Development of an ICT-Based Air Column Resonance Learning Media
NASA Astrophysics Data System (ADS)
Purjiyanta, Eka; Handayani, Langlang; Marwoto, Putut
2016-08-01
Commonly, the sound source used in the air column resonance experiment is the tuning fork having disadvantage of unoptimal resonance results due to the sound produced which is getting weaker. In this study we made tones with varying frequency using the Audacity software which were, then, stored in a mobile phone as a source of sound. One advantage of this sound source is the stability of the resulting sound enabling it to produce the same powerful sound. The movement of water in a glass tube mounted on the tool resonance and the tone sound that comes out from the mobile phone were recorded by using a video camera. Sound resonances recorded were first, second, and third resonance, for each tone frequency mentioned. The resulting sound stays longer, so it can be used for the first, second, third and next resonance experiments. This study aimed to (1) explain how to create tones that can substitute tuning forks sound used in air column resonance experiments, (2) illustrate the sound wave that occurred in the first, second, and third resonance in the experiment, and (3) determine the speed of sound in the air. This study used an experimental method. It was concluded that; (1) substitute tones of a tuning fork sound can be made by using the Audacity software; (2) the form of sound waves that occured in the first, second, and third resonance in the air column resonance can be drawn based on the results of video recording of the air column resonance; and (3) based on the experiment result, the speed of sound in the air is 346.5 m/s, while based on the chart analysis with logger pro software, the speed of sound in the air is 343.9 ± 0.3171 m/s.
NEW THORACIC MURMURS, WITH TWO NEW INSTRUMENTS, THE REFRACTOSCOPE AND THE PARTIAL STETHOSCOPE
Parker, Frederick D.
1918-01-01
1. An understanding of the physics of sound is essential for a better comprehension of refined auscultation, tone analysis, and the use of these instruments. 2. The detection of variations of the third heart sound should prove a valuable aid in predicting mitral disease. 3. The variations of the outflow sound should prove a valuable aid in determining early aortic lesions with the type of accompanying intimal changes. 4. The character of chamber timbre as distinct from loudness heard as the first and second heart sounds denotes more often the condition of heart muscle, and must not be confounded with valvular disease. 5. The full significance of sound shadows is uncertain. Cardiac sound shadows appear normally in the right axilla and below the left clavicle. Their mode of production is quite clear. 6. Both the third heart sound and the outflow sound may be heard with the ordinary stethoscope. PMID:19868281
ERIC Educational Resources Information Center
Merwade, Venkatesh; Eichinger, David; Harriger, Bradley; Doherty, Erin; Habben, Ryan
2014-01-01
While the science of sound can be taught by explaining the concept of sound waves and vibrations, the authors of this article focused their efforts on creating a more engaging way to teach the science of sound--through engineering design. In this article they share the experience of teaching sound to third graders through an engineering challenge…
Third Graders Explore Sound Concepts through Online Research Compared to Making Musical Instruments
ERIC Educational Resources Information Center
Borsay, Kyrie D.; Foss, Page
2016-01-01
This study is an exploration of several lessons on sound taught to third grade students using one of the Next Generation Science Standards (3-5-ETS1) and arts integration. A counterbalanced, pretest- posttest- distal posttest design experiment was conducted to compare student knowledge and attitudes between the control and experimental conditions.…
Third Sound Generation in Superfluid 4He Films Adsorbed on Multiwall Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Iaia, Vito; Menachekanian, Emin; Williams, Gary
2014-03-01
A technique is developed for generating third sound in superfluid 4He films coating the surface of multiwall carbon nanotubes. Third sound is a thickness and temperature wave of the helium film, and in our case we detect the temperature oscillations with a carbon resistance bolometer. The nanotubes are packed in an annular resonator that is vibrated with a mechanical shaker assembly consisting of a permanent magnet mounted on springs, and surrounded by a superconducting coil. The coil is driven with an oscillating current, vibrating the cell at that frequency. Sweeping the drive frequency over the range 100-200 Hz excites the resonant third sound mode of the cell, seen as a high-Q signal in the FFT analysis of the bolometer signal. A problem with our original cell was that the mechanical drive would also shake the dilution refrigerator cooling the cell to low temperatures, and increasing the drive would start to heat up the refrigerator and the cell, which were rigidly coupled together. A new configuration now suspends the cell as a pendulum on a string, with thermal contact made by copper wires. Piezo sensor measurements show this reduces the vibration reaching the refrigerator by two orders of magnitude, which should allow measurements at lower temperatures.
Simplified procedure for computing the absorption of sound by the atmosphere
DOT National Transportation Integrated Search
2007-10-31
This paper describes a study that resulted in the development of a simplified : method for calculating attenuation by atmospheric-absorption for wide-band : sounds analyzed by one-third octave-band filters. The new method [referred to : herein as the...
25. Interior view of third floor attic of 1904 middle ...
25. Interior view of third floor attic of 1904 middle section showing concrete roof and storage of wooden patterns for ship parts. - Puget Sound Naval Shipyard, Pattern Shop, Farragut Avenue, Bremerton, Kitsap County, WA
ERIC Educational Resources Information Center
Council on Library and Information Resources, 2009
2009-01-01
This is the third of three studies of copyright and sound recordings commissioned by the National Recording Preservation Board (NRPB) in support of the congressionally mandated study of the state of audio preservation in the United States. All three studies have focused on how laws pertaining to sound recordings made before 1972 affect…
Hernandé-Gatón, Patrícia; Palma-Dibb, Regina Guenka; Silva, Léa Assed Bezerra da; Faraoni, Juliana Jendiroba; de Queiroz, Alexandra Mussolino; Lucisano, Marília Pacífico; Silva, Raquel Assed Bezerra da; Nelson Filho, Paulo
2018-04-01
To evaluate the effect of ultrasonic, sonic and rotating-oscillating powered toothbrushing systems on surface roughness and wear of white spot lesions and sound enamel. 40 tooth segments obtained from third molar crowns had the enamel surface divided into thirds, one of which was not subjected to toothbrushing. In the other two thirds, sound enamel and enamel with artificially induced white spot lesions were randomly assigned to four groups (n=10) : UT: ultrasonic toothbrush (Emmi-dental); ST1: sonic toothbrush (Colgate ProClinical Omron); ST2: sonic toothbrush (Sonicare Philips); and ROT: rotating-oscillating toothbrush (control) (Oral-B Professional Care Triumph 5000 with SmartGuide). The specimens were analyzed by confocal laser microscopy for surface roughness and wear. Data were analyzed statistically by paired t-tests, Kruskal-Wallis, two-way ANOVA and Tukey's post-test (α= 0.05). The different powered toothbrushing systems did not cause a significant increase in the surface roughness of sound enamel (P> 0.05). In the ROT group, the roughness of white spot lesion surface increased significantly after toothbrushing and differed from the UT group (P< 0.05). In the ROT group, brushing promoted a significantly greater wear of white spot lesion compared with sound enamel, and this group differed significantly from the ST1 group (P< 0.05). None of the powered toothbrushing systems (ultrasonic, sonic and rotating-oscillating) caused significant alterations on sound dental enamel. However, conventional rotating-oscillating toothbrushing on enamel with white spot lesion increased surface roughness and wear. None of the powered toothbrushing systems (ultrasonic, sonic and rotating-oscillating) tested caused significant alterations on sound dental enamel. However, conventional rotating-oscillating toothbrushing on enamel with white spot lesion increased surface roughness and wear. Copyright©American Journal of Dentistry.
Recognizing Excellence: Pinging--Sound at Work
ERIC Educational Resources Information Center
Lindquist, William; Forsberg, Britt
2014-01-01
One author shares the unique opportunity to be immersed in the science of "sound at work" through participation in NOAA's (National Oceanic and Atmospheric Administration) Teacher at Sea Program. A third- through fifth-grade learning outcome within the Nature of Science section of the "Next Generation Science Standards"…
ERIC Educational Resources Information Center
International Federation of Library Associations, The Hague (Netherlands).
Six papers on information technology, the development of information systems for Third World countries, handling of sound recordings, and library automation were presented at the 1984 IFLA conference. They include: (1) "Handling, Storage and Preservation of Sound Recordings under Tropical and Subtropical Climatic Conditions" (Dietrich…
Simulation-based Mastery Learning Improves Cardiac Auscultation Skills in Medical Students
McGaghie, William C.; Cohen, Elaine R.; Kaye, Marsha; Wayne, Diane B.
2010-01-01
Background Cardiac auscultation is a core clinical skill. However, prior studies show that trainee skills are often deficient and that clinical experience is not a proxy for competence. Objective To describe a mastery model of cardiac auscultation education and evaluate its effectiveness in improving bedside cardiac auscultation skills. Design Untreated control group design with pretest and posttest. Participants Third-year students who received a cardiac auscultation curriculum and fourth year students who did not. Intervention A cardiac auscultation curriculum consisting of a computer tutorial and a cardiac patient simulator. All third-year students were required to meet or exceed a minimum passing score (MPS) set by an expert panel at posttest. Measurements Diagnostic accuracy with simulated heart sounds and actual patients. Results Trained third-year students (n = 77) demonstrated significantly higher cardiac auscultation accuracy compared to untrained fourth year students (n = 31) in assessment of simulated heart sounds (93.8% vs. 73.9%, p < 0.001) and with real patients (81.8% vs. 75.1%, p = 0.003). USMLE scores correlated modestly with a computer-based multiple choice assessment using simulated heart sounds but not with bedside skills on real patients. Conclusions A cardiac auscultation curriculum consisting of deliberate practice with a computer-based tutorial and a cardiac patient simulator resulted in improved assessment of simulated heart sounds and more accurate examination of actual patients. PMID:20339952
Intensive Treatment with Ultrasound Visual Feedback for Speech Sound Errors in Childhood Apraxia
Preston, Jonathan L.; Leece, Megan C.; Maas, Edwin
2016-01-01
Ultrasound imaging is an adjunct to traditional speech therapy that has shown to be beneficial in the remediation of speech sound errors. Ultrasound biofeedback can be utilized during therapy to provide clients with additional knowledge about their tongue shapes when attempting to produce sounds that are erroneous. The additional feedback may assist children with childhood apraxia of speech (CAS) in stabilizing motor patterns, thereby facilitating more consistent and accurate productions of sounds and syllables. However, due to its specialized nature, ultrasound visual feedback is a technology that is not widely available to clients. Short-term intensive treatment programs are one option that can be utilized to expand access to ultrasound biofeedback. Schema-based motor learning theory suggests that short-term intensive treatment programs (massed practice) may assist children in acquiring more accurate motor patterns. In this case series, three participants ages 10–14 years diagnosed with CAS attended 16 h of speech therapy over a 2-week period to address residual speech sound errors. Two participants had distortions on rhotic sounds, while the third participant demonstrated lateralization of sibilant sounds. During therapy, cues were provided to assist participants in obtaining a tongue shape that facilitated a correct production of the erred sound. Additional practice without ultrasound was also included. Results suggested that all participants showed signs of acquisition of sounds in error. Generalization and retention results were mixed. One participant showed generalization and retention of sounds that were treated; one showed generalization but limited retention; and the third showed no evidence of generalization or retention. Individual characteristics that may facilitate generalization are discussed. Short-term intensive treatment programs using ultrasound biofeedback may result in the acquisition of more accurate motor patterns and improved articulation of sounds previously in error, with varying levels of generalization and retention. PMID:27625603
ERIC Educational Resources Information Center
Klein, Harriet B.; Grigos, Maria I.; Byun, Tara McAllister; Davidson, Lisa
2012-01-01
This study examined inexperienced listeners' perceptions of children's naturally produced /r/ sounds with reference to levels of accuracy determined by consensus between two expert clinicians. Participants rated /r/ sounds as fully correct, distorted or incorrect/non-rhotic. Second and third formant heights were measured to explore the…
NUCLEATION AND THE AUDIO-LINGUAL APPROACH.
ERIC Educational Resources Information Center
BELASCO, SIMON
IN THE PRE-NUCLEATION STAGE, THE STUDENT IS CONCERNED WITH STORING, OR INTERNALIZING, THREE KINDS OF LANGUAGE PATTERNS--(1) ONE REPRESENTING THE SOUND STRUCTURE, (2) ANOTHER INVOLVING A PORTION OF THE SYNTACTIC STRUCTURE, AND (3) A THIRD--CALLED SANDHI VARIATION--ARISING FROM THE ACCIDENTAL CO-OCCURRENCE OF CERTAIN SOUNDS MAKING UP THE ELEMENTS OF…
Garrett, J K; Blondel, Ph; Godley, B J; Pikesley, S K; Witt, M J; Johanning, L
2016-09-15
Chronic low-frequency anthropogenic sound, such as shipping noise, may be negatively affecting marine life. The EU's Marine Strategy Framework Directive (MSFD) includes a specific indicator focused on this noise. This indicator is the yearly average sound level in third-octave bands with centre frequencies at 63Hz and 125Hz. These levels are described for Falmouth Bay, UK, an active port at the entrance to the English Channel. Underwater sound was recorded for 30min h(-1) over the period June 2012 to November 2013 for a total of 435days. Mean third-octave levels were louder in the 125-Hz band (annual mean level of 96.0dB re 1μPa) than in the 63-Hz band (92.6dB re 1 μPa). These levels and variations are assessed as a function of seasons, shipping activity and wave height, providing comparison points for future monitoring activities, including the MSFD and emerging international regulation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Third order harmonic imaging for biological tissues using three phase-coded pulses.
Ma, Qingyu; Gong, Xiufen; Zhang, Dong
2006-12-22
Compared to the fundamental and the second harmonic imaging, the third harmonic imaging shows significant improvements in image quality due to the better resolution, but it is degraded by the lower sound pressure and signal-to-noise ratio (SNR). In this study, a phase-coded pulse technique is proposed to selectively enhance the sound pressure of the third harmonic by 9.5 dB whereas the fundamental and the second harmonic components are efficiently suppressed and SNR is also increased by 4.7 dB. Based on the solution of the KZK nonlinear equation, the axial and lateral beam profiles of harmonics radiated from a planar piston transducer were theoretically simulated and experimentally examined. Finally, the third harmonic images using this technique were performed for several biological tissues and compared with the images obtained by the fundamental and the second harmonic imaging. Results demonstrate that the phase-coded pulse technique yields a dramatically cleaner and sharper contrast image.
NASA Technical Reports Server (NTRS)
Lucas, Michael J.; Marcolini, Michael A.
1997-01-01
The Rotorcraft Noise Model (RNM) is an aircraft noise impact modeling computer program being developed for NASA-Langley Research Center which calculates sound levels at receiver positions either on a uniform grid or at specific defined locations. The basic computational model calculates a variety of metria. Acoustic properties of the noise source are defined by two sets of sound pressure hemispheres, each hemisphere being centered on a noise source of the aircraft. One set of sound hemispheres provides the broadband data in the form of one-third octave band sound levels. The other set of sound hemispheres provides narrowband data in the form of pure-tone sound pressure levels and phase. Noise contours on the ground are output graphically or in tabular format, and are suitable for inclusion in Environmental Impact Statements or Environmental Assessments.
1989-03-01
but no attempt was made at correction. The modification of the ambient atmospheric and oceanic environments due to the presence of a ship has been...in June, 1986. Two cruises were aboard the research vessel USNS Lynch. On the first cruise, 13 soundings were made in the western Mediterranean...between Spain and Algeria; on the second, 26 soundings were made near the Strait of Gibraltar. The third cruise, for which 16 soundings are available, was
Environmentally Sound Small-Scale Livestock Projects. Guidelines for Planning Series Number 5.
ERIC Educational Resources Information Center
Jacobs, Linda
This document was developed in response to the need for simplified technical information for planning environmentally sound small-scale projects in third world countries. It is aimed specifically at those who are planning or managing small-scale livestock projects in less-developed areas of the tropics and sub-tropics. The guidelines included in…
24. Interior view of third floor attic of 1896 south ...
24. Interior view of third floor attic of 1896 south section of building. Note steel truss supports and wooden roof. Top floor round window in seen from outside in photo WA-116-A-2. - Puget Sound Naval Shipyard, Pattern Shop, Farragut Avenue, Bremerton, Kitsap County, WA
A closed-loop automatic control system for high-intensity acoustic test systems.
NASA Technical Reports Server (NTRS)
Slusser, R. A.
1973-01-01
Description of an automatic control system for high-intensity acoustic tests in reverberation chambers. Working in 14 one-third-octave bands from 50 to 1000 Hz, the desired sound pressure levels are set into the memory in the control system before the test. The control system then increases the sound pressure level in the reverberation chamber gradually in each of the one-third-octave bands until the level set in the memory is reached. This level is then maintained for the duration of the test. Additional features of the system are overtest protection, the capability of 'holding' the spectrum at any time, and the presence of a total test timer.
Audiovisual Materials for Teaching Economics. Third Edition.
ERIC Educational Resources Information Center
Harter, Charlotte T.; And Others
The third edition of this catalog, which expands and revises earlier editions, annotates audiovisual items for economic education in kindergarten through college. The purpose of the catalog is to help teachers select sound economic materials for classroom use. A selective listing, the catalog cites over 700 items out of more than 1200 items…
A Guide for Estimation of Aeroacoustic Loads on Flight Vehicle Surfaces
1977-02-01
Nozzle aspect ratio correction of one-third octave band sound pressure levels of USB noise . 122 31. Impingement angle correction of one-third octave...breech weapons ....................... 175 IX •: •-•,..i .•,z. •... LIST OF FIGURES (Cont.) page Figure 61. Rectangular cavity ...and a nozzle aspect ratio of 4.0, and without a deflector. Obtain the corrected one-third octave band level SPL from the baseline level, from " b
Early lexical and phonological acquisition and its relationships.
Wiethan, Fernanda Marafiga; Nóro, Letícia Arruda; Mota, Helena Bolli
2014-01-01
Verifying likely relationships between lexical and phonological development of children aged between 1 year to 1 year, 11 months and 29 days, who were enrolled in public kindergarten schools of Santa Maria (RS). The sample consisted of 18 children of both genders, with typical language development and aged between 1 year to 1 year, 11 months and 29 days, separated in three age subgroups. Visual recordings of spontaneous speech of each child were collected and then lexical analysis regarding the types of the said lexical items and phonological assessment were performed. The number of sounds acquired and partially acquired were counted together, and the 19 sounds and two all phones of Brazilian Portuguese were considered. To the statistical analysis, the tests of Kruskal-Wallis and Wilcoxon were used, with significance level of prelace_LT0.05. When compared the means relating to the acquired sounds and mean of the acquired and partially acquired sounds percentages, there was difference between the first and the second age subgroup, and between the first and the third subgroup. In the comparison of the said lexical items means among the age subgroups, there was difference between the first and the second subgroup, and between the first and the third subgroup again. In the comparison between the said lexical items and acquired and partially acquired sounds in each age subgroup, there was difference only in the age subgroup of 1 year and 8 months to 1 year, 11 months and 29 days, in which the sounds highlighted. The phonological and lexical domains develop as a growing process and influence each other. The Phonology has a little advantage.
Fluttering wing feathers produce the flight sounds of male streamertail hummingbirds.
Clark, Christopher James
2008-08-23
Sounds produced continuously during flight potentially play important roles in avian communication, but the mechanisms underlying these sounds have received little attention. Adult male Red-billed Streamertail hummingbirds (Trochilus polytmus) bear elongated tail streamers and produce a distinctive 'whirring' flight sound, whereas subadult males and females do not. The production of this sound, which is a pulsed tone with a mean frequency of 858 Hz, has been attributed to these distinctive tail streamers. However, tail-less streamertails can still produce the flight sound. Three lines of evidence implicate the wings instead. First, it is pulsed in synchrony with the 29 Hz wingbeat frequency. Second, a high-speed video showed that primary feather eight (P8) bends during each downstroke, creating a gap between P8 and primary feather nine (P9). Manipulating either P8 or P9 reduced the production of the flight sound. Third, laboratory experiments indicated that both P8 and P9 can produce tones over a range of 700-900 Hz. The wings therefore produce the distinctive flight sound, enabled via subtle morphological changes to the structure of P8 and P9.
NASA Technical Reports Server (NTRS)
West, Edward; Cirtain, Jonathan; Kobayashi, Ken; Davis, John; Gary, Allen
2011-01-01
This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph Investigation (SUMI) sounding rocket program. This paper will concentrate on SUMI's VUV optics, and discuss their spectral, spatial and polarization characteristics. While SUMI's first flight (7/30/2010) met all of its mission success criteria, there are several areas that will be improved for its second and third flights. This paper will emphasize the MgII linear polarization measurements and describe the changes that will be made to the sounding rocket and how those changes will improve the scientific data acquired by SUMI.
ERIC Educational Resources Information Center
Rebell, Michael A.; Wolff, Jessica R.
2016-01-01
This is the third in a series of reports that are the culmination of two years of research by the Campaign for Educational Equity, a policy and research center at Teachers College, Columbia University, and significant input from the Safeguarding Sound Basic Education Task Force, a statewide group made up of representatives from New York's leading…
An Introduction to Music Therapy: Theory and Practice. Third Edition
ERIC Educational Resources Information Center
Davis, William B.; Gfeller, Kate E.; Thaut, Michael H.
2008-01-01
"An Introduction to Music Therapy: Theory and Practice, Third Edition," provides a comprehensive overview of the practice of music therapy for the 21st century. It looks at where we have been, where we are today, and where we might be in the future. Combining sound pedagogy with recent research findings, this new edition has been updated and…
The influence of the level formants on the perception of synthetic vowel sounds
NASA Astrophysics Data System (ADS)
Kubzdela, Henryk; Owsianny, Mariuz
A computer model of a generator of periodic complex sounds simulating consonants was developed. The system makes possible independent regulation of the level of each of the formants and instant generation of the sound. A trapezoid approximates the curve of the spectrum within the range of the formant. In using this model, each person in a group of six listeners experimentally selected synthesis parameters for six sounds that to him seemed optimal approximations of Polish consonants. From these, another six sounds were selected that were identified by a majority of the six persons and several additional listeners as being best qualified to serve as prototypes of Polish consonants. These prototypes were then used to randomly create sounds with various combinations at the level of the second and third formant and these were presented to seven listeners for identification. The results of the identifications are presented in table form in three variants and are described from the point of view of the requirements of automatic recognition of consonants in continuous speech.
Marinelli, Chiara Valeria; Cellini, Pamela; Zoccolotti, Pierluigi; Angelelli, Paola
This study examined the ability to master lexical processing and use knowledge of the relative frequency of sound-spelling mappings in both reading and spelling. Twenty-four dyslexic and dysgraphic children and 86 typically developing readers were followed longitudinally in 3rd and 5th grades. Effects of word regularity, word frequency, and probability of sound-spelling mappings were examined in two experimental tasks: (a) spelling to dictation; and (b) orthographic judgment. Dyslexic children showed larger regularity and frequency effects than controls in both tasks. Sensitivity to distributional information of sound-spelling mappings was already detected by third grade, indicating early acquisition even in children with dyslexia. Although with notable differences, knowledge of the relative frequencies of sound-spelling mapping influenced both reading and spelling. Results are discussed in terms of their theoretical and empirical implications.
Lim, A C O; Chong, V C; Chew, W X; Muniandy, S V; Wong, C S; Ong, Z C
2015-07-01
Acoustic signals of the tiger-tail seahorse (Hippocampus comes) during feeding were studied using wavelet transform analysis. The seahorse "click" appears to be a compounded sound, comprising three acoustic components that likely come from two sound producing mechanisms. The click sound begins with a low-frequency precursor signal, followed by a sudden high-frequency spike that decays quickly, and a final, low-frequency sinusoidal component. The first two components can, respectively, be traced to the sliding movement and forceful knock between the supraorbital bone and coronet bone of the cranium, while the third one (purr) although appearing to be initiated here is produced elsewhere. The seahorse also produces a growling sound when under duress. Growling is accompanied by the highest recorded vibration at the cheek indicating another sound producing mechanism here. The purr has the same low frequency as the growl; both are likely produced by the same structural mechanism. However, growl and purr are triggered and produced under different conditions, suggesting that such "vocalization" may have significance in communication between seahorses.
Visual Presentation Effects on Identification of Multiple Environmental Sounds
Masakura, Yuko; Ichikawa, Makoto; Shimono, Koichi; Nakatsuka, Reio
2016-01-01
This study examined how the contents and timing of a visual stimulus affect the identification of mixed sounds recorded in a daily life environment. For experiments, we presented four environment sounds as auditory stimuli for 5 s along with a picture or a written word as a visual stimulus that might or might not denote the source of one of the four sounds. Three conditions of temporal relations between the visual stimuli and sounds were used. The visual stimulus was presented either: (a) for 5 s simultaneously with the sound; (b) for 5 s, 1 s before the sound (SOA between the audio and visual stimuli was 6 s); or (c) for 33 ms, 1 s before the sound (SOA was 1033 ms). Participants reported all identifiable sounds for those audio–visual stimuli. To characterize the effects of visual stimuli on sound identification, the following were used: the identification rates of sounds for which the visual stimulus denoted its sound source, the rates of other sounds for which the visual stimulus did not denote the sound source, and the frequency of false hearing of a sound that was not presented for each sound set. Results of the four experiments demonstrated that a picture or a written word promoted identification of the sound when it was related to the sound, particularly when the visual stimulus was presented for 5 s simultaneously with the sounds. However, a visual stimulus preceding the sounds had a benefit only for the picture, not for the written word. Furthermore, presentation with a picture denoting a sound simultaneously with the sound reduced the frequency of false hearing. These results suggest three ways that presenting a visual stimulus affects identification of the auditory stimulus. First, activation of the visual representation extracted directly from the picture promotes identification of the denoted sound and suppresses the processing of sounds for which the visual stimulus did not denote the sound source. Second, effects based on processing of the conceptual information promote identification of the denoted sound and suppress the processing of sounds for which the visual stimulus did not denote the sound source. Third, processing of the concurrent visual representation suppresses false hearing. PMID:26973478
Fourth International Symposium on Long-Range Sound Propagation
NASA Technical Reports Server (NTRS)
Willshire, William L., Jr. (Compiler)
1990-01-01
Long range sound propagation is an aspect of many acoustical problems ranging from en route aircraft noise to the acoustic detection of aircraft. Over the past decade, the University of Mississippi and the Open University of England, together with a third institution, have held a symposium approx. every 2 years so that experts in the field of long range propagation could exchange information on current research, identify areas needing additional work, and coordinate activities as much as possible. The Fourth International Symposium on Long Range Sound Propagation was jointly sponsored by the University of Mississippi, the Open University of England, and NASA. Papers were given in the following areas: ground effects on propagation; infrasound propagation; and meteorological effects on sound propagation. A compilation of the presentations made at the symposium is presented along with a list of attendees, and the agenda.
Memory for pictures and sounds: independence of auditory and visual codes.
Thompson, V A; Paivio, A
1994-09-01
Three experiments examined the mnemonic independence of auditory and visual nonverbal stimuli in free recall. Stimulus lists consisted of (1) pictures, (2) the corresponding environmental sounds, or (3) picture-sound pairs. In Experiment 1, free recall was tested under three learning conditions: standard intentional, intentional with a rehearsal-inhibiting distracter task, or incidental with the distracter task. In all three groups, recall was best for the picture-sound items. In addition, recall for the picture-sound stimuli appeared to be additive relative to pictures or sounds alone when the distracter task was used. Experiment 2 included two additional groups: In one, two copies of the same picture were shown simultaneously; in the other, two different pictures of the same concept were shown. There was no difference in recall among any of the picture groups; in contrast, recall in the picture-sound condition was greater than recall in either single-modality condition. However, doubling the exposure time in a third experiment resulted in additively higher recall for repeated pictures with different exemplars than ones with identical exemplars. The results are discussed in terms of dual coding theory and alternative conceptions of the memory trace.
Scanning silence: mental imagery of complex sounds.
Bunzeck, Nico; Wuestenberg, Torsten; Lutz, Kai; Heinze, Hans-Jochen; Jancke, Lutz
2005-07-15
In this functional magnetic resonance imaging (fMRI) study, we investigated the neural basis of mental auditory imagery of familiar complex sounds that did not contain language or music. In the first condition (perception), the subjects watched familiar scenes and listened to the corresponding sounds that were presented simultaneously. In the second condition (imagery), the same scenes were presented silently and the subjects had to mentally imagine the appropriate sounds. During the third condition (control), the participants watched a scrambled version of the scenes without sound. To overcome the disadvantages of the stray acoustic scanner noise in auditory fMRI experiments, we applied sparse temporal sampling technique with five functional clusters that were acquired at the end of each movie presentation. Compared to the control condition, we found bilateral activations in the primary and secondary auditory cortices (including Heschl's gyrus and planum temporale) during perception of complex sounds. In contrast, the imagery condition elicited bilateral hemodynamic responses only in the secondary auditory cortex (including the planum temporale). No significant activity was observed in the primary auditory cortex. The results show that imagery and perception of complex sounds that do not contain language or music rely on overlapping neural correlates of the secondary but not primary auditory cortex.
[Displacement and tissue remodeling of temporomandibular joint disc].
Wang, M Q
2017-03-09
Sounding takes the highest prevalence of the signs of temporomandibular disorders (TMD). The well accepted theory of the mechanism for temporomandibular joint (TMJ) sounding is the internal derangement typically characterized by disc displacement. However, according to literature, there are approximately one third of asymptomatic joints in population had disc displacement, and, on the other hand, there are one fourth of TMJ sounding patients had not signs or very limited signs of disc displacement. Replacing the displaced disc to the normal position via methods like surgical operation did not achieve satisfactory long-term outcomes. In this review, we discuss and analyze the possible remodeling of the joint disc displacement diagnosed with imaging based on the anatomy and pathophysiology.
Tipping point analysis of a large ocean ambient sound record
NASA Astrophysics Data System (ADS)
Livina, Valerie N.; Harris, Peter; Brower, Albert; Wang, Lian; Sotirakopoulos, Kostas; Robinson, Stephen
2017-04-01
We study a long (2003-2015) high-resolution (250Hz) sound pressure record provided by the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) from the hydro-acoustic station Cape Leeuwin (Australia). We transform the hydrophone waveforms into five bands of 10-min-average sound pressure levels (including the third-octave band) and apply tipping point analysis techniques [1-3]. We report the results of the analysis of fluctuations and trends in the data and discuss the BigData challenges in processing this record, including handling data segments of large size and possible HPC solutions. References: [1] Livina et al, GRL 2007, [2] Livina et al, Climate of the Past 2010, [3] Livina et al, Chaos 2015.
Second order hydrodynamics for a special class of gravity duals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, T.
2009-04-15
The sound mode hydrodynamic dispersion relation is computed up to order q{sup 3} for a class of gravitational duals which includes both Schwarzschild AdS and Dp-brane metrics. The implications for second order transport coefficients are examined within the context of Israel-Stewart theory. These sound mode results are compared with previously known results for the shear mode. This comparison allows one to determine the third order hydrodynamic contributions to the shear mode for the class of metrics considered here.
Phonological similarity influences word learning in adults learning Spanish as a foreign language
Stamer, Melissa K.; Vitevitch, Michael S.
2013-01-01
Neighborhood density—the number of words that sound similar to a given word (Luce & Pisoni, 1998)—influences word-learning in native English speaking children and adults (Storkel, 2004; Storkel, Armbruster, & Hogan, 2006): novel words with many similar sounding English words (i.e., dense neighborhood) are learned more quickly than novel words with few similar sounding English words (i.e., sparse neighborhood). The present study examined how neighborhood density influences word-learning in native English speaking adults learning Spanish as a foreign language. Students in their third-semester of Spanish language classes learned advanced Spanish words that sounded similar to many known Spanish words (i.e., dense neighborhood) or sounded similar to few known Spanish words (i.e., sparse neighborhood). In three word-learning tasks, performance was better for Spanish words with dense rather than sparse neighborhoods. These results suggest that a similar mechanism may be used to learn new words in a native and a foreign language. PMID:23950692
NASA Astrophysics Data System (ADS)
Zuo, Zhifeng; Maekawa, Hiroshi
2014-02-01
The interaction between a moderate-strength shock wave and a near-wall vortex is studied numerically by solving the two-dimensional, unsteady compressible Navier-Stokes equations using a weighted compact nonlinear scheme with a simple low-dissipation advection upstream splitting method for flux splitting. Our main purpose is to clarify the development of the flow field and the generation of sound waves resulting from the interaction. The effects of the vortex-wall distance on the sound generation associated with variations in the flow structures are also examined. The computational results show that three sound sources are involved in this problem: (i) a quadrupolar sound source due to the shock-vortex interaction; (ii) a dipolar sound source due to the vortex-wall interaction; and (iii) a dipolar sound source due to unsteady wall shear stress. The sound field is the combination of the sound waves produced by all three sound sources. In addition to the interaction of the incident shock with the vortex, a secondary shock-vortex interaction is caused by the reflection of the reflected shock (MR2) from the wall. The flow field is dominated by the primary and secondary shock-vortex interactions. The generation mechanism of the third sound, which is newly discovered, due to the MR2-vortex interaction is presented. The pressure variations generated by (ii) become significant with decreasing vortex-wall distance. The sound waves caused by (iii) are extremely weak compared with those caused by (i) and (ii) and are negligible in the computed sound field.
The Physiological Basis of Chinese Höömii Generation.
Li, Gelin; Hou, Qian
2017-01-01
The study aimed to investigate the physiological basis of vibration mode of sound source of a variety of Mongolian höömii forms of singing in China. The participant is a Mongolian höömii performing artist who was recommended by the Chinese Medical Association of Art. He used three types of höömii, namely vibration höömii, whistle höömii, and overtone höömii, which were compared with general comfortable pronunciation of /i:/ as control. Phonation was observed during /i:/. A laryngostroboscope (Storz) was used to determine vibration source-mucosal wave in the throat. For vibration höömii, bilateral ventricular folds approximated to the midline and made contact at the midline during pronunciation. Ventricular and vocal folds oscillated together as a single unit to form a composite vibration (double oscillator) sound source. For whistle höömii, ventricular folds approximated to the midline to cover part of vocal folds, but did not contact each other. It did not produce mucosal wave. The vocal folds produced mucosal wave to form a single vibration sound source. For overtone höömii, the anterior two-thirds of ventricular folds touched each other during pronunciation. The last one-third produced the mucosal wave. The vocal folds produced mucosal wave at the same time, which was a composite vibration (double oscillator) sound source mode. The Höömii form of singing, including mixed voices and multivoice, was related to the presence of dual vibration sound sources. Its high overtone form of singing (whistle höömii) was related to stenosis at the resonance chambers' initiation site (ventricular folds level). Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
30 CFR 251.2 - Purpose of this part.
Code of Federal Regulations, 2010 CFR
2010-07-01
... environmentally sound manner so as to prevent harm or damage to, or waste of, any natural resources (including any..., or the marine, coastal, or human environment. (c) To inform you and third parties of your legal and...
Tanaka, Tagayasu; Inaba, Ryoichi; Aoyama, Atsuhito
2016-01-01
Objectives: This study investigated the actual situation of noise and low-frequency sounds in firework events and their impact on pyrotechnicians. Methods: Data on firework noise and low-frequency sounds were obtained at a point located approximately 100 m away from the launch site of a firework display held in "A" City in 2013. We obtained the data by continuously measuring and analyzing the equivalent continuous sound level (Leq) and the one-third octave band of the noise and low-frequency sounds emanating from the major firework detonations, and predicted sound levels at the original launch site. Results: Sound levels of 100-115 dB and low-frequency sounds of 100-125 dB were observed at night. The maximum and mean Leq values were 97 and 95 dB, respectively. The launching noise level predicted from the sounds (85 dB) at the noise measurement point was 133 dB. Occupational exposure to noise for pyrotechnicians at the remote operation point (located 20-30 m away from the launch site) was estimated to be below 100 dB. Conclusions: Pyrotechnicians are exposed to very loud noise (>100 dB) at the launch point. We believe that it is necessary to implement measures such as fixing earplugs or earmuffs, posting a warning at the workplace, and executing a remote launching operation to prevent hearing loss caused by occupational exposure of pyrotechnicians to noise. It is predicted that both sound levels and low-frequency sounds would be reduced by approximately 35 dB at the remote operation site. PMID:27725489
Tanaka, Tagayasu; Inaba, Ryoichi; Aoyama, Atsuhito
2016-11-29
This study investigated the actual situation of noise and low-frequency sounds in firework events and their impact on pyrotechnicians. Data on firework noise and low-frequency sounds were obtained at a point located approximately 100 m away from the launch site of a firework display held in "A" City in 2013. We obtained the data by continuously measuring and analyzing the equivalent continuous sound level (Leq) and the one-third octave band of the noise and low-frequency sounds emanating from the major firework detonations, and predicted sound levels at the original launch site. Sound levels of 100-115 dB and low-frequency sounds of 100-125 dB were observed at night. The maximum and mean Leq values were 97 and 95 dB, respectively. The launching noise level predicted from the sounds (85 dB) at the noise measurement point was 133 dB. Occupational exposure to noise for pyrotechnicians at the remote operation point (located 20-30 m away from the launch site) was estimated to be below 100 dB. Pyrotechnicians are exposed to very loud noise (>100 dB) at the launch point. We believe that it is necessary to implement measures such as fixing earplugs or earmuffs, posting a warning at the workplace, and executing a remote launching operation to prevent hearing loss caused by occupational exposure of pyrotechnicians to noise. It is predicted that both sound levels and low-frequency sounds would be reduced by approximately 35 dB at the remote operation site.
Developmental Changes in Locating Voice and Sound in Space
Kezuka, Emiko; Amano, Sachiko; Reddy, Vasudevi
2017-01-01
We know little about how infants locate voice and sound in a complex multi-modal space. Using a naturalistic laboratory experiment the present study tested 35 infants at 3 ages: 4 months (15 infants), 5 months (12 infants), and 7 months (8 infants). While they were engaged frontally with one experimenter, infants were presented with (a) a second experimenter’s voice and (b) castanet sounds from three different locations (left, right, and behind). There were clear increases with age in the successful localization of sounds from all directions, and a decrease in the number of repetitions required for success. Nonetheless even at 4 months two-thirds of the infants attempted to search for the voice or sound. At all ages localizing sounds from behind was more difficult and was clearly present only at 7 months. Perseverative errors (looking at the last location) were present at all ages and appeared to be task specific (only present in the 7 month-olds for the behind location). Spontaneous attention shifts by the infants between the two experimenters, evident at 7 months, suggest early evidence for infant initiation of triadic attentional engagements. There was no advantage found for voice over castanet sounds in this study. Auditory localization is a complex and contextual process emerging gradually in the first half of the first year. PMID:28979220
Localizing semantic interference from distractor sounds in picture naming: A dual-task study.
Mädebach, Andreas; Kieseler, Marie-Luise; Jescheniak, Jörg D
2017-10-13
In this study we explored the locus of semantic interference in a novel picture-sound interference task in which participants name pictures while ignoring environmental distractor sounds. In a previous study using this task (Mädebach, Wöhner, Kieseler, & Jescheniak, in Journal of Experimental Psychology: Human Perception and Performance, 43, 1629-1646, 2017), we showed that semantically related distractor sounds (e.g., BARKING dog ) interfere with a picture-naming response (e.g., "horse") more strongly than unrelated distractor sounds do (e.g., DRUMMING drum ). In the experiment reported here, we employed the psychological refractory period (PRP) approach to explore the locus of this effect. We combined a geometric form classification task (square vs. circle; Task 1) with the picture-sound interference task (Task 2). The stimulus onset asynchrony (SOA) between the tasks was systematically varied (0 vs. 500 ms). There were three central findings. First, the semantic interference effect from distractor sounds was replicated. Second, picture naming (in Task 2) was slower with the short than with the long task SOA. Third, both effects were additive-that is, the semantic interference effects were of similar magnitude at both task SOAs. This suggests that the interference arises during response selection or later stages, not during early perceptual processing. This finding corroborates the theory that semantic interference from distractor sounds reflects a competitive selection mechanism in word production.
NASA Technical Reports Server (NTRS)
Gelder, T. F.; Soltis, R. F.
1975-01-01
Narrowband analysis revealed grossly similar sound pressure level spectra in each facility. Blade passing frequency (BPF) noise and multiple pure tone (MPT) noise were superimposed on a broadband (BB) base noise. From one-third octave bandwidth sound power analyses the BPF noise (harmonics combined), and the MPT noise (harmonics combined, excepting BPF's) agreed between facilities within 1.5 db or less over the range of speeds and flows tested. Detailed noise and aerodynamic performance is also presented.
Where is the level of neutral buoyancy for deep convection?
NASA Astrophysics Data System (ADS)
Takahashi, Hanii; Luo, Zhengzhao
2012-08-01
This study revisits an old concept in meteorology - level of neutral buoyancy (LNB). The classic definition of LNB is derived from the parcel theory and can be estimated from the ambient sounding (LNB_sounding) without having to observe any actual convective cloud development. In reality, however, convection interacts with the environment in complicated ways; it will eventually manage to find its own effective LNB and manifests it through detraining masses and developing anvils (LNB_observation). This study conducts a near-global survey of LNB_observation for tropical deep convection using CloudSat data and makes comparison with the corresponding LNB_sounding. The principal findings are as follows: First, although LNB_sounding provides a reasonable upper bound for convective development, correlation between LNB_sounding and LNB_observation is low suggesting that ambient sounding contains limited information for accurately predicting the actual LNB. Second, maximum mass outflow is located more than 3 km lower than LNB_sounding. Hence, from convective transport perspective, LNB_sounding is a significant overestimate of the “destination” height level of the detrained mass. Third, LNB_observation is consistently higher over land than over ocean, although LNB_sounding is similar between land and ocean. This difference is likely related to the contrasts in convective strength and environment between land and ocean. Finally, we estimate the bulk entrainment rates associated with the observed deep convection, which can serve as an observational basis for adjusting GCM cumulus parameterization.
ERIC Educational Resources Information Center
Walker, Jearl
1983-01-01
Three physics experiments are described, minimizing difficulties for amateur experimenters. One experiment demonstrates the Doppler shift of light, converting the phenomenon into sound. The second measures Planck's constant. The third measures the universal gravitational constant, which does the same in Newton's theory of gravitation. (Author/JN)
Biosonar signals impinging on the target during interception by big brown bats, Eptesicus fuscus.
Saillant, Prestor A; Simmons, James A; Bouffard, Frederick H; Lee, David N; Dear, Steven P
2007-05-01
Big brown bats (Eptesicus fuscus) were videotaped in the dark with a night-vision lens and infrared illumination while flying repeatedly along the same straight course to seize a tethered mealworm or a small electret microphone used to record biosonar signals impinging on the target. Bats emitted frequency-modulated sounds with first to third harmonics covering frequencies from 23 to 105 kHz. As the bats neared the target, the first harmonic shifted lower in frequency while the third harmonic strengthened and the fourth harmonic, and sometimes the fifth harmonic, appeared. Incident-sound bandwidth remained broad throughout the maneuver, a feature not seen in field recordings of rapidly moving bats due to propagation losses and uncontrolled directional effects. Sound pressures at the microphone increased by about 20 dB during approach from 2.5 m down to 50 cm and then leveled off, indicating that emitted amplitudes were approximately constant until the terminal stage, when they progressively decreased for the remainder of the maneuver. Interpulse intervals decreased from 80-100 ms down to about 6-7 ms and then stabilized throughout the terminal stage, while durations decreased smoothly from 3-4 ms (limited by adjacent wall) down to 0.5 ms during the terminal stage, which ended with capture.
Song pattern recognition in crickets based on a delay-line and coincidence-detector mechanism
Sarmiento-Ponce, Edith Julieta
2017-01-01
Acoustic communication requires filter mechanisms to process and recognize key features of the perceived signals. We analysed such a filter mechanism in field crickets (Gryllus bimaculatus), which communicate with species-specific repetitive patterns of sound pulses and chirps. A delay-line and coincidence-detection mechanism, in which each sound pulse has an impact on the processing of the following pulse, is implicated to underlie the recognition of the species-specific pulse pattern. Based on this concept, we hypothesized that altering the duration of a single pulse or inter-pulse interval in three-pulse chirps will lead to different behavioural responses. Phonotaxis was tested in female crickets walking on a trackball exposed to different sound paradigms. Changing the duration of either the first, second or third pulse of the chirps led to three different characteristic tuning curves. Long first pulses decreased the phonotactic response whereas phonotaxis remained strong when the third pulse was long. Chirps with three pulses of increasing duration of 5, 20 and 50 ms elicited phonotaxis, but the chirps were not attractive when played in reverse order. This demonstrates specific, pulse duration-dependent effects while sequences of pulses are processed. The data are in agreement with a mechanism in which processing of a sound pulse has an effect on the processing of the subsequent pulse, as outlined in the flow of activity in a delay-line and coincidence-detector circuit. Additionally our data reveal a substantial increase in the gain of phonotaxis, when the number of pulses of a chirp is increased from two to three. PMID:28539524
Song pattern recognition in crickets based on a delay-line and coincidence-detector mechanism.
Hedwig, Berthold; Sarmiento-Ponce, Edith Julieta
2017-05-31
Acoustic communication requires filter mechanisms to process and recognize key features of the perceived signals. We analysed such a filter mechanism in field crickets ( Gryllus bimaculatus ), which communicate with species-specific repetitive patterns of sound pulses and chirps. A delay-line and coincidence-detection mechanism, in which each sound pulse has an impact on the processing of the following pulse, is implicated to underlie the recognition of the species-specific pulse pattern. Based on this concept, we hypothesized that altering the duration of a single pulse or inter-pulse interval in three-pulse chirps will lead to different behavioural responses. Phonotaxis was tested in female crickets walking on a trackball exposed to different sound paradigms. Changing the duration of either the first, second or third pulse of the chirps led to three different characteristic tuning curves. Long first pulses decreased the phonotactic response whereas phonotaxis remained strong when the third pulse was long. Chirps with three pulses of increasing duration of 5, 20 and 50 ms elicited phonotaxis, but the chirps were not attractive when played in reverse order. This demonstrates specific, pulse duration-dependent effects while sequences of pulses are processed. The data are in agreement with a mechanism in which processing of a sound pulse has an effect on the processing of the subsequent pulse, as outlined in the flow of activity in a delay-line and coincidence-detector circuit. Additionally our data reveal a substantial increase in the gain of phonotaxis, when the number of pulses of a chirp is increased from two to three. © 2017 The Authors.
Klatte, Maria; Lachmann, Thomas; Meis, Markus
2010-01-01
The effects of classroom noise and background speech on speech perception, measured by word-to-picture matching, and listening comprehension, measured by execution of oral instructions, were assessed in first- and third-grade children and adults in a classroom-like setting. For speech perception, in addition to noise, reverberation time (RT) was varied by conducting the experiment in two virtual classrooms with mean RT = 0.47 versus RT = 1.1 s. Children were more impaired than adults by background sounds in both speech perception and listening comprehension. Classroom noise evoked a reliable disruption in children's speech perception even under conditions of short reverberation. RT had no effect on speech perception in silence, but evoked a severe increase in the impairments due to background sounds in all age groups. For listening comprehension, impairments due to background sounds were found in the children, stronger for first- than for third-graders, whereas adults were unaffected. Compared to classroom noise, background speech had a smaller effect on speech perception, but a stronger effect on listening comprehension, remaining significant when speech perception was controlled. This indicates that background speech affects higher-order cognitive processes involved in children's comprehension. Children's ratings of the sound-induced disturbance were low overall and uncorrelated to the actual disruption, indicating that the children did not consciously realize the detrimental effects. The present results confirm earlier findings on the substantial impact of noise and reverberation on children's speech perception, and extend these to classroom-like environmental settings and listening demands closely resembling those faced by children at school.
Underwater sounds near a fuel receiving facility in western Hong Kong: relevance to dolphins.
Würsig, B; Greene, C R
2002-08-01
Western Hong Kong is home to two species of marine mammals: Indo-Pacific humpbacked dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides). Both are threatened in many parts of their range in southeast Asia [for example, International Biological Research Institute Reports 9 (1997), 41; Asian Marine Biology 14 (1997) 111]. In 1998, when the new Hong Kong International Airport opened in western Hong Kong, small tankers (about 100 m long, cargo capacity about 6300 metric tons) began delivering fuel to the Aviation Fuel Receiving Facility (AFRF) just off Sha Chau Island, north of the airport. Calibrated sound recordings were taken over a 4-day period from a quiet, anchored boat at distances 80-2000 m from aviation fuel delivery activities at the AFRF. From the recordings, 143 sections were selected for analysis. Narrowband spectral densities on the sound pressures were computed, and one-third octave band levels were derived for center frequencies from 10 to 16,000 Hz. Broadband levels, viz. 10-20,000 Hz. were also computed. The results showed that the Sha Chau area is normally noisy underwater, with the lowest broadband levels measured corresponding to those expected during a storm at sea (sea state 6). This background noise is believed to come largely from heavy vessel traffic in the Urmston Road to the north and east of Sha Chau and from vessels in the Pearl River Estuary to the West. The sound levels from the AFRF tankers are comparable to the levels measured from similar- and smaller-sized supply vessels supporting offshore oil exploration. The strongest sounds recorded were from a tanker leaving the AFRF at distance 100 m from the hydrophone, for which the one-third octave band level at 100 Hz was 141 dB re 1 microPa (spectrum level 127 dB re 1 microPa2/Hz) and the 10-20,000 Hz broadband level was 146 dB. At distances of 100 m or more and frequencies above 300 Hz, the one-third octave band levels were less than 130 dB (spectrum level 111 dB re 1 microPa2/Hz) and decreased with increasing frequency and distance. At distances greater than about 500 m, AFRF-associated sounds were negligible, masked by the generally high noise level of the area and attenuated by poor transmission in the very shallow water (<10 m). Because it is believed that humpbacked dolphins and finless porpoises are not very sensitive to sounds below 300 Hz, the Airport Authority Hong Kong (AA) stipulated that dedicated terminal vessels not radiate underwater sounds at spectrum levels greater than 110 dB re 1 microPa2/Hz at frequencies above 300 Hz and distances greater than 300 m. The spectrum levels at 300 Hz and higher frequencies of sounds from the tankers arriving, departing, or off-loading at AFRF were less than 110 dB re 1 microPa2/Hz even at distances of 200 m or less. The AA stipulation was met. However, it is presently unknown whether the generally strong noise levels of western Hong Kong inhibit acoustically based feeding and communication, or result in increased stress or permanent shifts in hearing thresholds.
An evaluation of Space Shuttle STS-2 payload bay acoustic data and comparison with predictions
NASA Technical Reports Server (NTRS)
Wilby, J. F.; Piersol, A. G.; Wilby, E. G.
1982-01-01
Space average sound pressure levels computed from measurements at 18 locations in the payload bay of the Space Shuttle orbiter vehicle during the STS-2 launch were compared with predicted levels obtained using the PACES computer program. The comparisons were performed over the frequency range 12.5 Hz to 1000 Hz, since the test data at higher frequencies are contaminated by instrumentation background noise. In general the PACES computer program tends to overpredict the space average sound levels in the payload bay, although the magnitude of the discrepancy is usually small. Furthermore the discrepancy depends to some extent on the manner in which the payload is modeled analytically, and the method used to determine the "measured' space average sound pressure levels. Thus the difference between predicted and measured sound levels, averaged over the 20 one third octave bands from 12.5 Hz to 1000 Hz, varies from 1 dB to 3.5 dB.
Going wireless and booth-less for hearing testing in industry.
Meinke, Deanna K; Norris, Jesse A; Flynn, Brendan P; Clavier, Odile H
2017-01-01
To assess the test-retest variability of hearing thresholds obtained with an innovative, mobile wireless automated hearing-test system (WAHTS) with enhanced sound attenuation to test industrial workers at a worksite as compared to standardised automated hearing thresholds obtained in a mobile trailer sound booth. A within-subject repeated-measures design was used to compare air-conducted threshold tests (500-8000 Hz) measured with the WAHTS in six workplace locations, and a third test using computer-controlled audiometry obtained in a mobile trailer sound booth. Ambient noise levels were measured in all test environments. Twenty workers served as listeners and 20 workers served as operators. On average, the WAHTS resulted in equivalent thresholds as the mobile trailer audiometry at 1000, 2000, 3000 and 8000 Hz and thresholds were within ±5 dB at 500, 4000 and 6000 Hz. Comparable performance may be obtained with the WAHTS in occupational audiometry and valid thresholds may be obtained in diverse test locations without the use of sound-attenuating enclosures.
Sound production by dusky grouper Epinephelus marginatus at spawning aggregation sites.
Bertucci, F; Lejeune, P; Payrot, J; Parmentier, E
2015-08-01
Sound production by the dusky grouper Epinephelus marginatus was monitored both in captivity and at two Mediterranean spawning sites during the summers of 2012 and 2013. The results of long-term passive acoustic recordings provide for the first time a description of the sounds produced by E. marginatus. Two types of sounds were mainly recorded and consisted of low-frequency booms that can be produced singly or in series with dominant frequencies below 100 Hz. Recordings in captivity validated these sounds as belonging to E. marginatus and suggested that they may be associated with reproductive displays usually performed during early stages of courtship behaviour. This study also allowed the identification of a third, low-frequency growl-like type of sound typically found in other grouper species. These growls were, however, not recorded in tanks and it is cautiously proposed that they are produced by E. marginatus. Acoustic signals attributed to E. marginatus were produced throughout the spawning season, with a diel pattern showing an increase before dusk, i.e., from 1900 to 2200 hours, before decreasing until the morning. The occurrence of sounds during the spawning season of this species suggests that they are probably involved in social activity occurring close to aggregation sites. Passive acoustics offer a helpful tool to monitor aggregation sites of this emblematic species in order to improve conservation efforts. © 2015 The Fisheries Society of the British Isles.
Planning and Producing Audiovisual Materials. Third Edition.
ERIC Educational Resources Information Center
Kemp, Jerrold E.
A revised edition of this handbook provides illustrated, step-by-step explanations of how to plan and produce audiovisual materials. Included are sections on the fundamental skills--photography, graphics and recording sound--followed by individual sections on photographic print series, slide series, filmstrips, tape recordings, overhead…
The Subsidiary Language Examination--an Experiment
ERIC Educational Resources Information Center
Vanek, Marianne; Woodhall, Michael
1970-01-01
Describes the preparation, structure and experimental testing of an examination designed to test student achievement in the subsidiary German course at the Lanchester Polytechnic, Coventry, one of several subsidiary language courses aimed at giving Modern Language students a sound working knowledge of a third language. (FB)
Specialized primary feathers produce tonal sounds during flight in rock pigeons (Columba livia).
Niese, Robert L; Tobalske, Bret W
2016-07-15
For centuries, naturalists have suggested that the tonal elements of pigeon wing sounds may be sonations (non-vocal acoustic signals) of alarm. However, spurious tonal sounds may be produced passively as a result of aeroelastic flutter in the flight feathers of almost all birds. Using mechanistic criteria emerging from recent work on sonations, we sought to: (1) identify characteristics of rock pigeon flight feathers that might be adapted for sound production rather than flight, and (2) provide evidence that this morphology is necessary for in vivo sound production and is sufficient to replicate in vivo sounds. Pigeons produce tonal sounds (700±50 Hz) during the latter two-thirds of each downstroke during take-off. These tones are produced when a small region of long, curved barbs on the inner vane of the outermost primary feather (P10) aeroelastically flutters. Tones were silenced in live birds when we experimentally increased the stiffness of this region to prevent flutter. Isolated P10 feathers were sufficient to reproduce in vivo sounds when spun at the peak angular velocity of downstroke (53.9-60.3 rad s(-1)), but did not produce tones at average downstroke velocity (31.8 rad s(-1)), whereas P9 and P1 feathers never produced tones. P10 feathers had significantly lower coefficients of resultant aerodynamic force (CR) when spun at peak angular velocity than at average angular velocity, revealing that production of tonal sounds incurs an aerodynamic cost. P9 and P1 feathers did not show this difference in CR These mechanistic results suggest that the tonal sounds produced by P10 feathers are not incidental and may function in communication. © 2016. Published by The Company of Biologists Ltd.
Noise in contemporary neonatal intensive care.
Williams, Amber L; van Drongelen, Wim; Lasky, Robert E
2007-05-01
Weekly sound surveys (n = 63) were collected, using 5 s sampling intervals, for two modern neonatal intensive care units (NICUs). Median weekly equivalent sound pressure levels (LEQ) for NICU A ranged from 61 to 63 dB (A weighted), depending on the level of care. NICU B L(EQ) measurements ranged from 55 to 60 dB (A weighted). NICU B was recently built with a focus on sound abatement, explaining much of the difference between the two NICUs. Sound levels exceeded 45 dB (A weighted), recommended by the American Academy of Pediatrics, more than 70% of the time for all levels of care. Hourly L(EQ)s below 50 dB (A weighted) and hourly L10s below 55 dB (A weighted), recommended by the Sound Study Group (SSG) of the National Resource Center, were also exceeded in more than 70% of recorded samples. A third SSG recommendation, that the 1 s L(MAX), should not exceed 70 dB (A weighted), was exceeded relatively infrequently (< 11% of the time). Peak impulse measurements exceeded 90 dB for 6.3% of 5 s samples recorded from NICU A and 2.8% of NICU B samples. Twenty-four h periodicities in sound levels as a function of regular staff activities were apparent, but short-term variability was considerable.
Linking prenatal experience to the emerging musical mind.
Ullal-Gupta, Sangeeta; Vanden Bosch der Nederlanden, Christina M; Tichko, Parker; Lahav, Amir; Hannon, Erin E
2013-09-03
The musical brain is built over time through experience with a multitude of sounds in the auditory environment. However, learning the melodies, timbres, and rhythms unique to the music and language of one's culture begins already within the mother's womb during the third trimester of human development. We review evidence that the intrauterine auditory environment plays a key role in shaping later auditory development and musical preferences. We describe evidence that externally and internally generated sounds influence the developing fetus, and argue that such prenatal auditory experience may set the trajectory for the development of the musical mind.
Field refurbishment of recoverable sounding rocket payloads.
NASA Technical Reports Server (NTRS)
Needleman, H. C.; Tackett, C. D.
1973-01-01
Sounding rocket payload field refurbishment has been shown to be an effective means for obtaining additional scientific data with substantial time and monetary savings. In a recent campaign three successful missions were flown using two payloads. Field refurbished hardware from two previously flown and recovered payloads were field integrated to form a third payload. Although this operational method may result in compromises in the refurbished system, it allows for quick turn around when the mission requires it. This paper describes the recent success of this approach with the Dudley Observatory Nike-Apache micrometeorite collection experiments launched from Kiruna, Sweden, in October 1972.
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.
2013-01-01
In 2011 the noise generating capabilities in the reverberation chamber of the Structural Acoustic Loads and Transmission (SALT) facility at NASA Langley Research Center were enhanced with two fiberglass reinforced polyester resin exponential horns, each coupled to Wyle Acoustic Source WAS-3000 airstream modulators. This report describes the characterization of the reverberation chamber in terms of the background noise, diffusivity, sound pressure levels, the reverberation times and the related overall acoustic absorption in the empty chamber and with the acoustic horn(s) installed. The frequency range of interest includes the 80 Hz to 8000 Hz one-third octave bands. Reverberation time and sound pressure level measurements were conducted and standard deviations from the mean were computed. It was concluded that a diffuse field could be produced above the Schroeder frequency in the 400 Hz one-third octave band and higher for all applications. This frequency could be lowered by installing panel diffusers or moving vanes to improve the acoustic modal overlap in the chamber. In the 80 Hz to 400 Hz one-third octave bands a successful measurement will be dependent on the type of measurement, the test configuration, the source and microphone locations and the desired accuracy. It is recommended that qualification measurements endorsed in the International Standards be conducted for each particular application.
Overby, Megan; Carrell, Thomas; Bernthal, John
2007-10-01
This study examined 2nd-grade teachers' perceptions of the academic, social, and behavioral competence of students with speech sound disorders (SSDs). Forty-eight 2nd-grade teachers listened to 2 groups of sentences differing by intelligibility and pitch but spoken by a single 2nd grader. For each sentence group, teachers rated the speaker's academic, social, and behavioral competence using an adapted version of the Teacher Rating Scale of the Self-Perception Profile for Children (S. Harter, 1985) and completed 3 open-ended questions. The matched-guise design controlled for confounding speaker and stimuli variables that were inherent in prior studies. Statistically significant differences in teachers' expectations of children's academic, social, and behavioral performances were found between moderately intelligible and normal intelligibility speech. Teachers associated moderately intelligible low-pitched speech with more behavior problems than moderately intelligible high-pitched speech or either pitch with normal intelligibility. One third of the teachers reported that they could not accurately predict a child's school performance based on the child's speech skills, one third of the teachers causally related school difficulty to SSD, and one third of the teachers made no comment. Intelligibility and speaker pitch appear to be speech variables that influence teachers' perceptions of children's school performance.
Principles of a Sound State School Finance System.
ERIC Educational Resources Information Center
National Conference of State Legislatures, Denver, CO.
Funding for public elementary and secondary education is a significant portion of most state budgets, representing on average approximately one-third of general fund appropriations. This booklet provides policymakers with five broad principles for the design of state school funding systems--equity, efficiency, adequacy, accountability, and…
Cybertherapy 2005: A Decade of VR
2005-07-01
headphones, which delivered a soundscape updated in real time according to their movement in the virtual town. In the third condition, they were asked to...navigate in a soundscape in the absence of vision (A). The sounds were produced through tracked binaural rendering (HRTF) and were dependent upon the
Klopfenstein Bregger, Micaël D; Fürst, Anton E; Kircher, Patrick R; Kluge, Katharina; Kummer, Martin
2016-05-18
To describe minimally-invasive lag screw osteosynthesis combined with external coaptation for the treatment of Salter-Harris type II third metacarpal and third metatarsal bone fractures. Three foals aged two weeks to four months with a Salter-Harris type II third metacarpal or third metatarsal fracture. Surgery was carried out under general anaesthesia in lateral recumbency. After fracture reduction, the metaphyseal fragment was stabilized with two cortical screws placed in lag fashion under fluoroscopic control. A cast was applied for at least two weeks. All foals had a good outcome with complete fracture healing and return to complete soundness without any angular limb deformity. All foals had moderate transient digital hyperextension after cast removal. Internal fixation of Salter-Harris type II third metacarpal or third metatarsal fractures with two cortical screws in lag fashion, combined with external coaptation provided good stabilization and preserved the longitudinal growth potential of the injured physis.
The Radio Plasma Imager Investigation on the IMAGE Spacecraft
NASA Technical Reports Server (NTRS)
Reinisch, Bodo W.; Haines, D. M.; Bibl, K.; Cheney, G.; Galkin, I. A.; Huang, X.; Myers, S. H.; Sales, G. S.; Benson, R. F.; Fung, S. F.
1999-01-01
Radio plasma imaging uses total reflection of electromagnetic waves from plasmas whose plasma frequencies equal the radio sounding frequency and whose electron density gradients are parallel to the wave normals. The Radio Plasma Imager (RPI) has two orthogonal 500-m long dipole antennas in the spin plane for near omni-directional transmission. The third antenna is a 20-m dipole. Echoes from the magnetopause, plasmasphere and cusp will be received with three orthogonal antennas, allowing the determination of their angle-of-arrival. Thus it will be possible to create image fragments of the reflecting density structures. The instrument can execute a large variety of programmable measuring programs operating at frequencies between 3 kHz and 3 MHz. Tuning of the transmit antennas provides optimum power transfer from the 10 W transmitter to the antennas. The instrument can operate in three active sounding modes: (1) remote sounding to probe magnetospheric boundaries, (2) local (relaxation) sounding to probe the local plasma, and (3) whistler stimulation sounding. In addition, there is a passive mode to record natural emissions, and to determine the local electron density and temperature by using a thermal noise spectroscopy technique.
Chien, Wade; Ravicz, Michael E.; Rosowski, John J.; Merchant, Saumil N.
