Sample records for third-generation 3g wireless

  1. Cyber Security Vulnerabilities During Long Term Evolution Power-Saving Discontinuous Reception Protocol

    DTIC Science & Technology

    2014-06-01

    2G second generation 3G third generation 3GPP Third Generation Partnership Project 4G fourth generation AAA authentication, authorization and...RRC_IDLE or the RRC_CONNECTED states in 4G LTE as shown in Figure 19. 2G and 3G networks use DRX in idle mode only. In Figure 19, LTE-U_u is the new DRX...is a wireless access communications network that consists of base stations called eNodeBs (eNBs), which allow connectivity between the mobile device

  2. 75 FR 67060 - Universal Service Reform Mobility Fund

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    ... CONTACT: Wireless Telecommunications Bureau, Auctions and Spectrum Access Division: Scott Mackoul at (202... the first cellular telephone licenses, the wireless industry has continually expanded and upgraded its networks to the point where third generation (called advanced or 3G) mobile wireless services are now...

  3. 3.5G based mobile remote monitoring system.

    PubMed

    Bajracharya, Aman; Gale, Timothy J; Stack, Clive R; Turner, Paul

    2008-01-01

    Low bandwidth has long been a reason for the unsuitability of wireless internet in telemedicine. However with the advent of extended third generation wireless as an economically accessible high speed network, more opportunities are being created in this area of telemedicine. This paper explores the opportunity created by the latest wireless broadband technology for remote monitoring of patients in the home.

  4. RFIC's challenges for third-generation wireless systems

    NASA Astrophysics Data System (ADS)

    Boric-Lubecke, Olga; Lin, Jenshan; Gould, Penny; Kermalli, Munawar

    2001-11-01

    Third generation (3G) cellular wireless systems are envisioned to offer low cost, high-capacity mobile communications with data rates of up to 2 Mbit/s, with global roaming and advanced data services. Besides adding mobility to the internet, 3G systems will provide location-based services, as well as personalized information and entertainment. Low cost, high dynamic-range radios, both for base stations (BS) and for mobile stations (MS) are required to enable worldwide deployment of such networks. A receiver's reference sensitivity, intermodulation characteristics, and blocking characteristics, set by a wireless standard, define performance requirements of individual components of a receiver front end. Since base station handles multiple signals from various distances simultaneously, its radio specifications are significantly more demanding than those for mobile devices. While high level of integration has already been achieved for second generation hand-sets using low-cost silicon technologies, the cost and size reduction of base stations still remains a challenge and necessity. While silicon RFIC technology is steadily improving, it is still difficult to achieve noise figure (NF), linearity, and phase noise requirements with presently available devices. This paper will discuss base station specification for 2G (GSM) and 3G (UMTS) systems, as well as the feasibility of implementing base station radios in low-cost silicon processes.

  5. Third Generation Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Smith, Laura J.; Williams, Reuben A.; Salud, Maria Theresa P.

    2005-01-01

    Radiated emissions in aircraft communication and navigation bands are measured from third generation (3G) wireless mobile phones. The two wireless technologies considered are the latest available to general consumers in the US. The measurements are conducted using reverberation chambers. The results are compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft. Using existing interference path loss data and receivers interference threshold, a risk assessment is performed for several aircraft communication and navigation radio systems. In addition, cumulative interference effects of multiple similar devices are conservatively estimated or bounded. The effects are computed by summing the interference power from individual devices that is scaled according to the interference path loss at its location.

  6. Secure Military Communications on 3G, 4G and WiMAX

    DTIC Science & Technology

    2013-09-01

    per bit, low latency, good quality of service, good coverage and support for mobility at high speeds. Thus, 4G wireless technologies are based on 3G ...security for military communications. 87 LIST OF REFERENCES [1] C. Blanchard, “Security for the third generation ( 3G ) mobile system,” Elsevier Science...COMMUNICATIONS ON 3G , 4G AND WIMAX by Panagiotis Schoinas September 2013 Thesis Advisor: Gurminder Singh Co-Advisor: John H. Gibson

  7. Tradeoff Analysis for Combat Service Support Wireless Communications Alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnette, John R.; Thibodeau, Christopher C.; Greitzer, Frank L.

    2002-02-28

    As the Army moves toward more mobile and agile forces and continued sustainment of numerous high-cost legacy logistics management systems, the requirement for wireless connectivity and a wireless network to supporting organizations has become ever more critical. There are currently several Army communications initiatives underway to resolve this wireless connectivity issue. However, to fully appreciate and understand the value of these initiatives, a Tradeoff Analysis is needed. The present study seeks to identify and assess solutions. The analysis identified issues that impede Interim Brigade Combat Team (IBCT) communication system integration and outlined core requirements for sharing of logistics data betweenmore » the field and Army battle command systems. Then, the analysis examined wireless communication alternatives as possible solutions for IBCT logistics communications problems. The current baseline system was compared with possible alternatives involving tactical radio systems, wireless/near term digital radio, cellular satellite, and third-generation (3G) wireless technologies. Cellular satellite and 3G wireless technologies offer clear advantages and should be considered for later IBCTs.« less

  8. Telebation: next-generation telemedicine in remote airway management using current wireless technologies.

    PubMed

    Mosier, Jarrod; Joseph, Bellal; Sakles, John C

    2013-02-01

    Since the first remote intubation with telemedicine guidance, wireless technology has advanced to enable more portable methods of telemedicine involvement in remote airway management. Three voice over Internet protocol (VoIP) services were evaluated for quality of image transmitted, data lag, and audio quality with remotely observed and assisted intubations in an academic emergency department. The VoIP clients evaluated were Apple (Cupertino, CA) FaceTime(®), Skype™ (a division of Microsoft, Luxembourg City, Luxembourg), and Tango(®) (TangoMe, Palo Alto, CA). Each client was tested over a Wi-Fi network as well as cellular third generation (3G) (Skype and Tango). All three VoIP clients provided acceptable image and audio quality. There is a significant data lag in image transmission and quality when VoIP clients are used over cellular broadband (3G) compared with Wi-Fi. Portable remote telemedicine guidance is possible with newer technology devices such as a smartphone or tablet, as well as VoIP clients used over Wi-Fi or cellular broadband.

  9. Providing QoS guarantee in 3G wireless networks

    NASA Astrophysics Data System (ADS)

    Chuah, MooiChoo; Huang, Min; Kumar, Suresh

    2001-07-01

    The third generation networks and services present opportunities to offer multimedia applications and services that meet end-to-end quality of service requirements. In this article, we present UMTS QoS architecture and its requirements. This includes the definition of QoS parameters, traffic classes, the end-to-end data delivery model, and the mapping of end-to-end services to the services provided by the network elements of the UMTS. End-to-end QoS of a user flow is achieved by the combination of the QoS control over UMTS Domain and the IP core Network. In the Third Generation Wireless network, UMTS bearer service manager is responsible to manage radio and transport resources to QoS-enabled applications. The UMTS bearer service consists of the Radio Access Bearer Service between Mobile Terminal and SGSN and Core Network bearer service between SGSN and GGSN. The Radio Access Bearer Service is further realized by the Radio Bearer Service (mostly air interface) and Iu bearer service. For the 3G air interface, one can provide differentiated QoS via intelligent burst allocation scheme, adaptive spreading factor control and weighted fair queueing scheduling algorithms. Next, we discuss the requirements for the transport technologies in the radio access network to provide differentiated QoS to multiple classes of traffic. We discuss both ATM based and IP based transport solutions. Last but not least, we discuss how QoS mechanism is provided in the core network to ensure e2e quality of service requirements. We discuss how mobile terminals that use RSVP as QoS signaling mechanisms can be are supported in the 3G network which may implement only IETF diffserv mechanism. . We discuss how one can map UMTS QoS classes with IETF diffserv code points. We also discuss 2G/3G handover scenarios and how the 2G/3G QoS parameters can be mapped.

  10. Scalable Video Streaming Relay for Smart Mobile Devices in Wireless Networks

    PubMed Central

    Kwon, Dongwoo; Je, Huigwang; Kim, Hyeonwoo; Ju, Hongtaek; An, Donghyeok

    2016-01-01

    Recently, smart mobile devices and wireless communication technologies such as WiFi, third generation (3G), and long-term evolution (LTE) have been rapidly deployed. Many smart mobile device users can access the Internet wirelessly, which has increased mobile traffic. In 2014, more than half of the mobile traffic around the world was devoted to satisfying the increased demand for the video streaming. In this paper, we propose a scalable video streaming relay scheme. Because many collisions degrade the scalability of video streaming, we first separate networks to prevent excessive contention between devices. In addition, the member device controls the video download rate in order to adapt to video playback. If the data are sufficiently buffered, the member device stops the download. If not, it requests additional video data. We implemented apps to evaluate the proposed scheme and conducted experiments with smart mobile devices. The results showed that our scheme improves the scalability of video streaming in a wireless local area network (WLAN). PMID:27907113

  11. Scalable Video Streaming Relay for Smart Mobile Devices in Wireless Networks.

    PubMed

    Kwon, Dongwoo; Je, Huigwang; Kim, Hyeonwoo; Ju, Hongtaek; An, Donghyeok

    2016-01-01

    Recently, smart mobile devices and wireless communication technologies such as WiFi, third generation (3G), and long-term evolution (LTE) have been rapidly deployed. Many smart mobile device users can access the Internet wirelessly, which has increased mobile traffic. In 2014, more than half of the mobile traffic around the world was devoted to satisfying the increased demand for the video streaming. In this paper, we propose a scalable video streaming relay scheme. Because many collisions degrade the scalability of video streaming, we first separate networks to prevent excessive contention between devices. In addition, the member device controls the video download rate in order to adapt to video playback. If the data are sufficiently buffered, the member device stops the download. If not, it requests additional video data. We implemented apps to evaluate the proposed scheme and conducted experiments with smart mobile devices. The results showed that our scheme improves the scalability of video streaming in a wireless local area network (WLAN).

  12. Quantum key distribution in multicore fibre for secure radio access networks

    NASA Astrophysics Data System (ADS)

    Llorente, Roberto; Provot, Antoine; Morant, Maria

    2018-01-01

    Broadband access in optical domain usually focuses in providing a pervasive cost-effective high bitrate communication in a given area. Nowadays, it is of utmost interest also to be able to provide a secure communication to the costumers in the area. Wireless access networks rely on optical domain for both fronthaul and backhaul of the radio access network (C-RAN). Multicore fiber (MCF) has been proposed as a promising candidate for the optical media of choice in nextgeneration wireless. The capacity demand of next-generation 5G networks makes interesting the use of high-capacity optical solutions as space-division multiplexing of different signals over MCF media. This work addresses secure MCF communication supporting C-RAN architectures. The paper proposes the use of one core in the MCF to transport securely an optical quantum key encoding altogether with end-to-end wireless signal transmitted in the remaining cores in radio-over-fiber (RoF). The RoF wireless signals are suitable for radio access fronthaul and backhaul. The theoretical principle and simulation analysis of quantum key distribution (QKD) are presented in this paper. The potential impact of optical RoF transmission crosstalk impairments is assessed experimentally considering different cellular signals on the remaining optical cores in the MCF. The experimental results report fronthaul performance over a four-core optical fiber with RoF transmission of full-standard CDMA signals providing 3.5G services in one core, HSPA+ signals providing 3.9G services in the second core and 3GPP LTEAdvanced signals providing 4G services in the third core, considering that the QKD signal is allocated in the fourth core.

  13. Incentive Mechanism for P2P Content Sharing over Heterogenous Access Networks

    NASA Astrophysics Data System (ADS)

    Sato, Kenichiro; Hashimoto, Ryo; Yoshino, Makoto; Shinkuma, Ryoichi; Takahashi, Tatsuro

    In peer-to-peer (P2P) content sharing, users can share their content by contributing their own resources to one another. However, since there is no incentive for contributing contents or resources to others, users may attempt to obtain content without any contribution. To motivate users to contribute their resources to the service, incentive-rewarding mechanisms have been proposed. On the other hand, emerging wireless technologies, such as IEEE 802.11 wireless local area networks, beyond third generation (B3G) cellular networks and mobile WiMAX, provide high-speed Internet access for wireless users. Using these high-speed wireless access, wireless users can use P2P services and share their content with other wireless users and with fixed users. However, this diversification of access networks makes it difficult to appropriately assign rewards to each user according to their contributions. This is because the cost necessary for contribution is different in different access networks. In this paper, we propose a novel incentive-rewarding mechanism called EMOTIVER that can assign rewards to users appropriately. The proposed mechanism uses an external evaluator and interactive learning agents. We also investigate a way of appropriately controlling rewards based on the system service's quality and managing policy.

  14. IoT Applications with 5G Connectivity in Medical Tourism Sector Management: Third-Party Service Scenarios.

    PubMed

    Psiha, Maria M; Vlamos, Panayiotis

    2017-01-01

    5G is the next generation of mobile communication technology. Current generation of wireless technologies is being evolved toward 5G for better serving end users and transforming our society. Supported by 5G cloud technology, personal devices will extend their capabilities to various applications, supporting smart life. They will have significant role in health, medical tourism, security, safety, and social life applications. The next wave of mobile communication is to mobilize and automate industries and industry processes via Machine-Type Communication (MTC) and Internet of Things (IoT). The current key performance indicators for the 5G infrastructure for the fully connected society are sufficient to satisfy most of the technical requirements in the healthcare sector. Thus, 5G can be considered as a door opener for new possibilities and use cases, many of which are as yet unknown. In this paper we present heterogeneous use cases in medical tourism sector, based on 5G infrastructure technologies and third-party cloud services.

  15. Research on an estimation method of DOA for wireless location based on TD-SCDMA

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Luo, Yuan; Cheng, Shi-xin

    2004-03-01

    To meet the urgent need of personal communication and hign-speed data services,the standardization and products development for International Mobile Telecommunication-2000 (IMT-2000) have become a hot point in wordwide. The wireless location for mobile terminals has been an important research project. Unlike GPS which is located by 24 artificial satellities, it is based on the base-station of wireless cell network, and the research and development of it are correlative with IMT-2000. While the standard for the third generation mobile telecommunication (3G)-TD-SCDMA, which is proposed by China and the intellective property right of which is possessed by Chinese, is adopted by ITU-T at the first time, the research for wireless location based on TD-SCDMA has theoretic meaning, applied value and marketable foreground. First,the basic principle and method for wireless location, i.e. Direction of Angle(DOA), Time of Arrival(TOA) or Time Difference of Arrival(TDOA), hybridized location(TOA/DOA,TDOA/DOA,TDOA/DOA),etc. is introduced in the paper. So the research of DOA is very important in wireless location. Next, Main estimation methods of DOA for wireless location, i.e. ESPRIT, MUSIC, WSF, Min-norm, etc. are researched in the paper. In the end, the performances of DOA estimation for wireless location based on mobile telecommunication network are analyzed by the research of theory and simulation experiment and the contrast algorithms between and Cramer-Rao Bound. Its research results aren't only propitious to the choice of algorithms for wireless location, but also to the realization of new service of wireless location .

  16. 75 FR 82026 - Granting of Request for Early Termination of the Waiting Period Under the Premerger Notification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ..., LLC. 20110313 G News Corporation. G Wireless Generation, Inc. G Wireless Generation, Inc. 08-DEC-10.... G Exxon Mobil Corporation. G Mobile Eugene Island Pipeline Company. G Exxon Mobil Pipeline Company. G Mobil Oil Exploration & Producing Southeast Inc. 20110256 G Humana Inc. G Welsh, Carson, Anderson...

  17. Cascaded neural networks for sequenced propagation estimation, multiuser detection, and adaptive radio resource control of third-generation wireless networks for multimedia services

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    1999-03-01

    A hybrid neural network approach is presented to estimate radio propagation characteristics and multiuser interference and to evaluate their combined impact on throughput, latency and information loss in third-generation (3G) wireless networks. The latter three performance parameters influence the quality of service (QoS) for multimedia services under consideration for 3G networks. These networks, based on a hierarchical architecture of overlaying macrocells on top of micro- and picocells, are planned to operate in mobile urban and indoor environments with service demands emanating from circuit-switched, packet-switched and satellite-based traffic sources. Candidate radio interfaces for these networks employ a form of wideband CDMA in 5-MHz and wider-bandwidth channels, with possible asynchronous operation of the mobile subscribers. The proposed neural network (NN) architecture allocates network resources to optimize QoS metrics. Parameters of the radio propagation channel are estimated, followed by control of an adaptive antenna array at the base station to minimize interference, and then joint multiuser detection is performed at the base station receiver. These adaptive processing stages are implemented as a sequence of NN techniques that provide their estimates as inputs to a final- stage Kohonen self-organizing feature map (SOFM). The SOFM optimizes the allocation of available network resources to satisfy QoS requirements for variable-rate voice, data and video services. As the first stage of the sequence, a modified feed-forward multilayer perceptron NN is trained on the pilot signals of the mobile subscribers to estimate the parameters of shadowing, multipath fading and delays on the uplinks. A recurrent NN (RNN) forms the second stage to control base stations' adaptive antenna arrays to minimize intra-cell interference. The third stage is based on a Hopfield NN (HNN), modified to detect multiple users on the uplink radio channels to mitigate multiaccess interference, control carrier-sense multiple-access (CSMA) protocols, and refine call handoff procedures. In the final stage, the Kohonen SOFM, operating in a hybrid continuous and discrete space, adaptively allocates the resources of antenna-based cell sectorization, activity monitoring, variable-rate coding, power control, handoff and caller admission to meet user demands for various multimedia services at minimum QoS levels. The performance of the NN cascade is evaluated through simulation of a candidate 3G wireless network using W-CDMA parameters in a small-cell environment. The simulated network consists of a representative number of cells. Mobile users with typical movement patterns are assumed. QoS requirements for different classes of multimedia services are considered. The proposed method is shown to provide relatively low probability of new call blocking and handoff dropping, while maintaining efficient use of the network's radio resources.

  18. Numerical analysis for infant's unintentional exposure to 3.5 GHz plane wave radiofrequency electromagnetic fields by field test of fifth generation wireless technologies

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Li, Congsheng; Kang, Yangyang; Zhou, Zhou; Xie, Yi; Wu, Tongning

    2017-09-01

    In this study, the plane wave exposure of an infant to radiofrequency electromagnetic fields of 3.5 GHz was numerically analyzed to investigate the unintentional electromagnetic field (EMF) exposure of fifth generation (5G) signals during field test. The dosimetric influence of age-dependent dielectric properties and the influence of an adult body were evaluated using an infant model of 12 month old and an adult female model. The results demonstrated that the whole body-averaged specific absorption rate (WBASAR) was not significantly affected by age-dependent dielectric properties and the influence of the adult body did not enhance WBASAR. Taking the magnitude of the in situ E field strength into consideration, realistic WBASAR was far below the basic restriction. Age-dependent dielectric properties could significantly change the tissue specified specific absorption rate (TSSAR) of internal organs. However, the variation was not significant because the absolute values were marginal. Among the factors that influenced TSSAR variation, change in dielectric properties demonstrated a close correlation. In general, at 3.5 GHz, the infant did not absorb more power than the case of EMF exposure to third generation (3G) and fourth generation (4G) signals. The work was helpful for network operators and device manufactures to estimate the potential exposure risk during the field test, especially for the infant.

  19. Strategies for P2P connectivity in reconfigurable converged wired/wireless access networks.

    PubMed

    Puerto, Gustavo; Mora, José; Ortega, Beatriz; Capmany, José

    2010-12-06

    This paper presents different strategies to define the architecture of a Radio-Over-Fiber (RoF) Access networks enabling Peer-to-Peer (P2P) functionalities. The architectures fully exploit the flexibility of a wavelength router based on the feedback configuration of an Arrayed Waveguide Grating (AWG) and an optical switch to broadcast P2P services among diverse infrastructures featuring dynamic channel allocation and enabling an optical platform for 3G and beyond wireless backhaul requirements. The first architecture incorporates a tunable laser to generate a dedicated wavelength for P2P purposes and the second architecture takes advantage of reused wavelengths to enable the P2P connectivity among Optical Network Units (ONUs) or Base Stations (BS). While these two approaches allow the P2P connectivity in a one at a time basis (1:1), the third architecture enables the broadcasting of P2P sessions among different ONUs or BSs at the same time (1:M). Experimental assessment of the proposed architecture shows approximately 0.6% Error Vector Magnitude (EVM) degradation for wireless services and 1 dB penalty in average for 1 x 10(-12) Bit Error Rate (BER) for wired baseband services.

  20. Free-space optics technology employed in an UMTS release 4 bearer independent core network access part

    NASA Astrophysics Data System (ADS)

    Bibac, Ionut

    2005-08-01

    The UMTS Bearer Independent Core Network program introduced the 3rd Generation Partnership Program Release 4 BICN architecture into the legacy UMTS TDM-switched network. BICN is the application of calI server archltecture for voice and circuit switched data, enabling the provisioning of traditional circuit-switched services using a packet-switched transport network. Today"s business climate has made it essential for service providers to develop a comprehensive networking strategy that means introduction of RCBICN networks. The R4-BICN solution to the evolution of the Core Network in UMTS will enable operators to significantly reduce the capital and operational costs of delivering both traditional voice sewices and new multimedia services. To build the optical backbone, which can support the third generation (3G) packetized infrastructure, the operators could choose a fibre connection, or they could retain the benefits of a wireless connectivity by using a FSO - Free Space Optical lmk, the only wireless technology available that is capable of achieving data rates up to 2.4 Gbit/s. FSO offers viable alternatives for both core transmission networks and for replacing microwaves links in NodeB - RNC access networks. The paper and presentation aim to demonstrate the manner in which FSO products and networks are employed into R4-BICN design solutions.

  1. Electromagnetic spectrum management system

    DOEpatents

    Seastrand, Douglas R.

    2017-01-31

    A system for transmitting a wireless countermeasure signal to disrupt third party communications is disclosed that include an antenna configured to receive wireless signals and transmit wireless counter measure signals such that the wireless countermeasure signals are responsive to the received wireless signals. A receiver processes the received wireless signals to create processed received signal data while a spectrum control module subtracts known source signal data from the processed received signal data to generate unknown source signal data. The unknown source signal data is based on unknown wireless signals, such as enemy signals. A transmitter is configured to process the unknown source signal data to create countermeasure signals and transmit a wireless countermeasure signal over the first antenna or a second antenna to thereby interfere with the unknown wireless signals.

  2. The System Power Control Unit Based on the On-Chip Wireless Communication System

    PubMed Central

    Li, Tiefeng; Ma, Caiwen; Li, WenHua

    2013-01-01

    Currently, the on-chip wireless communication system (OWCS) includes 2nd-generation (2G), 3rd-generation (3G), and long-term evolution (LTE) communication subsystems. To improve the power consumption of OWCS, a typical architecture design of system power control unit (SPCU) is given in this paper, which can not only make a 2G, a 3G, and an LTE subsystems enter sleep mode, but it can also wake them up from sleep mode via the interrupt. During the sleep mode period, either the real-time sleep timer or the global system for mobile (GSM) communication sleep timer can be used individually to arouse the corresponding subsystem. Compared to previous sole voltage supplies on the OWCS, a 2G, a 3G, or an LTE subsystem can be independently configured with three different voltages and frequencies in normal work mode. In the meantime, the voltage supply monitor, which is an important part in the SPCU, can significantly guard the voltage of OWCS in real time. Finally, the SPCU may implement dynamic voltage and frequency scaling (DVFS) for a 2G, a 3G, or an LTE subsystem, which is automatically accomplished by the hardware. PMID:23818835

  3. The system power control unit based on the on-chip wireless communication system.

    PubMed

    Li, Tiefeng; Ma, Caiwen; Li, WenHua

    2013-01-01

    Currently, the on-chip wireless communication system (OWCS) includes 2nd-generation (2G), 3rd-generation (3G), and long-term evolution (LTE) communication subsystems. To improve the power consumption of OWCS, a typical architecture design of system power control unit (SPCU) is given in this paper, which can not only make a 2G, a 3G, and an LTE subsystems enter sleep mode, but it can also wake them up from sleep mode via the interrupt. During the sleep mode period, either the real-time sleep timer or the global system for mobile (GSM) communication sleep timer can be used individually to arouse the corresponding subsystem. Compared to previous sole voltage supplies on the OWCS, a 2G, a 3G, or an LTE subsystem can be independently configured with three different voltages and frequencies in normal work mode. In the meantime, the voltage supply monitor, which is an important part in the SPCU, can significantly guard the voltage of OWCS in real time. Finally, the SPCU may implement dynamic voltage and frequency scaling (DVFS) for a 2G, a 3G, or an LTE subsystem, which is automatically accomplished by the hardware.

  4. Mobile Applications and 4G Wireless Networks: A Framework for Analysis

    ERIC Educational Resources Information Center

    Yang, Samuel C.

    2012-01-01

    Purpose: The use of mobile wireless data services continues to increase worldwide. New fourth-generation (4G) wireless networks can deliver data rates exceeding 2 Mbps. The purpose of this paper is to develop a framework of 4G mobile applications that utilize such high data rates and run on small form-factor devices. Design/methodology/approach:…

  5. Electromagnetic spectrum management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seastrand, Douglas R.

    A system for transmitting a wireless countermeasure signal to disrupt third party communications is disclosed that include an antenna configured to receive wireless signals and transmit wireless counter measure signals such that the wireless countermeasure signals are responsive to the received wireless signals. A receiver processes the received wireless signals to create processed received signal data while a spectrum control module subtracts known source signal data from the processed received signal data to generate unknown source signal data. The unknown source signal data is based on unknown wireless signals, such as enemy signals. A transmitter is configured to process themore » unknown source signal data to create countermeasure signals and transmit a wireless countermeasure signal over the first antenna or a second antenna to thereby interfere with the unknown wireless signals.« less

  6. 60-GHz Millimeter-wave Over Fiber with Directly Modulated Dual-mode Laser Diode

    PubMed Central

    Tsai, Cheng-Ting; Lin, Chi-Hsiang; Lin, Chun-Ting; Chi, Yu-Chieh; Lin, Gong-Ru

    2016-01-01

    A directly modulated dual-mode laser diode (DMLD) with third-order intermodulation distortion (IMD3) suppression is proposed for a 60-GHz millimeter-wave over fiber (MMWoF) architecture, enabling new fiber-wireless communication access to cover 4-km single-mode-fiber (SMF) and 3-m wireless 16-QAM OFDM transmissions. By dual-mode injection-locking, the throughput degradation of the DMLD is mitigated with saturation effect to reduce its threshold, IMD3 power and relative intensity noise to 7.7 mA, −85 dBm and −110.4 dBc/Hz, respectively, providing huge spurious-free dynamic range of 85.8 dB/Hz2/3. This operation suppresses the noise floor of the DMLD carried QPSK-OFDM spectrum by 5 dB. The optical receiving power is optimized to restrict the power fading effect for improving the bit error rate to 1.9 × 10−3 and the receiving power penalty to 1.1 dB. Such DMLD based hybrid architecture for 60-GHz MMW fiber-wireless access can directly cover the current optical and wireless networks for next-generation indoor and short-reach mobile communications. PMID:27297267

  7. Parental Socioeconomic Status, Communication, and Children's Vocabulary Development: A Third-Generation Test of the Family Investment Model

    ERIC Educational Resources Information Center

    Sohr-Preston, Sara L.; Scaramella, Laura V.; Martin, Monica J.; Neppl, Tricia K.; Ontai, Lenna; Conger, Rand

    2013-01-01

    This third-generation, longitudinal study evaluated a family investment perspective on family socioeconomic status (SES), parental investments in children, and child development. The theoretical framework was tested for first-generation parents (G1), their children (G2), and the children of the second generation (G3). G1 SES was expected to…

  8. 78 FR 8191 - Certain Wireless Devices With 3G and/or 4G Capabilities and Components Thereof; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-868] Certain Wireless Devices With 3G and... importation, and the sale within the United States after importation of certain wireless devices with 3G and... devices with 3G and/or 4G capabilities and components thereof by reason of infringement of one or more of...

  9. Comparison of average global exposure of population induced by a macro 3G network in different geographical areas in France and Serbia.

    PubMed

    Huang, Yuanyuan; Varsier, Nadège; Niksic, Stevan; Kocan, Enis; Pejanovic-Djurisic, Milica; Popovic, Milica; Koprivica, Mladen; Neskovic, Aleksandar; Milinkovic, Jelena; Gati, Azeddine; Person, Christian; Wiart, Joe

    2016-09-01

    This article is the first thorough study of average population exposure to third generation network (3G)-induced electromagnetic fields (EMFs), from both uplink and downlink radio emissions in different countries, geographical areas, and for different wireless device usages. Indeed, previous publications in the framework of exposure to EMFs generally focused on individual exposure coming from either personal devices or base stations. Results, derived from device usage statistics collected in France and Serbia, show a strong heterogeneity of exposure, both in time, that is, the traffic distribution over 24 h was found highly variable, and space, that is, the exposure to 3G networks in France was found to be roughly two times higher than in Serbia. Such heterogeneity is further explained based on real data and network architecture. Among those results, authors show that, contrary to popular belief, exposure to 3G EMFs is dominated by uplink radio emissions, resulting from voice and data traffic, and average population EMF exposure differs from one geographical area to another, as well as from one country to another, due to the different cellular network architectures and variability of mobile usage. Bioelectromagnetics. 37:382-390, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. A Fully-Passive Wireless Microsystem for Recording of Neuropotentials using RF Backscattering Methods

    PubMed Central

    Xu, Wencheng; Shekhar, Sameer; Abbaspour-Tamijani, Abbas; Towe, Bruce C.; Miranda, Félix A.; Chae, Junseok

    2011-01-01

    The ability to safely monitor neuropotentials is essential in establishing methods to study the brain. Current research focuses on the wireless telemetry aspect of implantable sensors in order to make these devices ubiquitous and safe. Chronic implants necessitate superior reliability and durability of the integrated electronics. The power consumption of implanted electronics must also be limited to within several milliwatts to microwatts to minimize heat trauma in the human body. In order to address these severe requirements, we developed an entirely passive and wireless microsystem for recording neuropotentials. An external interrogator supplies a fundamental microwave carrier to the microsystem. The microsystem comprises varactors that perform nonlinear mixing of neuropotential and fundamental carrier signals. The varactors generate third-order mixing products that are wirelessly backscattered to the external interrogator where the original neuropotential signals are recovered. Performance of the neuro-recording microsystem was demonstrated by wireless recording of emulated and in vivo neuropotentials. The obtained results were wireless recovery of neuropotentials as low as approximately 500 microvolts peak-to-peak (μVpp) with a bandwidth of 10 Hz to 3 kHz (for emulated signals) and with 128 epoch signal averaging of repetitive signals (for in vivo signals). PMID:22267898

  11. 78 FR 55294 - Certain Wireless Devices With 3G Capabilities and Components Thereof Commission Determination To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-800] Certain Wireless Devices With 3G Capabilities and Components Thereof Commission Determination To Review the Final Initial Determination Finding... importation of certain wireless devices with 3G capabilities and components thereof by reason of infringement...

  12. 5 G wireless telecommunications expansion: Public health and environmental implications.

    PubMed

    Russell, Cindy L

    2018-04-11

    The popularity, widespread use and increasing dependency on wireless technologies has spawned a telecommunications industrial revolution with increasing public exposure to broader and higher frequencies of the electromagnetic spectrum to transmit data through a variety of devices and infrastructure. On the horizon, a new generation of even shorter high frequency 5G wavelengths is being proposed to power the Internet of Things (IoT). The IoT promises us convenient and easy lifestyles with a massive 5G interconnected telecommunications network, however, the expansion of broadband with shorter wavelength radiofrequency radiation highlights the concern that health and safety issues remain unknown. Controversy continues with regards to harm from current 2G, 3G and 4G wireless technologies. 5G technologies are far less studied for human or environmental effects. It is argued that the addition of this added high frequency 5G radiation to an already complex mix of lower frequencies, will contribute to a negative public health outcome both from both physical and mental health perspectives. Radiofrequency radiation (RF) is increasingly being recognized as a new form of environmental pollution. Like other common toxic exposures, the effects of radiofrequency electromagnetic radiation (RF EMR) will be problematic if not impossible to sort out epidemiologically as there no longer remains an unexposed control group. This is especially important considering these effects are likely magnified by synergistic toxic exposures and other common health risk behaviors. Effects can also be non-linear. Because this is the first generation to have cradle-to-grave lifespan exposure to this level of man-made microwave (RF EMR) radiofrequencies, it will be years or decades before the true health consequences are known. Precaution in the roll out of this new technology is strongly indicated. This article will review relevant electromagnetic frequencies, exposure standards and current scientific literature on the health implications of 2G, 3G, 4G exposure, including some of the available literature on 5G frequencies. The question of what constitutes a public health issue will be raised, as well as the need for a precautionary approach in advancing new wireless technologies. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. 78 FR 42107 - Certain Wireless Devices With 3G Capabilities and Components Thereof; Notice of Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-800] Certain Wireless Devices With 3G Capabilities and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S..., specifically a limited exclusion order against certain wireless devices with 3G capabilities and components...

  14. 77 FR 26788 - Certain Wireless Devices With 3G Capabilities and Components Thereof Determination Not To Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-800] Certain Wireless Devices With 3G Capabilities and Components Thereof Determination Not To Review Initial Determination To Amend the Notice of... importation of certain wireless devices with 3G capabilities and components thereof by reason of infringement...

  15. 76 FR 81527 - Certain Wireless Devices with 3G Capabilities and Components Thereof; Determination Not to Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-800] Certain Wireless Devices with 3G Capabilities and Components Thereof; Determination Not to Review Initial Determination Granting Motion for... importation, and the sale within the United States after importation of certain wireless devices with 3G...

  16. 78 FR 958 - Certain Wireless Devices With 3G and/or 4G Capabilities and Components Thereof Notice of Receipt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ... INTERNATIONAL TRADE COMMISSION [DN 2929] Certain Wireless Devices With 3G and/or 4G Capabilities... Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Wireless Devices...

  17. Arterial pressure-based cardiac output monitoring: a multicenter validation of the third-generation software in septic patients.

    PubMed

    De Backer, Daniel; Marx, Gernot; Tan, Andrew; Junker, Christopher; Van Nuffelen, Marc; Hüter, Lars; Ching, Willy; Michard, Frédéric; Vincent, Jean-Louis

    2011-02-01

    Second-generation FloTrac software has been shown to reliably measure cardiac output (CO) in cardiac surgical patients. However, concerns have been raised regarding its accuracy in vasoplegic states. The aim of the present multicenter study was to investigate the accuracy of the third-generation software in patients with sepsis, particularly when total systemic vascular resistance (TSVR) is low. Fifty-eight septic patients were included in this prospective observational study in four university-affiliated ICUs. Reference CO was measured by bolus pulmonary thermodilution (iCO) using 3-5 cold saline boluses. Simultaneously, CO was computed from the arterial pressure curve recorded on a computer using the second-generation (CO(G2)) and third-generation (CO(G3)) FloTrac software. CO was also measured by semi-continuous pulmonary thermodilution (CCO). A total of 401 simultaneous measurements of iCO, CO(G2), CO(G3), and CCO were recorded. The mean (95%CI) biases between CO(G2) and iCO, CO(G3) and iCO, and CCO and iCO were -10 (-15 to -5)% [-0.8 (-1.1 to -0.4) L/min], 0 (-4 to 4)% [0 (-0.3 to 0.3) L/min], and 9 (6-13)% [0.7 (0.5-1.0) L/min], respectively. The percentage errors were 29 (20-37)% for CO(G2), 30 (24-37)% for CO(G3), and 28 (22-34)% for CCO. The difference between iCO and CO(G2) was significantly correlated with TSVR (r(2) = 0.37, p < 0.0001). A very weak (r(2) = 0.05) relationship was also observed for the difference between iCO and CO(G3). In patients with sepsis, the third-generation FloTrac software is more accurate, as precise, and less influenced by TSVR than the second-generation software.

  18. Modeling a Linear Generator for Energy Harvesting Applications

    DTIC Science & Technology

    2014-12-01

    sensors where electrical power is not available (e.g., wireless sensors on train cars). While piezoelectric harvesters are primarily utilized in...Ship and the Future of Electricity Generation ............3 2. Unmanned Sensor Energy Needs .......................................................4...18 Figure 8. Example two-pole, three-phase salient-pole synchronous machine showing the general layout of windings and major axis

  19. Transfer Error and Correction Approach in Mobile Network

    NASA Astrophysics Data System (ADS)

    Xiao-kai, Wu; Yong-jin, Shi; Da-jin, Chen; Bing-he, Ma; Qi-li, Zhou

    With the development of information technology and social progress, human demand for information has become increasingly diverse, wherever and whenever people want to be able to easily, quickly and flexibly via voice, data, images and video and other means to communicate. Visual information to the people direct and vivid image, image / video transmission also been widespread attention. Although the third generation mobile communication systems and the emergence and rapid development of IP networks, making video communications is becoming the main business of the wireless communications, however, the actual wireless and IP channel will lead to error generation, such as: wireless channel multi- fading channels generated error and blocking IP packet loss and so on. Due to channel bandwidth limitations, the video communication compression coding of data is often beyond the data, and compress data after the error is very sensitive to error conditions caused a serious decline in image quality.

  20. A Low Power 2.4 GHz CMOS Mixer Using Forward Body Bias Technique for Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Yin, C. J.; Murad, S. A. Z.; Harun, A.; Ramli, M. M.; Zulkifli, T. Z. A.; Karim, J.

    2018-03-01

    Wireless sensor network (WSN) is a highly-demanded application since the evolution of wireless generation which is often used in recent communication technology. A radio frequency (RF) transceiver in WSN should have a low power consumption to support long operating times of mobile devices. A down-conversion mixer is responsible for frequency translation in a receiver. By operating a down-conversion mixer at a low supply voltage, the power consumed by WSN receiver can be greatly reduced. This paper presents a development of low power CMOS mixer using forward body bias technique for wireless sensor network. The proposed mixer is implemented using CMOS 0.13 μm Silterra technology. The forward body bias technique is adopted to obtain low power consumption. The simulation results indicate that a low power consumption of 0.91 mW is achieved at 1.6 V supply voltage. Moreover, the conversion gain (CG) of 21.83 dB, the noise figure (NF) of 16.51 dB and the input-referred third-order intercept point (IIP3) of 8.0 dB at 2.4 GHz are obtained. The proposed mixer is suitable for wireless sensor network.

  1. Chrysler improved numerical differencing analyzer for third generation computers CINDA-3G

    NASA Technical Reports Server (NTRS)

    Gaski, J. D.; Lewis, D. R.; Thompson, L. R.

    1972-01-01

    New and versatile method has been developed to supplement or replace use of original CINDA thermal analyzer program in order to take advantage of improved systems software and machine speeds of third generation computers. CINDA-3G program options offer variety of methods for solution of thermal analog models presented in network format.

  2. 76 FR 54252 - In the Matter of Certain Wireless Devices With 3G Capabilities and Components Thereof; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... With 3G Capabilities and Components Thereof; Notice of Institution of Investigation Institution of... States after importation of certain wireless devices with 3G capabilities and components thereof by... after [[Page 54253

  3. Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks—With a Focus on Propagation Models

    NASA Astrophysics Data System (ADS)

    Rappaport, Theodore S.; Xing, Yunchou; MacCartney, George R.; Molisch, Andreas F.; Mellios, Evangelos; Zhang, Jianhua

    2017-12-01

    This paper provides an overview of the features of fifth generation (5G) wireless communication systems now being developed for use in the millimeter wave (mmWave) frequency bands. Early results and key concepts of 5G networks are presented, and the channel modeling efforts of many international groups for both licensed and unlicensed applications are described here. Propagation parameters and channel models for understanding mmWave propagation, such as line-of-sight (LOS) probabilities, large-scale path loss, and building penetration loss, as modeled by various standardization bodies, are compared over the 0.5-100 GHz range.

  4. Simultaneous generation of 40, 80 and 120 GHz optical millimeter-wave from one Mach-Zehnder modulator and demonstration of millimeter-wave transmission and down-conversion

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Qin, Chaoyi

    2017-09-01

    We demonstrate multi-frequency QPSK millimeter-wave (mm-wave) vector signal generation enabled by MZM-based optical carrier suppression (OCS) modulation and in-phase/quadrature (I/Q) modulation. We numerically simulate the generation of 40-, 80- and 120-GHz vector signal. Here, the three different signals carry the same QPSK modulation information. We also experimentally realize 11Gbaud/s QPSK vector signal transmission over 20 km fiber, and the generation of the vector signals at 40-GHz, 80-GHz and 120-GHz. The experimental results show that the bit-error-rate (BER) for all the three different signals can reach the forward-error-correction (FEC) threshold of 3.8×10-3. The advantage of the proposed system is that provide high-speed, high-bandwidth and high-capacity seamless access of TDM and wireless network. These features indicate the important application prospect in wireless access networks for WiMax, Wi-Fi and 5G/LTE.

  5. Traffic Dimensioning and Performance Modeling of 4G LTE Networks

    ERIC Educational Resources Information Center

    Ouyang, Ye

    2011-01-01

    Rapid changes in mobile techniques have always been evolutionary, and the deployment of 4G Long Term Evolution (LTE) networks will be the same. It will be another transition from Third Generation (3G) to Fourth Generation (4G) over a period of several years, as is the case still with the transition from Second Generation (2G) to 3G. As a result,…

  6. Optimisation Issues of High Throughput Medical Data and Video Streaming Traffic in 3G Wireless Environments.

    PubMed

    Istepanian, R S H; Philip, N

    2005-01-01

    In this paper we describe some of the optimisation issues relevant to the requirements of high throughput of medical data and video streaming traffic in 3G wireless environments. In particular we present a challenging 3G mobile health care application that requires a demanding 3G medical data throughput. We also describe the 3G QoS requirement of mObile Tele-Echography ultra-Light rObot system (OTELO that is designed to provide seamless 3G connectivity for real-time ultrasound medical video streams and diagnosis from a remote site (robotic and patient station) manipulated by an expert side (specialists) that is controlling the robotic scanning operation and presenting a real-time feedback diagnosis using 3G wireless communication links.

  7. Hybrid evolutionary computing model for mobile agents of wireless Internet multimedia

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2001-03-01

    The ecosystem is used as an evolutionary paradigm of natural laws for the distributed information retrieval via mobile agents to allow the computational load to be added to server nodes of wireless networks, while reducing the traffic on communication links. Based on the Food Web model, a set of computational rules of natural balance form the outer stage to control the evolution of mobile agents providing multimedia services with a wireless Internet protocol WIP. The evolutionary model shows how mobile agents should behave with the WIP, in particular, how mobile agents can cooperate, compete and learn from each other, based on an underlying competition for radio network resources to establish the wireless connections to support the quality of service QoS of user requests. Mobile agents are also allowed to clone themselves, propagate and communicate with other agents. A two-layer model is proposed for agent evolution: the outer layer is based on the law of natural balancing, the inner layer is based on a discrete version of a Kohonen self-organizing feature map SOFM to distribute network resources to meet QoS requirements. The former is embedded in the higher OSI layers of the WIP, while the latter is used in the resource management procedures of Layer 2 and 3 of the protocol. Algorithms for the distributed computation of mobile agent evolutionary behavior are developed by adding a learning state to the agent evolution state diagram. When an agent is in an indeterminate state, it can communicate to other agents. Computing models can be replicated from other agents. Then the agents transitions to the mutating state to wait for a new information-retrieval goal. When a wireless terminal or station lacks a network resource, an agent in the suspending state can change its policy to submit to the environment before it transitions to the searching state. The agents learn the facts of agent state information entered into an external database. In the cloning process, two agents on a host station sharing a common goal can be merged or married to compose a new agent. Application of the two-layer set of algorithms for mobile agent evolution, performed in a distributed processing environment, is made to the QoS management functions of the IP multimedia IM sub-network of the third generation 3G Wideband Code-division Multiple Access W-CDMA wireless network.

  8. Investigation of Doppler Effects on high mobility OFDM-MIMO systems with the support of High Altitude Platforms (HAPs)

    NASA Astrophysics Data System (ADS)

    Mohammed, H. A.; Sibley, M. J. N.; Mather, P. J.

    2012-05-01

    The merging of Orthogonal Frequency Division Multiplexing (OFDM) with Multiple-input multiple-output (MIMO) is a promising mobile air interface solution for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. This paper details the design of a highly robust and efficient OFDM-MIMO system to support permanent accessibility and higher data rates to users moving at high speeds, such as users travelling on trains. It has high relevance for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. The paper begins with a comprehensive literature review focused on both technologies. This is followed by the modelling of the OFDM-MIMO physical layer based on Simulink/Matlab that takes into consideration high vehicular mobility. Then the entire system is simulated and analysed under different encoding and channel estimation algorithms. The use of High Altitude Platform system (HAPs) technology is considered and analysed.

  9. Improving communication in level 1 trauma centers: replacing pagers with smartphones.

    PubMed

    Joseph, Bellal; Pandit, Viraj; Khreiss, Mohammad; Aziz, Hassan; Kulvatunyou, Narong; Tang, Andrew; Wynne, Julie; O'Keeffe, Terence; Friese, Randall S; Weinstein, Ronald S; Rhee, Peter

    2013-03-01

    Communication among healthcare providers continues to change, and 90% of healthcare providers are now carrying cellular phones. Compared with pagers, the rate and amount of information immediately available via cellular phones are far superior. Wireless devices such as smartphones are ideal in acute trauma settings as they can transfer patient information quickly in a coordinate manner to all the team members responsible for patient care. A questionnaire survey was distributed among all the trauma surgeons, surgery residents, and nurse practitioners who were a part of the trauma surgery team at a Level 1 trauma center. Answers to each question were recorded on a 5-point Likert scale. The completed survey questionnaires were analyzed using Statistical Package for Social Sciences software (SPSS version 17; SPSS, Inc., Chicago, IL). The respondents had an overall positive experience with the usage of the third-generation (3G) smartphones, with 94% of respondents in favor of having wireless means of communication at a Level 1 trauma center. Of respondents, 78% found the device very user friendly, 98% stated that use of smartphones had improved the speed and quality of communication, 96% indicated that 3G smartphones were a useful teaching tool, 90% of the individuals felt there was improvement in the physician's response time to both routine and critical patients, and 88% of respondents were aware of the rules and regulations of the Health Insurance Portability and Accountability Act. Smartphones in an acute trauma setting are easy to use and improve the means of communication among the team members by providing accurate and reliable information in real time. Smartphones are effective in patient follow-up and as a teaching tool. Strict rules need to be used to govern the use of smartphones to secure the safety and secrecy of patient information.

  10. Exploiting elastic anharmonicity in aluminum nitride matrix for phase-synchronous frequency reference generation

    NASA Astrophysics Data System (ADS)

    Ghatge, Mayur; Tabrizian, Roozbeh

    2018-03-01

    A matrix of aluminum-nitride (AlN) waveguides is acoustically engineered to realize electrically isolated phase-synchronous frequency references through nonlinear wave-mixing. AlN rectangular waveguides are cross-coupled through a periodically perforated plate that is engineered to have a wide acoustic bandgap around a desirable frequency ( f1≈509 MHz). While the coupling plate isolates the matrix from resonant vibrations of individual waveguide constituents at f1, it is transparent to the third-order harmonic waves (3f1) that are generated through nonlinear wave-mixing. Therefore, large-signal excitation of the f1 mode in a constituent waveguide generates acoustic waves at 3f1 with an efficiency defined by elastic anharmonicity of the AlN film. The phase-synchronous propagation of the third harmonic through the matrix is amplified by a high quality-factor resonance mode at f2≈1529 MHz, which is sufficiently close to 3f1 (f2 ≅ 3f1). Such an architecture enables realization of frequency-multiplied and phase-synchronous, yet electrically and spectrally isolated, references for multi-band/carrier and spread-spectrum wireless communication systems.

  11. Multi-carrier transmission for hybrid radio frequency with optical wireless communications

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik; Nguyen, Tien M.

    2015-05-01

    Radio frequency (RF) wireless communication is reaching its capacity to support large data rate transmissions due to hardware constraints (e.g., silicon processes), software strategies (e.g., information theory), and consumer desire for timely large file exchanges (e.g., big data and mobile cloud computing). A high transmission rate performance must keep pace with the generated huge volumes of data for real-time processing. Integrated RF and optical wireless communications (RF/OWC) could be the next generation transmission technology to satisfy both the increased data rate exchange and the communications constraints. However, with the promising benefits of RF/OWC, challenges remain to fully develop hybrid RF with wireless optical communications such as uniform waveform design for information transmission and detection. In this paper, an orthogonal frequency division multiplexing (OFDM) transmission scheme, which widely employed in RF communications, is developed for optical communications. The traditional high peak-to-average power ratio (PAPR) in OFDM is reduced to improve system performance. The proposed multi-carrier waveform is evaluated with a frequency-selective fading channel. The results demonstrate that bit error rate (BER) performance of our proposed optical OFDM transmission technique outperforms the traditional OWC on-off keying (OOK) transmission scheme.

  12. Growth in Externalizing and Internalizing Problems in Childhood: A Prospective Study of Psychopathology across Three Generations

    ERIC Educational Resources Information Center

    Capaldi, Deborah M.; Pears, Katherine C.; Kerr, David C. R.; Owen, Lee D.; Kim, Hyoun K.

    2012-01-01

    Three generations of participants were assessed over approximately 27 years, and intergenerational prediction models of growth in the third generation's (G3) externalizing and internalizing problems across ages 3-9 years were examined. The sample included 103 fathers and mothers (G2), at least 1 parent (G1) for all of the G2 fathers (99 mothers,…

  13. Techtalk: Synchronous Distance Developmental Education.

    ERIC Educational Resources Information Center

    MacDonald, Lucy; Caverly, David C.

    2000-01-01

    Discusses the third generation (G3) model of online education named synchronous online education. Reviews terminology, hardware, different stages of G3, software, and implications of G3 for the future. Contains 15 references. (VWC)

  14. A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications

    PubMed Central

    Yang, Jie

    2013-01-01

    In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189

  15. Wireless technology applied to GIS

    NASA Astrophysics Data System (ADS)

    Casademont, Jordi; Lopez-Aguilera, Elena; Paradells, Josep; Rojas, Alfonso; Calveras, Anna; Barceló, Francisco; Cotrina, Josep

    2004-07-01

    At present, there is a growing interest in wireless applications, due to the fact that the technology begins to support them at reasonable costs. In this paper, we present the technology currently available for use in wireless environments, focusing on Geographic Information Systems. As an example, we present a newly developed platform for the commercialization of advanced geographical information services for use in portable devices. This platform uses available mobile telephone networks and wireless local area networks, but it is completely scalable to new technologies such as third generation mobile networks. Users access the service using a vector map player that runs on a Personal Digital Assistant with wireless access facilities and a Global Positioning System receiver. Before accessing the information, the player will request authorization from the server and download the requested map from it, if necessary. The platform also includes a system for improving Global Positioning System localization with the Real Time Differential Global Positioning System, which uses short GSM messages as the transmission medium.

  16. 76 FR 45615 - Notice of Receipt of Complaint; Solicitation of Comments Relating to the Public Interest

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... Certain Wireless Devices with 3G Capabilities and Components Thereof, DN 2835; the Commission is... importation, and the sale within the United States after importation of certain wireless devices with 3g...

  17. Photonic-Enabled RF Canceller with Tunable Time-Delay Taps

    DTIC Science & Technology

    2016-12-05

    ports indicated in Fig. 1. The analyzer was configured to sweep 10 MHz to 6 GHz with +10 dBm of output power , and compute the time-domain transmission ...Laboratory Lexington, Massachusetts, USA Abstract—Future 5G wireless networks can benefit from the use of in-band full-duplex technologies that allow access...microwave photonics, RF cancellation. I. INTRODUCTION In-Band Full-Duplex (IBFD) technologies are being consid- ered for 5th generation (5G) wireless

  18. A Survey on Simultaneous Wireless Information and Power Transfer

    NASA Astrophysics Data System (ADS)

    Perera, T. D. P.; Jayakody, D. N. K.; De, S.; Ivanov, M. A.

    2017-01-01

    This paper presents a comprehensive study related to simultaneous wireless information and power transfer (SWIPT) in different types of wireless communication setups. Harvesting energy using SWIPT is an appealing solution in the context of extending battery life of wireless devices for a fully sustainable communication system. Strong signal power increases power transfer, but also causes more interference in information transfer, causing realization of the SWIPT challenging problem. This article provides an overview of technical evolution of SWIPT. A survey and qualitative comparison of the existing SWIPT schemes is provided to demonstrate their limitations in the current and 5G networks. Open challenges are emphasized and guidelines are provided to adapt the existing schemes in order to overcome these limitations and make them fit for integrating with the modern and emerging next generation communication networks, such as 5G systems.

  19. Video Transmission for Third Generation Wireless Communication Systems

    PubMed Central

    Gharavi, H.; Alamouti, S. M.

    2001-01-01

    This paper presents a twin-class unequal protected video transmission system over wireless channels. Video partitioning based on a separation of the Variable Length Coded (VLC) Discrete Cosine Transform (DCT) coefficients within each block is considered for constant bitrate transmission (CBR). In the splitting process the fraction of bits assigned to each of the two partitions is adjusted according to the requirements of the unequal error protection scheme employed. Subsequently, partitioning is applied to the ITU-T H.263 coding standard. As a transport vehicle, we have considered one of the leading third generation cellular radio standards known as WCDMA. A dual-priority transmission system is then invoked on the WCDMA system where the video data, after being broken into two streams, is unequally protected. We use a very simple error correction coding scheme for illustration and then propose more sophisticated forms of unequal protection of the digitized video signals. We show that this strategy results in a significantly higher quality of the reconstructed video data when it is transmitted over time-varying multipath fading channels. PMID:27500033

  20. Where, When, and How mmWave is Used in 5G and Beyond

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Kei; Haustein, Thomas; Barbarossa, Sergio; Strinati, Emilio Calvanese; Clemente, Antonio; Destino, Giuseppe; Pärssinen, Aarno; Kim, Ilgyu; Chung, Heesang; Kim, Junhyeong; Keusgen, Wilhelm; Weiler, Richard J.; Takinami, Koji; Ceci, Elena; Sadri, Ali; Xian, Liang; Maltsev, Alexander; Tran, Gia Khanh; Ogawa, Hiroaki; Mahler, Kim; Heath, Robert W., Jr.

    Wireless engineers and business planners commonly raise the question on where, when, and how millimeter-wave (mmWave) will be used in 5G and beyond. Since the next generation network is not just a new radio access standard, but instead an integration of networks for vertical markets with diverse applications, answers to the question depend on scenarios and use cases to be deployed. This paper gives four 5G mmWave deployment examples and describes in chronological order the scenarios and use cases of their probable deployment, including expected system architectures and hardware prototypes. The paper starts with 28 GHz outdoor backhauling for fixed wireless access and moving hotspots, which will be demonstrated at the PyeongChang winter Olympic games in 2018. The second deployment example is a 60 GHz unlicensed indoor access system at the Tokyo-Narita airport, which is combined with Mobile Edge Computing (MEC) to enable ultra-high speed content download with low latency. The third example is mmWave mesh network to be used as a micro Radio Access Network ({\\mu}-RAN), for cost-effective backhauling of small-cell Base Stations (BSs) in dense urban scenarios. The last example is mmWave based Vehicular-to-Vehicular (V2V) and Vehicular-to-Everything (V2X) communications system, which enables automated driving by exchanging High Definition (HD) dynamic map information between cars and Roadside Units (RSUs). For 5G and beyond, mmWave and MEC will play important roles for a diverse set of applications that require both ultra-high data rate and low latency communications.

  1. A Survey on Energy Conserving Mechanisms for the Internet of Things: Wireless Networking Aspects.

    PubMed

    Abbas, Zeeshan; Yoon, Wonyong

    2015-09-25

    The Internet of Things (IoT) is an emerging key technology for future industries and everyday lives of people, where a myriad of battery operated sensors, actuators, and smart objects are connected to the Internet to provide services such as mobile healthcare, intelligent transport system, environmental monitoring, etc. Since energy efficiency is of utmost importance to these battery constrained IoT devices, IoT-related standards and research works have focused on the device energy conserving issues. This paper presents a comprehensive survey on energy conserving issues and solutions in using diverse wireless radio access technologies for IoT connectivity, e.g., the 3rd Generation Partnership Project (3GPP) machine type communications, IEEE 802.11ah, Bluetooth Low Energy (BLE), and Z-Wave. We look into the literature in broad areas of standardization, academic research, and industry development, and structurally summarize the energy conserving solutions based on several technical criteria. We also propose future research directions regarding energy conserving issues in wireless networking-based IoT.

  2. A Survey on Energy Conserving Mechanisms for the Internet of Things: Wireless Networking Aspects

    PubMed Central

    Abbas, Zeeshan; Yoon, Wonyong

    2015-01-01

    The Internet of Things (IoT) is an emerging key technology for future industries and everyday lives of people, where a myriad of battery operated sensors, actuators, and smart objects are connected to the Internet to provide services such as mobile healthcare, intelligent transport system, environmental monitoring, etc. Since energy efficiency is of utmost importance to these battery constrained IoT devices, IoT-related standards and research works have focused on the device energy conserving issues. This paper presents a comprehensive survey on energy conserving issues and solutions in using diverse wireless radio access technologies for IoT connectivity, e.g., the 3rd Generation Partnership Project (3GPP) machine type communications, IEEE 802.11ah, Bluetooth Low Energy (BLE), and Z-Wave. We look into the literature in broad areas of standardization, academic research, and industry development, and structurally summarize the energy conserving solutions based on several technical criteria. We also propose future research directions regarding energy conserving issues in wireless networking-based IoT. PMID:26404275

  3. CINDA-3G: Improved Numerical Differencing Analyzer Program for Third-Generation Computers

    NASA Technical Reports Server (NTRS)

    Gaski, J. D.; Lewis, D. R.; Thompson, L. R.

    1970-01-01

    The goal of this work was to develop a new and versatile program to supplement or replace the original Chrysler Improved Numerical Differencing Analyzer (CINDA) thermal analyzer program in order to take advantage of the improved systems software and machine speeds of the third-generation computers.

  4. DoD and Commercial Advanced Waveform Developments and Programs with Multiple Nunn-McCurdy Breaches. Volume 5

    DTIC Science & Technology

    2014-01-01

    and insightful reviews of our report. It is a stron- ger document because of their efforts. xxi Abbreviations 2G second generation 3G third...in the commercial world. LTE includes a set of standards developed by 3GPP for mobile 3G and 4G mobile communications. The currently fielded...generation ( 2G ) digital mobile phone system, Global System for Mobile Communications (GSM). The GSM standard was developed by the European

  5. Energy-autonomous wireless sensor nodes for automotive applications, powered by thermoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Mehne, P.; Lickert, F.; Bäumker, E.; Kroener, M.; Woias, P.

    2016-11-01

    In this paper we will first present the measurement of temperatures on different positions at a diesel-powered car. As a result, several locations are identified as suitable to implement a wireless sensor node powered by thermal energy harvesting. Based on the data gained a thermoelectric generator (TEG) has been selected, and measurements of energy generation have been performed. Further, a complete energy-autonomous wireless sensor node was designed, including the TEG with its mounting bracket, an electronic power management, and a Bluetooth Low Energy (BLE) sensor node. Based on temperature differences from -10 K up to 75.3 K occurring in test drives, a low power set up was chosen to achieve a system startup time below 10 minutes and to ensure service even under difficult ambient conditions, like high ambient temperatures or a slow movement of the car in stocking traffic. 2 minutes after starting the engine a power about of 10 mW is available from the chosen TEG, and in peak the power exceeds 1 W. In a 50 minute test drive it was possible to generate 650 J of energy. This information was used to develop the complete system, demonstrating the opportunity to deploy energy-autonomous wireless sensor nodes in a car, e.g. for exhaust gas monitoring. The system is used to gather sensor data, like temperature and humidity, and transmits data successfully via BLE to a prepared main node based on a Raspberry Pi.

  6. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    PubMed

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  7. Minimally-Invasive Neural Interface for Distributed Wireless Electrocorticogram Recording Systems

    PubMed Central

    Chang, Sun-Il

    2018-01-01

    This paper presents a minimally-invasive neural interface for distributed wireless electrocorticogram (ECoG) recording systems. The proposed interface equips all necessary components for ECoG recording, such as the high performance front-end integrated circuits, a fabricated flexible microelectrode array, and wireless communication inside a miniaturized custom-made platform. The multiple units of the interface systems can be deployed to cover a broad range of the target brain region and transmit signals via a built-in intra-skin communication (ISCOM) module. The core integrated circuit (IC) consists of 16-channel, low-power push-pull double-gated preamplifiers, in-channel successive approximation register analog-to-digital converters (SAR ADC) with a single-clocked bootstrapping switch and a time-delayed control unit, an ISCOM module for wireless data transfer through the skin instead of a power-hungry RF wireless transmitter, and a monolithic voltage/current reference generator to support the aforementioned analog and mixed-signal circuit blocks. The IC was fabricated using 250 nm CMOS processes in an area of 3.2 × 0.9 mm2 and achieved the low-power operation of 2.5 µW per channel. Input-referred noise was measured as 5.62 µVrms for 10 Hz to 10 kHz and ENOB of 7.21 at 31.25 kS/s. The implemented system successfully recorded multi-channel neural activities in vivo from a primate and demonstrated modular expandability using the ISCOM with power consumption of 160 µW. PMID:29342103

  8. Minimally-Invasive Neural Interface for Distributed Wireless Electrocorticogram Recording Systems.

    PubMed

    Chang, Sun-Il; Park, Sung-Yun; Yoon, Euisik

    2018-01-17

    This paper presents a minimally-invasive neural interface for distributed wireless electrocorticogram (ECoG) recording systems. The proposed interface equips all necessary components for ECoG recording, such as the high performance front-end integrated circuits, a fabricated flexible microelectrode array, and wireless communication inside a miniaturized custom-made platform. The multiple units of the interface systems can be deployed to cover a broad range of the target brain region and transmit signals via a built-in intra-skin communication (ISCOM) module. The core integrated circuit (IC) consists of 16-channel, low-power push-pull double-gated preamplifiers, in-channel successive approximation register analog-to-digital converters (SAR ADC) with a single-clocked bootstrapping switch and a time-delayed control unit, an ISCOM module for wireless data transfer through the skin instead of a power-hungry RF wireless transmitter, and a monolithic voltage/current reference generator to support the aforementioned analog and mixed-signal circuit blocks. The IC was fabricated using 250 nm CMOS processes in an area of 3.2 × 0.9 mm² and achieved the low-power operation of 2.5 µW per channel. Input-referred noise was measured as 5.62 µV rms for 10 Hz to 10 kHz and ENOB of 7.21 at 31.25 kS/s. The implemented system successfully recorded multi-channel neural activities in vivo from a primate and demonstrated modular expandability using the ISCOM with power consumption of 160 µW.

