequencing of 16S rRNA was performed to study the total bacterial diversity in the sediments. A weak correlation was observed between the isolated strains and the 16S rRNA operational taxonomic units detected. The presence of copper resistance genes (copA, cusA, and pcoA) was tested for all the strains isolated; only copA was detected in a few isolates, suggesting that other copper resistance mechanisms could be used by the bacteria in those highly copper-contaminated sediments.
Shen, Guoqing; Ashworth, Daniel J; Gan, Jay; Yates, Scott R
2016-02-02
During soil fumigation, it is ideal to mitigate soil fumigant emissions, ensure pest control efficacy, and speed up the recovery of the soil microorganism population established postapplication. However, no current fumigant emission reduction strategy can meet all these requirements. In the present study, replicated soil columns were used to study the effect of biochar derived from rice husk (BR) and green waste (BG) applied to the soil surface on 1,3-dichloropropene (1,3-D) and chloropicrin (CP) emissions and soil gas distribution, and on microorganism population re-establishment. Relative to fumigated bare soil (no emission reduction strategy), high-density polyethylene (HDPE), and ammonium thiosulfate (ATS) treatments, BR gave dramatic emission reductions for both fumigants with no obvious emission peak, whereas BG was very effective only for 1,3-D. With BR application, the concentration of fumigant in the soil gas was higher than in the bare soil and ATS treatment. After the soil column experiment, mixing the BR with the fumigated soil resulted in higher soil respiration rates than were observed for HDPE and ATS treatments. Therefore, biochar amendment to the soil surface may be an effective strategy for fumigant emission reduction and the recovery of soil microorganism populations established postapplication.
The life story of hydrogen peroxide II: a periodic pH and thermochemical drive for the RNA world
Ball, Rowena; Brindley, John
2015-01-01
It is now accepted that primordial non-cellular RNA communities must have been subject to a periodic drive in order to replicate and prosper. We have proposed the oxidation of thiosulfate by hydrogen peroxide as this drive. This reaction system behaves as (i) a thermochemical and (ii) a pH oscillator, and in this work, we unify (i) and (ii) for the first time. We report thermally self-consistent, dynamical simulations in which the system transitions smoothly from nearly isothermal pH to fully developed thermo-pH oscillatory regimes. We use this oscillator to drive simulated replication of a 39-bp RNA species. Production of replicated duplex under thermo-pH drive was significantly enhanced compared with that under purely thermochemical drive, effectively allowing longer strands to replicate. Longer strands are fitter, with more potential to evolve enzyme activity and resist degradation. We affirm that concern over the alleged toxicity of hydrogen peroxide to life is largely misplaced in the current context, we survey its occurrence in the solar system to motivate its inclusion as a biosignature in the search for life on other worlds and highlight that pH oscillations in a spatially extended, bounded system manifest as the fundamental driving force of life: a proton gradient. PMID:26202683
Determination of iodine and molybdenum in milk by quadrupole ICP-MS.
Reid, Helen J; Bashammakh, Abdul A; Goodall, Phillip S; Landon, Mark R; O'Connor, Ciaran; Sharp, Barry L
2008-03-15
A reliable method for the determination of iodine and molybdenum in milk samples, using alkaline digestion with tetramethylammonium hydroxide and hydrogen peroxide, followed by quadrupole ICP-MS analysis, has been developed and tested using certified reference materials. The use of He+O2 (1.0 ml min(-1) and 0.6 ml min(-1)) in the collision-reaction cell of the mass spectrometer to remove (129)Xe+-- initially to enable the determination of low levels of 129I--also resulted in the quantitative conversion of Mo(+) to MoO2+ which enabled the molybdenum in the milk to be determined at similar mass to the iodine with the use of Sb as a common internal standard. In order to separate and pre-concentrate iodine at sub microg l(-1) concentrations, a novel method was developed using a cation-exchange column loaded with Pd2+ and Ca2+ ions to selectively retain iodide followed by elution with a small volume of ammonium thiosulfate. This method showed excellent results for aqueous iodide solutions, although the complex milk digest matrix made the method unsuitable for such samples. An investigation of the iodine species formed during oxidation and extraction of milk sample digests was carried out with a view to controlling the iodine chemistry.
Varden, Lara; Smith, Britannia; Bou-Abdallah, Fadi
2017-01-01
Capillary zone electrophoresis (CZE) is a sensitive and rapid technique used for determining traces of inorganic and organic anions in potable, natural, and wastewaters. Here, CZE with indirect UV-diode array detection (CZE-DAD) was employed with a background electrolyte system comprising of an Agilent Technologies proprietary basic anion buffer at pH 12.0 and a forensic anion detection method. The limits of detection (LOD) for this method ranged between 3 and 5 ppm and involved hydrodynamic injection of 50 mbar for 6 s with a negative polarity separation voltage of −30 kV at 30°C, a detection wavelength of 350 nm and indirect reference of 275 nm. Fourteen different anions were checked for in the water samples that were examined and included bromide, chloride, thiosulfate, nitrate, nitrite, sulfate, azide, carbonate, fluoride, arsenate, phosphate, acetate, lactate, and silicate. The water samples were collected from Northern New York towns and the Raquette River water system, the third longest river in New York State and the largest watershed of the central and western Adirondacks. The concentrations detected for these anions ranged from <5.0 ppm to 260 ppm. PMID:29057145
Tank, Marcus; Bryant, Donald A.
2015-03-27
A novel thermophilic, microaerophilic, anoxygenic, and chlorophototrophic member of the phylum Acidobacteria, Chloracidobacterium thermophilum strain B T, was isolated from a cyanobacterial enrichment culture derived from microbial mats associated with Octopus Spring, Yellowstone National Park, Wyoming. C. thermophilum is strictly dependent on light and oxygen and grows optimally as a photoheterotroph at irradiance values between 20 and 50 µmol photons m⁻² s⁻¹. C. thermophilum is unable to synthesize branched-chain amino acids (AAs), L-lysine, and vitamin B₁₂, which are required for growth. Although the organism lacks genes for autotrophic carbon fixation, bicarbonate is also required. Mixtures of other AAs and 2-oxoglutaratemore » stimulate growth. As suggested from genomic sequence data, C. thermophilum requires a reduced sulfur source such as thioglycolate, cysteine, methionine, or thiosulfate. The organism can be grown in a defined medium at 51° C (T opt; range 44–58°C) in the pH range 5.5–9.5 (pH opt = ~7.0). Using the defined growth medium and optimal conditions, it was possible to isolate new C. thermophilum strains directly from samples of hot springs mats in Yellowstone National Park, Wyoming. The new isolates differ from the type strain with respect to pigment composition, morphology in liquid culture, and temperature adaptation.« less
NASA Astrophysics Data System (ADS)
Sarjito; Harjuno Condro Haditomo, Alfabetian; Desrina; Djunaedi, Ali; Budi Prayitno, Slamet
2018-02-01
Vibriosis out breaks frequently occur in extensive shrimps farming. The study were commenced to find out the clinical signs of white shrimp that was infected by the Vibrio and to identify the bacterial associated with vibriosis in the pacific white shrimp, Litopenaeus vannamei. Bacterial isolates were gained from hepatopancreas and telson of moribund shrimps that were collected from extensive shrimp ponds of Kendal District, Indonesia and cultured on Thiosulfate Citrate Bile Salts Sucrose Agar (TCBSA). Isolates were clustered and identified using repetitive sequence-based polymerase chain reaction (rep-PCR). Three representative isolates (SJV 03, SJV 05 and SJV 19) were amplified with PCR using primers for 16S rRNA, and sequence for further identification. The clinical signs of shrimps affected by vibrio were pale hepatopancreas, weak of telson, dark and reddish coloration of smouth, patches of red colour in part of the body on the carapace, periopods, pleuopods, and telson. A total of 19 isolates were obtained and belong to three groups of genus Vibrios. Result of the 16S DNA sequence analysis, the vibrio found in this study related to vibriosis in white shrimps from extensive shrimp ponds of Kendal were closely related to Vibrio harveyi (SJV 03); V. parahaemolyticus (SJV 05) and V. alginolyticus (SJV 19).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tank, Marcus; Bryant, Donald A.
A novel thermophilic, microaerophilic, anoxygenic, and chlorophototrophic member of the phylum Acidobacteria, Chloracidobacterium thermophilum strain B T, was isolated from a cyanobacterial enrichment culture derived from microbial mats associated with Octopus Spring, Yellowstone National Park, Wyoming. C. thermophilum is strictly dependent on light and oxygen and grows optimally as a photoheterotroph at irradiance values between 20 and 50 µmol photons m⁻² s⁻¹. C. thermophilum is unable to synthesize branched-chain amino acids (AAs), L-lysine, and vitamin B₁₂, which are required for growth. Although the organism lacks genes for autotrophic carbon fixation, bicarbonate is also required. Mixtures of other AAs and 2-oxoglutaratemore » stimulate growth. As suggested from genomic sequence data, C. thermophilum requires a reduced sulfur source such as thioglycolate, cysteine, methionine, or thiosulfate. The organism can be grown in a defined medium at 51° C (T opt; range 44–58°C) in the pH range 5.5–9.5 (pH opt = ~7.0). Using the defined growth medium and optimal conditions, it was possible to isolate new C. thermophilum strains directly from samples of hot springs mats in Yellowstone National Park, Wyoming. The new isolates differ from the type strain with respect to pigment composition, morphology in liquid culture, and temperature adaptation.« less
Trudinger, P. A.
1970-01-01
The separation of an autoxidizable brown pigment, P582, from Desulfotomaculum nigrificans is described. It reacted with Na2S2O4 and was characterized by absorption maxima in the oxidized state at 392, 582, and 700 nm. In the presence of Na2S2O4, P582 formed complexes with CO and, under alkaline conditions, pyridine. There was no reaction with cyanide. The molecular weight of P582 was approximately 145,000, and the purest preparations contained Fe, Zn, and acid-labile sulfide but not Cu, Mo, or Mn. Preparations of P582 catalyzed the reduced methyl viologen (MVH)-linked reduction of sulfite, hydroxylamine, and nitrite but not of sulfate, thiosulfate, or nitrate. Reduced pyridine nucleotides did not substitute for MVH. A major product of the MVH-sulfite reaction was sulfide. CO partially inhibited the enzymatic activities. Sulfite, hydroxylamine, and nitrite and CO caused changes in the spectrum of Na2S2O4-reduced P582. Fe2+-chelating reagents reacted with part of the Fe of P582 and caused partial losses of labile sulfide and enzymatic activity. The spectral and CO-reacting properties of P582 were, however, unaffected by chelating agents. The reaction between P582 and chelating agents was stimulated by reducing agents. PMID:5473884
Inactivation of infectious hematopoietic necrosis virus by low levels of iodine
Batts, William N.; Landolt, Marsha L.; Winton, James R.
1991-01-01
The fish rhabdovirus infectious hematopoietic necrosis virus (IHNV) was rapidly inactivated by extremely low concentrations of iodine in water. A 99.9% virus reduction was obtained in 7.5 s when virus (105PFU/ml) and iodine (0.1 mg/liter, final concentration) were combined in distilled-deionized or hatchery water. Iodine efficacy decreased at pHs greater than 7.5 or when proteinaceous material was added to the water. Bovine serum albumin blocked iodine inactivation of the virus more effectively than did equal concentrations of fetal bovine serum or river sediment. Sodium thiosulfate effectively neutralized free iodine. Powder, iodophor, and crystalline iodine solutions inactivated IHNV equally. Iodine rapidly inactivated IHNV isolates representing each of the five electropherotypes. Under the conditions used in this study, inactivation was not affected by temperature, salinity, or water hardness. When Dworshak National Fish Hatchery water was continuously treated to provide a free iodine concentration of 0.14 mg/liter, a 7.5-s exposure to iodine was sufficient to inactivate 99.9% of the IHNV. Iodine added to water that contained IHNV prevented infection of rainbow trout (Oncorhynchus mykiss) fry. These results suggest that the waterborne route of IHNV transmission can be blocked by adding low iodine concentrations to the water supplies of hatcheries.
Disulfiram inhibition of cyanide formation after acetonitrile poisoning.
De Paepe, Peter; Colin, Pieter; Depuydt, Pieter; Decavele, An-Sofie; De Smet, Julie; Boussery, Koen; Stove, Christophe; Benoit, Dominique; Verstraete, Alain; Van Bocxlaer, Jan; Buylaert, Walter
2016-01-01
Cyanide poisoning may be caused by acetonitrile, a common industrial organic solvent and laboratory agent. To describe the potential use of disulfiram in treating acetonitrile poisoning in a human clinical case and to further study its effect in human liver microsomes in vitro. A 30-year-old man initially presented with a cholinergic toxic syndrome following ingestion of aldicarb. Toxicological analysis revealed coingestion of ethanol. He subsequently developed severe metabolic acidosis caused by the cyanogenic compound acetonitrile which was erroneously interpreted as acetone in the chromatogram. After three treatments with hydroxocobalamin (5 g i.v.) and sodium thiosulfate (12.5 g i.v.) on days 2, 3, and 5, he had transient improvement but recurrent lactic acidosis. Treatment with disulfiram was associated on day 7 with resolution of metabolic acidosis and slowing of the decrease in acetonitrile concentration. He recovered from acetonitrile toxicity completely. The time course of acetonitrile, thiocyanate, and cyanide concentrations suggested that disulfiram inhibited cyanide formation. In vitro experiments with human liver microsomes showed the cyanide concentration was significantly lower after incubation with acetonitrile and disulfiram than acetonitrile alone (a mean 60% reduction in cyanide level). Although disulfiram was given late in the course of the poisoning it is possible that it contributed to the recovery.
Pivovarova, T A; Bulaev, A G; Roshchupko, P V; Belyĭ, A V; Kondrat'eva, T F
2012-01-01
Aboriginal and experimental (constructed of pure microbial cultures) communities of acidophilic chemolithotrophs have been studied. The oxidation of elemental sulfur, sodium thiosulfate, and potassium tetrathionate as sole sources of energy has been monitored. The oxidation rate of the experimental community is higher as compared to the aboriginal community isolated from a flotation concentrate of pyrrhotine-containing pyrite-arsenopyrite gold-arsenic sulfide ore. The degree of oxidation of the mentioned S substrates amounts to 17.91, 68.30, and 93.94% for the experimental microbial community and to 10.71, 56.03, and 79.50% for the aboriginal community, respectively. The degree of oxidation of sulfur sulfide forms in the ore flotation concentrate is 59.15% by the aboriginal microbial community and 49.40% by the experimental microbial community. Despite a higher rate of oxidation of S substrates as a sole source of energy by the experimental microbial community, the aboriginal community oxidizes S substrates at a higher rate in the flotation concentrate of pyrrhotine-containing pyrite-arsenopyrite gold-arsenic sulfide ore, from which it was isolated. Bacterial-chemical oxidation of the flotation concentrate by the aboriginal microbial community allows for the extraction of an additional 32.3% of gold from sulfide minerals, which is by 5.7% larger compared to the yield obtained by the experimental microbial community.
Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium
Caccavo, F.; Coates, J.D.; Rossello-Mora, R. A.; Ludwig, W.; Schleifer, K.H.; Lovley, D.R.; McInerney, M.J.
1996-01-01
A new, phylogenetically distinct, dissimilatory, Fe(III)-reducing bacterium was isolated from surface sediment of a hydrocarbon-contaminated ditch. The isolate, designated strain PAL-1, was an obligately anaerobic, non-fermentative, motile, gram-negative vibrio. PAL-1 grew in a defined medium with acetate as electron donor and ferric pyrophosphate, ferric oxyhydroxide, ferric citrate, Co(III)-EDTA, or elemental sulfur as sole electron acceptor. PAL-1 also used proline, hydrogen, lactate, propionate, succinate, fumarate, pyruvate, or yeast extract as electron donors for Fe(III) reduction. It is the first bacterium known to couple the oxidation of an amino acid to Fe(III) reduction. PAI-1 did not reduce oxygen, Mn(IV), U(VI), Cr(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PAL-1 exhibited dithionite-reduced minus air-oxidized difference spectra that were characteristic of c-type cytochromes. Analysis of the 16S rRNA gene sequence of PAL-1 showed that the strain is not related to any of the described metal-reducing bacteria in the Proteobacteria and, together with Flexistipes sinusarabici, forms a separate line of descent within the Bacteria. Phenotypically and phylogenetically, strain PAI-1 differs from all other described bacteria, and represents the type strain of a new genus and species. Geovibrio ferrireducens.
Coenzyme Q deficiency causes impairment of the sulfide oxidation pathway.
Ziosi, Marcello; Di Meo, Ivano; Kleiner, Giulio; Gao, Xing-Huang; Barca, Emanuele; Sanchez-Quintero, Maria J; Tadesse, Saba; Jiang, Hongfeng; Qiao, Changhong; Rodenburg, Richard J; Scalais, Emmanuel; Schuelke, Markus; Willard, Belinda; Hatzoglou, Maria; Tiranti, Valeria; Quinzii, Catarina M
2017-01-01
Coenzyme Q (CoQ) is an electron acceptor for sulfide-quinone reductase (SQR), the first enzyme of the hydrogen sulfide oxidation pathway. Here, we show that lack of CoQ in human skin fibroblasts causes impairment of hydrogen sulfide oxidation, proportional to the residual levels of CoQ. Biochemical and molecular abnormalities are rescued by CoQ supplementation in vitro and recapitulated by pharmacological inhibition of CoQ biosynthesis in skin fibroblasts and ADCK3 depletion in HeLa cells. Kidneys of Pdss2 kd/kd mice, which only have ~15% residual CoQ concentrations and are clinically affected, showed (i) reduced protein levels of SQR and downstream enzymes, (ii) accumulation of hydrogen sulfides, and (iii) glutathione depletion. These abnormalities were not present in brain, which maintains ~30% residual CoQ and is clinically unaffected. In Pdss2 kd/kd mice, we also observed low levels of plasma and urine thiosulfate and increased blood C4-C6 acylcarnitines. We propose that impairment of the sulfide oxidation pathway induced by decreased levels of CoQ causes accumulation of sulfides and consequent inhibition of short-chain acyl-CoA dehydrogenase and glutathione depletion, which contributes to increased oxidative stress and kidney failure. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.
Johnson, Sarah Stewart; Chevrette, Marc Gerard; Ehlmann, Bethany L.; Benison, Kathleen Counter
2015-01-01
The extremely acidic brine lakes of the Yilgarn Craton of Western Australia are home to some of the most biologically challenging waters on Earth. In this study, we employed metagenomic shotgun sequencing to generate a microbial profile of the depositional environment associated with the sulfur-rich sediments of one such lake. Of the 1.5 M high-quality reads generated, 0.25 M were mapped to protein features, which in turn provide new insights into the metabolic function of this community. In particular, 45 diverse genes associated with sulfur metabolism were identified, the majority of which were linked to either the conversion of sulfate to adenylylsulfate and the subsequent production of sulfide from sulfite or the oxidation of sulfide, elemental sulfur, and thiosulfate via the sulfur oxidation (Sox) system. This is the first metagenomic study of an acidic, hypersaline depositional environment, and we present evidence for a surprisingly high level of microbial diversity. Our findings also illuminate the possibility that we may be meaningfully underestimating the effects of biology on the chemistry of these sulfur-rich sediments, thereby influencing our understanding of past geobiological conditions that may have been present on Earth as well as early Mars. PMID:25923206
Heat and Bleach: A Cost-Efficient Method for Extracting Microplastics from Return Activated Sludge.
Sujathan, Surya; Kniggendorf, Ann-Kathrin; Kumar, Arun; Roth, Bernhard; Rosenwinkel, Karl-Heinz; Nogueira, Regina
2017-11-01
The extraction of plastic microparticles, so-called microplastics, from sludge is a challenging task due to the complex, highly organic material often interspersed with other benign microparticles. The current procedures for microplastic extraction from sludge are time consuming and require expensive reagents for density separation as well as large volumes of oxidizing agents for organic removal, often resulting in tiny sample sizes and thus a disproportional risk of sample bias. In this work, we present an improved extraction method tested on return activated sludge (RAS). The treatment of 100 ml of RAS requires only 6% hydrogen peroxide (H 2 O 2 ) for bleaching at 70 °C, followed by density separation with sodium nitrate/sodium thiosulfate (SNT) solution, and is completed within 24 h. Extracted particles of all sizes were chemically analyzed with confocal Raman microscopy. An extraction efficiency of 78 ± 8% for plastic particle sizes 20 µm and up was confirmed in a recovery experiment. However, glass shards with a diameter of less than 20 µm remained in the sample despite the density of glass exceeding the density of the separating SNT solution by 1.1 g/cm 3 . This indicates that density separation may be unreliable for particle sizes in the lower micrometer range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morlock, Florian, E-mail: fmorlock3@gatech.edu; Jacobs, Laurence J., E-mail: fmorlock3@gatech.edu; Kim, Jin-Yeon, E-mail: fmorlock3@gatech.edu
2015-03-31
This research uses nonlinear Rayleigh surface waves to characterize stress corrosion cracking (SCC) damage in welded 304 Stainless Steel (304 SS). 304 SS is widely used in reactor pressure vessels, where a corrosive environment in combination with applied stress due to high internal pressures can cause SCC. Welds and the nearby heat affected zones (HAZ) in the vessel material are especially sensitive to SCC damage. SCC damage results in microstructural changes such as dislocation formation and microcrack initiation that in the long term lead to reduced structural integrity and material failure. Therefore, the early detection of SCC is crucial tomore » ensure safe operation. It has been shown that the microstructural changes caused by SCC can generate higher harmonic waves when excited harmonically. This research considers different levels of SCC damage induced in samples of welded 304 SS by applying stress to a specimen held in a corrosive medium (Sodium Thiosulfate). A nonlinear Rayleigh surface wave is introduced in the material and the fundamental and the second harmonic waves are measured using wedge detection. The nonlinearity parameter that relates the fundamental and the second harmonic amplitudes, is computed to quantify the SCC damage in each sample. These results are used to demonstrate the feasibility of using nonlinear Rayleigh waves to characterize SCC damage.« less
Boughanemi, Souhela; Lyonnet, Jordan; Infossi, Pascale; Bauzan, Marielle; Kosta, Artémis; Lignon, Sabrina; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne
2016-08-01
The Hdr (heterodisulfide reductase)-like enzyme is predicted, from gene transcript profiling experiments previously published, to be essential in oxidative sulfur metabolism in a number of bacteria and archaea. Nevertheless, no biochemical and physicochemical data are available so far about this enzyme. Genes coding for it were identified in Aquifex aeolicus, a Gram-negative, hyperthermophilic, chemolithoautotrophic and microaerophilic bacterium that uses inorganic sulfur compounds as electron donor to grow. We provide biochemical evidence that this Hdr-like enzyme is present in this sulfur-oxidizing prokaryote (cultivated with thiosulfate or elemental sulfur). We demonstrate, by immunolocalization and cell fractionation, that Hdr-like enzyme is associated, presumably monotopically, with the membrane fraction. We show by co-immunoprecipitation assay or partial purification, that the Hdr proteins form a stable complex composed of at least five subunits, HdrA, HdrB1, HdrB2, HdrC1 and HdrC2, present in two forms of high molecular mass on native gel (∼240 and 450 kDa). These studies allow us to propose a revised model for dissimilatory sulfur oxidation pathways in A. aeolicus, with Hdr predicted to generate sulfite. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Maity, Jyoti Prakash; Liu, Chia-Chuan; Nath, Bibhash; Bundschuh, Jochen; Kar, Sandeep; Jean, Jiin-Shuh; Bhattacharya, Prosun; Liu, Jiann-Hong; Atla, Shashi B; Chen, Chien-Yen
2011-01-01
Hot springs are the important natural sources of geothermally heated groundwater from the Earth's crust. Kuan-Tzu-Ling (KTL), Chung-Lun (CL) and Bao-Lai (BL) are well-known hot springs in southern Taiwan. Fluid and mud (sediments) samples were collected from the eruption points of three hot springs for detailed biogeochemical characterization. The fluid sample displays relatively high concentrations of Na(+) and Cl(-) compared with K(+), Mg(2+), Ca(2+), NO(2) (-), and SO(4) (2-), suggesting a possible marine origin. The concentrations of Fe, Cr, Mn, Ni, V and Zn were significantly higher in the mud sediments compared with fluids, whereas high concentrations of As, Ba, Cu, Se, Sr and Rb were observed in the fluids. This suggests that electronegative elements were released during sediment-water interactions. High As concentration in the fluids was observed to be associated with low redox (Eh) conditions. The FTIR spectra of the humic acid fractions of the sediments showed the presence of possible functional groups of secondary amines, ureas, urethanesm (amide), and silicon. The sulfate-reducing deltaproteobacterium 99% similar to Desulfovibrio psychrotolerans (GU329907) were rich in the CL hot spring while mesophilic, proteolytic, thiosulfate- and sulfur-reducing bacterium that 99% similar to Clostridium sulfidigenes (GU329908) were rich in the BL hot spring.
Bacteriophage Infectivity Against Pseudomonas aeruginosa in Saline Conditions
Scarascia, Giantommaso; Yap, Scott A.; Kaksonen, Anna H.; Hong, Pei-Ying
2018-01-01
Pseudomonas aeruginosa is a ubiquitous member of marine biofilm, and reduces thiosulfate to produce toxic hydrogen sulfide gas. In this study, lytic bacteriophages were isolated and applied to inhibit the growth of P. aeruginosa in planktonic mode at different temperature, pH, and salinity. Bacteriophages showed optimal infectivity at a multiplicity of infection of 10 in saline conditions, and demonstrated lytic abilities over all tested temperature (25, 30, 37, and 45°C) and pH 6–9. Planktonic P. aeruginosa exhibited significantly longer lag phase and lower specific growth rates upon exposure to bacteriophages. Bacteriophages were subsequently applied to P. aeruginosa-enriched biofilm and were determined to lower the relative abundance of Pseudomonas-related taxa from 0.17 to 5.58% in controls to 0.01–0.61% in treated microbial communities. The relative abundance of Alphaproteobacteria, Pseudoalteromonas, and Planococcaceae decreased, possibly due to the phage-induced disruption of the biofilm matrix. Lastly, when applied to mitigate biofouling of ultrafiltration membranes, bacteriophages were determined to reduce the transmembrane pressure increase by 18% when utilized alone, and by 49% when used in combination with citric acid. The combined treatment was more effective compared with the citric acid treatment alone, which reported ca. 30% transmembrane pressure reduction. Collectively, the findings demonstrated that bacteriophages can be used as a biocidal agent to mitigate undesirable P. aeruginosa-associated problems in seawater applications. PMID:29770130
Caccavo, F; Lonergan, D J; Lovley, D R; Davis, M; Stolz, J F; McInerney, M J
1994-01-01
A dissimilatory metal- and sulfur-reducing microorganism was isolated from surface sediments of a hydrocarbon-contaminated ditch in Norman, Okla. The isolate, which was designated strain PCA, was an obligately anaerobic, nonfermentative nonmotile, gram-negative rod. PCA grew in a defined medium with acetate as an electron donor and ferric PPi, ferric oxyhydroxide, ferric citrate, elemental sulfur, Co(III)-EDTA, fumarate, or malate as the sole electron acceptor. PCA also coupled the oxidation of hydrogen to the reduction of Fe(III) but did not reduce Fe(III) with sulfur, glucose, lactate, fumarate, propionate, butyrate, isobutyrate, isovalerate, succinate, yeast extract, phenol, benzoate, ethanol, propanol, or butanol as an electron donor. PCA did not reduce oxygen, Mn(IV), U(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PCA exhibited dithionite-reduced minus air-oxidized difference spectra which were characteristic of c-type cytochromes. Phylogenetic analysis of the 16S rRNA sequence placed PCA in the delta subgroup of the proteobacteria. Its closest known relative is Geobacter metallireducens. The ability to utilize either hydrogen or acetate as the sole electron donor for Fe(III) reduction makes strain PCA a unique addition to the relatively small group of respiratory metal-reducing microorganisms available in pure culture. A new species name, Geobacter sulfurreducens, is proposed. Images PMID:7527204
The extraction characteristic of Au-Ag from Au concentrate by thiourea solution
NASA Astrophysics Data System (ADS)
Kim, Bongju; Cho, Kanghee; On, Hyunsung; Choi, Nagchoul; Park, Cheonyoung
2013-04-01
The cyanidation process has been used commercially for the past 100 years, there are ores that are not amenable to treatment by cyanide. Interest in alternative lixiviants, such as thiourea, halogens, thiosulfate and malononitrile, has been revived as a result of a major increase in gold price, which has stimulated new developments in extraction technology, combined with environmental concern. The Au extraction process using the thiourea solvent has many advantages over the cyanidation process, including higher leaching rates, faster extraction time and less than toxicity. The purpose of this study was investigated to the extraction characteristic of Au-Ag from two different Au concentrate (sulfuric acid washing and roasting) under various experiment conditions (thiourea concentration, pH of solvent, temperature) by thiourea solvent. The result of extraction experiment showed that the Au-Ag extraction was a fast extraction process, reaching equilibrium (maximum extraction rate) within 30 min. The Au-Ag extraction rate was higher in the roasted concentrate than in the sulfuric acid washing. The higher the Au-Ag extraction rate (Au - 70.87%, Ag - 98.12%) from roasted concentrate was found when the more concentration of thiourea increased, pH decreased and extraction temperature increased. This study informs extraction method basic knowledge when thiourea was a possibility to eco-/economic resources of Au-Ag utilization studies including the hydrometallurgy.
The CsoR-like sulfurtransferase repressor (CstR) is a persulfide sensor in Staphylococcus aureus.
Luebke, Justin L; Shen, Jiangchuan; Bruce, Kevin E; Kehl-Fie, Thomas E; Peng, Hui; Skaar, Eric P; Giedroc, David P
2014-12-01
How cells regulate the bioavailability of utilizable sulfur while mitigating the effects of hydrogen sulfide toxicity is poorly understood. CstR [Copper-sensing operon repressor (CsoR)-like sulfurtransferase repressor] represses the expression of the cst operon encoding a putative sulfide oxidation system in Staphylococcus aureus. Here, we show that the cst operon is strongly and transiently induced by cellular sulfide stress in an acute phase and specific response and that cst-encoded genes are necessary to mitigate the effects of sulfide toxicity. Growth defects are most pronounced when S. aureus is cultured in chemically defined media with thiosulfate (TS) as a sole sulfur source, but are also apparent when cystine is used or in rich media. Under TS growth conditions, cells fail to grow as a result of either unregulated expression of the cst operon in a ΔcstR strain or transformation with a non-inducible C31A/C60A CstR that blocks cst induction. This suggests that the cst operon contributes to cellular sulfide homeostasis. Tandem high-resolution mass spectrometry reveals derivatization of CstR by both inorganic tetrasulfide and an organic persulfide, glutathione persulfide, to yield a mixture of Cys31-Cys60' interprotomer cross-links, including di-, tri- and tetrasulfide bonds, which allosterically inhibit cst operator DNA binding by CstR. © 2014 John Wiley & Sons Ltd.
The CsoR-like sulfurtransferase repressor (CstR) is a persulfide sensor in Staphylococcus aureus
Luebke, Justin L.; Shen, Jiangchuan; Bruce, Kevin E.; Kehl-Fie, Thomas E.; Peng, Hui; Skaar, Eric P.; Giedroc, David P.
2014-01-01
How cells regulate the bioavailability of utilizable sulfur while mitigating the effects of hydrogen sulfide toxicity is poorly understood. CstR (Copper-sensing operon repressor (CsoR)-like sulfurtransferase repressor) represses the expression of the cst operon encoding a putative sulfide oxidation system in Staphylococcus aureus. Here, we show that the cst operon is strongly and transiently induced by cellular sulfide stress in an acute phase and specific response and that cst-encoded genes are necessary to mitigate the effects of sulfide toxicity. Growth defects are most pronounced when S. aureus is cultured in chemically defined media with thiosulfate (TS) as a sole sulfur source, but are also apparent when cystine is used or in rich media. Under TS growth conditions, cells fail to grow as a result of either unregulated expression of the cst operon in a ΔcstR strain or transformation with a non-inducible C31A/C60A CstR that blocks cst induction. This suggests that the cst operon contributes to cellular sulfide homeostasis. Tandem high resolution mass spectrometry reveals derivatization of CstR by both inorganic tetrasulfide and an organic persulfide, glutathione persulfide, to yield a mixture of Cys31-Cys60’ interprotomer crosslinks, including di-, tri- and tetrasulfide bonds, which allosterically inhibit cst operator DNA binding by CstR. PMID:25318663
Microbial quality of water in dental unit waterlines.
Nikaeen, Mahnaz; Hatamzadeh, Maryam; Sabzevari, Zohre; Zareh, Omolbanin
2009-09-01
Dental unit waterlines (DUWLs) are ideal environment for development of microbial biofilms. Microbial contamination of water in DUWLs is thought to be the result of biofilm formation as it could serves as a haven for pathogens. The aim of this study was to assess microbial quality of water in dental unit waterlines of dental units located at the dental school of Isfahan University of Medical Sciences. Water samples were collected from air/water syringe and high-speed handpiece. Generally, 100-200 ml water samples were collected aseptically in sterile containers with sodium thiosulfate at the beginning of the day after a 2 minute purge. Samples were transferred to the laboratory in insulated box with cooling packs and examined for total viable heterotrophic bacteria and fungi. The heterotrophic plate count levels were significantly exceeded the American Dental Association recommendations for DUWL water quality (< 200 CFU/ml), in both air/water syringe (84%, CFU/ml: 500-20000) and high-speed handpiece (96%, CFU/ml: 710-36800) samples. However, there was no significant difference between the level of contamination in the air/water syringe and high-speed handpiece. Fungi were found in 28% and 36% of air/water syringe and high-speed handpiece samples, respectively; and filamentous fungi were the most frequently isolated fungi. DUWLs should be subjected to routine microbial monitoring and to a decontamination protocol in order to minimize the risk of exposure to potential pathogens from dental units.
Occurrence of Vibrio cholerae serogroups other than O1 and O139 in Austria.