2008-01-01
Objectives (1) To develop a cadaveric temporal-bone preparation to study the mechanism of hearing loss resulting from superior semicircular canal dehiscence (SCD) and (2) to assess the potential usefulness of clinical measurements of umbo velocity for the diagnosis of SCD. Background The syndrome of dehiscence of the superior semicircular canal is a clinical condition encompassing a variety of vestibular and auditory symptoms, including an air-bone gap at low frequencies. It has been hypothesized that the dehiscence acts as a “third window” into the inner ear that shunts acoustic energy away from the cochlea at low frequencies, causing hearing loss. Methods Sound-induced stapes, umbo, and round-window velocities were measured in prepared temporal bones (n = 8) using laser-Doppler vibrometry (1) with the superior semicircular canal intact, (2) after creation of a dehiscence in the superior canal, and (3) with the dehiscence patched. Clinical measurements of umbo velocity in live SCD ears (n = 29) were compared with similar data from our cadaveric temporal-bone preparations. Results An SCD caused a significant reduction in sound-induced round-window velocity at low frequencies, small but significant increases in sound-induced stapes and umbo velocities, and a measurable fluid velocity inside the dehiscence. The increase in sound-induced umbo velocity in temporal bones was also found to be similar to that measured in the 29 live ears with SCD. Conclusion Findings from the cadaveric temporal-bone preparation were consistent with the third-window hypothesis. In addition, measurement of umbo velocity in live ears is helpful in distinguishing SCD from other otologic pathologies presenting with an air-bone gap (e.g., otosclerosis). PMID:17255894
Third-order elastic constants of diamond determined from experimental data
Winey, J. M.; Hmiel, A.; Gupta, Y. M.
2016-06-01
The pressure derivatives of the second-order elastic constants (SOECs) of diamond were determined by analyzing previous sound velocity measurements under hydrostatic stress [McSkimin and Andreatch, J. Appl. Phys. 43, 294 (1972)]. Furthermore, our analysis corrects an error in the previously reported results.We present a complete and corrected set of third-order elastic constants (TOECs) using the corrected pressure derivatives, together with published data for the nonlinear elastic response of shock compressed diamond [Lang and Gupta, Phys. Rev. Lett. 106, 125502 (2011)] and it differs significantly from TOECs published previously.
Environmentally Sound Small-Scale Forestry Projects. Guidelines for Planning.
ERIC Educational Resources Information Center
Ffolliott, Peter F.; Thames, John L.
This manual, the third in a series of publications that address community development possibilities in developing nations, provides guidelines for small-scale forestry projects that are integrative and conservation-oriented. Chapters focus on: (1) users and uses (specifying targeted audience and general objectives); (2) planning process (including…
ERIC Educational Resources Information Center
Capewell, Carmel
2014-01-01
Glue ear, a condition resulting in intermittent hearing loss in young children, affects about 80% of young children under seven years old. About 60% of children will spend a third of their time unable to hear within normal thresholds. Teachers are unlikely to consider the sound quality in classrooms. In my research young people provided…
Exploring the Science of Sound
ERIC Educational Resources Information Center
Manser, Michael James; Kilgo, John Wesley
2015-01-01
This investigation-based lesson is geared toward third through fifth grade students. The lesson presented in this article was the first of three lessons designed and taught by us for our first preservice teaching course. UTeach is a teacher preparation program for undergraduate STEM majors, which originated at the University of Austin, Texas. The…
Child's Play: An Activities and Materials Handbook.
ERIC Educational Resources Information Center
Trencher, Barbara R.
This handbook, the third printing of the original 1976 edition, presents an eclectic combination of activities gathered from parents and teachers of preschool children, with a focus on the process rather than the product of learning. Its goal is the establishment of positive experiences and sound interpersonal relationships between adults and…
33 CFR 86.13 - Combined whistle systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... systems. (a) A combined whistle system is a number of whistles (sound emitting sources) operated together... evidenced by at least two-thirds of the whistles in the combined system having fundamental frequencies... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Combined whistle systems. 86.13...
Dynamic Spatial Hearing by Human and Robot Listeners
NASA Astrophysics Data System (ADS)
Zhong, Xuan
This study consisted of several related projects on dynamic spatial hearing by both human and robot listeners. The first experiment investigated the maximum number of sound sources that human listeners could localize at the same time. Speech stimuli were presented simultaneously from different loudspeakers at multiple time intervals. The maximum of perceived sound sources was close to four. The second experiment asked whether the amplitude modulation of multiple static sound sources could lead to the perception of auditory motion. On the horizontal and vertical planes, four independent noise sound sources with 60° spacing were amplitude modulated with consecutively larger phase delay. At lower modulation rates, motion could be perceived by human listeners in both cases. The third experiment asked whether several sources at static positions could serve as "acoustic landmarks" to improve the localization of other sources. Four continuous speech sound sources were placed on the horizontal plane with 90° spacing and served as the landmarks. The task was to localize a noise that was played for only three seconds when the listener was passively rotated in a chair in the middle of the loudspeaker array. The human listeners were better able to localize the sound sources with landmarks than without. The other experiments were with the aid of an acoustic manikin in an attempt to fuse binaural recording and motion data to localize sounds sources. A dummy head with recording devices was mounted on top of a rotating chair and motion data was collected. The fourth experiment showed that an Extended Kalman Filter could be used to localize sound sources in a recursive manner. The fifth experiment demonstrated the use of a fitting method for separating multiple sounds sources.
A novel method for detecting airway narrowing using breath sound spectrum analysis in children.
Tabata, Hideyuki; Hirayama, Mariko; Enseki, Mayumi; Nukaga, Mariko; Hirai, Kota; Furuya, Hiroyuki; Mochizuki, Hiroyuki
2016-01-01
Using a breath sound analyzer, we investigated new clinical parameters that are rarely affected by airflow in young children. A total of 65 children with asthma participated in this study (mean age 9.6 years). In Study 1, the intra- and inter-observer variability was measured. Common breath sound parameters, frequency at 99%, 75%, and 50% of the maximum frequency (F99, F75, and F50) and the highest frequency of inspiratory breath sounds were calculated. In addition, new parameters obtained using the ratio of sound spectra parameters, i.e., the spectrum curve indexes including the ratio of the third and fourth area to the total area and the ratio of power and frequency at F75 and F50, were calculated. In Study 2, 51 children underwent breath sound analyses. In Study 3, breath sounds were studied before and after methacholine inhalation. In Study 1, the data showed good inter- and intra-observer reliability. In Study 2, there were significant relationships between the airflow rate, age, height, and spirometric and common breath sound parameters. However, there were no significant relationships between the airflow rate and the spectrum curve indexes. Moreover, the spectrum curve indexes showed no relationships with age, height, or spirometric parameters. In Study 3, all parameters significantly changed after methacholine inhalation. Some spectrum curve indexes are not significantly affected by the airflow rate at the mouth, although they successfully indicate airway narrowing. These parameters may play a role in the assessment of bronchoconstriction in children. Copyright © 2015 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Porter, F. S.; Almy, R.; Apodaca, E.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.; McCammon, D.; Stahle, C. K.; Szymkowiak, A. E.; Sanders, W. T.
2000-04-01
The XQC microcalorimeter sounding rocket experiment is designed to provide a stable thermal environment for an LTD detector system within 30 s of the burnout of its second stage rocket motor. The detector system used for this instrument is a 36-pixel microcalorimeter array operated at 60 mK with a single-stage adiabatic demagnetization refrigerator (ADR). The ADR is mounted on a space-pumped liquid helium tank with vapor cooled shields which is vibration isolated from the rocket structure. We present here some of the design and performance details of this mature LTD instrument, which has just completed its third suborbital flight.
1. Copy photo of context view taken in 1917 looking ...
1. Copy photo of context view taken in 1917 looking east along Farragut Avenue, then called Main Street, showing construction of double tracking. On right is Building 78 with original smoke stack. Building 59 is visible as third building from left. This photograph was taken from a hill that was later cut away in order to expand the shipyard. See photo for original caption. HABS negative is a 4x5' copy negative made from a print in the collection of the Photographic Branch, Puget Sound Naval Shipyard, Bremerton, WA. Photographer unknown. - Puget Sound Naval Shipyard, Administration Building, Farragut Avenue, Bremerton, Kitsap County, WA
A description of externally recorded womb sounds in human subjects during gestation
Daland, Robert; Kesavan, Kalpashri; Macey, Paul M.; Zeltzer, Lonnie; Harper, Ronald M.
2018-01-01
Objective Reducing environmental noise benefits premature infants in neonatal intensive care units (NICU), but excessive reduction may lead to sensory deprivation, compromising development. Instead of minimal noise levels, environments that mimic intrauterine soundscapes may facilitate infant development by providing a sound environment reflecting fetal life. This soundscape may support autonomic and emotional development in preterm infants. We aimed to assess the efficacy and feasibility of external non-invasive recordings in pregnant women, endeavoring to capture intra-abdominal or womb sounds during pregnancy with electronic stethoscopes and build a womb sound library to assess sound trends with gestational development. We also compared these sounds to popular commercial womb sounds marketed to new parents. Study design Intra-abdominal sounds from 50 mothers in their second and third trimester (13 to 40 weeks) of pregnancy were recorded for 6 minutes in a quiet clinic room with 4 electronic stethoscopes, placed in the right upper and lower quadrants, and left upper and lower quadrants of the abdomen. These recording were partitioned into 2-minute intervals in three different positions: standing, sitting and lying supine. Maternal and gestational age, Body Mass Index (BMI) and time since last meal were collected during recordings. Recordings were analyzed using long-term average spectral and waveform analysis, and compared to sounds from non-pregnant abdomens and commercially-marketed womb sounds selected for their availability, popularity, and claims they mimic the intrauterine environment. Results Maternal sounds shared certain common characteristics, but varied with gestational age. With fetal development, the maternal abdomen filtered high (500–5,000 Hz) and mid-frequency (100–500 Hz) energy bands, but no change appeared in contributions from low-frequency signals (10–100 Hz) with gestational age. Variation appeared between mothers, suggesting a resonant chamber role for intra-abdominal space. Compared to commercially-marketed sounds, womb signals were dominated by bowel sounds, were of lower frequency, and showed more variation in intensity. Conclusions High-fidelity intra-abdominal or womb sounds during pregnancy can be recorded non-invasively. Recordings vary with gestational age, and show a predominance of low frequency noise and bowel sounds which are distinct from popular commercial products. Such recordings may be utilized to determine whether sounds influence preterm infant development in the NICU. PMID:29746604
A description of externally recorded womb sounds in human subjects during gestation.
Parga, Joanna J; Daland, Robert; Kesavan, Kalpashri; Macey, Paul M; Zeltzer, Lonnie; Harper, Ronald M
2018-01-01
Reducing environmental noise benefits premature infants in neonatal intensive care units (NICU), but excessive reduction may lead to sensory deprivation, compromising development. Instead of minimal noise levels, environments that mimic intrauterine soundscapes may facilitate infant development by providing a sound environment reflecting fetal life. This soundscape may support autonomic and emotional development in preterm infants. We aimed to assess the efficacy and feasibility of external non-invasive recordings in pregnant women, endeavoring to capture intra-abdominal or womb sounds during pregnancy with electronic stethoscopes and build a womb sound library to assess sound trends with gestational development. We also compared these sounds to popular commercial womb sounds marketed to new parents. Intra-abdominal sounds from 50 mothers in their second and third trimester (13 to 40 weeks) of pregnancy were recorded for 6 minutes in a quiet clinic room with 4 electronic stethoscopes, placed in the right upper and lower quadrants, and left upper and lower quadrants of the abdomen. These recording were partitioned into 2-minute intervals in three different positions: standing, sitting and lying supine. Maternal and gestational age, Body Mass Index (BMI) and time since last meal were collected during recordings. Recordings were analyzed using long-term average spectral and waveform analysis, and compared to sounds from non-pregnant abdomens and commercially-marketed womb sounds selected for their availability, popularity, and claims they mimic the intrauterine environment. Maternal sounds shared certain common characteristics, but varied with gestational age. With fetal development, the maternal abdomen filtered high (500-5,000 Hz) and mid-frequency (100-500 Hz) energy bands, but no change appeared in contributions from low-frequency signals (10-100 Hz) with gestational age. Variation appeared between mothers, suggesting a resonant chamber role for intra-abdominal space. Compared to commercially-marketed sounds, womb signals were dominated by bowel sounds, were of lower frequency, and showed more variation in intensity. High-fidelity intra-abdominal or womb sounds during pregnancy can be recorded non-invasively. Recordings vary with gestational age, and show a predominance of low frequency noise and bowel sounds which are distinct from popular commercial products. Such recordings may be utilized to determine whether sounds influence preterm infant development in the NICU.
Mode tuning of a simplified string instrument using time-dimensionless state-derivative control
NASA Astrophysics Data System (ADS)
Benacchio, Simon; Chomette, Baptiste; Mamou-Mani, Adrien; Finel, Victor
2015-01-01
In recent years, there has been a growing interest in smart structures, particularly in the field of musical acoustics. Control methods, initially developed to reduce vibration and damage, can be a good way to shift modal parameters of a structure in order to modify its dynamic response. This study focuses on smart musical instruments and aims to modify their radiated sound. This is achieved by controlling the modal parameters of the soundboard of a simplified string instrument. A method combining a pole placement algorithm and a time-dimensionless state-derivative control is used and quickly compared to a usual state control method. Then the effect of the mode tuning on the coupling between the string and the soundboard is experimentally studied. Controlling two vibration modes of the soundboard, its acoustic response and the damping of the third partial of the sound are modified. Finally these effects are listened in the radiated sound.
Development and evaluation of a general aviation real world noise simulator
NASA Technical Reports Server (NTRS)
Galanter, E.; Popper, R.
1980-01-01
An acoustic playback system is described which realistically simulates the sounds experienced by the pilot of a general aviation aircraft during engine idle, take-off, climb, cruise, descent, and landing. The physical parameters of the signal as they appear in the simulator environment are compared to analogous parameters derived from signals recorded during actual flight operations. The acoustic parameters of the simulated and real signals during cruise conditions are within plus or minus two dB in third octave bands from 0.04 to 4 kHz. The overall A-weighted levels of the signals are within one dB of signals generated in the actual aircraft during equivalent maneuvers. Psychoacoustic evaluations of the simulator signal are compared with similar measurements based on transcriptions of actual aircraft signals. The subjective judgments made by human observers support the conclusion that the simulated sound closely approximates transcribed sounds of real aircraft.
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen; Chang, Sin-Chung; Jorgenson, Philip C. E.
2000-01-01
The benchmark problems in Category 1 (Internal Propagation) of the third Computational Aeroacoustics (CAA) Work-shop sponsored by NASA Glenn Research Center are solved using the space-time conservation element and solution element (CE/SE) method. The first problem addresses the propagation of sound waves through a nearly choked transonic nozzle. The second one concerns shock-sound interaction in a supersonic nozzle. A quasi one-dimension CE/SE Euler solver for a nonuniform mesh is developed and employed to solve both problems. Numerical solutions are compared with the analytical solution for both problems. It is demonstrated that the CE/SE method is capable of solving aeroacoustic problems with/without shock waves in a simple way. Furthermore, the simple nonreflecting boundary condition used in the CE/SE method which is not based on the characteristic theory works very well.
NASA Astrophysics Data System (ADS)
Blanc, Elisabeth; Rickel, Dwight
1989-06-01
Different wave fronts affected by significant nonlinearities have been observed in the ionosphere by a pulsed HF sounding experiment at a distance of 38 km from the source point of a 4800-kg ammonium nitrate and fuel oil (ANFO) explosion on the ground. These wave fronts are revealed by partial reflections of the radio sounding waves. A small-scale irregular structure has been generated by a first wave front at the level of a sporadic E layer which characterized the ionosphere at the time of the experiment. The time scale of these fluctuations is about 1 to 2 s; its lifetime is about 2 min. Similar irregularities were also observed at the level of a second wave front in the F region. This structure appears also as diffusion on a continuous wave sounding at horizontal distances of the order of 200 km from the source. In contrast, a third front unaffected by irregularities may originate from the lowest layers of the ionosphere or from a supersonic wave front propagating at the base of the thermosphere. The origin of these structures is discussed.
The Impact of Orthographic Consistency on German Spoken Word Identification
ERIC Educational Resources Information Center
Beyermann, Sandra; Penke, Martina
2014-01-01
An auditory lexical decision experiment was conducted to find out whether sound-to-spelling consistency has an impact on German spoken word processing, and whether such an impact is different at different stages of reading development. Four groups of readers (school children in the second, third and fifth grades, and university students)…
Observation of `third sound' in superfluid 3He
NASA Astrophysics Data System (ADS)
Schechter, A. M. R.; Simmonds, R. W.; Packard, R. E.; Davis, J. C.
1998-12-01
Waves on the surface of a fluid provide a powerful tool for studying the fluid itself and the surrounding physical environment. For example, the wave speed is determined by the force per unit mass at the surface, and by the depth of the fluid: the decreasing speed of ocean waves as they approach the shore reveals the changing depth of the sea and the strength of gravity. Other examples include propagating waves in neutron-star oceans and on the surface of levitating liquid drops. Although gravity is a common restoring force, others exist, including the electrostatic force which causes a thin liquid film to adhere to a solid. Usually surface waves cannot occur on such thin films because viscosity inhibits their motion. However, in the special case of thin films of superfluid 4He, surface waves do exist and are called `third sound'. Here we report the detection of similar surface waves in thin films of superfluid 3He. We describe studies of the speed of these waves, the properties of the surface force, and the film's superfluid density.
Wan, Lin; Zhou, Ji-Xun; Rogers, Peter H
2010-08-01
A joint China-U.S. underwater acoustics experiment was conducted in the Yellow Sea with a very flat bottom and a strong and sharp thermocline. Broadband explosive sources were deployed both above and below the thermocline along two radial lines up to 57.2 km and a quarter circle with a radius of 34 km. Two inversion schemes are used to obtain the seabottom sound speed. One is based on extracting normal mode depth functions from the cross-spectral density matrix. The other is based on the best match between the calculated and measured modal arrival times for different frequencies. The inverted seabottom sound speed is used as a constraint condition to extract the seabottom sound attenuation by three methods. The first method involves measuring the attenuation coefficients of normal modes. In the second method, the seabottom sound attenuation is estimated by minimizing the difference between the theoretical and measured modal amplitude ratios. The third method is based on finding the best match between the measured and modeled transmission losses (TLs). The resultant seabottom attenuation, averaged over three independent methods, can be expressed as alpha=(0.33+/-0.02)f(1.86+/-0.04)(dB/m kHz) over a frequency range of 80-1000 Hz.
A breath sound analysis in children with cough variant asthma.
Enseki, Mayumi; Nukaga, Mariko; Tadaki, Hiromi; Tabata, Hideyuki; Hirai, Kota; Kato, Masahiko; Mochizuki, Hiroyuki
2018-05-29
Cough variant asthma (CVA) is characterized by a chronic cough and bronchial hyperresponsiveness without confirmation of wheezing. Using a breath sound analyzer, we evaluate the characteristics of breath sound in children with CVA. Nine children with CVA (median age, 7.0 years) participated. The existence of breath sounds was confirmed by sound spectrogram. Breath sound parameters, the frequency limiting 50% and 99% of the power spectrum (F 50 and F 99 ), the roll-off from 600 to 1200 Hz (Slope) and spectrum curve indices, the ratio of the third and fourth area to the total area of the power spectrum (P 3 /P T and P 4 /P T ) and the ratio of power and frequency at 50% and 75% of the highest frequency of the power spectrum (RPF 75 and RPF 50 ) were calculated before and after β 2 agonist inhalation. A spirogram and/or forced oscillation technique were performed in all subjects. On a sound spectrogram, wheezing was confirmed in seven of nine patients. All wheezing on the image was polyphonic, and they almost disappeared after β 2 agonist inhalation. An analysis of the breath sound spectrum showed that P T , P 3 /P T , P 4 /P T , RPF 50 and RPF 75 were significantly increased after β 2 agonist inhalation. Children with CVA showed a high rate of inaudible wheezing that disappeared after β 2 agonist inhalation. Changes in the spectrum curve indices also indicated the bronchial reversibility. These results may suggest the characteristics of CVA in children. Copyright © 2018 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.
Enseki, Mayumi; Nukaga, Mariko; Tabata, Hideyuki; Hirai, Kota; Matsuda, Shinichi; Mochizuki, Hiroyuki
2017-05-01
Using a breath sound analyzer, we investigated clinical parameters for detecting bronchial reversibility in infants. A total of 59 infants (4-39 months, mean age 7.8 months) were included. In Study 1, the intra- and inter-observer variability was measured in 23 of 59 infants. Breath sound parameters, the frequency at 99% of the maximum frequency (F 99 ), frequency at 25%, 50%, and 75% of the power spectrum (Q 25 , Q 50 , and Q 75 ), and highest frequency of inspiratory breath sounds (HFI), and parameters obtained using the ratio of parameters, i.e. spectrum curve indices, the ratio of the third and fourth area to total area (A 3 /A T and B 4 /A T , respectively) and ratio of power and frequency at F 75 and F 50 (RPF 75 and RPF 50 ), were calculated. In Study 2, the relationship between parameters of breath sounds and age and stature were studied. In Study 3, breath sounds were studied before and after β 2 agonist inhalation. In Study 1, the data showed statistical intra- and inter-observer reliability in A 3 /A T (p=0.042 and 0.034, respectively) and RPF 50 (p=0.001 and 0.001, respectively). In Study 2, there were no significant relationships between age, height, weight, and BMI. In Study 3, A 3 /A T and RPF 50 significantly changed after β 2 agonist inhalation (p=0.001 and p<0.001, respectively). Breath sound analysis can be performed in infants, as in older children, and the spectrum curve indices are not significantly affected by age-related factors. These sound parameters may play a role in the assessment of bronchial reversibility in infants. Copyright © 2016 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
Full Spatial Resolution Infrared Sounding Application in the Preconvection Environment
NASA Astrophysics Data System (ADS)
Liu, C.; Liu, G.; Lin, T.
2013-12-01
Advanced infrared (IR) sounders such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) provide atmospheric temperature and moisture profiles with high vertical resolution and high accuracy in preconvection environments. The derived atmospheric stability indices such as convective available potential energy (CAPE) and lifted index (LI) from advanced IR soundings can provide critical information 1 ; 6 h before the development of severe convective storms. Three convective storms are selected for the evaluation of applying AIRS full spatial resolution soundings and the derived products on providing warning information in the preconvection environments. In the first case, the AIRS full spatial resolution soundings revealed local extremely high atmospheric instability 3 h ahead of the convection on the leading edge of a frontal system, while the second case demonstrates that the extremely high atmospheric instability is associated with the local development of severe thunderstorm in the following hours. The third case is a local severe storm that occurred on 7-8 August 2010 in Zhou Qu, China, which caused more than 1400 deaths and left another 300 or more people missing. The AIRS full spatial resolution LI product shows the atmospheric instability 3.5 h before the storm genesis. The CAPE and LI from AIRS full spatial resolution and operational AIRS/AMSU soundings along with Geostationary Operational Environmental Satellite (GOES) Sounder derived product image (DPI) products were analyzed and compared. Case studies show that full spatial resolution AIRS retrievals provide more useful warning information in the preconvection environments for determining favorable locations for convective initiation (CI) than do the coarser spatial resolution operational soundings and lower spectral resolution GOES Sounder retrievals. The retrieved soundings are also tested in a regional data assimilation WRF 3D-var system to evaluate the potential assist in the NWP model.
Does dishonesty really invite third-party punishment? Results of a more stringent test.
Konishi, Naoki; Ohtsubo, Yohsuke
2015-05-01
Many experiments have demonstrated that people are willing to incur cost to punish norm violators even when they are not directly harmed by the violation. Such altruistic third-party punishment is often considered an evolutionary underpinning of large-scale human cooperation. However, some scholars argue that previously demonstrated altruistic third-party punishment against fairness-norm violations may be an experimental artefact. For example, envy-driven retaliatory behaviour (i.e. spite) towards better-off unfair game players may be misidentified as altruistic punishment. Indeed, a recent experiment demonstrated that participants ceased to inflict third-party punishment against an unfair player once a series of key methodological problems were systematically controlled for. Noticing that a previous finding regarding apparently altruistic third-party punishment against honesty-norm violations may have been subject to methodological issues, we used a different and what we consider to be a more sound design to evaluate these findings. Third-party punishment against dishonest players withstood this more stringent test. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Mars Radar Opens a Planet's Third Dimension
NASA Technical Reports Server (NTRS)
2008-01-01
Radar sounder instruments orbiting Mars have looked beneath the Martian surface and opened up the third dimension for planetary exploration. The technique's success is prompting scientists to think of all the other places in the Solar System where they would like to use radar sounders. The first radar sounder at Mars was the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the European Space Agency's Mars Express Orbiter. It has been joined by the complementary Shallow Subsurface Radar (SHARAD), operating at a different wavelength aboard NASA's Mars Reconnaissance Orbiter. The data in this animation are from SHARAD.Caldentey, Guillem; Khairy, Paul; Roy, Denis; Leduc, Hugues; Talajic, Mario; Racine, Normand; White, Michel; O'Meara, Eileen; Guertin, Marie-Claude; Rouleau, Jean L; Ducharme, Anique
2014-02-01
This study sought to assess the prognostic value of physical examination in a modern treated heart failure population. The physical examination is the cornerstone of the evaluation and monitoring of patients with heart failure. Yet, the prognostic value of congestive signs (i.e., peripheral edema, jugular venous distension, a third heart sound, and pulmonary rales) has not been assessed in the current era. A post-hoc analysis was conducted on all 1,376 patients, 81% male, mean age 67 ± 11 years, with symptomatic left ventricular systolic dysfunction enrolled in the AF-CHF (Atrial Fibrillation and Congestive Heart Failure) trial. The prognostic value of baseline physical examination findings was assessed in univariate and multivariate Cox regression analyses. Peripheral edema was observed in 425 (30.9%), jugular venous distension in 297 (21.6%), a third heart sound in 207 (15.0%), and pulmonary rales in 178 (12.9%) patients. Death from cardiovascular causes occurred in 357 (25.9%) patients over a mean follow-up of 37 ± 19 months. All 4 physical examination findings were associated with cardiovascular mortality in univariate analyses (all p values <0.01). In multivariate analyses, taking all 4 signs as potential covariates, only rales (hazard ratio 1.41; 95% confidence interval: 1.07 to 1.86; p = 0.013) and peripheral edema (hazard ratio: 1.25; 95% confidence interval: 1.00 to 1.57; p = 0.048) were associated with cardiovascular mortality, independent of other variables. In the modern era, congestive signs on the physical examination (i.e., peripheral edema, jugular venous distension, a third heart sound, and pulmonary rales) continue to provide important prognostic information in patients with congestive heart failure. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Comparing headphone and speaker effects on simulated driving.
Nelson, T M; Nilsson, T H
1990-12-01
Twelve persons drove for three hours in an automobile simulator while listening to music at sound level 63dB over stereo headphones during one session and from a dashboard speaker during another session. They were required to steer a mountain highway, maintain a certain indicated speed, shift gears, and respond to occasional hazards. Steering and speed control were dependent on visual cues. The need to shift and the hazards were indicated by sound and vibration effects. With the headphones, the driver's average reaction time for the most complex task presented--shifting gears--was about one-third second longer than with the speaker. The use of headphones did not delay the development of subjective fatigue.
García-Mayén, Héctor; Santillán, Arturo
2011-03-01
An experimental investigation on the coupling between the fingerboard and the top plate of a classical guitar at low frequencies is presented. The study was carried out using a finished top plate under fixed boundary conditions and a commercial guitar. Radiated sound power was determined in one-third octave bands up to the band of 1 kHz based on measurements of sound intensity. The results provide evidence that the way in which the fingerboard and top plate are coupled is not a relevant factor in the radiated acoustic power of the classical guitar in the studied frequency range. © 2011 Acoustical Society of America
Fetal phonocardiography--past and future possibilities.
Kovács, Ferenc; Horváth, Csaba; Balogh, Adám T; Hosszú, Gábor
2011-10-01
The paper presents an overview of the 15 year long development of fetal phonocardiography including the works on the applied signal processing methods for identification of sound components. Based on the improvements achieved on this field, the paper shows that beyond the traditional CTG test the phonocardiography may be successfully applied for long-term fetal measurements and home monitoring. In addition, by indication of heart murmurs based on a comprehensive analysis of the recorded heart sound congenital heart defects can also be detected together with additional features in the third trimester. This makes an early widespread screening possible combined with the prescribed CTG test even at home using a telemedicine system. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Autotransplantation of third molars as treatment in advanced periodontal disease.
Kristerson, L; Johansson, L A; Kisch, J; Stadler, L E
1991-08-01
The aim of this study was to investigate the prognosis of replacing molars with advanced periodontitis by autotransplanted fully developed third molars. The patient sample consisted of 18 subjects, 24-58 years of age. The patients selected had at least 1 molar with advanced periodontal tissue destruction. After extraction of the diseased molar, autotransplantation of a third molar was immediately performed. After a splinting and healing period of 2-3 weeks, endodontic treatment was carried out. The follow-up included recordings of the clinical parameters, probing periodontal pocket depth, probing attachment level, percussion sound, and mobility. Radiographs were taken immediately after the surgical procedure, after 6 months, 1 year, and thereafter annually. The results of this study indicate that autotransplantation may be an alternative treatment procedure for molars with advanced periodontal disease.
NASA Astrophysics Data System (ADS)
Chen, Shuming; Wang, Dengfeng; Liu, Bo
This paper investigates optimization design of the thickness of the sound package performed on a passenger automobile. The major characteristics indexes for performance selected to evaluate the processes are the SPL of the exterior noise and the weight of the sound package, and the corresponding parameters of the sound package are the thickness of the glass wool with aluminum foil for the first layer, the thickness of the glass fiber for the second layer, and the thickness of the PE foam for the third layer. In this paper, the process is fundamentally with multiple performances, thus, the grey relational analysis that utilizes grey relational grade as performance index is especially employed to determine the optimal combination of the thickness of the different layers for the designed sound package. Additionally, in order to evaluate the weighting values corresponding to various performance characteristics, the principal component analysis is used to show their relative importance properly and objectively. The results of the confirmation experiments uncover that grey relational analysis coupled with principal analysis methods can successfully be applied to find the optimal combination of the thickness for each layer of the sound package material. Therefore, the presented method can be an effective tool to improve the vehicle exterior noise and lower the weight of the sound package. In addition, it will also be helpful for other applications in the automotive industry, such as the First Automobile Works in China, Changan Automobile in China, etc.
Age-related differences in neuromagnetic brain activity underlying concurrent sound perception.
Alain, Claude; McDonald, Kelly L
2007-02-07
Deficits in parsing concurrent auditory events are believed to contribute to older adults' difficulties in understanding speech in adverse listening conditions (e.g., cocktail party). To explore the level at which aging impairs sound segregation, we measured auditory evoked fields (AEFs) using magnetoencephalography while young, middle-aged, and older adults were presented with complex sounds that either had all of their harmonics in tune or had the third harmonic mistuned by 4 or 16% of its original value. During the recording, participants were asked to ignore the stimuli and watch a muted subtitled movie of their choice. For each participant, the AEFs were modeled with a pair of dipoles in the superior temporal plane, and the effects of age and mistuning were examined on the amplitude and latency of the resulting source waveforms. Mistuned stimuli generated an early positivity (60-100 ms), an object-related negativity (ORN) (140-180 ms) that overlapped the N1 and P2 waves, and a positive displacement that peaked at approximately 230 ms (P230) after sound onset. The early mistuning-related enhancement was similar in all three age groups, whereas the subsequent modulations (ORN and P230) were reduced in older adults. These age differences in auditory cortical activity were associated with a reduced likelihood of hearing two sounds as a function of mistuning. The results reveal that inharmonicity is rapidly and automatically registered in all three age groups but that the perception of concurrent sounds declines with age.
Word Recognition Error Analysis: Comparing Isolated Word List and Oral Passage Reading
ERIC Educational Resources Information Center
Flynn, Lindsay J.; Hosp, John L.; Hosp, Michelle K.; Robbins, Kelly P.
2011-01-01
The purpose of this study was to determine the relation between word recognition errors made at a letter-sound pattern level on a word list and on a curriculum-based measurement oral reading fluency measure (CBM-ORF) for typical and struggling elementary readers. The participants were second, third, and fourth grade typical and struggling readers…
2015-11-01
process works—but it does work. Therefore, a third party (i.e., the U.S. Government) may have the IP from a company but not the “secret sauce ” needed to...and use it to have another manufacturer build the system at lower cost. While it sounds good, nowhere in the IP can we find the “secret sauce ” that
Third International Conference on Acoustic Communication by Animals
2011-09-30
communications Invited Speakers Peter Tyack cetacean communications Christopher Clark acoustic environment of whales Whitlow Au sound detection and...echolocation by dolphins Magnus Wahlberg sperm whale acoustics Robert Dooling bird hearing Ronald Hoy communication strategies in insects Peter Narins...frogs (6). Topics covered included cognition/language; song and call classification; rule learning; acoustic ecology; communication in noisy
ERIC Educational Resources Information Center
Wolter, Julie A.
2014-01-01
Morphological awareness has been established as important to literacy success, and as such, it is critical to study factors affecting children's performance on measures of this skill. Morphological transparency, or the clarity of the sound and letter pattern relationship between base words and their associated morphological forms, has been found…
Audio Control Handbook For Radio and Television Broadcasting. Third Revised Edition.
ERIC Educational Resources Information Center
Oringel, Robert S.
Audio control is the operation of all the types of sound equipment found in the studios and control rooms of a radio or television station. Written in a nontechnical style for beginners, the book explains thoroughly the operation of all types of audio equipment. Diagrams and photographs of commercial consoles, microphones, turntables, and tape…
Global Bathymetry: Machine Learning for Data Editing
NASA Astrophysics Data System (ADS)
Sandwell, D. T.; Tea, B.; Freund, Y.
2017-12-01
The accuracy of global bathymetry depends primarily on the coverage and accuracy of the sounding data and secondarily on the depth predicted from gravity. A main focus of our research is to add newly-available data to the global compilation. Most data sources have 1-12% of erroneous soundings caused by a wide array of blunders and measurement errors. Over the years we have hand-edited this data using undergraduate employees at UCSD (440 million soundings at 500 m resolution). We are developing a machine learning approach to refine the flagging of the older soundings and provide automated editing of newly-acquired soundings. The approach has three main steps: 1) Combine the sounding data with additional information that may inform the machine learning algorithm. The additional parameters include: depth predicted from gravity; distance to the nearest sounding from other cruises; seafloor age; spreading rate; sediment thickness; and vertical gravity gradient. 2) Use available edit decisions as training data sets for a boosted tree algorithm with a binary logistic objective function and L2 regularization. Initial results with poor quality single beam soundings show that the automated algorithm matches the hand-edited data 89% of the time. The results show that most of the information for detecting outliers comes from predicted depth with secondary contributions from distance to the nearest sounding and longitude. A similar analysis using very high quality multibeam data shows that the automated algorithm matches the hand-edited data 93% of the time. Again, most of the information for detecting outliers comes from predicted depth secondary contributions from distance to the nearest sounding and longitude. 3) The third step in the process is to use the machine learning parameters, derived from the training data, to edit 12 million newly acquired single beam sounding data provided by the National Geospatial-Intelligence Agency. The output of the learning algorithm will be confidence ratedindicating which edits the algorithm is confident on and which it is not confident. We expect the majority ( 90%) of edits to be confident and not require human intervention. Human intervention will be required only on the 10% unconfident decisions, thus reducing the amount of human work by a factor of 10 or more.
'Noises in the head': a prospective study to characterize intracranial sounds after cranial surgery.
Sivasubramaniam, Vinothan; Alg, Varinder Singh; Frantzias, Joseph; Acharya, Shami Yesha; Papadopoulos, Marios Costa; Martin, Andrew James
2016-08-01
Patients often report sounds in the head after craniotomy. We aim to characterize the prevalence and nature of these sounds, and identify any patient, pathology, or technical factors related to them. These data may be used to inform patients of this sometimes unpleasant, but harmless effect of cranial surgery. Prospective observational study of patients undergoing cranial surgery with dural opening. Eligible patients completed a questionnaire preoperatively and daily after surgery until discharge. Subjects were followed up at 14 days with a telephone consultation. One hundred fifty-one patients with various pathologies were included. Of these, 47 (31 %) reported hearing sounds in their head, lasting an average 4-6 days (median, 4 days, mean, 6 days, range, 1-14 days). The peak onset was the first postoperative day and the most commonly used descriptors were 'clicking' [20/47 (43 %)] and 'fluid moving' in the head [9/47 (19 %)]. A significant proportion (42 %, 32/77) without a wound drain experienced intracranial sounds compared to those with a drain (20 %, 15/74, p < 0.01); there was no difference between suction and gravity drains. Approximately a third of the patients in both groups (post-craniotomy sounds group: 36 %, 17/47; group not reporting sounds: 31 %, 32/104), had postoperative CT scans for unrelated reasons: 73 % (8/11) of those with pneumocephalus experienced intracranial sounds, compared to 24 % (9/38) of those without pneumocephalus (p < 0.01). There was no significant association with craniotomy site or size, temporal bone drilling, bone flap replacement, or filling of the surgical cavity with fluid. Sounds in the head after cranial surgery are common, affecting 31 % of patients. This is the first study into this subject, and provides valuable information useful for consenting patients. The data suggest pneumocephalus as a plausible explanation with which to reassure patients, rather than relying on anecdotal evidence, as has been the case to date.
NASA Technical Reports Server (NTRS)
Seybert, A. F.; Wu, T. W.; Wu, X. F.
1994-01-01
This research report is presented in three parts. In the first part, acoustical analyses were performed on modes of vibration of the housing of a transmission of a gear test rig developed by NASA. The modes of vibration of the transmission housing were measured using experimental modal analysis. The boundary element method (BEM) was used to calculate the sound pressure and sound intensity on the surface of the housing and the radiation efficiency of each mode. The radiation efficiency of each of the transmission housing modes was then compared to theoretical results for a finite baffled plate. In the second part, analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise level radiated from the box. The FEM was used to predict the vibration, while the BEM was used to predict the sound intensity and total radiated sound power using surface vibration as the input data. Vibration predicted by the FEM model was validated by experimental modal analysis; noise predicted by the BEM was validated by measurements of sound intensity. Three types of results are presented for the total radiated sound power: sound power predicted by the BEM model using vibration data measured on the surface of the box; sound power predicted by the FEM/BEM model; and sound power measured by an acoustic intensity scan. In the third part, the structure used in part two was modified. A rib was attached to the top plate of the structure. The FEM and BEM were then used to predict structural vibration and radiated noise respectively. The predicted vibration and radiated noise were then validated through experimentation.
Phillips, D P; Farmer, M E
1990-11-15
This paper explores the nature of the processing disorder which underlies the speech discrimination deficit in the syndrome of acquired word deafness following from pathology to the primary auditory cortex. A critical examination of the evidence on this disorder revealed the following. First, the most profound forms of the condition are expressed not only in an isolation of the cerebral linguistic processor from auditory input, but in a failure of even the perceptual elaboration of the relevant sounds. Second, in agreement with earlier studies, we conclude that the perceptual dimension disturbed in word deafness is a temporal one. We argue, however, that it is not a generalized disorder of auditory temporal processing, but one which is largely restricted to the processing of sounds with temporal content in the milliseconds to tens-of-milliseconds time frame. The perceptual elaboration of sounds with temporal content outside that range, in either direction, may survive the disorder. Third, we present neurophysiological evidence that the primary auditory cortex has a special role in the representation of auditory events in that time frame, but not in the representation of auditory events with temporal grains outside that range.
Light-weight low-frequency loudspeaker
NASA Astrophysics Data System (ADS)
Corsaro, Robert; Tressler, James
2002-05-01
In an aerospace application, we require a very low-mass sound generator with good performance at low audio frequencies (i.e., 30-400 Hz). A number of device configurations have been explored using various actuation technologies. Two particularly interesting devices have been developed, both using ``Thunder'' transducers (Face Intl. Corp.) as the actuation component. One of these devices has the advantage of high sound output but a complex phase spectrum, while the other has somewhat lower output but a highly uniform phase. The former is particularly novel in that the actuator is coupled to a flat, compliant diaphragm supported on the edges by an inflatable tube. This results in a radiating surface with very high modal complexity. Sound pressure levels measured in the far field (25 cm) using only 200-V peak drive (one-third or its rating) were nominally 74 6 dB over the band from 38 to 330 Hz. The second device essentially operates as a stiff low-mass piston, and is more suitable for our particular application, which is exploring the use of active controlled surface covers for reducing sound levels in payload fairing regions. [Work supported by NRL/ONR Smart Blanket program.
Vortex/Body Interaction and Sound Generation in Low-Speed Flow
NASA Technical Reports Server (NTRS)
Kao, Hsiao C.
1998-01-01
The problem of sound generation by vortices interacting with an arbitrary body in a low-speed flow has been investigated by the method of matched asymptotic expansions. For the purpose of this report, it is convenient to divide the problem into three parts. In the first part the mechanism of the vortex/body interaction, which is essentially the inner solution in the inner region, is examined. The trajectories for a system of vortices rotating about their centroid are found to undergo enormous changes after interaction; from this, some interesting properties emerged. In the second part, the problem is formulated, the outer solution is found, matching is implemented, and solutions for acoustic pressure are obtained. In the third part, Fourier integrals are evaluated and predicated results presented. An examination of these results reveals the following: (a) the background noise can be either augmented or attenuated by a body after interaction, (b) sound generated by vortex/body interaction obeys a scaling factor, (C) sound intensity can be reduced substantially by positioning the vortex system in the "favorable" side of the body instead of the "unfavorable" side, and (d) acoustic radiation from vortex/bluff-body interaction is less than that from vortex/airfoil interaction under most circumstances.
Monaural Sound Localization Revisited
NASA Technical Reports Server (NTRS)
Wightman, Frederic L.; Kistler, Doris J.
1997-01-01
Research reported during the past few decades has revealed the importance for human sound localization of the so-called 'monaural spectral cues.' These cues are the result of the direction-dependent filtering of incoming sound waves accomplished by the pinnae. One point of view about how these cues are extracted places great emphasis on the spectrum of the received sound at each ear individually. This leads to the suggestion that an effective way of studying the influence of these cues is to measure the ability of listeners to localize sounds when one of their ears is plugged. Numerous studies have appeared using this monaural localization paradigm. Three experiments are described here which are intended to clarify the results of the previous monaural localization studies and provide new data on how monaural spectral cues might be processed. Virtual sound sources are used in the experiments in order to manipulate and control the stimuli independently at the two ears. Two of the experiments deal with the consequences of the incomplete monauralization that may have contaminated previous work. The results suggest that even very low sound levels in the occluded ear provide access to interaural localization cues. The presence of these cues complicates the interpretation of the results of nominally monaural localization studies. The third experiment concerns the role of prior knowledge of the source spectrum, which is required if monaural cues are to be useful. The results of this last experiment demonstrate that extraction of monaural spectral cues can be severely disrupted by trial-to-trial fluctuations in the source spectrum. The general conclusion of the experiments is that, while monaural spectral cues are important, the monaural localization paradigm may not be the most appropriate way to study their role.
Monaural sound localization revisited.
Wightman, F L; Kistler, D J
1997-02-01
Research reported during the past few decades has revealed the importance for human sound localization of the so-called "monaural spectral cues." These cues are the result of the direction-dependent filtering of incoming sound waves accomplished by the pinnae. One point of view about how these cues are extracted places great emphasis on the spectrum of the received sound at each ear individually. This leads to the suggestion that an effective way of studying the influence of these cues is to measure the ability of listeners to localize sounds when one of their ears is plugged. Numerous studies have appeared using this monaural localization paradigm. Three experiments are described here which are intended to clarify the results of the previous monaural localization studies and provide new data on how monaural spectral cues might be processed. Virtual sound sources are used in the experiments in order to manipulate and control the stimuli independently at the two ears. Two of the experiments deal with the consequences of the incomplete monauralization that may have contaminated previous work. The results suggest that even very low sound levels in the occluded ear provide access to interaural localization cues. The presence of these cues complicates the interpretation of the results of nominally monaural localization studies. The third experiment concerns the role of prior knowledge of the source spectrum, which is required if monaural cues are to be useful. The results of this last experiment demonstrate that extraction of monaural spectral cues can be severely disrupted by trial-to-trial fluctuations in the source spectrum. The general conclusion of the experiments is that, while monaural spectral cues are important, the monaural localization paradigm may not be the most appropriate way to study their role.
Young, William R; Rodger, Matthew W M; Craig, Cathy M
2014-05-01
A common behavioural symptom of Parkinson׳s disease (PD) is reduced step length (SL). Whilst sensory cueing strategies can be effective in increasing SL and reducing gait variability, current cueing strategies conveying spatial or temporal information are generally confined to the use of either visual or auditory cue modalities, respectively. We describe a novel cueing strategy using ecologically-valid 'action-related' sounds (footsteps on gravel) that convey both spatial and temporal parameters of a specific action within a single cue. The current study used a real-time imitation task to examine whether PD affects the ability to re-enact changes in spatial characteristics of stepping actions, based solely on auditory information. In a second experimental session, these procedures were repeated using synthesized sounds derived from recordings of the kinetic interactions between the foot and walking surface. A third experimental session examined whether adaptations observed when participants walked to action-sounds were preserved when participants imagined either real recorded or synthesized sounds. Whilst healthy control participants were able to re-enact significant changes in SL in all cue conditions, these adaptations, in conjunction with reduced variability of SL were only observed in the PD group when walking to, or imagining the recorded sounds. The findings show that while recordings of stepping sounds convey action information to allow PD patients to re-enact and imagine spatial characteristics of gait, synthesis of sounds purely from gait kinetics is insufficient to evoke similar changes in behaviour, perhaps indicating that PD patients have a higher threshold to cue sensorimotor resonant responses. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Dimensions Underlying the Perceived Similarity of Acoustic Environments
Aletta, Francesco; Axelsson, Östen; Kang, Jian
2017-01-01
Scientific research on how people perceive or experience and/or understand the acoustic environment as a whole (i.e., soundscape) is still in development. In order to predict how people would perceive an acoustic environment, it is central to identify its underlying acoustic properties. This was the purpose of the present study. Three successive experiments were conducted. With the aid of 30 university students, the first experiment mapped the underlying dimensions of perceived similarity among 50 acoustic environments, using a visual sorting task of their spectrograms. Three dimensions were identified: (1) Distinguishable–Indistinguishable sound sources, (2) Background–Foreground sounds, and (3) Intrusive–Smooth sound sources. The second experiment was aimed to validate the results from Experiment 1 by a listening experiment. However, a majority of the 10 expert listeners involved in Experiment 2 used a qualitatively different approach than the 30 university students in Experiment 1. A third experiment was conducted in which 10 more expert listeners performed the same task as per Experiment 2, with spliced audio signals. Nevertheless, Experiment 3 provided a statistically significantly worse result than Experiment 2. These results suggest that information about the meaning of the recorded sounds could be retrieved in the spectrograms, and that the meaning of the sounds may be captured with the aid of holistic features of the acoustic environment, but such features are still unexplored and further in-depth research is needed in this field. PMID:28747894
Very high resolution UV and X-ray spectroscopy and imagery of solar active regions
NASA Technical Reports Server (NTRS)
Bruner, M.; Brown, W. A.; Haisch, B. M.
1987-01-01
A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.
The Costs of Out-of-School-Time Programs: A Review of the Available Evidence
ERIC Educational Resources Information Center
Lind, Christianne; Relave, Nanette; Deich, Sharon; Grossman, Jean; Gersick, Andrew
2006-01-01
Nearly two-thirds of U.S. families are now headed by two working parents or a single working parent. Accompanying the rise in working parents is a growing demand for high-quality supervised care and enrichment activities for children and youth during out-of-school hours. To make sound investment decisions, policymakers, program providers and…
14 CFR Appendix A to Part 36 - Aircraft Noise Measurement and Evaluation Under § 36.101
Code of Federal Regulations, 2014 CFR
2014-01-01
... involve only minor changes to the airplane type design. The resulting changes in noise can often be... equivalent weighted sound attenuations in each one-third octave band; or (2) The peak noy values at the time... airplane at the time of PNLTM, for each measurement; (e) Average wind velocity 33 ft (10 m) above ground...
The Influences of Progression Type and Distortion on the Perception of Terminal Power Chords
ERIC Educational Resources Information Center
Juchniewicz, Jay; Silverman, Michael J.
2013-01-01
The purpose of this study was to investigate the tonal perception and restoration of thirds within power chords with the instruments and sounds idiosyncratic to the Western rock/pop genre. Four separate chord sequences were performed on electric guitar in four versions; as full chord and power chord versions as well as under both clean-tone and…
Songer, Jocelyn E.; Rosowski, John J.
2009-01-01
The recent discovery of superior semicircular canal (SC) dehiscence syndrome as a clinical entity affecting both the auditory and vestibular systems has led to the investigation of the impact of a SC opening on the mechanics of hearing. It is hypothesized that the hole in the SC acts as a “third window” in the inner ear which shunts sound-induced stapes volume velocity away from the cochlea through the opening in the SC. To test the hypothesis and to understand the third window mechanisms the middle-ear input admittance and sound-induced stapes velocity were measured in chinchilla before and after surgically introducing a SC opening and after patching the opening. The extent to which patching returned the system to the presurgical state is used as a control criterion. In eight chinchilla ears a statistically significant, reversible increase in low-frequency middle-ear input admittance magnitude occurred as a result of opening the SC. In six ears a statistically significant reversible increase in stapes velocity was observed. Both of these changes are consistent with the hole creating a shunt pathway that increases the cochlear input admittance. PMID:16875223
Songer, Jocelyn E; Rosowski, John J
2006-07-01
The recent discovery of superior semicircular canal (SC) dehiscence syndrome as a clinical entity affecting both the auditory and vestibular systems has led to the investigation of the impact of a SC opening on the mechanics of hearing. It is hypothesized that the hole in the SC acts as a "third window" in the inner ear which shunts sound-induced stapes volume velocity away from the cochlea through the opening in the SC. To test the hypothesis and to understand the third window mechanisms the middle-ear input admittance and sound-induced stapes velocity were measured in chinchilla before and after surgically introducing a SC opening and after patching the opening. The extent to which patching returned the system to the presurgical state is used as a control criterion. In eight chinchilla ears a statistically significant, reversible increase in low-frequency middle-ear input admittance magnitude occurred as a result of opening the SC. In six ears a statistically significant reversible increase in stapes velocity was observed. Both of these changes are consistent with the hole creating a shunt pathway that increases the cochlear input admittance.
Seismic and Biological Sources of Ambient Ocean Sound
NASA Astrophysics Data System (ADS)
Freeman, Simon Eric
Sound is the most efficient radiation in the ocean. Sounds of seismic and biological origin contain information regarding the underlying processes that created them. A single hydrophone records summary time-frequency information from the volume within acoustic range. Beamforming using a hydrophone array additionally produces azimuthal estimates of sound sources. A two-dimensional array and acoustic focusing produce an unambiguous two-dimensional `image' of sources. This dissertation describes the application of these techniques in three cases. The first utilizes hydrophone arrays to investigate T-phases (water-borne seismic waves) in the Philippine Sea. Ninety T-phases were recorded over a 12-day period, implying a greater number of seismic events occur than are detected by terrestrial seismic monitoring in the region. Observation of an azimuthally migrating T-phase suggests that reverberation of such sounds from bathymetric features can occur over megameter scales. In the second case, single hydrophone recordings from coral reefs in the Line Islands archipelago reveal that local ambient reef sound is spectrally similar to sounds produced by small, hard-shelled benthic invertebrates in captivity. Time-lapse photography of the reef reveals an increase in benthic invertebrate activity at sundown, consistent with an increase in sound level. The dominant acoustic phenomenon on these reefs may thus originate from the interaction between a large number of small invertebrates and the substrate. Such sounds could be used to take census of hard-shelled benthic invertebrates that are otherwise extremely difficult to survey. A two-dimensional `map' of sound production over a coral reef in the Hawaiian Islands was obtained using two-dimensional hydrophone array in the third case. Heterogeneously distributed bio-acoustic sources were generally co-located with rocky reef areas. Acoustically dominant snapping shrimp were largely restricted to one location within the area surveyed. This distribution of sources could reveal small-scale spatial ecological limitations, such as the availability of food and shelter. While array-based passive acoustic sensing is well established in seismoacoustics, the technique is little utilized in the study of ambient biological sound. With the continuance of Moore's law and advances in battery and memory technology, inferring biological processes from ambient sound may become a more accessible tool in underwater ecological evaluation and monitoring.
The Noisiness of Low-Frequency One-Third Octave Bands of Noise. M.S. Thesis - Southampton Univ.
NASA Technical Reports Server (NTRS)
Lawton, B. W.
1975-01-01
This study examined the relative noisiness of low frequency one-third octave bands of noise bounded by the bands centered at 25 Hz and 200 Hz, with intensities ranging from 50 db sound pressure level (SPL) to 95 db SPL. The thirty-two subjects used a method-of-adjustment technique, producing comparison-band intensities as noisy as standard bands centered at 100 Hz and 200 Hz with intensities of 60 db SPL and 72 db SPL. Four contours of equal noisiness were developed for one-third octave bands, extending down to 25 Hz and ranging in intensity from approximately 58 db SPL to 86 db SPL. These curves were compared with the contours of equal noisiness of Kryter and Pearsons. In the region of overlap (between 50 Hz and 200 Hz) the agreement was good.
NASA Technical Reports Server (NTRS)
Conner, David A.; Page, Juliet A.
2002-01-01
To improve aircraft noise impact modeling capabilities and to provide a tool to aid in the development of low noise terminal area operations for rotorcraft and tiltrotors, the Rotorcraft Noise Model (RNM) was developed by the NASA Langley Research Center and Wyle Laboratories. RNM is a simulation program that predicts how sound will propagate through the atmosphere and accumulate at receiver locations located on flat ground or varying terrain, for single and multiple vehicle flight operations. At the core of RNM are the vehicle noise sources, input as sound hemispheres. As the vehicle "flies" along its prescribed flight trajectory, the source sound propagation is simulated and accumulated at the receiver locations (single points of interest or multiple grid points) in a systematic time-based manner. These sound signals at the receiver locations may then be analyzed to obtain single event footprints, integrated noise contours, time histories, or numerous other features. RNM may also be used to generate spectral time history data over a ground mesh for the creation of single event sound animation videos. Acoustic properties of the noise source(s) are defined in terms of sound hemispheres that may be obtained from theoretical predictions, wind tunnel experimental results, flight test measurements, or a combination of the three. The sound hemispheres may contain broadband data (source levels as a function of one-third octave band) and pure-tone data (in the form of specific frequency sound pressure levels and phase). A PC executable version of RNM is publicly available and has been adopted by a number of organizations for Environmental Impact Assessment studies of rotorcraft noise. This paper provides a review of the required input data, the theoretical framework of RNM's propagation model and the output results. Code validation results are provided from a NATO helicopter noise flight test as well as a tiltrotor flight test program that used the RNM as a tool to aid in the development of low noise approach profiles.
Vibration Suppression Strategies for Large Tension-Aligned Array Structures
2013-11-19
show vibration suppression. Practical issues related to actuator bandwidth were also addressed. 40 Dr. Ranjan Mukherjee (517) 355-1834 FINAL...third strategies, Lyapunov stability theory was used to show vibration suppression. Practical issues related to actuator bandwidth were also addressed...1 Publications Journal Papers : • Alsahlani, A. and Mukherjee, R., “Vibration Control of a String Using a Scabbard-Like Actuator”, Journal of Sound and
Development of Ocean Noise "Budgets"
NASA Astrophysics Data System (ADS)
D'Spain, G. L.; Miller, J. H.; Frisk, G. V.; Bradley, D. L.
2003-12-01
The National Oceanographic Partnership Program recently sponsored the third U.S. National Academy of Sciences study on the potential impact of manmade sound on the marine environment. Several recommendations for future research are made by the 11-member committee in their report titled Ocean Noise and Marine Mammals (National Academies Press, 2003). This presentation will focus on the subset of recommendations related to a "noise budget", i.e., an accounting of the relative contributions of various sources to the ocean noise field. A noise budget is defined in terms of a specific metric of the sound field. The metric, or budget "currency", typically considered is the acoustic pressure spectrum integrated over space and time, which is proportional to the total mechanical energy in the acoustic field. However, this currency may not be the only one of relevance to marine animals. Each of the various ways in which sound can potentially impact these animals, e.g., temporary threshold shift, masking, behavior disruption, etc, probably depends upon a different property, or set of properties, of the sound field. Therefore, a family of noise budgets based on various currencies will be required for complete evaluation of the potential impact of manmade noise on the marine environment. Validation of noise budgets will require sustained, long term measurements of the underwater noise field.
Enhanced auditory spatial localization in blind echolocators.
Vercillo, Tiziana; Milne, Jennifer L; Gori, Monica; Goodale, Melvyn A
2015-01-01
Echolocation is the extraordinary ability to represent the external environment by using reflected sound waves from self-generated auditory pulses. Blind human expert echolocators show extremely precise spatial acuity and high accuracy in determining the shape and motion of objects by using echoes. In the current study, we investigated whether or not the use of echolocation would improve the representation of auditory space, which is severely compromised in congenitally blind individuals (Gori et al., 2014). The performance of three blind expert echolocators was compared to that of 6 blind non-echolocators and 11 sighted participants. Two tasks were performed: (1) a space bisection task in which participants judged whether the second of a sequence of three sounds was closer in space to the first or the third sound and (2) a minimum audible angle task in which participants reported which of two sounds presented successively was located more to the right. The blind non-echolocating group showed a severe impairment only in the space bisection task compared to the sighted group. Remarkably, the three blind expert echolocators performed both spatial tasks with similar or even better precision and accuracy than the sighted group. These results suggest that echolocation may improve the general sense of auditory space, most likely through a process of sensory calibration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vocal characteristics of pygmy blue whales and their change over time.
Gavrilov, Alexander N; McCauley, Robert D; Salgado-Kent, Chandra; Tripovich, Joy; Burton, Chris
2011-12-01
Vocal characteristics of pygmy blue whales of the eastern Indian Ocean population were analyzed using data from a hydroacoustic station deployed off Cape Leeuwin in Western Australia as part of the Comprehensive Nuclear-Test-Ban Treaty monitoring network, from two acoustic observatories of the Australian Integrated Marine Observing System, and from individual sea noise loggers deployed in the Perth Canyon. These data have been collected from 2002 to 2010, inclusively. It is shown that the themes of pygmy blue whale songs consist of ether three or two repeating tonal sounds with harmonics. The most intense sound of the tonal theme was estimated to correspond to a source level of 179 ± 2 dB re 1 μPa at 1 m measured for 120 calls from seven different animals. Short-duration calls of impulsive downswept sound from pygmy blue whales were weaker with the source level estimated to vary between 168 to 176 dB. A gradual decrease in the call frequency with a mean rate estimated to be 0.35 ± 0.3 Hz/year was observed over nine years in the frequency of the third harmonic of tonal sound 2 in the whale song theme, which corresponds to a negative trend of about 0.12 Hz/year in the call fundamental frequency. © 2011 Acoustical Society of America
Rosowski, John J; Bowers, Peter; Nakajima, Hideko H
2018-03-01
While most models of cochlear function assume the presence of only two windows into the mammalian cochlea (the oval and round windows), a position that is generally supported by several lines of data, there is evidence for additional sound paths into and out of the inner ear in normal mammals. In this report we review the existing evidence for and against the 'two-window' hypothesis. We then determine how existing data and inner-ear anatomy restrict transmission of sound through these additional sound pathways in cat by utilizing a well-tested model of the cat inner ear, together with anatomical descriptions of the cat cochlear and vestibular aqueducts (potential additional windows to the cochlea). We conclude: (1) The existing data place limits on the size of the cochlear and vestibular aqueducts in cat and are consistent with small volume-velocities through these ducts during ossicular stimulation of the cochlea, (2) the predicted volume velocities produced by aqueducts with diameters half the size of the bony diameters match the functional data within ±10 dB, and (3) these additional volume velocity paths contribute to the inner ear's response to non-acoustic stimulation and conductive pathology. Copyright © 2017 Elsevier B.V. All rights reserved.
McCormack, Jane; Baker, Elise; Masso, Sarah; Crowe, Kathryn; McLeod, Sharynne; Wren, Yvonne; Roulstone, Sue
2017-06-01
Implementation fidelity refers to the degree to which an intervention or programme adheres to its original design. This paper examines implementation fidelity in the Sound Start Study, a clustered randomised controlled trial of computer-assisted support for children with speech sound disorders (SSD). Sixty-three children with SSD in 19 early childhood centres received computer-assisted support (Phoneme Factory Sound Sorter [PFSS] - Australian version). Educators facilitated the delivery of PFSS targeting phonological error patterns identified by a speech-language pathologist. Implementation data were gathered via (1) the computer software, which recorded when and how much intervention was completed over 9 weeks; (2) educators' records of practice sessions; and (3) scoring of fidelity (intervention procedure, competence and quality of delivery) from videos of intervention sessions. Less than one-third of children received the prescribed number of days of intervention, while approximately one-half participated in the prescribed number of intervention plays. Computer data differed from educators' data for total number of days and plays in which children participated; the degree of match was lower as data became more specific. Fidelity to intervention procedures, competency and quality of delivery was high. Implementation fidelity may impact intervention outcomes and so needs to be measured in intervention research; however, the way in which it is measured may impact on data.
Numerical solutions of acoustic wave propagation problems using Euler computations
NASA Technical Reports Server (NTRS)
Hariharan, S. I.
1984-01-01
This paper reports solution procedures for problems arising from the study of engine inlet wave propagation. The first problem is the study of sound waves radiated from cylindrical inlets. The second one is a quasi-one-dimensional problem to study the effect of nonlinearities and the third one is the study of nonlinearities in two dimensions. In all three problems Euler computations are done with a fourth-order explicit scheme. For the first problem results are shown in agreement with experimental data and for the second problem comparisons are made with an existing asymptotic theory. The third problem is part of an ongoing work and preliminary results are presented for this case.
Active Control by Conservation of Energy Concept
NASA Technical Reports Server (NTRS)
Maestrello, Lucio
2000-01-01
Three unrelated experiments are discussed; each was extremely sensitive to initial conditions. The initial conditions are the beginnings of the origins of the information that nonlinearity displays. Initial conditions make the phenomenon unstable and unpredictable. With the knowledge of the initial conditions, active control requires far less power than that present in the system response. The first experiment is on the control of shocks from an axisymmetric supersonic jet; the second, control of a nonlinear panel response forced by turbulent boundary layer and sound; the third, control of subharmonic and harmonics of a panel forced by sound. In all three experiments, control is achieved by redistribution of periodic energy response such that the energy is nearly preserved from a previous uncontrolled state. This type of active control improves the performance of the system being controlled.
Navimipour, Elmira Jafari; Firouzmandi, Maryam; Mirhashemi, Fatemeh Sadat
2015-04-01
This study evaluated the effect of three methods of glass fiber insertion on stress distribution pattern and cusp movement of the root-filled maxillary premolars using finite element method (FEM) analysis. A three-dimensional (3 D) FEM model of a sound upper premolar tooth and four models of root-filled upper premolars with mesiocclusodistal (MOD) cavities were molded and restored with: (1) Composite resin only (NF); (2) Composite resin along with a ribbon of glass fiber placed in the occlusal third (OF); (3) Composite resin along with a ribbon of glass fiber placed circumferentially in the cervical third (CF), and (4) Composite resin along with occlusal and circumferential fibers (OCF). A static vertical load was applied to calculate the stress distributions. Structural analysis program by Solidworks were used for FEM analysis. Von-Mises stress values and cusp movements induced by occlusal loading were evaluated. Maximum Von-Mises stress of enamel occurred in sound tooth, followed by NF, CF, OF and OCF. Maximum Von-Mises stress of dentin occurred in sound tooth, followed by OF, OCF, CF and NF. Stress distribution patterns of OF and OCF were similar. Maximum overall stress values were concentrated in NF. Although stress distribution patterns of NF and CF were found as similar, CF showed lower stress values. Palatal cusp movement was more than buccal cusp in all of the models. The results of our study indicated that while the circumferential fiber had little effect on overall stress concentration, it provided a more favorable stress distribution pattern in cervical region. The occlusal fiber reduced the average stress in the entire structure but did not reduce cuspal movement. Incorporating glass fiber in composite restorations may alter the stress state within the structure depending on fiber position.