  9. A Wireless Fully Passive Neural Recording Device for Unobtrusive Neuropotential Monitoring.

    PubMed

    Kiourti, Asimina; Lee, Cedric W L; Chae, Junseok; Volakis, John L

    2016-01-01

    We propose a novel wireless fully passive neural recording device for unobtrusive neuropotential monitoring. Previous work demonstrated the feasibility of monitoring emulated brain signals in a wireless fully passive manner. In this paper, we propose a novel realistic recorder that is significantly smaller and much more sensitive. The proposed recorder utilizes a highly efficient microwave backscattering method and operates without any formal power supply or regulating elements. Also, no intracranial wires or cables are required. In-vitro testing is performed inside a four-layer head phantom (skin, bone, gray matter, and white matter). Compared to our former implementation, the neural recorder proposed in this study has the following improved features: 1) 59% smaller footprint, 2) up to 20-dB improvement in neuropotential detection sensitivity, and 3) encapsulation in biocompatible polymer. For the first time, temporal emulated neuropotentials as low as 63 μVpp can be detected in a wireless fully passive manner. Remarkably, the high-sensitivity achieved in this study implies reading of most neural signals generated by the human brain. The proposed recorder brings forward transformational possibilities in wireless fully passive neural detection for a very wide range of applications (e.g., epilepsy, Alzheimer's, mental disorders, etc.).

  10. Cooperation Techniques between LTE in Unlicensed Spectrum and Wi-Fi towards Fair Spectral Efficiency.

    PubMed

    Maglogiannis, Vasilis; Naudts, Dries; Shahid, Adnan; Giannoulis, Spilios; Laermans, Eric; Moerman, Ingrid

    2017-08-31

    On the road towards 5G, a proliferation of Heterogeneous Networks (HetNets) is expected. Sensor networks are of great importance in this new wireless era, as they allow interaction with the environment. Additionally, the establishment of the Internet of Things (IoT) has incredibly increased the number of interconnected devices and consequently the already massive wirelessly transmitted traffic. The exponential growth of wireless traffic is pushing the wireless community to investigate solutions that maximally exploit the available spectrum. Recently, 3rd Generation Partnership Project (3GPP) announced standards that permit the operation of Long Term Evolution (LTE) in the unlicensed spectrum in addition to the exclusive use of the licensed spectrum owned by a mobile operator. Alternatively, leading wireless technology developers examine standalone LTE operation in the unlicensed spectrum without any involvement of a mobile operator. In this article, we present a classification of different techniques that can be applied on co-located LTE and Wi-Fi networks. Up to today, Wi-Fi is the most widely-used wireless technology in the unlicensed spectrum. A review of the current state of the art further reveals the lack of cooperation schemes among co-located networks that can lead to more optimal usage of the available spectrum. This article fills this gap in the literature by conceptually describing different classes of cooperation between LTE and Wi-Fi. For each class, we provide a detailed presentation of possible cooperation techniques that can provide spectral efficiency in a fair manner.

  11. Cooperation Techniques between LTE in Unlicensed Spectrum and Wi-Fi towards Fair Spectral Efficiency

    PubMed Central

    Naudts, Dries; Shahid, Adnan; Giannoulis, Spilios; Laermans, Eric

    2017-01-01

    On the road towards 5G, a proliferation of Heterogeneous Networks (HetNets) is expected. Sensor networks are of great importance in this new wireless era, as they allow interaction with the environment. Additionally, the establishment of the Internet of Things (IoT) has incredibly increased the number of interconnected devices and consequently the already massive wirelessly transmitted traffic. The exponential growth of wireless traffic is pushing the wireless community to investigate solutions that maximally exploit the available spectrum. Recently, 3rd Generation Partnership Project (3GPP) announced standards that permit the operation of Long Term Evolution (LTE) in the unlicensed spectrum in addition to the exclusive use of the licensed spectrum owned by a mobile operator. Alternatively, leading wireless technology developers examine standalone LTE operation in the unlicensed spectrum without any involvement of a mobile operator. In this article, we present a classification of different techniques that can be applied on co-located LTE and Wi-Fi networks. Up to today, Wi-Fi is the most widely-used wireless technology in the unlicensed spectrum. A review of the current state of the art further reveals the lack of cooperation schemes among co-located networks that can lead to more optimal usage of the available spectrum. This article fills this gap in the literature by conceptually describing different classes of cooperation between LTE and Wi-Fi. For each class, we provide a detailed presentation of possible cooperation techniques that can provide spectral efficiency in a fair manner. PMID:28858243

  12. Comparable Systems Analysis: Design and Operation of Advanced Control Centers

    DOT National Transportation Integrated Search

    2011-12-01

    This paper examines next generation wide-area cellular such as fourth generation (4G) will be able to support vehicular applications, and how transportation infrastructure may mesh with wireless networks. This report is part of the Connected Vehicle ...

  13. Economic evaluation of intensive chemotherapy with prophylactic granulocyte colony-stimulating factor for patients with high-risk early breast cancer in Japan.

    PubMed

    Ishiguro, Hiroshi; Kondo, Masahide; Hoshi, Shu-Ling; Takada, Masahiro; Nakamura, Seigo; Teramukai, Satoshi; Yanagihara, Kazuhiro; Toi, Masakazu

    2010-02-01

    This study assessed the cost-effectiveness and budget impact of third-generation chemotherapy regimens with prophylactic granulocyte colony-stimulating factor (G-CSF) relative to second-generation regimens without prophylactic G-CSF for patients with high-risk early breast cancer in Japan. We conducted a cost-effectiveness analysis with Markov modeling and calculated incremental cost-effectiveness ratios (ICERs) for the comparison between second-generation regimens without prophylactic G-CSF and third-generation regimens with prophylactic G-CSF. The comparisons consisted of fluorouracil, doxorubicin, and cyclophosphamide, a second-generation regimen, versus docetaxel, doxorubicin, and cyclophosphamide (TAC) with G-CSF, a third-generation regimen; and doxorubicin, cyclophosphamide, and paclitaxel (AC-T) q3wk, a second-generation regimen, versus dose-dense (DD) AC-T q2wk with G-CSF, a third-generation regimen. Patients were stratified by the age at which chemotherapy was started into cohorts aged 35, 45, and 55 years. Outcomes were estimated in terms of life-years (LYs) and quality-adjusted LYs (QALYs). ICER calculations were done from a societal perspective. We also estimated the budget impact, which included the additional public medical expenditures that would cover all subsequent changes after the additional cost of choosing third-generation regimens if G-CSF were approved for use in third-generation regimens for breast cancer. Costs were calculated using prescription drug prices as of 2006. Estimated ICER values for TAC with prophylactic G-CSF were yen956,471/LY and yen919,443/ QALY for age 35 years, yen1,125,540/LY and yen1,078,967/QALY for age 45 years, and yen1,302,746/LY and yen1,224,896/QALY for age 55 years. Values for DD AC-T q2wk with prophylactic G-CSF were yen291,931/LY and yen311,232/QALY for age 35 years, yen357,354/LY and yen380,148/QALY for age 45 years, and yen377,011/LY and yen399,761/QALY for age 55 years. TAC or DD AC-T q2wk with prophylactic G-CSF would yield cost savings compared with the respective second-generation regimens if the per-dose cost of G-CSF decreased from yen31,355 to yen15,700 (TAC) or to yen24,300 (DD AC-T). The estimated budget impact is yen9.5 to yen11.0 billion per year for the next 5 years. According to a Markov model for patients with high-risk early breast cancer in Japan, third-generation regimens with prophylactic G-CSF will yield improved outcomes at a greater cost, but estimated ICER values are still less than the suggested cost-effectiveness threshold value of yen6 million (US $60,000, assuming US $1 = yen100) for a gain of 1 QALY. Copyright 2010. Published by EM Inc USA.

  14. Introduction and comparison of next-generation mobile wireless technologies

    NASA Astrophysics Data System (ADS)

    Zaidi, Syed R.; Hussain, Shahab; Ali, M. A.; Sana, Ajaz; Saddawi, Samir; Carranza, Aparicio

    2010-01-01

    Mobile networks and services have gone further than voice-only communication services and are rapidly developing towards data-centric services. Emerging mobile data services are expected to see the same explosive growth in demand that Internet and wireless voice services have seen in recent years. To support such a rapid increase in traffic, active users, and advanced multimedia services implied by this growth rate along with the diverse quality of service (QoS) and rate requirements set by these services, mobile operator need to rapidly transition to a simple and cost-effective, flat, all IP-network. This has accelerated the development and deployment of new wireless broadband access technologies including fourth-generation (4G) mobile WiMAX and cellular Long-Term Evolution (LTE). Mobile WiMAX and LTE are two different (but not necessarily competing) technologies that will eventually be used to achieve data speeds of up to 100 Mbps. Speeds that are fast enough to potentially replace wired broadband connections with wireless. This paper introduces both of these next generation technologies and then compares them in the end.

  15. 75 FR 14483 - Third Meeting: RTCA Special Committee 223: Airport Surface Wireless Communications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... 223: Airport Surface Wireless Communications AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 223: Airport Surface Wireless Communications meeting. SUMMARY...: Airport Surface Wireless Communications. DATES: The meeting will be held April 13-14, 2010 from 9 a.m.-5 p...

  16. Wireless multichannel biopotential recording using an integrated FM telemetry circuit.

    PubMed

    Mohseni, Pedram; Najafi, Khalil; Eliades, Steven J; Wang, Xiaoqin

    2005-09-01

    This paper presents a four-channel telemetric microsystem featuring on-chip alternating current amplification, direct current baseline stabilization, clock generation, time-division multiplexing, and wireless frequency-modulation transmission of microvolt- and millivolt-range input biopotentials in the very high frequency band of 94-98 MHz over a distance of approximately 0.5 m. It consists of a 4.84-mm2 integrated circuit, fabricated using a 1.5-microm double-poly double-metal n-well standard complementary metal-oxide semiconductor process, interfaced with only three off-chip components on a custom-designed printed-circuit board that measures 1.7 x 1.2 x 0.16 cm3, and weighs 1.1 g including two miniature 1.5-V batteries. We characterize the microsystem performance, operating in a truly wireless fashion in single-channel and multichannel operation modes, via extensive benchtop and in vitro tests in saline utilizing two different micromachined neural recording microelectrodes, while dissipating approximately 2.2 mW from a 3-V power supply. Moreover, we demonstrate successful wireless in vivo recording of spontaneous neural activity at 96.2 MHz from the auditory cortex of an awake marmoset monkey at several transmission distances ranging from 10 to 50 cm with signal-to-noise ratios in the range of 8.4-9.5 dB.

  17. Quantitative evaluation of first, second, and third generation hairpin systems reveals the limit of mammalian vector-based RNAi

    PubMed Central

    Watanabe, Colin; Cuellar, Trinna L.; Haley, Benjamin

    2016-01-01

    ABSTRACT Incorporating miRNA-like features into vector-based hairpin scaffolds has been shown to augment small RNA processing and RNAi efficiency. Therefore, defining an optimal, native hairpin context may obviate a need for hairpin-specific targeting design schemes, which confound the movement of functional siRNAs into shRNA/artificial miRNA backbones, or large-scale screens to identify efficacious sequences. Thus, we used quantitative cell-based assays to compare separate third generation artificial miRNA systems, miR-E (based on miR-30a) and miR-3G (based on miR-16-2 and first described in this study) to widely-adopted, first and second generation formats in both Pol-II and Pol-III expression vector contexts. Despite their unique structures and strandedness, and in contrast to first and second-generation RNAi triggers, the third generation formats operated with remarkable similarity to one another, and strong silencing was observed with a significant fraction of the evaluated target sequences within either promoter context. By pairing an established siRNA design algorithm with the third generation vectors we could readily identify targeting sequences that matched or exceeded the potency of those discovered through large-scale sensor-based assays. We find that third generation hairpin systems enable the maximal level of siRNA function, likely through enhanced processing and accumulation of precisely-defined guide RNAs. Therefore, we predict future gains in RNAi potency will come from improved hairpin expression and identification of optimal siRNA-intrinsic silencing properties rather than further modification of these scaffolds. Consequently, third generation systems should be the primary format for vector-based RNAi studies; miR-3G is advantageous due to its small expression cassette and simplified, cost-efficient cloning scheme. PMID:26786363

  18. A Wireless FSCV Monitoring IC With Analog Background Subtraction and UWB Telemetry.

    PubMed

    Dorta-Quiñones, Carlos I; Wang, Xiao Y; Dokania, Rajeev K; Gailey, Alycia; Lindau, Manfred; Apsel, Alyssa B

    2016-04-01

    A 30-μW wireless fast-scan cyclic voltammetry monitoring integrated circuit for ultra-wideband (UWB) transmission of dopamine release events in freely-behaving small animals is presented. On-chip integration of analog background subtraction and UWB telemetry yields a 32-fold increase in resolution versus standard Nyquist-rate conversion alone, near a four-fold decrease in the volume of uplink data versus single-bit, third-order, delta-sigma modulation, and more than a 20-fold reduction in transmit power versus narrowband transmission for low data rates. The 1.5- mm(2) chip, which was fabricated in 65-nm CMOS technology, consists of a low-noise potentiostat frontend, a two-step analog-to-digital converter (ADC), and an impulse-radio UWB transmitter (TX). The duty-cycled frontend and ADC/UWB-TX blocks draw 4 μA and 15 μA from 3-V and 1.2-V supplies, respectively. The chip achieves an input-referred current noise of 92 pA(rms) and an input current range of ±430 nA at a conversion rate of 10 kHz. The packaged device operates from a 3-V coin-cell battery, measures 4.7 × 1.9 cm(2), weighs 4.3 g (including the battery and antenna), and can be carried by small animals. The system was validated by wirelessly recording flow-injection of dopamine with concentrations in the range of 250 nM to 1 μM with a carbon-fiber microelectrode (CFM) using 300-V/s FSCV.

  19. A Wireless FSCV Monitoring IC with Analog Background Subtraction and UWB Telemetry

    PubMed Central

    Dorta-Quiñones, Carlos I.; Wang, Xiao Y.; Dokania, Rajeev K.; Gailey, Alycia; Lindau, Manfred; Apsel, Alyssa B.

    2015-01-01

    A 30-μW wireless fast-scan cyclic voltammetry monitoring integrated circuit for ultra-wideband (UWB) transmission of dopamine release events in freely-behaving small animals is presented. On-chip integration of analog background subtraction and UWB telemetry yields a 32-fold increase in resolution versus standard Nyquist-rate conversion alone, near a four-fold decrease in the volume of uplink data versus single-bit, third-order, delta-sigma modulation, and more than a 20-fold reduction in transmit power versus narrowband transmission for low data rates. The 1.5-mm2 chip, which was fabricated in 65-nm CMOS technology, consists of a low-noise potentiostat frontend, a two-step analog-to-digital converter (ADC), and an impulse-radio UWB transmitter (TX). The duty-cycled frontend and ADC/UWB-TX blocks draw 4 μA and 15 μA from 3-V and 1.2-V supplies, respectively. The chip achieves an input-referred current noise of 92 pArms and an input current range of ±430 nA at a conversion rate of 10 kHz. The packaged device operates from a 3-V coin-cell battery, measures 4.7 × 1.9 cm2, weighs 4.3 g (including the battery and antenna), and can be carried by small animals. The system was validated by wirelessly recording flow-injection of dopamine with concentrations in the range of 250 nM to 1 μM with a carbon-fiber microelectrode (CFM) using 300-V/s FSCV. PMID:26057983

  20. An Approach for Smart Antenna Testbed

    NASA Astrophysics Data System (ADS)

    Kawitkar, R. S.; Wakde, D. G.

    2003-07-01

    The use of wireless, mobile, personal communications services are expanding rapidly. Adaptive or "Smart" antenna arrays can increase channel capacity through spatial division. Adaptive antennas can also track mobile users, improving both signal range and quality. For these reasons, smart antenna systems have attracted widespread interest in the telecommunications industry for applications to third generation wireless systems.This paper aims to design and develop an advanced antennas testbed to serve as a common reference for testing adaptive antenna arrays and signal combining algorithms, as well as complete systems. A flexible suite of off line processing software should be written using matlab to perform system calibration, test bed initialization, data acquisition control, data storage/transfer, off line signal processing and analysis and graph plotting. The goal of this paper is to develop low complexity smart antenna structures for 3G systems. The emphasis will be laid on ease of implementation in a multichannel / multi-user environment. A smart antenna test bed will be developed, and various state-of-the-art DSP structures and algorithms will be investigated.Facing the soaring demand for mobile communications, the use of smart antenna arrays in mobile communications systems to exploit spatial diversity to further improve spectral efficiency has recently received considerable attention. Basically, a smart antenna array comprises a number of antenna elements combined via a beamforming network (amplitude and phase control network). Some of the benefits that can be achieved by using SAS (Smart Antenna System) include lower mobile terminal power consumption, range extension, ISI reduction, higher data rate support, and ease of integration into the existing base station system. In terms of economic benefits, adaptive antenna systems employed at base station, though increases the per base station cost, can increase coverage area of each cell site, thereby reducing the total system cost dramatically - often by more than 50% without compromising the system performance. The testbed can be employed to illustrate enhancement of system capacity and service quality in wireless communications.

  1. Ubiquitous wireless ECG recording: a powerful tool physicians should embrace.

    PubMed

    Saxon, Leslie A

    2013-04-01

    The use of smart phones has increased dramatically and there are nearly a billion users on 3G and 4G networks worldwide. Nearly 60% of the U.S. population uses smart phones to access the internet, and smart phone sales now surpass those of desktop and laptop computers. The speed of wireless communication technology on 3G and 4G networks and the widespread adoption and use of iOS equipped smart phones (Apple Inc., Cupertino, CA, USA) provide infrastructure for the transmission of wireless biomedical data, including ECG data. These technologies provide an unprecedented opportunity for physicians to continually access data that can be used to detect issues before symptoms occur or to have definitive data when symptoms are present. The technology also greatly empowers and enables the possibility for unprecedented patient participation in their own medical education and health status as well as that of their social network. As patient advocates, physicians and particularly cardiac electrophysiologists should embrace the future and promise of wireless ECG recording, a technology solution that can truly scale across the global population. © 2013 Wiley Periodicals, Inc.

  2. Wireless data collection system for travel time estimation and traffic performance evaluation.

    DOT National Transportation Integrated Search

    2012-05-01

    This report presents the results of the third and final research and development project of an implementable wireless : travel time data collection system. Utilizing Bluetooth wireless technology as a platform, the prior projects focused on : data co...

  3. Flexible CMOS low-noise amplifiers for beyond-3G wireless hand-held devices

    NASA Astrophysics Data System (ADS)

    Becerra-Alvarez, Edwin C.; Sandoval-Ibarra, Federico; de la Rosa, José M.

    2009-05-01

    This paper explores the use of reconfigurable Low-Noise Amplifiers (LNAs) for the implementation of CMOS Radio Frequency (RF) front-ends in the next generation of multi-standard wireless transceivers. Main circuit strategies reported so far for multi-standard LNAs are reviewed and a novel flexible LNA intended for Beyond-3G RF hand-held terminals is presented. The proposed LNA circuit consists of a two-stage topology that combines inductive-source degeneration with PMOS-varactor based tuning network and a programmable load to adapt its performance to different standard specifications without penalizing the circuit noise and with a reduced number of inductors as compared to previous reported reconfigurable LNAs. The circuit has been designed in a 90-nm CMOS technology to cope with the requirements of the GSM, WCDMA, Bluetooth and WLAN (IEEE 802.11b-g) standards. Simulation results, including technology and packaging parasitics, demonstrate correct operation of the circuit for all the standards under study, featuring NF<2.8dB, S21>13.3dB and IIP3>10.9dBm, over a 1.85GHz-2.4GHz band, with an adaptive power consumption between 17mW and 22mW from a 1-V supply voltage. Preliminary experimental measurements are included, showing a correct reconfiguration operation within the operation band.

  4. Dynamic power scheduling system for JPEG2000 delivery over wireless networks

    NASA Astrophysics Data System (ADS)

    Martina, Maurizio; Vacca, Fabrizio

    2003-06-01

    Third generation mobile terminals diffusion is encouraging the development of new multimedia based applications. The reliable transmission of audiovisual content will gain major interest being one of the most valuable services. Nevertheless, mobile scenario is severely power constrained: high compression ratios and refined energy management strategies are highly advisable. JPEG2000 as the source encoding stage assures excellent performance with extremely good visual quality. However the limited power budged imposes to limit the computational effort in order to save as much power as possible. Starting from an error prone environment, as the wireless one, high error-resilience features need to be employed. This paper tries to investigate the trade-off between quality and power in such a challenging environment.

  5. Flow-driven triboelectric generator for directly powering a wireless sensor node.

    PubMed

    Wang, Shuhua; Mu, Xiaojing; Yang, Ya; Sun, Chengliang; Gu, Alex Yuandong; Wang, Zhong Lin

    2015-01-14

    A triboelectric generator (TEG) for scavenging flow-driven mechanical -energy to directly power a wireless sensor node is demonstrated for the first time. The output performances of TEGs with different dimensions are systematically investigated, indicating that a largest output power of about 3.7 mW for one TEG can be achieved under an external load of 3 MΩ. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A vertical handoff decision algorithm based on ARMA prediction model

    NASA Astrophysics Data System (ADS)

    Li, Ru; Shen, Jiao; Chen, Jun; Liu, Qiuhuan

    2012-01-01

    With the development of computer technology and the increasing demand for mobile communications, the next generation wireless networks will be composed of various wireless networks (e.g., WiMAX and WiFi). Vertical handoff is a key technology of next generation wireless networks. During the vertical handoff procedure, handoff decision is a crucial issue for an efficient mobility. Based on auto regression moving average (ARMA) prediction model, we propose a vertical handoff decision algorithm, which aims to improve the performance of vertical handoff and avoid unnecessary handoff. Based on the current received signal strength (RSS) and the previous RSS, the proposed approach adopt ARMA model to predict the next RSS. And then according to the predicted RSS to determine whether trigger the link layer triggering event and complete vertical handoff. The simulation results indicate that the proposed algorithm outperforms the RSS-based scheme with a threshold in the performance of handoff and the number of handoff.

  7. How can wireless, mobile data acquisition be used for taking part of the lab to the sample, and how can it join the internet of things?

    NASA Astrophysics Data System (ADS)

    Trzcinski, Peter; Karanassios, Vassili

    2016-05-01

    During the last several years, the world has moved from wired communications (e.g., a wired ethernet, wired telephone) to wireless communications (e.g., cell phones, smart phones, tablets). However, data acquisition has lagged behind and for the most part, data in laboratory settings are still acquired using wired communications (or even plug in boards). In this paper, approaches that can be used for wireless data acquisition are briefly discussed using a conceptual model of a future, mobile, portable micro-instrument as an example. In addition, past, present and near-future generations of communications are discussed; processors, operating systems and benchmarks are reviewed; networks that may be used for data acquisition in the field are examined; and, the possibility of connecting sensor or micro-instrument networks to the internet of things is postulated.

  8. Unpowered wireless generation and sensing of ultrasound

    NASA Astrophysics Data System (ADS)

    Huang, Haiying

    2013-04-01

    This paper presents a wireless ultrasound pitch-catch system that demonstrates the wireless generation and sensing of ultrasounds based on the principle of frequency conversion. The wireless ultrasound pitch-catch system consists of a wireless interrogator and two wireless ultrasound transducers. The wireless interrogator generates an ultrasound-modulated signal and a carrier signal, both at the microwave frequency, and transmits these two signals to the wireless ultrasound actuator using a pair of antennas. Upon receiving these two signals, the wireless ultrasound actuator recovers the ultrasound excitation signal using a passive mixer and then supplies it to a piezoelectric wafer sensor for ultrasound generation in the structure. For wireless ultrasound sensing, the frequency conversion process is reversed. The ultrasound sensing signal is up-converted to a microwave signal by the wireless ultrasound sensor and is recovered at the wireless interrogator using a homodyne receiver. To differentiate the wireless actuator from the wireless sensor, each wireless transducer is equipped with a narrowband microwave filter so that it only responds to the carrier frequency that matches the filter's operation bandwidth. The principle of operation of the wireless pitch-catch system, the hardware implementation, and the associated data processing algorithm to recover the ultrasound signal from the wirelessly received signal are described. The wirelessly acquired ultrasound signal is compared with those acquired using wired connection in both time and frequency domain.

  9. An Investigation into the Use of 3G Mobile Communications to Provide Telehealth Services in Rural KwaZulu-Natal

    PubMed Central

    Mars, Maurice

    2015-01-01

    Abstract Background: We investigated the use of third-generation (3G) mobile communications to provide telehealth services in remote health clinics in rural KwaZulu-Natal, South Africa. Materials and Methods: We specified a minimal set of services as our use case that would be representative of typical activity and to provide a baseline for analysis of network performance. Services included database access to manage chronic disease, local support and management of patients (to reduce unnecessary travel to the hospital), emergency care (up to 8 h for an ambulance to arrive), e-mail, access to up-to-date information (Web), and teleclinics. We made site measurements at a representative set of health clinics to determine the type of coverage (general packet radio service [GPRS]/3G), its capabilities to support videoconferencing (H323 and Skype™ [Microsoft, Redmond, WA]) and audio (Skype), and throughput for transmission control protocol (TCP) to gain a measure of application performance. Results: We found that none of the remote health clinics had 3G service. The GPRS service provided typical upload speed of 44 kilobits per second (Kbps) and download speed of 64 Kbps. This was not sufficient to support any form of videoconferencing. We also observed that GPRS had significant round trip time (RTT), in some cases in excess of 750 ms, and this led to slow start-up for TCP applications. Conclusions: We found audio was always so broken as to be unusable and further observed that many applications such as Web access would fail under conditions of very high RTT. We found some health clinics were so remote that they had no mobile service. 3G, where available, had measured upload speed of 331 Kbps and download speed of 446 Kbps and supported videoconferencing and audio at all sites, but we frequently experienced 3G changing to GPRS. We conclude that mobile communications currently provide insufficient coverage and capability to provide reliable clinical services and would advocate dedicated wireless services where reliable communication is essential and use of store and forward for mobile applications. PMID:24926731

  10. An investigation into the use of 3G mobile communications to provide telehealth services in rural KwaZulu-Natal.

    PubMed

    Clarke, Malcolm; Mars, Maurice

    2015-02-01

    We investigated the use of third-generation (3G) mobile communications to provide telehealth services in remote health clinics in rural KwaZulu-Natal, South Africa. We specified a minimal set of services as our use case that would be representative of typical activity and to provide a baseline for analysis of network performance. Services included database access to manage chronic disease, local support and management of patients (to reduce unnecessary travel to the hospital), emergency care (up to 8 h for an ambulance to arrive), e-mail, access to up-to-date information (Web), and teleclinics. We made site measurements at a representative set of health clinics to determine the type of coverage (general packet radio service [GPRS]/3G), its capabilities to support videoconferencing (H323 and Skype™ [Microsoft, Redmond, WA]) and audio (Skype), and throughput for transmission control protocol (TCP) to gain a measure of application performance. We found that none of the remote health clinics had 3G service. The GPRS service provided typical upload speed of 44 kilobits per second (Kbps) and download speed of 64 Kbps. This was not sufficient to support any form of videoconferencing. We also observed that GPRS had significant round trip time (RTT), in some cases in excess of 750 ms, and this led to slow start-up for TCP applications. We found audio was always so broken as to be unusable and further observed that many applications such as Web access would fail under conditions of very high RTT. We found some health clinics were so remote that they had no mobile service. 3G, where available, had measured upload speed of 331 Kbps and download speed of 446 Kbps and supported videoconferencing and audio at all sites, but we frequently experienced 3G changing to GPRS. We conclude that mobile communications currently provide insufficient coverage and capability to provide reliable clinical services and would advocate dedicated wireless services where reliable communication is essential and use of store and forward for mobile applications.

  11. Development and evaluation of a gyroscope-based wheel rotation monitor for manual wheelchair users.

    PubMed

    Hiremath, Shivayogi V; Ding, Dan; Cooper, Rory A

    2013-07-01

    To develop and evaluate a wireless gyroscope-based wheel rotation monitor (G-WRM) that can estimate speeds and distances traveled by wheelchair users during regular wheelchair propulsion as well as wheelchair sports such as handcycling, and provide users with real-time feedback through a smartphone application. The speeds and the distances estimated by the G-WRM were compared with the criterion measures by calculating absolute difference, mean difference, and percentage errors during a series of laboratory-based tests. Intraclass correlations (ICC) and the Bland-Altman plots were also used to assess the agreements between the G-WRM and the criterion measures. In addition, battery life and wireless data transmission tests under a number of usage conditions were performed. The percentage errors for the angular velocities, speeds, and distances obtained from three prototype G-WRMs were less than 3% for all the test trials. The high ICC values (ICC (3,1) > 0.94) and the Bland-Altman plots indicate excellent agreement between the estimated speeds and distances by the G-WRMs and the criterion measures. The battery life tests showed that the device could last for 35 hours in wireless mode and 139 hours in secure digital card mode. The wireless data transmission tests indicated less than 0.3% of data loss. The results indicate that the G-WRM is an appropriate tool for tracking a spectrum of wheelchair-related activities from regular wheelchair propulsion to wheelchair sports such as handcycling. The real-time feedback provided by the G-WRM can help wheelchair users self-monitor their everyday activities.

  12. Human-motion energy harvester for autonomous body area sensors

    NASA Astrophysics Data System (ADS)

    Geisler, M.; Boisseau, S.; Perez, M.; Gasnier, P.; Willemin, J.; Ait-Ali, I.; Perraud, S.

    2017-03-01

    This paper reports on a method to optimize an electromagnetic energy harvester converting the low-frequency body motion and aimed at powering wireless body area sensors. This method is based on recorded accelerations, and mechanical and transduction models that enable an efficient joint optimization of the structural parameters. An optimized prototype of 14.8 mmØ × 52 mm, weighting 20 g, has generated up to 4.95 mW in a resistive load when worn at the arm during a run, and 6.57 mW when hand-shaken. Among the inertial electromagnetic energy harvesters reported so far, this one exhibits one of the highest power densities (up to 730 μW cm-3). The energy harvester was finally used to power a bluetooth low energy wireless sensor node with accelerations measurements at 25 Hz.

  13. Region of interest video coding for low bit-rate transmission of carotid ultrasound videos over 3G wireless networks.

    PubMed

    Tsapatsoulis, Nicolas; Loizou, Christos; Pattichis, Constantinos

    2007-01-01

    Efficient medical video transmission over 3G wireless is of great importance for fast diagnosis and on site medical staff training purposes. In this paper we present a region of interest based ultrasound video compression study which shows that significant reduction of the required, for transmission, bit rate can be achieved without altering the design of existing video codecs. Simple preprocessing of the original videos to define visually and clinically important areas is the only requirement.

  14. 77 FR 29275 - Assessment and Collection of Regulatory Fees for Fiscal Year 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ...) for Low Power, Class A, and TV Translators/Boosters, (3) maintain the FY 2012 Interstate... currently in place for CMRS Wireless services (e.g., compute their subscriber counts as of December 31, 2011... Wireless Services for FY 2011 at 1 (released September 2011). 3. Submarine Cable Allocation 28. Because the...

  15. Use of consumer wireless devices by South Africans with severe communication disability

    PubMed Central

    Bryen, Diane Nelson; Moolman, Enid; Morris, John

    2016-01-01

    Background Advancements in wireless technology (e.g. cell phones and tablets) have opened new communication opportunities and environments for individuals with severe communication disabilities. The advancement of these technologies poses challenges to ensuring that these individuals enjoy equal access to this increasingly essential technology. However, a paucity of research exists. Objectives To describe the nature and frequency with which South African adults with severe communication disabilities have access to and use wireless devices, as well as the types of activities for which wireless devices are used. Method Survey research was conducted with 30 individuals who use augmentative and alternative communication (AAC) technology using the Survey of User Needs Questionnaire developed in the United States, and localized to the South African context. Results All participants, despite their limited education, unemployment and low economic status, owned and/or used mainstream wireless devices. Slightly more than half of the participants (53.3%) needed adaptations to their wireless devices. Advantages of using wireless devices were highlighted, including connecting with others (through using text messaging, social networking, making plans with others, sharing photos and videos with friends), for leisure activities (e.g. listening to music, watching videos, playing games), and for safety purposes (e.g. to navigate when lost, using the device when in trouble and needing immediate assistance). Conclusion These wireless devices offer substantial benefits and opportunities to individuals with disabilities who rely on AAC in terms of independence, social participation, education and safety/security. However, they still do not enjoy equal opportunity to access and use wireless devices relative to the non-disabled population. PMID:28730045

  16. Use of consumer wireless devices by South Africans with severe communication disability.

    PubMed

    Bornman, Juan; Bryen, Diane Nelson; Moolman, Enid; Morris, John

    2016-01-01

    Advancements in wireless technology (e.g. cell phones and tablets) have opened new communication opportunities and environments for individuals with severe communication disabilities. The advancement of these technologies poses challenges to ensuring that these individuals enjoy equal access to this increasingly essential technology. However, a paucity of research exists. To describe the nature and frequency with which South African adults with severe communication disabilities have access to and use wireless devices, as well as the types of activities for which wireless devices are used. Survey research was conducted with 30 individuals who use augmentative and alternative communication (AAC) technology using the Survey of User Needs Questionnaire developed in the United States, and localized to the South African context. All participants, despite their limited education, unemployment and low economic status, owned and/or used mainstream wireless devices. Slightly more than half of the participants (53.3%) needed adaptations to their wireless devices. Advantages of using wireless devices were highlighted, including connecting with others (through using text messaging, social networking, making plans with others, sharing photos and videos with friends), for leisure activities (e.g. listening to music, watching videos, playing games), and for safety purposes (e.g. to navigate when lost, using the device when in trouble and needing immediate assistance). These wireless devices offer substantial benefits and opportunities to individuals with disabilities who rely on AAC in terms of independence, social participation, education and safety/security. However, they still do not enjoy equal opportunity to access and use wireless devices relative to the non-disabled population.

  17. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs.

    PubMed

    Kobayashi, Yoshihisa; Togashi, Yosuke; Yatabe, Yasushi; Mizuuchi, Hiroshi; Jangchul, Park; Kondo, Chiaki; Shimoji, Masaki; Sato, Katsuaki; Suda, Kenichi; Tomizawa, Kenji; Takemoto, Toshiki; Hida, Toyoaki; Nishio, Kazuto; Mitsudomi, Tetsuya

    2015-12-01

    Lung cancers harboring common EGFR mutations respond to EGFR tyrosine kinase inhibitors (TKI), whereas exon 20 insertions (Ins20) are resistant to them. However, little is known about mutations in exon 18. Mutational status of lung cancers between 2001 and 2015 was reviewed. Three representative mutations in exon 18, G719A, E709K, and exon 18 deletion (Del18: delE709_T710insD) were retrovirally introduced into Ba/F3 and NIH/3T3 cells. The 90% inhibitory concentrations (IC90s) of first-generation (1G; gefitinib and erlotinib), second-generation (2G; afatinib, dacomitinib, and neratinib), and third-generation TKIs (3G; AZD9291 and CO1686) were determined. Among 1,402 EGFR mutations, Del19, L858R, and Ins20 were detected in 40%, 47%, and 4%, respectively. Exon 18 mutations, including G719X, E709X, and Del18, were present in 3.2%. Transfected Ba/F3 cells grew in the absence of IL3, and NIH/3T3 cells formed foci with marked pile-up, indicating their oncogenic abilities. IC90s of 1G and 3G TKIs in G719A, E709K, and Del18 were much higher than those in Del19 (by >11-50-fold), whereas IC90s of afatinib were only 3- to 7-fold greater than those for Del19. Notably, cells transfected with G719A and E709K exhibited higher sensitivity to neratinib (by 5-25-fold) than those expressing Del19. Patients with lung cancers harboring G719X exhibited higher response rate to afatinib or neratinib (∼ 80%) than to 1G TKIs (35%-56%) by compilation of data in the literature. Lung cancers harboring exon 18 mutations should not be overlooked in clinical practice. These cases can be best treated with afatinib or neratinib, although the currently available in vitro diagnostic kits cannot detect all exon 18 mutations. ©2015 American Association for Cancer Research.

  18. An Improved Forwarding of Diverse Events with Mobile Sinks in Underwater Wireless Sensor Networks.

    PubMed

    Raza, Waseem; Arshad, Farzana; Ahmed, Imran; Abdul, Wadood; Ghouzali, Sanaa; Niaz, Iftikhar Azim; Javaid, Nadeem

    2016-11-04

    In this paper, a novel routing strategy to cater the energy consumption and delay sensitivity issues in deep underwater wireless sensor networks is proposed. This strategy is named as ESDR: Event Segregation based Delay sensitive Routing. In this strategy sensed events are segregated on the basis of their criticality and, are forwarded to their respective destinations based on forwarding functions. These functions depend on different routing metrics like: Signal Quality Index, Localization free Signal to Noise Ratio, Energy Cost Function and Depth Dependent Function. The problem of incomparable values of previously defined forwarding functions causes uneven delays in forwarding process. Hence forwarding functions are redefined to ensure their comparable values in different depth regions. Packet forwarding strategy is based on the event segregation approach which forwards one third of the generated events (delay sensitive) to surface sinks and two third events (normal events) are forwarded to mobile sinks. Motion of mobile sinks is influenced by the relative distribution of normal nodes. We have also incorporated two different mobility patterns named as; adaptive mobility and uniform mobility for mobile sinks. The later one is implemented for collecting the packets generated by the normal nodes. These improvements ensure optimum holding time, uniform delay and in-time reporting of delay sensitive events. This scheme is compared with the existing ones and outperforms the existing schemes in terms of network lifetime, delay and throughput.

  19. Simple Random Sampling-Based Probe Station Selection for Fault Detection in Wireless Sensor Networks

    PubMed Central

    Huang, Rimao; Qiu, Xuesong; Rui, Lanlan

    2011-01-01

    Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate. PMID:22163789

  20. Simple random sampling-based probe station selection for fault detection in wireless sensor networks.

    PubMed

    Huang, Rimao; Qiu, Xuesong; Rui, Lanlan

    2011-01-01

    Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate.

  1. THz photonic wireless links with 16-QAM modulation in the 375-450 GHz band.

    PubMed

    Jia, Shi; Yu, Xianbin; Hu, Hao; Yu, Jinlong; Guan, Pengyu; Da Ros, Francesco; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif K

    2016-10-17

    We propose and experimentally demonstrate THz photonic wireless communication systems with 16-QAM modulation in the 375-450 GHz band. The overall throughput reaches as high as 80 Gbit/s by exploiting four THz channels with 5 Gbaud 16-QAM baseband modulation per channel. We create a coherent optical frequency comb (OFC) for photonic generation of multiple THz carriers based on photo-mixing in a uni-travelling carrier photodiode (UTC-PD). The OFC configuration also allows us to generate reconfigurable THz carriers with low phase noise. The multiple-channel THz radiation is received by using a Schottky mixer based electrical receiver after 0.5 m free-space wireless propagation. 2-channel (40 Gbit/s) and 4-channel (80 Gbit/s) THz photonic wireless links with 16-QAM modulation are reported in this paper, and the bit error rate (BER) performance for all channels in both cases is below the hard decision forward error correction (HD-FEC) threshold of 3.8e-3 with 7% overhead. In addition, we also successfully demonstrate hybrid photonic wireless transmission of 40 Gbit/s 16-QAM signal at carrier frequencies of 400 GHz and 425 GHz over 30 km standard single mode fiber (SSMF) between the optical baseband signal transmitter and the THz wireless transmitter with negligible induced power penalty.

  2. Adoption of 4G Mobile Services from the Female Student's Perspective: Case of Princess Nora University

    ERIC Educational Resources Information Center

    Rawashdeh, Awni

    2015-01-01

    The aim this study was to examine the relationship between the perceived usefulness, perceived ease of use, perceived entertainment, attitude and the users' intention toward using the fourth-generation (4G) wireless mobile services. Data of this study were collected by survey with a cross sectional approach. The data were analyzed with factor…

  3. 78 FR 59391 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... clients to utilize wireless connectivity and obtain the lower latency transmission of data from third... Wireless Connectivity September 20, 2013. Pursuant to Section 19(b)(1) of the Securities Exchange Act of... data feeds via wireless connectivity. The text of the proposed rule change is available on the Exchange...

  4. 78 FR 39383 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... centers.\\4\\ \\4\\ The vendors supporting wireless transmission of CME data will install equipment on... wireless connectivity and obtain the lower latency transmission of data from third parties and NASDAQ that... Proposed Rule Change 1. Purpose Wireless technology has been in existence for many years, used primarily by...

  5. Wireless sensor and actuator networks for lighting energy efficiency and user satisfaction

    NASA Astrophysics Data System (ADS)

    Wen, Yao-Jung

    Buildings consume more than one third of the primary energy generated in the U.S., and lighting alone accounts for approximately 30% of the energy usage in commercial buildings. As the largest electricity consumer of all building electrical systems, lighting harbors the greatest potential for energy savings in the commercial sector. Fifty percent of current energy consumption could be reduced with energy-efficient lighting management strategies. While commercial products do exist, they are poorly received due to exorbitant retrofitting cost and unsatisfactory performance. As a result, most commercial buildings, especially legacy buildings, have not taken advantage of the opportunity to generate savings from lighting. The emergence of wireless sensor and actuator network (WSAN) technologies presents an alternative that circumvents costly rewiring and promises better performance than existing commercial lighting systems. The goal of this dissertation research is to develop a framework for wireless-networked lighting systems with increased cost effectiveness, energy efficiency, and user satisfaction. This research is realized through both theoretical developments and implementations. The theoretical research aims at developing techniques for harnessing WSAN technologies to lighting hardware and control strategies. Leveraging redundancy, a sensor validation and fusion algorithm is developed for extracting pertinent lighting information from the disturbance-prone desktop-mounted photosensors. An adaptive sensing strategy optimizes the timing of data acquisition and power-hungry wireless transmission of sensory feedback in real-time lighting control. Exploiting the individual addressability of wireless-enabled luminaires, a lighting optimization algorithm is developed to create the optimal lighting that minimizes energy usage while satisfying occupants' diverse lighting preferences. The wireless-networked lighting system was implemented and tested in a number of real-life settings. A human subject study conducted in a private office concluded that the research system was competitive with the commercial lighting system with much fewer retrofitting requirements. The system implemented in a shared-space office realized a self-configuring mesh network with wireless photosensors and light actuators, and demonstrated a 50% energy savings and increased performance when harvesting daylight through windows is possible. The cost analysis revealed a reasonable payback period after the system is optimized for commercialization and confirms the marketing feasibility.

  6. Preliminary validation of a new magnetic wireless blood pump.

    PubMed

    Kim, Sung Hoon; Ishiyama, Kazushi; Hashi, Shuichiro; Shiraishi, Yasuyuki; Hayatsu, Yukihiro; Akiyama, Masatoshi; Saiki, Yoshikatsu; Yambe, Tomoyuki

    2013-10-01

    In general, a blood pump must be small, have a simple configuration, and have sufficient hydrodynamic performance. Herein, we introduce new mechanisms for a wireless blood pump that is small and simple and provides wireless and battery-free operation. To achieve wireless and battery-free operation, we implement magnetic torque and force control methods that use two external drivers: an external coil and a permanent magnet with a DC-motor, respectively. Power harvesting can be used to drive an electronic circuit for wireless monitoring (the observation of the pump conditions and temperature) without the use of an internal battery. The power harvesting will be used as a power source to drive other electronic devices, such as various biosensors with their driving circuits. To have both a compact size and sufficient pumping capability, the fully magnetic impeller has five stages and each stage includes four backward-curved blades. The pump has total and inner volumes of 20 and 9.8 cc, respectively, and weighs 52 g. The pump produces a flow rate of approximately 8 L/min at 80 mm Hg and the power generator produces 0.3 W of electrical power at 120 Ω. The pump also produces a minimum flow rate of 1.5 L/min and a pressure of 30 mm Hg for circulation at a maximum distance of 7.5 cm. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  7. Inductor-Free Wireless Energy Delivery via Maxwell's Displacement Current from an Electrodeless Triboelectric Nanogenerator.

    PubMed

    Cao, Xia; Zhang, Meng; Huang, Jinrong; Jiang, Tao; Zou, Jingdian; Wang, Ning; Wang, Zhong Lin

    2018-02-01

    Wireless power delivery has been a dream technology for applications in medical science, security, radio frequency identification (RFID), and the internet of things, and is usually based on induction coils and/or antenna. Here, a new approach is demonstrated for wireless power delivery by using the Maxwell's displacement current generated by an electrodeless triboelectric nanogenerator (TENG) that directly harvests ambient mechanical energy. A rotary electrodeless TENG is fabricated using the contact and sliding mode with a segmented structure. Due to the leakage of electric field between the segments during relative rotation, the generated Maxwell's displacement current in free space is collected by metal collectors. At a gap distance of 3 cm, the output wireless current density and voltage can reach 7 µA cm -2 and 65 V, respectively. A larger rotary electrodeless TENG and flexible wearable electrodeless TENG are demonstrated to power light-emitting diodes (LEDs) through wireless energy delivery. This innovative discovery opens a new avenue for noncontact, wireless energy transmission for applications in portable and wearable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A novel neural prosthesis providing long-term electrocorticography recording and cortical stimulation for epilepsy and brain-computer interface.

    PubMed

    Romanelli, Pantaleo; Piangerelli, Marco; Ratel, David; Gaude, Christophe; Costecalde, Thomas; Puttilli, Cosimo; Picciafuoco, Mauro; Benabid, Alim; Torres, Napoleon

    2018-05-11

    OBJECTIVE Wireless technology is a novel tool for the transmission of cortical signals. Wireless electrocorticography (ECoG) aims to improve the safety and diagnostic gain of procedures requiring invasive localization of seizure foci and also to provide long-term recording of brain activity for brain-computer interfaces (BCIs). However, no wireless devices aimed at these clinical applications are currently available. The authors present the application of a fully implantable and externally rechargeable neural prosthesis providing wireless ECoG recording and direct cortical stimulation (DCS). Prolonged wireless ECoG monitoring was tested in nonhuman primates by using a custom-made device (the ECoG implantable wireless 16-electrode [ECOGIW-16E] device) containing a 16-contact subdural grid. This is a preliminary step toward large-scale, long-term wireless ECoG recording in humans. METHODS The authors implanted the ECOGIW-16E device over the left sensorimotor cortex of a nonhuman primate ( Macaca fascicularis), recording ECoG signals over a time span of 6 months. Daily electrode impedances were measured, aiming to maintain the impedance values below a threshold of 100 KΩ. Brain mapping was obtained through wireless cortical stimulation at fixed intervals (1, 3, and 6 months). After 6 months, the device was removed. The authors analyzed cortical tissues by using conventional histological and immunohistological investigation to assess whether there was evidence of damage after the long-term implantation of the grid. RESULTS The implant was well tolerated; no neurological or behavioral consequences were reported in the monkey, which resumed his normal activities within a few hours of the procedure. The signal quality of wireless ECoG remained excellent over the 6-month observation period. Impedance values remained well below the threshold value; the average impedance per contact remains approximately 40 KΩ. Wireless cortical stimulation induced movements of the upper and lower limbs, and elicited fine movements of the digits as well. After the monkey was euthanized, the grid was found to be encapsulated by a newly formed dural sheet. The grid removal was performed easily, and no direct adhesions of the grid to the cortex were found. Conventional histological studies showed no cortical damage in the brain region covered by the grid, except for a single microscopic spot of cortical necrosis (not visible to the naked eye) in a region that had undergone repeated procedures of electrical stimulation. Immunohistological studies of the cortex underlying the grid showed a mild inflammatory process. CONCLUSIONS This preliminary experience in a nonhuman primate shows that a wireless neuroprosthesis, with related long-term ECoG recording (up to 6 months) and multiple DCSs, was tolerated without sequelae. The authors predict that epilepsy surgery could realize great benefit from this novel prosthesis, providing an extended time span for ECoG recording.

  9. Dispersion and nonlinear effects in OFDM-RoF system

    NASA Astrophysics Data System (ADS)

    Alhasson, Bader H.; Bloul, Albe M.; Matin, M.

    2010-08-01

    The radio-over-fiber (RoF) network has been a proven technology to be the best candidate for the wireless-access technology, and the orthogonal frequency division multiplexing (OFDM) technique has been established as the core technology in the physical layer of next generation wireless communication system, as a result OFDM-RoF has drawn attentions worldwide and raised many new research topics recently. At the present time, the trend of information industry is towards mobile, wireless, digital and broadband. The next generation network (NGN) has motivated researchers to study higher-speed wider-band multimedia communication to transmit (voice, data, and all sorts of media such as video) at a higher speed. The NGN would offer services that would necessitate broadband networks with bandwidth higher than 2Mbit/s per radio channel. Many new services emerged, such as Internet Protocol TV (IPTV), High Definition TV (HDTV), mobile multimedia and video stream media. Both speed and capacity have been the key objectives in transmission. In the meantime, the demand for transmission bandwidth increased at a very quick pace. The coming of 4G and 5G era will provide faster data transmission and higher bit rate and bandwidth. Taking advantages of both optical communication and wireless communication, OFDM Radio over Fiber (OFDM-RoF) system is characterized by its high speed, large capacity and high spectral efficiency. However, up to the present there are some problems to be solved, such as dispersion and nonlinearity effects. In this paper we will study the dispersion and nonlinearity effects and their elimination in OFDM-radio-over-fiber system.

  10. Simultaneous transmission of wired and wireless signals based on double sideband carrier suppression

    NASA Astrophysics Data System (ADS)

    Bitew, Mekuanint Agegnehu; Shiu, Run-Kai; Peng, Peng-Chun; Wang, Cheng-Hao; Chen, Yan-Ming

    2017-11-01

    In this paper, we proposed and experimentally demonstrated simultaneous transmission of wired and wireless signals based on double sideband optical carrier suppression. By properly adjusting the bias point of the dual-output mach-zehnder modulator (MZM), a central carrier in one output port and a pair of first-order sidebands in another output port are generated. The pair of first-order sidebands are fed into a second MZM to generate second-order order sidebands. A wired signal is embedded on the central carrier while a wireless signal is embedded on the second-order sidebands. Unlike other schemes, we did not use optical filter to separate the carrier from the optical sidebands. The measured bit error rate (BER) and eye-diagrams after a 25 km single-mode-fiber (SMF) transmission proved that the proposed scheme is successful for both wired and wireless signals transmission. Moreover, the power penalty at the BER of 10-9 is 0.3 and 0.7 dB for wired and wireless signals, respectively.

  11. Energy Autonomous Wireless Sensing System Enabled by Energy Generated during Human Walking

    NASA Astrophysics Data System (ADS)

    Kuang, Yang; Ruan, Tingwen; Chew, Zheng Jun; Zhu, Meiling

    2016-11-01

    Recently, there has been a huge amount of work devoted to wearable energy harvesting (WEH) in a bid to establish energy autonomous wireless sensing systems for a range of health monitoring applications. However, limited work has been performed to implement and test such systems in real-world settings. This paper reports the development and real-world characterisation of a magnetically plucked wearable knee-joint energy harvester (Mag-WKEH) powered wireless sensing system, which integrates our latest research progresses in WEH, power conditioning and wireless sensing to achieve high energy efficiency. Experimental results demonstrate that with walking speeds of 3∼7 km/h, the Mag-WKEH generates average power of 1.9∼4.5 mW with unnoticeable impact on the wearer and is able to power the wireless sensor node (WSN) with three sensors to work at duty cycles of 6.6%∼13%. In each active period of 2 s, the WSN is able to measure and transmit 482 readings to the base station.

  12. The Role of Gravity on the Reproduction of Arabidopsis Plants

    NASA Technical Reports Server (NTRS)

    Hoshizaki, T.

    1985-01-01

    The presence of gravity as a necessary environmental factor for higher plants to complete their life cycle was examined. Arabidopsis thalliana (L.) Heynh. Columbia strain plants were grown continuously for three generations in a simulated micro-g environment as induced by horizontal clinostats. Growth, development and reproduction were followed. The Arabidopsis plants were selected for three generations on clinostats because: (1) a short life cycle of around 35 days; (2) the cells of third generation plants would in theory be free of gravity imprint; and (3) a third generation plant would therefore more than likely grow and respond like a plant growing in a micro-g environment. It is found that gravity is not a required environmental factor for higher plants to complete their life cycle, at least as tested by a horizontal clinostat. Clinostatting does not prevent the completion of the plant life cycle. However, clinostatting does appear to slow down the reproductive process of Arabidopsis plants. Whether higher plants can continue to reproduce for many generations in a true micro-g environment of space can only be determined by long duration experiments in space.

  13. Have combustible cigarettes met their match? The nicotine delivery profiles and harmful constituent exposures of second-generation and third-generation electronic cigarette users

    PubMed Central

    Wagener, Theodore L; Floyd, Evan L; Stepanov, Irina; Driskill, Leslie M; Frank, Summer G; Meier, Ellen; Leavens, Eleanor L; Tackett, Alayna P; Molina, Neil; Queimado, Lurdes

    2017-01-01

    Introduction Electronic cigarettes’ (e-cigarettes) viability as a public health strategy to end smoking will likely be determined by their ability to mimic the pharmacokinetic profile of a cigarette while also exposing users to significantly lower levels of harmful/potentially harmful constituents (HPHCs). The present study examined the nicotine delivery profile of third- (G3) versus second-generation (G2) e-cigarette devices and their users’ exposure to nicotine and select HPHCs compared with cigarette smokers. Methods 30 participants (10 smokers, 9 G2 and 11 G3 users) completed baseline questionnaires and provided exhaled carbon monoxide (eCO), saliva and urine samples. Following a 12-hour nicotine abstinence, G2 and G3 users completed a 2-hour vaping session (ie, 5 min, 10-puff bout followed by ad libitum puffing for 115 min). Blood samples, subjective effects, device characteristics and e-liquid consumption were assessed. Results Smokers, G2 and G3 users had similar baseline levels of cotinine, but smokers had 4 and 7 times higher levels of eCO (p<0.0001) and total 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol (i.e., NNAL, p<0.01), respectively, than G2 or G3 users. Compared with G2s, G3 devices delivered significantly higher power to the atomiser, but G3 users vaped e-cigarette liquids with significantly lower nicotine concentrations. During the vaping session, G3 users achieved significantly higher plasma nicotine concentrations than G2 users following the first 10 puffs (17.5 vs 7.3 ng/mL, respectively) and at 25 and 40 min of ad libitum use. G3 users consumed significantly more e-liquid than G2 users. Vaping urges/withdrawal were reduced following 10 puffs, with no significant differences between device groups. Discussion Under normal use conditions, both G2 and G3 devices deliver cigarette-like amounts of nicotine, but G3 devices matched the amount and speed of nicotine delivery of a conventional cigarette. Compared with cigarettes, G2 and G3 e-cigarettes resulted in significantly lower levels of exposure to a potent lung carcinogen and cardiovascular toxicant. These findings have significant implications for understanding the addiction potential of these devices and their viability/suitability as aids to smoking cessation. PMID:27729564

  14. High Fidelity Simulations of Large-Scale Wireless Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onunkwo, Uzoma; Benz, Zachary

    The worldwide proliferation of wireless connected devices continues to accelerate. There are 10s of billions of wireless links across the planet with an additional explosion of new wireless usage anticipated as the Internet of Things develops. Wireless technologies do not only provide convenience for mobile applications, but are also extremely cost-effective to deploy. Thus, this trend towards wireless connectivity will only continue and Sandia must develop the necessary simulation technology to proactively analyze the associated emerging vulnerabilities. Wireless networks are marked by mobility and proximity-based connectivity. The de facto standard for exploratory studies of wireless networks is discrete event simulationsmore » (DES). However, the simulation of large-scale wireless networks is extremely difficult due to prohibitively large turnaround time. A path forward is to expedite simulations with parallel discrete event simulation (PDES) techniques. The mobility and distance-based connectivity associated with wireless simulations, however, typically doom PDES and fail to scale (e.g., OPNET and ns-3 simulators). We propose a PDES-based tool aimed at reducing the communication overhead between processors. The proposed solution will use light-weight processes to dynamically distribute computation workload while mitigating communication overhead associated with synchronizations. This work is vital to the analytics and validation capabilities of simulation and emulation at Sandia. We have years of experience in Sandia’s simulation and emulation projects (e.g., MINIMEGA and FIREWHEEL). Sandia’s current highly-regarded capabilities in large-scale emulations have focused on wired networks, where two assumptions prevent scalable wireless studies: (a) the connections between objects are mostly static and (b) the nodes have fixed locations.« less

  15. Optical frequency upconversion technique for transmission of wireless MIMO-type signals over optical fiber.

    PubMed

    Shaddad, R Q; Mohammad, A B; Al-Gailani, S A; Al-Hetar, A M

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.

  16. Analog and digital transport of RF channels over converged 5G wireless-optical networks

    NASA Astrophysics Data System (ADS)

    Binh, Le Nguyen

    2016-02-01

    Under the exponential increase demand by the emerging 5G wireless access networking and thus data-center based Internet, novel and economical transport of RF channels to and from wireless access systems. This paper presents the transport technologies of RF channels over the analog and digital domain so as to meet the demands of the transport capacity reaching multi-Tbps, in the followings: (i) The convergence of 5G broadband wireless and optical networks and its demands on capacity delivery and network structures; (ii) Analog optical technologies for delivery of both the information and RF carriers to and from multiple-input multiple-output (MIMO) antenna sites so as to control the beam steering of MIMO antenna in the mmW at either 28.6 GHz and 56.8 GHz RF carrier and delivery of channels of aggregate capacity reaching several Tbps; (ii) Transceiver employing advanced digital modulation formats and digital signal processing (DSP) so as to provide 100G and beyond transmission rate to meet the ultra-high capacity demands with flexible spectral grids, hence pay-on-demand services. The interplay between DSP-based and analog transport techniques is examined; (iii) Transport technologies for 5G cloud access networks and associate modulation and digital processing techniques for capacity efficiency; and (iv) Finally the integrated optic technologies with novel lasers, comb generators and simultaneous dual function photonic devices for both demultiplexing/multiplexing and modulation are proposed, hence a system on chip structure can be structured. Quantum dot lasers and matrixes of micro ring resonators are integrated on the same Si-on-Silica substrate are proposed and described.

  17. Out Flying the Eagle: China’s Drive for Domestic Economic Innovation and Its Impact on U.S.-China Relations

    DTIC Science & Technology

    2014-03-01

    wind turbines from General Electric. China recognizes the issues with IPR but it is something that will take time to fix. It will be a significant...Large aircraft  Large-scale oil and gas exploration  Manned space, including lunar exploration  Next-generation broadband wireless ...circuits, and building an innovation system for China’s integrated circuit (IC) manufacturing industry. 3. New generation broadband wireless mobile

  18. Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul.

    PubMed

    Alavi, S E; Soltanian, M R K; Amiri, I S; Khalily, M; Supa'at, A S M; Ahmad, H

    2016-01-27

    5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated.

  19. Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul

    PubMed Central

    Alavi, S. E.; Soltanian, M. R. K.; Amiri, I. S.; Khalily, M.; Supa’at, A. S. M.; Ahmad, H.

    2016-01-01

    5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated. PMID:26814621

  20. Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul

    NASA Astrophysics Data System (ADS)

    Alavi, S. E.; Soltanian, M. R. K.; Amiri, I. S.; Khalily, M.; Supa'At, A. S. M.; Ahmad, H.

    2016-01-01

    5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated.

  1. Field evaluation of a wireless handheld computer for railroad roadway workers.

    DOT National Transportation Integrated Search

    2009-01-31

    This report is the third in a series describing the development and evaluation of a software application to facilitate communications for railroad roadway workers using a wireless handheld computer. The current prototype operated on a cell phone inte...

  2. Field evaluation of a wireless handheld computer for railroad roadway workers

    DOT National Transportation Integrated Search

    2009-01-01

    This report is the third in a series describing the development and evaluation of a software application to facilitate communications for railroad roadway workers using a wireless handheld computer. The current prototype operated on a cell phone inte...

  3. On the association between glioma, wireless phones, heredity and ionising radiation.

    PubMed

    Carlberg, Michael; Hardell, Lennart

    2012-09-01

    We performed two case-control studies on brain tumours diagnosed during 1 January 1997 to 30 June 2000 and 1 July 2000 to 31 December 2003, respectively. Living cases and controls aged 20-80 years were included. An additional study was performed on deceased cases with a malignant brain tumour using deceased controls. Pooled results for glioma yielded for ipsilateral use of mobile phone odds ratio (OR)=2.9, 95% confidence interval (CI)=1.8-4.7 in the >10 years latency group. The corresponding result for cordless phone was OR=3.8, 95% CI=1.8-8.1. OR increased statistically significant for cumulative use of wireless phones per 100h and per year of latency. For high-grade glioma ipsilateral use of mobile phone gave OR=3.9, 95% CI=2.3-6.6 and cordless phone OR=5.5, 95% CI=2.3-13 in the >10 years latency group. Heredity for brain tumour gave OR=3.4, 95% CI=2.1-5.5 for glioma. There was no interaction with use of wireless phones. X-ray investigation of the head gave overall OR=1.3, 95% CI=1.1-1.7 for glioma without interaction with use of wireless phones or heredity. In conclusion use of mobile and cordless phone increased the risk for glioma with highest OR for ipsilateral use, latency >10 years and third tertile of cumulative use in hours. In total, the risk was highest in the age group <20 years for first use of a wireless phone. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. 78 FR 64497 - Information Collection Being Reviewed by the Federal Communications Commission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... information technology; and ways to further reduce the information collection burden on small business....: 3060-0865. Title: Wireless Telecommunications Bureau Universal Licensing System Recordkeeping and Third...-1, ``Wireless Services Licensing Records,'' to cover the collection, maintenance, use(s), and...

  5. Energy scavenging system by acoustic wave and integrated wireless communication

    NASA Astrophysics Data System (ADS)

    Kim, Albert

    The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..

  6. Effects of third generation mobile phone-emitted electromagnetic radiation on oxidative stress parameters in eye tissue and blood of rats.

    PubMed

    Demirel, Soner; Doganay, Selim; Turkoz, Yusuf; Dogan, Zümrüt; Turan, Bahadir; Firat, Penpe Gul Bozgul

    2012-06-01

    To investigate the effects of electromagnetic radiation (EMR) emitted by a third generation (3G) mobile phone on the antioxidant and oxidative stress parameters in eye tissue and blood of rats. Eighteen Wistar albino rats were randomly assigned into two groups: Group I (n = 9) received a standardized a daily dose of 3G mobile phone EMR for 20 days, and Group II served as the control group (n = 9), receiving no exposure to EMR. Glutathione peroxidase (GSH-Px) and catalase (CAT) levels were measured in eye tissues; in addition, malondialdehyde (MDA) and reduced GSH levels were measured in blood. There was no significant difference between groups in GSH-Px (p = 0.99) and CAT (p = 0.18) activity in eye tissue. There was no significant difference between groups in MDA (p = 0.69) and GSH levels (p = 0.83) in blood. The results of this study suggest that under a short period of exposure, 3G mobile phone radiation does not lead to harmful effects on eye tissue and blood in rats.

  7. Optical Frequency Upconversion Technique for Transmission of Wireless MIMO-Type Signals over Optical Fiber

    PubMed Central

    Shaddad, R. Q.; Mohammad, A. B.; Al-Gailani, S. A.; Al-Hetar, A. M.