Huhulescu, Steliana; Indra, Alexander; Feierl, Gebhard; Stoeger, Anna; Ruppitsch, Werner; Sarkar, Banwarial; Allerberger, Franz
2007-01-01
From 2000 to 2005, 13 infections due to non-O1/non-O139 Vibrio cholerae were documented in Austria. Twelve patients (8 years to 65 years old; 7 male) had symptomatic infections: diarrhea x 5, otitis x 6, septicemia once. All 5 patients who acquired their infections abroad, suffered from diarrhea. The 8 persons without travel history outside of Austria had otitis media (n = 4) or otitis externa (n = 2); the lethal case of septicemia affected a fisherman with underlying malignancy. One isolate was from an asymptomatic child. Detailed data on travel history inside Austria was available for 5 of these 8 patients: all 5 had visited or lived near Austria's largest lake. The concentration of salt in this westernmost steppe lake in Europe is approximately one-twentieth of that of sea water. Why otitis and not diarrhea is the dominating manifestation of non-O1/non-O139 infection acquired in Austria remains to be elucidated. We hypothesize that diarrhea due to Vibrio cholerae serogroups other than O1 and O139 acquired in Austria may simply be unrecognized by the standard operating procedures employed in clinical microbiology laboratories. Testing for Vibrio cholerae is not considered necessary for domestically acquired diarrhea. Only in patients who acquired diarrhea abroad, do physicians sometimes consider cholera as a differential diagnosis, thereby prompting the laboratory to use thiosulfate citrate bile salt sucrose (TCBS) agar plates.
A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay estuary, New Hampshire
Caccavo, F.; Blakemore, R.P.; Lovley, D.R.
1992-01-01
A dissimilatory Fe(III)- and Mn(IV)-reducing bacterium was isolated from bottom sediments of the Great Bay estuary, New Hampshire. The isolate was a facultatively anaerobic gram-negative rod which did not appear to fit into any previously described genus. It was temporarily designated strain BrY. BrY grew anaerobically in a defined medium with hydrogen or lactate as the electron donor and Fe(III) as the electron acceptor. BrY required citrate, fumarate, or malate as a carbon source for growth on H2 and Fe(III). With Fe(III) as the sole electron acceptor, BrY metabolized hydrogen to a minimum threshold at least 60-fold lower than the threshold reported for pure cultures of sulfate reducers. This finding supports the hypothesis that when Fe(III) is available, Fe(III) reducers can outcompete sulfate reducers for electron donors. Lactate was incompletely oxidized to acetate and carbon dioxide with Fe(III) as the electron acceptor. Lactate oxidation was also coupled to the reduction of Mn(IV), U(VI), fumarate, thiosulfate, or trimethylamine n-oxide under anaerobic conditions. BrY provides a model for how enzymatic metal reduction by respiratory metal-reducing microorganisms has the potential to contribute to the mobilization of iron and trace metals and to the immobilization of uranium in sediments of Great Bay Estuary.
Spollen, William G.; LeNoble, Mary E.; Samuels, Timmy D.; Bernstein, Nirit; Sharp, Robert E.
2000-01-01
Previous work showed that primary root elongation in maize (Zea mays L.) seedlings at low water potentials (ψw) requires the accumulation of abscisic acid (ABA) (R.E. Sharp, Y. Wu, G.S. Voetberg, I.N. Saab, M.E. LeNoble [1994] J Exp Bot 45: 1743–1751). The objective of the present study was to determine whether the inhibition of elongation in ABA-deficient roots is attributable to ethylene. At a ψw of −1.6 MPa, inhibition of root elongation in dark-grown seedlings treated with fluridone to impose ABA deficiency was largely prevented with two inhibitors of ethylene synthesis (aminooxyacetic acid and aminoethoxyvinylglycine) and one inhibitor of ethylene action (silver thiosulfate). The fluridone treatment caused an increase in the rate of ethylene evolution from intact seedlings. This effect was completely prevented with aminooxyacetic acid and also when ABA was supplied at a concentration that restored the ABA content of the root elongation zone and the root elongation rate. Consistent results were obtained when ABA deficiency was imposed using the vp5 mutant. Both fluridone-treated and vp5 roots exhibited additional morphological symptoms of excess ethylene. The results demonstrate that an important role of ABA accumulation in the maintenance of root elongation at low ψw is to restrict ethylene production. PMID:10712561
Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium
Visscher, P.T.; Taylor, B.F.
1993-01-01
A pure culture of a bacterium was obtained from a marine microbial mat by using an anoxic medium containing dimethyl sulfide (DMS) and nitrate. The isolate grew aerobically or anaerobically as a denitrifier on alkyl sulfides, including DMS, dimethyl disulfide, diethyl sulfide (DES), ethyl methyl sulfide, dipropyl sulfide, dibutyl sulfide, and dibutyl disulfide. Cells grown on an alkyl sulfide or disulfide also oxidized the corresponding thiols, namely, methanethiol, ethanethiol, propanethiol, or butanethiol. Alkyl sulfides were metabolized by induced or derepressed cells with oxygen, nitrate, or nitrite as electron acceptor. Cells grown on DMS immediately metabolized DMS, but there was a lag before DES was consumed; with DES-grown cells, DES was immediately used but DMS was used only after a lag. Chloramphenicol prevented the eventual use of DES by DMS-grown cells and DMS use by DES-grown cells, respectively, indicating separate enzymes for the metabolism of methyl and ethyl groups. Growth was rapid on formate, acetate, propionate, and butyrate but slow on methanol. The organism also grew chemolithotrophically on thiosulfate with a decrease in pH; growth required carbonate in the medium. Growth on sulfide was also carbonate dependent but slow. The isolate was identified as a Thiobacillus sp. and designated strain ASN-1. It may have utility for removing alkyl sulfides, and also nitrate, nitrite, and sulfide, from wastewaters.
Campodonico, Miguel A; Vaisman, Daniela; Castro, Jean F; Razmilic, Valeria; Mercado, Francesca; Andrews, Barbara A; Feist, Adam M; Asenjo, Juan A
2016-12-01
Acidithiobacillus ferrooxidans is a gram-negative chemolithoautotrophic γ-proteobacterium. It typically grows at an external pH of 2 using the oxidation of ferrous ions by oxygen, producing ferric ions and water, while fixing carbon dioxide from the environment. A. ferrooxidans is of great interest for biomining and environmental applications, as it can process mineral ores and alleviate the negative environmental consequences derived from the mining processes. In this study, the first genome-scale metabolic reconstruction of A. ferrooxidans ATCC 23270 was generated ( i MC507). A total of 587 metabolic and transport/exchange reactions, 507 genes and 573 metabolites organized in over 42 subsystems were incorporated into the model. Based on a new genetic algorithm approach, that integrates flux balance analysis, chemiosmotic theory, and physiological data, the proton translocation stoichiometry for a number of enzymes and maintenance parameters under aerobic chemolithoautotrophic conditions using three different electron donors were estimated. Furthermore, a detailed electron transfer and carbon flux distributions during chemolithoautotrophic growth using ferrous ion, tetrathionate and thiosulfate were determined and reported. Finally, 134 growth-coupled designs were calculated that enables Extracellular Polysaccharide production. i MC507 serves as a knowledgebase for summarizing and categorizing the information currently available for A. ferrooxidans and enables the understanding and engineering of Acidithiobacillus and similar species from a comprehensive model-driven perspective for biomining applications.
Bacterial and chemical oxidation of pyritic mine tailings at low temperatures
NASA Astrophysics Data System (ADS)
Elberling, Bo; Schippers, Axel; Sand, Wolfgang
2000-02-01
Microbial and chemical sulfide oxidation activity and oxygen consumption was investigated in the active layer of pyritic mine tailings at Nanisivik Mine, located in a permafrost area on Baffin Island in northern Canada. Samples of tailings were collected up to a depth of 60 cm in mid-August 1998 at 4 sites, for which the metabolic activity of sulfur- and iron-oxidizing leaching bacteria besides the chemical pyrite oxidation activity were measured on 39 tailings samples and 7 samples from a natural pyritic site by calorimetry. The tailings of varying age and water content were deposited under alkaline conditions. In situ oxygen uptake rates were measured at the tailings surface every third day, prior to sampling. In addition, cell counts of iron(II), sulfur, and thiosulfate oxidizing, lithotrophic bacteria and chemoorganotrophic microorganisms were determined quantitatively by the most-probable-number technique or by agar-plating. Results show consistent pyrite oxidation rates based on in situ oxygen uptake rates, and laboratory heat output measurements. Litho- and organotrophic bacteria were found in the tailings. Calorimetric measurements revealed that the present bacterial activity is responsible for approximately one third of the ongoing oxidation. Although leaching bacteria have previously been found in the Arctic, this study is the first to prove the significance of bacterial activity in the overall pollution resulting from tailings deposited in the Arctic.
Li, Hongwei; Yang, Fan; Kang, Xue; Xia, Bin; Jin, Changwen
2008-04-15
Rhodanese catalyzes the sulfur-transfer reaction that transfers sulfur from thiosulfate to cyanide by a double-displacement mechanism, in which an active cysteine residue plays a central role. Previous studies indicated that the phage-shock protein E (PspE) from Escherichia coli is a rhodanese composed of a single active domain and is the only accessible rhodanese among the three single-domain rhodaneses in E. coli. To understand the catalytic mechanism of rhodanese at the molecular level, we determined the solution structures of the sulfur-free and persulfide-intermediate forms of PspE by nuclear magnetic resonance (NMR) spectroscopy and identified the active site by NMR titration experiments. To obtain further insights into the catalytic mechanism, we studied backbone dynamics by NMR relaxation experiments. Our results demonstrated that the overall structures in both sulfur-free and persulfide-intermediate forms are highly similar, suggesting that no significant conformational changes occurred during the catalytic reaction. However, the backbone dynamics revealed that the motional properties of PspE in its sulfur-free form are different from the persulfide-intermediate state. The conformational exchanges are largely enhanced in the persulfide-intermediate form of PspE, especially around the active site. The present structural and biochemical studies in combination with backbone dynamics provide further insights in understanding the catalytic mechanism of rhodanese.
Liang, Renxing; Davidova, Irene A.; Marks, Christopher R.; Stamps, Blake W.; Harriman, Brian H.; Stevenson, Bradley S.; Duncan, Kathleen E.; Suflita, Joseph M.
2016-01-01
Microbial activity associated with produced water from hydraulic fracturing operations can lead to gas souring and corrosion of carbon-steel equipment. We examined the microbial ecology of produced water and the prospective role of the prevalent microorganisms in corrosion in a gas production field in the Barnett Shale. The microbial community was mainly composed of halophilic, sulfidogenic bacteria within the order Halanaerobiales, which reflected the geochemical conditions of highly saline water containing sulfur species (S2O32-, SO42-, and HS-). A predominant, halophilic bacterium (strain DL-01) was subsequently isolated and identified as belonging to the genus Halanaerobium. The isolate could degrade guar gum, a polysaccharide polymer used in fracture fluids, to produce acetate and sulfide in a 10% NaCl medium at 37°C when thiosulfate was available. To mitigate potential deleterious effects of sulfide and acetate, a quaternary ammonium compound was found to be an efficient biocide in inhibiting the growth and metabolic activity of strain DL-01 relative to glutaraldehyde and tetrakis (hydroxymethyl) phosphonium sulfate. Collectively, our findings suggest that predominant halophiles associated with unconventional shale gas extraction could proliferate and produce sulfide and acetate from the metabolism of polysaccharides used in hydraulic fracturing fluids. These metabolic products might be returned to the surface and transported in pipelines to cause pitting corrosion in downstream infrastructure. PMID:27446028
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton-Brehm, Scott D.; Gibson, Robert A.; Green, Stefan J.
2013-01-24
A novel sulfate-reducing bacterium designated OPF15T was isolated from Obsidian Pool, Yellowstone National Park, Wyoming. The phylogeny of 16S rRNA and functional genes (dsrAB) placed the organism within the family Thermodesulfobacteriaceae. The organism displayed hyperthermophilic temperature requirements for growth with a range of 70 90 C and an optimum of 83 C. Optimal pH was around 6.5 7.0 and the organism required the presence of H2 or formate as an electron donor and CO2 as a carbon source. Electron acceptors supporting growth included sulfate, thiosulfate, and elemental sulfur. Lactate, acetate, pyruvate, benzoate, oleic acid, and ethanol did not serve asmore » electron donors. Membrane lipid analysis revealed diacyl glycerols and acyl/ether glycerols which ranged from C14:0 to C20:0. Alkyl chains present in acyl/ether and diether glycerol lipids ranged from C16:0 to C18:0. Straight, iso- and anteiso-configurations were found for all lipid types. The presence of OPF15T was also shown to increase cellulose consumption during co-cultivation with Caldicellulosiruptor obsidiansis, a fermentative, cellulolytic extreme thermophile isolated from the same environment. On the basis of phylogenetic, phenotypic, and structural analyses, Thermodesulfobacterium geofontis sp. nov. is proposed as a new species with OPF15T representing the type strain.« less
Ghosh, Semanti; Bagchi, Angshuman
2018-04-26
Sulfur metabolism is one of the oldest known biochemical processes. Chemotrophic or phototrophic proteobacteria, through the dissimilatory pathway, use sulfate, sulfide, sulfite, thiosulfate or elementary sulfur by either reductive or oxidative mechanisms. During anoxygenic photosynthesis, anaerobic sulfur oxidizer Allochromatium vinosum forms sulfur globules that are further oxidized by dsr operon. One of the key redox enzymes in reductive or oxidative sulfur metabolic pathways is the DsrAB protein complex. However, there are practically no reports to elucidate the molecular mechanism of the sulfur oxidation process by the DsrAB protein complex from sulfur oxidizer Allochromatium vinosum. In the present context, we tried to analyze the structural details of the DsrAB protein complex from sulfur oxidizer Allochromatium vinosum by molecular dynamics simulations. The molecular dynamics simulation results revealed the various types of molecular interactions between DsrA and DsrB proteins during the formation of DsrAB protein complex. We, for the first time, predicted the mode of binding interactions between the co-factor and DsrAB protein complex from Allochromatium vinosum. We also compared the binding interfaces of DsrAB from sulfur oxidizer Allochromatium vinosum and sulfate reducer Desulfovibrio vulgaris. This study is the first to provide a comparative aspect of binding modes of sulfur oxidizer Allochromatium vinosum and sulfate reducer Desulfovibrio vulgaris.
Hamilton-Brehm, Scott D; Gibson, Robert A; Green, Stefan J; Hopmans, Ellen C; Schouten, Stefan; van der Meer, Marcel T J; Shields, John P; Damsté, Jaap S S; Elkins, James G
2013-03-01
A novel sulfate-reducing bacterium designated OPF15(T) was isolated from Obsidian Pool, Yellowstone National Park, Wyoming. The phylogeny of 16S rRNA and functional genes (dsrAB) placed the organism within the family Thermodesulfobacteriaceae. The organism displayed hyperthermophilic temperature requirements for growth with a range of 70-90 °C and an optimum of 83 °C. Optimal pH was around 6.5-7.0 and the organism required the presence of H2 or formate as an electron donor and CO2 as a carbon source. Electron acceptors supporting growth included sulfate, thiosulfate, and elemental sulfur. Lactate, acetate, pyruvate, benzoate, oleic acid, and ethanol did not serve as electron donors. Membrane lipid analysis revealed diacyl glycerols and acyl/ether glycerols which ranged from C14:0 to C20:0. Alkyl chains present in acyl/ether and diether glycerol lipids ranged from C16:0 to C18:0. Straight, iso- and anteiso-configurations were found for all lipid types. The presence of OPF15(T) was also shown to increase cellulose consumption during co-cultivation with Caldicellulosiruptor obsidiansis, a fermentative, cellulolytic extreme thermophile isolated from the same environment. On the basis of phylogenetic, phenotypic, and structural analyses, Thermodesulfobacterium geofontis sp. nov. is proposed as a new species with OPF15(T) representing the type strain.
Molecular properties of the SLC13 family of dicarboxylate and sulfate transporters
Pajor, Ana M.
2006-01-01
The SLC13 gene family consists of five members in humans, with corresponding orthologs from different vertebrate species. All five genes code for sodium-coupled transporters that are found on the plasma membrane. Two of the transporters, NaS1 and NaS2, carry substrates such as sulfate, selenate and thiosulfate. The other members of the family (NaDC1, NaDC3, and NaCT) are transporters for di- and tri-carboxylates including succinate, citrate and α-ketoglutarate. The SLC13 transporters from vertebrates are electrogenic and they produce inward currents in the presence of sodium and substrate. Substrate-independent leak currents have also been described. Structure–function studies have identified the carboxy terminal half of these proteins as the most important for determining function. Transmembrane helices 9 and 10 may form part of the substrate permeation pathway and participate in conformational changes during the transport cycle. This review also discusses new members of the SLC13 superfamily that exhibit both sodium-dependent and sodium-independent transport mechanisms. The Indy protein from Drosophila, involved in determining lifespan, and the plant vacuolar malate transporter are both sodium-independent dicarboxylate transporters, possibly acting as exchangers. The purpose of this review is to provide an update on new advances in this gene family, particularly on structure–function studies and new members of the family. PMID:16211368
Delivery of Chemotherapeutics Across the Blood–Brain Barrier: Challenges and Advances
Doolittle, Nancy D.; Muldoon, Leslie L.; Culp, Aliana Y.; Neuwelt, Edward A.
2017-01-01
The blood–brain barrier (BBB) limits drug delivery to brain tumors. We utilize intraarterial infusion of hyperosmotic mannitol to reversibly open the BBB by shrinking endothelial cells and opening tight junctions between the cells. This approach transiently increases the delivery of chemotherapy, antibodies, and nanoparticles to brain. Our preclinical studies have optimized the BBB disruption (BBBD) technique and clinical studies have shown its safety and efficacy. The delivery of methotrexate-based chemotherapy in conjunction with BBBD provides excellent outcomes in primary central nervous system lymphoma (PCNSL) including stable or improved cognitive function in survivors a median of 12 years (range 2–26 years) after diagnosis. The addition of rituximab to chemotherapy with BBBD for PCNSL can be safely accomplished with excellent overall survival. Our translational studies of thiol agents to protect against platinum-induced toxicities led to the development of a two-compartment model in brain tumor patients. We showed that delayed high-dose sodium thiosulfate protects against carboplatin-induced hearing loss, providing the framework for large cooperative group trials of hearing chemoprotection. Neuroimaging studies have identified that ferumoxytol, an iron oxide nanoparticle blood pool agent, appears to be a superior contrast agent to accurately assess therapy-induced changes in brain tumor vasculature, in brain tumor response to therapy, and in differentiating central nervous system lesions with inflammatory components. This chapter reviews the breakthroughs, challenges, and future directions for BBBD. PMID:25307218
Analysis of gold(I/III)-complexes by HPLC-ICP-MS demonstrates gold(III) stability in surface waters.
Ta, Christine; Reith, Frank; Brugger, Joël; Pring, Allan; Lenehan, Claire E
2014-05-20
Understanding the form in which gold is transported in surface- and groundwaters underpins our understanding of gold dispersion and (bio)geochemical cycling. Yet, to date, there are no direct techniques capable of identifying the oxidation state and complexation of gold in natural waters. We present a reversed phase ion-pairing HPLC-ICP-MS method for the separation and determination of aqueous gold(III)-chloro-hydroxyl, gold(III)-bromo-hydroxyl, gold(I)-thiosulfate, and gold(I)-cyanide complexes. Detection limits for the gold species range from 0.05 to 0.30 μg L(-1). The [Au(CN)2](-) gold cyanide complex was detected in five of six waters from tailings and adjacent monitoring bores of working gold mines. Contrary to thermodynamic predictions, evidence was obtained for the existence of Au(III)-complexes in circumneutral, hypersaline waters of a natural lake overlying a gold deposit in Western Australia. This first direct evidence for the existence and stability of Au(III)-complexes in natural surface waters suggests that Au(III)-complexes may be important for the transport and biogeochemical cycling of gold in surface environments. Overall, these results show that near-μg L(-1) enrichments of Au in environmental waters result from metastable ligands (e.g., CN(-)) as well as kinetically controlled redox processes leading to the stability of highly soluble Au(III)-complexes.
Ratcliffe, Lucy V; Rutten, Frank J M; Barrett, David A; Whitmore, Terry; Seymour, David; Greenwood, Claire; Aranda-Gonzalvo, Yolanda; Robinson, Steven; McCoustra, Martin
2007-08-15
A novel plasma-assisted desorption/ionization (PADI) method that can be coupled with atmospheric pressure sampling mass spectrometry to yield mass spectral information under ambient conditions of pressure and humidity from a range of surfaces without the requirement for sample preparation or additives is reported. PADI is carried out by generating a nonthermal plasma which interacts directly with the surface of the analyte. Desorption and ionization then occur at the surface, and ions are sampled by the mass spectrometer. The PADI technique is demonstrated and compared with desorption electrospray ionization (DESI) for the detection of active ingredients in a range of over-the-counter and prescription pharmaceutical formulations, including nonsterodial anti-inflammatory drugs (mefenamic acid, Ibugel, and ibuprofen), analgesics (paracetamol, Anadin Extra), and Beecham's "all in one" cold and flu remedy. PADI has also been successfully applied to the analysis of nicotine in tobacco and thiosulfates in garlic. PADI experiments have been performed using a prototype source interfaced with a Waters Platform LCZ single-quadrupole mass spectrometer with limited modifications and a Hiden Analytical HPR-60 molecular beam mass spectrometer (MBMS). The ability of PADI to rapidly detect active ingredients in pharmaceuticals without the need for prior sample preparation, solvents, or exposed high voltages demonstrates the potential of the technique for high-throughput screening in a pharmaceutical or forensic environment.
López, G; Cañas-Duarte, S J; Pinzón-Velasco, A M; Vega-Vela, N E; Rodríguez, M; Restrepo, S; Baena, S
2017-03-01
Strain USBA-019 T , an anaerobic and thermophilic strain, was identified as a new member of the genus Thermoanaerobacterium. USBA-019 T cells are gram-positive, strictly anaerobic, thermophilic, chemoorganotrophic, moderately acidophilic, non-motile, endospore-forming, slightly curved, and rod-shaped. Cells measure 0.4×3.0-7.0μm. Optimal growth occurs at 50-55°C (35-65°C). Optimum pH is 5.0-5.5 (4.0-8.5). Thiosulfate, elemental sulfur and nitrate were utilized as electron acceptors. Fermentation of glucose, lactose, cellobiose, galactose, arabinose, xylose, starch and xylan primarily produced acetate and butyrate. Xylan, starch and cellobiose produced ethanol and starch, cellobiose, galactose, arabinose and mannose produced lactic acid. Phylogenetic analyses based on 16S rRNA gene sequence comparison and genomic relatedness indices show the close relation of USBA-019 T to Thermoanaerobacterium thermostercoris and Thermoanaerobacterium aotearoense (similarity value: 99%). Hybridization of USBA-019 T , Th. thermostercoris DSM22141 T and Th. aotearoense DMS10170 T found DNA-DNA relatedness of 33.2% and 18.2%, respectively. Based on phenotypic, chemotaxonomic and phylogenetic evidence, along with low identity at whole genome level, USBA-019 T is a novel species of the genus Thermoanaerobacterium which we propose to name Thermoanaerobacterium butyriciformans sp. nov. The type strain is USBA-019 T (=CMPUJ U-019 T =DSM 101588 T ). Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Schrenk, M. O.; Sabuda, M.; Brazelton, W. J.; Twing, K. I.
2017-12-01
The study of serpentinization-influenced microbial ecosystems at and below the seafloor has accelerated in recent years with multidisciplinary drilling expeditions to the Atlantis Massif (X357), Southwest Indian Ridge (X360) and Mariana Forearc (X366). In parallel, a number of studies have surveyed serpentinizing systems in ophiolite complexes which host a range of geologic histories, geochemical characteristics, fluid pathways, and consequently microbiology. As ophiolite complexes originate as seafloor materials, it is likely that a microbiological record of seafloor serpentinization processes is maintained through the emplacement and weathering of continental serpentinites. This hypothesis was evaluated through a global comparison of continental serpentinite springs and groundwater, ranging from highly brackish (saline) to freshwater. One of the most saline sites, known as the Coast Range Ophiolite Microbial Observatory (CROMO), was used as a point-of-comparison to marine serpentinizing systems, such as the Lost City Hydrothermal Field. Although there was little taxonomic overlap between microbial populations in marine and terrestrial systems, both communities harbored an abundance of genes involved in sulfur metabolism, including sulfide oxidation, thiosulfate disproportionation, and sulfate reduction. The phylogeny of key genes involved in these metabolic processes was evaluated relative to published studies and compared between sites. Together, these data provide insights into both the functioning of microbial communities in modern-day serpentinizing systems, and the transport processes that disperse microorganisms between marine and terrestrial serpentinites.
NASA Technical Reports Server (NTRS)
Henry, E. A.; Devereux, R.; Maki, J. S.; Gilmour, C. C.; Woese, C. R.; Mandelco, L.; Schauder, R.; Remsen, C. C.; Mitchell, R.
1994-01-01
A thermophilic sulfate-reducing vibrio isolated from thermal vent water in Yellowstone Lake, Wyoming, USA is described. The gram-negative, curved rod-shaped cells averaged 0.3 micrometer wide and 1.5 micrometers long. They were motile by means of a single polar flagellum. Growth was observed between 40 degrees and 70 degrees C with optimal growth at 65 degrees C. Cultures remained viable for one year at 27 degrees C although spore-formation was not observed. Sulfate, thiosulfate and sulfite were used as electron acceptors. Sulfur, fumarate and nitrate were not reduced. In the presence of sulfate, growth was observed only with lactate, pyruvate, hydrogen plus acetate, or formate plus acetate. Pyruvate was the only compound observed to support fermentative growth. Pyruvate and lactate were oxidized to acetate. Desulfofuscidin and c-type cytochromes were present. The G + C content was 29.5 mol%. The divergence in the 16 S ribosomal RNA sequences between the new isolate and Thermodesulfobacterium commune suggests that these two thermophilic sulfate-reducing bacteria represent different genera. These two bacteria depict a lineage that branches deeply within the Bacteria domain and which is clearly distinct from previously defined phylogenetic lines of sulfate-reducing bacteria. Strain YP87 is described as the type strain of the new genus and species Thermodesulfovibrio yellowstonii.
NASA Technical Reports Server (NTRS)
Cohen, Y.
1985-01-01
Stratified water bodies allow the development of several microbial plates along the water column. The microbial plates develop in relation to nutrient availability, light penetration, and the distribution of oxygen and sulfide. Sulfide is initially produced in the sediment by sulfate-reducing bacteria. It diffuses along the water column creating a zone of hydrogen sulfide/oxygen interface. In the chemocline of Solar Lake oxygen and sulfide coexist in a 0 to 10 cm layer that moves up and down during a diurnal cycle. The microbial plate at the chemocline is exposed to oxygen and hydrogen sulfide, alternating on a diurnal basis. The cyanobacteria occupying the interface switch from anoxygenic photosynthesis in the morning to oxygenic photosynthesis during the rest of the day which results in a temporal build up of elemental sulfur during the day and disappears at night due to both oxidation to thiosulfate and sulfate by thiobacilli, and reduction to hydrogen sulfide by Desulfuromonas sp. and anaerobically respiring cyanobacteria. Sulfate reduction was enhanced in the light at the surface of the cyanobacterial mats. Microsulfate reduction measurements showed enhanced activity of sulfate reduction even under high oxygen concentrations of 300 to 800 micrometer. Apparent aerobic SO sub 4 reduction activity is explained by the co-occurrence of H sub 2. The physiology of this apparent sulfate reduction activity is studied.
Roman, Pawel; Klok, Johannes B M; Sousa, João A B; Broman, Elias; Dopson, Mark; Van Zessen, Erik; Bijmans, Martijn F M; Sorokin, Dimitry Y; Janssen, Albert J H
2016-12-06
After the first commercial applications of a new biological process for the removal of hydrogen sulfide (H 2 S) from low pressure biogas, the need arose to broaden the operating window to also enable the removal of organosulfur compounds from high pressure sour gases. In this study we have selected microorganisms from a full-scale biodesulfurization system that are capable of withstanding the presence of thiols. This full-scale unit has been in stable operation for more than 10 years. We investigated the microbial community by using high-throughput sequencing of 16S rRNA gene amplicons which showed that methanethiol gave a competitive advantage to bacteria belonging to the genera Thioalkalibacter (Halothiobacillaceae family) and Alkalilimnicola (Ectothiorhosdospiraceae family). The sulfide-oxidizing potential of the acclimatized population was investigated under elevated thiol loading rates (4.5-9.1 mM d -1 ), consisting of a mix of methanethiol, ethanethiol, and propanethiol. With this biomass, it was possible to achieve a stable bioreactor operation at which 80% of the supplied H 2 S (61 mM d -1 ) was biologically oxidized to elemental sulfur. The remainder was chemically produced thiosulfate. Moreover, we found that a conventionally applied method for controlling the oxygen supply to the bioreactor, that is, by maintaining a redox potential set-point value, appeared to be ineffective in the presence of thiols.
Shi, Xinhao; Gu, Wei; Zhang, Cuiling; Zhao, Longyun; Peng, Weidong; Xian, Yuezhong
2015-03-14
In this work, we developed a novel, label-free, colorimetric sensor for Pb(2+) detection based on the acceleration of gold leaching by graphene oxide (GO) at room temperature. Gold nanoparticles (AuNPs) can be dissolved in a thiosulfate (S2O3(2-)) aqueous environment in the presence of oxygen; however, the leaching rate is very slow due to the high activation energy (27.99 kJ mol(-1)). In order to enhance the reaction rate, some accelerators should be added. In comparison with the traditional accelerators (metal ions or middle ligands), we found that GO could efficiently accelerate the gold leaching reaction. Kinetic data demonstrate that the dissolution rate of gold in the Pb(2+)-S2O3(2-)-GO system is 5 times faster than that without GO at room temperature. In addition, the effects of surface modification and the nanoparticle size on the etching of AuNPs were investigated. Based on the GO-accelerated concentration-dependent colour changes of AuNPs, a colorimetric sensor for Pb(2+) detection was developed with a linear range from 0.1 to 20 μM and the limit of detection (LOD) was evaluated to be 0.05 μM. This colorimetric assay is simple, low-cost, label-free, and has numerous potential applications in the field of environmental chemistry.
Fu, Xiuli; Lou, Tingting; Chen, Zhaopeng; Lin, Meng; Feng, Weiwei; Chen, Lingxin
2012-02-01
A novel platform for effective "turn-on" fluorescence sensing of lead ions (Pb(2+)) in aqueous solution was developed based on gold nanoparticle (AuNP)-functionalized graphene. The AuNP-functionalized graphene exhibited minimal background fluorescence because of the extraordinarily high quenching ability of AuNPs. Interestingly, the AuNP-functionalized graphene underwent fluorescence restoration as well as significant enhancement upon adding Pb(2+), which was attributed to the fact that Pb(2+) could accelerate the leaching rate of the AuNPs on graphene surfaces in the presence of both thiosulfate (S(2)O(3)(2-)) and 2-mercaptoethanol (2-ME). Consequently, this could be utilized as the basis for selective detection of Pb(2+). With the optimum conditions chosen, the relative fluorescence intensity showed good linearity versus logarithm concentration of Pb(2+) in the range of 50-1000 nM (R = 0.9982), and a detection limit of 10 nM. High selectivity over common coexistent metal ions was also demonstrated. The practical application had been carried out for determination of Pb(2+) in tap water and mineral water samples. The Pb(2+)-specific "turn-on" fluorescence sensor, based on Pb(2+) accelerated leaching of AuNPs on the surface of graphene, provided new opportunities for highly sensitive and selective Pb(2+) detection in aqueous media.
Marziaz, Mandy L; Frazier, Kathryn; Guidry, Paul B; Ruiz, Robyn A; Petrikovics, Ilona; Haines, Donovan C
2013-01-01
Cyanide inhibits cytochrome c oxidase, the terminal oxidase of the mitochondrial respiratory pathway, therefore inhibiting the cell oxygen utilization and resulting in the condition of histotoxic anoxia. The enzyme rhodanese detoxifies cyanide by utilizing sulfur donors to convert cyanide to thiocyanate, and new and improved sulfur donors are actively sought as researchers seek to improve cyanide prophylactics. We have determined brain cytochrome c oxidase activity as a marker for cyanide exposure for mice pre-treated with various cyanide poisoning prophylactics, including sulfur donors thiosulfate (TS) and thiotaurine (TT3). Brain mitochondria were isolated by differential centrifugation, the outer mitochondrial membrane was disrupted by a maltoside detergent, and the decrease in absorbance at 550 nm as horse heart ferrocytochrome c (generated by the dithiothreitol reduction of ferricytochrome c) was oxidized was monitored. Overall, the TS control prophylactic treatment provided significant protection of the cytochrome c oxidase activity. The TT3-treated mice showed reduced cytochrome c oxidase activity even in the absence of cyanide. In both treatment series, addition of exogenous Rh did not significantly enhance the prevention of cytochrome c oxidase inhibition, but the addition of sodium nitrite did. These findings can lead to a better understanding of the protection mechanism by various cyanide antidotal systems. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Tully, B. J.; Wheat, C. G.; Glazer, B. T.; Huber, J. A.
2017-12-01
The rock-hosted subseafloor crustal aquifer harbors a reservoir of microbial life that may influence global marine biogeochemical cycles. Here we utilized genomic reconstruction of crustal fluid samples from North Pond, located on the flanks of the Mid-Atlantic Ridge, a site with cold, oxic subseafloor fluid circulation within the upper basement. Twenty-one samples were collected during a two-year period at three different depths and two locations with the basaltic aquifer to examine potential microbial metabolism and community dynamics. We observed minor changes in the geochemical signatures over the two years, yet a dynamic microbial community was present in the crustal fluids that underwent large shifts in the dominant taxonomic groups. An analysis of 195 metagenome-assembled genomes (MAGs) were generated from the dataset and revealed a connection between litho- and autotrophic processes, linking carbon fixation to the oxidation of sulfide, sulfur, thiosulfate, hydrogen, and ferrous iron in a diverse group of microorganisms. Despite oxic conditions, analysis of the MAGs indicated that members of the microbial community were poised to exploit hypoxic or anoxic conditions through the use of microaerobic cytochromes and alternative electron acceptors. Temporal and spatial trends from the MAGs revealed a high degree of functional redundancy that did not correlate with the shifting microbial community membership, suggesting functional stability in mediating subseafloor biogeochemical cycles.
Seston, Sherry L.; Beinart, Roxanne A.; Sarode, Neha; Shockey, Abigail C.; Ranjan, Piyush; Ganesh, Sangita; Girguis, Peter R.; Stewart, Frank J.