NASA Astrophysics Data System (ADS)
Jumpatong, Sutthaya; Yuenyong, Chokchai
2018-01-01
STEM education suggested that students should be enhanced to learn science with integration between Science, Technology, Engineering and Mathematics. To help Thai students make sense of relationship between Science, Technology, Engineering and Mathematics, this paper presents learning activities of STS Sound Pollution. The developing of STS Sound Pollution is a part of research that aimed to enhance students' perception of the relationship between Science Technology Engineering and Mathematics. This paper will discuss how to develop Sound Pollution through STS approach in framework of Yuenyong (2006) where learning activities were provided based on 5 stages. These included (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decisionmaking, and (5) socialization stage. The learning activities could be highlighted as following. First stage, we use video clip of `Problem of people about Sound Pollution'. Second stage, students will need to identification of potential solutions by design Home/Factory without noisy. The need of scientific and other knowledge will be proposed for various alternative solutions. Third stage, students will gain their scientific knowledge through laboratory and demonstration of sound wave. Fourth stage, students have to make decision for the best solution of designing safety Home/Factory based on their scientific knowledge and others (e.g. mathematics, economics, art, value, and so on). Finally, students will present and share their Design Safety Home/Factory in society (e.g. social media or exhibition) in order to validate their ideas and redesigning. The paper, then, will discuss how those activities would allow students' applying knowledge of science technology engineering, mathematics and others (art, culture and value) for their possible solution of the STS issues.
Wenstrup, J J
1999-11-01
The auditory cortex of the mustached bat (Pteronotus parnellii) displays some of the most highly developed physiological and organizational features described in mammalian auditory cortex. This study examines response properties and organization in the medial geniculate body (MGB) that may contribute to these features of auditory cortex. About 25% of 427 auditory responses had simple frequency tuning with single excitatory tuning curves. The remainder displayed more complex frequency tuning using two-tone or noise stimuli. Most of these were combination-sensitive, responsive to combinations of different frequency bands within sonar or social vocalizations. They included FM-FM neurons, responsive to different harmonic elements of the frequency modulated (FM) sweep in the sonar signal, and H1-CF neurons, responsive to combinations of the bat's first sonar harmonic (H1) and a higher harmonic of the constant frequency (CF) sonar signal. Most combination-sensitive neurons (86%) showed facilitatory interactions. Neurons tuned to frequencies outside the biosonar range also displayed combination-sensitive responses, perhaps related to analyses of social vocalizations. Complex spectral responses were distributed throughout dorsal and ventral divisions of the MGB, forming a major feature of this bat's analysis of complex sounds. The auditory sector of the thalamic reticular nucleus also was dominated by complex spectral responses to sounds. The ventral division was organized tonotopically, based on best frequencies of singly tuned neurons and higher best frequencies of combination-sensitive neurons. Best frequencies were lowest ventrolaterally, increasing dorsally and then ventromedially. However, representations of frequencies associated with higher harmonics of the FM sonar signal were reduced greatly. Frequency organization in the dorsal division was not tonotopic; within the middle one-third of MGB, combination-sensitive responses to second and third harmonic CF sonar signals (60-63 and 90-94 kHz) occurred in adjacent regions. In the rostral one-third, combination-sensitive responses to second, third, and fourth harmonic FM frequency bands predominated. These FM-FM neurons, thought to be selective for delay between an emitted pulse and echo, showed some organization of delay selectivity. The organization of frequency sensitivity in the MGB suggests a major rewiring of the output of the central nucleus of the inferior colliculus, by which collicular neurons tuned to the bat's FM sonar signals mostly project to the dorsal, not the ventral, division. Because physiological differences between collicular and MGB neurons are minor, a major role of the tecto-thalamic projection in the mustached bat may be the reorganization of responses to provide for cortical representations of sonar target features.
Noise control, sound, and the vehicle design process
NASA Astrophysics Data System (ADS)
Donavan, Paul
2005-09-01
For many products, noise and sound are viewed as necessary evils that need to be dealt with in order to bring the product successfully to market. They are generally not product ``exciters'' although some vehicle manufacturers do tune and advertise specific sounds to enhance the perception of their products. In this paper, influencing the design process for the ``evils,'' such as wind noise and road noise, are considered in more detail. There are three ingredients to successfully dealing with the evils in the design process. The first of these is knowing how excesses in noise effects the end customer in a tangible manner and how that effects customer satisfaction and ultimately sells. The second is having and delivering the knowledge of what is required of the design to achieve a satisfactory or even better level of noise performance. The third ingredient is having the commitment of the designers to incorporate the knowledge into their part, subsystem or system. In this paper, the elements of each of these ingredients are discussed in some detail and the attributes of a successful design process are enumerated.
Auditory velocity discrimination in the horizontal plane at very high velocities.
Frissen, Ilja; Féron, François-Xavier; Guastavino, Catherine
2014-10-01
We determined velocity discrimination thresholds and Weber fractions for sounds revolving around the listener at very high velocities. Sounds used were a broadband white noise and two harmonic sounds with fundamental frequencies of 330 Hz and 1760 Hz. Experiment 1 used velocities ranging between 288°/s and 720°/s in an acoustically treated room and Experiment 2 used velocities between 288°/s and 576°/s in a highly reverberant hall. A third experiment addressed potential confounds in the first two experiments. The results show that people can reliably discriminate velocity at very high velocities and that both thresholds and Weber fractions decrease as velocity increases. These results violate Weber's law but are consistent with the empirical trend observed in the literature. While thresholds for the noise and 330 Hz harmonic stimulus were similar, those for the 1760 Hz harmonic stimulus were substantially higher. There were no reliable differences in velocity discrimination between the two acoustical environments, suggesting that auditory motion perception at high velocities is robust against the effects of reverberation. Copyright © 2014 Elsevier B.V. All rights reserved.
The Sound of the Microwave Background
NASA Astrophysics Data System (ADS)
Whittle, M.
2004-05-01
One of the most impressive developments in modern cosmology has been the measurement and analysis of the tiny fluctuations seen in the cosmic microwave background (CMB) radiation. When discussing these fluctuations, cosmologists frequently refer to their acoustic nature -- sound waves moving through the hot gas appear as peaks and troughs when they cross the surface of last scattering. As is now well known, recent observations quantify the amplitudes of these waves over several octaves, revealing a fundamental tone with several harmonics, whose relative strengths and pitches reveal important cosmological parameters, including global curvature. Not surprisingly, these results have wonderful pedagogical value in educating and inspiring both students and the general public. To further enhance this educational experience, I have attempted what might seem rather obvious, namely converting the CMB power spectrum into an audible sound. By raising the pitch some 50 octaves so that the fundamental falls at 200 Hz (matching its harmonic ``l" value), we hear the resulting sound as a loud hissing roar. Matching the progress in observational results has been an equally impressive development of the theoretical treatment of CMB fluctuations. Using available computer simulations (e.g. CMBFAST) it is possible to recreate the subtley different sounds generated by different kinds of universe (e.g. different curvature or baryon content). Pushing further, one can generate the ``true" sound, characterized by P(k), rather than the ``observed" sound, characterized by C(l). From P(k), we learn that the fundamental and harmonics are offset, yielding a chord somewhere between a major and minor third. A sequence of models also allows one to follow the growth of sound during the first megayear: a descending scream, changing into a deepening roar, with subsequent growing hiss; matching the increase in wavelength caused by universal expansion, followed by the post recombination flow of gas into the small scale potential wells created by dark matter. This final sound, of course, sets the stage for all subsequent growth of cosmic structure, from stars (hiss), through galaxies (mid-range tones), to large scale structure (bass notes). Although popular presentations of CMB studies already make use of many visual and conceptual aids, introducing sound into the pedagogical mix can significantly enhance both the intellectual and the emotional impact of the subject on its audience.
ERIC Educational Resources Information Center
Erbey, Rachel; McLaughlin, T. F.; Derby, K. Mark; Everson, Mary
2011-01-01
The purpose of this study was to measure the effects of reading racetrack and flashcards when teaching phonics, sight words, and addition facts. The participants for the sight word and phonics portion of this study were two seven-year-old boys in the second grade. Both participants were diagnosed with a learning disability. The third participant…
ERIC Educational Resources Information Center
Parker, David C.; Zaslofsky, Anne F.; Burns, Matthew K.; Kanive, Rebecca; Hodgson, Jennifer; Scholin, Sarah E.; Klingbeil, David A.
2015-01-01
The availability of psychometrically sound and usable universal screeners is a key component to successful early identification within a response-to-intervention model. The purpose of this study was to compare the diagnostic accuracy of oral reading fluency (ORF) and an informal reading inventory for identifying students considered at risk for…
S-NPP ATMS Instrument Prelaunch and On-Orbit Performance Evaluation
NASA Technical Reports Server (NTRS)
Kim, Edward; Lyu, Cheng-Hsuan; Anderson, Kent; Leslie, Vincent R.; Blackwell, William J.
2014-01-01
The first of a new generation of microwave sounders was launched aboard the Suomi-National Polar-Orbiting Partnership satellite in October 2011. The Advanced Technology Microwave Sounder (ATMS) combines the capabilities and channel sets of three predecessor sounders into a single package to provide information on the atmospheric vertical temperature and moisture profiles that are the most critical observations needed for numerical weather forecast models. Enhancements include size/mass/power approximately one third of the previous total, three new sounding channels, the first space-based, Nyquist-sampled cross-track microwave temperature soundings for improved fusion with infrared soundings, plus improved temperature control and reliability. This paper describes the ATMS characteristics versus its predecessor, the advanced microwave sounding unit (AMSU), and presents the first comprehensive evaluation of key prelaunch and on-orbit performance parameters. Two-year on-orbit performance shows that the ATMS has maintained very stable radiometric sensitivity, in agreement with prelaunch data, meeting requirements for all channels (with margins of 40% for channels 1-15), and improvements over AMSU-A when processed for equivalent spatial resolution. The radiometric accuracy, determined by analysis from ground test measurements, and using on-orbit instrument temperatures, also shows large margins relative to requirements (specified as <1.0K for channels 1, 2, and 16-22 and <0.75 K for channels 3-15). A thorough evaluation of the performance of ATMS is especially important for this first proto-flight model unit of what will eventually be a series of ATMS sensors providing operational sounding capability for the U.S. and its international partners well into the next decade.
NASA Astrophysics Data System (ADS)
Young, Eric D.
The analysis of
Intelligent mapping of alluvial aquifer characteristics in the Otago region, New Zealand
NASA Astrophysics Data System (ADS)
Friedel, Michael; Rawlinson, Zara; Westerhoff, Rogier
2015-04-01
We adopt a hybrid approach to map the 3D hydrostratigraphy of an alluvial aquifer using big data collected in the Ettrick basin, Otago New Zealand. First, a subset (1%) of the 18 million regional helicopter frequency-domain electromagnetic (HEM) sounding measurements (300 Hz, Horizontal co-planar; 3300 Hz, vertical co-planar; 8200 Hz, horizontal co-planar; 40 kHz, horizontal co-planar; 137 kHz horizontal coplanar) and their numerically-inverted 1D resistivity (50¬-100 Ω-m) profiles are randomly split. For example, 50% of these data are used for training an unsupervised machine-learning (ML) network, and 50% of these data are used for performance at independent locations. The remaining set of HEM measurements are then presented to the vetted ML network to estimate regional resistivity structure which is compared to previously inverted resistivity. Second, about 50 borehole autocorrelation functions are computed based on cross-component correlations of quantized borehole locations sampled for lithology and HEM sounding data. Third, an unsupervised ML network is trained and performance tested using sparse borehole lithology (fractions of sand, silt, clay, mudstone, schist) and hydraulic properties (storage, hydraulic conductivity), and those HEM sounding data occurring within a radius defined by the maximum borehole autocorrelation distances. Fourth, this ML network is then used together with independent HEM sounding measurements to map the spatial distribution of physical aquifer properties and hydraulic properties across the basin.
Benders, Titia
2013-12-01
Exaggeration of the vowel space in infant-directed speech (IDS) is well documented for English, but not consistently replicated in other languages or for other speech-sound contrasts. A second attested, but less discussed, pattern of change in IDS is an overall rise of the formant frequencies, which may reflect an affective speaking style. The present study investigates longitudinally how Dutch mothers change their corner vowels, voiceless fricatives, and pitch when speaking to their infant at 11 and 15 months of age. In comparison to adult-directed speech (ADS), Dutch IDS has a smaller vowel space, higher second and third formant frequencies in the vowels, and a higher spectral frequency in the fricatives. The formants of the vowels and spectral frequency of the fricatives are raised more strongly for infants at 11 than at 15 months, while the pitch is more extreme in IDS to 15-month olds. These results show that enhanced positive affect is the main factor influencing Dutch mothers' realisation of speech sounds in IDS, especially to younger infants. This study provides evidence that mothers' expression of emotion in IDS can influence the realisation of speech sounds, and that the loss or gain of speech clarity may be secondary effects of affect. Copyright © 2013 Elsevier Inc. All rights reserved.
Shoreline oiling conditions in Prince William Sound following the Exxon Valdez oil spill
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neff, J.M.; Owens, E.H.; Stoker, S.W.
1995-12-31
Following the Exxon Valdez oil spill of March 24, 1989, in Prince William Sound, Alaska, Exxon conducted comprehensive, systematic shoreline surveys in cooperation with federal and state authorities to obtain information on the distribution and magnitude of shoreline oiling and to identify natural and cultural resources requiring special protection. Similar joint surveys were performed during the springs of 1990, 1991, and 1992 on all Prince william Sound and Gulf of Alaska shorelines that were suspected of having remnants of weathered oil and that would benefit from further cleanup. In the springs of 1990, 1991, and 1992, isolated pockets of subsurfacemore » oil were found, chiefly in small scattered zones in coarse cobble/boulder sediments in the upper intertidal or supratidal zones. In 1991, about one-third of the subdivisions in Prince William Sound with surface oil also contained some subsurface oil. The areal extent of this subsurface oil declined by nearly 70% between 1991 and 1992, from about 37,000 m{sup 2} to about 12,000 m{sup 2}. Moreover, where subsurface oil remained in 1992, it was present in lesser amounts. Rates of oil removal were greatest on coastal sections treated early in the spring and summer of 1989. Where shoreline treatment was delayed, the subsequent rate of removal of oil from the shore by natural processes was slower. 27 refs., 10 figs., 3 tabs.« less
1980-12-01
to sound pressure level in decibels assuming a fre- quency of 1000 Hz. 249 The perceived noisiness values are derived from a formula specified in...Analyses .......... 244 6.i.16 Perceived Noise Level Analysis .............249 6.1.17 Acoustic Weighting Networks ................250 6.2 DERIVATIONS...BAND ANALYSIS BASIC STATISTICAL ANALYSES: *OCTAVE ANALYSIS MEAN *THIRD OCTAVE ANALYSIS VARIANCE *PERCEIVED NOISE LEVEL STANDARD DEVIATION CALCULATION
ERIC Educational Resources Information Center
Weiss, Francois; And Others
1993-01-01
The four language classroom activities described include work with verbal moods (subjunctive, conditional) by eliciting student suggestions for ways to help third-world countries; ways to practice social meeting/greeting/introduction situations; development of phonetic understanding and vocabulary through letter and sound changes; use of…
Cochlear third window in the scala vestibuli: an animal model.
Preis, Michal; Attias, Joseph; Hadar, Tuvia; Nageris, Ben I
2009-08-01
Pathologic third window has been investigated in both animals and humans, with a third window located in the vestibular apparatus, specifically, dehiscence of the superior semicircular canal, serving as the clinical model. The present study sought to examine the effect of a cochlear third window in the scala vestibuli on the auditory thresholds in fat sand rats that have a unique anatomy of the inner ear that allows for easy surgical access. The experiment included 7 healthy 6-month-old fat sand rats (a total of 10 ears). A pathologic third window was induced by drilling a hole in the bony labyrinth over the scala vestibuli, with preservation of the membranous labyrinth. Auditory brainstem responses to high- and low-frequency acoustic stimuli delivered via air and bone conduction were recorded before and after the procedure. In the preoperative auditory brainstem response recordings, air-conduction thresholds (ACTs) to clicks and tone bursts averaged 9 and 10 dB, respectively, and bone-conduction thresholds averaged 4.5 and 2.9 dB, respectively. Postfenestration ACTs averaged 41 and 42.2 dB, and bone-conduction thresholds averaged 1.1 and 4.3 dB. The change in ACT was statistically significant (p < 0.01). The presence of a cochlear third window in the scala vestibuli affects auditory thresholds by causing a decrease in sensitivity to air-conducted sound stimuli. These findings agree with the theoretical model and clinical findings.
Tomonari, Hiroshi; Yagi, Takakazu; Kuninori, Takaharu; Ikemori, Takahiro; Miyawaki, Shouichi
2015-06-01
This case report presents the successful replacement of 1 first molar and 3 second molars by the mesial inclination of 4 impacted third molars. A woman, 23 years 6 months old, had a chief complaint of crowding of her anterior teeth and linguoclination of a second molar on the left side. The panoramic radiographic images showed that the maxillary and mandibular third molars on both sides were impacted. Root resorption on the distal surfaces of the maxillary second molars was suspected. The patient was given a diagnosis of Angle Class II Division 1 malocclusion with severe crowding of the anterior teeth and 4 impacted third molars. After we extracted the treated maxillary second premolars and the second molars on both sides, the treated mandibular second premolar and the second molar on the left side, and the root canal-filled mandibular first molar on the right side, the 4 impacted third molars were uprighted and formed part of the posterior functional occlusion. The total active treatment period was 39 months. The maxillary and mandibular third molars on both sides successfully replaced the first and second molars. The replacement of a damaged molar by an impacted third molar is a useful treatment option for using sound teeth. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Acoustic Monitoring of the Arctic Ice Cap
NASA Astrophysics Data System (ADS)
Porter, D. L.; Goemmer, S. A.; Chayes, D. N.
2012-12-01
Introduction The monitoring of the Arctic Ice Cap is important economically, tactically, and strategically. In the scenario of ice cap retreat, new paths of commerce open, e.g. waterways from Northern Europe to the Far East. Where ship-going commerce is conducted, the U.S. Navy and U.S. Coast Guard have always stood guard and been prepared to assist from acts of nature and of man. It is imperative that in addition to measuring the ice from satellites, e.g. Icesat, that we have an ability to measure the ice extent, its thickness, and roughness. These parameters play an important part in the modeling of the ice and the processes that control its growth or shrinking and its thickness. The proposed system consists of three subsystems. The first subsystem is an acoustic source, the second is an array of geophones and the third is a system to supply energy and transmit the results back to the analysis laboratory. The subsystems are described below. We conclude with a plan on how to tackle this project and the payoff to the ice cap modeler and hence the users, i.e. commerce and defense. System Two historically tested methods to generate a large amplitude multi-frequency sound source include explosives and air guns. A new method developed and tested by the University of Texas, ARL is a combustive Sound Source [Wilson, et al., 1995]. The combustive sound source is a submerged combustion chamber that is filled with the byproducts of the electrolysis of sea water, i.e. Hydrogen and Oxygen, an explosive mixture which is ignited via a spark. Thus, no additional compressors, gases, or explosives need to be transported to the Arctic to generate an acoustic pulse capable of the sediment and the ice. The second subsystem would be geophones capable of listening in the O(10 Hz) range and transmitting that data back to the laboratory. Thus two single arrays of geophones arranged orthogonal to each other with a range of 1000's of kilometers and a combustive sound source where the two arrays intersect would comprise an ice cap monitoring system. The third subsystem is the energy and telemetry required to run the systems. The geophones are low energy compared to the combustive sound source and might be supplied by batteries and a solar panel (at least for half the year). The combustive sound source needs a large continuously energy supply. Two energy harvesting ideas, which need further investigation, are a wind turbine, and a Stirling engine that runs off the temperature difference between the ocean and the atmosphere. Analysis It is expected that the recording of the acoustics energy, as it travels through the ice and is detected by the geophones, will provide estimates of ice anisotropy and coherence. These give estimates of the ice roughness and thickness, respectively, and are key parameters for modeling the changes in the ice cap cover in the Artic. Reference: P. S. Wilson, T. G. Muir, J. A. Behrens, and J. L. Elizey, "Applications of the combustive sound source," J. Acoust. Soc. Am. 97, 3298(A) (1995).
Meyers, T.R.; Short, S.; Lipson, K.; Batts, W.N.; Winton, J.R.; Wilcock, J.; Brown, E.
1994-01-01
Only one-third of the Pacific hernng Clupea harengus pallasi expected to spawn in Prince William Sound (PWS), Alaska, USA, in sprlng 1993 were observed. Of these herring, 15 to 43 '% had external ulcers or subdermal hemorrhages of the skln and fins. A rhabdovirus identified as the North American strain of viral hemorrhagic septicemia virus (VHSV) was isolated from affected herring and 1 Pacific cod Gadus macrocephalus with skin lesions from PWS, and from herring with similar lesions collected near Kodiak Island. No other pathogens were detected in the herring examined. Although VHSV may have been responsible for the skin lesions, there was no confirmed mass herring mortality observed in PWS; hence the actual cause of the reduced herring numbers is still unknown. The same strain of VHSV was subsequently isolated from captive juvenile herring collected from Auke Bay, Alaska, near Juneau, from herring in British Columbia, Canada, and from Puget Sound, Washington, USA. These findings suggest the virus is an opportunistic pathogen that is widely indigenous to Pacific herring populations in the Pacific Northwest and that herring are a significant marine reservoir for North American VHSV.
An improved multimodal method for sound propagation in nonuniform lined ducts.
Bi, WenPing; Pagneux, Vincent; Lafarge, Denis; Aurégan, Yves
2007-07-01
An efficient method is proposed for modeling time harmonic acoustic propagation in a nonuniform lined duct without flow. The lining impedance is axially segmented uniform, but varies circumferentially. The sound pressure is expanded in term of rigid duct modes and an additional function that carries the information about the impedance boundary. The rigid duct modes and the additional function are known a priori so that calculations of the true liner modes, which are difficult, are avoided. By matching the pressure and axial velocity at the interface between different uniform segments, scattering matrices are obtained for each individual segment; these are then combined to construct a global scattering matrix for multiple segments. The present method is an improvement of the multimodal propagation method, developed in a previous paper [Bi et al., J. Sound Vib. 289, 1091-1111 (2006)]. The radial rate of convergence is improved from O(n(-2)), where n is the radial mode indices, to O(n(-4)). It is numerically shown that using the present method, acoustic propagation in the nonuniform lined intake of an aeroengine can be calculated by a personal computer for dimensionless frequency K up to 80, approaching the third blade passing frequency of turbofan noise.
2010-01-01
Background The present study compares the value of additional use of computer simulated heart sounds, to conventional bedside auscultation training, on the cardiac auscultation skills of 3rd year medical students at Oslo University Medical School. Methods In addition to their usual curriculum courses, groups of seven students each were randomized to receive four hours of additional auscultation training either employing a computer simulator system or adding on more conventional bedside training. Cardiac auscultation skills were afterwards tested using live patients. Each student gave a written description of the auscultation findings in four selected patients, and was rewarded from 0-10 points for each patient. Differences between the two study groups were evaluated using student's t-test. Results At the auscultation test no significant difference in mean score was found between the students who had used additional computer based sound simulation compared to additional bedside training. Conclusions Students at an early stage of their cardiology training demonstrated equal performance of cardiac auscultation whether they had received an additional short auscultation course based on computer simulated training, or had had additional bedside training. PMID:20082701
Comparison of direct measurement methods for headset noise exposure in the workplace
Nassrallah, Flora G.; Giguère, Christian; Dajani, Hilmi R.; Ellaham, Nicolas N.
2016-01-01
The measurement of noise exposure from communication headsets poses a methodological challenge. Although several standards describe methods for general noise measurements in occupational settings, these are not directly applicable to noise assessments under communication headsets. For measurements under occluded ears, specialized methods have been specified by the International Standards Organization (ISO 11904) such as the microphone in a real ear and manikin techniques. Simpler methods have also been proposed in some national standards such as the use of general purpose artificial ears and simulators in conjunction with single number corrections to convert measurements to the equivalent diffuse field. However, little is known about the measurement agreement between these various methods and the acoustic manikin technique. Twelve experts positioned circum-aural, supra-aural and insert communication headsets on four different measurement setups (Type 1, Type 2, Type 3.3 artificial ears, and acoustic manikin). Fit-refit measurements of four audio communication signals were taken under quiet laboratory conditions. Data were transformed into equivalent diffuse-field sound levels using third-octave procedures. Results indicate that the Type 1 artificial ear is not suited for the measurement of sound exposure under communication headsets, while Type 2 and Type 3.3 artificial ears are in good agreement with the acoustic manikin technique. Single number corrections were found to introduce a large measurement uncertainty, making the use of the third-octave transformation preferable. PMID:26960783
From Patrick to John F.: Ethnic Names and Occupational Success in the Last Era of Mass Migration
Goldstein, Joshua R.; Stecklov, Guy
2016-01-01
Taking advantage of historical census records that include full first and last names, we apply a new approach to measuring the effect of cultural assimilation on economic success for the children of the last great wave of immigrants to the United States. We created a quantitative index of ethnic distinctiveness of first names and show the consequences of ethnic-sounding names for the occupational achievement of the adult children of European migrants. We find a consistent tendency for the children of Irish, Italian, German, and Polish immigrants with more “American”-sounding names to have higher occupational achievement. About one-third of this effect appears to be due to social class differences in name-giving, and the remaining two-thirds to signaling effects of the names themselves. An exception is found for Russian, predominantly Jewish, immigrants, where we find a positive effect of ethnic naming on occupational achievement. The divergent effects of our new measure of cultural assimilation, sometimes hurting and sometimes helping, lend historical empirical support to more recent theories of the advantages of different paths to assimilation. The effects of first names are robust to controls for the ethnic recognizability of last names, suggesting that immigrants’ success depended on being perceived as making an effort to assimilate rather than hiding one’s origins. PMID:27594705
Large Civil Tiltrotor (LCTR2) Interior Noise Predictions due to Turbulent Boundary Layer Excitation
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.
2013-01-01
The Large Civil Tiltrotor (LCTR2) is a conceptual vehicle that has a design goal to transport 90 passengers over a distance of 1800 km at a speed of 556 km/hr. In this study noise predictions were made in the notional LCTR2 cabin due to Cockburn/Robertson and Efimtsov turbulent boundary layer (TBL) excitation models. A narrowband hybrid Finite Element (FE) analysis was performed for the low frequencies (6-141 Hz) and a Statistical Energy Analysis (SEA) was conducted for the high frequency one-third octave bands (125- 8000 Hz). It is shown that the interior sound pressure level distribution in the low frequencies is governed by interactions between individual structural and acoustic modes. The spatially averaged predicted interior sound pressure levels for the low frequency hybrid FE and the high frequency SEA analyses, due to the Efimtsov turbulent boundary layer excitation, were within 1 dB in the common 125 Hz one-third octave band. The averaged interior noise levels for the LCTR2 cabin were predicted lower than the levels in a comparable Bombardier Q400 aircraft cabin during cruise flight due to the higher cruise altitude and lower Mach number of the LCTR2. LCTR2 cabin noise due to TBL excitation during cruise flight was found not unacceptable for crew or passengers when predictions were compared to an acoustic survey on a Q400 aircraft.
Koelsch, Stefan; Busch, Tobias; Jentschke, Sebastian; Rohrmeier, Martin
2016-02-02
Within the framework of statistical learning, many behavioural studies investigated the processing of unpredicted events. However, surprisingly few neurophysiological studies are available on this topic, and no statistical learning experiment has investigated electroencephalographic (EEG) correlates of processing events with different transition probabilities. We carried out an EEG study with a novel variant of the established statistical learning paradigm. Timbres were presented in isochronous sequences of triplets. The first two sounds of all triplets were equiprobable, while the third sound occurred with either low (10%), intermediate (30%), or high (60%) probability. Thus, the occurrence probability of the third item of each triplet (given the first two items) was varied. Compared to high-probability triplet endings, endings with low and intermediate probability elicited an early anterior negativity that had an onset around 100 ms and was maximal at around 180 ms. This effect was larger for events with low than for events with intermediate probability. Our results reveal that, when predictions are based on statistical learning, events that do not match a prediction evoke an early anterior negativity, with the amplitude of this mismatch response being inversely related to the probability of such events. Thus, we report a statistical mismatch negativity (sMMN) that reflects statistical learning of transitional probability distributions that go beyond auditory sensory memory capabilities.
The guitar chord-generating algorithm based on complex network
NASA Astrophysics Data System (ADS)
Ren, Tao; Wang, Yi-fan; Du, Dan; Liu, Miao-miao; Siddiqi, Awais
2016-02-01
This paper aims to generate chords for popular songs automatically based on complex network. Firstly, according to the characteristics of guitar tablature, six chord networks of popular songs by six pop singers are constructed and the properties of all networks are concluded. By analyzing the diverse chord networks, the accompaniment regulations and features are shown, with which the chords can be generated automatically. Secondly, in terms of the characteristics of popular songs, a two-tiered network containing a verse network and a chorus network is constructed. With this network, the verse and chorus can be composed respectively with the random walk algorithm. Thirdly, the musical motif is considered for generating chords, with which the bad chord progressions can be revised. This method can make the accompaniments sound more melodious. Finally, a popular song is chosen for generating chords and the new generated accompaniment sounds better than those done by the composers.
Airframe noise prediction evaluation
NASA Technical Reports Server (NTRS)
Yamamoto, Kingo J.; Donelson, Michael J.; Huang, Shumei C.; Joshi, Mahendra C.
1995-01-01
The objective of this study is to evaluate the accuracy and adequacy of current airframe noise prediction methods using available airframe noise measurements from tests of a narrow body transport (DC-9) and a wide body transport (DC-10) in addition to scale model test data. General features of the airframe noise from these aircraft and models are outlined. The results of the assessment of two airframe prediction methods, Fink's and Munson's methods, against flight test data of these aircraft and scale model wind tunnel test data are presented. These methods were extensively evaluated against measured data from several configurations including clean, slat deployed, landing gear-deployed, flap deployed, and landing configurations of both DC-9 and DC-10. They were also assessed against a limited number of configurations of scale models. The evaluation was conducted in terms of overall sound pressure level (OASPL), tone corrected perceived noise level (PNLT), and one-third-octave band sound pressure level (SPL).
A Large-Scale Study of Misophonia.
Rouw, Romke; Erfanian, Mercede
2018-03-01
We aim to elucidate misophonia, a condition in which particular sounds elicit disproportionally strong aversive reactions. A large online study extensively surveyed personal, developmental, and clinical characteristics of over 300 misophonics. Most participants indicated that their symptoms started in childhood or early teenage years. Severity of misophonic responses increases over time. One third of participants reported having family members with similar symptoms. Half of our participants reported no comorbid clinical conditions, and the other half reported a variety of conditions. Only posttraumatic stress disorder (PTSD) was related to the severity of the misophonic symptoms. Remarkably, half of the participants reported experiencing euphoric, relaxing, and tingling sensations with particular sounds or sights, a relatively unfamiliar phenomenon called autonomous sensory meridian response (ASMR). It is unlikely that another "real" underlying clinical, psychiatric, or psychological disorder can explain away the misophonia. The possible relationship with PTSD and ASMR warrants further investigation. © 2017 Wiley Periodicals, Inc.
Long, Edward R.; Carr, R. Scott; Biedenbach, James M.; Weakland, Sandra; Partridge, Valerie; Dutch, Margaret
2013-01-01
Data from toxicity tests of the pore water extracted from Puget Sound sediments were compiled from surveys conducted from 1997 to 2009. Tests were performed on 664 samples collected throughout all of the eight monitoring regions in the Sound, an area encompassing 2,294.1 km2. Tests were performed with the gametes of the Pacific purple sea urchin, Strongylocentrotus purpuratus, to measure percent fertilization success as an indicator of relative sediment quality. Data were evaluated to determine the incidence, degree of response, geographic patterns, spatial extent, and temporal changes in toxicity. This is the first survey of this kind and magnitude in Puget Sound. In the initial round of surveys of the eight regions, 40 of 381 samples were toxic for an incidence of 10.5 %. Stations classified as toxic represented an estimated total of 107.1 km2, equivalent to 4.7 % of the total area. Percent sea urchin fertilization ranged from >100 % of the nontoxic, negative controls to 0 %. Toxicity was most prevalent and pervasive in the industrialized harbors and lowest in the deep basins. Conditions were intermediate in deep-water passages, urban bays, and rural bays. A second round of testing in four regions and three selected urban bays was completed 5–10 years following the first round. The incidence and spatial extent of toxicity decreased in two of the regions and two of the bays and increased in the other two regions and the third bay; however, only the latter change was statistically significant. Both the incidence and spatial extent of toxicity were lower in the Sound than in most other US estuaries and marine bays.
NASA Astrophysics Data System (ADS)
Matetic, Rudy J.
Over-exposure to noise remains a widespread and serious health hazard in the U.S. mining industries despite 25 years of regulation. Every day, 80% of the nation's miners go to work in an environment where the time weighted average (TWA) noise level exceeds 85 dBA and more than 25% of the miners are exposed to a TWA noise level that exceeds 90 dBA, the permissible exposure limit (PEL). Additionally, MSHA coal noise sample data collected from 2000 to 2002 show that 65% of the equipment whose operators exceeded 100% noise dosage comprise only seven different types of machines; auger miners, bulldozers, continuous miners, front end loaders, roof bolters, shuttle cars (electric), and trucks. In addition, the MSHA data indicate that the roof bolter is third among all the equipment and second among equipment in underground coal whose operators exceed 100% dosage. A research program was implemented to: (1) determine, characterize and to measure sound power levels radiated by a roof bolting machine during differing drilling configurations (thrust, rotational speed, penetration rate, etc.) and utilizing differing types of drilling methods in high compressive strength rock media (>20,000 psi). The research approach characterized the sound power level results from laboratory testing and provided the mining industry with empirical data relative to utilizing differing noise control technologies (drilling configurations and types of drilling methods) in reducing sound power level emissions on a roof bolting machine; (2) distinguish and correlate the empirical data into one, statistically valid, equation, in which, provided the mining industry with a tool to predict overall sound power levels of a roof bolting machine given any type of drilling configuration and drilling method utilized in industry; (3) provided the mining industry with several approaches to predict or determine sound pressure levels in an underground coal mine utilizing laboratory test results from a roof bolting machine and (4) described a method for determining an operators' noise dosage of a roof bolting machine utilizing predicted or determined sound pressure levels.
Differing effects of two synthetic phonics programmes on early reading development.
Shapiro, Laura R; Solity, Jonathan
2016-06-01
Synthetic phonics is the widely accepted approach for teaching reading in English: Children are taught to sound out the letters in a word then blend these sounds together. We compared the impact of two synthetic phonics programmes on early reading. Children received Letters and Sounds (L&S; 7 schools) which teaches multiple letter-sound mappings or Early Reading Research (ERR; 10 schools) which teaches only the most consistent mappings plus frequent words by sight. We measured phonological awareness (PA) and reading from school entry to the end of the second (all schools) or third school year (4 ERR, 3 L&S schools). Phonological awareness was significantly related to all reading measures for the whole sample. However, there was a closer relationship between PA and exception word reading for children receiving the L&S programme. The programmes were equally effective overall, but their impact on reading significantly interacted with school-entry PA: Children with poor PA at school entry achieved higher reading attainments under ERR (significant group difference on exception word reading at the end of the first year), whereas children with good PA performed equally well under either programme. The more intensive phonics programme (L&S) heightened the association between PA and exception word reading. Although the programmes were equally effective for most children, results indicate potential benefits of ERR for children with poor PA. We suggest that phonics programmes could be simplified to teach only the most consistent mappings plus frequent words by sight. © 2015 The British Psychological Society.
The assessment and evaluation of low-frequency noise near the region of infrasound.
Ziaran, Stanislav
2014-01-01
The main aim of this paper is to present recent knowledge about the assessment and evaluation of low-frequency sounds (noise) and infrasound, close to the threshold of hearing, and identify their potential effect on human health and annoyance. Low-frequency noise generated by air flowing over a moving car with an open window was chosen as a typical scenario which can be subjectively assessed by people traveling by automobile. The principle of noise generated within the interior of the car and its effects on the comfort of the driver and passengers are analyzed at different velocities. An open window of a car at high velocity behaves as a source of specifically strong tonal low-frequency noise which is generally perceived as annoying. The interior noise generated by an open window of a passenger car was measured under different conditions: Driving on a highway and driving on a typical roadway. First, an octave-band analysis was used to assess the noise level and its impact on the driver's comfort. Second, a fast Fourier transform (FFT) analysis and one-third octave-band analysis were used for the detection of tonal low-frequency noise. Comparison between two different car makers was also done. Finally, the paper suggests some possibilities for scientifically assessing and evaluating low-frequency sounds in general, and some recommendations are introduced for scientific discussion, since sounds with strong low-frequency content (but not only strong) engender greater annoyance than is predicted by an A-weighted sound pressure level.
"Let Me Hear Your Handwriting!" Evaluating the Movement Fluency from Its Sonification.
Danna, Jérémy; Paz-Villagrán, Vietminh; Gondre, Charles; Aramaki, Mitsuko; Kronland-Martinet, Richard; Ystad, Sølvi; Velay, Jean-Luc
2015-01-01
The quality of handwriting is evaluated from the visual inspection of its legibility and not from the movement that generates the trace. Although handwriting is achieved in silence, adding sounds to handwriting movement might help towards its perception, provided that these sounds are meaningful. This study evaluated the ability to judge handwriting quality from the auditory perception of the underlying sonified movement, without seeing the written trace. In a first experiment, samples of a word written by children with dysgraphia, proficient children writers, and proficient adult writers were collected with a graphic tablet. Then, the pen velocity, the fluency, and the axial pen pressure were sonified in order to create forty-five audio files. In a second experiment, these files were presented to 48 adult listeners who had to mark the underlying unseen handwriting. In order to evaluate the relevance of the sonification strategy, two experimental conditions were compared. In a first 'implicit' condition, the listeners made their judgment without any knowledge of the mapping between the sounds and the handwriting variables. In a second 'explicit' condition, they knew what the sonified variables corresponded to and the evaluation criteria. Results showed that, under the implicit condition, two thirds of the listeners marked the three groups of writers differently. In the explicit condition, all listeners marked the dysgraphic handwriting lower than that of the two other groups. In a third experiment, the scores given from the auditory evaluation were compared to the scores given by 16 other adults from the visual evaluation of the trace. Results revealed that auditory evaluation was more relevant than the visual evaluation for evaluating a dysgraphic handwriting. Handwriting sonification might therefore be a relevant tool allowing a therapist to complete the visual assessment of the written trace by an auditory control of the handwriting movement quality.
“Let Me Hear Your Handwriting!” Evaluating the Movement Fluency from Its Sonification
Danna, Jérémy; Paz-Villagrán, Vietminh; Gondre, Charles; Aramaki, Mitsuko; Kronland-Martinet, Richard; Ystad, Sølvi; Velay, Jean-Luc
2015-01-01
The quality of handwriting is evaluated from the visual inspection of its legibility and not from the movement that generates the trace. Although handwriting is achieved in silence, adding sounds to handwriting movement might help towards its perception, provided that these sounds are meaningful. This study evaluated the ability to judge handwriting quality from the auditory perception of the underlying sonified movement, without seeing the written trace. In a first experiment, samples of a word written by children with dysgraphia, proficient children writers, and proficient adult writers were collected with a graphic tablet. Then, the pen velocity, the fluency, and the axial pen pressure were sonified in order to create forty-five audio files. In a second experiment, these files were presented to 48 adult listeners who had to mark the underlying unseen handwriting. In order to evaluate the relevance of the sonification strategy, two experimental conditions were compared. In a first ‘implicit’ condition, the listeners made their judgment without any knowledge of the mapping between the sounds and the handwriting variables. In a second ‘explicit’ condition, they knew what the sonified variables corresponded to and the evaluation criteria. Results showed that, under the implicit condition, two thirds of the listeners marked the three groups of writers differently. In the explicit condition, all listeners marked the dysgraphic handwriting lower than that of the two other groups. In a third experiment, the scores given from the auditory evaluation were compared to the scores given by 16 other adults from the visual evaluation of the trace. Results revealed that auditory evaluation was more relevant than the visual evaluation for evaluating a dysgraphic handwriting. Handwriting sonification might therefore be a relevant tool allowing a therapist to complete the visual assessment of the written trace by an auditory control of the handwriting movement quality. PMID:26083384
2002-05-31
Gary Butterworth, Major Al Alba, Lieutenant Commander John Zuzich, Lieutenant Commander Steve Ruscheinski, and Major Donn Hill were all great sounding...underway and swarm the oceans of the world in a prelude to a third world conflict. However, the lack of a peer competitor for the US did not make the...submarine threat? What nations currently have diesel or nuclear submarines in 3 their inventory? What makes these submarines dangerous? How can
Ptok, M; Meisen, R
2008-01-01
The rapid auditory processing defi-cit theory holds that impaired reading/writing skills are not caused exclusively by a cognitive deficit specific to representation and processing of speech sounds but arise due to sensory, mainly auditory, deficits. To further explore this theory we compared different measures of auditory low level skills to writing skills in school children. prospective study. School children attending third and fourth grade. just noticeable differences for intensity and frequency (JNDI, JNDF), gap detection (GD) monaural and binaural temporal order judgement (TOJb and TOJm); grade in writing, language and mathematics. correlation analysis. No relevant correlation was found between any auditory low level processing variable and writing skills. These data do not support the rapid auditory processing deficit theory.
Design and analysis of a hemi-anechoic chamber at Michigan Technological University
NASA Astrophysics Data System (ADS)
Dreyer, Jason; Jangale, Ashish; Rao, Mohan D.
2005-09-01
A four-wheel chassis roll dynamometer test facility was installed on the campus of Michigan Technological University (MTU). The chassis dynamometer was enclosed in a soundproof hem-anechoic room in order to conduct noise radiation measurements on test vehicles. All surfaces of the room, except the floor and control room window, were acoustically treated with donated tetrahedral acoustic cones and panels. The acoustic absorption properties of these materials were characterized through reverberation chamber and impedance tube testing, and the effects of air gaps, cone orientation, and cone mounting materials were qualitatively evaluated. The design of the wall, ceiling, and door treatments of the chamber was based on the sound absorption properties of these materials, in addition to spatial constraints and cost considerations. The treated chamber acoustics were predicted based on the amount of acoustic material that could be applied to given chamber dimensions and would still preserve the functionality of the room. These predictions were validated through evaluation of the actual room treatment based on average reverberation time at 100-Hz third-octave band, free sound field characteristic 6-dB reduction in sound pressure level (SPL) per doubling in distance from source, noise reduction at the chamber boundaries, and background SPL Noise Criteria (NC) Rating.
[The emotional characteristics of the sounding word].
Videneeva, N M; Khludova, O O; Vartanov, A V
2000-01-01
The four-dimensional spherical emotional space has been obtained by multi-dimensional scaling of subjective differences between the emotional expressions in sound samples (the words "Yes" and "No" pronounced in different emotional conditions). Euclidean space axes are interpreted as the following neural mechanisms. The first two dimensions are related with the estimation of a sign of emotional condition: the dimension 1--pleasant/unpleasant, useful or not, the dimension 2--an extent of information certainty. The third and the fourth axes are associated with the incentive. The dimension 3 encodes active (anger) or passive (fear) defensive reaction, and the dimension 4 corresponds to achievement. Three angles of four-dimensional hypersphere: the one between the axes 1 and 2, the second between the axes 3 and 4, the third between these two planes determine subjectively experienced emotion characteristics such as described by Vundt emotion modality (pleasure-unpleaure), excitation-quietness-suppression, and tension-relaxation, respectively. Thus, the first and the second angles regulate the modality of ten basic emotions: five emotions determined by a situation and five emotions determined by personal activity. In case of another system of angular parameters (three angles between the axes 4 and 1, 3 and 2, and the angle between the respective planes), another system of emotion classification, which is usually described in the studies of facial expressions (Shlosberg's and Izmaĭlov's circular system) and semantics (Osgood) can be realized: emotion modality or sign (regulates 6 basic emotions), emotion activity or brightness (excitation-rest) and emotion saturation (strength of emotion expression).
A hybrid SEA/modal technique for modeling structural-acoustic interior noise in rotorcraft.
Jayachandran, V; Bonilha, M W
2003-03-01
This paper describes a hybrid technique that combines Statistical Energy Analysis (SEA) predictions for structural vibration with acoustic modal summation techniques to predict interior noise levels in rotorcraft. The method was applied for predicting the sound field inside a mock-up of the interior panel system of the Sikorsky S-92 helicopter. The vibration amplitudes of the frame and panel systems were predicted using a detailed SEA model and these were used as inputs to the model of the interior acoustic space. The spatial distribution of the vibration field on individual panels, and their coupling to the acoustic space were modeled using stochastic techniques. Leakage and nonresonant transmission components were accounted for using space-averaged values obtained from a SEA model of the complete structural-acoustic system. Since the cabin geometry was quite simple, the modeling of the interior acoustic space was performed using a standard modal summation technique. Sound pressure levels predicted by this approach at specific microphone locations were compared with measured data. Agreement within 3 dB in one-third octave bands above 40 Hz was observed. A large discrepancy in the one-third octave band in which the first acoustic mode is resonant (31.5 Hz) was observed. Reasons for such a discrepancy are discussed in the paper. The developed technique provides a method for modeling helicopter cabin interior noise in the frequency mid-range where neither FEA nor SEA is individually effective or accurate.
Getting the GeoSTAR Instrument Concept Ready for a Space Mission
NASA Technical Reports Server (NTRS)
Lambrigtsen, B.; Gaier, T.; Kangaslahti, P.; Lim, B.; Tanner, A.; Ruf, C.
2011-01-01
The Geostationary Synthetic Thinned Array Radiometer - GeoSTAR - is a microwave sounder intended for geostationary satellites. First proposed for the EO-3 New Millennium mission in 1999, the technology has since been developed under the Instrument Incubator Program. Under IIP-03 a proof-of-concept demonstrator operating in the temperature sounding 50 GHz band was developed to show that the aperture synthesis concept results in a realizable, stable and accurate imaging-sounding radiometer. Some of the most challenging technology, such as miniature low-power 183- GHz receivers used for water vapor sounding, was developed under IIP-07. The first such receiver has recently been adapted for use in the High Altitude MMIC Sounding Radiometer (HAMSR), which was previously developed under IIP-98. This receiver represents a new state of the art and outperforms the previous benchmark by an order of magnitude in radiometric sensitivity. It was first used in the GRIP hurricane field campaign in 2010, where HAMSR became the first microwave sounder to fly on the Global Hawk UAV. Now, under IIP-10, we will develop flight-like subsystems and a brassboard testing system, which will facilitate rapid implementation of a space mission. GeoSTAR is the baseline payload for the Precipitation and All-weather Temperature and Humidity (PATH) mission - one of NASA's 15 "decadal-survey" missions. Although PATH is currently in the third tier of those missions, the IIP efforts have advanced the required technology to a point where a space mission can be initiated in a time frame commensurate with second-tier missions. An even earlier Venture mission is also being considered.
NASA Astrophysics Data System (ADS)
Arjunan, A.; Wang, C. J.; Yahiaoui, K.; Mynors, D. J.; Morgan, T.; Nguyen, V. B.; English, M.
2014-11-01
Building standards incorporating quantitative acoustical criteria to ensure adequate sound insulation are now being implemented. Engineers are making great efforts to design acoustically efficient double-wall structures. Accordingly, efficient simulation models to predict the acoustic insulation of double-leaf wall structures are needed. This paper presents the development of a numerical tool that can predict the frequency dependent sound reduction index R of stud based double-leaf walls at one-third-octave band frequency range. A fully vibro-acoustic 3D model consisting of two rooms partitioned using a double-leaf wall, considering the structure and acoustic fluid coupling incorporating the existing fluid and structural solvers are presented. The validity of the finite element (FE) model is assessed by comparison with experimental test results carried out in a certified laboratory. Accurate representation of the structural damping matrix to effectively predict the R values are studied. The possibilities of minimising the simulation time using a frequency dependent mesh model was also investigated. The FEA model presented in this work is capable of predicting the weighted sound reduction index Rw along with A-weighted pink noise C and A-weighted urban noise Ctr within an error of 1 dB. The model developed can also be used to analyse the acoustically induced frequency dependent geometrical behaviour of the double-leaf wall components to optimise them for best acoustic performance. The FE modelling procedure reported in this paper can be extended to other building components undergoing fluid-structure interaction (FSI) to evaluate their acoustic insulation.
NASA Technical Reports Server (NTRS)
Akers, James C.; Cooper, Beth A.
2004-01-01
NASA Glenn Research Center's Acoustical Testing Laboratory (ATL) provides a comprehensive array of acoustical testing services, including sound pressure level, sound intensity level, and sound-power-level testing per International Standards Organization (ISO)1 3744. Since its establishment in September 2000, the ATL has provided acoustic emission testing and noise control services for a variety of customers, particularly microgravity space flight hardware that must meet International Space Station acoustic emission requirements. The ATL consists of a 23- by 27- by 20-ft (height) convertible hemi/anechoic test chamber and a separate sound-attenuating test support enclosure. The ATL employs a personal-computer-based data acquisition system that provides up to 26 channels of simultaneous data acquisition with real-time analysis (ref. 4). Specialized diagnostic tools, including a scanning sound-intensity system, allow the ATL's technical staff to support its clients' aggressive low-noise design efforts to meet the space station's acoustic emission requirement. From its inception, the ATL has pursued the goal of developing a comprehensive ISO 17025-compliant quality program that would incorporate Glenn's existing ISO 9000 quality system policies as well as ATL-specific technical policies and procedures. In March 2003, the ATL quality program was awarded accreditation by the National Voluntary Laboratory Accreditation Program (NVLAP) for sound-power-level testing in accordance with ISO 3744. The NVLAP program is administered by the National Institutes of Standards and Technology (NIST) of the U.S. Department of Commerce and provides third-party accreditation for testing and calibration laboratories. There are currently 24 NVLAP-accredited acoustical testing laboratories in the United States. NVLAP accreditation covering one or more specific testing procedures conducted in accordance with established test standards is awarded upon successful completion of an intensive onsite assessment that includes proficiency testing and documentation review. The ATL NVLAP accreditation currently applies specifically to its ISO 3744 soundpower- level determination procedure (see the photograph) and supporting ISO 17025 quality system, although all ATL operations are conducted in accordance with its quality system. The ATL staff is currently developing additional procedures to adapt this quality system to the testing of space flight hardware in accordance with International Space Station acoustic emission requirements.<
Three wave mixing test of hyperelasticity in highly nonlinear solids: sedimentary rocks.
D'Angelo, R M; Winkler, K W; Johnson, D L
2008-02-01
Measurements of three-wave mixing amplitudes on solids whose third order elastic constants have also been measured by means of the elasto-acoustic effect are reported. Because attenuation and diffraction are important aspects of the measurement technique results are analyzed using a frequency domain version of the KZK equation, modified to accommodate an arbitrary frequency dependence to the attenuation. It is found that the value of beta so deduced for poly(methylmethacrylate) (PMMA) agrees quite well with that predicted from the stress-dependent sound speed measurements, establishing that PMMA may be considered a hyperelastic solid, in this context. The beta values of sedimentary rocks, though they are typically two orders of magnitude larger than, e.g., PMMA's, are still a factor of 3-10 less than those predicted from the elasto-acoustic effect. Moreover, these samples exhibit significant heterogeneity on a centimeter scale, which heterogeneity is not apparent from a measurement of the position dependent sound speed.
Baffin Bay Ice Drift and Export: 2002-2007
NASA Technical Reports Server (NTRS)
Kwok, Ron
2007-01-01
Multiyear estimates of sea ice drift in Baffin Bay and Davis Strait are derived for the first time from the 89 GHz channel of the AMSR-E instrument. Uncertainties in the drift estimates, assessed with Envisat ice motion, are approximately 2-3 km/day. A persistent atmospheric trough, between the coast of Greenland and Baffin Island, drives the prevailing southward drift pattern with average daily displacements in excess of 18-20 km during winter. Over the 5-year record, the ice export ranges between 360 and 675 x 10(exp 3) km(exp 2), with an average of 530 x 10(exp 3) km(exp 2). Sea ice area inflow from the Nares Strait, Lancaster Sound and Jones Sound potentially contribute up to a third of the net area outflow while ice production at the North Water Polynya contributes the balance. Rough estimates of annual volume export give approximately 500-800 km(exp 3). Comparatively, these are approximately 70% and approximately 30% of the annual area and Strait.
Validation of a High-Order Prefactored Compact Scheme on Nonlinear Flows with Complex Geometries
NASA Technical Reports Server (NTRS)
Hixon, Ray; Mankbadi, Reda R.; Povinelli, L. A. (Technical Monitor)
2000-01-01
Three benchmark problems are solved using a sixth-order prefactored compact scheme employing an explicit 10th-order filter with optimized fourth-order Runge-Kutta time stepping. The problems solved are the following: (1) propagation of sound waves through a transonic nozzle; (2) shock-sound interaction; and (3) single airfoil gust response. In the first two problems, the spatial accuracy of the scheme is tested on a stretched grid, and the effectiveness of boundary conditions is shown. The solution stability and accuracy near a shock discontinuity is shown as well. Also, 1-D nonlinear characteristic boundary conditions will be evaluated. In the third problem, a nonlinear Euler solver will be used that solves the equations in generalized curvilinear coordinates using the chain rule transformation. This work, continuing earlier work on flat-plate cascades and Joukowski airfoils, will focus mainly on the effect of the grid and boundary conditions on the accuracy of the solution. The grids were generated using a commercially available grid generator, GridPro/az3000.
Differential pathologies resulting from sound exposure: Tinnitus vs hearing loss
NASA Astrophysics Data System (ADS)
Longenecker, Ryan James
The first step in identifying the mechanism(s) responsible for tinnitus development would be to discover a neural correlate that is differentially expressed in tinnitus-positive compared to tinnitus negative animals. Previous research has identified several neural correlates of tinnitus in animals that have tested positive for tinnitus. However it is unknown whether all or some of these correlates are linked to tinnitus or if they are a byproduct of hearing loss, a common outcome of tinnitus induction. Abnormally high spontaneous activity has frequently been linked to tinnitus. However, while some studies demonstrate that hyperactivity positively correlates with behavioral evidence of tinnitus, others show that when all animals develop hyperactivity to sound exposure, not all exposed animals show evidence of tinnitus. My working hypothesis is that certain aspects of hyperactivity are linked to tinnitus while other aspects are linked to hearing loss. The first specific aim utilized the gap induced prepulse inhibition of the acoustic startle reflex (GIPAS) to monitor the development of tinnitus in CBA/CaJ mice during one year following sound exposure. Immediately after sound exposure, GIPAS testing revealed widespread gap detection deficits across all frequencies, which was likely due to temporary threshold shifts. However, three months after sound exposure these deficits were limited to a narrow frequency band and were consistently detected up to one year after exposure. This suggests the development of chronic tinnitus is a long lasting and highly dynamic process. The second specific aim assessed hearing loss in sound exposed mice using several techniques. Acoustic brainstem responses recorded initially after sound exposure reveal large magnitude deficits in all exposed mice. However, at the three month period, thresholds return to control levels in all mice suggesting that ABRs are not a reliable tool for assessing permanent hearing loss. Input/output functions of the acoustic startle reflex show that after sound exposure the magnitude of startle responses decrease in most mice, to varying degrees. Lastly, PPI audiometry was able to detect specific behavioral threshold deficits for each mouse after sound exposure. These deficits persist past initial threshold shifts and are able to detect frequency specific permanent threshold shifts. The third specific aim examined hyperactivity and increased bursting activity in the inferior colliculus after sound exposure in relation to tinnitus and hearing loss. Spontaneous firing rates were increased in all mice after sound exposure regardless of behavioral evidence of tinnitus. However, abnormal increased bursting activity was not found in the animals identified with tinnitus but was exhibited in a mouse with broad-band severe threshold deficits. CBA/CaJ mice are a good model for both tinnitus development and noise-induced hearing loss studies. Hyperactivity which was evident in all exposed animals does not seem to be well correlated with behavioral evidence of tinnitus but more likely to be a general result of acoustic over exposure. Data from one animal strongly suggest that wide-spread severe threshold deficits are linked to an elevation of bursting activity predominantly ipsilateral to the side of sound exposure. This result is intriguing and should be followed up in further studies. Data obtained in this study provide new insights into underlying neural pathologies following sound exposure and have possible clinical applications for development of effective treatments and diagnostic tools for tinnitus and hearing loss.
Spectral Discrete Probability Density Function of Measured Wind Turbine Noise in the Far Field
Ashtiani, Payam; Denison, Adelaide
2015-01-01
Of interest is the spectral character of wind turbine noise at typical residential set-back distances. In this paper, a spectral statistical analysis has been applied to immission measurements conducted at three locations. This method provides discrete probability density functions for the Turbine ONLY component of the measured noise. This analysis is completed for one-third octave sound levels, at integer wind speeds, and is compared to existing metrics for measuring acoustic comfort as well as previous discussions on low-frequency noise sources. PMID:25905097
Neural mechanisms of motion sickness
NASA Technical Reports Server (NTRS)
Crampton, G. H.; Daunton, N. G.
1983-01-01
The possibility that there might be a neuro-homoral cerebrospinal fluid link in motion sickness was directly tested by blocking the flow of CSF from the third into the fourth ventricle in cats. Evidence obtained thus far is consistent with the hypothesis. Cats with demonstrably sound plugs did not vomit in response to an accelerative motion sickness stimulus, whereas cats with imperfect 'leaky' plugs vomited with little or no delay in latency. Althoough there are several putative candidates, the identification of a humoral motion sickness substance is a matter of conjecture.
2010-02-19
attenuation is a function of the Hurst exponent which characterizes the fractal het- erogeneity. Muller and Gurevich15,16 used statistical smoothing of...modified Bessel function of the third kind, Γ denotes the gamma function, and ν is the Hurst coefficient which is assumed to be 0 < ν ≤ 1. The three...The Hurst coefficient, ν, is ν = 0.1 (long-dashed line), ν = 0.5 (short-dashed line), and ν = 0.9 (long-short dashed line). In (a) the sound speed
Utilization management in anatomic pathology.
Lewandrowski, Kent; Black-Schaffer, Steven
2014-01-01
There is relatively little published literature concerning utilization management in anatomic pathology. Nonetheless there are many utilization management opportunities that currently exist and are well recognized. Some of these impact only the cost structure within the pathology department itself whereas others reduce charges for third party payers. Utilization management may result in medical legal liabilities for breaching the standard of care. For this reason it will be important for pathology professional societies to develop national utilization guidelines to assist individual practices in implementing a medically sound approach to utilization management. © 2013.
NASA Astrophysics Data System (ADS)
Basheer, Alhussein A.; Mansour, Khamis Q.; Abdalla, Mohammed A.
2014-12-01
New Borg El-Arab City, 60 km to the southwest of Alexandria City, is one of new industrial cities planned by the Egyptian Government through its program to transfer the population from the condensed Nile Delta to other places in Egypt. Because such a city includes airport, huge buildings, factories, and worker settlements, a careful geophysical study is planned to reveal the groundwater condition. This will help in defining the places of wells that are supposed to be drilled. Therefore more industrial and agricultural activities will be flourished. The present study embraces Vertical Electrical Soundings (VES'es) and Time Domain Electromagnetic sounding (TEM) to investigate the study area. The study aims to delineate the main subsurface conditions from the viewpoint of groundwater location, depth and water quality. Analysis and interpretation of the obtained results reveal that the subsurface consists of five geoelectrical layers with a gentle general slope toward the Mediterranean Sea. The third and the fourth layers in the succession are suggested to be the two water bearing formations of which the third layer is saturated with fresh water overlying saline water at the bottom of the fourth one. It is worth mentioning that the fresh water depth varies between 50 and 354 m under the ground surface. The thickness of the fresh water aquifer varies from 9.5 to 66 m; and the saline water depth varies between 116 and 384 m below the ground surface, the thickness of saline water aquifer differs from 34 to 90.5 m.
D'Souza, Dean; D'Souza, Hana; Johnson, Mark H; Karmiloff-Smith, Annette
2016-08-01
Typically-developing (TD) infants can construct unified cross-modal percepts, such as a speaking face, by integrating auditory-visual (AV) information. This skill is a key building block upon which higher-level skills, such as word learning, are built. Because word learning is seriously delayed in most children with neurodevelopmental disorders, we assessed the hypothesis that this delay partly results from a deficit in integrating AV speech cues. AV speech integration has rarely been investigated in neurodevelopmental disorders, and never previously in infants. We probed for the McGurk effect, which occurs when the auditory component of one sound (/ba/) is paired with the visual component of another sound (/ga/), leading to the perception of an illusory third sound (/da/ or /tha/). We measured AV integration in 95 infants/toddlers with Down, fragile X, or Williams syndrome, whom we matched on Chronological and Mental Age to 25 TD infants. We also assessed a more basic AV perceptual ability: sensitivity to matching vs. mismatching AV speech stimuli. Infants with Williams syndrome failed to demonstrate a McGurk effect, indicating poor AV speech integration. Moreover, while the TD children discriminated between matching and mismatching AV stimuli, none of the other groups did, hinting at a basic deficit or delay in AV speech processing, which is likely to constrain subsequent language development. Copyright © 2016 Elsevier Inc. All rights reserved.
Sun, Yanzhao; Zhang, Tao; Zheng, Dandan
2018-04-10
Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD), wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to -17%. In addition, the rationality of the simulation was proved by experiments.
Evaluation of Parallel-Element, Variable-Impedance, Broadband Acoustic Liner Concepts
NASA Technical Reports Server (NTRS)
Jones, Michael G.; Howerton, Brian M.; Ayle, Earl
2012-01-01
Recent trends in aircraft engine design have highlighted the need for acoustic liners that provide broadband sound absorption with reduced liner thickness. Three such liner concepts are evaluated using the NASA normal incidence tube. Two concepts employ additive manufacturing techniques to fabricate liners with variable chamber depths. The first relies on scrubbing losses within narrow chambers to provide acoustic resistance necessary for sound absorption. The second employs wide chambers that provide minimal resistance, and relies on a perforated sheet to provide acoustic resistance. The variable-depth chambers used in both concepts result in reactance spectra near zero. The third liner concept employs mesh-caps (resistive sheets) embedded at variable depths within adjacent honeycomb chambers to achieve a desired impedance spectrum. Each of these liner concepts is suitable for use as a broadband sound absorber design, and a transmission line model is presented that provides good comparison with their respective acoustic impedance spectra. This model can therefore be used to design acoustic liners to accurately achieve selected impedance spectra. Finally, the effects of increasing the perforated facesheet thickness are demonstrated, and the validity of prediction models based on lumped element and wave propagation approaches is investigated. The lumped element model compares favorably with measured results for liners with thin facesheets, but the wave propagation model provides good comparisons for a wide range of facesheet thicknesses.
Zhang, Tao; Zheng, Dandan
2018-01-01
Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD), wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to −17%. In addition, the rationality of the simulation was proved by experiments. PMID:29642577
Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea.
Stieger, Christof; Rosowski, John J; Nakajima, Hideko Heidi
2013-07-01
The cochlea is normally driven with "forward" stimulation, in which sound is introduced to the ear canal. Alternatively, the cochlea can be stimulated at the round window (RW) using an actuator. During RW "reverse" stimulation, the acoustic flow starting at the RW does not necessarily take the same path as during forward stimulation. To understand the differences between forward and reverse stimulation, we measured ear-canal pressure, stapes velocity, RW velocity, and intracochlear pressures in scala vestibuli (SV) and scala tympani (ST) of fresh human temporal bones. During forward stimulation, the cochlear drive (differential pressure across the partition) results from the large difference in magnitude between the pressures of SV and ST, which occurs due to the high compliance of the RW. During reverse stimulation, the relatively high impedance of the middle ear causes the pressures of SV and ST to have similar magnitudes, and the differential pressure results primarily from the difference in phase of the pressures. Furthermore, the sound path differs between forward and reverse stimulation, such that motion through a third window is more significant during reverse stimulation. Additionally, we determined that although stapes velocity is a good estimate of cochlear drive during forward stimulation, it is not a good measure during reverse stimulation. This article is part of a special issue entitled "MEMRO 2012". Copyright © 2012 Elsevier B.V. All rights reserved.