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength. PMID:24772009

  8. Providing end-to-end QoS for multimedia applications in 3G wireless networks

    NASA Astrophysics Data System (ADS)

    Guo, Katherine; Rangarajan, Samapth; Siddiqui, M. A.; Paul, Sanjoy

    2003-11-01

    As the usage of wireless packet data services increases, wireless carriers today are faced with the challenge of offering multimedia applications with QoS requirements within current 3G data networks. End-to-end QoS requires support at the application, network, link and medium access control (MAC) layers. We discuss existing CDMA2000 network architecture and show its shortcomings that prevent supporting multiple classes of traffic at the Radio Access Network (RAN). We then propose changes in RAN within the standards framework that enable support for multiple traffic classes. In addition, we discuss how Session Initiation Protocol (SIP) can be augmented with QoS signaling for supporting end-to-end QoS. We also review state of the art scheduling algorithms at the base station and provide possible extensions to these algorithms to support different classes of traffic as well as different classes of users.

  9. Wireless mesh networks.

    PubMed

    Wang, Xinheng

    2008-01-01

    Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.

  10. Developing novel 3D antennas using advanced additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Mirzaee, Milad

    In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.

  11. Smart ophthalmics: the future in tele-ophthalmology has arrived

    NASA Astrophysics Data System (ADS)

    Fink, Wolfgang; Tarbell, Mark A.; Garcia, Kevin

    2016-05-01

    Smart Ophthalmics© extends ophthalmic healthcare to people who operate/live in austere environments (e.g., military, third world, natural disaster), or are geographically dispersed (e.g., rural populations), where time, cost, and the possibility of travel/transportation make access to even adequate medical care difficult, if at all possible. Operators attach optical devices that act as ophthalmic examination extensions to smartphones and run custom apps to perform examinations of specific areas of the eye. The smartphone apps submit over wireless networks the collected examination data to a smart remote expert system, which provides in-depth medical analyses that are sent back in near real-time to the operators for subsequent triage.

  12. Have combustible cigarettes met their match? The nicotine delivery profiles and harmful constituent exposures of second-generation and third-generation electronic cigarette users.

    PubMed

    Wagener, Theodore L; Floyd, Evan L; Stepanov, Irina; Driskill, Leslie M; Frank, Summer G; Meier, Ellen; Leavens, Eleanor L; Tackett, Alayna P; Molina, Neil; Queimado, Lurdes

    2017-03-01

    Electronic cigarettes' (e-cigarettes) viability as a public health strategy to end smoking will likely be determined by their ability to mimic the pharmacokinetic profile of a cigarette while also exposing users to significantly lower levels of harmful/potentially harmful constituents (HPHCs). The present study examined the nicotine delivery profile of third- (G3) versus second-generation (G2) e-cigarette devices and their users' exposure to nicotine and select HPHCs compared with cigarette smokers. 30 participants (10 smokers, 9 G2 and 11 G3 users) completed baseline questionnaires and provided exhaled carbon monoxide (eCO), saliva and urine samples. Following a 12-hour nicotine abstinence, G2 and G3 users completed a 2-hour vaping session (ie, 5 min, 10-puff bout followed by ad libitum puffing for 115 min). Blood samples, subjective effects, device characteristics and e-liquid consumption were assessed. Smokers, G2 and G3 users had similar baseline levels of cotinine, but smokers had 4 and 7 times higher levels of eCO (p<0.0001) and total 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol (i.e., NNAL, p<0.01), respectively, than G2 or G3 users. Compared with G2s, G3 devices delivered significantly higher power to the atomiser, but G3 users vaped e-cigarette liquids with significantly lower nicotine concentrations. During the vaping session, G3 users achieved significantly higher plasma nicotine concentrations than G2 users following the first 10 puffs (17.5 vs 7.3 ng/mL, respectively) and at 25 and 40 min of ad libitum use. G3 users consumed significantly more e-liquid than G2 users. Vaping urges/withdrawal were reduced following 10 puffs, with no significant differences between device groups. Under normal use conditions, both G2 and G3 devices deliver cigarette-like amounts of nicotine, but G3 devices matched the amount and speed of nicotine delivery of a conventional cigarette. Compared with cigarettes, G2 and G3 e-cigarettes resulted in significantly lower levels of exposure to a potent lung carcinogen and cardiovascular toxicant. These findings have significant implications for understanding the addiction potential of these devices and their viability/suitability as aids to smoking cessation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Award 1 Title: Acoustic Communications 2011 Experiment: Deployment Support and Post Experiment Data Handling and Analysis. Award 2 Title: Exploiting Structured Dependencies in the Design of Adaptive Algorithms for Underwater Communication Award. 3 Title: Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems

    DTIC Science & Technology

    2015-09-30

    Wireless Networks (WUWNet’14), Rome, Italy, Nov. 12 ­ 14, 2014. J. Preisig, “ Underwater Acoustic Communications: Enabling the Next Generation at the...on Wireless Communication. M. Pajovic, J. Preisig, “Performance Analytics and Optimal Design of Multichannel Equalizers for Underwater Acoustic Communications”, to appear in IEEE Journal of Oceanic Engineering. 6 ...Exploiting Structured Dependencies in the Design of Adaptive Algorithms for Underwater Communication Award #3

  14. Invited Article: Channel performance for indoor and outdoor terahertz wireless links

    NASA Astrophysics Data System (ADS)

    Ma, Jianjun; Shrestha, Rabi; Moeller, Lothar; Mittleman, Daniel M.

    2018-05-01

    One of the most exciting future applications of terahertz technology is in the area of wireless communications. As 5G systems incorporating a standard for millimeter-wave wireless links approach commercial roll-out, it is becoming clear that even this new infrastructure will not be sufficient to keep pace with the rapidly increasing global demand for bandwidth. One favorable solution that is attracting increasing attention for subsequent generations of wireless technology is to use higher frequencies, above 100 GHz. The implementation of such links will require significant advances in hardware, algorithms, and architecture. Although numerous research groups are exploring aspects of this challenging problem, many basic questions remain unaddressed. Here, we present an experimental effort to characterize THz wireless links in both indoor and outdoor environments. We report measurements at 100, 200, 300, and 400 GHz, using a link with a data rate of 1 Gbit/s. We demonstrate both line-of-sight and non-line-of-sight (specular reflection) links off of interior building walls. This work represents a first step to establish the feasibility of using THz carrier waves for data transmission in diverse situations and environments.

  15. Survey on Monitoring and Quality Controlling of the Mobile Biosignal Delivery.

    PubMed

    Pawar, Pravin A; Edla, Damodar R; Edoh, Thierry; Shinde, Vijay; van Beijnum, Bert-Jan

    2017-10-31

    A Mobile Patient Monitoring System (MPMS) acquires patient's biosignals and transmits them using wireless network connection to the decision-making module or healthcare professional for the assessment of patient's condition. A variety of wireless network technologies such as wireless personal area networks (e.g., Bluetooth), mobile ad-hoc networks (MANET), and infrastructure-based networks (e.g., WLAN and cellular networks) are in practice for biosignals delivery. The wireless network quality-of-service (QoS) requirements of biosignals delivery are mainly specified in terms of required bandwidth, acceptable delay, and tolerable error rate. An important research challenge in the MPMS is how to satisfy QoS requirements of biosignals delivery in the environment characterized by patient mobility, deployment of multiple wireless network technologies, and variable QoS characteristics of the wireless networks. QoS requirements are mainly application specific, while available QoS is largely dependent on QoS provided by wireless network in use. QoS provisioning refers to providing support for improving QoS experience of networked applications. In resource poor conditions, application adaptation may also be required to make maximum use of available wireless network QoS. This survey paper presents a survey of recent developments in the area of QoS provisioning for MPMS. In particular, our contributions are as follows: (1) overview of wireless networks and network QoS requirements of biosignals delivery; (2) survey of wireless networks' QoS performance evaluation for the transmission of biosignals; and (3) survey of QoS provisioning mechanisms for biosignals delivery in MPMS. We also propose integrating end-to-end QoS monitoring and QoS provisioning strategies in a mobile patient monitoring system infrastructure to support optimal delivery of biosignals to the healthcare professionals.

  16. Cyber-physical networking for wireless mesh infrastructures

    NASA Astrophysics Data System (ADS)

    Mannweiler, C.; Lottermann, C.; Klein, A.; Schneider, J.; Schotten, H. D.

    2012-09-01

    This paper presents a novel approach for cyber-physical network control. "Cyber-physical" refers to the inclusion of different parameters and information sources, ranging from physical sensors (e.g. energy, temperature, light) to conventional network information (bandwidth, delay, jitter, etc.) to logical data providers (inference systems, user profiles, spectrum usage databases). For a consistent processing, collected data is represented in a uniform way, analyzed, and provided to dedicated network management functions and network services, both internally and, through an according API, to third party services. Specifically, in this work, we outline the design of sophisticated energy management functionalities for a hybrid wireless mesh network (WLAN for both backhaul traffic and access, GSM for access only), disposing of autonomous energy supply, in this case solar power. Energy consumption is optimized under the presumption of fluctuating power availability and considerable storage constraints, thus influencing, among others, handover and routing decisions. Moreover, advanced situation-aware auto-configuration and self-adaptation mechanisms are introduced for an autonomous operation of the network. The overall objective is to deploy a robust wireless access and backbone infrastructure with minimal operational cost and effective, cyber-physical control mechanisms, especially dedicated for rural or developing regions.

  17. Underwater fiber-wireless communication with a passive front end

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Sun, Bin; Lyu, Weichao; Kong, Meiwei; Sarwar, Rohail; Han, Jun; Zhang, Wei; Deng, Ning

    2017-11-01

    We propose and experimentally demonstrate a novel concept on underwater fiber-wireless (Fi-Wi) communication system with a fully passive wireless front end. A low-cost step-index (SI) plastic optical fiber (POF) together with a passive collimating lens at the front end composes the underwater Fi-Wi architecture. We have achieved a 1.71-Gb/s transmission at a mean BER of 4.97 × 10-3 (1.30 × 10-3 when using power loading) over a 50-m SI-POF and 2-m underwater wireless channel using orthogonal frequency division multiplexing (OFDM). Although the wireless part is very short, it actually plays a crucial role in practical underwater implementation, especially in deep sea. Compared with the wired solution (e.g. using a 52-m POF cable without the UWOC part), the proposed underwater Fi-Wi scheme can save optical wet-mate connectors that are sophisticated, very expensive and difficult to install in deep ocean. By combining high-capacity robust POF with the mobility and ubiquity of underwater wireless optical communication (UWOC), the proposed underwater Fi-Wi technology will find wide application in ocean exploration.

  18. Detection test of wireless network signal strength and GPS positioning signal in underground pipeline

    NASA Astrophysics Data System (ADS)

    Li, Li; Zhang, Yunwei; Chen, Ling

    2018-03-01

    In order to solve the problem of selecting positioning technology for inspection robot in underground pipeline environment, the wireless network signal strength and GPS positioning signal testing are carried out in the actual underground pipeline environment. Firstly, the strength variation of the 3G wireless network signal and Wi-Fi wireless signal provided by China Telecom and China Unicom ground base stations are tested, and the attenuation law of these wireless signals along the pipeline is analyzed quantitatively and described. Then, the receiving data of the GPS satellite signal in the pipeline are tested, and the attenuation of GPS satellite signal under underground pipeline is analyzed. The testing results may be reference for other related research which need to consider positioning in pipeline.

  19. Smart Grid Communications System Blueprint

    NASA Astrophysics Data System (ADS)

    Clark, Adrian; Pavlovski, Chris

    2010-10-01

    Telecommunications operators are well versed in deploying 2G and 3G wireless networks. These networks presently support the mobile business user and/or retail consumer wishing to place conventional voice calls and data connections. The electrical power industry has recently commenced transformation of its distribution networks by deploying smart monitoring and control devices throughout their networks. This evolution of the network into a `smart grid' has also motivated the need to deploy wireless technologies that bridge the communication gap between the smart devices and information technology systems. The requirements of these networks differ from traditional wireless networks that communications operators have deployed, which have thus far forced energy companies to consider deploying their own wireless networks. We present our experience in deploying wireless networks to support the smart grid and highlight the key properties of these networks. These characteristics include application awareness, support for large numbers of simultaneous cell connections, high service coverage and prioritized routing of data. We also outline our target blueprint architecture that may be useful to the industry in building wireless and fixed networks to support the smart grid. By observing our experiences, telecommunications operators and equipment manufacturers will be able to augment their current networks and products in a way that accommodates the needs of the emerging industry of smart grids and intelligent electrical networks.

  20. Bluetooth technology for prevention of dental caries.

    PubMed

    Kolahi, Jafar; Fazilati, Mohamad

    2009-12-01

    Caries is caused when the pH at the tooth surface drops below 5.5. A miniaturized and autonomous pH monitoring nodes can be attached to the tooth surface, like a tooth jewel. This intelligent sensor includes three components: (a) digital micro pH meter, (b) power supply, (c) wireless communicating device. The micro pH meter facilitates long term tooth surface pH monitoring and providing real time feedback to the patients and dental experts. Power supply of this system will be microfabricated biocatalytic fuel cell (enzymatic micro-battery) using organic compounds (e.g. formate or glucose) as the fuel to generate electricity. When micro pH meter detects the pH lower than 5.5, wireless Bluetooth device sends a caution (e.g. "you are at risk of dental caries") to external monitoring equipment such as mobile phone or a hands-free heads. After reception of the caution, subjects should use routine brushing and flossing procedure or use a medicated chewing gum (e.g. chlorhexidine containing chewing gum) or rinse with a mouthwash.

  1. Evaluation Study of a Wireless Multimedia Traffic-Oriented Network Model

    NASA Astrophysics Data System (ADS)

    Vasiliadis, D. C.; Rizos, G. E.; Vassilakis, C.

    2008-11-01

    In this paper, a wireless multimedia traffic-oriented network scheme over a fourth generation system (4-G) is presented and analyzed. We conducted an extensive evaluation study for various mobility configurations in order to incorporate the behavior of the IEEE 802.11b standard over a test-bed wireless multimedia network model. In this context, the Quality of Services (QoS) over this network is vital for providing a reliable high-bandwidth platform for data-intensive sources like video streaming. Therefore, the main issues concerned in terms of QoS were the metrics for bandwidth of both dropped and lost packets and their mean packet delay under various traffic conditions. Finally, we used a generic distance-vector routing protocol which was based on an implementation of Distributed Bellman-Ford algorithm. The performance of the test-bed network model has been evaluated by using the simulation environment of NS-2.

  2. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular

    PubMed Central

    Okasaka, Shozo; Weiler, Richard J.; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei

    2016-01-01

    The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access. PMID:27571074

  3. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular.

    PubMed

    Okasaka, Shozo; Weiler, Richard J; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei

    2016-08-25

    The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access.

  4. Diffusion of innovations: smartphones and wireless anatomy learning resources.

    PubMed

    Trelease, Robert B

    2008-01-01

    The author has previously reported on principles of diffusion of innovations, the processes by which new technologies become popularly adopted, specifically in relation to anatomy and education. In presentations on adopting handheld computers [personal digital assistants (PDAs)] and personal media players for health sciences education, particular attention has been directed to the anticipated integration of PDA functions into popular cellular telephones. However, limited distribution of early "smartphones" (e.g., Palm Treo and Blackberry) has provided few potential users for anatomical learning resources. In contrast, iPod media players have been self-adopted by millions of students, and "podcasting" has become a popular medium for distributing educational media content. The recently introduced Apple iPhone has combined smartphone and higher resolution media player capabilities. The author successfully tested the iPhone and the "work alike" iPod touch wireless media player with text-based "flashcard" resources, existing PDF educational documents, 3D clinical imaging data, lecture "podcasts," and clinical procedure video. These touch-interfaced, mobile computing devices represent just the first of a new generation providing practical, scalable wireless Web access with enhanced multimedia capabilities. With widespread student self-adoption of such new personal technology, educators can look forward to increasing portability of well-designed, multiplatform "learn anywhere" resources. Copyright 2008 American Association of Anatomists

  5. Towards a Mobile Ecogenomic sensor: the Third Generation Environmental Sample Processor (3G-ESP).

    NASA Astrophysics Data System (ADS)

    Birch, J. M.; Pargett, D.; Jensen, S.; Roman, B.; Preston, C. M.; Ussler, W.; Yamahara, K.; Marin, R., III; Hobson, B.; Zhang, Y.; Ryan, J. P.; Scholin, C. A.

    2016-02-01

    Researchers are increasingly using one or more autonomous platforms to characterize ocean processes that change in both space and time. Conceptually, studying processes that change quickly both spatially and temporally seems relatively straightforward. One needs to sample in many locations synoptically over time, or follow a coherent water mass and sample it repeatedly. However, implementing either approach presents many challenges. For example, acquiring samples over days to weeks far from shore, without human intervention, requires multiple systems to work together seamlessly, and the level of autonomy, navigation and communications needed to conduct the work exposes the complexity of these requirements. We are addressing these challenges by developing a new generation of robotic systems that are primarily aimed at studies of microbial-mediated processes. As a step towards realizing this new capability, we have taken lessons learned from our second-generation Environmental Sample Processor (2G-ESP), a robotic microbiology "lab-in-a-can" and have re-engineered the system for use on a Tethys-class Long Range AUV (LRAUV). The new instrument is called the third-generation ESP (3G-ESP), and its integration with the LRAUV provides mobility and a persistent presence not seen before in microbial oceanography. The 3G-ESP autonomously filters a water sample and then either preserves that material for eventual return to a laboratory, or processes the sample in real-time for further downstream molecular analytical analyses. The 3G ESP modularizes hardware needed for the collection and preparation of a sample from subsequent molecular analyses by the use of self-contained "cartridges". Cartridges currently come in two forms: one for the preservation of a sample, and the other for onboard homogenization and handoff for downstream processing via one or more analytical devices. The 3G-ESP is designed as a stand-alone instrument, and thus could be deployed on a variety of platforms. This presentation will focus on results from early deployments of the prototype 3G-ESP/LRAUV, the challenges encountered in cartridge design, ESP/LRAUV integration, and operational capabilities that show the potential of mobile, ecogenomic sensors in the ocean sciences.

  6. Automated analysis of long-term bridge behavior and health using a cyber-enabled wireless monitoring system

    NASA Astrophysics Data System (ADS)

    O'Connor, Sean M.; Zhang, Yilan; Lynch, Jerome; Ettouney, Mohammed; van der Linden, Gwen

    2014-04-01

    A worthy goal for the structural health monitoring field is the creation of a scalable monitoring system architecture that abstracts many of the system details (e.g., sensors, data) from the structure owner with the aim of providing "actionable" information that aids in their decision making process. While a broad array of sensor technologies have emerged, the ability for sensing systems to generate large amounts of data have far outpaced advances in data management and processing. To reverse this trend, this study explores the creation of a cyber-enabled wireless SHM system for highway bridges. The system is designed from the top down by considering the damage mechanisms of concern to bridge owners and then tailoring the sensing and decision support system around those concerns. The enabling element of the proposed system is a powerful data repository system termed SenStore. SenStore is designed to combine sensor data with bridge meta-data (e.g., geometric configuration, material properties, maintenance history, sensor locations, sensor types, inspection history). A wireless sensor network deployed to a bridge autonomously streams its measurement data to SenStore via a 3G cellular connection for storage. SenStore securely exposes the bridge meta- and sensor data to software clients that can process the data to extract information relevant to the decision making process of the bridge owner. To validate the proposed cyber-enable SHM system, the system is implemented on the Telegraph Road Bridge (Monroe, MI). The Telegraph Road Bridge is a traditional steel girder-concrete deck composite bridge located along a heavily travelled corridor in the Detroit metropolitan area. A permanent wireless sensor network has been installed to measure bridge accelerations, strains and temperatures. System identification and damage detection algorithms are created to automatically mine bridge response data stored in SenStore over an 18-month period. Tools like Gaussian Process (GP) regression are used to predict changes in the bridge behavior as a function of environmental parameters. Based on these analyses, pertinent behavioral information relevant to bridge management is autonomously extracted.

  7. A medical application integrating remote 3D visualization tools to access picture archiving and communication system on mobile devices.

    PubMed

    He, Longjun; Ming, Xing; Liu, Qian

    2014-04-01

    With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. However, for direct interactive 3D visualization, which plays an important role in radiological diagnosis, the mobile device cannot provide a satisfactory quality of experience for radiologists. This paper developed a medical system that can get medical images from the picture archiving and communication system on the mobile device over the wireless network. In the proposed application, the mobile device got patient information and medical images through a proxy server connecting to the PACS server. Meanwhile, the proxy server integrated a range of 3D visualization techniques, including maximum intensity projection, multi-planar reconstruction and direct volume rendering, to providing shape, brightness, depth and location information generated from the original sectional images for radiologists. Furthermore, an algorithm that changes remote render parameters automatically to adapt to the network status was employed to improve the quality of experience. Finally, performance issues regarding the remote 3D visualization of the medical images over the wireless network of the proposed application were also discussed. The results demonstrated that this proposed medical application could provide a smooth interactive experience in the WLAN and 3G networks.

  8. Rotating-Disk-Based Hybridized Electromagnetic-Triboelectric Nanogenerator for Sustainably Powering Wireless Traffic Volume Sensors.

    PubMed

    Zhang, Binbin; Chen, Jun; Jin, Long; Deng, Weili; Zhang, Lei; Zhang, Haitao; Zhu, Minhao; Yang, Weiqing; Wang, Zhong Lin

    2016-06-28

    Wireless traffic volume detectors play a critical role for measuring the traffic-flow in a real-time for current Intelligent Traffic System. However, as a battery-operated electronic device, regularly replacing battery remains a great challenge, especially in the remote area and wide distribution. Here, we report a self-powered active wireless traffic volume sensor by using a rotating-disk-based hybridized nanogenerator of triboelectric nanogenerator and electromagnetic generator as the sustainable power source. Operated at a rotating rate of 1000 rpm, the device delivered an output power of 17.5 mW, corresponding to a volume power density of 55.7 W/m(3) (Pd = P/V, see Supporting Information for detailed calculation) at a loading resistance of 700 Ω. The hybridized nanogenerator was demonstrated to effectively harvest energy from wind generated by a moving vehicle through the tunnel. And the delivered power is capable of triggering a counter via a wireless transmitter for real-time monitoring the traffic volume in the tunnel. This study further expands the applications of triboelectric nanogenerators for high-performance ambient mechanical energy harvesting and as sustainable power sources for driving wireless traffic volume sensors.

  9. IR wireless cluster synapses of HYDRA very large neural networks

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas

    2008-04-01

    RF/IR wireless (virtual) synapses are critical components of HYDRA (Hyper-Distributed Robotic Autonomy) neural networks, already discussed in two earlier papers. The HYDRA network has the potential to be very large, up to 10 11-neurons and 10 18-synapses, based on already established technologies (cellular RF telephony and IR-wireless LANs). It is organized into almost fully connected IR-wireless clusters. The HYDRA neurons and synapses are very flexible, simple, and low-cost. They can be modified into a broad variety of biologically-inspired brain-like computing capabilities. In this third paper, we focus on neural hardware in general, and on IR-wireless synapses in particular. Such synapses, based on LED/LD-connections, dominate the HYDRA neural cluster.

  10. Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors

    PubMed Central

    Karlsson, Hannah; Svensson, Emma; Gigg, Camilla; Jarvius, Malin; Olsson-Strömberg, Ulla; Savoldo, Barbara; Dotti, Gianpietro; Loskog, Angelica

    2015-01-01

    CD19-targeting CAR T cells have shown potency in clinical trials targeting B cell leukemia. Although mainly second generation (2G) CARs carrying CD28 or 4-1BB have been investigated in patients, preclinical studies suggest that third generation (3G) CARs with both CD28 and 4-1BB have enhanced capacity. However, little is known about the intracellular signaling pathways downstream of CARs. In the present work, we have analyzed the signaling capacity post antigen stimulation in both 2G and 3G CARs. 3G CAR T cells expanded better than 2G CAR T cells upon repeated stimulation with IL-2 and autologous B cells. An antigen-driven accumulation of CAR+ cells was evident post antigen stimulation. The cytotoxicity of both 2G and 3G CAR T cells was maintained by repeated stimulation. The phosphorylation status of intracellular signaling proteins post antigen stimulation showed that 3G CAR T cells had a higher activation status than 2G. Several proteins involved in signaling downstream the TCR were activated, as were proteins involved in the cell cycle, cell adhesion and exocytosis. In conclusion, 3G CAR T cells had a higher degree of intracellular signaling activity than 2G CARs which may explain the increased proliferative capacity seen in 3G CAR T cells. The study also indicates that there may be other signaling pathways to consider when designing or evaluating new generations of CARs. PMID:26700307

  11. The benefits of convergence.

    PubMed

    Chang, Gee-Kung; Cheng, Lin

    2016-03-06

    A multi-tier radio access network (RAN) combining the strength of fibre-optic and radio access technologies employing adaptive microwave photonics interfaces and radio-over-fibre (RoF) techniques is envisioned for future heterogeneous wireless communications. All-band radio spectrum from 0.1 to 100 GHz will be used to deliver wireless services with high capacity, high link speed and low latency. The multi-tier RAN will improve the cell-edge performance in an integrated heterogeneous environment enabled by fibre-wireless integration and networking for mobile fronthaul/backhaul, resource sharing and all-layer centralization of multiple standards with different frequency bands and modulation formats. In essence, this is a 'no-more-cells' architecture in which carrier aggregation among multiple frequency bands can be easily achieved with seamless handover between cells. In this way, current and future mobile network standards such as 4G and 5G can coexist with optimized and continuous cell coverage using multi-tier RoF regardless of the underlying network topology or protocol. In terms of users' experience, the future-proof approach achieves the goals of system capacity, link speed, latency and continuous heterogeneous cell coverage while overcoming the bandwidth crunch in next-generation communication networks. © 2016 The Author(s).

  12. A batch process micromachined thermoelectric energy harvester: fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Su, J.; Leonov, V.; Goedbloed, M.; van Andel, Y.; de Nooijer, M. C.; Elfrink, R.; Wang, Z.; Vullers, R. J. M.

    2010-10-01

    Micromachined thermopiles are considered as a cost-effective solution for energy harvesters working at a small temperature difference and weak heat flows typical for, e.g., the human body. They can be used for powering autonomous wireless sensor nodes in a body area network. In this paper, a micromachined thermoelectric energy harvester with 6 µm high polycrystalline silicon germanium (poly-SiGe) thermocouples fabricated on a 6 inch wafer is presented. An open circuit voltage of 1.49 V and an output power of 0.4 µW can be generated with 3.5 K temperature difference in a model of a wearable micromachined energy harvester of the discussed design, which has a die size of 1.0 mm × 2.5 mm inside a watch-size generator.

  13. A design of the u-health monitoring system using a Nintendo DS game machine.

    PubMed

    Lee, Sangjoon; Kim, Jinkwon; Kim, Jungkuk; Lee, Myoungho

    2009-01-01

    In this paper, we used the hand held type a Nintendo DS Game Machine for consisting of a u-Health Monitoring system. This system is consists of four parts. Biosignal acquire device is the first. The Second is a wireless sensor network device. The third is a wireless base-station for connecting internet network. Displaying units are the last part which were a personal computer and a Nintendo DS game machine. The bio-signal measurement device among the four parts the u-health monitoring system can acquire 7-channels data which have 3-channels ECG(Electrocardiogram), 3-axis accelerometer and tilting sensor data. Acquired data connect up the internet network throughout the wireless sensor network and a base-station. In the experiment, we concurrently display the bio-signals on to a monitor of personal computer and LCD of a Nintendo DS using wireless internet protocol and those monitoring devices placed off to the one side an office building. The result of the experiment, this proposed system effectively can transmit patient's biosignal data as a long time and a long distance. This suggestion of the u-health monitoring system need to operate in the ambulance, general hospitals and geriatric institutions as a u-health monitoring device.

  14. A fully integrated wireless system for intracranial direct cortical stimulation, real-time electrocorticography data transmission, and smart cage for wireless battery recharge.

    PubMed

    Piangerelli, Marco; Ciavarro, Marco; Paris, Antonino; Marchetti, Stefano; Cristiani, Paolo; Puttilli, Cosimo; Torres, Napoleon; Benabid, Alim Louis; Romanelli, Pantaleo

    2014-01-01

    Wireless transmission of cortical signals is an essential step to improve the safety of epilepsy procedures requiring seizure focus localization and to provide chronic recording of brain activity for Brain Computer Interface (BCI) applications. Our group developed a fully implantable and externally rechargeable device, able to provide wireless electrocorticographic (ECoG) recording and cortical stimulation (CS). The first prototype of a wireless multi-channel very low power ECoG system was custom-designed to be implanted on non-human primates. The device, named ECOGIW-16E, is housed in a compact hermetically sealed Polyether ether ketone (PEEK) enclosure, allowing seamless battery recharge. ECOGIW-16E is recharged in a wireless fashion using a special cage designed to facilitate the recharge process in monkeys and developed in accordance with guidelines for accommodation of animals by Council of Europe (ETS123). The inductively recharging cage is made up of nylon and provides a thoroughly novel experimental setting on freely moving animals. The combination of wireless cable-free ECoG and external seamless battery recharge solves the problems and shortcomings caused by the presence of cables leaving the skull, providing a safer and easier way to monitor patients and to perform ECoG recording on primates. Data transmission exploits the newly available Medical Implant Communication Service band (MICS): 402-405 MHz. ECOGIW-16E was implanted over the left sensorimotor cortex of a macaca fascicularis to assess the feasibility of wireless ECoG monitoring and brain mapping through CS. With this device, we were able to record the everyday life ECoG signal from a monkey and to deliver focal brain stimulation with movement elicitation.

  15. Continuity of parenting practices across generations in an at-risk sample: a prospective comparison of direct and mediated associations.

    PubMed

    Capaldi, Deborah M; Pears, Katherine C; Patterson, Gerald R; Owen, Lee D

    2003-04-01

    A prospective model of parenting and externalizing behavior spanning 3 generations (G1, G2, and G3) was examined for young men from an at-risk sample of young adult men (G2) who were in approximately the youngest one third of their cohort to become fathers. It was first predicted that the young men in G2 who had children the earliest would show high levels of antisocial behavior. Second, it was predicted that G1 poor parenting practices would show both a direct association with the G2 son's subsequent parenting and a mediated effect via his development of antisocial and delinquent behavior by adolescence. The young fathers had more arrests and were less likely to have graduated from high school than the other young men in the sample. Findings were most consistent with the interpretation that there was some direct effect of parenting from G1 to G2 and some mediated effect via antisocial behavior in G2.

  16. Finding Minimum-Power Broadcast Trees for Wireless Networks

    NASA Technical Reports Server (NTRS)

    Arabshahi, Payman; Gray, Andrew; Das, Arindam; El-Sharkawi, Mohamed; Marks, Robert, II

    2004-01-01

    Some algorithms have been devised for use in a method of constructing tree graphs that represent connections among the nodes of a wireless communication network. These algorithms provide for determining the viability of any given candidate connection tree and for generating an initial set of viable trees that can be used in any of a variety of search algorithms (e.g., a genetic algorithm) to find a tree that enables the network to broadcast from a source node to all other nodes while consuming the minimum amount of total power. The method yields solutions better than those of a prior algorithm known as the broadcast incremental power algorithm, albeit at a slightly greater computational cost.

  17. Likelihood analysis of the pMSSM11 in light of LHC 13-TeV data

    NASA Astrophysics Data System (ADS)

    Bagnaschi, E.; Sakurai, K.; Borsato, M.; Buchmueller, O.; Citron, M.; Costa, J. C.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flächer, H.; Heinemeyer, S.; Lucio, M.; Martínez Santos, D.; Olive, K. A.; Richards, A.; Spanos, V. C.; Suárez Fernández, I.; Weiglein, G.

    2018-03-01

    We use MasterCode to perform a frequentist analysis of the constraints on a phenomenological MSSM model with 11 parameters, the pMSSM11, including constraints from ˜ 36/fb of LHC data at 13 TeV and PICO, XENON1T and PandaX-II searches for dark matter scattering, as well as previous accelerator and astrophysical measurements, presenting fits both with and without the (g-2)_μ constraint. The pMSSM11 is specified by the following parameters: 3 gaugino masses M_{1,2,3}, a common mass for the first-and second-generation squarks m_{\\tilde{q}} and a distinct third-generation squark mass m_{\\tilde{q}_3}, a common mass for the first-and second-generation sleptons m_{\\tilde{ℓ }} and a distinct third-generation slepton mass m_{\\tilde{τ }}, a common trilinear mixing parameter A, the Higgs mixing parameter μ , the pseudoscalar Higgs mass M_A and tan β . In the fit including (g-2)_μ , a Bino-like \\tilde{χ }^01 is preferred, whereas a Higgsino-like \\tilde{χ }^01 is mildly favoured when the (g-2)_μ constraint is dropped. We identify the mechanisms that operate in different regions of the pMSSM11 parameter space to bring the relic density of the lightest neutralino, \\tilde{χ }^01, into the range indicated by cosmological data. In the fit including (g-2)_μ , coannihilations with \\tilde{χ }^02 and the Wino-like \\tilde{χ }^± 1 or with nearly-degenerate first- and second-generation sleptons are active, whereas coannihilations with the \\tilde{χ }^02 and the Higgsino-like \\tilde{χ }^± 1 or with first- and second-generation squarks may be important when the (g-2)_μ constraint is dropped. In the two cases, we present χ ^2 functions in two-dimensional mass planes as well as their one-dimensional profile projections and best-fit spectra. Prospects remain for discovering strongly-interacting sparticles at the LHC, in both the scenarios with and without the (g-2)_μ constraint, as well as for discovering electroweakly-interacting sparticles at a future linear e^+ e^- collider such as the ILC or CLIC.

  18. Portable wireless electrocorticography system with a flexible microelectrodes array for epilepsy treatment.

    PubMed

    Xie, Kejun; Zhang, Shaomin; Dong, Shurong; Li, Shijian; Yu, Chaonan; Xu, Kedi; Chen, Wanke; Guo, Wei; Luo, Jikui; Wu, Zhaohui

    2017-08-10

    In this paper, we present a portable wireless electrocorticography (ECoG) system. It uses a high resolution 32-channel flexible ECoG electrodes array to collect electrical signals of brain activities and to stimulate the lesions. Electronic circuits are designed for signal acquisition, processing and transmission using Bluetooth Low Energy 4 (LTE4) for wireless communication with cell phone. In-vivo experiments on a rat show that the flexible ECoG system can accurately record electrical signals of brain activities and transmit them to cell phone with a maximal sampling rate of 30 ksampling/s per channel. It demonstrates that the epilepsy lesions can be detected, located and treated through the ECoG system. The wireless ECoG system has low energy consumption and high brain spatial resolution, thus has great prospects for future application.

  19. Third-Generation Cephalosporin-Resistant Non-Typhoidal Salmonella Isolated from Human Feces in Japan.

    PubMed

    Saito, Satomi; Koori, Yoshio; Ohsaki, Yusuke; Osaka, Shunsuke; Oana, Kozue; Nagano, Yukiko; Arakawa, Yoshichika; Nagano, Noriyuki

    2017-05-24

    β-lactamase genes were detected and characterized from 10 non-typhoidal Salmonella (NTS) clinical isolates resistant to third-generation cephalosporins collected between 2012 and 2014 in Japan. Five strains showed cefotaxime minimum inhibitory concentration (MIC) ≥ 64 μg/ml and positive clavulanic acid inhibition results. The bla CTX-M-2 was detected in 3 strains (serotypes Stanley and Muenchen), whereas bla TEM-52 (serotype Manhattan) and bla SHV-12 (serotype Infantis) were each found in 1 strain. bla CMY-2 was detected in the remaining 5 strains (serotypes Infantis, Rissen, Newport, and Saintpaul) with cefotaxime MICs of 4-32 μg/ml and positive cloxacillin- and 3-aminophenylboronic acid- based inhibition tests. ISEcp1 was located upstream of the bla CMY-2 in 4 strains and of the bla CTX-M-2 in 1 strain. Incompatibility (Inc)A/C, IncP, and IncI1 plasmids were present in the strains harboring bla CMY-2 , which were detected predominantly in this study. Acquisition of resistance to third-generation cephalosporins by invasive NTS may limit therapeutic options for severe systemic infections and causing serious public health problems. Though such resistant clinical isolates are still rare in Salmonella species in Japan, our findings reveal the presence of cephem-resistant NTS in food handlers, thus emphasizing the necessity of more systematic nationwide investigations.

  20. On the Performance Evaluation of a MIMO-WCDMA Transmission Architecture for Building Management Systems.

    PubMed

    Tsampasis, Eleftherios; Gkonis, Panagiotis K; Trakadas, Panagiotis; Zahariadis, Theodοre

    2018-01-08

    The goal of this study was to investigate the performance of a realistic wireless sensor nodes deployment in order to support modern building management systems (BMSs). A three-floor building orientation is taken into account, where each node is equipped with a multi-antenna system while a central base station (BS) collects and processes all received information. The BS is also equipped with multiple antennas; hence, a multiple input-multiple output (MIMO) system is formulated. Due to the multiple reflections during transmission in the inner of the building, a wideband code division multiple access (WCDMA) physical layer protocol has been considered, which has already been adopted for third-generation (3G) mobile networks. Results are presented for various MIMO orientations, where the mean transmission power per node is considered as an output metric for a specific signal-to-noise ratio (SNR) requirement and number of resolvable multipath components. In the first set of presented results, the effects of multiple access interference on overall transmission power are highlighted. As the number of mobile nodes per floor or the requested transmission rate increases, MIMO systems of a higher order should be deployed in order to maintain transmission power at adequate levels. In the second set of results, a comparison is performed among transmission in diversity combining and spatial multiplexing mode, which clearly indicate that the first case is the most appropriate solution for indoor communications.

  1. Wireless Sensor Network Handles Image Data

    NASA Technical Reports Server (NTRS)

    2008-01-01

    To relay data from remote locations for NASA s Earth sciences research, Goddard Space Flight Center contributed to the development of "microservers" (wireless sensor network nodes), which are now used commercially as a quick and affordable means to capture and distribute geographical information, including rich sets of aerial and street-level imagery. NASA began this work out of a necessity for real-time recovery of remote sensor data. These microservers work much like a wireless office network, relaying information between devices. The key difference, however, is that instead of linking workstations within one office, the interconnected microservers operate miles away from one another. This attribute traces back to the technology s original use: The microservers were originally designed for seismology on remote glaciers and ice streams in Alaska, Greenland, and Antarctica-acquiring, storing, and relaying data wirelessly between ground sensors. The microservers boast three key attributes. First, a researcher in the field can establish a "managed network" of microservers and rapidly see the data streams (recovered wirelessly) on a field computer. This rapid feedback permits the researcher to reconfigure the network for different purposes over the course of a field campaign. Second, through careful power management, the microservers can dwell unsupervised in the field for up to 2 years, collecting tremendous amounts of data at a research location. The third attribute is the exciting potential to deploy a microserver network that works in synchrony with robotic explorers (e.g., providing ground truth validation for satellites, supporting rovers as they traverse the local environment). Managed networks of remote microservers that relay data unsupervised for up to 2 years can drastically reduce the costs of field instrumentation and data rec

  2. Implementation of a compressive sampling scheme for wireless sensors to achieve energy efficiency in a structural health monitoring system

    NASA Astrophysics Data System (ADS)

    O'Connor, Sean M.; Lynch, Jerome P.; Gilbert, Anna C.

    2013-04-01

    Wireless sensors have emerged to offer low-cost sensors with impressive functionality (e.g., data acquisition, computing, and communication) and modular installations. Such advantages enable higher nodal densities than tethered systems resulting in increased spatial resolution of the monitoring system. However, high nodal density comes at a cost as huge amounts of data are generated, weighing heavy on power sources, transmission bandwidth, and data management requirements, often making data compression necessary. The traditional compression paradigm consists of high rate (>Nyquist) uniform sampling and storage of the entire target signal followed by some desired compression scheme prior to transmission. The recently proposed compressed sensing (CS) framework combines the acquisition and compression stage together, thus removing the need for storage and operation of the full target signal prior to transmission. The effectiveness of the CS approach hinges on the presence of a sparse representation of the target signal in a known basis, similarly exploited by several traditional compressive sensing applications today (e.g., imaging, MRI). Field implementations of CS schemes in wireless SHM systems have been challenging due to the lack of commercially available sensing units capable of sampling methods (e.g., random) consistent with the compressed sensing framework, often moving evaluation of CS techniques to simulation and post-processing. The research presented here describes implementation of a CS sampling scheme to the Narada wireless sensing node and the energy efficiencies observed in the deployed sensors. Of interest in this study is the compressibility of acceleration response signals collected from a multi-girder steel-concrete composite bridge. The study shows the benefit of CS in reducing data requirements while ensuring data analysis on compressed data remain accurate.

  3. A Trustworthy Key Generation Prototype Based on DDR3 PUF for Wireless Sensor Networks

    PubMed Central

    Liu, Wenchao; Zhang, Zhenhua; Li, Miaoxin; Liu, Zhenglin

    2014-01-01

    Secret key leakage in wireless sensor networks (WSNs) is a high security risk especially when sensor nodes are deployed in hostile environment and physically accessible to attackers. With nowadays semi/fully-invasive attack techniques attackers can directly derive the cryptographic key from non-volatile memory (NVM) storage. Physically Unclonable Function (PUF) is a promising technology to resist node capture attacks, and it also provides a low cost and tamper-resistant key provisioning solution. In this paper, we designed a PUF based on double-data-rate SDRAM Type 3 (DDR3) memory by exploring its memory decay characteristics. We also described a prototype of 128-bit key generation based on DDR3 PUF with integrated fuzzy extractor. Due to the wide adoption of DDR3 memory in WSN, our proposed DDR3 PUF technology with high security levels and no required hardware changes is suitable for a wide range of WSN applications. PMID:24984058

  4. Communications interface for wireless communications headset

    NASA Technical Reports Server (NTRS)

    Culotta, Jr., Anthony Joseph (Inventor); Seibert, Marc A. (Inventor)

    2004-01-01

    A universal interface adapter circuit interfaces, for example, a wireless communications headset with any type of communications system, including those that require push-to-talk (PTT) signaling. The interface adapter is comprised of several main components, including an RF signaling receiver, a microcontroller and associated circuitry for decoding and processing the received signals, and programmable impedance matching and line interfacing circuitry for interfacing a wireless communications headset system base to a communications system. A signaling transmitter, which is preferably portable (e.g., handheld), is employed by the wireless headset user to send signals to the signaling receiver. In an embodiment of the invention directed specifically to push-to-talk (PTT) signaling, the wireless headset user presses a button on the signaling transmitter when they wish to speak. This sends a signal to the microcontroller which decodes the signal and recognizes the signal as being a PTT request. In response, the microcontroller generates a control signal that closes a switch to complete a voice connection between the headset system base and the communications system so that the user can communicate with the communications system. With this arrangement, the wireless headset can be interfaced to any communications system that requires PTT signaling, without modification of the headset device. In addition, the interface adapter can also be configured to respond to or deliver any other types of signals, such as dual-tone-multiple-frequency (DTMF) tones, and on/off hook signals. The present invention is also scalable, and permits multiple wireless users to operate independently in the same environment through use of a plurality of the interface adapters.

  5. Smart acoustic emission system for wireless monitoring of concrete structures

    NASA Astrophysics Data System (ADS)

    Yoon, Dong-Jin; Kim, Young-Gil; Kim, Chi-Yeop; Seo, Dae-Cheol

    2008-03-01

    Acoustic emission (AE) has emerged as a powerful nondestructive tool to detect preexisting defects or to characterize failure mechanisms. Recently, this technique or this kind of principle, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures. Concrete is one of the most widely used materials for constructing civil structures. In the nondestructive evaluation point of view, a lot of AE signals are generated in concrete structures under loading whether the crack development is active or not. Also, it was required to find a symptom of damage propagation before catastrophic failure through a continuous monitoring. Therefore we have done a practical study in this work to fabricate compact wireless AE sensor and to develop diagnosis system. First, this study aims to identify the differences of AE event patterns caused by both real damage sources and the other normal sources. Secondly, it was focused to develop acoustic emission diagnosis system for assessing the deterioration of concrete structures such as a bridge, dame, building slab, tunnel etc. Thirdly, the wireless acoustic emission system was developed for the application of monitoring concrete structures. From the previous laboratory study such as AE event patterns analysis under various loading conditions, we confirmed that AE analysis provided a promising approach for estimating the condition of damage and distress in concrete structures. In this work, the algorithm for determining the damage status of concrete structures was developed and typical criteria for decision making was also suggested. For the future application of wireless monitoring, a low energy consumable, compact, and robust wireless acoustic emission sensor module was developed and applied to the concrete beam for performance test. Finally, based on the self-developed diagnosis algorithm and compact wireless AE sensor, new AE system for practical AE diagnosis was demonstrated for assessing the conditions of damage and distress in concrete structures.

  6. Ultrasonic wireless health monitoring

    NASA Astrophysics Data System (ADS)

    Petit, Lionel; Lefeuvre, Elie; Guyomar, Daniel; Richard, Claude; Guy, Philippe; Yuse, Kaori; Monnier, Thomas

    2006-03-01

    The integration of autonomous wireless elements in health monitoring network increases the reliability by suppressing power supplies and data transmission wiring. Micro-power piezoelectric generators are an attractive alternative to primary batteries which are limited by a finite amount of energy, a limited capacity retention and a short shelf life (few years). Our goal is to implement such an energy harvesting system for powering a single AWT (Autonomous Wireless Transmitter) using our SSH (Synchronized Switch Harvesting) method. Based on a non linear process of the piezoelement voltage, this SSH method optimizes the energy extraction from the mechanical vibrations. This AWT has two main functions : The generation of an identifier code by RF transmission to the central receiver and the Lamb wave generation for the health monitoring of the host structure. A damage index is derived from the variation between the transmitted wave spectrum and a reference spectrum. The same piezoelements are used for the energy harvesting function and the Lamb wave generation, thus reducing mass and cost. A micro-controller drives the energy balance and synchronizes the functions. Such an autonomous transmitter has been evaluated on a 300x50x2 mm 3 composite cantilever beam. Four 33x11x0.3 mm 3 piezoelements are used for the energy harvesting and for the wave lamb generation. A piezoelectric sensor is placed at the free end of the beam to track the transmitted Lamb wave. In this configuration, the needed energy for the RF emission is 0.1 mJ for a 1 byte-information and the Lamb wave emission requires less than 0.1mJ. The AWT can harvested an energy quantity of approximately 20 mJ (for a 1.5 Mpa lateral stress) with a 470 μF storage capacitor. This corresponds to a power density near to 6mW/cm 3. The experimental AWT energy abilities are presented and the damage detection process is discussed. Finally, some envisaged solutions are introduced for the implementation of the required data processing into an autonomous wireless receiver, in terms of reduction of the energy and memory costs.

  7. Development of a HTS transceiver sub-system for 3G mobile communication TD-SCDMA base station

    NASA Astrophysics Data System (ADS)

    Zhang, Xueqiang; He, Xiaofeng; Wang, Yuehui; Duan, Tao; Wang, Guizhen; Zhang, Yan; Li, Chunguang; Zhang, Qiang; Li, Hong; He, Yusheng

    2010-02-01

    A prototype of a high temperature superconducting (HTS) transceiver sub-system for applications in a TD-SCDMA, one of the third generation (3G) communication standards, base station has been developed. Both the HTS sub-system and the conventional counterpart have been implemented into a TD-SCDMA commercial communication network and comparison test studies were carried out. The measured results showed that the HTS sub-system could remarkably improve the RF performance of both transmitting and receiving chains.

  8. Development and Performance Analysis of a Photonics-Assisted RF Converter for 5G Applications

    NASA Astrophysics Data System (ADS)

    Borges, Ramon Maia; Muniz, André Luiz Marques; Sodré Junior, Arismar Cerqueira

    2017-03-01

    This article presents a simple, ultra-wideband and tunable radiofrequency (RF) converter for 5G cellular networks. The proposed optoelectronic device performs broadband photonics-assisted upconversion and downconversion using a single optical modulator. Experimental results demonstrate RF conversion from DC to millimeter waves, including 28 and 38 GHz that are potential frequency bands for 5G applications. Narrow linewidth and low phase noise characteristics are observed in all generated RF carriers. An experimental digital performance analysis using different modulation schemes illustrates the applicability of the proposed photonics-based device in reconfigurable optical wireless communications.

  9. Distributed Network, Wireless and Cloud Computing Enabled 3-D Ultrasound; a New Medical Technology Paradigm

    PubMed Central

    Meir, Arie; Rubinsky, Boris

    2009-01-01

    Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people. PMID:19936236

  10. Distributed network, wireless and cloud computing enabled 3-D ultrasound; a new medical technology paradigm.

    PubMed

    Meir, Arie; Rubinsky, Boris

    2009-11-19

    Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people.

  11. Interference by new-generation mobile phones on critical care medical equipment.

    PubMed

    van Lieshout, Erik Jan; van der Veer, Sabine N; Hensbroek, Reinout; Korevaar, Johanna C; Vroom, Margreeth B; Schultz, Marcus J

    2007-01-01

    The aim of the study was to assess and classify incidents of electromagnetic interference (EMI) by second-generation and third-generation mobile phones on critical care medical equipment. EMI was assessed with two General Packet Radio Service (GPRS) signals (900 MHz, 2 W, two different time-slot occupations) and one Universal Mobile Telecommunications System (UMTS) signal (1,947.2 MHz, 0.2 W), corresponding to maximal transmit performance of mobile phones in daily practice, generated under controlled conditions in the proximity of 61 medical devices. Incidents of EMI were classified in accordance with an adjusted critical care event scale. A total of 61 medical devices in 17 categories (27 different manufacturers) were tested and demonstrated 48 incidents in 26 devices (43%); 16 (33%) were classified as hazardous, 20 (42%) as significant and 12 (25%) as light. The GPRS-1 signal induced the most EMI incidents (41%), the GRPS-2 signal induced fewer (25%) and the UMTS signal induced the least (13%; P < 0.001). The median distance between antenna and medical device for EMI incidents was 3 cm (range 0.1 to 500 cm). One hazardous incident occurred beyond 100 cm (in a ventilator with GRPS-1 signal at 300 cm). Critical care equipment is vulnerable to EMI by new-generation wireless telecommunication technologies with median distances of about 3 cm. The policy to keep mobile phones '1 meter' from the critical care bedside in combination with easily accessed areas of unrestricted use still seems warranted.

  12. Interference by new-generation mobile phones on critical care medical equipment

    PubMed Central

    van Lieshout, Erik Jan; van der Veer, Sabine N; Hensbroek, Reinout; Korevaar, Johanna C; Vroom, Margreeth B; Schultz, Marcus J

    2007-01-01

    Introduction The aim of the study was to assess and classify incidents of electromagnetic interference (EMI) by second-generation and third-generation mobile phones on critical care medical equipment. Methods EMI was assessed with two General Packet Radio Service (GPRS) signals (900 MHz, 2 W, two different time-slot occupations) and one Universal Mobile Telecommunications System (UMTS) signal (1,947.2 MHz, 0.2 W), corresponding to maximal transmit performance of mobile phones in daily practice, generated under controlled conditions in the proximity of 61 medical devices. Incidents of EMI were classified in accordance with an adjusted critical care event scale. Results A total of 61 medical devices in 17 categories (27 different manufacturers) were tested and demonstrated 48 incidents in 26 devices (43%); 16 (33%) were classified as hazardous, 20 (42%) as significant and 12 (25%) as light. The GPRS-1 signal induced the most EMI incidents (41%), the GRPS-2 signal induced fewer (25%) and the UMTS signal induced the least (13%; P < 0.001). The median distance between antenna and medical device for EMI incidents was 3 cm (range 0.1 to 500 cm). One hazardous incident occurred beyond 100 cm (in a ventilator with GRPS-1 signal at 300 cm). Conclusion Critical care equipment is vulnerable to EMI by new-generation wireless telecommunication technologies with median distances of about 3 cm. The policy to keep mobile phones '1 meter' from the critical care bedside in combination with easily accessed areas of unrestricted use still seems warranted. PMID:17822524

  13. Biomedical Wireless Ambulatory Crew Monitor

    NASA Technical Reports Server (NTRS)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  14. 40 Gb/s W-band (75-110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission.

    PubMed

    Kanno, Atsushi; Inagaki, Keizo; Morohashi, Isao; Sakamoto, Takahide; Kuri, Toshiaki; Hosako, Iwao; Kawanishi, Tetsuya; Yoshida, Yuki; Kitayama, Ken-ichi

    2011-12-12

    The generation of a 40-Gb/s 16-QAM radio-over-fiber (RoF) signal and its demodulation of the wireless signal transmitted over free space of 30 mm in W-band (75-110 GHz) is demonstrated. The 16-QAM signal is generated by a coherent polarization synthesis method using a dual-polarization QPSK modulator. A combination of the simple RoF generation and the versatile digital receiver technique is suitable for the proposed coherent optical/wireless seamless network. © 2011 Optical Society of America

  15. Optical third harmonic generation in the magnetic semiconductor EuSe

    NASA Astrophysics Data System (ADS)

    Lafrentz, M.; Brunne, D.; Kaminski, B.; Pavlov, V. V.; Pisarev, R. V.; Henriques, A. B.; Yakovlev, D. R.; Springholz, G.; Bauer, G.; Bayer, M.

    2012-01-01

    Third harmonic generation (THG) has been studied in europium selenide EuSe in the vicinity of the band gap at 2.1-2.6 eV and at higher energies up to 3.7 eV. EuSe is a magnetic semiconductor crystalizing in centrosymmetric structure of rock-salt type with the point group m3m. For this symmetry the crystallographic and magnetic-field-induced THG nonlinearities are allowed in the electric-dipole approximation. Using temperature, magnetic field, and rotational anisotropy measurements, the crystallographic and magnetic-field-induced contributions to THG were unambiguously separated. Strong resonant magnetic-field-induced THG signals were measured at energies in the range of 2.1-2.6 eV and 3.1-3.6 eV for which we assign to transitions from 4f7 to 4f65d1 bands, namely involving 5d(t2g) and 5d(eg) states.

  16. Coexistence issues for a 2.4 GHz wireless audio streaming in presence of bluetooth paging and WLAN

    NASA Astrophysics Data System (ADS)

    Pfeiffer, F.; Rashwan, M.; Biebl, E.; Napholz, B.

    2015-11-01

    Nowadays, customers expect to integrate their mobile electronic devices (smartphones and laptops) in a vehicle to form a wireless network. Typically, IEEE 802.11 is used to provide a high-speed wireless local area network (WLAN) and Bluetooth is used for cable replacement applications in a wireless personal area network (PAN). In addition, Daimler uses KLEER as third wireless technology in the unlicensed (UL) 2.4 GHz-ISM-band to transmit full CD-quality digital audio. As Bluetooth, IEEE 802.11 and KLEER are operating in the same frequency band, it has to be ensured that all three technologies can be used simultaneously without interference. In this paper, we focus on the impact of Bluetooth and IEEE 802.11 as interferer in presence of a KLEER audio transmission.

  17. High-gain dipole antenna using polydimethylsiloxane-glass microsphere (PDMS-GM) substrate for 5G applications

    NASA Astrophysics Data System (ADS)

    Muhamad, Wan Asilah Wan; Ngah, Razali; Jamlos, Mohd Faizal; Soh, Ping Jack; Ali, Mohd Tarmizi

    2017-01-01

    A new dipole antenna designed using polydimethylsiloxane-glass microsphere (PDMS-GM) substrate is presented. The PDMS-GM substrate offered a lower permittivity of 1.85 compared to pure PDMS of 2.7. This resulted in a wide operating frequency range from 19 GHz up to more than 45 GHz, indicating a bandwidth of more than 28 GHz. The proposed PDMS-GM antenna featured a gain of up to 13.3 dB compared to pure PDMS which only produced 13 GHz of bandwidth and 5.5 dB gain. Instead of wide bandwidth and high gain, the proposed antenna is capable of becoming water resistant by covering its radiator and SMA connector. Such capabilities of the new PDMS-GM antenna indicated suitability for the fifth-generation (5G) wireless communication systems.

  18. Prototype Software for Future Spaceflight Tested at Mars Desert Research Station

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Sierhuis, Maaretn; Alena, Rick; Dowding, John; Garry, Brent; Scott, Mike; Tompkins, Paul; vanHoof, Ron; Verma, Vandi

    2006-01-01

    NASA scientists in MDRS Crew 49 (April 23-May 7, 2006) field tested and significantly extended a prototype monitoring and advising system that integrates power system telemetry with a voice commanding interface. A distributed, wireless network of functionally specialized agents interacted with the crew to provide alerts (e.g., impending shut-down of inverter due to low battery voltage), access md interpret historical data, and display troubleshooting procedures. In practical application during two weeks, the system generated speech over loudspeakers and headsets lo alert the crew about the need to investigate power system problems. The prototype system adapts the Brahms/Mobile Agents toolkit to receive data from the OneMeter (Brand Electronics) electric metering system deployed by Crew 47. A computer on the upper deck was connected to loudspeakers, four others were paired with wireless (Bluetooth) headsets that enabled crew members to interact with their personal agents from anywhere in the hab. Voice commands and inquiries included: 1. What is the {battery | generator} {volts | amps | volts and amps}? 2. What is the status of the {generator | inverter | battery | solar panel}? 3. What is the hab{itat} {power usage | volts | voltage | amps | volts and amps}? 4. What was the average hab{itat} {amps | volts | voltage} since <#> {AM | PM)? 5. When did the {generator | batteries} change status? 6. Tell {me I | everyone} when{ ever} the generator goes offline. 7. Tell {me | | everyone} when the hab{itat} {amps | volts | voltage} {exceeds | drops brelow} <#>. 8. {Send | Take | Record} {a} voice note {(for | to} } {at

  19. Adaptive Antenna System for Both 4G LTE and 5G Cellular Systems

    NASA Astrophysics Data System (ADS)

    Henderson, Kendrick Q. T.

    Given the steep increase in the use of mobile communication systems, the current 4G/LTE (Long Term Evolution), cellular system will not be able to handle the increase in data. It is estimated that by 2020 the bandwidth requirements will be 10 times greater than what LTE can sustain. A new 5th generation (5G) communication system has been proposed to meet this demand. The physical layer or the antenna is the most critical part of any wireless communication systems as it is the interface between the free space medium and an electrical circuit. It sets the margin for almost all design parameters in the system such as the system noise and bandwidth. Several interactions of antennas have been proposed over the years for cellular services. These antennas are of various geometries, bandwidths, and radiation patterns with almost all having linear polarization. This thesis attempts to solve the multiple LTE antenna problem by creating a simple antenna that covers most of the LTE bands (850-2700 MHz) as well as introducing an antenna system at the 28 GHz 5G band. This allows for a greater educated hypothesis into what 5G can offer at the physical layer. The proposed concept will provide a solution to the co-existence problem of upcoming 5G wireless systems to be interoperable with existing 4G/LTE system.

  20. Adapting Future Wireless Technologies

    DTIC Science & Technology

    2002-01-01

    commercial satellite based systems remains to be proven. Even some of the more commercially successful satellite system (e.g.; the DirecTV direct...Space Data are all looking for private funds without much success . Once funded, estimated time frame for deploying first systems is minimum 3 to 4...of today. It is critical to the mission success that the terrestrial domain of the Army’s C4ISR is based on mobile, ad-hoc, self-healing wireless

  1. Forecasting the Appearance and Evolution of Ionospheric Irregularities and Structures: Their Effects on AF Systems

    DTIC Science & Technology

    2015-08-21

    building (right) hosting the electronic unit, USB power sully and the wireless network . Figure 48. Ionosonde Field Site at Maseno, Kenya Figure 49... wireless 3G network . Continuous access to the system requires regular purchasing of data bundles. Web data repository Boston College has also...support of ionospheric instruments that have been deployed around the world in support of the SCINDA and LISN Networks . 15. SUBJECT TERMS Total

  2. 77 FR 65596 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... to offer remote multi-cast ITCH Wave Ports for clients co-located at other third party data centers... delivery of third party market data to market center clients via a wireless network using millimeter wave... Multi- cast ITCH Wave Ports for clients co-located at other third-party data centers, through which...

  3. Discovery of 2,4-diarylaminopyrimidines bearing a resorcinol motif as novel ALK inhibitors to overcome the G1202R resistant mutation.

    PubMed

    Geng, Kaijun; Xia, Zongjun; Ji, Yinchun; Zhang, Ruisi Ruthy; Sun, Deqiao; Ai, Jing; Song, Zilan; Geng, Meiyu; Zhang, Ao

    2018-01-20

    To address drug resistance caused by ALK kinase mutations, especially the most refractory and predominant mutation G1202R for the second-generation ALK inhibitor, a series of new diarylaminopyrimidine analogues were designed by incorporating a resorcinol moiety (A-ring) to interact the ALK kinase domain where the G1202R is located. Compound 12d turns out as the most potent with IC 50 values of 1.7, 3.5, and 1.8 nM against ALK wild type, gatekeeper mutant L1196M, and the G1202R mutant, respectively. More importantly, compound 12d has excellent inhibitory effects against the proliferation of BaF3 cells specifically expressing ALK wild type, gatekeeper L1196M, and the most challenging mutant G1202R, with IC 50 values all less than 1.5 nM. Collectively, compound 12d is worthy of further investigation as a new more potent third-generation ALK inhibitor to circumvent drug resistance of both the first-generation and the second-generation inhibitors. Copyright © 2017. Published by Elsevier Masson SAS.

  4. Modular high-voltage bias generator powered by dual-looped self-adaptive wireless power transmission.

    PubMed

    Xie, Kai; Huang, An-Feng; Li, Xiao-Ping; Guo, Shi-Zhong; Zhang, Han-Lu

    2015-04-01

    We proposed a modular high-voltage (HV) bias generator powered by a novel transmitter-sharing inductive coupled wireless power transmission technology, aimed to extend the generator's flexibility and configurability. To solve the problems caused through an uncertain number of modules, a dual-looped self-adaptive control method is proposed that is capable of tracking resonance frequency while maintaining a relatively stable induction voltage for each HV module. The method combines a phase-locked loop and a current feedback loop, which ensures an accurate resonance state and a relatively constant boost ratio for each module, simplifying the architecture of the boost stage and improving the total efficiency. The prototype was built and tested. The input voltage drop of each module is less than 14% if the module number varies from 3 to 10; resonance tracking is completed within 60 ms. The efficiency of the coupling structure reaches up to 95%, whereas the total efficiency approaches 73% for a rated output. Furthermore, this technology can be used in various multi-load wireless power supply applications.

  5. Research of the Heart Information Monitoring Robert Based on the 3G Wireless Communication Platform

    NASA Astrophysics Data System (ADS)

    Zhang, Fuli; Yang, Huazhe; Li, Gensong; Hong, Yang; Hu, Qingzhe

    Electrocardiogram (ECG) of a person can be recorded and the diagnostic results can be displayed through touching the heart information monitoring Robert. In addition, the heart rate, phonocardiogram (PCG) and the dynamic three-dimensional echocardiography can also be displayed synchronously. Then the difficult ECG can be transmitted to the service center through 3G wireless communication center, followed by diagnosing the ECG by doctors and transmitting the feedback diagnostic results. I-lead ECG of the person can be recorded by the amplification circuit with high gain and low noise. Then, the heart rate and output phonocardiogram are displayed and the model of heart beat are started to trace through the recognition of R wave. Finally, the difficult ECG is transmitted to the service center via 3G communication chips. The displayed ECG is clear, and the stimulated heart beat is synchronous with that of the person. Furthermore, ECG received by the service center is in accordance with the one recorded by the Robert.