2016-01-01
Endosymbioses between animals and chemoautotrophic bacteria are ubiquitous at hydrothermal vents. These environments are distinguished by high physico-chemical variability, yet we know little about how these symbioses respond to environmental fluctuations. We therefore examined how the γ-proteobacterial symbionts of the vent snail Ifremeria nautilei respond to changes in sulfur geochemistry. Via shipboard high-pressure incubations, we subjected snails to 105 μM hydrogen sulfide (LS), 350 μM hydrogen sulfide (HS), 300 μM thiosulfate (TS) and seawater without any added inorganic electron donor (ND). While transcript levels of sulfur oxidation genes were largely consistent across treatments, HS and TS treatments stimulated genes for denitrification, nitrogen assimilation, and CO2 fixation, coincident with previously reported enhanced rates of inorganic carbon incorporation and sulfur oxidation in these treatments. Transcripts for genes mediating oxidative damage were enriched in the ND and LS treatments, potentially due to a reduction in O2 scavenging when electron donors were scarce. Oxidative TCA cycle gene transcripts were also more abundant in ND and LS treatments, suggesting that I. nautilei symbionts may be mixotrophic when inorganic electron donors are limiting. These data reveal the extent to which I. nautilei symbionts respond to changes in sulfur concentration and species, and, interpreted alongside coupled biochemical metabolic rates, identify gene targets whose expression patterns may be predictive of holobiont physiology in environmental samples. PMID:27486438
Santhanam, Manikandan; Selvaraj, Rajeswari; Annamalai, Sivasankar; Sundaram, Maruthamuthu
2017-11-01
This study presents a combined electrochemical, sunlight-induced oxidation and biological process for the treatment of textile effluent. In the first step, RuO 2 -TiO 2 /Ti and Titanium were used as the electrodes in EO process and color removal was achieved in 40 min at an applied current density of 20 mA cm -2 . The EO process generated about 250 mg L -1 of active chlorine which hampered the subsequent biological treatment process. Thus, in the second step, sun light-induced photolysis (SLIP) is explored to remove hypochlorite present in the EO treated effluent. In the third step, the SLIP treated effluent was fed to laccase positive bacterial consortium for biological process. To assess the effect of SLIP in the overall process, experiments were carried out with and without SLIP process. In experiments without SLIP, sodium thiosulfate was used to remove active chlorine. HPLC analysis showed that SLIP integrated experiments achieved an overall dye component degradation of 71%, where as only 22% degradation was achieved in the absence of SLIP process. The improvement in degradation with SLIP process is attributed to the presence of ClO radicals which detected by EPR analysis. The oxidation of organic molecules during process was confirmed by FT-IR and GC-MS analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nielsen, J T; Liesack, W; Finster, K
1999-04-01
A sulfate-reducing bacterium, designated strain lacT, was isolated from surface-sterilized roots of the benthic macrophyte Zostera marina. Cells were motile by means of a single polar flagellum. Strain lacT utilized lactate, pyruvate, malate, ethanol, L-alanine, fumarate, choline and fructose with sulfate as electron acceptor. In addition, fumarate, pyruvate and fructose were also degraded without an external electron acceptor. Sulfate could be substituted with thiosulfate, sulfite and elemental sulfur. Optimal growth was observed between 32.5 and 34.5 degrees C, at an NaCl concentration of 0.2 M and in a pH range between 6.8 and 7.3. The G + C content of the DNA was 42.7 +/- 0.2 mol%. Desulfoviridin and catalase were present. Strain lacT contained c-type cytochromes. Comparative 16S rRNA gene sequence analysis and the fatty acid pattern grouped this isolate into the genus Desulfovibrio. However, strain lacT differs from all other described Desulfovibrio species on the bases of its 16S rRNA gene sequence, the G + C content, its cellular lipid pattern and the utilization pattern of substrates. These characteristics establish strain lacT (= DSM 11974T) as a novel species of the genus Desulfovibrio, for which the name Desulfovibrio zosterae sp. nov. is proposed.
Balk, Melike; van Gelder, Ton; Weelink, Sander A.; Stams, Alfons J. M.
2008-01-01
A thermophilic bacterium, strain An10, was isolated from underground gas storage with methanol as a substrate and perchlorate as an electron acceptor. Cells were gram-positive straight rods, 0.4 to 0.6 μm in diameter and 2 to 8 μm in length, growing as single cells or in pairs. Spores were terminal with a bulged sporangium. The temperature range for growth was 40 to 70°C, with an optimum at 55 to 60°C. The pH optimum was around 7. The salinity range for growth was between 0 and 40 g NaCl liter−1 with an optimum at 10 g liter−1. Strain An10 was able to grow on CO, methanol, pyruvate, glucose, fructose, cellobiose, mannose, xylose, and pectin. The isolate was able to respire with (per)chlorate, nitrate, thiosulfate, neutralized Fe(III) complexes, and anthraquinone-2,6-disulfonate. The G+C content of the DNA was 57.6 mol%. On the basis of 16S rRNA analysis, strain An10 was most closely related to Moorella thermoacetica and Moorella thermoautotrophica. The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell extracts. Strain An10 is the first thermophilic and gram-positive bacterium with the ability to use (per)chlorate as a terminal electron acceptor. PMID:17981952
Yonova, Diana H; Vazelov, Evgueniy S; Trendafilov, Ivan I; Stoinova, Veselka V; Nedevska, Mariya T; Antonov, Simeon A
2014-04-01
Cardiovascular calcification (CVC) in hemodialysis patients (HDP) causes cardiovascular pathology. Up until now very few drugs and therapeutic interventions have been able to reduce cardiovascular calcium deposits in hemodialysis patients and the process requires more than a year. Our idea in this study was to test 2 calcium binders--sodium thiosulfate (STS) and dinatrium ethylene diamine tetraacetic acid (DNEDTA)--for prevention and treatment of cardiovascular calcification of hemodialysis patients, using both substances not as an intravenous infusion but by adding them to the liquid bicarbonate part of the dialysis fluid. 6 HDPs were treated with sodium thiosulphate (STS), 6 with dinatrium ethylene diamine tetraacetic acid (DNEDTA), and 6 patients served as controls. Electrolytes, liver function, markers of inflammation, oxidative stress, bone metabolism, spiral computed tomography (SCT) of coronary CVC and bone densitometry were performed twice (start and end of the study). Starting blood parameters were similar to the end (STS group). No toxic or side effects from STS were observed. Initially in the DNEDTA group all the patients had vomiting so we excluded DNEDTA from the study. SCT found a significant reduction of calcification in 4 patients (STS group) and retardation in 2 patients comparatively to controls. The first results are hopeful, but the number of the patients was small, so we are enlarging the enrollment in the expectation of corroborating our results soon.
Boden, Rich
2017-10-01
The genus Halothiobacillus contains four species of obligate autotrophs with validly published names, of which Halothiobacillus halophilus and Halothiobacillus hydrothermalis are very distant from the type species - on the basis of the 16S rRNA gene, they have 90.7 % and 90.9 % identity to that of the type species, Halothiobacillus neapolitanus. As these values fall below the Yarza cut-off for the rank of genus, and these two species also show no clear affiliation to the closely related genus Thioalkalibacter, a polyphasic study was undertaken to determine if they represent a separate genus. Unlike Halothiobacillus spp. sensu stricto, H. halophilus and H. hydrothermalis are halophilic (rather than halotolerant) and moderately alkaliphilic (rather than neutrophilic) and additionally do not produce tetrathionate as a detectable intermediate of thiosulfate metabolism, indicating some significant metabolic differences. On the basis of these data and of functional gene examination, it is proposed that they be circumscribed as a new genus Guyparkeria gen.nov, for which the type species is Guyparkeria halophila gen. nov., comb. nov. Additionally, Thioalkalibacter and Guyparkeria gen. nov. fall distant from the Halothiobacillaceae so the Thioalkalibacteraceae fam. nov. is proposed, for which Thioalkalibacter is the type genus. Emended descriptions of Halothiobacillus, Halothiobacillus neapolitanus and the Halothiobacillaceae are provided.
Takai, K; Komatsu, T; Horikoshi, K
2001-07-01
A novel extreme thermophile was isolated from a water sample derived from a deep subsurface geothermal water pool at a depth of 1500 m in the Hacchoubaru geothermal plant in Oita Prefecture, Japan. The cells were found to be straight rods, each being motile by means of a polar flagellum. Growth was observed at temperatures between 60 and 85 degrees C (optimum 78 degrees C; 120 min doubling time) and between pH 5.5 and pH 9.0 (optimum 7.5). The isolate was a strictly aerobic heterotroph capable of utilizing a number of substrates such as yeast extract, peptone, tryptone, various carbohydrates, sugars, amino acids and organic acids. Elemental sulfur, thiosulfate, sulfide or cysteine-hydrochloride was required as an electron donor for growth. Hydrogen gas did not support growth. The G+C content of the genomic DNA was 44.7 mol%. Phylogenetic analysis based on 16S rDNA sequences and DNA-DNA hybridization analysis indicated that the isolate was closely related to members of the hydrogen-oxidizing, autotrophic and thermophilic genera Hydrogenobacter and Calderobacterium. However this isolate was differentiated from the previously described species of these genera on the basis of the physiological and molecular properties of the new isolate. The name Hydrogenobacter subterraneus sp. nov. is proposed; the type strain is HGP1T (= JCM 10560T = IFO 16485T).
Hetzer, Adrian; McDonald, Ian R; Morgan, Hugh W
2008-02-01
A novel thermophilic, hydrogen-oxidizing bacterium, designated strain CP.B2(T), was isolated from a terrestrial hot spring in Waiotapu, New Zealand. Cells were motile, slightly rod-shaped, non-spore-forming and Gram-negative. Isolate CP.B2(T) was an obligate chemolithotroph, growing by utilizing H(2) as electron donor and O(2) as corresponding electron acceptor. Elemental sulfur (S(0)) or thiosulfate ( ) was essential for growth. Microbial growth occurred under microaerophilic conditions in 1.0-10.0 % (v/v) O(2) [optimum 4-8 % (v/v) O(2)], between 45 and 75 degrees C (optimum 70 degrees C) and at pH values of 4.8-5.8 (optimum pH 5.4). The DNA G+C content was 29.3 mol%. 16S rRNA gene sequence analysis demonstrated that strain CP.B2(T) belonged to the order Aquificales, with a close phylogenetic relationship to Sulfurihydrogenibium azorense (94 % sequence similarity to the type strain). However, genotypic and metabolic characteristics differentiated the novel isolate from previously described genera of the Aquificales. Therefore, CP.B2(T) represents a novel species in a new genus, for which the name Venenivibrio stagnispumantis gen. nov., sp. nov. is proposed. The type strain of Venenivibrio stagnispumantis is CP.B2(T) (=JCM 14244(T) =DSM 18763(T)).
2012-01-01
In the quest for producing an effective, clinically relevant therapeutic agent, scalability, repeatability, and stability are paramount. In this paper, gold nanoparticles (GNPs) with precisely controlled near-infrared (NIR) absorption are synthesized by a single-step reaction of HAuCl4 and Na2S2O3 without assistance of additional templates, capping reagents, or seeds. The anisotropy in the shape of gold nanoparticles offers high NIR absorption, making it therapeutically relevant. The synthesized products consist of GNPs with different shapes and sizes, including small spherical colloid gold particles and non-spherical gold crystals. The NIR absorption wavelengths and particle size increase with increasing molar ratio of HAuCl4/Na2S2O3. Non-spherical gold particles can be further purified and separated by centrifugation to improve the NIR-absorbing fraction of particles. In-depth studies reveal that GNPs with good structural and optical stability only form in a certain range of the HAuCl4/Na2S2O3 molar ratio, whereas higher molar ratios result in unstable GNPs, which lose their NIR absorption peak due to decomposition and reassembly via Ostwald ripening. Tuning the optical absorption of the gold nanoparticles in the NIR regime via a robust and repeatable method will improve many applications requiring large quantities of desired NIR-absorbing nanoparticles. PMID:22726762
Cassina, L; Tassi, E; Pedron, F; Petruzzelli, G; Ambrosini, P; Barbafieri, M
2012-09-15
Mercury-contaminated soils from a petrochemical plant in southern Italy were investigated to assess the phytoextraction efficiency of crop plants treated with the phytohormone, cytokinine (CK foliar treatment), and with the thioligand, ammonium thiosulfate (TS, soil application). Plant biomass, evapotranspiration, Hg uptake and distribution in plant tissues following treatment were compared. Results indicate the effectiveness of CK in increasing plant biomass and the evapotranspiration rate while TS treatment promoted soil Hg solubility and availability. The simultaneous addition of CK and TS treatments increased Hg uptake and translocation in both tested plants with up to 248 and 232% in Brassica juncea (Indian mustard) and Helianthus annuus (sunflower) respectively. B. juncea was more effective in Hg uptake, whereas H. annuus gave better response regarding plant biomass production. The effectiveness of the treatments was confirmed by the calculation of Hg phytoextraction and evaluation of labile-Hg residue in the soil after plant growth. In one growing cycle the plants subject to simultaneous CK and TS treatment significantly reduced labile-Hg pools that were characterized by the soil sequential extraction, but did not significantly affect the pseudototal metal content in the soil. Results support the use of plant growth regulators in the assisted phytoextraction process for Hg-contaminated soils. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Saffarini, Daad A.; Nelson, Kenneth H.
1993-01-01
An electron transport regulatory gene, etrA, has been isolated and characterized from the obligate respiratory bacterium Shewanella putrefaciens MR-l. The deduced amino acid sequence of etrA (EtrA) shows a high degree of identity to both the Fnr of Escherichia coli (73.6%) and the analogous protein (ANR) of Pseudomonas aeruginosa (50.8%). The four active cysteine residues of Fnr are conserved in EtrA, and the amino acid sequence of the DNA-binding domains of the two proteins are identical. Further, S.putrefaciens etrA is able to complement an fnr mutant of E.coli. In contrast to fnr, there is no recognizable Fnr box upstream of the etrA sequence. Gene replacement etr.A mutants of MR-1 were deficient in growth on nitrite, thiosulfate, sulfite, trimethylamine-N-oxide, dimethyl sulfoxide, Fe(III), and fumarate, suggesting that EtrA is involved in the regulation of the corresponding reductase genes. However, the mutants were all positive for reduction of and growth on nitrate and Mn(IV), indicating that EtrA is not involved in the regulation of these two systems. Southern blots of S.putrefaciens DNA with use of etrA as a probe revealed the expected etrA bands and a second set of hybridization signals whose genetic and functional properties remain to be determined.
Verstappen, E M J; Maaskant-Braat, A J G; Scheltinga, M R
2018-05-07
Calciphylaxis is a rare condition including patchy dermal necrosis that mostly affects chronic hemodialysis patients. The syndrome usually heralds impending death although patients may survive following a set of measures including an adapted dialysis regimen. The present case is a unique patient who recovered from an earlier episode of upper leg calciphylaxis 5 years previously but developed fatal bilateral breast necrosis. A 69 year old Caucasian woman with a history of atrial fibrillation, hypertension, CVA, hyperparathyroidectomy for secondary hyperparathyroidism and end stage renal disease with hemodialysis recovered in 2012 from extensive symptomatic left upper leg necrosis due to calciphylaxis. In 2017, she developed painful, necrotic ulcers on both breasts, again due to calciphylaxis. She had no history of anticoagulants use but she did use prednisolone 5mg/day. She received adequate wound care, pain medication, antibiotics and dialysis frequency was increased with an addition of sodium thiosulfate. A bilateral ablation was discussed but she decided to stop all treatment following pulmonary aspiration and passed away one week later. Calciphylaxis is a rare diagnosis that should be considered in patients with renal insufficiency developing painful patches of skin necrosis. A multidisciplinary treatment approach including hyperparathyroidectomy, modified hemodialysis and wound treatment is recommended. There is limited evidence for surgical intervention. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ahn, Young-Beom; Chae, Jong-Chan; Zylstra, Gerben J; Häggblom, Max M
2009-07-01
A sulfate-reducing phenol-degrading bacterium, strain AK1, was isolated from a 2-bromophenol-utilizing sulfidogenic estuarine sediment enrichment culture. On the basis of phylogenetic analysis of the 16S rRNA gene and DNA homology, strain AK1 is most closely related to Desulfobacterium anilini strain Ani1 (= DSM 4660(T)). In addition to phenol, this organism degrades a variety of other aromatic compounds, including benzoate, 2-hydroxybenzoate, 4-hydroxybenzoate, 4-hydroxyphenylacetate, 2-aminobenzoate, 2-fluorophenol, and 2-fluorobenzoate, but it does not degrade aniline, 3-hydroxybenzoate, 4-cyanophenol, 2,4-dihydroxybenzoate, monohalogenated phenols, or monohalogenated benzoates. Growth with sulfate as an electron acceptor occurred with acetate and pyruvate but not with citrate, propionate, butyrate, lactate, glucose, or succinate. Strain AK1 is able to use sulfate, sulfite, and thiosulfate as electron acceptors. A putative phenylphosphate synthase gene responsible for anaerobic phenol degradation was identified in strain AK1. In phenol-grown cultures inducible expression of the ppsA gene was verified by reverse transcriptase PCR, and 4-hydroxybenzoate was detected as an intermediate. These results suggest that the pathway for anaerobic degradation of phenol in D. anilini strain AK1 proceeds via phosphorylation of phenol to phenylphosphate, followed by carboxylation to 4-hydroxybenzoate. The details concerning such reaction pathways in sulfidogenic bacteria have not been characterized previously.
Development of a Molecular System for Studying Microbial Arsenate Respiration
NASA Astrophysics Data System (ADS)
Saltikov, C. W.; Newman, D. K.
2002-12-01
The toxic element arsenic is a major contaminant of many groundwaters and surface waters throughout the world. Arsenic enrichment is primarily of geological origin resulting from weathering processes and geothermal activity. Not surprisingly, microorganisms inhabiting anoxic arsenic-contaminated environments have evolved to exploit arsenate during respiration. Numerous bacteria have been isolated that use arsenate as a terminal electron acceptor for respiratory growth. The diversity of this metabolism appears to be widespread throughout the microbial tree of life, suggesting respiratory arsenate reduction is ancient in origin. Yet little is known about the molecular mechanisms for how these organisms respire arsenate. We have developed a model system in Shewanella trabarsenatis, strain ANA-3, a facultative anaerobe that respires arsenate and tolerates high concentrations of arsenite (10 mM). Through loss-of-function studies, we have identified genes involved in both arsenic resistance and arsenate respiration. The genes that confer resistance to arsenic are homologous to the well-characterized ars operon of E. coli. However, the respiratory arsenate reductase is predicted to encode a novel protein that shares homologous regions (~ 40 % similarity) to molybdopterin anaerobic reductases specific for DMSO, thiosulfate, nitrate, and polysulfide. I will discuss our emerging model for how strain ANA-3 respires arsenate and the relationship between arsenite resistance and arsenate respiration. I will also highlight the relevance of this type of analysis for biogeochemical studies.
Suicide attempt with acetonitrile ingestion in a nursing mother.
De Capitani, Eduardo Mello; Borrasca-Fernandes, Carla Fernanda; Branco Pimenta, Maíra; Prado, Camila Carbone; Soubhia, Paula Christiane; Lanaro, Rafael; Mello Moreira, Sueli; Linden, Rafael; Nóbrega, Helena Valle; Bucaretchi, Fábio; Costa, José Luiz
2017-09-01
Acetonitrile (ACN) is a solvent rapidly absorbed through lungs and intestinal tract, and is slowly metabolized to cyanide (CN) by enzymatic processes mediated by CYP2E1. To describe the clinical and laboratory evolution, ACN elimination half-life, and its presence in breast milk in a nursing mother who attempted suicide. A 25-year-old 2-month nursing mother ingested an estimated dose of 2.1 g/kg of ACN. Blood and urine samples were collected 24 h later for ACN, CN and thiocyanate analysis, and 12.5 g sodium thiosulfate i.v. in 1-h infusion was started and repeated every 24 h for 4 days. ACN results showed 200 mg/L in blood and 235 mg/L in urine. ACN analysis in the breast milk at Day 6 showed level of 21 mg/L compared to 27 mg/L in blood collected at the same time, suggesting a possible relationship of 1.3:1.0 ratio. An elimination half-life of 40.4 h was calculated, compared to 32 and 36 h showed in other studies. The clinical management must involve the use of CN antidotes for more than 24 h depending on the symptoms and blood levels of ACN. Furthermore, our data showed the possible existence of a close relationship between plasma and breast milk levels.
Li, Baoqin; Li, Zhe; Sun, Xiaoxu; Wang, Qi; Xiao, Enzong; Sun, Weimin
2018-05-04
Autotrophs that inhabit soils receive less attention than their counterparts in other ecosystems, such as deep-sea and subsurface sediments, due to the low abundance of autotrophs in soils with high organic contents. However, the karst rocky desertification region is a unique ecosystem that may have a low level of organic compounds. Therefore, we propose that karst rocky desertification ecosystems may harbor diverse autotrophic microbial communities. In this study, DNA-SIP was employed to identify the chemolithoautotrophic bacteria inhabiting three soil types (i.e., grass, forest, and agriculture) of the karst rocky desertification ecosystems. The results indicated that potential chemolithoautotrophic population was observed in each soil type, even at different time points after amending 13 C-NaHCO 3 , confirming our hypothesis that diverse autotrophs contribute to the carbon cycle in karst soils. Bacteria, such as Ralstonia, Ochrobactrum, Brevibacterium, Acinetobacter, and Corynebacterium, demonstrated their potential to assimilate inorganic carbon and reduce nitrate or thiosulfate as electron acceptors. Putative mixotrophs were identified by DNA-SIP as well, suggesting the metabolic versatility of soil microbiota. A co-occurrence network further indicated that autotrophs and heterotrophs may form associated communities to sustain the ecosystem function. Our current study revealed the metabolic diversity of autotrophic bacteria in soil habitats and demonstrated the potentially important role of chemoautotrophs in karst rocky desertification ecosystems.
Frolov, E N; Zayulina, K S; Kopitsyn, D S; Kublanov, I V; Bonch-Osmolovskaya, E A; Chernyh, N A
2018-03-01
An anaerobic sulfate-reducing micro-organism, strain 3408-1 T , was isolated from a terrestrial hot spring in Kamchatka peninsula (Russia). The cells were spore-forming rods with a Gram-positive type of cell wall. The new isolate was a moderately thermoacidophilic anaerobe able to grow either by sulfate or thiosulfate respiration with H2 or formate as substrates, or by fermenting yeast extract, maltose, sucrose, glucose and pyruvate. The fermentation products were acetate, CO2 and H2. The pH range for growth was 2.9-6.5, with an optimum at 4.5. The temperature range for growth was 42-70 °C, with an optimum at 55 °C. The G+C content of DNA was 58 mol%. Phylogenetic analysis of the 16S rRNA gene showed that strain 3408-1 T belongs to the family Thermoanaerobacteraceae, order Thermoanaerobacterales and was distantly related to the species of the genus Ammonifex(93-94 % sequence similarity). On the basis of physiological properties and results of phylogenetic analysis, strain 3408-1 T is considered to represent a novel species of a new genus, for which the name Desulfothermobacter acidiphilus gen. nov., sp. nov. is proposed. The type strain is 3408-1 T (=DSM 105356 T =VKM B-3183 T ).
Switzer, Blum J.; Stolz, J.F.; Oren, A.; Oremland, R.S.
2001-01-01
We isolated an obligately anaerobic halophilic bacterium from the Dead Sea that grew by respiration of selenate. The isolate, designated strain DSSe-1, was a gram-negative, non-motile rod. It oxidized glycerol or glucose to acetate+CO2 with concomitant reduction of selenate to selenite plus elemental selenium. Other electron acceptors that supported anaerobic growth on glycerol were nitrate and trimethylamine-N-oxide; nitrite, arsenate, fumarate, dimethylsulfoxide, thiosulfate, elemental sulfur, sulfite or sulfate could not serve as electron acceptors. Growth on glycerol in the presence of nitrate occurred over a salinity range from 100 to 240 g/l, with an optimum at 210 g/l. Analysis of the 16S rRNA gene sequence suggests that strain DSSe-1 belongs to the order Halanaerobiales, an order of halophilic anaerobes with a fermentative or homoacetogenic metabolism, in which anaerobic respiratory metabolism has never been documented. The highest 16S rRNA sequence similarity (90%) was found with Acetohalobium arabaticum (X89077). On the basis of physiological properties as well as the relatively low homology of 16S rRNA from strain DSSe-1 with known genera, classification in a new genus within the order Halanaerobiales, family Halobacteroidaceae is warranted. We propose the name Selenihalanaerobacter shriftii. Type strain is strain DSSe-1 (ATCC accession number BAA-73).
Expression of Allene Oxide Synthase Determines Defense Gene Activation in Tomato1
Sivasankar, Sobhana; Sheldrick, Bay; Rothstein, Steven J.
2000-01-01
Allene oxide synthase (AOS; hydroperoxide dehydratase; EC 4.2.1.92) catalyzes the first step in the biosynthesis of jasmonic acid from lipoxygenase-derived hydroperoxides of free fatty acids. Using the AOS cDNA from tomato (Lycopersicon esculentum), in which the role of jasmonic acid in wound-induced defense gene activation has been best described, we examined the kinetics of AOS induction in response to wounding and elicitors, in parallel with that of the wound-inducible PIN II (proteinase inhibitor II) gene. AOS was induced in leaves by wounding, systemin, 12-oxophytodienoic acid, and methyl jasmonate. The levels of AOS mRNA started declining by 4 h after induction, whereas the levels of PIN II mRNA continued to increase up to 20 h after induction. Salicylic acid inhibited AOS and PIN II expression, and the addition of 12-oxophytodienoic acid or methyl jasmonate did not prevent the inhibition of PIN II expression in the presence of salicylic acid. Ethylene induced the expression of AOS, but the presence of ethylene alone did not produce an optimal induction of PIN II. The addition of silver thiosulfate, an ethylene action inhibitor, prevented the wound-induced expression of both AOS and PIN II. Products of hydroperoxide lyase affected neither AOS nor PIN II, but induced expression of prosystemin. Based on these results, we propose an updated model for defense gene activation in tomato. PMID:10759530
Jessen, Jan Eric; Orlygsson, Johann
2012-01-01
Thermophilic bacteria have gained increased attention as candidates for bioethanol production from lignocellulosic biomass. This study investigated ethanol production by Thermoanaerobacter strain J1 from hydrolysates made from lignocellulosic biomass in batch cultures. The effect of increased initial glucose concentration and the partial pressure of hydrogen on end product formation were examined. The strain showed a broad substrate spectrum, and high ethanol yields were observed on glucose (1.70 mol/mol) and xylose (1.25 mol/mol). Ethanol yields were, however, dramatically lowered by adding thiosulfate or by cocultivating strain J1 with a hydrogenotrophic methanogen with acetate becoming the major end product. Ethanol production from 4.5 g/L of lignocellulosic biomass hydrolysates (grass, hemp stem, wheat straw, newspaper, and cellulose) pretreated with acid or alkali and the enzymes Celluclast and Novozymes 188 was investigated. The highest ethanol yields were obtained on cellulose (7.5 mM·g(-1)) but the lowest on straw (0.8 mM·g(-1)). Chemical pretreatment increased ethanol yields substantially from lignocellulosic biomass but not from cellulose. The largest increase was on straw hydrolysates where ethanol production increased from 0.8 mM·g(-1) to 3.3 mM·g(-1) using alkali-pretreated biomass. The highest ethanol yields on lignocellulosic hydrolysates were observed with hemp hydrolysates pretreated with acid, 4.2 mM·g(-1).
Sastre Toraño, J; van Hattum, S H
2001-10-01
A new method is presented for the quantitative analysis of compounds in pharmaceutical preparations Fourier transform (FT) mid-infrared (MIR) spectroscopy with an attenuated total reflection (ATR) module. Reduction of the quantity of overlapping absorption bands, by interaction of the compound of interest with an appropriate solvent, and the employment of an internal standard (IS), makes MIR suitable for quantitative analysis. Vigabatrin, as active compound in vigabatrin 100-mg capsules, was used as a model compound for the development of the method. Vigabatrin was extracted from the capsule content with water after addition of a sodium thiosulfate IS solution. The extract was concentrated by volume reduction and applied to the FTMIR-ATR module. Concentrations of unknown samples were calculated from the ratio of the vigabatrin band area (1321-1610 cm(-1)) and the IS band area (883-1215 cm(-1)) using a calibration standard. The ratio of the area of the vigabatrin peak to that of the IS was linear with the concentration in the range of interest (90-110 mg, in twofold; n=2). The accuracy of the method in this range was 99.7-100.5% (n=5) with a variability of 0.4-1.3% (n=5). The comparison of the presented method with an HPLC assay showed similar results; the analysis of five vigabatrin 100-mg capsules resulted in a mean concentration of 102 mg with a variation of 2% with both methods.
Sulfuricaulis limicola gen. nov., sp. nov., a sulfur oxidizer isolated from a lake.
Kojima, Hisaya; Watanabe, Tomohiro; Fukui, Manabu
2016-01-01
A novel sulfur-oxidizing bacterium, strain HA5T, was isolated from sediment of a lake in Japan. The cells were rod-shaped (0.3-0.5 × 1.2-6.0 μm) and Gram-stain-negative. The G+C content of the genomic DNA was 63 mol%. The major components in the cellular fatty acid profile were C16 : 0 and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The strain oxidized thiosulfate, tetrathionate and elemental sulfur as electron donors to support autotrophic growth. Growth was observed at a temperature range of 8-37 °C, with optimum growth at 28-32 °C. The pH range for growth was pH 6.1-9.2. Optimum growth of the isolate was observed in medium without NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain belongs to the family Acidiferrobacteraceae in the class Gammaproteobacteria. The closest relative was Sulfurifustis variabilis skN76T with the highest 16S rRNA gene sequence similarity of 93 %. On the basis of phylogenetic and phenotypic properties, strain HA5T is proposed to represent a novel species of a new genus, Sulfuricaulis limicola gen. nov., sp. nov. The type strain of the type species is HA5T ( = DSM 100373T = NBRC 110752T).
Vanderford, Brett J; Mawhinney, Douglas B; Trenholm, Rebecca A; Zeigler-Holady, Janie C; Snyder, Shane A
2011-02-01
Proper collection and preservation techniques are necessary to ensure sample integrity and maintain the stability of analytes until analysis. Data from improperly collected and preserved samples could lead to faulty conclusions and misinterpretation of the occurrence and fate of the compounds being studied. Because contaminants of emerging concern, such as pharmaceuticals and personal care products (PPCPs) and steroids, generally occur in surface and drinking water at ng/L levels, these compounds in particular require such protocols to accurately assess their concentrations. In this study, sample bottle types, residual oxidant quenching agents, preservation agents, and hold times were assessed for 21 PPCPs and steroids in surface water and finished drinking water. Amber glass bottles were found to have the least effect on target analyte concentrations, while high-density polyethylene bottles had the most impact. Ascorbic acid, sodium thiosulfate, and sodium sulfite were determined to be acceptable quenching agents and preservation with sodium azide at 4 °C led to the stability of the most target compounds. A combination of amber glass bottles, ascorbic acid, and sodium azide preserved analyte concentrations for 28 days in the tested matrices when held at 4 °C. Samples without a preservation agent were determined to be stable for all but two of the analytes when stored in amber glass bottles at 4 °C for 72 h. Results suggest that if improper protocols are utilized, reported concentrations of target PPCPs and steroids may be inaccurate.
Low-molecular-weight thiols in streptomycetes and their potential role as antioxidants.
Newton, G L; Fahey, R C; Cohen, G; Aharonowitz, Y
1993-01-01
The intracellular low-molecular-weight thiols present in five gram-positive Streptomyces species and one Flavobacterium species were analyzed by high-performance liquid chromatography after fluorescence labeling with monobromobimane. Bacteria were chosen to include penicillin and cephalosporin beta-lactam producers and nonproducers. No significant amount of glutathione was found in any of the streptomycetes. Major intracellular thiols in all strains examined were cysteine, coenzyme A, sulfide, thiosulfate, and an unknown thiol designated U17. Those streptomycetes that make beta-lactam antibiotics also produce significant amounts of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV), a key intermediate in their biosynthesis. In Streptomyces clavuligerus, a potent producer of beta-lactams, the level of ACV was low during the early phase of growth and increased rapidly toward the end of exponential growth, paralleling that of antibiotic production. These and other observations indicate that ACV does not function as a protective thiol in streptomycetes. U17 may have this role since it was the major thiol in all streptomycetes and appeared to occur at levels about 10-fold higher than those of the other thiols measured, including ACV. Purification and amino acid analysis of U17 indicated that it contains cysteine and an unusual amine that is not one of the common amino acids. This thiol is identical to an unknown thiol found previously in Micrococcus roseus and Streptomyces griseus. A high level of ergothioneine was found in Streptomyces lactamdurans, and several unidentified thiols were detected in this and other streptomycetes. PMID:8478335
Leenheer, J.A.; Noyes, T.I.
1986-01-01
A series of investigations were conducted during a 6-year research project to determine the nature and effects of organic wastes from processing of Green River Formation oil shale on water quality. Fifty percent of the organic compounds in two retort wastewaters were identified as various aromatic amines, mono- and dicarboxylic acids phenols, amides, alcohols, ketones, nitriles, and hydroxypyridines. Spent shales with carbonaceous coatings were found to have good sorbent properties for organic constituents of retort wastewaters. However, soils sampled adjacent to an in situ retort had only fair sorbent properties for organic constituents or retort wastewater, and application of retort wastewater caused disruption of soil structure characteristics and extracted soil organic matter constituents. Microbiological degradation of organic solutes in retort wastewaters was found to occur preferentially in hydrocarbons and fatty acid groups of compounds. Aromatic amines did not degrade and they inhibited bacterial growth where their concentrations were significant. Ammonia, aromatic amines, and thiocyanate persisted in groundwater contaminated by in situ oil shale retorting, but thiosulfate was quantitatively degraded one year after the burn. Thiocyanate was found to be the best conservative tracer for retort water discharged into groundwater. Natural organic solutes, isolated from groundwater in contact with Green River Formation oil shale and from the White River near Rangely, Colorado, were readily distinguished from organic constituents in retort wastewaters by molecular weight and chemical characteristic differences. (USGS)
Zhou, Xin-Xing; Yang, Lin-Tong; Qi, Yi-Ping; Guo, Peng; Chen, Li-Song
2015-01-01
The physiological and biochemical mechanisms on boron (B)-induced alleviation of aluminum (B)-toxicity in plants have been examined in some details, but our understanding of the molecular mechanisms underlying these processes is very limited. In this study, we first used the cDNA-AFLP to investigate the gene expression patterns in Citrus grandis roots responsive to B and Al interactions, and isolated 100 differentially expressed genes. Results showed that genes related to detoxification of reactive oxygen species (ROS) and aldehydes (i.e., glutathione S-transferase zeta class-like isoform X1, thioredoxin M-type 4, and 2-alkenal reductase (NADP+-dependent)-like), metabolism (i.e., carboxylesterases and lecithin-cholesterol acyltransferase-like 4-like, nicotianamine aminotransferase A-like isoform X3, thiosulfate sulfurtransferase 18-like isoform X1, and FNR, root isozyme 2), cell transport (i.e., non-specific lipid-transfer protein-like protein At2g13820-like and major facilitator superfamily protein), Ca signal and hormone (i.e., calcium-binding protein CML19-like and IAA-amino acid hydrolase ILR1-like 4-like), gene regulation (i.e., Gag-pol polyprotein) and cell wall modification (i.e., glycosyl hydrolase family 10 protein) might play a role in B-induced alleviation of Al-toxicity. Our results are useful not only for our understanding of molecular processes associated with B-induced alleviation of Al-toxicity, but also for obtaining key molecular genes to enhance Al-tolerance of plants in the future.