Songer, Jocelyn E.; Rosowski, John J.
2006-01-01
A superior semicircular canal dehiscence (SCD) is a break or hole in the bony wall of the superior semicircular canal. Patients with SCD syndrome present with a variety of symptoms: some with vestibular symptoms, others with auditory symptoms (including low-frequency conductive hearing loss) and yet others with both. We are interested in whether or not mechanically altering the superior canal by introducing a dehiscence is sufficient to cause the low-frequency conductive hearing loss associated with SCD syndrome. We evaluated the effect of a surgically introduced dehiscence on auditory responses to air-conducted (AC) stimuli in 11 chinchilla ears. Cochlear potential (CP) was recorded at the round-window before and after a dehiscence was introduced. In each ear, a decrease in CP in response to low frequency (<2 kHz) sound stimuli was observed after the introduction of the dehiscence. The dehiscence was then patched with cyanoacrylate glue leading to a reversal of the dehiscence-induced changes in CP. The reversible decrease in auditory sensitivity observed in chinchilla is consistent with the elevated AC thresholds observed in patients with SCD. According to the ‘third-window’ hypothesis the SCD shunts sound-induced stapes velocity away from the cochlea, resulting in decreased auditory sensitivity to AC sounds. The data collected in this study are consistent with predictions of this hypothesis. PMID:16150562
Global Marine Gravity and Bathymetry at 1-Minute Resolution
NASA Astrophysics Data System (ADS)
Sandwell, D. T.; Smith, W. H.
2008-12-01
We have developed global gravity and bathymetry grids at 1-minute resolution. Three approaches are used to reduce the error in the satellite-derived marine gravity anomalies. First, we have retracked the raw waveforms from the ERS-1 and Geosat/GM missions resulting in improvements in range precision of 40% and 27%, respectively. Second, we have used the recently published EGM2008 global gravity model as a reference field to provide a seamless gravity transition from land to ocean. Third we have used a biharmonic spline interpolation method to construct residual vertical deflection grids. Comparisons between shipboard gravity and the global gravity grid show errors ranging from 2.0 mGal in the Gulf of Mexico to 4.0 mGal in areas with rugged seafloor topography. The largest errors occur on the crests of narrow large seamounts. The bathymetry grid is based on prediction from satellite gravity and available ship soundings. Global soundings were assembled from a wide variety of sources including NGDC/GEODAS, NOAA Coastal Relief, CCOM, IFREMER, JAMSTEC, NSF Polar Programs, UKHO, LDEO, HIG, SIO and numerous miscellaneous contributions. The National Geospatial-intelligence Agency and other volunteering hydrographic offices within the International Hydrographic Organization provided global significant shallow water (< 300 m) soundings derived from their nautical charts. All soundings were converted to a common format and were hand-edited in relation to a smooth bathymetric model. Land elevations and shoreline location are based on a combination SRTM30, GTOPO30, and ICESAT data. A new feature of the bathymetry grid is a matching grid of source identification number that enables one to establish the origin of the depth estimate in each grid cell. Both the gravity and bathymetry grids are freely available.
A laboratory study of subjective annoyance response to sonic booms and aircraft flyovers
NASA Technical Reports Server (NTRS)
Leatherwood, Jack D.; Sullivan, Brenda M.
1994-01-01
Three experiments were conducted to determine subjective equivalence of aircraft subsonic flyover noise and sonic booms. Two of the experiments were conducted in a loudspeaker-driven sonic boom simulator, and the third in a large room containing conventional loudspeakers. The sound generation system of the boom simulator had a frequency response extending to very low frequencies (about 1 Hz) whereas the large room loudspeakers were limited to about 20 Hz. Subjective equivalence between booms and flyovers was quantified in terms of the difference between the noise level of a boom and that of a flyover when the two were judged equally annoying. Noise levels were quantified in terms of the following noise descriptors: Perceived Level (PL), Perceived Noise Level (PNL), C-weighted sound exposure level (SELC), and A-weighted sound exposure level (SELA). Results from the present study were compared, where possible, to similar results obtained in other studies. Results showed that noise level differences depended upon the descriptor used, specific boom and aircraft noise events being compared and, except for the PNL descriptor, varied between the simulator and large room. Comparison of noise level differences obtained in the present study with those of other studies indicated good agreement across studies only for the PNL and SELA descriptors. Comparison of the present results with assessments of community response to high-energy impulsive sounds made by Working Group 84 of the National Research Council's Committee on Hearing, Bioacoustics, and Biomechanics (CHABA) showed good agreement when boom/flyover noise level differences were based on SELA. However, noise level differences obtained by CHABA using SELA for aircraft flyovers and SELC for booms were not in agreement with results obtained in the present study.
Stress and strain distribution in demineralized enamel: A micro-CT based finite element study.
Neves, Aline Almeida; Coutinho, Eduardo; Alves, Haimon Diniz Lopes; de Assis, Joaquim Teixeira
2015-10-01
Physiological oral mechanical forces may play a role on the progression of enamel carious lesions to cavitation. Thus, the aim of this study was to describe, by 3D finite element analysis, stress, and strain patterns in sound and carious enamel after a simulated occlusal load. Micro-CT based models were created and meshed with tetrahedral elements (based on an extracted third molar), namely: a sound (ST) and a carious tooth (CT). For the CT, enamel material properties were assigned according to the micro-CT gray values. Below the threshold corresponding to the enamel lesion (2.5 g/cm(3) ) lower and isotropic elastic modulus was assigned (E = 18 GPa against E1 = 80 GPa, E2 = E3 = 20 GPa for sound enamel). Both models were imported into a FE solver where boundary conditions were assigned and a pressure load (500 MPa) was applied at the occlusal surface. A linear static analysis was performed, considering anisotropy in sound enamel. ST showed a more efficient transfer of maximum principal stress from enamel to the dentin layer, while for the CT, enamel layer was subjected to higher and concentrated loads. Maximum principal strain distributions were seen at the carious enamel surface, especially at the central fossa, correlating to the enamel cavity seen at the original micro-CT model. It is possible to conclude that demineralized enamel compromises appropriate stress transfer from enamel to dentin, contributing to the odds of fracture and cavitation. Enamel fracture over a dentin lesion may happen as one of the normal pathways to caries progression and may act as a confounding factor during clinical diagnostic decisions. © 2015 Wiley Periodicals, Inc.
Atmospheric limb sounding with imaging FTS
NASA Astrophysics Data System (ADS)
Friedl-Vallon, Felix; Riese, Martin; Preusse, Peter; Oelhaf, Hermann; Fischer, Herbert
Imaging Fourier transform spectrometers in the thermal infrared are a promising new class of sensors for atmospheric science. The availability of fast and sensitive large focal plane arrays with appropriate spectral coverage in the infrared region allows the conception and construction of innovative sensors for Nadir and Limb geometry. Instruments in Nadir geometry have already reached prototype status (e.g. Geostationary Imaging Fourier Transform Spectrometer / U. Wisconsin and NASA) or are in Phase A study (infrared sounding mission on Meteosat third generation / ESA and EUMETSAT). The first application of the new technical possibilities to atmospheric limb sounding from space, the Imaging Michelson Interferometer for Passive Atmospheric Sounding (IMIPAS), is currently studied by industry in the context of preparatory work for the next set of ESA earth explorers. The scientific focus of the instrument is on the processes controlling the composition of the mid/upper troposphere and lower stratosphere. The instrument concept of IMIPAS has been conceived at the research centres Karlsruhe and J¨lich. The development of a precursor instrument (GLORIA-AB) at these research institutions u started already in 2005. The instrument will be able to fly on board of various airborne platforms. First scientific missions are planned for the second half of the year 2009 on board the new German research aircraft HALO. This airborne sensor serves its own scientific purpose, but it also provides a test bed to learn about this new instrument class and its peculiarities and to learn to exploit and interpret the wealth of information provided by a limb imaging IR Fourier transform spectrometer. The presentation will discuss design considerations and challenges for GLORIA-AB and put them in the context of the planned satellite application. It will describe the solutions found, present first laboratory figures of merit for the prototype instrument and outline the new scientific possibilities.
Computation of Thermal Transport in a Protein
NASA Astrophysics Data System (ADS)
Leitner, David M.
2003-03-01
Calculation of the coefficient of thermal conductivity and thermal diffusivity for a protein will be discussed. Thermal transport coefficients are obtained by computing the proteinÂ's normal modes, their lifetimes, the speed of sound and mean free path. We find the thermal diffusivity of myoglobin at 300 K to be 14 Å^2 /ps, the same as the value for water. The thermal conductivity at 300 K is calculated to be 2.0 mW/cm K in the absence of solvent and somewhat higher for the solvated protein, about one-third the value for water.
Fuentes, Tracy L.; van Heeswijk, Marijke; Grossman, Eric E.
2010-01-01
Northwest Area Facts * Population about 12 million * 43 federally recognized Tribes * Hydropower provides about two-thirds of electricity supply * 78 federally listed threatened and endangered species * 12 active or potentially active volcanoes * Columbia River system drains more than 260,000 square miles, an area about the size of Texas * More than 175 square miles covered by glaciers * More than 900 miles of Pacific Ocean coastline * More than 2,300 miles of greater Puget Sound coastline * Some forests store more carbon per unit area than any other area in the world, including the tropics * 51 percent federal lands * Significant lead, zinc, silver, and phosphate deposits
Musician's and physicist's view on tuning keyboard instruments
NASA Astrophysics Data System (ADS)
Lubenow, Martin; Meyn, Jan-Peter
2007-01-01
The simultaneous sound of several voices or instruments requires proper tuning to achieve consonance for certain intervals and chords. Most instruments allow enough frequency variation to enable pure tuning while being played. Keyboard instruments such as organ and piano have given frequencies for individual notes and the tuning must be based on a compromise. The equal temperament is not the only solution, but a special choice. Unequal temperaments produce better results in many cases, because important major thirds and triads are improved. Equal temperament was not propagated by Johann Sebastian Bach, as is often stated in introductory literature on this topic.
Chambers, David W
2006-11-01
This article explores the twin issues of whether organizations can act as ethical agents and what it means to exert moral influence over others. A discursive perspective is advanced that characterizes ethics as the action of communities based on promises. The received view of ethics as either the universal principles or individual responsibility is criticized as inadequate. Moral influence within community is considered under the various headings of democracy, office, brotherhood, agency, witness, and promise making. Moral influence among communities can include the damaging methods of "the superior position," coercion and misrepresentation, and appeal to third parties and the sound methods of rhetoric and promise making.
NASA Technical Reports Server (NTRS)
Haynes, Jared; Kenny, Jeremy
2009-01-01
Lift-off acoustic environments for NASA's Ares I - Crew Launch Vehicle are predicted using the second source distribution methodology described in the NASA SP-8072. Three modifications made to the model include a shorter core length approximation, a core termination procedure upon plume deflection, and a new set of directivity indices measured from static test firings of the Reusable Solid Rocket Motor (RSRM). The modified sound pressure level predictions increased more than 5 dB overall, and the peak levels shifted two third-octave bands higher in frequency.
The Observed Properties of Liquid Helium at the Saturated Vapor Pressure
NASA Astrophysics Data System (ADS)
Donnelly, Russell J.; Barenghi, Carlo F.
1998-11-01
The equilibrium and transport properties of liquid 4He are deduced from experimental observations at the saturated vapor pressure. In each case, the bibliography lists all known measurements. Quantities reported here include density, thermal expansion coefficient, dielectric constant, superfluid and normal fluid densities, first, second, third, and fourth sound velocities, specific heat, enthalpy, entropy, surface tension, ion mobilities, mutual friction, viscosity and kinematic viscosity, dispersion curve, structure factor, thermal conductivity, latent heat, saturated vapor pressure, thermal diffusivity and Prandtl number of helium I, and displacement length and vortex core parameter in helium II.
Prediction of flyover jet noise spectra from static tests
NASA Technical Reports Server (NTRS)
Michel, U.; Michalke, A.
1981-01-01
A scaling law is derived for predicting the flyover noise spectra of a single-stream shock-free circular jet from static experiments. The theory is based on the Lighthill approach to jet noise. Density terms are retained to include the effects of jet heating. The influence of flight on the turbulent flow field is considered by an experimentally supported similarity assumption. The resulting scaling laws for the difference between one-third-octave spectra and the overall sound pressure level compare very well with flyover experiments with a jet engine and with wind tunnel experiments with a heated model jet.
NASA Astrophysics Data System (ADS)
Itaya, K.; Ishisaka, K.; Ashihara, Y.; Abe, T.; Kumamoto, A.; Kurihara, J.
2015-12-01
S-520-29 sounding rocket experiment was carried out at Uchinoura Space Center (USC) at 19:10 JST on 17 August, 2014. The purpose of this sounding rocket experiments is observation of sporadic E layer that appears in the lower ionosphere at near 100km. Three methods were used in order to observe the sporadic E layer. The first method is an optical method that observe the light of metal ion emitted by the resonance scattering in sporadic E layer using the imager. The second method is observation of characteristic of radio wave propagation that the LF/MF band radio waves transmitted from the ground. The third method is measuring the electron density in the vicinity of sounding rocket using the fast Langmuir probe and the impedance probe. We analyze the propagation characteristics of radio wave in sporadic E layer appeared from the results of the second method observation. This rocket was equipped with LF/MF band radio receiver for observe the LF/MF band radio waves in rocket flight. Antenna of LF/MF band radio receiver is composed of three axis loop antenna. LF/MF band radio receiver receives three radio waves of 873kHz (JOGB), 666kHz (JOBK), 60kHz (JJY) from the ground. 873kHz and 60kHz radio waves are transmitting from north side, and 666kHz radio waves are transmitting from the east side to the trajectory of the rocket. In the sounding rocket experiment, LF/MF band radio receiver was working properly. We have completed the observation of radio wave intensity. We analyze the observation results using a Doppler shift calculations by frequency analysis. Radio waves received by the sounding rocket include the influences of Doppler shift by polarization and the direction of rocket spin and the magnetic field of the Earth. So received radio waves that are separate into characteristics waves using frequency analysis. Then we calculate the Doppler shift from the separated data. As a result, 873kHz, 666kHz radio waves are reflected by the ionosphere. 60kHz wave was able to propagate in ionosphere because wavelength of 60kHz was longer than the thickness of the sporadic E layer. In this study, we explain the result of LF/MF band radio receiver observations and the electron density of the ionosphere using frequency analysis by S-520-29 sounding rocket experiment.
Static tests of excess ground attenuation at Wallops Flight Center
NASA Astrophysics Data System (ADS)
Sutherland, L. C.; Brown, R.
1981-06-01
An extensive experimental measurement program which evaluated the attenuation of sound for close to horizontal propagation over the ground was designed to replicate, under static conditions, results of the flight measurements carried out earlier by NASA at the same site (Wallops Flight Center). The program consisted of a total of 41 measurement runs of attenuation, in excess of spreading and air absorption losses, for one third octave bands over a frequency range of 50 to 4000 Hz. Each run consisted of measurements at 10 locations up to 675 m, from a source located at nominal elevations of 2.5, or 10 m over either a grassy surface or an adjacent asphalt concrete runway surface. The tests provided a total of over 8100 measurements of attenuation under conditions of low wind speed averaging about 1 m/s and, for most of the tests, a slightly positive temperature gradient, averaging about 0.3 C/m from 1.2 to 7 m. The results of the measurements are expected to provide useful experimental background for the further development of prediction models of near grazing incidence sound propagation losses.
Static tests of excess ground attenuation at Wallops Flight Center
NASA Technical Reports Server (NTRS)
Sutherland, L. C.; Brown, R.
1981-01-01
An extensive experimental measurement program which evaluated the attenuation of sound for close to horizontal propagation over the ground was designed to replicate, under static conditions, results of the flight measurements carried out earlier by NASA at the same site (Wallops Flight Center). The program consisted of a total of 41 measurement runs of attenuation, in excess of spreading and air absorption losses, for one third octave bands over a frequency range of 50 to 4000 Hz. Each run consisted of measurements at 10 locations up to 675 m, from a source located at nominal elevations of 2.5, or 10 m over either a grassy surface or an adjacent asphalt concrete runway surface. The tests provided a total of over 8100 measurements of attenuation under conditions of low wind speed averaging about 1 m/s and, for most of the tests, a slightly positive temperature gradient, averaging about 0.3 C/m from 1.2 to 7 m. The results of the measurements are expected to provide useful experimental background for the further development of prediction models of near grazing incidence sound propagation losses.
Leadership for primary health care research.
Pendleton, David
2012-10-01
Over the last decade, I have put together a new theory of leadership. This paper describes its four propositions, which are consistent with the research literature but which lead to conclusions that are not commonly held and seldom put into practice. The first proposition is a model describing the territory of leadership that is different from either the Leadership Qualities Framework, 2006 or the Medical Leadership Competency Framework, 2010, both of which have been devised specifically for the NHS (National Health Service). The second proposition concerns the ill-advised attempt of individuals to become expert in all aspects of leadership: complete in themselves. The third suggests how personality and capability are related. The fourth embraces and recommends the notion of complementary differences among leaders. As the NHS seeks increasing leadership effectiveness, these propositions may need to be considered and their implications woven into the fabric of NHS leader selection and development. Primary Health Care research, like all fields of collective human endeavour, is eminently in need of sound leadership and the same principles that facilitate sound leadership in other fields is likely to be relevant to research teams.
Seismic sounding of convection in the Sun
NASA Astrophysics Data System (ADS)
Sreenivasan, Katepalli R.
2015-11-01
Thermal convection is the dominant mechanism of energy transport in the outer envelope of the Sun (one-third by radius). It drives global fluid circulations and magnetic fields observed on the solar surface. Convection excites a broadband spectrum of acoustic waves that propagate within the interior and set up modal resonances. These acoustic waves, also called seismic waves, are observed at the surface of the Sun by space- and ground-based telescopes. Seismic sounding, the study of these seismic waves to infer the internal properties of the Sun, constitutes helioseismology. Here we review our knowledge of solar convection, especially that obtained through seismic inference. Several characteristics of solar convection, such as differential rotation, anisotropic Reynolds stresses, the influence of rotation on convection and supergranulation, are considered. On larger scales, several inferences suggest that convective velocities are substantially smaller than those predicted by theory and simulations. This discrepancy challenges the models of internal differential rotation that rely on convective stresses as a driving mechanism and provide an important benchmark for numerical simulations. In collaboration with Shravan Hanasoge, Tata Institute of Fundamental Research, Mumbai and Laurent Gizon, Max-Planck-Institut fuer Sonnensystemforschung, Goettingen.
Sound Emission of Rotor Induced Deformations of Generator Casings
NASA Technical Reports Server (NTRS)
Polifke, W.; Mueller, B.; Yee, H. C.; Mansour, Nagi (Technical Monitor)
2001-01-01
The casing of large electrical generators can be deformed slightly by the rotor's magnetic field. The sound emission produced by these periodic deformations, which could possibly exceed guaranteed noise emission limits, is analysed analytically and numerically. From the deformation of the casing, the normal velocity of the generator's surface is computed. Taking into account the corresponding symmetry, an analytical solution for the acoustic pressure outside the generator is round in terms of the Hankel function of second order. The normal velocity or the generator surface provides the required boundary condition for the acoustic pressure and determines the magnitude of pressure oscillations. For the numerical simulation, the nonlinear 2D Euler equations are formulated In a perturbation form for low Mach number Computational Aeroacoustics (CAA). The spatial derivatives are discretized by the classical sixth-order central interior scheme and a third-order boundary scheme. Spurious high frequency oscillations are damped by a characteristic-based artificial compression method (ACM) filter. The time derivatives are approximated by the classical 4th-order Runge-Kutta method. The numerical results are In excellent agreement with the analytical solution.
Progress Toward Improving Jet Noise Predictions in Hot Jets
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Kenzakowski, Donald C.
2007-01-01
An acoustic analogy methodology for improving noise predictions in hot round jets is presented. Past approaches have often neglected the impact of temperature fluctuations on the predicted sound spectral density, which could be significant for heated jets, and this has yielded noticeable acoustic under-predictions in such cases. The governing acoustic equations adopted here are a set of linearized, inhomogeneous Euler equations. These equations are combined into a single third order linear wave operator when the base flow is considered as a locally parallel mean flow. The remaining second-order fluctuations are regarded as the equivalent sources of sound and are modeled. It is shown that the hot jet effect may be introduced primarily through a fluctuating velocity/enthalpy term. Modeling this additional source requires specialized inputs from a RANS-based flowfield simulation. The information is supplied using an extension to a baseline two equation turbulence model that predicts total enthalpy variance in addition to the standard parameters. Preliminary application of this model to a series of unheated and heated subsonic jets shows significant improvement in the acoustic predictions at the 90 degree observer angle.
The third flight of CHESS: Preliminary analysis of interstellar H2 on the β1 Sco sightline
NASA Astrophysics Data System (ADS)
Kruczek, Nick; France, Kevin
2018-01-01
We describe the scientific motivation and technical development of the Colorado High-resolution Echelle Stellar Spectrograph (CHESS), focusing on the preliminary science results for the third launch of the payload (CHESS-3). CHESS is a far ultraviolet rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium. CHESS is an objective echelle spectrograph, which uses a mechanically-ruled echelle and a powered (f/12.4) cross-dispersing grating, and is designed to achieve a resolving power R > 100,000 over the band pass λλ 1000-1600 Å. CHESS-3 launched on 14 June 2017 aboard NASA/CU sounding rocket mission 36.323 UG. The target for the flight was β1 Sco, a B1V star with a sightline that is likely sampling translucent material. We present flight results of interstellar molecular hydrogen excitation, including initial measurements of the column density and temperature, on the sightline.
NASA Astrophysics Data System (ADS)
Kruczek, Nicholas; Nell, Nicholas; France, Kevin; Hoadley, Keri; Fleming, Brian; Kane, Robert; Ulrich, Stefan; Egan, Arika; Beatty, Dawson
2017-08-01
In this proceeding, we describe the scientific motivation and technical development of the Colorado HighResolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing of components for the third launch of the payload (CHESS-3). CHESS is a far ultraviolet rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium. CHESS is an objective echelle spectrograph, which uses a mechanically-ruled echelle and a powered (f/12.4) crossdispersing grating, and is designed to achieve a resolving power R > 100,000 over the bandpass λλ 1000-1600 Å. Results from final efficiency and reflectivity measurements for the optical components of CHESS-3 are presented. An important role of sounding rocket experiments is the testing and verification of the space flight capabilities of experimental technologies. CHESS-3 utilizes a 40mm-diameter cross-strip anode microchannel plate detector fabricated by Sensor Sciences LLC, capable of achieving high spatial resolution and a high global count rate (˜1 MHz). We present pre-flight laboratory spectra and calibration results, including wavelength solution and resolving power of the instrument. The fourth launch of CHESS (CHESS-4) will demonstrate a δ-doped CCD, assembled in collaboration with the Microdevices Laboratory at JPL and Arizona State University. In support of CHESS-4, the CHESS-3 payload included a photomultiplier tube, used as a secondary confirmation of the optical alignment of the payload during flight. CHESS-3 launched on 26 June 2017 aboard NASA/CU sounding rocket mission 36.323 UG. We present initial flight results for the CHESS-3 observation of the β1 Scorpii sightline.
Sound levels, hearing habits and hazards of using portable cassete players
NASA Astrophysics Data System (ADS)
Hellström, P.-A.; Axelsson, A.
1988-12-01
The maximum output sound pressure level ( SPL) from different types of portable cassette players (PCP's) and different headphones was analyzed by using KEMAR in one-third octave bands. The equivalent free-field dB(A) level (EqA-FFSL) was computed from the one-third octave bands corrected by the free-field to the eardrum transfer function. The dB(A) level varied between 104 dB from a low-cost PCP with supra-aural headphones (earphones with headbands and foam pads fitting against the pinna) to 126 dB from a high quality PCP with semi-aural headphones (small earphones without headbands to be used in the concha of the external ear). The cassette tapes used in this study were recorded with music, white noise, narrowband noise and pure tones. The equivalent and maximum SPL was measured in the ear canal (1 mm from eardrum) with the use of mini-microphones in 15 young subjects listening to pop music from PCP's at the highest level they considered comfortable. These SPL measurements corresponded to 112 dB(A) in free field. In a temporary threshold shift ( TTS) study, ten teenagers—four girls and six boys—listened to pop music for 1 h with PCP's at a level they enjoyed. The mean TTS value was 5-10 dB for frequencies between 1 and 8 kHz. In one subject the maximum TTS was 35 dB at 5-6 dB kHz. In order to acquire information about listening habits among youngsters using PCP's, 154 seventh and eighth graders (age 14-15) were interviewed. They used PCP's much less than expected during most of the year, but an increase was reported during the summer holidays.
Tsunami Speed Variations in Density-stratified Compressible Global Oceans
NASA Astrophysics Data System (ADS)
Watada, S.
2013-12-01
Recent tsunami observations in the deep ocean have accumulated unequivocal evidence that tsunami traveltime delays compared with the linear long-wave tsunami simulations occur during tsunami propagation in the deep ocean. The delay is up to 2% of the tsunami traveltime. Watada et al. [2013] investigated the cause of the delay using the normal mode theory of tsunamis and attributed the delay to the compressibility of seawater, the elasticity of the solid earth, and the gravitational potential change associated with mass motion during the passage of tsunamis. Tsunami speed variations in the deep ocean caused by seawater density stratification is investigated using a newly developed propagator matrix method that is applicable to seawater with depth-variable sound speeds and density gradients. For a 4-km deep ocean, the total tsunami speed reduction is 0.45% compared with incompressible homogeneous seawater; two thirds of the reduction is due to elastic energy stored in the water and one third is due to water density stratification mainly by hydrostatic compression. Tsunami speeds are computed for global ocean density and sound speed profiles and characteristic structures are discussed. Tsunami speed reductions are proportional to ocean depth with small variations, except for in warm Mediterranean seas. The impacts of seawater compressibility and the elasticity effect of the solid earth on tsunami traveltime should be included for precise modeling of trans-oceanic tsunamis. Data locations where a vertical ocean profile deeper than 2500 m is available in World Ocean Atlas 2009. The dark gray area indicates the Pacific Ocean defined in WOA09. a) Tsunami speed variations. Red, gray and black bars represent global, Pacific, and Mediterranean Sea, respectively. b) Regression lines of the tsunami velocity reduction for all oceans. c)Vertical ocean profiles at grid points indicated by the stars in Figure 1.
Meteosat third generation: preliminary imagery and sounding mission concepts and performances
NASA Astrophysics Data System (ADS)
Aminou, Donny M.; Bézy, Jean-Loup; Bensi, Paolo; Stuhlmann, Rolf; Rodriguez, Antonio
2017-11-01
The operational deployment of MSG-1 at the beginning of 2004, the first of a series of four Meteosat Second Generation (MSG) satellites, marks the start of a new era in Europe for the meteorological observations from the geostationary orbit. This new system shall be the backbone of the European operational meteorological services up to at least 2015. The time required for the definition and the development of new space systems as well as the approval process of such complex programs implies to plan well ahead for the future missions. EUMETSAT have initiated in 2001, with ESA support, a User Consultation Process aiming at preparing for a future operational geostationary meteorological satellite system in the post-MSG era, named Meteosat Third Generation (MTG). The first phase of the User Consultation Process was devoted to the definition and consolidation of end user requirements and priorities in the field of Nowcasting and Very Short Term Weather Forecasting (NWC), Medium/Short Range global and regional Numerical Weather Prediction (NWP), Climate and Air Composition Monitoring and to the definition of the relevant observation techniques. After an initial post-MSG mission study (2003-2004) where preliminary instrument concepts were investigated allowing in the same time to consolidate the technical requirements for the overall system study, a MTG pre-phase A study has been performed for the overall system concept, architecture and programmatic aspects during 2004-2005 time frame. This paper provides an overview of the outcome of the MTG sensor concept studies conducted in the frame of the pre-phase A. It namely focuses onto the Imaging and Sounding Missions, highlights the resulting instrument concepts, establishes the critical technologies and introduces the study steps towards the implementation of the MTG development programme.
Computation of Sound Propagation by Boundary Element Method
NASA Technical Reports Server (NTRS)
Guo, Yueping
2005-01-01
This report documents the development of a Boundary Element Method (BEM) code for the computation of sound propagation in uniform mean flows. The basic formulation and implementation follow the standard BEM methodology; the convective wave equation and the boundary conditions on the surfaces of the bodies in the flow are formulated into an integral equation and the method of collocation is used to discretize this equation into a matrix equation to be solved numerically. New features discussed here include the formulation of the additional terms due to the effects of the mean flow and the treatment of the numerical singularities in the implementation by the method of collocation. The effects of mean flows introduce terms in the integral equation that contain the gradients of the unknown, which is undesirable if the gradients are treated as additional unknowns, greatly increasing the sizes of the matrix equation, or if numerical differentiation is used to approximate the gradients, introducing numerical error in the computation. It is shown that these terms can be reformulated in terms of the unknown itself, making the integral equation very similar to the case without mean flows and simple for numerical implementation. To avoid asymptotic analysis in the treatment of numerical singularities in the method of collocation, as is conventionally done, we perform the surface integrations in the integral equation by using sub-triangles so that the field point never coincide with the evaluation points on the surfaces. This simplifies the formulation and greatly facilitates the implementation. To validate the method and the code, three canonic problems are studied. They are respectively the sound scattering by a sphere, the sound reflection by a plate in uniform mean flows and the sound propagation over a hump of irregular shape in uniform flows. The first two have analytical solutions and the third is solved by the method of Computational Aeroacoustics (CAA), all of which are used to compare the BEM solutions. The comparisons show very good agreements and validate the accuracy of the BEM approach implemented here.
Simple reaction time to the onset of time-varying sounds.
Schlittenlacher, Josef; Ellermeier, Wolfgang
2015-10-01
Although auditory simple reaction time (RT) is usually defined as the time elapsing between the onset of a stimulus and a recorded reaction, a sound cannot be specified by a single point in time. Therefore, the present work investigates how the period of time immediately after onset affects RT. By varying the stimulus duration between 10 and 500 msec, this critical duration was determined to fall between 32 and 40 milliseconds for a 1-kHz pure tone at 70 dB SPL. In a second experiment, the role of the buildup was further investigated by varying the rise time and its shape. The increment in RT for extending the rise time by a factor of ten was about 7 to 8 msec. There was no statistically significant difference in RT between a Gaussian and linear rise shape. A third experiment varied the modulation frequency and point of onset of amplitude-modulated tones, producing onsets at different initial levels with differently rapid increase or decrease immediately afterwards. The results of all three experiments results were explained very well by a straightforward extension of the parallel grains model (Miller and Ulrich Cogn. Psychol. 46, 101-151, 2003), a probabilistic race model employing many parallel channels. The extension of the model to time-varying sounds made the activation of such a grain depend on intensity as a function of time rather than a constant level. A second approach by mechanisms known from loudness produced less accurate predictions.
Hear it, See it, Explore it: Visualizations and Sonifications of Seismic Signals
NASA Astrophysics Data System (ADS)
Fisher, M.; Peng, Z.; Simpson, D. W.; Kilb, D. L.
2010-12-01
Sonification of seismic data is an innovative way to represent seismic data in the audible range (Simpson, 2005). Seismic waves with different frequency and temporal characteristics, such as those from teleseismic earthquakes, deep “non-volcanic” tremor and local earthquakes, can be easily discriminated when time-compressed to the audio range. Hence, sonification is particularly useful for presenting complicated seismic signals with multiple sources, such as aftershocks within the coda of large earthquakes, and remote triggering of earthquakes and tremor by large teleseismic earthquakes. Previous studies mostly focused on converting the seismic data into audible files by simple time compression or frequency modulation (Simpson et al., 2009). Here we generate animations of the seismic data together with the sounds. We first read seismic data in the SAC format into Matlab, and generate a sequence of image files and an associated WAV sound file. Next, we use a third party video editor, such as the QuickTime Pro, to combine the image sequences and the sound file into an animation. We have applied this simple procedure to generate animations of remotely triggered earthquakes, tremor and low-frequency earthquakes in California, and mainshock-aftershock sequences in Japan and California. These animations clearly demonstrate the interactions of earthquake sequences and the richness of the seismic data. The tool developed in this study can be easily adapted for use in other research applications and to create sonification/animation of seismic data for education and outreach purpose.
Neurophysiological Studies of Auditory Verbal Hallucinations
Ford, Judith M.; Dierks, Thomas; Fisher, Derek J.; Herrmann, Christoph S.; Hubl, Daniela; Kindler, Jochen; Koenig, Thomas; Mathalon, Daniel H.; Spencer, Kevin M.; Strik, Werner; van Lutterveld, Remko
2012-01-01
We discuss 3 neurophysiological approaches to study auditory verbal hallucinations (AVH). First, we describe “state” (or symptom capture) studies where periods with and without hallucinations are compared “within” a patient. These studies take 2 forms: passive studies, where brain activity during these states is compared, and probe studies, where brain responses to sounds during these states are compared. EEG (electroencephalography) and MEG (magnetoencephalography) data point to frontal and temporal lobe activity, the latter resulting in competition with external sounds for auditory resources. Second, we discuss “trait” studies where EEG and MEG responses to sounds are recorded from patients who hallucinate and those who do not. They suggest a tendency to hallucinate is associated with competition for auditory processing resources. Third, we discuss studies addressing possible mechanisms of AVH, including spontaneous neural activity, abnormal self-monitoring, and dysfunctional interregional communication. While most studies show differences in EEG and MEG responses between patients and controls, far fewer show symptom relationships. We conclude that efforts to understand the pathophysiology of AVH using EEG and MEG have been hindered by poor anatomical resolution of the EEG and MEG measures, poor assessment of symptoms, poor understanding of the phenomenon, poor models of the phenomenon, decoupling of the symptoms from the neurophysiology due to medications and comorbidites, and the possibility that the schizophrenia diagnosis breeds truer than the symptoms it comprises. These problems are common to studies of other psychiatric symptoms and should be considered when attempting to understand the basic neural mechanisms responsible for them. PMID:22368236
A Brain System for Auditory Working Memory.
Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D
2016-04-20
The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.
Background sounds contribute to spectrotemporal plasticity in primary auditory cortex.
Moucha, Raluca; Pandya, Pritesh K; Engineer, Navzer D; Rathbun, Daniel L; Kilgard, Michael P
2005-05-01
The mammalian auditory system evolved to extract meaningful information from complex acoustic environments. Spectrotemporal selectivity of auditory neurons provides a potential mechanism to represent natural sounds. Experience-dependent plasticity mechanisms can remodel the spectrotemporal selectivity of neurons in primary auditory cortex (A1). Electrical stimulation of the cholinergic nucleus basalis (NB) enables plasticity in A1 that parallels natural learning and is specific to acoustic features associated with NB activity. In this study, we used NB stimulation to explore how cortical networks reorganize after experience with frequency-modulated (FM) sweeps, and how background stimuli contribute to spectrotemporal plasticity in rat auditory cortex. Pairing an 8-4 kHz FM sweep with NB stimulation 300 times per day for 20 days decreased tone thresholds, frequency selectivity, and response latency of A1 neurons in the region of the tonotopic map activated by the sound. In an attempt to modify neuronal response properties across all of A1 the same NB activation was paired in a second group of rats with five downward FM sweeps, each spanning a different octave. No changes in FM selectivity or receptive field (RF) structure were observed when the neural activation was distributed across the cortical surface. However, the addition of unpaired background sweeps of different rates or direction was sufficient to alter RF characteristics across the tonotopic map in a third group of rats. These results extend earlier observations that cortical neurons can develop stimulus specific plasticity and indicate that background conditions can strongly influence cortical plasticity.
Simultaneous F 0-F 1 modifications of Arabic for the improvement of natural-sounding
NASA Astrophysics Data System (ADS)
Ykhlef, F.; Bensebti, M.
2013-03-01
Pitch (F 0) modification is one of the most important problems in the area of speech synthesis. Several techniques have been developed in the literature to achieve this goal. The main restrictions of these techniques are in the modification range and the synthesised speech quality, intelligibility and naturalness. The control of formants in a spoken language can significantly improve the naturalness of the synthesised speech. This improvement is mainly dependent on the control of the first formant (F 1). Inspired by this observation, this article proposes a new approach that modifies both F 0 and F 1 of Arabic voiced sounds in order to improve the naturalness of the pitch shifted speech. The developed strategy takes a parallel processing approach, in which the analysis segments are decomposed into sub-bands in the wavelet domain, modified in the desired sub-band by using a resampling technique and reconstructed without affecting the remained sub-bands. Pitch marking and voicing detection are performed in the frequency decomposition step based on the comparison of the multi-level approximation and detail signals. The performance of the proposed technique is evaluated by listening tests and compared to the pitch synchronous overlap and add (PSOLA) technique in the third approximation level. Experimental results have shown that the manipulation in the wavelet domain of F 0 in conjunction with F 1 guarantees natural-sounding of the synthesised speech compared to the classical pitch modification technique. This improvement was appropriate for high pitch modifications.
How small could a pup sound? The physical bases of signaling body size in harbor seals
Gross, Stephanie; Garcia, Maxime; Rubio-Garcia, Ana; de Boer, Bart
2017-01-01
Abstract Vocal communication is a crucial aspect of animal behavior. The mechanism which most mammals use to vocalize relies on three anatomical components. First, air overpressure is generated inside the lower vocal tract. Second, as the airstream goes through the glottis, sound is produced via vocal fold vibration. Third, this sound is further filtered by the geometry and length of the upper vocal tract. Evidence from mammalian anatomy and bioacoustics suggests that some of these three components may covary with an animal’s body size. The framework provided by acoustic allometry suggests that, because vocal tract length (VTL) is more strongly constrained by the growth of the body than vocal fold length (VFL), VTL generates more reliable acoustic cues to an animal’s size. This hypothesis is often tested acoustically but rarely anatomically, especially in pinnipeds. Here, we test the anatomical bases of the acoustic allometry hypothesis in harbor seal pups Phoca vitulina. We dissected and measured vocal tract, vocal folds, and other anatomical features of 15 harbor seals post-mortem. We found that, while VTL correlates with body size, VFL does not. This suggests that, while body growth puts anatomical constraints on how vocalizations are filtered by harbor seals’ vocal tract, no such constraints appear to exist on vocal folds, at least during puppyhood. It is particularly interesting to find anatomical constraints on harbor seals’ vocal tracts, the same anatomical region partially enabling pups to produce individually distinctive vocalizations. PMID:29492005
Forms of vitality play and symbolic play during the third year of life.
Español, Silvia; Bordoni, Mariana; Martínez, Mauricio; Camarasa, Rosario; Carretero, Soledad
2015-08-01
This article focuses on the development of forms of vitality play, a recently described type of play, and links it to the development of symbolic play, one of the most studied types of play in developmental psychology. Two adult-infant dyads were videotaped longitudinally during in-house free play meetings every 15 days during the third year of life. Convergence technique was applied in order to accelerate the longitudinal study. A total of 17h 48min were registered in 28 sessions. An observational code with categories of forms of vitality play (a non-figurative play frame in which child and adult play together with the dynamics of their own movements and sounds in a repetition-variation form), symbolic play, and categories of combined patterns of both types of play was applied. The rate of each play was calculated for different age periods. Forms of vitality play is present at a constant rate during the third year of life. Symbolic play flourishes during this period. Combined play patterns are not the most frequent but are present from the beginning to the end of the third year. We suggest that FoVP favours intimate and intersubjective experiences essential to the understanding and the development of the interpersonal world; that it can be thought of as a good runway for the development of symbolic play; and that it prepares the child to participate in the temporal arts that belong to his culture. Copyright © 2015 Elsevier Inc. All rights reserved.
Krishna, V; Blaker, B; Kosnik, L; Patel, S; Vandergrift, W
2011-10-01
The trans-lamina terminalis approach has been described to remove third ventricular tumors. Various surgical corridors for this approach include anterior (via bifrontal craniotomy), anterolateral (via supra-orbital craniotomy), lateral (via pterional craniotomy) and trans-sphenoidal corridors. Supra-orbital craniotomy offers a minimally invasive access for resection of third ventricular tumors. The trans-lamina terminalis technique through a supra-orbital craniotomy is described. Also, a literature review of clinical outcome data was performed for the comparison of different surgical corridors (anterior, antero-lateral, lateral, and trans-sphenoidal). The operative steps and anatomic landmarks for supra-orbital craniotomy are discussed, along with 3 representative cases and respective outcomes. Gross total resection was achieved in 2 patients, and one patient required reoperation for recurrence. Based on the current literature, the clinical outcomes after supra-orbital craniotomy for trans-lamina terminalis approach are comparable to other surgical corridors. The supra-orbital craniotomy for trans-lamina terminalis approach is a valid surgical choice for third ventricular tumors. The major strengths of this approach include minimal brain retraction and direct end-on view; however, the long working distance is a major limitation. The clinical outcomes are comparable to other surgical corridors. Sound understanding of major strengths, limitations, and strategies for complication avoidance is necessary for its safe and effective application. © Georg Thieme Verlag KG Stuttgart · New York.
The prediction of en route noise levels for a DC-9 aircraft
NASA Technical Reports Server (NTRS)
Weir, Donald S.
1988-01-01
En route noise for advanced propfan powered aircraft has become an issue of concern for the Federal Aviation Administration. The NASA Aircraft Noise Prediction Program (ANOPP) is used to demonstrate the source noise and propagation effects for an aircraft in level flight up to 35,000 feet altitude. One-third octave band spectra of the source noise, atmospheric absorption loss, and received noise are presented. The predicted maximum A-weighted sound pressure level is compared to measured data from the Aeronautical Research Institute of Sweden. ANOPP is shown to be an effective tool in evaluating the en route noise characteristics of a DC-9 aircraft.
Impairing loyalty: corporate responsibility for clinical misadventure.
Kipnis, Kenneth
2011-09-01
A medical device manufacturer pays a surgeon to demonstrate a novel medical instrument in a live broadcast to an audience of specialists in another city. The surgical patient is unaware of the broadcast and unaware of the doctor's relationship with the manufacturer. It turns out that the patient required a different surgical approach to her condition-one that would not have allowed a demonstration of the instrument--and she later dies. The paper is an exploration of whether the manufacturer shares, along with the doctor, responsibility for the death of the patient. Three arguments for corporate responsibility are considered; two are criticized and the third is offered as sound.
Mercury in Sediment, Water, and Biota of Sinclair Inlet, Puget Sound, Washington, 1989-2007
Paulson, Anthony J.; Keys, Morgan E.; Scholting, Kelly L.
2010-01-01
Historical records of mercury contamination in dated sediment cores from Sinclair Inlet are coincidental with activities at the U.S. Navy Puget Sound Naval Shipyard; peak total mercury concentrations occurred around World War II. After World War II, better metallurgical management practices and environmental regulations reduced mercury contamination, but total mercury concentrations in surface sediment of Sinclair Inlet have decreased slowly because of the low rate of sedimentation relative to the vertical mixing within sediment. The slopes of linear regressions between the total mercury and total organic carbon concentrations of sediment offshore of Puget Sound urban areas was the best indicator of general mercury contamination above pre-industrial levels. Prior to the 2000-01 remediation, this indicator placed Sinclair Inlet in the tier of estuaries with the highest level of mercury contamination, along with Bellingham Bay in northern Puget Sound and Elliott Bay near Seattle. This indicator also suggests that the 2000/2001 remediation dredging had significant positive effect on Sinclair Inlet as a whole. In 2007, about 80 percent of the area of the Bremerton naval complex had sediment total mercury concentrations within about 0.5 milligrams per kilogram of the Sinclair Inlet regression. Three areas adjacent to the waterfront of the Bremerton naval complex have total mercury concentrations above this range and indicate a possible terrestrial source from waterfront areas of Bremerton naval complex. Total mercury concentrations in unfiltered Sinclair Inlet marine waters are about three times higher than those of central Puget Sound, but the small numbers of samples and complex physical and geochemical processes make it difficult to interpret the geographical distribution of mercury in marine waters from Sinclair Inlet. Total mercury concentrations in various biota species were compared among geographical locations and included data of composite samples, individual specimens, and caged mussels. Total mercury concentrations in muscle and liver of English sole from Sinclair Inlet ranked in the upper quarter and third, respectively, of Puget Sound locations. For other species, concentrations from Sinclair Inlet were within the mid-range of locations (for example, Chinook salmon). Total mercury concentrations of the long-lived and higher trophic rockfish in composites and individual specimens from Sinclair Inlet tended to be the highest in Puget Sound. For a given size, sand sole, graceful crab, staghorn sculpin, surf perch, and sea cucumber individuals collected from Sinclair Inlet had higher total mercury concentrations than individuals collected from non-urban estuaries. Total mercury concentrations in individual English sole and ratfish were not significantly different than in individuals of various sizes collected from either urban or non-urban estuaries in Puget Sound. Total mercury concentrations in English sole collected from Sinclair Inlet after the 2000-2001 dredging appear to have lower total mercury concentrations than those collected before (1996) the dredging project. The highest total mercury concentrations of mussels caged in 2002 were not within the Bremerton naval complex, but within the Port Orchard Marina and inner Sinclair Inlet.
Clinical investigation and mechanism of air-bone gaps in large vestibular aqueduct syndrome.
Merchant, Saumil N; Nakajima, Hideko H; Halpin, Christopher; Nadol, Joseph B; Lee, Daniel J; Innis, William P; Curtin, Hugh; Rosowski, John J
2007-07-01
Patients with large vestibular aqueduct syndrome (LVAS) often demonstrate an air-bone gap at the low frequencies on audiometric testing. The mechanism causing such a gap has not been well elucidated. We investigated middle ear sound transmission in patients with LVAS, and present a hypothesis to explain the air-bone gap. Observations were made on 8 ears from 5 individuals with LVAS. The diagnosis of LVAS was made by computed tomography in all cases. Investigations included standard audiometry and measurements of umbo velocity by laser Doppler vibrometry (LDV) in all cases, as well as tympanometry, acoustic reflex testing, vestibular evoked myogenic potential (VEMP) testing, distortion product otoacoustic emission (DPOAE) testing, and middle ear exploration in some ears. One ear with LVAS had anacusis. The other 7 ears demonstrated air-bone gaps at the low frequencies, with mean gaps of 51 dB at 250 Hz, 31 dB at 500 Hz, and 12 dB at 1,000 Hz. In these 7 ears with air-bone gaps, LDV showed the umbo velocity to be normal or high normal in all 7; tympanometry was normal in all 6 ears tested; acoustic reflexes were present in 3 of the 4 ears tested; VEMP responses were present in all 3 ears tested; DPOAEs were present in 1 of the 2 ears tested, and exploratory tympanotomy in 1 case showed a normal middle ear. The above data suggest that an air-bone gap in LVAS is not due to disease in the middle ear. The data are consistent with the hypothesis that a large vestibular aqueduct introduces a third mobile window into the inner ear, which can produce an air-bone gap by 1) shunting air-conducted sound away from the cochlea, thus elevating air conduction thresholds, and 2) increasing the difference in impedance between the scala vestibuli side and the scala tympani side of the cochlear partition during bone conduction testing, thus improving thresholds for bone-conducted sound. We conclude that LVAS can present with an air-bone gap that can mimic middle ear disease. Diagnostic testing using acoustic reflexes, VEMPs, DPOAEs, and LDV can help to identify a non-middle ear source for such a gap, thereby avoiding negative middle ear exploration. A large vestibular aqueduct may act as a third mobile window in the inner ear, resulting in an air-bone gap at low frequencies.
Supernova Remnant Observations with Micro-X
NASA Astrophysics Data System (ADS)
Figueroa, Enectali
Micro-X is a sounding rocket payload that combines an X-ray microcalorimeter with an imaging mirror to offer breakthrough science from high spectral resolution observations of extended X-ray sources. This payload has been in design and development for the last five years and is now completely built and undergoing integration; its first flight will be in November, 2012, as part of our current NASA award. This four-year follow-on proposal seeks funding for: (1) analysis of the first flight data, (2) the second flight and its data analysis, (3) development of payload upgrades and launch of the third flight, and (4) third flight data analysis. The scientific payload consists of a Transition Edge Sensor (TES) microcalorimeter array at the focus of a flight-proven conical imaging mirror. Micro-X capitalizes on three decades of NASA investment in the development of microcalorimeters and X-ray imaging optics. Micro-X offers a unique combination of bandpass, collecting area, and spectral and angular resolution. The spectral resolution goal across the 0.2 - 3.0 keV band is 2 - 4 eV Full-Width at Half Maximum (FWHM). The measured angular resolution of the mirror is 2.4 arcminute Half-Power Diameter (HPD). The effective area of the mirror, 300 square centimeters at 1 keV, is sufficient to provide observations of unprecedented quality of several astrophysical X-ray sources, even in a brief sounding rocket exposure of 300 sec. Our scientific program for this proposal will focus on supernova remnants (SNRs), whose spatial extent has made high-energy resolution observations with grating instruments extremely challenging. X-ray observations of SNRs with microcalorimeters will enable the study of the detailed atomic physics of the plasma; the determination of temperature, turbulence, and elemental abundances; and in conjunction with historical data, full three dimensional mapping of the kinematics of the remnant. These capabilities will open new avenues towards understanding the explosion mechanisms of supernovae and their roles in energy and heavy-element injection into galaxies, their evolution into SNRs, their interactions with their environments, and finally their roles as particle accelerators. For the first flight, we will observe an ejecta region in the Puppis A SNR. The Puppis A bright eastern knot (BEK), is the target of second flight in 2014. The third flight, in late 2015 or early 2016, will make an observation of the Cas A SNR. We will continue to advance the technology readiness of TES microcalorimeters while enhancing the science capability of the payload by implementing a series of improvements for the third flight. For the observation of Cas A in the third flight, we will upgrade from the 128-pixel array with 1 arcminute pixels used in the first two flights to a higher-energy resolution (1 eV FWHM) 256-pixel array with 20 arcsecond pixels and a new 30 arcsecond HPD mirror to enable improved imaging spectroscopy with our payload. The Micro-X team includes leaders in the development of microcalorimeters, SQUID readout systems, and segmented and full-shell grazing incidence X-ray optics, as well as highly experienced sounding rocket instrument developers, and scientific experts on supernova remnants. These investigators are located at institutions with strong space instrumentation traditions with the infrastructure to ensure a successful flight program. With Micro-X, we have designed a versatile payload capable of providing high-resolution science and a testbed for new technology. The first flight this year will make significant scientific contributions well ahead of the Astro-H mission. The program will also aid in the understanding and development of future flight-qualified microcalorimeter systems for larger orbiting missions. Finally, it will continue to attract talented young scientists to X-ray astrophysics and thus serve as a direct pipeline of future leaders of NASA missions.
Advances in edge-diffraction modeling for virtual-acoustic simulations
NASA Astrophysics Data System (ADS)
Calamia, Paul Thomas
In recent years there has been growing interest in modeling sound propagation in complex, three-dimensional (3D) virtual environments. With diverse applications for the military, the gaming industry, psychoacoustics researchers, architectural acousticians, and others, advances in computing power and 3D audio-rendering techniques have driven research and development aimed at closing the gap between the auralization and visualization of virtual spaces. To this end, this thesis focuses on improving the physical and perceptual realism of sound-field simulations in virtual environments through advances in edge-diffraction modeling. To model sound propagation in virtual environments, acoustical simulation tools commonly rely on geometrical-acoustics (GA) techniques that assume asymptotically high frequencies, large flat surfaces, and infinitely thin ray-like propagation paths. Such techniques can be augmented with diffraction modeling to compensate for the effect of surface size on the strength and directivity of a reflection, to allow for propagation around obstacles and into shadow zones, and to maintain soundfield continuity across reflection and shadow boundaries. Using a time-domain, line-integral formulation of the Biot-Tolstoy-Medwin (BTM) diffraction expression, this thesis explores various aspects of diffraction calculations for virtual-acoustic simulations. Specifically, we first analyze the periodic singularity of the BTM integrand and describe the relationship between the singularities and higher-order reflections within wedges with open angle less than 180°. Coupled with analytical approximations for the BTM expression, this analysis allows for accurate numerical computations and a continuous sound field in the vicinity of an arbitrary wedge geometry insonified by a point source. Second, we describe an edge-subdivision strategy that allows for fast diffraction calculations with low error relative to a numerically more accurate solution. Third, to address the considerable increase in propagation paths due to diffraction, we describe a simple procedure for identifying and culling insignificant diffraction components during a virtual-acoustic simulation. Finally, we present a novel method to find GA components using diffraction parameters that ensures continuity at reflection and shadow boundaries.
NASA Astrophysics Data System (ADS)
Sainato, C. M.; Losinno, B. N.; Márquez Molina, J. J.; Espada, R. A.
2018-07-01
Feedlots, a set of corrals where livestock is gathered to be fattened for market, are widely spreading in Buenos Aires Province, Argentina. However, the impact of manure as a consequence of this activity on soil organic matter mineralisation and groundwater is still to be explored. Although previous studies have described contamination in sandy soil environments, there is still little evidence on the effect of leachates in soils with a finer texture. The objective of this work was to assess contamination at a pen and its surroundings, by means of the modelling of electromagnetic induction (EMI) soundings carried out annually during two years of feedlot activity. A multifrequency conductivity meter was used for frequencies from 2 kHz to 16 kHz. For the 1D inversion of experimental data, the quadrature component of the secondary H-field normalized by the primary field expressed in ppm was used. The models of each measurement site were joined and 2D sections were obtained along transects in the pen and its surroundings. Groundwater chemical analysis was also performed annually during four years of feedlot activity. With soil depth, model resistivity decreased, reaching values between 6 and 8 Ω m at the unsaturated and the saturated zone. This decline indicated that the leachates from animal manure had increased soil salinity. In the second year of soundings, the layers below the pen showed an important decrease of resistivity. On the other hand, variation of the concentration of nitrates, chlorides and sulfates remained the same both in the phreatic and in the deep well along the four years of groundwater analysis. The concentration of sulfates and nitrates showed a maximum value in the second and in the third year after the beginning of the animal confinement activity in the pen. The following year, with the increase of precipitations, these concentrations decreased. Thus, the modelling of electromagnetic soundings proved to be a useful tool to determine the effect of leachate contamination in feedlot pens.
Aedo, Cristian; Tapia, Eduardo; Pavez, Elizabeth; Elgueda, Diego; Delano, Paul H; Robles, Luis
2015-01-01
There are two types of sensory cells in the mammalian cochlea, inner hair cells, which make synaptic contact with auditory-nerve afferent fibers, and outer hair cells that are innervated by crossed and uncrossed medial olivocochlear (MOC) efferent fibers. Contralateral acoustic stimulation activates the uncrossed efferent MOC fibers reducing cochlear neural responses, thus modifying the input to the central auditory system. The chinchilla, among all studied mammals, displays the lowest percentage of uncrossed MOC fibers raising questions about the strength and frequency distribution of the contralateral-sound effect in this species. On the other hand, MOC effects on cochlear sensitivity have been mainly studied in anesthetized animals and since the MOC-neuron activity depends on the level of anesthesia, it is important to assess the influence of anesthesia in the strength of efferent effects. Seven adult chinchillas (Chinchilla laniger) were chronically implanted with round-window electrodes in both cochleae. We compared the effect of contralateral sound in awake and anesthetized condition. Compound action potentials (CAP) and cochlear microphonics (CM) were measured in the ipsilateral cochlea in response to tones in absence and presence of contralateral sound. Control measurements performed after middle-ear muscles section in one animal discarded any possible middle-ear reflex activation. Contralateral sound produced CAP amplitude reductions in all chinchillas, with suppression effects greater by about 1-3 dB in awake than in anesthetized animals. In contrast, CM amplitude increases of up to 1.9 dB were found in only three awake chinchillas. In both conditions the strongest efferent effects were produced by contralateral tones at frequencies equal or close to those of ipsilateral tones. Contralateral CAP suppressions for 1-6 kHz ipsilateral tones corresponded to a span of uncrossed MOC fiber innervation reaching at least the central third of the chinchilla cochlea.
Ylitalo, G M; Matkin, C O; Buzitis, J; Krahn, M M; Jones, L L; Rowles, T; Stein, J E
2001-12-17
Certain populations of killer whales (Orcinus orca) have been extensively studied over the past 30 years, including populations that use Puget Sound, WA, the inside waters of British Columbia, Southeastern Alaska and Kenai Fjords/Prince William Sound, Alaska. Two eco-types of killer whales, 'transient' and 'resident', occur in all of these regions. These eco-types are genetically distinct and differ in various aspects of morphology, vocalization patterns, diet and habitat use. Various genetic and photo-identification studies of eastern North Pacific killer whales have provided information on the male-female composition of most of these resident pods and transient groups, as well as the approximate ages, reproductive status and putative recruitment order (birth order) of the individual whales. Biopsy blubber samples of free-ranging resident and transient killer whales from the Kenai Fjords/Prince William Sound, AK region were acquired during the 1994-1999 field seasons and analyzed for selected organochlorines (OCs), including dioxin-like CB congeners and DDTs. Concentrations of OCs in transient killer whales (marine mammal-eating) were much higher than those found in resident animals (fish-eating) apparently due to differences in diets of these two killer whale eco-types. Certain life-history parameters such as sex, age and reproductive status also influenced the concentrations of OCs in the Alaskan killer whales. Reproductive female whales contained much lower levels of OCs than sexually immature whales or mature male animals in the same age class likely due to transfer of OCs from the female to her offspring during gestation and lactation. Recruitment order also influenced the concentrations of OCs in the Alaskan killer whales. In adult male residents, first-recruited whales contained much higher OC concentrations than those measured in non-first-recruited (e.g. second recruited, third recruited) resident animals in the same age group. This study provides baseline OC data for free ranging Alaskan killer whales for which there is little contaminant information.
Santos, Juliana Feitosa dos; Souza, Ana Paula Ramos de; Seligman, Lilian
2013-01-01
To analyze the possible relationships between high sound pressure levels in the classroom and performance in the use of lexical and phonological routes in reading and writing. This consisted on a quantitative and exploratory study. The following measures were carried out: acoustic measurement, using the dosimeter, visual inspection of the external auditory canal, tonal audiometry thresholds, speech recognition tests and acoustic immittance; instrument for evaluation of reading and writing of isolated words. The non-parametric χ² test and Fisher's exact test were used for data analysis. The results of acoustic measurements in 4 schools in Santa Maria divided the sample of 87 children of third and fourth years of primary school, aged 8 to 10 years, in 2 groups. The 1st group was exposed to sound levels higher than 80 dB(A) (Study group) and the 2nd group at levels lower than 80 dB(A) (Control group). Higher prevalence of correct answers in reading and writing of nonwords, reading irregular words and frequency effect were observed. Predominance of correct answers in the writing of irregular words was observed in the Control group. For the Study group, a higher number of type errors neologism in reading and writing were observed, especially regarding the writing of nonwords and the extension effect; fewer errors of lexicalization type and verbal paragraphy in writing were observed. In assessing the reading and writing skills, children in the Study group exposed to high noise levels had poorer performance in the use of lexical and phonological routes, both in reading and in writing.
Background sounds contribute to spectrotemporal plasticity in primary auditory cortex
Moucha, Raluca; Pandya, Pritesh K.; Engineer, Navzer D.; Rathbun, Daniel L.
2010-01-01
The mammalian auditory system evolved to extract meaningful information from complex acoustic environments. Spectrotemporal selectivity of auditory neurons provides a potential mechanism to represent natural sounds. Experience-dependent plasticity mechanisms can remodel the spectrotemporal selectivity of neurons in primary auditory cortex (A1). Electrical stimulation of the cholinergic nucleus basalis (NB) enables plasticity in A1 that parallels natural learning and is specific to acoustic features associated with NB activity. In this study, we used NB stimulation to explore how cortical networks reorganize after experience with frequency-modulated (FM) sweeps, and how background stimuli contribute to spectrotemporal plasticity in rat auditory cortex. Pairing an 8–4 kHz FM sweep with NB stimulation 300 times per day for 20 days decreased tone thresholds, frequency selectivity, and response latency of A1 neurons in the region of the tonotopic map activated by the sound. In an attempt to modify neuronal response properties across all of A1 the same NB activation was paired in a second group of rats with five downward FM sweeps, each spanning a different octave. No changes in FM selectivity or receptive field (RF) structure were observed when the neural activation was distributed across the cortical surface. However, the addition of unpaired background sweeps of different rates or direction was sufficient to alter RF characteristics across the tonotopic map in a third group of rats. These results extend earlier observations that cortical neurons can develop stimulus specific plasticity and indicate that background conditions can strongly influence cortical plasticity PMID:15616812
On infrasound generated by wind farms and its propagation in low-altitude tropospheric waveguides
NASA Astrophysics Data System (ADS)
Marcillo, Omar; Arrowsmith, Stephen; Blom, Philip; Jones, Kyle
2015-10-01
Infrasound from a 60-turbine wind farm was found to propagate to distances up to 90 km under nighttime atmospheric conditions. Four infrasound sensor arrays were deployed in central New Mexico in February 2014; three of these arrays captured infrasound from a large wind farm. The arrays were in a linear configuration oriented southeast with 13, 54, 90, and 126 km radial distances and azimuths of 166°, 119°, 113°, and 111° from the 60 1.6 MW turbine Red Mesa Wind Farm, Laguna Pueblo, New Mexico, USA. Peaks at a fundamental frequency slightly below 0.9 Hz and its harmonics characterize the spectrum of the detected infrasound. The generation of this signal is linked to the interaction of the blades, flow gradients, and the supporting tower. The production of wind-farm sound, its propagation, and detection at long distances can be related to the characteristics of the atmospheric boundary layer. First, under stable conditions, mostly occurring at night, winds are highly stratified, which enhances the production of thickness sound and the modulation of other higher-frequency wind turbine sounds. Second, nocturnal atmospheric conditions can create low-altitude waveguides (with altitudes on the order of hundreds of meters) allowing long-distance propagation. Third, night and early morning hours are characterized by reduced background atmospheric noise that enhances signal detectability. This work describes the characteristics of the infrasound from a quasi-continuous source with the potential for long-range propagation that could be used to monitor the lower part of the atmospheric boundary layer.
Acoustics and perception of overtone singing.
Bloothooft, G; Bringmann, E; van Cappellen, M; van Luipen, J B; Thomassen, K P
1992-10-01
Overtone singing, a technique of Asian origin, is a special type of voice production resulting in a very pronounced, high and separate tone that can be heard over a more or less constant drone. An acoustic analysis is presented of the phenomenon and the results are described in terms of the classical theory of speech production. The overtone sound may be interpreted as the result of an interaction of closely spaced formants. For the lower overtones, these may be the first and second formant, separated from the lower harmonics by a nasal pole-zero pair, as the result of a nasalized articulation shifting from /c/ to /a/, or, as an alternative, the second formant alone, separated from the first formant by the nasal pole-zero pair, again as the result of a nasalized articulation around /c/. For overtones with a frequency higher than 800 Hz, the overtone sound can be explained as a combination of the second and third formant as the result of a careful, retroflex, and rounded articulation from /c/, via schwa /e/ to /y/ and /i/ for the highest overtones. The results indicate a firm and relatively long closure of the glottis during overtone phonation. The corresponding short open duration of the glottis introduces a glottal formant that may enhance the amplitude of the intended overtone. Perception experiments showed that listeners categorized the overtone sounds differently from normally sung vowels, which possibly has its basis in an independent perception of the small bandwidth of the resonance underlying the overtone. Their verbal judgments were in agreement with the presented phonetic-acoustic explanation.
Populin, Luis C; Tollin, Daniel J; Yin, Tom C T
2004-10-01
We examined the motor error hypothesis of visual and auditory interaction in the superior colliculus (SC), first tested by Jay and Sparks in the monkey. We trained cats to direct their eyes to the location of acoustic sources and studied the effects of eye position on both the ability of cats to localize sounds and the auditory responses of SC neurons with the head restrained. Sound localization accuracy was generally not affected by initial eye position, i.e., accuracy was not proportionally affected by the deviation of the eyes from the primary position at the time of stimulus presentation, showing that eye position is taken into account when orienting to acoustic targets. The responses of most single SC neurons to acoustic stimuli in the intact cat were modulated by eye position in the direction consistent with the predictions of the "motor error" hypothesis, but the shift accounted for only two-thirds of the initial deviation of the eyes. However, when the average horizontal sound localization error, which was approximately 35% of the target amplitude, was taken into account, the magnitude of the horizontal shifts in the SC auditory receptive fields matched the observed behavior. The modulation by eye position was not due to concomitant movements of the external ears, as confirmed by recordings carried out after immobilizing the pinnae of one cat. However, the pattern of modulation after pinnae immobilization was inconsistent with the observations in the intact cat, suggesting that, in the intact animal, information about the position of the pinnae may be taken into account.