  6. Terahertz wireless communication based on InP-related devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Eui Su; Kim, Hyun-Soo; Park, Jeong-Woo; Park, Dong Woo; Park, Kyung Hyun

    2017-02-01

    Recently, a wide interest has been gathered in using terahertz (THz) waves as the carrier waves for the next generation of broadband wireless communications. Upon this objective, the photonics technologies are very attractive for their usefulness in signal generations, modulations and detections with enhanced bandwidth and data rates, and the readiness in combining to the existing fiber-optic or wireless networks. In this paper, as a preliminary step toward the THz wireless communications, a THz wireless interconnection system with a broadband antenna-integrated uni-traveling-carrier photodiode (UTC-PD) and a Shottky-barrier diode (SBD) module will be presented. In our system, optical beating signals are generated and digitally modulated by the optical intensity modulator driven by a pulse pattern generator (PPG). As the receiver a SBD and an IF filter followed by a low-noise preamplifier and a limiting amplifier was used. With a 6-mA photocurrent of the UTC-PD which corresponds to the transmitter output power of about 30 μW at 280 GHz, an error-free (BER<10-9) transmission has been achieved at 2.5 Gbit/s which is limited by a limiting amplifier. With this system, a 1.485-Gbit/s video signal with a high-definition serial digital interface format was successfully transmitted over a wireless link.

  7. A 30 Gb/s full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band.

    PubMed

    Tang, Chanjuan; Yu, Jianjun; Li, Xinying; Chi, Nan; Xiao, Jiangnan; Tian, Yumin; Zhang, Junwen

    2014-01-13

    We propose and experimentally demonstrate a full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band (75-100 GHz) with the speed up to 15 Gb/s for both 95.4 GHz link and 88.6 GHz link for the first time. The generation of millimeter-wave (mm-wave) wireless signal is based on the photonic technique by heterodyne mixing of an optical quadrature-phase-shift-keying (QPSK) signal with a free-running light at different wavelength. After 20 km fiber transmission, up to 30 Gb/s mm-wave signal is delivered over 2 m wireless link, and then converted to the optical signal for another 20 km fiber transmission. At the wireless receiver, coherent detection and advanced digital signal processing (DSP) are introduced to improve receiver sensitivity and system performance. With the OSNR of 15 dB, the bit error ratios (BERs) for 10 Gb/s signal transmission at 95.4 GHz and 88.6 GHz are below the forward-error-correction (FEC) threshold of 3.8 × 10(-3) whether post filter is used or not, while the BER for 15 Gb/s QPSK signal employing post filter in the link of 95.4 GHz is 2.9 × 10(-3).

  8. Entanglement routers via a wireless quantum network based on arbitrary two qubit systems

    NASA Astrophysics Data System (ADS)

    Metwally, N.

    2014-12-01

    A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol.

  9. Evaluation of quadrature-phase-shift-keying signal characteristics in W-band radio-over-fiber transmission using direct in-phase/quadrature-phase conversion technique

    NASA Astrophysics Data System (ADS)

    Suzuki, Meisaku; Kanno, Atsushi; Yamamoto, Naokatsu; Sotobayashi, Hideyuki

    2016-02-01

    The effects of in-phase/quadrature-phase (IQ) imbalances are evaluated with a direct IQ down-converter in the W-band (75-110 GHz). The IQ imbalance of the converter is measured within a range of +/-10 degrees in an intermediate frequency of DC-26.5 GHz. 1-8-G-baud quadrature phase-shift keying (QPSK) signals are transmitted successfully with observed bit error rates within a forward error correction limit of 2×10-3 using radio over fiber (RoF) techniques. The direct down-conversion technique is applicable to next-generation high-speed wireless access communication systems in the millimeter-wave band.

  10. Mobility management techniques for the next-generation wireless networks

    NASA Astrophysics Data System (ADS)

    Sun, Junzhao; Howie, Douglas P.; Sauvola, Jaakko J.

    2001-10-01

    The tremendous demands from social market are pushing the booming development of mobile communications faster than ever before, leading to plenty of new advanced techniques emerging. With the converging of mobile and wireless communications with Internet services, the boundary between mobile personal telecommunications and wireless computer networks is disappearing. Wireless networks of the next generation need the support of all the advances on new architectures, standards, and protocols. Mobility management is an important issue in the area of mobile communications, which can be best solved at the network layer. One of the key features of the next generation wireless networks is all-IP infrastructure. This paper discusses the mobility management schemes for the next generation mobile networks through extending IP's functions with mobility support. A global hierarchical framework model for the mobility management of wireless networks is presented, in which the mobility management is divided into two complementary tasks: macro mobility and micro mobility. As the macro mobility solution, a basic principle of Mobile IP is introduced, together with the optimal schemes and the advances in IPv6. The disadvantages of the Mobile IP on solving the micro mobility problem are analyzed, on the basis of which three main proposals are discussed as the micro mobility solutions for mobile communications, including Hierarchical Mobile IP (HMIP), Cellular IP, and Handoff-Aware Wireless Access Internet Infrastructure (HAWAII). A unified model is also described in which the different micro mobility solutions can coexist simultaneously in mobile networks.

  11. Latency-Efficient Communication in Wireless Mesh Networks under Consideration of Large Interference Range

    NASA Astrophysics Data System (ADS)

    Xin, Qin; Yao, Xiaolan; Engelstad, Paal E.

    2010-09-01

    Wireless Mesh Networking is an emerging communication paradigm to enable resilient, cost-efficient and reliable services for the future-generation wireless networks. We study here the minimum-latency communication primitive of gossiping (all-to-all communication) in multi-hop ad-hoc Wireless Mesh Networks (WMNs). Each mesh node in the WMN is initially given a message and the objective is to design a minimum-latency schedule such that each mesh node distributes its message to all other mesh nodes. Minimum-latency gossiping problem is well known to be NP-hard even for the scenario in which the topology of the WMN is known to all mesh nodes in advance. In this paper, we propose a new latency-efficient approximation scheme that can accomplish gossiping task in polynomial time units in any ad-hoc WMN under consideration of Large Interference Range (LIR), e.g., the interference range is much larger than the transmission range. To the best of our knowledge, it is first time to investigate such a scenario in ad-hoc WMNs under LIR, our algorithm allows the labels (e.g., identifiers) of the mesh nodes to be polynomially large in terms of the size of the WMN, which is the first time that the scenario of large labels has been considered in ad-hoc WMNs under LIR. Furthermore, our gossiping scheme can be considered as a framework which can be easily implied to the scenario under consideration of mobility-related issues since we assume that the mesh nodes have no knowledge on the network topology even for its neighboring mesh nodes.

  12. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remotemore » power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.« less

  13. Large PAMAM Dendron Induces Formation of Unusual P4332 Mesophase in Monoolein/Water system.

    PubMed

    Kumar, Manoj; Patil, Naganath G; Ambade, Ashootosh V; Kumaraswamy, Guruswamy

    2018-05-18

    Compact macromolecular dendrons have been shown to induce the formation of discontinuous inverse micellar assemblies with Fd3m symmetry in monoolein/water systems. Here, we demonstrate that a large PAMAM dendron (G5: fifth generation) induces the formation a very unusual mesophase with P4332 symmetry. This mesophase had previously been observed in monoolein/water systems only on addition of cytochrome C. The P4332 mesophase can be considered an intermediate phase between the bicontinuous Ia3d and discontinuous micellar mesophases. In this unusual phase, every third rod junction of the Ia3d mesophase is replaced with a spherical micelle. We present a detailed investigation of the phase behaviour of monoolein/water as a function of G5 concentration and temperature. Addition of 1% G5 in 85/15 monoolein/water system induces a transition from the L to Ia3d phase. Further increase in G5 concentration to above 2% induces the formation of the P4332 phase. Thus, incorporation of G5 yields a qualitatively different phase diagram when compared with incorporation of lower generation PAMAM dendrons (G2 - G4) in monoolein/water, where the reverse micellar Fd3m phase forms. PAMAM dendrons of all generations, G2 - G5, bear terminal amine groups that interact with the monoolein head group. The compact molecular architecture of the dendrons and these attractive interactions induce bending of the monoolein bilayer structure. For smaller dendrons, G2 - G4, this results in the formation of the Fd3m phase. However, the large size of the G5 dendron precludes this and a rare intermediate phase between the Ia3d and discontinuous micellar phase, the P4332 mesophase forms instead.

  14. Wireless Power Control for Tactical MANET: Power Rate Bounds

    DTIC Science & Technology

    2016-09-01

    signals and by their inherent interference.” Figure 1. Transmission and interference in a two-link wireless network. Wireless power control seeks to...e.g., shutting off transmissions to measure the interference is impractical.) In a wireless power control system, the receiver sets its transmitter’s...Travassos Ro- mano [2013] Transmission Power Control for Opportunistic QoS Provision in Wireless Networks, IEEE Transactions on Control Systems Technology

  15. Thermodynamic characterization of Ni3TeO6, Ni2Te3O8 and NiTe2O5

    NASA Astrophysics Data System (ADS)

    Dawar, Rimpi; Babu, R.; Ananthasivan, K.; Anthonysamy, S.

    2017-09-01

    Measurement of vapour pressure of TeO2(g) over the biphasic mixture Ni3TeO6 (s) + NiO(s) in the temperature range 1143-1272 K was carried out using transpiration-thermogravimetric technique (TTG). Gibbs energy of formation of Ni3TeO6 was obtained from the temperature dependence of vapour pressure of TeO2 (g) generated by the incongruent vapourisation reaction, Ni3TeO6 (s) → NiO(s) + TeO2 (g) + 1/2 O2 in the temperature range 1143-1272 K. An isoperibol type drop calorimeter was used to measure the enthalpy increments of Ni3TeO6, Ni2Te3O8 and NiTe2O5. Thermodynamic functions viz., heat capacity, entropy and Gibbs energy functions of these compounds were derived from the experimentally measured enthalpy increment values. Third-law analysis was carried out to ascertain absence of temperature dependent systematic errors in the measurement of vapour pressure of TeO2 (g). A value of -1265.1 ± 1.5 kJ mol-1 was obtained for Δ Hf,298K o (Ni3TeO6) using third-law analysis.

  16. Research on a power management system for thermoelectric generators to drive wireless sensors on a spindle unit.

    PubMed

    Li, Sheng; Yao, Xinhua; Fu, Jianzhong

    2014-07-16

    Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical systems. Typically, the waste heat from spindle units in machine tools creates potential for thermoelectric generation. However, the problem of low and fluctuant ambient temperature differences in spindle units limits the application of thermoelectric generation to drive a wireless sensor. This study is devoted to presenting a transformer-based power management system and its associated control strategy to make the wireless sensor work stably at different speeds of the spindle. The charging/discharging time of capacitors is optimized through this energy-harvesting strategy. A rotating spindle platform is set up to test the performance of the power management system at different speeds. The experimental results show that a longer sampling cycle time will increase the stability of the wireless sensor. The experiments also prove that utilizing the optimal time can make the power management system work more effectively compared with other systems using the same sample cycle.

  17. Research on a Power Management System for Thermoelectric Generators to Drive Wireless Sensors on a Spindle Unit

    PubMed Central

    Li, Sheng; Yao, Xinhua; Fu, Jianzhong

    2014-01-01

    Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical systems. Typically, the waste heat from spindle units in machine tools creates potential for thermoelectric generation. However, the problem of low and fluctuant ambient temperature differences in spindle units limits the application of thermoelectric generation to drive a wireless sensor. This study is devoted to presenting a transformer-based power management system and its associated control strategy to make the wireless sensor work stably at different speeds of the spindle. The charging/discharging time of capacitors is optimized through this energy-harvesting strategy. A rotating spindle platform is set up to test the performance of the power management system at different speeds. The experimental results show that a longer sampling cycle time will increase the stability of the wireless sensor. The experiments also prove that utilizing the optimal time can make the power management system work more effectively compared with other systems using the same sample cycle. PMID:25033189

  18. Transparent graphene microstrip filters for wireless communications

    NASA Astrophysics Data System (ADS)

    Wang, Jinchen; Guan, Yifei; Yu, Hua; Li, Na; Wang, Shuopei; Shen, Cheng; Dai, Zhijiang; Gan, Decheng; Yang, Rong; He, Songbai; Zhang, Guangyu

    2017-08-01

    A microstrip is an indispensable component for wireless communication circuits. With the development of 5G technology, optically transparent microstrip filters urgently need to be developed. In this work, we have theoretically and experimentally demonstrated the immense potential of graphene microstrips for transparent wireless communication circuits in the 5G era. Both wideband and dual-band transparent graphene microstrip filters have shown more than 80% optical transmissivity in the region from 250 nm to 2000 nm with good frequency responses. S and C band microwave signals can transmit along the graphene microstrip lines effectively while coupling excitations produce relatively large insertion losses. Our results show that transparent microstrips designed with high-quality graphene will largely scale down the size of the wireless devices and thus play an irreplaceable role in the 5G era.

  19. Data Quality Software for the South Pole Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotter, Cory; Besnon, Brad; Anderson, Adam

    2017-01-01

    The South Pole Telescope (SPT) observes the cosmic microwave background in order to answer questions such as how old is the universe, what is the universe made of, and how has the universe evolved. The telescope is in its third generation of upgrades (SPT-3G), but much work has yet to be done to reach full operating capabilities. When fully deployed, it will increase the mapping speed by a factor of 20 over the previous receiver and increase sensitivity significantly. SPT-3G is observing for four years from 2016 to 2019.

  20. Enhanced Precision Geolocation in 4G Wireless Networks

    DTIC Science & Technology

    2013-03-01

    years has implemented a National Emergency Warning System using text messages delivered to cell phones [5]. The November 1999 FCC E911 regulations...statistical theory of passive geolocation of emitters may be found in [18]. Papers that survey methods of geolocation applied to cell phones include [4...where to put the tower % n: which tower to place %randomTowers(obj,dispersion, seperation ): generates % random towers for the network % obj: the network

  1. Architectural Considerations of Fiber-Radio Millimeter-Wave Wireless Access Systems

    NASA Astrophysics Data System (ADS)

    Kitayama, Ken-Ichi

    The architecture of fiber-radio mm-wave wireless access systems critically depends upon the optical mm-wave generation and transport techniques. Four optical mm-wave generation and transport techniques: 1) optical self-heterodyning, 2) external modulation, 3) up- and downconversion, and 4) optical transceiver, will be assessed. From the technical viewpoints, their advantages and disadvantages are discussed. The economical assessment, focusing on the cost of a base station BS ( ), will suggest that the optical transceiver looks the most promising in the long run, but in the near future, however, the external modulation will be cost-effective. The experimental results of 60 GHz testbeds using the external modulation will support the conclusion.

  2. A low complexity wireless microbial fuel cell monitor using piezoresistive sensors and impulse-radio ultra-wide-band

    NASA Astrophysics Data System (ADS)

    Crepaldi, M.; Chiolerio, A.; Tommasi, T.; Hidalgo, D.; Canavese, G.; Stassi, S.; Demarchi, D.; Pirri, F. C.

    2013-05-01

    Microbial Fuel Cells (MFCs) are energy sources which generate electrical charge thanks to bacteria metabolism. Although functionally similar to chemical fuel cells (both including reactants and two electrodes, and anode and cathode), they have substantial advantages, e.g. 1) operation at ambient temperature and pressure; 2) use of neutral electrolytes and avoidance of expensive catalysts (e.g. platinum); 3) operation using organic wastes. An MFC can be effectively used in environments where ubiquitous networking requires the wireless monitoring of energy sources. We then report on a simple monitoring system for MFC comprising an ultra-low-power Impulse-Radio Ultra-Wide-Band Transmitter (TX) operating in the low 0-960MHz band and a nanostructured piezoresistive pressure sensor connected to a discrete component digital read-out circuit. The sensor comprises an insulating matrix of polydimethylsiloxane and nanostructured multi-branched copper microparticles as conductive filler. Applied mechanical stress induces a sample deformation that modulates the mean distance between particles, i.e. the current flow. The read-out circuit encodes pressure as a pulse rate variation, with an absolute sensitivity to the generated MFC voltage. Pulses with variable repetition frequency can encode battery health: the pressure sensor can be directly connected to the cells membrane to read excessive pressure. A prototype system comprises two MFCs connected in series to power both the UWB transmitter which consumes 40μW and the read-out circuit. The two MFC generate an open circuit voltage of 1.0+/-0.1V. Each MFC prototype has a total volume of 0.34L and is formed by two circular Poly(methyl methacrylate) (PMMA) chambers (anode and cathode) separated by a cation exchange membrane. The paper reports on the prototype and measurements towards a final solution which embeds all functionalities within a MFC cell. Our solution is conceived to provide energy sources integrating energy management and health monitoring capabilities to sensor nodes which are not connected to the energy grid.

  3. Real-time video streaming using H.264 scalable video coding (SVC) in multihomed mobile networks: a testbed approach

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos

    2011-03-01

    Users of the next generation wireless paradigm known as multihomed mobile networks expect satisfactory quality of service (QoS) when accessing streamed multimedia content. The recent H.264 Scalable Video Coding (SVC) extension to the Advanced Video Coding standard (AVC), offers the facility to adapt real-time video streams in response to the dynamic conditions of multiple network paths encountered in multihomed wireless mobile networks. Nevertheless, preexisting streaming algorithms were mainly proposed for AVC delivery over multipath wired networks and were evaluated by software simulation. This paper introduces a practical, hardware-based testbed upon which we implement and evaluate real-time H.264 SVC streaming algorithms in a realistic multihomed wireless mobile networks environment. We propose an optimised streaming algorithm with multi-fold technical contributions. Firstly, we extended the AVC packet prioritisation schemes to reflect the three-dimensional granularity of SVC. Secondly, we designed a mechanism for evaluating the effects of different streamer 'read ahead window' sizes on real-time performance. Thirdly, we took account of the previously unconsidered path switching and mobile networks tunnelling overheads encountered in real-world deployments. Finally, we implemented a path condition monitoring and reporting scheme to facilitate the intelligent path switching. The proposed system has been experimentally shown to offer a significant improvement in PSNR of the received stream compared with representative existing algorithms.

  4. Modern wireless telecommunication technologies and their electromagnetic compatibility with life-supporting equipment.

    PubMed

    Wallin, Mats K E B; Marve, Therese; Hakansson, Peter K

    2005-11-01

    Hospitals rely on pagers and ordinary telephones to reach staff members in emergency situations. New telecommunication technologies such as General Packet Radio Service (GPRS), the third generation mobile phone system Universal Mobile Telecommunications System (UMTS), and Wireless Local Area Network (WLAN) might be able to replace hospital pagers if they are electromagnetically compatible with medical devices. In this study, we sought to determine if GPRS, UMTS (Wideband Code Division Multiple Access-Frequency Division Duplex [WCDMA FDD]), and WLAN (IEEE 802.11b) transmitted signals interfere with life-supporting equipment in the intensive care and operating room environment. According to United States standard, ANSI C63.18-1997, laboratory tests were performed on 76 medical devices. In addition, clinical tests during 11 operations and 100 h of intensive care were performed. UMTS and WLAN signals caused little interference. Devices using these technologies can be used safely in critical care areas and during operations, but direct contact between medical devices and wireless communication devices ought to be avoided. In the case of GPRS, at a distance of 50 cm, it caused an older infusion pump to alarm and stop infusing; the pump had to be reset. Also, 10 cases of interference with device displays occurred. GPRS can be used safely at a distance of 1 m. Terminals/cellular phones using these technologies should be allowed without restriction in public areas because the risk of interference is minimal.

  5. Frequency up-converted piezoelectric energy harvester for ultralow-frequency and ultrawide-frequency-range operation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiyang; Gao, Shiqiao; Li, Dongguang; Jin, Lei; Wu, Qinghe; Liu, Feng

    2018-04-01

    At present, frequency up-converted piezoelectric energy harvesters are disadvantaged by their narrow range of operating frequencies and low efficiency at ultralow-frequency excitation. To address these shortcomings, we propose herein an impact-driven frequency up-converted piezoelectric energy harvester composed of two driving beams and a generating beam. We find experimentally that the proposed device offers efficient energy output over an ultrawide-frequency-range and performs very well in the ultralow-frequency excitation. A maximum peak power of 29.3 mW is achieved under 0.5g acceleration at the excitation frequency of 12.7 Hz. The performance of the energy harvester can be adjusted and optimized by adjusting the spacing between the driving and generating beams. The results show that the proposed harvester has the potential to power miniaturized portable devices and wireless sensor nodes.

  6. A cost-effective WDM-PON architecture simultaneously supporting wired, wireless and optical VPN services

    NASA Astrophysics Data System (ADS)

    Wu, Yanzhi; Ye, Tong; Zhang, Liang; Hu, Xiaofeng; Li, Xinwan; Su, Yikai

    2011-03-01

    It is believed that next-generation passive optical networks (PONs) are required to provide flexible and various services to users in a cost-effective way. To address this issue, for the first time, this paper proposes and demonstrates a novel wavelength-division-multiplexed PON (WDM-PON) architecture to simultaneously support three types of services: 1) wireless access traffic, 2) optical virtual passive network (VPN) communications, and 3) conventional wired services. In the optical line terminal (OLT), we use two cascaded Mach-Zehnder modulators (MZMs) on each wavelength channel to generate an optical carrier, and produce the wireless and the downstream traffic using the orthogonal modulation technique. In each optical network unit (ONU), the obtained optical carrier is modulated by a single MZM to provide the VPN and upstream communications. Consequently, the light sources in the ONUs are saved and the system cost is reduced. The feasibility of our proposal is experimentally and numerically verified.

  7. In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator.

    PubMed

    Zheng, Qiang; Zhang, Hao; Shi, Bojing; Xue, Xiang; Liu, Zhuo; Jin, Yiming; Ma, Ye; Zou, Yang; Wang, Xinxin; An, Zhao; Tang, Wei; Zhang, Wei; Yang, Fan; Liu, Yang; Lang, Xilong; Xu, Zhiyun; Li, Zhou; Wang, Zhong Lin

    2016-07-26

    Harvesting biomechanical energy in vivo is an important route in obtaining sustainable electric energy for powering implantable medical devices. Here, we demonstrate an innovative implantable triboelectric nanogenerator (iTENG) for in vivo biomechanical energy harvesting. Driven by the heartbeat of adult swine, the output voltage and the corresponding current were improved by factors of 3.5 and 25, respectively, compared with the reported in vivo output performance of biomechanical energy conversion devices. In addition, the in vivo evaluation of the iTENG was demonstrated for over 72 h of implantation, during which the iTENG generated electricity continuously in the active animal. Due to its excellent in vivo performance, a self-powered wireless transmission system was fabricated for real-time wireless cardiac monitoring. Given its outstanding in vivo output and stability, iTENG can be applied not only to power implantable medical devices but also possibly to fabricate a self-powered, wireless healthcare monitoring system.

  8. Wireless Biological Electronic Sensors.

    PubMed

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  9. The potential of FBMC over OFDM for the future 5G mobile communication technology

    NASA Astrophysics Data System (ADS)

    Ibrahim, A. N.; Abdullah, M. F. L.

    2017-09-01

    Fifth Generation (5G) is the new evolution of mobile communication technology and will be launched soon in many countries. The researchers and designers of mobile communication technology have been facing the increasing demand of the mobile consumers, high data rates and mobility requirements needed by new wireless applications. Most of the countries have started research on 5G mobile communication technology that is predictable to be launched on 2020 in conjunction with the Olympic Games in Tokyo. Filterbank Multicarrier (FBMC) is one of the modulation techniques for the future 5G mobile communication technology. It uses the multicarrier techniques that are immune to fading caused by transmission of more than one path at a time and also immune to intersymbol interference besides able to function effectively compared to Orthogonal Frequency Division Multiplexing (OFDM) which is used in Fourth Generation (4G) mobile communications technology. This paper discusses the performance of FBMC over OFDM based on the previous journals that were investigated by researchers.

  10. Investigating end-to-end security in the fifth generation wireless capabilities and IoT extensions

    NASA Astrophysics Data System (ADS)

    Uher, J.; Harper, J.; Mennecke, R. G.; Patton, P.; Farroha, B.

    2016-05-01

    The emerging 5th generation wireless network will be architected and specified to meet the vision of allowing the billions of devices and millions of human users to share spectrum to communicate and deliver services. The expansion of wireless networks from its current role to serve these diverse communities of interest introduces new paradigms that require multi-tiered approaches. The introduction of inherently low security components, like IoT devices, necessitates that critical data be better secured to protect the networks and users. Moreover high-speed communications that are meant to enable the autonomous vehicles require ultra reliable and low latency paths. This research explores security within the proposed new architectures and the cross interconnection of the highly protected assets with low cost/low security components forming the overarching 5th generation wireless infrastructure.

  11. Wireless actuation with functional acoustic surfaces

    NASA Astrophysics Data System (ADS)

    Qiu, T.; Palagi, S.; Mark, A. G.; Melde, K.; Adams, F.; Fischer, P.

    2016-11-01

    Miniaturization calls for micro-actuators that can be powered wirelessly and addressed individually. Here, we develop functional surfaces consisting of arrays of acoustically resonant micro-cavities, and we demonstrate their application as two-dimensional wireless actuators. When remotely powered by an acoustic field, the surfaces provide highly directional propulsive forces in fluids through acoustic streaming. A maximal force of ˜0.45 mN is measured on a 4 × 4 mm2 functional surface. The response of the surfaces with bubbles of different sizes is characterized experimentally. This shows a marked peak around the micro-bubbles' resonance frequency, as estimated by both an analytical model and numerical simulations. The strong frequency dependence can be exploited to address different surfaces with different acoustic frequencies, thus achieving wireless actuation with multiple degrees of freedom. The use of the functional surfaces as wireless ready-to-attach actuators is demonstrated by implementing a wireless and bidirectional miniaturized rotary motor, which is 2.6 × 2.6 × 5 mm3 in size and generates a stall torque of ˜0.5 mN.mm. The adoption of micro-structured surfaces as wireless actuators opens new possibilities in the development of miniaturized devices and tools for fluidic environments that are accessible by low intensity ultrasound fields.

  12. On the Performance Evaluation of a MIMO–WCDMA Transmission Architecture for Building Management Systems

    PubMed Central

    Tsampasis, Eleftherios; Gkonis, Panagiotis K.; Trakadas, Panagiotis; Zahariadis, Theodοre

    2018-01-01

    The goal of this study was to investigate the performance of a realistic wireless sensor nodes deployment in order to support modern building management systems (BMSs). A three-floor building orientation is taken into account, where each node is equipped with a multi-antenna system while a central base station (BS) collects and processes all received information. The BS is also equipped with multiple antennas; hence, a multiple input–multiple output (MIMO) system is formulated. Due to the multiple reflections during transmission in the inner of the building, a wideband code division multiple access (WCDMA) physical layer protocol has been considered, which has already been adopted for third-generation (3G) mobile networks. Results are presented for various MIMO orientations, where the mean transmission power per node is considered as an output metric for a specific signal-to-noise ratio (SNR) requirement and number of resolvable multipath components. In the first set of presented results, the effects of multiple access interference on overall transmission power are highlighted. As the number of mobile nodes per floor or the requested transmission rate increases, MIMO systems of a higher order should be deployed in order to maintain transmission power at adequate levels. In the second set of results, a comparison is performed among transmission in diversity combining and spatial multiplexing mode, which clearly indicate that the first case is the most appropriate solution for indoor communications. PMID:29316720

  13. Wireless remote monitoring of toxic gases in shipbuilding.

    PubMed

    Pérez-Garrido, Carlos; González-Castaño, Francisco J; Chaves-Díeguez, David; Rodríguez-Hernández, Pedro S

    2014-02-14

    Large-scale wireless sensor networks have not achieved market impact, so far. Nevertheless, this technology may be applied successfully to small-scale niche markets. Shipyards are hazardous working environments with many potential risks to worker safety. Toxic gases generated in soldering processes in enclosed spaces (e.g., cargo holds) are one such risk. The dynamic environment of a ship under construction makes it very difficult to plan gas detection fixed infrastructures connected to external monitoring stations via wired links. While portable devices with gas level indicators exist, they require workers to monitor measurements, often in situations where they are focused on other tasks for relatively long periods. In this work, we present a wireless multihop remote gas monitoring system for shipyard environments that has been tested in a real ship under construction. Using this system, we validate IEEE 802.15.4/Zigbee wireless networks as a suitable technology to connect gas detectors to control stations outside the ships. These networks have the added benefit that they reconfigure themselves dynamically in case of network failure or redeployment, for example when a relay is moved to a new location. Performance measurements include round trip time (which determines the alert response time for safety teams) and link quality indicator and packet error rate (which determine communication robustness).

  14. Wireless Remote Monitoring of Toxic Gases in Shipbuilding

    PubMed Central

    Pérez-Garrido, Carlos; González-Castaño, Francisco J.; Chaves-Diéguez, David; Rodríguez-Hernández, Pedro S.

    2014-01-01

    Large-scale wireless sensor networks have not achieved market impact, so far. Nevertheless, this technology may be applied successfully to small-scale niche markets. Shipyards are hazardous working environments with many potential risks to worker safety. Toxic gases generated in soldering processes in enclosed spaces (e.g., cargo holds) are one such risk. The dynamic environment of a ship under construction makes it very difficult to plan gas detection fixed infrastructures connected to external monitoring stations via wired links. While portable devices with gas level indicators exist, they require workers to monitor measurements, often in situations where they are focused on other tasks for relatively long periods. In this work, we present a wireless multihop remote gas monitoring system for shipyard environments that has been tested in a real ship under construction. Using this system, we validate IEEE 802.15.4/Zigbee wireless networks as a suitable technology to connect gas detectors to control stations outside the ships. These networks have the added benefit that they reconfigure themselves dynamically in case of network failure or redeployment, for example when a relay is moved to a new location. Performance measurements include round trip time (which determines the alert response time for safety teams) and link quality indicator and packet error rate (which determine communication robustness). PMID:24534919

  15. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  16. Ammonia tolerant inocula provide a good base for anaerobic digestion of microalgae in third generation biogas process.

    PubMed

    Mahdy, Ahmed; Fotidis, Ioannis A; Mancini, Enrico; Ballesteros, Mercedes; González-Fernández, Cristina; Angelidaki, Irini

    2017-02-01

    This study investigated the ability of an ammonia-acclimatized inoculum to digest efficiently protein-rich microalgae for continuous 3rd generation biogas production. Moreover, we investigated whether increased C/N ratio could alleviate ammonia toxicity. The biochemical methane potential (BMP) of five different algae (Chlorella vulgaris)/manure (cattle) mixtures showed that the mixture of 80/20 (on VS basis) resulted in the highest BMP value (431mLCH 4 gVS -1 ), while the BMP of microalgae alone (100/0) was 415mLCH 4 gVS -1 . Subsequently, anaerobic digestion of those two substrates was tested in continuous stirred tank reactors (CSTR). Despite of the high ammonium levels (3.7-4.2g NH 4 + -NL -1 ), CSTR reactors using ammonia tolerant inoculum resulted in relatively high methane yields (i.e. 77.5% and 84% of the maximum expected, respectively). These results demonstrated that ammonia tolerant inocula could be a promising approach to successfully digest protein-rich microalgae and achieve a 3rd generation biogas production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. 47 CFR 101.1523 - Sharing and coordination among non-government licensees and between non-government and government...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Wireless Telecommunications Bureau announces by public notice the implementation of a third-party database...) Provide an electronic copy of an interference analysis to the third-party database manager which...-party database managers shall receive and retain the interference analyses electronically and make them...

  18. 47 CFR 101.1523 - Sharing and coordination among non-government licensees and between non-government and government...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Wireless Telecommunications Bureau announces by public notice the implementation of a third-party database...) Provide an electronic copy of an interference analysis to the third-party database manager which...-party database managers shall receive and retain the interference analyses electronically and make them...

  19. 47 CFR 101.1523 - Sharing and coordination among non-government licensees and between non-government and government...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Wireless Telecommunications Bureau announces by public notice the implementation of a third-party database...) Provide an electronic copy of an interference analysis to the third-party database manager which...-party database managers shall receive and retain the interference analyses electronically and make them...

  20. 47 CFR 101.1523 - Sharing and coordination among non-government licensees and between non-government and government...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Wireless Telecommunications Bureau announces by public notice the implementation of a third-party database...) Provide an electronic copy of an interference analysis to the third-party database manager which...-party database managers shall receive and retain the interference analyses electronically and make them...

  1. 47 CFR 101.1523 - Sharing and coordination among non-government licensees and between non-government and government...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Wireless Telecommunications Bureau announces by public notice the implementation of a third-party database...) Provide an electronic copy of an interference analysis to the third-party database manager which...-party database managers shall receive and retain the interference analyses electronically and make them...

  2. A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks.

    PubMed

    Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao

    2017-07-04

    Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network.

  3. Development of an implantable wireless ECoG 128ch recording device for clinical brain machine interface.

    PubMed

    Matsushita, Kojiro; Hirata, Masayuki; Suzuki, Takafumi; Ando, Hiroshi; Ota, Yuki; Sato, Fumihiro; Morris, Shyne; Yoshida, Takeshi; Matsuki, Hidetoshi; Yoshimine, Toshiki

    2013-01-01

    Brain Machine Interface (BMI) is a system that assumes user's intention by analyzing user's brain activities and control devices with the assumed intention. It is considered as one of prospective tools to enhance paralyzed patients' quality of life. In our group, we especially focus on ECoG (electro-corti-gram)-BMI, which requires surgery to place electrodes on the cortex. We try to implant all the devices within the patient's head and abdomen and to transmit the data and power wirelessly. Our device consists of 5 parts: (1) High-density multi-electrodes with a 3D shaped sheet fitting to the individual brain surface to effectively record the ECoG signals; (2) A small circuit board with two integrated circuit chips functioning 128 [ch] analogue amplifiers and A/D converters for ECoG signals; (3) A Wifi data communication & control circuit with the target PC; (4) A non-contact power supply transmitting electrical power minimum 400[mW] to the device 20[mm] away. We developed those devices, integrated them, and, investigated the performance.

  4. Wireless Biological Electronic Sensors

    PubMed Central

    Cui, Yue

    2017-01-01

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors. PMID:28991220

  5. A system-level view of optimizing high-channel-count wireless biosignal telemetry.

    PubMed

    Chandler, Rodney J; Gibson, Sarah; Karkare, Vaibhav; Farshchi, Shahin; Marković, Dejan; Judy, Jack W

    2009-01-01

    In this paper we perform a system-level analysis of a wireless biosignal telemetry system. We perform an analysis of each major system component (e.g., analog front end, analog-to-digital converter, digital signal processor, and wireless link), in which we consider physical, algorithmic, and design limitations. Since there are a wide range applications for wireless biosignal telemetry systems, each with their own unique set of requirements for key parameters (e.g., channel count, power dissipation, noise level, number of bits, etc.), our analysis is equally broad. The net result is a set of plots, in which the power dissipation for each component and as the system as a whole, are plotted as a function of the number of channels for different architectural strategies. These results are also compared to existing implementations of complete wireless biosignal telemetry systems.

  6. Wireless electricity (Power) transmission using solar based power satellite technology

    NASA Astrophysics Data System (ADS)

    Maqsood, M.; Nauman Nasir, M.

    2013-06-01

    In the near future due to extensive use of energy, limited supply of resources and the pollution in environment from present resources e.g. (wood, coal, fossil fuel) etc, alternative sources of energy and new ways to generate energy which are efficient, cost effective and produce minimum losses are of great concern. Wireless electricity (Power) transmission (WET) has become a focal point as research point of view and nowadays lies at top 10 future hot burning technologies that are under research these days. In this paper, we present the concept of transmitting power wirelessly to reduce transmission and distribution losses. The wired distribution losses are 70 - 75% efficient. We cannot imagine the world without electric power which is efficient, cost effective and produce minimum losses is of great concern. This paper tells us the benefits of using WET technology specially by using Solar based Power satellites (SBPS) and also focuses that how we make electric system cost effective, optimized and well organized. Moreover, attempts are made to highlight future issues so as to index some emerging solutions.

  7. Magnetic field concentration using ferromagnetic material to propel a wireless power transfer based micro-robot

    NASA Astrophysics Data System (ADS)

    Kim, Dongwook; Park, Bumjin; Park, Jaehyoung; Park, Hyun Ho; Ahn, Seungyoung

    2018-05-01

    In this paper, we propose a novel coil structure, using a ferromagnetic material which concentrates the magnetic field, as the propulsion system of a wireless power transfer (WPT) based micro-robot. This structure uses an incident magnetic field to induce current during wireless power transfer, to generate a Lorentz force. To prevent net cancelation of the Lorentz force in the load coil, ferrite films were applied to one side of the coil segment. The demonstrated simplicity and effectiveness of the proposed micro-robot showed its suitability for applications. Simulation and experimental results confirmed a velocity of 1.02 mm/s with 6 mW power transfer capacity for the 3 mm sized micro-robot.

  8. A Spectrum Sensing Network for Cognitive PMSE Systems

    NASA Astrophysics Data System (ADS)

    Brendel, Johannes; Riess, Steffen; Stoeckle, Andreas; Rummel, Rafael; Fischer, Georg

    2012-09-01

    This article is about a Spectrum Sensing Network (SSN) which generates an accurate radio environment map (e.g. power over frequency, time, and location) from a given application area. It is intended to be used in combination with cognitive Program Making and Special Events (PMSE) devices (e.g. wireless microphones) to improve their operation reliability. The SSN consists of a distributed network of multiple scanning radio receivers and a central data management and storage unit. The parts of the SSN are presented in detail and the advantages and use cases of such a sensing network structure will be outlined.

  9. Development of self-powered wireless high temperature electrochemical sensor for in situ corrosion monitoring of coal-fired power plant.

    PubMed

    Aung, Naing Naing; Crowe, Edward; Liu, Xingbo

    2015-03-01

    Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment. Copyright © 2014 ISA. All rights reserved.

  10. Wired/wireless access integrated RoF-PON with scalable generation of multi-frequency MMWs enabled by polarization multiplexed FWM in SOA.

    PubMed

    Xiang, Yu; Chen, Chen; Zhang, Chongfu; Qiu, Kun

    2013-01-14

    In this paper, we propose and demonstrate a novel integrated radio-over-fiber passive optical network (RoF-PON) system for both wired and wireless access. By utilizing the polarization multiplexed four-wave mixing (FWM) effect in a semiconductor optical amplifier (SOA), scalable generation of multi-frequency millimeter-waves (MMWs) can be provided so as to assist the configuration of multi-frequency wireless access for the wire/wireless access integrated ROF-PON system. In order to obtain a better performance, the polarization multiplexed FWM effect is investigated in detail. Simulation results successfully verify the feasibility of our proposed scheme.

  11. Field Instrumentation With Bricks: Wireless Networks Built From Tough, Cheap, Reliable Field Computers

    NASA Astrophysics Data System (ADS)

    Fatland, D. R.; Anandakrishnan, S.; Heavner, M.

    2004-12-01

    We describe tough, cheap, reliable field computers configured as wireless networks for distributed high-volume data acquisition and low-cost data recovery. Running under the GNU/Linux open source model these network nodes ('Bricks') are intended for either autonomous or managed deployment for many months in harsh Arctic conditions. We present here results from Generation-1 Bricks used in 2004 for glacier seismology research in Alaska and Antarctica and describe future generation Bricks in terms of core capabilities and a growing list of field applications. Subsequent generations of Bricks will feature low-power embedded architecture, large data storage capacity (GB), long range telemetry (15 km+ up from 3 km currently), and robust operational software. The list of Brick applications is growing to include Geodetic GPS, Bioacoustics (bats to whales), volcano seismicity, tracking marine fauna, ice sounding via distributed microwave receivers and more. This NASA-supported STTR project capitalizes on advancing computer/wireless technology to get scientists more data per research budget dollar, solving system integration problems and thereby getting researchers out of the hardware lab and into the field. One exemplary scenario: An investigator can install a Brick network in a remote polar environment to collect data for several months and then fly over the site to recover the data via wireless telemetry. In the past year Brick networks have moved beyond proof-of-concept to the full-bore development and testing stage; they will be a mature and powerful tool available for IPY 2007-8.

  12. Verified clinical failure with cefotaxime 1g for treatment of gonorrhoea in the Netherlands: a case report.

    PubMed

    van Dam, Alje P; van Ogtrop, Marc L; Golparian, Daniel; Mehrtens, Jan; de Vries, Henry J C; Unemo, Magnus

    2014-11-01

    We describe the first case of treatment failure of gonorrhoea with a third generation cephalosporin, cefotaxime 1g intramuscularly, in the Netherlands. The case was from a high-frequency transmitting population (men having sex with men) and was caused by the internationally spreading multidrug-resistant gonococcal NG-MAST ST1407 clone. The patient was clinically cured after treatment with ceftriaxone 500 mg intramuscularly and this is the only third generation cephalosporin that should be used for first-line empiric treatment of gonorrhoea. Increased awareness of failures with third generation cephalosporins, enhanced monitoring and appropriate verification of treatment failures including more frequent test-of-cures, and strict adherence to regularly updated treatment guidelines are essential globally. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Enhanced microglial pro-inflammatory response to lipopolysaccharide correlates with brain infiltration and blood-brain barrier dysregulation in a mouse model of telomere shortening.

    PubMed

    Raj, Divya D A; Moser, Jill; van der Pol, Susanne M A; van Os, Ronald P; Holtman, Inge R; Brouwer, Nieske; Oeseburg, Hisko; Schaafsma, Wandert; Wesseling, Evelyn M; den Dunnen, Wilfred; Biber, Knut P H; de Vries, Helga E; Eggen, Bart J L; Boddeke, Hendrikus W G M

    2015-12-01

    Microglia are a proliferative population of resident brain macrophages that under physiological conditions self-renew independent of hematopoiesis. Microglia are innate immune cells actively surveying the brain and are the earliest responders to injury. During aging, microglia elicit an enhanced innate immune response also referred to as 'priming'. To date, it remains unknown whether telomere shortening affects the proliferative capacity and induces priming of microglia. We addressed this issue using early (first-generation G1 mTerc(-/-) )- and late-generation (third-generation G3 and G4 mTerc(-/-) ) telomerase-deficient mice, which carry a homozygous deletion for the telomerase RNA component gene (mTerc). Late-generation mTerc(-/-) microglia show telomere shortening and decreased proliferation efficiency. Under physiological conditions, gene expression and functionality of G3 mTerc(-/-) microglia are comparable with microglia derived from G1 mTerc(-/-) mice despite changes in morphology. However, after intraperitoneal injection of bacterial lipopolysaccharide (LPS), G3 mTerc(-/-) microglia mice show an enhanced pro-inflammatory response. Nevertheless, this enhanced inflammatory response was not accompanied by an increased expression of genes known to be associated with age-associated microglia priming. The increased inflammatory response in microglia correlates closely with increased peripheral inflammation, a loss of blood-brain barrier integrity, and infiltration of immune cells in the brain parenchyma in this mouse model of telomere shortening. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Wireless Communications in Reverberant Environments

    DTIC Science & Technology

    2015-01-01

    Secure Wireless Agent Testbed (SWAT), the Protocol Engineering Advanced Networking (PROTEAN) Research Group, the Data Fusion Laboratory (DFL), and the...constraints of their application. 81 Bibliography [1] V. Gungor and G. Hancke, “Industrial wireless sensor networks : Challenges, design principles, and...Bhattacharya, “Path loss estimation for a wireless sensor network for application in ship,” Int. J. of Comput. Sci. and Mobile Computing, vol. 2, no. 6, pp

  15. Third-generation Ah receptor-responsive luciferase reporter plasmids: amplification of dioxin-responsive elements dramatically increases CALUX bioassay sensitivity and responsiveness.

    PubMed

    He, Guochun; Tsutsumi, Tomoaki; Zhao, Bin; Baston, David S; Zhao, Jing; Heath-Pagliuso, Sharon; Denison, Michael S

    2011-10-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and related dioxin-like chemicals are widespread and persistent environmental contaminants that produce diverse toxic and biological effects through their ability to bind to and activate the Ah receptor (AhR) and AhR-dependent gene expression. The chemically activated luciferase expression (CALUX) system is an AhR-responsive recombinant luciferase reporter gene-based cell bioassay that has been used in combination with chemical extraction and cleanup methods for the relatively rapid and inexpensive detection and relative quantitation of dioxin and dioxin-like chemicals in a wide variety of sample matrices. Although the CALUX bioassay has been validated and used extensively for screening purposes, it has some limitations when screening samples with very low levels of dioxin-like chemicals or when there is only a small amount of sample matrix for analysis. Here, we describe the development of third-generation (G3) CALUX plasmids with increased numbers of dioxin-responsive elements, and stable transfection of these new plasmids into mouse hepatoma (Hepa1c1c7) cells has produced novel amplified G3 CALUX cell bioassays that respond to TCDD with a dramatically increased magnitude of luciferase induction and significantly lower minimal detection limit than existing CALUX-type cell lines. The new G3 CALUX cell lines provide a highly responsive and sensitive bioassay system for the detection and relative quantitation of very low levels of dioxin-like chemicals in sample extracts.

  16. Multi-Antenna Data Collector for Smart Metering Networks with Integrated Source Separation by Spatial Filtering

    NASA Astrophysics Data System (ADS)

    Quednau, Philipp; Trommer, Ralph; Schmidt, Lorenz-Peter

    2016-03-01

    Wireless transmission systems in smart metering networks share the advantage of lower installation costs due to the expandability of separate infrastructure but suffer from transmission problems. In this paper the issue of interference of wireless transmitted smart meter data with third party systems and data from other meters is investigated and an approach for solving the problem is presented. A multi-channel wireless m-bus receiver was developed to separate the desired data from unwanted interferers by spatial filtering. The according algorithms are presented and the influence of different antenna types on the spatial filtering is investigated. The performance of the spatial filtering is evaluated by extensive measurements in a realistic surrounding with several hundreds of active wireless m-bus transponders. These measurements correspond to the future environment for data-collectors as they took place in rural and urban areas with smart gas meters equipped with wireless m-bus transponders installed in almost all surrounding buildings.

  17. Design of remote car anti-theft system based on ZigBee

    NASA Astrophysics Data System (ADS)

    Fang, Hong; Yan, GangFeng; Li, Hong Lian

    2015-12-01

    A set of remote car anti-theft system based on ZigBee and GPRS with ARM11 built-in chip S3C6410 as the controller is designed. This system can detect the alarm information of the car with vibration sensor, pyroelectric sensor and infrared sensor. When the sensor detects any alarm signal, the ZigBee node in sleep will be awakened and then directly send the alarm signal to the microcontroller chip S3C6410 in the control room of the parking lot through ZigBee wireless transceiver module. After S3C6410 processes and analyzes the alarm signal, when any two sensors of the three collect the alarm signal, the LCD will display and generate an alarm and meanwhile it will send the alarm signal to the phone of the user in a wireless manner through the form of short message through GPRS module. Thus, the wireless remote monitoring of the system is realized.

  18. A compact targeted drug delivery mechanism for a next generation wireless capsule endoscope.

    PubMed

    Woods, Stephen P; Constandinou, Timothy G

    2016-01-01

    This paper reports a novel medication release and delivery mechanism as part of a next generation wireless capsule endoscope (WCE) for targeted drug delivery. This subsystem occupies a volume of only 17.9mm 3 for the purpose of delivering a 1 ml payload to a target site of interest in the small intestinal tract. An in-depth analysis of the method employed to release and deliver the medication is described and a series of experiments is presented which validates the drug delivery system. The results show that a variable pitch conical compression spring manufactured from stainless steel can deliver 0.59 N when it is fully compressed and that this would be sufficient force to deliver the onboard medication.

  19. Fabrication of Detector Arrays for the SPT-3G Receiver

    NASA Astrophysics Data System (ADS)

    Posada, C. M.; Ade, P. A. R.; Ahmed, Z.; Anderson, A. J.; Austermann, J. E.; Avva, J. S.; Thakur, R. Basu; Bender, A. N.; Benson, B. A.; Carlstrom, J. E.; Carter, F. W.; Cecil, T.; Chang, C. L.; Cliche, J. F.; Cukierman, A.; Denison, E. V.; de Haan, T.; Ding, J.; Divan, R.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Foster, A.; Gannon, R. N.; Gilbert, A.; Groh, J. C.; Halverson, N. W.; Harke-Hosemann, A. H.; Harrington, N. L.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O. B.; Jonas, M.; Khaire, T.; Kofman, A. M.; Korman, M.; Kubik, D.; Kuhlmann, S.; Kuo, C. L.; Lee, A. T.; Lowitz, A. E.; Meyer, S. S.; Michalik, D.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Noble, G. I.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Rahlin, A.; Ruhl, J. E.; Saunders, L. J.; Sayre, J. T.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J. A.; Stan, L.; Stark, A. A.; Story, K. T.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vale, L. R.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.; Young, M. R.

    2018-05-01

    The South Pole Telescope third-generation (SPT-3G) receiver was installed during the austral summer of 2016-2017. It is designed to measure the cosmic microwave background across three frequency bands centered at 95, 150, and 220 GHz. The SPT-3G receiver has ten focal plane modules, each with 269 pixels. Each pixel features a broadband sinuous antenna coupled to a niobium microstrip transmission line. In-line filters define the desired band-passes before the signal is coupled to six bolometers with Ti/Au/Ti/Au transition edge sensors (three bands × two polarizations). In total, the SPT-3G receiver is composed of 16,000 detectors, which are read out using a 68× frequency-domain multiplexing scheme. In this paper, we present the process employed in fabricating the detector arrays.

  20. Synthesis of ethylene diamine-based ferrocene terminated dendrimers and their application as burning rate catalysts.

    PubMed

    Zain-Ul-Abdin; Wang, Li; Yu, Haojie; Saleem, Muhammad; Akram, Muhammad; Khalid, Hamad; Abbasi, Nasir M; Yang, Xianpeng

    2017-02-01

    Ferrocene-based derivatives are widely used as ferrocene-based burning rate catalysts (BRCs) for ammonium perchlorate (AP)-based propellant. However, in long storage, small ferrocene-based derivatives migrate to the surface of the propellant, which results in changes in the designed burning parameters and finally causes unstable combustion. To retard the migration of ferrocene-based BRCs in the propellant and to increase the combustion of the solid propellant, zero to third generation ethylene diamine-based ferrocene terminated dendrimers (0G, 1G, 2G and 3G) were synthesized. The synthesis of these dendrimers was confirmed by 1 H NMR and FT-IR spectroscopy. The electrochemical behavior of 0G, 1G, 2G and 3G was investigated by cyclic voltammetry (CV) and the burning rate catalytic activity of 0G, 1G, 2G and 3G on thermal disintegration of AP was examined by thermogravimetry (TG) and differential thermogravimetry (DTG) techniques. Anti-migration studies show that 1G, 2G and 3G exhibit improved anti-migration behavior in the AP-based propellant. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Mobile Videoconferencing Apps for Telemedicine

    PubMed Central

    Liu, Wei-Li; Locatis, Craig; Ackerman, Michael

    2016-01-01

    Abstract Introduction: The quality and performance of several videoconferencing applications (apps) tested on iOS (Apple, Cupertino, CA) and Android™ (Google, Mountain View, CA) mobile platforms using Wi-Fi (802.11), third-generation (3G), and fourth-generation (4G) cellular networks are described. Materials and Methods: The tests were done to determine how well apps perform compared with videoconferencing software installed on computers or with more traditional videoconferencing using dedicated hardware. The rationale for app assessment and the testing methodology are described. Results: Findings are discussed in relation to operating system platform (iOS or Android) for which the apps were designed and the type of network (Wi-Fi, 3G, or 4G) used. The platform, network, and apps interact, and it is impossible to discuss videoconferencing experienced on mobile devices in relation to one of these factors without referencing the others. Conclusions: Apps for mobile devices can vary significantly from other videoconferencing software or hardware. App performance increased over the testing period due to improvements in network infrastructure and how apps manage bandwidth. PMID:26204322

  2. Mobile Videoconferencing Apps for Telemedicine.

    PubMed

    Zhang, Kai; Liu, Wei-Li; Locatis, Craig; Ackerman, Michael

    2016-01-01

    The quality and performance of several videoconferencing applications (apps) tested on iOS (Apple, Cupertino, CA) and Android (Google, Mountain View, CA) mobile platforms using Wi-Fi (802.11), third-generation (3G), and fourth-generation (4G) cellular networks are described. The tests were done to determine how well apps perform compared with videoconferencing software installed on computers or with more traditional videoconferencing using dedicated hardware. The rationale for app assessment and the testing methodology are described. Findings are discussed in relation to operating system platform (iOS or Android) for which the apps were designed and the type of network (Wi-Fi, 3G, or 4G) used. The platform, network, and apps interact, and it is impossible to discuss videoconferencing experienced on mobile devices in relation to one of these factors without referencing the others. Apps for mobile devices can vary significantly from other videoconferencing software or hardware. App performance increased over the testing period due to improvements in network infrastructure and how apps manage bandwidth.

  3. Unpowered wireless ultrasound tomography system

    NASA Astrophysics Data System (ADS)

    Zahedi, Farshad; Huang, Haiying

    2016-04-01

    In this paper, an unpowered wireless ultrasound tomography system is presented. The system consists of two subsystems; the wireless interrogation unit (WIU) and three wireless nodes installed on the structure. Each node is designed to work in generation and sensing modes, but operates at a specific microwave frequency. Wireless transmission of the ultrasound signals between the WIU and the wireless nodes is achieved by converting ultrasound signals to microwave signals and vice versa, using a microwave carrier signal. In the generation mode, both a carrier signal and an ultrasound modulated microwave signal are transmitted to the sensor nodes. Only the node whose operating frequency matches the carrier signal will receive these signals and demodulate them to recover the original ultrasound signal. In the sensing mode, a microwave carrier signal with two different frequency components matching the operating frequencies of the sensor nodes is broadcasted by the WIU. The sensor nodes, in turn, receive the corresponding carrier signals, modulate it with the ultrasound sensing signal, and wirelessly transmit the modulated signal back to the WIU. The demodulation of the sensing signals is performed in the WIU using a digital signal processing. Implementing a software receiver significantly reduces the complexity and the cost of the WIU. A wireless ultrasound tomography system is realized by interchanging the carrier frequencies so that the wireless transducers can take turn to serve as the actuator and sensors.

  4. Design and analysis of coplanar waveguide triple-band antenna based on defected ground structure

    NASA Astrophysics Data System (ADS)

    Lv, Hong; Chen, Wanli; Xia, Xinsheng; Qi, Peng; Sun, Quanling

    2017-11-01

    A kind of coplanar waveguide triple-band antenna based on defected ground structure is proposed, which has novel structure. Three batches with different frequency band are constructed by utilizing line combination, overlapping, and symmetry method. Stop band signals among three frequency bands are effectively suppressed by slots with different structures. More satisfactory impedance matching is realized by means of changing slot structure and improving return-loss. The presented antenna can operates simultaneously in various systems such as 3G / 4G wireless communication, Bluetooth, Worldwide Interoperability for Microwave Access, Wireless LAN. Test results show that the antenna has good radiation and gain in its working frequency band, and that it has great application potentials.

  5. Intrusion detection and monitoring for wireless networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.

    Wireless computer networks are increasing exponentially around the world. They are being implemented in both the unlicensed radio frequency (RF) spectrum (IEEE 802.11a/b/g) and the licensed spectrum (e.g., Firetide [1] and Motorola Canopy [2]). Wireless networks operating in the unlicensed spectrum are by far the most popular wireless computer networks in existence. The open (i.e., proprietary) nature of the IEEE 802.11 protocols and the availability of ''free'' RF spectrum have encouraged many producers of enterprise and common off-the-shelf (COTS) computer networking equipment to jump into the wireless arena. Competition between these companies has driven down the price of 802.11 wirelessmore » networking equipment and has improved user experiences with such equipment. The end result has been an increased adoption of the equipment by businesses and consumers, the establishment of the Wi-Fi Alliance [3], and widespread use of the Alliance's ''Wi-Fi'' moniker to describe these networks. Consumers use 802.11 equipment at home to reduce the burden of running wires in existing construction, facilitate the sharing of broadband Internet services with roommates or neighbors, and increase their range of ''connectedness''. Private businesses and government entities (at all levels) are deploying wireless networks to reduce wiring costs, increase employee mobility, enable non-employees to access the Internet, and create an added revenue stream to their existing business models (coffee houses, airports, hotels, etc.). Municipalities (Philadelphia; San Francisco; Grand Haven, MI) are deploying wireless networks so they can bring broadband Internet access to places lacking such access; offer limited-speed broadband access to impoverished communities; offer broadband in places, such as marinas and state parks, that are passed over by traditional broadband providers; and provide themselves with higher quality, more complete network coverage for use by emergency responders and other municipal agencies. In short, these Wi-Fi networks are being deployed everywhere. Much thought has been and is being put into evaluating cost-benefit analyses of wired vs. wireless networks and issues such as how to effectively cover an office building or municipality, how to efficiently manage a large network of wireless access points (APs), and how to save money by replacing an Internet service provider (ISP) with 802.11 technology. In comparison, very little thought and money are being focused on wireless security and monitoring for security purposes.« less

  6. Development of Arduino based wireless control system

    NASA Astrophysics Data System (ADS)

    Sun, Zhuoxiong; Dyke, Shirley J.; Pena, Francisco; Wilbee, Alana

    2015-03-01

    Over the past few decades, considerable attention has been given to structural control systems to mitigate structural vibration under natural hazards such as earthquakes and extreme weather conditions. Traditional wired structural control systems often employ a large amount of cables for communication among sensors, controllers and actuators. In such systems, implementation of wired sensors is usually quite complicated and expensive, especially on large scale structures such as bridges and buildings. To reduce the laborious installation and maintenance cost, wireless control systems (WCSs) are considered as a novel approach for structural vibration control. In this work, a WCS is developed based on the open source Arduino platform. Low cost, low power wireless sensing and communication components are built on the Arduino platform. Structural control algorithms are embedded within the wireless sensor board for feedback control. The developed WCS is first validated through a series of tests. Next, numerical simulations are performed simulating wireless control of a 3-story shear structure equipped with a semi-active control device (MR damper). Finally, experimental studies are carried out implementing the WCS on the 3-story shear structure in the Intelligent Infrastructure Systems Lab (IISL). A hydraulic shake table is used to generate seismic ground motions. The control performance is evaluated with the impact of modeling uncertainties, measurement noises as well as time delay and data loss induced by the wireless network. The developed WCS is shown to be effective in controlling structural vibrations under several historical earthquake ground motions.

  7. 47 CFR 1.1162 - General exemptions from regulatory fees.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the international broadcast (HF) service), wireless radio service, common carrier radio service, or..., E, F, and G of part 74 of this chapter) or stations in the wireless radio, common carrier, or... in the wireless radio service for the sole purpose of modifying an existing authorization (or a...

  8. 47 CFR 1.1162 - General exemptions from regulatory fees.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the international broadcast (HF) service), wireless radio service, common carrier radio service, or..., E, F, and G of part 74 of this chapter) or stations in the wireless radio, common carrier, or... in the wireless radio service for the sole purpose of modifying an existing authorization (or a...

  9. 47 CFR 1.1162 - General exemptions from regulatory fees.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the international broadcast (HF) service), wireless radio service, common carrier radio service, or..., E, F, and G of part 74 of this chapter) or stations in the wireless radio, common carrier, or... in the wireless radio service for the sole purpose of modifying an existing authorization (or a...

  10. 76 FR 65472 - Review of Foreign Ownership Policies for Common Carrier and Aeronautical Radio Licensees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... market power in foreign telecommunications services or facilities into U.S. wireless markets. 9...--e.g., companies using wireless licenses to provide phone service--and of aeronautical en route and... burdens imposed on wireless common carrier and aeronautical applicants, licensees, and spectrum lessees...

  11. Characterization of the efficacies of osimertinib and nazartinib against cells expressing clinically relevant epidermal growth factor receptor mutations.

    PubMed

    Masuzawa, Keita; Yasuda, Hiroyuki; Hamamoto, Junko; Nukaga, Shigenari; Hirano, Toshiyuki; Kawada, Ichiro; Naoki, Katsuhiko; Soejima, Kenzo; Betsuyaku, Tomoko

    2017-12-01

    Third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs) were developed to overcome EGFR T790M-mediated resistance to first- and second-generation EGFR-TKIs. Third-generation EGFR-TKIs, such as osimertinib and nazartinib, are effective for patients with the EGFR T790M mutation. However, there are no direct comparison data to guide the selection of a third-generation EGFR-TKI for patients with different EGFR mutations. We previously established an in vitro model to estimate the therapeutic windows of EGFR-TKIs by comparing their relative efficacies against cells expressing mutant or wild type EGFRs. The present study used this approach to characterize the efficacy of third-generation EGFR-TKIs and compare them with that of other EGFR-TKIs. Treatment efficacy was examined using human lung cancer-derived cell lines and Ba/F3 cells, which were transduced with clinically relevant mutant EGFRs. Interestingly, mutation-related differences in EGFR-TKI sensitivity were observed. For classic EGFR mutations (exon 19 deletion and L858R, with or without T790M), osimertinib showed lower IC50 values and wider therapeutic windows than nazartinib. For less common EGFR mutations (G719S or L861Q), afatinib showed the lowest IC50 values. For G719S+T790M or L861Q+T790M, the IC50 values of osimertinib and nazartinib were around 100 nM, which was 10- to 100-fold higher than those for classic+T790M mutations. On the contrary, osimertinib and nazartinib showed similar efficacies in cells expressing EGFR exon 20 insertions. The findings highlight the diverse mutation-related sensitivity pattern of EGFR-TKIs. These data may help in the selection of EGFR-TKIs for non-small cell lung cancer patients harboring EGFR mutations.

  12. Characterization of the efficacies of osimertinib and nazartinib against cells expressing clinically relevant epidermal growth factor receptor mutations

    PubMed Central

    Masuzawa, Keita; Yasuda, Hiroyuki; Hamamoto, Junko; Nukaga, Shigenari; Hirano, Toshiyuki; Kawada, Ichiro; Naoki, Katsuhiko; Soejima, Kenzo; Betsuyaku, Tomoko

    2017-01-01

    Third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs) were developed to overcome EGFR T790M-mediated resistance to first- and second-generation EGFR-TKIs. Third-generation EGFR-TKIs, such as osimertinib and nazartinib, are effective for patients with the EGFR T790M mutation. However, there are no direct comparison data to guide the selection of a third-generation EGFR-TKI for patients with different EGFR mutations. We previously established an in vitro model to estimate the therapeutic windows of EGFR-TKIs by comparing their relative efficacies against cells expressing mutant or wild type EGFRs. The present study used this approach to characterize the efficacy of third-generation EGFR-TKIs and compare them with that of other EGFR-TKIs. Treatment efficacy was examined using human lung cancer-derived cell lines and Ba/F3 cells, which were transduced with clinically relevant mutant EGFRs. Interestingly, mutation-related differences in EGFR-TKI sensitivity were observed. For classic EGFR mutations (exon 19 deletion and L858R, with or without T790M), osimertinib showed lower IC50 values and wider therapeutic windows than nazartinib. For less common EGFR mutations (G719S or L861Q), afatinib showed the lowest IC50 values. For G719S+T790M or L861Q+T790M, the IC50 values of osimertinib and nazartinib were around 100 nM, which was 10- to 100-fold higher than those for classic+T790M mutations. On the contrary, osimertinib and nazartinib showed similar efficacies in cells expressing EGFR exon 20 insertions. The findings highlight the diverse mutation-related sensitivity pattern of EGFR-TKIs. These data may help in the selection of EGFR-TKIs for non-small cell lung cancer patients harboring EGFR mutations. PMID:29285266

  13. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics.