Carrera-Quintanar, Lucrecia; López Roa, Rocío I; Quintero-Fabián, Saray; Sánchez-Sánchez, Marina A; Vizmanos, Barbara; Ortuño-Sahagún, Daniel
2018-01-01
Gut microbiota (GM) plays several crucial roles in host physiology and influences several relevant functions. In more than one respect, it can be said that you "feed your microbiota and are fed by it." GM diversity is affected by diet and influences metabolic and immune functions of the host's physiology. Consequently, an imbalance of GM, or dysbiosis, may be the cause or at least may lead to the progression of various pathologies such as infectious diseases, gastrointestinal cancers, inflammatory bowel disease, and even obesity and diabetes. Therefore, GM is an appropriate target for nutritional interventions to improve health. For this reason, phytochemicals that can influence GM have recently been studied as adjuvants for the treatment of obesity and inflammatory diseases. Phytochemicals include prebiotics and probiotics, as well as several chemical compounds such as polyphenols and derivatives, carotenoids, and thiosulfates. The largest group of these comprises polyphenols, which can be subclassified into four main groups: flavonoids (including eight subgroups), phenolic acids (such as curcumin), stilbenoids (such as resveratrol), and lignans. Consequently, in this review, we will present, organize, and discuss the most recent evidence indicating a relationship between the effects of different phytochemicals on GM that affect obesity and/or inflammation, focusing on the effect of approximately 40 different phytochemical compounds that have been chemically identified and that constitute some natural reservoir, such as potential prophylactics, as candidates for the treatment of obesity and inflammatory diseases.
Sánchez-Sánchez, Marina A.; Vizmanos, Barbara
2018-01-01
Gut microbiota (GM) plays several crucial roles in host physiology and influences several relevant functions. In more than one respect, it can be said that you “feed your microbiota and are fed by it.” GM diversity is affected by diet and influences metabolic and immune functions of the host's physiology. Consequently, an imbalance of GM, or dysbiosis, may be the cause or at least may lead to the progression of various pathologies such as infectious diseases, gastrointestinal cancers, inflammatory bowel disease, and even obesity and diabetes. Therefore, GM is an appropriate target for nutritional interventions to improve health. For this reason, phytochemicals that can influence GM have recently been studied as adjuvants for the treatment of obesity and inflammatory diseases. Phytochemicals include prebiotics and probiotics, as well as several chemical compounds such as polyphenols and derivatives, carotenoids, and thiosulfates. The largest group of these comprises polyphenols, which can be subclassified into four main groups: flavonoids (including eight subgroups), phenolic acids (such as curcumin), stilbenoids (such as resveratrol), and lignans. Consequently, in this review, we will present, organize, and discuss the most recent evidence indicating a relationship between the effects of different phytochemicals on GM that affect obesity and/or inflammation, focusing on the effect of approximately 40 different phytochemical compounds that have been chemically identified and that constitute some natural reservoir, such as potential prophylactics, as candidates for the treatment of obesity and inflammatory diseases. PMID:29785173
Veith, Andreas; Botelho, Hugo M.; Kindinger, Florian; Gomes, Cláudio M.
2012-01-01
A biochemical, biophysical, and phylogenetic study of the sulfur oxygenase reductase (SOR) from the mesophilic gammaproteobacterium Halothiobacillus neapolitanus (HnSOR) was performed in order to determine the structural and biochemical properties of the enzyme. SOR proteins from 14 predominantly chemolithoautotrophic bacterial and archaeal species are currently available in public databases. Sequence alignment and phylogenetic analysis showed that they form a coherent protein family. The HnSOR purified from Escherichia coli after heterologous gene expression had a temperature range of activity of 10 to 99°C with an optimum at 80°C (42 U/mg protein). Sulfite, thiosulfate, and hydrogen sulfide were formed at various stoichiometries in a range between pH 5.4 and 11 (optimum pH 8.4). Circular dichroism (CD) spectroscopy and dynamic light scattering showed that the HnSOR adopts secondary and quaternary structures similar to those of the 24-subunit enzyme from the hyperthermophile Acidianus ambivalens (AaSOR). The melting point of the HnSOR was ≈20°C lower than that of the AaSOR, when analyzed with CD-monitored thermal unfolding. Homology modeling showed that the secondary structure elements of single subunits are conserved. Subtle changes in the pores of the outer shell and increased flexibility might contribute to activity at low temperature. We concluded that the thermostability was the result of a rigid protein core together with the stabilizing effect of the 24-subunit hollow sphere. PMID:22139503
Stout, Jan; Van Driessche, Gonzalez; Savvides, Savvas N.; Van Beeumen, Jozef
2007-01-01
Dissimilatory oxidation of thiosulfate in the green sulfur bacterium Chlorobium limicola f. thiosulfatophilum is carried out by the ubiquitous sulfur-oxidizing (Sox) multi-enzyme system. In this system, SoxY plays a key role, functioning as the sulfur substrate-binding protein that offers its sulfur substrate, which is covalently bound to a conserved C-terminal cysteine, to another oxidizing Sox enzyme. Here, we report the crystal structures of a stand-alone SoxY protein of C. limicola f. thiosulfatophilum, solved at 2.15 Å and 2.40 Å resolution using X-ray diffraction data collected at 100 K and room temperature, respectively. The structure reveals a monomeric Ig-like protein, with an N-terminal α-helix, that oligomerizes into a tetramer via conserved contact regions between the monomers. The tetramer can be described as a dimer of dimers that exhibits one large hydrophobic contact region in each dimer and two small hydrophilic interface patches in the tetramer. At the tetramer interface patch, two conserved redox-active C-terminal cysteines form an intersubunit disulfide bridge. Intriguingly, SoxY exhibits a dimer/tetramer equilibrium that is dependent on the redox state of the cysteines and on the type of sulfur substrate component bound to them. Taken together, the dimer/tetramer equilibrium, the specific interactions between the subunits in the tetramer, and the significant conservation level of the interfaces strongly indicate that these SoxY oligomers are biologically relevant. PMID:17327392
Anaerobic Aryl Reductive Dehalogenation of Halobenzoates by Cell Extracts of “Desulfomonile tiedjei”
DeWeerd, Kim A.; Suflita, Joseph M.
1990-01-01
We studied the transformation of halogenated benzoates by cell extracts of a dehalogenating anaerobe, “Desulfomonile tiedjei.” We found that cell extracts possessed aryl reductive dehalogenation activity. The activity was heat labile and dependent on the addition of reduced methyl viologen, but not on that of reduced NAD, NADP, flavin mononucleotide, flavin adenine dinucleotide, desulfoviridin, cytochrome c3, or benzyl viologen. Dehalogenation activity in extracts was stimulated by formate, CO, or H2, but not by pyruvate plus coenzyme A or by dithionite. The pH and temperature optima for aryl dehalogenation were 8.2 and 35°C, respectively. The rate of dehalogenation was proportional to the amount of protein in the assay mixture. The substrate specificity of aryl dehalogenation activity for various aromatic compounds in “D. tiedjei” cell extracts was identical to that of whole cells, except differences were observed in the relative rates of halobenzoate transformation. Dehalogenation was 10-fold greater in “D. tiedjei” extracts prepared from cells cultured in the presence of 3-chlorobenzoate, suggesting that the activity was inducible. Aryl reductive dehalogenation in extracts was inhibited by sulfite, sulfide, and thiosulfate, but not sulfate. Experiments with combinations of substrates suggested that cell extracts dehalogenated 3-iodobenzoate more readily than either 3,5-dichlorobenzoate or 3-chlorobenzoate. Dehalogenation activity was found to be membrane associated. This is the first report characterizing aryl dehalogenation activity in cell extracts of an obligate anaerobe. PMID:16348308
Hamilton-Brehm, Scott D; Mosher, Jennifer J; Vishnivetskaya, Tatiana; Podar, Mircea; Carroll, Sue; Allman, Steve; Phelps, Tommy J; Keller, Martin; Elkins, James G
2010-02-01
A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47(T), was isolated from Obsidian Pool, Yellowstone National Park, WY. The isolate was a nonmotile, non-spore-forming, Gram-positive rod approximately 2 microm long by 0.2 microm wide and grew at temperatures between 55 and 85 degrees C, with the optimum at 78 degrees C. The pH range for growth was 6.0 to 8.0, with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rate at 0.75 h(-1). The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass, and Populus. OB47(T) was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbitol, carboxymethylcellulose, and casein. Yeast extract stimulated growth, and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2, although lactate and ethanol were produced in 5-liter batch fermentations. The G+C content of the DNA was 35 mol%, and sequence analysis of the small subunit rRNA gene placed OB47(T) within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47 is the type strain (ATCC BAA-2073).
Hamilton-Brehm, Scott D.; Mosher, Jennifer J.; Vishnivetskaya, Tatiana; Podar, Mircea; Carroll, Sue; Allman, Steve; Phelps, Tommy J.; Keller, Martin; Elkins, James G.
2010-01-01
A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47T, was isolated from Obsidian Pool, Yellowstone National Park, WY. The isolate was a nonmotile, non-spore-forming, Gram-positive rod approximately 2 μm long by 0.2 μm wide and grew at temperatures between 55 and 85°C, with the optimum at 78°C. The pH range for growth was 6.0 to 8.0, with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rate at 0.75 h−1. The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass, and Populus. OB47T was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbitol, carboxymethylcellulose, and casein. Yeast extract stimulated growth, and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2, although lactate and ethanol were produced in 5-liter batch fermentations. The G+C content of the DNA was 35 mol%, and sequence analysis of the small subunit rRNA gene placed OB47T within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47 is the type strain (ATCC BAA-2073). PMID:20023107
Randrianarivelo, R; Danthu, P; Benoit, C; Ruez, P; Raherimandimby, M; Sarter, S
2010-08-01
The activity of two essential oils (EOs) of Cinnamosma fragrans, an endemic plant to Madagascar (B8: linalool-type and B143: 1,8-cineole-type), against bacterial isolates from a shrimp hatchery of Penaeus monodon and their effects on the survival and bacterial concentration of larvae were determined. Minimum inhibitory concentrations were determined using a broth dilution technique. The bacterial concentrations of both larvae and water tank were assessed on Marine agar and Thiosulfate Citrate Bile Sucrose agar. The assays took place in OSO Farming's shrimp hatchery in Madagascar. EOs were directly added to the water tank. Regarding the survival, the assays in larval culture (four replicates each of B8, B143, E and control) showed that B8 oil had a similar effect (P > 0.05) as the antibiotic (Erythromycin) and was more active than B143 (P < 0.05). A negative correlation was observed between the bacterial concentration and the survival of larvae for all assays. Both C. fragrans essential oils, as antibiotic, exhibited significantly higher survival rates and lower bacterial concentrations of the larvae than the control (oil and antibiotic free). The potential of C. fragrans essential oil to control the bacterial load in in vivo conditions, thereby enhancing survival rate of P. monodon larvae, makes it a relevant option for developing a novel alternative to antibiotics in shrimp hatchery culture.
Delivery of chemotherapeutics across the blood-brain barrier: challenges and advances.
Doolittle, Nancy D; Muldoon, Leslie L; Culp, Aliana Y; Neuwelt, Edward A
2014-01-01
The blood-brain barrier (BBB) limits drug delivery to brain tumors. We utilize intraarterial infusion of hyperosmotic mannitol to reversibly open the BBB by shrinking endothelial cells and opening tight junctions between the cells. This approach transiently increases the delivery of chemotherapy, antibodies, and nanoparticles to brain. Our preclinical studies have optimized the BBB disruption (BBBD) technique and clinical studies have shown its safety and efficacy. The delivery of methotrexate-based chemotherapy in conjunction with BBBD provides excellent outcomes in primary central nervous system lymphoma (PCNSL) including stable or improved cognitive function in survivors a median of 12 years (range 2-26 years) after diagnosis. The addition of rituximab to chemotherapy with BBBD for PCNSL can be safely accomplished with excellent overall survival. Our translational studies of thiol agents to protect against platinum-induced toxicities led to the development of a two-compartment model in brain tumor patients. We showed that delayed high-dose sodium thiosulfate protects against carboplatin-induced hearing loss, providing the framework for large cooperative group trials of hearing chemoprotection. Neuroimaging studies have identified that ferumoxytol, an iron oxide nanoparticle blood pool agent, appears to be a superior contrast agent to accurately assess therapy-induced changes in brain tumor vasculature, in brain tumor response to therapy, and in differentiating central nervous system lesions with inflammatory components. This chapter reviews the breakthroughs, challenges, and future directions for BBBD. © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yohannan, Jinu P.; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in
2015-01-15
Three new isostructural quaternary antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs) have been synthesized by using alkali metal thiosulfate flux and structurally characterized by X-ray diffraction. Their structures contain A{sup +} ions around the [Sb{sub 2}Sn{sub 3}S{sub 10}]{sup 2−} chains, which are built from SbS{sub 3} pyramids, SnS{sub 6} octahedra and SnS{sub 4} tetrahedra. Raman and Mössbauer spectroscopic measurements corroborate the oxidation states and coordination environments of Sb(III) and Sn(IV). All three compounds are wide band gap semiconductors. Potassium compound undergoes partial exchange with strontium, cadmium and lead ions. - Graphical abstract: Syntheses, crystal structure, spectroscopic andmore » partial ion-exchange studies of new one-dimensional alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs) are described. - Highlights: • Syntheses of new alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs). • Wide band gap semiconductors with one-dimensional structure. • Topotactic partial exchange of K{sup +} ions of K{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} with Sr{sup 2+}, Cd{sup 2+} and Pb{sup 2+} ions.« less
Baltar, Federico; Lundin, Daniel; Palovaara, Joakim; Lekunberri, Itziar; Reinthaler, Thomas; Herndl, Gerhard J.; Pinhassi, Jarone
2016-01-01
To decipher the response of mesopelagic prokaryotic communities to input of nutrients, we tracked changes in prokaryotic abundance, extracellular enzymatic activities, heterotrophic production, dark dissolved inorganic carbon (DIC) fixation, community composition (16S rRNA sequencing) and community gene expression (metatranscriptomics) in 3 microcosm experiments with water from the mesopelagic North Atlantic. Responses in 3 different treatments amended with thiosulfate, ammonium or organic matter (i.e., pyruvate plus acetate) were compared to unamended controls. The strongest stimulation was found in the organic matter enrichments, where all measured rates increased >10-fold. Strikingly, in the organic matter treatment, the dark DIC fixation rates—assumed to be related to autotrophic metabolisms—were equally stimulated as all the other heterotrophic-related parameters. This increase in DIC fixation rates was paralleled by an up-regulation of genes involved in DIC assimilation via anaplerotic pathways. Alkaline phosphatase was the metabolic rate most strongly stimulated and its activity seemed to be related to cross-activation by nonpartner histidine kinases, and/or the activation of genes involved in the regulation of elemental balance during catabolic processes. These findings suggest that episodic events such as strong sedimentation of organic matter into the mesopelagic might trigger rapid increases of originally rare members of the prokaryotic community, enhancing heterotrophic and autotrophic carbon uptake rates, ultimately affecting carbon cycling. Our experiments highlight a number of fairly unstudied microbial processes of potential importance in mesopelagic waters that require future attention. PMID:27818655
[Extravasation of chemotherapeutic agents: prevention and therapy].
Jordan, K; Grothe, W; Schmoll, H-J
2005-01-07
Based on the potential to cause local tissue injury drugs are classified as vesicant, irritant and non-irritant. The frequency of extravasation is considered to be between 0.6 % and 6 %. More frequently an inflammatory reaction is caused by thrombophlebitis or a local hypersensitivity reaction following chemotherapy administration rather than by an extravasation. A number of factors are known to increase the risk of extravasation. By the consideration of these risk factors preventive guidelines for the safe administration of chemotherapeutic agents have been published. Central venous devices significantly reduce the risk of extravasation. To date there are no generally approved treatment guidelines for the management of extravasations. Treatment is mostly empirical. Nevertheless some general measures are to be recommended: Firstly, aspiration of the extravasated fluids should be attempted. Furthermore local supportive care such as intermittent topical warming or cooling is at least palliative and to a certain degree reduces the extent of the injury. Beside these non pharmacological therapies the beneficial effects of Dimethylsulfoxid (DMSO) -- or Hyaluronidase-administration dependent on the type of paravasation have been proven. The use of sodium bicarbonate, sodium thiosulfate or corticosteroids is no longer recommended. In the case of extravasation rapid and correct management is crucial for the benefit of any treatment. Therefore, written guidelines for both the handling of cytotoxic agents and also the management of an extravasation should be present in all Departments where cytotoxic agents are administered. In addition to these guidelines an extravasation kit including all necessary materials and drugs to treat extravasations should be available.
Management of the extravasation of anti-neoplastic agents.
Boulanger, J; Ducharme, A; Dufour, A; Fortier, S; Almanric, K
2015-05-01
Extravasation is a potentially severe complication that can occur during the administration of chemotherapy. The scarcity of evidence available makes it difficult to develop an optimal management scheme. The purpose of this guideline is to review the relevant scientific literature on the prevention, management, and treatment of extravasation occurring during the administration of chemotherapy to cancer patients. A scientific literature review was conducted using the PubMed search tool. The period covered was from database inception to April 2014, inclusively. Since the literature on extravasation treatment is often empirical, anecdotal, and controversial, the review also identified clinical practice guidelines and expert consensuses published by relevant international organizations and cancer agencies. Identification of potential risk factors and preventive measures can reduce the risk of extravasation. Recognition and management of symptoms are crucial in patients with this complication. Provision of adequate instruction to personnel responsible for administering chemotherapy and to patients on recognizing symptoms, preventing, and managing extravasation is essential. Extravasation can be treated with dry warm or cold compresses and various antidotes such as dimethyl sulfoxide, dexrazoxane, hyaluronidase, or sodium thiosulfate, depending on the agent that has caused extravasation. Patient monitoring to assess the progression or regression of symptoms and to thus take the appropriate measures is necessary. Several strategies must be established to ensure that extravasation is recognized and properly managed. Given the evidence available at this time, the Comité de l'évolution des pratiques en oncologie (CEPO) has made recommendations for clinical practice in Quebec.
Vetriani, Costantino; Speck, Mark D; Ellor, Susan V; Lutz, Richard A; Starovoytov, Valentin
2004-01-01
A thermophilic, anaerobic, chemolithoautotrophic bacterium was isolated from the walls of an active deep-sea hydrothermal vent chimney on the East Pacific Rise at 9 degrees 50' N. Cells of the organism were Gram-negative, motile rods that were about 1.0 microm in length and 0.6 microm in width. Growth occurred between 60 and 80 degrees C (optimum at 75 degrees C), 0.5 and 4.5% (w/v) NaCl (optimum at 2%) and pH 5 and 7 (optimum at 5.5). Generation time under optimal conditions was 1.57 h. Growth occurred under chemolithoautotrophic conditions in the presence of H2 and CO2, with nitrate or sulfur as the electron acceptor and with concomitant formation of ammonium or hydrogen sulfide, respectively. Thiosulfate, sulfite and oxygen were not used as electron acceptors. Acetate, formate, lactate and yeast extract inhibited growth. No chemoorganoheterotrophic growth was observed on peptone, tryptone or Casamino acids. The genomic DNA G+C content was 54.6 mol%. Phylogenetic analyses of the 16S rRNA gene sequence indicated that the organism was a member of the domain Bacteria and formed a deep branch within the phylum Aquificae, with Thermovibrio ruber as its closest relative (94.4% sequence similarity). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the newly described genus Thermovibrio. The type strain is Thermovibrio ammonificans HB-1T (=DSM 15698T=JCM 12110T).
Kozina, Irina V; Kublanov, Ilya V; Kolganova, Tatyana V; Chernyh, Nikolai A; Bonch-Osmolovskaya, Elizaveta A
2010-06-01
An anaerobic thermophilic bacterium, strain K67(T), was isolated from a terrestrial hot spring of Uzon Caldera, Kamchatka Peninsula. Analysis of the 16S rRNA gene sequence revealed that the novel isolate belongs to the genus Caldanaerobacter, with 95 % 16S rRNA gene sequence similarity to Caldanaerobacter subterraneus subsp. subterraneus SEBR 7858(T), suggesting that it represents a novel species of the genus Caldanaerobacter. Strain K67(T) was characterized as an obligate anaerobe, a thermophile (growth at 50-75 degrees capital ES, Cyrillic; optimum 68-70 degrees C), a neutrophile (growth at pH(25 degrees C) 4.8-8.0; optimum pH(25 degrees C) 6.8) and an obligate organotroph (growth by fermentation of various sugars, peptides and polysaccharides). Major fermentation products were acetate, H2 and CO2; ethanol, lactate and l-alanine were formed in smaller amounts. Thiosulfate stimulated growth and was reduced to hydrogen sulfide. Nitrate, sulfate, sulfite and elemental sulfur were not reduced and did not stimulate growth. Thus, according to the strain's phylogenetic position and phenotypic novelties (lower upper limit of temperature range for growth, the ability to grow on arabinose, the inability to reduce elemental sulfur and the formation of alanine as a minor fermentation product), the novel species Caldanaerobacter uzonensis sp. nov. is proposed, with the type strain K67(T) (=DSM 18923(T) =VKM capital VE, Cyrillic-2408(T)).
Salt Efflorescence Effects on Soil Surface Erodibility and Dust Emissions
NASA Astrophysics Data System (ADS)
Van Pelt, R. S.; Zhang, G.
2017-12-01
Soluble salts resulting from weathering of geological materials often form surface crusts or efflorescences in areas with shallow saline groundwater. In many cases, the affected areas are susceptible to wind erosion due to their lack of protective vegetation and their flat topography. Fugitive dusts containing soluble salts affect the biogeochemistry of deposition regions and may result in respiratory irritation during transport. We created efflorescent crusts on soil trays by surface evaporation of single salt solutions and bombarded the resultant efflorescences with quartz abrader sand in a laboratory wind tunnel. Four replicate trays containing a Torrifluvent soil affected by one of nine salts commonly found in arid and semiarid streams were tested and the emissions were captured by an aspirated multi-stage deposition and filtering system. We found that in most cases the efflorescent crust reduced the soil surface erodibility but also resulted in the emission of salt rich dust. Two of the salts, sodium thiosulfate and calcium chloride, resulted in increased soil volume and erodibility. However, one of the calcium chloride replicates was tested after an outbreak of humid air caused hygroscopic wetting of the soil and it became indurated upon drying greatly decreasing the erodibility. Although saline affected soils are not used for agricultural production and degradation is not a great concern, the release of salt rich dust is an area of environmental concern and steps to control the dust emissions from affected soils should be developed. Future testing will utilize suites of salts found in streams of arid and semiarid regions.
Colorimetric assay for lead ions based on the leaching of gold nanoparticles.
Chen, Yi-You; Chang, Huan-Tsung; Shiang, Yen-Chun; Hung, Yu-Lun; Chiang, Cheng-Kang; Huang, Chih-Ching
2009-11-15
A colorimetric, label-free, and nonaggregation-based gold nanoparticles (Au NPs) probe has been developed for the detection of Pb(2+) in aqueous solution, based on the fact that Pb(2+) ions accelerate the leaching rate of Au NPs by thiosulfate (S(2)O(3)(2-)) and 2-mercaptoethanol (2-ME). Au NPs reacted with S(2)O(3)(2-) ions in solution to form Au(S(2)O(3))(2)(3-) complexes on the Au NP surfaces, leading to slight decreases in their surface plasmon resonance (SPR) absorption. Surface-assisted laser desorption/ionization time-of-flight ionization mass spectrometry (SALDI-TOF MS) data reveals the formation of Pb-Au alloys on the surfaces of the Au NPs in the presence of Pb(2+) ions and 2-ME. The formation of Pb-Au alloys accelerated the Au NPs rapidly dissolved into solution, leading to dramatic decreases in the SPR absorption. The 2-ME/S(2)O(3)(2-)-Au NP probe is highly sensitive (LOD = 0.5 nM) and selective (by at least 1000-fold over other metal ions) toward Pb(2+) ions, with a linear detection range (2.5 nM-10 muM) over nearly 4 orders of magnitude. The cost-effective probe allows rapid and simple determination of the concentrations of Pb(2+) ions in environmental samples (Montana soil and river), with results showing its great practicality for the detection of lead in real samples.
Shock Modifications of Organic Compounds in Carbonaceous Chondrite Parent Bodies
NASA Technical Reports Server (NTRS)
Cooper, George W.
1998-01-01
Impacts among asteroidal objects would have altered or destroyed pre-existing organic matter in both targets and projectiles to a greater or lesser degree depending upon impact velocities. To begin filling a knowledge gap on the shock metamorphism of organic compounds, we are studying the effects of shock impacts on selected classes of organic compounds utilizing laboratory shock facilities. Our approach is to subject mixtures of organic compounds, embedded in the matrix of the Murchison meteorite, to simulated hypervelocity impacts by firing them into targets at various pressures. The mixtures are then analyzed to determine the amount of each compound that survives as well as to determine if new compounds are being synthesized. The initial compounds added to the matrix (with the exception of thiosulfate). The sulfonic acids were chosen in part because they are relatively abundant in Murchison, relatively stable, and because they and the phosphonic acids are the first well-characterized homologous series of organic sulfur and phosphorus compounds identified in an extraterrestrial material. Experimental procedures were more fully described in the original proposal. A 20 mm gun, with its barrel extending into a vacuum chamber (10(exp -2) torr), was used to launch the projectile containing the sample at approx. 1.6 km/sec (3,600 mi/hr) into the target material. Maximum pressure of impact depend on target/projectile materials. The target was sufficiently thin to assure minimum pressure decay over the total sample thickness.
Antimicrobial Activity of N-Halamine-Coated Materials in Broiler Chicken Houses.
Ren, Tian; Qiao, Mingyu; Zhang, Lei; Weese, Jean; Huang, Tung-Shi; Ren, Xuehong
2018-02-01
The antimicrobial activity of 1-chloro-2,2,5,5-tetramethyl-4-imidazoidinone (MC), a nonbleaching N-halamine compound, was investigated on materials commonly used in broiler production, including stainless steel, galvanized metal, aluminum, plastic, and pressure-treated wood. MC aqueous solutions at 0.02, 0.04, and 0.06% were challenged with Salmonella Typhimurium and Campylobacter jejuni at 6 log CFU/mL, resulting in complete inactivation of both bacteria in 30 min with 0.06% MC. Follow-up experiments were performed using test materials treated with 0.1 and 1% MC and challenged with Salmonella Typhimurium and C. jejuni at 6 log CFU per coupon. Stability of MC on the various surfaces of testing materials was assessed, and the chlorine content of the materials was measured using iodometric thiosulfate titration over a 4-week period. Antimicrobial activities were evaluated by a sandwich test on each sampling day during 4 weeks of storage. On the samples treated with 1% MC, bacteria at 6 log CFU per coupon were completely inactivated within 2 h of contact time. The antimicrobial activity extended to 4 weeks, and the active chlorine atoms in the treated materials decreased from the initial 10 16 to 10 15 atoms per cm 2 . Overall, MC had high stability and long-lasting antimicrobial activity, which suggests that MC has high potential for use as a novel antimicrobial agent to lower the microbial load on broiler house materials.
Hydrogenophaga crassostreae sp. nov., isolated from a Pacific oyster.
Baek, Chaeyun; Kim, Eunji; Shin, Su-Kyoung; Choi, Sungmi; Yi, Hana
2017-10-01
A Gram-negative, motile, rod-shaped, and aerobic bacterial strain, designated LPB0072 T , was isolated from a Pacific oyster (Crassostrea gigas). Autotrophic growth with hydrogen gas was not observed. Cells oxidized thiosulfate to sulfate and reduced nitrate to nitrite. The complete genome sequence of strain LPB0072 T (CP017476) is 4.94 Mb in length and contains 4459 protein-coding genes, with a G+C content of 61.3 mol%. Analysis of the 16S rRNA gene sequence indicated that strain LPB0072 T belongs to the genus Hydrogenophaga, with greatest sequence similarity to the type strain of Hydrogenophaga taeniospiralis (97.5 %). The isoprenoid quinone (Q-8) and the major cellular fatty acids (C16 : 1ω7c and/or C16 : 1ω6c, C16 : 0 and C17 : 1ω6c) identified were concordant with the chemotaxonomic properties of the genus Hydrogenophaga. The average nucleotide identities with closely related species were below the suggested boundary for species delineation, indicating that the isolate is a novel species. Numerous physiological and biochemical features also distinguished the isolate from other known Hydrogenophaga species. Based on the polyphasic data presented in this study, strain LPB0072 T should be classified as a novel species in the genus Hydrogenophaga, and the name Hydrogenophaga crassostreae sp. nov. is proposed. The type strain is LPB0072 T (=KACC 18705 T =JCM 31188 T ).
Olguín-Lora, P; Le Borgne, S; Castorena-Cortés, G; Roldán-Carrillo, T; Zapata-Peñasco, I; Reyes-Avila, J; Alcántara-Pérez, S
2011-02-01
Haloalkaliphilic sulfur-oxidizing mixed cultures for the treatment of alkaline-saline effluents containing sulfide were characterized and evaluated. The mixed cultures (IMP-PB, IMP-XO and IMP-TL) were obtained from Mexican alkaline soils collected in Puebla (PB), Xochimilco (XO) and Tlahuac (TL), respectively. The Ribosomal Intergenic Spacer Analysis (RISA) revealed bacteria related to Thioalkalibacterium and Thioalkalivibrio in IMP-XO and IMP-PB mixed cultures. Halomonas strains were detected in IMP-XO and IMP-TL. In addition, an uncultured Bacteroides bacterium was present in IMP-TL. Mixed cultures were evaluated at different pH and NaCl concentrations at 30°C. IMP-PB and IMP-TL expressed thiosulfate-oxidizing activity in the 7.5-10.5 pH range, whereas IMP-XO presented its maximal activity with 19.0 mg O₂ g (protein)⁻¹ min⁻¹, at pH 10.6; it was not affected by NaCl concentrations up to 1.7 M. In continuous culture, IMP-XO showed a growth rate of 15 day⁻¹, productivity of 433.4 mg(protein) l⁻¹ day⁻¹ and haloalkaliphilic sulfur-oxidizing activity was also detected up to 170 mM by means of N-methyl-diethanolamine (MDEA). Saline-alkaline soil samples are potential sources of haloalkaliphilic sulfur-oxidizing bacteria and the mixed cultures could be applied in the treatment of inorganic sulfur compounds in petroleum industry effluents under alkaline-saline conditions.
Fennell, Donna E; Rhee, Sung-Keun; Ahn, Young-Beom; Häggblom, Max M; Kerkhof, Lee J
2004-02-01
Terminal restriction fragment length polymorphism analysis of reverse-transcribed 16S rRNA during periods of community flux was used as a tool to delineate the roles of the members of a 2-bromophenol-degrading, sulfate-reducing consortium. Starved, washed cultures were amended with 2-bromophenol plus sulfate, 2-bromophenol plus hydrogen, phenol plus sulfate, or phenol with no electron acceptor and were monitored for substrate use. In the presence of sulfate, 2-bromophenol and phenol were completely degraded. In the absence of sulfate, 2-bromophenol was dehalogenated and phenol accumulated. Direct terminal restriction fragment length polymorphism fingerprinting of the 16S rRNA in the various subcultures indicated that phylotype 2BP-48 (a Desulfovibrio-like sequence) was responsible for the dehalogenation of 2-bromophenol. A stable coculture was established which contained predominantly 2BP-48 and a second Desulfovibrio-like bacterium (designated BP212 based on terminal restriction fragment length polymorphism fingerprinting) that was capable of dehalogenating 2-bromophenol to phenol. Strain 2BP-48 in the coculture could couple reductive dehalogenation to growth with 2-bromophenol, 2,6-dibromophenol, or 2-iodophenol and lactate or formate as the electron donor. In addition to halophenols, strain 2BP-48 appears to use sulfate, sulfite, and thiosulfate as electron acceptors and is capable of simultaneous sulfidogenesis and reductive dehalogenation in the presence of sulfate.
Fennell, Donna E.; Rhee, Sung-Keun; Ahn, Young-Beom; Häggblom, Max M.; Kerkhof, Lee J.
2004-01-01
Terminal restriction fragment length polymorphism analysis of reverse-transcribed 16S rRNA during periods of community flux was used as a tool to delineate the roles of the members of a 2-bromophenol-degrading, sulfate-reducing consortium. Starved, washed cultures were amended with 2-bromophenol plus sulfate, 2-bromophenol plus hydrogen, phenol plus sulfate, or phenol with no electron acceptor and were monitored for substrate use. In the presence of sulfate, 2-bromophenol and phenol were completely degraded. In the absence of sulfate, 2-bromophenol was dehalogenated and phenol accumulated. Direct terminal restriction fragment length polymorphism fingerprinting of the 16S rRNA in the various subcultures indicated that phylotype 2BP-48 (a Desulfovibrio-like sequence) was responsible for the dehalogenation of 2-bromophenol. A stable coculture was established which contained predominantly 2BP-48 and a second Desulfovibrio-like bacterium (designated BP212 based on terminal restriction fragment length polymorphism fingerprinting) that was capable of dehalogenating 2-bromophenol to phenol. Strain 2BP-48 in the coculture could couple reductive dehalogenation to growth with 2-bromophenol, 2,6-dibromophenol, or 2-iodophenol and lactate or formate as the electron donor. In addition to halophenols, strain 2BP-48 appears to use sulfate, sulfite, and thiosulfate as electron acceptors and is capable of simultaneous sulfidogenesis and reductive dehalogenation in the presence of sulfate. PMID:14766602
Heterotrophic and Autotrophic Microbial Populations in Cold Perennial Springs of the High Arctic ▿ †
Perreault, Nancy N.; Greer, Charles W.; Andersen, Dale T.; Tille, Stefanie; Lacrampe-Couloume, Georges; Lollar, Barbara Sherwood; Whyte, Lyle G.