A New Method of Testing in Wind Tunnels
NASA Technical Reports Server (NTRS)
Margoulis, W
1921-01-01
Now, in existing wind tunnels, using a horsepower of 100 to 300, the models are generally made to a 1/10 scale and the speed is appreciably lower than the speeds currently attained by airplanes. The Reynolds number realized is thus 15 to 25 times smaller than that reached by airplanes in free flight, while the ratio of speed to the velocity of sound is between a third and three quarters of the true ratio. The necessary increases in either the diameter of the wind tunnel or the velocity of the airstream are too costly. However, the author shows that it is possible to have wind tunnels in which the Reynolds number will be greater than that now obtained by airplanes, and in which the ratio of the velocity to the velocity of sound will also be greater than that realized in practice, by employing a gas other than air, at a pressure and temperature different from those of the surrounding atmosphere. The gas is carbonic acid, a gas having a low coefficient of viscosity, high density, and a low ratio of specific heat. The positive results of using carbonic acid in wind tunnel tests are given.
Sources and levels of background noise in the NASA Ames 40- by 80-foot wind tunnel
NASA Technical Reports Server (NTRS)
Soderman, Paul T.
1988-01-01
Background noise levels are measured in the NASA Ames Research Center 40- by 80-Foot Wind Tunnel following installation of a sound-absorbent lining on the test-section walls. Results show that the fan-drive noise dominated the empty test-section background noise at airspeeds below 120 knots. Above 120 knots, the test-section broadband background noise was dominated by wind-induced dipole noise (except at lower harmonics of fan blade-passage tones) most likely generated at the microphone or microphone support strut. Third-octave band and narrow-band spectra are presented for several fan operating conditions and test-section airspeeds. The background noise levels can be reduced by making improvements to the microphone wind screen or support strut. Empirical equations are presented relating variations of fan noise with fan speed or blade-pitch angle. An empirical expression for typical fan noise spectra is also presented. Fan motor electric power consumption is related to the noise generation. Preliminary measurements of sound absorption by the test-section lining indicate that the 152 mm thick lining will adequately absorb test-section model noise at frequencies above 300 Hz.
Trumpet mouthpiece manufacturing and tone quality.
Zicari, Massimo; MacRitchie, Jennifer; Ghirlanda, Lorenzo; Vanchieri, Alberto; Montorfano, Davide; Barbato, Maurizio C; Soldini, Emiliano
2013-11-01
This article investigates the relationship between the shape of the mouthpiece and its acoustical properties in brass instruments. The hypothesis is that not only different volumes but also particular cup shapes affect the embouchure and the tone quality in both a physical and perceivable way. Three professional trumpet players were involved, and two different internal cup contours characterized by a "U" and a "V" shape with two types of throat junction (round and sharp) were chosen, based on a Vincent Bach 1 [1/2] C medium mouthpiece. A third intermediate contour was designed as a combination of these. Over 600 sound samples were produced under controlled conditions, the study involving four different stages: (1) Simulation of air-flow, (2) analysis of the sound spectra, (3) study of the players' subjective responses, and (4) perceptual analysis of their timbral differences. Results confirm the U shape is characterized by a stronger air recirculation and produces stronger spectral components above 8 kHz, compared to the V shape. A round throat junction may also be preferable to a sharp one in terms of playability. There is moderate agreement on the aural perception of these differences although the verbal attributes used to qualify these are not shared.
Relationship between individual differences in speech processing and cognitive functions.
Ou, Jinghua; Law, Sam-Po; Fung, Roxana
2015-12-01
A growing body of research has suggested that cognitive abilities may play a role in individual differences in speech processing. The present study took advantage of a widespread linguistic phenomenon of sound change to systematically assess the relationships between speech processing and various components of attention and working memory in the auditory and visual modalities among typically developed Cantonese-speaking individuals. The individual variations in speech processing are captured in an ongoing sound change-tone merging in Hong Kong Cantonese, in which typically developed native speakers are reported to lose the distinctions between some tonal contrasts in perception and/or production. Three groups of participants were recruited, with a first group of good perception and production, a second group of good perception but poor production, and a third group of good production but poor perception. Our findings revealed that modality-independent abilities of attentional switching/control and working memory might contribute to individual differences in patterns of speech perception and production as well as discrimination latencies among typically developed speakers. The findings not only have the potential to generalize to speech processing in other languages, but also broaden our understanding of the omnipresent phenomenon of language change in all languages.
Sound–meaning association biases evidenced across thousands of languages
Wichmann, Søren; Hammarström, Harald; Christiansen, Morten H.
2016-01-01
It is widely assumed that one of the fundamental properties of spoken language is the arbitrary relation between sound and meaning. Some exceptions in the form of nonarbitrary associations have been documented in linguistics, cognitive science, and anthropology, but these studies only involved small subsets of the 6,000+ languages spoken in the world today. By analyzing word lists covering nearly two-thirds of the world’s languages, we demonstrate that a considerable proportion of 100 basic vocabulary items carry strong associations with specific kinds of human speech sounds, occurring persistently across continents and linguistic lineages (linguistic families or isolates). Prominently among these relations, we find property words (“small” and i, “full” and p or b) and body part terms (“tongue” and l, “nose” and n). The areal and historical distribution of these associations suggests that they often emerge independently rather than being inherited or borrowed. Our results therefore have important implications for the language sciences, given that nonarbitrary associations have been proposed to play a critical role in the emergence of cross-modal mappings, the acquisition of language, and the evolution of our species’ unique communication system. PMID:27621455
The FOXSI solar sounding rocket campaigns
NASA Astrophysics Data System (ADS)
Glesener, Lindsay; Krucker, Säm.; Christe, Steven; Ishikawa, Shin-nosuke; Buitrago-Casas, Juan Camilo; Ramsey, Brian; Gubarev, Mikhail; Takahashi, Tadayuki; Watanabe, Shin; Takeda, Shin'ichiro; Courtade, Sasha; Turin, Paul; McBride, Stephen; Shourt, Van; Hoberman, Jane; Foster, Natalie; Vievering, Juliana
2016-07-01
The Focusing Optics X-ray Solar Imager (FOXSI) is, in its initial form, a sounding rocket experiment designed to apply the technique of focusing hard X-ray (HXR) optics to the study of fundamental questions about the high-energy Sun. Solar HXRs arise via bremsstrahlung from energetic electrons and hot plasma produced in solar flares and thus are one of the most direct diagnostics of are-accelerated electrons and the impulsive heating of the solar corona. Previous missions have always been limited in sensitivity and dynamic range by the use of indirect (Fourier) imaging due to the lack of availability of direct focusing optics, but technological advances now make direct focusing accessible in the HXR regime (as evidenced by the NuSTAR spacecraft and several suborbital missions). The FOXSI rocket experiment develops and optimizes HXR focusing telescopes for the unique scientific requirements of the Sun. To date, FOXSI has completed two successful flights on 2012 November 02 and 2014 December 11 and is funded for a third flight. This paper gives a brief overview of the experiment, which is sensitive to solar HXRs in the 4-20 keV range, describes its first two flights, and gives a preview of plans for FOXSI-3.
Masson, Céline
2013-02-01
Starting from our collective initiative to work on the theme of 'The strength of the name', which has given rise both to a conference as well as a documentary called: And their name, they have changed it, I have sought to draw attention in this article to the difference between proper names, patronymic names, and the so-called Name-of-the-father. Pronouncing names involves designating the languages of names, which also refer to the accents of names, since I have proposed the idea that each name is evocative of a language, and that changing it also modifies the language of the name. I have approached the question of the name by considering cases of name-changes, essential with regard to Ashkenazi Jewish families who changed their name after the Shoah, along with the trauma that numerous Jewish families suffered after the war. French jurisprudence does not permit reversion to the original name, once it has been changed to a more French-sounding name, owing to the immutability of the name and the foreign sound of the names of origin. Copyright © 2013 Institute of Psychoanalysis.
Acoustic structure of the five perceptual dimensions of timbre in orchestral instrument tones
Elliott, Taffeta M.; Hamilton, Liberty S.; Theunissen, Frédéric E.
2013-01-01
Attempts to relate the perceptual dimensions of timbre to quantitative acoustical dimensions have been tenuous, leading to claims that timbre is an emergent property, if measurable at all. Here, a three-pronged analysis shows that the timbre space of sustained instrument tones occupies 5 dimensions and that a specific combination of acoustic properties uniquely determines gestalt perception of timbre. Firstly, multidimensional scaling (MDS) of dissimilarity judgments generated a perceptual timbre space in which 5 dimensions were cross-validated and selected by traditional model comparisons. Secondly, subjects rated tones on semantic scales. A discriminant function analysis (DFA) accounting for variance of these semantic ratings across instruments and between subjects also yielded 5 significant dimensions with similar stimulus ordination. The dimensions of timbre space were then interpreted semantically by rotational and reflectional projection of the MDS solution into two DFA dimensions. Thirdly, to relate this final space to acoustical structure, the perceptual MDS coordinates of each sound were regressed with its joint spectrotemporal modulation power spectrum. Sound structures correlated significantly with distances in perceptual timbre space. Contrary to previous studies, most perceptual timbre dimensions are not the result of purely temporal or spectral features but instead depend on signature spectrotemporal patterns. PMID:23297911
The FOXSI Solar Sounding Rocket Campaigns
NASA Technical Reports Server (NTRS)
Glesener, Lindsay; Krucker, Sam; Christe, Steven; Ishikawa, Shin-Nosuke; Buitrago-Casas, Juan Camilo; Ramsey, Brian; Gubarev, Mikhail; Takahashi, Tadayuki; Watanabe, Shin; Takeda, Shin'ichiro;
2016-01-01
The Focusing Optics X-ray Solar Imager (FOXSI) is, in its initial form, a sounding rocket experiment designed to apply the technique of focusing hard X-ray (HXR) optics to the study of fundamental questions about the high-energy Sun. Solar HXRs arise via bremsstrahlung from energetic electrons and hot plasma produced in solar flares and thus are one of the most direct diagnostics of flare-accelerated electrons and the impulsive heating of the solar corona. Previous missions have always been limited in sensitivity and dynamic range by the use of indirect (Fourier) imaging due to the lack of availability of direct focusing optics, but technological advances now make direct focusing accessible in the HXR regime (as evidenced by the NuSTAR spacecraft and several suborbital missions). The FOXSI rocket experiment develops and optimizes HXR focusing telescopes for the unique scientific requirements of the Sun. To date, FOXSI has completed two successful flights on 2012 November 02 and 2014 December 11 and is funded for a third flight. This paper gives a brief overview of the experiment, which is sensitive to solar HXRs in the 4-20 keV range, describes its first two flights, and gives a preview of plans for FOXSI-3.
Duval, Florian; Leroux, Agathe; Bertaud, Valérie; Meary, Fleur; Le Padellec, Clément; Refuveille, Laura; Lemaire, Arnaud; Sorel, Olivier; Chauvel-Lebret, Dominique
2015-09-01
The aim of this study was to assess the impact of extraction of third molars on the occurrence of temporo-mandibular disorders (TMD). A review of the literature and a case-control study have been conducted. The case-control study compares the frequency of extraction of third molars between the sample with TMD (case) and the sample without TMD (control). The proportion of patients who had undergone extractions of wisdom teeth was higher in the case group than in the control group. The difference was statistically significant when patients had undergone extraction of all four wisdom teeth or when the extraction of four wisdom teeth underwent in one sitting or under general anesthesia. The study of patients in case sample shows that all signs of TMD were more common in patients who had undergone extractions in several sessions and under local anesthesia. The temporomandibular joint sounds are significantly more frequent with local anesthesia. In the case group, 85 to 92% of patients have parafunctions and 5 to 11% have malocclusion. This demonstrates the multifactorial etiology of temporomandibular disorders. © EDP Sciences, SFODF, 2015.
Rapidly updated hyperspectral sounding and imaging data for severe storm prediction
NASA Astrophysics Data System (ADS)
Bingham, Gail; Jensen, Scott; Elwell, John; Cardon, Joel; Crain, David; Huang, Hung-Lung (Allen); Smith, William L.; Revercomb, Hank E.; Huppi, Ronald J.
2013-09-01
Several studies have shown that a geostationary hyperspectral imager/sounder can provide the most significant value increase in short term, regional numerical prediction weather models over a range of other options. In 1998, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) proposal was selected by NASA as the New Millennium Earth Observation 3 program over several other geostationary instrument development proposals. After the EO3 GIFTS flight demonstration program was changed to an Engineering Development Unit (EDU) due to funding limitations by one of the partners, the EDU was subjected to flight-like thermal vacuum calibration and testing and successfully validated the breakthrough technologies needed to make a successful observatory. After several government stops and starts, only EUMETSAT's Meteosat Third Generation (MTG-S) sounder is in operational development. Recently, a commercial partnership has been formed to fill the significant data gap. AsiaSat has partnered with GeoMetWatch (GMW)1 to fund the development and launch of the Sounding and Tracking Observatory for Regional Meteorology (STORMTM) sensor, a derivative of the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) EDU that was designed, built, and tested by Utah State University (USU). STORMTM combines advanced technologies to observe surface thermal properties, atmospheric weather, and chemistry variables in four dimensions to provide high vertical resolution temperature and moisture sounding information, with the fourth dimension (time) provided by the geosynchronous satellite platform ability to measure a location as often as desired. STORMTM will enhance the polar orbiting imaging and sounding measurements by providing: (1) a direct measure of moisture flux and altitude-resolved water vapor and cloud tracer winds throughout the troposphere, (2) an observation of the time varying atmospheric thermodynamics associated with storm system development, and (3) the transport of tropospheric pollutant gases. The AsiaSat/GMW partnership will host the first STORMTM sensor on their AsiaSat 9 telecommunications satellite at 122 E over the Asia Pacific area. GMW's business plan is to sell the unique STORM data and data products to countries and companies in the satellite coverage area. GMW plans to place 6 STORMTM sensors on geostationary telecommunications satellites to provide global hyperspectral sounding and imaging data. Utah State University's Advanced Weather Systems Laboratory (AWS) will build the sensors for GMW.
Greene, Nathaniel T; Anbuhl, Kelsey L; Ferber, Alexander T; DeGuzman, Marisa; Allen, Paul D; Tollin, Daniel J
2018-08-01
Despite the common use of guinea pigs in investigations of the neural mechanisms of binaural and spatial hearing, their behavioral capabilities in spatial hearing tasks have surprisingly not been thoroughly investigated. To begin to fill this void, we tested the spatial hearing of adult male guinea pigs in several experiments using a paradigm based on the prepulse inhibition (PPI) of the acoustic startle response. In the first experiment, we presented continuous broadband noise from one speaker location and switched to a second speaker location (the "prepulse") along the azimuth prior to presenting a brief, ∼110 dB SPL startle-eliciting stimulus. We found that the startle response amplitude was systematically reduced for larger changes in speaker swap angle (i.e., greater PPI), indicating that using the speaker "swap" paradigm is sufficient to assess stimulus detection of spatially separated sounds. In a second set of experiments, we swapped low- and high-pass noise across the midline to estimate their ability to utilize interaural time- and level-difference cues, respectively. The results reveal that guinea pigs can utilize both binaural cues to discriminate azimuthal sound sources. A third set of experiments examined spatial release from masking using a continuous broadband noise masker and a broadband chirp signal, both presented concurrently at various speaker locations. In general, animals displayed an increase in startle amplitude (i.e., lower PPI) when the masker was presented at speaker locations near that of the chirp signal, and reduced startle amplitudes (increased PPI) indicating lower detection thresholds when the noise was presented from more distant speaker locations. In summary, these results indicate that guinea pigs can: 1) discriminate changes in source location within a hemifield as well as across the midline, 2) discriminate sources of low- and high-pass sounds, demonstrating that they can effectively utilize both low-frequency interaural time and high-frequency level difference sound localization cues, and 3) utilize spatial release from masking to discriminate sound sources. This report confirms the guinea pig as a suitable spatial hearing model and reinforces prior estimates of guinea pig hearing ability from acoustical and physiological measurements. Copyright © 2018 Elsevier B.V. All rights reserved.
Analysis of STS-3 Get Away Special (GAS) flight data and vibration specification for gas payloads
NASA Technical Reports Server (NTRS)
Talapatra, D. C.
1983-01-01
During the Space Transportation System (STS)-3 mission, a Get Away Special (GAS) canister was flown. In order to determine the flight environment for GAS payloads, triaxial accelerometers and a microphone were installed inside the GAS canister. Data from these accelerometers and the microphone were analyzed. The microphone data is presented as overall sound pressure level (SPL) and one-third octave band time history plots. And the accelerometer data is provided in the forms of instantaneous time history, RMS time history and power spectral density plots. Also based on this flight data, vibration test specification for GAS payloads was developed and the recommended specification is presented here.
Full scale model investigation on the acoustical protection of a balcony-like façade device (L).
Tong, Y G; Tang, S K; Yeung, M K L
2011-08-01
The acoustical insertion losses produced by a balcony-like structure in front of a window are examined experimentally. The results suggest that the balcony ceiling is the most appropriate location for the installation of artificial sound absorption for the purpose of improving the broadband insertion loss, while the side walls are found to be the second best. Results also indicate that the acoustic modes of the balcony opening and the balcony cavity resonance in a direction normal to the window could have a great impact on the one-third octave band insertion losses. The maximum broadband road traffic noise insertion loss achieved is about 7 dB.
Test of acoustic tone source and propulsion performance of C8A Buffalo suppressor nozzle
NASA Technical Reports Server (NTRS)
Marrs, C. C.; Harkonen, D. L.; Okeefe, J. V.
1974-01-01
Results are presented for a static acoustic and propulsion performance ground test conducted at the Boeing hot nozzle facility on the C8A Buffalo noise suppressor nozzle. Various methods to remove a nozzle-associated 2000-Hz tone are evaluated. Results of testing this rectangular-array lobed nozzle for propulsion performance and acoustic directivity are reported. Recommendations for future nozzle modifications and further testing are included. Appendix A contains the test plan. Appendix B presents the test log. Appendix C contains plots of the one-third octave sound pressure levels recorded during the test. Appendix D describes the acoustic data recording and reduction systems. The performance data is tabulated in Appendix E.
McHugh, Lauren E J; Politi, Ioanna; Al-Fodeh, Rami S; Fleming, Garry J P
2017-09-01
To assess the cuspal deflection of standardised large mesio-occluso-distal (MOD) cavities in third molar teeth restored using conventional resin-based composite (RBC) or their bulk fill restorative counterparts compared with the unbound condition using a twin channel deflection measuring gauge. Following thermocycling, the cervical microleakage of the restored teeth was assessed to determine marginal integrity. Standardised MOD cavities were prepared in forty-eight sound third molar teeth and randomly allocated to six groups. Restorations were placed in conjunction with (and without) a universal bonding system and resin restorative materials were irradiated with a light-emitting-diode light-curing-unit. The dependent variable was the restoration protocol, eight oblique increments for conventional RBCs or two horizontal increments for the bulk fill resin restoratives. The cumulative buccal and palatal cuspal deflections from a twin channel deflection measuring gauge were summed, the restored teeth thermally fatigued, immersed in 0.2% basic fuchsin dye for 24h, sectioned and examined for cervical microleakage score. The one-way analysis of variance (ANOVA) identified third molar teeth restored using conventional RBC materials had significantly higher mean total cuspal deflection values compared with bulk fill resin restorative restoration (all p<0.0001). For the conventional RBCs, Admira Fusion (bonded) third molar teeth had significantly the lowest microleakage scores (all p<0.001) while the Admira Fusion x-tra (bonded) bulk fill resin restored teeth had significantly the lowest microleakage scores compared with Tetric EvoCeram Bulk Fill (bonded and non-bonded) teeth (all p<0.001). Not all conventional RBCs or bulk fill resin restoratives behave in a similar manner when used to restore standardised MOD cavities in third molar teeth. It would appear that light irradiation of individual conventional RBCs or bulk fill resin restoratives may be problematic such that material selection is vital in the absence of clinical data. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Jola, Corinne; Pollick, Frank E; Calvo-Merino, Beatriz
2014-01-01
Music is an integral part of dance. Over the last 10 years, however, dance stimuli (without music) have been repeatedly used to study action observation processes, increasing our understanding of the influence of observer's physical abilities on action perception. Moreover, beyond trained skills and empathy traits, very little has been investigated on how other observer or spectators' properties modulate action observation and action preference. Since strong correlations have been shown between music and personality traits, here we aim to investigate how personality traits shape the appreciation of dance when this is presented with three different music/sounds. Therefore, we investigated the relationship between personality traits and the subjective esthetic experience of 52 spectators watching a 24 min lasting contemporary dance performance projected on a big screen containing three movement phrases performed to three different sound scores: classical music (i.e., Bach), an electronic sound-score, and a section without music but where the breathing of the performers was audible. We found that first, spectators rated the experience of watching dance without music significantly different from with music. Second, we found that the higher spectators scored on the Big Five personality factor openness, the more they liked the no-music section. Third, spectators' physical experience with dance was not linked to their appreciation but was significantly related to high average extravert scores. For the first time, we showed that spectators' reported entrainment to watching dance movements without music is strongly related to their personality and thus may need to be considered when using dance as a means to investigate action observation processes and esthetic preferences.
Jola, Corinne; Pollick, Frank E.; Calvo-Merino, Beatriz
2014-01-01
Music is an integral part of dance. Over the last 10 years, however, dance stimuli (without music) have been repeatedly used to study action observation processes, increasing our understanding of the influence of observer’s physical abilities on action perception. Moreover, beyond trained skills and empathy traits, very little has been investigated on how other observer or spectators’ properties modulate action observation and action preference. Since strong correlations have been shown between music and personality traits, here we aim to investigate how personality traits shape the appreciation of dance when this is presented with three different music/sounds. Therefore, we investigated the relationship between personality traits and the subjective esthetic experience of 52 spectators watching a 24 min lasting contemporary dance performance projected on a big screen containing three movement phrases performed to three different sound scores: classical music (i.e., Bach), an electronic sound-score, and a section without music but where the breathing of the performers was audible. We found that first, spectators rated the experience of watching dance without music significantly different from with music. Second, we found that the higher spectators scored on the Big Five personality factor openness, the more they liked the no-music section. Third, spectators’ physical experience with dance was not linked to their appreciation but was significantly related to high average extravert scores. For the first time, we showed that spectators’ reported entrainment to watching dance movements without music is strongly related to their personality and thus may need to be considered when using dance as a means to investigate action observation processes and esthetic preferences. PMID:25309393
Danna, Jérémy; Velay, Jean-Luc
2017-01-01
The aim of this study was to evaluate the compensatory effects of real-time auditory feedback on two proprioceptively deafferented subjects. The real-time auditory feedback was based on a movement sonification approach, consisting of translating some movement variables into synthetic sounds to make them audible. The two deafferented subjects and 16 age-matched control participants were asked to learn four new characters. The characters were learned under two different conditions, one without sonification and one with sonification, respecting a within-subject protocol. The results revealed that characters learned with sonification were reproduced more quickly and more fluently than characters learned without and that the effects of sonification were larger in deafferented than in control subjects. Secondly, whereas control subjects were able to learn the characters without sounds the deafferented subjects were able to learn them only when they were trained with sonification. Thirdly, although the improvement was still present in controls, the performance of deafferented subjects came back to the pre-test level 2 h after the training with sounds. Finally, the two deafferented subjects performed differently from each other, highlighting the importance of studying at least two subjects to better understand the loss of proprioception and its impact on motor control and learning. To conclude, movement sonification may compensate for a lack of proprioception, supporting the auditory-proprioception substitution hypothesis. However, sonification would act as a “sensory prosthesis” helping deafferented subjects to better feel their movements, without permanently modifying their motor performance once the prosthesis is removed. Potential clinical applications for motor rehabilitation are numerous: people with a limb prosthesis, with a stroke, or with some peripheral nerve injury may potentially be interested. PMID:28386211
The integration of nonsimultaneous frequency components into a single virtual pitch.
Ciocca, V; Darwin, C J
1999-04-01
The integration of nonsimultaneous frequency components into a single virtual pitch was investigated by using a pitch matching task in which a mistuned 4th harmonic (mistuned component) produced pitch shifts in a harmonic series (12 equal-amplitude harmonics of a 155-Hz F0). In experiment 1, the mistuned component could either be simultaneous, stop as the target started (pre-target component), or start as the target stopped (post-target component). Pitch shifts produced by the pre-target components were significantly smaller than those obtained with simultaneous components; in the post-target condition, the size of pitch shifts did not decrease relative to the simultaneous condition. In experiment 2, a silent gap of 20, 40, 80, or 160 ms was introduced between the nonsimultaneous components and the target sound. In the pre-target condition, pitch shifts were reduced to zero for silent gaps of 80 ms or longer; by contrast, a gap of 160 ms was required to eliminate pitch shifts in the post-target condition. The third experiment tested the hypothesis that, when post-target components were presented, the processing of the pitch of the target tone started at the onset of the target, and ended at the gap duration at which pitch shifts decreased to zero. This hypothesis was confirmed by the finding that pitch shifts could not be observed when the target tone had a duration of 410 ms. Taken together, the results of these experiments show that nonsimultaneous components that occur after the onset of the target sound make a larger contribution to the virtual pitch of the target, and over a longer period, than components that precede the onset of the target sound.
Feasibility of heart sounds measurements from an accelerometer within an ICD pulse generator.
Siejko, Krzysztof Z; Thakur, Pramodsingh H; Maile, Keith; Patangay, Abhilash; Olivari, Maria-Teresa
2013-03-01
The feasibility of detecting heart sounds (HS) from an accelerometer sensor enclosed within an implantable cardioverter defibrillator (ICD) pulse generator (PG) was explored in a noninvasive pilot study on heart failure (HF) patients with audible third HS (S3). Accelerometer circuitry enhanced for HS was incorporated into non-functional ICDs. A study was conducted on 30 HF patients and 10 normal subjects without history of cardiac disease. The devices were taped to the skin surface over both left and right pectoral regions to simulate subcutaneous implants. A lightweight reference accelerometer was taped over the cardiac apex. Waveforms were recorded simultaneously with a surface electrocardiogram for 2 minutes. Algorithms were developed to perform off-line automatic detection of HS and HS time intervals (HSTIs). S1, S2, and S3 vibrations were detected in all accelerometer locations for all 40 subjects, including 16 subjects without an audible S3. A substantial proportion of S3 energy was infrasonic (<20 Hz). Extending the signal bandwidth accordingly increased HS amplitudes and the ability of S3 to separate HF patients from the normal subgroup. HSTIs also separated the subgroups and were less susceptible to patient-dependent acoustic propagation properties than amplitude measures. HS, including S3 amplitude and HSTIs, may be measured using PG-embedded circuitry at implant sites without special purpose leads. Further study is warranted to determine if relative changes in heart sounds measurements can be effective in applications such as remote ambulatory monitoring of HF progression and the detection of the onset of HF decompensation. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.
Influence of Different Dentin Substrate (Caries-Affected, Caries-Infected, Sound) on Long-Term μTBS.
Costa, Ana Rosa; Garcia-Godoy, Franklin; Correr-Sobrinho, Lourenço; Naves, Lucas Zago; Raposo, Luís Henrique Araújo; Carvalho, Fabíola Galbiatti de; Sinhoreti, Mário Alexandre Coelho; Puppin-Rontani, Regina Maria
2017-01-01
The aim of this study was to evaluate the μTBS in different dentin substrates and water-storage periods. Twenty-four dentin blocks obtained from sound third molars were randomly divided into 3 groups: Sound dentin (Sd), Caries-affected dentin (Ca) and Caries-infected dentin (Ci). Dentin blocks from Ca and Ci groups were subjected to artificial caries development (S. mutans biofilm). The softest carious tissue was removed using spherical drills under visual inspection with Caries Detector solution (Ca group). It was considered as Ci (softer and deeply red stained dentin) and Ca (harder and slightly red stained dentin). The Adper Single Bond 2 adhesive system was applied and Z350 composite blocks were built in all groups. Teeth were stored in deionized water for 24 h at 37 ºC and sectioned into beams (1.0 mm2 section area). The beams from each tooth were randomly divided into three storages periods: 24 h, 6 months or 1 year. Specimens were submitted to µTBS using EZ test machine at a crosshead speed of 1.0 mm/min. Failure mode was examined by SEM. Data from µTBS were submitted to split plot two-way ANOVA and Tukey's HSD tests (a=0.05). The µTBS (MPa) of Sd (41.2) was significantly higher than Ca (32.4) and Ci (27.2), regardless of storage. Ca and Ci after 6 months and 1 year, presented similar µTBS. Mixed and adhesive failures predominated in all groups. The highest µTBS values (48.1±9.1) were found for Sd at 24 h storage. Storage of specimens decreased the µTBS values for all conditions.
NASA EVEX Experiment Launches from the Marshall Islands
2017-12-08
Red and white vapor clouds filled the skies over the Marshall Islands as part of NASA’s Equatorial Vortex Experiment (EVEX). The red cloud was formed by the release of lithium vapor and the white tracer clouds were formed by the release of trimethyl aluminum (TMA). These clouds allowed scientists on the ground from various locations in the Marshall Islands to observe the neutral winds in the ionosphere. Credit: NASA/Jon Grant --- The Equatorial Vortex Experiment (EVEX) was successfully conducted during the early morning hours (eastern time) May 7 from Roi Namur, Republic of the Marshall Islands. A NASA Terrier-Oriole sounding rocket was launched at 3:39 a.m. EDT and was followed by a launch of Terrier-Improved Malemute sounding rocket 90 seconds later. Preliminary indications are that both rockets released their vapor clouds of lithium or trimethyl aluminum, which were observed from various locations in the area, and all science instruments on the rockets worked as planned. More information on EVEX can be found at www.nasa.gov/mission_pages/sounding-rockets/news/evex.html These were the second and third rockets of four planned for launch during this year’s campaign in the Marshall Islands. The first and fourth rockets are supporting the Metal Oxide Space Cloud experiment (MOSC), which is studying radio frequency propagation. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Khaiwal, Ravindra; Singh, Tanbir; Tripathy, Jaya Prasad; Mor, Suman; Munjal, Sanjay; Patro, Binod; Panda, Naresh
2016-10-01
Noise pollution in hospitals is recognized as a serious health hazard. Considering this, the current study aimed to map the noise pollution levels and to explore the self reported non-auditory effects of noise in a tertiary medical institute. The study was conducted in an 1800-bedded tertiary hospital where 27 sites (outdoor, indoor, road side and residential areas) were monitored for exposure to noise using Sound Level Meter for 24h. A detailed noise survey was also conducted around the sampling sites using a structured questionnaire to understand the opinion of the public regarding the impact of noise on their daily lives. The equivalent sound pressure level (Leq) was found higher than the permissible limits at all the sites both during daytime and night. The maximum equivalent sound pressure level (Lmax) during the day was observed higher (>80dB) at the emergency and around the main entrance of the hospital campus. Almost all the respondents (97%) regarded traffic as the major source of noise. About three-fourths (74%) reported irritation with loud noise whereas 40% of respondents reported headache due to noise. Less than one-third of respondents (29%) reported loss of sleep due to noise and 8% reported hypertension, which could be related to the disturbance caused due to noise. Noise levels in and around the hospital was well above the permissible standards. The recent Global Burden of Disease highlights the increasing risk of non communicable diseases. The non-auditory effects studied in the current work add to the risk factors associated with non communicable diseases. Hence, there is need to address the issue of noise pollution and associated health risks specially for vulnerable population. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Bertholon, Pierre; Reynard, Pierre; Lelonge, Yann; Peyron, Roland; Vassal, François; Karkas, Alexandre
2018-02-01
Hearing of eyeball movements has been reported in superior semicircular canal dehiscence (SSCD), but not hearing of eyelid movements. Our main objective was to report the hearing of eyeball and/or eyelid movements in unilateral SSCD. Our secondary objective was to access its specificity to SSCD and discuss the underlying mechanism. Six patients with SSCD who could hear their eyeball and/or eyelid movements were retrospectively reviewed. With the aim of comparisons, eight patients with an enlarged vestibular aqueduct (EVA), who share the same mechanism of an abnormal third window, were questioned on their ability to hear their eyeball and/or eyelid movements. Three patients with SSCD could hear both their eyeball and eyelid movements as a soft low-pitch friction sound. Two patients with SSCD could hear only their eyelid movements, one of whom after the surgery of a traumatic chronic subdural hematoma. The latter remarked that every gently tapping on the skin covering the burr-hole was heard in his dehiscent ear as the sound produced when banging on a drum, in keeping with a direct transmission of the sound to the inner ear via the cerebrospinal fluid. One patient with SSCD, who could hear only his eyeball movements, had other disabling symptoms deserving operation through a middle fossa approach with an immediate relief of his symptoms. None of the eight patients with EVA could hear his/her eyeball or eyelid movements. Hearing of eyeball and/or eyelid movements is highly suggestive of a SSCD and do not seem to occur in EVA. In case of radiological SSCD, clinicians should search for hearing of eyeball and/or eyelid movements providing arguments for a symptomatic dehiscence. The underlying mechanism is discussed particularly the role of a cerebrospinal fluid transmission.
Modelling and mitigation of wheel squeal noise amplitude
NASA Astrophysics Data System (ADS)
Meehan, Paul A.; Liu, Xiaogang
2018-01-01
The prediction of vibration amplitude and sound pressure level of wheel squeal noise is investigated using a concise mathematical model that is verified with measurements from both a rolling contact two disk test rig and a field case study. The model is used to perform an energy-based analysis to determine a closed form solution to the steady state limit cycle amplitude of creep and vibration oscillations during squealing. The analytical solution compares well with a numerical solution using an experimentally tuned creep curve with full nonlinear shape. The predicted squeal sound level trend also compares well with that recorded at various crabbing velocities (proportional to angle of attack) for the test rig at different rolling speeds. In addition, further verification is performed against many field recordings of wheel squeal on a sharp curve of 300 m. A comparison with a simplified modified result from Rudd [1] is also provided and highlights the accuracy and advantages of the present efficient model. The analytical solution provides insight into why the sound pressure level of squeal noise increases with crabbing velocity (or angle of attack) as well as how the amplitude is affected by the critical squeal parameters including a detailed investigation of modal damping. Finally, the efficient model is used to perform a parametric investigation into means of achieving a 6 dB decrease in squeal noise. The results highlight the primary importance of crabbing velocity (and angle of attack) as well as the creep curve parameters that may be controlled using third body control (ie friction modifiers). The results concur with experimental and field observations and provide important theoretical insight into the useful mechanisms of mitigating wheel squeal and quantifying their relative merits.
Wu, Jingjing Sherry; Young, Eric D.
2016-01-01
Auditory nerve fibers (ANFs) exhibit a range of spontaneous firing rates (SRs) that are inversely correlated with threshold for sounds. To probe the underlying mechanisms and time course of SR differentiation during cochlear maturation, loose-patch extracellular recordings were made from ANF dendrites using acutely excised rat cochlear preparations of different ages after hearing onset. Diversification of SRs occurred mostly between the second and the third postnatal week. Statistical properties of ANF spike trains showed developmental changes that approach adult-like features in older preparations. Comparison with intracellularly recorded EPSCs revealed that most properties of ANF spike trains derive from the characteristics of presynaptic transmitter release. Pharmacological tests and waveform analysis showed that endogenous firing produces some fraction of ANF spikes, accounting for their unusual properties; the endogenous firing diminishes gradually during maturation. Paired recordings showed that ANFs contacting the same inner hair cell could have different SRs, with no correlation in their spike timing. SIGNIFICANCE STATEMENT The inner hair cell (IHC)/auditory nerve fiber (ANF) synapse is the first synapse of the auditory pathway. Remarkably, each IHC is the sole partner of 10–30 ANFs with a range of spontaneous firing rates (SRs). Low and high SR ANFs respond to sound differently, and both are important for encoding sound information across varying acoustical environments. Here we demonstrate SR diversification after hearing onset by afferent recordings in acutely excised rat cochlear preparations. We describe developmental changes in spike train statistics and endogenous firing in immature ANFs. Dual afferent recordings provide the first direct evidence that fibers with different SRs contact the same IHCs and do not show correlated spike timing at rest. These results lay the groundwork for understanding the differential sensitivity of ANFs to acoustic trauma. PMID:27733610
The measurement of the transmission loss of single leaf walls and panels by an impulse method
NASA Astrophysics Data System (ADS)
Balilah, Y. A.; Gibbs, B. M.
1988-06-01
The standard methods of measurement and rating of sound insulation of panels and walls are generally time-consuming and require expensive and often bulky equipment. In addition, the methods establish only that there has been failure to comply with insulation requirements without indicating the mode of failure. An impulse technique is proposed for the measurement of walls and partitions in situ. The method requires the digital capture of a short duration signal generated by a loudspeaker, and the isolation of the direct component from other reflected and scattered components by time-of-flight methods and windowing. The signal, when transferred from the time to frequency domain by means of fast Fourier transforms, can yield the sound insulation of a partition expressed as a transfer function. Experimental problems in the use of this technique, including those resulting from sphericity of the incident wave front and concentric bending excitation of the partition, are identified and methods proposed for their elimination. Most of the results presented are of single leaf panels subjected to sound at normal incidence, although some measurements were undertaken at oblique incidence. The range of surface densities considered was 7-500 kg/m 2, the highest value corresponding to a brick and plaster wall of thickness 285 mm. Measurement is compared with theoretical prediction, at one-third octave intervals in a frequency range of 100-5000 Hz, or as a continuous function of frequency with a typical resolution of 12·5 Hz. The dynamic range of the measurement equipment sets an upper limit to the measurable transmission loss. For the equipment eventually employed this was represented by a random incidence value of 50 dB.
Bromberg, Carolina Ritter; Alves, Caroline Beatriz; Stona, Deborah; Spohr, Ana Maria; Rodrigues-Junior, Sinval Adalberto; Melara, Rafael; Burnett, Luiz Henrique
2016-12-01
Because of the many possibilities for endodontically restoring the posterior teeth and the high prevalence of restoration failures, this topic continues to be of major concern. A composite resin (CR) restoration reinforced by a horizontal fiberglass post may improve the fracture resistance of endodontically treated teeth. The authors investigated this possibility by comparing the fracture resistance of molars restored with direct techniques with that of molars restored with indirect techniques. The authors divided 50 extracted sound third molars into 5 groups: sound teeth, onlay (ON), inlay (IN), direct CR, and transfixed fiberglass post (TFP) plus direct CR. The authors performed standardized mesio-occlusodistal cavity preparations and endodontic treatments. The authors cemented indirect restorations of Lava Ultimate (3M ESPE) adhesively in the ON and IN groups. The authors restored CR group teeth directly with Filtek Z230 XT (3M ESPE). In the TFP group, the authors transfixed 2 fiberglass posts horizontally and restored the teeth directly with CR. Thereafter, the authors submitted the teeth to cyclic fatigue loading with 500,000 cycles at 200 newtons. The authors tested fracture resistance in newtons in a universal testing machine. The authors analyzed data with 1-way analysis of variance and a Tukey test (P < .05). Sound teeth had the highest fracture resistance. ON had the highest recovery of resistance, followed by TFP. CR had the lowest recovery, which was similar to that of IN. Endodontically treated molars restored with TFP plus CR had fracture resistance similar to those restored with ON, which was higher than that for IN or CR only. Horizontal TFPs placed inside a composite restoration had the same performance as did ON restorations. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Hambric, Stephen A.; Hanford, Amanda D.; Shepherd, Micah R.; Campbell, Robert L.; Smith, Edward C.
2010-01-01
A computational approach for simulating the effects of rolling element and journal bearings on the vibration and sound transmission through gearboxes has been demonstrated. The approach, using ARL/Penn State s CHAMP methodology, uses Component Mode Synthesis of housing and shafting modes computed using Finite Element (FE) models to allow for rapid adjustment of bearing impedances in gearbox models. The approach has been demonstrated on NASA GRC s test gearbox with three different bearing configurations: in the first condition, traditional rolling element (ball and roller) bearings were installed, and in the second and third conditions, the traditional bearings were replaced with journal and wave bearings (wave bearings are journal bearings with a multi-lobed wave pattern on the bearing surface). A methodology for computing the stiffnesses and damping in journal and wave bearings has been presented, and demonstrated for the journal and wave bearings used in the NASA GRC test gearbox. The FE model of the gearbox, along with the rolling element bearing coupling impedances, was analyzed to compute dynamic transfer functions between forces applied to the meshing gears and accelerations on the gearbox housing, including several locations near the bearings. A Boundary Element (BE) acoustic model was used to compute the sound radiated by the gearbox. Measurements of the Gear Mesh Frequency (GMF) tones were made by NASA GRC at several operational speeds for the rolling element and journal bearing gearbox configurations. Both the measurements and the CHAMP numerical model indicate that the journal bearings reduce vibration and noise for the second harmonic of the gear meshing tones, but show no clear benefit to using journal bearings to reduce the amplitudes of the fundamental gear meshing tones. Also, the numerical model shows that the gearbox vibrations and radiated sound are similar for journal and wave bearing configurations.
Pulpal status of human primary teeth with physiological root resorption.
Monteiro, Joana; Day, Peter; Duggal, Monty; Morgan, Claire; Rodd, Helen
2009-01-01
The overall aim of this study was to determine whether any changes occur in the pulpal structure of human primary teeth in association with physiological root resorption. The experimental material comprised 64 sound primary molars, obtained from children requiring routine dental extractions under general anaesthesia. Pulp sections were processed for indirect immunofluorescence using combinations of: (i) protein gene product 9.5 (a general neuronal marker); (ii) leucocyte common antigen CD45 (a general immune cell marker); and (iii) Ulex europaeus I lectin (a marker of vascular endothelium). Image analysis was then used to determine the percentage area of staining for each label within both the pulp horn and mid-coronal region. Following measurement of the greatest degree of root resorption in each sample, teeth were subdivided into three groups: those with physiological resorption involving less than one-third, one-third to two-thirds, and more than two-thirds of their root length. Wide variation was evident between different tooth samples with some resorbed teeth showing marked changes in pulpal histology. Decreased innervation density, increased immune cell accumulation, and increased vascularity were evident in some teeth with advanced root resorption. Analysis of pooled data, however, did not reveal any significant differences in mean percentage area of staining for any of these variables according to the three root resorption subgroups (P > 0.05, analysis of variance on transformed data). This investigation has revealed some changes in pulpal status of human primary teeth with physiological root resorption. These were not, however, as profound as one may have anticipated. It is therefore speculated that teeth could retain the potential for sensation, healing, and repair until advanced stages of root resorption.
Flow-cytometric determination of genotoxic effects of exposure to petroleum in mink and sea otters
Bickham, J.W.; Mazet, J.A.; Blake, J.; Smolen, M.J.; Lou, Y.; Ballachey, Brenda E.
1998-01-01
Three experiments were conducted to investigate the genotoxic effects of crude oil on mink and sea otters, In the first experiment, the effects on mink of chronic exposure to weathered Prudhoe Bay crude oil were studied, Female mink were fed a diet that included weathered crude oil for a period of 3 weeks prior to mating, during pregnancy and until weaning. Kits were exposed through lactation and by diet after weaning until 4 months of age. Kidney and liver tissues of the kits were examined using flow cytometry (FCM) and it was found that the genome size was increased in kidney samples from the experimental group compared to the control group. This effect was probably due to some type of DNA amplification and it could have been inherited from the exposed mothers or have been a somatic response to oil exposure in the pups, No evidence of clastogenic effects, as measured by the coefficient of variation (CV) of the G(1) peak, was found in kidney or liver tissue. In the second experiment, yearling female mink were exposed either by diet or externally to crude oil or bunker C fuel oil. Evidence for clastogenic damage was found in spleen tissue for the exposure groups, but not in kidney tissue. No evidence of increased genome size was observed. In the third experiment, blood was obtained from wild-caught sea otters in Prince William Sound. The sea otters represented two populations: one from western Prince William Sound that was potentially exposed to oil from the Exxon Valdez oil spill and a reference population from eastern Prince William Sound that did not receive oil from the spill. The spill had occurred 1.5 years prior to obtaining the blood samples. Although the mean CVs did not differ between the populations, the exposed population had a significantly higher variance of CV measurements and five out of 15 animals from the exposed population had CVs higher than the 95% confidence limits of the reference population, It is concluded that FCM is a sensitive indicator of the clastogenic effects of oil exposure and that haematopoietic tissues and blood are best for detecting clastogenic damage. Moreover, the observed differences in the genome size of the kidney cells mere possibly heritable effects, but this needs further investigation. Lastly, sea otters exposed to spilled oil 1.5 years earlier showed evidence of clastogenic damage in one-third of the individuals sampled.
Clinical Investigation and Mechanism of Air-Bone Gaps in LargeVestibular Aqueduct Syndrome
Merchant, Saumil N.; Nakajima, Hideko H.; Halpin, Christopher; Nadol, Joseph B.; Lee, Daniel J.; Innis, William P.; Curtin, Hugh; Rosowski, John J.
2008-01-01
Objectives Patients with large vestibular aqueduct syndrome (LVAS) often demonstrate an air-bone gap at the low frequencies on audiometric testing. The mechanism causing such a gap has not been well elucidated. We investigated middle ear sound transmission in patients with LVAS, and present a hypothesis to explain the air-bone gap. Methods Observations were made on 8 ears from 5 individuals with LVAS. The diagnosis of LVAS was made by computed tomography in all cases. Investigations included standard audiometry and measurements of umbo velocity by laser Doppler vibrometry (LDV) in all cases, as well as tympanometry, acoustic reflex testing, vestibular evoked myogenic potential (VEMP) testing, distortion product otoacoustic emission (DPOAE) testing, and middle ear exploration in some ears. Results One ear with LVAS had anacusis. The other 7 ears demonstrated air-bone gaps at the low frequencies, with mean gaps of 51 dB at 250 Hz, 31 dB at 500 Hz, and 12 dB at 1,000 Hz. In these 7 ears with air-bone gaps, LDV showed the umbo velocity to be normal or high normal in all 7; tympanometry was normal in all 6 ears tested; acoustic reflexes were present in 3 of the 4 ears tested; VEMP responses were present in all 3 ears tested; DPOAEs were present in 1 of the 2 ears tested, and exploratory tympanotomy in 1 case showed a normal middle ear. The above data suggest that an air-bone gap in LVAS is not due to disease in the middle ear. The data are consistent with the hypothesis that a large vestibular aqueduct introduces a third mobile window into the inner ear, which can produce an air-bone gap by 1) shunting air-conducted sound away from the cochlea, thus elevating air conduction thresholds, and 2) increasing the difference in impedance between the scala vestibuli side and the scala tympani side of the cochlear partition during bone conduction testing, thus improving thresholds for bone-conducted sound. Conclusions We conclude that LVAS can present with an air-bone gap that can mimic middle ear disease. Diagnostic testing using acoustic reflexes, VEMPs, DPOAEs, and LDV can help to identify a non–middle ear source for such a gap, thereby avoiding negative middle ear exploration. A large vestibular aqueduct may act as a third mobile window in the inner ear, resulting in an air-bone gap at low frequencies. PMID:17727085
Case, J.E.; Barnes, D.F.; Plafker, George; Robbins, S.L.
1966-01-01
Sedimentary and volcanic rocks of Mesozoic and early Tertiary age form a roughly arcuate pattern in and around Prince William Sound, the epicentral region of the Alaska earthquake of 1964. These rocks include the Valdez Group, a predominantly slate and graywacke sequence of Jurassic and Cretaceous age, and the Orca Group, a younger sequence of early Tertiary age. The Orca consists of a lower unit of dense-average 2.87 g per cm3 (grams per cubic centimeter) pillow basalt and greenstone intercalated with sedimentary rocks and an upper unit of lithologically variable sandstone interbedded with siltstone or argillite. Densities of the clastic rocks in both the Valdez and Orca Groups average about 2.69 g per cm3. Granitic rocks of relatively low density (2.62 g per cm3) cut the Valdez and Orca Groups at several localities. Both the Valdez and the Orca Groups were complexly folded and extensively faulted during at least three major episodes of deformation: an early period of Cretaceous or early Tertiary orogeny, a second orogeny that probably culminated in late Eocene or early Oligocene time and was accompanied or closely followed by emplacement of granitic batholiths, and a third episode of deformation that began in late Cenozoic time and continued intermittently to the present. About 500 gravity stations were established in the Prince William Sound region in conjunction with postearthquake geologic investigations. Simple Bouguer anomaly contours trend approximately parallel to the arcuate geologic structure around the sound. Bouguer anomalies decrease northward from +40 mgal (milligals) at the southwestern end of Montague Island to -70 mgal at College and Harriman Fiords. Most of this change may be interpreted as a regional gradient caused by thickening of the continental crust. Superimposed on the gradient is a prominent gravity high of as much as 65 mgal that extends from Elrington Island on the southwest, across Knight and Glacier Islands to the Ellamar Peninsula and Valdez on the northeast. This high coincides with the wide belt of greenstone and pillow basalt of the Orca Group and largely reflects the high density of these volcanic rocks. A large low in the east-central part of the sound is inferred to have a composite origin, and results from the combined effects of low-density sedimentary and granitic rocks. The Prince William Sound gravity high extends southwest-northeast without major horizontal offset for more than 100 miles. Thus the belt of volcanic rocks causing the high constitutes a major virtually continuous, geologic element of south-central Alaska.
Vocal Age Disguise: The Role of Fundamental Frequency and Speech Rate and Its Perceived Effects.
Skoog Waller, Sara; Eriksson, Mårten
2016-01-01
The relationship between vocal characteristics and perceived age is of interest in various contexts, as is the possibility to affect age perception through vocal manipulation. A few examples of such situations are when age is staged by actors, when ear witnesses make age assessments based on vocal cues only or when offenders (e.g., online groomers) disguise their voice to appear younger or older. This paper investigates how speakers spontaneously manipulate two age related vocal characteristics ( f 0 and speech rate) in attempt to sound younger versus older than their true age, and if the manipulations correspond to actual age related changes in f 0 and speech rate (Study 1). Further aims of the paper is to determine how successful vocal age disguise is by asking listeners to estimate the age of generated speech samples (Study 2) and to examine whether or not listeners use f 0 and speech rate as cues to perceived age. In Study 1, participants from three age groups (20-25, 40-45, and 60-65 years) agreed to read a short text under three voice conditions. There were 12 speakers in each age group (six women and six men). They used their natural voice in one condition, attempted to sound 20 years younger in another and 20 years older in a third condition. In Study 2, 60 participants (listeners) listened to speech samples from the three voice conditions in Study 1 and estimated the speakers' age. Each listener was exposed to all three voice conditions. The results from Study 1 indicated that the speakers increased fundamental frequency ( f 0 ) and speech rate when attempting to sound younger and decreased f 0 and speech rate when attempting to sound older. Study 2 showed that the voice manipulations had an effect in the sought-after direction, although the achieved mean effect was only 3 years, which is far less than the intended effect of 20 years. Moreover, listeners used speech rate, but not f 0 , as a cue to speaker age. It was concluded that age disguise by voice can be achieved by naïve speakers even though the perceived effect was smaller than intended.
NASA Astrophysics Data System (ADS)
Goad, Pamela Joy
The fusion of musical voices is an important aspect of musical blend, or the mixing of individual sounds. Yet, little research has been done to explicitly determine the factors involved in fusion. In this study, the similarity of timbre and modulation were examined for their contribution to the fusion of sounds. It is hypothesized that similar timbres will fuse better than dissimilar timbres, and, voices with the same kind of modulation will fuse better than voices of different modulations. A perceptually-based measure, known as sharpness was investigated as a measure of timbre. The advantages of using sharpness are that it is based on hearing sensitivities and masking phenomena of inner ear processing. Five musical instrument families were digitally recorded in performances across a typical playing range at two extreme dynamic levels. Analyses reveal that sharpness is capable of uncovering subtle changes in timbre including those found in musical dynamics, instrument design, and performer-specific variations. While these analyses alone are insufficient to address fusion, preliminary calculations of timbral combinations indicate that sharpness has the potential to predict the fusion of sounds used in musical composition. Three experiments investigated the effects of modulation on the fusion of a harmonic major sixth interval. In the first experiment using frequency modulation, stimuli varied in deviation about a mean fundamental frequency and relative modulation phase between the two tones. Results showed smaller frequency deviations promoted fusion and relative phase differences had a minimal effect. In a second experiment using amplitude modulation, stimuli varied in deviation about a mean amplitude level and relative phase of modulation. Results showed smaller amplitude deviations promoted better fusion, but unlike frequency modulation, relative phase differences were also important. In a third experiment, frequency modulation, amplitude modulation and mixed modulation were arranged in all possible voicings. Results showed frequency modulation in the lower voice and less variance in amplitude envelopes contributed to an increase in fusion. The theory that similar modulations would promote better fusion was only marginally supported. For these experiments, results revealed differences depending on modulation type and that a lesser amount of modulation fosters greater fusion.
Blocking the spread of nuclear weapons. American and European perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, G.C.; Holst, J.J.
1986-01-01
This volume is the product of separate but parallel studies undertaken by two panels of experts-one from the United States, the other from Western Europe-on new approaches to preventing the proliferation of nuclear weapons to additional countries. Neither panel sounded a doomsday alarm; each concluded that the chances for controlling proliferation lie in good part on building on the sound foundation of existing policies and institutional structures. Among the other conclusions derived from the parallel studies: The threat of nuclear proliferation is a specific, definable danger in a limited number of countries. The incentives that appear to make nuclear weaponsmore » an interesting option to some states must be understood, and potential proliferators must be persuaded that their acquisition will not lead to national security. Effective persuasion is more likely to come from non-nuclear weapon nations. Europe and the United States must collaborate in engaging such third-party persuaders in this endeavor. The panels' intensive examination of the six states of greatest near-term concern leads to the conclusion that the uneasy status quo will probably prevail for the next several years, yet these are volatile situations. The nature of the threat demands an extraordinary degree of international collaboration.« less
Music Influences Hedonic and Taste Ratings in Beer
Reinoso Carvalho, Felipe; Velasco, Carlos; van Ee, Raymond; Leboeuf, Yves; Spence, Charles
2016-01-01
The research presented here focuses on the influence of background music on the beer-tasting experience. An experiment is reported in which different groups of customers tasted a beer under three different conditions (N = 231). The control group was presented with an unlabeled beer, the second group with a labeled beer, and the third group with a labeled beer together with a customized sonic cue (a short clip from an existing song). In general, the beer-tasting experience was rated as more enjoyable with music than when the tasting was conducted in silence. In particular, those who were familiar with the band that had composed the song, liked the beer more after having tasted it while listening to the song, than those who knew the band, but only saw the label while tasting. These results support the idea that customized sound-tasting experiences can complement the process of developing novel beverage (and presumably also food) events. We suggest that involving musicians and researchers alongside brewers in the process of beer development, offers an interesting model for future development. Finally, we discuss the role of attention in sound-tasting experiences, and the importance that a positive hedonic reaction toward a song can have for the ensuing tasting experience. PMID:27199862
Li, Qi; Yu, Hongtao; Wu, Yan; Gao, Ning
2016-08-26
The integration of multiple sensory inputs is essential for perception of the external world. The spatial factor is a fundamental property of multisensory audiovisual integration. Previous studies of the spatial constraints on bimodal audiovisual integration have mainly focused on the spatial congruity of audiovisual information. However, the effect of spatial reliability within audiovisual information on bimodal audiovisual integration remains unclear. In this study, we used event-related potentials (ERPs) to examine the effect of spatial reliability of task-irrelevant sounds on audiovisual integration. Three relevant ERP components emerged: the first at 140-200ms over a wide central area, the second at 280-320ms over the fronto-central area, and a third at 380-440ms over the parieto-occipital area. Our results demonstrate that ERP amplitudes elicited by audiovisual stimuli with reliable spatial relationships are larger than those elicited by stimuli with inconsistent spatial relationships. In addition, we hypothesized that spatial reliability within an audiovisual stimulus enhances feedback projections to the primary visual cortex from multisensory integration regions. Overall, our findings suggest that the spatial linking of visual and auditory information depends on spatial reliability within an audiovisual stimulus and occurs at a relatively late stage of processing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Analysis of EEG activity in response to binaural beats with different frequencies.
Gao, Xiang; Cao, Hongbao; Ming, Dong; Qi, Hongzhi; Wang, Xuemin; Wang, Xiaolu; Chen, Runge; Zhou, Peng
2014-12-01
When two coherent sounds with nearly similar frequencies are presented to each ear respectively with stereo headphones, the brain integrates the two signals and produces a sensation of a third sound called binaural beat (BB). Although earlier studies showed that BB could influence behavior and cognition, common agreement on the mechanism of BB has not been reached yet. In this work, we employed Relative Power (RP), Phase Locking Value (PLV) and Cross-Mutual Information (CMI) to track EEG changes during BB stimulations. EEG signals were acquired from 13 healthy subjects. Five-minute BBs with four different frequencies were tested: delta band (1 Hz), theta band (5 Hz), alpha band (10 Hz) and beta band (20 Hz). We observed RP increase in theta and alpha bands and decrease in beta band during delta and alpha BB stimulations. RP decreased in beta band during theta BB, while RP decreased in theta band during beta BB. However, no clear brainwave entrainment effect was identified. Connectivity changes were detected following the variation of RP during BB stimulations. Our observation supports the hypothesis that BBs could affect functional brain connectivity, suggesting that the mechanism of BB-brain interaction is worth further study. Copyright © 2014. Published by Elsevier B.V.
Use of an ultrasonic device for the determination of elastic modulus of dentin.
Miyazaki, Masashi; Inage, Hirohiko; Onose, Hideo
2002-03-01
The mechanical properties of dentin substrate are one of the important factors in determining bond strength of dentin bonding systems. The purpose of this study was to determine the elastic modulus of dentin substrate with the use of an ultrasonic device. The dentin disks of about 1 mm thickness were obtaining from freshly extracted human third molars, and the dentin disk was shaped in a rectangular form with a line diamond point. The size and weight of each specimen was measured to calculate the density of the specimen. The ultrasonic equipment employed in this study was composed of a Pulser-Receiver (Model 5900PR, Panametrics), transducers (V155, V156, Panametrics) and an oscilloscope. The measured two-way transit time through the dentin disk was divided by two to account for the down-and-back travel path, and then multiplied by the velocity of sound in the test material. Measuring the longitudinal and share wave sound velocity determine elastic modulus. The mean elastic modulus of horizontally sectioned specimens was 21.8 GPa and 18.5 GPa for the vertically sectioned specimens, and a significant difference was found between the two groups. The ultrasonic method used in this study shows considerable promise for determination of the elastic modulus of the tooth substrate.
Braat-Eggen, P Ella; van Heijst, Anne; Hornikx, Maarten; Kohlrausch, Armin
2017-09-01
The aim of this study is to gain more insight in the assessment of noise in open-plan study environments and to reveal correlations between noise disturbance experienced by students and the noise sources they perceive, the tasks they perform and the acoustic parameters of the open-plan study environment they work in. Data were collected in five open-plan study environments at universities in the Netherlands. A questionnaire was used to investigate student tasks, perceived sound sources and their perceived disturbance, and sound measurements were performed to determine the room acoustic parameters. This study shows that 38% of the surveyed students are disturbed by background noise in an open-plan study environment. Students are mostly disturbed by speech when performing complex cognitive tasks like studying for an exam, reading and writing. Significant but weak correlations were found between the room acoustic parameters and noise disturbance of students. Practitioner Summary: A field study was conducted to gain more insight in the assessment of noise in open-plan study environments at universities in the Netherlands. More than one third of the students was disturbed by noise. An interaction effect was found for task type, source type and room acoustic parameters.
NASA Astrophysics Data System (ADS)
Rutherford, John; Micro-X Collaboration
2011-09-01
The first operating set of transition edge sensors (TES) microcalorimeters in space will launch on a sounding rocket carrying the Micro-X imaging X-ray telescope in 2012. We present the final instrument flight design, as well as the results from initial performance tests. A spectral resolution of 2 eV is targeted across the science band of 0.3-2.5 keV. The 12x12 spectrometer array contains 128 active pixels on a 600 micron pitch, consisting of Au/Bi absorbers and Mo/Au bilayer TESs with a transition temperature of 100 mK. A SQUID time-division multiplexer will read out the array at 30 kHz, which is limited by the rocket telemetry. The TESs have been engineered with a 2 ms time constant to match the multiplexer. The detector array and two SQUID stages of the TDM readout system are accommodated in a lightweight Mg enclosure, which is mounted to the 50 mK stage of an adiabatic demagnetization refrigerator. A third SQUID amplification stage is located on the 1.6 K liquid He stage of the cryostat. An on-board 55-Fe source will fluoresce a Ca target, providing 3.7 and 4.0 keV calibration lines that will not interfere with the scientifically interesting energy band.
Välimäki, Vesa; Pekonen, Jussi; Nam, Juhan
2012-01-01
Digital subtractive synthesis is a popular music synthesis method, which requires oscillators that are aliasing-free in a perceptual sense. It is a research challenge to find computationally efficient waveform generation algorithms that produce similar-sounding signals to analog music synthesizers but which are free from audible aliasing. A technique for approximately bandlimited waveform generation is considered that is based on a polynomial correction function, which is defined as the difference of a non-bandlimited step function and a polynomial approximation of the ideal bandlimited step function. It is shown that the ideal bandlimited step function is equivalent to the sine integral, and that integrated polynomial interpolation methods can successfully approximate it. Integrated Lagrange interpolation and B-spline basis functions are considered for polynomial approximation. The polynomial correction function can be added onto samples around each discontinuity in a non-bandlimited waveform to suppress aliasing. Comparison against previously known methods shows that the proposed technique yields the best tradeoff between computational cost and sound quality. The superior method amongst those considered in this study is the integrated third-order B-spline correction function, which offers perceptually aliasing-free sawtooth emulation up to the fundamental frequency of 7.8 kHz at the sample rate of 44.1 kHz. © 2012 Acoustical Society of America.
Comparison of acoustic therapies for tinnitus suppression: a preliminary trial.
Schad, Maggie L; McMillan, Garnett P; Thielman, Emily J; Groon, Katherine; Morse-Fortier, Charlotte; Martin, Jennifer L; Henry, James A
2018-02-01
This study obtained preliminary data using two types of sound therapy to suppress tinnitus and/or reduce its functional effects: (1) Notched noise (1000-12,000 Hz notched within a 1-octave range centred around the tinnitus pitch match [PM] frequency); and (2) Matched noise (1-octave wide band of noise centred around the PM frequency). A third (Placebo) group listened to low frequency noise (250-700 Hz). Participants with bothersome tinnitus were randomised into one of the three groups and instructed to listen to the acoustic stimulus for 6 hours a day for 2 weeks. Stimuli were delivered using an iPod Nano, and tinnitus counselling was not performed. Outcome measures were recorded at the 0, 2 and 4 week study visits. Thirty participants with constant and bothersome tinnitus were recruited and randomised. All groups showed, on average, overall improvement, both immediately post-treatment and 2 weeks following treatment. Outcomes varied between groups on the different measures and at the two outcome points. This study showed improvement for all of the groups, lending support to the premise that any type of sound stimulation is beneficial for relieving effects of tinnitus. These results may serve as a preliminary evidence for a larger study.
Effectiveness of the Brazilian version of the Dangerous Decibels(®) educational program.