    PubMed

    Monat, Christelle; Grillet, Christian; Corcoran, Bill; Moss, David J; Eggleton, Benjamin J; White, Thomas P; Krauss, Thomas F

    2010-03-29

    Using Fourier optics, we retrieve the wavevector dependence of the third-harmonic (green) light generated in a slow light silicon photonic crystal waveguide. We show that quasi-phase matching between the third-harmonic signal and the fundamental mode is provided in this geometry by coupling to the continuum of radiation modes above the light line. This process sustains third-harmonic generation with a relatively high efficiency and a substantial bandwidth limited only by the slow light window of the fundamental mode. The results give us insights into the physics of this nonlinear process in the presence of strong absorption and dispersion at visible wavelengths where bandstructure calculations are problematic. Since the characteristics (e.g. angular pattern) of the third-harmonic light primarily depend on the fundamental mode dispersion, they could be readily engineered.

  14. The wireless Web and patient care.

    PubMed

    Bergeron, B P

    2001-01-01

    Wireless computing, when integrated with the Web, is poised to revolutionize the practice and teaching of medicine. As vendors introduce wireless Web technologies in the medical community that have been used successfully in the business and consumer markets, clinicians can expect profound increases in the amount of patient data, as well as the ease with which those data are acquired, analyzed, and disseminated. The enabling technologies involved in this transformation to the wireless Web range from the new generation of wireless PDAs, eBooks, and wireless data acquisition peripherals to new wireless network protocols. The rate-limiting step in the application of this technology in medicine is not technology per se but rather how quickly clinicians and their patients come to accept and appreciate the benefits and limitations of the application of wireless Web technology.

  15. The Army’s Wireless Communications Programs

    DTIC Science & Technology

    2009-02-11

    20Plans%20First%20AEHF% 20Launch%20Early%20Next%20Year&channel= awst .9 CBO Other Strategic Wireless Communications Programs The Army invests in a number...O N G R E SS O F T H E U N IT E D ST AT E S C O N G R E SSIO N A L B U D G E T O FFIC E W A SH IN G T O N , D C 20515

  16. Efficacy of ProTaper retreatment system in root canals filled with gutta-percha and two endodontic sealers.

    PubMed

    Só, Marcus Vinícius Reis; Saran, Caroline; Magro, Miriam Lago; Vier-Pelisser, Fabiana Vieira; Munhoz, Marcelo

    2008-10-01

    This study evaluated the efficacy of ProTaper Universal rotary retreatment system and hand files for filling material removal during retreatment and the influence of sealer type on the presence of filling debris in the reinstrumented canals. The canals of 60 palatal roots of first molars were obturated with gutta-percha and either a zinc oxide-eugenol-based or a resin-based sealer and reinstrumented: G1, EndoFill/hand files; G2, AH Plus/hand files; G3, EndoFill/ProTaper; G4, AH Plus/ProTaper. Roots were cleaved and examined with an optical microscope, and the amount of filling debris on canal walls was analyzed on digitized images. There was no significant difference (P > .05) among the root canal thirds within each group. G3 presented significantly more filling debris than G1 in the cervical third (P = .04). In the middle third, G2/G3/G4 showed more debris than G1 (P = .03). The techniques were similar (P = .64) in the apical third. All groups presented filling debris in the 3 canal thirds after reinstrumentation.

  17. Research on dynamic routing mechanisms in wireless sensor networks.

    PubMed

    Zhao, A Q; Weng, Y N; Lu, Y; Liu, C Y

    2014-01-01

    WirelessHART is the most widely applied standard in wireless sensor networks nowadays. However, it does not provide any dynamic routing mechanism, which is important for the reliability and robustness of the wireless network applications. In this paper, a collection tree protocol based, dynamic routing mechanism was proposed for WirelessHART network. The dynamic routing mechanism was evaluated through several simulation experiments in three aspects: time for generating the topology, link quality, and stability of network. Besides, the data transmission efficiency of this routing mechanism was analyzed. The simulation and evaluation results show that this mechanism can act as a dynamic routing mechanism for the TDMA-based wireless sensor network.

  18. A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks

    PubMed Central

    Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao

    2017-01-01

    Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network. PMID:28677639

  19. Health Monitoring System for Car Seat

    NASA Technical Reports Server (NTRS)

    Elrod, Susan Vinz (Inventor); Dabney, Richard W. (Inventor)

    2004-01-01

    A health monitoring system for use with a child car seat has sensors mounted in the seat to monitor one or more health conditions of the seat's occupant. A processor monitors the sensor's signals and generates status signals related to the monitored conditions. A transmitter wireless transmits the status signals to a remotely located receiver. A signaling device coupled to the receiver produces at least one sensory (e.g., visual, audible, tactile) output based on the status signals.

  20. A wideband wireless neural stimulation platform for high-density microelectrode arrays.

    PubMed

    Myers, Frank B; Simpson, Jim A; Ghovanloo, Maysam

    2006-01-01

    We describe a system that allows researchers to control an implantable neural microstimulator from a PC via a USB 2.0 interface and a novel dual-carrier wireless link, which provides separate data and power transmission. Our wireless stimulator, Interestim-2B (IS-2B), is a modular device capable of generating controlled-current stimulation pulse trains across 32 sites per module with support for a variety of stimulation schemes (biphasic/monophasic, bipolar/monopolar). We have developed software to generate multi-site stimulation commands for the IS-2B based on streaming data from artificial sensory devices such as cameras and microphones. For PC interfacing, we have developed a USB 2.0 microcontroller-based interface. Data is transmitted using frequency-shift keying (FSK) at 6/12 MHz to achieve a data rate of 3 Mb/s via a pair of rectangular coils. Power is generated using a class-E power amplifier operating at 1 MHz and transmitted via a separate pair of spiral planar coils which are oriented perpendicular to the data coils to minimize cross-coupling. We have successfully demonstrated the operation of the system by applying it as a visual prosthesis. Pulse-frequency modulated stimuli are generated in real-time based on a grayscale image from a webcam. These pulses are projected onto an 11x11 LED matrix that represents a 2D microelectrode array.

  1. Portable emergency telemedicine system over wireless broadband and 3G networks.

    PubMed

    Hong, SungHye; Kim, SangYong; Kim, JungChae; Lim, DongKyu; Jung, SeokMyung; Kim, DongKeun; Yoo, Sun K

    2009-01-01

    The telemedicine system aims at monitoring patients remotely without limit in time and space. However the existing telemedicine systems exchange medical information simply in a specified location. Due to increasing speed in processing data and expanding bandwidth of wireless networks, it is possible to perform telemedicine services on personal digital assistants (PDA). In this paper, a telemedicine system on PDA was developed using wideband mobile networks such as Wi-Fi, HSDPA, and WiBro for high speed bandwidths. This system enables to utilize and exchange variety and reliable patient information of video, biosignals, chatting messages, and triage data. By measuring bandwidths of individual data of the system over wireless networks, and evaluating the performance of this system using PDA, we demonstrated the feasibility of the designed portable emergency telemedicine system.

  2. Detection of Spoofed MAC Addresses in 802.11 Wireless Networks

    NASA Astrophysics Data System (ADS)

    Tao, Kai; Li, Jing; Sampalli, Srinivas

    Medium Access Control (MAC) address spoofing is considered as an important first step in a hacker's attempt to launch a variety of attacks on 802.11 wireless networks. Unfortunately, MAC address spoofing is hard to detect. Most current spoofing detection systems mainly use the sequence number (SN) tracking technique, which has drawbacks. Firstly, it may lead to an increase in the number of false positives. Secondly, such techniques cannot be used in systems with wireless cards that do not follow standard 802.11 sequence number patterns. Thirdly, attackers can forge sequence numbers, thereby causing the attacks to go undetected. We present a new architecture called WISE GUARD (Wireless Security Guard) for detection of MAC address spoofing on 802.11 wireless LANs. It integrates three detection techniques - SN tracking, Operating System (OS) fingerprinting & tracking and Received Signal Strength (RSS) fingerprinting & tracking. It also includes the fingerprinting of Access Point (AP) parameters as an extension to the OS fingerprinting for detection of AP address spoofing. We have implemented WISE GUARD on a test bed using off-the-shelf wireless devices and open source drivers. Experimental results show that the new design enhances the detection effectiveness and reduces the number of false positives in comparison with current approaches.

  3. Multiple Sensing Application on Wireless Sensor Network Simulation using NS3

    NASA Astrophysics Data System (ADS)

    Kurniawan, I. F.; Bisma, R.

    2018-01-01

    Hardware enhancement provides opportunity to install various sensor device on single monitoring node which then enables users to acquire multiple data simultaneously. Constructing multiple sensing application in NS3 is a challenging task since numbers of aspects such as wireless communication, packet transmission pattern, and energy model must be taken into account. Despite of numerous types of monitoring data available, this study only considers two types such as periodic, and event-based data. Periodical data will generate monitoring data follows configured interval, while event-based transmit data when certain determined condition is met. Therefore, this study attempts to cover mentioned aspects in NS3. Several simulations are performed with different number of nodes on arbitrary communication scheme.

  4. Progressively Communicating Rich Telemetry from Autonomous Underwater Vehicles via Relays

    DTIC Science & Technology

    2012-06-01

    wireless sensor networks using an autonomous underwater vehicle. In Robotics and...communication over multiple kilometers. In addition to wireless com- munication methods , the recently developed Nereus[12] vehicle at WHOI spools out...A P T U R E M e ss a g e s P ro ce ss / T h re a d M a n a g e m e n t C o n fi g u ra ti o n P a rs in g Network Manager Frame Scheduling

  5. Wireless Sensor Networks - Node Localization for Various Industry Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derr, Kurt; Manic, Milos

    Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothingmore » (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications.« less

  6. Wireless Sensor Networks - Node Localization for Various Industry Problems

    DOE PAGES

    Derr, Kurt; Manic, Milos

    2015-06-01

    Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothingmore » (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications.« less

  7. The role of fear and anxiety in the familial risk for major depression: a three-generation study

    PubMed Central

    Warner, V.; Wickramaratne, P.; Weissman, M. M.

    2010-01-01

    Background The overlap between anxiety and major depressive disorder (MDD), the increased risk for depression and anxiety in offspring of depressed parents, the sequence of onset with anxiety preceding MDD, and anxiety as a predictor of depression are well established. The specificity of anxiety disorders in these relationships is unclear. This study, using a longitudinal high-risk design, examined whether anxiety disorders associated with the emotions fear and anxiety mediate the association between parental and offspring depression. Method Two hundred and twenty-four second-generation and 155 third-generation descendants at high and low risk for depression because of MDD in the first generation were interviewed over 20 years. Probit and Cox proportional hazard models were fitted with generation 2 (G2) or G3 depression as the outcome and parental MDD as the predictor. In G2 and G3, fear- (phobia or panic) and anxiety-related [overanxious or generalized anxiety disorder (GAD)] disorders were examined as potential mediators of increased risk for offspring depression, due to parental MDD. Results In G2, fear-related disorders met criteria for mediating the association between parental MDD and offspring MDD whereas anxiety-related disorders did not. These results were consistent, regardless of the analytic methods used. Further investigation of the mediating effect of fear-related disorders by age of onset of offspring MDD suggests that the mediating effect occurs primarily in adolescent onset MDD. The results for G3 appear to follow similar patterns. Conclusions These findings support the separation of anxiety disorders into at least two distinct forms, particularly when examining their role in the etiology of depression. PMID:18275630

  8. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification.

    PubMed

    Zhu, Guang; Zhou, Yu Sheng; Bai, Peng; Meng, Xian Song; Jing, Qingshen; Chen, Jun; Wang, Zhong Lin

    2014-06-18

    Effectively harvesting ambient mechanical energy is the key for realizing self-powered and autonomous electronics, which addresses limitations of batteries and thus has tremendous applications in sensor networks, wireless devices, and wearable/implantable electronics, etc. Here, a thin-film-based micro-grating triboelectric nanogenerator (MG-TENG) is developed for high-efficiency power generation through conversion of mechanical energy. The shape-adaptive MG-TENG relies on sliding electrification between complementary micro-sized arrays of linear grating, which offers a unique and straightforward solution in harnessing energy from relative sliding motion between surfaces. Operating at a sliding velocity of 10 m/s, a MG-TENG of 60 cm(2) in overall area, 0.2 cm(3) in volume and 0.6 g in weight can deliver an average output power of 3 W (power density of 50 mW cm(-2) and 15 W cm(-3)) at an overall conversion efficiency of ∼ 50%, making it a sufficient power supply to regular electronics, such as light bulbs. The scalable and cost-effective MG-TENG is practically applicable in not only harvesting various mechanical motions but also possibly power generation at a large scale. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 30 pJ/b, 67 Mbps, Centimeter-to-Meter Range Data Telemetry With an IR-UWB Wireless Link.

    PubMed

    Ebrazeh, Ali; Mohseni, Pedram

    2015-06-01

    This paper reports an energy-efficient, impulse radio ultra wideband (IR-UWB) wireless link operating in 3-5 GHz for data telemetry over centimeter-to-meter range distances at rates extended to tens of Mbps. The link comprises an all-digital, integrated transmitter (TX) fabricated in 90 nm 1P/9M CMOS that incorporates a waveform-synthesis pulse generator and a timing generator for on-off-keying (OOK) pulse modulation and phase scrambling. The link also incorporates an energy-detection receiver (RX) realized with commercial off-the-shelf (COTS) components that performs radio-frequency (RF) filtering, amplification, logarithmic power detection for data demodulation and automatic level control for robust operation in the presence of distance variations. Employing a miniaturized, UWB, chip antenna for the TX and RX, wireless transmission of pseudo-random binary sequence (PRBS) data at rates up to 50 Mbps over 10 cm-1 m is shown. Further, employing a high-gain horn antenna for the RX, wireless transmission of PRBS data at rates up to 67 Mbps over 50 cm-4 m is shown with a TX energy consumption of 30 pJ/b (i.e., power consumption of 2 mW) from 1.2 V. The measured bit error rate (BER) in both cases is < 10(-7) . Results from wireless recording of the background current of a carbon-fiber microelectrode (CFM) in one fast-scan cyclic voltammetry (FSCV) scan using the IR-UWB link are also included, exhibiting excellent match with those obtained from a conventional frequency-shift-keyed (FSK) link at ~433 MHz.

  10. Ubiquitous Emergency Medical Service System Based on Wireless Biosensors, Traffic Information, and Wireless Communication Technologies: Development and Evaluation

    PubMed Central

    Tan, Tan-Hsu; Gochoo, Munkhjargal; Chen, Yung-Fu; Hu, Jin-Jia; Chiang, John Y.; Chang, Ching-Su; Lee, Ming-Huei; Hsu, Yung-Nian; Hsu, Jiin-Chyr

    2017-01-01

    This study presents a new ubiquitous emergency medical service system (UEMS) that consists of a ubiquitous tele-diagnosis interface and a traffic guiding subsystem. The UEMS addresses unresolved issues of emergency medical services by managing the sensor wires for eliminating inconvenience for both patients and paramedics in an ambulance, providing ubiquitous accessibility of patients’ biosignals in remote areas where the ambulance cannot arrive directly, and offering availability of real-time traffic information which can make the ambulance reach the destination within the shortest time. In the proposed system, patient’s biosignals and real-time video, acquired by wireless biosensors and a webcam, can be simultaneously transmitted to an emergency room for pre-hospital treatment via WiMax/3.5 G networks. Performances of WiMax and 3.5 G, in terms of initialization time, data rate, and average end-to-end delay are evaluated and compared. A driver can choose the route of the shortest time among the suggested routes by Google Maps after inspecting the current traffic conditions based on real-time CCTV camera streams and traffic information. The destination address can be inputted vocally for easiness and safety in driving. A series of field test results validates the feasibility of the proposed system for application in real-life scenarios. PMID:28117724

  11. Ubiquitous Emergency Medical Service System Based on Wireless Biosensors, Traffic Information, and Wireless Communication Technologies: Development and Evaluation.

    PubMed

    Tan, Tan-Hsu; Gochoo, Munkhjargal; Chen, Yung-Fu; Hu, Jin-Jia; Chiang, John Y; Chang, Ching-Su; Lee, Ming-Huei; Hsu, Yung-Nian; Hsu, Jiin-Chyr

    2017-01-21

    This study presents a new ubiquitous emergency medical service system (UEMS) that consists of a ubiquitous tele-diagnosis interface and a traffic guiding subsystem. The UEMS addresses unresolved issues of emergency medical services by managing the sensor wires for eliminating inconvenience for both patients and paramedics in an ambulance, providing ubiquitous accessibility of patients' biosignals in remote areas where the ambulance cannot arrive directly, and offering availability of real-time traffic information which can make the ambulance reach the destination within the shortest time. In the proposed system, patient's biosignals and real-time video, acquired by wireless biosensors and a webcam, can be simultaneously transmitted to an emergency room for pre-hospital treatment via WiMax/3.5 G networks. Performances of WiMax and 3.5 G, in terms of initialization time, data rate, and average end-to-end delay are evaluated and compared. A driver can choose the route of the shortest time among the suggested routes by Google Maps after inspecting the current traffic conditions based on real-time CCTV camera streams and traffic information. The destination address can be inputted vocally for easiness and safety in driving. A series of field test results validates the feasibility of the proposed system for application in real-life scenarios.

  12. A biometric method to secure telemedicine systems.

    PubMed

    Zhang, G H; Poon, Carmen C Y; Li, Ye; Zhang, Y T

    2009-01-01

    Security and privacy are among the most crucial issues for data transmission in telemedicine systems. This paper proposes a solution for securing wireless data transmission in telemedicine systems, i.e. within a body sensor network (BSN), between the BSN and server as well as between the server and professionals who have assess to the server. A unique feature of this solution is the generation of random keys by physiological data (i.e. a biometric approach) for securing communication at all 3 levels. In the performance analysis, inter-pulse interval of photoplethysmogram is used as an example to generate these biometric keys to protect wireless data transmission. The results of statistical analysis and computational complexity suggest that this type of key is random enough to make telemedicine systems resistant to attacks.

  13. Wireless Sensing System Using Open-circuit, Electrically-conductive Spiral-trace Sensor

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2013-01-01

    A wireless sensing system includes a sensor made from an electrical conductor shaped to form an open-circuit, electrically-conductive spiral trace having inductance and capacitance. In the presence of a time-varying magnetic field, the sensor resonates to generate a harmonic response having a frequency, amplitude and bandwidth. A magnetic field response recorder wirelessly transmits the time-varying magnetic field to the sensor and wirelessly detects the sensor's response frequency, amplitude and bandwidth.

  14. Real-time Integration of Biological, Optical and Physical Oceanographic Data from Multiple Vessels and Nearshore Sites using a Wireless Network

    DTIC Science & Technology

    1997-09-30

    field experiments in Puget Sound . Each research vessel will use multi- sensor profiling instrument packages which obtain high-resolution physical...field deployment of the wireless network is planned for May-July, 1998, at Orcas Island, WA. IMPACT We expect that wireless communication systems will...East Sound project to be a first step toward continental shelf and open ocean deployments with the next generation of wireless and satellite

  15. Third-Generation Ah Receptor–Responsive Luciferase Reporter Plasmids: Amplification of Dioxin-Responsive Elements Dramatically Increases CALUX Bioassay Sensitivity and Responsiveness

    PubMed Central

    He, Guochun; Tsutsumi, Tomoaki; Zhao, Bin; Baston, David S.; Zhao, Jing; Heath-Pagliuso, Sharon; Denison, Michael S.

    2011-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and related dioxin-like chemicals are widespread and persistent environmental contaminants that produce diverse toxic and biological effects through their ability to bind to and activate the Ah receptor (AhR) and AhR-dependent gene expression. The chemically activated luciferase expression (CALUX) system is an AhR-responsive recombinant luciferase reporter gene–based cell bioassay that has been used in combination with chemical extraction and cleanup methods for the relatively rapid and inexpensive detection and relative quantitation of dioxin and dioxin-like chemicals in a wide variety of sample matrices. Although the CALUX bioassay has been validated and used extensively for screening purposes, it has some limitations when screening samples with very low levels of dioxin-like chemicals or when there is only a small amount of sample matrix for analysis. Here, we describe the development of third-generation (G3) CALUX plasmids with increased numbers of dioxin-responsive elements, and stable transfection of these new plasmids into mouse hepatoma (Hepa1c1c7) cells has produced novel amplified G3 CALUX cell bioassays that respond to TCDD with a dramatically increased magnitude of luciferase induction and significantly lower minimal detection limit than existing CALUX-type cell lines. The new G3 CALUX cell lines provide a highly responsive and sensitive bioassay system for the detection and relative quantitation of very low levels of dioxin-like chemicals in sample extracts. PMID:21775728

  16. Experimental validation of wireless communication with chaos.

    PubMed

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  17. Butterfly Encryption Scheme for Resource-Constrained Wireless Networks †

    PubMed Central

    Sampangi, Raghav V.; Sampalli, Srinivas

    2015-01-01

    Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis. PMID:26389899

  18. Experimental validation of wireless communication with chaos

    NASA Astrophysics Data System (ADS)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S.; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  19. Butterfly Encryption Scheme for Resource-Constrained Wireless Networks.

    PubMed

    Sampangi, Raghav V; Sampalli, Srinivas

    2015-09-15

    Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis.

  20. Experimental validation of wireless communication with chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and anmore » integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.« less

  1. Immune response of Exopalaemon carinicauda infected with an AHPND-causing strain of Vibrio parahaemolyticus.

    PubMed

    Ge, Qianqian; Li, Jian; Li, Jitao; Wang, Jiajia; Li, Zhengdao

    2018-03-01

    To investigate the immune response of Exopalaemon carinicauda infected with an AHPND-causing strain of Vibrio parahaemolyticus (VP AHPND ), three-generation breeding of shrimp selected for their survival to VP AHPND infection was applied to explore the relationship between immune parameters and AHPND-resistant capacity of E. carinicauda. In this study, the LD 50 dose of 48 h and survival rates at 144 h of shrimp to VP AHPND increased from 10 6.0 to 10 6.6  cfu ml -1 and from 26.67% to 36.67% by three successive generations selection, respectively, while there was no significant difference between the first and second generation (p > .05). Then the immune parameters including vibrio density, total hemocyte counts (THCs), hemocyanin (HEM) concentration, antibacterial activity, activities of four immune enzymes, and expressions of eight immune-related genes were determined in the shrimp of the first (G1) and the third selective generation (G3). The results showed that the shrimp in G1 and G3 generation cleared most of VP AHPND infecting hepatopancreas during 24 h and 6 h post injection, respectively. The levels of THCs, HEM concentration, antibacterial activity, immune enzymes including lysozyme (LZM) activity, alkaline phosphatase (AKP) activity in cell-free hemolymph, and the expression levels of Tollip, ALF, cathepsin B in hemocytes and hepatopancreas, crustin, LZM, SR in hepatopancreas and LGBP in hemocytes were higher in G3 generation than in G1 generation after infection with VP AHPND , suggesting that these parameters may serve as potential disease-resistant indicators for evaluating the physiological status and disease-resistant capability of shrimp when infected with VP AHPND . To further test the role of above genes in the shrimp immune response, RNAi was used to suppress their expressions and a significant decrease in survival was observed in knockdown shrimp infected with VP AHPND as compared to controls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Open-source telemedicine platform for wireless medical video communication.

    PubMed

    Panayides, A; Eleftheriou, I; Pantziaris, M

    2013-01-01

    An m-health system for real-time wireless communication of medical video based on open-source software is presented. The objective is to deliver a low-cost telemedicine platform which will allow for reliable remote diagnosis m-health applications such as emergency incidents, mass population screening, and medical education purposes. The performance of the proposed system is demonstrated using five atherosclerotic plaque ultrasound videos. The videos are encoded at the clinically acquired resolution, in addition to lower, QCIF, and CIF resolutions, at different bitrates, and four different encoding structures. Commercially available wireless local area network (WLAN) and 3.5G high-speed packet access (HSPA) wireless channels are used to validate the developed platform. Objective video quality assessment is based on PSNR ratings, following calibration using the variable frame delay (VFD) algorithm that removes temporal mismatch between original and received videos. Clinical evaluation is based on atherosclerotic plaque ultrasound video assessment protocol. Experimental results show that adequate diagnostic quality wireless medical video communications are realized using the designed telemedicine platform. HSPA cellular networks provide for ultrasound video transmission at the acquired resolution, while VFD algorithm utilization bridges objective and subjective ratings.

  3. Open-Source Telemedicine Platform for Wireless Medical Video Communication

    PubMed Central

    Panayides, A.; Eleftheriou, I.; Pantziaris, M.

    2013-01-01

    An m-health system for real-time wireless communication of medical video based on open-source software is presented. The objective is to deliver a low-cost telemedicine platform which will allow for reliable remote diagnosis m-health applications such as emergency incidents, mass population screening, and medical education purposes. The performance of the proposed system is demonstrated using five atherosclerotic plaque ultrasound videos. The videos are encoded at the clinically acquired resolution, in addition to lower, QCIF, and CIF resolutions, at different bitrates, and four different encoding structures. Commercially available wireless local area network (WLAN) and 3.5G high-speed packet access (HSPA) wireless channels are used to validate the developed platform. Objective video quality assessment is based on PSNR ratings, following calibration using the variable frame delay (VFD) algorithm that removes temporal mismatch between original and received videos. Clinical evaluation is based on atherosclerotic plaque ultrasound video assessment protocol. Experimental results show that adequate diagnostic quality wireless medical video communications are realized using the designed telemedicine platform. HSPA cellular networks provide for ultrasound video transmission at the acquired resolution, while VFD algorithm utilization bridges objective and subjective ratings. PMID:23573082

  4. 5G: The Convergence of Wireless Communications.

    PubMed

    Chávez-Santiago, Raúl; Szydełko, Michał; Kliks, Adrian; Foukalas, Fotis; Haddad, Yoram; Nolan, Keith E; Kelly, Mark Y; Masonta, Moshe T; Balasingham, Ilangko

    As the rollout of 4G mobile communication networks takes place, representatives of industry and academia have started to look into the technological developments toward the next generation (5G). Several research projects involving key international mobile network operators, infrastructure manufacturers, and academic institutions, have been launched recently to set the technological foundations of 5G. However, the architecture of future 5G systems, their performance, and mobile services to be provided have not been clearly defined. In this paper, we put forth the vision for 5G as the convergence of evolved versions of current cellular networks with other complementary radio access technologies. Therefore, 5G may not be a single radio access interface but rather a "network of networks". Evidently, the seamless integration of a variety of air interfaces, protocols, and frequency bands, requires paradigm shifts in the way networks cooperate and complement each other to deliver data rates of several Gigabits per second with end-to-end latency of a few milliseconds. We provide an overview of the key radio technologies that will play a key role in the realization of this vision for the next generation of mobile communication networks. We also introduce some of the research challenges that need to be addressed.

  5. Interference Effects Redress over Power-Efficient Wireless-Friendly Mesh Networks for Ubiquitous Sensor Communications across Smart Cities.

    PubMed

    Santana, Jose; Marrero, Domingo; Macías, Elsa; Mena, Vicente; Suárez, Álvaro

    2017-07-21

    Ubiquitous sensing allows smart cities to take control of many parameters (e.g., road traffic, air or noise pollution levels, etc.). An inexpensive Wireless Mesh Network can be used as an efficient way to transport sensed data. When that mesh is autonomously powered (e.g., solar powered), it constitutes an ideal portable network system which can be deployed when needed. Nevertheless, its power consumption must be restrained to extend its operational cycle and for preserving the environment. To this end, our strategy fosters wireless interface deactivation among nodes which do not participate in any route. As we show, this contributes to a significant power saving for the mesh. Furthermore, our strategy is wireless-friendly, meaning that it gives priority to deactivation of nodes receiving (and also causing) interferences from (to) the rest of the smart city. We also show that a routing protocol can adapt to this strategy in which certain nodes deactivate their own wireless interfaces.

  6. Interference Effects Redress over Power-Efficient Wireless-Friendly Mesh Networks for Ubiquitous Sensor Communications across Smart Cities

    PubMed Central

    Marrero, Domingo; Macías, Elsa; Mena, Vicente

    2017-01-01

    Ubiquitous sensing allows smart cities to take control of many parameters (e.g., road traffic, air or noise pollution levels, etc.). An inexpensive Wireless Mesh Network can be used as an efficient way to transport sensed data. When that mesh is autonomously powered (e.g., solar powered), it constitutes an ideal portable network system which can be deployed when needed. Nevertheless, its power consumption must be restrained to extend its operational cycle and for preserving the environment. To this end, our strategy fosters wireless interface deactivation among nodes which do not participate in any route. As we show, this contributes to a significant power saving for the mesh. Furthermore, our strategy is wireless-friendly, meaning that it gives priority to deactivation of nodes receiving (and also causing) interferences from (to) the rest of the smart city. We also show that a routing protocol can adapt to this strategy in which certain nodes deactivate their own wireless interfaces. PMID:28754013

  7. Initial animal studies of a wireless, batteryless, MEMS implant for cardiovascular applications.

    PubMed

    Najafi, Nader; Ludomirsky, Achiau

    2004-03-01

    This paper reports the results of the initial animal studies of a wireless, batteryless, implantable pressure sensor using microelectromechanical systems (MEMS) technology. The animal studies were acute and proved the functional feasibility of using MEMS technology for wireless bio sensing. The results are very encouraging and surpassed the majority of the application's requirements, including high sampling speed and high resolution. Based on the lessons learned, second generation wireless sensors are being developed that will provide total system solution.

  8. An overview of recent end-to-end wireless medical video telemedicine systems using 3G.

    PubMed

    Panayides, A; Pattichis, M S; Pattichis, C S; Schizas, C N; Spanias, A; Kyriacou, E

    2010-01-01

    Advances in video compression, network technologies, and computer technologies have contributed to the rapid growth of mobile health (m-health) systems and services. Wide deployment of such systems and services is expected in the near future, and it's foreseen that they will soon be incorporated in daily clinical practice. This study focuses in describing the basic components of an end-to-end wireless medical video telemedicine system, providing a brief overview of the recent advances in the field, while it also highlights future trends in the design of telemedicine systems that are diagnostically driven.

  9. 3D workflow for HDR image capture of projection systems and objects for CAVE virtual environments authoring with wireless touch-sensitive devices

    NASA Astrophysics Data System (ADS)

    Prusten, Mark J.; McIntyre, Michelle; Landis, Marvin

    2006-02-01

    A 3D workflow pipeline is presented for High Dynamic Range (HDR) image capture of projected scenes or objects for presentation in CAVE virtual environments. The methods of HDR digital photography of environments vs. objects are reviewed. Samples of both types of virtual authoring being the actual CAVE environment and a sculpture are shown. A series of software tools are incorporated into a pipeline called CAVEPIPE, allowing for high-resolution objects and scenes to be composited together in natural illumination environments [1] and presented in our CAVE virtual reality environment. We also present a way to enhance the user interface for CAVE environments. The traditional methods of controlling the navigation through virtual environments include: glove, HUD's and 3D mouse devices. By integrating a wireless network that includes both WiFi (IEEE 802.11b/g) and Bluetooth (IEEE 802.15.1) protocols the non-graphical input control device can be eliminated. Therefore wireless devices can be added that would include: PDA's, Smart Phones, TabletPC's, Portable Gaming consoles, and PocketPC's.

  10. Next Generation RFID-Based Medical Service Management System Architecture in Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Tolentino, Randy S.; Lee, Kijeong; Kim, Yong-Tae; Park, Gil-Cheol

    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide unlimited future potentials most especially in healthcare systems. RFID is used to detect presence and location of objects while WSN is used to sense and monitor the environment. Integrating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. However, there isn't any flexible and robust communication infrastructure to integrate these devices into an emergency care setting. An efficient wireless communication substrate for medical devices that addresses ad hoc or fixed network formation, naming and discovery, transmission efficiency of data, data security and authentication, as well as filtration and aggregation of vital sign data need to be study and analyze. This paper proposed an efficient next generation architecture for RFID-based medical service management system in WSN that possesses the essential elements of each future medical application that are integrated with existing medical practices and technologies in real-time, remote monitoring, in giving medication, and patient status tracking assisted by embedded wearable wireless sensors which are integrated in wireless sensor network.

  11. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring.

    PubMed

    Zhou, Shuangxi; Deng, Fangming; Yu, Lehua; Li, Bing; Wu, Xiang; Yin, Baiqiang

    2016-09-20

    This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods.

  12. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring

    PubMed Central

    Zhou, Shuangxi; Deng, Fangming; Yu, Lehua; Li, Bing; Wu, Xiang; Yin, Baiqiang

    2016-01-01

    This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods. PMID:27657070

  13. Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization.

    PubMed

    Saovapakhiran, Angkana; D'Emanuele, Antony; Attwood, David; Penny, Jeffrey

    2009-04-01

    The aim of this study was to investigate the influence of dendrimer surface properties on cellular internalization and intracellular trafficking in the human colon adenocarcinoma HT-29 cell line. Third-generation (G3) polyamidoamine (PAMAM) dendrimers were modified to contain either two lauroyl chains (G3L2), two propranolol molecules (G3P2), or two lauroyl and two propranolol molecules (G3L2P2) at the dendrimer surface. Surface-modified and unmodified dendrimers were labeled with fluorescein isothiocyanate (FITC) at an average molar ratio of 1:1. The mechanisms of cellular internalization and intracellular trafficking of dendrimers were analyzed by confocal laser scanning microscopy and flow cytometry. The internalization of G3 and G3P2 dendrimers involved both caveolae-dependent endocytosis and macropinocytosis pathways; internalization of G3L2P2 dendrimer appeared to involve caveolae-dependent, and possibly clathrin-dependent, endocytosis pathways; and internalization of G3L2 dendrimer occurred via caveolae-dependent, clathrin-dependent, and macropinocytosis pathways. Subcellular colocalization data indicated that unmodified and all surface-modified G3 PAMAM dendrimers were internalized and trafficked to endosomes and lysosomes. It is therefore apparent that the initial mode of dendrimer internalization into HT-29 cells is influenced by the surface properties of G3 PAMAM dendrimer.

  14. Cross Layered Multi-Meshed Tree Scheme for Cognitive Networks

    DTIC Science & Technology

    2011-06-01

    Meshed Tree Routing protocol wireless ad hoc networks ,” Second IEEE International Workshop on Enabling Technologies and Standards for Wireless Mesh ...and Sensor Networks , 2004 43. Chen G.; Stojmenovic I., “Clustering and routing in mobile wireless networks ,” Technical Report TR-99-05, SITE, June...Cross-layer optimization, intra-cluster routing , packet forwarding, inter-cluster routing , mesh network communications,

  15. Next-generation optical wireless communications for data centers

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2015-01-01

    Data centers collect and process information with a capacity that has been increasing from year to year at an almost exponential pace. Traditional fiber/cable data center network interconnections suffer from bandwidth overload, as well as flexibility and scalability issues. Therefore, a technology-shift from the fiber and cable to wireless has already been initiated in order to meet the required data-rate, flexibility and scalability demands for next-generation data center network interconnects. In addition, the shift to wireless reduces the volume allocated to the cabling/fiber and increases the cooling efficiency. Optical wireless communication (OWC), or free space optics (FSO), is one of the most effective wireless technologies that could be used in future data centers and could provide ultra-high capacity, very high cyber security and minimum latency, due to the low index of refraction of air in comparison to fiber technologies. In this paper we review the main concepts and configurations for next generation OWC for data centers. Two families of technologies are reviewed: the first technology regards interconnects between rack units in the same rack and the second technology regards the data center network that connects the server top of rack (TOR) to the switch. A comparison between different network technologies is presented.

  16. Nonlinear vibration analysis of the high-efficiency compressive-mode piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Yang, Zhengbao; Zu, Jean

    2015-04-01

    Power source is critical to achieve independent and autonomous operations of electronic mobile devices. The vibration-based energy harvesting is extensively studied recently, and recognized as a promising technology to realize inexhaustible power supply for small-scale electronics. Among various approaches, the piezoelectric energy harvesting has gained the most attention due to its high conversion efficiency and simple configurations. However, most of piezoelectric energy harvesters (PEHs) to date are based on bending-beam structures and can only generate limited power with a narrow working bandwidth. The insufficient electric output has greatly impeded their practical applications. In this paper, we present an innovative lead zirconate titanate (PZT) energy harvester, named high-efficiency compressive-mode piezoelectric energy harvester (HC-PEH), to enhance the performance of energy harvesters. A theoretical model was developed analytically, and solved numerically to study the nonlinear characteristics of the HC-PEH. The results estimated by the developed model agree well with the experimental data from the fabricated prototype. The HC-PEH shows strong nonlinear responses, favorable working bandwidth and superior power output. Under a weak excitation of 0.3 g (g = 9.8 m/s2), a maximum power output 30 mW is generated at 22 Hz, which is about ten times better than current energy harvesters. The HC-PEH demonstrates the capability of generating enough power for most of wireless sensors.

  17. Development of a methodology to measure the effect of ergot alkaloids on forestomach motility using real-time wireless telemetry

    NASA Astrophysics Data System (ADS)

    Egert, Amanda; Klotz, James; McLeod, Kyle; Harmon, David

    2014-10-01

    The objectives of these experiments were to characterize rumen motility patterns of cattle fed once daily using a real-time wireless telemetry system, determine when to measure rumen motility with this system, and determine the effect of ruminal dosing of ergot alkaloids on rumen motility. Ruminally cannulated Holstein steers (n = 8) were fed a basal diet of alfalfa cubes once daily. Rumen motility was measured by monitoring real-time pressure changes within the rumen using wireless telemetry and pressure transducers. Experiment 1 consisted of three 24-h rumen pressure collections beginning immediately after feeding. Data were recorded, stored, and analyzed using iox2 software and the rhythmic analyzer. All motility variables differed (P < 0.01) between hours and thirds (8-h periods) of the day. There were no differences between days for most variables. The variance of the second 8-h period of the day was less than (P < 0.01) the first for area and less than the third for amplitude, frequency, duration, and area (P < 0.05). These data demonstrated that the second 8-h period of the day was the least variable for many measures of motility and would provide the best opportunity for testing differences in motility due to treatments. In Exp. 2, the steers (n = 8) were pair-fed the basal diet of Exp. 1 and dosed with endophyte-free (E-) or endophyte-infected (E+; 0 or 10 μg ergovaline + ergovalinine / kg BW; respectively) tall fescue seed before feeding for 15 d. Rumen motility was measured for 8 h beginning 8 h after feeding for the first 14 d of seed dosing. Blood samples were taken on d 1, 7, and 15, and rumen content samples were taken on d 15. Baseline (P = 0.06) and peak (P = 0.04) pressure were lower for E+ steers. Water intake tended (P = 0.10) to be less for E+ steers the first 8 hour period after feeding. The E+ seed treatment at this dosage under thermoneutral conditions did not significantly affect rumen motility, ruminal fill, or dry matter of rumen contents.

  18. Caracterisation de la propagation sans-fil dans les avions commerciaux pour une transmission dediee aux services aux passagers et aux systemes avioniques

    NASA Astrophysics Data System (ADS)

    Saghir, Hassane

    Aircraft systems are interconnected by cable bundles that may represent a hundred kilometres. Those wirings penalize the aircraft weight. Cable bundles favour electromagnetic interference on board aircraft and routing a new cable for integrating new equipment boxes in a sustained aircraft requires a lot of retrofit work. Consequently, the aviation industry and aerospace community are working in the scope of different projects on new alternatives that will better fit to the future generation of aircrafts and help to reduce interconnecting wires on board. Wireless technologies represent a coveted solution that could make significant improvements and benefits to new generations of aircrafts. This research work focuses on the study of the wireless propagation over some frequency bands inside commercial aircrafts. The main objective is to provide conclusions and recommendations on criteria that may help optimizing the wireless communication without impacting the existent systems. Targeted applications are the inflight entertainment (IFE) service and wireless sensing systems. This work was conducted in collaboration with Bombardier-Aerospace based in Montreal (QC) in the frame of AVIO-402 project under the grant of CRIAQ (http://www.criaq.aero/). In this study, an experimental characterization of the propagation channel in the ISM band around 2.4 GHz frequency 5.8 GHz has been performed in a CRJ700 aircraft from Bombardier Aerospace. This characterization allowed to extract the parameters needed to analyze the channel behavior. The measurements results have shown that the propagation characteristics are close to those of both typical indoor medium in terms of the delay spread and a tunnel in terms of path loss. Then, a 3D channel modeling and simulation have been achieved with an RF prediction software (Wireless Insite Remcom). The simulations also consider the millimeter band around 60 GHz. The simulations yielded to analytical models of radio coverage which were subsequently used to evaluate wireless link interference scenarios and performance metrics. Finally, these models were used to design a TDL (Tapped Delay Line) channel model with the goal of an implementation under Matlab in a wireless transmission chain.

  19. Capturing 3D resistivity of semi-arid karstic subsurface in varying moisture conditions using a wireless sensor network

    NASA Astrophysics Data System (ADS)

    Barnhart, K.; Oden, C. P.

    2012-12-01

    The dissolution of soluble bedrock results in surface and subterranean karst channels, which comprise 7-10% of the dry earth's surface. Karst serves as a preferential conduit to focus surface and subsurface water but it is difficult to exploit as a water resource or protect from pollution because of irregular structure and nonlinear hydrodynamic behavior. Geophysical characterization of karst commonly employs resistivity and seismic methods, but difficulties arise due to low resistivity contrast in arid environments and insufficient resolution of complex heterogeneous structures. To help reduce these difficulties, we employ a state-of-the-art wireless geophysical sensor array, which combines low-power radio telemetry and solar energy harvesting to enable long-term in-situ monitoring. The wireless aspect removes topological constraints common with standard wired resistivity equipment, which facilitates better coverage and/or sensor density to help improve aspect ratio and resolution. Continuous in-situ deployment allows data to be recorded according to nature's time scale; measurements are made during infrequent precipitation events which can increase resistivity contrast. The array is coordinated by a smart wireless bridge that continuously monitors local soil moisture content to detect when precipitation occurs, schedules resistivity surveys, and periodically relays data to the cloud via 3G cellular service. Traditional 2/3D gravity and seismic reflection surveys have also been conducted to clarify and corroborate results.

  20. Implementation of a piezoelectric energy harvester in railway health monitoring

    NASA Astrophysics Data System (ADS)

    Li, Jingcheng; Jang, Shinae; Tang, Jiong

    2014-03-01

    With development of wireless sensor technology, wireless sensor network has shown a great potential for railway health monitoring. However, how to supply continuous power to the wireless sensor nodes is one of the critical issues in long-term full-scale deployment of the wireless smart sensors. Some energy harvesting methodologies have been available including solar, vibration, wind, etc; among them, vibration-based energy harvester using piezoelectric material showed the potential for converting ambient vibration energy to electric energy in railway health monitoring even for underground subway systems. However, the piezoelectric energy harvester has two major problems including that it could only generate small amount of energy, and that it should match the exact narrow band natural frequency with the excitation frequency. To overcome these problems, a wide band piezoelectric energy harvester, which could generate more power on various frequencies regions, has been designed and validated with experimental test. Then it was applied to a full-scale field test using actual railway train. The power generation of the wide band piezoelectric array has been compared to a narrow-band, resonant-based, piezoelectric energy harvester.

  1. MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method.

    PubMed

    Tuta, Jure; Juric, Matjaz B

    2018-03-24

    This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method), a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah) and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.). Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage.

  2. MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method

    PubMed Central

    Juric, Matjaz B.

    2018-01-01

    This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method), a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah) and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.). Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage. PMID:29587352

  3. Effect of Slow Fading and Adaptive Modulation on TCP/UDP Performance of High-Speed Packet Wireless Networks

    DTIC Science & Technology

    2006-08-25

    interleaving schemes defined in 802.11a standard, although only 6 Mbps data rate with BPSK and 1/2 Convolutional coding and puncturing is used in our...16-QAM/64-QAM Convolutional Code K = 7 (64 states) K = 7 (64 states) Coding Rates 1/2, 2/3, 3/4 1/2, 2/3, 3/4 Channel Spacing (MHz) 20 10 Signal...Since 3G systems need to be backward compatible with 2G systems, they are a combination of existing and evolved equipments with data rate up to 2 Mbps

  4. Non-Orthogonal Multiple Access for Ubiquitous Wireless Sensor Networks.

    PubMed

    Anwar, Asim; Seet, Boon-Chong; Ding, Zhiguo

    2018-02-08

    Ubiquitous wireless sensor networks (UWSNs) have become a critical technology for enabling smart cities and other ubiquitous monitoring applications. Their deployment, however, can be seriously hampered by the spectrum available to the sheer number of sensors for communication. To support the communication needs of UWSNs without requiring more spectrum resources, the power-domain non-orthogonal multiple access (NOMA) technique originally proposed for 5th Generation (5G) cellular networks is investigated for UWSNs for the first time in this paper. However, unlike 5G networks that operate in the licensed spectrum, UWSNs mostly operate in unlicensed spectrum where sensors also experience cross-technology interferences from other devices sharing the same spectrum. In this paper, we model the interferences from various sources at the sensors using stochastic geometry framework. To evaluate the performance, we derive a theorem and present new closed form expression for the outage probability of the sensors in a downlink scenario under interference limited environment. In addition, diversity analysis for the ordered NOMA users is performed. Based on the derived outage probability, we evaluate the average link throughput and energy consumption efficiency of NOMA against conventional orthogonal multiple access (OMA) technique in UWSNs. Further, the required computational complexity for the NOMA users is presented.

  5. A scalable and continuous-upgradable optical wireless and wired convergent access network.

    PubMed

    Sung, J Y; Cheng, K T; Chow, C W; Yeh, C H; Pan, C-L

    2014-06-02

    In this work, a scalable and continuous upgradable convergent optical access network is proposed. By using a multi-wavelength coherent comb source and a programmable waveshaper at the central office (CO), optical millimeter-wave (mm-wave) signals of different frequencies (from baseband to > 100 GHz) can be generated. Hence, it provides a scalable and continuous upgradable solution for end-user who needs 60 GHz wireless services now and > 100 GHz wireless services in the future. During the upgrade, user only needs to upgrade their optical networking unit (ONU). A programmable waveshaper is used to select the suitable optical tones with wavelength separation equals to the desired mm-wave frequency; while the CO remains intact. The centralized characteristics of the proposed system can easily add any new service and end-user. The centralized control of the wavelength makes the system more stable. Wired data rate of 17.45 Gb/s and w-band wireless data rate up to 3.36 Gb/s were demonstrated after transmission over 40 km of single-mode fiber (SMF).

  6. QoS-aware integrated fiber-wireless standard compliant architecture based on XGPON and EDCA

    NASA Astrophysics Data System (ADS)

    Kaur, Ravneet; Srivastava, Anand

    2018-01-01

    Converged Fiber-Wireless (FiWi) broadband access network proves to be a promising candidate that is reliable, robust, cost efficient, ubiquitous and capable of providing huge amount of bandwidth. To meet the ever-increasing bandwidth requirements, it has become very crucial to investigate the performance issues that arise with the deployment of next-generation Passive Optical Network (PON) and its integration with various wireless technologies. Apart from providing high speed internet access for mass use, this combined architecture aims to enable delivery of high quality and effective e-services in different categories including health, education, finance, banking, agriculture and e-government. In this work, we present an integrated architecture of 10-Gigabit-capable PON (XG-PON) and Enhanced Distributed Channel Access (EDCA) that combines the benefits of both technologies to meet the QoS demands of subscribers. Performance evaluation of the standards-compliant hybrid network is done using discrete-event Network Simulator-3 (NS-3) and results are reported in terms of throughput, average delay, average packet loss rate and fairness index. Per-class throughput signifies effectiveness of QoS distribution whereas aggregate throughput indicates effective utilization of wireless channel. This work has not been reported so far to the best of our knowledge.

  7. High-contrast imaging of mycobacterium tuberculosis using third-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Bo Ram; Lee, Eungjang; Park, Seung-Han

    2015-07-01

    Nonlinear optical microcopy has become an important tool in investigating biomaterials due to its various advantages such as label-free imaging capabilities. In particular, it has been shown that third-harmonic generation (THG) signals can be produced at interfaces between an aqueous medium (e.g. cytoplasm, interstitial fluid) and a mineralized lipidic surface. In this work, we have demonstrated that label-free high-contrast THG images of the mycobacterium tuberculosis can be obtained using THG microscopy.

  8. Study of a wireless power transmission system for an active capsule endoscope.

    PubMed

    Xin, Wenhui; Yan, Guozheng; Wang, Wenxin

    2010-03-01

    An active capsule endoscope (ACE) will consume much more energy than can be power by batteries. Its orientation and position are always undetermined when it continues the natural way down the gastrointestinal track. In order to deliver stable and sufficient energy to ACE safely, a wireless power transmission system based on inductive coupling is presented. The system consists of a Helmholtz primary coil outside and a multiple secondary coils inside the body. The Helmholtz primary coil is driven to generate a uniform alternating magnetic field covering the whole of the alimentary tract, and the multiple secondary coils receive energy regardless of the ACE's position and orientation relative to the generated magnetic field. The human tissue safety of the electromagnetic field generated by transmitting coil was evaluated, based on a high-resolution realistic human model. At least 310 mW usable power can be transmitted under the worst geometrical conditions. Outer dimensions of the power receiver, 10 mm diameter x 12 mm; transmitting power, 25 W; resonant frequency, 400 kHz. The maximum specific absorption rate (SAR) and current density of human tissues are 0.329 W/kg and 3.82 A/m(2), respectively, under the basic restrictions of the International Commission on Non-ionizing Radiation Protection (ICNIRP). The designed wireless power transmission is shown to be feasible and potentially safe in a future application. (c) 2010 John Wiley & Sons, Ltd.

  9. Bluetooth Low Energy: Wireless Connectivity for Medical Monitoring

    PubMed Central

    Omre, Alf Helge

    2010-01-01

    Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report “Worldwide Bluetooth Semiconductor 2008-2012 Forecast,” published November 2008, a forthcoming radio frequency communication (“wireless connectivity”) standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications. PMID:20307407

  10. Bluetooth low energy: wireless connectivity for medical monitoring.

    PubMed

    Omre, Alf Helge

    2010-03-01

    Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report "Worldwide Bluetooth Semiconductor 2008-2012 Forecast," published November 2008, a forthcoming radio frequency communication ("wireless connectivity") standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications. (c) 2010 Diabetes Technology Society.

  11. Power-Efficient Beacon Recognition Method Based on Periodic Wake-Up for Industrial Wireless Devices.

    PubMed

    Song, Soonyong; Lee, Donghun; Jang, Ingook; Choi, Jinchul; Son, Youngsung

    2018-04-17

    Energy harvester-integrated wireless devices are attractive for generating semi-permanent power from wasted energy in industrial environments. The energy-harvesting wireless devices may have difficulty in their communication with access points due to insufficient power supply for beacon recognition during network initialization. In this manuscript, we propose a novel method of beacon recognition based on wake-up control to reduce instantaneous power consumption in the initialization procedure. The proposed method applies a moving window for the periodic wake-up of the wireless devices. For unsynchronized wireless devices, beacons are always located in the same positions within each beacon interval even though the starting offsets are unknown. Using these characteristics, the moving window checks the existence of the beacon associated withspecified resources in a beacon interval, checks again for neighboring resources at the next beacon interval, and so on. This method can reduce instantaneous power and generates a surplus of charging time. Thus, the proposed method alleviates the problems of power insufficiency in the network initialization. The feasibility of the proposed method is evaluated using computer simulations of power shortage in various energy-harvesting conditions.

  12. MEMS high-speed angular-position sensing system with rf wireless transmission

    NASA Astrophysics Data System (ADS)

    Sun, Winston; Li, Wen J.

    2001-08-01

    A novel surface-micromachined non-contact high-speed angular-position sensor with total surface area under 4mm2 was developed using the Multi-User MEMS Processes (MUMPs) and integrated with a commercial RF transmitter at 433MHz carrier frequency for wireless signal detection. Currently, a 2.3 MHz internal clock of our data acquisition system and a sensor design with a 13mg seismic mass is sufficient to provide visual observation of a clear sinusoidal response wirelessly generated by the piezoresistive angular-position sensing system within speed range of 180 rpm to around 1000 rpm. Experimental results showed that the oscillation frequency and amplitude are related to the input angular frequency of the rotation disk and the tilt angle of the rotation axis, respectively. These important results could provide groundwork for MEMS researchers to estimate how gravity influences structural properties of MEMS devices under different circumstances.

  13. Quasistatic Cavity Resonance for Ubiquitous Wireless Power Transfer.

    PubMed

    Chabalko, Matthew J; Shahmohammadi, Mohsen; Sample, Alanson P

    2017-01-01

    Wireless power delivery has the potential to seamlessly power our electrical devices as easily as data is transmitted through the air. However, existing solutions are limited to near contact distances and do not provide the geometric freedom to enable automatic and un-aided charging. We introduce quasistatic cavity resonance (QSCR), which can enable purpose-built structures, such as cabinets, rooms, and warehouses, to generate quasistatic magnetic fields that safely deliver kilowatts of power to mobile receivers contained nearly anywhere within. A theoretical model of a quasistatic cavity resonator is derived, and field distributions along with power transfer efficiency are validated against measured results. An experimental demonstration shows that a 54 m3 QSCR room can deliver power to small coil receivers in nearly any position with 40% to 95% efficiency. Finally, a detailed safety analysis shows that up to 1900 watts can be transmitted to a coil receiver enabling safe and ubiquitous wireless power.

  14. Quasistatic Cavity Resonance for Ubiquitous Wireless Power Transfer

    PubMed Central

    Shahmohammadi, Mohsen; Sample, Alanson P.

    2017-01-01

    Wireless power delivery has the potential to seamlessly power our electrical devices as easily as data is transmitted through the air. However, existing solutions are limited to near contact distances and do not provide the geometric freedom to enable automatic and un-aided charging. We introduce quasistatic cavity resonance (QSCR), which can enable purpose-built structures, such as cabinets, rooms, and warehouses, to generate quasistatic magnetic fields that safely deliver kilowatts of power to mobile receivers contained nearly anywhere within. A theoretical model of a quasistatic cavity resonator is derived, and field distributions along with power transfer efficiency are validated against measured results. An experimental demonstration shows that a 54 m3 QSCR room can deliver power to small coil receivers in nearly any position with 40% to 95% efficiency. Finally, a detailed safety analysis shows that up to 1900 watts can be transmitted to a coil receiver enabling safe and ubiquitous wireless power. PMID:28199321

  15. Measurement of agricultural parameters using wireless sensor network (WSN)

    NASA Astrophysics Data System (ADS)

    Guaña-Moya, Javier; Sánchez-Almeida, Tarquino; Salgado-Reyes, Nelson

    2018-04-01

    The technological advances have allowed to create new applications in telecommunications, applying low power and reduced costs in their equipment, thus achieving the evolution of new wireless networks or also denominated Wireless Sensor Network. These technologies allow the generation of measurements and analysis of environmental parameter data and soil. Precision agriculture requires parameters for the improvement of production, obtained through WSN technologies. This research analyzes the climatic requirements and soil parameters in a rose plantation in a greenhouse at an altitude of 3,100 meters above sea level. In the present investigation, maximum parameters were obtained in the production of roses, which are in the optimum range of production, whereas the minimum parameters of temperature, humidity and luminosity, evidenced that these parameters can damage the plants, since temperatures less than 10 °C slow down the growth of the plant and allow the proliferation of diseases and fungi.

  16. Wireless Electrical Device Using Open-Circuit Elements Having No Electrical Connections

    NASA Technical Reports Server (NTRS)

    Taylor, Bryant Douglas (Inventor); Woodard, Stanley E. (Inventor)

    2012-01-01

    A wireless electrical device includes an electrically unconnected electrical conductor and at least one electrically unconnected electrode spaced apart from the electrical conductor. The electrical conductor is shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. Each electrode is at a location lying within the magnetic field response so-generated and is constructed such that a linear movement of electric charges is generated in each electrode due to the magnetic field response so-generated.

  17. Experience of wireless local area network in a radiation oncology department.

    PubMed

    Mandal, Abhijit; Asthana, Anupam Kumar; Aggarwal, Lalit Mohan

    2010-01-01

    The aim of this work is to develop a wireless local area network (LAN) between different types of users (Radiation Oncologists, Radiological Physicists, Radiation Technologists, etc) for efficient patient data management and to made easy the availability of information (chair side) to improve the quality of patient care in Radiation Oncology department. We have used mobile workstations (Laptops) and stationary workstations, all equipped with wireless-fidelity (Wi-Fi) access. Wireless standard 802.11g (as recommended by Institute of Electrical and Electronic Engineers (IEEE, Piscataway, NJ) has been used. The wireless networking was configured with the Service Set Identifier (SSID), Media Access Control (MAC) address filtering, and Wired Equivalent Privacy (WEP) network securities. We are successfully using this wireless network in sharing the indigenously developed patient information management software. The proper selection of the hardware and the software combined with a secure wireless LAN setup will lead to a more efficient and productive radiation oncology department.

  18. Analysis of Characteristics and Requirements for 5G Mobile Communication Systems

    NASA Astrophysics Data System (ADS)

    Ancans, G.; Stafecka, A.; Bobrovs, V.; Ancans, A.; Caiko, J.

    2017-08-01

    One of the main objectives of the fifth generation (5G) mobile communication systems, also known as IMT-2020, is to increase the current data rates up to several gigabits per second (Gbit/s) or even up to 10 Gbit/s and higher. One of the possibilities to consider is the use of higher frequencies in order to enlarge the available bandwidth. Wider bandwidth is necessary to achieve much higher data rates. It should be noted that wireless broadband transmission technologies require frequencies for their development. The main goal of the research is to investigate the characteristics and requirements of 5G mobile communication systems. The paper provides an insight into deployment scenario and radio wave propagation in frequencies above 24 GHz of IMT-2020.

  19. A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation.

    PubMed

    Lee, Hyung-Min; Park, Hangue; Ghovanloo, Maysam

    2013-09-01

    A power-efficient wireless stimulating system for a head-mounted deep brain stimulator (DBS) is presented. A new adaptive rectifier generates a variable DC supply voltage from a constant AC power carrier utilizing phase control feedback, while achieving high AC-DC power conversion efficiency (PCE) through active synchronous switching. A current-controlled stimulator adopts closed-loop supply control to automatically adjust the stimulation compliance voltage by detecting stimulation site potentials through a voltage readout channel, and improve the stimulation efficiency. The stimulator also utilizes closed-loop active charge balancing to maintain the residual charge at each site within a safe limit, while receiving the stimulation parameters wirelessly from the amplitude-shift-keyed power carrier. A 4-ch wireless stimulating system prototype was fabricated in a 0.5-μm 3M2P standard CMOS process, occupying 2.25 mm². With 5 V peak AC input at 2 MHz, the adaptive rectifier provides an adjustable DC output between 2.5 V and 4.6 V at 2.8 mA loading, resulting in measured PCE of 72 ~ 87%. The adaptive supply control increases the stimulation efficiency up to 30% higher than a fixed supply voltage to 58 ~ 68%. The prototype wireless stimulating system was verified in vitro .

  20. A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation

    PubMed Central

    Lee, Hyung-Min; Park, Hangue; Ghovanloo, Maysam

    2014-01-01

    A power-efficient wireless stimulating system for a head-mounted deep brain stimulator (DBS) is presented. A new adaptive rectifier generates a variable DC supply voltage from a constant AC power carrier utilizing phase control feedback, while achieving high AC-DC power conversion efficiency (PCE) through active synchronous switching. A current-controlled stimulator adopts closed-loop supply control to automatically adjust the stimulation compliance voltage by detecting stimulation site potentials through a voltage readout channel, and improve the stimulation efficiency. The stimulator also utilizes closed-loop active charge balancing to maintain the residual charge at each site within a safe limit, while receiving the stimulation parameters wirelessly from the amplitude-shift-keyed power carrier. A 4-ch wireless stimulating system prototype was fabricated in a 0.5-μm 3M2P standard CMOS process, occupying 2.25 mm². With 5 V peak AC input at 2 MHz, the adaptive rectifier provides an adjustable DC output between 2.5 V and 4.6 V at 2.8 mA loading, resulting in measured PCE of 72 ~ 87%. The adaptive supply control increases the stimulation efficiency up to 30% higher than a fixed supply voltage to 58 ~ 68%. The prototype wireless stimulating system was verified in vitro. PMID:24678126

  1. Bidirectional fiber-IVLLC and fiber-wireless convergence system with two orthogonally polarized optical sidebands.

    PubMed

    Lu, Hai-Han; Wu, Hsiao-Wen; Li, Chung-Yi; Ho, Chun-Ming; Yang, Zih-Yi; Cheng, Ming-Te; Lu, Chang-Kai

    2017-05-01

    A bidirectional fiber-invisible laser light communication (IVLLC) and fiber-wireless convergence system with two orthogonally polarized optical sidebands for hybrid cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and experimentally demonstrated. Two optical sidebands generated by a 60-GHz MMW signal are orthogonally polarized and separated into different polarizations. These orthogonally polarized optical sidebands are delivered over a 40-km single-mode fiber (SMF) transport to effectually reduce the fiber dispersion induced by a 40-km SMF transmission and the distortion caused by the parallel polarized optical sidebands. To the best of our knowledge, this work is the first to adopt two orthogonally polarized optical sidebands in a bidirectional fiber-IVLLC and fiber-wireless convergence system to reduce fiber dispersion and distortion effectually. Good carrier-to-noise ratio, composite second order, composite triple beat, and bit error rate (BER) are achieved for downlink transmission at a 40-km SMF operation and a 100-m free-space optical (FSO) link/3-m RF wireless transmission. For up-link transmission, good BER performance is acquired over a 40-km SMF transport and a 100-m FSO link. The approach presented in this work signifies the advancements in the convergence of SMF-based backbone and optical/RF wireless-based feeder.

  2. Terahertz wireless communications based on photonics technologies.

    PubMed

    Nagatsuma, Tadao; Horiguchi, Shogo; Minamikata, Yusuke; Yoshimizu, Yasuyuki; Hisatake, Shintaro; Kuwano, Shigeru; Yoshimoto, Naoto; Terada, Jun; Takahashi, Hiroyuki

    2013-10-07

    There has been an increasing interest in the application of terahertz (THz) waves to broadband wireless communications. In particular, use of frequencies above 275 GHz is one of the strong concerns among radio scientists and engineers, because these frequency bands have not yet been allocated at specific active services, and there is a possibility to employ extremely large bandwidths for ultra-broadband wireless communications. Introduction of photonics technologies for signal generation, modulation and detection is effective not only to enhance the bandwidth and/or the data rate, but also to combine fiber-optic (wired) and wireless networks. This paper reviews recent progress in THz wireless communications using telecom-based photonics technologies towards 100 Gbit/s.