2008-01-01
The saline springs of Gypsum Hill in the Canadian high Arctic are a rare example of cold springs originating from deep groundwater and rising to the surface through thick permafrost. The heterotrophic bacteria and autotrophic sulfur-oxidizing bacteria (up to 40% of the total microbial community) isolated from the spring waters and sediments were classified into four phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) based on 16S rRNA gene analysis; heterotrophic isolates were primarily psychrotolerant, salt-tolerant, facultative anaerobes. Some of the isolates contained genes for thiosulfate oxidation (soxB) and anoxygenic photosynthesis (pufM), possibly enabling the strains to better compete in these sulfur-rich environments subject to long periods of illumination in the Arctic summer. Although leucine uptake by the spring water microbial community was low, CO2 uptake was relatively high under dark incubation, reinforcing the idea that primary production by chemoautotrophs is an important process in the springs. The small amounts of hydrocarbons in gases exsolving from the springs (0.38 to 0.51% CH4) were compositionally and isotopically consistent with microbial methanogenesis and possible methanotrophy. Anaerobic heterotrophic sulfur oxidation and aerobic autotrophic sulfur oxidation activities were demonstrated in sediment slurries. Overall, our results describe an active microbial community capable of sustainability in an extreme environment that experiences prolonged periods of continuous light or darkness, low temperatures, and moderate salinity, where life seems to rely on chemolithoautotrophy. PMID:18805995
Vohra, M S; Selimuzzaman, S M; Al-Suwaiyan, M S
2010-05-01
The main objective of the present study was to investigate the efficiency of titanium dioxide (TiO2) assisted photocatalytic degradation (PCD) process for the removal of ammonium-ammonia (NH4(+)-NH3) from the aqueous phase and in the presence of co-pollutants thiosulfate (S2O3(2-)) and p-cresol (C6H4CH3OH) under varying mixed conditions. For the NH4(+)-NH3 only PCD experiments, results showed higher NH4 -NH3 removal at pH 12 compared to pH 7 and 10. For the binary NH4(+)-NH3/S2O3(2-) studies the respective results indicated a significant lowering in NH4(+)-NH3 PCD in the presence of S2O32- at pH 7/12 whereas at pH 10 a marked increase in NH4(+)-NH3 removal transpired. A similar trend was noted for the p-cresol/NH4(+)-NH3 binary system. Comparing findings from the binary (NH4(+)-NH3/S2O3(2-) and p-cresol/NH4(+)-NH3) and tertiary (NH4(+)-NH3/S2O3(2-)/p-cresol) systems, at pH 10, showed fastest NH4(+)-NH3 removal transpiring for the tertiary system as compared to the binary systems, whereas both the binary systems indicated comparable NH4(+)-NH3 removal trends. The respective details have been discussed.
NASA Technical Reports Server (NTRS)
Pikuta, Elena; Hoover, Richard B.; Marsic, Damien; Whitman, William; Cleland, David; Krader, Paul; Six, N. Frank (Technical Monitor)
2002-01-01
A novel alkaliphilic, sulfate reducing bacterium strain MLF1(sup T) was isolated from sediments of soda Mono Lake, California. Gram-negative vibrion cells, motile by singular polar flagellum, with sizes 0.5 - 0.6x 1.2 - 2.0 micron occurred singly, in pairs or short spirilla. Growth was observed over the temperature range of +15 C to +48 C (optimum +37 C), NaCl concentration range is greater than 1 - 7 %, wt/vol (optimum 3 %, wt/vol) and pH range 7.8 - 10.5 (optimum pH 9.0 - 9.4). The novel isolate is strictly alkaliphilic, requires high carbonate concentration in medium, obligately anaerobic and catalase negative. As electron donors strain MLF1(sup T) uses hydrogen, formate, ethanol. Sulfate, sulfite, and thiosulfate (but not sulfur or nitrate) can be used as electron acceptors. The sole end product of growth on formate was H2S. Strain MLF1(sup T) is resistant to kanamycin and gentamycin, but sensitive to chloramphenicol and tetracycline. Na2MoO4 inhibits growth of strain MLF1(sup T). The sum of G+C in DNA is 63.1 mol% (by HPLC method). On the basis of physiological and molecular properties, the isolate was considered as novel species of genus Desulfonatronum; and the name Desulfonatronum paiuteum sp. nov., is proposed (type strain MLF1(sup T) = ATCC BAA-395(sup T) = DSMZ 14708(sup T).
Biogeochemical conversion of sulfur species in saline lakes of Steppe Altai
NASA Astrophysics Data System (ADS)
Borzenko, Svetlana V.; Kolpakova, Marina N.; Shvartsev, Stepan L.; Isupov, Vitaly P.
2017-08-01
The aim of the present research is to identify the main mechanisms of sulfur behavior in saline lakes in the course of time and followed transformations in their chemical composition. The influence of water on chemical composition of biochemical processes involved in decomposition of organic matter was determined by the study of behavior of reduced forms of sulfur in lakes. The determination of reduced forms of sulfur was carried out by successive transfer of each form of sulfur to hydrogen sulfide followed by photometric measurements. The other chemical components were determined by standard methods (atomic absorption, potentiometric method, titration method and others). The salt lakes of the Altai steppe were studied in summer season 2013-2015. Analysis of the chemical composition of the saline lakes of Altai Krai has shown that carbonate-, hydrocarbonate- and chloride ions dominate among anions; sodium is main cation; sulfates are found in subordinate amounts. Reduced forms of sulfur occur everywhere: hydrogen and hydrosulfide sulfur S2- prevail in the bottom sediments; its derivative—elemental S0—prevails in the lakes water. The second important species in water of soda lakes is hydrosulfide sulfur S2-, and in chloride lakes is thiosulfate sulfur S2O3 2- . The lag in the accumulation of sulfates in soda lakes in comparison to chloride lakes can be explained by their bacterial reduction, followed by the formation and deposition of iron sulfides in sediments. In chloride lakes gypsum is a predominantly barrier for sulfates.
Díaz-Cárdenas, Carolina; López, Gina; Alzate-Ocampo, José David; González, Laura N; Shapiro, Nicole; Woyke, Tanja; Kyrpides, Nikos C; Restrepo, Silvia; Baena, Sandra
2017-01-01
A bacterium belonging to the phylum Synergistetes , genus Dethiosulfovibrio was isolated in 2007 from a saline spring in Colombia. Dethiosulfovibrio salsuginis USBA 82 T ( DSM 21565 T = KCTC 5659 T ) is a mesophilic, strictly anaerobic, slightly halophilic, Gram negative bacterium with a diderm cell envelope. The strain ferments peptides, amino acids and a few organic acids. Here we present the description of the complete genome sequencing and annotation of the type species Dethiosulfovibrio salsuginis USBA 82 T . The genome consisted of 2.68 Mbp with a 53.7% G + C . A total of 2609 genes were predicted and of those, 2543 were protein coding genes and 66 were RNA genes. We detected in USBA 82 T genome six Synergistetes conserved signature indels (CSIs), specific for Jonquetella, Pyramidobacter and Dethiosulfovibrio . The genome of D. salsuginis contained, as expected, genes related to amino acid transport, amino acid metabolism and thiosulfate reduction. These genes represent the major gene groups of Synergistetes , related with their phenotypic traits, and interestingly, 11.8% of the genes in the genome belonged to the amino acid fermentation COG category. In addition, we identified in the genome some ammonification genes such as nitrate reductase genes. The presence of proline operon genes could be related to de novo synthesis of proline to protect the cell in response to high osmolarity. Our bioinformatics workflow included antiSMASH and BAGEL3 which allowed us to identify bacteriocins genes in the genome.
Lead Sulfide Cathode for Quantum Dot Solar Cells: Electrosynthesis and Characterization
NASA Astrophysics Data System (ADS)
Van Le, Nghiem; Nguyen, Hoang Thai; Le, Hai Viet; Nguyen, Thoa Thi Phuong
2017-01-01
Deposition of lead sulfide (PbS) nanocrystalline thin films onto conducting fluorine-doped tin oxide (FTO) glass has been performed by cyclic voltammetry (CV) in 1.5 mM solution of lead nitrate and sodium thiosulfate at 100 mV s-1 scan rate in the potential range of -1.0 V to 0.0 V versus saturated calomel electrode. X-ray diffraction analysis and scanning electron microscopy revealed formation of cubic PbS crystals with size of 100 nm to 150 nm after 50 cycles. High electrocatalytic activity of the synthesized PbS film for the S2-/S n 2- redox couple, used as a mediator for quantum dot solar cells (QDSCs), was demonstrated by electrochemical impedance spectroscopy and CV measurements. The prepared PbS/FTO was used as a counterelectrode to fabricate PbS-QDSCs with a photoanode consisting of CdS/CdSe quantum dots adsorbed on mesoporous TiO2 film and a polysulfide solution electrolyte. The performance of the PbS-QDSC was compared with a QDSC with a platinum counterelectrode (Pt-QDSC). It was found that, using the same fabrication conditions, the performance of the PbS-QDSC was better than that of the Pt-QDSC. At 1 sun (100 mW cm-2) simulated light, average energy conversion efficiency of 2.14%, short-circuit current of 9.22 mA cm-2, open-circuit potential of 0.50 V, and fill factor of 0.47 were achieved by the fabricated PbS-QDSC.
A RhxSy/C Catalyst for the Hydrogen Oxidation and Hydrogen Evolution Reactions in HBr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masud, J; Nguyen, TV; Singh, N
Rhodium sulfide (Rh2S3) on carbon support was synthesized by refluxing rhodium chloride with ammonium thiosulfate. Thermal treatment of Rh2S3 at high temperatures (600 degrees C to 850 degrees C) in presence of argon resulted in the transformation of Rh2S3 into Rh3S4, Rh17S15 and Rh which were characterized by TGA/DTA, XRD, EDX, and deconvolved XPS analyses. The catalyst particle size distribution ranged from 3 to 12 nm. Cyclic voltammetry and rotating disk electrode measurements were used to evaluate the catalytic activity for hydrogen oxidation and evolution reactions in H2SO4 and HBr solutions. The thermally treated catalysts show high activity for themore » hydrogen reactions. The exchange current densities (i(o)) of the synthesized RhxSy catalysts in H-2-saturated 1M H2SO4 and 1M HBr for HER and HOR were 0.9 mA/cm(2) to 1.0 mA/cm(2) and 0.8 to 0.9 mA/cm(2), respectively. The lower i(o) values obtained in 1M HBr solution compared to in H2SO4 might be due to the adsorption of Br- on the active surface. Stable electrochemical active surface area (ECSA) of RhxSy catalyst was obtained for CV scan limits between 0 V and 0.65 V vs. RHE. Scans with upper voltage limit beyond 0.65 V led to decreased and unreproducible ECSA measurements. (C) The Author(s) 2015. Published by ECS. All rights reserved.« less
Mathurand, Prateek; Schaffner, Donald W
2013-06-01
Ceviche is a raw fish dish common in Peru and other Latin American counties. The most characteristic feature of ceviche is the use of lime juice for marinating or "cooking" the raw fish. Confirmed cases of cholera in Peru, New Jersey, and Florida have been associated with ceviche. Although the effect of organic acids on pathogenic bacteria has been well characterized, few data exist on the effect of these acids in seafood systems. The objective of the study was to evaluate the effects of lime juice marination on pathogens likely to be present in ceviche. Tilapia (Oreochromis niloticus) fillet pieces were inoculated with Vibrio parahaemolyticus and Salmonella enterica (>7 log CFU/g) and incubated at 25 and 4°C for 30 or 120 min in the presence of fresh lime juice at concentrations typical for the preparation of ceviche. Similar levels of cells were also inoculated into fresh lime juice without tilapia. Surviving cells were enumerated on selective (xylose lysine Tergitol 4 and thiosulfate-bile-citrate-sucrose) and nonselective (tryptic soy agar) media. V. parahaemolyticus levels were reduced to below detection limits (∼5-log reduction) under all conditions studied. Salmonella strains on tilapia were much more resistant to inactivation and were only slightly reduced (∼1- to 2-log reduction). Salmonella and V. parahaemolyticus inoculated directly into lime juice without tilapia were all reduced to below detection limits (∼5-log reduction). A typical ceviche recipe reduces V. parahaemolyticus risk significantly but is less effective for control of S. enterica.
Serezhenkov, Vladimir A; Timoshin, Alexander A; Orlova, Tsvetina R; Mikoyan, Vasak D; Kubrina, Lioudmila N; Poltorakov, Alexander P; Ruuge, Enno K; Sanina, Natalia A; Vanin, Anatoly F
2008-05-01
EPR studies have shown that water-soluble mononitrosyl iron complexes with N-methyl-d-glucamine dithiocarbamate (MNIC-MGD) (3 micromol) injected to intact mice were decomposed virtually completely within 1h. The total content of MNIC-MGD in animal urine did not exceed 30 nmol/ml. In the liver, a small amount of MNIC-MGD were converted into dinitrosyl iron complexes (30 nmol/g of liver tissue). The same was observed in intact rabbits in which MNIC-MGD formation was induced by endogenous or exogenous NO binding to NO traps, viz., iron complexes with MGD. In mice, the content of MNIC-MGD in urine samples did not change after bacterial lipopolysaccharide-induced expression of iNOS. It was supposed that MNIC-MGD decomposition in intact animals was largely due to the release of NO from the complexes and its further transfer to other specific acceptors. In mice with iNOS expression, the main contribution to MNIC-MGD decomposition was made by superoxide ions whose destructive effect is mediated by an oxidative mechanism. This effect could fully compensate the augmented synthesis of MNIC-MGD involving endogenous NO whose production was supported by iNOS. Water-soluble dinitrosyl iron complexes (DNIC) with various thiol-containing ligands and thiosulfate injected to intact mice were also decomposed; however, in this case the effect was less pronounced than in the case of MNIC-MGD. It was concluded that DNIC decomposition was largely due to the oxidative effect of superoxide ions on these complexes.
Boden, Rich; Hutt, Lee P.; Huntemann, Marcel; ...
2016-09-26
Thermithiobacillus tepidarius DSM 3134 T was originally isolated (1983) from the waters of a sulfidic spring entering the Roman Baths (Temple of Sulis-Minerva) at Bath, United Kingdom and is an obligate chemolithoautotroph growing at the expense of reduced sulfur species. This strain has a genome size of 2,958,498 bp. Here we report the genome sequence, annotation and characteristics. The genome comprises 2,902 protein coding and 66 RNA coding genes. Genes responsible for the transaldolase variant of the Calvin-Benson-Bassham cycle were identified along with a biosynthetic horseshoe in lieu of Krebs' cycle sensu stricto. Terminal oxidases were identified, viz. cytochrome cmore » oxidase (cbb 3 , EC 1.9.3.1) and ubiquinol oxidase (bd, EC 1.10.3.10). Metalloresistance genes involved in pathways of arsenic and cadmium resistance were found. Evidence of horizontal gene transfer accounting for 5.9 % of the protein-coding genes was found, including transfer from Thiobacillus spp. and Methylococcus capsulatus Bath, isolated from the same spring. A sox gene cluster was found, similar in structure to those from other Acidithiobacillia - by comparison with Thiobacillus thioparus and Paracoccus denitrificans, an additional gene between soxA and soxB was found, annotated as a DUF302-family protein of unknown function. As the Kelly-Friedrich pathway of thiosulfate oxidation (encoded by sox) is not used in Thermithiobacillus spp., the role of the operon (if any) in this species remains unknown. We speculate that DUF302 and sox genes may have a role in periplasmic trithionate oxidation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boden, Rich; Hutt, Lee P.; Huntemann, Marcel
Thermithiobacillus tepidarius DSM 3134 T was originally isolated (1983) from the waters of a sulfidic spring entering the Roman Baths (Temple of Sulis-Minerva) at Bath, United Kingdom and is an obligate chemolithoautotroph growing at the expense of reduced sulfur species. This strain has a genome size of 2,958,498 bp. Here we report the genome sequence, annotation and characteristics. The genome comprises 2,902 protein coding and 66 RNA coding genes. Genes responsible for the transaldolase variant of the Calvin-Benson-Bassham cycle were identified along with a biosynthetic horseshoe in lieu of Krebs' cycle sensu stricto. Terminal oxidases were identified, viz. cytochrome cmore » oxidase (cbb 3 , EC 1.9.3.1) and ubiquinol oxidase (bd, EC 1.10.3.10). Metalloresistance genes involved in pathways of arsenic and cadmium resistance were found. Evidence of horizontal gene transfer accounting for 5.9 % of the protein-coding genes was found, including transfer from Thiobacillus spp. and Methylococcus capsulatus Bath, isolated from the same spring. A sox gene cluster was found, similar in structure to those from other Acidithiobacillia - by comparison with Thiobacillus thioparus and Paracoccus denitrificans, an additional gene between soxA and soxB was found, annotated as a DUF302-family protein of unknown function. As the Kelly-Friedrich pathway of thiosulfate oxidation (encoded by sox) is not used in Thermithiobacillus spp., the role of the operon (if any) in this species remains unknown. We speculate that DUF302 and sox genes may have a role in periplasmic trithionate oxidation.« less
Elshahed, Mostafa S.; Najar, Fares Z.; Krumholz, Lee R.
2015-01-01
Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring’s source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons. PMID:26417542
Performance of a novel high throughput method for the determination of VX in drinking water samples.
Knaack, Jennifer S; Zhou, Yingtao; Magnuson, Matthew; Silvestri, Erin; Johnson, Rudolph C
2013-03-05
VX (O-ethyl-S-(2-diisopropylaminoethyl) methylphosphonothioate) is a highly toxic organophosphorus nerve agent, and even low levels of contamination in water can be harmful. Measurement of low concentrations of VX in aqueous matrixes is possible using an immunomagnetic scavenging technique and detection using liquid chromatography/tandem-mass spectrometry. Performance of the method was characterized in high-performance liquid chromatography (HPLC)-grade water preserved with sodium omadine, an antimicrobial agent, and sodium thiosulfate, a dechlorinating agent, over eight analytical batches with quality control samples analyzed over 10 days. The minimum reportable level was 25 ng/L with a linear dynamic range up to 4.0 μg/L. The mean accuracies for two quality control samples containing VX at concentrations of 0.250 and 2.00 μg/L were 102 ± 3% and 103 ± 6%, respectively. The stability of VX was determined in five tap water samples representing a range of water quality parameters and disinfection practices over a 91 day period. In preserved tap water samples, VX recovery was between 81 and 92% of the fortified amount, 2.0 μg/L, when analyzed immediately after preparation. Recovery of VX decreased to between 31 and 45% of the fortified amount after 91 days, indicating hydrolysis of VX. However, the preservatives minimized the hydrolysis rate to close to the theoretical limit. The ability to detect low concentrations of VX in preserved tap water 91 days after spiking suggests applicability of this method for determining water contamination with VX and utility during environmental remediation.
Xiao, Yunhua; Liu, Xueduan; Ma, Liyuan; Liang, Yili; Niu, Jiaojiao; Gu, Yabing; Zhang, Xian; Hao, Xiaodong; Dong, Weiling; She, Siyuan; Yin, Huaqun
2016-08-01
The microbial communities are important for minerals decomposition in biological heap leaching system. However, the differentiation and relationship of composition and function of microbial communities between leaching heap (LH) and leaching solution (LS) are still unclear. In this study, 16S rRNA gene sequencing was used to assess the microbial communities from the two subsystems in ZiJinShan copper mine (Fujian province, China). Results of PCoA and dissimilarity test showed that microbial communities in LH samples were significantly different from those in LS samples. The dominant genera of LH was Acidithiobacillus (57.2 ∼ 87.9 %), while Leptospirillum (48.6 ∼ 73.7 %) was predominant in LS. Environmental parameters (especially pH) were the major factors to influence the composition and structure of microbial community by analysis of Mantel tests. Results of functional test showed that microbial communities in LH utilized sodium thiosulfate more quickly and utilized ferrous sulfate more slowly than those in LS, which further indicated that the most sulfur-oxidizing processes of bioleaching took place in LH and the most iron-oxidizing processes were in LS. Further study found that microbial communities in LH had stronger pyrite leaching ability, and iron extraction efficiency was significantly positively correlated with Acidithiobacillus (dominated in LH), which suggested that higher abundance ratio of sulfur-oxidizing microbes might in favor of minerals decomposition. Finally, a conceptual model was designed through the above results to better exhibit the sulfur and iron metabolism in bioleaching systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, J.; Talbott, J.
1984-01-01
Task 1. Methods development for the speciation of the polysulfides. Work on this task has been completed in December 1983 and reported accordingly in DOE/PC/40783-T13. Task 2. Methods development for the speciation of dithionite and polythionates. Work on Task 2 has been completed in June 1984 and has been reported accordingly in DOE/PC/40783-T15. Task 3. Total accounting of the sulfur balance in representative samples of synfuel process streams. A systematic and critical comparison of results, obtained in the analysis of sulfur moieties in representative samples of coal conversion process streams, revealed the following general trends. (a) In specimens of highmore » pH (9-10) and low redox potential (-0.3 to -0.4 volt versus NHE) sulfidic and polysulfidic sulfur moieties predominate. (b) In process streams of lower pH and more positive redox potential, higher oxidation states of sulfur (notably sulfate) account for most of the total sulfur present. (c) Oxidative wastewater treatment procedures by the PETC stripping process convert lower oxidation states of sulfur into thiosulfate and sulfate. In this context, remarkable similarities were observed between liquefaction and gasification process streams. However, the thiocyanate present in samples from the Grand Forks gasifier were impervious to the PETC stripping process. (d) Total sulfur contaminant levels in coal conversion process stream wastewater samples are primarily determined by the abundance of sulfur in the coal used as starting material than by the nature of the conversion process (liquefaction or gasification). 13 references.« less
Simultaneous reduction of nitrate and selenate by cell suspensions of selenium-respiring bacteria
Oremland, R.S.; Blum, J.S.; Bindi, A.B.; Dowdle, P.R.; Herbel, M.; Stolz, J.F.
1999-01-01
Washed-cell suspensions of Sulfurospirillum barnesii reduced selenate [Se(VI)] when cells were cultured with nitrate, thiosulfate, arsenate, or fumarate as the electron acceptor. When the concentration of the electron donor was limiting, Se(VI) reduction in whole cells was approximately fourfold greater in Se(VI)-grown cells than was observed in nitrate-grown cells; correspondingly, nitrate reduction was ~11-fold higher in nitrate-grown cells than in Se(VI)-grown cells. However, a simultaneous reduction of nitrate and Se(VI) was observed in both cases. At nonlimiting electron donor concentrations, nitrate- grown cells suspended with equimolar nitrate and selenate achieved a complete reductive removal of nitrogen and selenium oxyanions, with the bulk of nitrate reduction preceding that of selenate reduction. Chloramphenicol did not inhibit these reductions. The Se(VI)-respiring haloalkaliphile Bacillus arsenicoselenatis gave similar results, but its Se(VI) reductase was not constitutive in nitrate-grown cells. No reduction of Se(VI) was noted for Bacillus selenitireducens, which respires selenite. The results of kinetic experiments with cell membrane preparations of S. barnesii suggest the presence of constitutive selenate and nitrate reduction, as well as an inducible, high- affinity nitrate reductase in nitrate-grown cells which also has a low affinity for selenate. The simultaneous reduction of micromolar Se(VI) in the presence of millimolar nitrate indicates that these organisms may have a functional use in bioremediating nitrate-rich, seleniferous agricultural wastewaters. Results with 75Se-selenate tracer show that these organisms can lower ambient Se(VI) concentrations to levels in compliance with new regulations proposed for release of selenium oxyanions into the environment.
Tully, Benjamin J; Wheat, C Geoff; Glazer, Brain T; Huber, Julie A
2018-01-01
The rock-hosted subseafloor crustal aquifer harbors a reservoir of microbial life that may influence global marine biogeochemical cycles. Here we utilized metagenomic libraries of crustal fluid samples from North Pond, located on the flanks of the Mid-Atlantic Ridge, a site with cold, oxic subseafloor fluid circulation within the upper basement to query microbial diversity. Twenty-one samples were collected during a 2-year period to examine potential microbial metabolism and community dynamics. We observed minor changes in the geochemical signatures over the 2 years, yet the microbial community present in the crustal fluids underwent large shifts in the dominant taxonomic groups. An analysis of 195 metagenome-assembled genomes (MAGs) were generated from the data set and revealed a connection between litho- and autotrophic processes, linking carbon fixation to the oxidation of sulfide, sulfur, thiosulfate, hydrogen, and ferrous iron in members of the Proteobacteria, specifically the Alpha-, Gamma- and Zetaproteobacteria, the Epsilonbacteraeota and the Planctomycetes. Despite oxic conditions, analysis of the MAGs indicated that members of the microbial community were poised to exploit hypoxic or anoxic conditions through the use of microaerobic cytochromes, such as cbb 3 - and bd-type cytochromes, and alternative electron acceptors, like nitrate and sulfate. Temporal and spatial trends from the MAGs revealed a high degree of functional redundancy that did not correlate with the shifting microbial community membership, suggesting functional stability in mediating subseafloor biogeochemical cycles. Collectively, the repeated sampling at multiple sites, together with the successful binning of hundreds of genomes, provides an unprecedented data set for investigation of microbial communities in the cold, oxic crustal aquifer.
Zhou, Xin-Xing; Yang, Lin-Tong; Qi, Yi-Ping; Guo, Peng; Chen, Li-Song
2015-01-01
The physiological and biochemical mechanisms on boron (B)-induced alleviation of aluminum (B)-toxicity in plants have been examined in some details, but our understanding of the molecular mechanisms underlying these processes is very limited. In this study, we first used the cDNA-AFLP to investigate the gene expression patterns in Citrus grandis roots responsive to B and Al interactions, and isolated 100 differentially expressed genes. Results showed that genes related to detoxification of reactive oxygen species (ROS) and aldehydes (i.e., glutathione S-transferase zeta class-like isoform X1, thioredoxin M-type 4, and 2-alkenal reductase (NADP+-dependent)-like), metabolism (i.e., carboxylesterases and lecithin-cholesterol acyltransferase-like 4-like, nicotianamine aminotransferase A-like isoform X3, thiosulfate sulfurtransferase 18-like isoform X1, and FNR, root isozyme 2), cell transport (i.e., non-specific lipid-transfer protein-like protein At2g13820-like and major facilitator superfamily protein), Ca signal and hormone (i.e., calcium-binding protein CML19-like and IAA-amino acid hydrolase ILR1-like 4-like), gene regulation (i.e., Gag-pol polyprotein) and cell wall modification (i.e., glycosyl hydrolase family 10 protein) might play a role in B-induced alleviation of Al-toxicity. Our results are useful not only for our understanding of molecular processes associated with B-induced alleviation of Al-toxicity, but also for obtaining key molecular genes to enhance Al-tolerance of plants in the future. PMID:25747450
Cao, Xianhua; Liu, Xiaoli; Dong, Xiuzhu
2003-07-01
Two bacterial strains were isolated from methanogenic butyrate-oxidizing mixed cultures. The cells were straight to slightly curved, gram-positive rods that were motile by means of multiple flagella and formed endospores. Growth was observed in the temperature range 15-45 degrees C (optimum 37 degrees C) and pH range 5.5-9.0 (optimum pH 7.5). The novel isolates were strictly anaerobic chemo-organotrophs capable of utilizing yeast extract, peptone, tryptone and a variety of sugars and organic acids, but not glucose. None of the accessory electron acceptors tested (elemental sulfur, thiosulfate or fumarate) improved growth, except crotonate, which was dismutated to butyrate and acetate. The G + C content of the DNA of one of the isolates, strain B11-2T, was 30.6 mol%. Phylogenetic analysis based on 16S rDNA sequence similarity between strain B11-2T and some other strictly anaerobic, spore-forming bacteria indicated that the novel isolates represented a species in cluster XI within the low-GC gram-positive bacteria, being most closely related to Alkaliphilus transvaalensis JCM 10712T. DNA-DNA relatedness between strain B11-2T and A. transvaalensis JCM 10712T was 21%. On the basis of physiological and molecular properties, and cellular fatty acid and cell wall compositions, the novel isolates are proposed to represent a novel species of the genus Alkaliphilus, for which the name Alkaliphilus crotonatoxidans is proposed (type strain B11-2T=AS 1.2897T=JCM 11672T).
Myeloperoxidase-Halide-Hydrogen Peroxide Antibacterial System
Klebanoff, Seymour J.
1968-01-01
An antibacterial effect of myeloperoxidase, a halide, such as iodide, bromide, or chloride ion, and H2O2 on Escherichia coli or Lactobacillus acidophilus is described. When L. acidophilus was employed, the addition of H2O2 was not required; however, the protective effect of catalase suggested that, in this instance, H2O2 was generated by the organisms. The antibacterial effect was largely prevented by preheating the myeloperoxidase at 80 C or greater for 10 min or by the addition of a number of inhibitors; it was most active at the most acid pH employed (5.0). Lactoperoxidase was considerably less effective than was myeloperoxidase when chloride was the halide employed. Myeloperoxidase, at high concentrations, exerted an antibacterial effect on L. acidophilus in the absence of added halide, which also was temperature- and catalase-sensitive. Peroxidase was extracted from intact guinea pig leukocytes by weak acid, and the extract with peroxidase activity had antibacterial properties which were similar, in many respects, to those of the purified preparation of myeloperoxidase. Under appropriate conditions, the antibacterial effect was increased by halides and by H2O2 and was decreased by catalase, as well as by cyanide, azide, Tapazole, and thiosulfate. This suggests that, under the conditions employed, the antibacterial properties of a weak acid extract of guinea pig leukocytes is due, in part, to its peroxidase content, particularly if a halide is present in the reaction mixture. A heat-stable antibacterial agent or agents also appear to be present in the extract. PMID:4970226
Sass, Andrea; Rütters, Heike; Cypionka, Heribert; Sass, Henrik
2002-06-01
A new sulfate-reducing bacterium, strain 86FS1, was isolated from a deep-sea sediment in the western Mediterranean Sea with sodium lactate as electron and carbon source. Cells were ovoid, gram-negative and motile. Strain 86FS1 contained b- and c-type cytochromes. The organism was able to utilize propionate, pyruvate, lactate, succinate, fumarate, malate, alanine, primary alcohols (C(2)-C(5)), and mono- and disaccharides (glucose, fructose, galactose, ribose, sucrose, cellobiose, lactose) as electron donors for the reduction of sulfate, sulfite or thiosulfate. The major products of carbon metabolism were acetate and CO(2), with exception of n-butanol and n-pentanol, which were oxidized only to the corresponding fatty acids. The growth yield with sulfate and glucose or lactate was 8.3 and 15 g dry mass, respectively, per mol sulfate. The temperature limits for growth were 10 degrees C and 30 degrees C with an optimum at 25 degrees C. Growth was observed at salinities ranging from 10 to 70 g NaCl l(-1). Sulfide concentrations above 4 mmol l(-1) inhibited growth. The fatty acid pattern of strain 86FS1 resembled that of Desulfobulbus propionicus with n-14:0, n-16:1omega7, n-16:1 omega5, n-17:1 omega6 and n-18:1 omega7 as dominant fatty acids. On the basis of its phylogenetic position and its phenotypic properties, strain 86FS1 affiliates with the genus Desulfobulbus and is described as a new species, Desulfobulbus mediterraneus sp. nov.
Isolation of Assimilatory- and Dissimilatory-Type Sulfite Reductases from Desulfovibrio vulgaris
Lee, Jin-Po; LeGall, Jean; Peck, Harry D.
1973-01-01
Bisulfite reductase (desulfoviridin) and an assimilatory sulfite reductase have been purified from extracts of Desulfovibrio vulgaris. The bisulfite reductase has absorption maxima at 628, 580, 408, 390, and 279 nm, and a molecular weight of 226,000 by sedimentation equilibrium, and was judged to be free of other proteins by disk electrophoresis and ultracentrifugation. On gels, purified bisulfite reductase exhibited two green bands which coincided with activity and protein. The enzyme appears to be a tetramer but was shown to have two different types of subunits having molecular weights of 42,000 and 50,000. The chromophore did not form an alkaline ferrohemochromogen, was not reduced with dithionite or borohydride, and did not form a spectrally visible complex with CO. The assimilatory sulfite reductase has absorption maxima at 590, 545, 405 and 275 nm and a molecular weight of 26,800, and appears to consist of a single polypeptide chain as it is not dissociated into subunits by sodium dodecyl sulfate. By disk electrophoresis, purified sulfite reductase exhibited a single greenish-brown band which coincided with activity and protein. The sole product of the reduction was sulfide, and the chromophore was reduced by borohydride in the presence of sulfite. Carbon monoxide reacted with the reduced chromophore but it did not form a typical pyridine ferrohemochromogen. Thiosulfate, trithionate, and tetrathionate were not reduced by either enzyme preparation. In the presence of 8 M urea, the spectrum of bisulfite reductase resembles that of the sulfite reductase, thus suggesting a chemical relationship between the two chromophores. Images PMID:4725615
Weissgerber, Thomas; Sylvester, Marc; Kröninger, Lena
2014-01-01
In the present study, we compared the proteome response of Allochromatium vinosum when growing photoautotrophically in the presence of sulfide, thiosulfate, and elemental sulfur with the proteome response when the organism was growing photoheterotrophically on malate. Applying tandem mass tag analysis as well as two-dimensional (2D) PAGE, we detected 1,955 of the 3,302 predicted proteins by identification of at least two peptides (59.2%) and quantified 1,848 of the identified proteins. Altered relative protein amounts (≥1.5-fold) were observed for 385 proteins, corresponding to 20.8% of the quantified A. vinosum proteome. A significant number of the proteins exhibiting strongly enhanced relative protein levels in the presence of reduced sulfur compounds are well documented essential players during oxidative sulfur metabolism, e.g., the dissimilatory sulfite reductase DsrAB. Changes in protein levels generally matched those observed for the respective relative mRNA levels in a previous study and allowed identification of new genes/proteins participating in oxidative sulfur metabolism. One gene cluster (hyd; Alvin_2036-Alvin_2040) and one hypothetical protein (Alvin_2107) exhibiting strong responses on both the transcriptome and proteome levels were chosen for gene inactivation and phenotypic analyses of the respective mutant strains, which verified the importance of the so-called Isp hydrogenase supercomplex for efficient oxidation of sulfide and a crucial role of Alvin_2107 for the oxidation of sulfur stored in sulfur globules to sulfite. In addition, we analyzed the sulfur globule proteome and identified a new sulfur globule protein (SgpD; Alvin_2515). PMID:24487535
Oremland, R.S.; Blum, J.S.; Culbertson, C.W.; Visscher, P.T.; Miller, L.G.; Dowdle, P.; Strohmaier, F.E.