Knobel, Keila A Baraldi; Lima, Maria Cecília Pinheiro Marconi
2014-03-01
To evaluate the effectiveness of a Brazilian version of the Dangerous Decibels(®) educational program in increasing students' knowledge and positively changing their attitudes and intended behaviors related to NIHL prevention and to decrease exposures to loud sounds and the barriers related to hearing protective strategies (HPS). This is a prospective longitudinal controlled study. Third to fifth graders (n = 220) filled out a baseline questionnaire; participated in a 60 minutes Dangerous Decibels(®) classroom presentation; answered a follow-up questionnaire immediately after the presentation; worked with their teachers on an activity booklet about hearing health ten weeks later; and filled out a three-months follow-up questionnaire. Students that did not receive health hearing education served as a control group (n = 51). A mixed analysis of variance was performed, with time as the within-subjects independent variable, and the intervention as the between-subjects independent variable. The study group exhibited significant short- and long-term improvements in knowledge, attitudes, and intended behavior related to NIHL and acoustic trauma prevention, and in decreased exposures to loud sounds and barriers to the use of hearing protective strategies. This study demonstrated the effectiveness of a Brazilian version of the Dangerous Decibels classroom program with an additional supplementary workbook intervention.
Shuttle/TDRSS Ku-band downlink study
NASA Technical Reports Server (NTRS)
Meyer, R.
1976-01-01
Assessing the adequacy of the baseline signal design approach, developing performance specifications for the return link hardware, and performing detailed design and parameter optimization tasks was accomplished by completing five specific study tasks. The results of these tasks show that the basic signal structure design is sound and that the goals can be met. Constraints placed on return link hardware by this structure allow reasonable specifications to be written so that no extreme technical risk areas in equipment design are foreseen. A third channel can be added to the PM mode without seriously degrading the other services. The feasibility of using only a PM mode was shown to exist, however, this will require use of some digital TV transmission techniques. Each task and its results are summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K.; Petersson, N. A.; Rodgers, A.
Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examplesmore » and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.« less
Discovery of Sound in the Sea (DOSITS) Website Development
2013-03-04
life affect ocean sound levels? • Science of Sound > Sounds in the Sea > How will ocean acidification affect ocean sound levels? • Science of Sound...Science of Sound > Sounds in the Sea > How does shipping affect ocean sound levels? • Science of Sound > Sounds in the Sea > How does marine
Recognition and characterization of unstructured environmental sounds
NASA Astrophysics Data System (ADS)
Chu, Selina
2011-12-01
Environmental sounds are what we hear everyday, or more generally sounds that surround us ambient or background audio. Humans utilize both vision and hearing to respond to their surroundings, a capability still quite limited in machine processing. The first step toward achieving multimodal input applications is the ability to process unstructured audio and recognize audio scenes (or environments). Such ability would have applications in content analysis and mining of multimedia data or improving robustness in context aware applications through multi-modality, such as in assistive robotics, surveillances, or mobile device-based services. The goal of this thesis is on the characterization of unstructured environmental sounds for understanding and predicting the context surrounding of an agent or device. Most research on audio recognition has focused primarily on speech and music. Less attention has been paid to the challenges and opportunities for using audio to characterize unstructured audio. My research focuses on investigating challenging issues in characterizing unstructured environmental audio and to develop novel algorithms for modeling the variations of the environment. The first step in building a recognition system for unstructured auditory environment was to investigate on techniques and audio features for working with such audio data. We begin by performing a study that explore suitable features and the feasibility of designing an automatic environment recognition system using audio information. In my initial investigation to explore the feasibility of designing an automatic environment recognition system using audio information, I have found that traditional recognition and feature extraction for audio were not suitable for environmental sound, as they lack any type of structures, unlike those of speech and music which contain formantic and harmonic structures, thus dispelling the notion that traditional speech and music recognition techniques can simply be used for realistic environmental sound. Natural unstructured environment sounds contain a large variety of sounds, which are in fact noise-like and are not effectively modeled by Mel-frequency cepstral coefficients (MFCCs) or other commonly-used audio features, e.g. energy, zero-crossing, etc. Due to the lack of appropriate features that is suitable for environmental audio and to achieve a more effective representation, I proposed a specialized feature extraction algorithm for environmental sounds that utilizes the matching pursuit (MP) algorithm to learn the inherent structure of each type of sounds, which we called MP-features. MP-features have shown to capture and represent sounds from different sources and different ranges, where frequency domain features (e.g., MFCCs) fail and can be advantageous when combining with MFCCs to improve the overall performance. The third component leads to our investigation on modeling and detecting the background audio. One of the goals of this research is to characterize an environment. Since many events would blend into the background, I wanted to look for a way to achieve a general model for any particular environment. Once we have an idea of the background, it will enable us to identify foreground events even if we havent seen these events before. Therefore, the next step is to investigate into learning the audio background model for each environment type, despite the occurrences of different foreground events. In this work, I presented a framework for robust audio background modeling, which includes learning the models for prediction, data knowledge and persistent characteristics of the environment. This approach has the ability to model the background and detect foreground events as well as the ability to verify whether the predicted background is indeed the background or a foreground event that protracts for a longer period of time. In this work, I also investigated the use of a semi-supervised learning technique to exploit and label new unlabeled audio data. The final components of my thesis will involve investigating on learning sound structures for generalization and applying the proposed ideas to context aware applications. The inherent nature of environmental sound is noisy and contains relatively large amounts of overlapping events between different environments. Environmental sounds contain large variances even within a single environment type, and frequently, there are no divisible or clear boundaries between some types. Traditional methods of classification are generally not robust enough to handle classes with overlaps. This audio, hence, requires representation by complex models. Using deep learning architecture provides a way to obtain a generative model-based method for classification. Specifically, I considered the use of Deep Belief Networks (DBNs) to model environmental audio and investigate its applicability with noisy data to improve robustness and generalization. A framework was proposed using composite-DBNs to discover high-level representations and to learn a hierarchical structure for different acoustic environments in a data-driven fashion. Experimental results on real data sets demonstrate its effectiveness over traditional methods with over 90% accuracy on recognition for a high number of environmental sound types.
2009-01-01
ABSTRACT Background A group of experts attending a tripartite interregional meeting on best practices in HIV/AIDS workplace policies and programmes organised by the International Labour Organisation (ILO) in Geneva, Switzerland, identified 34 best practice workplace HIV programmes from across the world. Method The ten criteria that were used for reviewing best practice workplace HIV/AIDS programmes in South Africa include acceptability, accessibility, ethical soundness, perceived impact, relevance, appropriateness, innovativeness, efficiency, sustainability and replicability. Results More than one-third (35.3%) of the 34 best practice workplace interventions identified were found in businesses and industries in South Africa. This constitutes a significant and encouraging effort to deal with HIV/AIDS in the workplace. Approximately 16.7% of the best practice workplace HIV/AIDS interventions focused on policy and legal frameworks, 50% of these interventions focused on prevention, 16.7% provided links beyond the workplace and a further 16.7% were interventions that focused on knowledge and evidence. A third (33.3%) of practices were found in the mining industry, 16.7% in the motor industry, 16.7% from workers’ unions, and the rest (33.3%) were found in a sugar company, an electricity supply company, a pharmaceutical company and the ministry of Public Service and Administration. Conclusion It is encouraging that over one-third of all best practice workplace HIV interventions identified by the ILO experts were found in South Africa. The majority of these policies and programmes were focused on HIV prevention.
Modelling conservation in the Amazon basin.
Soares-Filho, Britaldo Silveira; Nepstad, Daniel Curtis; Curran, Lisa M; Cerqueira, Gustavo Coutinho; Garcia, Ricardo Alexandrino; Ramos, Claudia Azevedo; Voll, Eliane; McDonald, Alice; Lefebvre, Paul; Schlesinger, Peter
2006-03-23
Expansion of the cattle and soy industries in the Amazon basin has increased deforestation rates and will soon push all-weather highways into the region's core. In the face of this growing pressure, a comprehensive conservation strategy for the Amazon basin should protect its watersheds, the full range of species and ecosystem diversity, and the stability of regional climates. Here we report that protected areas in the Amazon basin--the central feature of prevailing conservation approaches--are an important but insufficient component of this strategy, based on policy-sensitive simulations of future deforestation. By 2050, current trends in agricultural expansion will eliminate a total of 40% of Amazon forests, including at least two-thirds of the forest cover of six major watersheds and 12 ecoregions, releasing 32 +/- 8 Pg of carbon to the atmosphere. One-quarter of the 382 mammalian species examined will lose more than 40% of the forest within their Amazon ranges. Although an expanded and enforced network of protected areas could avoid as much as one-third of this projected forest loss, conservation on private lands is also essential. Expanding market pressures for sound land management and prevention of forest clearing on lands unsuitable for agriculture are critical ingredients of a strategy for comprehensive conservation.
Soundscape Ecology of Hawaiian Spinner Dolphin Resting Bays
NASA Astrophysics Data System (ADS)
Heenehan, Heather Leigh
Sound is a key sensory modality for Hawaiian spinner dolphins. Like many other marine animals, these dolphins rely on sound and their acoustic environment for many aspects of their daily lives, making it is essential to understand soundscape in areas that are critical to their survival. Hawaiian spinner dolphins rest during the day in shallow coastal areas and forage offshore at night. In my dissertation I focus on the soundscape of the bays where Hawaiian spinner dolphins rest taking a soundscape ecology approach. I primarily relied on passive acoustic monitoring using four DSG-Ocean acoustic loggers in four Hawaiian spinner dolphin resting bays on the Kona Coast of Hawai'i Island. 30-second recordings were made every four minutes in each of the bays for 20 to 27 months between January 8, 2011 and March 30, 2013. I also utilized concomitant vessel-based visual surveys in the four bays to provide context for these recordings. In my first chapter I used the contributions of the dolphins to the soundscape to monitor presence in the bays and found the degree of presence varied greatly from less than 40% to nearly 90% of days monitored with dolphins present. Having established these bays as important to the animals, in my second chapter I explored the many components of their resting bay soundscape and evaluated the influence of natural and human events on the soundscape. I characterized the overall soundscape in each of the four bays, used the tsunami event of March 2011 to approximate a natural soundscape and identified all loud daytime outliers. Overall, sound levels were consistently louder at night and quieter during the daytime due to the sounds from snapping shrimp. In fact, peak Hawaiian spinner dolphin resting time co-occurs with the quietest part of the day. However, I also found that humans drastically alter this daytime soundscape with sound from offshore aquaculture, vessel sound and military mid-frequency active sonar. During one recorded mid-frequency active sonar event in August 2011, sound pressure levels in the 3.15 kHz 1/3 rd-octave band were as high as 45.8 dB above median ambient noise levels. Human activity both inside (vessels) and outside (sonar and aquaculture) the bays significantly altered the resting bay soundscape. Inside the bays there are high levels of human activity including vessel-based tourism directly targeting the dolphins. The interactions between humans and dolphins in their resting bays are of concern; therefore, my third chapter aimed to assess the acoustic response of the dolphins to human activity. Using days where acoustic recordings overlapped with visual surveys I found the greatest response in a bay with dolphin-centric activities, not in the bay with the most vessel activity, indicating that it is not the magnitude that elicits a response but the focus of the activity. In my fourth chapter I summarize the key results from my first three chapters to illustrate the power of multiple site design to prioritize action to protect Hawaiian spinner dolphins in their resting bays, a chapter I hope will be useful for managers should they take further action to protect the dolphins.
Formby, Craig; Korczak, Peggy; Sherlock, LaGuinn P; Hawley, Monica L; Gold, Susan
2017-02-01
In this report of three cases, we consider electrophysiologic measures from three hyperacusic hearing-impaired individuals who, prior to treatment to expand their dynamic ranges for loudness, were problematic hearing aid candidates because of their diminished sound tolerance and reduced dynamic ranges. Two of these individuals were treated with structured counseling combined with low-level broadband sound therapy from bilateral sound generators and the third case received structured counseling in combination with a short-acting placebo sound therapy. Each individual was highly responsive to his or her assigned treatment as revealed by expansion of the dynamic range by at least 20 dB at one or more frequencies posttreatment. Of specific interest in this report are their latency and amplitude measures taken from tone burst-evoked auditory brainstem response (ABR) and cortically derived middle latency response (MLR) recordings, measured as a function of increasing loudness at 500 and 2,000 Hz pre- and posttreatment. The resulting ABR and MLR latency and amplitude measures for each case are considered here in terms of pre- and posttreatment predictions. The respective pre- and posttreatment predictions anticipated larger pretreatment response amplitudes and shorter pretreatment response latencies relative to typical normal control values and smaller normative-like posttreatment response amplitudes and longer posttreatment response latencies relative to the corresponding pretreatment values for each individual. From these results and predictions, we conjecture about the neural origins of the hyperacusis conditions (i.e., brainstem versus cortical) and the neuronal sites responsive to treatment. The only consistent finding in support of the pre- and posttreatment predictions and, thus, the strongest index of hyperacusis and positive treatment-related effects was measured for MLR latency responses for wave Pa at 2,000 Hz. Other response indices, including ABR wave V latency and wave V-V' amplitude and MLR wave Na-Pa amplitude for 500 and 2,000 Hz, appear either ambiguous across and/or within these individuals. Notwithstanding significant challenges for interpreting these findings, including associated confounding effects of their sensorineural hearing losses and differences in the presentation levels of the toneburst stimuli used to collect these measures for each individual, our limited analyses of three cases suggest measures of MLR wave Pa latency at 2,000 Hz (reflecting cortical contributions) may be a promising objective indicator of hyperacusis and dynamic range expansion treatment effects.
Yan, W Y; Li, L; Yang, Y G; Lin, X L; Wu, J Z
2016-08-01
We designed a computer-based respiratory sound analysis system to identify pediatric normal lung sound. To verify the validity of the computer-based respiratory sound analysis system. First we downloaded the standard lung sounds from the network database (website: http: //www.easyauscultation.com/lung-sounds-reference-guide) and recorded 3 samples of abnormal loud sound (rhonchi, wheeze and crackles) from three patients of The Department of Pediatrics, the First Affiliated Hospital of Xiamen University. We regarded such lung sounds as"reference lung sounds". The"test lung sounds"were recorded from 29 children form Kindergarten of Xiamen University. we recorded lung sound by portable electronic stethoscope and valid lung sounds were selected by manual identification. We introduced Mel-frequency cepstral coefficient (MFCC) to extract lung sound features and dynamic time warping (DTW) for signal classification. We had 39 standard lung sounds, recorded 58 test lung sounds. This computer-based respiratory sound analysis system was carried out in 58 lung sound recognition, correct identification of 52 times, error identification 6 times. Accuracy was 89.7%. Based on MFCC and DTW, our computer-based respiratory sound analysis system can effectively identify healthy lung sounds of children (accuracy can reach 89.7%), fully embodies the reliability of the lung sounds analysis system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...
Analysis of environmental sounds
NASA Astrophysics Data System (ADS)
Lee, Keansub
Environmental sound archives - casual recordings of people's daily life - are easily collected by MPS players or camcorders with low cost and high reliability, and shared in the web-sites. There are two kinds of user generated recordings we would like to be able to handle in this thesis: Continuous long-duration personal audio and Soundtracks of short consumer video clips. These environmental recordings contain a lot of useful information (semantic concepts) related with activity, location, occasion and content. As a consequence, the environment archives present many new opportunities for the automatic extraction of information that can be used in intelligent browsing systems. This thesis proposes systems for detecting these interesting concepts on a collection of these real-world recordings. The first system is to segment and label personal audio archives - continuous recordings of an individual's everyday experiences - into 'episodes' (relatively consistent acoustic situations lasting a few minutes or more) using the Bayesian Information Criterion and spectral clustering. The second system is for identifying regions of speech or music in the kinds of energetic and highly-variable noise present in this real-world sound. Motivated by psychoacoustic evidence that pitch is crucial in the perception and organization of sound, we develop a noise-robust pitch detection algorithm to locate speech or music-like regions. To avoid false alarms resulting from background noise with strong periodic components (such as air-conditioning), a new scheme is added in order to suppress these noises in the domain of autocorrelogram. In addition, the third system is to automatically detect a large set of interesting semantic concepts; which we chose for being both informative and useful to users, as well as being technically feasible. These 25 concepts are associated with people's activities, locations, occasions, objects, scenes and sounds, and are based on a large collection of consumer videos in conjunction with user studies. We model the soundtrack of each video, regardless of its original duration, as a fixed-sized clip-level summary feature. For each concept, an SVM-based classifier is trained according to three distance measures (Kullback-Leibler, Bhattacharyya, and Mahalanobis distance). Detecting the time of occurrence of a local object (for instance, a cheering sound) embedded in a longer soundtrack is useful and important for applications such as search and retrieval in consumer video archives. We finally present a Markov-model based clustering algorithm able to identify and segment consistent sets of temporal frames into regions associated with different ground-truth labels, and at the same time to exclude a set of uninformative frames shared in common from all clips. The labels are provided at the clip level, so this refinement of the time axis represents a variant of Multiple-Instance Learning (MIL). Quantitative evaluation shows that the performance of our proposed approaches tested on the 60h personal audio archives or 1900 YouTube video clips is significantly better than existing algorithms for detecting these useful concepts in real-world personal audio recordings.
Numerical Simulations of Acoustically Driven, Burning Droplets
NASA Technical Reports Server (NTRS)
Kim, H.-C.; Karagozian, A. R.; Smith, O. I.; Urban, Dave (Technical Monitor)
1999-01-01
This computational study focuses on understanding and quantifying the effects of external acoustical perturbations on droplet combustion. A one-dimensional, axisymmetric representation of the essential diffusion and reaction processes occurring in the vicinity of the droplet stagnation point is used here in order to isolate the effects of the imposed acoustic disturbance. The simulation is performed using a third order accurate, essentially non-oscillatory (ENO) numerical scheme with a full methanol-air reaction mechanism. Consistent with recent microgravity and normal gravity combustion experiments, focus is placed on conditions where the droplet is situated at a velocity antinode in order for the droplet to experience the greatest effects of fluid mechanical straining of flame structures. The effects of imposed sound pressure level and frequency are explored here, and conditions leading to maximum burning rates are identified.
Note on zero temperature holographic superfluids
NASA Astrophysics Data System (ADS)
Guo, Minyong; Lan, Shanquan; Niu, Chao; Tian, Yu; Zhang, Hongbao
2016-06-01
In this note, we have addressed various issues on zero temperature holographic superfluids. First, inspired by our numerical evidence for the equality between the superfluid density and particle density, we provide an elegant analytic proof for this equality by a boost trick. Second, using not only the frequency domain analysis but also the time domain analysis from numerical relativity, we identify the hydrodynamic normal modes and calculate out the sound speed, which is shown to increase with the chemical potential and saturate to the value predicted by the conformal field theory in the large chemical potential limit. Third, the generic non-thermalization is demonstrated by the fully nonlinear time evolution from a non-equilibrium state for our zero temperature holographic superfluid. Furthermore, a conserved Noether charge is proposed in support of this behavior.
Miner, Nadine E.; Caudell, Thomas P.
2004-06-08
A sound synthesis method for modeling and synthesizing dynamic, parameterized sounds. The sound synthesis method yields perceptually convincing sounds and provides flexibility through model parameterization. By manipulating model parameters, a variety of related, but perceptually different sounds can be generated. The result is subtle changes in sounds, in addition to synthesis of a variety of sounds, all from a small set of models. The sound models can change dynamically according to changes in the simulation environment. The method is applicable to both stochastic (impulse-based) and non-stochastic (pitched) sounds.
Knight, Lisa; Ladich, Friedrich
2014-11-15
Thorny catfishes produce stridulation (SR) sounds using their pectoral fins and drumming (DR) sounds via a swimbladder mechanism in distress situations when hand held in water and in air. It has been argued that SR and DR sounds are aimed at different receivers (predators) in different media. The aim of this study was to analyse and compare sounds emitted in both air and water in order to test different hypotheses on the functional significance of distress sounds. Five representatives of the family Doradidae were investigated. Fish were hand held and sounds emitted in air and underwater were recorded (number of sounds, sound duration, dominant and fundamental frequency, sound pressure level and peak-to-peak amplitudes). All species produced SR sounds in both media, but DR sounds could not be recorded in air for two species. Differences in sound characteristics between media were small and mainly limited to spectral differences in SR. The number of sounds emitted decreased over time, whereas the duration of SR sounds increased. The dominant frequency of SR and the fundamental frequency of DR decreased and sound pressure level of SR increased with body size across species. The hypothesis that catfish produce more SR sounds in air and more DR sounds in water as a result of different predation pressure (birds versus fish) could not be confirmed. It is assumed that SR sounds serve as distress sounds in both media, whereas DR sounds might primarily be used as intraspecific communication signals in water in species possessing both mechanisms. © 2014. Published by The Company of Biologists Ltd.
NASA Technical Reports Server (NTRS)
Collins, J. L.; Shaltenc, R. K.; Poor, R. H.; Barton, R. S.
1982-01-01
The Mod 1 program objectives are defined. The Mod 1 wind turbine is described. In addition to the steel blade operated on the wind turbine, a composite blade was designed and manufactured. During the early phase of the manufacturing cycle of Mod 1A configuration was designed that identified concepts such as partial span control, a soft tower, and upwind teetered rotors that were incorporated in second and third generation industry designs. The Mod 1 electrical system performed as designed, with voltage flicker characteristics within acceptable utility limits. Power output versus wind speed equaled or exceeded design predictions. The wind turbine control system was operated successfully at the site and remotely from the utility dispatcher's office. During wind turbine operations, television interference was experienced by the local residents. As a consequence, operations were restricted. Although not implemented, two potential solutions were identified. In addition to television interference, a few local residents complained bout objectionable sound, particularly the 'thump' as the blade passed behind the tower. To eliminate objections, the sound generation level was reduced by 10 dB by reducing the rotor speed from 35 rpm to 23 rpm. Bolts in the drive train fractured. A solution was identified but not implemented. The public reaction toward the Mod 1 wind turbine program was overwhelmingly favorable.
Investigating three types of continuous auditory feedback in visuo-manual tracking.
Boyer, Éric O; Bevilacqua, Frédéric; Susini, Patrick; Hanneton, Sylvain
2017-03-01
The use of continuous auditory feedback for motor control and learning is still understudied and deserves more attention regarding fundamental mechanisms and applications. This paper presents the results of three experiments studying the contribution of task-, error-, and user-related sonification to visuo-manual tracking and assessing its benefits on sensorimotor learning. First results show that sonification can help decreasing the tracking error, as well as increasing the energy in participant's movement. In the second experiment, when alternating feedback presence, the user-related sonification did not show feedback dependency effects, contrary to the error and task-related feedback. In the third experiment, a reduced exposure of 50% diminished the positive effect of sonification on performance, whereas the increase of the average energy with sound was still significant. In a retention test performed on the next day without auditory feedback, movement energy was still superior for the groups previously trained with the feedback. Although performance was not affected by sound, a learning effect was measurable in both sessions and the user-related group improved its performance also in the retention test. These results confirm that a continuous auditory feedback can be beneficial for movement training and also show an interesting effect of sonification on movement energy. User-related sonification can prevent feedback dependency and increase retention. Consequently, sonification of the user's own motion appears as a promising solution to support movement learning with interactive feedback.
How we hear what is not there: A neural mechanism for the missing fundamental illusion
NASA Astrophysics Data System (ADS)
Chialvo, Dante R.
2003-12-01
How the brain estimates the pitch of a complex sound remains unsolved. Complex sounds are composed of more than one tone. When two tones occur together, a third lower pitched tone is often heard. This is referred to as the "missing fundamental illusion" because the perceived pitch is a frequency (fundamental) for which there is no actual source vibration. This phenomenon exemplifies a larger variety of problems related to how pitch is extracted from complex tones, music and speech, and thus has been extensively used to test theories of pitch perception. A noisy nonlinear process is presented here as a candidate neural mechanism to explain the majority of reported phenomenology and provide specific quantitative predictions. The two basic premises of this model are as follows: (I) The individual tones composing the complex tones add linearly producing peaks of constructive interference whose amplitude is always insufficient to fire the neuron (II): The spike threshold is reached only with noise, which naturally selects the maximum constructive interferences. The spacing of these maxima, and consequently the spikes, occurs at a rate identical to the perceived pitch for the complex tone. Comparison with psychophysical and physiological data reveals a remarkable quantitative agreement not dependent on adjustable parameters. In addition, results from numerical simulations across different models are consistent, suggesting relevance to other sensory modalities.
The effect of hearing impairment on localization dominance for single-word stimuli
Akeroyd, Michael A; Guy, Fiona H.
2012-01-01
Localization dominance (one of the phenomena of the “precedence effect”) was measured in a large number of normal hearing and hearing-impaired individuals and related to self-reported difficulties in everyday listening. The stimuli (single words) were made-up of a “lead” followed 4-ms later by a equal-level “lag” from a different direction. The stimuli were presented from a circular ring of loudspeakers, either in quiet or in a background of spatially-diffuse babble. Listeners were required to identify the loudspeaker from which they heard the sound. Localization dominance was quantified by the weighting factor c [B.G. Shinn-Cunningham et al., J. Acoust. Soc. Am. 93, 2923-2932 (1993)]. The results demonstrated large individual differences: some listeners showed near-perfect localization dominance (c near 1) but many showed a much reduced effect. Two thirds (64/93) of listeners gave a value of c of at least 0.75. There was a significant correlation with hearing loss, such that better hearing listeners showed better localization dominance. One of the items of the self-report questionnaire (“Do you have the impression of sounds being exactly where you would expect them to be?”) showed a significant correlation with the experimental results. This suggests that reductions in localization dominance may affect everyday auditory perception. PMID:21786901
Scharf, Miri
2007-01-01
The long-term effects of extreme war-related trauma on the second and the third generation of Holocaust survivors (HS) were examined in 88 middle-class families. Differences in functioning between adult offspring of HS (HSO) and a comparison group, as well as the psychosocial functioning of adolescent grandchildren of HS, were studied. Degree of presence of Holocaust in the family was examined in families in which both parents were HSO, either mother or father was HSO, and neither parent was HSO. Mothers' Holocaust background was associated with higher levels of psychological distress and less positive parenting representations. In line with synergic (multiplicative) models of risk, adolescents in families where both parents were HSO perceived their mothers as less accepting and less encouraging independence, and reported less positive self-perceptions than their counterparts. They also perceived their fathers as less accepting and less encouraging independence, showed higher levels of ambivalent attachment style, and according to their peers, demonstrated poorer adjustment during military basic training than their fellow recruits from the one-parent HSO group. Parents and adolescents in the one-parent HSO group functioned similarly to others with no Holocaust background. Parenting variables mediated the association across generations between degree of Holocaust experience in the family of origin of the parents and ambivalent attachment style and self-perception of the adolescents. It is recommended that researchers and clinicians develop awareness of the possible traces of trauma in the second and the third generation despite their sound functioning in their daily lives.
Development of an alarm sound database and simulator.
Takeuchi, Akihiro; Hirose, Minoru; Shinbo, Toshiro; Imai, Megumi; Mamorita, Noritaka; Ikeda, Noriaki
2006-10-01
The purpose of this study was to develop an interactive software package of alarm sounds to present, recognize and share problems about alarm sounds among medical staff and medical manufactures. The alarm sounds were recorded in variable alarm conditions in a WAV file. The alarm conditions were arbitrarily induced by modifying attachments of various medical devices. The software package that integrated an alarm sound database and simulator was used to assess the ability to identify the monitor that sounded the alarm for the medical staff. Eighty alarm sound files (40MB in total) were recorded from 41 medical devices made by 28 companies. There were three pairs of similar alarm sounds that could not easily be distinguished, two alarm sounds which had a different priority, either low or high. The alarm sound database was created in an Excel file (ASDB.xls 170 kB, 40 MB with photos), and included a list of file names that were hyperlinked to alarm sound files. An alarm sound simulator (AlmSS) was constructed with two modules for simultaneously playing alarm sound files and for designing new alarm sounds. The AlmSS was used in the assessing procedure to determine whether 19 clinical engineers could identify 13 alarm sounds only by their distinctive sounds. They were asked to choose from a list of devices and to rate the priority of each alarm. The overall correct identification rate of the alarm sounds was 48%, and six characteristic alarm sounds were correctly recognized by beetween 63% to 100% of the subjects. The overall recognition rate of the alarm sound priority was only 27%. We have developed an interactive software package of alarm sounds by integrating the database and the alarm sound simulator (URL: http://info.ahs.kitasato-u.ac.jp/tkweb/alarm/asdb.html ). The AlmSS was useful for replaying multiple alarm sounds simultaneously and designing new alarm sounds interactively.
Rabi, A; Maheshwari, Rahul; Srinivasan, Bhuvaneshwari; Warad, Lata P; Suvarna, C C; Tank, Kartik S
2018-01-01
The present study was conducted with the aim of evaluating the effectiveness of antimicrobial therapy following extraction of an impacted mandibular third molar. This randomized controlled trial was conducted on a total of 60 patients who were randomly assigned into three groups: Group I individuals were given 625 mg of combined amoxicillin and clavulanic acid tablet; 625 mg of combined amoxicillin and clavulanic acid tablet + 400 mg metronidazole tablet was given to group II individuals; whereas group III individuals were assigned no treatment. All the individuals underwent surgical extraction of impacted mandibular third molars under strict aseptic techniques, with minimal trauma to the surrounding tissues. Mouth opening in millimeters was recorded postoperatively using Vernier calipers on the 1st, 3rd, 5th, and 7th days. A 4-point visual analog scale (VAS) was used for assessing postoperative pain. Patient satisfaction was further assessed in a subjective manner using a graded scale from "very satisfied" to "very unsatisfied". The present study included individuals between the ages of 20 and 35 years. Group II individuals showed slightly better satisfaction than the other group individuals. There was no statistically significant difference between the mean age of groups. It was observed that on day 3, the number of individuals with severe pain was slightly reduced in the group I compared with group III individuals. On day 5, participants with no pain were significantly more in group II followed by group I. Furthermore, there was a statistically significant difference between the study groups with respect to mouth opening on days 3 and 5. It was concluded from this trial that the administration of postoperative antimicrobials showed no significant differences in the degree of postoperative complications that occur following the surgical extraction of impacted mandibular third molars. Antimicrobial drugs are routinely used to reduce the chances of surgical site infection, either preopera-tively or postoperatively. Therefore, the clinicians should have sound knowledge about choosing the better antimicrobial drug after the extraction of impacted third molars.
Geometric Constraints on Human Speech Sound Inventories
Dunbar, Ewan; Dupoux, Emmanuel
2016-01-01
We investigate the idea that the languages of the world have developed coherent sound systems in which having one sound increases or decreases the chances of having certain other sounds, depending on shared properties of those sounds. We investigate the geometries of sound systems that are defined by the inherent properties of sounds. We document three typological tendencies in sound system geometries: economy, a tendency for the differences between sounds in a system to be definable on a relatively small number of independent dimensions; local symmetry, a tendency for sound systems to have relatively large numbers of pairs of sounds that differ only on one dimension; and global symmetry, a tendency for sound systems to be relatively balanced. The finding of economy corroborates previous results; the two symmetry properties have not been previously documented. We also investigate the relation between the typology of inventory geometries and the typology of individual sounds, showing that the frequency distribution with which individual sounds occur across languages works in favor of both local and global symmetry. PMID:27462296
Using therapeutic sound with progressive audiologic tinnitus management.
Henry, James A; Zaugg, Tara L; Myers, Paula J; Schechter, Martin A
2008-09-01
Management of tinnitus generally involves educational counseling, stress reduction, and/or the use of therapeutic sound. This article focuses on therapeutic sound, which can involve three objectives: (a) producing a sense of relief from tinnitus-associated stress (using soothing sound); (b) passively diverting attention away from tinnitus by reducing contrast between tinnitus and the acoustic environment (using background sound); and (c) actively diverting attention away from tinnitus (using interesting sound). Each of these goals can be accomplished using three different types of sound-broadly categorized as environmental sound, music, and speech-resulting in nine combinations of uses of sound and types of sound to manage tinnitus. The authors explain the uses and types of sound, how they can be combined, and how the different combinations are used with Progressive Audiologic Tinnitus Management. They also describe how sound is used with other sound-based methods of tinnitus management (Tinnitus Masking, Tinnitus Retraining Therapy, and Neuromonics).
NASA Astrophysics Data System (ADS)
Hamilton, Mark F.
1989-08-01
Four projects are discussed in this annual summary report, all of which involve basic research in nonlinear acoustics: Scattering of Sound by Sound, a theoretical study of two nonconlinear Gaussian beams which interact to produce sum and difference frequency sound; Parametric Receiving Arrays, a theoretical study of parametric reception in a reverberant environment; Nonlinear Effects in Asymmetric Sound Beams, a numerical study of two dimensional finite amplitude sound fields; and Pulsed Finite Amplitude Sound Beams, a numerical time domain solution of the KZK equation.
Diniz, Michele B; Lima, Luciana Monti; Eckert, George; Zandona, Andrea G Ferreira; Cordeiro, Rita C L; Pinto, Lourdes Santos
2011-01-01
This in vitro study evaluated the performance of visual (International Caries Detection and Assessment System [ICDAS]) and radiographic (bitewing [BW]) examinations for occlusal caries detection and their associations with treatment decision (TD). Permanent teeth (n=104) with occlusal surfaces varying from sound to cavitated were selected. Sites were identified from 10× occlusal surface photographs. Standardized bitewing (BW) radiographs were taken. Four dentists with at least five years of experience scored all teeth twice (one-week interval) for ICDAS (0–6), BW (0=sound, 1=caries restricted to enamel, 2=caries in outer third dentin, 3=caries in inner third dentin), and TD (0=no treatment, 1=sealant, 2=microabrasion and sealant, 3=round bur sealant, 4a=resin, 4b=amalgam). Histological validation was performed by observation under a light microscope, with lesions classified on a five-point scale. Intraexaminer and interexaminer repeatability were assessed using two-way tables and intraclass correlation coefficients (ICCs). Comparisons between percentage correct, specificity, sensitivity, and area under the receiver-operating characteristic (ROC) curve were performed using bootstrap analyses. ICCs for intraexaminer and interexaminer repeatability indicated good repeatability for each examiner, ranging from 0.78 to 0.88, and among examiners, ranging from 0.74 to 0.81. Correlation between ICDAS and TD was 0.85 and between BW and TD was 0.78. Correlation between the methods and histological scores was moderate (0.63 for ICDAS and 0.61 for BW). The area under the ROC curve was significantly greater for ICDAS than for BW (p<0.0001). ICDAS had significantly lower specificity than BW did (p=0.0269, 79% vs 94%); however, sensitivity was much higher for ICDAS than for BW (p<0.0001, 83% vs 44%). Data from this investigation suggested that the visual examination (ICDAS) showed better performance than radiographic examination for occlusal caries detection. The ICDAS was strongly associated with TD. Although the correlation between the ICDAS and BW was lower, it is still valuable in the clinical decision-making process.
Concurrent Timbres in Orchestration: a Perceptual Study of Factors Determining "blend"
NASA Astrophysics Data System (ADS)
Sandell, Gregory John
Orchestration often involves selecting instruments for concurrent presentation, as in melodic doubling or chords. One evaluation of the aural outcome of such choices is along the continuum of "blend": whether the instruments fuse into a single composite timbre, segregate into distinct timbral entities, or fall somewhere in between the two extremes. This study investigates, through perceptual experimentation, the acoustical correlates of blend for 15 natural-sounding orchestral instruments presented in concurrently-sounding pairs (e.g. flute-cello, trumpet -oboe, etc.). Ratings of blend showed primary effects for centroid (the location of the midpoint of the spectral energy distribution) and duration of the onset for the tones. Lower average values of both centroid and onset duration for a pair of tones led to increased blends, as did closeness in value for the two factors. Blend decreased (instruments segregated) with higher average values or increased difference in value for the two factors. The musical interval of presentation slightly affected the relative importance of these two mechanisms, with unison intervals determined more by lower average centroid, and minor thirds determined more by closeness in centroid. The contribution of onset in general was slightly more pronounced in the unison conditions than in the minor third condition. Additional factors contributing to blend were correlation of amplitude and centroid envelopes (blend increased as temporal patterns rose and fell in synchrony) and similarity in the overall amount of fundamental frequency perturbation (decreased blend with increasing jitter from both tones). To confirm the importance of centroid as an independent factor determining blend, pairs of tones including instruments with artificially changed centroids were rated for blend. Judgments for several versions of the same instrument pair showed that blend decreased as the altered instrument increased in centroid, corroborating the earlier experiments. Other factors manipulated were amplitude level and the degree of inharmonicity. A survey of orchestration manuals showed many illustrations of "blending" combinations of instruments that were consistent with the results of these experiments. This study's acoustically-based guidelines for blend augment instance-based methods of traditional orchestration teaching, providing underlying abstractions helpful for evaluating the blend of arbitrary combinations of instruments.
Sound localization and auditory response capabilities in round goby (Neogobius melanostomus)
NASA Astrophysics Data System (ADS)
Rollo, Audrey K.; Higgs, Dennis M.
2005-04-01
A fundamental role in vertebrate auditory systems is determining the direction of a sound source. While fish show directional responses to sound, sound localization remains in dispute. The species used in the current study, Neogobius melanostomus (round goby) uses sound in reproductive contexts, with both male and female gobies showing directed movement towards a calling male. The two-choice laboratory experiment was used (active versus quiet speaker) to analyze behavior of gobies in response to sound stimuli. When conspecific male spawning sounds were played, gobies moved in a direct path to the active speaker, suggesting true localization to sound. Of the animals that responded to conspecific sounds, 85% of the females and 66% of the males moved directly to the sound source. Auditory playback of natural and synthetic sounds showed differential behavioral specificity. Of gobies that responded, 89% were attracted to the speaker playing Padogobius martensii sounds, 87% to 100 Hz tone, 62% to white noise, and 56% to Gobius niger sounds. Swimming speed, as well as mean path angle to the speaker, will be presented during the presentation. Results suggest a strong localization of the round goby to a sound source, with some differential sound specificity.
NASA Astrophysics Data System (ADS)
Gauthier, P.-A.; Camier, C.; Lebel, F.-A.; Pasco, Y.; Berry, A.; Langlois, J.; Verron, C.; Guastavino, C.
2016-08-01
Sound environment reproduction of various flight conditions in aircraft mock-ups is a valuable tool for the study, prediction, demonstration and jury testing of interior aircraft sound quality and annoyance. To provide a faithful reproduced sound environment, time, frequency and spatial characteristics should be preserved. Physical sound field reproduction methods for spatial sound reproduction are mandatory to immerse the listener's body in the proper sound fields so that localization cues are recreated at the listener's ears. Vehicle mock-ups pose specific problems for sound field reproduction. Confined spaces, needs for invisible sound sources and very specific acoustical environment make the use of open-loop sound field reproduction technologies such as wave field synthesis (based on free-field models of monopole sources) not ideal. In this paper, experiments in an aircraft mock-up with multichannel least-square methods and equalization are reported. The novelty is the actual implementation of sound field reproduction with 3180 transfer paths and trim panel reproduction sources in laboratory conditions with a synthetic target sound field. The paper presents objective evaluations of reproduced sound fields using various metrics as well as sound field extrapolation and sound field characterization.
Yost, William A; Zhong, Xuan; Najam, Anbar
2015-11-01
In four experiments listeners were rotated or were stationary. Sounds came from a stationary loudspeaker or rotated from loudspeaker to loudspeaker around an azimuth array. When either sounds or listeners rotate the auditory cues used for sound source localization change, but in the everyday world listeners perceive sound rotation only when sounds rotate not when listeners rotate. In the everyday world sound source locations are referenced to positions in the environment (a world-centric reference system). The auditory cues for sound source location indicate locations relative to the head (a head-centric reference system), not locations relative to the world. This paper deals with a general hypothesis that the world-centric location of sound sources requires the auditory system to have information about auditory cues used for sound source location and cues about head position. The use of visual and vestibular information in determining rotating head position in sound rotation perception was investigated. The experiments show that sound rotation perception when sources and listeners rotate was based on acoustic, visual, and, perhaps, vestibular information. The findings are consistent with the general hypotheses and suggest that sound source localization is not based just on acoustics. It is a multisystem process.
Vocal Age Disguise: The Role of Fundamental Frequency and Speech Rate and Its Perceived Effects
Skoog Waller, Sara; Eriksson, Mårten
2016-01-01
The relationship between vocal characteristics and perceived age is of interest in various contexts, as is the possibility to affect age perception through vocal manipulation. A few examples of such situations are when age is staged by actors, when ear witnesses make age assessments based on vocal cues only or when offenders (e.g., online groomers) disguise their voice to appear younger or older. This paper investigates how speakers spontaneously manipulate two age related vocal characteristics (f0 and speech rate) in attempt to sound younger versus older than their true age, and if the manipulations correspond to actual age related changes in f0 and speech rate (Study 1). Further aims of the paper is to determine how successful vocal age disguise is by asking listeners to estimate the age of generated speech samples (Study 2) and to examine whether or not listeners use f0 and speech rate as cues to perceived age. In Study 1, participants from three age groups (20–25, 40–45, and 60–65 years) agreed to read a short text under three voice conditions. There were 12 speakers in each age group (six women and six men). They used their natural voice in one condition, attempted to sound 20 years younger in another and 20 years older in a third condition. In Study 2, 60 participants (listeners) listened to speech samples from the three voice conditions in Study 1 and estimated the speakers’ age. Each listener was exposed to all three voice conditions. The results from Study 1 indicated that the speakers increased fundamental frequency (f0) and speech rate when attempting to sound younger and decreased f0 and speech rate when attempting to sound older. Study 2 showed that the voice manipulations had an effect in the sought-after direction, although the achieved mean effect was only 3 years, which is far less than the intended effect of 20 years. Moreover, listeners used speech rate, but not f0, as a cue to speaker age. It was concluded that age disguise by voice can be achieved by naïve speakers even though the perceived effect was smaller than intended. PMID:27917144
Mcleod, Sharynne; Baker, Elise
2014-01-01
A survey of 231 Australian speech-language pathologists (SLPs) was undertaken to describe practices regarding assessment, analysis, target selection, intervention, and service delivery for children with speech sound disorders (SSD). The participants typically worked in private practice, education, or community health settings and 67.6% had a waiting list for services. For each child, most of the SLPs spent 10-40 min in pre-assessment activities, 30-60 min undertaking face-to-face assessments, and 30-60 min completing paperwork after assessments. During an assessment SLPs typically conducted a parent interview, single-word speech sampling, collected a connected speech sample, and used informal tests. They also determined children's stimulability and estimated intelligibility. With multilingual children, informal assessment procedures and English-only tests were commonly used and SLPs relied on family members or interpreters to assist. Common analysis techniques included determination of phonological processes, substitutions-omissions-distortions-additions (SODA), and phonetic inventory. Participants placed high priority on selecting target sounds that were stimulable, early developing, and in error across all word positions and 60.3% felt very confident or confident selecting an appropriate intervention approach. Eight intervention approaches were frequently used: auditory discrimination, minimal pairs, cued articulation, phonological awareness, traditional articulation therapy, auditory bombardment, Nuffield Centre Dyspraxia Programme, and core vocabulary. Children typically received individual therapy with an SLP in a clinic setting. Parents often observed and participated in sessions and SLPs typically included siblings and grandparents in intervention sessions. Parent training and home programs were more frequently used than the group therapy. Two-thirds kept up-to-date by reading journal articles monthly or every 6 months. There were many similarities with previously reported practices for children with SSD in the US, UK, and the Netherlands, with some (but not all) practices aligning with current research evidence.
Improvements in Cold-Plate Fabrication
NASA Technical Reports Server (NTRS)
Zaffetti, Mark A.; Taddey, Edmund P.; Laurin, Michael B.; Chabebe, Natalia
2012-01-01
Five improvements are reported in cold-plate fabrication. This cold plate is part of a thermal control system designed to serve on space missions. The first improvement is the merging of the end sheets of the cold plate with the face sheets of the structural honeycomb panel. The cold plate, which can be a brazed assembly, uses the honeycomb face sheet as its end sheet. Thus, when the honeycomb panel is fabricated, the face sheet that is used is already part of the cold plate. In addition to reducing weight, costs, and steps, the main benefit of this invention is that it creates a more structurally sound assembly. The second improvement involves incorporation of the header into the closure bar to pass the fluid to a lower layer. Conventional designs have used a separate header, which increases the geometry of the system. The improvement reduces the geometry, thus allowing the cold plate to fit into smaller area. The third improvement eliminates the need of hose, tube, or manifold to supply the cooling fluid externally. The external arrangement can be easily damaged and is vulnerable to leakage. The new arrangement incorporates an internal fluid transfer tube. This allows the fluid to pass from one cold plate to the other without any exposed external features. The fourth improvement eliminates separate fabrication of cold plate(s) and structural members followed by a process of attaching them to each other. Here, the structural member is made of material that can be brazed just as that of the cold plate. Now the structural member and the cold plate can be brazed at the same time, creating a monolithic unit, and thus a more structurally sound assembly. Finally, the fifth improvement is the elimination of an additional welding step that can damage the braze joints. A tube section, which is usually welded on after the braze process, is replaced with a more structurally sound configuration that can be brazed at the same time as the rest of the cold plate.
NASA Astrophysics Data System (ADS)
Lynch, K. A.; Clayton, R.; Roberts, T. M.; Hampton, D. L.; Conde, M.; Zettergren, M. D.; Burleigh, M.; Samara, M.; Michell, R.; Grubbs, G. A., II; Lessard, M.; Hysell, D. L.; Varney, R. H.; Reimer, A.
2017-12-01
The NASA auroral sounding rocket mission Isinglass was launched from Poker Flat Alaska in winter 2017. This mission consists of two separate multi-payload sounding rockets, over an array of groundbased observations, including radars and filtered cameras. The science goal is to collect two case studies, in two different auroral events, of the gradient scale sizes of auroral disturbances in the ionosphere. Data from the in situ payloads and the groundbased observations will be synthesized and fed into an ionospheric model, and the results will be studied to learn about which scale sizes of ionospheric structuring have significance for magnetosphere-ionosphere auroral coupling. The in situ instrumentation includes thermal ion sensors (at 5 points on the second flight), thermal electron sensors (at 2 points), DC magnetic fields (2 point), DC electric fields (one point, plus the 4 low-resource thermal ion RPA observations of drift on the second flight), and an auroral precipitation sensor (one point). The groundbased array includes filtered auroral imagers, the PFISR and SuperDarn radars, a coherent scatter radar, and a Fabry-Perot interferometer array. The ionospheric model to be used is a 3d electrostatic model including the effects of ionospheric chemistry. One observational and modelling goal for the mission is to move both observations and models of auroral arc systems into the third (along-arc) dimension. Modern assimilative tools combined with multipoint but low-resource observations allow a new view of the auroral ionosphere, that should allow us to learn more about the auroral zone as a coupled system. Conjugate case studies such as the Isinglass rocket flights allow for a test of the models' intepretation by comparing to in situ data. We aim to develop and improve ionospheric models to the point where they can be used to interpret remote sensing data with confidence without the checkpoint of in situ comparison.
Noble, Abigail E.; Moran, Dawn M.; Allen, Andrew E.; Saito, Mak A.
2013-01-01
Dissolved and particulate metal concentrations are reported from three sites beneath and at the base of the McMurdo Sound seasonal sea ice in the Ross Sea of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the sea ice after the winter season. Third, dissolved Co:PO3−4 ratios were consistent with previously observed Ross Sea stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe) with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a sea ice biomass source. The sea ice biomass was extremely dense (chl a >9500 μg/L) and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound sea ice by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the sea ice by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future oceanographic expeditions. PMID:24790953
NASA Astrophysics Data System (ADS)
Noble, Abigail; Saito, Mak; Moran, Dawn; Allen, Andrew
2013-10-01
Dissolved and particulate metal concentrations are reported from three sites beneath and at the base of the McMurdo Sound seasonal sea ice in the Ross Sea of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the sea ice after the winter season. Third, dissolved Co:PO43- ratios were consistent with previously observed Ross Sea stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe) with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a sea ice biomass source. The sea ice biomass was extremely dense (chl a >9500 μg/L) and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound sea ice by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the sea ice by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future oceanographic expeditions.
NASA Astrophysics Data System (ADS)
Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.
2017-12-01
MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a ESPA-Class (50 kg) micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. In this third year of a NASA Instrument incubator program, the compact infrared spectrometer has been integrated into an airborne version of the instrument for high-altitude flights on a NASA ER2. The purpose of these airborne tests is to examine the potential for improved capabilities for tracking atmospheric motion-vector wind tracer features, and determining their height using hyper-spectral sounding and imaging methods.
Comparison between users of a new methodology for heart sound auscultation.
Castro, Ana; Gomes, Pedro; Mattos, Sandra S; Coimbra, Miguel T
2016-08-01
Auscultation is a routine exam and the first line of screening in heart pathologies. The objective of this study was to assess if using a new data collection system, the DigiScope Collector, with a guided and automatic annotation of heart auscultation, different levels of expertise/experience users could collect similar digital auscultations. Data were collected within the Heart Caravan Initiative (Paraíba, Brasil). Patients were divided into two study groups: Group 1 evaluated by a third year medical student (User 1), and an experienced nurse (User 2); Group 2 evaluated by User 2 and an Information Technology professional (User 3). Patients were auscultated sequentially by the two users, according to the randomization. Features extracted from each data set included the length (HR) of the audio files, the number of repetitions per auscultation area, heart rate, first (S1) and second (S2) heart sound amplitudes, S2/S1, and aortic (A2) and pulmonary (P2) components of the second heart sound and relative amplitudes (P2/A2). Features extracted were compared between users using paired-sample test Wilcoxon test, and Spearman correlations (P<;0.05 considered significant). Twenty-seven patients were included in the study (13 Group 1, and 14 Group 2). No statistical significant differences were found between groups, except in the time of auscultation (User 2 consistently presented longer auscultation time). Correlation analysis showed significant correlations between extracted features from both groups: S2/S1 in Group 1, and S1, S2, A2, P2, P2/A2 amplitudes, and HR in Group 2. Using the DigiScope Collector, we were able to collect similar digital auscultations, according to the features evaluated. This may indicate that in sites with limited access to specialized clinical care, auscultation files may be acquired and used in telemedicine for an expert evaluation.
Bird population density estimated from acoustic signals
Dawson, D.K.; Efford, M.G.
2009-01-01
Many animal species are detected primarily by sound. Although songs, calls and other sounds are often used for population assessment, as in bird point counts and hydrophone surveys of cetaceans, there are few rigorous methods for estimating population density from acoustic data. 2. The problem has several parts - distinguishing individuals, adjusting for individuals that are missed, and adjusting for the area sampled. Spatially explicit capture-recapture (SECR) is a statistical methodology that addresses jointly the second and third parts of the problem. We have extended SECR to use uncalibrated information from acoustic signals on the distance to each source. 3. We applied this extension of SECR to data from an acoustic survey of ovenbird Seiurus aurocapilla density in an eastern US deciduous forest with multiple four-microphone arrays. We modelled average power from spectrograms of ovenbird songs measured within a window of 0??7 s duration and frequencies between 4200 and 5200 Hz. 4. The resulting estimates of the density of singing males (0??19 ha -1 SE 0??03 ha-1) were consistent with estimates of the adult male population density from mist-netting (0??36 ha-1 SE 0??12 ha-1). The fitted model predicts sound attenuation of 0??11 dB m-1 (SE 0??01 dB m-1) in excess of losses from spherical spreading. 5.Synthesis and applications. Our method for estimating animal population density from acoustic signals fills a gap in the census methods available for visually cryptic but vocal taxa, including many species of bird and cetacean. The necessary equipment is simple and readily available; as few as two microphones may provide adequate estimates, given spatial replication. The method requires that individuals detected at the same place are acoustically distinguishable and all individuals vocalize during the recording interval, or that the per capita rate of vocalization is known. We believe these requirements can be met, with suitable field methods, for a significant number of songbird species. ?? 2009 British Ecological Society.
Elasticity of superhydrous phase, B, Mg10Si3O14(OH)4
NASA Astrophysics Data System (ADS)
Mookherjee, Mainak; Tsuchiya, Jun
2015-01-01
We have used first principles simulation based on density functional theory to calculate the equation of state and elasticity of superhydrous phase B, Mg10Si3O14(OH)4. The pressure-volume results for superhydrous phase B is well represented by a third order Birch-Murnaghan formulation, with K0 = 161.8 (±0.2) GPa and K0‧ = 4.4 (±0.01). The calculated full elastic tensor at 0 GPa is in good agreement with Brillouin scattering results, with the compressional elastic constants: c11 = 329.5 GPa, c22 = 294.9 GPa, c33 = 306.8 GPa, the shear elastic constants - c44 = 99.8 GPa, c55 = 98 GPa, and c66 = 99 GPa; the off-diagonal elastic constants c12 = 82.5 GPa, c13 = 84.6 GPa, and c23 = 98.7 GPa. At the depths corresponding to the mantle transition zone, the aggregate sound wave velocities for superhydrous phase B is slower compared to dry ringwoodite which is the dominant mineral phase. However, hydrous ringwoodite bulk sound velocities are comparable to that of superhydrous phase B. Majoritic garnet, the second most abundant mineral in the transition zone, has bulk sound wave velocities slower than superhydrous phase B. An assemblage consisting of hydrous ringwoodite, superhydrous phase B, and majorite garnet could account for the low velocities observed in certain subduction zone settings at depths corresponding to the base of the transition zone and upper mantle. Superhydrous phase B exhibits moderate single-crystal elastic anisotropy with AVP ∼ 3% and AVS ∼ 5% at the base of the transition zone. Single-crystal elastic anisotropy of other dense hydrous magnesium silicate phases phase such as hydrous phase D is significantly larger at these conditions and might play a major role in explaining the observed mid mantle seismic anisotropy.
Effect of different sound atmospheres on SnO2:Sb thin films prepared by dip coating technique
NASA Astrophysics Data System (ADS)
Kocyigit, Adem; Ozturk, Erhan; Ejderha, Kadir; Turgut, Guven
2017-11-01
Different sound atmosphere effects were investigated on SnO2:Sb thin films, which were deposited with dip coating technique. Two sound atmospheres were used in this study; one of them was nay sound atmosphere for soft sound, another was metallic sound for hard sound. X-ray diffraction (XRD) graphs have indicated that the films have different orientations and structural parameters in quiet room, metallic and soft sound atmospheres. It could be seen from UV-Vis spectrometer measurements that films have different band gaps and optical transmittances with changing sound atmospheres. Scanning electron microscope (SEM) and AFM images of the films have been pointed out that surfaces of films have been affected with changing sound atmospheres. The electrical measurements have shown that films have different I-V plots and different sheet resistances with changing sound atmospheres. These sound effects may be used to manage atoms in nano dimensions.
Statistical Analysis for Subjective and Objective Evaluations of Dental Drill Sounds.
Yamada, Tomomi; Kuwano, Sonoko; Ebisu, Shigeyuki; Hayashi, Mikako
2016-01-01
The sound produced by a dental air turbine handpiece (dental drill) can markedly influence the sound environment in a dental clinic. Indeed, many patients report that the sound of a dental drill elicits an unpleasant feeling. Although several manufacturers have attempted to reduce the sound pressure levels produced by dental drills during idling based on ISO 14457, the sound emitted by such drills under active drilling conditions may negatively influence the dental clinic sound environment. The physical metrics related to the unpleasant impressions associated with dental drill sounds have not been determined. In the present study, psychological measurements of dental drill sounds were conducted with the aim of facilitating improvement of the sound environment at dental clinics. Specifically, we examined the impressions elicited by the sounds of 12 types of dental drills in idling and drilling conditions using a semantic differential. The analysis revealed that the impressions of dental drill sounds varied considerably between idling and drilling conditions and among the examined drills. This finding suggests that measuring the sound of a dental drill in idling conditions alone may be insufficient for evaluating the effects of the sound. We related the results of the psychological evaluations to those of measurements of the physical metrics of equivalent continuous A-weighted sound pressure levels (LAeq) and sharpness. Factor analysis indicated that impressions of the dental drill sounds consisted of two factors: "metallic and unpleasant" and "powerful". LAeq had a strong relationship with "powerful impression", calculated sharpness was positively related to "metallic impression", and "unpleasant impression" was predicted by the combination of both LAeq and calculated sharpness. The present analyses indicate that, in addition to a reduction in sound pressure level, refining the frequency components of dental drill sounds is important for creating a comfortable sound environment in dental clinics.
NASA Astrophysics Data System (ADS)
Itoh, Kosuke; Nakada, Tsutomu
2013-04-01
Deterministic nonlinear dynamical processes are ubiquitous in nature. Chaotic sounds generated by such processes may appear irregular and random in waveform, but these sounds are mathematically distinguished from random stochastic sounds in that they contain deterministic short-time predictability in their temporal fine structures. We show that the human brain distinguishes deterministic chaotic sounds from spectrally matched stochastic sounds in neural processing and perception. Deterministic chaotic sounds, even without being attended to, elicited greater cerebral cortical responses than the surrogate control sounds after about 150 ms in latency after sound onset. Listeners also clearly discriminated these sounds in perception. The results support the hypothesis that the human auditory system is sensitive to the subtle short-time predictability embedded in the temporal fine structure of sounds.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-21
...-AA00 Eighth Coast Guard District Annual Safety Zones; Sound of Independence; Santa Rosa Sound; Fort... Coast Guard will enforce a Safety Zone for the Sound of Independence event in the Santa Rosa Sound, Fort... during the Sound of Independence. During the enforcement period, entry into, transiting or anchoring in...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey Point...
Potential approaches to the management of third-party impacts from groundwater transfers
NASA Astrophysics Data System (ADS)
Skurray, James H.; Pannell, David J.
2012-08-01
Groundwater extraction can have varied and diffuse effects. Negative external effects may include costs imposed on other groundwater users and on surrounding ecosystems. Environmental damages are commonly not reflected in market transactions. Groundwater transfers have the potential to cause spatial redistribution, concentration, and qualitative transformation of the impacts from pumping. An economically and environmentally sound groundwater transfer scheme would ensure that marginal costs from trades do not exceed marginal benefits, accounting for all third-party impacts, including those of a non-monetary nature as well as delayed effects. This paper proposes a menu of possible management strategies that would help preclude unacceptable impacts by restricting transfers with certain attributes, ideally ensuring that permitted transfers are at least welfare-neutral. Management tools would require that transfers limit or reduce environmental impacts, and provide for the compensation of financial impacts. Three management tools are described. While these tools can limit impacts from a given level of extraction, they cannot substitute for sustainable overall withdrawal limits. Careful implementation of transfer limits and exchange rates, and the strategic use of management area boundaries, may enable a transfer system to restrict negative externalities mainly to monetary costs. Provision for compensation of these costs could be built into the system.
Large endolymphatic potentials from low-frequency and infrasonic tones in the guinea pig.
Salt, Alec N; Lichtenhan, Jeffery T; Gill, Ruth M; Hartsock, Jared J
2013-03-01
Responses of the ear to low-frequency and infrasonic sounds have not been extensively studied. Understanding how the ear responds to low frequencies is increasingly important as environmental infrasounds are becoming more pervasive from sources such as wind turbines. This study shows endolymphatic potentials in the third cochlear turn from acoustic infrasound (5 Hz) are larger than from tones in the audible range (e.g., 50 and 500 Hz), in some cases with peak-to-peak amplitude greater than 20 mV. These large potentials were suppressed by higher-frequency tones and were rapidly abolished by perilymphatic injection of KCl at the cochlear apex, demonstrating their third-turn origins. Endolymphatic iso-potentials from 5 to 500 Hz were enhanced relative to perilymphatic potentials as frequency was lowered. Probe and infrasonic bias tones were used to study the origin of the enhanced potentials. Potentials were best explained as a saturating response summed with a sinusoidal voltage (Vo), that was phase delayed by an average of 60° relative to the biasing effects of the infrasound. Vo is thought to arise indirectly from hair cell activity, such as from strial potential changes caused by sustained current changes through the hair cells in each half cycle of the infrasound.
Low-frequency noise from large wind turbines.
Møller, Henrik; Pedersen, Christian Sejer
2011-06-01
As wind turbines get larger, worries have emerged that the turbine noise would move down in frequency and that the low-frequency noise would cause annoyance for the neighbors. The noise emission from 48 wind turbines with nominal electric power up to 3.6 MW is analyzed and discussed. The relative amount of low-frequency noise is higher for large turbines (2.3-3.6 MW) than for small turbines (≤ 2 MW), and the difference is statistically significant. The difference can also be expressed as a downward shift of the spectrum of approximately one-third of an octave. A further shift of similar size is suggested for future turbines in the 10-MW range. Due to the air absorption, the higher low-frequency content becomes even more pronounced, when sound pressure levels in relevant neighbor distances are considered. Even when A-weighted levels are considered, a substantial part of the noise is at low frequencies, and for several of the investigated large turbines, the one-third-octave band with the highest level is at or below 250 Hz. It is thus beyond any doubt that the low-frequency part of the spectrum plays an important role in the noise at the neighbors. © 2011 Acoustical Society of America
Using Data Mining to Detect Health Care Fraud and Abuse: A Review of Literature
Joudaki, Hossein; Rashidian, Arash; Minaei-Bidgoli, Behrouz; Mahmoodi, Mahmood; Geraili, Bijan; Nasiri, Mahdi; Arab, Mohammad
2015-01-01
Inappropriate payments by insurance organizations or third party payers occur because of errors, abuse and fraud. The scale of this problem is large enough to make it a priority issue for health systems. Traditional methods of detecting health care fraud and abuse are time-consuming and inefficient. Combining automated methods and statistical knowledge lead to the emergence of a new interdisciplinary branch of science that is named Knowledge Discovery from Databases (KDD). Data mining is a core of the KDD process. Data mining can help third-party payers such as health insurance organizations to extract useful information from thousands of claims and identify a smaller subset of the claims or claimants for further assessment. We reviewed studies that performed data mining techniques for detecting health care fraud and abuse, using supervised and unsupervised data mining approaches. Most available studies have focused on algorithmic data mining without an emphasis on or application to fraud detection efforts in the context of health service provision or health insurance policy. More studies are needed to connect sound and evidence-based diagnosis and treatment approaches toward fraudulent or abusive behaviors. Ultimately, based on available studies, we recommend seven general steps to data mining of health care claims. PMID:25560347
Chulach, Teresa; Gagnon, Marilou
2016-03-01
Nurse practitioners (NPs), as advanced practice nurses, have evolved over the years to become recognized as an important and growing trend in Canada and worldwide. In spite of sound evidence as to the effectiveness of NPs in primary care and other care settings, role implementation and integration continue to pose significant challenges. This article utilizes postcolonial theory, as articulated by Homi Bhabha, to examine and challenge traditional ideologies and structures that have shaped the development, implementation and integration of the NP role to this day. Specifically, we utilize Bhabha's concepts of third space, hybridity, identity and agency in order to further conceptualize the nurse practitioner role, to examine how the role challenges some of the inherent assumptions within the healthcare system and to explore how development of each to these concepts may prove useful in integration of nurse practitioners within the healthcare system. Our analysis casts light on the importance of a broader, power structure analysis and illustrates how colonial assumptions operating within our current healthcare system entrench, expand and re-invent, as well as mask the structures and practices that serve to impede nurse practitioner full integration and contributions. Suggestions are made for future analysis and research. © 2015 John Wiley & Sons Ltd.
Behaviours Associated with Acoustic Communication in Nile Tilapia (Oreochromis niloticus)
Longrie, Nicolas; Poncin, Pascal; Denoël, Mathieu; Gennotte, Vincent; Delcourt, Johann; Parmentier, Eric
2013-01-01
Background Sound production is widespread among fishes and accompanies many social interactions. The literature reports twenty-nine cichlid species known to produce sounds during aggressive and courtship displays, but the precise range in behavioural contexts is unclear. This study aims to describe the various Oreochromis niloticus behaviours that are associated with sound production in order to delimit the role of sound during different activities, including agonistic behaviours, pit activities, and reproduction and parental care by males and females of the species. Methodology/Principal Findings Sounds mostly occur during the day. The sounds recorded during this study accompany previously known behaviours, and no particular behaviour is systematically associated with sound production. Males and females make sounds during territorial defence but not during courtship and mating. Sounds support visual behaviours but are not used alone. During agonistic interactions, a calling Oreochromis niloticus does not bite after producing sounds, and more sounds are produced in defence of territory than for dominating individuals. Females produce sounds to defend eggs but not larvae. Conclusion/Significance Sounds are produced to reinforce visual behaviours. Moreover, comparisons with O. mossambicus indicate two sister species can differ in their use of sound, their acoustic characteristics, and the function of sound production. These findings support the role of sounds in differentiating species and promoting speciation. They also make clear that the association of sounds with specific life-cycle roles cannot be generalized to the entire taxa. PMID:23620756
Meteorological effects on long-range outdoor sound propagation
NASA Technical Reports Server (NTRS)
Klug, Helmut
1990-01-01
Measurements of sound propagation over distances up to 1000 m were carried out with an impulse sound source offering reproducible, short time signals. Temperature and wind speed at several heights were monitored simultaneously; the meteorological data are used to determine the sound speed gradients according to the Monin-Obukhov similarity theory. The sound speed profile is compared to a corresponding prediction, gained through the measured travel time difference between direct and ground reflected pulse (which depends on the sound speed gradient). Positive sound speed gradients cause bending of the sound rays towards the ground yielding enhanced sound pressure levels. The measured meteorological effects on sound propagation are discussed and illustrated by ray tracing methods.