  3. Possibly scalable solar hydrogen generation with quasi-artificial leaf approach.

    PubMed

    Patra, Kshirodra Kumar; Bhuskute, Bela D; Gopinath, Chinnakonda S

    2017-07-26

    Any solar energy harvesting technology must provide a net positive energy balance, and artificial leaf concept provided a platform for solar water splitting (SWS) towards that. However, device stability, high photocurrent generation, and scalability are the major challenges. A wireless device based on quasi-artificial leaf concept (QuAL), comprising Au on porous TiO 2 electrode sensitized by PbS and CdS quantum dots (QD), was demonstrated to show sustainable solar hydrogen (490 ± 25 µmol/h (corresponds to 12 ml H 2 h -1 ) from ~2 mg of photoanode material coated over 1 cm 2 area with aqueous hole (S 2- /SO 3 2- ) scavenger. A linear extrapolation of the above results could lead to hydrogen production of 6 L/h.g over an area of ~23 × 23 cm 2 . Under one sun conditions, 4.3 mA/cm 2 photocurrent generation, 5.6% power conversion efficiency, and spontaneous H 2 generation were observed at no applied potential (see S1). A direct coupling of all components within themselves enhances the light absorption in the entire visible and NIR region and charge utilization. Thin film approach, as in DSSC, combined with porous titania enables networking of all the components of the device, and efficiently converts solar to chemical energy in a sustainable manner.

  4. Development of an Internal Real-Time Wireless Diagnostic Tool for a Proton Exchange Membrane Fuel Cell

    PubMed Central

    Lee, Chi-Yuan; Chen, Chia-Hung; Tsai, Chao-Hsuan; Wang, Yu-Syuan

    2018-01-01

    To prolong the operating time of unmanned aerial vehicles which use proton exchange membrane fuel cells (PEMFC), the performance of PEMFC is the key. However, a long-term operation can make the Pt particles of the catalyst layer and the pollutants in the feedstock gas bond together (e.g., CO), so that the catalyst loses reaction activity. The performance decay and aging of PEMFC will be influenced by operating conditions, temperature, flow and CO concentration. Therefore, this study proposes the development of an internal real-time wireless diagnostic tool for PEMFC, and uses micro-electro-mechanical systems (MEMS) technology to develop a wireless and thin (<50 μm) flexible integrated (temperature, flow and CO) microsensor. The technical advantages are (1) compactness and three wireless measurement functions; (2) elastic measurement position and accurate embedding; (3) high accuracy and sensitivity and quick response; (4) real-time wireless monitoring of dynamic performance of PEMFC; (5) customized design and development. The flexible integrated microsensor is embedded in the PEMFC, three important physical quantities in the PEMFC, which are the temperature, flow and CO, can be measured simultaneously and instantly, so as to obtain the authentic and complete reaction in the PEMFC to enhance the performance of PEMFC and to prolong the service life. PMID:29342832

  5. Development of an Internal Real-Time Wireless Diagnostic Tool for a Proton Exchange Membrane Fuel Cell.

    PubMed

    Lee, Chi-Yuan; Chen, Chia-Hung; Tsai, Chao-Hsuan; Wang, Yu-Syuan

    2018-01-13

    To prolong the operating time of unmanned aerial vehicles which use proton exchange membrane fuel cells (PEMFC), the performance of PEMFC is the key. However, a long-term operation can make the Pt particles of the catalyst layer and the pollutants in the feedstock gas bond together (e.g., CO), so that the catalyst loses reaction activity. The performance decay and aging of PEMFC will be influenced by operating conditions, temperature, flow and CO concentration. Therefore, this study proposes the development of an internal real-time wireless diagnostic tool for PEMFC, and uses micro-electro-mechanical systems (MEMS) technology to develop a wireless and thin (<50 μm) flexible integrated (temperature, flow and CO) microsensor. The technical advantages are (1) compactness and three wireless measurement functions; (2) elastic measurement position and accurate embedding; (3) high accuracy and sensitivity and quick response; (4) real-time wireless monitoring of dynamic performance of PEMFC; (5) customized design and development. The flexible integrated microsensor is embedded in the PEMFC, three important physical quantities in the PEMFC, which are the temperature, flow and CO, can be measured simultaneously and instantly, so as to obtain the authentic and complete reaction in the PEMFC to enhance the performance of PEMFC and to prolong the service life.

  6. Generation of THz Wave with Orbital Angular Momentum by Graphene Patch Reflectarray

    DTIC Science & Technology

    2015-07-01

    potential to significantly increase spectral efficiency and channel capacity for wireless communication [1]. A few techniques have been reported to...plane wave. The graphene-based OAM generation is very promising for future applications in THz wireless communication . ACKNOWLEDGEMENT This work is... Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” Journal of Applied Physics, vol. 103, no. 6, pp

  7. Wearable Fall Detector using Integrated Sensors and Energy Devices

    NASA Astrophysics Data System (ADS)

    Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2015-11-01

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.

  8. Wearable Fall Detector using Integrated Sensors and Energy Devices.

    PubMed

    Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2015-11-24

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.

  9. Generation and characterization of monoclonal antibodies against Giardia muris trophozoites.

    PubMed Central

    Heyworth, M F; Ho, K E; Pappo, J

    1989-01-01

    Mouse monoclonal antibodies (mAb) were produced against Giardia muris trophozoite surface antigens. To generate B-cell hybridomas, P3/NS1/1-Ag4-1 myeloma cells were fused with splenic lymphocytes from BALB/c mice that had been immunized parenterally with G. muris trophozoites. Hybridoma culture supernatants were screened for mAb by flow cytometry of G. muris trophozoites incubated with culture supernatant followed by fluorescein-conjugated anti-mouse IgG and IgM. Flow cytometry showed three types of trophozoite staining by mAb: (i) bright staining of greater than 90% of trophozoites, with aggregation of the organisms; (ii) bright staining of approximately 90% of trophozoites, with little or no aggregation; (iii) dull staining of approximately 20% of trophozoites, without aggregation. Western blotting of mAb on G. muris trophozoite antigens separated by polyacrylamide gel electrophoresis showed that a mAb exhibiting the third of these flow cytometry staining patterns recognized trophozoite antigens of MW approximately 31,000 and 35,000. Immunoprecipitation studies indicated that the same mAb specifically precipitated two 125I-labelled trophozoite surface antigens of MW approximately 30,000. Monoclonal antibodies generated in this study may facilitate the purification and biochemical characterization of trophozoite antigens that are targets for protective intestinal antibody in G. muris-infected mice. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:2592009

  10. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.

    PubMed

    Yu, Hua; Zhou, Jielin; Deng, Licheng; Wen, Zhiyu

    2014-02-19

    This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW∙mm-3∙g-2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads.

  11. Fully printed flexible and disposable wireless cyclic voltammetry tag.

    PubMed

    Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-01-29

    A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to -500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health.

  12. Fully printed flexible and disposable wireless cyclic voltammetry tag

    PubMed Central

    Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-01-01

    A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to −500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health. PMID:25630250

  13. Fully printed flexible and disposable wireless cyclic voltammetry tag

    NASA Astrophysics Data System (ADS)

    Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-01-01

    A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to -500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health.

  14. Looped energy harvester for human motion

    NASA Astrophysics Data System (ADS)

    Geisler, M.; Boisseau, S.; Gasnier, P.; Willemin, J.; Gobbo, C.; Despesse, G.; Ait-Ali, I.; Perraud, S.

    2017-10-01

    The development of energy harvesters for smart wearables is a challenging topic, with a difficult combination of ergonomics constraints, lifetime and electrical requirements. In this work, we focus on an inertial inductive structure, composed of a magnetic ball circulating inside a closed-loop guide and converting the kinetic energy of the user’s limbs into electricity during the run. A specific induction issue related to the free self-rotation of the ball is underlined and addressed using a ferromagnetic ‘rail’ component. From a 2 g moving ball, a 5 cm-diameter 21 cm3 prototype generated up to 4.8 mW of average power when worn by someone running at 8 km h-1. This device is demonstrated to charge a 2.4 V NiMH battery and supply an acceleration and temperature Wireless Sensor Node at 20 Hz.

  15. Samba: a real-time motion capture system using wireless camera sensor networks.

    PubMed

    Oh, Hyeongseok; Cha, Geonho; Oh, Songhwai

    2014-03-20

    There is a growing interest in 3D content following the recent developments in 3D movies, 3D TVs and 3D smartphones. However, 3D content creation is still dominated by professionals, due to the high cost of 3D motion capture instruments. The availability of a low-cost motion capture system will promote 3D content generation by general users and accelerate the growth of the 3D market. In this paper, we describe the design and implementation of a real-time motion capture system based on a portable low-cost wireless camera sensor network. The proposed system performs motion capture based on the data-driven 3D human pose reconstruction method to reduce the computation time and to improve the 3D reconstruction accuracy. The system can reconstruct accurate 3D full-body poses at 16 frames per second using only eight markers on the subject's body. The performance of the motion capture system is evaluated extensively in experiments.

  16. Samba: A Real-Time Motion Capture System Using Wireless Camera Sensor Networks

    PubMed Central

    Oh, Hyeongseok; Cha, Geonho; Oh, Songhwai

    2014-01-01

    There is a growing interest in 3D content following the recent developments in 3D movies, 3D TVs and 3D smartphones. However, 3D content creation is still dominated by professionals, due to the high cost of 3D motion capture instruments. The availability of a low-cost motion capture system will promote 3D content generation by general users and accelerate the growth of the 3D market. In this paper, we describe the design and implementation of a real-time motion capture system based on a portable low-cost wireless camera sensor network. The proposed system performs motion capture based on the data-driven 3D human pose reconstruction method to reduce the computation time and to improve the 3D reconstruction accuracy. The system can reconstruct accurate 3D full-body poses at 16 frames per second using only eight markers on the subject's body. The performance of the motion capture system is evaluated extensively in experiments. PMID:24658618

  17. Real-time video streaming of sonographic clips using domestic internet networks and free videoconferencing software.

    PubMed

    Liteplo, Andrew S; Noble, Vicki E; Attwood, Ben H C

    2011-11-01

    As the use of point-of-care sonography spreads, so too does the need for remote expert over-reading via telesonogrpahy. We sought to assess the feasibility of using familiar, widespread, and cost-effective existent technology to allow remote over-reading of sonograms in real time and to compare 4 different methods of transmission and communication for both the feasibility of transmission and image quality. Sonographic video clips were transmitted using 2 different connections (WiFi and 3G) and via 2 different videoconferencing modalities (iChat [Apple Inc, Cupertino, CA] and Skype [Skype Software Sàrl, Luxembourg]), for a total of 4 different permutations. The clips were received at a remote location and recorded and then scored by expert reviewers for image quality, resolution, and detail. Wireless transmission of sonographic clips was feasible in all cases when WiFi was used and when Skype was used over a 3G connection. Images transmitted via a WiFi connection were statistically superior to those transmitted via 3G in all parameters of quality (average P = .031), and those sent by iChat were superior to those sent by Skype but not statistically so (average P = .057). Wireless transmission of sonographic video clips using inexpensive hardware, free videoconferencing software, and domestic Internet networks is feasible with retention of image quality sufficient for interpretation. WiFi transmission results in greater image quality than transmission by a 3G network.

  18. Feasibility Study on a Portable Field Pest Classification System Design Based on DSP and 3G Wireless Communication Technology

    PubMed Central

    Han, Ruizhen; He, Yong; Liu, Fei

    2012-01-01

    This paper presents a feasibility study on a real-time in field pest classification system design based on Blackfin DSP and 3G wireless communication technology. This prototype system is composed of remote on-line classification platform (ROCP), which uses a digital signal processor (DSP) as a core CPU, and a host control platform (HCP). The ROCP is in charge of acquiring the pest image, extracting image features and detecting the class of pest using an Artificial Neural Network (ANN) classifier. It sends the image data, which is encoded using JPEG 2000 in DSP, to the HCP through the 3G network at the same time for further identification. The image transmission and communication are accomplished using 3G technology. Our system transmits the data via a commercial base station. The system can work properly based on the effective coverage of base stations, no matter the distance from the ROCP to the HCP. In the HCP, the image data is decoded and the pest image displayed in real-time for further identification. Authentication and performance tests of the prototype system were conducted. The authentication test showed that the image data were transmitted correctly. Based on the performance test results on six classes of pests, the average accuracy is 82%. Considering the different live pests’ pose and different field lighting conditions, the result is satisfactory. The proposed technique is well suited for implementation in field pest classification on-line for precision agriculture. PMID:22736996

  19. Feasibility study on a portable field pest classification system design based on DSP and 3G wireless communication technology.

    PubMed

    Han, Ruizhen; He, Yong; Liu, Fei

    2012-01-01

    This paper presents a feasibility study on a real-time in field pest classification system design based on Blackfin DSP and 3G wireless communication technology. This prototype system is composed of remote on-line classification platform (ROCP), which uses a digital signal processor (DSP) as a core CPU, and a host control platform (HCP). The ROCP is in charge of acquiring the pest image, extracting image features and detecting the class of pest using an Artificial Neural Network (ANN) classifier. It sends the image data, which is encoded using JPEG 2000 in DSP, to the HCP through the 3G network at the same time for further identification. The image transmission and communication are accomplished using 3G technology. Our system transmits the data via a commercial base station. The system can work properly based on the effective coverage of base stations, no matter the distance from the ROCP to the HCP. In the HCP, the image data is decoded and the pest image displayed in real-time for further identification. Authentication and performance tests of the prototype system were conducted. The authentication test showed that the image data were transmitted correctly. Based on the performance test results on six classes of pests, the average accuracy is 82%. Considering the different live pests' pose and different field lighting conditions, the result is satisfactory. The proposed technique is well suited for implementation in field pest classification on-line for precision agriculture.

  20. Real-Time Optimization in Complex Stochastic Environment

    DTIC Science & Technology

    2015-06-24

    simpler ones, thus addressing scalability and the limited resources of networked wireless devices. This, however, comes at the expense of increased...Maximization of Wireless Sensor Networks with Non-ideal Batteries”, IEEE Trans. on Control of Network Systems, Vol. 1, 1, pp. 86-98, 2014. [27...C.G., “Optimal Energy-Efficient Downlink Transmission Scheduling for Real-Time Wireless Networks ”, subm. to IEEE Trans. on Control of Network Systems

  1. Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements

    NASA Astrophysics Data System (ADS)

    David, N.; Alpert, P.; Messer, H.

    2009-04-01

    We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements), the other in central Israel (29 measurements). The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences (RMSD) were 1.8 g/m3 and 3.4 g/m3 for the northern and central site measurements, respectively.

  2. Performance Evaluation of an Enhanced Uplink 3.5G System for Mobile Healthcare Applications.

    PubMed

    Komnakos, Dimitris; Vouyioukas, Demosthenes; Maglogiannis, Ilias; Constantinou, Philip

    2008-01-01

    The present paper studies the prospective and the performance of a forthcoming high-speed third generation (3.5G) networking technology, called enhanced uplink, for delivering mobile health (m-health) applications. The performance of 3.5G networks is a critical factor for successful development of m-health services perceived by end users. In this paper, we propose a methodology for performance assessment based on the joint uplink transmission of voice, real-time video, biological data (such as electrocardiogram, vital signals, and heart sounds), and healthcare records file transfer. Various scenarios were concerned in terms of real-time, nonreal-time, and emergency applications in random locations, where no other system but 3.5G is available. The accomplishment of quality of service (QoS) was explored through a step-by-step improvement of enhanced uplink system's parameters, attributing the network system for the best performance in the context of the desired m-health services.

  3. Performance Evaluation of an Enhanced Uplink 3.5G System for Mobile Healthcare Applications

    PubMed Central

    Komnakos, Dimitris; Vouyioukas, Demosthenes; Maglogiannis, Ilias; Constantinou, Philip

    2008-01-01

    The present paper studies the prospective and the performance of a forthcoming high-speed third generation (3.5G) networking technology, called enhanced uplink, for delivering mobile health (m-health) applications. The performance of 3.5G networks is a critical factor for successful development of m-health services perceived by end users. In this paper, we propose a methodology for performance assessment based on the joint uplink transmission of voice, real-time video, biological data (such as electrocardiogram, vital signals, and heart sounds), and healthcare records file transfer. Various scenarios were concerned in terms of real-time, nonreal-time, and emergency applications in random locations, where no other system but 3.5G is available. The accomplishment of quality of service (QoS) was explored through a step-by-step improvement of enhanced uplink system's parameters, attributing the network system for the best performance in the context of the desired m-health services. PMID:19132096

  4. Interference from the Deep Space Network's 70-m High Power Transmitter in Goldstone, CA to 3G Mobile Users Operating in the Surrounding Area

    NASA Technical Reports Server (NTRS)

    Ho, Christian

    2004-01-01

    The International Telecommunications Union (ITU) has allocated 2110-2200 MHz for the third generation (3G) mobile services. Part of the spectrum (2110-2120 MHz) is allocated for space research service and has been used by the DSN for years for sending command uplinks to deep space missions. Due to the extremely high power transmitted, potential interference to 3G users in areas surrounding DSN Goldstone exists. To address this issue, a preliminary analytical study has been performed and computer models have been developed. The goal is to provide theoretical foundation and tools to estimate the strength of interference as a function of distance from the transmitter for various interference mechanisms, (or propagation modes), and then determine the size of the area in which 3G users are susceptible to interference from the 400-kW transmitter in Goldstone. The focus is non-line-of-sight interference, taking into account of terrain shielding, anomalous propagation mechanisms, and technical and operational characteristics of the DSN and the 3G services.

  5. A low-power high-speed ultra-wideband pulse radio transmission system.

    PubMed

    Wei Tang; Culurciello, E

    2009-10-01

    We present a low-power high-speed ultra-wideband (UWB) transmitter with a wireless transmission test platform. The system is specifically designed for low-power high-speed wireless implantable biosensors. The integrated transmitter consists of a compact pulse generator and a modulator. The circuit is fabricated in the 0.5-mum silicon-on-sapphire process and occupies 420 mum times 420 mum silicon area. The transmitter is capable of generating pulses with 1-ns width and the pulse rate can be controlled between 90 MHz and 270 MHz. We built a demonstration/testing system for the transmitter. The transmitter achieves a 14-Mb/s data rate. With 50% duty cycle data, the power consumption of the chip is between 10 mW and 21 mW when the transmission distance is from 3.2 to 4 m. The core circuit size is 70 mum times 130 mum.

  6. The security energy encryption in wireless power transfer

    NASA Astrophysics Data System (ADS)

    Sadzali, M. N.; Ali, A.; Azizan, M. M.; Albreem, M. A. M.

    2017-09-01

    This paper presents a concept of security in wireless power transfer (WPT) by applying chaos theory. Chaos theory is applied as a security system in order to safeguard the transfer of energy from a transmitter to the intended receiver. The energy encryption of the wireless power transfer utilizes chaos theory to generate the possibility of a logistic map for the chaotic security key. The simulation for energy encryption wireless power transfer system was conducted by using MATLAB and Simulink. By employing chaos theory, the chaotic key ensures the transmission of energy from transmitter to its intended receiver.

  7. 4 Gbps impulse radio (IR) ultra-wideband (UWB) transmission over 100 meters multi mode fiber with 4 meters wireless transmission.

    PubMed

    Jensen, Jesper Bevensee; Rodes, Roberto; Caballero, Antonio; Yu, Xianbin; Gibbon, Timothy Braidwood; Monroy, Idelfonso Tafur

    2009-09-14

    We present experimental demonstrations of in-building impulse radio (IR) ultra-wideband (UWB) link consisting of 100 m multi mode fiber (MMF) and 4 m wireless transmission at a record 4 Gbps, and a record 8 m wireless transmission at 2.5 Gbps. A directly modulated vertical cavity surface emitting laser (VCSEL) was used for the generation of the optical signal. 8 m at 2.5 Gbps corresponds to a bit rate--distance product of 20; the highest yet reported for wireless IR-UWB transmission.

  8. Using the Scroll Wheel on a Wireless Mouse as a Motion Sensor

    NASA Astrophysics Data System (ADS)

    Taylor, Richard S.; Wilson, William R.

    2010-12-01

    Since its inception in the mid-80s, the computer mouse has undergone several design changes. As the mouse has evolved, physicists have found new ways to utilize it as a motion sensor. For example, the rollers in a mechanical mouse have been used as pulleys to study the motion of a magnet moving through a copper tube as a quantitative demonstration of Lenz's law and to study mechanical oscillators (e.g., mass-spring system and compound pendulum).1-3 Additionally, the optical system in an optical mouse has been used to study a mechanical oscillator (e.g., mass-spring system).4 The argument for using a mouse as a motion sensor has been and continues to be availability and cost. This paper continues this tradition by detailing the use of the scroll wheel on a wireless mouse as a motion sensor.

  9. Realistic Modeling of Wireless Network Environments

    DTIC Science & Technology

    2015-03-01

    wireless environment, namely vehicular networks. We also made a number of improvements to an emulation-based wireless testbed to improve channel model...and the two wireless devices used in the experiment (bottom). This testbed was used for point-point vehicular wireless experiments that used the...DSRC-based vehicular networks (~5.9 GHz). We were able to meet that goal, as described below. Figure 3: DSP Card 3.3 System design and

  10. Multi-service small-cell cloud wired/wireless access network based on tunable optical frequency comb

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Zhou, Kun; Yang, Liu; Pan, Lei; Liao, Zhen-wan; Zhang, Qiang

    2015-11-01

    In this paper, we demonstrate a novel multi-service wired/wireless integrated access architecture of cloud radio access network (C-RAN) based on radio-over-fiber passive optical network (RoF-PON) system, which utilizes scalable multiple- frequency millimeter-wave (MF-MMW) generation based on tunable optical frequency comb (TOFC). In the baseband unit (BBU) pool, the generated optical comb lines are modulated into wired, RoF and WiFi/WiMAX signals, respectively. The multi-frequency RoF signals are generated by beating the optical comb line pairs in the small cell. The WiFi/WiMAX signals are demodulated after passing through the band pass filter (BPF) and band stop filter (BSF), respectively, whereas the wired signal can be received directly. The feasibility and scalability of the proposed multi-service wired/wireless integrated C-RAN are confirmed by the simulations.

  11. A Sub-millimeter, Inductively Powered Neural Stimulator

    PubMed Central

    Freeman, Daniel K.; O'Brien, Jonathan M.; Kumar, Parshant; Daniels, Brian; Irion, Reed A.; Shraytah, Louis; Ingersoll, Brett K.; Magyar, Andrew P.; Czarnecki, Andrew; Wheeler, Jesse; Coppeta, Jonathan R.; Abban, Michael P.; Gatzke, Ronald; Fried, Shelley I.; Lee, Seung Woo; Duwel, Amy E.; Bernstein, Jonathan J.; Widge, Alik S.; Hernandez-Reynoso, Ana; Kanneganti, Aswini; Romero-Ortega, Mario I.; Cogan, Stuart F.

    2017-01-01

    Wireless neural stimulators are being developed to address problems associated with traditional lead-based implants. However, designing wireless stimulators on the sub-millimeter scale (<1 mm3) is challenging. As device size shrinks, it becomes difficult to deliver sufficient wireless power to operate the device. Here, we present a sub-millimeter, inductively powered neural stimulator consisting only of a coil to receive power, a capacitor to tune the resonant frequency of the receiver, and a diode to rectify the radio-frequency signal to produce neural excitation. By replacing any complex receiver circuitry with a simple rectifier, we have reduced the required voltage levels that are needed to operate the device from 0.5 to 1 V (e.g., for CMOS) to ~0.25–0.5 V. This reduced voltage allows the use of smaller receive antennas for power, resulting in a device volume of 0.3–0.5 mm3. The device was encapsulated in epoxy, and successfully passed accelerated lifetime tests in 80°C saline for 2 weeks. We demonstrate a basic proof-of-concept using stimulation with tens of microamps of current delivered to the sciatic nerve in rat to produce a motor response. PMID:29230164

  12. Additive Effects of Millimeter Waves and 2-Deoxyglucose Co-Exposure on the Human Keratinocyte Transcriptome.

    PubMed

    Soubere Mahamoud, Yonis; Aite, Meziane; Martin, Catherine; Zhadobov, Maxim; Sauleau, Ronan; Le Dréan, Yves; Habauzit, Denis

    2016-01-01

    Millimeter Waves (MMW) will be used in the next-generation of high-speed wireless technologies, especially in future Ultra-Broadband small cells in 5G cellular networks. Therefore, their biocompatibilities must be evaluated prior to their massive deployment. Using a microarray-based approach, we analyzed modifications to the whole genome of a human keratinocyte model that was exposed at 60.4 GHz-MMW at an incident power density (IPD) of 20 mW/cm2 for 3 hours in athermic conditions. No keratinocyte transcriptome modifications were observed. We tested the effects of MMWs on cell metabolism by co-treating MMW-exposed cells with a glycolysis inhibitor, 2-deoxyglucose (2dG, 20 mM for 3 hours), and whole genome expression was evaluated along with the ATP content. We found that the 2dG treatment decreased the cellular ATP content and induced a high modification in the transcriptome (632 coding genes). The affected genes were associated with transcriptional repression, cellular communication and endoplasmic reticulum homeostasis. The MMW/2dG co-treatment did not alter the keratinocyte ATP content, but it did slightly alter the transcriptome, which reflected the capacity of MMW to interfere with the bioenergetic stress response. The RT-PCR-based validation confirmed 6 MMW-sensitive genes (SOCS3, SPRY2, TRIB1, FAM46A, CSRNP1 and PPP1R15A) during the 2dG treatment. These 6 genes encoded transcription factors or inhibitors of cytokine pathways, which raised questions regarding the potential impact of long-term or chronic MMW exposure on metabolically stressed cells.

  13. Rapid Prototyping of High Performance Signal Processing Applications

    DTIC Science & Technology

    2011-01-01

    understand- ing broadband wireless networking . Prentice Hall, 2007. [4] J.W.M. Baars, L.R. D’Addario, and A.R. Thompson. Radio astronomy in the... wireless sensor net- works. In Proceedings of the IEEE Real-Time Systems Symposium, pages 214–223, Tucson, Arizona, December 2007. 147 [74] C. Shen, H. Wu...computing platforms. In this region of high performance DSP, rapid prototyping is critical for faster time-to-market (e.g., in the wireless

  14. Wireless Damage Location Sensing System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant Douglas (Inventor)

    2012-01-01

    A wireless damage location sensing system uses a geometric-patterned wireless sensor that resonates in the presence of a time-varying magnetic field to generate a harmonic response that will experience a change when the sensor experiences a change in its geometric pattern. The sensing system also includes a magnetic field response recorder for wirelessly transmitting the time-varying magnetic field and for wirelessly detecting the harmonic response. The sensing system compares the actual harmonic response to a plurality of predetermined harmonic responses. Each predetermined harmonic response is associated with a severing of the sensor at a corresponding known location thereof so that a match between the actual harmonic response and one of the predetermined harmonic responses defines the known location of the severing that is associated therewith.

  15. Techno-Economic Analysis of FiWi Access Networks Based on 802.11ac WLAN and NG-PON2 Networks

    NASA Astrophysics Data System (ADS)

    Breskovic, Damir; Begusic, Dinko

    2017-05-01

    In this article, techno-economic analysis of a fiber-wireless access network is presented. With high bandwidth capacity of the gigabit passive optical network and with cost-effectiveness of very high throughput 802.11ac wireless local area networks that enable user mobility in the wireless segment, fiber-wireless access networks can be considered as an alternative to the fiber-to-the-home architecture for next generation access networks. Analysis based on the proposed scenario here, shows that a fiber-wireless access network is a more cost-effective solution in densely populated areas, but with some introduced improvements, even other geotypes can be considered as a commercially-viable solution.

  16. High-performance wireless powering for peripheral nerve neuromodulation systems.

    PubMed

    Tanabe, Yuji; Ho, John S; Liu, Jiayin; Liao, Song-Yan; Zhen, Zhe; Hsu, Stephanie; Shuto, Chika; Zhu, Zi-Yi; Ma, Andrew; Vassos, Christopher; Chen, Peter; Tse, Hung Fat; Poon, Ada S Y

    2017-01-01

    Neuromodulation of peripheral nerves with bioelectronic devices is a promising approach for treating a wide range of disorders. Wireless powering could enable long-term operation of these devices, but achieving high performance for miniaturized and deeply placed devices remains a technological challenge. We report the miniaturized integration of a wireless powering system in soft neuromodulation device (15 mm length, 2.7 mm diameter) and demonstrate high performance (about 10%) during in vivo wireless stimulation of the vagus nerve in a porcine animal model. The increased performance is enabled by the generation of a focused and circularly polarized field that enhances efficiency and provides immunity to polarization misalignment. These performance characteristics establish the clinical potential of wireless powering for emerging therapies based on neuromodulation.

  17. High-performance wireless powering for peripheral nerve neuromodulation systems

    PubMed Central

    Liu, Jiayin; Liao, Song-Yan; Zhen, Zhe; Hsu, Stephanie; Shuto, Chika; Zhu, Zi-Yi; Ma, Andrew; Vassos, Christopher; Chen, Peter; Tse, Hung Fat; Poon, Ada S. Y.

    2017-01-01

    Neuromodulation of peripheral nerves with bioelectronic devices is a promising approach for treating a wide range of disorders. Wireless powering could enable long-term operation of these devices, but achieving high performance for miniaturized and deeply placed devices remains a technological challenge. We report the miniaturized integration of a wireless powering system in soft neuromodulation device (15 mm length, 2.7 mm diameter) and demonstrate high performance (about 10%) during in vivo wireless stimulation of the vagus nerve in a porcine animal model. The increased performance is enabled by the generation of a focused and circularly polarized field that enhances efficiency and provides immunity to polarization misalignment. These performance characteristics establish the clinical potential of wireless powering for emerging therapies based on neuromodulation. PMID:29065141

  18. Cognitive Radio Networks for Tactical Wireless Communications

    DTIC Science & Technology

    2014-12-01

    exists. Instead, security is an evolving process, as we have seen in the context of WLANs and 2G / 3G networks. New system vulnerabilities continue to...in the network configuration and radio parameters take place due to mobility of platforms, and variation in other users of the RF environment. CRNs...dynamic spectrum access experimentally, and it represents the largest military Mobile Ad hoc Network (MANET) as of today. The WNaN demonstrator has been

  19. Mesoporous silica nanoparticles decorated with polycationic dendrimers for infection treatment.

    PubMed

    González, Blanca; Colilla, Montserrat; Díez, Jaime; Pedraza, Daniel; Guembe, Marta; Izquierdo-Barba, Isabel; Vallet-Regí, María

    2018-03-01

    This work aims to provide an effective and novel solution for the treatment of infection by using nanovehicles loaded with antibiotics capable of penetrating the bacterial wall, thus increasing the antimicrobial effectiveness. These nanosystems, named "nanoantibiotics", are composed of mesoporous silica nanoparticles (MSNs), which act as nanocarriers of an antimicrobial agent (levofloxacin, LEVO) localized inside the mesopores. To provide the nanosystem of bacterial membrane interaction capability, a polycationic dendrimer, concretely the poly(propyleneimine) dendrimer of third generation (G3), was covalently grafted to the external surface of the LEVO-loaded MSNs. After physicochemical characterization of this nanoantibiotic, the release kinetics of LEVO and the antimicrobial efficacy of each released dosage were evaluated. Besides, internalization studies of the MSNs functionalized with the G3 dendrimer were carried out, showing a high penetrability throughout Gram-negative bacterial membranes. This work evidences that the synergistic combination of polycationic dendrimers as bacterial membrane permeabilization agents with LEVO-loaded MSNs triggers an efficient antimicrobial effect on Gram-negative bacterial biofilm. These positive results open up very promising expectations for their potential application in new infection therapies. Seeking new alternatives to current available treatments of bacterial infections represents a great challenge in nanomedicine. This work reports the design and optimization of a new class of antimicrobial agent, named "nanoantibiotic", based on mesoporous silica nanoparticles (MSNs) decorated with polypropyleneimine dendrimers of third generation (G3) and loaded with levofloxacin (LEVO) antibiotic. The covalently grafting of these G3 dendrimers to MSNs allows an effective internalization in Gram-negative bacteria. Furthermore, the LEVO loaded into the mesoporous cavities is released in a sustained manner at effective antimicrobial dosages. The novelty and originality of this manuscript relies on proving that the synergistic combination of bacteria-targeting and antimicrobial agents into a unique nanosystem provokes a remarkable antimicrobial effect against bacterial biofilm. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. A High-Resolution Minimicroscope System for Wireless Real-Time Monitoring.

    PubMed

    Wang, Zongjie; Boddeda, Akash; Parker, Benjamin; Samanipour, Roya; Ghosh, Sanjoy; Menard, Frederic; Kim, Keekyoung

    2018-07-01

    Compact, cost-effective, and high-performance microscope that enables the real-time imaging of cells and lab-on-a-chip devices is highly demanded for cell biology and biomedical engineering. This paper aims to present the design and application of an inexpensive wireless minimicroscope with resolution up to 2592 × 1944 pixels and speed up to 90 f/s. The minimicroscope system was built on a commercial embedded system (Raspberry Pi). We modified a camera module and adopted an inverse dual lens system to obtain the clear field of view and appropriate magnification for tens of micrometer objects. The system was capable of capturing time-lapse images and transferring image data wirelessly. The entire system can be operated wirelessly and cordlessly in a conventional cell culturing incubator. The developed minimicroscope was used to monitor the attachment and proliferation of NIH-3T3 and HEK 293 cells inside an incubator for 50 h. In addition, the minimicroscope was used to monitor a droplet generation process in a microfluidic device. The high-quality images captured by the minimicroscope enabled us an automated analysis of experimental parameters. The successful applications prove the great potential of the developed minimicroscope for monitoring various biological samples and microfluidic devices. This paper presents the design of a high-resolution minimicroscope system that enables the wireless real-time imaging of cells inside the incubator. This system has been verified to be a useful tool to obtain high-quality images and videos for the automated quantitative analysis of biological samples and lab-on-a-chip devices in the long term.

  1. In vivo wireless biodiagnosis system for long-term bioactivity monitoring network

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuang; Wu, Wen-Jong; Yu, Shih-An; Huang, Jhen-Gang; Lin, Yun-Han; Chen, Yih-Fan; Jin, Ming-Hui; Wen, Chih-Min; Kao, Cheng-Yan; Lin, Shi-Ming; Lu, Shey-Shi; Lin, Chii-Wann; Yen, Jia-Yush; Jaw, Fu-Shan; Chen, Chi-An; Liao, Fang-Jen; Chiu, Nan-Fu; Chien, Chia-Nan; Lee, Chih-Kung

    2004-07-01

    Attempts to develop a Wireless Health Advanced Mobile Bio-diagnostic System (abbreviated as WHAM-BioS) have arisen from the need to monitor the health status of patients under long-term care programs. The proposed WHAM-BioS as presented here was developed by integrating various technologies: nano/MEMS technology, biotechnology, network/communication technology, and information technology. The biochips proposed not only detect certain diseases but will also report any abnormal status readings on the patient to the medical personnel immediately through the network system. Since long-term home care is typically involved, the parameters monitored must be analyzed and traced continuously over a long period of time. To minimize the intrusion to the patients, a wireless sensor embedded within a wireless network is highly recommended. To facilitate the widest possible use of various biochips, a smart sensor node concept was implemented. More specifically, various technologies and components such as built-in micro power generators, energy storage devices, initialization processes, no-waste bio-detection methodologies, embedded controllers, wireless warning signal transmissions, and power/data management were merged and integrated to create this novel technology. The design methodologies and the implementation schemes are detailed. Potential expansions of this newly developed technology to other applications regimes will be presented as well.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, John P.; Hamill, Michael J.; Mitchell, M. G.

    A major portion of the Wireless Networking Project at Sandia National Laboratories over the last few years has been to examine IEEE 802.11 wireless networking for possible use at Sandia and if practical, introduce this technology. This project team deployed 802.11a, b, and g Wireless Local Area Networking at Sandia. This report examines the basics of wireless networking and captures key results from project tests and experiments. It also records project members thoughts and designs on wireless LAN architecture and security issues. It documents some of the actions and milestones of this project, including pilot and production deployment of wirelessmore » networking equipment, and captures the team's rationale behind some of the decisions made. Finally, the report examines lessons learned, future directions, and conclusions.« less

  3. Station for spatially distributed measurements of soil moisture and ambient temperature

    NASA Astrophysics Data System (ADS)

    Jankovec, Jakub; Šanda, Martin; Haase, Tomáš; Sněhota, Michal; Wild, Jan

    2013-04-01

    Third generation of combined thermal and soil moisture standalone field station coded TMS3 with wireless communication is presented. The device combines three thermometers (MAXIM/DALLAS Semiconductor DS7505U with -55 to +125°C range and 0.0625°C resolution, 0.5°C precision in 0 to +70°C range and 2°C precision out of this range). Soil moisture measurement is performed based on time domain transmission (TDT) principle for the full range of soil moisture with 0.025% resolution within the full possible soil moisture span for the most typical conditions of dry to saturated soils with safe margins to enable measurements in freezing, hot or saline soils. Principal compact version is designed for temperature measurements approximately at heights -10, 0 and +15 cm relative to soil surface when installed vertically and soil moisture measurements between 0 and 12 cm below surface. Set of buriable/subsurface stations each with 2.2 meter extension cord with soil and surface temperature measurement provides possibility to scan vertical soil profile for soil moisture and temperature at desired depths. USB equipped station is designed for streamed direct data acquisition in laboratory use in 1s interval. Station is also equipped with the shock sensor indicating the manipulation. Presented version incorporates life time permanent data storage (0.5 million logs). Current sensor design aims towards improved durability in harsh outdoor environment with reliable functioning in wet conditions withstanding mechanical or electric shock destruction. Insertion into the soil is possible by pressing with the use of a simple plastic cover. Data are retrieved by contact portable pocket collector (second generation) or by RFID wireless communication for hundreds meter distance (third generation) in either star pattern of GSM hub to stations or lined up GSM to station to another station both in comprised data packets. This option will allow online data harvesting and real time process control (e.g. optimized irrigation) by the end of 2013. User selected regimes of scanning in the field standalone model is 1,5 or 15 minutes for soil moisture and 1, 5, 10 or 15 minutes for the temperature (in their practical combinations) with a battery and datastorage lifetime ranging 1 - 10 years. Basic station diagnostics is recorded daily, comprehensive check is performed monthly. The TMS2 undergoes calibration on sets of soils. Disturbed and packed cylindrical soil samples (approx. 20 liter) were subject to forced bottom air ventilation to distribute the moisture evenly along vertical axis during drying the sample with increased intensity. Database of soil-specific calibration curves is being built for various soil samples. TMS2 station has been calibrated for soil materials: sandy loam, quartz sand and peat. Calibration on selected undisturbed 7 liter samples, previously CT scanned for correct sensor placement, is in the progress. Temperature and salinity influence on the soil moisture results in drift of 0.05%/°C and 7%/(in full range of 0 to 10 miliSiemens/cm) and additional 2%/(in the range of 10 to 20 miliSiemens/cm) as found in 100% moisture solution. Extended testing of TMS1 generation, predecessor of current design, is successfully performed in variety of field locations (central Europe, central Africa, Himalaya region). Results of long-term measurement at hundreds of localities are successfully used for i) evaluation of species-specific environmental requirements (for different species of plants, bryophytes and fungi) and ii) extrapolation of microclimatic conditions over large areas of rugged sandstone relief with assistance of accurate, LiDAR based, digital terrain model. TMS1 units are e.g. also applied for continuous measurement of temperature and moisture of coarse woody debris, which serves as an important substrate for establishment and growth of seedlings and is thus crucial for natural regeneration of many forest ecosystems. The research is supported by the Technology Agency of the Czech Republic projects No. TA01021283 and SGS12/130/OHK1/2T/11.

  4. Wiggler magnetic field assisted third harmonic generation in expanding clusters

    NASA Astrophysics Data System (ADS)

    Vij, Shivani

    2018-04-01

    A simple theoretical model is constructed to study the wiggler magnetic field assisted third harmonic generation of intense short pulse laser in a cluster in its expanding phase. The ponderomotive force of laser causes density perturbations in cluster electron density which couples with wiggler magnetic field to produce a nonlinear current that generates transverse third harmonic. An intense short pulse laser propagating through a gas embedded with atomic clusters, converts it into hot plasma balls via tunnel ionization. Initially, the electron plasma frequency inside the clusters ω pe > \\sqrt{3}{ω }1 (with ω 1 being the frequency of the laser). As the cluster expands under Coulomb force and hydrodynamic pressure, ω pe decreases to \\sqrt{3}{ω }1. At this time, there is resonant enhancement in the efficiency of the third harmonic generation. The efficiency of third harmonic generation is enhanced due to cluster plasmon resonance and by phase matching due to wiggler magnetic field. The effect of cluster size on the expansion rate is studied to observe that the clusters of different radii would expand differently. The impact of laser intensity and wiggler magnetic field on the efficiency of third harmonic generation is also explored.

  5. Power-Efficient Beacon Recognition Method Based on Periodic Wake-Up for Industrial Wireless Devices

    PubMed Central

    Lee, Donghun; Jang, Ingook; Choi, Jinchul; Son, Youngsung

    2018-01-01

    Energy harvester-integrated wireless devices are attractive for generating semi-permanent power from wasted energy in industrial environments. The energy-harvesting wireless devices may have difficulty in their communication with access points due to insufficient power supply for beacon recognition during network initialization. In this manuscript, we propose a novel method of beacon recognition based on wake-up control to reduce instantaneous power consumption in the initialization procedure. The proposed method applies a moving window for the periodic wake-up of the wireless devices. For unsynchronized wireless devices, beacons are always located in the same positions within each beacon interval even though the starting offsets are unknown. Using these characteristics, the moving window checks the existence of the beacon associated withspecified resources in a beacon interval, checks again for neighboring resources at the next beacon interval, and so on. This method can reduce instantaneous power and generates a surplus of charging time. Thus, the proposed method alleviates the problems of power insufficiency in the network initialization. The feasibility of the proposed method is evaluated using computer simulations of power shortage in various energy-harvesting conditions. PMID:29673206

  6. Non-Abelian string and particle braiding in topological order: Modular SL (3 ,Z ) representation and (3 +1 ) -dimensional twisted gauge theory

    NASA Astrophysics Data System (ADS)

    Wang, Juven C.; Wen, Xiao-Gang

    2015-01-01

    String and particle braiding statistics are examined in a class of topological orders described by discrete gauge theories with a gauge group G and a 4-cocycle twist ω4 of G 's cohomology group H4(G ,R /Z ) in three-dimensional space and one-dimensional time (3 +1 D ) . We establish the topological spin and the spin-statistics relation for the closed strings and their multistring braiding statistics. The 3 +1 D twisted gauge theory can be characterized by a representation of a modular transformation group, SL (3 ,Z ) . We express the SL (3 ,Z ) generators Sx y z and Tx y in terms of the gauge group G and the 4-cocycle ω4. As we compactify one of the spatial directions z into a compact circle with a gauge flux b inserted, we can use the generators Sx y and Tx y of an SL (2 ,Z ) subgroup to study the dimensional reduction of the 3D topological order C3 D to a direct sum of degenerate states of 2D topological orders Cb2 D in different flux b sectors: C3 D=⊕bCb2 D . The 2D topological orders Cb2 D are described by 2D gauge theories of the group G twisted by the 3-cocycle ω3 (b ), dimensionally reduced from the 4-cocycle ω4. We show that the SL (2 ,Z ) generators, Sx y and Tx y, fully encode a particular type of three-string braiding statistics with a pattern that is the connected sum of two Hopf links. With certain 4-cocycle twists, we discover that, by threading a third string through two-string unlink into a three-string Hopf-link configuration, Abelian two-string braiding statistics is promoted to non-Abelian three-string braiding statistics.

  7. Radio-over-optical waveguide system-on-wafer for massive delivery capacity 5G MIMO access networks

    NASA Astrophysics Data System (ADS)

    Binh, Le N.

    2017-01-01

    Delivering maximum information capacity over MIMO antennae systems beam steering is critical so as to achieve the flexibility via beam steering, maximizing the number of users or community of users in Gb/s rate per user over distributed cloud-based optical-wireless access networks. This paper gives an overview of (i) demands of optical - wireless delivery with high flexibility, especially the beam steering of multi-Tbps information channels to information hungry community of users via virtualized beam steering MIMO antenna systems at the free-license mmW region; (ii) Proposing a novel photonic planar integrated waveguide systems composing several passive and active, passive and amplification photonic devices so as to generate mmW carrier and embedded baseband information channels to feed to antenna elements; (iii) Integration techniques to generate a radio over optical waveguide (RoOW) system-on-wafer (SoW) comprising MIMO planar antenna elements and associate photonic integrated circuits for both up- and down- links; (iv) Challenges encountered in the implementation of the SoW in both wireless and photonic domains; (v) Photonic modulation techniques to achieve maximum transmission capacity per wavelength per MIMO antenna system. (vi) A view on control-feedback systems for fast and accurate generation of phase pattern for MIMO beam steering via a bank of optical phase modulators to mmW carrier phases and their preservation in the converted mmW domain . (vi) The overall operational principles of the novel techniques and technologies based on the coherent mixing of two lightwave channels The entire SoW can be implemented on SOI Si-photonic technology or via hybrid integration. These technological developments and their pros- and cons- will be discussed to achieve 50Tera-bps over the extended 110 channel Cband single mode fiber with mmW centered at 58.6GHz and 7GHz free-license band.

  8. Wireless sensors powered by microbial fuel cells.

    PubMed

    Shantaram, Avinash; Beyenal, Haluk; Raajan, Raaja; Veluchamy, Angathevar; Lewandowski, Zbigniew

    2005-07-01

    Monitoring parameters characterizing water quality, such as temperature, pH, and concentrations of heavy metals in natural waters, is often followed by transmitting the data to remote receivers using telemetry systems. Such systems are commonly powered by batteries, which can be inconvenient at times because batteries have a limited lifetime and must be recharged or replaced periodically to ensure that sufficient energy is available to power the electronics. To avoid these inconveniences, a microbial fuel cell was designed to power electrochemical sensors and small telemetry systems to transmit the data acquired by the sensors to remote receivers. The microbial fuel cell was combined with low-power, high-efficiency electronic circuitry providing a stable power source for wireless data transmission. To generate enough power for the telemetry system, energy produced by the microbial fuel cell was stored in a capacitor and used in short bursts when needed. Since commercial electronic circuits require a minimum 3.3 V input and our cell was able to deliver a maximum of 2.1 V, a DC-DC converter was used to boost the potential. The DC-DC converter powered a transmitter, which gathered the data from the sensor and transmitted it wirelessly to a remote receiver. To demonstrate the utility of the system, temporal variations in temperature were measured, and the data were wirelessly transmitted to a remote receiver.

  9. Contemporary, emerging, and ratified wireless security standards: an update for the networked dental office.

    PubMed

    Mupparapu, Muralidhar

    2006-02-15

    Wireless networking is not new to contemporary dental offices around the country. Wireless routers and network cards have made access to patient records within the office handy and, thereby, saving valuable chair side time and increasing productivity. As is the case with any rapidly developing technology, wireless technology also changes with the same rate. Unless, the users of the wireless networking understand the implications of these changes and keep themselves updated periodically, the office network will become obsolete very quickly. This update of the emerging security protocols and pertaining to ratified wireless 802.11 standards will be timely for the contemporary dentist whose office is wirelessly networked. This article brings the practicing dentist up-to-date on the newer versions and standards in wireless networking that are changing at a fast pace. The introduction of newer 802.11 standards like super G, Super AG, Multiple Input Multiple Output (MIMO), and pre-n are changing the pace of adaptation of this technology. Like any other rapidly transforming technology, information pertaining to wireless networking should be a priority for the contemporary dentist, an eventual end-user in order to be a well-informed and techno-savvy consumer.

  10. Magnetically coupled resonance wireless charging technology principles and transfer mechanisms

    NASA Astrophysics Data System (ADS)

    Zhou, Jiehua; Wan, Jian; Ma, Yinping

    2017-05-01

    With the tenure of Electric-Vehicle rising around the world, the charging methods have been paid more and more attention, the current charging mode mainly has the charging posts and battery swapping station. The construction of the charging pile or battery swapping station not only require lots of manpower, material costs but the bare conductor is also easy to generate electric spark hidden safety problems, still occupies large space. Compared with the wired charging, wireless charging mode is flexible, unlimited space and location factors and charging for vehicle safety and quickly. It complements the traditional charging methods in adaptability and the independent charge deficiencies. So the researching the wireless charging system have an important practical significance and application value. In this paper, wireless charging system designed is divided into three parts: the primary side, secondary side and resonant coupling. The main function of the primary side is to generate high-frequency alternating current, so selecting CLASS-E amplifier inverter structure through the research on full bridge, half-bridge and power amplification circuit. Addition, the wireless charging system is susceptible to outside interference, frequency drift phenomenon. Combined with the wireless energy transmission characteristics, resonant parts adopt resonant coupling energy transmission scheme and the Series-Series coupling compensation structure. For the electric vehicle charging power and voltage requirements, the main circuit is a full bridge inverter and Boost circuit used as the secondary side.

  11. Design, fabrication, and testing of energy-harvesting thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Jovanovic, Velimir; Ghamaty, Saeid

    2006-03-01

    An energy-harvesting thermoelectric generator (TEG) is being developed to provide power for wireless sensors used in health monitoring of Navy machinery. TEGs are solid-state devices that convert heat directly into electricity without any moving parts. In this application, the TEGs utilize the heat transfer between shipboard waste heat sources and the ambient air to generate electricity. In order to satisfy the required small design volume of less than one cubic inch, Hi-Z is using its innovative thin-film Quantum Well (QW) thermoelectric technology that will provide a factor of four increase in efficiency and a large reduction in the device volume over the currently used bulk Bi IITe 3 based thermoelectics. QWs are nanostructured multi-layer films. These wireless sensors can be used to detect cracks, corrosion, impact damage, and temperature and vibration excursions as part of the Condition Based Maintenance (CBM) of the Navy ship machinery. The CBM of the ship machinery can be significantly improved by automating the process with the use of self-powered wireless sensors. These power-harvesting TEGs can be used to replace batteries as electrical power sources and to eliminate power cables and data lines. The first QW TEG module was fabricated and initial tests were successful. It is planned to conduct performance tests the entire prototype QW TEG device (consisting of the TEG module, housing, thermal insulation and the heat sink) in a simulated thermal environment of a Navy ship.

  12. 47 CFR 12.3 - 911 and E911 analyses and reports.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... wireless 911 rules set forth in § 20.18 of this chapter; and interconnected Voice over Internet Protocol... Public Safety and Homeland Security Bureau (PSHSB) has the delegated authority to implement and activate... generation Internet Protocol-based E911 platform. (b) These reports are due 120 days from the date that the...

  13. 76 FR 56165 - Soliciting Input on Research and Development Priorities for Desirable Features of a Nationwide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... research and development priorities in anticipation of the President's Wireless Innovation (WIN) Fund to help drive innovation of next-generation network technologies. DATES: Comments are requested by 5 p.m... communities.\\1\\ The Administration has also proposed a $3 billion WIN Fund to help drive innovation through...

  14. Real-time network traffic classification technique for wireless local area networks based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza

    2017-05-01

    Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.

  15. Watchdog Sensor Network with Multi-Stage RF Signal Identification and Cooperative Intrusion Detection

    DTIC Science & Technology

    2012-03-01

    detection and physical layer authentication in mobile Ad Hoc networks and wireless sensor networks (WSNs) have been investigated. Résume Le rapport...IEEE 802.16 d and e (WiMAX); (b) IEEE 802.11 (Wi-Fi) family of a, b, g, n, and s (c) Sensor networks based on IEEE 802.15.4: Wireless USB, Bluetooth... sensor network are investigated for standard compatible wireless signals. The proposed signal existence detection and identification process consists

  16. Simulation of devices mobility to estimate wireless channel quality metrics in 5G networks

    NASA Astrophysics Data System (ADS)

    Orlov, Yu.; Fedorov, S.; Samuylov, A.; Gaidamaka, Yu.; Molchanov, D.

    2017-07-01

    The problem of channel quality estimation for devices in a wireless 5G network is formulated. As a performance metrics of interest we choose the signal-to-interference-plus-noise ratio, which depends essentially on the distance between the communicating devices. A model with a plurality of moving devices in a bounded three-dimensional space and a simulation algorithm to determine the distances between the devices for a given motion model are devised.

  17. Wireless Acoustic-Surface Actuators for Miniaturized Endoscopes.

    PubMed

    Qiu, Tian; Adams, Fabian; Palagi, Stefano; Melde, Kai; Mark, Andrew; Wetterauer, Ulrich; Miernik, Arkadiusz; Fischer, Peer

    2017-12-13

    Endoscopy enables minimally invasive procedures in many medical fields, such as urology. However, current endoscopes are normally cable-driven, which limits their dexterity and makes them hard to miniaturize. Indeed, current urological endoscopes have an outer diameter of about 3 mm and still only possess one bending degree-of-freedom. In this article, we report a novel wireless actuation mechanism that increases the dexterity and that permits the miniaturization of a urological endoscope. The novel actuator consists of thin active surfaces that can be readily attached to any device and are wirelessly powered by ultrasound. The surfaces consist of two-dimensional arrays of microbubbles, which oscillate under ultrasound excitation and thereby generate an acoustic streaming force. Bubbles of different sizes are addressed by their unique resonance frequency, thus multiple degrees-of-freedom can readily be incorporated. Two active miniaturized devices (with a side length of around 1 mm) are demonstrated: a miniaturized mechanical arm that realizes two degrees-of-freedom, and a flexible endoscope prototype equipped with a camera at the tip. With the flexible endoscope, an active endoscopic examination is successfully performed in a rabbit bladder. The results show the potential medical applicability of surface actuators wirelessly powered by ultrasound penetrating through biological tissues.

  18. Wireless Acoustic-Surface Actuators for Miniaturized Endoscopes

    PubMed Central

    2017-01-01

    Endoscopy enables minimally invasive procedures in many medical fields, such as urology. However, current endoscopes are normally cable-driven, which limits their dexterity and makes them hard to miniaturize. Indeed, current urological endoscopes have an outer diameter of about 3 mm and still only possess one bending degree-of-freedom. In this article, we report a novel wireless actuation mechanism that increases the dexterity and that permits the miniaturization of a urological endoscope. The novel actuator consists of thin active surfaces that can be readily attached to any device and are wirelessly powered by ultrasound. The surfaces consist of two-dimensional arrays of microbubbles, which oscillate under ultrasound excitation and thereby generate an acoustic streaming force. Bubbles of different sizes are addressed by their unique resonance frequency, thus multiple degrees-of-freedom can readily be incorporated. Two active miniaturized devices (with a side length of around 1 mm) are demonstrated: a miniaturized mechanical arm that realizes two degrees-of-freedom, and a flexible endoscope prototype equipped with a camera at the tip. With the flexible endoscope, an active endoscopic examination is successfully performed in a rabbit bladder. The results show the potential medical applicability of surface actuators wirelessly powered by ultrasound penetrating through biological tissues. PMID:29148713

  19. Coexistence of 3G repeaters with LTE base stations.

    PubMed

    Yeo, Woon-Young; Lee, Sang-Min; Hwang, Gyung-Ho; Kim, Jae-Hoon

    2013-01-01

    Repeaters have been an attractive solution for mobile operators to upgrade their wireless networks at low cost and to extend network coverage effectively. Since the first LTE commercial deployment in 2009, many mobile operators have launched LTE networks by upgrading their 3G and legacy networks. Because all 3G frequency bands are shared with the frequency bands for LTE deployment and 3G mobile operators have an enormous number of repeaters, reusing 3G repeaters in LTE networks is definitely a practical and cost-efficient solution. However, 3G repeaters usually do not support spatial multiplexing with multiple antennas, and thus it is difficult to reuse them directly in LTE networks. In order to support spatial multiplexing of LTE, the role of 3G repeaters should be replaced with small LTE base stations or MIMO-capable repeaters. In this paper, a repeater network is proposed to reuse 3G repeaters in LTE deployment while still supporting multilayer transmission of LTE. Interestingly, the proposed network has a higher cluster throughput than an LTE network with MIMO-capable repeaters.

  20. Coexistence of 3G Repeaters with LTE Base Stations

    PubMed Central

    Yeo, Woon-Young

    2013-01-01

    Repeaters have been an attractive solution for mobile operators to upgrade their wireless networks at low cost and to extend network coverage effectively. Since the first LTE commercial deployment in 2009, many mobile operators have launched LTE networks by upgrading their 3G and legacy networks. Because all 3G frequency bands are shared with the frequency bands for LTE deployment and 3G mobile operators have an enormous number of repeaters, reusing 3G repeaters in LTE networks is definitely a practical and cost-efficient solution. However, 3G repeaters usually do not support spatial multiplexing with multiple antennas, and thus it is difficult to reuse them directly in LTE networks. In order to support spatial multiplexing of LTE, the role of 3G repeaters should be replaced with small LTE base stations or MIMO-capable repeaters. In this paper, a repeater network is proposed to reuse 3G repeaters in LTE deployment while still supporting multilayer transmission of LTE. Interestingly, the proposed network has a higher cluster throughput than an LTE network with MIMO-capable repeaters. PMID:24459420

  1. Wireless tamper detection sensor and sensing system

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2011-01-01

    A wireless tamper detection sensor is defined by a perforated electrical conductor. The conductor is shaped to form a geometric pattern between first and second ends thereof such that the conductor defines an open-circuit that can store and transfer electrical and magnetic energy. The conductor resonates in the presence of a time-varying magnetic field to generate a harmonic response. The harmonic response changes when the conductor experiences a change in its geometric pattern due to severing of the conductor along at least a portion of the perforations. A magnetic field response recorder is used to wirelessly transmit the time-varying magnetic field and wirelessly detecting the conductor's harmonic response.

  2. A Seamless Ubiquitous Telehealthcare Tunnel

    PubMed Central

    Cheng, Po-Hsun; Lin, Bor-Shing; Yu, Chu; Hu, Shun-Hsiang; Chen, Sao-Jie

    2013-01-01

    Mobile handheld devices are rapidly using to implement healthcare services around the World. Fundamentally, these services utilize telemedicine technologies. A disconnection of a mobile telemedicine system usually results in an interruption, which is embarrassing, and reconnection is necessary during the communication session. In this study, the Stream Control Transmission Protocol (SCTP) is adopted to build a stable session tunnel to guarantee seamless switching among heterogeneous wireless communication standards, such as Wi-Fi and 3G. This arrangement means that the telemedicine devices will not be limited by a fixed wireless connection and can switch to a better wireless channel if necessary. The tunnel can transmit plain text, binary data, and video streams. According to the evaluation of the proposed software-based SCTP-Tunnel middleware shown, the performance is lower than anticipated and is slightly slower than a fixed connection. However, the transmission throughput is still acceptable for healthcare professionals in a healthcare enterprise or home care site. It is necessary to build more heterogeneous wireless protocols into the proposed tunnel-switching scheme to support all possible communication protocols. In addition, SCTP is another good choice for promoting communication in telemedicine and healthcare fields. PMID:23917812

  3. Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations.

    PubMed

    Khalifa, Tarek; Abdrabou, Atef; Shaban, Khaled; Gaouda, A M

    2018-05-11

    Supporting a conventional power grid with advanced communication capabilities is a cornerstone to transferring it to a smart grid. A reliable communication infrastructure with a high throughput can lay the foundation towards the ultimate objective of a fully automated power grid with self-healing capabilities. In order to realize this objective, the communication infrastructure of a power distribution network needs to be extended to cover all substations including medium/low voltage ones. This shall enable information exchange among substations for a variety of system automation purposes with a low latency that suits time critical applications. This paper proposes the integration of two heterogeneous wireless technologies (such as WiFi and cellular 3G/4G) to provide reliable and fast communication among primary and secondary distribution substations. This integration allows the transmission of different data packets (not packet replicas) over two radio interfaces, making these interfaces act like a one data pipe. Thus, the paper investigates the applicability and effectiveness of employing heterogeneous wireless networks (HWNs) in achieving the desired reliability and timeliness requirements of future smart grids. We study the performance of HWNs in a realistic scenario under different data transfer loads and packet loss ratios. Our findings reveal that HWNs can be a viable data transfer option for smart grids.

  4. Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations

    PubMed Central

    Khalifa, Tarek; Abdrabou, Atef; Gaouda, A. M.

    2018-01-01

    Supporting a conventional power grid with advanced communication capabilities is a cornerstone to transferring it to a smart grid. A reliable communication infrastructure with a high throughput can lay the foundation towards the ultimate objective of a fully automated power grid with self-healing capabilities. In order to realize this objective, the communication infrastructure of a power distribution network needs to be extended to cover all substations including medium/low voltage ones. This shall enable information exchange among substations for a variety of system automation purposes with a low latency that suits time critical applications. This paper proposes the integration of two heterogeneous wireless technologies (such as WiFi and cellular 3G/4G) to provide reliable and fast communication among primary and secondary distribution substations. This integration allows the transmission of different data packets (not packet replicas) over two radio interfaces, making these interfaces act like a one data pipe. Thus, the paper investigates the applicability and effectiveness of employing heterogeneous wireless networks (HWNs) in achieving the desired reliability and timeliness requirements of future smart grids. We study the performance of HWNs in a realistic scenario under different data transfer loads and packet loss ratios. Our findings reveal that HWNs can be a viable data transfer option for smart grids. PMID:29751633

  5. 78 FR 70237 - Operation of Wireless Communications Services in the 2.3 GHz Band; Establishment of Rules and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Docket No. 90-357; RM- 8610; FCC 12-130] Operation of Wireless Communications Services in the 2.3 GHz... Amendment of part 27 of its rules to Govern the Operation of Wireless Communications Services in the 2.3 GHz... FURTHER INFORMATION CONTACT: Linda Chang, Federal Communications Commission, Wireless Telecommunications...

  6. Rapid SAW Sensor Development Tools

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    The lack of integrated design tools for Surface Acoustic Wave (SAW) devices has led us to develop tools for the design, modeling, analysis, and automatic layout generation of SAW devices. These tools enable rapid development of wireless SAW sensors. The tools developed have been designed to integrate into existing Electronic Design Automation (EDA) tools to take advantage of existing 3D modeling, and Finite Element Analysis (FEA). This paper presents the SAW design, modeling, analysis, and automated layout generation tools.