1994-01-01
A gram-negative, strictly anaerobic, motile vibrio was isolated from a selenate-respiring enrichment culture. The isolate, designated strain SES-3, grew by coupling the oxidation of lactate to acetate plus CO2 with the concomitant reduction of selenate to selenite or of nitrate to ammonium. No growth was observed on sulfate or selenite, but cell suspensions readily reduced selenite to elemental selenium (Se0). Hence, SES-3 can carry out a complete reduction of selenate to Se0. Washed cell suspensions of selenate- grown cells did not reduce nitrate, and nitrate-grown cells did not reduce selenate, indicating that these reductions are achieved by separate inducible enzyme systems. However, both nitrate-grown and selenate-grown cells have a constitutive ability to reduce selenite or nitrite. The oxidation of [14C]lactate to 14CO2 coupled to the reduction of selenate or nitrate by cell suspensions was inhibited by CCCP (carbonyl cyanide m- chlorophenylhydrazone), cyanide, and azide. High concentrations of selenite (5 mM) were readily reduced to Se0 by selenate-grown cells, but selenite appeared to block the synthesis of pyruvate dehydrogenase. Tracer experiments with [75Se]selenite indicated that cell suspensions could achieve a rapid and quantitative reduction of selenite to Se0. This reduction was totally inhibited by sulfite, partially inhibited by selenate or nitrite, but unaffected by sulfate or nitrate. Cell suspensions could reduce thiosulfate, but not sulfite, to sulfide. These results suggest that reduction of selenite to Se0 may proceed, in part, by some of the components of a dissimilatory system for sulfur oxyanions.
Wang, Zhiping; Liu, Lili; Guo, Feng; Zhang, Tong
2015-10-01
Biotreatment processes fed with coking wastewater often encounter insufficient removal of pollutants, such as ammonia, phenols, and polycyclic aromatic hydrocarbons (PAHs), especially for cyanides. However, only a limited number of bacterial species in pure cultures have been confirmed to metabolize cyanides, which hinders the improvement of these processes. In this study, a microbial community of activated sludge enriched in a coking wastewater treatment plant was analyzed using 454 pyrosequencing and Illumina sequencing to characterize the potential cyanide-degrading bacteria. According to the classification of these pyro-tags, targeting V3/V4 regions of 16S rRNA gene, half of them were assigned to the family Xanthomonadaceae, implying that Xanthomonadaceae bacteria are well-adapted to coking wastewater. A nearly complete draft genome of the dominant bacterium was reconstructed from metagenome of this community to explore cyanide metabolism based on analysis of the genome. The assembled 16S rRNA gene from this draft genome showed that this bacterium was a novel species of Thermomonas within Xanthomonadaceae, which was further verified by comparative genomics. The annotation using KEGG and Pfam identified genes related to cyanide metabolism, including genes responsible for the iron-harvesting system, cyanide-insensitive terminal oxidase, cyanide hydrolase/nitrilase, and thiosulfate:cyanide transferase. Phylogenetic analysis showed that these genes had homologs in previously identified genomes of bacteria within Xanthomonadaceae and even presented similar gene cassettes, thus implying an inherent cyanide-decomposing potential. The findings of this study expand our knowledge about the bacterial degradation of cyanide compounds and will be helpful in the remediation of cyanides contamination.
Yan, Fang; Liu, Johnson J; Ip, Virginia; Jamieson, Stephen M F; McKeage, Mark J
2015-12-01
Platinum-based anticancer drugs cause peripheral neurotoxicity by damaging sensory neurons within the dorsal root ganglia (DRG), but the mechanisms are incompletely understood. The roles of platinum DNA binding, transcription inhibition and altered cell size were investigated in primary cultures of rat DRG cells. Click chemistry quantitative fluorescence imaging of RNA-incorporated 5-ethynyluridine showed high, but wide ranging, global levels of transcription in individual neurons that correlated with their cell body size. Treatment with platinum drugs reduced neuronal transcription and cell body size to an extent that corresponded to the amount of preceding platinum DNA binding, but without any loss of neuronal cells. The effects of platinum drugs on neuronal transcription and cell body size were inhibited by blocking platinum DNA binding with sodium thiosulfate, and mimicked by treatment with a model transcriptional inhibitor, actinomycin D. In vivo oxaliplatin treatment depleted the total RNA content of DRG tissue concurrently with altering DRG neuronal size. These findings point to a mechanism of chemotherapy-induced peripheral neurotoxicity, whereby platinum DNA damage induces global transcriptional arrest leading in turn to neuronal atrophy. DRG neurons may be particularly vulnerable to this mechanism of toxicity because of their requirements for high basal levels of global transcriptional activity. Findings point to a new stepwise mechanism of chemotherapy-induced peripheral neurotoxicity, whereby platinum DNA damage induces global transcriptional arrest leading in turn to neuronal atrophy. Dorsal root ganglion neurons may be particularly vulnerable to this neurotoxicity because of their high global transcriptional outputs, demonstrated in this study by click chemistry quantitative fluorescence imaging. © 2015 International Society for Neurochemistry.
Petrikovics, Ilona; Budai, Marianna; Kovacs, Kristof; Thompson, David E
2015-06-26
This paper reviews milestones in antidotal therapies for cyanide (CN) spanning early remedies, current antidotal systems and research towards next generation therapies. CN has been a part of plant defense mechanisms for millions of years. It became industrially important in the nineteenth century with the advent of CN assisted gold mining and the use of CN as a pest control agent. The biochemical basis of CN poisoning was actively studied and key mechanisms were understood as early as 1929. These fundamental studies led to a variety of antidotes, including indirect CN binders that generate methemoglobin, direct CN binders such as hydroxocobalamin, and sulfur donors that convert CN to the less toxic thiocyanate. Research on blood gases at the end of the twentieth century shed new light on the role of nitric oxide (NO) in the body. The discovery of NO's ability to compete with CN for enzymatic binding sites provided a previously missed explanation for the rapid efficacy of NO generating antidotes such as the nitrites. Presently used CN therapies include: methemoglobin/NO generators (e.g., sodium nitrite, amyl nitrite, and dimethyl aminophenol), sulfur donors (e.g., sodium thiosulfate and glutathione), and direct binding agents [(e.g., hydroxocobalamin and dicobalt salt of ethylenediaminetetraacetic acid (dicobalt edetate)]. A strong effort is being made to explore novel antidotal systems and to formulate them for rapid administration at the point of intoxication in mass casualty scenarios. New antidotes, formulations, and delivery systems are enhancing bioavailability and efficacy and hold promise for a new generation of improved CN countermeasures.
Miller, Elliot N.; Jarboe, Laura R.; Turner, Peter C.; Pharkya, Priti; Yomano, Lorraine P.; York, Sean W.; Nunn, David; Shanmugam, K. T.; Ingram, Lonnie O.
2009-01-01
A wide variety of commercial products can be potentially made from monomeric sugars produced by the dilute acid hydrolysis of lignocellulosic biomass. However, this process is accompanied by side products such as furfural that hinder microbial growth and fermentation. To investigate the mechanism of furfural inhibition, mRNA microarrays of an ethanologenic strain of Escherichia coli (LY180) were compared immediately prior to and 15 min after a moderate furfural challenge. Expression of genes and regulators associated with the biosynthesis of cysteine and methionine was increased by furfural, consistent with a limitation of these critical metabolites. This was in contrast to a general stringent response and decreased expression of many other biosynthetic genes. Of the 20 amino acids individually tested as supplements (100 μM each), cysteine and methionine were the most effective in increasing furfural tolerance with serine (precursor of cysteine), histidine, and arginine of lesser benefit. Supplementation with other reduced sulfur sources such as d-cysteine and thiosulfate also increased furfural tolerance. In contrast, supplementation with taurine, a sulfur source that requires 3 molecules of NADPH for sulfur assimilation, was of no benefit. Furfural tolerance was also increased by inserting a plasmid encoding pntAB, a cytoplasmic NADH/NADPH transhydrogenase. Based on these results, a model is proposed for the inhibition of growth in which the reduction of furfural by YqhD, an enzyme with a low Km for NADPH, depletes NADPH sufficiently to limit the assimilation of sulfur into amino acids (cysteine and methionine) by CysIJ (sulfite reductase). PMID:19684179
Feng, Yixiao; Cheng, Lei; Zhang, Xiaoxia; Li, Xia; Deng, Yu; Zhang, Hui
2010-04-01
A novel thermophilic, strictly anaerobic, heterotrophic bacterium, strain 2SM-2(T), was isolated from the Shengli oilfield, China. This organism was identified as a member of the order Thermotogales on the basis of its 16S rRNA gene sequence and the presence of an external membranous toga-like structure. Cells stained Gram-negative, were non-motile, appeared as irregular cocci 0.7-0.9 microm in diameter, and occurred in clusters of two to six cells, with cells located within a ballooning toga-like membrane. Its optimum temperature, pH and NaCl concentration for growth were 65 degrees C, 7.0 and 15 g l(-1), respectively. Under the optimum growth conditions, the doubling time was approximately 105 min. Strain 2SM-2(T) fermented a variety of simple and complex substrates such as glucose, acetate, methanol, starch and peptone while reducing elemental sulfur, sulfate and thiosulfate. The end products identified during growth on glucose were acetate, lactate, L-alanine, H2 and CO2. The DNA G+C content of this organism was 36.4 mol%. The results of 16S rRNA gene-based sequence comparisons revealed that the strain represented a new lineage within the family Thermotogaceae of the order Thermotogales. Based on the phenotypic and phylogenetic characteristics, it is proposed that this organism represents a novel species in a new genus within the family Thermotogaceae, for which the name Thermococcoides shengliensis gen. nov., sp. nov. is proposed. The type strain is 2SM-2(T) (=ACCC 00496(T)=DSM 22460(T)).
Voordeckers, James W; Starovoytov, Valentin; Vetriani, Costantino
2005-03-01
A thermophilic, anaerobic, chemolithoautotrophic bacterium, designated strain TB-2(T), was isolated from the walls of an active deep-sea hydrothermal vent chimney on the Mid-Atlantic Ridge at 36 degrees 14' N 33 degrees 54' W. The cells were Gram-negative rods approximately 1.5 microm in length and 0.75 microm in width. Strain TB-2(T) grew between 45 and 70 degrees C (optimum 55 degrees C), 10 and 40 g NaCl l(-1) (optimum 30 g l(-1)) and pH 4.5 and 7.5 (optimum pH 5.5). Generation time under optimal conditions was 50 min. Growth occurred under chemolithoautotrophic conditions with H(2) as the energy source and CO(2) as the carbon source. Nitrate or sulfur was used as the electron acceptor, with resulting production of ammonium and hydrogen sulfide, respectively. Oxygen, thiosulfate, sulfite, selenate and arsenate were not used as electron acceptors. Growth was inhibited by the presence of acetate, lactate, formate and peptone. The G+C content of the genomic DNA was 25.6 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Caminibacter hydrogeniphilus and Caminibacter profundus (95.9 and 96.3 % similarity, respectively). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the genus Caminibacter, Caminibacter mediatlanticus sp. nov. The type strain is TB-2(T) (=DSM 16658(T)=JCM 12641(T)).
Hassanzadeh, Yashgin; Bahador, Nima; Baseri-Salehi, Majid
2015-01-01
Background and Objective: Photobacterium damselae subsp. damselae is a marine pathogenic bacterium which causes disease in marine animals and human. This bacterium mostly found in coastal shallow seawater. So, the aim of this study was isolation and characterization of Photobacterium damselae subsp. damselae from edible fish of Persian Gulf, Bandar Abbas. Material and Methods: Totally 100 fish from different species were evaluated and out of that 5 different types of fish with external symptoms including: Caranx sexfasciatus, Lethrinus olivaceus, Scomberoid tol, Auxis thazard and Liza macrolepis, were collected from Bandar Abbas local fish market in September 2013. The samples were cultured on Marin Agar 2216 and Thiosulfate Citrate Bile salts Sucrose Agar media and incubated at 25°C for 48 hrs. Then the isolates were characterized using biochemical (API 20 NE system) and molecular techniques. In addition, antibiotic susceptibility, presence of poly β hydroxy butyrate and hemolysis activity of isolates were evaluated. Results and Conclusion: Entirely, 30 Gram negative bacterial colonies were isolated from the selected fish. Among the isolates, two suspected colonies were identified as Photobacterium damselae from Caranx sexfasciatus with API 20NE biochemical test. This results confirmed by 16s rRNA sequencing method. Both isolates showed α hemolytic with existence of β hydroxyl butyrate. Furthermore, the isolates were susceptible to ciprofloxacin, chloramphenicol and nalidixic acid. Conclusion: Overall, the study indicated first time isolation of this bacterium from one type of fish caught from Persian Gulf, which warns us to pay more attention to fishery in this geographical area. PMID:26668707
Periplasmic Proteins of the Extremophile Acidithiobacillus ferrooxidans
Chi, An; Valenzuela, Lissette; Beard, Simon; Mackey, Aaron J.; Shabanowitz, Jeffrey; Hunt, Donald F.; Jerez, Carlos A.
2015-01-01
Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile capable of obtaining energy by oxidizing ferrous iron or sulfur compounds such as metal sulfides. Some of the proteins involved in these oxidations have been described as forming part of the periplasm of this extremophile. The detailed study of the periplasmic components constitutes an important area to understand the physiology and environmental interactions of microorganisms. Proteomics analysis of the periplasmic fraction of A. ferrooxidans ATCC 23270 was performed by using high resolution linear ion trap-FT MS. We identified a total of 131 proteins in the periplasm of the microorganism grown in thiosulfate. When possible, functional categories were assigned to the proteins: 13.8% were transport and binding proteins, 14.6% were several kinds of cell envelope proteins, 10.8% were involved in energy metabolism, 10% were related to protein fate and folding, 10% were proteins with unknown functions, and 26.1% were proteins without homologues in databases. These last proteins are most likely characteristic of A. ferrooxidans and may have important roles yet to be assigned. The majority of the periplasmic proteins from A. ferrooxidans were very basic compared with those of neutrophilic microorganisms such as Escherichia coli, suggesting a special adaptation of the chemolithoautotrophic bacterium to its very acidic environment. The high throughput proteomics approach used here not only helps to understand the physiology of this extreme acidophile but also offers an important contribution to the functional annotation for the available genomes of biomining microorganisms such as A. ferrooxidans for which no efficient genetic systems are available to disrupt genes by procedures such as homologous recombination. PMID:17911085
Enhanced methodology for porting ion chromatography retention data.
Park, Soo Hyun; Shellie, Robert A; Dicinoski, Greg W; Schuster, Georg; Talebi, Mohammad; Haddad, Paul R; Szucs, Roman; Dolan, John W; Pohl, Christopher A
2016-03-04
Porting is a powerful methodology to recalibrate an existing database of ion chromatography (IC) retention times by reflecting the changes of column behavior resulting from either batch-to-batch variability in the production of the column or the manufacture of new versions of a column. This approach has been employed to update extensive databases of retention data of inorganic and organic anions forming part of the "Virtual Column" software marketed by Thermo Fisher Scientific, which is the only available commercial optimization tool for IC separation. The current porting process is accomplished by performing three isocratic separations with two representative analyte ions in order to derive a porting equation which expresses the relationship between old and new data. Although the accuracy of retention prediction is generally enhanced on new columns, errors were observed on some columns. In this work, the porting methodology was modified in order to address this issue, where the porting equation is now derived by using six representative analyte ions (chloride, bromide, iodide, perchlorate, sulfate, and thiosulfate). Additionally, the updated porting methodology has been applied on three Thermo Fisher Scientific columns (AS20, AS19, and AS11HC). The proposed approach showed that the new porting methodology can provide more accurate and robust retention prediction on a wide range of columns, where average errors in retention times for ten test anions under three eluent conditions were less than 1.5%. Moreover, the retention prediction using this new approach provided an acceptable level of accuracy on a used column exhibiting changes in ion-exchange capacity. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Griffitt, Kimberly J; Grimes, D Jay
2013-08-01
A new selective and differential medium, Vibrio vulnificus X-Gal (VVX), was developed for direct enumeration of V. vulnificus (Vv) from oyster samples. This agar utilizes cellobiose and lactose as carbon sources, and the antibiotics colistin and polymyxin B as selective agents. Hydrolysis of 5-bromo-4-chloro-3-indolyl- beta-d-galactopyranoside (x-gal), used in the agar as a lactose analog, produces an insoluble blue dye that makes lactose positive colonies easily distinguishable from any non-lactose fermenting bacteria. Various bacterial species were spot plated onto thiosulfate-citrate-bile salts-sucrose agar (TCBS), and CHROMagar Vibrio, two vibrio-specific selective agars, non-selective agar, and VVX to compare selectivity of VVX to other widely used media. A V. vulnificus pure culture was serially diluted on VVX and non-selective agar to determine the VVX percent recovery. Water and oyster samples were spread plated on VVX agar and allowed to incubate for 16-18 h at 33 °C. Blue and white colonies from VVX agar were picked and screened by end point PCR for the Vv hemolysin vvhA. VVX agar showed a significant improvement over TCBS and CHROMagar at preventing non-target growth. There was an 87.5% recovery compared to non-selective plating and a 98% positivity rate of blue colonies picked from oyster tissue plating. The findings suggest that this new agar is a fast, distinctive, and accurate method for enumeration of V. vulnificus from the environment. Copyright © 2013 Elsevier B.V. All rights reserved.
Gevertz, Diane; Telang, Anita J.; Voordouw, Gerrit; Jenneman, Gary E.
2000-01-01
Bacterial strains CVO and FWKO B were isolated from produced brine at the Coleville oil field in Saskatchewan, Canada. Both strains are obligate chemolithotrophs, with hydrogen, formate, and sulfide serving as the only known energy sources for FWKO B, whereas sulfide and elemental sulfur are the only known electron donors for CVO. Neither strain uses thiosulfate as an energy source. Both strains are microaerophiles (1% O2). In addition, CVO grows by denitrification of nitrate or nitrite whereas FWKO B reduces nitrate only to nitrite. Elemental sulfur is the sole product of sulfide oxidation by FWKO B, while CVO produces either elemental sulfur or sulfate, depending on the initial concentration of sulfide. Both strains are capable of growth under strictly autotrophic conditions, but CVO uses acetate as well as CO2 as its sole carbon source. Neither strain reduces sulfate; however, FWKO B reduces sulfur and displays chemolithoautotrophic growth in the presence of elemental sulfur, hydrogen, and CO2. Both strains grow at temperatures between 5 and 40°C. CVO is capable of growth at NaCl concentrations as high as 7%. The present 16s rRNA analysis suggests that both strains are members of the epsilon subdivision of the division Proteobacteria, with CVO most closely related to Thiomicrospira denitrifcans and FWKO B most closely related to members of the genus Arcobacter. The isolation of these two novel chemolithotrophic sulfur bacteria from oil field brine suggests the presence of a subterranean sulfur cycle driven entirely by hydrogen, carbon dioxide, and nitrate. PMID:10831429
Macur, R E; Jay, Z J; Taylor, W P; Kozubal, M A; Kocar, B D; Inskeep, W P
2013-01-01
Geothermal and hydrothermal waters often contain high concentrations of dissolved sulfide, which reacts with oxygen (abiotically or biotically) to yield elemental sulfur and other sulfur species that may support microbial metabolism. The primary goal of this study was to elucidate predominant biogeochemical processes important in sulfur biogeochemistry by identifying predominant sulfur species and describing microbial community structure within high-temperature, hypoxic, sulfur sediments ranging in pH from 4.2 to 6.1. Detailed analysis of aqueous species and solid phases present in hypoxic sulfur sediments revealed unique habitats containing high concentrations of dissolved sulfide, thiosulfate, and arsenite, as well as rhombohedral and spherical elemental sulfur and/or sulfide phases such as orpiment, stibnite, and pyrite, as well as alunite and quartz. Results from 16S rRNA gene sequencing show that these sediments are dominated by Crenarchaeota of the orders Desulfurococcales and Thermoproteales. Numerous cultivated representatives of these lineages, as well as the Thermoproteales strain (WP30) isolated in this study, require complex sources of carbon and respire elemental sulfur. We describe a new archaeal isolate (strain WP30) belonging to the order Thermoproteales (phylum Crenarchaeota, 98% identity to Pyrobaculum/Thermoproteus spp. 16S rRNA genes), which was obtained from sulfur sediments using in situ geochemical composition to design cultivation medium. This isolate produces sulfide during growth, which further promotes the formation of sulfide phases including orpiment, stibnite, or pyrite, depending on solution conditions. Geochemical, molecular, and physiological data were integrated to suggest primary factors controlling microbial community structure and function in high-temperature sulfur sediments. © 2012 Blackwell Publishing Ltd.
Photocatalytic degradation of perfluorooctanoic acid with beta-Ga2O3 in anoxic aqueous solution.
Zhao, Baoxiu; Lv, Mou; Zhou, Li
2012-01-01
Perfluorooctanoic acid (PFOA) is a new-found hazardous persistent organic pollutant, and it is resistant to decomposition by hydroxyl radical (HO*) due to its stable chemical structure and the high electronegativity of fluorine. Photocatalytic reduction of PFOA with beta-Ga2O3 in anoxic aqueous solution was investigated for the first time, and the results showed that the photoinduced electron (e(cb-)) coming from the beta-Ga2O3 conduction band was the major degradation substance for PFOA, and shorter-chain perfluorinated carboxylic acids (PFCAs, CnF2n+i1COOH, 1 < or = n < or = 6) were the dominant products. Furthermore, the concentration of F- was measured by the IC technique and defluorination efficiency was calculated. After 3 hr, the photocatalytic degradation efficiency was 98.8% and defluorination efficiency was 31.6% in the presence of thiosulfate and bubbling N2. The degradation reaction followed first-order kinetics (k = 0.0239 min(-1), t1/2 = 0.48 hr). PFCAs (CnF2n+1COOH, 1 < or = n < or = 7) were detected and measured by LC-MS and LC-MS/MS methods. It was deduced that the probable photocatalytic degradation mechanism involves e(cb-) attacking the carboxyl of CnF2n+1COOH, resulting in decarboxylation and the generation of CnF2n+1*. The produced CnF2n+1* reacted with H2O, forming CnF2n+1OH, then CnF2n+1OH underwent HF loss and hydrolysis to form CnF2n+1COOH.
Spain, Anne M; Elshahed, Mostafa S; Najar, Fares Z; Krumholz, Lee R
2015-01-01
Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring's source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons.
Barrera-Escorcia, Guadalupe; Wong-Chang, Irma; Fernández-Rendón, Carlos Leopoldo; Botello, Alfonso Vázquez; Gómez-Gil, Bruno; Lizárraga-Partida, Marcial Leonardo
2016-11-01
Oysters can accumulate potentially pathogenic water bacteria. The objective of this study was to compare two procedures to quantify Vibrio species present in oysters to determine the most sensitive method. We analyzed oyster samples from the Gulf of Mexico, commercialized in Mexico City. The samples were inoculated in tubes with alkaline peptone water (APW), based on three tubes and four dilutions (10 -1 to 10 -4 ). From these tubes, the first quantification of Vibrio species was performed (most probable number (MPN) from tubes) and bacteria were inoculated by streaking on thiosulfate-citrate-bile salts-sucrose (TCBS) petri dishes. Colonies were isolated for a second quantification (MPN from dishes). Polymerase chain reaction (PCR) was used to determine species with specific primers: ompW for Vibrio cholerae, tlh for Vibrio parahaemolyticus, and VvhA for Vibrio vulnificus. Simultaneously, the sanitary quality of oysters was determined. The quantification of V. parahaemolyticus was significantly higher in APW tubes than in TCBS dishes. Regarding V. vulnificus counts, the differences among both approaches were not significant. In contrast, the MPNs of V. cholerae obtained from dishes were higher than from tubes. The quantification of MPNs through PCR of V. parahaemolyticus and V. vulnificus obtained from APW was sensitive and recommendable for the detection of both species. In contrast, to quantify V. cholerae, it was necessary to isolate colonies on TCBS prior PCR. Culturing in APW at 42 °C could be an alternative to avoid colony isolation. The MPNs of V. cholerae from dishes was associated with the bad sanitary quality of the samples.
NASA Technical Reports Server (NTRS)
Pikuta, Elena V.; Hoover, Richard B.; Whitman, William B.; Marsic, Damien; Garriott, Owen; Six, N. Frank (Technical Monitor)
2002-01-01
A new hyperthermophilic, anaerobic, sulfur-reducing, organo-heterotrophic archaeon, strain OGL-20P, was isolated from "black smoker" chimney material at the Rainbow hydrothermal vent site in the Atlantic Ocean (36.2 N; 33.9 W). The cells of strain OGL-20P have irregular coccoid shape and are motile with a single flagellum. Growth occurs within pH range of 5.5-8.2 (optimal at pH 7.0-7.2), salinity range of 1-5% NaCl (optimal concentration 3% NaCl wt/vol), and temperature range of +55 C to +94 C (optimal growth at +83 C to +85 C). Strain OGL-20P is resistant to freezing (at -20 C). New isolate is strictly anaerobic with sulfur-type of respiration. A limited number of compounds are utilized as electron donors, including peptone, becto-tryptone, casamino-acids, and yeast extract but does not grow with separate amino acids. Sulfur and Iron can be used as electron acceptors; but not sulfate, sulfite, thiosulfate or nitrate. Strain OGL-20P is resistant to chloramphenicol, kanamycin, and gentamycin. Growth of str. OGL20P is inhibited by tetracyclin but not by Na2MoO4. The G+C content of DNA is 57.2 mol%. The 16S ribosomal RNA sequence analysis allows one to classify strain OGL-20P as a representative of a now species of Thermococcus genus. The name Thermococcus sulfurophilus op. nov., was suggested for the new isolate, type strain OGL-20P (sup T) (= ATCC BAA_394 (sup T) = DSM...(supT)).
NASA Technical Reports Server (NTRS)
Pikuta, Elena V.; Hoover, Richard B.; Marsic, Damien; Bej, Asim K.; Garriott, Owen
2003-01-01
A novel hyperthermophilic organo-heterotrophic archaeon, strain OGL-20P(sup T), was isolated from 'black smoker' chimney material from the Rainbow hydrothermal vent site on the Mid-Atlantic Ridge (36.2 N; 33.9 W). The cells of strain OGL-20P(sup T) have an irregular coccoid shape and are motile with a single flagellum. Growth was observed to occur within the pH range 5.0-8.5 (optimum pH 7.0), NaCl concentration range 1-5 % (w/v) (optimum 3 %), and temperature range 55-94 C (optimum 83-85 C). Novel isolate is strictly anaerobic and obligately dependent from elemental sulfur as electron acceptor, but it cannot reduce sulfate, sulfite, thiosulfate, iron (III) or nitrate. Proteolysis products that can be utilized as substrates during sulfur-reduction are: peptone, bactotryptone, casamino-acids, and yeast extract. Strain OGL-20P(sup T) is resistant to ampicillin, chloramphenicol, kanamycin, and gentamycin, but sensitive to tetracycline and rifampicin. The G+C content of DNA is 57.1 mol% . Comparative 16S rRNA gene sequence analysis revealed that strain OGL-20P(sup T) is most closely related to Thermococcus celer and 'T. barossii', but no significant homology by DNA-DNA hybridization was observed between those species and the new isolate. On the basis of physiological and molecular properties of the new isolate, the name Thermococcus thioreducens sp. nov., is proposed. The type strain is OGL-20P(sup T) (= ATCC BAA-394(sup T) = DSM 1498(sup T)).
Palaeococcus pacificus sp. nov., an archaeon from deep-sea hydrothermal sediment.
Zeng, Xiang; Zhang, Xiaobo; Jiang, Lijing; Alain, Karine; Jebbar, Mohamed; Shao, Zongze
2013-06-01
A hyperthermophilic, anaerobic, piezophilic archaeon (strain DY20341(T)) was isolated from a sediment sample collected from an East Pacific Ocean hydrothermal field (1° 37' S 102° 45' W) at a depth of 2737 m. The cells were irregular cocci, 0.8-1.5 µm in diameter. Growth was observed between 50 and 90 °C (optimum 80 °C), pH 5.0 and 8.0 (optimum pH 7.0), 1% and 7% (w/v) sea salts (Sigma, optimum 3%), 1% and 4% (w/v) NaCl (optimum 3%) and 0.1 and 80 MPa (optimum 30 MPa). The minimum doubling time was 66 min at 30 MPa and 80 °C. The isolate was an obligate chemoorganoheterotroph, capable of utilizing complex organic compounds and organic acids including yeast extract, peptone, tryptone, casein, starch, Casamino acids, citrate, lactate, acetate, fumarate, propanoate and pyruvate for growth. It was strictly anaerobic and facultatively dependent on elemental sulfur or sulfate as electron acceptors, but did not reduce sulfite, thiosulfate, Fe(III) or nitrate. The presence of elemental sulfur enhanced growth. The G+C content of the genomic DNA was 43.6 ± 1 mol%. 16S rRNA gene sequence analysis revealed that the closest relative of the isolated organism was Palaeococcus ferrophilus DMJ(T) (95.7% 16S rRNA gene similarity). On the basis of its physiological properties and phylogenetic analyses, the isolate is considered to represent a novel species, for which the name Palaeococcus pacificus sp. nov. is proposed. The type strain is strain DY20341(T) (=JCM 17873(T)=DSM 24777(T)).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Şengör, S. Sevinç; Singh, Gursharan; Dohnalkova, Alice
This study investigates the impact of specific environmental conditions on the formation of colloidal U(IV) nanoparticles by the sulfate reducing bacteria (SRB, Desulfovibrio alaskensis G20). The reduction of soluble U(VI) to less soluble U(IV) was quantitatively investigated under growth and non-growth conditions in bicarbonate or 1,4-piperazinediethanesulfonic acid (PIPES) buffered environments. The results showed that under non-growth conditions, the majority of the reduced U nanoparticles aggregated and precipitated out of solution. High resolution transmission electron microscopy revealed that only a very small fraction of cells had reduced U precipitates in the periplasmic spaces in the presence of PIPES buffer, whereas inmore » the presence of bicarbonate buffer, reduced U was also observed in the cytoplasm with greater aggregation of biogenic U(IV) particles at higher initial U(VI) concentrations. The same experiments were repeated under growth conditions using two different electron donors (lactate and pyruvate) and three electron acceptors (sulfate, fumarate, and thiosulfate). In contrast to the results of the non-growth experiments, even after 0.2 m filtration, the majority of biogenic U(IV) remained in the aqueous phase resulting in potentially mobile biogenic U(IV) nanoparticles. Size fractionation results showed that U(IV) aggregates were between 18 and 200 nm in diameter, and thus could be very mobile. The findings of this study are helpful to assess the size and potential mobility of reduced U nanoparticles under different environmental conditions, and would provide insights on their potential impact affecting U(VI) bioremediation efforts at subsurface contaminated sites.« less
Goda, Hisataka; Yamaoka, Hitoshi; Nakayama-Imaohji, Haruyuki; Kawata, Hiroyuki; Horiuchi, Isanori; Fujita, Yatsuka; Nagao, Tamiko; Tada, Ayano; Terada, Atsushi; Kuwahara, Tomomi
2017-01-01
Sanitation of environmental surfaces with chlorine based-disinfectants is a principal measure to control outbreaks of norovirus or Clostridium difficile. The microbicidal activity of chlorine-based disinfectants depends on the free available chlorine (FAC), but their oxidative potential is rapidly eliminated by organic matter. In this study, the microbicidal activities of weakly acidified chlorous acid water (WACAW) and sodium hypochlorite solution (NaClO) against feline calcivirus (FCV) and C. difficile spores were compared in protein-rich conditions. WACAW inactivated FCV and C. difficile spores better than NaClO under all experimental conditions used in this study. WACAW above 100 ppm FAC decreased FCV >4 log10 within 30 sec in the presence of 0.5% each of bovine serum albumin (BSA), polypeptone or meat extract. Even in the presence of 5% BSA, WACAW at 600 ppm FAC reduced FCV >4 log10 within 30 sec. Polypeptone inhibited the virucidal activity of WACAW against FCV more so than BSA or meat extract. WACAW at 200 ppm FAC decreased C. difficile spores >3 log10 within 1 min in the presence of 0.5% polypeptone. The microbicidal activity of NaClO was extensively diminished in the presence of organic matter. WACAW recovered its FAC to the initial level after partial neutralization by sodium thiosulfate, while no restoration of the FAC was observed in NaClO. These results indicate that WACAW is relatively stable under organic matter-rich conditions and therefore may be useful for treating environmental surfaces contaminated by human excretions. PMID:28472060
Davis, James P; Struchtemeyer, Christopher G; Elshahed, Mostafa S
2012-11-01
We monitored the bacterial communities in the gas-water separator and water storage tank of two newly drilled natural gas wells in the Barnett Shale in north central Texas, using a 16S rRNA gene pyrosequencing approach over a period of 6 months. Overall, the communities were composed mainly of moderately halophilic and halotolerant members of the phyla Firmicutes and Proteobacteria (classes Βeta-, Gamma-, and Epsilonproteobacteria) in both wells at all sampling times and locations. Many of the observed lineages were encountered in prior investigations of microbial communities from various fossil fluid formations and production facilities. In all of the samples, multiple H(2)S-producing lineages were encountered; belonging to the sulfate- and sulfur-reducing class Deltaproteobacteria, order Clostridiales, and phylum Synergistetes, as well as the thiosulfate-reducing order Halanaerobiales. The bacterial communities from the separator and tank samples bore little resemblance to the bacterial communities in the drilling mud and hydraulic-fracture waters that were used to drill these wells, suggesting the in situ development of the unique bacterial communities in such well components was in response to the prevalent geochemical conditions present. Conversely, comparison of the bacterial communities on temporal and spatial scales suggested the establishment of a core microbial community in each sampled location. The results provide the first overview of bacterial dynamics and colonization patterns in newly drilled, thermogenic natural gas wells and highlights patterns of spatial and temporal variability observed in bacterial communities in natural gas production facilities.