The sound symbolism bootstrapping hypothesis for language acquisition and language evolution
Imai, Mutsumi; Kita, Sotaro
2014-01-01
Sound symbolism is a non-arbitrary relationship between speech sounds and meaning. We review evidence that, contrary to the traditional view in linguistics, sound symbolism is an important design feature of language, which affects online processing of language, and most importantly, language acquisition. We propose the sound symbolism bootstrapping hypothesis, claiming that (i) pre-verbal infants are sensitive to sound symbolism, due to a biologically endowed ability to map and integrate multi-modal input, (ii) sound symbolism helps infants gain referential insight for speech sounds, (iii) sound symbolism helps infants and toddlers associate speech sounds with their referents to establish a lexical representation and (iv) sound symbolism helps toddlers learn words by allowing them to focus on referents embedded in a complex scene, alleviating Quine's problem. We further explore the possibility that sound symbolism is deeply related to language evolution, drawing the parallel between historical development of language across generations and ontogenetic development within individuals. Finally, we suggest that sound symbolism bootstrapping is a part of a more general phenomenon of bootstrapping by means of iconic representations, drawing on similarities and close behavioural links between sound symbolism and speech-accompanying iconic gesture. PMID:25092666
Psychophysiological acoustics of indoor sound due to traffic noise during sleep
NASA Astrophysics Data System (ADS)
Tulen, J. H. M.; Kumar, A.; Jurriëns, A. A.
1986-10-01
The relation between the physical characteristics of sound and an individual's perception of its as annoyance is complex and unclear. Sleep disturbance by sound is manifested in the physiological responses to the sound stimuli and the quality of sleep perceived in the morning. Both may result in deterioration of functioning during wakefulness. Therefore, psychophysiological responses to noise during sleep should be studied for the evaluation of the efficacy of sound insulation. Nocturnal sleep and indoor sound level were recorded in the homes of 12 subjects living along a highway with high traffic density. Double glazing sound insulation was used to create two experimental conditions: low insulation and high insulation. Twenty recordings were made per subject, ten recordings in each condition. During the nights with low insulation the quality of sleep was so low that both performance and mood were negatively affected. The enhancement of sound insulation was not effective enough to increase the restorative effects of sleep. The transient and peaky characteristics of traffic sound were also found to result in non-adaptive physiological responses during sleep. Sound insulation did have an effect on noise peak characteristics such as peak level, peak duration and slope. However, the number of sound peaks were found to be the same in both conditions. The relation of these sound peaks detected in the indoor recorded sound level signal to characteristics of passing vehicles was established, indicating that the sound peaks causing the psychophysiological disturbances during sleep were generated by the passing vehicles. Evidence is presented to show that the reduction in sound level is not a good measure of efficacy of sound insulation. The parameters of the sound peaks, as described in this paper, are a better representation of psychophysiological efficacy of sound insulation.
Characterizing, synthesizing, and/or canceling out acoustic signals from sound sources
Holzrichter, John F [Berkeley, CA; Ng, Lawrence C [Danville, CA
2007-03-13
A system for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate and animate sound sources. Electromagnetic sensors monitor excitation sources in sound producing systems, such as animate sound sources such as the human voice, or from machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The systems disclosed enable accurate calculation of transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.
Tervaniemi, M; Kruck, S; De Baene, W; Schröger, E; Alter, K; Friederici, A D
2009-10-01
By recording auditory electrical brain potentials, we investigated whether the basic sound parameters (frequency, duration and intensity) are differentially encoded among speech vs. music sounds by musicians and non-musicians during different attentional demands. To this end, a pseudoword and an instrumental sound of comparable frequency and duration were presented. The accuracy of neural discrimination was tested by manipulations of frequency, duration and intensity. Additionally, the subjects' attentional focus was manipulated by instructions to ignore the sounds while watching a silent movie or to attentively discriminate the different sounds. In both musicians and non-musicians, the pre-attentively evoked mismatch negativity (MMN) component was larger to slight changes in music than in speech sounds. The MMN was also larger to intensity changes in music sounds and to duration changes in speech sounds. During attentional listening, all subjects more readily discriminated changes among speech sounds than among music sounds as indexed by the N2b response strength. Furthermore, during attentional listening, musicians displayed larger MMN and N2b than non-musicians for both music and speech sounds. Taken together, the data indicate that the discriminative abilities in human audition differ between music and speech sounds as a function of the sound-change context and the subjective familiarity of the sound parameters. These findings provide clear evidence for top-down modulatory effects in audition. In other words, the processing of sounds is realized by a dynamically adapting network considering type of sound, expertise and attentional demands, rather than by a strictly modularly organized stimulus-driven system.
Alards-Tomalin, Doug; Walker, Alexander C; Shaw, Joshua D M; Leboe-McGowan, Launa C
2015-09-01
The cross-modal impact of number magnitude (i.e. Arabic digits) on perceived sound loudness was examined. Participants compared a target sound's intensity level against a previously heard reference sound (which they judged as quieter or louder). Paired with each target sound was a task irrelevant Arabic digit that varied in magnitude, being either small (1, 2, 3) or large (7, 8, 9). The degree to which the sound and the digit were synchronized was manipulated, with the digit and sound occurring simultaneously in Experiment 1, and the digit preceding the sound in Experiment 2. Firstly, when target sounds and digits occurred simultaneously, sounds paired with large digits were categorized as loud more frequently than sounds paired with small digits. Secondly, when the events were separated, number magnitude ceased to bias sound intensity judgments. In Experiment 3, the events were still separated, however the participants held the number in short-term memory. In this instance the bias returned. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Miner, Nadine Elizabeth
1998-09-01
This dissertation presents a new wavelet-based method for synthesizing perceptually convincing, dynamic sounds using parameterized sound models. The sound synthesis method is applicable to a variety of applications including Virtual Reality (VR), multi-media, entertainment, and the World Wide Web (WWW). A unique contribution of this research is the modeling of the stochastic, or non-pitched, sound components. This stochastic-based modeling approach leads to perceptually compelling sound synthesis. Two preliminary studies conducted provide data on multi-sensory interaction and audio-visual synchronization timing. These results contributed to the design of the new sound synthesis method. The method uses a four-phase development process, including analysis, parameterization, synthesis and validation, to create the wavelet-based sound models. A patent is pending for this dynamic sound synthesis method, which provides perceptually-realistic, real-time sound generation. This dissertation also presents a battery of perceptual experiments developed to verify the sound synthesis results. These experiments are applicable for validation of any sound synthesis technique.
Sound sensitivity of neurons in rat hippocampus during performance of a sound-guided task
Vinnik, Ekaterina; Honey, Christian; Schnupp, Jan; Diamond, Mathew E.
2012-01-01
To investigate how hippocampal neurons encode sound stimuli, and the conjunction of sound stimuli with the animal's position in space, we recorded from neurons in the CA1 region of hippocampus in rats while they performed a sound discrimination task. Four different sounds were used, two associated with water reward on the right side of the animal and the other two with water reward on the left side. This allowed us to separate neuronal activity related to sound identity from activity related to response direction. To test the effect of spatial context on sound coding, we trained rats to carry out the task on two identical testing platforms at different locations in the same room. Twenty-one percent of the recorded neurons exhibited sensitivity to sound identity, as quantified by the difference in firing rate for the two sounds associated with the same response direction. Sensitivity to sound identity was often observed on only one of the two testing platforms, indicating an effect of spatial context on sensory responses. Forty-three percent of the neurons were sensitive to response direction, and the probability that any one neuron was sensitive to response direction was statistically independent from its sensitivity to sound identity. There was no significant coding for sound identity when the rats heard the same sounds outside the behavioral task. These results suggest that CA1 neurons encode sound stimuli, but only when those sounds are associated with actions. PMID:22219030
Prospects for Breakthrough Propulsion From Physics
NASA Technical Reports Server (NTRS)
Millis, Marc G.
2004-01-01
"Space drives", "Warp drives", and "Wormholes:" these concepts may sound like science fiction, but they are being written about in reputable journals. To assess the implications of these emerging prospects for future spaceflight, NASA supported the Breakthrough Propulsion Physics Project from 1996 through 2002. This Project has three grand challenges: (1) Discover propulsion that eliminates the need for propellant; (2) Discover methods to achieve hyper-fast travel; and (3) Discover breakthrough methods to power spacecraft. Because these challenges are presumably far from fruition, and perhaps even impossible, a special emphasis is placed on selecting incremental and affordable research that addresses the critical issues behind these challenges. Of 16 incremental research tasks completed by the project and from other sponsors, about a third were found not to be viable, a quarter have clear opportunities for sequels, and the rest remain unresolved.
Bashing Pseudoscience in Academia
NASA Astrophysics Data System (ADS)
Hameed, S.; Robinson, G. M.; Moulton, J.
2003-12-01
Belief in paranormal, supernatural and other new-age claims is increasing according to surveys by the NSF and others. Astronomy-related pseudo-scientific beliefs are especially common. For example, more than thirty percent of Americans consider astrology to be scientific and more than one-third believe that extraterrestrial beings have visited earth at some time in the past. Not only do such beliefs ignore sound reasoning and information but they compete as alternative explanations for the world around us. While a general education might be expected to reduce acceptance of unsound beliefs, the level of such belief is surprisingly high among those with a higher education. An astronomer, a philosopher and a psychologist cooperated in developing a brief college course designed to challenge unsound reasoning and information, and to inoculate the participants with skepticism. Pre- and post-course opinion surveys show significant changes in belief.
A numerical study of the acid rain in northern Taiwan in winter season
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ching-Sen; Deng, Zen-Sing
1996-12-31
Two-thirds of the land mass of Taiwan island is covered by mountains. In winter precipitation could occur in northern Taiwan when the prevailing wind was from northeastern direction. In northern Taiwan the acid rain (pH value less than 5.0) in winter time could contribute about 30 rain in the whole year. A three-dimensional numerical model with terrain following coordinated system was used to simulate the precipitation system and the characteristics of acid rain. A smooth terrain was assumed in the model. A mean sounding was used to initialize the numerical model when acid rain occurred in northern Taiwan during wintermore » time from 1991 to 1993. Investigations of the effect of pollutions from abroad on the acid rain in northern Taiwan in winter are considered for the future.« less
Transillumination and reflectance probes for in vivo near-IR imaging of dental caries
NASA Astrophysics Data System (ADS)
Simon, Jacob C.; Lucas, Seth A.; Staninec, Michal; Tom, Henry; Chan, Kenneth H.; Darling, Cynthia L.; Fried, Daniel
2014-02-01
Previous studies have demonstrated the utility of near infrared (NIR) imaging for caries detection employing transillumination and reflectance imaging geometries. Three intra-oral NIR imaging probes were fabricated for the acquisition of in vivo, real time videos using a high definition InGaAs SWIR camera and near-IR broadband light sources. Two transillumination probes provide occlusal and interproximal images using 1300-nm light where water absorption is low and enamel manifests the highest transparency. A third reflectance probe utilizes cross polarization and operates at >1500-nm, where water absorption is higher which reduces the reflectivity of sound tissues, significantly increasing lesion contrast. These probes are being used in an ongoing clinical study to assess the diagnostic performance of NIR imaging for the detection of caries lesions in teeth scheduled for extraction for orthodontic reasons.
Lgr5-Positive Supporting Cells Generate New Hair Cells in the Postnatal Cochlea
Bramhall, Naomi F.; Shi, Fuxin; Arnold, Katrin; Hochedlinger, Konrad; Edge, Albert S.B.
2014-01-01
Summary The prevalence of hearing loss after damage to the mammalian cochlea has been thought to be due to a lack of spontaneous regeneration of hair cells, the primary receptor cells for sound. Here, we show that supporting cells, which surround hair cells in the normal cochlear epithelium, differentiate into new hair cells in the neonatal mouse following ototoxic damage. Using lineage tracing, we show that new hair cells, predominantly outer hair cells, arise from Lgr5-expressing inner pillar and third Deiters cells and that new hair cell generation is increased by pharmacological inhibition of Notch. These data suggest that the neonatal mammalian cochlea has some capacity for hair cell regeneration following damage alone and that Lgr5-positive cells act as hair cell progenitors in the cochlea. PMID:24672754
NASA Technical Reports Server (NTRS)
Shovlin, M. D.
1977-01-01
Interior and exterior fuselage noise levels were measured on NASA's C-8A Augmentor Wing Jet-STOL Research Aircraft in order to provide design information for the Quiet Short-Haul Research Aircraft (QSRA), which will use a modified C-8A fuselage. The noise field was mapped by 11 microphones located internally and externally in three areas: mid-fuselage, aft fuselage, and on the flight deck. Noise levels were recorded at four power settings varying from takeoff to flight idle and were plotted in one-third octave band spectra. The overall sound pressure levels of the external noise field were compared to previous tests and found to correlate well with engine primary thrust levels. Fuselage values were 145 + or - 3 dB over the aircraft's normal STOL operating range.
NASA Technical Reports Server (NTRS)
Hilton, D. A.; Bruton, D.
1977-01-01
Results of a series of noise measurements that were made under controlled conditions during the static firing of two Nike solid propellant rocket motors are presented. The usefulness of these motors as sources for general spacecraft noise testing was assessed, and the noise expected in the cargo bay of the orbiter was reproduced. Brief descriptions of the Nike motor, the general procedures utilized for the noise tests, and representative noise data including overall sound pressure levels, one third octave band spectra, and octave band spectra were reviewed. Data are presented on two motors of different ages in order to show the similarity between noise measurements made on motors having different loading dates. The measured noise from these tests is then compared to that estimated for the space shuttle orbiter cargo bay.
75 FR 69429 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-12
... Sound Energy, Inc. Description: Puget Sound Energy, Inc. submits tariff filing per 35.12: PSE Original...: ER11-2008-000. Applicants: Puget Sound Energy, Inc. Description: Puget Sound Energy, Inc. submits... Sound Energy, Inc. Description: Puget Sound Energy, Inc. submits tariff filing per 35.12: PSE Original...
Statistical Analysis for Subjective and Objective Evaluations of Dental Drill Sounds
Yamada, Tomomi; Kuwano, Sonoko; Ebisu, Shigeyuki; Hayashi, Mikako
2016-01-01
The sound produced by a dental air turbine handpiece (dental drill) can markedly influence the sound environment in a dental clinic. Indeed, many patients report that the sound of a dental drill elicits an unpleasant feeling. Although several manufacturers have attempted to reduce the sound pressure levels produced by dental drills during idling based on ISO 14457, the sound emitted by such drills under active drilling conditions may negatively influence the dental clinic sound environment. The physical metrics related to the unpleasant impressions associated with dental drill sounds have not been determined. In the present study, psychological measurements of dental drill sounds were conducted with the aim of facilitating improvement of the sound environment at dental clinics. Specifically, we examined the impressions elicited by the sounds of 12 types of dental drills in idling and drilling conditions using a semantic differential. The analysis revealed that the impressions of dental drill sounds varied considerably between idling and drilling conditions and among the examined drills. This finding suggests that measuring the sound of a dental drill in idling conditions alone may be insufficient for evaluating the effects of the sound. We related the results of the psychological evaluations to those of measurements of the physical metrics of equivalent continuous A-weighted sound pressure levels (LAeq) and sharpness. Factor analysis indicated that impressions of the dental drill sounds consisted of two factors: “metallic and unpleasant” and “powerful”. LAeq had a strong relationship with “powerful impression”, calculated sharpness was positively related to “metallic impression”, and “unpleasant impression” was predicted by the combination of both LAeq and calculated sharpness. The present analyses indicate that, in addition to a reduction in sound pressure level, refining the frequency components of dental drill sounds is important for creating a comfortable sound environment in dental clinics. PMID:27462903
Vocal Imitations of Non-Vocal Sounds
Houix, Olivier; Voisin, Frédéric; Misdariis, Nicolas; Susini, Patrick
2016-01-01
Imitative behaviors are widespread in humans, in particular whenever two persons communicate and interact. Several tokens of spoken languages (onomatopoeias, ideophones, and phonesthemes) also display different degrees of iconicity between the sound of a word and what it refers to. Thus, it probably comes at no surprise that human speakers use a lot of imitative vocalizations and gestures when they communicate about sounds, as sounds are notably difficult to describe. What is more surprising is that vocal imitations of non-vocal everyday sounds (e.g. the sound of a car passing by) are in practice very effective: listeners identify sounds better with vocal imitations than with verbal descriptions, despite the fact that vocal imitations are inaccurate reproductions of a sound created by a particular mechanical system (e.g. a car driving by) through a different system (the voice apparatus). The present study investigated the semantic representations evoked by vocal imitations of sounds by experimentally quantifying how well listeners could match sounds to category labels. The experiment used three different types of sounds: recordings of easily identifiable sounds (sounds of human actions and manufactured products), human vocal imitations, and computational “auditory sketches” (created by algorithmic computations). The results show that performance with the best vocal imitations was similar to the best auditory sketches for most categories of sounds, and even to the referent sounds themselves in some cases. More detailed analyses showed that the acoustic distance between a vocal imitation and a referent sound is not sufficient to account for such performance. Analyses suggested that instead of trying to reproduce the referent sound as accurately as vocally possible, vocal imitations focus on a few important features, which depend on each particular sound category. These results offer perspectives for understanding how human listeners store and access long-term sound representations, and sets the stage for the development of human-computer interfaces based on vocalizations. PMID:27992480
33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.
Code of Federal Regulations, 2012 CFR
2012-07-01
... William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST... SEPARATION SCHEMES Description of Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William Sound...
33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.
Code of Federal Regulations, 2014 CFR
2014-07-01
... William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST... SEPARATION SCHEMES Description of Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William Sound...
33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.
Code of Federal Regulations, 2013 CFR
2013-07-01
... William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST... SEPARATION SCHEMES Description of Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William Sound...
33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.
Code of Federal Regulations, 2010 CFR
2010-07-01
... William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST... SEPARATION SCHEMES Description of Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William Sound...
33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.
Code of Federal Regulations, 2011 CFR
2011-07-01
... William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST... SEPARATION SCHEMES Description of Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William Sound...
Effects of capacity limits, memory loss, and sound type in change deafness.
Gregg, Melissa K; Irsik, Vanessa C; Snyder, Joel S
2017-11-01
Change deafness, the inability to notice changes to auditory scenes, has the potential to provide insights about sound perception in busy situations typical of everyday life. We determined the extent to which change deafness to sounds is due to the capacity of processing multiple sounds and the loss of memory for sounds over time. We also determined whether these processing limitations work differently for varying types of sounds within a scene. Auditory scenes composed of naturalistic sounds, spectrally dynamic unrecognizable sounds, tones, and noise rhythms were presented in a change-detection task. On each trial, two scenes were presented that were same or different. We manipulated the number of sounds within each scene to measure memory capacity and the silent interval between scenes to measure memory loss. For all sounds, change detection was worse as scene size increased, demonstrating the importance of capacity limits. Change detection to the natural sounds did not deteriorate much as the interval between scenes increased up to 2,000 ms, but it did deteriorate substantially with longer intervals. For artificial sounds, in contrast, change-detection performance suffered even for very short intervals. The results suggest that change detection is generally limited by capacity, regardless of sound type, but that auditory memory is more enduring for sounds with naturalistic acoustic structures.
The sound symbolism bootstrapping hypothesis for language acquisition and language evolution.
Imai, Mutsumi; Kita, Sotaro
2014-09-19
Sound symbolism is a non-arbitrary relationship between speech sounds and meaning. We review evidence that, contrary to the traditional view in linguistics, sound symbolism is an important design feature of language, which affects online processing of language, and most importantly, language acquisition. We propose the sound symbolism bootstrapping hypothesis, claiming that (i) pre-verbal infants are sensitive to sound symbolism, due to a biologically endowed ability to map and integrate multi-modal input, (ii) sound symbolism helps infants gain referential insight for speech sounds, (iii) sound symbolism helps infants and toddlers associate speech sounds with their referents to establish a lexical representation and (iv) sound symbolism helps toddlers learn words by allowing them to focus on referents embedded in a complex scene, alleviating Quine's problem. We further explore the possibility that sound symbolism is deeply related to language evolution, drawing the parallel between historical development of language across generations and ontogenetic development within individuals. Finally, we suggest that sound symbolism bootstrapping is a part of a more general phenomenon of bootstrapping by means of iconic representations, drawing on similarities and close behavioural links between sound symbolism and speech-accompanying iconic gesture. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Continuous robust sound event classification using time-frequency features and deep learning
Song, Yan; Xiao, Wei; Phan, Huy
2017-01-01
The automatic detection and recognition of sound events by computers is a requirement for a number of emerging sensing and human computer interaction technologies. Recent advances in this field have been achieved by machine learning classifiers working in conjunction with time-frequency feature representations. This combination has achieved excellent accuracy for classification of discrete sounds. The ability to recognise sounds under real-world noisy conditions, called robust sound event classification, is an especially challenging task that has attracted recent research attention. Another aspect of real-word conditions is the classification of continuous, occluded or overlapping sounds, rather than classification of short isolated sound recordings. This paper addresses the classification of noise-corrupted, occluded, overlapped, continuous sound recordings. It first proposes a standard evaluation task for such sounds based upon a common existing method for evaluating isolated sound classification. It then benchmarks several high performing isolated sound classifiers to operate with continuous sound data by incorporating an energy-based event detection front end. Results are reported for each tested system using the new task, to provide the first analysis of their performance for continuous sound event detection. In addition it proposes and evaluates a novel Bayesian-inspired front end for the segmentation and detection of continuous sound recordings prior to classification. PMID:28892478
Salomons, Erik M.; Lohman, Walter J. A.; Zhou, Han
2016-01-01
Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing. PMID:26789631
Salomons, Erik M; Lohman, Walter J A; Zhou, Han
2016-01-01
Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing.
Continuous robust sound event classification using time-frequency features and deep learning.
McLoughlin, Ian; Zhang, Haomin; Xie, Zhipeng; Song, Yan; Xiao, Wei; Phan, Huy
2017-01-01
The automatic detection and recognition of sound events by computers is a requirement for a number of emerging sensing and human computer interaction technologies. Recent advances in this field have been achieved by machine learning classifiers working in conjunction with time-frequency feature representations. This combination has achieved excellent accuracy for classification of discrete sounds. The ability to recognise sounds under real-world noisy conditions, called robust sound event classification, is an especially challenging task that has attracted recent research attention. Another aspect of real-word conditions is the classification of continuous, occluded or overlapping sounds, rather than classification of short isolated sound recordings. This paper addresses the classification of noise-corrupted, occluded, overlapped, continuous sound recordings. It first proposes a standard evaluation task for such sounds based upon a common existing method for evaluating isolated sound classification. It then benchmarks several high performing isolated sound classifiers to operate with continuous sound data by incorporating an energy-based event detection front end. Results are reported for each tested system using the new task, to provide the first analysis of their performance for continuous sound event detection. In addition it proposes and evaluates a novel Bayesian-inspired front end for the segmentation and detection of continuous sound recordings prior to classification.
Psychoacoustical evaluation of natural and urban sounds in soundscapes.
Yang, Ming; Kang, Jian
2013-07-01
Among various sounds in the environment, natural sounds, such as water sounds and birdsongs, have proven to be highly preferred by humans, but the reasons for these preferences have not been thoroughly researched. This paper explores differences between various natural and urban environmental sounds from the viewpoint of objective measures, especially psychoacoustical parameters. The sound samples used in this study include the recordings of single sound source categories of water, wind, birdsongs, and urban sounds including street music, mechanical sounds, and traffic noise. The samples are analyzed with a number of existing psychoacoustical parameter algorithmic models. Based on hierarchical cluster and principal components analyses of the calculated results, a series of differences has been shown among different sound types in terms of key psychoacoustical parameters. While different sound categories cannot be identified using any single acoustical and psychoacoustical parameter, identification can be made with a group of parameters, as analyzed with artificial neural networks and discriminant functions in this paper. For artificial neural networks, correlations between network predictions and targets using the average and standard deviation data of psychoacoustical parameters as inputs are above 0.95 for the three natural sound categories and above 0.90 for the urban sound category. For sound identification/classification, key parameters are fluctuation strength, loudness, and sharpness.
Assessment and improvement of sound quality in cochlear implant users
Caldwell, Meredith T.; Jiam, Nicole T.
2017-01-01
Objectives Cochlear implants (CIs) have successfully provided speech perception to individuals with sensorineural hearing loss. Recent research has focused on more challenging acoustic stimuli such as music and voice emotion. The purpose of this review is to evaluate and describe sound quality in CI users with the purposes of summarizing novel findings and crucial information about how CI users experience complex sounds. Data Sources Here we review the existing literature on PubMed and Scopus to present what is known about perceptual sound quality in CI users, discuss existing measures of sound quality, explore how sound quality may be effectively studied, and examine potential strategies of improving sound quality in the CI population. Results Sound quality, defined here as the perceived richness of an auditory stimulus, is an attribute of implant‐mediated listening that remains poorly studied. Sound quality is distinct from appraisal, which is generally defined as the subjective likability or pleasantness of a sound. Existing studies suggest that sound quality perception in the CI population is limited by a range of factors, most notably pitch distortion and dynamic range compression. Although there are currently very few objective measures of sound quality, the CI‐MUSHRA has been used as a means of evaluating sound quality. There exist a number of promising strategies to improve sound quality perception in the CI population including apical cochlear stimulation, pitch tuning, and noise reduction processing strategies. Conclusions In the published literature, sound quality perception is severely limited among CI users. Future research should focus on developing systematic, objective, and quantitative sound quality metrics and designing therapies to mitigate poor sound quality perception in CI users. Level of Evidence NA PMID:28894831
On the effectiveness of vocal imitations and verbal descriptions of sounds.
Lemaitre, Guillaume; Rocchesso, Davide
2014-02-01
Describing unidentified sounds with words is a frustrating task and vocally imitating them is often a convenient way to address the issue. This article reports on a study that compared the effectiveness of vocal imitations and verbalizations to communicate different referent sounds. The stimuli included mechanical and synthesized sounds and were selected on the basis of participants' confidence in identifying the cause of the sounds, ranging from easy-to-identify to unidentifiable sounds. The study used a selection of vocal imitations and verbalizations deemed adequate descriptions of the referent sounds. These descriptions were used in a nine-alternative forced-choice experiment: Participants listened to a description and picked one sound from a list of nine possible referent sounds. Results showed that recognition based on verbalizations was maximally effective when the referent sounds were identifiable. Recognition accuracy with verbalizations dropped when identifiability of the sounds decreased. Conversely, recognition accuracy with vocal imitations did not depend on the identifiability of the referent sounds and was as high as with the best verbalizations. This shows that vocal imitations are an effective means of representing and communicating sounds and suggests that they could be used in a number of applications.
Tuning the cognitive environment: Sound masking with 'natural' sounds in open-plan offices
NASA Astrophysics Data System (ADS)
DeLoach, Alana
With the gain in popularity of open-plan office design and the engineering efforts to achieve acoustical comfort for building occupants, a majority of workers still report dissatisfaction in their workplace environment. Office acoustics influence organizational effectiveness, efficiency, and satisfaction through meeting appropriate requirements for speech privacy and ambient sound levels. Implementing a sound masking system is one tried-and-true method of achieving privacy goals. Although each sound masking system is tuned for its specific environment, the signal -- random steady state electronic noise, has remained the same for decades. This research work explores how `natural' sounds may be used as an alternative to this standard masking signal employed so ubiquitously in sound masking systems in the contemporary office environment. As an unobtrusive background sound, possessing the appropriate spectral characteristics, this proposed use of `natural' sounds for masking challenges the convention that masking sounds should be as meaningless as possible. Through the pilot study presented in this work, we hypothesize that `natural' sounds as sound maskers will be as effective at masking distracting background noise as the conventional masking sound, will enhance cognitive functioning, and increase participant (worker) satisfaction.
A Flexible 360-Degree Thermal Sound Source Based on Laser Induced Graphene
Tao, Lu-Qi; Liu, Ying; Ju, Zhen-Yi; Tian, He; Xie, Qian-Yi; Yang, Yi; Ren, Tian-Ling
2016-01-01
A flexible sound source is essential in a whole flexible system. It’s hard to integrate a conventional sound source based on a piezoelectric part into a whole flexible system. Moreover, the sound pressure from the back side of a sound source is usually weaker than that from the front side. With the help of direct laser writing (DLW) technology, the fabrication of a flexible 360-degree thermal sound source becomes possible. A 650-nm low-power laser was used to reduce the graphene oxide (GO). The stripped laser induced graphene thermal sound source was then attached to the surface of a cylindrical bottle so that it could emit sound in a 360-degree direction. The sound pressure level and directivity of the sound source were tested, and the results were in good agreement with the theoretical results. Because of its 360-degree sound field, high flexibility, high efficiency, low cost, and good reliability, the 360-degree thermal acoustic sound source will be widely applied in consumer electronics, multi-media systems, and ultrasonic detection and imaging. PMID:28335239
NASA Astrophysics Data System (ADS)
Waheed, R.; Tarar, W.; Saeed, H. A.
2016-08-01
Sound proof canopies for diesel power generators are fabricated with a layer of sound absorbing material applied to all the inner walls. The physical properties of the majority of commercially available sound proofing materials reveal that a material with high sound absorption coefficient has very low thermal conductivity. Consequently a good sound absorbing material is also a good heat insulator. In this research it has been found through various experiments that ordinary sound proofing materials tend to rise the inside temperature of sound proof enclosure in certain turbo engines by capturing the heat produced by engine and not allowing it to be transferred to atmosphere. The same phenomenon is studied by creating a finite element model of the sound proof enclosure and performing a steady state and transient thermal analysis. The prospects of using aluminium foam as sound proofing material has been studied and it is found that inside temperature of sound proof enclosure can be cut down to safe working temperature of power generator engine without compromise on sound proofing.
NASA Astrophysics Data System (ADS)
Huang, Xianfeng; Meng, Yao; Huang, Riming
2017-10-01
This paper describes a theoretical method for predicting the improvement of the impact sound insulation to a floating floor with the resilient interlayer. Statistical energy analysis (SEA) model, which is skilful in calculating the floor impact sound, is set up for calculating the reduction in impact sound pressure level in downstairs room. The sound transmission paths which include direct path and flanking paths are analyzed to find the dominant one; the factors that affect impact sound reduction for a floating floor are explored. Then, the impact sound level in downstairs room is determined and comparisons between predicted and measured data are conducted. It is indicated that for the impact sound transmission across a floating floor, the flanking path impact sound level contribute tiny influence on overall sound level in downstairs room, and a floating floor with low stiffness interlayer exhibits favorable sound insulation on direct path. The SEA approach applies to the floating floors with resilient interlayers, which are experimentally verified, provides a guidance in sound insulation design.
Effect of real-world sounds on protein crystallization.
Zhang, Chen-Yan; Liu, Yue; Tian, Xu-Hua; Liu, Wen-Jing; Li, Xiao-Yu; Yang, Li-Xue; Jiang, Han-Jun; Han, Chong; Chen, Ke-An; Yin, Da-Chuan
2018-06-01
Protein crystallization is sensitive to the environment, while audible sound, as a physical and environmental factor during the entire process, is always ignored. We have previously reported that protein crystallization can be affected by a computer-generated monotonous sound with fixed frequency and amplitude. However, real-world sounds are not so simple but are complicated by parameters (frequency, amplitude, timbre, etc.) that vary over time. In this work, from three sound categories (music, speech, and environmental sound), we selected 26 different sounds and evaluated their effects on protein crystallization. The correlation between the sound parameters and the crystallization success rate was studied mathematically. The results showed that the real-world sounds, similar to the artificial monotonous sounds, could not only affect protein crystallization, but also improve crystal quality. Crystallization was dependent not only on the frequency, amplitude, volume, irradiation time, and overall energy of the sounds but also on their spectral characteristics. Based on these results, we suggest that intentionally applying environmental sound may be a simple and useful tool to promote protein crystallization. Copyright © 2018. Published by Elsevier B.V.
Sun, Xiuwen; Li, Xiaoling; Ji, Lingyu; Han, Feng; Wang, Huifen; Liu, Yang; Chen, Yao; Lou, Zhiyuan; Li, Zhuoyun
2018-01-01
Based on the existing research on sound symbolism and crossmodal correspondence, this study proposed an extended research on cross-modal correspondence between various sound attributes and color properties in a group of non-synesthetes. In Experiment 1, we assessed the associations between each property of sounds and colors. Twenty sounds with five auditory properties (pitch, roughness, sharpness, tempo and discontinuity), each varied in four levels, were used as the sound stimuli. Forty-nine colors with different hues, saturation and brightness were used to match to those sounds. Result revealed that besides pitch and tempo, roughness and sharpness also played roles in sound-color correspondence. Reaction times of sound-hue were a little longer than the reaction times of sound-lightness. In Experiment 2, a speeded target discrimination task was used to assess whether the associations between sound attributes and color properties could invoke natural cross-modal correspondence and improve participants' cognitive efficiency in cognitive tasks. Several typical sound-color pairings were selected according to the results of Experiment 1. Participants were divided into two groups (congruent and incongruent). In each trial participants had to judge whether the presented color could appropriately be associated with the sound stimuli. Result revealed that participants responded more quickly and accurately in the congruent group than in the incongruent group. It was also found that there was no significant difference in reaction times and error rates between sound-hue and sound-lightness. The results of Experiment 1 and 2 indicate the existence of a robust crossmodal correspondence between multiple attributes of sound and color, which also has strong influence on cognitive tasks. The inconsistency of the reaction times between sound-hue and sound-lightness in Experiment 1 and 2 is probably owing to the difference in experimental protocol, which indicates that the complexity of experiment design may be an important factor in crossmodal correspondence phenomena.
Sun, Xiuwen; Ji, Lingyu; Han, Feng; Wang, Huifen; Liu, Yang; Chen, Yao; Lou, Zhiyuan; Li, Zhuoyun
2018-01-01
Based on the existing research on sound symbolism and crossmodal correspondence, this study proposed an extended research on cross-modal correspondence between various sound attributes and color properties in a group of non-synesthetes. In Experiment 1, we assessed the associations between each property of sounds and colors. Twenty sounds with five auditory properties (pitch, roughness, sharpness, tempo and discontinuity), each varied in four levels, were used as the sound stimuli. Forty-nine colors with different hues, saturation and brightness were used to match to those sounds. Result revealed that besides pitch and tempo, roughness and sharpness also played roles in sound-color correspondence. Reaction times of sound-hue were a little longer than the reaction times of sound-lightness. In Experiment 2, a speeded target discrimination task was used to assess whether the associations between sound attributes and color properties could invoke natural cross-modal correspondence and improve participants’ cognitive efficiency in cognitive tasks. Several typical sound-color pairings were selected according to the results of Experiment 1. Participants were divided into two groups (congruent and incongruent). In each trial participants had to judge whether the presented color could appropriately be associated with the sound stimuli. Result revealed that participants responded more quickly and accurately in the congruent group than in the incongruent group. It was also found that there was no significant difference in reaction times and error rates between sound-hue and sound-lightness. The results of Experiment 1 and 2 indicate the existence of a robust crossmodal correspondence between multiple attributes of sound and color, which also has strong influence on cognitive tasks. The inconsistency of the reaction times between sound-hue and sound-lightness in Experiment 1 and 2 is probably owing to the difference in experimental protocol, which indicates that the complexity of experiment design may be an important factor in crossmodal correspondence phenomena. PMID:29507834
Kellam, Barbara; Bhatia, Jatinder
2009-08-01
Few noise measurement studies in the neonatal intensive care unit have reported sound frequencies within incubators. Sound frequencies within incubators are markedly different from sound frequencies within the gravid uterus. This article reports the results of sound spectral analysis (SSA) within unoccupied incubators under control and treatment conditions. SSA indicated that acoustical foam panels (treatment condition) markedly reduced sound frequencies > or =500 Hz when compared with the control condition. The main findings of this study (a) illustrate the need to monitor high-frequency sound within incubators and (b) indicate one method to reduce atypical sound exposure within incubators.
NASA Astrophysics Data System (ADS)
Eshach, Haim
2014-06-01
This article describes the development and field test of the Sound Concept Inventory Instrument (SCII), designed to measure middle school students' concepts of sound. The instrument was designed based on known students' difficulties in understanding sound and the history of science related to sound and focuses on two main aspects of sound: sound has material properties, and sound has process properties. The final SCII consists of 71 statements that respondents rate as either true or false and also indicate their confidence on a five-point scale. Administration to 355 middle school students resulted in a Cronbach alpha of 0.906, suggesting a high reliability. In addition, the average percentage of students' answers to statements that associate sound with material properties is significantly higher than the average percentage of statements associating sound with process properties (p <0.001). The SCII is a valid and reliable tool that can be used to determine students' conceptions of sound.
Neighing, barking, and drumming horses-object related sounds help and hinder picture naming.
Mädebach, Andreas; Wöhner, Stefan; Kieseler, Marie-Luise; Jescheniak, Jörg D
2017-09-01
The study presented here investigated how environmental sounds influence picture naming. In a series of four experiments participants named pictures (e.g., the picture of a horse) while hearing task-irrelevant sounds (e.g., neighing, barking, or drumming). Experiments 1 and 2 established two findings, facilitation from congruent sounds (e.g., picture: horse, sound: neighing) and interference from semantically related sounds (e.g., sound: barking), both relative to unrelated sounds (e.g., sound: drumming). Experiment 3 replicated the effects in a situation in which participants were not familiarized with the sounds prior to the experiment. Experiment 4 replicated the congruency facilitation effect, but showed that semantic interference was not obtained with distractor sounds which were not associated with target pictures (i.e., were not part of the response set). The general pattern of facilitation from congruent sound distractors and interference from semantically related sound distractors resembles the pattern commonly observed with distractor words. This parallelism suggests that the underlying processes are not specific to either distractor words or distractor sounds but instead reflect general aspects of semantic-lexical selection in language production. The results indicate that language production theories need to include a competitive selection mechanism at either the lexical processing stage, or the prelexical processing stage, or both. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Huber, Annika; Barber, Anjuli L A; Faragó, Tamás; Müller, Corsin A; Huber, Ludwig
2017-07-01
Emotional contagion, a basic component of empathy defined as emotional state-matching between individuals, has previously been shown in dogs even upon solely hearing negative emotional sounds of humans or conspecifics. The current investigation further sheds light on this phenomenon by directly contrasting emotional sounds of both species (humans and dogs) as well as opposed valences (positive and negative) to gain insights into intra- and interspecies empathy as well as differences between positively and negatively valenced sounds. Different types of sounds were played back to measure the influence of three dimensions on the dogs' behavioural response. We found that dogs behaved differently after hearing non-emotional sounds of their environment compared to emotional sounds of humans and conspecifics ("Emotionality" dimension), but the subjects responded similarly to human and conspecific sounds ("Species" dimension). However, dogs expressed more freezing behaviour after conspecific sounds, independent of the valence. Comparing positively with negatively valenced sounds of both species ("Valence" dimension), we found that, independent of the species from which the sound originated, dogs expressed more behavioural indicators for arousal and negatively valenced states after hearing negative emotional sounds. This response pattern indicates emotional state-matching or emotional contagion for negative sounds of humans and conspecifics. It furthermore indicates that dogs recognized the different valences of the emotional sounds, which is a promising finding for future studies on empathy for positive emotional states in dogs.
Aubert, A E; Denys, B G; Meno, F; Reddy, P S
1985-05-01
Several investigators have noted external gallop sounds to be of higher amplitude than their corresponding internal sounds (S3 and S4). In this study we hoped to determine if S3 and S4 are transmitted in the same manner as S1. In 11 closed-chest dogs, external (apical) and left ventricular pressures and sounds were recorded simultaneously with transducers with identical sensitivity and frequency responses. Volume and pressure overload and positive and negative inotropic drugs were used to generate gallop sounds. Recordings were made in the control state and after the various interventions. S3 and S4 were recorded in 17 experiments each. The amplitude of the external S1 was uniformly higher than that of internal S1 and internal gallop sounds were inconspicuous. With use of Fourier transforms, the gain function was determined by comparing internal to external S1. By inverse transform, the amplitude of the internal gallop sounds was predicted from external sounds. The internal sounds of significant amplitude were predicted in many instances, but the actual recordings showed no conspicuous sounds. The absence of internal gallop sounds of expected amplitude as calculated from the external gallop sounds and the gain function derived from the comparison of internal and external S1 make it very unlikely that external gallop sounds are derived from internal sounds.
Activation of auditory cortex by anticipating and hearing emotional sounds: an MEG study.
Yokosawa, Koichi; Pamilo, Siina; Hirvenkari, Lotta; Hari, Riitta; Pihko, Elina
2013-01-01
To study how auditory cortical processing is affected by anticipating and hearing of long emotional sounds, we recorded auditory evoked magnetic fields with a whole-scalp MEG device from 15 healthy adults who were listening to emotional or neutral sounds. Pleasant, unpleasant, or neutral sounds, each lasting for 6 s, were played in a random order, preceded by 100-ms cue tones (0.5, 1, or 2 kHz) 2 s before the onset of the sound. The cue tones, indicating the valence of the upcoming emotional sounds, evoked typical transient N100m responses in the auditory cortex. During the rest of the anticipation period (until the beginning of the emotional sound), auditory cortices of both hemispheres generated slow shifts of the same polarity as N100m. During anticipation, the relative strengths of the auditory-cortex signals depended on the upcoming sound: towards the end of the anticipation period the activity became stronger when the subject was anticipating emotional rather than neutral sounds. During the actual emotional and neutral sounds, sustained fields were predominant in the left hemisphere for all sounds. The measured DC MEG signals during both anticipation and hearing of emotional sounds implied that following the cue that indicates the valence of the upcoming sound, the auditory-cortex activity is modulated by the upcoming sound category during the anticipation period.
Activation of Auditory Cortex by Anticipating and Hearing Emotional Sounds: An MEG Study
Yokosawa, Koichi; Pamilo, Siina; Hirvenkari, Lotta; Hari, Riitta; Pihko, Elina
2013-01-01
To study how auditory cortical processing is affected by anticipating and hearing of long emotional sounds, we recorded auditory evoked magnetic fields with a whole-scalp MEG device from 15 healthy adults who were listening to emotional or neutral sounds. Pleasant, unpleasant, or neutral sounds, each lasting for 6 s, were played in a random order, preceded by 100-ms cue tones (0.5, 1, or 2 kHz) 2 s before the onset of the sound. The cue tones, indicating the valence of the upcoming emotional sounds, evoked typical transient N100m responses in the auditory cortex. During the rest of the anticipation period (until the beginning of the emotional sound), auditory cortices of both hemispheres generated slow shifts of the same polarity as N100m. During anticipation, the relative strengths of the auditory-cortex signals depended on the upcoming sound: towards the end of the anticipation period the activity became stronger when the subject was anticipating emotional rather than neutral sounds. During the actual emotional and neutral sounds, sustained fields were predominant in the left hemisphere for all sounds. The measured DC MEG signals during both anticipation and hearing of emotional sounds implied that following the cue that indicates the valence of the upcoming sound, the auditory-cortex activity is modulated by the upcoming sound category during the anticipation period. PMID:24278270
Radiation characteristics of multiple and single sound hole vihuelas and a classical guitar.
Bader, Rolf
2012-01-01
Two recently built vihuelas, quasi-replicas of the Spanish Renaissance guitar, one with a small body and one sound hole and one with a large body with five sound holes, together with a classical guitar are investigated. Frequency dependent radiation strengths are measured using a 128 microphone array, back-propagating the frequency dependent sound field upon the body surface. All three instruments have a strong sound hole radiation within the low frequency range. Here the five tone holes vihuela has a much wider frequency region of strong sound hole radiation up to about 500 Hz, whereas the single hole instruments only have strong sound hole radiations up to about 300 Hz due to the enlarged radiation area of the sound holes. The strong broadband radiation of the five sound hole vihuela up to about 500 Hz is also caused by the sound hole phases, showing very consistent in-phase relations up to this frequency range. Also the radiation strength of the sound holes placed nearer to the center of the sound box are much stronger than those near the ribs, pointing to a strong position dependency of sound hole to radiation strength. The Helmholtz resonance frequency of the five sound hole vihuela is influenced by this difference in radiation strength but not by the rosettas, which only have a slight effect on the Helmholtz frequency. © 2012 Acoustical Society of America.
ERIC Educational Resources Information Center
Allen, Robert L.; And Others
This handbook introduces the important correspondences existing between English sounds and English spelling patterns. The lessons present the vowel sounds, one by one, along with systematically selected consonant sounds, and show how each sound or combination of sounds is usually spelled in English words. Irregularly spelled words are introduced…
Nearshore Birds in Puget Sound
2006-05-01
Published by Seattle District, U.S. Army Corps of Engineers, Seattle, Washington. Kriete, B. 2007. Orcas in Puget Sound . Puget Sound Near- shore...Technical Report 2006-05 Puget Sound Nearshore Partnership I Nearshore Birds in Puget Sound Prepared in...support of the Puget Sound Nearshore Partnership Joseph B. Buchanan Washington Department of Fish and Wildlife Technical Report 2006-05 ii
Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.
2003-01-01
A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.
A simple computer-based measurement and analysis system of pulmonary auscultation sounds.
Polat, Hüseyin; Güler, Inan
2004-12-01
Listening to various lung sounds has proven to be an important diagnostic tool for detecting and monitoring certain types of lung diseases. In this study a computer-based system has been designed for easy measurement and analysis of lung sound using the software package DasyLAB. The designed system presents the following features: it is able to digitally record the lung sounds which are captured with an electronic stethoscope plugged to a sound card on a portable computer, display the lung sound waveform for auscultation sites, record the lung sound into the ASCII format, acoustically reproduce the lung sound, edit and print the sound waveforms, display its time-expanded waveform, compute the Fast Fourier Transform (FFT), and display the power spectrum and spectrogram.
Holzrichter, John F; Burnett, Greg C; Ng, Lawrence C
2013-05-21
A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.
Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.
2007-10-16
A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.
Statistical learning of music- and language-like sequences and tolerance for spectral shifts.
Daikoku, Tatsuya; Yatomi, Yutaka; Yumoto, Masato
2015-02-01
In our previous study (Daikoku, Yatomi, & Yumoto, 2014), we demonstrated that the N1m response could be a marker for the statistical learning process of pitch sequence, in which each tone was ordered by a Markov stochastic model. The aim of the present study was to investigate how the statistical learning of music- and language-like auditory sequences is reflected in the N1m responses based on the assumption that both language and music share domain generality. By using vowel sounds generated by a formant synthesizer, we devised music- and language-like auditory sequences in which higher-ordered transitional rules were embedded according to a Markov stochastic model by controlling fundamental (F0) and/or formant frequencies (F1-F2). In each sequence, F0 and/or F1-F2 were spectrally shifted in the last one-third of the tone sequence. Neuromagnetic responses to the tone sequences were recorded from 14 right-handed normal volunteers. In the music- and language-like sequences with pitch change, the N1m responses to the tones that appeared with higher transitional probability were significantly decreased compared with the responses to the tones that appeared with lower transitional probability within the first two-thirds of each sequence. Moreover, the amplitude difference was even retained within the last one-third of the sequence after the spectral shifts. However, in the language-like sequence without pitch change, no significant difference could be detected. The pitch change may facilitate the statistical learning in language and music. Statistically acquired knowledge may be appropriated to process altered auditory sequences with spectral shifts. The relative processing of spectral sequences may be a domain-general auditory mechanism that is innate to humans. Copyright © 2014 Elsevier Inc. All rights reserved.
How can PPOs control prices without violating antitrust laws?
Fried, J M
1984-03-01
Preferred provider organizations (PPOs) have caused concern because they raise the question whether providers can establish mechanisms to control the price of medical care without violating antitrust laws. The U.S. Supreme Court recently decided in Arizona v. Maricopa County Medical Society that the practices of a physicians' organization which set fee schedules by majority vote constituted price fixing because "independent competing entrepreneurs" made the agreements. The decision implies that PPOs must carefully structure collective efforts to set prices in order to avoid unlawful agreement among competitors. To avoid antitrust exposure, hospitals may independently determine prices and contract individually with providers, or they may act as brokers for individual physicians, establishing fees and claims-processing procedures and then contracting with physicians who agree to these requirements. Setting fees independently may be difficult, however, since hospitals need to know what payment physicians will accept. Thus some physician involvement is probably inevitable. No antitrust liability results, however, if individual physicians are sampled in an information-gathering process but do not collectively set fees. In addition, a PPO that is structured as a partnership or other joint arrangement involving true risk sharing should withstand antitrust challenge. In recent business review letters, the Department of Justice approved two different PPO structures: A Hospital Corporation of America subsidiary would contract (nonexclusively) with providers, hospitals, and third party payers to treat the third party payers' beneficiaries at discounted rates. The charges would be negotiated individually with each physician and hospital. A management consultant firm would act as an intermediary between providers and third party payers, negotiating patient discounts but not participating in fee setting. A PPO need not be structured in every respect like these programs. Individual situations vary, and with sound antitrust advice, PPOs can avoid legal pitfalls.
Material sound source localization through headphones
NASA Astrophysics Data System (ADS)
Dunai, Larisa; Peris-Fajarnes, Guillermo; Lengua, Ismael Lengua; Montaña, Ignacio Tortajada
2012-09-01
In the present paper a study of sound localization is carried out, considering two different sounds emitted from different hit materials (wood and bongo) as well as a Delta sound. The motivation of this research is to study how humans localize sounds coming from different materials, with the purpose of a future implementation of the acoustic sounds with better localization features in navigation aid systems or training audio-games suited for blind people. Wood and bongo sounds are recorded after hitting two objects made of these materials. Afterwards, they are analysed and processed. On the other hand, the Delta sound (click) is generated by using the Adobe Audition software, considering a frequency of 44.1 kHz. All sounds are analysed and convolved with previously measured non-individual Head-Related Transfer Functions both for an anechoic environment and for an environment with reverberation. The First Choice method is used in this experiment. Subjects are asked to localize the source position of the sound listened through the headphones, by using a graphic user interface. The analyses of the recorded data reveal that no significant differences are obtained either when considering the nature of the sounds (wood, bongo, Delta) or their environmental context (with or without reverberation). The localization accuracies for the anechoic sounds are: wood 90.19%, bongo 92.96% and Delta sound 89.59%, whereas for the sounds with reverberation the results are: wood 90.59%, bongo 92.63% and Delta sound 90.91%. According to these data, we can conclude that even when considering the reverberation effect, the localization accuracy does not significantly increase.
Neonatal incubators: a toxic sound environment for the preterm infant?*.
Marik, Paul E; Fuller, Christopher; Levitov, Alexander; Moll, Elizabeth
2012-11-01
High sound pressure levels may be harmful to the maturing newborn. Current guidelines suggest that the sound pressure levels within a neonatal intensive care unit should not exceed 45 dB(A). It is likely that environmental noise as well as the noise generated by the incubator fan and respiratory equipment may contribute to the total sound pressure levels. Knowledge of the contribution of each component and source is important to develop effective strategies to reduce noise within the incubator. The objectives of this study were to determine the sound levels, sound spectra, and major sources of sound within a modern neonatal incubator (Giraffe Omnibed; GE Healthcare, Helsinki, Finland) using a sound simulation study to replicate the conditions of a preterm infant undergoing high-frequency jet ventilation (Life Pulse, Bunnell, UT). Using advanced sound data acquisition and signal processing equipment, we measured and analyzed the sound level at a dummy infant's ear and at the head level outside the enclosure. The sound data time histories were digitally acquired and processed using a digital Fast Fourier Transform algorithm to provide spectra of the sound and cumulative sound pressure levels (dBA). The simulation was done with the incubator cooling fan and ventilator switched on or off. In addition, tests were carried out with the enclosure sides closed and hood down and then with the enclosure sides open and the hood up to determine the importance of interior incubator reverberance on the interior sound levels With all the equipment off and the hood down, the sound pressure levels were 53 dB(A) inside the incubator. The sound pressure levels increased to 68 dB(A) with all equipment switched on (approximately 10 times louder than recommended). The sound intensity was 6.0 × 10(-8) watts/m(2); this sound level is roughly comparable with that generated by a kitchen exhaust fan on high. Turning the ventilator off reduced the overall sound pressure levels to 64 dB(A) and the sound pressure levels in the low-frequency band of 0 to 100 Hz were reduced by 10 dB(A). The incubator fan generated tones at 200, 400, and 600 Hz that raised the sound level by approximately 2 dB(A)-3 dB(A). Opening the enclosure (with all equipment turned on) reduced the sound levels above 50 Hz by reducing the revereberance within the enclosure. The sound levels, especially at low frequencies, within a modern incubator may reach levels that are likely to be harmful to the developing newborn. Much of the noise is at low frequencies and thus difficult to reduce by conventional means. Therefore, advanced forms of noise control are needed to address this issue.
33 CFR 67.10-40 - Sound signals authorized for use prior to January 1, 1973.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and 67.10-10, if the sound signal has a minimum sound pressure level as specified in Table A of... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Sound signals authorized for use... STRUCTURES General Requirements for Sound signals § 67.10-40 Sound signals authorized for use prior to...
33 CFR 67.10-15 - Approval of sound signals.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Approval of sound signals. 67.10... Sound signals § 67.10-15 Approval of sound signals. (a) The Coast Guard approves a sound signal if: (1) It meets the requirements for sound signals in § 67.10-1 (a), (b), (c), (d), and (e) when tested...
ERIC Educational Resources Information Center
Eshach, Haim
2014-01-01
This article describes the development and field test of the Sound Concept Inventory Instrument (SCII), designed to measure middle school students' concepts of sound. The instrument was designed based on known students' difficulties in understanding sound and the history of science related to sound and focuses on two main aspects of sound: sound…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
...-AA08 Special Local Regulation, Swim Across the Sound, Long Island Sound, Port Jefferson, NY to Captain... permanent Special Local Regulation on the navigable waters of Long Island Sound between Port Jefferson, NY and Captain's Cove Seaport, Bridgeport, CT due to the annual Swim Across the Sound event. The proposed...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
...-AA08 Special Local Regulation; Swim Across the Sound, Long Island Sound, Port Jefferson, NY to Captain... Guard is establishing a permanent Special Local Regulation on the navigable waters of Long Island Sound... Sound event. This special local regulation is necessary to provide for the safety of life by protecting...
33 CFR 67.10-15 - Approval of sound signals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Approval of sound signals. 67.10... Sound signals § 67.10-15 Approval of sound signals. (a) The Coast Guard approves a sound signal if: (1) It meets the requirements for sound signals in § 67.10-1 (a), (b), (c), (d), and (e) when tested...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false In Puget Sound and its approaches: Approaches to Puget Sound other than Rosario Strait. 167.1322 Section 167.1322 Navigation and Navigable... Coast § 167.1322 In Puget Sound and its approaches: Approaches to Puget Sound other than Rosario Strait...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false In Puget Sound and its approaches: Approaches to Puget Sound other than Rosario Strait. 167.1322 Section 167.1322 Navigation and Navigable... Coast § 167.1322 In Puget Sound and its approaches: Approaches to Puget Sound other than Rosario Strait...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false In Puget Sound and its approaches: Approaches to Puget Sound other than Rosario Strait. 167.1322 Section 167.1322 Navigation and Navigable... Coast § 167.1322 In Puget Sound and its approaches: Approaches to Puget Sound other than Rosario Strait...
Dr. Seuss's Sound Words: Playing with Phonics and Spelling.
ERIC Educational Resources Information Center
Gardner, Traci
Boom! Br-r-ring! Cluck! Moo!--exciting sounds are everywhere. Whether visiting online sites that play sounds or taking a "sound hike," ask your students to notice the sounds they hear, then write their own book, using sound words, based on Dr. Seuss's "Mr. Brown Can MOO! Can You?" During the three 45-minute sessions, grade K-2…
33 CFR 67.10-15 - Approval of sound signals.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Approval of sound signals. 67.10... Sound signals § 67.10-15 Approval of sound signals. (a) The Coast Guard approves a sound signal if: (1) It meets the requirements for sound signals in § 67.10-1 (a), (b), (c), (d), and (e) when tested...
33 CFR 67.10-15 - Approval of sound signals.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Approval of sound signals. 67.10... Sound signals § 67.10-15 Approval of sound signals. (a) The Coast Guard approves a sound signal if: (1) It meets the requirements for sound signals in § 67.10-1 (a), (b), (c), (d), and (e) when tested...
33 CFR 67.10-15 - Approval of sound signals.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Approval of sound signals. 67.10... Sound signals § 67.10-15 Approval of sound signals. (a) The Coast Guard approves a sound signal if: (1) It meets the requirements for sound signals in § 67.10-1 (a), (b), (c), (d), and (e) when tested...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false In Puget Sound and its approaches: Approaches to Puget Sound other than Rosario Strait. 167.1322 Section 167.1322 Navigation and Navigable... Coast § 167.1322 In Puget Sound and its approaches: Approaches to Puget Sound other than Rosario Strait...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Swim Across the Sound, Long Island Sound, Port Jefferson, NY to Captain's Cove Seaport, Bridgeport, CT. 100.121 Section 100.121... SAFETY OF LIFE ON NAVIGABLE WATERS § 100.121 Swim Across the Sound, Long Island Sound, Port Jefferson, NY...
Sound absorption of metallic sound absorbers fabricated via the selective laser melting process
NASA Astrophysics Data System (ADS)
Cheng, Li-Wei; Cheng, Chung-Wei; Chung, Kuo-Chun; Kam, Tai-Yan
2017-01-01
The sound absorption capability of metallic sound absorbers fabricated using the additive manufacturing (selective laser melting) method is investigated via both the experimental and theoretical approaches. The metallic sound absorption structures composed of periodic cubic cells were made of laser-melted Ti6Al4 V powder. The acoustic impedance equations with different frequency-independent and frequency-dependent end corrections factors are employed to calculate the theoretical sound absorption coefficients of the metallic sound absorption structures. The calculated sound absorption coefficients are in close agreement with the experimental results for the frequencies ranging from 2 to 13 kHz.
WODA Technical Guidance on Underwater Sound from Dredging.
Thomsen, Frank; Borsani, Fabrizio; Clarke, Douglas; de Jong, Christ; de Wit, Pim; Goethals, Fredrik; Holtkamp, Martine; Martin, Elena San; Spadaro, Philip; van Raalte, Gerard; Victor, George Yesu Vedha; Jensen, Anders
2016-01-01
The World Organization of Dredging Associations (WODA) has identified underwater sound as an environmental issue that needs further consideration. A WODA Expert Group on Underwater Sound (WEGUS) prepared a guidance paper in 2013 on dredging sound, including a summary of potential impacts on aquatic biota and advice on underwater sound monitoring procedures. The paper follows a risk-based approach and provides guidance for standardization of acoustic terminology and methods for data collection and analysis. Furthermore, the literature on dredging-related sounds and the effects of dredging sounds on marine life is surveyed and guidance on the management of dredging-related sound risks is provided.
Some aspects of coupling-induced sound absorption in enclosures.
Sum, K S; Pan, J
2003-08-01
It is known that the coupling between a modally reactive boundary structure of an enclosure and the enclosed sound field induces absorption in the sound field. However, the effect of this absorption on the sound-field response can vary significantly, even when material properties of the structure and dimensions of the coupled system are not changed. Although there have been numerous investigations of coupling between a structure and an enclosed sound field, little work has been done in the area of sound absorption induced by the coupling. Therefore, characteristics of the absorption are not well understood and the extent of its influence on the behavior of the sound-field response is not clearly known. In this paper, the coupling of a boundary structure and an enclosed sound field in frequency bands above the low-frequency range is considered. Three aspects of the coupling-induced sound absorption are studied namely, the effects of exciting either the structure or the sound field directly, damping in the uncoupled sound field and damping in the uncoupled structure. The results provide an understanding of some features of the coupling-induced absorption and its significance to the sound-field response.
The influence of company identity on the perception of vehicle sounds.
Humphreys, Louise; Giudice, Sebastiano; Jennings, Paul; Cain, Rebecca; Song, Wookeun; Dunne, Garry
2011-04-01
In order to determine how the interior of a car should sound, automotive manufacturers often rely on obtaining data from individual evaluations of vehicle sounds. Company identity could play a role in these appraisals, particularly when individuals are comparing cars from opposite ends of the performance spectrum. This research addressed the question: does company identity influence the evaluation of automotive sounds belonging to cars of a similar performance level and from the same market segment? Participants listened to car sounds from two competing manufacturers, together with control sounds. Before listening to each sound, participants were presented with the correct company identity for that sound, the incorrect identity or were given no information about the identity of the sound. The results showed that company identity did not influence appraisals of high performance cars belonging to different manufacturers. These results have positive implications for methodologies employed to capture the perceptions of individuals. STATEMENT OF RELEVANCE: A challenge in automotive design is to set appropriate targets for vehicle sounds, relying on understanding subjective reactions of individuals to such sounds. This paper assesses the role of company identity in influencing these subjective reactions and will guide sound evaluation studies, in which the manufacturer is often apparent.
Sound and vibration sensitivity of VIIIth nerve fibers in the grassfrog, Rana temporaria.
Christensen-Dalsgaard, J; Jørgensen, M B
1996-10-01
We have studied the sound and vibration sensitivity of 164 amphibian papilla fibers in the VIIIth nerve of the grassfrog, Rana temporaria. The VIIIth nerve was exposed using a dorsal approach. The frogs were placed in a natural sitting posture and stimulated by free-field sound. Furthermore, the animals were stimulated with dorso-ventral vibrations, and the sound-induced vertical vibrations in the setup could be canceled by emitting vibrations in antiphase from the vibration exciter. All low-frequency fibers responded to both sound and vibration with sound thresholds from 23 dB SPL and vibration thresholds from 0.02 cm/s2. The sound and vibration sensitivity was compared for each fiber using the offset between the rate-level curves for sound and vibration stimulation as a measure of relative vibration sensitivity. When measured in this way relative vibration sensitivity decreases with frequency from 42 dB at 100 Hz to 25 dB at 400 Hz. Since sound thresholds decrease from 72 dB SPL at 100 Hz to 50 dB SPL at 400 Hz the decrease in relative vibration sensitivity reflects an increase in sound sensitivity with frequency, probably due to enhanced tympanic sensitivity at higher frequencies. In contrast, absolute vibration sensitivity is constant in most of the frequency range studied. Only small effects result from the cancellation of sound-induced vibrations. The reason for this probably is that the maximal induced vibrations in the present setup are 6-10 dB below the fibers' vibration threshold at the threshold for sound. However, these results are only valid for the present physical configuration of the setup and the high vibration-sensitivities of the fibers warrant caution whenever the auditory fibers are stimulated with free-field sound. Thus, the experiments suggest that the low-frequency sound sensitivity is not caused by sound-induced vertical vibrations. Instead, the low-frequency sound sensitivity is either tympanic or mediated through bone conduction or sound-induced pulsations of the lungs.