  7. A novel interface for the telementoring of robotic surgery.

    PubMed

    Shin, Daniel H; Dalag, Leonard; Azhar, Raed A; Santomauro, Michael; Satkunasivam, Raj; Metcalfe, Charles; Dunn, Matthew; Berger, Andre; Djaladat, Hooman; Nguyen, Mike; Desai, Mihir M; Aron, Monish; Gill, Inderbir S; Hung, Andrew J

    2015-08-01

    To prospectively evaluate the feasibility and safety of a novel, second-generation telementoring interface (Connect(™) ; Intuitive Surgical Inc., Sunnyvale, CA, USA) for the da Vinci robot. Robotic surgery trainees were mentored during portions of robot-assisted prostatectomy and renal surgery cases. Cases were assigned as traditional in-room mentoring or remote mentoring using Connect. While viewing two-dimensional, real-time video of the surgical field, remote mentors delivered verbal and visual counsel, using two-way audio and telestration (drawing) capabilities. Perioperative and technical data were recorded. Trainee robotic performance was rated using a validated assessment tool by both mentors and trainees. The mentoring interface was rated using a multi-factorial Likert-based survey. The Mann-Whitney and t-tests were used to determine statistical differences. We enrolled 55 mentored surgical cases (29 in-room, 26 remote). Perioperative variables of operative time and blood loss were similar between in-room and remote mentored cases. Robotic skills assessment showed no significant difference (P > 0.05). Mentors preferred remote over in-room telestration (P = 0.05); otherwise no significant difference existed in evaluation of the interfaces. Remote cases using wired (vs wireless) connections had lower latency and better data transfer (P = 0.005). Three of 18 (17%) wireless sessions were disrupted; one was converted to wired, one continued after restarting Connect, and the third was aborted. A bipolar injury to the colon occurred during one (3%) in-room mentored case; no intraoperative injuries were reported during remote sessions. In a tightly controlled environment, the Connect interface allows trainee robotic surgeons to be telementored in a safe and effective manner while performing basic surgical techniques. Significant steps remain prior to widespread use of this technology. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.

  8. A flexible super-capacitive solid-state power supply for miniature implantable medical devices.

    PubMed

    Meng, Chuizhou; Gall, Oren Z; Irazoqui, Pedro P

    2013-12-01

    We present a high-energy local power supply based on a flexible and solid-state supercapacitor for miniature wireless implantable medical devices. Wireless radio-frequency (RF) powering recharges the supercapacitor through an antenna with an RF rectifier. A power management circuit for the super-capacitive system includes a boost converter to increase the breakdown voltage required for powering device circuits, and a parallel conventional capacitor as an intermediate power source to deliver current spikes during high current transients (e.g., wireless data transmission). The supercapacitor has an extremely high area capacitance of ~1.3 mF/mm(2), and is in the novel form of a 100 μm-thick thin film with the merit of mechanical flexibility and a tailorable size down to 1 mm(2) to meet various clinical dimension requirements. We experimentally demonstrate that after fully recharging the capacitor with an external RF powering source, the supercapacitor-based local power supply runs a full system for electromyogram (EMG) recording that consumes ~670 μW with wireless-data-transmission functionality for a period of ~1 s in the absence of additional RF powering. Since the quality of wireless powering for implantable devices is sensitive to the position of those devices within the RF electromagnetic field, this high-energy local power supply plays a crucial role in providing continuous and reliable power for medical device operations.

  9. Hybrid nanogenerators for low frequency vibration energy harvesting and self-powered wireless locating

    NASA Astrophysics Data System (ADS)

    Yuan, Ying; Zhang, Hulin; Wang, Jie; Xie, Yuhang; Khan, Saeed Ahmed; Jin, Long; Yan, Zhuocheng; Huang, Long; Pan, Taisong; Yang, Weiqing; Lin, Yuan

    2018-01-01

    Hybrid energy harvesters based on different physical effects is fascinating, but a rational design for multiple energy harvesting is challenging. In this work, a spring-magnet oscillator-based triboelectric-electromagnetic generator (EMG) with a solar cell cap is proposed. A power was produced by a triboelectric nanogenerator (TENG) and an EMG independently or simultaneously by using a shared spring-magnet oscillator. The oscillator configuration enables versatile energy harvesting with the excellent size scalability and self-packaged structure which can perform well at low frequency ranging from 3.5 to 5 Hz. The solar cell cap mounted above the oscillator can harvest solar energy. Under vibrations at the frequency of 4 Hz, the TENG and the EMG produced maximum output power of 5.46 nW cm-3 and 378.79 μW cm-3, respectively. The generated electricity by the hybrid nanogenerator can be stored in a capacitor or Li-ion battery, which is capable of powering a wireless locator for real-time locating data reporting to a personal cell phone. The light-weight and handy hybrid nanogenerator can directly light a caution light or play as a portable flashlight by shaking hands at night.

  10. Next-generation wireless bridge weigh-in-motion (WIM) system integrated with nondestructive evaluation (NDE) capability for transportation infrastructure safety.

    DOT National Transportation Integrated Search

    2014-05-01

    This project seeks to develop a rapidly deployable, low-cost, and wireless system for bridge : weigh-in-motion (BWIM) and nondestructive evaluation (NDE). The system is proposed to : assist in monitoring transportation infrastructure safety, for the ...

  11. Wirelessly powering miniature implants for optogenetic stimulation

    NASA Astrophysics Data System (ADS)

    Yeh, Alexander J.; Ho, John S.; Tanabe, Yuji; Neofytou, Evgenios; Beygui, Ramin E.; Poon, Ada S. Y.

    2013-10-01

    Conventional methods for in vivo optogenetic stimulation require optical fibers or mounted prosthesis. We present an approach for wirelessly powering implantable stimulators using electromagnetic midfield. By exploiting the properties of the midfield, we demonstrate the ability to generate high intensity light pulses in a freely moving animal.

  12. Remote multi-function fire alarm system based on internet of things

    NASA Astrophysics Data System (ADS)

    Wang, Lihui; Zhao, Shuai; Huang, Jianqing; Ji, Jianyu

    2018-05-01

    This project uses MCU STC15W408AS (stable, energy saving, high speed), temperature sensor DS18B20 (cheap, high efficiency, stable), MQ2 resistance type semiconductor smog sensor (high stability, fast response and economy) and NRF24L01 wireless transmitting and receiving module (energy saving, small volume, reliable) as the main body to achieve concentration temperature data presentation, intelligent voice alarming and short distance wireless transmission. The whole system is safe, reliable, cheap, quick reaction and good performance. This project uses the MCU STM32F103RCT6 as the main control chip, and use WIFI module ESP8266, wireless module NRF24L01 to make the gateway. Users can remotely check and control the related devices in real-time on smartphones or computers. We can also realize the functions of intelligent fire monitoring, remote fire extinguishing, cloud data storage through the third party server Big IOT.

  13. Advances in Front-end Enabling Technologies for Thermal Infrared ` THz Torch' Wireless Communications

    NASA Astrophysics Data System (ADS)

    Hu, Fangjing; Lucyszyn, Stepan

    2016-09-01

    The thermal (emitted) infrared frequency bands (typically 20-40 and 60-100 THz) are best known for remote sensing applications that include temperature measurement (e.g. non-contacting thermometers and thermography), night vision and surveillance (e.g. ubiquitous motion sensing and target acquisition). This unregulated part of the electromagnetic spectrum also offers commercial opportunities for the development of short-range secure communications. The ` THz Torch' concept, which fundamentally exploits engineered blackbody radiation by partitioning thermally generated spectral radiance into pre-defined frequency channels, was recently demonstrated by the authors. The thermal radiation within each channel can be independently pulse-modulated, transmitted and detected, to create a robust form of short-range secure communications within the thermal infrared. In this paper, recent progress in the front-end enabling technologies associated with the THz Torch concept is reported. Fundamental limitations of this technology are discussed; possible engineering solutions for further improving the performance of such thermal-based wireless links are proposed and verified either experimentally or through numerical simulations. By exploring a raft of enabling technologies, significant enhancements to both data rate and transmission range can be expected. With good engineering solutions, the THz Torch concept can exploit nineteenth century physics with twentieth century multiplexing schemes for low-cost twenty-first century ubiquitous applications in security and defence.

  14. Characterization of a third generation lentiviral vector pseudotyped with Nipah virus envelope proteins for endothelial cell transduction.

    PubMed

    Witting, S R; Vallanda, P; Gamble, A L

    2013-10-01

    Lentiviruses are becoming progressively more popular as gene therapy vectors due to their ability to integrate into quiescent cells and recent clinical trial successes. Directing these vectors to specific cell types and limiting off-target transduction in vivo remains a challenge. Replacing the viral envelope proteins responsible for cellular binding, or pseudotyping, remains a common method to improve lentiviral targeting. Here, we describe the development of a high titer, third generation lentiviral vector pseudotyped with Nipah virus fusion protein (NiV-F) and attachment protein (NiV-G). Critical to high titers was truncation of the cytoplasmic domains of both NiV-F and NiV-G. As known targets of wild-type Nipah virus, primary endothelial cells are shown to be effectively transduced by the Nipah pseudotype. In contrast, human CD34+ hematopoietic progenitors were not significantly transduced. Additionally, the Nipah pseudotype has increased stability in human serum compared with vesicular stomatitis virus pseudotyped lentivirus. These findings suggest that the use of Nipah virus envelope proteins in third generation lentiviral vectors would be a valuable tool for gene delivery targeted to endothelial cells.

  15. Generation and characterization of monoclonal antibodies against Giardia muris trophozoites.

    PubMed

    Heyworth, M F; Ho, K E; Pappo, J

    1989-11-01

    Mouse monoclonal antibodies (mAb) were produced against Giardia muris trophozoite surface antigens. To generate B-cell hybridomas, P3/NS1/1-Ag4-1 myeloma cells were fused with splenic lymphocytes from BALB/c mice that had been immunized parenterally with G. muris trophozoites. Hybridoma culture supernatants were screened for mAb by flow cytometry of G. muris trophozoites incubated with culture supernatant followed by fluorescein-conjugated anti-mouse IgG and IgM. Flow cytometry showed three types of trophozoite staining by mAb: (i) bright staining of greater than 90% of trophozoites, with aggregation of the organisms; (ii) bright staining of approximately 90% of trophozoites, with little or no aggregation; (iii) dull staining of approximately 20% of trophozoites, without aggregation. Western blotting of mAb on G. muris trophozoite antigens separated by polyacrylamide gel electrophoresis showed that a mAb exhibiting the third of these flow cytometry staining patterns recognized trophozoite antigens of MW approximately 31,000 and 35,000. Immunoprecipitation studies indicated that the same mAb specifically precipitated two 125I-labelled trophozoite surface antigens of MW approximately 30,000. Monoclonal antibodies generated in this study may facilitate the purification and biochemical characterization of trophozoite antigens that are targets for protective intestinal antibody in G. muris-infected mice.

  16. Vehicular-networking- and road-weather-related research in Sodankylä

    NASA Astrophysics Data System (ADS)

    Sukuvaara, Timo; Mäenpää, Kari; Ylitalo, Riika

    2016-10-01

    Vehicular-networking- and especially safety-related wireless vehicular services have been under intensive research for almost a decade now. Only in recent years has road weather information also been acknowledged to play an important role when aiming to reduce traffic accidents and fatalities via intelligent transport systems (ITSs). Part of the progress can be seen as a result of the Finnish Meteorological Institute's (FMI) long-term research work in Sodankylä within the topic, originally started in 2006. Within multiple research projects, the FMI Arctic Research Centre has been developing wireless vehicular networking and road weather services, in co-operation with the FMI meteorological services team in Helsinki. At the beginning the wireless communication was conducted with traditional Wi-Fi type local area networking, but during the development the system has evolved into a hybrid communication system of a combined vehicular ad hoc networking (VANET) system with special IEEE 802.11p protocol and supporting cellular networking based on a commercial 3G network, not forgetting support for Wi-Fi-based devices also. For piloting purposes and further research, we have established a special combined road weather station (RWS) and roadside unit (RSU), to interact with vehicles as a service hotspot. In the RWS-RSU we have chosen to build support to all major approaches, IEEE 802.11, traditional Wi-Fi and cellular 3G. We employ road weather systems of FMI, along with RWS and vehicle data gathered from vehicles, in the up-to-date localized weather data delivered in real time. IEEE 802.11p vehicular networking is supported with Wi-Fi and 3G communications. This paper briefly introduces the research work related to vehicular networking and road weather services conducted in Sodankylä, as well as the research project involved in this work. The current status of instrumentation, available services and capabilities are presented in order to formulate a clear general view of the research field.

  17. Wearable Fall Detector using Integrated Sensors and Energy Devices

    PubMed Central

    Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2015-01-01

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare. PMID:26597423

  18. Channel-Based Key Generation for Encrypted Body-Worn Wireless Sensor Networks.

    PubMed

    Van Torre, Patrick

    2016-09-08

    Body-worn sensor networks are important for rescue-workers, medical and many other applications. Sensitive data are often transmitted over such a network, motivating the need for encryption. Body-worn sensor networks are deployed in conditions where the wireless communication channel varies dramatically due to fading and shadowing, which is considered a disadvantage for communication. Interestingly, these channel variations can be employed to extract a common encryption key at both sides of the link. Legitimate users share a unique physical channel and the variations thereof provide data series on both sides of the link, with highly correlated values. An eavesdropper, however, does not share this physical channel and cannot extract the same information when intercepting the signals. This paper documents a practical wearable communication system implementing channel-based key generation, including an implementation and a measurement campaign comprising indoor as well as outdoor measurements. The results provide insight into the performance of channel-based key generation in realistic practical conditions. Employing a process known as key reconciliation, error free keys are generated in all tested scenarios. The key-generation system is computationally simple and therefore compatible with the low-power micro controllers and low-data rate transmissions commonly used in wireless sensor networks.

  19. Linkage Study Revealed Complex Haplotypes in a Multifamily due to Different Mutations in CAPN3 Gene in an Iranian Ethnic Group.

    PubMed

    Mojbafan, Marzieh; Tonekaboni, Seyed Hassan; Abiri, Maryam; Kianfar, Soudeh; Sarhadi, Ameneh; Nilipour, Yalda; Tavakkoly-Bazzaz, Javad; Zeinali, Sirous

    2016-07-01

    Calpainopathy is an autosomal recessive form of limb girdle muscular dystrophies which is caused by mutation in CAPN3 gene. In the present study, co-segregation of this disorder was analyzed with four short tandem repeat markers linked to the CAPN3 gene. Three apparently unrelated Iranian families with same ethnicity were investigated. Haplotype analysis and sequencing of the CAPN3 gene were performed. DNA sample from one of the patients was simultaneously sent for next-generation sequencing. DNA sequencing identified two mutations. It was seen as a homozygous c.2105C>T in exon 19 in one family, a homozygous novel mutation c.380G>A in exon 3 in another family, and a compound heterozygote form of these two mutations in the third family. Next-generation sequencing also confirmed our results. It was expected that, due to the rare nature of limb girdle muscular dystrophies, affected individuals from the same ethnic group share similar mutations. Haplotype analysis showed two different homozygote patterns in two families, yet a compound heterozygote pattern in the third family as seen in the mutation analysis. This study shows that haplotype analysis would help in determining presence of different founders.

  20. A New Weak Chelator in Endodontics: Effects of Different Irrigation Regimens with Etidronate on Root Dentin Microhardness

    PubMed Central

    Tartari, Talita; de Almeida Rodrigues Silva e Souza, Patrícia; Vila Nova de Almeida, Bruno; Carrera Silva Júnior, José Otávio; Facíola Pessoa, Oscar; Silva e Souza Junior, Mario Honorato

    2013-01-01

    This study investigated the effect of sodium hypochlorite (NaOCl), ethylenediaminetetraacetic (EDTA), etidronic (HEBP), and citric acid (CA) associated in different irrigation regimens on root dentin microhardness. Forty-five root halves of single-rooted teeth were sectioned into thirds that were embedded in acrylic resin, polished, randomly assigned into 3 groups, and treated as follows: G1: saline solution; G2: 5% NaOCl + 18% HEBP, mixed in equal parts; and G3: 2.5% NaOCl. After measurements, the G3 samples were distributed into subgroups G4, G5, and G6, which were submitted to 17% EDTA, 10% CA and 9% HEBP, respectively. Following the new measurements, these groups received a final flush with 2.5% NaOCl, producing G7, G8, and G9. Microhardness was measured with Knoop indenter under a 25 g load for 15 seconds, before and after treatments. The data were statistically analyzed using paired Student's t-test (α<0.05) to compare values before and after treatments and analysis of variance (ANOVA) (α<0.05) to detect any differences among thirds. Except G1, all tested irrigation regimens significantly decreased the microhardness. There were no differences between root thirds before treatments, and all root thirds exhibited equal responses to same treatment. Except saline, all tested irrigation regimens reduced the root dentin microhardness. PMID:23983692

  1. Proceedings of the ARO Planning Workshop on Embedded Systems and Network Security Held in Raleigh, North Carolina on February 22-23, 2007

    DTIC Science & Technology

    2007-10-28

    Shin (U Mich) John Stankovic (UVA) Phil Koopman (CMU) Wenliang Du (Syracuse U.) Virgil Gligor (UMD) Radha Poovendran ( UW ) Adrian Perrig (CMU...Department of Computer Sciences, University of Wisconsin, Madison , WI 53706, USA Email: suman@cs.wisc.edu 1 Introduction Wireless communication...NetworkinG Systems (WiNGS) Laboratory Wireless localization Madison municipal WiFi mesh network • • 9 square miles area • 200+ APs 2 Wireless AP radio

  2. Chronic, Wireless Recordings of Large Scale Brain Activity in Freely Moving Rhesus Monkeys

    PubMed Central

    Schwarz, David A.; Lebedev, Mikhail A.; Hanson, Timothy L.; Dimitrov, Dragan F.; Lehew, Gary; Meloy, Jim; Rajangam, Sankaranarayani; Subramanian, Vivek; Ifft, Peter J.; Li, Zheng; Ramakrishnan, Arjun; Tate, Andrew; Zhuang, Katie; Nicolelis, Miguel A.L.

    2014-01-01

    Advances in techniques for recording large-scale brain activity contribute to both the elucidation of neurophysiological principles and the development of brain-machine interfaces (BMIs). Here we describe a neurophysiological paradigm for performing tethered and wireless large-scale recordings based on movable volumetric three-dimensional (3D) multielectrode implants. This approach allowed us to isolate up to 1,800 units per animal and simultaneously record the extracellular activity of close to 500 cortical neurons, distributed across multiple cortical areas, in freely behaving rhesus monkeys. The method is expandable, in principle, to thousands of simultaneously recorded channels. It also allows increased recording longevity (5 consecutive years), and recording of a broad range of behaviors, e.g. social interactions, and BMI paradigms in freely moving primates. We propose that wireless large-scale recordings could have a profound impact on basic primate neurophysiology research, while providing a framework for the development and testing of clinically relevant neuroprostheses. PMID:24776634

  3. Simultaneously phase-matched second- and third-harmonic generation from 1.55 microm radiation in annealed proton-exchanged periodically poled lithium niobate waveguides.

    PubMed

    Marangoni, M; Lobino, M; Ramponi, R

    2006-09-15

    Third-harmonic generation (THG) in the cw regime from C-band radiation was achieved in annealed proton-exchanged periodically poled lithium niobate (PPLN) waveguides. By suitable design of fabrication parameters and operating conditions, quasi-phase-matching (QPM) is obtained simultaneously for the second-harmonic generation process (omega-->2omega, first-order QPM) and for the sum-frequency-generation process (omega+2omega-->3omega, third-order QPM), which provides the third harmonic of the pump field. The high overlap between the field profiles of the interacting modes--TM00 at omega and TM10 at 2omega and 3omega--results in what is believed to be the highest ever reported normalized conversion efficiency for THG from telecommunication wavelengths, equal to 0.72%W(-2) cm(-4).

  4. Information Warfare-Worthy Jamming Attack Detection Mechanism for Wireless Sensor Networks Using a Fuzzy Inference System

    PubMed Central

    Misra, Sudip; Singh, Ranjit; Rohith Mohan, S. V.

    2010-01-01

    The proposed mechanism for jamming attack detection for wireless sensor networks is novel in three respects: firstly, it upgrades the jammer to include versatile military jammers; secondly, it graduates from the existing node-centric detection system to the network-centric system making it robust and economical at the nodes, and thirdly, it tackles the problem through fuzzy inference system, as the decision regarding intensity of jamming is seldom crisp. The system with its high robustness, ability to grade nodes with jamming indices, and its true-detection rate as high as 99.8%, is worthy of consideration for information warfare defense purposes. PMID:22319307

  5. A Compact Multilayer Diplexer in LTCC Substrate Using LPF with Multiple Attenuation Poles and Wideband BPF

    NASA Astrophysics Data System (ADS)

    Oshima, Shinpei; Wada, Kouji; Murata, Ryuji; Shimakata, Yukihiro

    Recently, compact wideband BPFs for UWB system are studied actively. In this paper we propose a compact diplexer in LTCC substrate for UWB system and 2.4GHz wireless systems. Firstly, a wideband BPF for UWB system and an LPF with multiple attenuation poles for 2.4GHz wireless systems are described. Secondly, we design matching circuits of a common port to keep basic performance of both the BPF and the LPF. Thirdly, in accordance with the result of the study, we design a compact diplexer in LTCC substrate. Finally, we verify the effectiveness of proposed method by experiments.

  6. Printable thermoelectric devices and conductive patterns for medical applications

    NASA Astrophysics Data System (ADS)

    Lee, Jungmin; Kim, Hyunjung; Chen, Linfeng; Choi, Sang H.; Varadan, Vijay K.

    2012-10-01

    Remote point-of-care is expected to revolutionize the modern medical practice, and many efforts have been made for the development of wireless health monitoring systems for continuously detecting the physiological signals of patients. To make the remote point-of-care generally accepted and widely used, it is necessary to develop cost-effective and durable wireless health monitoring systems. Printing technique will be helpful for the fabrication of high-quality and low-cost medical devices and systems because it allows high-resolution and high-speed fabrication, low material consumption and nano-sized patterning on both flexible and rigid substrates. Furthermore, application of thermoelectric generators can replace conventional batteries as the power sources for wireless health monitoring systems because thermoelectric generators can convert the wasted heat or the heat from nature into electricity which is required for the operation of the wireless health monitoring systems. In this research, we propose the concept of printable thermoelectric devices and conductive patterns for the realization of more portable and cost-effective medical devices. To print thermoelectric generators and conductive patterns on substrates, printing inks with special characteristics should be developed. For the development of thermoelectric inks, nano-structured thermoelectric materials are synthesized and characterized; and for the development of conductive inks, two kinds of surface treated carbon nanotubes are used as active materials.

  7. Compact Encoding of Robot-Generated 3D Maps for Efficient Wireless Transmission

    DTIC Science & Technology

    2003-01-01

    Lempel - Ziv -Welch (LZW) and Ziv - Lempel (LZ77) respectively. Image based compression can also be based on dic- tionaries... compression of the data , without actually displaying a 3D model, printing statistical results for comparison of the different algorithms . 1http... compression algorithms , and wavelet algorithms tuned to the specific nature of the raw laser data . For most such applications, the usage of lossless

  8. Higgs boson, sparticle masses and neutralino Dark Matter in Yukawa unified models

    NASA Astrophysics Data System (ADS)

    Un, Cem Salih

    This dissertation collects our results that we obtain for a class of Yukawa unified SO(10) grand unified theories with non-universal soft supersymmetry breaking (SSB) gaugino mass parameters. As known for a long time, in contrast to its non-supersymmetrical version, SO(10) grand unified theories predict Yukawa coupling unification as well as gauge coupling and matter field unifications. The models considered in this thesis are assumed to be in the framework of gravity mediated supersymmetry breaking, and boundary conditions among the SSB terms are set by the group theoretical structure and breaking patterns of SO(10) at the grand unification scale (MGUT). In addition, we assume universality in the SSB mass terms assigned to the sfermion generations. Since Yukawa coupling unification implies contradictory mass relations for the first two generations, we consider a model with a larger Higgs sector. In this case, we assume that the MSSM Higgs doublets solely reside in 10 dimensional representation (10 H) of SO(10) and extra Higgs fields negligibly couple to the third generation sfermions in order to maintain Yukawa coupling unification for the third generation (when we mention Yukawa unification throughout this thesis, we mean Yukawa unification for the third family, a.k.a. t -b-tau Yukawa unification). First we consider a supersymmetric grand unified model in which SO(10) breaks into the MSSM via non-renormalizable dimension-5 operators involving non-singlet F--terms. In our case, we consider an F--term belonging to 54 dimensional representation of SO(10) and it develops a non-zero vacuum expectation value that non-trivially generates the SSB gaugino masses such that M 1 : M2 : M3 = --1 : --3 : 2. We consider the case with mu, M 1, M2 > 0 and M3 < 0 such that muM2 >0 and muM 3 < 0 always hold. This model with non-universal and relative-sign gaugino masses has one less parameter by setting the masses of Higgs doublets to be equivalent to each other at MGUT than those in the standard approach to Yukawa coupling unification. We briefly show also that Yukawa unification is possible even with one less parameter, if one considers a case in which all scalars of the MSSM including the Higgs doublets are assigned with the same SSB mass term. In the case of relative-sign SSB mass terms, the gaugino mass relation forms a subspace of SU(4)c x SU(2)L x SU(2) R (4-2-2). Even though 4-2-2 does not require gauge coupling unification, if one assumes that 4-2-2 breaks into the MSSM at an energy scale ˜ MGUT, then it can hold gauge coupling unification as well as Yukawa unification. As a generalization of the previous model, 4-2-2 results in a heavy spectrum for the color particles (˜ 3 TeV ) as well. We conclude this thesis by considering the anomalous magnetic moment of muon (muon g -- 2). First, we examine the conditions that are necessary in order to be consistent with the experimental measurements. Since the supersymmetric contribution to muon g -- 2 evolves as 1/M, where M is mass of the sparticle running in the loop, the MSSM needs to have light smuons and gauginos (bino and wino), while the 125 GeV Higgs boson requires heavier spectra. In order to resolve this conflict, we consider a case in which the first two generations of sfermions are split from the third generation in their SSB mass. Similarly the MSSM Higgs doublets have different masses from each other, while universality in gaugino masses is held. We show that our results can simultaneously be consistent with 125 GeV Higgs boson and muon g -- 2 within 1sigma deviation from its theoretical value. (Abstract shortened by UMI.)

  9. Deuterium Tetrabenazine for Tardive Dyskinesia.

    PubMed

    Cummings, Michael A; Proctor, George J; Stahl, Stephen M

    2018-01-01

    Tardive dyskinesia remains a significant, potentially stigmatizing or crippling adverse effect for any patient treated with an antipsychotic medication. While second- and third-generation antipsychotics have exhibited lower annual incidence rates for tardive dyskinesia than classic or first-generation agents, 3.9% versus 5.5%, the estimated incidence rate is only modestly lower. When coupled with the fact that second- and third-generation antipsychotic medications have come to be employed in treating a wider range of disorders (e.g., autism spectrum disorders, mood disorders, personality disorders, etc.), it is clear that the population of patients exposed to the risk of tardive dyskinesia has expanded. On April 3, 2017, the U.S. Food and Drug Administration (FDA) approved a deuterated version of tetrabenazine (Xenozine®) for the treatment of the involuntary choreic movements associated with Huntington's disease. More recent data, however, have indicated that deuterium tetrabenazine or deutetrabenazine (Austedo®) is effective in treating tardive dyskinesia. Moreover, like the other derivative of tetrabenazine, valbenazine (Ingrezza®), deutetrabenazine offers less frequent dosing and a better short-term adverse effect profile than that of tetrabenazine. Longer use in a broader range of patients, however, will be required to identify risks and benefits not found in short-term trials, as well as optimal use parameters for treatment of tardive dyskinesia.

  10. Comparing the Capabilities and Performance of the Ultra High Frequency Follow-On System With the Mobile User Objective System

    DTIC Science & Technology

    2011-06-01

    designed to augment and eventually replace the currently oversubscribed UHF Follow- On ( UFO ) System. MUOS adapts a commercial third generation (3G...towers) with the goal of providing a more capable UHF SATCOM system. This research aims at investigating the differences between the legacy UFO and...improvements. The study finds that MUOS can tolerate a traffic demand rate of about 83 calls/messages per second whereas UFO saturates at roughly 4 calls

  11. Innate immunity and HIV-1 infection.

    PubMed

    Lehner, T; Wang, Y; Whittall, T; Seidl, T

    2011-04-01

    HIV-1 is predominantly transmitted through mucosal tissues, targeting CD4(+)CCR5(+) T cells, 50% of which are destroyed within 2 weeks of infection. Conventional vaccination strategies have so far failed to prevent HIV-1 infection. Neither antibodies nor cytotoxic lymphocytes are capable of mounting a sufficiently rapid immune response to prevent early destruction of these cells. However, innate immunity is an early-response system, largely independent of prior encounter with a pathogen. Innate immunity can be classified into cellular, extracellular, and intracellular components, each of which is exemplified in this review by γδ T cells, CC chemokines, and APOBEC3G, respectively. First, γδ T cells are found predominantly in mucosal tissues and produce cytokines, CC chemokines, and antiviral factors. Second, the CC chemokines CCL-3, CCL-4, and CCL-5 can be upregulated by immunization of macaques with SIVgp120 and gag p27, and these can bind and downmodulate CCR5, thereby inhibiting HIV-1 entry into the host cells. Third, APOBEC3G is generated and maintained following rectal mucosal immunization in rhesus macaques for over 17 weeks, and the innate anti-SIV factor is generated by CD4(+)CD95(+)CCR7(-) effector memory T cells. Thus, innate anti-HIV-1 or SIV immunity can be linked with immune memory, mediated by CD4(+) T cells generating APOBEC3G. The multiple innate functions may mount an early anti-HIV-1 response and either prevent viral transmission or contain the virus until an effective adaptive immune response develops.

  12. Wireless poly(dimethylsiloxane) quartz-crystal-microbalance biosensor chip fabricated by nanoimprint lithography for micropump integration aiming at application in lab-on-a-chip

    NASA Astrophysics Data System (ADS)

    Kato, Fumihito; Noguchi, Hiroyuki; Kodaka, Yukinari; Oshida, Naoya; Ogi, Hirotsugu

    2018-07-01

    We developed a quartz-crystal-microbalance (QCM) biosensor chip that operates wirelessly via electromagnetic waves, using poly(dimethylsiloxane) (PDMS). An AT-cut quartz oscillator (22–30 µm) is packaged in a microchannel, where it is supported by micropillars without mechanical fixing. As a result, the quartz oscillator is little affected by the thermal stress caused by the difference in the thermal expansion coefficients of the components, and the leakage of the vibration energy of the quartz oscillator is reduced. Consequently, high-frequency (∼56 MHz) measurement with a stable baseline (±∼2 ppm) is realized. We succeeded in repeatedly monitoring the binding reaction between immunoglobulin G (IgG) and Staphylococcus aureus protein A (SPA) with the quartz oscillator on which SPA molecules were immobilized nonspecifically. In addition, the affinity between SPA and IgG was calculated from the association and dissociation curves, and the usefulness of our wireless PDMS QCM biosensor was demonstrated.

  13. Ground Fluidization Promotes Rapid Running of a Lightweight Robot

    DTIC Science & Technology

    2013-01-01

    SCMs ) (Wood et al., 2008) have enabled the development of small, lightweight robots (∼ 10 cm, ∼ 20 g) (Hoover et al., 2010; Birkmeyer et al., 2009) such...communicated to the controller through a Bluetooth wireless interface. 2.1.2. Model granular media We used 3.0±0.2 mm diam- eter glass particles (density

  14. Develop 3G Application with The J2ME SATSA API

    NASA Astrophysics Data System (ADS)

    JunWu, Xu; JunLing, Liang

    This paper describes research in the use of the Security and Trust Services API for J2ME (SATSA) to develop mobile applications. for 3G networks. SATSA defines a set of APIs that allows J2ME applications to communicate with and access functionality, secure storage and cryptographic operations provided by security elements such as smart cards and Wireless Identification Modules (WIM). A Java Card application could also work as an authentication module in a J2ME-based e-bank application. The e-bank application would allow its users to access their bank accounts using their cell phones.

  15. Powering a wireless sensor node with a vibration-driven piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Reilly, Elizabeth K.; Burghardt, Fred; Fain, Romy; Wright, Paul

    2011-12-01

    This paper discusses the direct application of scavenged energy to power a wireless sensor platform. A trapezoidal piezoelectric harvester was designed for a specific machine tool application and tested for robustness and longevity as well as performance. The design focused on resonant performance and distributed strain concentrations at a given resonant frequency and acceleration. Critical issues of power coupling and conditioning between harvester and wireless platform were addressed. The wireless platform consisted of a sensor, controller, power conditioning circuitry, and a custom low power radio. The system transmitted a sensor sample once every 10 s in a scavenging environment of 0.25 g and 100 Hz for a system duty cycle of approximately 0.2%.

  16. A synchronization method for wireless acquisition systems, application to brain computer interfaces.

    PubMed

    Foerster, M; Bonnet, S; van Langhenhove, A; Porcherot, J; Charvet, G

    2013-01-01

    A synchronization method for wireless acquisition systems has been developed and implemented on a wireless ECoG recording implant and on a wireless EEG recording helmet. The presented algorithm and hardware implementation allow the precise synchronization of several data streams from several sensor nodes for applications where timing is critical like in event-related potential (ERP) studies. The proposed method has been successfully applied to obtain visual evoked potentials and compared with a reference biosignal amplifier. The control over the exact sampling frequency allows reducing synchronization errors that will otherwise accumulate during a recording. The method is scalable to several sensor nodes communicating with a shared base station.

  17. Thermoelectric-Driven Autonomous Sensors for a Biomass Power Plant

    NASA Astrophysics Data System (ADS)

    Rodríguez, A.; Astrain, D.; Martínez, A.; Gubía, E.; Sorbet, F. J.

    2013-07-01

    This work presents the design and development of a thermoelectric generator intended to harness waste heat in a biomass power plant, and generate electric power to operate sensors and the required electronics for wireless communication. The first objective of the work is to design the optimum thermoelectric generator to harness heat from a hot surface, and generate electric power to operate a flowmeter and a wireless transmitter. The process is conducted by using a computational model, presented in previous papers, to determine the final design that meets the requirements of electric power consumption and number of transmissions per minute. Finally, the thermoelectric generator is simulated to evaluate its performance. The final device transmits information every 5 s. Moreover, it is completely autonomous and can be easily installed, since no electric wires are required.

  18. Totally Implantable Wireless Ultrasonic Doppler Blood Flowmeters: Toward Accurate Miniaturized Chronic Monitors.

    PubMed

    Rothfuss, Michael A; Unadkat, Jignesh V; Gimbel, Michael L; Mickle, Marlin H; Sejdić, Ervin

    2017-03-01

    Totally implantable wireless ultrasonic blood flowmeters provide direct-access chronic vessel monitoring in hard-to-reach places without using wired bedside monitors or imaging equipment. Although wireless implantable Doppler devices are accurate for most applications, device size and implant lifetime remain vastly underdeveloped. We review past and current approaches to miniaturization and implant lifetime extension for wireless implantable Doppler devices and propose approaches to reduce device size and maximize implant lifetime for the next generation of devices. Additionally, we review current and past approaches to accurate blood flow measurements. This review points toward relying on increased levels of monolithic customization and integration to reduce size. Meanwhile, recommendations to maximize implant lifetime should include alternative sources of power, such as transcutaneous wireless power, that stand to extend lifetime indefinitely. Coupling together the results will pave the way for ultra-miniaturized totally implantable wireless blood flow monitors for truly chronic implantation. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Chi 3 dispersion in planar tantalum pentoxide waveguides in the telecommunications window.

    PubMed

    Chen, Ruiqi Y; Charlton, Martin D B; Lagoudakis, Pavlos G

    2009-04-01

    We report on the dispersion of the third-order nonlinear susceptibility (chi(3) or "Chi 3") in planar Ta2O5 waveguides in the telecommunications spectral window. We utilize the observation of third-harmonic generation under ultrashort pulsed excitation as a reference-free characterization method of chi(3) and obtain a large nonlinear coefficient, 2x10(-13) esu, at 1550 nm. Our observation of efficient third-harmonic generation in Ta2O5 waveguides in the telecoms window reveals the potential of this material system in high-speed integrated nonlinear optical switches.

  20. A wireless wearable surface functional electrical stimulator

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Peng; Guo, Ai-Wen; Zhou, Yu-Xuan; Xia, Yang; Huang, Jia; Xu, Chong-Yao; Huang, Zong-Hao; Lü, Xiao-Ying; Wang, Zhi-Gong

    2017-09-01

    In this paper, a wireless wearable functional electrical stimulator controlled by Android phone with real-time-varying stimulation parameters for multichannel surface functional electrical stimulation application has been developed. It can help post-stroke patients using more conveniently. This study focuses on the prototype design, including the specific wristband concept, circuits and stimulation pulse-generation algorithm. A novel stimulator circuit with a driving stage using a complementary current source technique is proposed to achieve a high-voltage compliance, a large output impedance and an accurate linear voltage-to-current conversion. The size of the prototype has been significantly decreased to 17 × 7.5 × 1 cm3. The performance of the prototype has been tested with a loaded resistor and wrist extension/flexion movement of three hemiplegic patients. According to the experiments, the stimulator can generate four-channel charge-balanced biphasic stimulation with a voltage amplitude up to 60 V, and the pulse frequency and width can be adjusted in real time with a range of 100-600 μs and 20-80 Hz, respectively.

  1. Wireless IR Image Transfer System for Autonomous Vehicles

    DTIC Science & Technology

    2003-12-01

    the camera can operate between 0 and 500 C; this uniquely suites it for employment on autonomous vehicles in rugged environments. The camera is...system is suitable for used on autonomous vehicles under varying antenna orientations. • The third is the use of MDS transceivers allows the received

  2. Guaranteed Access to Campus Network Resources: Policies and Issues.

    ERIC Educational Resources Information Center

    Hassler, Ardoth A.

    1998-01-01

    Reports on a options and issues discussion at a December 1997 Orlando (Florida) meeting of CAUSE97 on providing access to campus technology resources. Options discussed included departmentally and/or university-owned modems, third-party provider contracts, and using wireless access. Issues included providing authentication, assuring network…

  3. An Introduction to Current Trends and Benefits of Mobile Wireless Technology Use in Higher Education

    ERIC Educational Resources Information Center

    Kim, Sang Hyun; Mims, Clif; Holmes, Kerry P.

    2006-01-01

    The development of mobile wireless technologies has generated a considerable amount of excitement among practitioners and academics because it results in shifting the academic environment from traditional settings to mobile learning (m-learning) settings. Increasing numbers of institutions of higher education offer courses using mobile wireless…

  4. Edgeware Security Risk Management: A Three Essay Thesis on Cloud, Virtualization and Wireless Grid Vulnerabilities

    ERIC Educational Resources Information Center

    Brooks, Tyson T.

    2013-01-01

    This thesis identifies three essays which contribute to the foundational understanding of the vulnerabilities and risk towards potentially implementing wireless grid Edgeware technology in a virtualized cloud environment. Since communication networks and devices are subject to becoming the target of exploitation by hackers (e.g. individuals who…

  5. Exploiting node mobility for energy optimization in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    El-Moukaddem, Fatme Mohammad

    Wireless Sensor Networks (WSNs) have become increasingly available for data-intensive applications such as micro-climate monitoring, precision agriculture, and audio/video surveillance. A key challenge faced by data-intensive WSNs is to transmit the sheer amount of data generated within an application's lifetime to the base station despite the fact that sensor nodes have limited power supplies such as batteries or small solar panels. The availability of numerous low-cost robotic units (e.g. Robomote and Khepera) has made it possible to construct sensor networks consisting of mobile sensor nodes. It has been shown that the controlled mobility offered by mobile sensors can be exploited to improve the energy efficiency of a network. In this thesis, we propose schemes that use mobile sensor nodes to reduce the energy consumption of data-intensive WSNs. Our approaches differ from previous work in two main aspects. First, our approaches do not require complex motion planning of mobile nodes, and hence can be implemented on a number of low-cost mobile sensor platforms. Second, we integrate the energy consumption due to both mobility and wireless communications into a holistic optimization framework. We consider three problems arising from the limited energy in the sensor nodes. In the first problem, the network consists of mostly static nodes and contains only a few mobile nodes. In the second and third problems, we assume essentially that all nodes in the WSN are mobile. We first study a new problem called max-data mobile relay configuration (MMRC ) that finds the positions of a set of mobile sensors, referred to as relays, that maximize the total amount of data gathered by the network during its lifetime. We show that the MMRC problem is surprisingly complex even for a trivial network topology due to the joint consideration of the energy consumption of both wireless communication and mechanical locomotion. We present optimal MMRC algorithms and practical distributed implementations for several important network topologies and applications. Second, we consider the problem of minimizing the total energy consumption of a network. We design an iterative algorithm that improves a given configuration by relocating nodes to new positions. We show that this algorithm converges to the optimal configuration for the given transmission routes. Moreover, we propose an efficient distributed implementation that does not require explicit synchronization. Finally, we consider the problem of maximizing the lifetime of the network. We propose an approach that exploits the mobility of the nodes to balance the energy consumption throughout the network. We develop efficient algorithms for single and multiple round approaches. For all three problems, we evaluate the efficiency of our algorithms through simulations. Our simulation results based on realistic energy models obtained from existing mobile and static sensor platforms show that our approaches significantly improve the network's performance and outperform existing approaches.

  6. Complete mitochondrial genome of the monogonont rotifer, Brachionus koreanus (Rotifera, Brachionidae).

    PubMed

    Hwang, Dae-Sik; Suga, Koushirou; Sakakura, Yoshitaka; Park, Heum Gi; Hagiwara, Atsushi; Rhee, Jae-Sung; Lee, Jae-Seong

    2014-02-01

    The complete mitochondrial genome was obtained from the assembled genome data sequenced by next generation sequencing (NGS) technology from the monogonont rotifer Brachionus koreanus. The mitochondrial genome of B. koreanus was composed of two circular chromosomes designated as mtDNA-I (10,421 bp) and mtDNA-II (11,923 bp). The gene contents of B. koreanus were identical with previously reported B. plicatilis mitochondrial genomes. However, gene orders of B. koreanus showed one rearrangement between the two species. Of 12 protein-coding genes (PCGs), 3 genes (ATP6, ND1, and ND3) had an incomplete stop codon. The A + T base composition of B. koreanus mitochondrial genome was high (68.81%). They also showed anti-G bias (12.03% and 10.97%) on the second and third position of PCGs as well as slight anti-C bias (15.96% and 14.31%) on the first and third position of PCGs.

  7. Development of Third-generation Cocal Envelope Producer Cell Lines for Robust Lentiviral Gene Transfer into Hematopoietic Stem Cells and T-cells.

    PubMed

    Humbert, Olivier; Gisch, Don W; Wohlfahrt, Martin E; Adams, Amie B; Greenberg, Phil D; Schmitt, Tom M; Trobridge, Grant D; Kiem, Hans-Peter

    2016-08-01

    Lentiviral vectors (LVs) pseudotyped with vesicular stomatitis virus envelope glycoprotein (VSV-G) have demonstrated great promise in gene therapy trials employing hematopoietic stem cell and T-cells. The VSV-G envelope confers broad tropism and stability to the vector but is toxic when constitutively expressed, which has impeded efforts to generate stable producer cell lines. We previously showed that cocal pseudotyped LVs offer an excellent alternative to VSV-G vectors because of their broad tropism and resistance to human serum inactivation. In this study, we demonstrate that cocal LVs transduce CD34(+) and CD4(+) T-cells more efficiently than VSV-G LVs and share the same receptor(s) for cell entry. 293T-cells stably expressing the cocal envelope produced significantly higher LV titers than VSV-G expressing cells. We developed cocal pseudotyped, third-generation, self-inactivating LV producer cell lines for a GFP reporter and for a WT1 tumor-specific T-cell receptor, which achieved concentrated titers above 10(8) IU/ml and were successfully adapted for growth in suspension, serum-free culture. The resulting LVs were at least as effective as standard LVs in transducing CD34(+) and CD4(+) T-cells. Our stable cocal LV producer cell lines should facilitate the production of large-scale, high titer clinical grade vectors.

  8. FR4-based electromagnetic energy harvester for wireless sensor nodes

    NASA Astrophysics Data System (ADS)

    Hatipoglu, G.; Ürey, H.

    2010-01-01

    Electromagnetic (EM) energy harvesting seems to be one of the most promising ways to power wireless sensors in a wireless sensor network. In this paper, FR4, the most commonly used PCB material, is utilized as a mechanical vibrating structure for EM energy harvesting for body-worn sensors and intelligent tire sensors, which involve impact loadings. FR4 can be a better material for such applications compared to silicon MEMS devices due to lower stiffness and broadband response. In order to demonstrate FR4 performance and broadband response, three moving magnet type EM generator designs are developed and investigated throughout the paper. A velocity-damped harvester simulation model is first developed, including a detailed magnetic model and the magnetic damping effects. The numerical results agree well with the experimental results. Human running acceleration at the hip area that is obtained experimentally is simulated in order to demonstrate system performance, which results in a scavenged power of about 40 µW with 15 m s-2 acceleration input. The designed FR4 energy scavengers with mechanical stoppers implemented are particularly well suited for nearly periodic and non-sinusoidal high- g excitations with rich harmonic content. For the intelligent tire applications, a special compact FR4 scavenger is designed that is able to withstand large shocks and vibrations due to mechanical shock stoppers built into the structure. Using our design, 0.4 mW power across a load resistance at off-resonance operation is obtained in shaker experiments. In the actual operation, the tangential accelerations as a result of the tire-road contact are estimated to supply power around 1 mW with our design, which is sufficient for powering wireless tire sensors. The normalized power density (NPD) of the designed actuators compares favorably with most actuators reported in the literature.

  9. Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyens, T. X.; Koppen, S. V.; Smith, L. J.; Williams, R. A.; Salud, M. T.

    2005-01-01

    Emissions in aircraft communication and navigation bands are measured for the latest generation of wireless phones. The two wireless technologies considered, GSM/GPRS and CDMA2000, are the latest available to general consumers in the U.S. A base-station simulator is used to control the phones. The measurements are conducted using reverberation chambers, and the results are compared against FCC and aircraft installed equipment emission limits. The results are also compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft.

  10. Wireless Power Transmission to Organic Light Emitting Diode Lighting Panel with Magnetically Coupled Resonator

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Hae; Han, Jun-Han; Kang, Seung-Youl; Cheon, Sanghoon; Lee, Myung-Lae; Ahn, Seong-Deok; Zyung, Taehyoung; Lee, Jeong-Ik; Moon, Jaehyun; Chu, Hye Yong

    2012-09-01

    We are successful to lit the organic light emitting diode (OLED) lighting panel through the magnetically coupled wireless power transmission technology. For the wireless power transmission, we used the operation frequency 932 kHz, specially designed double spiral type transmitter, small and thin receiver on the four layered printed circuit board, and schottky diodes for the full bridge rectifier. Our white OLED is a hybrid type, in which phosphorescent and fluorescent organics are used together to generate stable white color. The total efficiency of power transmission is around 72%.

  11. A mobile network-based multimedia teleconference system for homecare services.

    PubMed

    Zhang, Zhaomin; He, Aiguo; Wei, Daming

    2008-03-01

    Because most research and development for homecare services have focused on providing connections between home and service centers, the goal of the present work is to develop techniques and create realtime communications to connect service centers and homecare workers in mobile environments. A key technical issue for this research is how to overcome the limitation of bandwidth in mobile media and networks. An effort has been made to balance performance of communication and basic demands in telehealth through optimized system design and technical implementation. Implementations using third generation (3G) Freedom Of Mobile multimedia Access (FOMA) and Personal Handyphone System (PHS) were developed and evaluated. We conclude that the system we developed based on 3G FOMA provides sufficient and satisfactory functions for use in homecare services.

  12. History of Antenna Technology for Mobile Communications in Korea

    NASA Astrophysics Data System (ADS)

    Min, Kyeong-Sik; Park, Chul-Keun; Kang, Suk-Youb

    In this paper, we discuss the development of wireless and mobile communications in Korea, current technological trends, and the future outlook on technological developments. Since the introduction of the telegraph and the telephone in September 1885, Korea's wired and wireless communications industry has consistently developed for over 100 years. Since 1984, upon the provision of the mobile telecommunications service, the industry has seen drastic qualitative and quantitative growth in terms of both technical and economic aspects, which played a crucial role in the rapid growth of the digital industry in Korea. After the era of the analog cellular service based on the Advanced Mobile Phone System (AMPS), a precursor to the modern mobile service, Korea became the world's first country to commercialize Code Division Multiple Access (CDMA) in 1996 and succeeded in commercializing CDMA 2000 lx (IMT 2000) in 2001. With further developments in the mobile communication technology, the technology for antennas also saw drastic advancements. As the mobile antennas moved from the second to the third generation, they grew from external models to very small internal models. At the same time, they evolved into highly functional and high performance multiple band and wide band antennas. Furthermore, Korea was the first country to commercialize and offer the Wireless Broadband Internet (WiBro) service in 2006. By leading the wireless communications standardization and exerting remarkable efforts in research and development, Korea is consolidating its status as an Information Technology (IT) leader in the global market. The antenna's inherent importance will be further emphasized in the near future as it satisfies the performance and structural needs of portable terminals necessary for realizing the projected establishment of the ubiquitous world. It is thought that antenna technologies will not be limited to simple concepts as previously experienced but will utilize various kinds of materials that build the terminals' structure and framework. Moreover, studies will be performed with an emphasis on multiple band, multiple directivity, and ultra-wide band. Accordingly, antenna technologies to which new concepts are applied, such as SMART antenna and MIMO antenna technologies and meta-materials, will surely be effective alternatives.

  13. A low-cost mobile adaptive tracking system for chronic pulmonary patients in home environment.

    PubMed

    Işik, Ali Hakan; Güler, Inan; Sener, Melahat Uzel

    2013-01-01

    The main objective of this study is presenting a real-time mobile adaptive tracking system for patients diagnosed with diseases such as asthma or chronic obstructive pulmonary disease and application results at home. The main role of the system is to support and track chronic pulmonary patients in real time who are comfortable in their home environment. It is not intended to replace the doctor, regular treatment, and diagnosis. In this study, the Java 2 micro edition-based system is integrated with portable spirometry, smartphone, extensible markup language-based Web services, Web server, and Web pages for visualizing pulmonary function test results. The Bluetooth(®) (Bluetooth SIG, Kirkland, WA) virtual serial port protocol is used to obtain the test results from spirometry. General packet radio service, wireless local area network, or third-generation-based wireless networks are used to send the test results from a smartphone to the remote database. The system provides real-time classification of test results with the back propagation artificial neural network algorithm on a mobile smartphone. It also provides the generation of appropriate short message service-based notification and sending of all data to the Web server. In this study, the test results of 486 patients, obtained from Atatürk Chest Diseases and Thoracic Surgery Training and Research Hospital in Ankara, Turkey, are used as the training and test set in the algorithm. The algorithm has 98.7% accuracy, 97.83% specificity, 97.63% sensitivity, and 0.946 correlation values. The results show that the system is cheap (900 Euros) and reliable. The developed real-time system provides improvement in classification accuracy and facilitates tracking of chronic pulmonary patients.

  14. Wireless Chemical Sensor and Sensing Method for Use Therewith

    NASA Technical Reports Server (NTRS)

    Oglesby, Donald M. (Inventor); Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor)

    2016-01-01

    A wireless chemical sensor includes an electrical conductor and a material separated therefrom by an electric insulator. The electrical conductor is an unconnected open-circuit shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the first electrical conductor resonates to generate harmonic electric and magnetic field responses. The material is positioned at a location lying within at least one of the electric and magnetic field responses so-generated. The material changes in electrical conductivity in the presence of a chemical-of-interest.

  15. Wireless Chemical Sensor and Sensing Method for Use Therewith

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Oglesby, Donald M. (Inventor); Taylor, Bryant Douglas (Inventor)

    2014-01-01

    A wireless chemical sensor includes an electrical conductor and a material separated therefrom by an electric insulator. The electrical conductor is an unconnected open-circuit shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the first electrical conductor resonates to generate harmonic electric and magnetic field responses. The material is positioned at a location lying within at least one of the electric and magnetic field responses so-generated. The material changes in electrical conductivity in the presence of a chemical-of-interest.

  16. Wireless Chemical Sensing Method

    NASA Technical Reports Server (NTRS)

    Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor); Oglesby, Donald M. (Inventor)

    2017-01-01

    A wireless chemical sensor includes an electrical conductor and a material separated therefrom by an electric insulator. The electrical conductor is an unconnected open-circuit shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the first electrical conductor resonates to generate harmonic electric and magnetic field responses. The material is positioned at a location lying within at least one of the electric and magnetic field responses so-generated. The material changes in electrical conductivity in the presence of a chemical-of-interest.

  17. Investigation of interference in multiple-input multiple-output wireless transmission at W band for an optical wireless integration system.

    PubMed

    Li, Xinying; Yu, Jianjun; Dong, Ze; Zhang, Junwen; Chi, Nan; Yu, Jianguo

    2013-03-01

    We experimentally investigate the interference in multiple-input multiple-output (MIMO) wireless transmission by adjusting the relative locations of horn antennas (HAs) in a 100 GHz optical wireless integration system, which can deliver a 50 Gb/s polarization-division-multiplexing quadrature-phase-shift-keying signal over 80 km single-mode fiber-28 and a 2×2 MIMO wireless link. For the parallel 2×2 MIMO wireless link, each receiver HA can only get wireless power from the corresponding transmitter HA, while for the crossover ones, the receiver HA can get wireless power from two transmitter HAs. At the wireless receiver, polarization demultiplexing is realized by the constant modulus algorithm (CMA) in the digital-signal-processing part. Compared to the parallel case, wireless interference causes about 2 dB optical signal-to-noise ratio penalty at a bit-error ratio (BER) of 3.8×10(-3) for the crossover cases if similar CMA taps are employed. The increase in CMA tap length can reduce wireless interference and improve BER performance. Furthermore, more CMA taps should be adopted to overcome the severe wireless interference when two pairs of transmitter and receiver HAs have different wireless distances.

  18. EMG amplifier with wireless data transmission

    NASA Astrophysics Data System (ADS)

    Kowalski, Grzegorz; Wildner, Krzysztof

    2017-08-01

    Wireless medical diagnostics is a trend in modern technology used in medicine. This paper presents a concept of realization, architecture of hardware and software implementation of an elecromyography signal (EMG) amplifier with wireless data transmission. This amplifier consists of three components: analogue processing of bioelectric signal module, micro-controller circuit and an application enabling data acquisition via a personal computer. The analogue bioelectric signal processing circuit receives electromyography signals from the skin surface, followed by initial analogue processing and preparation of the signals for further digital processing. The second module is a micro-controller circuit designed to wirelessly transmit the electromyography signals from the analogue signal converter to a personal computer. Its purpose is to eliminate the need for wired connections between the patient and the data logging device. The third block is a computer application designed to display the transmitted electromyography signals, as well as data capture and analysis. Its purpose is to provide a graphical representation of the collected data. The entire device has been thoroughly tested to ensure proper functioning. In use, the device displayed the captured electromyography signal from the arm of the patient. Amplitude- frequency characteristics were set in order to investigate the bandwidth and the overall gain of the device.

  19. Real-time synchronization of wireless sensor network by 1-PPS signal

    NASA Astrophysics Data System (ADS)

    Giammarini, Marco; Pieralisi, Marco; Isidori, Daniela; Concettoni, Enrico; Cristalli, Cristina; Fioravanti, Matteo

    2015-05-01

    The use of wireless sensor networks with different nodes is desirable in a smart environment, because the network setting up and installation on preexisting structures can be done without a fixed cabled infrastructure. The flexibility of the monitoring system is fundamental where the use of a considerable quantity of cables could compromise the normal exercise, could affect the quality of acquired signal and finally increase the cost of the materials and installation. The network is composed of several intelligent "nodes", which acquires data from different kind of sensors, and then store or transmit them to a central elaboration unit. The synchronization of data acquisition is the core of the real-time wireless sensor network (WSN). In this paper, we present a comparison between different methods proposed by literature for the real-time acquisition in a WSN and finally we present our solution based on 1-Pulse-Per-Second (1-PPS) signal generated by GPS systems. The sensor node developed is a small-embedded system based on ARM microcontroller that manages the acquisition, the timing and the post-processing of the data. The communications between the sensors and the master based on IEEE 802.15.4 protocol and managed by dedicated software. Finally, we present the preliminary results obtained on a 3 floor building simulator with the wireless sensors system developed.

  20. Wireless-powered electroactive soft microgripper

    NASA Astrophysics Data System (ADS)

    Cheong, Hau Ran; Teo, Choon Yee; Leow, Pei Ling; Lai, Koon Chun; Chee, Pei Song

    2018-05-01

    This paper presents a wireless powered single active finger ionic polymer metal composite (IPMC) based microgripper that is operated using external radio-frequency (RF) magnetic field for biological cell manipulation application. A unimorph-like active finger is fabricated by integrating the IPMC actuator to the planar resonant LC receiver and DC rectifier circuits (made of flexible double-sided copper clad polyimide). The finger activated when the device is exposed to the external magnetic field generated by transmitter circuit that matches the resonant frequency of LC receiver circuit, ∼13.6 MHz in magnetic resonant coupling power transfer mechanism. The fabricated prototype shows a maximum IPMC deflection of 0.765 mm (activation force of 0.17 mN) at the RF power of 0.65 W with 3.5 VDC supplied from the LC receiver circuit. Three repeated ON-OFF wireless activation cycle was performed with the reported cumulative deflection of 0.57 mm. The cumulative deflection was increased to 1.17 mm, 1.19 mm and 1.24 mm for three different samples respectively at 5 VDC supplied. As a proof of concept, fish egg was used to represent the biological cell manipulation operation. The microgripper successfully gripped the fish egg sample without any damages. The experiments result validates the effectiveness of wireless RF soft microgripper towards the target application.

  1. Etidronate from Medicine to Endodontics: effects of different irrigation regimes on root dentin roughness

    PubMed Central

    TARTARI, Talita; DUARTE JUNIOR, Anivaldo Pereira; SILVA JÚNIOR, José Otávio Carrera; KLAUTAU, Eliza Burlamaqui; SILVA E SOUZA JUNIOR, Mario Honorato; SILVA E SOUZA, Patrícia de Almeida Rodrigues

    2013-01-01

    An increase in dentin roughness, associated with surface composition, contributes to bacterial adherence in recontaminations. Surface roughness is also important for micromechanical interlocking of dental materials to dentin, and understanding the characteristics of the surface is essential to obtain the adhesion of root canal sealers that have different physico-chemical characteristics. Objectives To evaluate the effects of sodium hypochlorite (NaOCl), ethylenediaminetetraacetic (EDTA), etidronic (HEBP), and citric acid (CA) associated with different irrigation regimens on root dentin roughness. Material and Methods Forty-five root halves of anterior teeth were used. The root parts were sectioned in thirds, embedded in acrylic resin and polished to a standard surface roughness. Initially, the samples of each third were randomly assigned into 3 groups and treated as follows: G1 - saline solution (control); G2 - 5% NaOCl+18% HEBP mixed in equal parts; and G3 - 2.5% NaOCl. After initial measuments, the G3 samples were distributed into subgroups G4, G5 and G6, which were subjected to 17% EDTA, 10% CA and 9% HEBP, respectively. Following the new measuments, these groups received a final flush with 2.5% NaOCl, producing G7, G8 and G9. The dentin surface roughness (Ra) was determined before and after treatments using a profilometer. The Wilcoxon test (α<0.05) was used to compare the values before and after treatments, and the Friedman test (α<0.05) to detect any differences among root thirds. Results (i) NaOCl did not affect the surface roughness; (ii) there was a significant increase in roughness after the use of chelating agents (P<0.01); and (iii) only the G3 group showed a difference in surface roughness between apical third and other thirds of the teeth (P<0.0043). Conclusion Only the irrigation regimens that used chelating agents altered the roughness of root dentin. PMID:24212986

  2. Etidronate from medicine to endodontics: effects of different irrigation regimes on root dentin roughness.

    PubMed

    Tartari, Talita; Duarte Junior, Anivaldo Pereira; Silva Júnior, José Otávio Carrera; Klautau, Eliza Burlamaqui; Silva E Souza Junior, Mario Honorato; Silva E Souza Junior, Patrícia de Almeida Rodrigues

    2013-01-01

    An increase in dentin roughness, associated with surface composition, contributes to bacterial adherence in recontaminations. Surface roughness is also important for micromechanical interlocking of dental materials to dentin, and understanding the characteristics of the surface is essential to obtain the adhesion of root canal sealers that have different physico-chemical characteristics. To evaluate the effects of sodium hypochlorite (NaOCl), ethylenediaminetetraacetic (EDTA), etidronic (HEBP), and citric acid (CA) associated with different irrigation regimens on root dentin roughness. Forty-five root halves of anterior teeth were used. The root parts were sectioned in thirds, embedded in acrylic resin and polished to a standard surface roughness. Initially, the samples of each third were randomly assigned into 3 groups and treated as follows: G1 - saline solution (control); G2 - 5% NaOCl+18% HEBP mixed in equal parts; and G3 - 2.5% NaOCl. After initial measuments, the G3 samples were distributed into subgroups G4, G5 and G6, which were subjected to 17% EDTA, 10% CA and 9% HEBP, respectively. Following the new measuments, these groups received a final flush with 2.5% NaOCl, producing G7, G8 and G9. The dentin surface roughness (Ra) was determined before and after treatments using a profilometer. The Wilcoxon test (α<0.05) was used to compare the values before and after treatments, and the Friedman test (α<0.05) to detect any differences among root thirds. (i) NaOCl did not affect the surface roughness; (ii) there was a significant increase in roughness after the use of chelating agents (P<0.01); and (iii) only the G3 group showed a difference in surface roughness between apical third and other thirds of the teeth (P<0.0043). Only the irrigation regimens that used chelating agents altered the roughness of root dentin.

  3. New paradigms in telemedicine: ambient intelligence, wearable, pervasive and personalized.

    PubMed

    Rubel, Paul; Fayn, Jocelyne; Simon-Chautemps, Lucas; Atoui, Hussein; Ohlsson, Mattias; Telisson, David; Adami, Stefano; Arod, Sébastien; Forlini, Marie Claire; Malossi, Cesare; Placide, Joël; Ziliani, Gian Luca; Assanelli, Deodato; Chevalier, Philippe

    2004-01-01

    After decades of development of information systems dedicated to health professionals, there is an increasing demand for personalized and non-hospital based care. An especially critical domain is cardiology: almost two third of cardiac deaths occur out of hospital, and victims do not survive long enough to benefit from in-hospital treatments. We need to reduce the time before treatment. But symptoms are often interpreted wrongly. The only immediate diagnostic tool to assess the possibility of a cardiac event is the electrocardiogram (ECG). Event and transtelephonic ECG recorders are used to improve decision making but require setting up new infrastructures. The European EPI-MEDICS project has developed an intelligent Personal ECG Monitor (PEM) for the early detection of cardiac events. The PEM embeds advanced decision making techniques, generates different alarm levels and forwards alarm messages to the relevant care providers by means of new generation wireless communication. It is cost saving, involving care provider only if necessary and requiring no specific infrastructure. This solution is a typical example of pervasive computing and ambient intelligence that demonstrates how personalized, wearable, ubiquitous devices could improve healthcare.

  4. Prevalence, distribution and characterisation of ceftiofur resistance in Salmonella enterica isolated from animals in the USA from 1999 to 2003.