A Rh xS y/C Catalyst for the Hydrogen Oxidation and Hydrogen Evolution Reactions in HBr
Masud, Jahangir; Nguyena, Trung V.; Singh, Nirala; ...
2015-02-01
Rhodium sulfide (Rh 2S 3) on carbon support was synthesized by refluxing rhodium chloride with ammonium thiosulfate. Thermal treatment of Rh 2S 3 at high temperatures (600°C to 850°C) in presence of argon resulted in the transformation of Rh 2S 3 into Rh 3S 4, Rh 17S 15 and Rh which were characterized by TGA/DTA, XRD, EDX, and deconvolved XPS analyses. The catalyst particle size distribution ranged from 3 to 12 nm. Cyclic voltammetry and rotating disk electrode measurements were used to evaluate the catalytic activity for hydrogen oxidation and evolution reactions in H 2SO 4 and HBr solutions. Themore » thermally treated catalysts show high activity for the hydrogen reactions. The exchange current densities (i o) of the synthesized Rh xS y catalysts in H 2-saturated 1M H 2SO 4 and 1M HBr for HER and HOR were 0.9 mA/cm 2 to 1.0 mA/cm 2 and 0.8 to 0.9 mA/cm 2, respectively. The lower i o values obtained in 1M HBr solution compared to in H 2SO 4 might be due to the adsorption of Br - on the active surface. Stable electrochemical active surface area (ECSA) of Rh xS y catalyst was obtained for CV scan limits between 0 V and 0.65 V vs. RHE. Scans with upper voltage limit beyond 0.65 V led to decreased and unreproducible ECSA measurements.« less
NASA Astrophysics Data System (ADS)
Bailey, J.; Flood, B.; Ricci, E.
2014-12-01
The colorless sulfur bacteria are non-photosynthetic chemolithotrophs that live at interfaces between nitrate, or oxygen, and hydrogen sulfide. In sulfidic settings such as cold seeps and oxygen minimum zones, these bacteria are thought to constitute a critical node in the geochemical cycling of carbon, sulfur, nitrogen, and phosphorous. Many of these bacteria remain uncultivated and their metabolisms and physiologies are incompletely understood. Thiomargarita namibiensis is the largest of these sulfur bacteria, with individual cells reaching millimetric diameters. Despite the current inability to maintain a Thiomargarita culture in the lab, their large size allows for individual cells to be followed in time course experiments. Here we report on the novel use of a tetrazolium-based dye that measures the flux of NADH production from catabolic pathways via a colorimetric response. Staining with this dye allows for metabolism to be detected, even in the absence of observable cell division. When coupled to microscopy, this approach also allows for metabolism in Thiomargaritato be differentiated from that of epibionts or contaminants in xenic samples. The results of our tetrazolium dye-based assay suggests that Thiomargarita is the most metabolically versatile under anoxic conditions where it appears capable of using acetate, succinate, formate, thiosulfate, citrate, thiotaurine, hydrogen sulfide, and perhaps hydrogen as electron donors. Under hypoxic conditions, staining results suggest the utilization of acetate, citrate, and hydrogen sulfide. Cells incubated under oxic conditions showed the weakest tetrazolium staining response, and then only to hydrogen sulfide and questionably succinate. These initial results using a redox sensitive dye suggest that Thiomargarita is most metabolically versatile under anaerobic and hypoxic conditions. The results of this assay can be further evaluated using molecular approaches such as transcriptomics, as well as provide cultivation strategies.
Lipus, Daniel; Vikram, Amit; Ross, Daniel; ...
2017-02-03
Here, microbial activity in the produced water from hydraulically fractured oil and gas wells may potentially interfere with hydrocarbon production and cause damage to the well and surface infrastructure via corrosion, sulfide release, and fouling. In this study, we surveyed the microbial abundance and community structure of produced water sampled from 42 Marcellus Shale wells in southwestern Pennsylvania (well age ranged from 150 to 1,846 days) to better understand the microbial diversity of produced water. We sequenced the V4 region of the 16S rRNA gene to assess taxonomy and utilized quantitative PCR (qPCR) to evaluate the microbial abundance across allmore » 42 produced water samples. Bacteria of the order Halanaerobiales were found to be the most abundant organisms in the majority of the produced water samples, emphasizing their previously suggested role in hydraulic fracturing-related microbial activity. Statistical analyses identified correlations between well age and biocide formulation and the microbial community, in particular, the relative abundance of Halanaerobiales. We further investigated the role of members of the order Halanaerobiales in produced water by reconstructing and annotating a Halanaerobium draft genome (named MDAL1), using shotgun metagenomic sequencing and metagenomic binning. The recovered draft genome was found to be closely related to the species H. congolense, an oil field isolate, and Halanaerobium sp. strain T82-1, also recovered from hydraulic fracturing produced water. Reconstruction of metabolic pathways revealed Halanaerobium sp. strain MDAL1 to have the potential for acid production, thiosulfate reduction, and biofilm formation, suggesting it to have the ability to contribute to corrosion, souring, and biofouling events in the hydraulic fracturing infrastructure.« less
2008-01-01
Background Phylogenies of certain bioenergetic enzymes have proved to be useful tools for deducing evolutionary ancestry of bioenergetic pathways and their relationship to geochemical parameters of the environment. Our previous phylogenetic analysis of arsenite oxidase, the molybdopterin enzyme responsible for the biological oxidation of arsenite to arsenate, indicated its probable emergence prior to the Archaea/Bacteria split more than 3 billion years ago, in line with the geochemical fact that arsenite was present in biological habitats on the early Earth. Respiratory arsenate reductase (Arr), another molybdopterin enzyme involved in microbial arsenic metabolism, serves as terminal oxidase, and is thus situated at the opposite end of bioenergetic electron transfer chains as compared to arsenite oxidase. The evolutionary history of the Arr-enzyme has not been studied in detail so far. Results We performed a genomic search of genes related to arrA coding for the molybdopterin subunit. The multiple alignment of the retrieved sequences served to reconstruct a neighbor-joining phylogeny of Arr and closely related enzymes. Our analysis confirmed the previously proposed proximity of Arr to the cluster of polysulfide/thiosulfate reductases but also unravels a hitherto unrecognized clade even more closely related to Arr. The obtained phylogeny strongly suggests that Arr originated after the Bacteria/Archaea divergence in the domain Bacteria, and was subsequently laterally distributed within this domain. It further more indicates that, as a result of accumulation of arsenate in the environment, an enzyme related to polysulfide reductase and not to arsenite oxidase has evolved into Arr. Conclusion These findings are paleogeochemically rationalized by the fact that the accumulation of arsenate over arsenite required the increase in oxidation state of the environment brought about by oxygenic photosynthesis. PMID:18631373
Mori, Koji; Maruyama, Akihiko; Urabe, Tetsuro; Suzuki, Ken-Ichiro; Hanada, Satoshi
2008-04-01
A novel thermophilic, strictly anaerobic archaeon, designated strain Arc51T, was isolated from a rock sample collected from a deep-sea hydrothermal field in Suiyo Seamount, Izu-Bonin Arc, western Pacific Ocean. Cells of the isolate were irregular cocci with single flagella and exhibited blue-green fluorescence at 436 nm. The optimum temperature, pH and NaCl concentration for growth were 70 degrees C, pH 6.5 and 3 % (w/v), respectively. Strain Arc51T could grow on thiosulfate or sulfite as an electron acceptor in the presence of hydrogen. This strain required acetate as a carbon source for its growth, suggesting that the reductive acetyl CoA pathway for CO2 fixation was incomplete. In addition, coenzyme M (2-mercaptoethanesulfonic acid), which is a known methyl carrier in methanogenesis, was also a requirement for growth of the strain. Analysis of the 16S rRNA gene sequence revealed that the isolate was similar to members of the genus Archaeoglobus, with sequence similarities of 93.6-97.2 %; the closest relative was Archaeoglobus veneficus. Phylogenetic analyses of the dsrAB and apsA genes, encoding the alpha and beta subunits of dissimilatory sulfite reductase and the alpha subunit of adenosine-5'-phosphosulfate reductase, respectively, produced results similar to those inferred from comparisons based on the 16S rRNA gene sequence. On the basis of phenotypic and phylogenetic data, strain Arc51T represents a novel species of the genus Archaeoglobus, for which the name Archaeoglobus infectus sp. nov. is proposed. The type strain is Arc51T (=NBRC 100649T=DSM 18877T).
Mikhlin, Yuri; Vorobyev, Sergey; Romanchenko, Alexander; Karasev, Sergey; Karacharov, Anton; Zharkov, Sergey
2016-03-01
Although mining and mineral processing industry is a vast source of heavy metal pollutants, the formation and behavior of micrometer- and nanometer-sized particles and their aqueous colloids entered the environment from the technological media has received insufficient attention to date. Here, the yield and characteristics of ultrafine mineral entities produced by routine grinding of the Pb-Zn sulfide ore (Gorevskoe ore deposit, Russia) were studied using laser diffraction analysis (LDA), dynamic light scattering (DLS) and zeta potential measurement, microscopy, X-ray photoelectron spectroscopy, with most attention given to toxic lead species. It was revealed, in particular, that the fraction of particles less that 1 μm in the ground ore typical reaches 0.4 vol. %. The aquatic particles in supernatants were micrometer size aggregates with increased content of zinc, sulfur, calcium as compared with the bulk ore concentrations. The hydrodynamic diameter of the colloidal species decreased with time, with their zeta potentials remaining about -12 mV. The colloids produced from galena were composed of 20-50 nm PbS nanoparticles associated with lead sulfate and thiosulfate, while the surface oxidation products at precipitated galena were largely lead oxyhydroxides. The size and zeta potential of the lead-bearing colloids decreased with time down to about 100 nm and from -15 mV to -30 mV, respectively. And, conversely, lead sulfide nanoparticles were mobilized before the aggregates during redispersion of the precipitates in fresh portions of water. The potential environmental impact of the metal-bearing colloids, which is due to the large-scale production and relative stability, is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fardeau, Marie-Laure; Barsotti, Vanessa; Cayol, Jean-Luc; Guasco, Sophie; Michotey, Valérie; Joseph, Manon; Bonin, Patricia; Ollivier, Bernard
2010-05-01
A novel facultative microaerophilic nitrate-reducing bacterium designated CA62N(T) was isolated from a thermal spring in France. Cells were non-motile rods (2-3 x 0.2 mum) and showed low cytoplasmic density when observed under a phase-contrast microscope. Strain CA62N(T) grew at temperatures between 50 and 75 degrees C (optimum 65 degrees C) and at a pH between 6.3 and 7.9 (optimum 7.0). NaCl was not required for growth but was tolerated up to 10 gl(-1). Sulfate, thiosulfate, elemental sulfur, sulfite, and nitrite were not used as electron acceptors. Nitrate was reduced to nitrite. Strain CA62N(T) used lactate, pyruvate, glucose, mannose, fructose, and casamino acids and some amino acids as electron donors only in the presence of nitrate as electron acceptor. None of these substrates was fermented. The main end-products of glucose oxidation were acetate, CO(2), and traces of H(2). The G + C content of the genomic DNA was 70.3 mol% (HPLC techniques). Phylogenetic analysis of the small-subunit (SSU) ribosomal RNA (rRNA) gene sequence indicated that strain CA62N(T) was affiliated to the Symbiobacterium branch within the Firmicutes and had Symbiobacterium thermophilum and "S. toebii" as its closest phylogenetic relatives. On the basis of phylogenetical and physiological characteristics, strain CA62N(T) is proposed to be the type strain for the novel species in the novel genus, Caldinitratiruptor microaerophilus gen. nov., sp. nov. (DSM 22660, JCM 16183).
Azwai, S M; Alfallani, E A; Abolghait, S K; Garbaj, A M; Naas, H T; Moawad, A A; Gammoudi, F T; Rayes, H M; Barbieri, I; Eldaghayes, I M
2016-01-01
The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk). Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6 % of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 ×10(4) CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 ×10(4) CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products.
Fri, Justine; Ndip, Roland Ndip; Njom, Henry Akum; Clarke, Anna Maria
2017-01-01
Background: Seafood-borne Vibrio infections, often linked to contaminated seafood and water, are of increasing global public health concern. The aim of this study was to evaluate the prevalence of human pathogenic vibrios and their associated virulence genes isolated from fish and water samples from 2 commercial dusky kob farms and Kareiga estuary, South Africa. Methods: A total of 200 samples including dusky kob fish (n = 120) and seawater (n = 80) were subjected to Vibrio screening on thiosulfate-citrate-bile salts-sucrose agar (TCBS). Presumptive isolates were confirmed and delineated to V. cholerae, V. parahaemolyticus, V. vulnificus, and V. fluvialis by PCR. Various pathogenic gene markers were screened: V. parahaemolyticus (trh and tdh), V. vulnificus (vcgE and vcgC) and V. fluvialis (stn, vfh, hupO, vfpA). Restriction Fragment Length Polymorphism (RFLP) of the vvhA gene of V. vulnificus strains was performed to determine the associated biotypes. Results: Total Vibrio prevalence was 59.4% (606/1020) of which V. fluvialis was the most predominant 193 (31.85%), followed by Vibrio vulnificus 74 (12.21%) and V. parahaemolyticus 33 (5.45%). No V. cholerae strain was detected. One of the V. parahaemolyticus strains possessed the trh gene 7 (9.46%) while most (91.9%; 68/74) V. vulnificus isolates were of the E-type genotype. V. fluvialis virulence genes detected were stn (13.5%), hupO (10.4%) and vfpA (1.0%). 12.16% (9/74) of V. vulnificus strains exhibited a biotype 3 RFLP pattern. Conclusions: This is the first report of potentially pathogenic vibrios from healthy marine fish in the study area, and therefore a public health concern. PMID:28946684
Shen, Jiangchuan; Walsh, Brenna J C; Flores-Mireles, Ana Lidia; Peng, Hui; Zhang, Yifan; Zhang, Yixiang; Trinidad, Jonathan C; Hultgren, Scott J; Giedroc, David P
2018-05-17
Recent studies of hydrogen sulfide (H 2 S) signaling implicate low molecular weight (LMW) thiol persulfides and other reactive sulfur species (RSS) as signaling effectors. Here, we show that a CstR protein from the human pathogen Enterococcus faecalis ( E. faecalis), previously identified in Staphylococcus aureus ( S. aureus), is an RSS-sensing repressor that transcriptionally regulates a cst-like operon in response to both exogenous sulfide stress and Angeli's salt, a precursor of nitroxyl (HNO). E. faecalis CstR reacts with coenzyme A persulfide (CoASSH) to form interprotomer disulfide and trisulfide bridges between C32 and C61', which negatively regulate DNA binding to a consensus CstR DNA operator. A Δ cstR strain exhibits deficiency in catheter colonization in a catheter-associated urinary tract infection (CAUTI) mouse model, suggesting sulfide regulation and homeostasis is critical for pathogenicity. Cellular polysulfide metabolite profiling of sodium sulfide-stressed E. faecalis confirms an increase in both inorganic polysulfides and LMW thiols and persulfides sensed by CstR. The cst-like operon encodes two authentic thiosulfate sulfurtransferases and an enzyme we characterize here as an NADH and FAD-dependent coenzyme A (CoA) persulfide reductase (CoAPR) that harbors an N-terminal CoA disulfide reductase (CDR) domain and a C-terminal rhodanese homology domain (RHD). Both cysteines in the CDR (C42) and RHD (C508) domains are required for CoAPR activity and complementation of a sulfide-induced growth phenotype of a S. aureus strain lacking cstB, encoding a nonheme Fe II persulfide dioxygenase. We propose that S. aureus CstB and E. faecalis CoAPR employ orthogonal chemistries to lower CoASSH that accumulates under conditions of cellular sulfide toxicity and signaling.
[Chlorine coatings on skin surfaces. II. Parameters influencing the coating strength].
Gottardi, W; Karl, A
1991-05-01
Although active chlorine compounds have been used for more than 140 years (Semmelweis, 1848) as a skin disinfectant the phenomenon of the "chlorine covers" not earlier than 1988 has been described for the first time (Hyg. + Med. 13 (1988) 157). It deals with a chemical alteration of the uppermost skin layer which comes apparent in an oxydizing action against aqueous iodide. Its origin is chlorine covalently bound in the form of N-Cl functions to the protein matrix of the horny skin. Since the chlorine covers exhibit a persistant disinfecting activity which might be important for practice, the factors influencing their strength have been established. The most important are: the kind of the chlorine system, the concentration (oxydation capacity), pH, temperature and the volume of the used solution, the time of action, the application technique and the state of the skin. Variations of the latter can be observed at different skin areas of one and the same person as well as at the same areas of different persons, and result in differences of the cover strength up to 100%. The stability on dry skin is very good, showing a decomposition rate of approximately 1.2% per hour. However on skin surfaces moistened by sweat (e.g. hands covered by surgeons gloves) the chlorine cover is disingrated much more faster (decomposition rate: 40-50% per hour). Washing with soap as well as the action of alcohols cause virtually no decrease in the cover strength, while wetting by solutions of reducing agents (e.g. thiosulfate, cysteine, iodide) provokes a fast decomposition suitable for removing the chlorine covers.(ABSTRACT TRUNCATED AT 250 WORDS)
PCDD/Fs' suppression by sulfur-amine/ammonium compounds.
Fu, Jian-Ying; Li, Xiao-Dong; Chen, Tong; Lin, Xiao-Qing; Buekens, Alfons; Lu, Sheng-Yong; Yan, Jian-Hua; Cen, Ke-Fa
2015-03-01
Three distinct -S and -NH2 or NH4(+) containing compounds, including ammonium thiosulfate, aminosulfonic acid and thiourea, were studied as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) inhibitors. All these three -S and -N containing compounds tested show strong suppression of PCDD/Fs formation, especially for thiourea which has not been studied before. With a (S+N)/Cl molar ratio of only 0.47, thiourea could inhibit 97.3% of PCDD/Fs and even 99.8% of I-TEQ. At an unusually high de novo test temperature (650 °C), the PCDD/Fs' formation was still very low but also the inhibition capacity of thiourea was weak, with an efficiency of 59% for PCDD/Fs when with a (S+N)/Cl molar ratio of 1.40. The results also revealed that the inhibition capability of the combined -S/-NH2 or -S/NH4(+) suppressant was strongly influenced by both the nature of the functional group of nitrogen and the value of the molar ratio (S+N)/Cl. The amine functional group -NH2 tends to be more efficient than ammonium NH4(+) and within a certain range a higher (S+N)/Cl value leads to a higher inhibition efficiency. Moreover, the emission of gases was continuously monitored: the Gasmet results revealed that SO2, HCN and NH3 were the most important decomposition products of thiourea. Thiourea is non-toxic, environment-friendly and can be sprayed into the post-combustion zone in form of powder or aqueous solution. The cost of thiourea at least can be partially compensated by its high inhibition efficiency. Therefore, the application of thiourea in a full-scale incinerator system is promising and encouraging. Copyright © 2014 Elsevier Ltd. All rights reserved.
Roman, Heather B.; Hirschberger, Lawrence L.; Krijt, Jakub; Valli, Alessandro; Kožich, Viktor
2013-01-01
Abstract Aims: To define the consequences of loss of cysteine dioxygenase (CDO) on cysteine metabolism at the tissue level, we determined levels of relevant metabolites and enzymes and evidence of H2S/HS− (gaseous hydrogen sulfide and its conjugate base) toxicity in liver, pancreas, kidney, and lung of CDO−/− mice that were fed either a taurine-free or taurine-supplemented diet. Results: CDO−/− mice had low tissue and serum taurine and hypotaurine levels and high tissue levels of cysteine, consistent with the loss of CDO. CDO−/− mice had elevated urinary excretion of thiosulfate, high tissue and serum cystathionine and lanthionine levels, and evidence of inhibition and destabilization of cytochrome c oxidase, which is consistent with excess production of H2S/HS−. Accumulation of cystathionine and lanthionine appeared to result from cystathionine β-synthase (CBS)-mediated cysteine desulfhydration. Very high levels of hypotaurine in pancreas of wild-type mice and very high levels of cystathionine and lanthionine in pancreas of CDO−/− mice were observed, suggesting a unique cysteine metabolism in the pancreas. Innovation: The CDO−/− mouse model provides new insights into tissue-specific cysteine metabolism, particularly the role of pancreas in metabolism of excess cysteine by CBS-catalyzed reactions, and will be a useful model for studying the effects of excess endogenous production of H2S/HS−. Conclusion: The CDO−/− mouse clearly demonstrates that H2S/HS− production in tissues can exceed the capacity of the animal to oxidize sulfide to sulfate and demonstrates that pancreas and lung are more susceptible to toxicity from endogenous H2S/HS−production than are liver and kidney. Antioxid. Redox Signal. 19, 1321–1336. PMID:23350603
The evolution of glutathione metabolism in phototrophic microorganisms
NASA Technical Reports Server (NTRS)
Fahey, R. C.; Buschbacher, R. M.; Newton, G. L.
1987-01-01
Of the many roles ascribed to glutathione (GSH) the one most clearly established is its role in the protection of higher eucaryotes against oxygen toxicity through destruction of thiol-reactive oxygen byproducts. If this is the primary function of GSH then GSH metabolism should have evolved during or after the evolution of oxygenic photosynthesis. That many bacteria do not produce GSH is consistent with this view. In the present study we have examined the low-molecular-weight thiol composition of a variety of phototrophic microorganisms to ascertain how evolution of GSH production is related to evolution of oxygenic photosynthesis. Cells were extracted in the presence of monobromobimane (mBBr) to convert thiols to fluorescent derivatives, which were analyzed by high-pressure liquid chromatography. Significant levels of GSH were not found in the green bacteria (Chlorobium thiosulfatophilum and Chloroflexus aurantiacus). Substantial levels of GSH were present in the purple bacteria (Chromatium vinosum, Rhodospirillum rubrum, Rhodobacter sphaeroides, and Rhodocyclus gelatinosa), the cyanobacteria [Anacystis nidulans, Microcoleus chthonoplastes S.G., Nostoc muscorum, Oscillatoria amphigranulata, Oscillatoria limnetica, Oscillatoria sp. (Stinky Spring, Utah), Oscillatoria terebriformis, Plectonema boryanum, and Synechococcus lividus], and eucaryotic algae (Chlorella pyrenoidsa, Chlorella vulgaris, Euglena gracilis, Scenedesmus obliquus, and Chlamydomonas reinhardtii). Other thiols measured included cysteine, gamma-glutamylcysteine, thiosulfate, coenzyme A, and sulfide; several unidentified thiols were also detected. Many of the organisms examined also exhibited a marked ability to reduce mBBr to syn-(methyl,methyl)bimane, an ability that was quenched by treatment with 2-pyridyl disulfide or 5,5'-bisdithio-(2-nitrobenzoic acid) prior to reaction with mBBr. These observations indicate the presence of a reducing system capable of electron transfer to mBBr and reduction of reactive disulfides. The distribution of GSH in phototrophic eubacteria indicates that GSH synthesis evolved at or around the time that oxygenic photosynthesis evolved.
Sulfate-chloride exchange by lobster hepatopancreas is regulated by pH-sensitive modifier sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cattey, M.A.; Ahearn, G.A.; Gerencser, G.A.
1991-03-15
{sup 35}SO{sub 4}{sup 2{minus}} uptake by Atlantic lobster (Homarus americanus) hepatopancreatic epithelial brush border membrane vesicles (BBMV) was stimulated by internal Cl{sup {minus}}, but not internal HCO{sub 3}{sup {minus}}, or external Na{sup +}. Sulfate-chloride exchange was stimulated by inside positive, and inhibited by inside negative, trans-membrane K diffusion potentials. {sup 35}SO{sub 4}{sup 2{minus}}-Cl{sup {minus}} exchange was strongly inhibited by 4,4{prime} diisothiocyanostilbene-2,2{prime}-disulfonic acid (DIDS), 4-acetamido-4{prime}-isotheocynaostilbene-2,2{prime}-disulfonic acid, (SITS), and thiosulfate. Chloride, bicarbonate, furosamide, and bumetanide slightly, yet significantly, cis-inhibited {sup 35}SO{sub 4}{sup 2{minus}}-Cl{sup {minus}} exchange. Altering bilateral pH from 8.0 to 5.4 stimulated {sup 35}SO{sub 4}{sup 2{minus}}-Cl{sup {minus}} exchange when vesicles weremore » loaded with Cl{sup {minus}}, but reduced bilateral pH alone or the presence of pH gradients did not affect {sup 35}SO{sub 4}{sup 2{minus}} transport in the absence of internal Cl{sup {minus}}. {sup 36}Cl uptake into SO{sub 4}{sup 2{minus}}-loaded BBMV was stimulated by an internal negative membrane potential and inhibited when the interior was electrically positive. A model is proposed which suggests that SO{sub 4}{sup 2{minus}}-Cl{sup {minus}} exchange is regulated by internal and external pH-sensitive modifier sites on the anion antiporter and by coupling to the electrogenic 2 Na{sup +}/1 H{sup +} antiporter and by coupling to the electrogenic 2 Na{sup +}/1 H{sup +} antiporter on the same membrane.« less
Duval, Simon; Ducluzeau, Anne-Lise; Nitschke, Wolfgang; Schoepp-Cothenet, Barbara
2008-07-16
Phylogenies of certain bioenergetic enzymes have proved to be useful tools for deducing evolutionary ancestry of bioenergetic pathways and their relationship to geochemical parameters of the environment. Our previous phylogenetic analysis of arsenite oxidase, the molybdopterin enzyme responsible for the biological oxidation of arsenite to arsenate, indicated its probable emergence prior to the Archaea/Bacteria split more than 3 billion years ago, in line with the geochemical fact that arsenite was present in biological habitats on the early Earth. Respiratory arsenate reductase (Arr), another molybdopterin enzyme involved in microbial arsenic metabolism, serves as terminal oxidase, and is thus situated at the opposite end of bioenergetic electron transfer chains as compared to arsenite oxidase. The evolutionary history of the Arr-enzyme has not been studied in detail so far. We performed a genomic search of genes related to arrA coding for the molybdopterin subunit. The multiple alignment of the retrieved sequences served to reconstruct a neighbor-joining phylogeny of Arr and closely related enzymes. Our analysis confirmed the previously proposed proximity of Arr to the cluster of polysulfide/thiosulfate reductases but also unravels a hitherto unrecognized clade even more closely related to Arr. The obtained phylogeny strongly suggests that Arr originated after the Bacteria/Archaea divergence in the domain Bacteria, and was subsequently laterally distributed within this domain. It further more indicates that, as a result of accumulation of arsenate in the environment, an enzyme related to polysulfide reductase and not to arsenite oxidase has evolved into Arr. These findings are paleogeochemically rationalized by the fact that the accumulation of arsenate over arsenite required the increase in oxidation state of the environment brought about by oxygenic photosynthesis.
NASA Technical Reports Server (NTRS)
Pikuta, Elena V.; Marsic, Damien; Itoh, Takashi; Bej, Asim K.; Tang, Jane; Whitman, William B.; Ng, Joseph D.; Garriott, Owen K.; Hoover, Richard B.
2007-01-01
A hyperthermophilic, sulfur-reducing, organo-heterotrophic archaeon, strain OGL-20P was isolated from black smoker chimney material from the Rainbow hydrothermal vent site on the Mid-Atlantic Ridge (36.2 N, 33.9 W). The cells of strain OGL-20P(sup T) have an irregular coccoid shape and are motile with a single flagellum. Growth was observed within the pH range 5.0-8.5 (optimum pH 7.0), NaCl concentration range 1-5 % (w/v) (optimum 3%), and temperature range 55-94 C (optimum 83-85 C). The novel isolate is strictly anaerobic and obligately dependent upon elemental sulfur as an electron acceptor, but it does not reduce sulfate, sulfite, thiosulfate, iron (III) or nitrate. Proteolysis products (peptone, bacto-tryptone, casamino-acids, and yeast extract) are utilized as substrates during sulfur-reduction. Strain OGL-20P(sup T) is resistant to ampicillin, chloramphenicol, kanamycin, and gentamycin, but sensitive to tetracycline and rifampicin. The G+C content of DNA is 52.9 mol%. The 16S rRNA gene sequence analysis revealed that strain OGL-20P(sup T) is closely related to Thermococcus coalescens and related species, but no significant homology by DNA-DNA hybridization was observed between those species and the new isolate. On the basis of physiological and molecular properties of the new isolate, we conclude that strain OGL-20P(sup T) represents a new separate species within the genus Thermococcus, and propose the name Thermococcus thioreducens sp. nov. The type strain is OGL-20P(sup T) (= ATCC BAA-394(sup T) = JCM 12859(sup T) = DSM 14981(sup T)).
Sonne-Hansen, J; Ahring, B K
1999-12-01
Two thermophilic non-sporeforming sulfate-reducing bacteria (SRB) were isolated from microbial mats collected from an Icelandic hot spring. Strain JSP was a gram negative rod, with an average cell size of 2.8 x 0.5 microm. No flagella were found. Growth occurred between 55 and 74 degrees C with an optimum between 70 and 74 degrees C at pH 7.0. The G+C content was 40 mol%. Strain R1Ha3 was a gram negative vibrio-shaped rod with an average cell size of 1.7 x 0.4 microm. Motility was observed mediated by one polar flagellum. The growth optimum at pH 7.0 was 65 degrees C, and growth occurred between 45 and 70 degrees C. The G+C content was 38 mol%. In the presence of sulfate, both strains used lactate, pyruvate and H2 as electron donors. In addition, strain R1Ha3 used formate. Pyruvate was the only substrate supporting fermentative growth of both strains. Growth occurred with sulfate as well as thiosulfate as electron acceptors. Furthermore, strain R1Ha3 reduced nitrate and strain JSP reduced sulfite. Neither of the strains were able to oxidize lactate completely to CO2 and neither of the strains contained desulfoviridin. 16S rDNA sequencing placed strain JSP in the genus Thermodesulfobacterium and strain R1Ha3 in the genus Thermodesulfovibrio. Based on the DNA-DNA hybridization studies and differences in morphology and physiology to their closest relatives the two new isolates were considered as new species. Strain JSP is named Thermodesulfobacterium hveragerdense and strain R1Ha3 Thermodesulfovibrio islandicus.
Shang, Shu-mei; Qian, Long; Zhang, Xu; Li, Kun-zhi; Chagan, Irbis
2013-06-01
A novel thermophilic Gram staining positive strain Rx1 was isolated from hot springs in Baoshan of Yunnan Province, China. The strain was characterized as a hemicellulose-decomposing obligate anaerobe bacterium that is rod-shaped (diameter: 0.5-0.7 μm; length: 2.0-6.7 μm), spore-forming, and motile. Its growth temperature range is 38-68 °C (optimum 50-55 °C) and pH range is 4.5-8.0 (optimum 7.0). The maximum tolerance concentration of NaCl was 3 %. Rx1 converted thiosulfate to elemental sulfur and reduced sulfite to hydrogen sulfide. The bacterium grew by utilizing xylan and starch, as well as a wide range of monosaccharide and polysaccharides, including glucose and xylose. The main products of fermentation were ethanol, lactate, acetate, CO2, and H2. The maximum xylanase activity in the culture supernatant after 30 h of incubation at 55 °C was 16.2 U/ml. Rx1 DNA G + C content was 36 mol %. 16S rRNA gene sequence analysis indicated that strain Rx1 belonged to the genus Thermoanaerobacterium of the family 'Thermoanaerobacteriaceae' (Firmicutes), with Thermoanaerobacterium aciditolerans 761-119 (99.2 % 16S rRNA gene sequence similarity) being its closest relative. DNA-DNA hybridization between Rx1 and T. aciditolerans 761-119 showed 36 % relatedness. Based on its physiological and biochemical tests and DNA-DNA hybridization analyses, the isolate is considered to represent a novel species in the genus Thermoanaerobacterium, for which the name Thermoanaerobacterium calidifontis sp. nov. is proposed, with the type strain is Rx1 (=JCM 18270 = CCTCC M 2011109).
Biodiversity analysis by polyphasic study of marine bacteria associated with biocorrosion phenomena.
Boudaud, N; Coton, M; Coton, E; Pineau, S; Travert, J; Amiel, C
2010-07-01
A polyphasic approach was used to study the biodiversity bacteria associated with biocorrosion processes, in particular sulfate-reducing bacteria (SRB) and thiosulfate-reducing bacteria (TRB) which are described to be particularly aggressive towards metallic materials, notably via hydrogen sulfide release. To study this particular flora, an infrared spectra library of 22 SRB and TRB collection strains were created using a Common Minimum Medium (CMM) developed during this study and standardized culture conditions. The CMM proved its ability to allow for growth of both SRB and TRB strains. These sulfurogen collection strains were clearly discriminated and differentiated at the genus level by fourier transform infrared (FT-IR) spectroscopy. In a second step, infrared spectra of isolates, recovered from biofilms formed on carbon steel coupons immersed for 1 year in three different French harbour areas, were compared to the infrared reference spectra library. In parallel, molecular methods (M13-PCR and 16S rRNA gene sequencing) were used to qualitatively evaluate the intra- and inter-species genetic diversity of biofilm isolates. The biodiversity study indicated that strains belonging to the Vibrio genus were the dominant population; strains belonging to the Desulfovibrio genus (SRB) and Peptostreptococcaceae were also identified. Overall, the combination of the FT-IR spectroscopy and molecular approaches allowed for the taxonomic and ecological study of a bacterial flora, cultivated on CMM, associated with microbiology-induced corrosion (MIC) processes. Via the use of the CMM medium, the culture of marine bacteria (including both SRB and TRB bacteria) was allowed, and the implication of nonsulforogen bacteria in MIC was observed. Their involvement in the biocorrosion phenomena will have to be studied and taken into account in the future. © 2009 The Authors. Journal compilation © 2009 The Society for Applied Microbiology.
Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere.