McGinley, Matthew J.; Liberman, M. Charles; Bal, Ramazan; Oertel, Donata
2012-01-01
Broadband transient sounds, such as clicks and consonants, activate a traveling wave in the cochlea. This wave evokes firing in auditory nerve fibers that are tuned to high frequencies several milliseconds earlier than in fibers tuned to low frequencies. Despite this substantial traveling wave delay, octopus cells in the brainstem receive broadband input and respond to clicks with submillisecond temporal precision. The dendrites of octopus cells lie perpendicular to the tonotopically organized array of auditory nerve fibers, placing the earliest arriving inputs most distally and the latest arriving closest to the soma. Here, we test the hypothesis that the topographic arrangement of synaptic inputs on dendrites of octopus cells allows octopus cells to compensate the traveling wave delay. We show that in mice the full cochlear traveling wave delay is 1.6 ms. Because the dendrites of each octopus cell spread across about one third of the tonotopic axis, a click evokes a soma directed sweep of synaptic input lasting 0.5 ms in individual octopus cells. Morphologically and biophysically realistic, computational models of octopus cells show that soma-directed sweeps with durations matching in vivo measurements result in the largest and sharpest somatic excitatory postsynaptic potentials (EPSPs). A low input resistance and activation of a low-voltage-activated potassium conductance that are characteristic of octopus cells are important determinants of sweep sensitivity. We conclude that octopus cells have dendritic morphologies and biophysics tailored to accomplish the precise encoding of broadband transient sounds. PMID:22764237
Flooding dynamics on the lower Amazon floodplain
NASA Astrophysics Data System (ADS)
Rudorff, C.; Melack, J. M.; Bates, P. D.
2013-05-01
We analyzed flooding dynamics of a large floodplain lake in the lower reach of the Amazon River for the period between 1995 through 2010. Floodplain inundation was simulated using the LISFLOOD-FP model, which combines one-dimensional river routing with two-dimensional overland flow, and a local hydrological model. Accurate representation of floodplain flows and inundation extent depends on the quality of the digital elevation model (DEM). We combined digital topography (derived from the Shuttle Radar Topography Mission) with extensive floodplain echo-sounding data to generate a hydraulically sound DEM. Analysis of daily water balances revealed that the dominant source of inflow alternated seasonally among direct rain and local runoff (October through January), Amazon River (March through August), and seepage (September). As inflows from the Amazon River increase during the rising limb of the hydrograph, regional floodwaters encounter the floodplain partially inundated from local hydrological inputs. At peak flow the floodplain routes, on average, 2.5% of the total discharge for this reach. The falling limb of the hydrograph coincides with the locally dry period, allowing seepage of water stored in sediments to become a dominant source. The average annual inflow from the Amazon River was 58.8 km3 (SD = 33.5), representing more than three thirds (80%) of inputs from all sources, with substantial inter-annual variability. The average annual net export of water from the floodplain to the Amazon River was 7.9 km3 (SD = 2.7).
Discrimination of sound source velocity in human listeners
NASA Astrophysics Data System (ADS)
Carlile, Simon; Best, Virginia
2002-02-01
The ability of six human subjects to discriminate the velocity of moving sound sources was examined using broadband stimuli presented in virtual auditory space. Subjects were presented with two successive stimuli moving in the frontal horizontal plane level with the ears, and were required to judge which moved the fastest. Discrimination thresholds were calculated for reference velocities of 15, 30, and 60 degrees/s under three stimulus conditions. In one condition, stimuli were centered on 0° azimuth and their duration varied randomly to prevent subjects from using displacement as an indicator of velocity. Performance varied between subjects giving median thresholds of 5.5, 9.1, and 14.8 degrees/s for the three reference velocities, respectively. In a second condition, pairs of stimuli were presented for a constant duration and subjects would have been able to use displacement to assist their judgment as faster stimuli traveled further. It was found that thresholds decreased significantly for all velocities (3.8, 7.1, and 9.8 degrees/s), suggesting that the subjects were using the additional displacement cue. The third condition differed from the second in that the stimuli were ``anchored'' on the same starting location rather than centered on the midline, thus doubling the spatial offset between stimulus endpoints. Subjects showed the lowest thresholds in this condition (2.9, 4.0, and 7.0 degrees/s). The results suggested that the auditory system is sensitive to velocity per se, but velocity comparisons are greatly aided if displacement cues are present.
Cochlear transducer operating point adaptation.
Zou, Yuan; Zheng, Jiefu; Ren, Tianying; Nuttall, Alfred
2006-04-01
The operating point (OP) of outer hair cell (OHC) mechanotransduction can be defined as any shift away from the center position on the transduction function. It is a dc offset that can be described by percentage of the maximum transduction current or as an equivalent dc pressure in the ear canal. The change of OP can be determined from the changes of the second and third harmonics of the cochlear microphonic (CM) following a calibration of its initial value. We found that the initial OP was dependent on sound level and cochlear sensitivity. From CM generated by a lower sound level at 74 dB SPL to avoid saturation and suppression of basal turn cochlear amplification, the OHC OP was at constant 57% of the maximum transduction current (an ear canal pressure of -0.1 Pa). To perturb the OP, a constant force was applied to the bony shell of the cochlea at the 18 kHz best frequency location using a blunt probe. The force applied over the scala tympani induced an OP change as if the organ of Corti moved toward the scala vestibuli (SV) direction. During an application of the constant force, the second harmonic of the CM partially recovered toward the initial level, which could be described by two time constants. Removing the force induced recovery of the second harmonic to its normal level described by a single time constant. The force applied over the SV caused an opposite result. These data indicate an active mechanism for OHC transduction OP.
Radiostethoscopes: an innovative solution for auscultation while wearing protective gear.
Candiotti, Keith A; Rodriguez, Yiliam; Curia, Luciana; Saltzman, Bruce; Shekhter, Ilya; Rosen, Lisa; Birnbach, David J
2011-01-01
To demonstrate a radiostethoscope that could be modified and successfully used while wearing protective gear to solve the problem of auscultation in a hazardous material or infectious disease setting. This study was a randomized, prospective, and blinded investigation. The study was conducted at the University of Miami-Jackson Memorial Hospital Center for Patient Safety. Two blinded anesthesiologists using a radiostethoscope performed a total of 100 assessments (50 each) to evaluate endotracheal tube position on a human patient simulator (HPS). Each lung of the HPS was ventilated separately using a double lumen tube. Four ventilation patterns (ie, right lung ventilation only; left lung ventilation only; ventilation of both lungs; and an esophageal intubation or no breath sounds) were simulated. The ventilation pattern was determined randomly and participants were blinded. An Ambu-Bag was used for ventilation. An assistant moved the radiostethoscope to the right and left lung fields and then to the abdomen of the HPS while ventilating. Subjects had to identify the ventilation pattern after listening to all three locations. A third member of the research team collected responses. Each subject, who wore both types of respirator (positive and negative), performed a total of 25 trials. Participants later compared the two types of respirators and their ability to auscultate for breath sounds. Subjects were able to verify the correct ventilation pattern in all attempts (100 percent). Radiostethoscopes appear to provide a viable solution for the problem of patient auscultation while wearing protective gear.
NASA Astrophysics Data System (ADS)
Logsdon, M.; Richey, J.; Campbell, B.; Stoermer, M.
2004-12-01
Earth system sciences is being challenged by the intellectual and the societal requirements of how to quantify the spatial patterns and temporal dynamics of changes in the atmosphere, landscape, and seascape, including human resources management. There are multiple issues in how to do this. The first is establishing the multi-disciplinary basis of how to systematically organize the required geophysical elements, from the very slow geological process forming the basic template to the very fast moving event-driven processes brought on by an individual rainstorm. The second is how to mobilize, access, see, and interact with the very disparate sources of information required. The third problem, perhaps the most difficult, is how to get the disparate disciplinary and management experts to constructively interact. These requirements drove the process for establishing the PRISM "Virtual Puget Sound." The basic construct is recognizing the inherent time and space attributes of the landscape, and then constructing an informatics environment that will allow the respective elements to be brought together in a collaboratory. Central to the enterprise is the use of an XML-enabled DataStream, to mobilize data from archives to models to visualizations. Outcomes are addressing such regional issues and daily stream flow, seasonal water supply and demand, low oxygen in Hood Canal, and sewage treatment plan siting. This model is being extended, as an Earth System Module, elsewhere in the world, from the Amazon to the Mekong.
Fracture strength of endodontically treated molars transfixed horizontally by a fiber glass post.
Beltrão, Maria Cecilia Gomes; Spohr, Ana Maria; Oshima, Hugo Mitsuo Silva; Mota, Eduardo Gonçalves; Burnett, Luiz Henrique
2009-02-01
To assess the effect of a horizontally transfixed fiber glass post placed between buccal and palatal surfaces, on the fracture strength of endodontically treated molar teeth with MOD cavities, either restored with resin-based composite, or not. 75 sound maxillary human third molars were extracted, embedded in acrylic resin blocks and randomly assigned to five groups (n=15). Group A (sound teeth), (control) and Groups B, C, D and E, which were subjected to the following procedures after endodontic treatment: GB--(MOD+Endo), GC--(MOD+Endo+Post), GD--MOD and composite restoration (MOD+Endo+CR), GE--(MOD+Endo+Post+CR). The specimens were stored in distilled water at 37 degrees C for 24 hours. Later, a compressive force was applied by means of a universal testing machine at 1 mm/minute speed, parallel to the long axis of the teeth until fracture occurred. The means of the results (N) followed by the same letter represent no statistical difference by ANOVA and Tukey (P<0.05): GA = 4289.8 (+/- 1128.9)a, GB = 549.6 (+/- 120.7)b, GC = 1474.8 (+/- 338.1)c, GD = 1224.7 (+/- 236.0)c, GE = 2645.4 (+/- 675.1)d. In the analysis of qualitative variables, there was a tendency to cusp fracture in all groups except for Group C. The fiber glass post transfixed horizontally in a MOD cavity significantly increased the fracture resistance of the teeth restored with resin composite.
NASA Astrophysics Data System (ADS)
West, Eva; Wallin, Anita
2013-04-01
Learning abstract concepts such as sound often involves an ontological shift because to conceptualize sound transmission as a process of motion demands abandoning sound transmission as a transfer of matter. Thus, for students to be able to grasp and use a generalized model of sound transmission poses great challenges for them. This study involved 199 students aged 10-14. Their views about sound transmission were investigated before and after teaching by comparing their written answers about sound transfer in different media. The teaching was built on a research-based teaching-learning sequence (TLS), which was developed within a framework of design research. The analysis involved interpreting students' underlying theories of sound transmission, including the different conceptual categories that were found in their answers. The results indicated a shift in students' understandings from the use of a theory of matter before the intervention to embracing a theory of process afterwards. The described pattern was found in all groups of students irrespective of age. Thus, teaching about sound and sound transmission is fruitful already at the ages of 10-11. However, the older the students, the more advanced is their understanding of the process of motion. In conclusion, the use of a TLS about sound, hearing and auditory health promotes students' conceptualization of sound transmission as a process in all grades. The results also imply some crucial points in teaching and learning about the scientific content of sound.
Sheft, Stanley; Gygi, Brian; Ho, Kim Thien N.
2012-01-01
Perceptual training with spectrally degraded environmental sounds results in improved environmental sound identification, with benefits shown to extend to untrained speech perception as well. The present study extended those findings to examine longer-term training effects as well as effects of mere repeated exposure to sounds over time. Participants received two pretests (1 week apart) prior to a week-long environmental sound training regimen, which was followed by two posttest sessions, separated by another week without training. Spectrally degraded stimuli, processed with a four-channel vocoder, consisted of a 160-item environmental sound test, word and sentence tests, and a battery of basic auditory abilities and cognitive tests. Results indicated significant improvements in all speech and environmental sound scores between the initial pretest and the last posttest with performance increments following both exposure and training. For environmental sounds (the stimulus class that was trained), the magnitude of positive change that accompanied training was much greater than that due to exposure alone, with improvement for untrained sounds roughly comparable to the speech benefit from exposure. Additional tests of auditory and cognitive abilities showed that speech and environmental sound performance were differentially correlated with tests of spectral and temporal-fine-structure processing, whereas working memory and executive function were correlated with speech, but not environmental sound perception. These findings indicate generalizability of environmental sound training and provide a basis for implementing environmental sound training programs for cochlear implant (CI) patients. PMID:22891070
The impact of artificial vehicle sounds for pedestrians on driver stress.
Cottrell, Nicholas D; Barton, Benjamin K
2012-01-01
Electrically based vehicles have produced some concern over their lack of sound, but the impact of artificial sounds now being implemented have not been examined in respect to their effects upon the driver. The impact of two different implementations of vehicle sound on driver stress in electric vehicles was examined. A Nissan HEV running in electric vehicle mode was driven by participants in an area of congestion using three sound implementations: (1) no artificial sounds, (2) manually engaged sounds and (3) automatically engaged sounds. Physiological and self-report questionnaire measures were collected to determine stress and acceptance of the automated sound protocol. Driver stress was significantly higher in the manually activated warning condition, compared to both no artificial sounds and automatically engaged sounds. Implications for automation usage and measurement methods are discussed and future research directions suggested. The advent of hybrid- and all-electric vehicles has created a need for artificial warning signals for pedestrian safety that place task demands on drivers. We investigated drivers' stress differences in response to varying conditions of warning signals for pedestrians. Driver stress was lower when noises were automated.
Sound therapy for tinnitus management: practicable options.
Hoare, Derek J; Searchfield, Grant D; El Refaie, Amr; Henry, James A
2014-01-01
The authors reviewed practicable options of sound therapy for tinnitus, the evidence base for each option, and the implications of each option for the patient and for clinical practice. To provide a general guide to selecting sound therapy options in clinical practice. Practicable sound therapy options. Where available, peer-reviewed empirical studies, conference proceedings, and review studies were examined. Material relevant to the purpose was summarized in a narrative. The number of peer-reviewed publications pertaining to each sound therapy option reviewed varied significantly (from none to over 10). Overall there is currently insufficient evidence to support or refute the routine use of individual sound therapy options. It is likely, however, that sound therapy combined with education and counseling is generally helpful to patients. Clinicians need to be guided by the patient's point of care, patient motivation and expectations of sound therapy, and the acceptability of the intervention both in terms of the sound stimuli they are to use and whether they are willing to use sound extensively or intermittently. Clinicians should also clarify to patients the role sound therapy is expected to play in the management plan. American Academy of Audiology.
Recurring patterns in the songs of humpback whales (Megaptera novaeangliae).
Green, Sean R; Mercado, Eduardo; Pack, Adam A; Herman, Louis M
2011-02-01
Humpback whales, unlike most mammalian species, learn new songs as adults. Populations of singers progressively and collectively change the sounds and patterns within their songs throughout their lives and across generations. In this study, humpback whale songs recorded in Hawaii from 1985 to 1995 were analyzed using self-organizing maps (SOMs) to classify the sounds within songs, and to identify sound patterns that were present across multiple years. These analyses supported the hypothesis that recurring, persistent patterns exist within whale songs, and that these patterns are defined at least in part by acoustic relationships between adjacent sounds within songs. Sound classification based on acoustic differences between adjacent sounds yielded patterns within songs that were more consistent from year to year than classifications based on the properties of single sounds. Maintenance of fixed ratios of acoustic modulation across sounds, despite large variations in individual sounds, suggests intrinsic constraints on how sounds change within songs. Such acoustically invariant cues may enable whales to recognize and assess variations in songs despite propagation-related distortion of individual sounds and yearly changes in songs. Copyright © 2011 Elsevier B.V. All rights reserved.
Bao, Shaowen; Chang, Edward F.; Teng, Ching-Ling; Heiser, Marc A.; Merzenich, Michael M.
2013-01-01
Cortical sensory representations can be reorganized by sensory exposure in an epoch of early development. The adaptive role of this type of plasticity for natural sounds in sensory development is, however, unclear. We have reared rats in a naturalistic, complex acoustic environment and examined their auditory representations. We found that cortical neurons became more selective to spectrotemporal features in the experienced sounds. At the neuronal population level, more neurons were involved in representing the whole set of complex sounds, but fewer neurons actually responded to each individual sound, but with greater magnitudes. A comparison of population-temporal responses to the experienced complex sounds revealed that cortical responses to different renderings of the same song motif were more similar, indicating that the cortical neurons became less sensitive to natural acoustic variations associated with stimulus context and sound renderings. By contrast, cortical responses to sounds of different motifs became more distinctive, suggesting that cortical neurons were tuned to the defining features of the experienced sounds. These effects lead to emergent “categorical” representations of the experienced sounds, which presumably facilitate their recognition. PMID:23747304
Research on fiber Bragg grating heart sound sensing and wavelength demodulation method
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Miao, Chang-Yun; Gao, Hua; Gan, Jing-Meng; Li, Hong-Qiang
2010-11-01
Heart sound includes a lot of physiological and pathological information of heart and blood vessel. Heart sound detecting is an important method to gain the heart status, and has important significance to early diagnoses of cardiopathy. In order to improve sensitivity and reduce noise, a heart sound measurement method based on fiber Bragg grating was researched. By the vibration principle of plane round diaphragm, a heart sound sensor structure of fiber Bragg grating was designed and a heart sound sensing mathematical model was established. A formula of heart sound sensitivity was deduced and the theoretical sensitivity of the designed sensor is 957.11pm/KPa. Based on matched grating method, the experiment system was built, by which the excursion of reflected wavelength of the sensing grating was detected and the information of heart sound was obtained. Experiments show that the designed sensor can detect the heart sound and the reflected wavelength variety range is about 70pm. When the sampling frequency is 1 KHz, the extracted heart sound waveform by using the db4 wavelet has the same characteristics with a standard heart sound sensor.
Marine Forage Fishes in Puget Sound
2007-03-01
Orcas in Puget Sound . Puget Sound Near- shore Partnership Report No. 2007-01. Published by Seattle District, U.S. Army Corps of Engineers, Seattle...Technical Report 2007-03 Marine Forage Fishes in Puget Sound Prepared in support of the Puget Sound Nearshore Partnership Dan Penttila Washington...Forage Fishes in Puget Sound Valued Ecosystem Components Report Series Front cover: Pacific herring (courtesy of Washington Sea Grant). Back cover
Disher, Timothy C; Benoit, Britney; Inglis, Darlene; Burgess, Stacy A; Ellsmere, Barbara; Hewitt, Brenda E; Bishop, Tanya M; Sheppard, Christopher L; Jangaard, Krista A; Morrison, Gavin C; Campbell-Yeo, Marsha L
To identify baseline sound levels, patterns of sound levels, and potential barriers and facilitators to sound level reduction. The study setting was neonatal and pediatric intensive care units in a tertiary care hospital. Participants were staff in both units and parents of currently hospitalized children or infants. One 24-hour sound measurements and one 4-hour sound measurement linked to observed sound events were conducted in each area of the center's neonatal intensive care unit. Two of each measurement type were conducted in the pediatric intensive care unit. Focus groups were conducted with parents and staff. Transcripts were analyzed with descriptive content analysis and themes were compared against results from quantitative measurements. Sound levels exceeded recommended standards at nearly every time point. The most common code was related to talking. Themes from focus groups included the critical care context and sound levels, effects of sound levels, and reducing sound levels-the way forward. Results are consistent with work conducted in other critical care environments. Staff and families realize that high sound levels can be a problem, but feel that the culture and context are not supportive of a quiet care space. High levels of ambient sound suggest that the largest changes in sound levels are likely to come from design and equipment purchase decisions. L10 and Lmax appear to be the best outcomes for measurement of behavioral interventions.
47 CFR 73.597 - FM stereophonic sound broadcasting.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM stereophonic sound broadcasting. 73.597... RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.597 FM stereophonic sound..., transmit stereophonic sound programs upon installation of stereophonic sound transmitting equipment under...
47 CFR 73.597 - FM stereophonic sound broadcasting.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false FM stereophonic sound broadcasting. 73.597... RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.597 FM stereophonic sound..., transmit stereophonic sound programs upon installation of stereophonic sound transmitting equipment under...
47 CFR 73.597 - FM stereophonic sound broadcasting.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false FM stereophonic sound broadcasting. 73.597... RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.597 FM stereophonic sound..., transmit stereophonic sound programs upon installation of stereophonic sound transmitting equipment under...
47 CFR 73.597 - FM stereophonic sound broadcasting.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false FM stereophonic sound broadcasting. 73.597... RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.597 FM stereophonic sound..., transmit stereophonic sound programs upon installation of stereophonic sound transmitting equipment under...
NASA Astrophysics Data System (ADS)
Wong, Nicole W.
The palatal lateral is a rare sound in the world's languages; a review of the literature reveals just 23 languages that currently possess the palatal lateral. Similarly, only 15 (or 3.33%) of the languages in the UCLA Phonological Segment Inventory Database (UPSID) (Maddieson and Precoda, 1991) can claim to currently possess the palatal lateral. While UPSID reports that an additional five languages (Basque, Guarani, Iate, Spanish, Turkish) possess the palatal lateral, these languages have either lost the palatal lateral or were included erroneously. Understanding the production and perception of rare speech sounds is important for understanding the distribution of speech sounds cross-linguistically, especially with regards to the establishment of a single phonetic alphabet (i.e. the International Phonetic Alphabet (IPA)) that can be used to describe and transcribe the languages of the world (Ladefoged and Everett, 1996). An investigation of rare speech sounds can also reveal important findings regarding the physical limitations of the vocal tract and human auditory system. Given that the palatal lateral is a rare speech sound, a complete description of the articulation, acoustics, and perception of this sound does not currently exist. Accounts of the palatal lateral vary with regards to terminology; the palatal lateral has also been referred to as a so-called "phonemically" palatalized lateral (Zilyns'kyj, 1979), a laminal post-alveolar lateral (Ladefoged and Maddieson, 1996), and an alveolopalatal lateral (Recasens, 2013). Furthermore, current literature also does not distinguish between the palatal lateral and a palatalized lateral. The lack of agreement in literature regarding terminology can present problems when attempting to assess whether a palatal lateral in one language is similar to a palatal lateral in another language. This dissertation provides a comprehensive description of the palatal lateral, as a means of initiating cross-linguistic comparisons of the palatal lateral as well as understanding the difference between a palatal and palatalized lateral. A two-part study of the articulation and acoustics of the palatal lateral in Brazilian Portuguese (BP) was undertaken in this dissertation. Articulatory data was collected using electromagenetic articulography (EMA) from 10 female native speakers of BP from Sao Paulo state in Brazil, which permitted the simultaneous collection of acoustic information. Study 1 investigated the articulation of the palatal lateral through a battery of measures and compares the palatal lateral against the palatalized lateral approximant, alveolar lateral approximant, palatal approximant, palatal nasal, palatalized nasal, and alveolar nasal. Study 2 analyzes the acoustics of the palatal lateral in comparison to the palatalized lateral approximant, alveolar lateral approximant, and palatal approximant. A third study was included in the appendix. This study incorporates a phone identification task to understand the role of acoustic saliency in the rareness of the palatal lateral, i.e. compared to other palatal sounds, is the palatal lateral more likely to be misidentified and if so, as which sounds? This task also investigates whether there is a perceived difference between the palatal and palatalized lateral that may not be captured by Study 1 and 2, in addition to whether native speakers of BP are better at distinguishing the two sounds than non-native speakers (here, native speakers of American English). The palatal lateral was compared to the palatalized lateral, palatal approximant, alveolar lateral approximant, palatal nasal, palatalized nasal, alveolar nasal, voiced alveolar stop, and voiced palatalized alveolar stop. 25 (11 male, 14 female) natives speakers of BP and 20 (11 male, 9 female) native speakers of American English with no extensive exposure to BP participated in this study. Results from Study 1 show that the palatal lateral is articulated laminally with a high front tongue body and concave anterior tongue shape that gradually becomes straighter as the phone progresses. Acoustic results in Study 2 indicate a median F1, F2, and F3 of 367 Hz, 1954 Hz, and 3035 Hz respectively for female speakers of BP. Statistical analysis reveals little or no evidence of significant difference between the palatal lateral and palatalized lateral with regards to the shape of the tongue body, duration of the phone, or formant frequencies. The perception study included in the appendix finds that while both native and non-native speakers of BP distinguish between the palatal lateral and palatalized lateral at chance level, native speakers of BP perform better than the non-native speakers at correctly identifying the palatal and palatalized nasal. This study also finds that of all the sounds included in this task, the palatal and palatalized lateral are the most likely to be misidentified as the palatal approximant for both participant groups, with the addition of -3 dB of speech-shaped noise greatly increasing the rate of confusion. However, the palatalized lateral is inaccurately identified as a palatal approximant at a confusion rate nearly double or more than the palatal lateral. This dissertation reveals that the palatal and palatalized lateral are essentially the same sound in BP. Furthermore, there is no evidence that indicates that the palatal or palatalized lateral are composed of two separate phones, i.e. an alveolar lateral approximant followed by a palatal approximant. Findings from the perception study support the proposal that yeismo (i.e. the merger of the palatal lateral in favor of the palatal approximant (Colantoni, 2001; Hualde et al., 2005)) occurs because lateral sounds are less robust against added noise than nasal sounds. I argue here that this contributes directly to the rareness of the palatal lateral.
Newborn infants detect cues of concurrent sound segregation.
Bendixen, Alexandra; Háden, Gábor P; Németh, Renáta; Farkas, Dávid; Török, Miklós; Winkler, István
2015-01-01
Separating concurrent sounds is fundamental for a veridical perception of one's auditory surroundings. Sound components that are harmonically related and start at the same time are usually grouped into a common perceptual object, whereas components that are not in harmonic relation or have different onset times are more likely to be perceived in terms of separate objects. Here we tested whether neonates are able to pick up the cues supporting this sound organization principle. We presented newborn infants with a series of complex tones with their harmonics in tune (creating the percept of a unitary sound object) and with manipulated variants, which gave the impression of two concurrently active sound sources. The manipulated variant had either one mistuned partial (single-cue condition) or the onset of this mistuned partial was also delayed (double-cue condition). Tuned and manipulated sounds were presented in random order with equal probabilities. Recording the neonates' electroencephalographic responses allowed us to evaluate their processing of the sounds. Results show that, in both conditions, mistuned sounds elicited a negative displacement of the event-related potential (ERP) relative to tuned sounds from 360 to 400 ms after sound onset. The mistuning-related ERP component resembles the object-related negativity (ORN) component in adults, which is associated with concurrent sound segregation. Delayed onset additionally led to a negative displacement from 160 to 200 ms, which was probably more related to the physical parameters of the sounds than to their perceptual segregation. The elicitation of an ORN-like response in newborn infants suggests that neonates possess the basic capabilities of segregating concurrent sounds by detecting inharmonic relations between the co-occurring sounds. © 2015 S. Karger AG, Basel.
Methods of sound simulation and applications in flight simulators
NASA Technical Reports Server (NTRS)
Gaertner, K. P.
1980-01-01
An overview of methods for electronically synthesizing sounds is presented. A given amount of hardware and computer capacity places an upper limit on the degree and fidelity of realism of sound simulation which is attainable. Good sound realism for aircraft simulators can be especially expensive because of the complexity of flight sounds and their changing patterns through time. Nevertheless, the flight simulator developed at the Research Institute for Human Engineering, West Germany, shows that it is possible to design an inexpensive sound simulator with the required acoustic properties using analog computer elements. The characteristics of the sub-sound elements produced by this sound simulator for take-off, cruise and approach are discussed.
Sound absorption coefficient of coal bottom ash concrete for railway application
NASA Astrophysics Data System (ADS)
Ramzi Hannan, N. I. R.; Shahidan, S.; Maarof, Z.; Ali, N.; Abdullah, S. R.; Ibrahim, M. H. Wan
2017-11-01
A porous concrete able to reduce the sound wave that pass through it. When a sound waves strike a material, a portion of the sound energy was reflected back and another portion of the sound energy was absorbed by the material while the rest was transmitted. The larger portion of the sound wave being absorbed, the lower the noise level able to be lowered. This study is to investigate the sound absorption coefficient of coal bottom ash (CBA) concrete compared to the sound absorption coefficient of normal concrete by carried out the impedance tube test. Hence, this paper presents the result of the impedance tube test of the CBA concrete and normal concrete.
Controlling sound radiation through an opening with secondary loudspeakers along its boundaries.
Wang, Shuping; Tao, Jiancheng; Qiu, Xiaojun
2017-10-17
We propose a virtual sound barrier system that blocks sound transmission through openings without affecting access, light and air circulation. The proposed system applies active control technique to cancel sound transmission with a double layered loudspeaker array at the edge of the opening. Unlike traditional transparent glass windows, recently invented double-glazed ventilation windows and planar active sound barriers or any other metamaterials designed to reduce sound transmission, secondary loudspeakers are put only along the boundaries of the opening, which provides the possibility to make it invisible. Simulation and experimental results demonstrate its feasibility for broadband sound control, especially for low frequency sound which is usually hard to attenuate with existing methods.
Amplitude modulation of sound from wind turbines under various meteorological conditions.
Larsson, Conny; Öhlund, Olof
2014-01-01
Wind turbine (WT) sound annoys some people even though the sound levels are relatively low. This could be because of the amplitude modulated "swishing" characteristic of the turbine sound, which is not taken into account by standard procedures for measuring average sound levels. Studies of sound immission from WTs were conducted continually between 19 August 2011 and 19 August 2012 at two sites in Sweden. A method for quantifying the degree and strength of amplitude modulation (AM) is introduced here. The method reveals that AM at the immission points occur under specific meteorological conditions. For WT sound immission, the wind direction and sound speed gradient are crucial for the occurrence of AM. Interference between two or more WTs could probably enhance AM. The mechanisms by which WT sound is amplitude modulated are not fully understood.
Improvement of impact noise in a passenger car utilizing sound metric based on wavelet transform
NASA Astrophysics Data System (ADS)
Lee, Sang-Kwon; Kim, Ho-Wuk; Na, Eun-Woo
2010-08-01
A new sound metric for impact sound is developed based on the continuous wavelet transform (CWT), a useful tool for the analysis of non-stationary signals such as impact noise. Together with new metric, two other conventional sound metrics related to sound modulation and fluctuation are also considered. In all, three sound metrics are employed to develop impact sound quality indexes for several specific impact courses on the road. Impact sounds are evaluated subjectively by 25 jurors. The indexes are verified by comparing the correlation between the index output and results of a subjective evaluation based on a jury test. These indexes are successfully applied to an objective evaluation for improvement of the impact sound quality for cases where some parts of the suspension system of the test car are modified.
Relation of sound intensity and accuracy of localization.
Farrimond, T
1989-08-01
Tests were carried out on 17 subjects to determine the accuracy of monaural sound localization when the head is not free to turn toward the sound source. Maximum accuracy of localization for a constant-volume sound source coincided with the position for maximum perceived intensity of the sound in the front quadrant. There was a tendency for sounds to be perceived more often as coming from a position directly toward the ear. That is, for sounds in the front quadrant, errors of localization tended to be predominantly clockwise (i.e., biased toward a line directly facing the ear). Errors for sounds occurring in the rear quadrant tended to be anticlockwise. The pinna's differential effect on sound intensity between front and rear quadrants would assist in identifying the direction of movement of objects, for example an insect, passing the ear.
Event-related potential study to aversive auditory stimuli.
Czigler, István; Cox, Trevor J; Gyimesi, Kinga; Horváth, János
2007-06-15
In an auditory oddball task emotionally negative (aversive) sounds (e.g. rubbing together of polystyrene) and everyday sounds (e.g. ringing of a bicycle bell) were presented as task-irrelevant (novel) sounds. Both the aversive and the everyday sounds elicited the orientation-related P3a component of the event-related potentials (ERPs). In the 154-250 ms range the ERPs for the aversive sounds were more negative than the ERP of the everyday sounds. For the aversive sounds, this negativity was followed by a frontal positive wave (372-456 ms). The aversive sounds elicited larger late positive shift than the everyday sounds. The early negativity is considered as an initial effect in a broad neural network including limbic structures, while the later is related to the cognitive assessment of the stimuli and to memory-related processes.
47 CFR 73.297 - FM stereophonic sound broadcasting.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false FM stereophonic sound broadcasting. 73.297... RADIO BROADCAST SERVICES FM Broadcast Stations § 73.297 FM stereophonic sound broadcasting. (a) An FM..., quadraphonic, etc.) sound programs upon installation of stereophonic sound transmitting equipment under the...
47 CFR 73.297 - FM stereophonic sound broadcasting.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false FM stereophonic sound broadcasting. 73.297... RADIO BROADCAST SERVICES FM Broadcast Stations § 73.297 FM stereophonic sound broadcasting. (a) An FM..., quadraphonic, etc.) sound programs upon installation of stereophonic sound transmitting equipment under the...
47 CFR 73.297 - FM stereophonic sound broadcasting.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false FM stereophonic sound broadcasting. 73.297... RADIO BROADCAST SERVICES FM Broadcast Stations § 73.297 FM stereophonic sound broadcasting. (a) An FM..., quadraphonic, etc.) sound programs upon installation of stereophonic sound transmitting equipment under the...
NASA Astrophysics Data System (ADS)
Hamilton, Mark F.
1990-12-01
This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.
Scattering of sound by atmospheric turbulence predictions in a refractive shadow zone
NASA Technical Reports Server (NTRS)
Mcbride, Walton E.; Bass, Henry E.; Raspet, Richard; Gilbert, Kenneth E.
1990-01-01
According to ray theory, regions exist in an upward refracting atmosphere where no sound should be present. Experiments show, however, that appreciable sound levels penetrate these so-called shadow zones. Two mechanisms contribute to sound in the shadow zone: diffraction and turbulent scattering of sound. Diffractive effects can be pronounced at lower frequencies but are small at high frequencies. In the short wavelength limit, then, scattering due to turbulence should be the predominant mechanism involved in producing the sound levels measured in shadow zones. No existing analytical method includes turbulence effects in the prediction of sound pressure levels in upward refractive shadow zones. In order to obtain quantitative average sound pressure level predictions, a numerical simulation of the effect of atmospheric turbulence on sound propagation is performed. The simulation is based on scattering from randomly distributed scattering centers ('turbules'). Sound pressure levels are computed for many realizations of a turbulent atmosphere. Predictions from the numerical simulation are compared with existing theories and experimental data.
Descovich, K A; Reints Bok, T E; Lisle, A T; Phillips, C J C
2013-01-01
Behavioural lateralisation is evident across most animal taxa, although few marsupial and no fossorial species have been studied. Twelve wombats (Lasiorhinus latifrons) were bilaterally presented with eight sounds from different contexts (threat, neutral, food) to test for auditory laterality. Head turns were recorded prior to and immediately following sound presentation. Behaviour was recorded for 150 seconds after presentation. Although sound differentiation was evident by the amount of exploration, vigilance, and grooming performed after different sound types, this did not result in different patterns of head turn direction. Similarly, left-right proportions of head turns, walking events, and food approaches in the post-sound period were comparable across sound types. A comparison of head turns performed before and after sound showed a significant change in turn direction (χ(2) (1)=10.65, p=.001) from a left preference during the pre-sound period (mean 58% left head turns, CI 49-66%) to a right preference in the post-sound (mean 43% left head turns, CI 40-45%). This provides evidence of a right auditory bias in response to the presentation of the sound. This study therefore demonstrates that laterality is evident in southern hairy-nosed wombats in response to a sound stimulus, although side biases were not altered by sounds of varying context.
Park, H K; Bradley, J S
2009-09-01
Subjective ratings of the audibility, annoyance, and loudness of music and speech sounds transmitted through 20 different simulated walls were used to identify better single number ratings of airborne sound insulation. The first part of this research considered standard measures such as the sound transmission class the weighted sound reduction index (R(w)) and variations of these measures [H. K. Park and J. S. Bradley, J. Acoust. Soc. Am. 126, 208-219 (2009)]. This paper considers a number of other measures including signal-to-noise ratios related to the intelligibility of speech and measures related to the loudness of sounds. An exploration of the importance of the included frequencies showed that the optimum ranges of included frequencies were different for speech and music sounds. Measures related to speech intelligibility were useful indicators of responses to speech sounds but were not as successful for music sounds. A-weighted level differences, signal-to-noise ratios and an A-weighted sound transmission loss measure were good predictors of responses when the included frequencies were optimized for each type of sound. The addition of new spectrum adaptation terms to R(w) values were found to be the most practical approach for achieving more accurate predictions of subjective ratings of transmitted speech and music sounds.
Lung and Heart Sounds Analysis: State-of-the-Art and Future Trends.
Padilla-Ortiz, Ana L; Ibarra, David
2018-01-01
Lung sounds, which include all sounds that are produced during the mechanism of respiration, may be classified into normal breath sounds and adventitious sounds. Normal breath sounds occur when no respiratory problems exist, whereas adventitious lung sounds (wheeze, rhonchi, crackle, etc.) are usually associated with certain pulmonary pathologies. Heart and lung sounds that are heard using a stethoscope are the result of mechanical interactions that indicate operation of cardiac and respiratory systems, respectively. In this article, we review the research conducted during the last six years on lung and heart sounds, instrumentation and data sources (sensors and databases), technological advances, and perspectives in processing and data analysis. Our review suggests that chronic obstructive pulmonary disease (COPD) and asthma are the most common respiratory diseases reported on in the literature; related diseases that are less analyzed include chronic bronchitis, idiopathic pulmonary fibrosis, congestive heart failure, and parenchymal pathology. Some new findings regarding the methodologies associated with advances in the electronic stethoscope have been presented for the auscultatory heart sound signaling process, including analysis and clarification of resulting sounds to create a diagnosis based on a quantifiable medical assessment. The availability of automatic interpretation of high precision of heart and lung sounds opens interesting possibilities for cardiovascular diagnosis as well as potential for intelligent diagnosis of heart and lung diseases.
Assessing the potential for passive radio sounding of Europa and Ganymede with RIME and REASON
NASA Astrophysics Data System (ADS)
Schroeder, Dustin M.; Romero-Wolf, Andrew; Carrer, Leonardo; Grima, Cyril; Campbell, Bruce A.; Kofman, Wlodek; Bruzzone, Lorenzo; Blankenship, Donald D.
2016-12-01
Recent work has raised the potential for Jupiter's decametric radiation to be used as a source for passive radio sounding of its icy moons. Two radar sounding instruments, the Radar for Icy Moon Exploration (RIME) and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) have been selected for ESA and NASA missions to Ganymede and Europa. Here, we revisit the projected performance of the passive sounding concept and assess the potential for its implementation as an additional mode for RIME and REASON. We find that the Signal to Noise Ratio (SNR) of passive sounding can approach or exceed that of active sounding in a noisy sub-Jovian environment, but that active sounding achieves a greater SNR in the presence of quiescent noise and outperforms passive sounding in terms of clutter. We also compare the performance of passive sounding at the 9 MHz HF center frequency of RIME and REASON to other frequencies within the Jovian decametric band. We conclude that the addition of a passive sounding mode on RIME or REASON stands to enhance their science return by enabling sub-Jovian HF sounding in the presence of decametric noise, but that there is not a compelling case for implementation at a different frequency.
The effect of spatial distribution on the annoyance caused by simultaneous sounds
NASA Astrophysics Data System (ADS)
Vos, Joos; Bronkhorst, Adelbert W.; Fedtke, Thomas
2004-05-01
A considerable part of the population is exposed to simultaneous and/or successive environmental sounds from different sources. In many cases, these sources are different with respect to their locations also. In a laboratory study, it was investigated whether the annoyance caused by the multiple sounds is affected by the spatial distribution of the sources. There were four independent variables: (1) sound category (stationary or moving), (2) sound type (stationary: lawn-mower, leaf-blower, and chain saw; moving: road traffic, railway, and motorbike), (3) spatial location (left, right, and combinations), and (4) A-weighted sound exposure level (ASEL of single sources equal to 50, 60, or 70 dB). In addition to the individual sounds in isolation, various combinations of two or three different sources within each sound category and sound level were presented for rating. The annoyance was mainly determined by sound level and sound source type. In most cases there were neither significant main effects of spatial distribution nor significant interaction effects between spatial distribution and the other variables. It was concluded that for rating the spatially distrib- uted sounds investigated, the noise dose can simply be determined by a summation of the levels for the left and right channels. [Work supported by CEU.
Strori, Dorina; Zaar, Johannes; Cooke, Martin; Mattys, Sven L
2018-01-01
Recent evidence has shown that nonlinguistic sounds co-occurring with spoken words may be retained in memory and affect later retrieval of the words. This sound-specificity effect shares many characteristics with the classic voice-specificity effect. In this study, we argue that the sound-specificity effect is conditional upon the context in which the word and sound coexist. Specifically, we argue that, besides co-occurrence, integrality between words and sounds is a crucial factor in the emergence of the effect. In two recognition-memory experiments, we compared the emergence of voice and sound specificity effects. In Experiment 1 , we examined two conditions where integrality is high. Namely, the classic voice-specificity effect (Exp. 1a) was compared with a condition in which the intensity envelope of a background sound was modulated along the intensity envelope of the accompanying spoken word (Exp. 1b). Results revealed a robust voice-specificity effect and, critically, a comparable sound-specificity effect: A change in the paired sound from exposure to test led to a decrease in word-recognition performance. In the second experiment, we sought to disentangle the contribution of integrality from a mere co-occurrence context effect by removing the intensity modulation. The absence of integrality led to the disappearance of the sound-specificity effect. Taken together, the results suggest that the assimilation of background sounds into memory cannot be reduced to a simple context effect. Rather, it is conditioned by the extent to which words and sounds are perceived as integral as opposed to distinct auditory objects.
Kocsis, Zsuzsanna; Winkler, István; Bendixen, Alexandra; Alain, Claude
2016-09-01
The auditory environment typically comprises several simultaneously active sound sources. In contrast to the perceptual segregation of two concurrent sounds, the perception of three simultaneous sound objects has not yet been studied systematically. We conducted two experiments in which participants were presented with complex sounds containing sound segregation cues (mistuning, onset asynchrony, differences in frequency or amplitude modulation or in sound location), which were set up to promote the perceptual organization of the tonal elements into one, two, or three concurrent sounds. In Experiment 1, listeners indicated whether they heard one, two, or three concurrent sounds. In Experiment 2, participants watched a silent subtitled movie while EEG was recorded to extract the object-related negativity (ORN) component of the event-related potential. Listeners predominantly reported hearing two sounds when the segregation promoting manipulations were applied to the same tonal element. When two different tonal elements received manipulations promoting them to be heard as separate auditory objects, participants reported hearing two and three concurrent sounds objects with equal probability. The ORN was elicited in most conditions; sounds that included the amplitude- or the frequency-modulation cue generated the smallest ORN amplitudes. Manipulating two different tonal elements yielded numerically and often significantly smaller ORNs than the sum of the ORNs elicited when the same cues were applied on a single tonal element. These results suggest that ORN reflects the presence of multiple concurrent sounds, but not their number. The ORN results are compatible with the horse-race principle of combining different cues of concurrent sound segregation. Copyright © 2016 Elsevier B.V. All rights reserved.
Sounds Exaggerate Visual Shape
ERIC Educational Resources Information Center
Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru
2012-01-01
While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…
21 CFR 876.4590 - Interlocking urethral sound.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Interlocking urethral sound. 876.4590 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4590 Interlocking urethral sound. (a) Identification. An interlocking urethral sound is a device that consists of two metal sounds...
21 CFR 876.4590 - Interlocking urethral sound.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Interlocking urethral sound. 876.4590 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4590 Interlocking urethral sound. (a) Identification. An interlocking urethral sound is a device that consists of two metal sounds...
21 CFR 876.4590 - Interlocking urethral sound.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Interlocking urethral sound. 876.4590 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4590 Interlocking urethral sound. (a) Identification. An interlocking urethral sound is a device that consists of two metal sounds...
21 CFR 876.4590 - Interlocking urethral sound.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Interlocking urethral sound. 876.4590 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4590 Interlocking urethral sound. (a) Identification. An interlocking urethral sound is a device that consists of two metal sounds...
21 CFR 876.4590 - Interlocking urethral sound.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Interlocking urethral sound. 876.4590 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4590 Interlocking urethral sound. (a) Identification. An interlocking urethral sound is a device that consists of two metal sounds...
NASA Astrophysics Data System (ADS)
Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi
2016-01-01
A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was extended. Additionally, we designed a sound insulator so as to realize a similar distribution of the particle velocity to that obtained using the optimized window function. Sound radiation was suppressed using a sound insulator put above the vibrating surface in the simulation using the three-dimensional finite element method. On the basis of this finding, it was suggested that near-field acoustic communication which suppressed sound radiation can be realized by applying the optimized window function to the particle velocity field.
Perception of environmental sounds by experienced cochlear implant patients.
Shafiro, Valeriy; Gygi, Brian; Cheng, Min-Yu; Vachhani, Jay; Mulvey, Megan
2011-01-01
Environmental sound perception serves an important ecological function by providing listeners with information about objects and events in their immediate environment. Environmental sounds such as car horns, baby cries, or chirping birds can alert listeners to imminent dangers as well as contribute to one's sense of awareness and well being. Perception of environmental sounds as acoustically and semantically complex stimuli may also involve some factors common to the processing of speech. However, very limited research has investigated the abilities of cochlear implant (CI) patients to identify common environmental sounds, despite patients' general enthusiasm about them. This project (1) investigated the ability of patients with modern-day CIs to perceive environmental sounds, (2) explored associations among speech, environmental sounds, and basic auditory abilities, and (3) examined acoustic factors that might be involved in environmental sound perception. Seventeen experienced postlingually deafened CI patients participated in the study. Environmental sound perception was assessed with a large-item test composed of 40 sound sources, each represented by four different tokens. The relationship between speech and environmental sound perception and the role of working memory and some basic auditory abilities were examined based on patient performance on a battery of speech tests (HINT, CNC, and individual consonant and vowel tests), tests of basic auditory abilities (audiometric thresholds, gap detection, temporal pattern, and temporal order for tones tests), and a backward digit recall test. The results indicated substantially reduced ability to identify common environmental sounds in CI patients (45.3%). Except for vowels, all speech test scores significantly correlated with the environmental sound test scores: r = 0.73 for HINT in quiet, r = 0.69 for HINT in noise, r = 0.70 for CNC, r = 0.64 for consonants, and r = 0.48 for vowels. HINT and CNC scores in quiet moderately correlated with the temporal order for tones. However, the correlation between speech and environmental sounds changed little after partialling out the variance due to other variables. Present findings indicate that environmental sound identification is difficult for CI patients. They further suggest that speech and environmental sounds may overlap considerably in their perceptual processing. Certain spectrotemproral processing abilities are separately associated with speech and environmental sound performance. However, they do not appear to mediate the relationship between speech and environmental sounds in CI patients. Environmental sound rehabilitation may be beneficial to some patients. Environmental sound testing may have potential diagnostic applications, especially with difficult-to-test populations and might also be predictive of speech performance for prelingually deafened patients with cochlear implants.
Measurements and Predictions of the Noise from Three-Stream Jets
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Leib, Stewart J.; Wernet, Mark P.
2015-01-01
An experimental and numerical investigation of the noise produced by high-subsonic and supersonic three-stream jets was conducted. The exhaust system consisted of externally-mixed-convergent nozzles and an external plug. Bypass- and tertiary-to-core area ratios between 1.0 and 2.5, and 0.4 and 1.0, respectively, were studied. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated conditions. For axisymmetric configurations, the addition of the third stream was found to reduce peak- and high-frequency acoustic levels in the peak-jet-noise direction, with greater reductions at the lower bypass-to-core area ratios. For the offset configurations, an offset duct was found to decrease acoustic levels on the thick side of the tertiary nozzle relative to those produced by the simulated two-stream jet with up to 8 dB mid-frequency noise reduction at large angles to the jet inlet axis. Noise reduction in the peak-jet-noise direction was greater for supersonic core speeds than for subsonic core speeds. The addition of a tertiary nozzle insert used to divert the third-stream jet to one side of the nozzle system provided no noise reduction. Noise predictions are presented for selected cases using a method based on an acoustic analogy with mean flow interaction effects accounted for using a Green's function, computed in terms of its coupled azimuthal modes for the offset cases, and a source model previously used for round and rectangular jets. Comparisons of the prediction results with data show that the noise model predicts the observed increase in low-frequency noise with the introduction of a third, axisymmetric stream, but not the high-frequency reduction. For an offset third stream, the model predicts the observed trend of decreased sound levels on the thick side of the jet compared with the thin side, but the predicted azimuthal variations are much less than those seen in the data. Also, the shift of the spectral peak to lower frequencies with increasing polar angle is over-predicted. For an offset third stream with a heated core, it is shown that including the enthalpy-flux source terms in the acoustic analogy model improves predictions compared with those obtained using only the momentum flux.
Measurements and Predictions of the Noise from Three-Stream Jets
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Leib, Stewart J.; Wernet, Mark P.
2015-01-01
An experimental and numerical investigation of the noise produced by high-subsonic and supersonic three-stream jets was conducted. The exhaust system consisted of externally-mixed-convergent nozzles and an external plug. Bypass- and tertiary- to-core area ratios between 1.0 and 2.5, and 0.4 and 1.0, respectively, were studied. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated conditions. For axisymmetric configurations, the addition of the third stream was found to reduce peak- and high-frequency acoustic levels in the peak-jet-noise direction, with greater reductions at the lower bypass-to-core area ratios. For the offset configurations, an offset duct was found to decrease acoustic levels on the thick side of the tertiary nozzle relative to those produced by the simulated two-stream jet with up to 8 dB mid-frequency noise reduction at large angles to the jet inlet axis. Noise reduction in the peak-jet-noise direction was greater for supersonic core speeds than for subsonic core speeds. The addition of a tertiary nozzle insert used to divert the third-stream jet to one side of the nozzle system provided no noise reduction. Noise predictions are presented for selected cases using a method based on an acoustic analogy with mean flow interaction effects accounted for using a Green's function, computed in terms of its coupled azimuthal modes for the offset cases, and a source model previously used for round and rectangular jets. Comparisons of the prediction results with data show that the noise model predicts the observed increase in low-frequency noise with the introduction of a third, axisymmetric stream, but not the high-frequency reduction. For an offset third stream, the model predicts the observed trend of decreased sound levels on the thick side of the jet compared with the thin side, but the predicted azimuthal variations are much less than those seen in the data. Also, the shift of the spectral peak to lower frequencies with increasing polar angle is over-predicted. For an offset third stream with a heated core, it is shown that including the enthalpy-flux source terms in the acoustic analogy model improves predictions compared with those obtained using only the momentum- flux.
46 CFR 298.14 - Economic soundness.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 8 2010-10-01 2010-10-01 false Economic soundness. 298.14 Section 298.14 Shipping... Eligibility § 298.14 Economic soundness. (a) Economic Evaluation. We shall not issue a Letter Commitment for... you seek Title XI financing or refinancing, will be economically sound. The economic soundness and...
ERIC Educational Resources Information Center
Carrier, Sarah J.; Scott, Catherine Marie; Hall, Debra T.
2012-01-01
The science of sound helps students learn that sound is energy traveling in waves as vibrations transfer the energy through various media: solids, liquids, and gases. In addition to learning about the physical science of sound, students can learn about the sounds of different animal species: how sounds contribute to animals' survival, and how…
46 CFR 298.14 - Economic soundness.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 8 2012-10-01 2012-10-01 false Economic soundness. 298.14 Section 298.14 Shipping... Eligibility § 298.14 Economic soundness. (a) Economic Evaluation. We shall not issue a Letter Commitment for... you seek Title XI financing or refinancing, will be economically sound. The economic soundness and...
46 CFR 298.14 - Economic soundness.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 8 2013-10-01 2013-10-01 false Economic soundness. 298.14 Section 298.14 Shipping... Eligibility § 298.14 Economic soundness. (a) Economic Evaluation. We shall not issue a Letter Commitment for... you seek Title XI financing or refinancing, will be economically sound. The economic soundness and...
46 CFR 298.14 - Economic soundness.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 8 2014-10-01 2014-10-01 false Economic soundness. 298.14 Section 298.14 Shipping... Eligibility § 298.14 Economic soundness. (a) Economic Evaluation. We shall not issue a Letter Commitment for... you seek Title XI financing or refinancing, will be economically sound. The economic soundness and...
46 CFR 298.14 - Economic soundness.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 8 2011-10-01 2011-10-01 false Economic soundness. 298.14 Section 298.14 Shipping... Eligibility § 298.14 Economic soundness. (a) Economic Evaluation. We shall not issue a Letter Commitment for... you seek Title XI financing or refinancing, will be economically sound. The economic soundness and...
77 FR 50016 - Drawbridge Operation Regulation; Grassy Sound Channel, Middle Township, NJ
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-20
... Operation Regulation; Grassy Sound Channel, Middle Township, NJ AGENCY: Coast Guard, DHS. ACTION: Notice of... operating schedule that governs the Grassy Sound Channel (Ocean Drive) Bridge across the Grassy Sound... operating schedule to accommodate ``The Wild Half'' run. The Grassy Sound Channel (Ocean Drive) Bridge...
A Comparison of Two Phonological Awareness Techniques between Samples of Preschool Children.
ERIC Educational Resources Information Center
Maslanka, Phyllis; Joseph, Laurice M.
2002-01-01
Examines the differential effects of sound boxes and sound sort phonological awareness instructional techniques on preschoolers' phonological awareness performance. Finds that children in the sound box group significantly outperformed children in the sound sort group on isolating medial sounds and segmenting phonemes. Reveals that preschool…
33 CFR 167.1700 - In Prince William Sound: General.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false In Prince William Sound: General... Schemes and Precautionary Areas Pacific West Coast § 167.1700 In Prince William Sound: General. The Prince William Sound Traffic Separation Scheme consists of four parts: Prince William Sound Traffic Separation...
42 CFR 417.120 - Fiscally sound operation and assumption of financial risk.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 3 2013-10-01 2013-10-01 false Fiscally sound operation and assumption of... Organizations: Organization and Operation § 417.120 Fiscally sound operation and assumption of financial risk. (a) Fiscally sound operation—(1) General requirements. Each HMO must have a fiscally sound operation...
33 CFR 167.1700 - In Prince William Sound: General.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false In Prince William Sound: General... Schemes and Precautionary Areas Pacific West Coast § 167.1700 In Prince William Sound: General. The Prince William Sound Traffic Separation Scheme consists of four parts: Prince William Sound Traffic Separation...
33 CFR 167.1700 - In Prince William Sound: General.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false In Prince William Sound: General... Schemes and Precautionary Areas Pacific West Coast § 167.1700 In Prince William Sound: General. The Prince William Sound Traffic Separation Scheme consists of four parts: Prince William Sound Traffic Separation...
42 CFR 417.120 - Fiscally sound operation and assumption of financial risk.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 3 2012-10-01 2012-10-01 false Fiscally sound operation and assumption of... Organizations: Organization and Operation § 417.120 Fiscally sound operation and assumption of financial risk. (a) Fiscally sound operation—(1) General requirements. Each HMO must have a fiscally sound operation...
42 CFR 417.120 - Fiscally sound operation and assumption of financial risk.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 3 2014-10-01 2014-10-01 false Fiscally sound operation and assumption of... Organizations: Organization and Operation § 417.120 Fiscally sound operation and assumption of financial risk. (a) Fiscally sound operation—(1) General requirements. Each HMO must have a fiscally sound operation...
Correlation between Identification Accuracy and Response Confidence for Common Environmental Sounds
set of environmental sounds with stimulus control and precision. The present study is one in a series of efforts to provide a baseline evaluation of a...sounds from six broad categories: household items, alarms, animals, human generated, mechanical, and vehicle sounds. Each sound was presented five times
33 CFR 167.1700 - In Prince William Sound: General.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false In Prince William Sound: General... Schemes and Precautionary Areas Pacific West Coast § 167.1700 In Prince William Sound: General. The Prince William Sound Traffic Separation Scheme consists of four parts: Prince William Sound Traffic Separation...
Method for chemically analyzing a solution by acoustic means
Beller, Laurence S.
1997-01-01
A method and apparatus for determining a type of solution and the concention of that solution by acoustic means. Generally stated, the method consists of: immersing a sound focusing transducer within a first liquid filled container; locating a separately contained specimen solution at a sound focal point within the first container; locating a sound probe adjacent to the specimen, generating a variable intensity sound signal from the transducer; measuring fundamental and multiple harmonic sound signal amplitudes; and then comparing a plot of a specimen sound response with a known solution sound response, thereby determining the solution type and concentration.
Application of acoustic radiosity methods to noise propagation within buildings
NASA Astrophysics Data System (ADS)
Muehleisen, Ralph T.; Beamer, C. Walter
2005-09-01
The prediction of sound pressure levels in rooms from transmitted sound is a difficult problem. The sound energy in the source room incident on the common wall must be accurately predicted. In the receiving room, the propagation of sound from the planar wall source must also be accurately predicted. The radiosity method naturally computes the spatial distribution of sound energy incident on a wall and also naturally predicts the propagation of sound from a planar area source. In this paper, the application of the radiosity method to sound transmission problems is introduced and explained.
The effect of contextual sound cues on visual fidelity perception.
Rojas, David; Cowan, Brent; Kapralos, Bill; Collins, Karen; Dubrowski, Adam
2014-01-01
Previous work has shown that sound can affect the perception of visual fidelity. Here we build upon this previous work by examining the effect of contextual sound cues (i.e., sounds that are related to the visuals) on visual fidelity perception. Results suggest that contextual sound cues do influence visual fidelity perception and, more specifically, our perception of visual fidelity increases with contextual sound cues. These results have implications for designers of multimodal virtual worlds and serious games that, with the appropriate use of contextual sounds, can reduce visual rendering requirements without a corresponding decrease in the perception of visual fidelity.
[Synchronous playing and acquiring of heart sounds and electrocardiogram based on labVIEW].
Dan, Chunmei; He, Wei; Zhou, Jing; Que, Xiaosheng
2008-12-01
In this paper is described a comprehensive system, which can acquire heart sounds and electrocardiogram (ECG) in parallel, synchronize the display; and play of heart sound and make auscultation and check phonocardiogram to tie in. The hardware system with C8051F340 as the core acquires the heart sound and ECG synchronously, and then sends them to indicators, respectively. Heart sounds are displayed and played simultaneously by controlling the moment of writing to indicator and sound output device. In clinical testing, heart sounds can be successfully located with ECG and real-time played.
First and second sound in a strongly interacting Fermi gas
NASA Astrophysics Data System (ADS)
Taylor, E.; Hu, H.; Liu, X.-J.; Pitaevskii, L. P.; Griffin, A.; Stringari, S.
2009-11-01
Using a variational approach, we solve the equations of two-fluid hydrodynamics for a uniform and trapped Fermi gas at unitarity. In the uniform case, we find that the first and second sound modes are remarkably similar to those in superfluid helium, a consequence of strong interactions. In the presence of harmonic trapping, first and second sound become degenerate at certain temperatures. At these points, second sound hybridizes with first sound and is strongly coupled with density fluctuations, giving a promising way of observing second sound. We also discuss the possibility of exciting second sound by generating local heat perturbations.
NASA sounding rockets, 1958 - 1968: A historical summary
NASA Technical Reports Server (NTRS)
Corliss, W. R.
1971-01-01
The development and use of sounding rockets is traced from the Wac Corporal through the present generation of rockets. The Goddard Space Flight Center Sounding Rocket Program is discussed, and the use of sounding rockets during the IGY and the 1960's is described. Advantages of sounding rockets are identified as their simplicity and payload simplicity, low costs, payload recoverability, geographic flexibility, and temporal flexibility. The disadvantages are restricted time of observation, localized coverage, and payload limitations. Descriptions of major sounding rockets, trends in vehicle usage, and a compendium of NASA sounding rocket firings are also included.
ACME-III and ACME-IV Final Campaign Reports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biraud, S. C.
2016-01-01
The goals of the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s third and fourth Airborne Carbon Measurements (ACME) field campaigns, ACME-III and ACME-IV, are: 1) to measure and model the exchange of CO 2, water vapor, and other greenhouse gases by the natural, agricultural, and industrial ecosystems of the Southern Great Plains (SGP) region; 2) to develop quantitative approaches to relate these local fluxes to the concentration of greenhouse gases measured at the Central Facility tower and in the atmospheric column above the ARM SGP Central Facility, 3) to develop and test bottom-up measurement and modeling approaches to estimate regionalmore » scale carbon balances, and 4) to develop and test inverse modeling approaches to estimate regional scale carbon balance and anthropogenic sources over continental regions. Regular soundings of the atmosphere from near the surface into the mid-troposphere are essential for this research.« less
Vorticity imbalance and stability in relation to convection
NASA Technical Reports Server (NTRS)
Read, W. L.; Scoggins, J. R.
1977-01-01
A complete synoptic-scale vorticity budget was related to convection storm development in the eastern two-thirds of the United States. The 3-h sounding interval permitted a study of time changes of the vorticity budget in areas of convective storms. Results of analyses revealed significant changes in values of terms in the vorticity equation at different stages of squall line development. Average budgets for all areas of convection indicate systematic imbalance in the terms in the vorticity equation. This imbalance resulted primarily from sub-grid scale processes. Potential instability in the lower troposphere was analyzed in relation to the development of convective activity. Instability was related to areas of convection; however, instability alone was inadequate for forecast purposes. Combinations of stability and terms in the vorticity equation in the form of indices succeeded in depicting areas of convection better than any one item separately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandi, Debottam; Shankaranarayanan, S., E-mail: debottam@iisertvm.ac.in, E-mail: shanki@iisertvm.ac.in
2016-10-01
In this work, we present a consistent Hamiltonian analysis of cosmological perturbations for generalized non-canonical scalar fields. In order to do so, we introduce a new phase-space variable that is uniquely defined for different non-canonical scalar fields. We also show that this is the simplest and efficient way of expressing the Hamiltonian. We extend the Hamiltonian approach of [1] to non-canonical scalar field and obtain an unique expression of speed of sound in terms of phase-space variable. In order to invert generalized phase-space Hamilton's equations to Euler-Lagrange equations of motion, we prescribe a general inversion formulae and show that ourmore » approach for non-canonical scalar field is consistent. We also obtain the third and fourth order interaction Hamiltonian for generalized non-canonical scalar fields and briefly discuss the extension of our method to generalized Galilean scalar fields.« less
User's guide to noise data acquisition and analysis programs for HP9845: Nicolet analyzers
NASA Technical Reports Server (NTRS)
Mcgary, M. C.
1982-01-01
A software interface package was written for use with a desktop computer and two models of single channel Fast Fourier analyzers. This software features a portable measurement and analysis system with several options. Two types of interface hardware can alternately be used in conjunction with the software. Either an IEEE-488 Bus interface or a 16-bit parallel system may be used. Two types of storage medium, either tape cartridge or floppy disc can be used with the software. Five types of data may be stored, plotted, and/or printed. The data types include time histories, narrow band power spectra, and narrow band, one-third octave band, or octave band sound pressure level. The data acquisition programming includes a front panel remote control option for the FFT analyzers. Data analysis options include choice of line type and pen color for plotting.
2014-04-18
CAPE CANAVERAL, Fla. - Remote-controlled and sound-activated cameras placed around the perimeter of the pad by media organizations capture images of the SpaceX Falcon 9 rocket as it rises off Space Launch Complex 40 at Cape Canaveral Air Force Station, sending the Dragon resupply spacecraft on its way to the International Space Station. Liftoff was during an instantaneous window at 3:25 p.m. EDT. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Tony Gray and Tim Terry
[Acoustic information in snoring noises].
Janott, C; Schuller, B; Heiser, C
2017-02-01
More than one third of all people snore regularly. Snoring is a common accompaniment of obstructive sleep apnea (OSA) and is often disruptive for the bed partner. This work gives an overview of the history of and state of research on acoustic analysis of snoring for classification of OSA severity, detection of obstructive events, measurement of annoyance, and identification of the sound excitation location. Based on these objectives, searches were conducted in the literature databases PubMed and IEEE Xplore. Publications dealing with the respective objectives according to title and abstract were selected from the search results. A total of 48 publications concerning the above objectives were considered. The limiting factor of many studies is the small number of subjects upon which the analyses are based. Recent research findings show promising results, such that acoustic analysis may find a place in the framework of sleep diagnostics, thus supplementing the recognized standard methods.
STS-56 view of freeflying SPARTAN-201 backdropped against heavy cloud cover
1993-04-17
STS056-90-034 (8-17 April 1993) --- Backdropped against heavy cloud cover over the Mediterranean Sea, the SPARTAN-201 satellite was captured on 70mm by crewmembers aboard the Space Shuttle Discovery. SPARTAN is a free-flying payload designed to study the solar wind and part of the sun's corona. The project was conceived in the late 1970s to take advantage of the opportunity offered by the Space Shuttle to provide more observation time for the increasingly more sophisticated experiments than the five to ten minutes provided by sounding rocket flights. On the mission's third day, Astronaut Ellen Ochoa, Mission Specialist, used the remote manipulator system (RMS) to lift the satellite from its support structure on Discovery and release it in space. The reusable craft was later recaptured and returned to Earth with the crew. Note the tip of Discovery's vertical stabilizer at frame's edge.