    PubMed

    Frye, Jonathan G; Fedorka-Cray, Paula J

    2007-08-01

    Third-generation cephalosporin (3GC) antimicrobials are the drugs of choice for treatment of salmonellosis in children. Salmonella isolated in the USA are assayed by the National Antimicrobial Resistance Monitoring System (NARMS) for resistance to antimicrobials including first-, second- and third-generation cephalosporins. From 1999 to 2003, 34,411 Salmonella were isolated from animals in the USA, of which 10.9% were found to be resistant to ceftiofur, a 3GC used in animals, whilst only 0.3% were resistant to ceftriaxone, a 3GC used in human medicine. Ceftiofur resistance rose from 4.0% in 1999 to 18.8% in 2003. Isolates from diagnostic laboratories had higher levels of resistance (18.5%), whereas levels in isolates from on-farm (3.4%) and slaughter (7.1%) sources were lower. Animals with a higher than average proportion of resistant Salmonella included cattle (17.6%), horses (19.2%) and dogs (20.8%). Levels in turkeys (6.8%), chickens (7.1%), eggs (3.6%) and swine (4.6%) were lower. Resistance varied between Salmonella serotypes. A few serotypes had significantly high levels, e.g. S. Newport was 70.4% ceftiofur resistant. Resistance was predominantly associated with bla(CMY-2)-encoding plasmids. These data suggest that the acquisition of resistance plasmids and the spread of specific serotypes harbouring these plasmids are driving the observed resistance to ceftiofur in Salmonella animal isolates.

  5. An empirical analysis of the radio propagation characteristics in high-speed railway environment

    NASA Astrophysics Data System (ADS)

    Hu, Guoqing; Ma, Guangjin; Li, Chunlai; Xu, Yongchi; He, Jin; Yu, Ying; He, Yandong

    2017-09-01

    For a wireless mobile network, a profile of radio propagation characteristics is the key to study any wireless techniques, especially in High-Speed Railway (HSR) environment. Unfortunately, such a profile is not available so far, which leads manifold challenges to wireless study for HSR scenarios. In this paper, we focus on this topic, and try to obtain this profile in various kinds of HSR scenarios based on previous field tests in China. Our study reveals that the Line-Of-Sight (LOS) propagation path plays a predominant role in the HSR scenarios, which can suppress the shadow fading. Finally, we find out that each kind of small-scale fading effects has a unique profile on different wireless mobile systems for HSR scenarios. As a result, this study presents a theoretical guidance for studying any wireless techniques in HSR environment, e.g., cell handover for HSR.

  6. The benefits of soft sensor and multi-rate control for the implementation of Wireless Networked Control Systems.

    PubMed

    Mansano, Raul K; Godoy, Eduardo P; Porto, Arthur J V

    2014-12-18

    Recent advances in wireless networking technology and the proliferation of industrial wireless sensors have led to an increasing interest in using wireless networks for closed loop control. The main advantages of Wireless Networked Control Systems (WNCSs) are the reconfigurability, easy commissioning and the possibility of installation in places where cabling is impossible. Despite these advantages, there are two main problems which must be considered for practical implementations of WNCSs. One problem is the sampling period constraint of industrial wireless sensors. This problem is related to the energy cost of the wireless transmission, since the power supply is limited, which precludes the use of these sensors in several closed-loop controls. The other technological concern in WNCS is the energy efficiency of the devices. As the sensors are powered by batteries, the lowest possible consumption is required to extend battery lifetime. As a result, there is a compromise between the sensor sampling period, the sensor battery lifetime and the required control performance for the WNCS. This paper develops a model-based soft sensor to overcome these problems and enable practical implementations of WNCSs. The goal of the soft sensor is generating virtual data allowing an actuation on the process faster than the maximum sampling period available for the wireless sensor. Experimental results have shown the soft sensor is a solution to the sampling period constraint problem of wireless sensors in control applications, enabling the application of industrial wireless sensors in WNCSs. Additionally, our results demonstrated the soft sensor potential for implementing energy efficient WNCS through the battery saving of industrial wireless sensors.

  7. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network.

    PubMed

    Zhang, Daxing; Zhu, Yingmin; Pedrycz, Witold; Guo, Yongxian

    2016-05-18

    Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs.

  8. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network

    PubMed Central

    Zhang, Daxing; Zhu, Yingmin; Pedrycz, Witold; Guo, Yongxian

    2016-01-01

    Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs. PMID:27213346

  9. Intermediate frequency magnetic field generated by a wireless power transmission device does not cause genotoxicity in vitro.

    PubMed

    Shi, Dejing; Zhu, Chunbo; Lu, Rengui; Mao, Shitong; Qi, Yanhua

    2014-10-01

    The aim of this study was to evaluate effects of intermediate frequency magnetic fields (IFMF) generated by a wireless power transmission (WPT) based on magnetic resonance from the perspective of cellular genotoxicity on cultured human lens epithelial cells (HLECs). We evaluated the effects of exposure to 90 kHz magnetic fields at 93.36 µT on cellular genotoxicity in vitro for 2 and 4 h. The magnetic flux density is approximately 3.5 times higher than the reference level recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. For assessment of genotoxicity, we studied cellular proliferation, apoptosis and DNA damage by Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis, alkaline comet assay and phosphorylated histone H2AX (γH2AX) foci formation test. We did not detect any effect of a 90 kHz IFMF generated by WPT based on magnetic resonance on cell proliferation, apoptosis, comet assay, and γH2AX foci formation test. Our results indicated that exposure to 90 kHz IFMF generated by WPT based on magnetic resonance at 93.36 µT for 2 and 4 h does not cause detectable cellular genotoxicity. © 2014 Wiley Periodicals, Inc.

  10. Improving Neural Recording Technology at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Ferguson, John Eric

    Neural recording electrodes are widely used to study normal brain function (e.g., learning, memory, and sensation) and abnormal brain function (e.g., epilepsy, addiction, and depression) and to interface with the nervous system for neuroprosthetics. With a deep understanding of the electrode interface at the nanoscale and the use of novel nanofabrication processes, neural recording electrodes can be designed that surpass previous limits and enable new applications. In this thesis, I will discuss three projects. In the first project, we created an ultralow-impedance electrode coating by controlling the nanoscale texture of electrode surfaces. In the second project, we developed a novel nanowire electrode for long-term intracellular recordings. In the third project, we created a means of wirelessly communicating with ultra-miniature, implantable neural recording devices. The techniques developed for these projects offer significant improvements in the quality of neural recordings. They can also open the door to new types of experiments and medical devices, which can lead to a better understanding of the brain and can enable novel and improved tools for clinical applications.

  11. [Neisseria gonorrhoeae: antimicrobial resistance and study of population dynamics. Situation in Barcelona in 2011].

    PubMed

    Serra-Pladevall, Judit; Barberá-Gracia, María Jesús; Roig-Carbajosa, Glòria; Juvé-Saumell, Rosa; Gonzalez-Lopez, Juan José; Bartolomé-Comas, Rosa; Andreu-Domingo, Antònia

    2013-11-01

    Due to the high rates of antimicrobial resistance to certain antibiotics, together with the emergence of Neisseria gonorrhoeae (NG) with reduced susceptibility and resistance to third-generation cephalosporins, gonococcal infection is becoming a public health problem. The objectives of the study were: To keep track of the antimicrobial susceptibility of NG strains obtained from January to August 2011. To study the population dynamics. The antimicrobial susceptibility was studied by disk-diffusion and E-test. The genotyping was performed by NG-MAST method. Of a total of 100strains studied, 59% showed intermediate sensitivity to penicillin and 9% were resistant. According to EUCAST, we detected 3gonococci with reduced susceptibility to ceftriaxone, 10 to cefixime and one with high-level resistance to both antibiotics (MIC 1.5μg/ml). MIC50 and MIC90 to cefixime were 0.016 and 0.125μg/ml, respectively, whereas to ceftriaxone they were <0.016 and 0.064μg/ml, respectively. Almost all (99%) of the strains were resistant to doxycycline, 53% to ciprofloxacin, 3% to azithromycin, and 1% to spectinomycin. The most prevalent ST was ST1407, predominantly associated to resistance or reduced sensitivity to cephalosporins or macrolides. NG has developed significant rates of resistance to various antibiotics. One strain has been detected with high level resistance to third generation cephalosporins, and several strains with reduced susceptibility. An increase in MIC50 and MIC90 to these antibiotics has also been observed. NG population structure remains stable and common to the rest of Europe, although two new ST (ST7226 and ST7227) have been identified that could be selected and acquire high levels of resistance to cephalosporins. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  12. Wireless System and Method for Collecting Motion and Non-Motion Related Data of a Rotating System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2011-01-01

    A wireless system for collecting data indicative of a tire's characteristics uses at least one open-circuit electrical conductor in a tire. The conductor is shaped such that it can store electrical and magnetic energy. In the presence of a time-varying magnetic field, the conductor resonates to generate a harmonic response having a frequency, amplitude and bandwidth. A magnetic field response recorder is used to (i) wirelessly transmit the time-varying magnetic field to the conductor, and (ii) wirelessly detect the harmonic response and the frequency, amplitude and bandwidth, associated therewith. The recorder is adapted to be positioned in a location that is fixed with respect to the tire as the tire rotates.

  13. Met gene amplification and protein hyperactivation is a mechanism of resistance to both first and third generation EGFR inhibitors in lung cancer treatment.

    PubMed

    Shi, Puyu; Oh, You-Take; Zhang, Guojing; Yao, Weilong; Yue, Ping; Li, Yikun; Kanteti, Rajani; Riehm, Jacob; Salgia, Ravi; Owonikoko, Taofeek K; Ramalingam, Suresh S; Chen, Mingwei; Sun, Shi-Yong

    2016-10-01

    The 3rd generation epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs; e.g., AZD9291), which selectively and irreversibly inhibit EGFR activating and T790M mutants, represent very promising therapeutic options for patients with non-small cell lung cancer (NSCLC) that has become resistant to 1st generation EGFR-TKIs due to T790M mutation. However, eventual resistance to the 3rd generation EGFR-TKIs has already been described in the clinic, resulting in disease progression. Therefore, there is a great challenge and urgent need to understand how this resistance occurs and to develop effective strategies to delay or overcome the resistance. The current study has demonstrated that Met amplification and hyperactivation is a resistance mechanism to both 1st and 3rd generation EGFR-TKIs since both erlotinib- and AZD9291-resistant HCC827 cell lines possessed amplified Met gene and hyperactivated Met, and were cross-resistant to AZD9291 or erlotinib. Met inhibition overcame the resistance of these cell lines to AZD9291 both in vitro and in vivo, including enhancement of apoptosis or G1 cell cycle arrest. Hence, we suggest that Met inhibition is also an effective strategy to overcome resistance of certain EGFR-mutated NSCLCs with Met amplification to AZD9291, warranting the further clinical validation of our findings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Exploring Zen Marketing: A Strategic Experiment in Leveraging End User Intellectual Capital to Stimulate Primary Market Demand

    NASA Astrophysics Data System (ADS)

    Gilbert, Raymond

    2003-10-01

    Recently the Telecom Industry experienced an economic boom & bust cycle that hampered new service development & deployment. Consequently, there are significant problems in capturing key requirements for new network-based services and in educating CIO-IT leaders so they can promote investment proposals with their enterprise business leadership. This paper outlines a multi-functional initiative that Lucent Technologies established to engage and exchange with key Enterprises & their Telecom Suppliers views of future network technologies. This experiment is unique because it is facilitated by the corporate CIO-IT leadership & is focused on the latest 3G wireless technologies. CIO-IT provides externally facing resources that collaborate directly with Enterprises, and Service Providers while facilitating internal interactions with Bell Labs, Business Units and Sales teams. This program embodies a Zen Marketing approach since it seeks to create flashes of enlightenment with IT & business leaders by exercising all the knowledge, culture & behaviors available to an IT end user. The paper summarizes several organizational challenges & benefits uncovered by a program that is focused on transforming Mobility Provider relationships with their customers and expanding the overall awareness of the latest 3G wireless technologies.

  15. Analysis of physical layer performance of hybrid optical-wireless access network

    NASA Astrophysics Data System (ADS)

    Shaddad, R. Q.; Mohammad, A. B.; Al-hetar, A. M.

    2011-09-01

    The hybrid optical-wireless access network (HOWAN) is a favorable architecture for next generation access network. It is an optimal combination of an optical backhaul and a wireless front-end for an efficient access network. In this paper, the HOWAN architecture is designed based on a wavelengths division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) at the optical backhaul and a wireless fidelity (WiFi) technology at the wireless front-end. The HOWAN is proposed that can provide blanket coverage of broadband and flexible connection for end-users. Most of the existing works, based on performance evaluation are concerned on network layer aspects. This paper reports physical layer performance in terms of the bit error rate (BER), eye diagram, and signal-to-noise ratio (SNR) of the communication system. It accommodates 8 wavelength channels with 32 optical network unit/wireless access points (ONU/APs). It is demonstrated that downstream and upstream of 2 Gb/s can be achieved by optical backhaul for each wavelength channel along optical fiber length of 20 km and a data rate of 54 Mb/s per ONU/AP along a 50 m outdoor wireless link.

  16. Development of a network RTK positioning and gravity-surveying application with gravity correction using a smartphone.

    PubMed

    Kim, Jinsoo; Lee, Youngcheol; Cha, Sungyeoul; Choi, Chuluong; Lee, Seongkyu

    2013-07-12

    This paper proposes a smartphone-based network real-time kinematic (RTK) positioning and gravity-surveying application (app) that allows semi-real-time measurements using the built-in Bluetooth features of the smartphone and a third-generation or long-term evolution wireless device. The app was implemented on a single smartphone by integrating a global navigation satellite system (GNSS) controller, a laptop, and a field-note writing tool. The observation devices (i.e., a GNSS receiver and relative gravimeter) functioned independently of this system. The app included a gravity module, which converted the measured relative gravity reading into an absolute gravity value according to tides; meter height; instrument drift correction; and network adjustments. The semi-real-time features of this app allowed data to be shared easily with other researchers. Moreover, the proposed smartphone-based gravity-survey app was easily adaptable to various locations and rough terrain due to its compact size.

  17. Iron complexes of dendrimer-appended carboxylates for activating dioxygen and oxidizing hydrocarbons.

    PubMed

    Zhao, Min; Helms, Brett; Slonkina, Elena; Friedle, Simone; Lee, Dongwhan; Dubois, Jennifer; Hedman, Britt; Hodgson, Keith O; Fréchet, Jean M J; Lippard, Stephen J

    2008-04-02

    The active sites of metalloenzymes are often deeply buried inside a hydrophobic protein sheath, which protects them from undesirable hydrolysis and polymerization reactions, allowing them to achieve their normal functions. In order to mimic the hydrophobic environment of the active sites in bacterial monooxygenases, diiron(II) compounds of the general formula [Fe2([G-3]COO)4(4-RPy)2] were prepared, where [G-3]COO- is a third-generation dendrimer-appended terphenyl carboxylate ligand and 4-RPy is a pyridine derivative. The dendrimer environment provides excellent protection for the diiron center, reducing its reactivity toward dioxygen by about 300-fold compared with analogous complexes of terphenyl carboxylate ([G-1]COO-) ligands. An FeIIFeIII intermediate was characterized by electronic, electron paramagnetic resonance, Mössbauer, and X-ray absorption spectroscopic analyses following the oxygenation of [Fe2([G-3]COO)4(4-PPy)2], where 4-PPy is 4-pyrrolidinopyridine. The results are consistent with the formation of a superoxo species. This diiron compound, in the presence of dioxygen, can oxidize external substrates.

  18. Iron Complexes of Dendrimer-Appended Carboxylates for Activating Dioxygen and Oxidizing Hydrocarbons

    PubMed Central

    Zhao, Min; Helms, Brett; Slonkina, Elena; Friedle, Simone; Lee, Dongwhan; DuBois, Jennifer; Hedman, Britt; Hodgson, Keith O.; Fréchet, Jean M. J.; Lippard, Stephen J.

    2008-01-01

    The active sites of metalloenzymes are often deeply buried inside a hydrophobic protein sheath, which protects them from undesirable hydrolysis and polymerization reactions, allowing them to achieve their normal functions. In order to mimic the hydrophobic environment of the active sites in bacterial monooxygenases, diiron(II) compounds of the general formula [Fe2([G-3]COO)4(4-RPy)2] were prepared, where [G-3]COO− is a third-generation dendrimer-appended terphenyl carboxylate ligand and 4-RPy is a pyridine derivative. The dendrimer environment provides excellent protection for the diiron center, reducing its reactivity toward dioxygen by about 300-fold compared with analogous complexes of terphenyl carboxylate ([G-1]COO−) ligands. An FeIIFeIII intermediate was characterized by electronic, electron paramagnetic resonance, Mössbauer, and X-ray absorption spectroscopic analyses following the oxygenation of [Fe2−([G-3]COO)4(4-PPy)2], where 4-PPy is 4-pyrrolidinopyridine. The results are consistent with the formation of a superoxo species. This diiron compound, in the presence of dioxygen, can oxidize external substrates. PMID:18331028

  19. 47 CFR 10.240 - Notification to new subscribers of non-participation in CMAS.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CMAS Alert Messages, in part or in whole, shall provide clear and conspicuous notice, which takes into... to provide Alert messages at the point-of-sale. (b) The point-of-sale includes stores, kiosks, third... availability of this service and wireless emergency alert capable devices, please ask a sales representative...

  20. 47 CFR 10.240 - Notification to new subscribers of non-participation in CMAS.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CMAS Alert Messages, in part or in whole, shall provide clear and conspicuous notice, which takes into... to provide Alert messages at the point-of-sale. (b) The point-of-sale includes stores, kiosks, third... availability of this service and wireless emergency alert capable devices, please ask a sales representative...

  1. Jamming Attack in Wireless Sensor Network: From Time to Space

    NASA Astrophysics Data System (ADS)

    Sun, Yanqiang; Wang, Xiaodong; Zhou, Xingming

    Classical jamming attack models in the time domain have been proposed, such as constant jammer, random jammer, and reactive jammer. In this letter, we consider a new problem: given k jammers, how does the attacker minimize the pair-wise connectivity among the nodes in a Wireless Sensor Network (WSN)? We call this problem k-Jammer Deployment Problem (k-JDP). To the best of our knowledge, this is the first attempt at considering the position-critical jamming attack against wireless sensor network. We mainly make three contributions. First, we prove that the decision version of k-JDP is NP-complete even in the ideal situation where the attacker has full knowledge of the topology information of sensor network. Second, we propose a mathematical formulation based on Integer Programming (IP) model which yields an optimal solution. Third, we present a heuristic algorithm HAJDP, and compare it with the IP model. Numerical results show that our heuristic algorithm is computationally efficient.

  2. Low-power polling mode of the next-generation IMES2 implantable wireless EMG sensor.

    PubMed

    DeMichele, Glenn A; Hu, Zhe; Troyk, Philip R; Chen, Hongnan; Weir, Richard F ff

    2014-01-01

    The IMES1 Implantable MyoElectric Sensor device is currently in human clinical trials led by the Alfred Mann Foundation. The IMES is implanted in a residual limb and is powered wirelessly using a magnetic field. EMG signals resulting from the amputee's voluntary movement are amplified and transmitted wirelessly by the IMES to an external controller which controls movement of an external motorized prosthesis. Development of the IMES technology is on-going, producing the next-generation IMES2. Among various improvements, a new feature of the IMES2 is a low-power polling mode. In this low-power mode, the IMES2 power consumption can be dramatically reduced when the limb is inactive through the use of a polled sampling. With the onset of EMG activity, the IMES2 system can switch to the normal higher sample rate to allow the acquisition of high-fidelity EMG data for prosthesis control.

  3. Low-Power Polling Mode of the Next-Generation IMES2 Implantable Wireless EMG Sensor

    PubMed Central

    DeMichele, Glenn A.; Hu, Zhe; Troyk, Philip R.; Chen, Hongnan; Weir, Richard F. ff.

    2015-01-01

    The IMES1 Implantable MyoElectric Sensor device is currently in human clinical trials led by the Alfred Mann Foundation. The IMES is implanted in a residual limb and is powered wirelessly using a magnetic field. EMG signals resulting from the amputee’s voluntary movement are amplified and transmitted wirelessly by the IMES to an external controller which controls movement of an external motorized prosthesis. Development of the IMES technology is on-going, producing the next-generation IMES2. Among various improvements, a new feature of the IMES2 is a lowpower polling mode. In this low-power mode, the IMES2 power consumption can be dramatically reduced when the limb is inactive through the use of a polled sampling. With the onset of EMG activity, the IMES2 system can switch to the normal higher sample rate to allow the acquisition of high-fidelity EMG data for prosthesis control. PMID:25570642

  4. Self-Powered Wireless Sensors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Sayir, Ali

    2008-01-01

    NASA's integrated vehicle health management (IVHM) program offers the potential to improve aeronautical safety, reduce cost and improve performance by utilizing networks of wireless sensors. Development of sensor systems for engine hot sections will provide real-time data for prognostics and health management of turbo-engines. Sustainable power to embedded wireless sensors is a key challenge for prolong operation. Harvesting energy from the environment has emerged as a viable technique for power generation. Thermoelectric generators provide a direct conversion of heat energy to electrical energy. Micro-power sources derived from thermoelectric films are desired for applications in harsh thermal environments. Silicon based alloys are being explored for applications in high temperature environments containing oxygen. Chromium based p-type Si/Ge alloys exhibit Seebeck coefficients on the order of 160 micro V/K and low thermal conductance of 2.5 to 5 W/mK. Thermoelectric properties of bulk and thin film silicides will be discussed

  5. On the Performance Evaluation of Query-Based Wireless Sensor Networks

    DTIC Science & Technology

    2012-01-01

    is ∆ ≡ P(T > X) = π0 ∫ ∞ 0 [1−B(x)] dH(x). (2) Proposition 1 can be proved using a simple conditioning argument . The expression for the proportion of...node by α ≡ α1. Assuming the event lifetime distribution function G has an increasing failure rate ( IFR ), then 0 < α ≤ α2 ≤ α3 ≤ · · · . Proposition 3...Suppose G is an IFR distribution function so that 0 < α ≤ α2 ≤ α3 ≤ · · · . Then for a fixed time-to-live counter ℓ, λe ≤ λ [ 1− (1− α)ℓ α ] ≤ λℓ

  6. Genetical Analysis of Chromosomal Interaction Effects on the Activities of the Glucose 6-Phosphate and 6-Phosphogluconate Dehydrogenases in DROSOPHILA MELANOGASTER

    PubMed Central

    Miyashita, Naohiko; Laurie-Ahlberg, C. C.

    1984-01-01

    By combining ten second and ten third chromosomes, we investigated chromosomal interaction with respect to the action of the modifier factors on G6PD and 6PGD activities in Drosophila melanogaster. Analysis of variance revealed that highly significant chromosomal interaction exists for both enzyme activities. From the estimated variance components, it was concluded that the variation in enzyme activity attributed to the interaction is as great as the variation attributed to the second chromosome but less than attributed to the third chromosome. The interaction is not explained by the variation of body size (live weight). The interaction is generated from both the lack of correlation of second chromosomes for third chromosome backgrounds and the heterogeneous variance of second chromosomes for different third chromosome backgrounds. Large and constant correlation between G6PD and 6PGD activities were found for third chromosomes with any second chromosome background, whereas the correlations for second chromosomes were much smaller and varied considerably with the third chromosome background. This result suggests that the activity modifiers on the second chromosome are under the influence of third chromosome factors. PMID:6425115

  7. A miniature bidirectional telemetry system for in vivo gastric slow wave recordings.

    PubMed

    Farajidavar, Aydin; O'Grady, Gregory; Rao, Smitha M N; Cheng, Leo K; Abell, Thomas; Chiao, J-C

    2012-06-01

    Stomach contractions are initiated and coordinated by an underlying electrical activity (slow waves), and electrical dysrhythmias accompany motility diseases. Electrical recordings taken directly from the stomach provide the most valuable data, but face technical constraints. Serosal or mucosal electrodes have cables that traverse the abdominal wall, or a natural orifice, causing discomfort and possible infection, and restricting mobility. These problems motivated the development of a wireless system. The bidirectional telemetric system constitutes a front-end transponder, a back-end receiver and a graphical userinter face. The front-end module conditions the analogue signals, then digitizes and loads the data into a radio for transmission. Data receipt at the backend is acknowledged via a transceiver function. The system was validated in a bench-top study, then validated in vivo using serosal electrodes connected simultaneously to a commercial wired system. The front-end module was 35 × 35 × 27 mm3 and weighed 20 g. Bench-top tests demonstrated reliable communication within a distance range of 30 m, power consumption of 13.5 mW, and 124 h operation when utilizing a 560 mAh, 3 V battery. In vivo,slow wave frequencies were recorded identically with the wireless and wired reference systems (2.4 cycles min−1), automated activation time detection was modestly better for the wireless system (5% versus 14% FP rate), and signal amplitudes were modestly higher via the wireless system (462 versus 3 86μV; p<0.001). This telemetric system for slow wave acquisition is reliable,power efficient, readily portable and potentially implantable. The device will enable chronic monitoring and evaluation of slow wave patterns in animals and patients.0967-3334/

  8. Sierra Nevada snowpack and runoff prediction integrating basin-wide wireless-sensor network data

    NASA Astrophysics Data System (ADS)

    Yoon, Y.; Conklin, M. H.; Bales, R. C.; Zhang, Z.; Zheng, Z.; Glaser, S. D.

    2016-12-01

    We focus on characterizing snowpack and estimating runoff from snowmelt in high elevation area (>2100 m) in Sierra Nevada for daily (for use in, e.g. flood and hydropower forecasting), seasonal (supply prediction), and decadal (long-term planning) time scale. Here, basin-wide wireless-sensor network data (ARHO, http://glaser.berkeley.edu/wsn/) is integrated into the USGS Precipitation-Runoff Modeling System (PRMS), and a case study of the American River basin is presented. In the American River basin, over 140 wireless sensors have been planted in 14 sites considering elevation gradient, slope, aspect, and vegetation density, which provides spatially distributed snow depth, temperature, solar radiation, and soil moisture from 2013. 800 m daily gridded dataset (PRISM) is used as the climate input for the PRMS. Model parameters are obtained from various sources (e.g., NLCD 2011, SSURGO, and NED) with a regionalization method and GIS analysis. We use a stepwise framework for a model calibration to improve model performance and localities of estimates. For this, entire basin is divided into 12 subbasins that include full natural flow measurements. The study period is between 1982 and 2014, which contains three major storm events and recent severe drought. Simulated snow depth and snow water equivalent (SWE) are initially compared with the water year 2014 ARHO observations. The overall results show reasonable agreements having the Nash-Sutcliffe efficiency coefficient (NS) of 0.7, ranged from 0.3 to 0.86. However, the results indicate a tendency to underestimate the SWE in a high elevation area compared with ARHO observations, which is caused by the underestimated PRISM precipitation data. Precipitation at gauge-sparse regions (e.g., high elevation area), in general, cannot be well represented in gridded datasets. Streamflow estimates of the basin outlet have NS of 0.93, percent bias of 7.8%, and normalized root mean square error of 3.6% for the monthly time scale.

  9. The influence of time and cement type on push-out bond strength of fiber posts to root dentin.

    PubMed

    Leme, A A; Coutinho, M; Insaurralde, A F; Scaffa, P M C; da Silva, L M

    2011-01-01

    The bond strength of fiber posts luted with resin cements was evaluated after two storage times in different regions of a post space. A total of 40 single-rooted human teeth were endodontically treated and prepared for cementation of fiber posts (White Post DC). In groups 1 and 3 (G1 and G3, respectively), posts were luted with RelyX ARC, whereas the posts in groups 2 and 4 (G2 and G4, respectively) were luted with RelyX Unicem. After one month of storage at 100% humidity, G1 and G2 were transversally sectioned in 1.7-mm slices of the cervical (C), middle (M), and apical (A) thirds of the post space and submitted to push-out testing at 1 mm/min. After nine months of storage, the roots of G3 and G4 underwent the same process. Mean values were analyzed using the Mann-Whitney and Kruskal-Wallis tests (α=0.05). The bond strengths in G2 (C=4.26±2.29; M=4.67±3.54; A=7.27±4.30) were statistically higher than in G1 (C=3.81±1.07; M=1.57±1.62; A=1.99±1.60) in the middle and apical thirds (p=0.001). Bond strengths in G4 (C=3.36±1.39; M=4.49±2.17; A=3.83±1.92) were higher than in G3 (C=2.13±0.47; M=0.94±1.05; A=0.95±1.02) in all evaluated regions (p=0.02, p<0.001, and p<0.001, respectively). When comparing the root regions for each group, G1 had higher values in the cervical third than the middle third (p=0.02). The self-adhesive resin cement showed better results than the conventional resin cement at both storage times. For both materials a similar performance among the three root regions was found. Storage time did not influence the shear bond strength.

  10. Synthesis and properties of greenish-blue-emitting iridium dendrimers with N-phenylcarbazole-based polyether dendrons by a post-dendronization route.

    PubMed

    Wang, Yang; Wang, Shumeng; Shao, Shiyang; Ding, Junqiao; Wang, Lixiang; Jing, Xiabin; Wang, Fosong

    2015-01-21

    A series of solution processible greenish-blue-emitting Ir dendrimers with polyether dendrons that consist of N-phenylcarbazole (NPC) are developed via a convenient post-dendronization method. It involves two steps: (i) the successful preparation of a reactive Ir core, namely m-HO-dfppyIr, only when the hydroxyl group is located at the meta position relative to the N atom in the C^N ligand so as to eliminate the possible resonance structure between enol and keto; and (ii) the subsequent functionalization with NPC-based polyether dendrons to afford the first, second and third generation Ir dendrimers (Ir-G1B, Ir-G2B and Ir-G3B) with ease and high yields over 60%. All these dendritic complexes possess good thermal stability with decomposition temperatures higher than 380 °C and glass transition temperatures higher than 200 °C. In addition, with the growing generation number, the intermolecular interactions between emissive Ir cores are expected to be effectively inhibited to avoid the luminescence quenching, which is confirmed from the blue-shifted emission peak and the enhanced lifetime of Ir-G3B in the solid state. As a result, on going from Ir-G1B to Ir-G3B, the maximum luminous efficiency rises upward from 4.7 to 9.2 cd A(-1) for nondoped electrophosphorescent devices. Further optimization by doping them into a dendritic H2 host leads to the improved luminous efficiencies as high as 20.0-25.2 cd A(-1).

  11. 40-Gb/s PDM-QPSK signal transmission over 160-m wireless distance at W-band.

    PubMed

    Xiao, Jiangnan; Yu, Jianjun; Li, Xinying; Xu, Yuming; Zhang, Ziran; Chen, Long

    2015-03-15

    We experimentally demonstrate a W-band optical-wireless transmission system over 160-m wireless distance with a bit rate up to 40 Gb/s. The optical-wireless transmission system adopts optical polarization-division-multiplexing (PDM), multiple-input multiple-output (MIMO) reception and antenna polarization diversity. Using this system, we experimentally demonstrate the 2×2 MIMO wireless delivery of 20- and 40-Gb/s PDM quadrature-phase-shift-keying (PDM-QPSK) signals over 640- and 160-m wireless links, respectively. The bit-error ratios (BERs) of these transmission systems are both less than the forward-error-correction (FEC) threshold of 3.8×10-3.

  12. In vivo wireless ethanol vapor detection in the Wistar rat

    PubMed Central

    Cheney, C. Parks; Srijanto, B.; Hedden, D. L.; Gehl, A.; Ferrell, T. L.; Schultz, J.; Engleman, E. A.; McBride, W. J.; O'Connor, S.

    2009-01-01

    Traditional alcohol studies measure blood alcohol concentration to elucidate the biomedical factors that contribute to alcohol abuse and alcoholism. These measurements require large and expensive equipment, are labor intensive, and are disruptive to the subject. To alleviate these problems, we have developed an implantable, wireless biosensor that is capable of measuring alcohol levels for up to six weeks. Ethanol levels were measured in vivo in the interstitial fluid of a Wistar rat after administering 1 g/kg and 2 g/kg ethanol by intraperitoneal (IP) injection. The data were transmitted wirelessly using a biosensor selective for alcohol detection. A low-power piezoresistive microcantilever sensor array was used with a polymer coating suitable for measuring ethanol concentrations at 100% humidity over several hours. A hydrophobic, vapor permeable nanopore membrane was used to screen liquid and ions while allowing vapor to pass to the sensor from the subcutaneous interstitial fluid. PMID:20161283

  13. Pervasive Radio Mapping of Industrial Environments Using a Virtual Reality Approach

    PubMed Central

    Nedelcu, Adrian-Valentin; Machedon-Pisu, Mihai; Talaba, Doru

    2015-01-01

    Wireless communications in industrial environments are seriously affected by reliability and performance issues, due to the multipath nature of obstacles within such environments. Special attention needs to be given to planning a wireless industrial network, so as to find the optimum spatial position for each of the nodes within the network, and especially for key nodes such as gateways or cluster heads. The aim of this paper is to present a pervasive radio mapping system which captures (senses) data regarding the radio spectrum, using low-cost wireless sensor nodes. This data is the input of radio mapping algorithms that generate electromagnetic propagation profiles. Such profiles are used for identifying obstacles within the environment and optimum propagation pathways. With the purpose of further optimizing the radio planning process, the authors propose a novel human-network interaction (HNI) paradigm that uses 3D virtual environments in order to display the radio maps in a natural, easy-to-perceive manner. The results of this approach illustrate its added value to the field of radio resource planning of industrial communication systems. PMID:26167533

  14. Design of a miniature wind turbine for powering wireless sensors

    NASA Astrophysics Data System (ADS)

    Xu, F. J.; Yuan, F. G.; Hu, J. Z.; Qiu, Y. P.

    2010-04-01

    In this paper, a miniature wind turbine (MWT) system composed of commercially available off-the-shelf components was designed and tested for harvesting energy from ambient airflow to power wireless sensors. To make MWT operate at very low air flow rates, a 7.6 cm thorgren plastic Propeller blade was adopted as the wind turbine blade. A sub watt brushless DC motor was used as generator. To predict the performance of the MWT, an equivalent circuit model was employed for analyzing the output power and the net efficiency of the MWT system. In theory, the maximum net efficiency 14.8% of the MWT system was predicted. Experimental output power of the MWT versus resistive loads ranging from 5 ohms to 500 ohms under wind speeds from 3 m/s to 4.5 m/s correlates well with those from the predicted model, which means that the equivalent circuit model provides a guideline for optimizing the performance of the MWT and can be used for fulfilling the design requirements by selecting specific components for powering wireless sensors.

  15. Pervasive Radio Mapping of Industrial Environments Using a Virtual Reality Approach.

    PubMed

    Nedelcu, Adrian-Valentin; Machedon-Pisu, Mihai; Duguleana, Mihai; Talaba, Doru

    2015-01-01

    Wireless communications in industrial environments are seriously affected by reliability and performance issues, due to the multipath nature of obstacles within such environments. Special attention needs to be given to planning a wireless industrial network, so as to find the optimum spatial position for each of the nodes within the network, and especially for key nodes such as gateways or cluster heads. The aim of this paper is to present a pervasive radio mapping system which captures (senses) data regarding the radio spectrum, using low-cost wireless sensor nodes. This data is the input of radio mapping algorithms that generate electromagnetic propagation profiles. Such profiles are used for identifying obstacles within the environment and optimum propagation pathways. With the purpose of further optimizing the radio planning process, the authors propose a novel human-network interaction (HNI) paradigm that uses 3D virtual environments in order to display the radio maps in a natural, easy-to-perceive manner. The results of this approach illustrate its added value to the field of radio resource planning of industrial communication systems.

  16. Investigation of the performance of EOTD for GSM users in telematics applications

    NASA Astrophysics Data System (ADS)

    Sharawi, Mohammad S.; Aloi, Daniel N.

    2003-08-01

    Location-based services have been standardized for incorporation into 3rd generation wireless communications as a result of the Federal Communications Commission"s (FCC) mandate on wireless carriers to provide automatic location information (ALI) during emergency911 calls. This mandate has driven the wireless carriers to explore terrestrial, satellite, and hybrid based location technology solutions. This paper presents a communications model that investigates the position accuracyof a Global Standard Mobile (GSM) phone employing the enhanced observed time difference (EOTD) location technology. The EOTD positioning technique requires the mobile station (MS) to detect signals from at least three base stations (BS). This studyassumes the three BSs are synchronized in time. For a given BS geometry with respect to the MS, a Monte Carlo simulation was performed to assess the two-dimensional position accuracyof the MS in Rayleigh and Ricean fading channels. In each channel, a Monte Carlo simulation was performed for a good and a bad BS-to-MS geometry. The paper concludes with a list of pros/cons of implementing EOTD as a location technologyenabler in telematics applications.

  17. Biomass Development in SRI Field Under Unmaintained Alternate Wetting-Drying Irrigation

    NASA Astrophysics Data System (ADS)

    Ardiansyah; Chusnul, A.; Krissandi, W.; Asna, M.

    2018-05-01

    The aim of this research is to observe biomass development of SRI on farmers practice in three plots with different level. This research observes the farmer practice of SRI and Non-SRI during the uncertainty of irrigation water supply and its effects on paddy biomass development during growth stages and final stage of crop. A farmer group that already understand the principle of SRI, applied this method into several plots of their rented paddy field. Researcher interventions were eliminated from their action, so it is purely on farmers decision on managing their SRI plots. Three plots from both SRI and Non-SRI were chosen based on the position of the plot related their access to water. First plots had direct access to water from tertiary irrigation channel (on farm). Second plots were received water from previous upper plots and drainage water into other plots. Third plots were in the bottom position, where they received water from upper plot, and drainage water into farm drainage channel. Result shows there are similar patterns of root, straw, and leaves of biomass during crop growth. On the other hand, during generative phase, grain development shows different pattern and resulting different biomass in harvest time. Second plot, (of SRI) that has water from first plot has the average of biomass grain per plant of 54.4, higher than first plot and third plot, which are 33.8 g and 38.4. Average biomass in second plot is 74.6 g, higher than first and third plot, which are 49.9 g and 52.3 g.

  18. Wireless ultrasonic wavefield imaging via laser for hidden damage detection inside a steel box girder bridge

    NASA Astrophysics Data System (ADS)

    An, Yun-Kyu; Song, Homin; Sohn, Hoon

    2014-09-01

    This paper presents a wireless ultrasonic wavefield imaging (WUWI) technique for detecting hidden damage inside a steel box girder bridge. The proposed technique allows (1) complete wireless excitation of piezoelectric transducers and noncontact sensing of the corresponding responses using laser beams, (2) autonomous damage visualization without comparing against baseline data previously accumulated from the pristine condition of a target structure and (3) robust damage diagnosis even for real structures with complex structural geometries. First, a new WUWI hardware system was developed by integrating optoelectronic-based signal transmitting and receiving devices and a scanning laser Doppler vibrometer. Next, a damage visualization algorithm, self-referencing f-k filter (SRF), was introduced to isolate and visualize only crack-induced ultrasonic modes from measured ultrasonic wavefield images. Finally, the performance of the proposed technique was validated through hidden crack visualization at a decommissioned Ramp-G Bridge in South Korea. The experimental results reveal that the proposed technique instantaneously detects and successfully visualizes hidden cracks even in the complex structure of a real bridge.

  19. The Benefits of Soft Sensor and Multi-Rate Control for the Implementation of Wireless Networked Control Systems

    PubMed Central

    Mansano, Raul K.; Godoy, Eduardo P.; Porto, Arthur J. V.

    2014-01-01

    Recent advances in wireless networking technology and the proliferation of industrial wireless sensors have led to an increasing interest in using wireless networks for closed loop control. The main advantages of Wireless Networked Control Systems (WNCSs) are the reconfigurability, easy commissioning and the possibility of installation in places where cabling is impossible. Despite these advantages, there are two main problems which must be considered for practical implementations of WNCSs. One problem is the sampling period constraint of industrial wireless sensors. This problem is related to the energy cost of the wireless transmission, since the power supply is limited, which precludes the use of these sensors in several closed-loop controls. The other technological concern in WNCS is the energy efficiency of the devices. As the sensors are powered by batteries, the lowest possible consumption is required to extend battery lifetime. As a result, there is a compromise between the sensor sampling period, the sensor battery lifetime and the required control performance for the WNCS. This paper develops a model-based soft sensor to overcome these problems and enable practical implementations of WNCSs. The goal of the soft sensor is generating virtual data allowing an actuation on the process faster than the maximum sampling period available for the wireless sensor. Experimental results have shown the soft sensor is a solution to the sampling period constraint problem of wireless sensors in control applications, enabling the application of industrial wireless sensors in WNCSs. Additionally, our results demonstrated the soft sensor potential for implementing energy efficient WNCS through the battery saving of industrial wireless sensors. PMID:25529208

  20. Characterization of a monoclonal antibody against P57, the C3/C3b-cleaving proteinase expressed in human erythrocyte membranes.

    PubMed

    Fiandino-Tirel, A; Barel, M; Lyamani, F; Gauffre, A; Hermann, J; Frade, R

    1991-08-01

    A monoclonal antibody was raised against p57, a serine proteinase, characterized by an apparent molecular weight of 57 kDa, and purified from human erythrocyte membranes. P57 proteinase cleaves the human third component of complement, C3. The antibody selected, MP1, of IgG2a isotype, precipitated specifically the p57 antigen which carried the C3/C3b-cleaving activity present in membrane crude extract of human erythrocytes. P57 proteinase eluted from MP1-sepharose was inhibited by 5 x 10(-4) M PMSF, enhanced by 0.5% SDS and generated C3 fragments identical to those generated by membrane crude extract of human erythrocytes. All these properties were identical to those of the p57 previously purified by biochemical procedures. In addition, 5000 binding sites were detected on cell surface. This MP1 monoclonal antibody will be helpful to analyse the role of p57 in human erythrocytes.

  1. Experimental demonstration of 24-Gb/s CAP-64QAM radio-over-fiber system over 40-GHz mm-wave fiber-wireless transmission.

    PubMed

    Zhang, Junwen; Yu, Jianjun; Chi, Nan; Li, Fan; Li, Xinying

    2013-11-04

    We propose and demonstrate a novel CAP-ROF system based on multi-level carrier-less amplitude and phase modulation (CAP) 64QAM with high spectrum efficiency for mm-wave fiber-wireless transmission. The performance of novel CAP modulation with high order QAM, for the first time, is investigated in the mm-wave fiber-wireless transmission system. One I/Q modulator is used for mm-wave generation and base-band signal modulation based on optical carrier suppression (OCS) and intensity modulation. Finally, we demonstrated a 24-Gb/s CAP-64QAM radio-over-fiber (ROF) system over 40-km stand single-mode-fiber (SMMF) and 1.5-m 38-GHz wireless transmission. The system operation factors are also experimentally investigated.

  2. Full-duplex bidirectional transmission of 10-Gb/s millimeter-wave QPSK signal in E-band optical wireless link.

    PubMed

    Fang, Yuan; Yu, Jianjun; Chi, Nan; Xiao, Jiangnan

    2014-01-27

    We experimentally demonstrated full-duplex bidirectional transmission of 10-Gb/s millimeter-wave (mm-wave) quadrature phase shift keying (QPSK) signal in E-band (71-76 GHz and 81-86 GHz) optical wireless link. Single-mode fibers (SMF) are connected at both sides of the antenna for uplink and downlink which realize 40-km SMF and 2-m wireless link for bidirectional transmission simultaneously. We utilized multi-level modulation format and coherent detection in such E-band optical wireless link for the first time. Mm-wave QPSK signal is generated by photonic technique to increase spectrum efficiency and received signal is coherently detected to improve receiver sensitivity. After the coherent detection, digital signal processing is utilized to compensate impairments of devices and transmission link.

  3. (In)visible threats? The third-person effect in perceptions of the influence of Facebook.

    PubMed

    Paradise, Angela; Sullivan, Meghan

    2012-01-01

    The popularity of Facebook has generated numerous discussions on the individual-level effects of social networking. However, we know very little about people's perceptions of the effects of the most popular social networking site, Facebook. The current investigation reports the findings from a survey designed to help us better understand young people's estimates of the perceived negative effects of Facebook use on themselves and others in regard to three outcome categories: (1) personal relationships, (2) future employment opportunities, and (3) privacy. Congruent with Davidson's third-person effect theory, respondents, when asked about the three outcome categories, believed that the use of Facebook had a larger negative impact on others (e.g., "your closest friends," "younger people," "people in your Facebook network of friends," and "Facebook users in general") than on themselves. Overall, results were inconclusive when it came to the link between the third-person perceptual gap and support for enhanced regulation of Facebook. Implications and limitations of this research are discussed.

  4. A 0.5 cm(3) four-channel 1.1 mW wireless biosignal interface with 20 m range.

    PubMed

    Morrison, Tim; Nagaraju, Manohar; Winslow, Brent; Bernard, Amy; Otis, Brian P

    2014-02-01

    This paper presents a self-contained, single-chip biosignal monitoring system with wireless programmability and telemetry interface suitable for mainstream healthcare applications. The system consists of low-noise front end amplifiers, ADC, MICS/ISM transmitter and infrared programming capability to configure the state of the chip. An on-chip packetizer ensures easy pairing with standard off-the-shelf receivers. The chip is realized in the IBM 130 nm CMOS process with an area of 2×2 mm(2). The entire system consumes 1.07 mW from a 1.2 V supply. It weighs 0.6 g including a zinc-air battery. The system has been extensively tested in in vivo biological experiments and requires minimal human interaction or calibration.

  5. Third Generation (3G) Site Characterization: Cryogenic Core Collection and High Throughput Core Analysis - An Addendum to Basic Research Addressing Contaminants in Low Permeability Zones - A State of the Science Review

    DTIC Science & Technology

    2016-07-29

    Research Addressing Contaminants in Low Permeability Zones - A State of the Science Review SERDP Project ER-1740 JULY 2016 Tom Sale Saeed...process, or service by trade name, trademark, manufacturer , or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or...managing releases of chlorinated solvents and other persistent contaminants in groundwater in unconsolidated sediments. N/A U U U UU 126 Dr. Tom Sale 970

  6. Efficient and automatic wireless geohazard monitoring

    NASA Astrophysics Data System (ADS)

    Rubin, Marc J.

    In this dissertation, we present our research contributions geared towards creating an automated and efficient wireless sensor network (WSN) for geohazard monitoring. Specifically, this dissertation addresses three overall technical research problems inherent in implementing and deploying such a WSN, i.e., 1) automated event detection from geophysical data, 2) efficient wireless transmission, and 3) low-cost wireless hardware. In addition, after presenting algorithms, experimentation, and results from these three overall problems, we take a step back and discuss how, when, and why such scientific work matters in a geohazardous risk scenario. First, in Chapter 2, we discuss automated geohazard event detection within geophysical data. In particular, we present our pattern recognition workflow that can automatically detect snow avalanche events in seismic (geophone sensor) data. This workflow includes customized signal preprocessing for feature extraction, cluster-based stratified sub-sampling for majority class reduction, and experimentation with 12 different machine learning algorithms; results show that a decision stump classifier achieved 99.8% accuracy, 88.8% recall, and 13.2% precision in detecting avalanches within seismic data collected in the mountains above Davos, Switzerland, an improvement on previous work in the field. To address the second overall research problem (i.e., efficient wireless transmission), we present and evaluate our on-mote compressive sampling algorithm called Randomized Timing Vector (RTV) in Chapter 3 and compare our approach to four other on-mote, lossy compression algorithms in Chapter 4. Results from our work show that our RTV algorithm outperforms current on-mote compressive sampling algorithms and performs comparably to (and in many cases better than) the four state-of-the-art, on-mote lossy compression techniques. The main benefit of RTV is that it can guarantee a desired level of compression performance (and thus, radio usage and power consumption) without subjugating recovered signal quality. Another benefit of RTV is its simplicity and low computational overhead; by sampling directly in compressed form, RTV vastly decreases the amount of memory space and computation time required for on-mote compression. Third, in Chapter 5, we present and evaluate our custom, low-cost, Arduino-based wireless hardware (i.e., GeoMoteShield) developed for wireless seismic data acquisition. In particular, we first provide details regarding the motivation, design, and implementation of our custom GeoMoteShield and then compare our custom hardware against two much more expensive systems, i.e., a traditional wired seismograph and a "from-the-ground-up" wireless mote developed by SmartGeo colleagues. We validate our custom WSN of nine GeoMoteShields using controlled lab tests and then further evaluate the WSN's performance during two seismic field tests, i.e., a "walk-away" test and a seismic refraction survey. Results show that our low-cost, Arduino-based GeoMoteShield performs comparably to a much more expensive wired system and a "from the ground up" wireless mote in terms of signal precision, accuracy, and time synchronization. Finally, in Chapter 6, we provide a broad literature review and discussion of how, when, and why scientific work matters in geohazardous risk scenarios. This work is geared towards scientists conducting research within fields involving geohazard risk assessment and mitigation. In particular, this chapter reviews three topics from Science, Technology, Engineering, and Policy (STEP): 1) risk, scientific uncertainty, and policy, 2) society's perceptions of risk, and 3) the effectiveness of risk communication. Though this chapter is not intended to be a comprehensive STEP literature survey, it addresses many pertinent questions and provides guidance to scientists and engineers operating in such fields. In short, this chapter aims to answer three main questions, i.e., 1) "when does scientific work influence policy decisions?", 2) "how does scientific work impact people's perception of risk?", and 3) "how is technical scientific work communicated to the non-scientific community?".

  7. Wireless Data Acquisition of Transient Signals for Mobile Spectrometry Applications.

    PubMed

    Trzcinski, Peter; Weagant, Scott; Karanassios, Vassili

    2016-05-01

    Wireless data acquisition using smartphones or handhelds offers increased mobility, it provides reduced size and weight, it has low electrical power requirements, and (in some cases) it has an ability to access the internet. Thus, it is well suited for mobile spectrometry applications using miniaturized, field-portable spectrometers, or detectors for chemical analysis in the field (i.e., on-site). There are four main wireless communications standards that can be used for wireless data acquisition, namely ZigBee, Bluetooth, Wi-Fi, and UWB (ultra-wide band). These are briefly reviewed and are evaluated for applicability to data acquisition of transient signals (i.e., time-domain) in the field (i.e., on-site) from a miniaturized, field-portable photomultiplier tube detector and from a photodiode array detector installed in a miniaturized, field-portable fiber optic spectrometer. These are two of the most widely used detectors for optical measurements in the ultraviolet-visible range of the spectrum. A miniaturized, 3D-printed, battery-operated microplasma-on-a-chip was used for generation of transient optical emission signals. Elemental analysis from liquid microsamples, a microplasma, and a handheld or a smartphone will be used as examples. Development and potential applicability of wireless data acquisition of transient optical emission signals for taking part of the lab to the sample types of mobile, field-portable spectrometry applications will be discussed. The examples presented are drawn from past and ongoing work in the authors' laboratory. A handheld or a smartphone were used as the mobile computing devices of choice. © The Author(s) 2016.

  8. Real time network traffic monitoring for wireless local area networks based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza

    2017-05-01

    A wireless local area network (WLAN) is an important type of wireless networks which connotes different wireless nodes in a local area network. WLANs suffer from important problems such as network load balancing, large amount of energy, and load of sampling. This paper presents a new networking traffic approach based on Compressed Sensing (CS) for improving the quality of WLANs. The proposed architecture allows reducing Data Delay Probability (DDP) to 15%, which is a good record for WLANs. The proposed architecture is increased Data Throughput (DT) to 22 % and Signal to Noise (S/N) ratio to 17 %, which provide a good background for establishing high qualified local area networks. This architecture enables continuous data acquisition and compression of WLAN's signals that are suitable for a variety of other wireless networking applications. At the transmitter side of each wireless node, an analog-CS framework is applied at the sensing step before analog to digital converter in order to generate the compressed version of the input signal. At the receiver side of wireless node, a reconstruction algorithm is applied in order to reconstruct the original signals from the compressed signals with high probability and enough accuracy. The proposed algorithm out-performs existing algorithms by achieving a good level of Quality of Service (QoS). This ability allows reducing 15 % of Bit Error Rate (BER) at each wireless node.

  9. Enabling Wireless Avionics Intra-Communications

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Nguyen, Truong; Mackenzie, Anne

    2016-01-01

    The Electromagnetics and Sensors Branch of NASA Langley Research Center (LaRC) is investigating the potential of an all-wireless aircraft as part of the ECON (Efficient Reconfigurable Cockpit Design and Fleet Operations using Software Intensive, Networked and Wireless Enabled Architecture) seedling proposal, which is funded by the Convergent Aeronautics Solutions (CAS) project, Transformative Aeronautics Concepts (TAC) program, and NASA Aeronautics Research Institute (NARI). The project consists of a brief effort carried out by a small team in the Electromagnetic Environment Effects (E3) laboratory with the intention of exposing some of the challenges faced by a wireless communication system inside the reflective cavity of an aircraft and to explore potential solutions that take advantage of that environment for constructive gain. The research effort was named EWAIC for "Enabling Wireless Aircraft Intra-communications." The E3 laboratory is a research facility that includes three electromagnetic reverberation chambers and equipment that allow testing and generation of test data for the investigation of wireless systems in reflective environments. Using these chambers, the EWAIC team developed a set of tests and setups that allow the intentional variation of intensity of a multipath field to reproduce the environment of the various bays and cabins of large transport aircraft. This setup, in essence, simulates an aircraft environment that allows the investigation and testing of wireless communication protocols that can effectively be used as a tool to mitigate some of the risks inherent to an aircraft wireless system for critical functions. In addition, the EWAIC team initiated the development of a computational modeling tool to illustrate the propagation of EM waves inside the reflective cabins and bays of aircraft and to obtain quantifiable information regarding the degradation of signals in aircraft subassemblies. The nose landing gear of a UAV CAD model was used to model the propagation of a system in a "deployed" configuration versus a "stowed" configuration. The differences in relative field strength provide valuable information about the distribution of the field that can be used to engineer RF links with optimal radiated power and antenna configuration that accomplish the intended system reliability. Such modeling will be necessary in subsequent studies for managing multipath propagation characteristics inside a main cabin and to understand more complex environments, such as the inside wings, landing gear bays, cargo bays, avionics bays, etc. The results of the short research effort are described in the present document. The team puts forth a set of recommendations with the intention of informing the project and program leadership of the future work that, in the opinion of the EWAIC team, would assist the ECON team reach the intended goal of developing an all-wireless aircraft.

  10. Effects of electromagnetic radiation produced by 3G mobile phones on rat brains: magnetic resonance spectroscopy, biochemical, and histopathological evaluation.

    PubMed

    Dogan, M; Turtay, M G; Oguzturk, H; Samdanci, E; Turkoz, Y; Tasdemir, S; Alkan, A; Bakir, S

    2012-06-01

    The effects of electromagnetic radiation (EMR) produced by a third-generation (3G) mobile phone (MP) on rat brain tissues were investigated in terms of magnetic resonance spectroscopy (MRS), biochemistry, and histopathological evaluations. The rats were randomly assigned to two groups: Group 1 is composed of 3G-EMR-exposed rats (n = 9) and Group 2 is the control group (n = 9). The first group was subjected to EMR for 20 days. The control group was not exposed to EMR. Choline (Cho), creatinin (Cr), and N-acetylaspartate (NAA) levels were evaluated by MRS. Catalase (CAT) and glutathione peroxidase (GSH-Px) enzyme activities were measured by spectrophotometric method. Histopathological analyses were carried out to evaluate apoptosis in the brain tissues of both groups. In MRS, NAA/Cr, Cho/Cr, and NAA/Cho ratios were not significantly different between Groups 1 and 2. Neither the oxidative stress parameters, CAT and GSH-Px, nor the number of apoptotic cells were significantly different between Groups 1 and 2. Usage of short-term 3G MP does not seem to have a harmful effect on rat brain tissue.

  11. A novel Brain Computer Interface for classification of social joint attention in autism and comparison of 3 experimental setups: A feasibility study.

    PubMed

    Amaral, Carlos P; Simões, Marco A; Mouga, Susana; Andrade, João; Castelo-Branco, Miguel

    2017-10-01

    We present a novel virtual-reality P300-based Brain Computer Interface (BCI) paradigm using social cues to direct the focus of attention. We combined interactive immersive virtual-reality (VR) technology with the properties of P300 signals in a training tool which can be used in social attention disorders such as autism spectrum disorder (ASD). We tested the novel social attention training paradigm (P300-based BCI paradigm for rehabilitation of joint-attention skills) in 13 healthy participants, in 3 EEG systems. The more suitable setup was tested online with 4 ASD subjects. Statistical accuracy was assessed based on the detection of P300, using spatial filtering and a Naïve-Bayes classifier. We compared: 1 - g.Mobilab+ (active dry-electrodes, wireless transmission); 2 - g.Nautilus (active electrodes, wireless transmission); 3 - V-Amp with actiCAP Xpress dry-electrodes. Significant statistical classification was achieved in all systems. g.Nautilus proved to be the best performing system in terms of accuracy in the detection of P300, preparation time, speed and reported comfort. Proof of concept tests in ASD participants proved that this setup is feasible for training joint attention skills in ASD. This work provides a unique combination of 'easy-to-use' BCI systems with new technologies such as VR to train joint-attention skills in autism. Our P300 BCI paradigm is feasible for future Phase I/II clinical trials to train joint-attention skills, with successful classification within few trials, online in ASD participants. The g.Nautilus system is the best performing one to use with the developed BCI setup. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Third-generation imaging sensor system concepts

    NASA Astrophysics Data System (ADS)

    Reago, Donald A.; Horn, Stuart B.; Campbell, James, Jr.; Vollmerhausen, Richard H.

    1999-07-01

    Second generation forward looking infrared sensors, based on either parallel scanning, long wave (8 - 12 um) time delay and integration HgCdTe detectors or mid wave (3 - 5 um), medium format staring (640 X 480 pixels) InSb detectors, are being fielded. The science and technology community is now turning its attention toward the definition of a future third generation of FLIR sensors, based on emerging research and development efforts. Modeled third generation sensor performance demonstrates a significant improvement in performance over second generation, resulting in enhanced lethality and survivability on the future battlefield. In this paper we present the current thinking on what third generation sensors systems will be and the resulting requirements for third generation focal plane array detectors. Three classes of sensors have been identified. The high performance sensor will contain a megapixel or larger array with at least two colors. Higher operating temperatures will also be the goal here so that power and weight can be reduced. A high performance uncooled sensor is also envisioned that will perform somewhere between first and second generation cooled detectors, but at significantly lower cost, weight, and power. The final third generation sensor is a very low cost micro sensor. This sensor can open up a whole new IR market because of its small size, weight, and cost. Future unattended throwaway sensors, micro UAVs, and helmet mounted IR cameras will be the result of this new class.

  13. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    PubMed Central

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602

  14. A field programmable gate array-based reconfigurable smart-sensor network for wireless monitoring of new generation computer numerically controlled machines.

    PubMed

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Romero-Troncoso, Rene de Jesus

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node.

  15. First cytoplasmic loop of glucagon-like peptide-1 receptor can function at the third cytoplasmic loop position of rhodopsin.

    PubMed

    Yamashita, Takahiro; Tose, Koji; Shichida, Yoshinori

    2008-01-01

    G protein-coupled receptors (GPCRs) are classified into several families based on their amino acid sequences. In family 1, GPCRs such as rhodopsin and adrenergic receptor, the structure-function relationship has been extensively investigated to demonstrate that exposure of the third cytoplasmic loop is essential for selective G protein activation. In contrast, much less is known about other families. Here we prepared chimeric mutants between Gt-coupled rhodopsin and Gi/Go- and Gs-coupled glucagon-like peptide-1 (GLP-1) receptor of family 2 and tried to identify the loop region that functions at the third cytoplasmic loop position of rhodopsin. We succeeded in expressing a mutant having the first cytoplasmic loop of GLP-1 receptor and found that this mutant activated Gi and Go efficiently but did not activate Gt. Moreover, the rhodopsin mutant having the first loop of Gs-coupled secretin receptor of family 2 decreased the Gi and Go activation efficiencies. Therefore, the first loop of GLP-1 receptor would share a similar role to the third loop of rhodopsin in G protein activation. This result strongly suggested that different families of GPCRs have maintained molecular architectures of their ancestral types to generate a common mechanism, namely exposure of the cytoplasmic loop, to activate peripheral G protein.

  16. Wireless Sensor Network With Geolocation

    DTIC Science & Technology

    2006-11-01

    WIRELESS SENSOR NETWORK WITH GEOLOCATION James Silverstrim and Roderick Passmore Innovative Wireless Technologies Forest, VA 24551 Dr...TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Wireless Sensor Network With Geolocation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Locationing in distributed ad-hoc wireless sensor networks ”, IEEE ICASSP, May 2001. D. W. Hanson, Fundamentals of Two-Way Time Transfer by Satellite

  17. 76 FR 11781 - Wireless Telecommunications Bureau Seeks Comment on Petition for Declaratory Ruling Asking To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... FEDERAL COMMUNICATIONS COMMISSION [WT Docket No. 11-35; DA 11-353] Wireless Telecommunications... Wireless Telecommunications Bureau seeks comment on a December 3, 2010 petition for declaratory ruling (Petition) filed by CTIA-The Wireless Association (Petitioners). The Petitioners ask the Federal...

  18. Performance Evaluation of a Prototyped Wireless Ground Sensor Network

    DTIC Science & Technology

    2005-03-01

    the network was capable of dynamic adaptation to failure and degradation. 14. SUBJECT TERMS: Wireless Sensor Network , Unmanned Sensor, Unattended...2 H. WIRELESS SENSOR NETWORKS .................................................................... 3...zation, and network traffic. The evaluated scenarios included outdoor, urban and indoor environments. The characteristics of wireless sensor networks , types

  19. Connected vehicles and your privacy.

    DOT National Transportation Integrated Search

    2016-01-01

    Connected vehicles communicate wirelessly with other vehicles and our roads, : sharing important safety and mobility information and generating new data about : how, when, and where vehicles travel. The unprecedented level of data generated : will be...

  20. Optical-wireless-optical full link for polarization multiplexing quadrature amplitude/phase modulation signal transmission.

    PubMed

    Li, Xinying; Yu, Jianjun; Chi, Nan; Zhang, Junwen

    2013-11-15

    We propose and experimentally demonstrate an optical wireless integration system at the Q-band, in which up to 40 Gb/s polarization multiplexing multilevel quadrature amplitude/phase modulation (PM-QAM) signal can be first transmitted over 20 km single-mode fiber-28 (SMF-28), then delivered over a 2 m 2 × 2 multiple-input multiple-output wireless link, and finally transmitted over another 20 km SMF-28. The PM-QAM modulated wireless millimeter-wave (mm-wave) signal at 40 GHz is generated based on the remote heterodyning technique, and demodulated by the radio-frequency transparent photonic technique based on homodyne coherent detection and baseband digital signal processing. The classic constant modulus algorithm equalization is used at the receiver to realize polarization demultiplexing of the PM-QAM signal. For the first time, to the best of our knowledge, we realize the conversion of the PM-QAM modulated wireless mm-wave signal to the optical signal as well as 20 km fiber transmission of the converted optical signal.

Top