Kwak, Min-Jung; Jeong, Haeyoung; Madhaiyan, Munusamy; Lee, Yi; Sa, Tong-Min; Oh, Tae Kwang; Kim, Jihyun F
2014-01-01
Pink-pigmented facultative methylotrophs in the Rhizobiales are widespread in the environment, and many Methylobacterium species associated with plants produce plant growth-promoting substances. To gain insights into the life style at the phyllosphere and the genetic bases of plant growth promotion, we determined and analyzed the complete genome sequence of Methylobacterium oryzae CBMB20T, a strain isolated from rice stem. The genome consists of a 6.29-Mb chromosome and four plasmids, designated as pMOC1 to pMOC4. Among the 6,274 coding sequences in the chromosome, the bacterium has, besides most of the genes for the central metabolism, all of the essential genes for the assimilation and dissimilation of methanol that are either located in methylotrophy islands or dispersed. M. oryzae is equipped with several kinds of genes for adaptation to plant surfaces such as defense against UV radiation, oxidative stress, desiccation, or nutrient deficiency, as well as high proportion of genes related to motility and signaling. Moreover, it has an array of genes involved in metabolic pathways that may contribute to promotion of plant growth; they include auxin biosynthesis, cytokine biosynthesis, vitamin B12 biosynthesis, urea metabolism, biosorption of heavy metals or decrease of metal toxicity, pyrroloquinoline quinone biosynthesis, 1-aminocyclopropane-1-carboxylate deamination, phosphate solubilization, and thiosulfate oxidation. Through the genome analysis of M. oryzae, we provide information on the full gene complement of M. oryzae that resides in the aerial parts of plants and enhances plant growth. The plant-associated lifestyle of M. oryzae pertaining to methylotrophy and plant growth promotion, and its potential as a candidate for a bioinoculant targeted to the phyllosphere and focused on phytostimulation are illuminated.
Aviam, Orli; Bar-Nes, Gabi; Zeiri, Yehuda; Sivan, Alex
2004-01-01
Disposal of low-level radioactive waste by immobilization in cement is being evaluated worldwide. The stability of cement in the environment may be impaired by sulfur-oxidizing bacteria that corrode the cement by producing sulfuric acid. Since this process is so slow that it is not possible to perform studies of the degradation kinetics and to test cement mixtures with increased durability, procedures that accelerate the biodegradation are required. Semicontinuous cultures of Halothiobacillus neapolitanus and Thiomonas intermedia containing thiosulfate as the sole energy source were employed to accelerate the biodegradation of cement samples. This resulted in a weight loss of up to 16% after 39 days, compared with a weight loss of 0.8% in noninoculated controls. Scanning electron microscopy of the degraded cement samples revealed deep cracks, which could be associated with the formation of low-density corrosion products in the interior of the cement. Accelerated biodegradation was also evident from the leaching rates of Ca2+ and Si2+, the major constituents of the cement matrix, and Ca exhibited the highest rate (up to 20 times greater than the control rate) due to the reaction between free lime and the biogenic sulfuric acid. Leaching of Sr2+ and Cs+, which were added to the cement to simulate immobilization of the corresponding radioisotopes, was also monitored. In contrast to the linear leaching kinetics of calcium, silicon, and strontium, the leaching pattern of cesium produced a saturation curve similar to the control curve. Presumably, the leaching of cesium is governed by the diffusion process, whereas the leaching kinetics of the other three ions seems to governed by dissolution of the cement. PMID:15466547
Bucher, J R; Gupta, B N; Adkins, B; Thompson, M; Jameson, C W; Thigpen, J E; Schwetz, B A
1987-01-01
Male and female F344/N rats and B6C3F1 mice were exposed to lethal and sublethal concentrations of methyl isocyanate by inhalation. Mortality, clinical signs, body and organ weights, and changes in clinical pathology and hematology were monitored immediately after 2-hr exposures and during the ensuing 3 months. Additional studies investigated the possible involvement of cyanide in the toxicity of methyl isocyanate. During exposures, signs of restlessness, lacrimation, and a reddish discharge from the nose and mouth were evident in rats and mice. Following exposures, rats and mice were dyspneic and weak. Deaths of rats and mice exposed to lethal concentrations (20 to 30 ppm) began within 15-18 hr, with males more prone to early death than females. A second wave of deaths occurred after 8 to 10 days, affecting primarily female rats and mice exposed to 20 to 30 ppm of methyl isocyanate, and male and female rats exposed to 10 ppm. Most deaths occurred during the first month following the exposures and were preceded by periods of severe respiratory distress. Body weights decreased in proportion to dose early, but then weight gain resumed in survivors at control rates. The only organ with a consistent, dose-related weight change was the lung, which was heavier throughout the studies in animals exposed to high concentrations of methyl isocyanate. No significant clinical pathology, or hematologic changes were observed in exposed rats. Blood and brain cholinesterase were not inhibited. Studies attempting to measure cyanide in the blood of methyl isocyanate-exposed rats, and attempting to affect lethality with a cyanide antidote (sodium nitrite and sodium thiosulfate) gave negative results.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3622444
Sarter, Samira; Randrianarivelo, Roger; Ruez, Philippe; Raherimandimby, Marson; Danthu, Pascal
2011-04-01
Farmed shrimps are vectors of various Vibrio species that are considered a potential health hazard. Previous study has shown that Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio alginolyticus dominated in the water and larval samples of shrimp hatchery (Randrianarivelo et al. 2010 ). The effects of two essential oils (EOs) of Cinnamosma fragrans, an endemic plant to Madagascar (B8: linalool-type and B143: 1,8-cineole-type), were determined on the total heterotrophic aerobic bacteria and the Vibrio concentrations in the rearing water of Penaeus monodon hatchery. The assays took place in OSO Farming's shrimp hatchery in Madagascar. EOs were directly added to the water tank. The bacterial concentrations of water tank were assessed on marine agar and thiosulfate citrate bile sucrose agar. The larvae culture corresponded to four replicates each of B8, B143, erythromycin (E), and control (oil and antibiotic free). The bacterial concentration of the rearing water in B8, B143, and antibiotic (E) tanks were significantly lower (p < 0.05) than in the control. Further, there was no significant difference (p > 0.05) between the three treatments B8, B143, and E. This study demonstrated that both EOs of C. fragrans, like antibiotic, inhibited bacterial growth in the rearing water of P. monodon larvae. The potential of C. fragrans EO to control the bacterial load in in vivo conditions of P. monodon hatchery makes it a relevant option for producers to minimize risk of Vibrio growth in the rearing water of larvae, which is the primary source of colonization of shrimp larvae.
Jiang, Feng; Zhang, Liang; Peng, Guo-Liang; Liang, Si-Yun; Qian, Jin; Wei, Li; Chen, Guang-Hao
2013-10-01
SANI (Sulfate reduction, Autotrophic denitrification and Nitrification Integrated) process has been approved to be a sludge-minimized sewage treatment process in warm and coastal cities with seawater supply. In order to apply this sulfur-based process in inland cold areas, wet flue gas desulfurization (FGD) can be simplified and integrated with SANI process, to provide sulfite as electron carrier for sulfur cycle in sewage treatment. In this study, a lab-scale system of the proposed novel process was developed and run for over 200 days while temperature varied between 30 and 5 °C, fed with synthetic FGD wastewaters and sewage. The sulfite-reducing upflow anaerobic sludge bed (SrUASB) reactor, as the major bioreactor of the system, removed 86.9% of organics while the whole system removed 94% of organics even when water temperature decreased to around 10 °C. The bactericidal effect of sulfite was not observed in the SrUASB reactor, while thiosulfate was found accumulated under psychrophilic conditions. The sludge yield of the SrUASB reactor was determined to be 0.095 kg VSS/kg COD, higher than of sulfate reduction process but still much lower than of conventional activated sludge processes. The dominant microbes in the SrUASB reactor were determined as Lactococcus spp. rather than sulfate-reducing bacteria, but sulfite reduction still contributed 85.5% to the organic carbon mineralization in this reactor. Ammonia and nitrate were effectively removed in the aerobic and anoxic filters, respectively. This study confirms the proposed process was promising to achieve sludge-minimized sewage treatment integrating with flue gas desulfurization in inland and cold areas. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dong, Yiran; Sanford, Robert A.; Boyanov, Maxim I.; ...
2016-10-01
Here, a Gram-stain-negative, microaerophilic rod-shaped organism designated as strain Z9 T was isolated from groundwater of 1.7 km depth from the Mt. Simon Sandstone of the Illinois Basin, Illinois, USA. Cells of strain Z9 T were rod shaped with dimensions of 0.3×(1–10) µm and stained Gram-negative. Strain Z9 T grew within the temperature range 20–60 °C (optimum at 30–40 °C), between pH 5 and 8 (optimum 5.2–5.8) and under salt concentrations of 1–5 % (w/v) NaCl (optimum 2.5 % NaCl). In addition to growth by fermentation and nitrate reduction, this strain was able to reduce Fe(III), Mn(IV), Co(III) and Cr(VI)more » when H 2 or organic carbon was available as the electron donor, but did not actively reduce oxidized sulfur compounds (e.g. sulfate, thiosulfate or S 0). The G+C content of the DNA from strain Z9 T was 36.1 mol%. Phylogenetic analysis of the 16S rRNA gene from strain Z9 T showed that it belongs to the class Bacilli and shares 97 % sequence similarity with the only currently characterized member of the genus Tepidibacillus, T. fermentans. Based on the physiological distinctness and phylogenetic information, strain Z9 T represents a novel species within the genus Tepidibacillus, for which the name Tepidibacillus decaturensis sp. nov. is proposed. The type strain is Z9 T (=ATCC BAA-2644 T=DSM 103037 T).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Yiran; Sanford, Robert A.; Boyanov, Maxim I.
Here, a Gram-stain-negative, microaerophilic rod-shaped organism designated as strain Z9 T was isolated from groundwater of 1.7 km depth from the Mt. Simon Sandstone of the Illinois Basin, Illinois, USA. Cells of strain Z9 T were rod shaped with dimensions of 0.3×(1–10) µm and stained Gram-negative. Strain Z9 T grew within the temperature range 20–60 °C (optimum at 30–40 °C), between pH 5 and 8 (optimum 5.2–5.8) and under salt concentrations of 1–5 % (w/v) NaCl (optimum 2.5 % NaCl). In addition to growth by fermentation and nitrate reduction, this strain was able to reduce Fe(III), Mn(IV), Co(III) and Cr(VI)more » when H 2 or organic carbon was available as the electron donor, but did not actively reduce oxidized sulfur compounds (e.g. sulfate, thiosulfate or S 0). The G+C content of the DNA from strain Z9 T was 36.1 mol%. Phylogenetic analysis of the 16S rRNA gene from strain Z9 T showed that it belongs to the class Bacilli and shares 97 % sequence similarity with the only currently characterized member of the genus Tepidibacillus, T. fermentans. Based on the physiological distinctness and phylogenetic information, strain Z9 T represents a novel species within the genus Tepidibacillus, for which the name Tepidibacillus decaturensis sp. nov. is proposed. The type strain is Z9 T (=ATCC BAA-2644 T=DSM 103037 T).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nsib, Mohamed Faouzi, E-mail: Mohamed.faouzi.ncib@gmail.com; National School of Engineers; Naffati, Naima
2015-10-15
Graphical abstract: UV–vis spectra of PANI, ZnO, Ni{sub 0.01}Zn{sub 0.99}O, Ni{sub 0.01}Zn{sub 0.99}O/PANI3 and Ni{sub 0.1}Zn{sub 0.9}O/PANI{sub 10} nanocomposites. - Highlights: • Ni{sub x}Zn{sub 1−x}O/PANI{sub y} photocatalysts are synthesized by the impregnation method. • Ni{sup 2+} amount control the morphology of ZnO and enhances its photoactivity. • Both Ni{sup 2+} and PANI extend the light absorption of ZnO toward the visible region. • Both Ni{sup 2+} and PANI enhance the electron–hole separation. - Abstract: Ni{sub x}Zn{sub 1−x}O/Polyaniline hybrid photocatalysts are synthesized and used for the experiments of hydrogen production from water-splitting under visible irradiation. XRD, UV–vis DRS and SEM aremore » used to characterize the prepared materials. It is shown that the Ni{sup 2+} amount doped into ZnO controls its morphology and enhances its photoactivity for H{sub 2} generation. Polyaniline (PANI) is shown to sensitize ZnO and to extend its light absorption toward the visible region. The hybrid photocatalyst with 10 mol% Ni{sup 2+} and 10 wt.% PANI shows the maximum photocatalytic H{sub 2} production for one hour of visible irradiation: ∼558 μmol while only ∼178 μmol in the presence of pure ZnO. Additives like sacrificial electron donors and carbonate salts are found to play a key role in the improvement of H{sub 2} evolution. Thus, the hydrogen photoproduction efficiency increases in the order: thiosulfate > sulfide > propanol and HCO{sub 3}{sup −} > CO{sub 3}{sup 2−}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipus, Daniel; Vikram, Amit; Ross, Daniel
Here, microbial activity in the produced water from hydraulically fractured oil and gas wells may potentially interfere with hydrocarbon production and cause damage to the well and surface infrastructure via corrosion, sulfide release, and fouling. In this study, we surveyed the microbial abundance and community structure of produced water sampled from 42 Marcellus Shale wells in southwestern Pennsylvania (well age ranged from 150 to 1,846 days) to better understand the microbial diversity of produced water. We sequenced the V4 region of the 16S rRNA gene to assess taxonomy and utilized quantitative PCR (qPCR) to evaluate the microbial abundance across allmore » 42 produced water samples. Bacteria of the order Halanaerobiales were found to be the most abundant organisms in the majority of the produced water samples, emphasizing their previously suggested role in hydraulic fracturing-related microbial activity. Statistical analyses identified correlations between well age and biocide formulation and the microbial community, in particular, the relative abundance of Halanaerobiales. We further investigated the role of members of the order Halanaerobiales in produced water by reconstructing and annotating a Halanaerobium draft genome (named MDAL1), using shotgun metagenomic sequencing and metagenomic binning. The recovered draft genome was found to be closely related to the species H. congolense, an oil field isolate, and Halanaerobium sp. strain T82-1, also recovered from hydraulic fracturing produced water. Reconstruction of metabolic pathways revealed Halanaerobium sp. strain MDAL1 to have the potential for acid production, thiosulfate reduction, and biofilm formation, suggesting it to have the ability to contribute to corrosion, souring, and biofouling events in the hydraulic fracturing infrastructure.« less
Generation of ozone foam and its application for disinfection
NASA Astrophysics Data System (ADS)
Hiragaki, Keisuke; Ishimaru, Tomiya; Nakanishi, Masaru; Muraki, Ryouji; Nieda, Masanori; Yamabe, Chobei
2015-07-01
Generated ozone foam was applied to the disinfection of Pseudomonas fluorescens. The effect of disinfection has been confirmed experimentally and new equipment for the disinfection of hands using this ozone foam has been put on the market for the practical use. The ozone foam was produced in the foam generator after mixing the water including surfactant (30 mL/min) and air including ozone (1000 ppm = 2.14 g/m3 ~ 1600 ppm = 3.4 g/m3, 300 mL/min). The liquid-to-gas ratio is 100 L/m3. The concentration of dissolved ozone in the thin liquid films of the bubbles was about 3 mg/L which was measured by the chemical method of the KI absorption and titration of sodium thiosulfate solution. The disinfection test samples were prepared using the PET disk on which Pseudomonas fluorescens of its number of more than 108 were attached. Test sample was inserted into ozone foam set on the glass plate for one to 6 min. The survival rate log (N/N0 decreased with time and its value of about-2.6 (i.e., ~1/400) was obtained at 6 min (2 min × 3 times repeated). It was also confirmed that the ozone foam was useful for the disinfection of hands. For more effective disinfection (in case of taking a long time for foam melting), the ozone foam was broken by force and changed into ozone water by which the survival rate decreased ×4 (i.e., N/N0 = 1/10 000) at 4 ~ 6 min. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark
Gu, Yawei; Wang, Binbin; He, Feng; Bradley, Miranda J; Tratnyek, Paul G
2017-11-07
In water treatment processes that involve contaminant reduction by zerovalent iron (ZVI), reduction of water to dihydrogen is a competing reaction that must be minimized to maximize the efficiency of electron utilization from the ZVI. Sulfidation has recently been shown to decrease H 2 formation significantly, such that the overall electron efficiency of (or selectivity for) contaminant reduction can be greatly increased. To date, this work has focused on nanoscale ZVI (nZVI) and solution-phase sulfidation agents (e.g., bisulfide, dithionite or thiosulfate), both of which pose challenges for up-scaling the production of sulfidated ZVI for field applications. To overcome these challenges, we developed a process for sulfidation of microscale ZVI by ball milling ZVI with elemental sulfur. The resulting material (S-mZVI bm ) exhibits reduced aggregation, relatively homogeneous distribution of Fe and S throughout the particle (not core-shell structure), enhanced reactivity with trichloroethylene (TCE), less H 2 formation, and therefore greatly improved electron efficiency of TCE dechlorination (ε e ). Under ZVI-limited conditions (initial Fe 0 /TCE = 1.6 mol/mol), S-mZVI bm gave surface-area normalized reduction rate constants (k' SA ) and ε e that were ∼2- and 10-fold greater than the unsulfidated ball-milled control (mZVI bm ). Under TCE-limited conditions (initial Fe 0 /TCE = 2000 mol/mol), sulfidation increased k SA and ε e ≈ 5- and 50-fold, respectively. The major products from TCE degradation by S-mZVI bm were acetylene, ethene, and ethane, which is consistent with dechlorination by β-elimination, as is typical of ZVI, iron oxides, and/or sulfides. However, electrochemical characterization shows that the sulfidated material has redox properties intermediate between ZVI and Fe 3 O 4 , mostly likely significant coverage of the surface with FeS.
Pérez-Rodríguez, Ileana; Ricci, Jessica; Voordeckers, James W; Starovoytov, Valentin; Vetriani, Costantino
2010-05-01
A thermophilic, anaerobic, chemosynthetic bacterium, designated strain MB-1(T), was isolated from the walls of an active deep-sea hydrothermal vent chimney on the East Pacific Rise at degrees 50' N 10 degrees 17' W. The cells were Gram-negative-staining rods, approximately 1-1.5 mum long and 0.3-0.5 mum wide. Strain MB-1(T) grew at 25-65 degrees C (optimum 55 degrees C), with 10-35 g NaCl l(-1) (optimum 20 g l(-1)) and at pH 4.5-8.5 (optimum pH 7.0). Generation time under optimal conditions was 45.6 min. Growth occurred under chemolithoautotrophic conditions with H(2) as the energy source and CO(2) as the carbon source. Nitrate was used as the electron acceptor, with resulting production of ammonium. Thiosulfate, sulfur and selenate were also used as electron acceptors. No growth was observed in the presence of lactate, peptone or tryptone. Chemo-organotrophic growth occurred in the presence of acetate, formate, Casamino acids, sucrose, galactose and yeast extract under a N(2)/CO(2) gas phase. The G+C content of the genomic DNA was 36.0 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Nautilia profundicola AmH(T), Nautilia abyssi PH1209(T) and Nautilia lithotrophica 525(T) (95, 94 and 93 % sequence identity, respectively). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the genus Nautilia, Nautilia nitratireducens sp. nov. The type strain is MB-1(T) (=DSM 22087(T) =JCM 15746(T)).
Kevbrin, Vadim; Boltyanskaya, Yulia; Zhilina, Tatjana; Kolganova, Tatjana; Lavrentjeva, Elena; Kuznetsov, Boris
2013-09-01
Two strains of a novel anaerobic, protein- and nucleoside-utilizing bacterium, Z-910(T) and Z-810, were isolated. The strains were spore-forming, mainly nonmotile rods, exhibiting positive Gram reaction with Gram-positive cell wall structure. The strains were mesophilic and haloalkaliphilic. Cultures used proteins and proteinaceous substrates as carbon, nitrogen, and energy sources. Both strains used also ribonucleosides, cellobiose, pyruvate, and glycerol. Ribose and nucleobases did not support growth. The fermentation products from all utilized substrates were identical but varied in content and included straight and branched acids, as well as hydrogen and ammonia. When grown on tryptone, strain Z-910(T) was able to reduce fumarate, dimethyl sulfoxide, thiosulfate, and elemental sulfur. Neither nitrate nor sulfate was reduced. The DNA G + C content of strain Z-910(T) was 32.2 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence similarity revealed that strains Z-910(T) and Z-810 represented a new branch within the order Clostridiales, with 90.2 % similarity to the nearest genus with a validly published name Anaerobranca gottschalkii DSM 13577(T). According to their physiological, chemotaxonomic, and phylogenetic properties, strains Z-910(T) and Z-810 represented a new genus and novel species, for which the name Proteinivorax tanatarense gen. nov., sp. nov. was proposed. Phylogenetic analysis showed that the genera Proteinivorax gen. nov. and Anaerobranca formed a separate cluster within the order Clostridiales. The family Proteinivoraceae fam. nov. comprising the genera Proteinivorax gen. nov. and Anaerobranca was therefore proposed within the order Clostridiales of the phylum Firmicutes with Proteinivorax as a type genus of the new family.
Min, Ui-Gi; Kim, So-Jeong; Hong, Heeji; Kim, Song-Gun; Gwak, Joo-Han; Jung, Man-Young; Kim, Jong-Geol; Na, Jeong-Geol; Rhee, Sung-Keun
2016-06-01
A strictly anaerobic bacterium, strain B5(T), was isolated from sediment of an abandoned coal mine in Taebaek, Republic of Korea. Cells of strain B5(T) were non-spore-forming, straight, Gram-positive rods. The optimum pH and temperature for growth were pH 7.0 and 30°C, respectively, while the strain was able to grow within pH and temperature ranges of 5.5-7.5 and 25-45°C, respectively. Growth of strain B5(T) was observed at NaCl concentrations of 0 to 6.0% (w/v) with an optimum at 3.0-4.0% (w/v). The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, an unknown phospholipid and three unknown polar lipids. Strain B5(T) grew anaerobically by reducing nitrate, nitrite, ferric-citrate, ferric-nitrilotriacetate, elemental sulfur, thiosulfate, and anthraquinone-2-sulfonate in the presence of proteinaceous compounds, organic acids, and carbohydrates as electron donors. The isolate was not able to grow by fermentation. Strain B5(T) did not grow under aerobic or microaerobic conditions. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B5(T) is most closely related to the genus Tepidibacillus (T. fermentans STGH(T); 96.3%) and Vulcanibacillus (V. modesticaldus BR(T); 94.6%). The genomic DNA G+C content (36.9 mol%) of strain B5(T) was higher than those of T. fermentans STGH(T) (34.8 mol%) and V. modesticaldus BR(T) (34.5 mol%). Based on its phenotypic, chemotaxonomic, and phylogenetic properties, we describe a new species of a novel genus Calculibacillus, represented by strain B5(T) (=KCTC 15397(T) =JCM 19989(T)), for which we propose the name Calculibacillus koreensis gen. nov., sp. nov.
Perevalova, Anna A; Kublanov, Ilya V; Baslerov, R V; Zhang, Gengxin; Bonch-Osmolovskaya, Elizaveta A
2013-02-01
A novel thermophilic bacterium, strain Kam1851(T), was isolated from a terrestrial hot spring of the Uzon Caldera, Kamchatka Peninsula, Russia. Cells of strain Kam1851(T) were spore-forming rods with a gram-positive type of cell wall. Growth was observed between 46 and 78 °C, and pH 5.5-8.5. The optimal growth (doubling time, 6.0 h) was at 60-65 °C and pH 6.5. The isolate was an obligate anaerobe growing in pre-reduced medium only. It grew on mineral medium with molecular hydrogen or formate as electron donors, and elemental sulfur, thiosulfate or polysulfide as electron acceptors. The main cellular fatty acids were C(16 : 0) (34.2 %), iso-C(16 : 0) (18 %), C(18 : 0) (12.8 %) and iso-C(17 : 0) (11.1 %). The G+C content of the genomic DNA of strain Kam1851(T) was 63 mol%. 16S rRNA gene sequence analysis showed that strain Kam1851(T) belonged to the order Thermoanaerobacterales, but it was not closely related to representatives of any genera with validly published names. The most closely related strains, which had no more than 89.2 % sequence similarity, were members of the genera Ammonifex and Caldanaerobacter. On the basis of its phylogenetic position and novel phenotypic features, isolate Kam1851(T) is proposed to represent a novel species in a new genus, Brockia lithotrophica gen. nov., sp. nov.; the type strain of Brockia lithotrophica is Kam1851(T) ( = DSM 22653(T) = VKM B-2685(T)).
Cytryn, Eddie; van Rijn, Jaap; Schramm, Andreas; Gieseke, Armin; de Beer, Dirk; Minz, Dror
2005-01-01
Bacteria presumably involved in oxygen- or nitrate-dependent sulfide oxidation in the biofilters of a recirculating marine aquaculture system were identified using a new application of reverse transcription-PCR denaturing gradient gel electrophoresis (DGGE) analysis termed differential-transcription (DT)-DGGE. Biofilter samples were incubated in various concentrations of sulfide or thiosulfate (0 to 5 mM) with either oxygen or nitrate as the sole electron acceptor. Before and after short-term incubations (10 to 20 h), total DNA and RNA were extracted, and a 550-bp fragment of the 16S rRNA genes was PCR amplified either directly or after reverse transcription. DGGE analysis of DNA showed no significant change of the original microbial consortia upon incubation. In contrast, DGGE of cDNA revealed several phylotypes whose relative band intensities markedly increased or decreased in response to certain incubation conditions, indicating enhanced or suppressed rRNA transcription and thus implying metabolic activity under these conditions. Specifically, species of the gammaproteobacterial genus Thiomicrospira and phylotypes related to symbiotic sulfide oxidizers could be linked to oxygen-dependent sulfide oxidation, while members of the Rhodobacteraceae (genera Roseobacter, Rhodobacter, and Rhodobium) were putatively active in anoxic, nitrate-dependent sulfide oxidation. For all these organisms, the physiology of their closest cultured relatives matches their DT-DGGE-inferred function. In addition, higher band intensities following exposure to 5 mM sulfide and nitrate were observed for Thauera-, Hydrogenophaga-, and Dethiosulfovibrio-like phylotypes. For these genera, nitrate-dependent sulfide oxidation has not been documented previously and therefore DT-DGGE might indicate a higher relative tolerance to high sulfide concentrations than that of other community members. We anticipate that DT-DGGE will be of general use in tracing functionally equivalent yet phylogenetically diverse microbial populations in nature. PMID:16204531
Augustyn, Kristie D Cox; Jackson, Michael R; Jorns, Marilyn Schuman
2017-02-21
Hydrogen sulfide (H 2 S) is an endogenously synthesized signaling molecule that is enzymatically metabolized in mitochondria. The metabolism of H 2 S maintains optimal concentrations of the gasotransmitter and produces sulfane sulfur (S 0 )-containing metabolites that may be functionally important in signaling. Sulfide:quinone oxidoreductase (SQOR) catalyzes the initial two-electron oxidation of H 2 S to S 0 using coenzyme Q as the electron acceptor in a reaction that requires a third substrate to act as the acceptor of S 0 . We discovered that sulfite is a highly efficient acceptor and proposed that sulfite is the physiological acceptor in a reaction that produces thiosulfate, a known metabolic intermediate. This model has been challenged by others who assume that the intracellular concentration of sulfite is very low, a scenario postulated to favor reaction of SQOR with a considerably poorer acceptor, glutathione. In this study, we measured the intracellular concentration of sulfite and other metabolites in mammalian tissues. The values observed for sulfite in rat liver (9.2 μM) and heart (38 μM) are orders of magnitude higher than previously assumed. We discovered that the apparent kinetics of oxidation of H 2 S by SQOR with glutathione as the S 0 acceptor reflect contributions from other SQOR-catalyzed reactions, including a novel glutathione:CoQ reductase reaction. We used observed metabolite levels and steady-state kinetic parameters to simulate rates of oxidation of H 2 S by SQOR at physiological concentrations of different S 0 acceptors. The results show that the reaction with sulfite as the S 0 acceptor is a major pathway in liver and heart and provide insight into the potential dynamics of H 2 S metabolism.
Kondo, Katsuhito; Okamoto, Akihiro; Hashimoto, Kazuhito; Nakamura, Ryuhei
2015-07-07
In addition to serving as an energy source for microbial growth, iron sulfides are proposed to act as naturally occurring electrical wires that mediate long-distance extracellular electron transfer (EET) and bridge spatially discrete redox environments. These hypothetical EET reactions stand on the abilities of microbes to use the interfacial electrochemistry of metallic/semiconductive iron sulfides to maintain metabolisms; however, the mechanisms of these phenomena remain unexplored. To obtain insight into EET to iron sulfides, we monitored EET at the interface between Shewanella oneidensis MR-1 cells and biomineralized iron sulfides in an electrochemical cell. Respiratory current steeply increased with the concomitant formation of poorly crystalline mackinawite (FeS) minerals, indicating that S. oneidensis has the ability to exploit extracellularly formed metallic FeS for long-distance EET. Deletion of major proteins of the metal-reduction (Mtr) pathway (OmcA, MtrC, CymA, and PilD) caused only subtle effects on the EET efficiency, a finding that sharply contrasts the majority of studies that report that the Mtr pathway is indispensable for the reduction of metal oxides and electrodes. The gene expression analyses of polysulfide and thiosulfate reductase suggest the existence of a sulfur-mediated electron-shuttling mechanism by which HS(-) ions and water-soluble polysulfides (HS(n)(-), where n ≥ 2) generated in the periplasmic space deliver electrons from cellular metabolic processes to cell surface-associated FeS. The finding of this Mtr-independent pathway indicates that polysulfide reductases complement the function of outer-membrane cytochromes in EET reactions and, thus, significantly expand the number of microbial species potentially capable of long-distance EET in sulfur-rich anoxic environments.
Physiological effects of hydrogen sulfide inhalation during exercise in healthy men.
Bhambhani, Y; Singh, M
1991-11-01
Occupational exposure to hydrogen sulfide (H2S) is prevalent in a variety of industries. H2S when inhaled 1) is oxidized into a sulfate or a thiosulfate by oxygen bound to hemoglobin and 2) suppresses aerobic metabolism by inhibiting cytochrome oxidase (c and aa3) activity in the electron transport chain. The purpose of this study was to examine the acute effects of oral inhalation of H2S on the physiological responses during graded cycle exercise performed to exhaustion in healthy male subjects. Sixteen volunteers were randomly exposed to 0 (control), 0.5, 2.0, and 5.0 ppm H2S on four separate occasions. Compared with the control values, the results indicated that the heart rate and expired ventilation were unaffected as a result of the H2S exposures during submaximal and maximal exercise. The oxygen uptake had a tendency to increase, whereas carbon dioxide output had a tendency to decrease as a result of the H2S exposures, but only the 5.0 ppm exposure resulted in a significantly higher maximum oxygen uptake. Blood lactate concentrations increased significantly during submaximal and maximal exercise as a result of the 5.0 ppm exposure. Despite these large increases in lactate concentration, the maximal power output of the subjects was not significantly altered as a result of the 5.0 ppm H2S exposure. It was concluded that healthy young male subjects could safely exercise at their maximum metabolic rates while breathing 5.0 ppm H2S without experiencing a significant reduction in their maximum physical work capacity during short-term incremental exercise.
Sánchez-Andrea, Irene; Stams, Alfons J M; Hedrich, Sabrina; Ňancucheo, Ivan; Johnson, D Barrie
2015-01-01
Three strains of sulfate-reducing bacteria (M1(T), D, and E) were isolated from acidic sediments (White river and Tinto river) and characterized phylogenetically and physiologically. All three strains were obligately anaerobic, mesophilic, spore-forming straight rods, stained Gram-negative and displayed variable motility during active growth. The pH range for growth was 3.8-7.0, with an optimum at pH 5.5. The temperature range for growth was 15-40 °C, with an optimum at 30 °C. Strains M1(T), D, and E used a wide range of electron donors and acceptors, with certain variability within the different strains. The nominated type strain (M1(T)) used ferric iron, nitrate, sulfate, elemental sulfur, and thiosulfate (but not arsenate, sulfite, or fumarate) as electron acceptors, and organic acids (formate, lactate, butyrate, fumarate, malate, and pyruvate), alcohols (glycerol, methanol, and ethanol), yeast extract, and sugars (xylose, glucose, and fructose) as electron donors. It also fermented some substrates such as pyruvate and formate. Strain M1(T) tolerated up to 50 mM ferrous iron and 10 mM aluminum, but was inhibited by 1 mM copper. On the basis of phenotypic, phylogenetic, and genetic characteristics, strains M1(T), D, and E represent a novel species within the genus Desulfosporosinus, for which the name Desulfosporosinus acididurans sp. nov. is proposed. The type strain is M1(T) (=DSM 27692(T) = JCM 19471(T)). Strain M1(T) was the first acidophilic SRB isolated, and it is the third described species of acidophilic SRB besides Desulfosporosinus acidiphilus and Thermodesulfobium narugense.
NASA Astrophysics Data System (ADS)
Baker, B.; Lazar, C.; Seitz, K.; Teske, A.; Hinrichs, K. U.; Dick, G.
2015-12-01
Estuaries are among the most productive habitats on the planet. Microbes in estuary sediments control the turnover of organic carbon, and the anaerobic cycling of nitrogen and sulfur. These communities are complex and primarily made up of uncultured lineages, thus little is known about how ecological and metabolic processes are partitioned in sediments. We reconstructed 82 bacterial and 24 archaeal high-quality genomes from different redox regimes (sulfate-rich, sulfate-methane transition zone, and methane-rich zones) of estuary sediments. These bacteria belong to 23 distinct groups, including uncultured candidate phyla (eg. KSB1, TA06, and KD3-62), and three newly described phyla (WOR-1, and -2, and -3). The archaea encompass 8 widespread sediment lineages including MGB-D, RC-III and IV, Z7ME43, Parvarchaeota, Lokiarchoaeta (MBG-B), SAGMEG, Bathyarchaeota (groups MCG-1, -6, -7, and -15) and previously unrecognized deeply branched phylum "Thorarchaeota". The uncultured phyla mediate essential biogeochemical processes of the estuarine environment. Z7ME43 archaea have genes for S disproportionation (S0 reduction and thiosulfate reduction and oxidation). SAGMEG appear to be strict anaerobes capable of coupling CO/H2 oxidation to either S0 or nitrite reduction and have novel RubisCO genes for carbon fixation. Thorarchaeota contain pathways for acetate production from the degradation of detrital proteins and intermediate S cycling. Furthermore, the gene content of this group revealed links in the evolutionary histories of archaea and eukaryotes. This dataset extents our knowledge of the metabolic potential of several uncultured phyla. We were able to chart the flow of carbon and nutrients through the multiple layers of bacterial processing and reveal potential ecological interactions within the communities.